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Preface

The Environmental and Water Resources Institute (EWRI), the American Society of Civil Engineers’
(ASCE) Task Committee on “statistical distributions in hydrology,” envisioned the development of a
comprehensive monograph addressing uses and applications of statistical distributions in hydrology.
This Task Committee was organized by the EWRI’s Surface Water Hydrology Technical Committee
(SWHTC) of the Watershed Council. Over several years the members of this committee struggled to
determine the appropriate scope and contents of this monograph. Dr. Ahmed Nazeer led the initial
vision and development of the monograph’s outline and content. Subsequently, Dr. Veronica
Webster, in collaboration with professors Jose D. Salas and Jery R. Stedinger, continued the effort
and expanded the book’s scope with the addition of selected chapters. She also supervised the writing
and review of the various chapters. More recently, the SWHTC asked Dr. Ramesh Teegavarapu to
take the lead in collaboration with Professors Salas and Stedinger, to re-review the chapters and
complete the final steps needed for publication.

Each chapter of this book went through a peer review process by independent reviewers and the
editorial team. The monograph is intended to be a standalone reference document that compiles
state-of-the-art statistical methods for analyzing and describing critical variables that are part of the
hydrological cycle. The monograph addresses the pressing problem of the dynamics of hydrological
processes under stationary and nonstationary conditions. Developing a monograph addressing the
statistical analysis of key variables in the hydrological cycle was a major undertaking, particularly as
the field is evolving rapidly with a corresponding expansion of its literature. While efforts were made
to be comprehensive, gaps remain to be filled. These gaps should be addressed in future hydrologic
research. Nevertheless, the authors and the editors hope that this monograph, which addresses uses
and applications of statistical methods, will be valuable to students, educators, researchers, and
practicing hydrologists and water resource specialists. We sincerely thank the lead authors and
coauthors of the chapters and the peer reviewers who have provided enormous help in the
development of this monograph. We also thank EWRI for supporting the task committee’s activities
and helping with publication.

—Editorial Team
Ramesh S.V. Teegavarapu

José D. Salas
Jery R. Stedinger
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CHAPTER 1

Introduction
Ramesh S.V. Teegavarapu

Jose D. Salas
Jery R. Stedinger

Characterizing and understanding the variability of hydroclimatological processes and measure-
ments are essential for assessing the performance of water resources infrastructure and its
management and for planning successful and efficient water resources projects. Spatial and temporal
resolution of data are increasing with an expanding set of data sources, including remote and land-
based instruments with real-time reporting. The analyzed data provide invaluable insights into the
temporal and spatial dynamics of hydrological processes that represent the hydrological cycle.
Historical data combined with future projections of anthropogenic and climate changes provide
ample opportunities to evaluate trends and change points in the time series to develop realistic
hydrologic designs and water and environmental systems management alternatives. The assessment
of climate variability also relies on the evaluation of patterns and variations of historical hydro-
climatological data. Hence a need exists for clear understanding and application of various data
analysis methods, ranging from simple exploratory analysis to more comprehensive statistical
methods.

This book aims to provide appropriate statistical methods for analyzing and modeling various
parts of the hydrological cycle. Following this introductory chapter, the monograph contains 11
chapters, 2 through 12. Many chapters describe a key process in the hydrological cycle, such as
precipitation, evaporation, infiltration and soil water, groundwater, and streamflow. Some chapters
are devoted primarily to analyzing extreme events such as floods and low flows and droughts.
Also, because watersheds and river basins often include built infrastructure and conveyances,
Chapter 9 is dedicated to the hydrologic cycle that takes place in urban areas, such as precipitation
and runoff, and stormwater collection and management. Most chapters emphasize the quantitative
aspects of the movement of water. Chapter 10 considers the probabilistic and statistical issues
related to the water quality component of the hydrologic cycle. Furthermore, because various
components of the hydrologic cycle are interrelated, Chapter 11 considers the use of multivariate
distributions in hydrology. Whenever possible, authors have provided examples and applications of
techniques and models using real data, guidelines for data assessment, and discussion of model
limitations.

Chapter 2 discusses applications of statistical methods for analysis of precipitation extremes,
including a discussion about precipitation measurement and statistical estimation issues. The
chapter describes probability distributions used to characterize precipitation extremes at different
temporal and spatial scales and as a time series. Illustrative examples of fitting different distributions
to precipitation data at different temporal scales are also presented. The chapter ends with a
discussion of precipitation under a changing climate and sustainable climate change–sensitive
hydrologic design that considers potential changes in the frequency of occurrences and magnitudes
of precipitation extremes.
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Evapotranspiration (ET) is a major component of the hydrologic cycle that needs to be
described accurately for hydrologic modeling and water resources management. Chapter 3 explains
the basics of ET, including physical processes, energy, water balance, and eddy covariance methods
to estimate ET. Use of remote sensing in estimating ET via energy balance procedures along with
uncertainty and limitations of different methods are discussed. The reference evapotranspiration
concept is elaborated, and Penman–Monteith and ASCE standardized reference methods are
described. The chapter also discusses methods for deriving reference ET from different data sources
and understanding its variability. Trend analysis of ET and evaporative demand using nonpara-
metric trends tests and discussion of drivers influencing these two components are presented.
Infiltration is a key component influencing runoff processes and is discussed in Chapter 4. Processes
affecting infiltration and soil water, along with conventional methods of handling rainfall infiltration
and losses, are discussed. Challenges include addressing the spatial and temporal variability of
infiltration, its measurement, and soil-specific factors affecting infiltration. Methods for estimation
of soil hydraulic properties and infiltration are also discussed. Uncertainty in the measurement of
infiltration and inverse methods of parameter estimation are dealt with in detail. The chapter ends
with recommendations for addressing different issues related to measurements across different
scales and use of systems approaches and risk assessments. Chapter 5 deals with use and applications
of probabilistic distributions for characterizing subsurface hydrology-specific variables. The chapter
discusses probability distribution functions that can be used to develop probabilistic models of
hydraulic conductivity; groundwater residence time and age, including gamma distributions for
characterizing residence time and age; and exponential, lognormal, and log–gamma distributions for
hydraulic conductivity. Discussions address statistical homogeneity and independence of observa-
tions. Illustrative examples using real data show the applicability of different probability
distributions.

Streamflow is another major component of the hydrological cycle. Chapter 6 describes the
analysis of streamflows at various temporal scales, including monthly and annual, and spatial scales
involving one or multiple sites. Various temporal models are considered, particularly those within
the autoregressive and moving average (ARMA) framework for annual flows and extensions thereof
for seasonal flows. Likewise, product models with discrete and continuous parts are formulated for
intermittent flows. A discussion considers models that can reproduce long-term persistence,
including the fractional Gaussian noise and fractional ARMA, as well as shifting mean models.
Such models can generate shifting patterns such as those arising from low-frequency components of
atmospheric and oceanic processes. In addition, modeling and generation of seasonal streamflows at
multiple sites may require the application of multivariate models, temporal and spatial disaggre-
gation models, and nonparametric schemes, depending on the complexity of the system. The chapter
ends with a discussion of software tools and common applications of the various models and
techniques discussed.

Extreme events such as floods and droughts are a major concern in engineering hydrology.
Chapter 7 explains the methods employed for flood risk estimation in the United States, based on the
log–Pearson type III (LP3) distribution. The chapter gives a detailed description of the LP3.
Sometimes low outliers may distort a distribution fit to a flood record. A relatively new estimation
method, called the expected moments algorithm, effectively employs the entire data set, including
the gauged record, historical information, low outliers, and regional skew information. Bulletin 17B
has been the standard manual for flood frequency analysis in the United States since 1982. The
chapter reviews Bulletin 17B’s evolution and the changes in the long-awaited new manual, Bulletin
17C. The chapter ends with a detailed discussion of how climate variability and change can be
incorporated into flood frequency analysis.

Extreme low flows and droughts are also important elements of the hydrologic cycle. Chapter 8
begins with key definitions, followed by applications of lognormal, LP3, and general extreme value
(GEV) distributions, including regional frequency studies of low flows. Often the time series of low
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flows are autocorrelated because of the effect of surface and groundwater storages and then discrete
and continuous autocorrelated models are necessary for predicting low flows. The chapter includes
various modeling alternatives such as simple Markov chains, discrete ARMA, and gamma auto-
regressive processes. A mathematical algorithm is presented for determining return periods and risk
of low flow variables and then extended to estimate the return period and risk of multiyear droughts.
Several examples illustrate the use of the methods. The chapter ends with a discussion of the effects
of anthropogenic and climatic variability and change on the analysis and modeling of low flows and
droughts.

Impervious surfaces and extensive drainage systems characterize urban areas, which leads to
faster flow response and greater amounts of runoff reaching the streams. Also, runoff from urban
areas contains sediments and water contaminants. Many techniques and modeling tools are available
for estimating precipitation rates, runoff characteristics, erosion, and water quality loads, including
the effect of management practices. Furthermore, given the random nature of many of the
hydrologic and hydraulic variables involved in urban watersheds and related best management
practices, some applications of probability theory have been developed in the past decades to help in
the analysis, management, and planning of urban hydraulic systems. Chapter 9 has been written for
this purpose, as a complement to traditional approaches.

Most of the statistical analysis and probability distributions included in Chapters 2 through 9
can be applied to water quality variables as well. Chapter 10 gives a comprehensive presentation of
many water quality random variables. It includes the most commonly used distributions; nonpara-
metric approaches; how to deal with censored observations that are typically encountered in data;
problems related to water quality; seasonal effects on water quality characteristics; the effect of
autocorrelated observations, which sometimes require using time series analysis and models; and the
inherent nature of water quality that is characterized by variables arising from physical, chemical,
and biological measurements, which requires using multivariate distributions.

As stated in other chapters, description of the hydrological cycle generally involves many
random variables that are defined at temporal and spatial scales. Chapter 11 is devoted specifically to
deal with such multivariate problems and the applications of multivariate probability distribution
functions. After introducing the basic concepts for analyzing multiple variables, a review is made of
the typical applications reported in literature of multivariate distributions in hydrometeorology and
hydrology. The chapter provides details on two fundamental approaches: conventional multivariate
distributions (often based upon normal distributions) and the copula method. Examples and
specifics of conventional distributions are discussed, particularly bivariate distributions, such as
the bivariate normal, lognormal, exponential, and Gumbel distributions. In addition, the concepts
and types of copulas and the selection and generation methods based on copulas are discussed in
some detail. The end of the chapter includes three applications for copula modeling of peak flow and
volume, storm duration and depth, and regional flood risk management.

Some chapters deal with extreme events such as extreme precipitation in Chapter 2 and
extreme floods in Chapter 7. The last chapter, Chapter 12, deals with such extreme value problems
but from a different perspective. It deals with “record events,” that is to say, an event that exceeds
all previous events that occurred in the record. And “no matter how large the magnitude of the
flood record event may be, it will eventually be broken” (Glick 1978), thus “the probability of the
largest observed flood will be exceeded is 1” (Vogel et al. 2019, authors of Chapter 12). To
understand the theoretical framework and implications and use of such types of statements,
reading the final chapter is worthwhile. The chapter’s authors indicate that “there are surprisingly
few water resources studies that have applied the theory of records.” The chapter includes
parametric and nonparametric approaches to statistical analyses of hydrologic records, gives some
examples using flood envelope curves, and provides a probabilistic interpretation of such curves.
The chapter ends with applications of regional envelope curves for flood studies in Italy and the
United States and precipitation studies in Austria.
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The editors of this book are very pleased with the material that the chapter authors have
contributed. The book should be of great interest to individuals concerned with the theory and
applications of probabilistic methods in hydrology and water resources in general, with a particular
component of the hydrological cycle, or with a specific issue such as extreme events. We encourage
readers to pursue issues further by looking through the references (e.g. Singh 2017) or looking up
subsequent journal papers and reports. Readers are invited to contact the authors and coauthors of
the various chapters to pursue more advanced issues or issues that were omitted, perhaps because of
space constraints. We are in a world that is becoming technically more sophisticated and aims to
describe hydrologic phenomena more completely. To treat a process that we know varies over time
as constant, or to ignore uncertainty in estimated parameters as if no uncertainty were present, is to
describe reality incompletely or without appropriate care. This book is part of our profession’s effort
to encourage the use of probability models and statistics to more completely characterize hydrologic
processes; such efforts should support the advancement of hydrologic science and improve the
design process by developing more complete descriptions of all the interacting processes that affect
the safety and efficient operation of water resource projects.

References

Glick, N. 1978. “Breaking records and breaking boards.” Am. Math. Month. 85 (1): 2–26.
Singh, V. P. (editor-in-chief). 2017.Handbook of applied hydrology, 2nd ed. New York: McGraw-Hill Education.
Vogel, R. M., A. Castellarin, N. C. Matalas, J. F. England Jr., and A. Zafirakou. 2019. “Hydrologic record events.”
In Statistical analysis of hydrologic variables: Methods and applications. Reston, VA: ASCE.
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CHAPTER 2

Statistical Analysis of Precipitation
Extremes

Ramesh S. V. Teegavarapu, Ph.D., P.E.
Chandra S. Pathak, Ph.D., P.E.

2.0 INTRODUCTION

Precipitation is the key hydrologic variable linking the atmosphere with land surface processes and
plays a dominant role in the terrestrial hydroclimatic system. Accurate measurements of precipitation
on various space and time scales are important not only to weather forecasters and climate scientists,
but also to many decision makers, including hydrologists, agriculturalists, and industrialists (Ebert
et al. 2007). Excessive and insufficient precipitation can cause significant damage to life and property
through hydrological extremes such as floods and droughts, respectively. Prediction of such phenom-
ena largely depends on how accurate estimation of precipitation is and its resolution at different spatial
and temporal scales. Even though rain gauges are the conventional instruments for direct measurement
of rainfall, sparse network or no coverage over land or ocean and remote land areas limits their utility
over these regions. The absence of gauges in remote regions clearly indicates the need for remotely
sensed (radar and satellite) measurements by which rainfall estimation can be monitored as well.
Remote sensing provides advantages in terms of availability of data in real time and complete area
coverage irrespective of terrain or climate. For these reasons, the complex error structure, and high
variability exhibited by intermittent measurement through sparse rain gauges, identifying true rainfall
fields has been recognized to be difficult. To overcome these issues, ground-based radar measurement
adjusted with rain gauges was found to be more representative of the true rainfall field. Also, as an
alternative, satellite-based precipitation estimation techniques have been developed (Huffman et al.
2003, Sene 2009). A few sections of this chapter are adopted from Teegavarapu (2012a).

The widespread availability and easy accessibility of satellite-based precipitation estimates
(Teegavarapu 2012a) have also enhanced hydrological modeling and forecasting procedures at the
watershed scale. Before satellite-based precipitation products can become fully accepted, rainfall
estimates from this source must be assessed to understand their strengths and limitations so that they
can be interpreted correctly. Future precipitation estimates will be dominated by radar- and satellite-
based observations with dependence on the ground truth (i.e., rain gauge). The main focus of this
chapter is on statistical analysis of precipitation data with emphasis on extremes. Statistical methods
used for analysis of bias in precipitation measurements and design of rain gauge networks are also
discussed. Precipitation occurs in various forms such as rain, snow, hail, drizzle, sleet, and others.
Appropriate measurement methods and procedures (Strangeways 2007), when adopted, are
expected to provide water equivalents that can be used to analyze precipitation time series,
characteristics, and extremes. This chapter does not elaborate on these methods and measures.
The next three sections provide a brief introduction about precipitation measurements.
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2.1 GROUND-, RADAR-, AND SATELLITE-BASED MEASUREMENTS

Ground-based measurements refer to the conventional and direct ways of measuring precipitation,
and these are generally carried out by a network of rain gauges. Radar measurements are sometimes
considered to be ground based because of the location of the radar unit. In this chapter, radar-based
estimates are treated separately because their operation is primarily meant to obtain data of spatially
varying precipitation. Satellite-based measurement is an emerging method for estimating precipita-
tion. Sene (2009) and Kidder and Haar (1995) document the available satellite-based precipitation
estimates derived from different algorithms.

2.1.1 Systematic and Random Errors

Precipitation measurements, like any measurements, are prone to systematic and random errors.
The field of metrology (the science of measurement) provides an exhaustive treatment of different
types of errors and their manifestations in different measurement settings. Systematic errors are
mainly due to measuring instruments (instrument-related systematic errors) (Rabinovich 2005).
These errors can be corrected but cannot be eliminated. In some situations, systematic errors are
qualified as errors made by human participants (Rabinovich 2005), and they are mainly due to the
individual characteristics of the observer. Systematic errors due to wind undercatch, splashing,
evaporation, and wetting losses are also common. Random errors are mainly due to imprecision in
measurement and unknown wind fields responsible for losses (Vieux 2006), irregularities of
topography and microclimatic variations around the gauge site, and inadequate network density
to account for the natural spatial variability of rainfall (WMO 2009).

2.1.2 Precipitation Measurements and Networks

More than 150,000 nonrecording rain gauges are in operation throughout the world (Servuk and
Klemm, 1989). In addition, several different types of gauges differ in catch area, height and material
used, and other aspects. Servuk and Klemm (1989) and Strangeways (2003, 2007) indicate that more
than 50 types of manually read gauges exist in the world. These estimates may not reflect current
figures, and variations in the types are not easy to document. However, these numbers and types of
gauges show the diversity in the configuration of rain gauges around the world. Recording gauges
measure precipitation at discrete intervals of time and thus provide the time distribution of rainfall
for a given storm event or within a time frame of consideration. Typically, recording gauges are
electronically controlled, and the information about rainfall measurements is transmitted through
telemetric devices. Human intervention is minimal in measurement and collection of the data.
Examples of these types of gauges include tipping bucket, weighing bucket, and float gauges. A
tipping bucket precipitation gauge is a recording rain gauge that works by measuring water volume
through the use of a lightweight, dual-compartment tipping device. The time of each tipping of the
bucket is recorded and can be resampled at discrete intervals of time. A weighing bucket rain gauge
has a reservoir for collecting precipitation and a recording mechanism to register the amount of
precipitation. The reservoir itself rests on a scale, and the weight of the collected precipitation is
converted into a precipitation amount and recorded. The float-type rain gauge provides temporal
distribution of precipitation data using a float mechanism located inside the rainfall collection
reservoir. Nonrecording gauges are typically standard recording gauges and are manually operated.
These gauges do not provide temporal distribution of rainfall. Human involvement is critical in the
collection and reporting of measured precipitation. As no automatic recording devices are attached,
precipitation measurement readings must be taken manually at regular time intervals.

Snowfall is much more difficult to measure than rainfall (Strangeways 2007). Strangeways
(2007) describes conventional rain gauges and optical precipitation gauges, measurements of snow
depth and weight, and the use of gamma ray attenuation in detail. Dingman (2008) documents
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different methods for measurement of snow, which include standard methods using rulers, universal
gauges, radar, snow stakes, snow surveys and pillows, acoustic and radioactive gauges, and airborne
microwave and radar- and satellite-based measurements. Once the snow pack depth or amount of
snowfall is measured, snow water equivalent (SWE) can be easily obtained.

Precipitation monitoring network density is simply the number of rain gauges per given area of
a specific region. The World Meteorological Organization (Sevruk and Hamon 1984) provides
recommendations for minimum network density of precipitation networks for hydrometeorological
purposes. Design of optimal monitoring networks requires a critical assessment of information to be
gained about the heterogeneity of the precipitation process among sampling locations. The design of
a monitoring network is aimed at capturing and characterizing the spatial variability of the
precipitation across a specific region. This generally should be the primary objective. However,
other secondary objectives related to placement of gauges can be due to other reasons such as
(1) validation of modeling efforts, (2) precipitation measurements required to derive inputs for a
hydrological simulation model, and (3) requirement of a precipitation monitoring effort for a
specific hydrologic or hydraulic project. The design of the network depends on several factors that
include (1) placement of rain gauges to maximize the information obtained from them, (2) existing
network of rain gauges, (3) monetary cost involved in the placement (relocation and installation) of
the rain gauges, and (4) feasibility of installation of a rain gauge at a location within a specific region.
The number of stations required in a specific region (e.g., watershed or basin) can be determined by
conceptually simple methods based on the variance of rainfall measurements in space or variants
thereof. The variance of rainfall is calculated based on the existing number of rain gauges in the
region. Rakhecha and Singh (2009) discuss three variance-based methods and report methods by
Rycroft (1949), Ganguli et al. (1951), and Ahuja (1960). All these methods use the concept of
variance in space and allowable variance in the estimate of mean rainfall to determine the optimum
number of rain gauges. A geostatistical approach discussed by Teegavarapu et al. (2015) and Vieux
(2006) uses information about the spatial variability of variables of interest (e.g., solar radiation and
rainfall) with the help of semi-variograms.

2.1.3 Radar-Based Rainfall Estimates

The use of radar technology to estimate precipitation (rainfall) began in the early 1960s (Meischner
2005). During the early 1990s, the use of this technology proliferated as the National Oceanic and
Atmospheric Administration (NOAA) installed many radars across the United States as part of the
Weather Surveillance Radar 88-Doppler (WSR 88-D) or NEXt Generation RADar (NEXRAD)
program initiated by the National Weather Service (NWS). Several types of weather radars are in use
throughout the world. They are sometimes classified based on frequency and wavelength char-
acteristics. Exhaustive discussion about radar-based precipitation measurements can be obtained
from reference books by Meischner (2005), Strangeways (2007), and Raghavan (2003). Meischner
(2005) provides a comprehensive assessment of radar-based precipitation networks, estimation, use
of radar data for hydrometeorological applications, and recent advances in the radar measurement of
precipitation. The reader is referred to Vieux (2001) and Collier (1989) for initial development of
radar-based precipitation networks and their evolution. The NEXRAD system was initially pro-
totyped in 1988 at the National Severe Storms Laboratory in Norman, Oklahoma, and deployed for
use nationally in 1992 under the controlling agencies of the NWS, the US Air Force, and the Federal
Aviation Administration. Currently, more than 150WSR-88D radars are in operation across most of
the United States. Figure 2-1 shows the location of these radar sites in the United States and the US
territories. Weather radars can locate and follow precipitation within a range of 200 to 400 km,
depending on radio propagation conditions and the nature of the weather system.

There is a statistical tradeoff between rainfall measurement data collected by rain gauges and
weather radar. Rain gauges can provide precise point values of rainfall depth and intensity but
cannot economically provide the spatial distribution of rainfall. Whereas rain gauges are appropriate
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for frontal-related rainfall events, they often do not represent the timing and orientation of the
frontal systems well. Gauges can also miss highly variable convective rainfall events altogether. Radar
data provides complete spatial coverage of rainfall amounts unobtrusively using a predetermined
grid resolution (usually 4 km × 4 km) (Figure 2-1). WSR-88D precipitation estimates are based
on the Precipitation Processing System (PPS) (Fulton et al. 1998). This algorithm preprocesses
incoming reflectivity data, applies certain quality control measures, converts the reflectivity to
rainfall rates, and provides estimates of accumulations. NEXRAD rainfall data are limited by relying
on the measurement of raindrop reflectivity, which factors such as raindrop size and signal reflection
by other objects can affect. Because the reflected signal measured by the radar is proportional to the
sum of the sixth power of the diameter of the raindrops in a given volume of atmosphere, small
changes in the size of raindrops can dramatically affect the radar’s rainfall estimate. For this reason, a
radar reflectivity (Z) and rainfall rate (R) is initially developed and used to estimate rainfall for a
given reflectivity value. Drop size distributions vary for different rainfall characteristics. Thus,
many empirical Z–R relationships have been developed to account for observed precipitation in
different climate areas and meteorological conditions. Bedient et al. (2008) offer an extensive account
of Z–R equations. Teegavarapu and Pathak (2012) provide different methods for obtaining optimal
Z–R relationships. NEXRAD data provide rainfall products with two primary spatial resolutions
(4 km × 4 km Cartesian; 2 km × 1-degree azimuth-range). Hoblit et al. (1999) and Hoblit and Curtis
(2000) discuss applications of radar rainfall data adjustments applied to radar rainfall data products
derived from NEXRAD. Teegavarapu et al. (2016) provide a comprehensive framework for
assessment of biases in radar-based precipitation estimates. According to Wilson and Brandes
(1979), better rainfall estimates are obtained from bias-adjusted radar rainfall data than can be
achieved with either rain gauge networks or radar rainfall data alone. Readers can obtain additional

Figure 2-1. NEXRAD ground-based radar network—Doppler WSR-88D radar covering the United
States.
Source: http://radar.weather.gov/.
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information on this subject from many other authors (Huebner et al. 2003, Teegavarapu 2012a,
Raghavan 2003, Meischner 2005). Radar-derived rainfall data generally are scaled to match the
volume measured at coincident rain gauges using some form of bias adjustment technique (Wilson
and Brandes, 1979). Vieux and Vieux (2005a, b) describe statistical interpretation of bias-adjusted
radar rainfall data accuracy for hydrologic modeling or urban stormwater and sanitary sewer
hydraulic modeling purposes. Because the existing horizontal-polarization radar technology cannot
differentiate among backscattering targets, many features can introduce spurious rainfall into any
field of estimates. These features include anomalous propagation, ground clutter, insects, migrating
birds, and metallic chaff. Beam blockages by terrain features, trees, or buildings near the radar
antenna can reduce or eliminate reflectivity and rainfall estimates over portions of the geographic
radar umbrella.

2.1.4 Satellite-Based Precipitation Estimation

In recent decades, satellite-based measurement of precipitation has affected the field of hydromete-
orological observation networks that focus on accurate spatial measurement of precipitation;
however, this chapter does not provide a comprehensive discussion about methods of satellite-
based measurement of precipitation, instruments, and their workings. Strangeways (2007) describes
precipitation estimation by cloud indexing and bispectral and life–history methods and from passive
and active microwave measurements. Mekonnen and Hossain (2009) discuss the most recent
advances in satellite-based rainfall estimation and its utility in hydrologic modeling. Sene (2009)
provides brief descriptions of algorithms used to obtain satellite-based precipitation estimations.

The Tropical Rainfall Measuring Mission (TRMM) (TRMM 2011) is a joint US–Japanese satellite
mission to monitor tropical and subtropical precipitation. The TRMM Multi-Satellite Precipitation
Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation
estimates from multiple satellites, and gauge analyses where feasible, at fine scales (0.25°× 0.25° at
three-hour intervals). TMPA is available both after and in real time, based on calibration by the TRMM
combined instrument and TRMM microwave imager precipitation products, respectively. Only the
after-real-time product incorporates gauge data at present. The dataset covers the latitude band 50°N–S
(Huffman et al. 2003) for the period from 1998 to 2015. The Global PrecipitationMeasurement (GPM)
mission is an international network of satellites that provide the global observations of rain and snow.
GPM, initiated by National Aeronautics and Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA) as a global successor to TRMM, comprises a consortium of international
space agencies, including the Centre National d’Études Spatiales (CNES), the Indian Space Research
Organization (ISRO), the National Oceanic and Atmospheric Administration (NOAA), the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and others (GPM 2018).
The reader is directed to the website, http://pmm.nasa.gov/GPM for more details about GPM. The
GPM’s array of satellites is expected to provide precipitation measurements every 2 to 4 hours across
the globe. The measurements are based on advanced active/passive microwave sensors and provide
greater sensitivity to light rain and falling snow. GPM will also provide an exhaustive description of
space–time variability of global precipitation and insights into storm structure and large-scale
atmospheric processes.

2.2 FITTING OF PROBABILITY DISTRIBUTIONS FOR RAINFALL EXTREMES

Rainfall measurements are available at different temporal resolutions from various sources.
Temporal variations of extreme rainfall events for different durations are often analyzed as a part
of rainfall frequency analysis, which leads to the development of design storm events using depth–
duration–frequency (DDF) curves. Once the rainfall extremes are extracted from a long-term series,
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probability distributions are used to characterize these extremes. The following steps are used to fit
and evaluate probability distributions to rainfall data. Before the steps are executed, historical
precipitation data at a site are evaluated for any problems associated with missing data and
homogeneity and stationarity issues. A computational code is required to sequentially search the
historical precipitation data to obtain the extreme value’s data for different durations.

1. Obtain extreme rainfall depth data for different durations for each year. The series of depths is
referred to as the annual maximum series (AMS).

2. Obtain the empirical cumulative distribution functions (CDFs) for the AMS for each duration.

3. Develop a hypothesis for the CDF underlying the data.

4. Estimate the parameters for the hypothesized distribution function.

5. Select a goodness-of-fit test along with a level of significance.

6. Evaluate the validity of the hypothesized distribution of data using a goodness-of-fit test.

7. Repeat Steps 3 to 6 if the hypothesized distribution does not fit the data.

Before statistical analysis, the rainfall depths are converted to annual extreme value (AEV) series
or peak over threshold (POT) series. AEV series is usually used because it simplifies the statistical
analysis. These rainfall series should satisfy these four conditions (Ashkar 1996): (1) randomness,
(2) independence, (3) homogeneity, and (4) stationarity. Annual extreme rainfall events are
considered random and independent. Homogeneity and stationarity are two main issues that need
to be thoroughly addressed when dealing with extreme precipitation data. When these four
conditions are satisfied for any time series of extremes, then the series of observations (i.e., sample)
can be regarded as independent and identically distributed (IID). Tests for IID can include
evaluation of distributions of subsamples, scatter plot of observations, and lag-1 observations and
assessment of the location–dispersion ellipsoid (Meucci 2009). IID is confirmed when the distribu-
tions of subsamples obtained by split samples are similar, the scatter plot shows no correlation
between successive observations, and finally the location–dispersion ellipsoid is circular.

2.3 PRECIPITATION FREQUENCY ANALYSIS: DEVELOPMENT OF CUMULATIVE
DISTRIBUTION FUNCTIONS

A quantile plot (i.e., referred to as an empirical CDF plot) provides a graph of the ordered data and
the corresponding estimated cumulative probabilities (Chin 2006, Millard and Neerchel 2001, Wilks
2006). The estimated probabilities are defined as the plotting positions, and several formulae are
available for obtaining these probabilities. Blom (1958) and Cullen and Frey 1999) describe a general
expression, which is provided in Equation (2-1) to develop empirical CDFs.

PiðX < xiÞ=
i − a

n − 2aþ 1
∀i

f or i= 1, 2, : : : , n and x1 < x2 < x3 < : : : < xn (2-1)

where x1, x2, : : : , xn are the sample values ranked in ascending order; i is an index that refers to the
rank of each sample; Pi is the cumulative probability; X is the random variable of interest and n is the
total number of sample values. Table 2-1 provides different values of parameter a for obtaining
different plotting position formulae based on Equation (2-1). The appendix provides an example of
cumulative probability plots using different plotting position formulae for annual extreme rainfall
depths for a duration of 1 hour. Normal and Weibull probability plots for the same data are also
shown in Figures A-1 to A-3 in the appendix. Makkonen (2006) investigates several plotting position

10 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



formulae and concludes that the Weibull plotting position formula predicts much shorter return
periods of extreme events than the other commonly used plotting position methods. The California
plotting position formula (California State Department 1923), equal to i

n, is one of the first formulae
developed. Cunnane (1978) evaluates different formulae using two criteria: (1) unbiasedness and
(2) minimum variance. Based on these two criteria, Cunnane notes that the Weibull formula is
biased and plots the largest values of a sample at too small a return period. Blom’s formula for
normally distributed data and Gingorten’s formula for data distributes according to extreme value
type I (Chow et al. 1988). Yevjevich (1972) makes a similar recommendation for the Gingorten
formula. Hosking et al. (1985) provide a plotting position formula as i−0.35

n .

2.4 PROBABILITY DISTRIBUTIONS FOR CHARACTERIZING PRECIPITATION DATA

Understanding hydrometeorological and hydroclimatological processes is critical for deciding the
type of distribution appropriate for characterizing precipitation data (Shuttleworth 2012). Several
probability distributions are appropriate for characterizing extreme precipitation at different
temporal scales. Regional frequency analysis (Madsen et al. 2002) for spatially available rainfall
observations is characterized using appropriate probability distributions. Generally, distributions
that are asymmetric and skewed to the right (i.e., negatively skewed) are used. The skewness is
mainly owing to the range of values observed for the hydrologic process variable. Positively skewed
values for hydrologic variables (i.e., precipitation) are bounded on the left by the lower boundary of
the ranges. Distributions (e.g., Gaussian) that can characterize variables on the entire real line of
variables can be mathematically fit to precipitation data. Selection of probability distributions is
crucial for those variables that are physically constrained to be nonnegative. Fitting a Gaussian
distribution to precipitation data is practically possible, yet the probabilities obtained from the use of
this distribution are not feasible. Some of the distributions used in past studies include Gaussian
distribution for annual totals (Naoum and Tsanis 2003); Weibull and exponential for daily rainfall
(Duan et al. 1995, Burgueño et al. 2005); Gumbel or extreme value type 1 distribution for annual
precipitation extremes (Hershfield 1961; generalized extreme value (GEV) distribution for 5-, 10-,
and 15-min, daily, and hourly annual maximum series (Bonnin et al. 2006) and 1-, 2-, 6-, 12-, 24-,
48-, 72-, and 96-h precipitation extremes (Teegavarapu et al. 2013); gamma for daily rainfall
amounts (Groisman et al. 1999); and Pearson type-III for full records of daily precipitation data and
kappa for wet-day daily rainfall (Hanson and Vogel 2008). Shuttleworth (2012) indicates that
selection of a particular probability distribution is as much an art as a science and is a decision that is
aided by experience but influenced by personal preference. The following sections briefly describe a
few commonly used distributions for characterizing precipitation.

Table 2-1. Values of Constant a for Different Plotting
Position Formulae.

Plotting Position Formula a

Weibull (1939) 0.000
Blom (1958) 0.375
Cunnane (1978) 0.400
Gringorten (1963) 0.440
Hazen (1930) 0.500
Tukey (1962) 0.333
Chegodayev or Leivikov (1955) 0.300
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2.4.1. Normal Distribution

Normal or Gaussian distributions are not generally applicable to characterizing hydrologic variables as
the normally distributed random variables vary from −∞ to þ∞. Assigning probabilities to negative
variable values—however small the values are—is theoretically possible but illogical. However, several
studies have used normal distributions to characterize extreme annual rainfall values. The symbols
μx and σx represent the mean and standard deviation of the series. Equation (2-2) gives the probability
density function of the normal distribution.

f ðxÞ= 1

σx
ffiffiffiffiffi
2π

p exp

�
−
1
2

�
x − μx
σx

�
2
�

(2-2)

2.4.2. Log–Normal Distribution

The log–normal distribution can be used to characterize the distribution of extreme values using
logarithmic transformation (i.e., y= loge x or y= log10 x). Equation (2-3) gives the probability
density function (PDF) of the log–normal distribution.

f ðxÞ= 1

xσy
ffiffiffiffiffi
2π

p exp

�
−
ðy − μyÞ
2σy2

2�
, x > 0 (2-3)

The variable y is the log-transformed extreme value, and μy and σy are the mean and standard
deviation of the transformed series. Log–normal distributions can be used for characterizing annual
precipitation totals and extremes.

2.4.3 Three-Parameter Log–Normal Distribution

A three-parameter log–normal distribution function is similar to the density function provided by
Equation (2-4) with an additional parameter referred to as the threshold parameter. The transforma-
tion y= logeðx − γÞ or log10ðx − γÞ with the threshold parameter, γ, is used for the three-parameter
log–normal distribution. When the threshold parameter is associated with location and when it equals
zero, the distribution reduces to a two-parameter log–normal distribution (Millard and Neerchal 2000).

2.4.4 Extreme Value Type I Distribution

Equation (2-4) gives the general form of the extreme value PDF.

f ðxÞ= 1
a
exp

�
� x − b

a
− exp

�
� x − b

a

��
,

−∞ < x < ∞ , ∞ < b < ∞ , a > 0 (2-4)

where a and b are scale and location parameters and b is the mode of the distribution. The minus
sign in ± is used for maximum values. The distribution is also referred to as type I or Gumbel’s
distribution.

2.4.5 Extreme Value Type III Distribution

Equation (2-5) gives the probability density function for the extreme value type III, which is
generally used for characterizing extreme values bounded on the left by zero (Chin 2006). The
distribution is also referred to as a Weibull distribution.

f ðxÞ= axa−1b−a exp

�
−
�
x
b

�
a
�
, x ≥ 0 , a, b > 0 (2-5)

12 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



2.4.6 Generalized Extreme Value Distribution

The GEV distribution is based on extreme-value type I, II, and III distributions for maxima (Chin
2006). Equation (2-6) gives the CDF for the GEV. The variables ao, bo, and co in Equation (2-6) are
the location, scale, and shape parameters of the distribution.

FðxÞ=

8>>><>>>:
exp

�
−
h
1 − coðx−aoÞ

bo

i 1
co

�
co ≠ 0

exp

�
− exp

h
− ðx−aoÞ

bo

i�
co= 0

(2-6)

2.4.7 Gamma Type III Distribution

The general form of the one-parameter gamma distribution (Chin 2006, Millard and Neerchal 2000)
is given by

f ðxÞ= 1
ΓðαÞ x

α−1e−x, x ≥ 0 (2-7)

The variable α is the mean, and Γ is the gamma function. The PDF of a Pearson type III
distribution is given by

f ðxÞ= 1
βα ΓðαÞ ðx − γÞα−1e−ðx−γÞ=β, x ≥ γ (2-8)

The variable γ is the lower bound of the distribution, β is the scale parameter, and α is the shape
parameter. The log–Pearson type III distribution essentially has the same probability density
function with the data being logarithmically transformed.

2.4.8 Exponential Distribution

The general form of the exponential distribution with one parameter (λ) is given by

f ðxÞ=
�
λe−λx x ≥ 0
0 x < 0

(2-9)

The parameter (λ > 0) is also referred to as the rate of distribution. The mean of the exponential
distribution E½X� is equal to 1

λ.

2.4.9 Other Distributions

A few other distributions such as generalized logistic (GLO), generalized normal (GNO) and
generalized Pareto (GPA), five-parameter Wakeby, and kappa (Park and Jung 2002) are also
appropriate for characterizing precipitation extremes. The exponential distribution is used for
characterizing daily precipitation data in several studies. Servuk and Geiger (1981) provide details
of several distributions that are appropriate to characterize rainfall extremes. These distributions
should be evaluated along with the others discussed previously in this chapter before selecting
a specific distribution to characterize extreme rainfall values. Tables 2-2 lists studies using
different probability distributions to characterize precipitation at different durations. Note that
the list is by no means exhaustive and the studies reported are carried out in different parts of the
world.
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Table 2-2. Studies Using Different Probability Distributions to Characterize Precipitation at Different
Temporal Scales.

Temporal scale Distribution type Reference

Daily Two-parameter gamma Aksoy (2000)
Monthly Exponential Alexandersson (1985)
Monthly Normal, gamma, Weibull Alghazali and Alawadi (2014)
Seasonally Weibull and gamma Alonge and Afullo (2012)
Monthly Gamma, log–normal, normal Angelidis et al. (2012)
Daily Generalized extreme value and

generalized log–normal
Benabdesselam and Amarchi
(2013)

Yearly Gumbel and Weibull Berthe et al. (2015)
Daily Generalized extreme value Bertoldo et al. (2015)
Monthly Gamma two-parameter and

Pearson type III
Blain (2011)

Daily Gamma Blain and Meschiatti (2015)
Hourly Generalized extreme value Carreau et al. (2013)
Daily Normal Chen et al. (2012)
Annually Generalized extreme value Chikobvu and Chifurira (2015)
Monthly Gamma and log–normal Cho et al. (2004)
Daily Generalized extreme value Chun and Wheater (2012)
Monthly Weibull and generalized extreme

value
Clarke (2002)

Annually Generalized extreme value Crisci et al. (2002)
Hourly Generalized Pareto, exponential,

and gamma
Dan’azumi et al. (2010)

Quarterly Gamma Dikko et al. (2013)
Daily Weibull and gamma Duan et al. (1998)
Daily Gamma and Tweedie Dunn (2004)
Hourly Generalized extreme value Dyrrdal et al. (2015)
Daily, 2-day, 5-day,
10-day, annually

Generalized extreme value Feng et al. (2007)

Monthly Gamma three, generalized
extreme value, generalized
Pareto, Wakeby

Fischer et al. (2012)

Annually Log–normal Foster et al. (2006)
Monthly Gamma, normal, log–normal Gasiorek and Musial (2015)
Daily Gamma Goyal et al. (2013)
Monthly Gamma and Wakeby Guttman et al. (1993)
Daily Two-parameter gamma, Pearson

type III, kappa
Hanson and Vogel (2008)

Monthly Gamma Husak et al. (2007)
Hourly, daily,
annually

Wakeby, generalized extreme
value function, and two-
parameter Weibull

Kang and Yusof (2013)

Daily Mixed exponential Kannan and Farook (2015)
Monthly Normal and gamma Kasperska-Wolowicz et al. (2016)
Daily Generalized exponential, gamma,

and Weibull
Kazmierczak and Kotowski
(2015)

Aannually Weibull Kotei et al. (2013)
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Table 2-2. Studies Using Different Probability Distributions to Characterize Precipitation at Different
Temporal Scales. (Continued)

Temporal scale Distribution type Reference

Daily Normal, gamma, and stretched
exponential

Krakauer et al. (2015)

Daily Log–normal Kronenberg et al. (2014)
Annually Generalized extreme value Kysely and Picek (2007)
Areal Gumbel Lebel and Laborde (1988)
Yearly Generalized extreme value Lehmann et al. (2013)
Daily Gamma Li et al. (2012)
Daily, monthly,
annually

Exponential, gamma, Weibull,
skewed normal, mixed
exponential, and hybrid
exponential/Pareto

Li et al. (2013)

Daily Generalized extreme value, Burr,
Weibull

Li et al. (2015)

Daily Exponential, gamma, mixed-
exponential, and log–normal

Liu et al. (2011)

Annually Normal, two-parameter log–
normal, three-parameter log–
normal Gumbel, two-parameter
gamma, Pearson type III, and
log–Pearson type III

Mahdavi et al. (2010)

Monthly Log–skew–normal and log–skew–t Marchenko and Genton (2010)
Monthly Log–skew–normal alpha–power Martinez-Florez et al. (2013)
Annual maximum Burr, generalized extreme value,

and log–Pearson III
Mayooran and Laheetharan
(2014)

Daily Generalized extreme value Min et al. (2009)
Monthly Gamma Modley (1973)
Daily Weibull and gamma Neykov et al. (2014)
Daily Three-parameter mixed-

exponential, single-parameter
exponential, Gamma, Weibull

Nguyen and Mayabi (1990)

Monthly and
yearly

Normal Nyatuame et al. (2014)

Hourly Generalized extreme value and
log–normal

Overeem et al. (2008)

Daily Generalized extreme value Ozcan et al. (2013)
Annually Wakeby Öztekin (2007)
Daily Generalized extreme value Panagoulia et al. (2014)
Daily Gumbel and generalized extreme

value
Papalexiou and Koutsoyiannis
(2006)

Daily Gamma, Pareto, log–normal,
Weibull, and gamma

Papalexiou et al. (2013)

Daily and 2-day Wakeby Park et al. (2001)
Daily Normalized gamma Penide et al. (2013)
Daily Normal Raheem et al. (2015)
Daily Gamma Rana et al. (2014)

(Continued)
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2.5 ESTIMATION OF DISTRIBUTION PARAMETERS

Parameter estimation involves estimation of population parameters from the sample data. Three
commonly used methods include the method of moments (MOM), the maximum likelihood
method, and the L-moments method. MOM is the easiest, and the maximum likelihood and
L-moment methods are computationally intensive and require iterative approaches. Six character-
istics of the estimation methods are important: Small (1990) describes these as (1) consistency,
(2) lack of bias, (3) efficiency, (4) sufficiency, (5) robustness, and (6) practicality.

2.5.1 Method of Moments

As the name suggests, MOM indicates that parameters of the distribution can be estimated using the
moments of the distribution. These estimates are unbiased estimates of mean, standard deviation,

Table 2-2. Studies Using Different Probability Distributions to Characterize Precipitation at Different
Temporal Scales. (Continued)

Temporal scale Distribution type Reference

6-hour Generalized extreme value Rulfová et al. (2016)
Hourly Gumbel and generalized extreme

value
Saito and Matsuyama (2015)

Daily Generalized extreme value and
generalized Pareto

Santos et al. (2016)

Monthly Weibull Schonwiese et al. (2003)
Monthly, daily Weibull Selker and Haith (1990)
Daily Log–normal and gamma Sharma and Singh (2010)
Daily Wakeby Su et al. (2009)
Daily Exponential, gamma, Weibull, and

log–normal
Suhaila et al. (2011)

Monthly Log–normal or gamma and
log–skew–elliptical

Sun et al. (2015)

1-hour–72 hours Generalized extreme value Teegavarapu et al. (2013)
Daily Gamma Vlček and Huth (2009)
Monthly Generalized extreme value,

extreme value
Vivekanandan (2014)

Daily Gumbel Vivekanandan and Roy (2013)
Monthly Gamma Volkova et al. (2014)
Hourly and daily Exponential, Weibull, gamma,

generalized gamma,
log–normal, and Johnsons’
bounded distribution

Wakazuki (2011)

2-hour and daily Generalized extreme value Wallis et al. (2007)
Daily Gamma Wang et al. (2008)
Daily Weibull Wilks (1988)
Daily Gamma, log–normal, and mixed

exponential
Wilson and Toumi (2005)

Annually, seasonally,
and monthly

Generalized extreme value, three-
parameter log–normal, Pearson
type III, and log–Pearson type III

Yue and Hashino (2007)
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and skewness. The estimates are obtained from the sample data, and they are assumed to be equal to
the population parameters.

μ̂x =
1
no

Xno
j= 1

xj (2-10)

σ̂2x =
1

no − 1

Xno
j= 1

ðxj − μ̂xÞ2 (2-11)

ĝx =
no

ðno − 1Þðno − 2Þ

P
no
j= 1ðxj − μ̂xÞ3

σ̂3x
(2-12)

2.5.2 Maximum Likelihood Estimation Method

The maximum likelihood estimation (MLE) method is the most common method for estimating
parameters. A likelihood function (L°) given by Equation (2-13), or a log–likelihood function, is
maximized. The variable np is the number of parameters, no is the number of observations, j is the
index for the observation number, and f XðÞ is the PDF. Partial derivatives of the likelihood function
(L°) with respect to different parameters (θ1, θ2, : : : , θnp) are obtained using Equation (2-14) to solve
a set of equations. In some cases, maximizing the logarithm of the likelihood function (referred to as
log–likelihood function) is easier (Millard and Neerchal 2000). The solutions of these equations
provide the estimated parameter values.

L°ðθ1,θ2, : : : ,θnpÞ=
Yno
j= 1

f X ðxj jθ1,θ2, : : : ,θnpÞ (2-13)

∂L°
∂θjp

= 0, jp= 1, : : : ,np (2-14)

2.5.3 L-Moments Approach

Hosking (1990) proposed the concept of L-moments as linear combinations of probability-weighted
moments (PWM). Greenwood et al. (1979) described the theory of probability-weighted moments.
Equation (2-15) describes the PWM. The variable ωr is the rth order PWM, and FXðxÞ is the CDF of x.
Hosking and Wallis (1997) define the unbiased sample estimators of PWMs as ϕ1,ϕ2,ϕ3, andϕ4,
which are the four L-moments. Unbiased sample estimates of the PWM for any distribution can be
obtained using Equations (2-15) to (2-19).

ωr =
Zþ∞

−∞

x½FXðxÞ�rf XðxÞdx (2-15)

ϕ1 =ω0 (2-16)

ϕ2 = 2ω1 − ω0 (2-17)
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ϕ3 = 6ω2 − 6ω1 þ ω0 (2-18)

ϕ4 = 20ω3 − 30ω2 þ 12ω1 − ω0 (2-19)

The values of ω0,ω1,ω2, and ω3 are obtained by equating them to derived constants
(bc0, bc1, bc2, and bc3) from the sample using Equations (2-20) to (2-23).

bc0 =
1
no

Xno
j= 1

xj (2-20)

bc1 =
1

noðno − 1Þ
Xno
j= 2

ð j − 1Þxj (2-21)

bc2 =
1

noðno − 1Þðno − 2Þ
Xno
j= 3

ð j − 1Þð j − 2Þxj (2-22)

bc3 =
1

noðno − 1Þðno − 2Þðno − 3Þ
Xno
j= 4

ð j − 1Þð j − 2Þð j − 3Þxj (2-23)

The ratios of ϕ2 and ϕ1, ϕ3 and ϕ2, and ϕ4 and ϕ2 are defined as L-coefficient of variation,
L-skewness, and L-kurtosis, respectively. These ratios are referred to as L-moment ratios. Table 2-3
gives parameters for different probability distributions and associated L-moments (Hosking and
Wallis, 1997, Chin, 2006) to obtain these parameters. Notation for the parameters is adopted from
Chin (2006). The coefficients of L-variation, L-skewness, and L-kurtosis provide measures of
dispersion, symmetry, and peakedness, respectively.

The use of best-fitting distribution for each data sample provides frequency estimates that are too
sensitive to sampling variations in the data and the period of record available (WMO 2009). Procedures
involving a combination of regionalization of some parameters and split-sample Monte-Carlo
evaluation of different estimation methods are often used (WMO 2009, ASCE 1996).

2.6 FREQUENCY FACTORS

Frequency factors (Chin 2006, Rakhecha and Singh 2009) are available for several distributions, and
they can be used to obtain the magnitude of an event for a specific return period, T . Frequency
factors are used in the method proposed by Chow (1951), referred to as the frequency method or the
general frequency equation for hydrologic frequency analysis. The general equation is given as

xT = x þ KTs (2-24)

where xT is the magnitude of an event for a return period T , and KT , x, and s are the frequency factor,
mean, and standard deviation values calculated based on the sample, respectively.

The frequency factors depend on the type of distribution used. In general, for two-parameter
distributions, the factors depend on the return period. Chow et al. (1988) and Chin (2006) provide
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the factors for normal and gamma (Pearson type III) and extreme value type I distributions, which
are given by Equations (2-25), (2-27), and (2-29), respectively.

KT =w −
2.515517þ 0.802853wþ 0.010328w2

1þ 1.432788wþ 0.189269w2 þ 0.001308w3 (2-25)

w=
�
ln

�
1
p2

��1
2

, 0 < p ≤ 0.5 (2-26)

In Equation (2-26), the value of p is the exceedance probability, and when the value of p is
greater than 0.5, then p is substituted with 1-p with modification of sign for the value of KT .

KT =
1
3k

f½ðx 0
T − kÞkþ 1�3 − 1g (2-27)

k=
gx
6

(2-28)

KT = −
ffiffiffi
6

p

π

�
0.5772þ ln

�
ln

�
T

T − 1

���
(2-29)

Chow et al. (1988) present the frequency factor relationship for log–Pearson type III distribution
provided by Kite (1977) and Equation (2-30). The z value is equal to frequency factor (KT) when gx
(skewness coefficient) equals zero, and when gx does not equal zero, then KT is defined by
Equation (2-29). Equation (2-28) gives the value of k.

KT = z þ ðz2 − 1Þkþ 1
3
ðz3 − 6zÞk2 − ðz2 − 1Þk3 þ zk4 þ 1

3
k5 (2-30)

Table 2-3. Moments of Distributions and Corresponding L-Moments.

Distribution Parameters Moments L-moments

Normal μX , σX μX = μX
σX = σX

ϕ1 = μX
ϕ2 =

σX
π1=2

Log–normal
ðY = ln XÞ

μY , σY μY = μY
σY = σY

ϕ1 = exp
	
μY þ σ2Y

2



ϕ2 = exp

	
μY þ σ2Y

2



erf

�σY
2

�
Exponential
(two-parameter)

ξ, η μX = ξþ 1
η

σX = ξþ 1
η2

ϕ1 = ξþ 1
η

ϕ2 = 1
2η

Gumbel ξ, α μX = ξþ 0.5772α
σ2X = 1.645α2

ϕ1 = ξþ 0.5772α
ϕ2 = 0.6931α

Generalized
extreme value

ξ, α, κ μX = ξþ α
κ ½1 − Γð1þ κÞ�

σ2X =
	α
κ



2fΓð1þ2κÞ− ½Γð1þκÞ�2g

ϕ1 = ξþ α
κ ½1 − Γð1þ κÞ�

ϕ2 = α
κ ð1 − 2−κÞΓð1þ κÞ

Note: Euler’s constant = 0.5772.
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2.7 GOODNESS-OF-FIT TESTS FOR NORMAL DISTRIBUTIONS

Precipitation data at different temporal scales can be tested for normality using several goodness-
of-fit tests. These tests include Lilliefors (Lilliefors 1967), Jarque–Bera (Jarque and Bera 1987), chi-
square (χ2) (Corder and Foreman 2009), and Kolmogorov–Smirnov (KS) (Massey 1967, Smirnov
1939, Thode 2002, Sheskin 2003) goodness-of-fit tests along with visual checks using normal
probability plots. Visual checks confirm normality if the CDF appears as a straight line in the
probability plot (Benson 1962). Visual assessments of probability plots give a preliminary
indication of the normality of the sample data. As visual tests using probability plots are not
robust and no objective measure of the straightness of a probability plot is available (Mage 1982),
goodness-of-fit tests such as chi-square, Kolmogorov–Smirnov, Anderson–Darling (Anderson and
Darling 1954), Lilliefors, Shapiro–Wilk (Shapiro and Wilk 1965), and D’Agostino–Pearson
(Pearson 1931, D’Agostino et al. 1990) should be used. One major limitation of the KS method
is that population parameters are required for the test as opposed to sample parameters. Steinskog
et al. (2007) suggest that the Jarque–Bera and the Shapiro–Wilk tests for normality are good
alternatives to the KS test based on a power comparison of eight different tests. Coin (2008) reports
an extension of the Shapiro–Wilk test that is not affected by the presence of one or a few outliers
in the dataset. Several modifications to the KS test have been made recently that overcome
this limitation of the test. The preferred tests are D’Agostino–Pearson, Anderson–Darling,
and Lilliefors. Precipitation data frequently may not conform to normality. Transformations of
data are often used to achieve normality. Different transformations such as logarithmic, square,
square-root, and several others described by Helsel and Hirsch (2002) and Box and Cox (1964)
can be used. The Box–Cox transformation parameter is obtained by using an optimization
formulation that maximizes the objective function defined by a log–likelihood function (Wilks
2011). The Environmental Protection Agency (USEPA 2000) provides guidelines for tests
for normality along with stipulations on the sample size (n). These are the Shapiro–Wilk test
(n ≤ 5,000), Filliben’s statistic (n ≤ 100), skewness and kurtosis tests (n > 50), the studentized
range test (n ≤ 1,000), Geary’s test (n > 50), Lilliefors–Kolmogorov–Smirnov test (n > 50), and
the chi-square test (χ2 test). For the chi-square test the recommended number of observations
should be at least five in each bin. If the expected frequencies are less than five, or when the
number of classes is small, then the χ2 test with Yates (Yates 1934) corrections can be applied
(Vidakovic 2011).

2.8 GOODNESS-OF-FIT TESTS FOR OTHER DISTRIBUTIONS

Two common goodness-of-fit tests used for evaluation of other distributions include the KS and chi-
square tests (Sheskin 2003). The KS test is recommended when the number of samples is less than 30.
The chi-square test is more sensitive to the number of bins (i.e., intervals) used. Filliben (1975)
proposes another test that can be used, which is the probability-plot correlation coefficient (PPCC)
test. The test (Filliben 1975, Dingman 2008) involves calculation of the correlation coefficient
between each sample value and the values that would exist at the corresponding exceedance
probabilities if the data were from a specific distribution. A distribution quantile function (Stedinger
et al. 1992) can be used to calculate values associated with specific exceedance probability for the
proposed distribution. The hypothesis that the data are not from a specific distribution is not rejected
if the correlation coefficient is closer to 1. Critical values of the correlation coefficient for the PPCC
approach as a function of sample size are available for rejecting or accepting the hypothesis that data
are from a specific distribution.
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2.8.1 Quantitative Measures

Two indexes defined by Equations (2-31) and (2-32), the mean absolute deviation index (MADI) and
the mean square deviation index (MSDI) proposed by Jain and Singh (1987), can be used to measure
the relative goodness of fit when several distributions are evaluated for the data. The MADI and the
MSDI are given by

MADI =
1
N

XN
i= 1

 xi − zi
xi

 (2-31)

MSDI =
1
N

XN
i= 1

�
xi − zi
xi

�
2

(2-32)

where, xi is the observed value (i.e., extreme precipitation) and zi is the estimated value of extreme
precipitation obtained for a specific exceedance probability. The empirical probability of exceedance
is obtained from the Gringorten formula. The non-exceedance cumulative probability using the
Gringorten formula is given by Equation (2-33).

PðX < xiÞ=
i − 0.44
nþ 0.12

(2-33)

The distribution providing the smallest values of two indexes can be selected as the best
distribution characterizing the extreme precipitation data.

2.8.2 L-Moment Diagrams

Use of L-moment analysis and L-moment ratio diagrams are widely accepted approaches for
evaluation of goodness of fit of statistical distributions of observations. Hosking (1990) and
Hosking and Wallis (1997) introduced the concepts of L-moments. L-moment ratios are
approximately unbiased compared with conventional moment ratios, which can exhibit enormous
downward bias, even for very large samples (Vogel and Fennessey 1994, Hanson and Vogel 2008).
L-moment ratio diagrams provide a convenient visual way to view the characteristics of sample
data compared with theoretical probability distributions (Hanson and Vogel, 2008). The
L-moment diagrams using L-kurtosis vs. L-skewness and L-coefficient of variation vs. L-skewness
are useful for comparison of goodness of fit for a range of multiple-parameter distributions. Use of
L-moment ratio diagrams for a selection of distributions for precipitation data is evident
from studies by Lee and Maeng (2003), Park and Jung (2002), Pilon et al. (1991), and Hanson
and Vogel (2008).

2.9 REGIONAL FREQUENCY ANALYSIS

In many situations, data available at a site (i.e., at one rain gauge) may not be adequate for frequency
analysis of extreme precipitation. Therefore, data from several rain gauges in a region can be used for
the analysis in a procedure referred to as regional or pooled frequency analysis. The analysis based on
the “index storm” approach is beneficial for quantile estimations of extreme precipitation events
with the help of data augmentation for data-scarce sites. Regional frequency analysis (Hosking and
Wallis 1997) requires delineation of a region that is classified according to a homogeneous pooling
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group using a classification method and a homogeneity criterion. Once the homogeneous group is
established, the augmented data are used for fitting a statistical distribution. Parameter estimation
for a specific distribution can be carried out using maximum likelihood or L-moments estimation
methods.

2.10 ILLUSTRATIVE EXAMPLES

This section presents two examples that involve fitting probability distributions to daily and annual
extreme values of precipitation data.

Example 2-1: Daily Precipitation Time Series

Precipitation data at different temporal resolutions other than annual extremes of peaks over a
specific threshold can be characterized by different probability distributions. Exponential and
gamma distributions are generally found to be best fits for precipitation depths at the daily temporal
resolution and interevent times (Adams and Howard 1986, Adams et al. 1986, Adams and Papa
2000). Daily precipitation data series are used to illustrate this point. A typical precipitation
frequency distribution of daily rainfall values is positively skewed with a large number of lower
magnitude events and fewer higher magnitude events (Shuttleworth 2012). Figures 2-2 and 2-3 show
the histogram and CDF plot for daily precipitation data from a site in Louisville, Kentucky. The time
series consists of approximately 66% zero values.

Figure 2-4 shows that the gamma distribution with two parameters provides the best fit for the
data. MLE and MOM are used for parameter estimations for exponential and gamma distributions.
The likelihood function becomes unbounded because of the presence of zero values in the daily

Figure 2-2. Histogram of daily precipitation time series.
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precipitation data series. Probability distributions for nonzero precipitation data can be developed
as shown in Figure 2-4 with the scaled exponential and gamma distributions superimposed
over histograms. Figure 2-4 shows that the gamma distribution fits well for the nonzero daily
precipitation data.
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Figure 2-3. CDF function plots of daily precipitation data using exponential and gamma
distributions.
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Figure 2-4. Probability density functions superimposed over histograms of nonzero daily
precipitation data using exponential and gamma distributions.
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Example 2-2: Annual Extremes for Different Durations

Annual precipitation extreme values for different durations available at a rain gauge in the state of
Florida are used to illustrate the fitting of several distributions using the maximum log–likelihood
parameter estimation procedure. Table 2-4 provides details of the rainfall extremes.

Table 2-4. Annual Precipitation Extreme (mm) at a Rain Gauge in the State of Florida.

Duration (Hours)

1 2 6 12 24 48 72 96 120

28 47 79 127 153 155 155 155 155
65 81 89 89 93 129 143 168 196
48 63 64 64 84 101 103 111 128
55 70 70 71 77 118 121 125 133
47 66 90 90 103 105 117 126 134
42 74 122 153 212 345 400 401 402
62 84 105 117 163 169 170 170 170
59 61 63 63 66 79 104 107 108
61 102 248 271 274 274 274 279 279
75 97 109 110 132 146 146 154 180
57 96 97 97 98 98 100 104 105
71 90 92 93 108 141 141 148 224
54 69 70 79 90 99 105 126 134
61 65 68 80 96 120 120 120 167
75 105 108 108 117 118 147 178 212
50 58 117 159 177 330 386 388 388
28 32 44 49 63 63 64 71 78
60 74 74 74 74 87 91 111 130
92 109 110 110 139 144 163 168 171
50 56 119 119 140 152 166 181 181
69 92 97 98 98 100 118 125 146
44 58 88 89 90 106 114 131 132
33 44 44 46 63 76 88 111 119
61 75 75 75 75 81 90 95 95
58 71 71 77 112 131 131 141 141
52 74 79 85 99 105 105 105 139
40 54 71 118 144 144 155 155 155
51 56 81 114 137 145 145 145 160
46 48 71 86 86 86 89 99 102
48 61 61 61 94 107 109 109 130
41 56 74 94 122 135 147 147 147
58 66 84 86 91 109 112 114 135
53 84 86 86 86 86 130 130 130
41 43 48 48 69 107 130 142 173
53 66 74 76 76 89 97 97 102
56 79 86 89 157 165 165 165 165
48 71 89 94 97 122 137 147 147
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Figure 2-5 shows the fitted and empirical probability distributions. The GEV distribution was
found to be appropriate for characterizing the distributions of extreme precipitation depths of all
durations. This was confirmed by visual evaluation of CDF plots based on data and fitted GEV
parameters and goodness-of-fit tests. The chi-square goodness-of-fit test suggests null hypothesis is
true for all distributions characterizing rainfall extremes for a duration of 96 h.

A recent survey of rainfall frequency estimation methods by Svensson and Jones (2010)
indicates that the GEV is the most-used distribution for rainfall extremes in nine countries
(Canada, Sweden, France, Germany, United States, South Africa, New Zealand, Australia, and the
United Kingdom). Svensson and Jones (2010) indicate that in large parts of New Zealand, the
regional shape parameter in the GEV is negative and a general increase occurs in this parameter
value with the increase in duration. In some countries, the Gumbel distribution is used, partly
because the estimation of a shape parameter from short records is not justified for individual sites.
L-moment estimators compare favorably with those from MLE methods, particularly for small
sample sizes (15 to 25 samples) for the GEV distribution (Hosking et al. 1985). Many researchers
attribute short records (around 15 to 25 years) for negative shape parameters for the GEV
distribution.

Conclusions based on a detailed study of the use of the GEV distribution and parameters for
extreme rainfall characterization for different durations (Teegavarapu and Goly 2011, Teegavarapu
et al. 2013) using several rain gauges in the state of Florida follow.

Table 2-4. Annual Precipitation Extreme (mm) at a Rain Gauge in the State of Florida. (Continued)

Duration (Hours)

1 2 6 12 24 48 72 96 120

64 64 76 76 79 79 99 140 147
48 61 66 66 66 66 66 71 71
46 64 81 107 114 150 155 160 163
48 76 86 107 130 132 135 137 137
43 58 86 91 99 109 112 112 124
41 69 157 211 224 224 224 229 234
58 61 66 66 91 114 114 117 117
51 51 56 56 56 79 99 107 112
51 66 69 71 86 89 107 107 109
43 46 46 74 104 109 109 109 142
30 56 56 56 79 81 81 84 114
48 58 94 97 97 163 165 173 173
25 46 64 107 124 132 132 150 150
36 61 74 84 86 86 91 97 99
64 66 76 79 150 196 196 208 218
69 69 71 71 117 137 140 150 178
61 84 86 86 97 135 157 178 188
53 74 84 84 86 124 130 132 152
33 48 58 94 152 170 170 175 175
64 66 74 79 130 142 160 160 191
64 79 89 89 89 97 132 137 145
43 61 107 130 175 244 246 246 272

Source: Data from the National Climatic Data Center.
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• GEV distribution was found to be the best distribution for characterizing extreme precipitation
events for all durations based on several goodness-of-fit tests and visual comparison of CDF
plots.

• Shape parameter of GEV distributions showed spatial and temporal variations. However, no
specific pattern in space was identified.

• Evaluation of the shape parameter for two sets of data from two different sources suggested that
mostly positive shape parameters values were obtained for the duration of 24 h.

• Assessment of spatial variability of GEV distribution parameters suggests no distinct patterns or
clusters of negative or positive shape parameters are evident.

2.11 FITTING OF A PARAMETRIC FREQUENCY CURVE FOR RAINFALL EXTREMES

Observed rainfall data are rarely used directly in hydrologic design for various reasons. The main
reasons include (1) lack of data at a region of interest and temporal resolution required, (2) the
existence of data gaps in chronological records, and (3) lack of homogeneous observations due to
changes in the observation network over time and space. A design rainfall intensity defined for a
given duration and frequency is commonly used in the single-event hydrologic simulation.
Intensity–duration–frequency (IDF) curves are developed by local or regional water management
agencies to aid hydrologic and water resources design professionals. The use of design precipitation
to estimate floods is particularly valuable in those situations where flood records are not available or
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Figure 2-5. Fitted and empirical CDF plots of extreme precipitation values for a duration of 96 h.
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not long enough at the site of interest or are not homogeneous owing to changes of watershed
characteristics such as urbanization and channelization (WMO 2009). Figure 2-6 shows a typical
IDF curve for a region in Florida.

IDF curve development and characterization of regional rainfall extremes are areas of
continuing research as evidenced by many recent studies (e.g., Madsen et al. 2002). IDF curves
can be developed from historical annual maxima for different durations using Weibull formula
(Chin 2006). Alternatively, IDF curves can be developed by assuming that the historical extremes
can be best characterized by extreme value type I (Gumbel’s distribution) and using a frequency
factor–based analysis. IDF curves can be represented by one of the generalized functional forms
(Dingman, 2008, WMO 2010):

I =
A

ðDþ CÞB (2-34)

I =
AT

De þ C
(2-35)

I =
A

ðD − CÞe (2-36)

Figure 2-6. Typical IDF curve for a region in South Florida.
Source: Florida Department of Transportation.
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I =
Aþ B logðTÞ
ð1þ DÞe (2-37)

In Equations (2-34) to (2-37), I is the average intensity; D is the duration; T is the return period;
and A, B, e, and C are constants that are region specific and can be derived by optimal function
approximation or regression using observed precipitation data. Examples of these functional
relationships can be found in studies by Chen (1983), Bell (1969), Kothyari and Garde (1992),
Alia (2000), and Pagliara and Vitti (1993). Polynomial equations of orders greater than three can be
used to approximate the IDF curves. For example, the Australian Bureau of Meteorology uses sixth-
order polynomials for functional approximations of IDF curves.

The point rainfall depths for a given duration and return period obtained from IDF curves
should be adjusted using areal reduction factors to obtain the average depth over a drainage area. The
reduction factor is a function of area and duration (Dingman 2008). The US National Weather
Service (USNWS) provides depth area reduction curves applicable for the United States that were
approximated by an empirical functional form by Eagleson (1972) and described by Dingman
(2008). The functional form is given by

KðD, AÞ= 1 − expð−1.1D0.25Þ þ expð−1.1D0.25 − 0.01AÞ (2-38)

where
KðD, AÞ = reduction factor that is a function of duration,
D = hours and area, and
A = square miles (mi2).

Equation (2-38) for reduction factors provides slightly higher values for durations less than 6
hours compared with original curves provided by the US NWS.

The temporal distribution of rainfall within design storms based on IDF curves is generally
obtained from empirical methods. Different empirical methods are available: (1) the triangular
method, (2) the alternating-block method, and (3) Natural Resources Conservation Service (NRCS)
24 h hyetographs (Chin 2006). Four distributions (type I, IA, II, and III) were developed by the
NRCS (SCS 1986) for four geographical regions of the United States.

2.12 EXTREME RAINFALL FREQUENCY ANALYSIS IN THE UNITED STATES

This section provides a brief review of rainfall frequency analysis efforts in the United States.
Exhaustive details of frequency distributions applicable for US precipitation data for different
durations are discussed in two technical documents referred to as HYDRO-35 (Frederick et al. 1977)
and TP-40 (Hershfield 1961) developed by the US NWS. The frequency distributions evaluated for
use in HYDRO-35 are the Pearson type III, the log–Pearson type III, and the Gumbel or extreme
value type I (referred to as the Fisher–Tippett type I). The predictions from the 1-, 6-, and 24 h
durations were compared to determine the percentage of observations that equaled or exceeded
calculated values. The analysis showed no significant differences in the results obtained. The Gumbel
(extreme value type I) distribution was then chosen for use in HYDRO-35, because it was also the
method adopted in the previous studies.

DDF maps were developed using both the 60 min and 24 h durations and for several other
intermediate durations for TP-40. In the case of HYDRO-35, 15 min and 60 min durations were used
to develop DDF maps. The studies (TP-40 and HYDRO-35) provided similar results for precipita-
tion data for a 2-year return period. For example, for the Florida peninsula, the intensities presented
in TP-40 and HYDRO-35 were in general similar. However, the HYDRO-35 study considered the
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intensity of thunderstorms prevalent in a tropical climate and higher values for rainfall intensity for
the interior portion of the peninsula. In many areas TP-40 is still used for durations greater than 1 h,
and HYDRO-35 is used for durations less than or equal to 1 h. Bonnin et al. (2006) documented
the ongoing development of NOAA Atlas 14 Volume 2, which currently contains precipitation
frequency estimates with associated confidence limits for select areas of the United States. The atlas
also provides information related to temporal distributions and seasonality and is divided into
volumes based on geographic sections of the country. The atlas is intended to be the official
documentation of precipitation frequency estimates and associated information for the entire United
States. Figure 2-7 shows the status of development of Atlas 14 volume 2 for the United States
(http://hdsc.nws.noaa.gov/hdsc/pfds/index.html). The schematic is accurate as of October 2016.
The atlas supersedes precipitation frequency estimates in Technical Paper No. 40 (Hershfield 1961),
HYDRO-35 (Frederick et al. 1977), and Technical Paper No. 49 (Miller 1964).

In Atlas 14, the precipitation depth–frequency relationships are developed for different
durations (15 min, 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 1 day, 2 days, 3 days, 4 days, 7 days, 10 days,
20 days, 30 dasy, 45 days, and 60 days), and the extremes are based on AMS. Several distributions are
analyzed, and they include three-parameter generalized extreme value, normal, generalized Pareto,
generalized logistic, Pearson type III, four-parameter kappa, and five-parameter Wakeby. The
frequency analysis methods used for development of NOAA Atlas 14 are based on the assumption of
a stationary climate. Parametric and nonparametric tests (e.g., Mann–Kendall) tests are used to
evaluate if statistically significant trends are present in the annual maximum series. Tests based on
the work completed so far for Atlas 14 have shown very little observable or geographically consistent
temporal trends in the precipitation data (NOAA 2016).

Figure 2-7. Status of precipitation frequency atlas for the United States.
Source: Hydrometeorological Design Studies Center, NOAA (2016).
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2.13 PROBABLE MAXIMUM PRECIPITATION

The probable maximum precipitation (PMP) is defined by WMO (1994) as the theoretically greatest
depth of precipitation for a given duration that is physically possible over a storm area of a given size
under particular geographical conditions at a specified time of the year. It is widely used in the design
of dams and other large hydraulic systems, for which a very rare event could have disastrous
consequences. PMP refers to the quantity of precipitation that approximates the physical upper limit
for a given duration over a particular basin (WMO 1994). The estimation of PMP is possible using one
of the methods provided by WMO (1986). These methods include (1) the storm model approach,
(2) maximization and transposition of actual storms, (3) generalized depth–area–duration relation-
ships, and (4) statistical analysis of extreme rainfall totals. PMP is commonly estimated by using storm
transposition and maximization. This approach is based on the assumptions (1) that precipitation can
be expressed as the product of the available moisture and the combined effect of the storm efficiency
and inflow of wind and (2) that the most effective combination of storm efficiency and inflow wind can
be estimated from outstanding storms on record (WMO 1994). To determine PMP for a given project
basin, depth–area–duration analyses for the region of interest are required. In the absence of this
information, individual storm studies should be undertaken, and the selection of the likely critical
rainfall duration for the project design of interest should be reasonably determined (WMO 1994). For
relatively large drainage basins, dividing the region into subbasins and determining the maximum
flood hydrographs for each subbasin may be necessary before conducting storm analyses (WMO
1994). By considering large storms occurring within a meteorologically homogenous region, over-
coming the obstacle of shortness of rainfall records is possible; however, it is important to consider that
individual storms do not always have the same probability of occurrence over all sections of their
transposition zone, especially if variations in orographic features exist within the transposition zone.
The US Weather Bureau (1976) and Kennedy et al. (1988) report advances in the evaluation of
orographic effects for use in storm transposition and synthesis (WMO 1994, 2009).

A common method for selecting storms for analysis involves determining the meteorologically
homogeneous region that encompasses the project basin and extracting the dates of the occurrence
of major rainfalls from available rainfall station records (WMO 1994, 2009). Next, the synoptic
features of the major storms are examined to determine whether a storm may be transposed to the
project basin (WMO 1994); this may be accomplished via methods proposed by WMO (1986). After
selecting the major storms, the storms are maximized such that the percentage by which a particular
storm’s rainfall would have increased if the meteorological characteristics of the storm approached
estimated upper physical limits (WMO 1994).

The reader is referred to Weisner (1970) and the US Weather Service (WMO 1986) for published
methods of stormmaximization and toWMO (1986) and Hansen et al. (1982) for studies relevant to the
orientation of maximized storms. With maximized storm data, estimating the highest rainfall depth for
any selected duration for the project basin or relevant subbasins is possible (WMO 1994). If critical
meteorological data are missing, then PMP estimates should be determined by way of analogy to PMP in
climatologically similar regions with available data (WMO 1994). However, special care should be taken
to account for significant topographic, orographic, and meteorological differences between climatologi-
cally comparable regions. Statistical procedures may be of utility in determining PMP in such scenarios
and are described in WMO (1986). Hershfield (1965) provides a statistical method to determine PMP if
times series data of observed rainfall of a given duration are available. The PMP value is given by

PMP=Xno þ KmSno (2-39)

The variable Xno refers to the times series mean of observed annual extreme precipitation for a
specified time interval, Km is a modification coefficient, and Sno is the standard deviation of the time
series. The variable Km is defined by Equation (2-40) (Hershfield, 1965) as
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Km =
Xmax − Xno−1

Sno−1
(2-40)

where
Xmax = largest (first-ranked) item in the ranked observed series,
Xno−1 = mean of the series excluding Xmax , and
Sno−1 = standard deviation of the series excluding Xmax .

2.14 RAINFALL FREQUENCY ANALYSIS: UNCERTAINTY AND VARIABILITY ISSUES

Variability is introduced into rainfall frequency analysis because of various factors, including (1) lack
of reasonable length of data, (2) missing data, (3) lack of stationarity, (4) nonhomogeneous nature of
storm events, (5) temporal window from which extreme values are considered, and finally (6) partial
duration series (PDS). The following are a few initial preliminary data analysis steps that can evaluate
the influence of some of these factors on precipitation frequency analysis.

1. Check and confirm the validity of all assumptions relevant to homogeneity, independence,
randomness, and stationarity of time series of precipitation extremes.

2. Collect all metadata related to the rain gauge observations that are useful for assessing some of
the assumptions indicated in item 1.

3. Evaluate the completeness of precipitation data series. If data are missing for short periods in
annual maximum duration series, data available before and after the missing periods can be used.
However, the conditions related to what is an acceptable missing period need to be established.

4. Use statistical tests to assess the existence or nonexistence of trends in the annual duration
series and variance of precipitation time series. Shifts in mean and variance values can be tested
for using data from two segments of the time series. In general, each data segment should
contain at least 30 years of data.

5. Assess the spatial variation of trends (increasing or decreasing) at different rain gauge
locations. This is an essential exercise if a regional frequency analysis needs to be conducted
for the development of isopluvial curves of rainfall intensity.

2.14.1 Sample Adjustment Factors

Precipitation data are archived or compiled based on rain gauge observations for a specific duration.
For example, when daily extremes are used for extreme value analysis, these values are based on fixed
24-hour period measurements rather than a moving window of 24 h. Data collected at predefined
fixed time intervals may not include the true maximum accumulations for those periods equal or
close to the sampling period. Empirically derived corrections factors (von Storch and Zwiers 1999)
are often used to address this issue. Adjustment factors for rainfall recorded at fixed intervals are
recommended. Adjustment factors (Weiss 1964, Young and McEnroe 2003) are often based on
average values of the ratios of true maximum and the maximum value of accumulation in a fixed
time interval. These factors are referred to as sampling adjustment factors (SAFs).

2.14.2 Length of Historical Data

Guidelines for the minimum number of sample data (minimum number of annual extreme rainfall
depths) used for analysis are not available in the literature. Data length is always a contentious issue
in statistical analysis. The size of the sample (data length) should be large enough to warrant the
estimation of parameters of the underlying probability distribution with the required reliability
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(Adams and Papa 2000). A threshold number of years greater than 10 years is typically used. Use of
data less than this specific threshold is not advisable for analysis. A minimum of 25 years of data is
generally acceptable for statistical analysis of extreme values (Gupta 2008, Servuk and Geiger 1981).
Different methods are available (e.g., Sokolov et al. 1976) to confirm the adequacy of data length.
Summary statistics of observations from a gauge with an incomplete record can be compared with a
nearby gauge with complete data. Sample record lengths have a substantial effect on the power of
statistical tests (Yue et al. 2002, Yue and Pilon 2004) and therefore reasonable lengths exceeding
40 years are found satisfactory (Servuk and Geiger 1981, WMO 2010). Availability of long-term
precipitation data is critical for rainfall frequency analysis for determining statistically based rainfall
estimates of reasonable reliability, especially for extreme rainfalls with high return periods, such as
those greater than 100 years (WMO 2010).

2.14.3 Missing Data and Rainfall Statistics Preservation

Continuous precipitation data without any gaps are needed for hydrologic modeling. Precipitation
data gaps of different lengths are often unavoidable due to random and systematic errors. Incorrect
recording and transcription of precipitation data create gaps in the data to be filled and cast doubt on
the reliability of data for statistical and trend analysis (Hosking and Wallis 1998). The following
section provides a brief overview of missing data estimation methods for precipitation records.

2.14.4 Missing Rainfall Records: Estimation Methods

Deterministic weighting and stochastic interpolation methods have been used for the spatial
construction of rainfall fields or estimating missing rainfall data at points in space. Weighting
methods belong to a class of spatial interpolation techniques such as inverse distance (Simanton and
Osborn 1980, Wei and McGuinness 1973), nonlinear deterministic, and stochastic interpolation
methods (e.g., kriging). Regression and time series analysis methods belong to data-driven
approaches. Global interpolation methods that use trend surface analysis and regression provide
several advantages compared with deterministic weighting techniques. Trend surface analysis uses a
polynomial equation of spatial coordinates to approximate points with known values. These
methods and their several variants are briefly discussed in the next few sections.

The inverse distance weighting method (IDWM) is the most commonly used approach for
estimating missing data and is often referred to as the US NWS method (ASCE 1996). In the field of
quantitative geography, IDWM is used for spatial interpolation (O’Sullivan and Unwin 2003).
Hodgson (1989) modified IDWM to include a learned search approach that reduces the number of
distance calculations. To incorporate topographical aspects, Shepard (1968) proposed a modified
IDWM that is referred to as a barrier method. Variance-dependent surface interpolation methods,
belonging to the general family of kriging, have been applied to hydrological interpolation problems
(Vieux, 2001, Grayson and Blöschl, 2001). These interpolation schemes are based on the principle
of minimizing the estimate of variance at points where measurements are unavailable. Kriging in
various forms has been used to estimate missing precipitation data at stations and to interpolate
precipitation from point measurements (Dingman 2008, Vieux 2006). Ashraf et al. (1997)
compared interpolation methods (kriging, inverse distance, and co-kriging) to estimate missing
precipitation values. They indicate that kriging provides the smallest root mean square error
(RMSE). Krajewski (1987) has employed co-kriging of radar and rain gauge data to estimate mean
areal precipitation. Seo et al. (1990a, b) describe the use of co-kriging and indicator kriging for
interpolating rainfall data.

Teegavarapu and Chandramouli (2005), Teegavarapu (2012b), Teegavarapu (2016) and
Teegavarapu et al. (2017) report several limitations and advantages of using deterministic and
stochastic spatial interpolation techniques to estimate missing precipitation data at a base station
(i.e., a station with missing data) using data at all other stations. They indicate that all interpolation
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techniques would provide inaccurate estimates of missing precipitation data in two situations:
(1) when precipitation is measured at one or more stations, but no precipitation actually occurred at
the base station, and (2) when precipitation occurs at the base station, but no precipitation is
measured or occurred at all other stations. In case 1, all spatial interpolation techniques will produce
a positive estimate, whereas in reality zero precipitation is recorded at the base station. Estimating
missing precipitation data is impossible in the second case because point observations are used to
estimate the missing value at the base station using spatial interpolation algorithms alone. All
interpolation techniques produce a zero estimate for situations encountered in case 2. Data from
other sources (e.g., radar-based estimates) can be used in these situations to estimate the missing
values. However, the reliability of radar-based precipitation measurements is a contentious issue
(Teegavarapu 2008).

Limitations of spatial interpolation methods have been reported in recent studies. Vieux
(2006) points out several limitations of IDWM, with a major one being the “tent pole effect” that
leads to greater estimates closer to the point of interest. Grayson and Blöschl (2001) list several
limitations of Thiessen polygons and inverse-distance methods. They suggest that these methods
should not be recommended for spatial interpolation considering their limitations. However, they
recommend thin splines and kriging for interpolating hydrologic variables. The Thiessen polygon
approach has the major limitation of not providing a continuous field of estimates when used for
spatial interpolation (O’Sullivan and Unwin 2003). Brimicombe (2003) indicates that the main
point of contention in applying IDWM to spatial interpolation is selecting the number of relevant
observation points used for the spatial interpolation. Correlation weighting techniques and
artificial neural network (ANN) methods are proved conceptually to be superior deterministic
approaches compared with traditional IDWM and its variants. The kriging estimation method
(KEM) is considered a reliable interpolation technique (O’Sullivan and Unwin 2003), but is
plagued by several limitations. These include selecting the appropriate semi-variogram, and
assignment of arbitrary values to the sill and nugget parameters, distance intervals, and observa-
tion value-insensitive variance estimates. Teegavarapu and Chandramouli (2005) revisited dis-
tance weighting methods often used for estimating missing rainfall records. Conceptual revisions
of the methods address two main issues relating to the definition of distance used in the
calculations and selection process of the nearby gauges. Universal functional approximators such
as ANNs are used for fitting a semi-variogram model using the raw data in ordinary kriging to
estimate missing precipitation data by Teegavarapu (2007b). The use of ANN eliminates the need
for predefined authorized semi-variogram models to capture the spatial variation of data and the
trial and error process involved in estimation of semi-variogram parameters. Teegavarapu (2007a)
recently discussed the association rule mining (ARM)–based spatial interpolation approach to
improve the precipitation estimates provided by deterministic and stochastic spatial interpolation
techniques. Considerable improvements in the estimates were achieved when the ARM is used in
conjunction with other interpolation techniques.

Range and cluster-based optimization methods in space and time were developed by
Teegavarapu and Bajaj (2008). Optimization models using mixed-integer linear and nonlinear
programming formulations are developed for estimation of missing precipitation data at a gauge.
These formulations use binary variables for selection of rain gauges that participate in the spatial
interpolation process and also in the process of selection of an optimum cluster of rain gauges for
estimation of missing data. Several variants of these mathematical programming formulations
(Teegavarapu 2012b, Teegavarapu et al. 2017) are proposed to improve the estimates of missing
precipitation data. Optimal functional forms using genetic programming and algorithms were
implemented by Teegavarapu et al. (2009). The variants investigated in their study provide improved
estimates of precipitation data compared with those obtained from traditional distance-based
weighting methods. Teegavarapu and Pathak (2008) propose and investigate a nonlinear mathe-
matical programming model using binary variables to infill missing precipitation records using radar
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(NEXRAD)–based rainfall estimates. The model identifies the cluster of radar data values that can be
used for infilling the rain gauge records.

Infilling methods may introduce significant biases when the gaps constitute more than 20% of
the data. Teegavarapu et al. (2011) indicate that bias introduced by infilling methods could alter the
statistics of the data. Teegavarapu and Nayak (2017) show that use of filled precipitation data may
lead to under- and overestimation of higher- and lower-end extremes. Spatial interpolation becomes
inevitable when temporal autocorrelations at several lags are negligible, thus eliminating the
possibility of using time series models for infilling. In many instances, gauges that are selected
as single best estimators based on Euclidean distance or other statistical distances should be used for
infilling extreme values. Schuenemeyer and Drew (2010) indicate that any statistical inference made
from data with more than 15% missing observations should be interpreted with caution. Estimation
of missing extreme precipitation data is difficult and should not be carried out by global
interpolation methods. In many instances, gauges that are selected as single best estimators based
on Euclidean distance or other statistical distances should be used for infilling extreme values.
Infilling of precipitation data at a site should focus on preservation of site-specific and regional
statistics. Regional statistics are mainly defined as site-to-site relationships, spatial correlations, and
variability across the region. Figure 2-8 shows the CDF plots based on precipitation data and filled
precipitation data using interpolation methods. The missing data in this example are only 25% of the
total data available. Figure 2-8 clearly shows that the data filled using a naïve method utilizing the
mean of all observations in the region do not preserve the statistics.

Comparative analysis of distributions of filled and nonfilled data can be carried out using
different nonparametric statistical hypothetical tests, includeing (1) two-sample KS (Smirnov 1939,
Sheskin 2003), (2) Ansari–Bradley (Ansari and Bradley 1960), and 3) Wilcoxon rank–sum
(Wilcoxon 1945, Hollander and Wolfe 1999). The null hypothesis (Ho) is that observed and
estimated precipitation data are from the same continuous distribution. The alternative hypothesis

Figure 2-8. CDF plots of precipitation data and filled data using two interpolation methods.
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(Ha) is that these two datasets are from different continuous distributions. The hypothesis tests are
carried out at a statistical significance level of 5%. The Ansari–Bradley (AB) test is used to evaluate
the hypothesis (null hypothesis: Ho) that two independent samples of observed and filled data
come from the same distribution against the alternative (alternative hypothesis: Ha) that they come
from distributions with the same median and shape but different dispersions (e.g., variances). The
rank–sum test can be used to evaluate the null hypothesis that observed and filled data are
independent samples from identical continuous distributions with equal medians, against the
alternative that they do not have equal medians. The test is equivalent to a Mann–Whitney
U-test. The Wilcoxon rank–sum test is a nonparametric alternative to the t-test. Teegavarapu
(2013b) demonstrates the utility of these tests for evaluating the similarity of filled and nonfilled
precipitation dataset distributions.

Infilling of missing data in a long precipitation data series introduces the following complexities
when conducting rainfall frequency analysis:

1. Local and global spatial interpolation methods underestimate higher-magnitude events and
overestimate lower-magnitude events.

2. Site-specific statistics and regional (site-to-site) relationships are modified.

3. Transition probabilities that characterize persistence and wet-to-wet, wet-to-dry, dry-to-wet,
and dry-to-dry states are altered and homogeneity of the precipitation time series is disturbed.

2.14.5 Statistical Corrections of Spatially Interpolated Missing Precipitation
Data Estimates

Teegavarapu (2009, 2012b) recommend correction procedures based on single best estimator (SBE)
to implement after initial spatial interpolation estimates are obtained. Teegavarapu (2013b) provides
an optimal single best estimator for correction of spatially interpolated estimates. The correction
procedures improve site-specific and regional statistics and reduce under- and overestimations. Bias
correction methods used in climate change studies can be used for correcting spatially interpolated
precipitation data. The next two sections discuss two quantile mapping procedures for correction of
estimates.

2.14.5.1 Quantile Mapping

The quantile-based mapping method is widely used for correcting the biases in both downscaled
precipitation and temperature datasets obtained from general circulation model (GCM) simulations.
The quantile-mapping method (Panofsky and Brier 1968) is widely used in numerous hydrologic
simulations and climate change impact studies (Wood et al. 2002, Hayhoe et al. 2004, Maurer and
Hidalgo 2008). Although this method tries to adjust all the moments of the estimated data, the major
drawback is its dependence on a stationarity assumption for corrections. The method uses the
observed CDF of data from the training period to correct data from the test period with an
assumption that the future distribution of data follows that of past observed data. The correction
method is expressed as

θbcei = F−1
o ðFv

eðθei ÞÞ ∀ i (2-41)

where the variable Fo is the CDF of the observed data derived from the training dataset and Fv
e is the

CDF from the testing dataset based on estimated precipitation data.
Figure 2-9 illustrates the application of the method, with these CDFs shown in Figure 2-9a and

Figure 2-9b. The variable θbcei is the bias-corrected estimate of precipitation for any time interval i
from the testing dataset obtained by following two steps: (1) estimated values of precipitation are
used to develop a CDF, and the non-exceedance probability Fv

eðθei Þ is obtained for each value of θei as
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shown in Figure 2-9b; and (2) corrected estimate (θbcei ) using the inverse of the observed CDF for the
value of nonexceedance probability is obtained in step 1 as shown in Figure 2-9a.

2.14.5.2 Equi-Ratio Quantile Matching

The limitation associated with the stationarity assumption in quantile matching is addressed by the
equidistant matching method (EQM) developed by Li et al. (2010). The EQM incorporates the
information from the CDF built based on estimated data from the training period, rather than
assuming that the CDF from the observed dataset from the training data is valid for the test dataset
(Li et al. 2010). The difference between the observed data and the estimated data for a given probability
is assumed not to change in the future. The proposed method, referred to as equi-ratio quantile
matching (ERQM), is a minor variant of the existing EQM in which multiplicative scaling factors
are considered as substitutes for additive factors. Figure 2-10 shows the method. The first step in
the ERQM method is the same as for the quantile matching method (Figure 2-10b). However, in

(a) (b)

Figure 2-9. Quantile-matching bias correction method for precipitation estimates.
Source: Teegavarapu (2013b).

(a) (b)

Figure 2-10. ERQM bias correction method for precipitation estimates.
Source: Teegavarapu (2013b).
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the second step (Figure 2-10a), the ratio of F−1
o ðFv

eðθei ÞÞ and F−1
e ðFv

eðθei ÞÞ is obtained for a
given nonexceedance probability value obtained from step 1. F−1

e is the inverse of the CDF of
estimated values from test dataset. Equation (2-42) gives the corrected precipitation estimate in any
time interval

θbcei = θei
F−1
o ðFv

eðθei ÞÞ
F−1
e ðFv

eðθei ÞÞ
∀ i (2-42)

2.15 STATIONARITY ISSUES

According to WMO (2009), stationarity means that, excluding random fluctuations, the data series
is invariant with respect to time. Precipitation extremes are evaluated as block maxima or a single
extreme value per year. Annual precipitation extremes time series should be checked for
stationarity. This is an important element of the statistical analysis conducted after the initial
phase of the data collection. Trend analyses should be conducted for all available annual extreme
data for all durations, and tests for statistically significant trends should be based on
Mann–Kendall or other tests. According to Ashkar (1996), two important forms of nonstationarity
in a time series (e.g., streamflow time series) are jumps and trends. Another impact form is the
existence of cycles that are associated with long-term climatic oscillations. Statistical tests for
detecting stationarity include the Mann–Whitney test for jumps and Wald–Wolfowitz test for
trends (Bobee and Ashkar 1991).

Betancourt (2009) argues that systems for management of water throughout the developed
world have been designed and operated under the paradigm of hydrologic stationarity (HS). The
stationarity assumption suggests that hydrologic variables have time-invariant probability density
functions whose properties can be estimated from the instrumental record (Betancourt 2009). Given
the magnitude and time lags of climate change associated with the buildup of greenhouse gases,
stationarity may indeed be dead (Milly et al. 2008). A viable successor to stationarity must
encompass principles and methods for identifying nonstationary probabilistic models of relevant
environmental variables and for using such models to optimize water systems (Betancourt 2009,
Milly et al. 2008). Nonstationary hydrologic variables can be handled stochastically to describe the
temporal evolution of their means and variances, with estimates of uncertainty.

2.15.1 Trend Analysis

Trend analysis of precipitation extremes at different temporal scales can be carried out using two
well-known nonparametric tests: (1) Spearman’s rho (ρ) test and (2) the Mann–Kendall test.
Discussion about these tests can be found in Teegavarapu and Oishi (2016) and Teegavarapu (2018).
Applications of the Mann–Kendall test are more documented in the literature compared to
Spearman’s test. However, in many cases the power of both tests is the same.

2.15.2 Spearman’s Rank Correlation Coefficient (ρ) Test
Spearman’s rho test, a nonparametric test, can be used to evaluate the association between two
ranked variables. The test can be used to assess a possible linear association between the time and the
precipitation data. The null hypothesis (Ho) ρ= 0 and the alternative hypothesis (Ha) ρ ≠ 0 are
defined. The Spearman’s rank correlation coefficient Rs is calculated as

Rs = 1 −
6
P

n
i= 1 ðDi − iÞ2
nðn2 − 1Þ (2-43)

STATISTICAL ANALYSIS OF PRECIPITATION EXTREMES 37



where
Rs = Spearman’s rank correlation coefficient,
Di = rank of the ith observation, and
n = total length of the time series data.

The significance of the correlation can be tested using a table of critical values (one-tailed or
two-tailed test values) when the number of data pairs is less than 30. The null hypothesis is rejected if
the absolute value of Rs is greater than the critical value given in the table. If the number of data pairs
is greater than 30 (Gauthier 2001), a statistic (Zs), which is also referred to as the “t statistic,” is
calculated by

Zs =Rs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n − 2
1 − R2

s

r
(2-44)

where Zs is Student’s t-distribution with (n− 2) degrees of freedom. A critical value for Zs can be
obtained if t at a 0.05 significance level in Student’s t-distribution table is defined as (n− 2, 1− α/2).
If |Zs |> (n− 2, 1− α/2), (Ho) is rejected, and it can be concluded that a significant trend exists in the
time series.

2.15.3 Mann–Kendall Test

The nonparametric Mann–Kendall and Sen’s slope tests can be used to assess the existence of trends in
the time series data, especially rainfall extremes. Details of the tests presented, along with the notation,
are adopted from Dullo et al. (2017). For both methods, the dataset is not required to be normally
distributed as they are distribution-free tests. The methods are less sensitive to extreme events and
missing data points (Partal and Kahya 2006, Yilmaz and Perera 2015). For the Mann–Kendall test, the
null hypothesis (Ho) represents the case in which there is no trend in the record, while the alternative
hypothesis (Ha) indicates the existence of an upward or downward monotonic trend in the recorded
events. The test statistic (S) required for the Mann–Kendall test is obtained as

S=
Xn−1
k= 1

Xn
j= kþ1

sgnðxj − xkÞ (2-45)

where xj and xk are measurements obtained at times j and k, and n is the number of observed events.
The function sgn () is defined as

sgnðxj − xkÞ=

8><>:
þ1 if ðxj − xkÞ > 0

0 if ðxj − xkÞ= 0

−1 if ðxj − xkÞ < 0

(2-46)

The variance of the test statistics (S) is calculated by

VarðSÞ= ½nðn − 1Þð2nþ 5Þ −P
m
i= 1 tiðti − 1Þð2ti þ 5Þ�

18
(2-47)

where
n = number of observations,
m = total number of tied groups, and
ti = number of ties of extent i.
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The standardized test statistics (z) is computed using

z=

8>>><>>>:
S−1ffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p if S > 0

0 if S= 0
Sþ1ffiffiffiffiffiffiffiffiffiffiffi
Var ðSÞ

p if S < 0

(2-48)

The null hypothesis (Ho) is accepted if jzj ≤ zα=2, where α is a user-specified level of significance
(Partal and Kahya 2006). Following Yilmaz and Perera (2015), 0.01, 0.05, and 0.1 can be used as
levels of significance that correspond to 99%, 95%, and 90% confidence levels, respectively.

To quantify the magnitude of the trend detected by the Mann–Kendall test, Sen’s slope
estimator can be used. According to Sen (1968), the slope of the lines (Qi) connecting N distinct
pairs is computed as

Qi =
Yj − Yk

j − k
for i= 1, : : : ,N (2-49)

where Yj and Yk are data values corresponding to j and k ( j > k), respectively. After arranging the
values of Qi′s in ascending order of magnitude, the median of the slopes (Sen’s slope estimator)
(Qmed) is computed as

Qmed =

(
QðNþ1Þ=2 if N is odd
QðN=2ÞþQðNþ2Þ=2

2 if N is even
(2-50)

2.15.4 Application of Spearman’s Rho and Mann–Kendall Tests

This section discusses an illustrative example of the Spearman’s rho and Mann–Kendall tests. The
two nonparametric trend tests were applied to a 45-min duration precipitation annual extreme time
series obtained from a site in Florida. Figure 2-11 shows a plot of observations and Spearman’s
hypothesis test results. Figure 2-12 shows trend analysis using the Mann–Kendall test and estimation
of Theil–Sen slope. The shorter line is the one based on Theil–Sen slope.

2.15.5 Parametric Trend Analysis: Regression

Linear regression is one of the parametric procedures that can be used for assessing linear trends. If
observations are available with respect to time, a linear regression given by Equation (2-51) can be
developed. An ordinary least squares method can be used to estimate the parameters (slope: β,
intercept: α). The residual (or error) is represented by εðtÞ. The null hypothesis Ho: β= 0 and
alternative hypothesis Ha: β ≠ 0 are evaluated using the t statistic.

yðtÞ= β · t þ αþ εðtÞ (2-51)

Several assumptions need to be met before the results from the parametric model can be used for
making any conclusions about trends in the data. The assumptions include (1) residuals are
independent, (2) residuals are normally distributed, and (3) residuals are identically distributed.
Residuals based on observed and estimated data are estimated for each time interval using the
regression equation. They are evaluated for any systematic bias, time-dependent bias, signs of
heteroscedasticity, and normality of residuals. A residual (ei) is calculated for each time interval i and
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is given by Equation (2-52). The residuals (ei) are obtained using Equation (2-52) based on estimated
values (θe,i) from Equation (2-51) and observed values (θo,i).

ei = θo,i − θe,i ∀i (2-52)

Visual evaluation procedures via several plots will reveal many properties of the residuals.
Probability plots of residuals can be evaluated for normality. Table 2-5 provides a few visual and
statistical tests for evaluation of residuals.

Normality of residuals can be evaluated using a histogram of residuals, normal probability plot,
quantile–quantile plot, or goodness-of-fit hypothesis tests. Independence of residuals can be
evaluated using an autocorrelation function, and constant variance (homoscedasticity) of residuals
can be checked using the Tukey–Anscombe plot, which shows the variation of residual values with
respect to estimated (fitted) values. The Durbin–Watson (DW) test can be used to evaluate the
presence of serial correlation. The DW test statistic, based on Equation (2-53), is compared with a
critical value that in turn is based on sample size.

d=
P

N
i= 2ðei−ei−1Þ2P

N
i= 1 e

2
i

(2-53)

The Ljung–Box Q test (Ljung and Box 1978), a portmanteau test, can be used to check the null
hypothesis that no autocorrelation exists in a series of residuals for a prespecified number of lags (L)
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Figure 2-11. Trend analysis results using the nonparametric Spearman’s rho test.
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against the alternative that the serial correlation coefficient, ρðkÞ, for lags up to L, is nonzero. The
variable n is the length of time series. The test statistic, Q, is calculated as

Q= nðnþ 2Þ
XL
k= 1

�
ρðkÞ2
ðn − kÞ

�
(2-54)

Figure 2-12. Trend analysis results using the nonparametric Mann–Kendall test with Theil–Sen
slope-based line.

Table 2-5. Tests for Evaluation of Residuals.

Test or plot Evaluation Requirement

Time series plot of
residuals

Time dependency Random variation and no
structured pattern in the
variation of residuals with time.

Autocorrelation plot
(autocorrelogram)

Check for serial correlation
at different temporal lags

Low or negligible correlation
at all lags

Probability plot (normal) Normality of residuals Linear plot of residuals
Histogram Visual check for normality Gaussian distribution
Durbin–Watson test Test for serial correlation No serial correlation
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The number of lags used for the test will affect the test’s power; appropriate values recom-
mended by Box et al. (1994) can be used. Figure 2-13 shows the results from the Ljung–Box Q test for
the precipitation time series.

2.16 HOMOGENEITY

Like any other hydrologic time series, precipitation time series often exhibit spurious (nonclimatic)
jumps and/or gradual shifts due to changes in station location, environment (exposure),

Figure 2-13. Visual evaluation of parametric trend analysis using different plots.
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instrumentation, or observing practices (WMO 2009). Homogeneity means that all elements of the
data series originate from a single population (WMO 2009). Observation stations (i.e., rain gauges)
are moved from one location to another, and these locational changes may lead to discontinuities in
extremes, trends, and observations influenced by local weather and other regional climatic
influences. All these factors affect the homogeneous nature of the long-term time series of
precipitation data and bias studies of extremes. Guidelines on analysis of extreme events developed
by WMO (2009) provide real-life examples of nonhomogeneities and stress the need for complete
station history metadata (data about data) for resolving these issues. If observations at a station or a
set of stations are suspect, carefully identified reference stations can be used for evaluation. Mass
curves can be developed using the observations at the station suspected of problems and the
reference station.

Graphical methods for detecting nonhomogeneity include moving average plots using smooth-
ing methods (McCuen 2003). Collecting causal information in the process of analysis is also
important to evaluate the reasons for nonhomogeneity. Often metadata about observations and
information about the stations (or measuring instruments) are extremely helpful for deciphering any
nonhomogeneity in the data. Associating different rainfall-producing mechanisms (slow-moving
frontal systems, hurricane events, and summer convective storms) to rainfall depths in specific years
for specific storm durations is important. Spatial summary statistics for all stations should be used to
assess the regional or global variability of rainfall in a region. This analysis will help to establish or
confirm if the storm events produced by meteorological processes are similar in nature. This will also
strictly satisfy the homogeneity requirement of statistical analysis of extreme events. Miller (1972)
points out that in the case of extreme precipitation, nonhomogeneity tends to be difficult to decipher,
while it is easier to in yearly precipitation totals.

The Mann–Whitney U statistic is commonly used to decide whether observations of a
hydrologic variable are from the same population. To apply the Mann–Whitney test, the raw data
sequences with n elements should be divided into two sample groups with n1 and n2 elements,
respectively. The raw dataset is then ranked from lowest to highest, including tied rank values where
appropriate. The equations related to the Mann–Whitney U statistic are as follows (Bobee and
Ashkar 1991, Corder and Foreman 2009):

Ui = n1n2 þ
niðni þ 1Þ

2
−
X

Ri (2-55)

xu =
n1n2
2

(2-56)

Su =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 þ n2 þ 1Þ

12

r
(2-57)

Z� =
Ui − xu

Su
(2-58)

where
Su = standard deviation,P

Ri = sum of all the ranks from the sample of interest,
Ui = U statistic from the sample of interest, and
xu = mean.

The index i refers to either sample 1 or 2, and the smaller of the two U-statistic values calculated
is used for the test. The variable Ui can be examined for significance using a table of critical values
provided by Corder and Foreman (2009). The variable Z� is the z-score for a normal approximation
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of the data when the number of samples exceeds that available from the table of critical values. The
null hypothesis, which is homogeneity, for the observations is rejected if the calculated Z� statistic is
greater than the selected critical value at the 0.05 significance level obtained from the standard
normal distribution table. Several other tests are available for assessment of homogeneity of
time series. These tests include Pettitt’s test (Pettitt 1979), Buishand’s test (Buishand 1982),
Alexandersson’s standard normal homogeneity test (Alexandersson 1986), and von Neumann’s
ratio test (von Neumann 1941). Buishand and Alexandersson have used the tests that were named
after them for evaluating the homogeneity of rainfall records.

2.17 DETECTION OF CHANGES IN MOMENTS

Statistical analyses can be conducted to assess the changes in moments based on historical data.
The data are split into two datasets (sample populations) and compared. Initially, the sample
populations are checked to see if they fit a specific probability distribution (e.g., normal or log–
normal distribution), and then the sample variances (S21, S

2
2) are also checked to see if they were equal

or unequal. Probability plots on normal or log–normal paper generally are used to check the
hypothesized distributions visually. Goodness-of-fit tests can also be used for more comprehensive
checks.

In a few studies, annual precipitation totals were characterized using normal and gamma
distributions. Thompson (1999) indicates that annual precipitation tends to follow a normal
distribution, particularly in humid climates, and existence of low values in arid and semi-arid
climates can be characterized by positively skewed distributions. However, the time dependence
of these values may violate the assumption of independence due to persistence at interannual
time scales. Droughts and wet years are examples of multiyear persistence (Thompson 1999).
Naoum and Tsanis (2003) report that annual rainfall amounts can be characterized using a normal
distribution for the island of Crete in Greece. When data seem to follow normal distributions, a few
goodness-of-fit tests are applicable. The Kolmogorov–Smirnov test can be used to ensure the validity
of hypothesized data distributions. The Anderson–Darling test, which is sensitive to the tails of the
distribution, can also be used. For datasets with equal variances, a comparison can be made using a
t-test. For datasets with unequal variances, a comparison can be made using Satterthwaite’s modified
t-test (Satterthwaite 1964, McBean and Rovers 1998). Sample means (x1, x2) can then be calculated
for the datasets and checked to see if they were statistically different at a specified significance level
using hypothesis tests. A significance level of 0.05 can be used. F-tests are required to ascertain if the
variances were equal or not equal. A t-test can then be used to make inferences about differences in
sample mean values. Gilbert (1987) and Ott (1995) discuss the procedures for these tests in detail.
Table 2-6 summarizes statistical hypothesis tests used for the assessment of changes in trend for
normally distributed data.

Inferences about changes in the mean values can be made using a parametric hypothesis test
(e.g., t-test). The use of t-tests requires several conditions that need to be met before any inferences
can be made about population means. The assumptions for a two-sample unpaired t-test are
(1) normality, (2) independence of observations, and (3) equal variances. Two different types of
t-tests can be used based on the knowledge about sample variances. Equations (2-59) and (2-60)
identify the t-test statistic calculations when the sample variances based on two different sampling
periods are equal.

t =
x1 − x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1þn2
n1n2

	ðn1−1ÞS21þðn2−1ÞS22
n1þn2−2


r (2-59)
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Equation (2-60) defines the degrees of freedom (df ).

df = n1 þ n2 − 2 (2-60)

where
n1 = number of samples in dataset 1,
n2 = number of samples in dataset 2,
S21 and S22 = variances, and
x1 and x2 = mean values of datasets 1 and 2, respectively.

Equations (2-61) and (2-62) define the t-test statistic used for unequal variances. The test is
referred to as Satterthwaite’s modified t-test (Satterthwaite, 1946). The degrees of freedom (df ) for
this t-test are given by

t =
x1 − x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1
þ S22

n2

q (2-61)

df =

h
S21
n1
þ S22

n2

i
2

S41
n21ðn1−1Þ þ

S42
n22ðn2−1Þ

(2-62)

2.18 NONPARAMETRIC METHODS

Several nonparametric techniques can be used to characterize and analyze precipitation extremes.
The following section discusses a technique that can be used to evaluate data characteristics with no
assumptions made about the distribution of the data.

Table 2-6. Hypothesis Tests Used to Assess Changes in Moments for Normally Distributed Data.

Statistical hypothesis tests Purpose of the test

Null
hypothesis

(Ho)

Alternative
hypothesis

(Ho)

Kolmogorov–Smirnov
Lilliefors
Chi-square
Anderson–Darling
Jarque–Bera

Goodness of fit Data follows the
hypothesized
distribution
(i.e., normal)

Data does not
follow the
hypothesized
distribution

F-test Equality of population
variances

σ21 = σ22 σ21 ≠ σ22

Two-sample unpaired t-test
(Equal variance – Student’s
two-sample t-test)
(Unequal variance –
Satterthwaite’s two-sample
unpaired t-test)

Equality of
hypothesized
population means

μ1 = μ2 μ1 ≠ μ2
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2.18.1 Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric alternative to using a histogram to characterize
the distribution of sample data. Compared with parametric estimators, the parameters to be
estimated from nonparametric data estimators have no fixed structure and depend on all the data
points to reach an estimate. The main reasons for using a kernel density estimator in place of a
histogram are (1) histograms do not provide a smooth representation of the data. (2) The shapes of
the histograms depend on the end points of bins. The selection of the number of bins is subjective
even though a few rules of thumb are available. And (3) the visual representation of the data
distribution also depends on the width of the bins. No clear guidelines are available for selection of
the widths. Shimazaki and Shinomoto (2007, 2010) provide approaches for optimum bin width in
case of histograms and bandwidth for kernel density estimation functions. The use of optimum bin
width eliminates the limitations associated with subjective bin selection. Kernel estimators center a
kernel function (K) at each data point. Adoption of a smooth kernel function can overcome the
limitations of the histograms. The contribution of data point xi to the estimate at some point x
depends on how far apart xi and x are from each other. The extent of this contribution is dependent
upon the shape of the kernel function adopted and the width (bandwidth, h) assigned.

The estimated density at any point x is

f̂ hðxÞ=
1
nh

Xn
i= 1

K

�
x − xi
h

�
(2-63)

Several kernel functions are available for use with KDE. These are uniform, triangular, biweight,
triweight, Epanechnikov, normal, Cauchy, and others. Teegavarapu (2016a), Teegavarapu and
Goly (2011), and Teegavarapu et al. (2013) have used kernel density estimates to evaluate
precipitation extremes at different durations in two Atlantic multidecadal oscillation (AMO) phases.
In these studies, a Gaussian kernel was used to develop KDE for assessing the extreme precipitation
events in AMO phases. Equation (2-64) gives the Gaussian kernel function.

K

�
x − xip

h

�
=

1ffiffiffiffiffi
2π

p exp

�
−
1
2

�
x − xip

h

�
2
�
∀ip (2-64)

Kernel density estimates using a Gaussian smoothing function and optimal bandwidth (h) are
used to characterize precipitation extremes and their temporal occurrences in two phases of AMO.
The bandwidth parameter (h) controls the smoothness of the probability density curve, and different
bandwidths are experimented with before an optimal one is selected to represent kernel density
estimates. The histograms of precipitation data for different durations are superimposed on kernel
density estimates with appropriate scaling to evaluate the match between the two and to confirm the
use of correct bandwidth.

2.18.2 Characterization of Extreme Precipitation Events

Bootstrap sampling methods and the generation of confidence intervals can help in making
inferences about the sample statistics when limited numbers of datasets related to precipitation
extremes are available due to missing data or other reasons. A bootstrap sampling method (Efron
and Tibshirani 1993) is used to obtain samples from data. This study adopts the general procedure of
bootstrap methodology and notation used by Davison and Hinkley (1997). The sample values
y1, y2, : : : : : : , yn are thought of as the outcomes of independent and identically distributed (eiid)
random variables Y1,Y2, : : : : : : ,Yn, whose CDF is denoted by F. The estimate of F, denoted by F̂, is
obtained using data y1, y2, : : : : : : , yn. The following steps from Davison and Hinkley (1997) are used
to obtain bootstrap sampling confidence intervals:
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• Bootstrap (re) samples y�1, y�2, : : : : : : :, y�n fud F̂ are obtained from the original samples allowing
repetitions.

• F̂, an estimator of F, is obtained nonparametrically using an empirical distribution function of
the original data, i.e., by placing a probability of 1/n at each data value from samples
y1, y2, : : : : : : , yn.

• Sample mean statistic bθ� is computed from bootstrap samples y�1, y�2, : : : : : : :, y�n.

• The previous steps are repeated N times, to obtain N sample means bθ�1, bθ�2, : : : : : : :,cθ�N . The
practical size of N depends on the tests to be run on the data.

The sizes of N that Chernick (2007) recommends are 1,000 and 10,000 for evaluating the sample
statistic and confidence intervals, respectively. The current study uses these values. After N samples
are obtained, normally approximated confidence intervals are computed for the uncertainty
assessment. If θ̂ (estimated mean of original data) is approximately normal, then θ̂∼Nðθþ β, νÞ.

Figure 2-14. Schematic of random sampling without replacement and bootstrap sampling.
Source: Teegavarapu et al. (2013).
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The confidence interval (CI) of θ for known bias (β = β(F)) and variance (v = v (F)) (Davison and
Hinkley 1997) is given by

CI = θ̂ − β� Zα:ν1=2 (2-65)
where

βðFÞ ≐ βðF̂Þ ≐ b= bθ� − θ̂ (2-66)

νðFÞ ≐ νðF̂Þ ≐ v=
1

N − 1

XN
i= 1

	bθ�i − bθ�
2
(2-67)

at 95% confidence interval, α = 0.025, Zα = −1.96.
The variable θ̂� is the mean of θ̂�1, θ̂�2, : : : : : : :, θ̂�N, and Zα is the α quantile of the standard

normal distribution.
Teegavarapu et al. (2013) have used bootstrap sampling methods to evaluate precipitation

extremes in two phases of AMO. The multidecadal temporal phases of AMO are not of equal length.
A comparative analysis of extremes in two phases may be biased if the number of observations is

Figure 2-15. Bootstrap sampling approach for determining confidence intervals.
Source: Teegavarapu et al. (2013).
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higher in one phase than the other. To avoid bias because of this, a resampling technique such as
bootstrap sampling method is used to obtain samples from data in phase with a higher number of
observations than the other phase. The number of samples drawn is restricted to a lower number of
datasets from two phases. Given two datasets, an AMO warm phase (sample size, n) and an AMO
cool phase (sample size, m), simple random sampling without replacement has been performed on
two datasets to obtain equal datasets of the length x [x = minimum (n, m)]. Once datasets of equal
length of x are obtained, bootstrap sampling is used to obtain sample distribution. Random sampling
without replacement is repeated several times along with bootstrap sampling in the second step.
Figure 2-14 illustrates an approach combining random sampling without replacement and with
replacement. The distributions of sample statistics (e.g., means) developed from the final step are
evaluated using kernel density estimates. Figure 2-15 illustrates the bootstrap sampling method used
for obtaining confidence intervals.

2.19 NONPARAMETRIC TEST FOR INDEPENDENCE

This section presents details of two nonparametric tests for evaluating independence of sample
values of a time series.

2.19.1 Runs Test

The runs test, also referred to as the Wald–Wolfowitz test (Wald and Wolfowitz 1943), is a
nonparametric test that can be used to examine a sample’s randomness. No parametric equivalent of
this test exists. Nott (2006) uses the runs test to confirm nonrandomness in a time series. The runs
test can be used to decide if a dataset is derived based on a random process. A run is generally defined
as a series of increasing values or as a series of decreasing values. The initial step in the runs test is to
list the values in a sequential order and count the number of runs. The number of increasing (or
decreasing) values is the length of the run. In a random dataset, the probability that the ðiþ 1Þth
value is larger or smaller than the ith value follows a binomial distribution, which forms the basis of
the runs test (NIST 2011). The next step in the runs test is to compute the sequential differences
ðYi − Yi−1Þ. Positive values indicate an increasing value, whereas negative values indicate a
decreasing value. In other terms, if Yi > Yi−1, a unit value (one) is assigned for an observation
and a 0 (zero) otherwise. The series is then transformed to a series of 1s and 0s. To determine if the
number of runs is the correct number for a series that is random, let n be the number of observations,
n1 be the number above the mean, n2 be the number below the mean, and R be the observed number
of runs. Then, using combinatorial methods, the probability PðRÞ can be established and the mean
and variance of R can be derived (Cromwell et al. 1994, Gibbons 1997). When n is relatively large
(>20) the distribution of R is approximately normal.

xR =
2n1n2
n1 þ n2

þ 1 (2-68)

SR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1n2ð2n1n2 − n1 − n2Þ
ðn1 þ n2Þ2ðn1 þ n2 − 1Þ

s
(2-69)

Z� =
Rþ h − xR

SR
(2-70)
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where
Z� = z-score for a normal approximation of the data,
R = number of runs (Corder and Foreman 2009), and
h = correction for continuity, ±0.5,

where

h=þ0.5 if R <
2n1n2

ðn1 þ n2 þ 1Þ (2-71)

h=−0.5 if R >
2n1n2

ðn1 þ n2 þ 1Þ (2-72)

The null hypothesis is rejected if the calculated ZN value is greater than the selected critical value
obtained from the standard normal distribution table at the 0.05 significance level. In other words,
the time series is decided to be nonrandom.

2.19.2 Ranked von Neumann Test

The ranked von Neumann test or a ranked version of von Neumann’s ratio test, a nonparametric
test, can be used for testing the randomness in a sequence of observations. Equation (2-73) gives the
test statistic, where the null and alternative hypotheses are the data are independent and the data are
not independent, respectively. The variable n refers to the number of sample data and ri is the rank of
the data when the values are arranged from smallest to largest.

Vo =
12

nðn2 − 1Þ
XN
i= 2

ðri − ri−1Þ2 (2-73)

The test statistic is compared with a critical value Vn,α at a significance level of α from the table
provided by Bartels (1982). If the value of Vo is less than Vn,α, then the null hypothesis is rejected.
The power of the test is expected to be diminished when ranks are tied.

2.20 PARTIAL DURATION SERIES

The annual extreme value series is often referred to as the block maxima series and is generally used
for frequency analysis. In case of the annual extreme series, the maximum value can be obtained
from a calendar year or a water year basis. However, extreme values over a prespecified threshold are
also used for analysis. These series are referred to as partial duration series (PDS). One limitation of
annual series is that they may omit a value that is lower than the maximum value in a specific year
that is higher than all other values in a series. The partial duration series overcomes this limitation by
selecting all extreme values above a threshold. In some instances, the number of extreme values
adopted from a PDS is the same as the number of years of data available. Analysis of annual
maximum series provides estimates of the average period between years when a particular value is
exceeded. This is generally referred to as average recurrence interval (ARI).

The partial duration series provides the average period between cases of a specific magnitude. The
information obtained from the PDS is the annual exceedance probability (AEP). Laurenson (1987)
provides the definitions for ARI and AEP. In the context of precipitation analysis, ARI refers to the
average, or expected, value of the periods between exceedances of a given rainfall total accumulated
over a given duration. AEP refers to the probability that a given rainfall total accumulated over a given
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duration will be exceeded in any one year. The peaks over threshold value are first assessed for
independence of observations. Several flood frequency analysis studies (Stedinger 2000) using PDS
have identified the advantages of using such series. One of the difficulties associated with the use of the
PDS for rainfall frequency analysis is the subjective selection of the threshold.

2.21 STATISTICAL CHARACTERIZATION OF INTEREVENT TIME DEFINITION OF
STORM EVENTS

Adams and Howard (1986) critically evaluated the use of design storms based on IDF curves for
stormwater management. The analytical probabilistic models for stormwater management models
prescribed by Adams and Papa (2000) describe the need for identification of individual storms using an
interevent time definition. The interevent time definition (IETD) is defined as the minimum temporal
spacing without rainfall required to consider two rainfall events as belonging to different events (Adams
and Papa 2000). Rainfall volumes, durations, intensities, and interevent times can be characterized
using exponential or gamma distributions (Behera et al. 2010) for use in analytical probabilistic models.
The statistics of storm event characteristics are influenced by the values of the IETD.

2.22 INCORPORATION OF CLIMATE VARIABILITY CYCLES AND CLIMATE CHANGE
INTO RAINFALL FREQUENCY ANALYSIS

Evaluation of extreme precipitation events that considers magnitude, duration, and geographical
location is crucial for the design of hydrologic systems and long-term operation of water resource
systems. Several studies confirm the link between internal modes of climate variability and extreme
precipitation events at different spatial and temporal scales (Teegavarapu 2016a). Some of the major
internal modes of climate variability affecting precipitation around the globe are AMO, the El Niño
southern oscillation (ENSO), the Pacific decadal oscillation (PDO), and the north Atlantic oscillation
(NAO). Teleconnections such as ENSO and AMO cycles or phases influence rainfall patterns and
droughts in several parts of the continental United States and others regions of the world. Higher
precipitation totals (especially for long temporal durations greater than 24 hours) have been attributed
to different phases of these oscillations in the state of Florida (Teegavarapu et al. 2013). Teegavarapu
et al. (2013) also evaluated GEV, log–normal, three-parameter log–normal, Pearson, and log–Pearson
distributions for characterizing extreme precipitation data. GEV with a flexible three-parameter model
was found to be most appropriate for characterizing 24-hour duration precipitation extremes in the
region. Figure 2-16 shows depth duration curves for four sites in Florida for two phases of AMO.
Teegavarapu et al. (2013) suggest the following key points in the development of design storms using
extreme precipitation datasets considering the influences of oceanic and atmospheric oscillations:

• The conventional wisdom of using an entire dataset of available precipitation extremes for
determination of design storms is now debatable considering the influences of different phases
of oscillations on the whole or parts of a region spatially and temporally.

• Multiple teleconnections influencing regional hydrology simultaneously in different temporal
windows may increase or decrease the frequency and magnitudes of extreme precipitation
events and influence intraannual temporal occurrences of extremes.

• Emphasis should be placed on those temporal windows in which the combined influences of two
or more teleconnections may lead to rare extremes, and data selection for design should be
representative of these extremes.
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• The idea of using site-specific extremes for design confined to one specific region is not new.
However, consideration of region-specific influences of climate variability at different spatial
and temporal scales is advocated for hydrologic design.

Future rainfall frequency analysis methods should consider the influences of teleconnections to
understand the regional and temporal variability of rainfall extremes. Long-term, high-quality, and
reliable climate records of finer (with a daily or higher) temporal resolution are required for assessing
changes in extremes. Brunet et al. (2008) discuss guidelines for the development of datasets of these
characteristics. WMO (2010) discusses (1) development of datasets for the analysis of extremes,
(2) use of descriptive indexes and extreme-value theory concepts to evaluate extreme events,
(3) assessment of trends and other statistical approaches for evaluating changes in extremes, and
(4) understanding of observed changes and model-projected changes in extremes.

2.23 USE OF FUTURE DATA SOURCES FOR FREQUENCY ANALYSIS

Hydrological design based on design storms will benefit from the emerging sources of rainfall
measurement such as radar and satellite. The use of radar data for estimation of PMP is often
dismissed due to the shorter length of data compared with the long-term data that are available from
rain gauges (Collier and Hardaker 2007). The utility of radar data is also being questioned for use in
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Figure 2-16. Depth duration curves during AMO warm, cool, and combined phases (cool and warm)
for four stations in (a) north Florida, (b) Key West, (c) Palm Beach, and (d) Lake Okeechobee.
Source: Teegavarapu et al. (2013).
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frequency analysis of extremely rare events due to lack of reasonable data length of 10 years. In spite
of all these limitations associated with the available length of radar data, these data are now used
extensively for extreme rainfall analysis and other hydrologic modeling applications (Pathak and
Teegavarapu 2018). Collier and Hardaker (1996) developed methods to estimate maximum rainfall
totals to obtain realistic estimates of PMP. Cluckie et al. (1987) developed depth–area–duration
curves using radar-based rainfall data. Cluckie and Pessoa (1990) characterize actual storms for the
development of PMP estimates using radar-based precipitation data. Reliable radar data are now
available in many parts of the world at a temporal resolution that is adequate for frequency analysis
for hydrologic design. One concern with radar is that the evolving technology suggests no
consistency in methods used for obtaining reflectivity data. Often the fine temporal resolution
radar-based precipitation data are useful in analyzing short-duration storms. The satellite data
temporal resolution, however coarse, is still the only reasonably accurate rainfall data available for
analysis in regions of the world with extremely low rain gauge density and also in regions where
radar-based rainfall estimates are not available (Teegavarapu 2012a). Radar-based precipitation data
are often corrected for bias with the help of rain gauge data. To analyze the bias, different
performance measures, skill scores, and distributions of radar and rain gauge data are analyzed.

2.24 DESCRIPTIVE INDEXES FOR PRECIPITATION EXTREMES

Descriptive indexes for precipitation extremes were developed by the Expert Team on Climate
Change Detection and Indexes (ETCCDI) and are described by WMO (2009). These indexes
describe specific characteristics of extremes, including frequency, amplitude, and persistence (WMO
2009). Table 2-7 provides eleven indexes for precipitation developed by ETCCDI. The indexes can be
used for long-term changes in precipitation extremes. According to the WMO technical regulations,
standard normals are averages of climatological data computed for the following consecutive periods
of 30 years: January 1, 1901 to December 31, 1930, January 1, 1931 to December 31, 1960, and so
forth. Climate normals are required for calculation of a few indexes provided in Table 2-10. These
climatological baseline periods are nonoverlapping. The current WMO normal period (Lu 2006) is
1981 to 2010. Teegavarapu et al. (2011) use two indexes to evaluate long-term trends in extreme
precipitation data at several locations in Florida. They indicate the existence of missing data in the

Table 2-7. Descriptive Indexes for Precipitation Extremes.

Index Description

RX1day Maximum one-day precipitation
RX5day Maximum five-day precipitation
SDII Simple daily intensity index
R10mm Count of precipitation days with RR greater than 10 mm
R20mm Count of precipitation days with RR greater than 20 mm
Rnnmm Count of days with RR greater than a threshold value
CDD Consecutive dry days (RR < 1 mm)
CWD Consecutive wet days (RR ≥1 mm)
R95pTOT Total precipitation due to wet days (> 95th percentile)
R99pTOT Total precipitation due to extremely wet days (> 99 percentile)
PRCPTOT Total precipitation in wet days (> 1 mm)

Note: RR = observed daily rainfall.
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time series and express concern that infilling procedures might introduce biases in the trends.
Teegavarapu et al. (2012) report similar conclusions related to missing data and indexes.

2.25 STANDARD PRECIPITATION INDEX

Standard precipitation index (SPI) (McKee et al. 1993, McKee et al. 1995) calculation involves fitting
a probability distribution (generally a gamma distribution) to one-, three-, six-, and 12-month
precipitation totals and then using standard normal distribution to obtain SPI values. SPI is widely
used by drought planners for quantifying precipitation deficits (WMO 2012). The probability
density function of a two-parameter gamma distribution is given by

f ðxÞ= 1
βα ΓðαÞ ðxÞ

α−1e−ðxÞ=β (2-74)

The parameters of gamma distribution can be estimated by the maximum likelihood method.
Precipitation data may contain zero values, and in such instances, gamma function is undefined
(McKee et al. 1993, McKee et al. 1995). However, alternative procedures suggested by Thom (1966)
can be used to estimate cumulative probability values based on incomplete gamma distribution
functions (Edwards and McKee 1997).

α̂=
1
4A

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r �
(2-75)

β̂=
x
α̂

(2-76)

where

A= lnðxÞ −
P

lnðxÞ
n

(2-77)

n = number of precipitation observations
Based on the estimated parameters (α̂, β̂), the cumulative probability of an observed precipita-

tion value can be obtained by

FðxÞ= 1

β̂α̂ Γðα̂Þ

Zx
0

xα̂−1e−x=β̂dx (2-78)

Letting = x=β̂, Equation (2-77) becomes the incomplete gamma function:

FðxÞ= 1
Γðα̂Þ

Zx
0

tα̂−1e−tdt (2-79)

Because the gamma function is undefined for x = 0 and a precipitation distribution may
sometimes contain zero values, the cumulative probability then can be expressed as

DðxÞ= pþ ð1 − pÞFðxÞ (2-80)

where p is the probability of a zero value.
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If m is the number of zeros in a precipitation time series, the value of p can be estimated by m/n
(Thom 1966). The Z value can be computationally estimated using a rational approximation
provided by Abramowitz and Stegun (1972) that converts cumulative probability to the standard
normal random variable (Z):

Z = −
�
t −

c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

�
0 < DðxÞ ≤ 0.5 (2-81)

Z =
�
t −

c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

�
0.5 < DðxÞ ≤ 1.0 (2-82)

t =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðDðxÞÞ

p
0 < DðxÞ ≤ 0.5 (2-83)

t =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnð 1 − DðxÞÞ

p
0.5 < DðxÞ ≤ 1.0 (2-84)

The values of c0, c1, d1, d2, d3 are 2.515517, 0.802853, 0.010328, 1.432788, 0.189269, and
0.001308, respectively. The maximum absolute error possible (Abramowitz and Stegun 1972) due to
rational approximation is 4.5 × 10−4. Figure 2-17 shows an example calculation of SPI for two-month
precipitation totals.

The empirical cumulative probabilities are obtained by sorting the precipitation data in increasing
order of magnitude (Panofsky and Brier 1958). The smooth curve shown in Figure 2-17b is the
cumulative distribution function of the fitted two-parameter gamma distribution, and the curve with
markers is the empirical cumulative distribution function of the precipitation data. Figure 2-17c shows
the cumulative probability distribution of a standard normal random variable. SPI can be obtained
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Figure 2-17. Illustration of two-month SPI calculation using fitted gamma distribution.
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using the two-month precipitation value shown in Figure 2-17b. Guttman (1994) suggests that 50 to
60 years (or more) are preferred for calculation of SPI. Distributions other than gamma can also be
used to characterize the precipitation data. Guttman (1999) evaluates several candidate distributions,
including two-parameter gamma, three-parameter Pearson type III, three-parameter GEV, four-
parameter kappa, and five-parameter Wakeby. Guttman’s (1999) study concludes that the Pearson
type III distribution is the “best” universal model, that the reliability of the SPI is sample -size
dependent, and that SPIs with time scales longer than 24 months may be unreliable considering data
limitations. SPI values can be used to define wet and dry conditions based on the classification system
proposed by McKee et al. (1993) as extremely wet (2 or higher), very wet (1.5 to 1.99), moderately wet
(1.0 to 1.49), near normal (−0.99 to 0.99), moderately dry (−1.0 to−1.49), severely dry (−1.5 to−1.99),
and extremely dry (−2 and less). Goly and Teegavarapu (2014) used 3 month SPI values calculated
using gridded precipitation data from the state of Florida for evaluation of variations in drought
occurrences in two phases of AMO and ENSO.

2.26 TRENDS BASED ON GCM MODEL SIMULATIONS

Precipitation events of a specific magnitude that lead to catastrophic floods are under scrutiny by
many research studies aiming to understand the influence of climate change and variability on these
events. According to IPCC (2007a), the observed increases in the frequency of heavy precipitation
events (frequency or proportion of total precipitation from heavy falls) over most areas are indicated
likely based on the trends in the later part of the twentieth century, especially after 1960. The human
contribution to the trends in these events is described asmost likely. Also, the IPCC (2007b) suggests
that the increases in the frequency of these events are very likely based on the projections from
different climate change model projections for the 21st century considering the greenhouse gas
emissions scenarios described in Special Report on Emission Scenarios (SRES) (IPCC 2007a). SRES
are replaced by Representative Concentration Pathways (RCPs) in 2014. Hydrologic variable
trends based on downscaled GCM simulations can be evaluated using the statistical concepts
discussed in this chapter. Downscaled precipitation data at a temporal scale of one month are
currently available from several climate change models (Teegavarapu 2012a). However, GCM-
based projections are not available for precipitation datasets at finer spatial and temporal
resolutions for all regions that are essential for hydrologic design. Benestad et al. (2008), Fowler
et al. (2007), and Fung et al. (2010) discuss the inability of climate change models to reproduce
precipitation extremes accurately and the limitations of downscaling models in replicating the
spatial and temporal variability. One important and critical assumption of stationarity used in
frequency analysis is no longer valid when the analysis is carried out with such datasets. In general,
frequency analysis methods always require the assumption of a stationary climate. Several
statistical tests are used to see if statistically significant trends are present in the AMS or the
PDS of observations used for frequency analysis. For example, the precipitation frequency analysis
carried out by NOAA for Atlas 14 assumes a stationary climate.

Precipitation frequency analysis studies now focus on the evaluation of climate change impacts
on trends of extreme rainfall. If the detailed statistical analysis shows no or little observable change in
trends over time, the assumption of a stationary climate is not detrimental to precipitation frequency
analysis. The impacts of potential changes in climate on precipitation frequency estimates remain
uncertain. The uncertainty is mainly owing to the documented large differences among climate
model projections with respect to the expected changes in extreme precipitation frequencies and
magnitudes. Further research is also needed to determine how to adjust precipitation frequency
estimates for future climate change.
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2.27 HYDROLOGIC DESIGN FOR THE FUTURE

The single most critical input to the hydrologic design used in a single event or continuous modeling
approaches is precipitation. Hydrologic designs continue to rely on the assumption of stationarity even
though it is no longer valid (Milly et al. 2008). Future changes in climate that may alter the frequency
of precipitation extremes would have consequences for stormwater management infrastructure,
particularly when stormwater detention and conveyance facilities are designed under the stationarity
assumption. Urban drainage design practices are expected to be revised by incorporating climate
change factors (Arnbjerg-Nielsen 2012), analyzing trends in precipitation extremes (Teegavarapu
2018) and their frequencies (de Toffol et al. 2009), evaluating impacts of changing extremes using
downscaled precipitation data from GCMs (Grum et al. 2006), and designing frameworks for risk and
uncertainty management (Arnbjerg-Nielsen 2011). Design storms derived using IDF relationships
(Adams and Howard 1986) are still widely employed for the design of stormwater conveyance systems
in engineering practice. An adaptive approach is to upgrade existing infrastructure with changing IDF
relationships over time, evolving temporal precipitation distributions and evaluating economic options
to minimize cost and improve the reliability of the hydrologic structures. Alternatively, a sustainable
hydrologic design that identifies a compromise between current and future climate-based conditions
can be devised (Teegavarapu 2013b, Kolokytha et al. 2016).

2.28 SUMMARY AND CONCLUSIONS

Statistical analysis of precipitation extremes is the main focus of this chapter. In setting the stage for
precipitation data analysis, measurement and collection of precipitation data using rain gauges and
radar is also provided. The availability of continuous precipitation data without any gaps and missing
extreme observations is critical for the statistical analysis of data to obtain design rainfall for
stormwater management systems. This chapter also provides a brief review of deterministic and
stochastic interpolation methods for estimation of missing precipitation data. Statistical analysis of
extreme precipitation data is clearly explained, and the procedures that lead to the development of IDF
curves and isopluvial contours based on spatial interpolation are discussed. Assessment of extreme
precipitation data under a changing climate and uncertainties associated with future climate change–
based trends in extreme precipitation are also discussed.
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APPENDIX: CUMULATIVE PROBILITY PLOTS OF PRECIPITATION DATA USING
DIFFERENT PLOTTING POSITION FORMULAE
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Figure A-1. Cumulative probability plots using different plotting position formulae for annual
extreme rainfall depths for a duration of 1 h.
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Figure A-2. Probability plot on normal probability paper for annual extreme rainfall depths for a
duration of 2 h.
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Figure A-3. Weibull probability plot for annual extreme rainfall depths for a duration of 2 h.
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CHAPTER 3

Evapotranspiration and
Evaporative Demand

Mike Hobbins
Gabriel Senay

Prasanna H. Gowda
Guleid Artan

3.0 INTRODUCTION

Evapotranspiration (ET) comprises the sum of fluxes of moisture from the terrestrial surface to the
atmosphere or, more specifically, evaporation from ground and water surfaces and transpiration
from vegetative canopies. Invisible, and indivisible enough to warrant the conflated term “evapo-
transpiration,” ET plays a critical role in regulating the earth’s hydrologic, climatic, and ecological
dynamics at most time and space scales, while varying significantly across all of them. As a primary
component of the land-surface water budget, ET consumes more than half of the solar energy
received by the land surface (Trenberth et al. 2009) and returns about 60% of global land
precipitation (P) to the atmosphere, or about 65,000 km3 year−1 (Jung et al. 2010). In warm, humid
land climates, as much as 50% of P may be water from upwind ET (Gash and Shuttleworth, 2007).
In the United States, agricultural irrigation covers approximately 55 million ac (around 224,000 km2,
an area larger than the state of Utah), accounts for more than 80% of the water consumed, and has
associated water rights worth more than $200 billion (Rick Allen, Western States ET workshop
2012). Thus, ET should be considered an essential climate variable in the global water and energy
cycle and in ecosystem performance; its accurate estimation is a national economic necessity.
Further, an examination of changes in ET under a changing climate is crucial for food security:
worldwide, the agricultural sector accounts for about two thirds of water withdrawals and 90% of
water consumption.

3.0.1 Motivation

Despite its importance within global and local hydrologic cycles, ET remains difficult to estimate at
scales useful to water managers, primarily due to the essentially uncertain nature of the distribution
of limiting soil and vegetative moisture. As a result, hydrologists quantifying ET are often
constrained to using the concept of atmospheric evaporative demand (E0) to describe ET ’s upper
limit; the ideal flux of E0 has become central to hydrology in three primary uses. The first two use E0
to derive ET through some parameterization of moisture availability (Θ), as typified by, first, land
surface models (LSMs) used in such applications as river forecasting, and second, in field-scale
irrigation scheduling. To provide E0 in this latter use, the reference crop ET (ETrc) concept is
replacing the traditional evaporation pan; its estimation forms a central theme of this chapter. The
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final use of E0 is as a climatological indicator: in the crucial context of analyzing the impacts of
climate change and variability, ET remains among the most sensitive of fluxes. Hydroclimatologists
have found in E0 an informative measure of the dryness of the lower atmosphere and, given a long
worldwide history of observations (in the form of pan evaporation and increasingly ETrc), attention
has recently turned to the diagnostic potential of the E0 record.

The many uses of and estimation techniques for ET and E0 vary along many axes. Users need ET
and E0 estimates in operations at various timescales—daily (e.g., reservoir operations); weekly
(e.g., drought monitoring and irrigation scheduling); and seasonal (e.g., demand forecasting by water
utilities)—and to meet scientific needs at scales that run the gamut from instantaneous to secular.
Flux types vary from the supply side, or actual ET, to the demand side, where E0 measures range from
pan evaporation (Epan) observations to estimates of the traditional potential evaporation (Ep) to ETrc.
Driving philosophies are generally observational or synthetic, rarely statistical. Estimation scales vary
from point (e.g., evaporation pans or lysimeters) to basinwide (e.g., basin budget–derived ET) and
further to regional (e.g., remotely sensed ET). Formulations within each flux type range in
complexity from simple temperature-based empirical models to more complex physically based
parameterizations requiring estimates of a suite of meteorologic and hydrologic variables to model
the radiative and advective dynamics at the land surface–atmosphere interface.

A clear need exists for operationally and physically sound measures of ET and E0—measures
that rely on appropriate forcings, are well calibrated to reasonable parameter values, and yield
accurate results over the whole spatiotemporal domain, with any biases eliminated or minimized.
Explicating the most important statistical considerations incumbent on end users seeking to achieve
these goals motivates this chapter. However, the very nature of ET—and of its estimation and
observation techniques, most of which are diagnostic, not prognostic—constrains the extent to
which its treatment within the context of statistical distributions and stochastic techniques is possible
or, in practice, desirable. Statistical distributions apply peripherally to the estimation of ET and E0,
but they are rarely intrinsic to the estimation of the fluxes themselves.

3.0.2 Chapter Contents

This chapter’s central theme is an examination of statistical issues arising in observing ET and in one
of the most common procedures for estimating ET from its companion theoretical flux E0 pertaining
to operational practitioners and elucidating fundamental questions in the field.

The goals of the chapter are twofold: first to discuss functional ET estimation with a statistical
perspective including uncertainties in observations, model, and data; the drivers of variability of ET
and E0; and trends in both fluxes and their drivers; and second, the role of statistical distributions in
the estimation of ET and E0 and the significance of detected trends.

We primarily examine two types of uncertainty in this chapter: aleatory and epistemic. In
aleatory uncertainty, the outputs reflect the effects of inherent randomness in the driving variables of
ET or E0 models. This treatment of drivers as random variables lies at the heart of Section 3.3.6,
where a first-order, second-moment uncertainty analysis examines the variability of an outcome as a
result of the natural randomness of its inputs. In epistemic uncertainty, our understanding of the
necessary physics, or of their representation in the model, is uncertain. In this context, we will discuss
the limitations of E0 parameterizations based on air temperature (T) as opposed to more fully
physically descriptive parameterizations, as in Section 3.2.7, and the resolution of the pan
evaporation paradox, described in Section 3.4.2.5.

In terms of science, there is an a priori clear choice of modeling approach—physically based
models best represent the physics of ET and E0—but in terms of accuracy in practice a different
answer may apply, and, indeed, the addition of more variables, more parameters, and therefore the
concomitant added uncertainty may perhaps not be worth the added physical representativeness.
Resolution of this conflict between science and practice is a crucial step in selecting an ET-estimation
procedure.
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Due to space constraints, here we do not discuss evaporation from lakes and reservoirs, nor,
owing to the limited audience among operational hydrologists, do we discuss small-scale instru-
mented measures of ET—such as sap-flux measurement, weighing lysimetry, and techniques that
examine point or small-scale ET by close examination of the microphysics near the evaporating
surface, such as Bowen ratio methods and scintillometry. Although eddy covariance techniques incur
significant instrumentation burdens, Section 3.2.5 discusses them as they contribute to climate
modeling and constraining global ET estimation efforts.

As hydrologic fluxes, ET and E0 are best estimated by observation. ET is most often observed at a
point, back-calculated as a residual of large-scale fluxes or modeled (Section 3.2). A short primer on
the physics of ET and E0 that underpins these direct physical measures and provides the necessary
background for the rest of the chapter is provided in Section 3.1. Beyond a few point observations
that are mainly useful to the research community (e.g., lysimeters, eddy covariance stations, and
Bowen ratio stations), or the local irrigation community (e.g., evaporation pans), few methods of
direct estimation of ET are available at the time and space scales relevant to water managers,
hydrologists, or engineers. These practitioners are then mainly left with estimating ET as a basin-
scale water-balance residual, for which we examine the uncertainties in Section 3.2.4, or from remote
sensing platforms, a typical application of which we examine in Section 3.2.6.

Most land-based operational formulations derive ET by scaling E0 down by some metric of Θ,
yielding ET values between zero for dry conditions and E0 for unlimited moisture. In Section 3.3, we
describe such a model that relies on sound physical representations of the soil and vegetation
dynamics at the micro-scale combined with bulk surface characteristics: the concept of ETrc from
the Penman–Monteith equation (Monteith 1965). Clearly, any such formulations require a well-
calibrated estimation or observation of E0: one for which the user can know or can determine which
input variable is most important to the specific location and time frame and which may be ignored. To
this end, we perform first a point-based sensitivity analysis of ETrc from weather station data
(Section 3.3.5) and then, using gridded input data, we report a rigorous first-order, second-moment
uncertainty analysis that studies the drivers of temporal and spatial variability of ETrc (Section 3.3.6).

Given the increasing interest in secular changes in ET and E0, we discuss trend analyses—in
terms of their quantification, their climatologic implications, and the statistical implications of their
proper estimation, including the treatment of autocorrelation in assessing trends’ significance
(Section 3.4.1).

3.1 EVAPOTRANSPIRATION AND EVAPORATIVE DEMAND: A PHYSICAL PRIMER

A summary treatment of the physics of ET and E0 is necessary for a more complete understanding of
this chapter’s material: more complete treatments are available in books [e.g., Brutsaert (1982)],
chapters [e.g., Shuttleworth (1993)], and other manuals [e.g., Allen et al. (1998)]. In this section, we
discuss the physical drivers of the evaporative process and common parameterizations thereof,
setting up subsequent discussion of E0 as a maximal estimator of ET.

3.1.1 Physical Measures of ET and E0
Most operational hydrologic applications require estimates of actual ET, so the question we seek to
answer is “How much water is supplied from the land surface to the atmosphere under prevailing
meteorologic, radiative, and hydrologic conditions?” However, in general, Θ is limited to a degree
that is unknown at operationally useful scales. Thus, the answer often becomes more complicated
and requires asking a further pair of questions: first, “ignoring limitations on Θ, how much water
could be supplied from the earth’s surface to meet the demand for it in the atmosphere?” and second,
“How do we then account for limited Θ at the evaporating surface?” Answering this first new
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question yields the conceptual flux of E0; answering the second converts E0 to ET. Following, then,
we examine the drivers of, or limits to, ET, quickly invoking the concept of E0.

3.1.2 Drivers or Limits to ET: Introducing E0
In basic concept, the physics of ET can be expressed as a function of Θ and some parameterization
g( : : : ) of net available surface energy for evaporation (Qn), wind speed (Uz) at a given height above
the evaporating surface (T), and actual vapor pressure (ea):

ET = f ðΘ, gðQn,Uz ,T , ea, λÞÞ: (3-1)

where λ is the latent heat of vaporization (approximately 2.5 × 106 J kg−1) used to convert ET and
ET-related fluxes (E0, Ep, ETrc, and Epan) between mass fluxes and energy fluxes (λET, λE0, λEp, λETrc,
and λEpan). Note that in this chapter, we discuss mass fluxes in units of mm day−1 and their energy
flux equivalents in units of W m−2: to convert ET and ET-related fluxes from the former to the latter,
we multiply by λ/86,400, where 86,400 is the number of seconds in a day.

The availability of water for evaporation Θ, whether in soil moisture, vegetation, open water, or
ice, provides a hydrologic limit. The remaining meteorologic and radiative variables in Equation (3-1)
are here combined into the function g( : : : ), and together drive the supply of energy to the surface and
the ability of the overpassing air to transport moisture, respectively providing the energetic and
advective limits to ET.

3.1.2.1 Moisture Availability Limit

The Θ limit describes the availability of water (or ice) to evaporate, as follows:

ET ≤
∂Θ
∂t

, (3-2)

where ∂Θ∕∂t is the time rate of change of moisture availability in units of mass flux.
ET is then always constrained to the lowest of the Θ limit [Equation (3-2)] and the function

g( : : : ). However, the quantity or spatial distribution of Θ at the land surface is very poorly
characterized, rendering direct estimation or observation of ET difficult on spatial scales useful to
hydrologists or water managers. The state of the atmosphere is easier to characterize as atmospheric
quantities—at least the fluxes of momentum, moisture storage, and energy near the surface—are
better mixed and so are more easily and accurately sampled. To circumvent the difficulty in
estimating Θ, we estimate a rate of ET for which this surface moisture limit does not apply—we
idealize a wet surface—and consider this the rate of ET constrained only by atmospheric limits. We
call this idealized rate of ET the evaporative demand E0 [Equation (3-3)].

Essentially, in turning to E0 we simplify the question from “What is ET under ambient
conditions?” to “If unlimited water were available, how much could the atmosphere extract?” We
answer this latter question from one of two different perspectives: one looking down from the
atmosphere; another looking up from an idealized soil and plant surface. Each perspective results in a
slightly different conceptualization of E0, but the relationship among ET, E0, and their meteorologi-
cal and radiative drivers may be summarized thus:

λET ≤ λE0 = gðQn,Uz ,T , eaÞ: (3-3)

In Section 3.2.1, we address the first conceptualization, that of potential evaporation Ep, as first
defined by Penman (1948). Section 3.2.8.2 addresses observational E0 from Epan. Section 3.3
addresses the second theoretical flux, ETrc. Whichever flux is estimated, we then adjust E0, using
by some parameterization of Θ that accounts for our lack of specific knowledge of it, and thereby
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estimate ET. How this is achieved is central to hydrologic modeling and depends on the application
for which the ET estimate is desired.

Many physically sound ET formulations originate in Penman’s (1948) treatment (Section 3.2.1).
Following, we briefly summarize his approach to estimating the advective and radiative limits. While
the specific approaches are not followed for all formulations, they remain instructive as the basis of
all physically based ET-from-E0 approaches.

3.1.2.2 Advective Driver

The advective limit describes the ability of the dynamic boundary layer to absorb and bear away
moisture, as follows:

λET ≤ ðesat − eaÞ · f ðUzÞ; (3-4)

where ea is previously defined and esat represents the saturated vapor pressure, both estimated from
the Clausius–Clapeyron equation using T for esat and dewpoint (Tdew) for ea, and f(Uz) is a vapor
transfer function (see the following) in W m−2 Pa−1. The right-hand side (RHS) of Equation (3-4) is
also known as the drying power of the air (EA) in Wm−2. Note that with zero advection, ET is limited
to diffusion only.

The proper and accurate parameterization of the advective component is the sine qua non of
any physically based ET or E0 model (Hobbins et al. 2001a, b; Sugita et al. 2001). f(Uz) describes the
variation of vapor transfer of the air as a function of Uz. Brutsaert and Stricker (1979, Equation 17)
give an example of a more complete expression for f(Uz) under neutral conditions (i.e., a stable
atmospheric boundary layer):

f ðUzÞ=
2.89x10−4avk2Uz

T ln
h
zv−d0
z0v

i
ln
h
zm−d0
z0m

i , (3-5)

where
aυ = ratio of eddy diffusivity to eddy viscosity under neutral conditions,
k = von Kármán constant of value 0.4 (-),
z0m and z0υ = roughness lengths (m) for momentum and water vapor, respectively,
zm and zv = heights (m) at which momentum and vapor pressure (i.e., Uz and ea) are measured,
respectively (typically 2 m above the surface, although sometimes higher), and
d0 = zero-plane displacement height (m).

However, on operational spatiotemporal scales, the confounding effects of atmospheric
instability acting over short time periods and the onerous data requirements rule out such theoretical
formulations. In his development of the concept of Ep as ET from a free water surface, Penman
(1948) made various assumptions relating to the time step and micro-scale physics of the boundary
layer and suggested for f(Uz) an empirical, linear function of U2 (m sec−1), or wind speed measured at
a 2 m height (i.e., zm = 2), still commonly used:

f ðUzÞ ≈ f ðU2Þ= ðaþ bU2Þ
86,400

λ
= 0.263ð1þ 0.528U2Þ

86,400
λ

(3-6)

which, for f(U2) in W m−2 Pa−1, gives EA in W m−2.
Most studies since Penman’s (1948) seminal work on pan evaporimeters has developed new

f(Uz) relations [e.g., Hobbins et al. 2001a, who calibrated f(U2) across the contiguous US (CONUS)],
or selected from existing parameterizations. On the other hand, some models of ET and E0
parameterize the advective component without an explicit function of Uz to address data uncertainty
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(e.g., Morton 1983). The enduring practical value of the Penman (1948) wind function and others
based on Penman is demonstrated in what is probably the most precisely metered experiment on the
physics of Epan, in which Lim et al. (2012) provide observed wind functions. They couple Fick’s
(1995) Law of Diffusion with boundary layer theory and account for an observed temperature
depression in the thin layer at the water surface that provokes a temperature difference between the
water surface and the air (most models simply use the air temperature for T). Their results indicate
good agreement with Thom et al.’s (1981) envelope of theoretical curves, particularly with Penman’s
(1948) f(U2).

In general, parameterization choices are generally predicated on the modeler’s preference, the
region of application, how such factors as the temporal resolution of modeling and consequent
assumptions on vertical stability at small scales (Katul and Parlange 1992, Parlange and Katul 1992a, b)
or at large scales (Sugita et al. 2001) coincide with modeling goals, or on data availability and quality
(Kohler and Parmele 1967, Morton 1983).

3.1.2.3 Radiative Driver

The radiative driver describes the availability of energy to drive the evapotranspiration process (with
no source for the latent heat flux to drive the mass transfer, ET cannot take place) and thus describes
an upper limit on ET:

λET ≤ Qn, (3-7)

where Qn is a function of the energy fluxes and storages described by the instantaneous energy
balance, which is shown in Figure 3-1, and as follows:

∂W
∂t

= ð1 − αÞRd þ Ld − Lu −H − λET − G − C þ Ad , (3-8)

where all fluxes (RHS) and time rates of change of heat storage (left-hand side, LHS) are in flux units
(W m−2), with positive fluxes into the evaporating surface and negative out. ∂W/∂t is the time rate of
change of heat storage in the evaporating layer (positive increase), α is the surface albedo (-) to
shortwave radiation, Rd is the downward shortwave radiation incident at the surface, Ld and Lu are

Figure 3-1. Instantaneous energy balance at an evaporating surface. All fluxes and heat-storage
changes are in flux units (W m−2). The gray rectangle represents the control volume to and from
which all fluxes pass and within which all heat-storage changes are considered.
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respectively the longwave radiation fluxes inward to and outward from the surface, H is the sensible
heat flux by diffusion from the surface, λET is the latent heat flux equivalent of actual evapotranspi-
ration, G is the heat flux conducted into the soil (or ground heat flux) from below the evaporating
layer, C is the energy absorbed by biochemical processes in vegetation, and Ad is heat advected into
the control volume.

All E0 flux types require accurate estimation of Qn, which is most often estimated as the net
radiative balance, itself consisting of the two largest terms in Equation (3-9): the net shortwave
radiation (Rn) and net longwave radiation (Ln) fluxes, respectively the difference of Rd less the
reflected upward shortwave radiation Ru [determined as Rd multiplied by α; see Equation (3-8)] and
Ld less Lu. Whether or not the remaining terms in Qn—G, ∂W/∂t, C, and Ad—appear is a function of
data availability, time step, and their relevance to the conceptual flux (Ep, Epan, and ETrc make
specific assumptions as to the nature of the evaporating surface: an extensive free-water surface for
Ep, an evaporation pan filled with water for Epan, and a ground surface and vegetated canopy for ET
and ETrc). Estimation of G requires knowledge of soil temperature and moisture content and so is
generally neglected under the assumption that over daily or longer time periods it is generally orders
of magnitude lower than the net radiative balance (see also Allen et al. 1998). For heavily vegetated
areas, a zero G is a tenable assumption. In bare soil conditions, however, G may be considerable,
constituting as much as 30% of the net radiative balance. When required, G may be estimated as a
function of T (Shuttleworth 1993). ∂W∕∂t is important in open-water evaporation, particularly for
small water bodies at shorter time scales or as the size and heat capacity of the water body increases,
but outside of the discussion of Epan (Section 3.2.8.2), we do not discuss open-water evaporation and
so neglect it. Ad may be advected into the control volume by air in the case of ET and ETrc or may
include larger fluxes owing to flows into and out of water bodies and P onto water bodies in the case
of Ep. For a free-water surface such as a lake, Ad—comprising sensible heat from P and the balance
between the heat contents of outflow and inflow—may be significant and must be considered. C is
generally negligible compared with the radiative and latent heat fluxes of interest—on the order of
2% ofQn (Shuttleworth 1993)—and so is most often neglected. These smallest terms—C and Ad—are
neglected in this chapter.

The remaining terms are conflated into groups that are more conceptually malleable. The
radiation terms are gathered into Rn and Ln. The net radiation at the surface is then Rn + Ln. Most
conveniently, Rn, Ln, G, ∂W∕∂t, and the smaller heat fluxes C and Ad are conceived of as together
[LHS in Equation (3-9)] providing Qn, which, due to the predominance of the Rn and Ln terms, we
refer to as a radiative driver. Qn is then partitioned into the processes of latent (λET) and sensible (H)
heat fluxes [RHS in Equation (3-6)], as follows:

Rn þ Ln − G = Qn = λET þ H: (3-9)

Complete knowledge of the net radiative balance requires extensive instrumentation not
generally available on an operational basis; as a result, much parameterization is required. The
various methodologies for estimating the radiative components of the various formulations of E0 also
pertain to the estimation of ET. Expressions for Ln at the surface are available in Shuttleworth (1993)
and Allen et al. (1998), among others. Absent explicit estimates for each longwave component,
effective net emissivity is estimated to account for the effects of atmospheric composition, including
such factors such as clouds, dust, and concentrations of greenhouse gases such as water vapor and
carbon dioxide. While most applications assume atmospheric concentrations are constant, in
rigorous trend analyses or climate modeling, each of these constituents has its own emissivity and
concentration (see Section 3.4.2.3).

Important to note is that in this scheme and in the absence of direct measurements, the
shortwave and longwave radiation balances are most often entirely parameterized by T, ea, and either
observed sunshine hours by the Angström formula (e.g., Allen et al. 1998) or percent cloud cover
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(CC) by the Savinov–Angström equation (e.g., Brutsaert 1982), with no actual radiative flux
measurements used. Thus, there is significant potential for bias, both in the modeling framework
and due to the threshold problems [e.g., the Campbell–Stokes sunshine recorder indicates only
that the sun is shining or not, relative to a threshold value of Rd of ∼120 W m−2 (Stanhill and Cohen
2001)—compared with a typical theoretical maximum value of 1,367 W m−2 for the top of the
atmosphere—which significantly limits information that may be inferred on shortwave fluxes].

3.2 MODELS AND OBSERVATIONS OF ET AND E0

In this section we examine physical models and observations of ET and E0. We begin by highlighting
Penman’s (1948) seminal treatment, which introduced the concept E0 as a limit to ET and outlined
long-term measures of ET at its drivers’ limits. We summarize a measure of large-scale ET that is
based on its complementarity with E0. We explore the following observational approaches to
estimating ET: those leading directly to ET estimates without an intermediate step of estimating E0,
derivation of ET as a residual of a basin-scale water balance in a procedure often used to generate
observations for ground-truthing and calibrating other ET-estimation techniques; direct observa-
tions of the evaporative flux from canopies in eddy covariance techniques; and remotely sensed
observations of ET, used for various large-scale needs, such as water rights, irrigation imagery, and
drought analysis. Then we address epistemic uncertainty by warning against the use of T-based, or
nonphysically based, E0 parameterizations. We close with a summary of the main issues relating to
observations of E0.

3.2.1 Penman’s Legacy: Physical Models of E0
Like Penman (1948) before us, we seek to quantify the demand in the atmosphere for water from the
land surface or, equivalently, the capacity of the atmosphere to extract this water. This then is the
original Ep approach to E0, wherein the surface is assumed to supply moisture at a rate sufficient to
meet the atmospheric demand and so is often referred to as a wet or free-water surface.

Penman (1948) describes the meteorologic limits on ET as a sink strength that meters the
atmosphere’s ability to absorb and bear away moisture (the advective limit) and the source strength
that meters the energy available for evapotranspiration (the radiative limit). Prior to his work, ET
had been calculated using an aerodynamic method when the supply of energy to provide the latent
heat was not limiting and using an energy budget method when the vapor transport mechanism was
not limiting. Penman’s genius was to recognize that normally both of these factors are limiting,
whereas Θ was essentially unknowable. He combined the two meteorologic limits in a “Combination
Equation” to estimate evaporation for “a reproducible surface of known properties,” which is to say,
a surface moist enough that ET is constrained only by radiative and advective limits. The Penman
approach takes into consideration the similarity of flux profiles of Uz, specific humidity, and
potential temperature in the dynamic sublayer above a saturated surface. This results in a convex
linear combination of ET rates driven by the surface energy budget (i.e., the radiative driver in the
first term on the RHS below) and by the vapor transfer (i.e., the advective driver in the second term):

λEp =
Δ

Δþ γ
Qn þ

γ
Δþ γ

EA (3-10)

where
λEp, Qn [Equation (3-9)] and EA are in W m−2,
EA is parameterized as f ðUzÞðesat − eaÞ,
esat and ea are in Pa,
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Δ (Pa K−1) is the slope of the saturated vapor pressure curve (desat/dT) at T (K), and
γ is the psychrometric constant (Pa K−1).

Shuttleworth (1993) shows formulations for Δ, γ, and λ.
The Penman (1948) combination equation for Ep has over the years shown itself remarkably

robust and has launched many improvements and offspring. These offspring equations generally
tune the advective driver, particularly to improve the characterization of the diffusion process in a
local or specific setting, or adapt the equation by setting the advective driver, which is generally far
smaller than the radiative driver, to a constant, resulting in an expression that is a function only of
the radiative driver (called radiation-based equations). An important example of the latter is the
Priestley–Taylor expression for partial equilibrium conditions (Priestley and Taylor 1972), used to
estimate ET from regional-scale wet surfaces, or wet environment evaporation (Ew):

λEw = αPT
Δ

Δþ γ
Qn (3-11)

where λEw is inWm−2, and αPT is the dimensionless Priestley–Taylor parameter (generally estimated
in the range of 1.28 to 1.32 and mostly depending on vegetation type and surface roughness) that
accounts for departure from purely radiative forcing. This is a flexible estimator of maximal ET:
Fisher et al. (2005) scale Ew down to provide estimates of ET by parameterizing αPT as a function of
Θ: they recommend its use in large-scale ecosystem models, due in part to its limited parameter set.
Alternatively, Fisher et al. (2008) keep αPT constant and scale Ew down to ET using considerations of
plant physiology, which they show works well at the global scale.

A significant development from Penman (1948) is the “big-leaf” Penman–Monteith approach
(Monteith 1965), in which a saturated surface is no longer assumed and ET is estimated for observed
conditions parameterized by two varying resistances—aerodynamic and stomatal—against which
vapor diffuses from the leaf interior to the dynamic boundary layer. A carefully specified case of
Penman–Monteith ET provides a measure of E0 known as reference crop ET (ETrc), wherein ET is
estimated for a specific surface and then generalized for actual Θ conditions. The ETrc approach
addresses the question asked from the soil/plant perspective: “Given well-defined, ideal surface, or
reference, conditions, what could the land surface supply to the atmosphere?” The formalized answer
to this question defines ETrc as a reference supply that can then be used as a starting estimate against
which additional assumptions regarding prevailing soil- and vegetation-moisture conditions and
vegetation mix and phenology are applied to scale down for ET. This approach to ET estimation has
become the standard in the agricultural sector worldwide (Allen et al. 1998) and is described in
Section 3.3, particularly in relation to uncovering the dynamics driving its space–time variability.

A common observational approach to E0 relies on evaporation pans, which was the instru-
mentation Penman (1948) used to verify his combination approach; Section 3.2.8 examines these
more closely. Recent work has adjusted both the advective and radiative drivers in theoretical
combination approaches to synthesize observations of Epan from standardized (US Class-A) pans
(Linacre 1994, Rotstayn et al. 2006). Thom et al. (1981), Stanhill (2002), Roderick et al. (2009a, b),
and Lim et al. (2012) supply more detail on evaporation pans.

Given the differing surface conditions for these three approaches, we should not be surprised
that Ep, ETrc, and Epan yield different estimates of E0.

3.2.2 Energy and Water Limits to ET: The Budyko Framework

The analysis of limitations of ET has permitted an informative examination by Budyko (1974), who
visualized the variation of large-scale, long-term climatology as a function of the energy limit and the
water limit. Budyko (1974) specifies time scales long enough that steady-state conditions may be
assumed to prevail over areas large enough that the influences of climate on the land surface may be
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assumed to be fully developed. He defines two indices to represent the resulting behavior: the dryness
index Φ, defined as an E0 rate generally estimated from the Priestley–Taylor equation [Equation (3-
11)] and normalized by P, i.e., Φ = E0/P, and the evaporative index ε, defined as a similarly
normalized ET rate (i.e., ε = ET/P). The “Budyko curve” is then an empirical parabolic relationship
between the two:

εB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ tanh

�
1
Φ

�
ð1 − cosh Φþ sinh ΦÞ

s
(3-12)

wherein ET is asymptotic to two limits (see Figure 3-2): the water limit at the arid end of the
hydroclimatologic spectrum, where it is defined by P, and the energy limit at the humid end, where
ET is defined by long-term E0. Figure 3-2 shows the Budyko curve, along with other prior and
succeeding relations. Budyko showed agreement between the ET estimated by his relations and that
estimated by basin budgets to within 10%.

Figure 3-2 also indicates the behavior of 229 basins across Australia within the Budyko
framework using data reported fully in Donohue et al. (2010). Clearly, while the overall shape of
the Budyko relation was preserved—the observed data approach both asymptotes—a great deal of
scatter remains. Indeed, the Turc (1954) curve appears to better approximate these data than does
the Budyko (1974) curve.

Figure 3-2. The Budyko concept in theory and applied to a set of basins. The blue lines denote the
water and energy limits on ET, to which all relations describing the behavior of ET are asymptotic.
Blue circles indicate the long-term, large-scale behavior observed at 229 Australian basins [from
Donohue et al. (2010), personal communication, [2011]. Various ideal relations between ε and Φ
are shown as black lines [Schreiber (1904), Ol’dekop (1911), Turc (1954), Zhang et al. (2004)] for
various values of model parameter (w) and a red line (Budyko 1974). The red dotted line indicates
the ET-estimation error δ at a single basin using Budyko (1974).
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The so-called Budyko scatter (δ) is the difference between Budyko-estimated evaporative index
εB and basin-observed evaporative index ε:

δ= ε − εB =
ET − ETB

P
(3-13)

where ETB is ET defined by the Budyko relation (Figure 3-2). Greater δ has been observed at shorter
time scales (Zhang et al., 2008), due to contravention of the steady-state assumption, and at smaller
spatial scales (Budyko 1974, Donohue et al. 2007, Oudin et al. 2008), due to local effects dominating
the regional climate signal. Various attempts to reduce and/or explain δ have involved examination
of soil and topographic characteristics of the basin (Fu 1981). Oudin et al. (2008) find significant
improvements in smaller catchments through examining land cover. Donohue et al. (2010) examine
the role of vegetation dynamics in improving the predictive accuracy in the Budyko framework at
smaller spatiotemporal scales and conclude that no generally applicable broad-scale ecohydrological
relation exists and that physically based models must also account for water storage in addition to
vegetative models to improve ET estimation.

Szilágyi and Jozsa (2009) highlight the Budyko framework’s ecological promise, demonstrating
a conceptual linkage between Porporato et al.’s (2004) implementation of the coupled long-term
water–energy balance and the complementary relationship between ET and E0 (discussed in
Section 3.2.3). They show that derivation of some ecosystem characteristics—specifically mean
effective relative soil moisture and maximum soil-water storage available to plants—was possible
using meteorological and radiative data alone, permitting prediction of changes in the mean rooting
depth of vegetation in response to changing climatic forcings.

That techniques based on the Budyko (1974) framework are still used is testament to its
robustness, both as a lesson in the limits to ET and as an ET predictor—when properly implemented
and calibrated, in ungauged basins absent local climatologic knowledge of ET.

3.2.3 Complementarity of Regional ET and E0
As scales of analysis increase, the moisture from a homogeneous surface and the overpassing air
become physically coupled through the partitioning of Qn into latent (λET) and sensible (H) heat
fluxes into a well-mixed boundary layer, leading to feedback mechanisms linking E0 and regional-
scale ET. For a given radiative input to an evaporating surface of regional scale (scale lengths on the
order of 1 km), reductions in surface moisture supply lead to reductions in λET, which liberates
a portion of the surface energy budget q2 as H into the overpassing air, which increases its VPD
(i.e., esat− ea) and hence λE0 by an amount q1. Conversely, increasing the moisture available for
evaporation has the opposite effect: λET increases and λE0 decreases. This is known as the
“complementary relationship in regional evapotranspiration.” First proposed by Bouchet (1963),
its most basic expression is

ET = kCREw − E0, (3-14)

where
kCR = complementarity constant,
Ew = evaporation rate for a regional-scale wet surface (i.e., a moisture-unlimited ET rate that
only varies as a function of Qn), and
E0 is specified by Bouchet (1963) as Ep.

In its most simple form, all the energy liberated is assumed to increase E0 (so q2 = q1), so kCR
takes a value of 2. However, Kahler and Brutsaert (2006) show that kCR varies with the
specific measure of E0: using Epan for E0 leads to an asymmetric complementarity with kCR in the
range of 2 to 5, reflecting the effectiveness of heat transfer between the pan and its surroundings.
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Although they conclude that pans are more sensitive to changes in aridity than their surroundings,
this inference must be weighed against their use of daily Epan observations, which are often too noisy
to be of diagnostic use (Roderick et al. 2009a, see Section 3.2.8.2). Symmetrical complementarity
(i.e., where kCR = 2) should only be expected in the unlikely situation of no heat exchange between
the instrument measuring E0 (e.g., an evaporation pan) and its surroundings (Szilágyi 2007).
Asymmetry notwithstanding, the complementary relationship has been observed around the world
(e.g., Davenport and Hudson 1967) and established as observational fact across CONUS using Epan
observations for E0 and deriving ET from basinwide water balances [Equation (3-16)] (Hobbins et al.
2004, Ramírez et al. 2005). Figure 3-3 graphically represents the relation for kCR = 2 and conditions
of constant energy availability.

The most widely used models of the complementary relationship are based on the Advection–
Aridity (AA) approach of Brutsaert and Stricker (1979). This approach forms the basis of modeling
in Section 3.4.2; it is summarized here as it elucidates the conceptual basis of the complementary
relationship at the heart of the resolution of the so-called evaporation paradox. The model combines
the complementary relationship hypothesis between Ep and ET with the effects of regional advection
on Ep. In this model, Ew is calculated based on derivations of the concept of equilibrium
evapotranspiration under conditions of minimal advection, first proposed by Priestley and Taylor
(1972), and Ep is calculated by combining information from the energy budget and water-vapor
transfer in the Penman (1948) equation [Equation (3-10)]. ET is then calculated with Equation (3-
14) with kCR = 2, which results in the following expression, where the two driving dynamics are
clear: the first term on the RHS represents the influence of the energy budget and the second term the
local wetness:

λET = ð2αPT − 1Þ Δ
Δþ γ

Qn −
γ

Δþ γ
f ðUzÞðesat − eaÞ: (3-15)

Recognizing the variability in estimates of αPT, Hobbins et al. (2001a) recalibrate it for use in
the AA model across CONUS resulting in a value of αPT = 1.3177. The f(Uz) in the formulation of
EA in the expression for Ep was calibrated regionally and seasonally (i.e., for each month across each
of the 344 hydrologic accounting units in CONUS), following procedures detailed in Hobbins et al.
(2001a). So calibrated, the AA model was then used to generate the CONUS–wide ET surfaces
examined for autocorrelation in Section 3.4.1 and for trends in Section 3.4.2.1.

Figure 3-3. The complementary relationship between E0 and regional ET for kCR = 2 and under ideal
conditions of constant energy availability.
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Note that the distinction between ET-estimation methods based on the complementary
relationship and on traditional paradigms lies in the conception of the advective component (EA).
Traditional paradigms consider the overpassing air decoupled from the surface and therefore
conceive of EA as independent of ET: a higher EA indicates that ET from the region upwind is lower
and vice versa with EA approaching zero as Ep approaches Ew under equilibrium conditions. In this
paradigm, E0 drives ET, but does not respond to it, and does not vary with Θ. However, in the
complementary relationship, EA depends on ET. Under this proper treatment of regional-scale
advection, EA then reflects the effects of regional advection on ET after the evaporating surface has
been brought into equilibrium with the overpassing air by the feedbacks across regional-scale land–
surface/atmosphere interfaces. In the complementary relationship hypothesis, EA over a region is
greater when less evaporation into the air has occurred (due to a regional drying trend) and the
boundary layer has been well mixed, decreased when regional ET is increased (due to regional
wetting).

The utility of the complementary relationship has been amply demonstrated. Hobbins et al.
(2001a, 2004) show that for a wide variety of climatic regimes, ET and its trends are estimated better
by models that invoke the complementary relationship than by traditional ground-based paradigms
because they implicitly account for the soil moisture–dependence of E0 and the input data reflect
surface conditions regardless of the origins of the water and degree of anthropogenic disturbance.
This is further discussed in the context of the resolution of the evaporation paradox in Section 3.4.2.5.
Szilágyi et al. (2011) combine a complementary relationship model with remotely sensed (Moderate
Resolution Imaging Spectroradiometer; MODIS) land surface temperature data in a calibration-free
approach that generates good estimates of monthly ET across large-scale homogeneous landscapes at
scales as fine as 1 km.

3.2.4 Water-balance Estimates of ET

Deriving a basin water balance is the process whereby water fluxes (ET, Precipitation, groundwater
recharge, surface and subsurface runoff), and storage changes are balanced across hydrologic basins
or watersheds. The calculation can be done at any temporal scale (hours to years) and spatial
scale (plots to large watersheds) for which fluxes and storage changes are known. Basin water
balances can be lumped by considering the whole basin as a unit or distributed by calculating the
water balance at the level of basin subunits. The water-balance equation for basins under natural
conditions (i.e., with no significant transbasin water transfers) is solved for water-balance–derived
ET (ETWB), as follows:

ETWB = P − Q − GL þ ΔS (3-16)

where
Q = streamflow, here defined as the sum of the surface and subsurface runoff fluxes recorded by
the streamgauge,
GL = water lost to regional groundwater unrecorded at streamgauges, and
ΔS = basinwide average change of S (i.e., St− St−1, where St is the sum of the water stored in
lakes, rivers, and the saturated and unsaturated zones of the soil at the end of period t).

All fluxes are in units of time-rate changes of depth (mm day−1 for consistency with rest of this
chapter, but general to all time units). Usually the proportion of the subsurface runoff [term GL in
Equation (3-16)]—through movement of the regional aquifer system—that bypasses the stream
gauging station can be ignored in the water-balance calculation. When the water-balance calculation
is carried out for annual values and for multiple years, the ΔS term can be considered small enough
to be ignored. In the United States, the US Geological Survey (USGS) archives water data across
“water years”—12-month periods that start on October 1 of the previous year—to minimize the
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effects of interannual basinwide moisture storage changes (for the southern hemisphere a different
start date for the water year would be appropriate). For basins with significant transbasin water
transfers, calculating ETWB with Equation (3-16) would introduce substantial errors.

Assuming that the measurement errors of each term in Equation (3-16) are independent and
random and given that each term has an uncertainty (measured here as variance) σ2, then the
uncertainty associated with estimating ETWB may be estimated from Lesack (1993):

σETWB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ΔS þ σ2P þ σ2Q þ σ2GL

q
: (3-17)

Traditionally, Q is measured with rating curves based on flow stage at streamgauges. Water
measured at a stream discharge station is the combined surface and subsurface runoff from all areas
upstream of the streamgauge. Sauer and Meyer (1992) find that the uncertainty for individual
discharge measurements by stage gauges ranges from 2% to 20% of estimated discharge, with most
uncertainty errors in the range of 3% to 6%. P is most often measured from tipping-bucket
raingauges and/or Doppler radar for rainfall (and snow pillows for measuring snow-water
equivalent, SWE, in mountain snowpacks). Although these techniques generally underestimate the
true P (e.g., owing to wind-driven undercatch by raingauges, or underestimation of high-elevation
P by raingauges sited at lower elevations in regions with significant orographic effects), the
uncertainty of measured P is generally negatively correlated with the observation time scale and
the density of the network (Dingman 2002). Habib et al. (2001) and Ciach (2003) report rainfall
estimated with raingauge network had uncertainties of 6.4% and 4.9% for a 5-min rainfall and 2.3%
and 2.9% for a 15-min averaged rainfall, respectively. The uncertainty due to the density of observing
raingauges is small if the density of the gauges exceeds one raingauge per 15 km radius (or 710 km2)
(Seed and Austin 1990). The aforementioned instrumental and network measurement uncertainty
can be translated to uncertainties in water-balance components (if the measurements are assumed to
be normally distributed, a flux’s 95% confidence intervals for the mean will be X � σ∕1.96, where σ
and X are the standard deviation and mean value of the flux, respectively). For example, the
annual P and Q of Coose Basin in the southeastern United States are 1,270 mm year−1 and
440 mm year−1, respectively. The uncertainties of measured P and Q were reported as 8%
(102 mm year−1) and 5% (22 mm year−1), respectively. Thus, the annual ETWB is 1,270 − 440 =
830 mm year−1, with an uncertainty σETWB of (102 + 22)1/2 = 104 mm year−1.

When the basin water-balance calculation is carried out on subannual time scales, the ΔS term
cannot be assumed to be negligible. Furthermore, depending on basin size and hydrologic and
geologic characteristics, not all of the excess water available for Q during any given day or month will
actually leave the basin during the same time period; delays can be as long as several months.
Typically, about half of the water available for Q in any given month runs off in that month in most
mid-size basins (< 5,000 km2), with the residual fraction becoming part of Q only in the following
months. Consequently, soil-water moisture should be considered a state variable to track through
time in Equation (3-16). In such cases, Ep replaces the ET

WB term and Equation (3-16) is rewritten as

ΔS= P − Q − GL − ηEp (3-18)

where η is a moisture extraction function. Dyck (1983) summarizes some of the moisture extraction
functions currently in use. The simplest η function is SM / SMfc, where SM is soil-moisture water
content during the simulation period and SMfc is the soil’s field capacity (maximum water that could
remain in the root zone after three days of drainage). In these cases, the water-balance estimation
proceeds in the following multistep process:

1. If the calculations are made for periods of complete years, thenΔS is small compared with P,Q,
and ETWB and is set to zero;
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2. If the calculation starts at the end of the dry season, SM is assumed to be zero, whereas if the
calculation starts in the wet season, initial SM is set to the water-holding capacity and water-
balance calculations are made up to the end of the simulation period;

3. The basin water-balance calculation is restarted with the initial basin water storage set equal to
the water storage found at the end of the previous calculation, then the calculation is repeated
until the difference between the end water storages of two successive calculations is
insignificant.

3.2.5 Eddy Covariance Estimates of ET and Global Observation Efforts

The eddy covariance technique estimates ET directly from fine-scale micrometeorological and
radiative observations at sensors mounted above vegetative canopies on “flux towers” and is the
subject of significant research efforts worldwide. While this data- and instrument-intensive
technique is primarily a research tool, its goals are to inform mesoscale models and global climate
models (GCMs) and to generate global estimates of fluxes (ET and carbon dioxide, CO2), so
operational hydrologists and students should gain at least a passing familiarity with it.

The primary source and curator of eddy covariance data from around the globe is FLUXNET, an
international network of long-term flux towers, generally consisting of eddy covariance equipment
and sensors of meteorologic, radiative, and soil thermal parameters that together measure carbon,
energy, and water fluxes at 0.5–5 km2 scales over various ecosystems and climates (Figure 3-4). The
primary motivations for the use of FLUXNET data are threefold: ground-truthing existing modeling
approaches, estimating forest ecosystem–scale fluxes, and improving the estimation of global ET.

Point estimates of land/atmosphere exchanges, including water vapor, from in situ eddy
covariance stations can constrain estimates of regional ET derived from spatial interpolation of
meteorological and radiative observations of drivers, and can act as ground truth for particular
ecosystems.

Forests play a crucial role in local and regional water supplies and in altering regional and global
climate, but forest exchanges on the ecosystem scale are difficult to measure. This has limited our
understanding of forest function in relation to climate change—including changes in water and
carbon fluxes and their roles in carbon sequestration. For this reason, the eddy covariance stations of
the AmeriFlux network that comprise the North and South American component of FLUXNET and
the EUROFLUX stations of its counterpart in Europe are located in research forests. Flux data
gathered there are now finding their way into ecosystem models (Fisher et al. 2005).

FLUXNET aims to provide global estimates of ecosystem fluxes, including ET. Traditionally,
global ET estimates has demonstrated a tension between simple, easily applicable but unrealistic
models [e.g., the Thornthwaite (1948) model] and complex models requiring significant parame-
terization, with the latter being increasingly favored (Fisher et al. 2008). Flux tower estimates of ET
should assist in GCM and mesoscale modeling by providing good parameterizations of processes
that operate at subgrid variability (Aubinet et al. 1999). FLUXNET eddy covariance data have
permitted global ET estimation (e.g., Fisher et al. 2008, Jung et al. 2010) and could indicate the best
global-scale ETmodel to predict change in land surface exchange due to climate change (Fisher et al.
2005).

The eddy covariance technique attempts to close the energy budget in Equation (3-8), defining
∂W∕∂t as the rate of change of heat storage between the soil surface and the eddy covariance
instrumentation and assuming that C and Ad terms are negligible, so

λET þ H = ð1 − αÞRd þ Ld − Lu −
∂W
∂t

− G: (3-19)

where all terms are measured at eddy covariance flux towers (Wilson et al. 2002). The exchange of
gases between the biosphere and the atmosphere are directly measured by high-frequency sampling
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of atmospheric eddies for their vertical velocity and gas concentrations (CO2 or, in the case of ET
estimation, water vapor) and averaging over more than about 30 min. The underlying physics stems
from the conservation equation for a scalar in a control volume with axes defined as the horizontal
prevailing wind direction x, the horizontal direction y orthogonal to x, and the vertical direction z, as
follows (Aubinet et al. 1999):

∂ρs
∂t

þ u
∂ρs
∂x

þ v
∂ρs
∂y

þ w
∂ρs
∂z

= Sþ D (3-20)

where
ρs = scalar density (water-vapor density for ET estimation);
u, v, and w = wind velocity components in directions x, y, and z, respectively;
S = source/sink term for the scalar; and
D = molecular diffusion.

Using Reynolds decomposition, in which each velocity component (e.g., u) and the water-vapor
density (ρs) are considered as a deviation u 0 around a time average u (i.e., u= uþ u 0 and
ρs = ρs þ ρs 0), and assuming no horizontal eddy flux convergence, yields the following expression
for the estimation of ET from eddy covariance instrumentation:

Zhm
0

S dz = w 0ρs 0 þ
Zhm
0

∂ρs
∂t

dz þ
Zhm
0

u
∂ρs
∂x

dz þ
Zhm
0

w
∂ρs
∂z

dz (3-21)

where the LHS represents the ET flux from the ecosystem, and the terms on the RHS represent the
eddy flux at height hm, storage of water vapor between the soil surface and instrument height, and
horizontal and vertical fluxes of water vapor, respectively. The rightmost three terms may decay to
zero in conditions of atmospheric stationarity and horizontal homogeneity (which may be contra-
vened). The water-vapor storage term is low at night as transpiration from the canopy is low. The
horizontal advection term may be significant under sloping terrain at night (owing to drainage) and
in heterogeneous terrain. The vertical advection term (last term on the right) may be zero over short
crops, but whether this is true for forests remains unresolved, and it may be particularly significant
on calm nights.

A typical EUROFLUX instrumentation setup comprises a three-axis sonic anemometer that
measures u, v, w, and T fluctuations and a closed-path infrared gas analyzer (IRGA) that measures ρs,
both operating at high frequencies (∼20 Hz) (Aubinet et al. 1999). A suite of micrometeorological
measurements often accompanies these, typically including global and net radiation (Rn + Ln),
photosynthetic photon flux density, atmospheric pressure Pa, precipitation P, relative humidity RH,
G, various soil and vegetation temperatures, and soil-water contents at various soil depths. Lower-
frequency meteorological measurements are also made to characterize the prevailing meteorological
conditions, to correct and quality control eddy covariance measurements (particularly to close the
energy budget using radiation and energy storage terms), to gap-fill eddy covariance measurements,
and to provide input data to soil vegetation atmosphere transfer (SVAT) models for calibration and
validation.

Aubinet et al. (1999) describe a set of standardized procedures and tests to quality check the
recorded data for errors and inconsistencies. Raw data analyses test the data as recorded for
discontinuities and for anomalous spikes, higher moment statistics, and absolute limits. A statio-
narity test of the measurement process ensures that this assumption—central to the eddy covariance
technique—is not contravened. An integral turbulence test ensures that data are recorded under the
assumed turbulent conditions. This test should highlight any additional turbulence caused by the
sensors or by heterogeneous sources of surface temperature and moisture.
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Although closure of the energy balance is considered an important test of the technique and
data, many workers report a long-standing general lack of closure at most sites of about 10% to 30%:
Wilson et al. (2002) report a mean closure error of 20% for 50 site years of data from 22 sites, and
Fisher et al. (2005) report errors of 10% in general. These closure errors imply that either λET and
H are underestimated or Qn is overestimated. Energy balance closure errors are observed across all
vegetation types and climates, including the conditions of flat, homogeneous terrain with short crop
cover that are ideal for the eddy covariance technique, with the greatest errors observed under less
turbulent nighttime conditions but declining with increasing turbulent intensity (friction velocity)
(Wilson et al. 2002).

Many hypotheses have been proposed to explain the energy balance closure error (Aubinet et al.
1999, Fisher et al. 2005, Wang and Dickinson 2012), primarily the following: errors in the estimation of
radiation fluxes or heat storage terms; flux sources or “footprints” that are assumed to be spatially
representative but that may in fact be heterogeneous (e.g., forested/clear) or that may vary with day,
year, and wind direction; systemic bias or poor response times in instrumentation; neglected energy
sinks within the control volume, such as melting of precipitation or dew, or conduction of heat to
intercepted rain; and the occurrence of nonvertical or nonturbulent fluxes, such as advection or
subsidence, that are unaccounted for in the energy balance and hard to detect with sonic anemometry
(in particular, sonic anemometers are poor at resolving fine-scale, weak, high-frequency eddies that are
particularly prevalent at night) and that tend to lead to underestimation of ET at night, as the relation of
error to Uz is stronger under the stable conditions that prevail at night than under unstable conditions.

Gaps in the data record—for example, from poor weather conditions and sensor failures—may
comprise up to around 30% of data and introduce around 5% uncertainty in annual ET totals (Wang
and Dickinson 2012). Such data gaps may be filled by time interpolation in a single observed time
series, parameterizing missing data by known relationships to gathered data, or by use of neural
networks to infill by unknown combinations with gathered data (Aubinet et al. 1999).

In this section, we have only summarized the physics of the technique, its main agents, and the
sources of error and uncertainty; more interested readers are encouraged to seek out the seminal
sources cited herein.

3.2.6 Remote Sensing and Energy Balance Modeling of ET

ET is often poorly characterized in environmental modeling, despite the fact that it is a landscape
primary process and direct indicator of the status of ecological, biological, and hydrological
conditions. Recent results using MODIS land surface temperature data (Ts, also abbreviated in
remote sensing literature as LST) and model-assimilated weather data from the National Oceanic
Atmospheric Administration (NOAA) suggest that realistic estimates of seasonal plant water use can
be made successfully (Senay et al. 2013). Because transpiration is directly determined by stomatal
conductance, both water stress due to hot, dry spells and increased water use can be detected earlier
and more readily than with traditional vegetation indexes such as the Normalized Difference
Vegetation Index (NDVI). Furthermore, serious gaps in our knowledge of the spatial and temporal
variation of ET across the landscape may be filled by using available remote sensing data and
atmospheric model outputs.

Many researchers have used surface energy balance methods (Jackson et al. 1981; Moran et al.
1996; Bastiaanssen et al. 1998, 2005; Kustas and Norman 2000; Roerink et al. 2000; Su 2002; Allen et
al. 2007a, b; Su et al. 2005; Anderson et al. 2007) to estimate agricultural crop-water use and
terrestrial ET. Gowda et al. (2008) and Kalma et al. (2008) present comprehensive summaries of the
various surface energy balance models. The approach of most energy balance models requires
solving the energy balance [Equation (3-8)] at the land surface, where λET is calculated as the
residual of net radiation (Rn + Ln) less H and G.

Here, we summarize the implementation of Senay et al.’s (2007, 2011) Simplified Surface Energy
Balance (SSEB) modeling approach. The SSEB works similarly to the more complex surface energy
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balance models in the sense that Ts is used as a primary scalar. However, whereas in the complex
models the temperature scalar is applied in an aerodynamic estimation ofH that is in turn subtracted
from estimates of Rn + Ln and G to determine actual λET, the SSEB temperature scalar is multiplied
directly by the estimate of maximum ET. The SSEB approach estimates actual λET using the relative
ET fractions scaled from thermal imagery in combination with a spatially explicit maximum ETrc.

3.2.6.1 Materials and Methods

The SSEB model combines remote sensing data with weather data to derive estimates of ET. Herein,
we validate these modeled estimates against ET derived from water-balance data.

Remote Sensing Data
Global Ts and NDVI data from the Terra MODIS sensor are available from the Land Processes
Distributed Active Archive Center (LPDAAC) website (https://lpdaac.usgs.gov/lpdaac/products/
modis_products_table). Here, we use the eight-day average MODIS Ts in combination with the
16-day NDVI dataset.

Weather Data Sets
Global daily ETrc produced using six-hourly Global Data Assimilation System (GDAS) datasets were
used (Kanamitsu, 1989). Senay et al. (2008) detail the data sources and modeling of a global ETrc on
an operational basis. GDAS is generated at a one-degree resolution (∼100 km near the equator).
However, ETrc is downscaled to 10 km using a simple spatial statistical relationship (Senay et al.
2007) with a climatology of Ep from the International Water Management Institute.

In addition, high-resolution (4-km), monthly T from the Parameter-Elevation Regressions on
Independent Slopes Model (PRISM) was used in combination with the Ts to calculate the ET fraction
according to Equation (3-22) (http://www.prism.oregonstate.edu/; Daly et al 1994).

Rainfall (P) and Streamflow (Q) Data
Annual total P data were aggregated from daily data provided by NOAA’s New Precipitation
product, a blend of station and Next-Generation Radar (NEXRAD) data. Annual Q data were
acquired from the USGS at the HUC-8 (eight-digit hydrologic unit) level for the ET validation
procedure (http://waterwatch.usgs.gov/).

ET Modeling Approach with the SSEB
Figure 3-5 shows the schematic representation of the SSEB modeling framework. NDVI datasets
were used to visually select hot and cold pixels for each Ts image period (more details will be
provided later in this section). For each of the 46 eight-day image dates in a year eight-day ET

Figure 3-5. Data sources and ET-estimation workflow diagram.
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fractions are generated for each year. Each eight-day ET fraction is multiplied by ETrc generated
independently using the GDAS weather dataset.

The main principle behind Senay et al.’s (2007, 2011) SSEB approach is the combination of ETrc
and Ts data for ET estimation. The surface energy balance is first solved for a reference crop
condition (assuming full vegetation cover and unlimited water supply) using the standardized
Penman–Monteith equation (Allen et al. 1998). The ET fraction (ETf) accounts for differences in
water availability in the landscape and is used to adjust ETrc based on the Ts and T of the pixel
[Equation (3-22)].

In the SSEB model formulation, ETf is calculated from Ts and Ta datasets based on the
assumptions that hot pixels experience little or no ET (Bastiaanssen et al. 1998, Allen et al. 2007a)
and cold pixels represent “maximum” ET and with the simplified assumption that ET can be scaled
between these two values in proportion to the difference between Ts and Ta. Jackson et al. (1981),
Menenti and Choudhury (1993), and Moran et al. (1996) also apply the linearity assumption, though
not in combination with the hot- and cold-pixel approaches of the Surface Energy Balance
Algorithm for Land (SEBAL; Bastiaanssen et al. 1998) or Mapping Evapotranspiration at High
Resolution with Internalized Calibration (METRIC) (Allen et al. 2007a) models.

In principle, instantaneous Ts at satellite overpass time can be used to identify hot and cold
pixels, which in turn can be used to calculate the proportions of ET in each pixel. The hot and cold
pixels are selected using an NDVI image as a guide to identify dry bare areas (NDVI < 0.2) for the
hot pixels. Similarly, the cold pixels are selected from well-watered, well-vegetated areas with
NDVI > 0.7. The major innovation in the revised application of the SSEB approach is the inclusion
of Ta data in the calculation of ETf.

The ET fraction (ETf) is calculated for each pixel by applying Equation (3-22) to each of the
eight-day Ts grids:

ETf =
δTh − δTx

δTh − δTc
=

ðTs − TÞh − ðTs − TÞx
ðTs − TÞh − ðTs − TÞc

, (3-22)

where the subscripts h and c refer to the hot and cold pixels, and x to the pixel in question.
The basic principle that relates instantaneous satellite measurements to daily and weekly ET

estimation is the fact that ETf is stable throughout the day (Allen et al. 2007a). By extension, eight-
day ETf generated from the available eight-day MODIS thermal datasets represent the average ETf
for the period. Because the ETf s are average representations of the period, the day-to-day variability
of ET is captured by the magnitude of ETrc, which is largely driven by the Rn + Ln and advection
forcings experienced by the modeling unit (i.e., the pixel).

The basic approach to calculating ET is a two-step process: ET is simply a product of the ET
fraction (ETf) and maximum crop ET [ETm; Equations (3-22) and (3-23)],

ET = ETf · ETm, (3-23)

where ETm is the maximum crop ET for the location. A proportional relationship exists between
clipped grass ETrc and other cover types. For example, Allen (2010, personal communication)
suggests the use of a factor of 1.2 to estimate the maximum ET for crops such as alfalfa, corn, and
wheat, as they are aerodynamically rougher than the clipped grass reference and have greater leaf
area and thus greater canopy conductance (Allen et al. 1998). We recommend a calibration and
validation process to determine this coefficient.

In this study, we focused on using the eight-day MODIS data stream because of its impressive
spatial and temporal coverage for many agrohydrological applications from crop monitoring to
hydrologic water-balance studies at a basin scale. The eight-day coverage from MODIS allows the
filling of cloudy pixels by previous or next eight-day ETf in the generation of the ET time series. As

90 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



the MODIS data stream only started in March 2000, the ET climatology will be rather short term, but
its usefulness will be unique for hydrologic and crop-monitoring purposes. Specifically, hydrologists
will be able to estimate difficult water-balance terms such as groundwater recharge and withdrawal
and monitor crop water use dynamics in different parts of the world under changing climate and
land use/land cover conditions.

ET Validation Using a Water-Balance Approach
Although Gowda et al. (2009) successfully validate the Landsat-based SSEB ET model using lysimeter
data, MODIS-based ET is more difficult to validate using such data because of its coarse spatial
resolution (i.e., 1 km). In this study, we used a water balance approach to evaluate how the SSEB ET
compares with the annual difference between P and Q at the HUC-8 level and assumed negligible net
storage changes at the annual time scale and the watershed level. Thus, this comparison does not
account for interbasin transfers for irrigation. Subbasins with runoff coefficients (Q to P) of> 0.5 were
excluded from the analysis to reduce the inclusion of subbasins with large regional flows, in other
words, subsurface runoff joining from other subbasins. The median of five years of P, Q, and ET were
used for this exercise. Scatterplots were created of annual SSEB-derived ET against the difference
between P and Q for each of 1,789 watersheds. The coefficient of determination (R2) and slope of the
linear relation were calculated by regressing ET on the difference between P and Q.

3.2.6.2 Results

The SSEB model has been implemented in different parts of the world for water budget analyses and
drought monitoring. Figure 3-6 shows sample model outputs showing 2009 annual total ET
distribution in the United States, the Euphrates and Tigris region of Iraq, and the Horn of Africa.
The SSEB model has been validated using data from four lysimeters in the Texas High Plains with an
R2 of 0.84 for daily total comparisons (Gowda et al. 2009) and was also compared with other well-
established ET models such as METRIC (Allen et al. 2007a), against which it provides comparable
performance (Senay et al. 2011).

According to Figure 3-6, the SSEB-derived ET captures well the spatial distribution of
continental-scale ET with higher ET being mapped in high rainfall and irrigated regions while
low ET dominates the arid and semi-arid regions. Furthermore, wetland areas and tree-covered
regions with access to groundwater are shown as high ET.

Furthermore, Figure 3-7 shows preliminary results from recent verification against a water
balance approach. The median annual difference between P and Q for the period between 2005 and
2009 was used in this study to compare with modeled median ET at a watershed scale.

The strong R2 (0.73) and near-unity slope in Figure 3-7 demonstrate that the SSEB method is
capable of simulating ET in diverse ecosystems. Some of the scatter δ here may be caused by ETmet
from water sources other than P, such as irrigation or wetlands, or contravene the assumptions of
negligible regional inflow or net storage changes. The uncertainty level in these assumptions must be
checked, particularly in small watersheds. Section 3.2.4 provides a more detailed discussion on basin
water balance calculation and uncertainty analysis.

3.2.6.3 Discussion

As an important climatic and ecological variable, ET can be used both in absolute and relative terms.
While water-balance calculations and facility designs for irrigation water delivery require quantita-
tive estimation of ET, drought monitoring and early warning applications can be served with relative
estimates.

Relative ET estimates are generated using statistical approaches to detect anomalous periods and
seasons during the growing season. A commonly used anomaly calculation is to derive percent
deviations from the mean or median years. Due to limited availability of historical remotely sensed
data, currently we can generate anomalies using the past 11 years (2000–2010) from MODIS-based
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ET datasets as percent deviation or ratio in relation to the mean or median [Equation (3-24)].
Generally, the median is preferred to avoid the influence of extreme values for the relatively small
sample sizes.

ET 0ð%Þ= ETi

ET50
� 100% (3-24)

Here ET′ is the ET anomaly expressed as a percentage; ETi is the cumulative ET or discrete-
period ET for the year i in question; and ET50 is the median cumulative ET for the same period. For
example, ETi for the growing period from June to September may amount to 500 mm. If ET50 is
550 mm for the same period and location, then ET′ would be 91%, indicating a drier than normal
condition.

Although anomalies can be generated from statistical analyses of current ET datasets in relation
to historical ET, ET projections can also be made using the SSEB model. The separation of Ts and

Figure 3-6. Annual ET depths (mm) for 2009 for three study regions demonstrating the spatial
distribution of ET; green indicates high water use in high rainfall and irrigated/wetland regions and
brown indicates low water use in arid regions.
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weather datasets in the SSEB algorithm enables the model to simulate projected vegetation-water use
under different climate-change scenarios. The SSEB ET model effectively separates the impact of
radiative forces from that of water supply. While ET fractions are mainly influenced by soil moisture,
ETrc is under unlimited water conditions and is thus strictly influenced by energy and aerodynamic
forces. Potentially, ET may be estimated for a certain land cover or landscape of mixed land-cover
types under changing climatic conditions. For this purpose, ETrc projections that are created using
statistical and probabilistic manipulations can be used.

In examining an example model (SSEB) of the remote sensing of ET, we find that Ts data for
calculating ETf, which responds to variations in water supply mainly drives the variability within the
SSEB ETmodel. The ETmagnitude is determined by ETrc driven by weather datasets. With a simple
model setup, the SSEB ET model demonstrates that explaining the spatial variability of ET fairly
accurately is possible. At an annual time scale, SSEB ET explained 73% of the spatial variability of the
difference between P and Q in 1,789 HUC-8 level watersheds across CONUS.

3.2.7 T-Based E0 Formulations: A Warning

Since the earliest attempts to parameterize E0 (Penman 1948), interest in models that use minimal
data sources as drivers has lingered for example, the Thornthwaite (1948) and Hamon (1961)
formulations of Ep and the Hargreaves (Hargreaves and Samani 1985) and Blaney–Criddle (Blaney
and Criddle 1950) formulations for ETrc—despite complete physical descriptions being concurrently
available. Such minimalist estimators are generally motivated by the scarcity of data describing
radiation, wind, or humidity, relying instead on T (often in the form of daily maximum and
minimum T, Tmax and Tmin, respectively). With light data requirements, they are easily imple-
mented, as T data are widely available in time and space. The theory underpinning T-based
equations holds that T affects (or reflects) both the advective and radiative drivers that are explicitly
treated in more physically based (and hence more data-intensive) formulations. Formulations may
differ in their details but generally make the same basic assumptions about the relation between T
and radiative forcing, while neglecting the effects of advective forcing.

Figure 3-7. Verification of SSEB-derived annual ET against watershed annual water balance (P less
Q) using 1,789 HUC-8 watersheds across CONUS. Also shown are the line of best fit and its equation
and R2 (red line and inset text), the 1:1 line of perfect correspondence (black solid line), and HUC-8
basins with less than 10% prediction errors (between black dashed lines).
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The fatal flaw of T-based parameterizations of E0 is their lack of rigorous physical underpinning.
Most minimal E0 parameterizations are developed for agricultural or ongoing operational uses and
therefore focus on capturing short-term E0 variability. However, Shuttleworth (1993) recommends
against the use of T-based formulations other than the Blaney–Criddle and Hargreaves equations
and even then, never at temporal resolutions finer than monthly. Despite this warning, E0
parameterizations based solely on T have become dangerously ubiquitous and reached beyond
this initial setting. They may be obscured deep within larger models used in a predictive mode, such
as for water-resources planning under climate-change scenarios (e.g., Mahmoud et al. 2011), or in
diagnostic analyses of ongoing droughts, or secular analyses such as of drought trends (e.g., the
Palmer Drought Severity Index, PDSI, in Dai et al. 2004), where their inherent biases from
dependence on long-term T trends may lead to questionable conclusions. Clearly, trends in
T-based E0 will be a function solely of trends in T: under global warming, therefore, T-based E0
can only rise, in contrast to worldwide observations of declining E0 (e.g., Roderick et al. 2009a). Here
we warn against their use in such settings.

As an example of the short-term variability of E0, Figure 3-8a presents observed E0 derived from
Epan observations. Clearly, Epan increases with T, but with an interstation variability at each T that
results from the physical interplay of all physical Epan drivers. The best that can be said for the
T-based E0 parameterizations that drive the PDSI hydrology component (Figure 3-8b) or from
Thornthwaite (1948, Figure 3-8c) is that on a monthly basis they are of the same order of magnitude
as E0 observations. However, neither T-based Ep parameterization replicates the variability in E0
observed in the warmer stations (for, say, T> 10 °C). Further, above about 25°C, Thornthwaite Ep
increases in a physically unrealistic manner, while PDSI Ep suppresses this rapid increase in the
warmest stations and months by switching to a different parameterization (see Supporting
Information in Hobbins et al. 2008), which leads to decreases in Ep above about 35 °C—another
phenomenon not observed in nature.

The importance of including all drivers in estimating E0 is demonstrated more rigorously in
Hobbins et al. (2012), who decompose the variability of a physically based estimator of E0 (synthetic
Epan—shown to be a good estimator of E0), finding that for nearly 50% of CONUS, T was not the
most significant driver of annual Epan variability and that which driver dominated varied with season
and region. A similar analysis is conducted for the fully physical Penman–Monteith ETrc in
Section 3.3.6. Such conclusions are supported from a different methodology: that of neuro-fuzzy

Figure 3-8. Empirical and forced T responses of E0 parameterizations compared across Australia and
New Zealand [source: Hobbins et al. (2008)]. Vertical axes are monthly Ep depths across 35 stations
for 1975 to 2004 estimated by (a) Epan observations, (b) the operational PDSI Ep parameterization
(see Supporting Information in Hobbins et al. 2008, and (c) the Thornthwaite (1948)
parameterization. Horizontal axes are the corresponding mean monthly T (°C). The dashed vertical
lines in (b) and (c) indicate the threshold (26.67 °C) above which Ep growth is suppressed in PDSI Ep.
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E0-estimation techniques: Kişi (2006) finds that, in estimating daily Epan at two California stations,
using a full set of drivers far outperformed using T alone.

In outlining research needs relating to secular variability and trends in ET and E0, Ohmura and
Wild (2002) state, “The direction of the evaporation trend is not determined by temperature alone.
That a warmer atmosphere does not necessarily produce more evaporation can be seen in the fact
that hemispheric evaporation is much more substantial in winter than in summer under the present
climate.” They call for analyses of ET in the context of both its radiative and advective components.

The over-simplicity of relying on T generally constrains long-term E0 to increase with warming,
with significant deleterious effects on water-balance assessment (Hobbins et al., 2008), whereas the
advective driver ignored in T-based formulations—Uz, specifically—is responsible for most of the
long-term trends in Epan in Australia (Roderick et al. 2007). Early warnings against using T-based E0
from GCMs were sounded by McKenney and Rosenberg (1993), who show that GCM-driven trends
in T-based E0 often had different signs from physically based (i.e., Penman-based) E0. When only T
was permitted to vary, all E0 measures trended positively, but the increases in T-based E0 measures
were an order of magnitude greater than those in physically based measures. When all variables
(i.e., Rd, ea, U2, leaf area index, and stomatal resistance) were permitted to vary, many of the
physically based measures showed declines, indicating that the sensitivities of physically based E0
measures to T are greatly mediated by sensitivities to their other driving variables. Donohue et al.
(2010) draw the same conclusions in using both T-based and physically based E0 measures to match
observed E0 trends in Australia; they also find that E0 trends were best estimated by physical
measures.

To compare T-based and physically based E0 as drivers of a simple LSM in trend analyses,
Hobbins et al. (2008) ran the hydrology model of the PDSI (Palmer 1965) at both water-limited and
energy-limited meteorological stations, driving it by the T-based Epmeasure traditionally used in the
PDSI (shown in Figure 3-8b) and by the Epan observation-based Ep (shown in Figure 3-8a). Their
work was motivated by the IPCC’s (2007) predictions of drying in mid-latitude continental interiors
undergoing warming, which were predicated to a large part on work underpinned by long-term
studies using the PDSI but that flew in the face of contradictory observations of long-term increases
in observed soil moisture (SM) (Robock et al. 2005). The 30-year trends observed in the Epan-based
E0 measures were in line with global declines in E0 (see Section 3.4.2.2), but different from the mostly
positive trends in T-based E0: at almost 50% of the stations the two trend directions were opposite.
The resulting trends in ET and SM depended on hydroclimatology: in water-limited areas, trends in
ET followed trends in P, regardless of E0 type. In energy-limited areas, trends in ET were a function
of trends in E0. The populations of SM trends between the two runs bore no relation to each other: at
20% of stations—primarily in agricultural regions toward the energy limit to ET—the trends were
opposite.

More recently, Lofgren et al. (2011) warn that, to preserve the physical linkage between T and
surface latent heat flux, GCM predictions of T-based E0 should not be used to drive LSMs. They
compare physically based and T-based parameterizations of E0 in driving large-scale lake budgets.
They use data from GCM scenarios to force the Large Basin Runoff Model (LBRM) applied to Great
Lakes hydrology, finding that the T-based E0 currently used in the LRBM leads to far greater ET
increases than does a fully physical E0. The latter leads to lower decreases, and even increases, in net
basin supply and so to higher lake levels. E0 and ET from the lakes were correlated with T only for the
mean annual cycle, and they infer that Rd is the strongest influence on E0. This is supported by
Hobbins et al. (2012), who show that on an annual scale, T, q, and Rd vie for top billing as the greatest
contributor to the variability in a full physical description of E0 across the Great Lakes region.

In summary, if modeling or preserving variability in E0 is at stake, T-based E0—and other
hydroclimatologic analyses derived from it—should be avoided at all time scales, in a diagnostic
sense in estimating E0 itself, in a prognostic sense in using E0 so-derived to predict land surface
hydrologic conditions or fluxes, and in studies of long-term hydrologic trends.

EVAPOTRANSPIRATION AND EVAPORATIVE DEMAND 95



3.2.8 Observed E0
Operational hydrologists rely heavily on the concept of land surface modeling to mediate their E0
estimates to the ET fluxes necessary to balance water budgets. LSMs parameterize the dynamics of
energetic, hydrologic, pedologic, and biologic fluxes and storages operating across the land surface–
atmosphere interface to convert meteorological data to land-surface flux estimates, such as ET. This
ET–LSM paradigm underpins much of operational hydrology, not least streamflow (Q) simulation
and prediction and analyses of the effects of climate change and variability on the hydrosphere
(including drought). As an example, the National Weather Service River Forecast System (NWSRFS)
at the nation’s 13 River Forecast Centers use the Sacramento Soil Moisture Accounting (Sac-SMA)
model (Burnash et al. 1973) in their Q simulation and forecast operations. In the NWSRFS, Q is
simulated by driving the Sac-SMAmodel by observed P and T and forecast by driving the model with
forecast P and T from National Weather Service (NWS) Numerical Weather Predictor models. The
NWSRFS accounts for ET by driving the Sac-SMAmodel with monthly climatologic E0 acting on the
available moisture in two stocks representing soil moisture content. E0 is derived from atlases of
observed long-term (1956–1970) mean Epan observations (Farnsworth and Thompson 1982,
Farnsworth et al. 1982), spatially and temporally interpolated for each basin.

Traditional users of Epan—the agricultural community—have moved toward ETrc to meet their
irrigation scheduling needs. However, partly because the international record is so geographically
diverse and long lasting and because the measure itself is simple and intuitive, climatologists and
other analysts taking a longer, or secular, view of hydroclimatic variability and change have recently
started to acknowledge the diagnostic potential of the E0 record as an informative measure of the
dryness of the lower atmosphere, and Epan provides the best E0 observation. However, some early
analyses have been prone to problematic implementation of E0. An example of the problematic
estimation of E0—and consequent derivation of ET—in the analysis of the impacts of global climate
change and variability on the hydrologic cycle, and of drought in particular, is that of the PDSI
(Palmer 1965). The PDSI model, which is so central to much of current drought-monitoring practice
in the United States (US Drought Monitor 2011) and to worldwide, long-term drought trend
analyses (Dai et al. 2004), uses a T-based parameterization of E0 to drive its LSM and thereby derive
ET—to significant deleterious effect (see Section 3.2.7). In fact, Epan has recently been recognized as a
valuable metric of E0 for analyses of climate change and variability (e.g., Roderick and Farquhar
2002; Roderick et al. 2009a, b; Ohmura and Wild 2002; Brutsaert and Parlange 1998; Hobbins et al.
2004). Thus, robust examination of long-term trends and variability in the hydrologic cycle must
address the question, “what drives the variability of Epan and are we capturing said variability?”
Hobbins et al. (2012) directly address this question.

Recognizing the issue of spatial scale is important. Epan is effectively a zero-dimensional point
estimate of E0. It is thus subject to forcing from ET from the region surrounding the pan through
the dynamics underpinning the complementary relationship (see Section 3.2.3), but the moisture
evaporated from the pan is too small to force regional ET in turn. (Were the pan replaced instead
by a regional-scale wet surface, this would affect ET, and E0 and ET would converge, as shown in
Section 3.2.3.) Thus, the proper treatment of the diagnostic power of Epan invokes assumptions
inherent in the complementary relationship regarding the homogeneity of the region upwind of
the pan and whether the overlying boundary layer is well mixed. Given that pans are often sited
where they are hostage to the effects of land-use changes, affecting both the long-term time-series
trends and the uniformity of surface conditions of the land upwind (and hence of the boundary-
layer mixing), these assumptions—specific to the use of observed Epan as an estimator of regional
E0—are prone to contravention (see Section 3.2.8.2).

Evaporation pans are extraordinarily informative hydroclimatologic indicators, both as to
variations in both the radiative driver (e.g., global dimming), where uncovering the dynamics of
trends in E0 have led to resolution of the pan evaporation paradox (Section 3.4.2.5), and as to the
advective driver, where a near-global stilling phenomenon has been uncovered (Section 3.4.2.3) in
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pursuit of an explanation for declining Epan (Section 3.4.2.2). Unfortunately, while interest
in the global record of Epan is rising, ongoing institutional support of the observation networks
is declining.

3.2.8.1 Observed E0 Types

Observations of E0 are made using instruments that expose a water reservoir to the air and then
measure the loss to evaporation over a given period—these may be sited above the ground in the
case of evaporation pans or sunk into the ground. US Class A evaporation pans are the most
commonly used and widely accepted evaporimeters, but smaller-diameter pans are commonly used
in China (McVicar et al. 2005). Of the sunken pans, Colorado pans are perhaps the most widely
known. Other smaller evaporimeters (or atmometers), such as the Piche evaporimeter (Piche 1872,
de Vries and Venema 1953), are gaining renewed interest as cheaper, reliable replacements to pans
for use in, for example, metering ETrc in irrigation scheduling. It was against observations from
evaporation pans that Penman (1948) verified estimates of his new meteorological parameter—
potential evaporation (Ep). Bridging the gap between such purely physical models and instrumented
observations are synthetic estimates that attempt to emulate the performance of instrumentation,
such as the PenPan formulation (Linacre 1994, Rotstayn et al. 2006) that adjusts the Penman (1948)
equation for Ep to better characterize the enhanced radiative and advective dynamics of US Class A
evaporation pans. Simple, nonphysical estimators also exist that parameterize E0 using T alone; we
warn against their use in Section 3.2.8.2.

The affordability and simplicity of the US Class-A evaporation pan has led to its use worldwide
over many decades to meter E0 in agricultural settings (it has been adopted by the World
Meteorological Organization as the international standard) and more recently as a metric of
long-term hydrologic and atmospheric change and variability (e.g., Brutsaert and Parlange 1998;
Ohmura and Wild 2002; Roderick and Farquhar 2002; Hobbins et al. 2004, 2008). The standard US
Class A evaporation pan is clearly specified (e.g., Strangeways 2001); it is refilled (or emptied) to the
same depth at the same time daily. Epan for the preceding 24 h period is then derived as the change in
successive water level not caused by P, or

Epani =ΔWLi þ Pi (3-25)

where Pi is precipitation accumulated at a nearby tipping-bucket raingauge over the previous 24 h
period, and ΔWLi is the change in water depth over the same period, negative for an increase in
depth (from significant P into the pan) and positive for a depth decrease over the previous period.
Epan so measured physically integrates all driving variables and is scaled by a pan coefficient that
accounts for the effects of the instrumentation—extra radiation intercepted by the pan sides, extra
turbulence at the pan edges, and the presence or absence of a bird guard—and then represents a
physical measure of E0 at a point.

3.2.8.2 Pan Evaporation: Uncertainty Sources and Limitations

Evaporation pans have been widely used to measure evaporative demand since well before the term
itself was coined. Their primary use has always been as a decision-support tool for irrigation
scheduling: basically, irrigators supply water to meet E0 while accounting for crop phenology
and type, thereby maximizing uptake by their crops but minimizing waste. As the physical
feedbacks between the land surface and the atmosphere are implicit in pan measurements, they
adapt to changing land use, land cover, and hydroclimatology: thus so can the irrigation regime.
Indeed, long-term Epan time series are increasingly recognized as a valuable metric of climate
change and variability. However, for farmers, hydrologists, and climatologists alike, the practical
use of Epan measurements has important sources of uncertainty and limitations, discussed next.
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Appropriate Time Scale
The appropriate time scale for Epan is a balance between the season and the operational require-
ments. The primary purpose of pans in the agricultural sector is to schedule irrigation on short time
scales. Due to their negligible thermal mass, vegetated surfaces are energetically more or less at an
instantaneous steady state such that incoming and outgoing energy fluxes balance instantly; in
evaporation pans, however, heat is stored in the water body for later release, with significant effect on
the diurnal and inter-daily variations of Epan (Molina Martínez et al. 2006). This deviation from a
steady state by the instrumentation generates deviations from the evaporative dynamics of the
vegetation the pan is modeling and has important implications for the appropriate time scale at
which Epan data may be used to estimate E0 accurately.

The deviation from a steady state is a function of period of integration of observations and varies
with season and prevailing climatic regime. For an instrumented pan in Australia, Roderick et al.
(2009a) show that the change in heat storage comprises a large proportion of λEpan at shorter time
scales: it is by far the dominant contributor to the daily energy balance (it can be nearly five times
λEpan itself ), so the daily observed Epan rate cannot be said to represent daily E0. Weekly heat storage
change terms may be larger, but their relations to weekly Epan fluxes are far smaller: they are at their
largest—up to 40% of the weekly λEpan flux—in the fall and winter, as Epan approaches and reaches
its annual minimum. During summer months of higher Epan and lower weekly heat storage changes,
the steady-state assumption appears good. On a monthly time step, the heat storage change term
represents no greater than 8% of the monthly λEpan—highest again in winter. Depending on one’s
comfort level, this may be the appropriate time scale at which the steady-state assumption can be said
to hold in winter. In summary, the period across which the heat storage term is integrated must be
long enough that it does not dominate the λEpan flux accumulated across the same period.

Fortunately, most Epan applications in the operational field (irrigation scheduling) would be
made during the spring-to-fall period when λEpan is higher and the heat storage changes are lower as
a proportion: thus, λEpan may be assumed to represent E0 at finer time scales more appropriate to
operational requirements. In a climatological setting, this point is moot, as relevant time steps of
analyses are long enough to assume steady-state conditions.

Space and Time Limitations to Epan Observations
In the United States, using Epan data to estimate long-term regional trends is constrained by the
spatiotemporal distribution of the pans and the physical representativeness of the data. First, the
spatial and seasonal bias in the Epan record yields either a spatially limited but year-round dataset or
one that is spatially complete but seasonally limited: warm-season pans are located throughout
CONUS, but annual pans are limited only to areas free from seasonal freezing. Second, Epan
estimates are subject to the vagaries of ambient conditions: many pans are situated in urbanized
areas or where local climatological conditions are influenced by upwind spatial heterogeneity. In
observing average changes in Epan at a particular site, we may simply be observing the long-term
effects of upwind land-use changes—for example, urbanization, irrigation, or deforestation—and
may therefore misdiagnose local effects as long-term, regional-scale climatological trends.

Epan Errors under Heavy Precipitation Events
The very nature of evaporation pans generates errors in Epan observations under heavy P events,
when splashout—water leaving the pan through splashes over the rim—can account for a significant
proportion of raingauge-recorded P input to a pan: 8% to 9%, according to Thom
et al. (1981). Not accounting for splashout results in overestimation of Epan for rainy days, and
as the error is cumulative it retains its relative importance across any aggregation period.

Further inconsistencies can occur with respect to installation, construction materials, mainte-
nance procedures, and whether or not bird guards and/or paint are used. Variations in the albedo of
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the pan directly affect the amount of shortwave radiation absorbed by a pan and hence its energy
budget: such variations may also arise due to material aging over the life of a pan.

Homogeneity of Epan Data Series
In multidecadal networks of pans, various adverse impacts create discontinuities (also known in the
literature as heterogeneities, breaks, or mean shifts) in the recorded data of various origins:
operational impacts include changes in instrumentation, observing procedure, personnel, or station
location; local impacts include changes in the land use or land cover in the area immediately
surrounding the station, such as urbanization, afforestation, deforestation, or irrigation; large
scale impacts include changes in the physical dynamics of the evaporative process themselves,
whether because of the variability inherent in the processes, or because of climate forcing,
anthropogenic or otherwise. Therefore, before long-term records of Epan (or any hydroclimatologic
variable, for that matter) may be used, the data must be homogenized; that is, the artificial signals of
operational discontinuities must be removed, leaving only variations in data that result from the
variability inherent in the physical dynamics of the process metered. Peterson et al. (1998) provide the
basic motivation for homogenization of in situ climatologic data, stating, “The difference in trends
between homogeneity-adjusted and unadjusted data can be enormous at an individual station and very
significant in regional analyses.” Ideally, metadata—data about the data—would be used to identify
potential discontinuities: they are supposed to record the time and nature of operational changes to the
station recording the data, some of which will generate discontinuities. Whether local forcings should
also be filtered out is a function of the purposes to which the homogenized data will be put.

The flexibility of choice of homogenization procedure is constrained primarily by the temporal
completeness of the data, the quality of the metadata, and the purpose of the adjusted data. Across
CONUS, Epan data are notable for their incompleteness: at any given station seasonal and multiyear
gaps exist where either no data are recorded or insufficient data are recorded to generate the annual,
seasonal, or monthly totals of interest. The US pans’metadata—maintained by the National Climatic
Data Center (NCDC) (NCDC 2011) as lists of dates and coordinates attached to each pan’s online
data—do not report all potential sources of discontinuities and often break a pan’s record into
subperiods without distinguishing among them. In some cases, subperiods may be distinguished by
changes in the recorded latitude and longitude (in degrees and whole minutes) and elevation,
allowing pan-location changes to be inferred to a limited precision.

Guided, Semi-Objective Homogenization of CONUS Epan
Compared with trusting the raw (unhomogenized) data completely, homogenizing based on the
metadata alone is often a poor improvement. Seeking further potential discontinuities that may not
have been reported in the metadata but that are subjectively evident may be necessary. For
climatological analyses, climatically driven trends should not be filtered out as sources of heteroge-
neity, so resolving understandings of both the physical dynamics and the statistical properties of the
dataset may be incorporated into a middle-ground approach that combines objective rigor and
subjective judgment.

To homogenize the US Epan dataset for hydroclimatic trend analyses in Hobbins et al. (2004),
Hobbins (2004) developed a task-specific methodology to meet the requirement that the effects of
potentially changing regional climatic drivers be preserved in the dataset and to resolve the issues of
incomplete Epan records and less-than-useful metadata. The a priori assumption of nonstationarity
obviated many standard, off-the-shelf homogeneity tests that would filter out the very trends sought.
Ideally, the effects of local discontinuities would also be removed; however, distinguishing them from
the regional variations of interest is not possible. Thus, a homogeneity test was developed that
incorporated objective statistical analyses and subjective judgment.

Hobbins (2004) identified three types of discontinuities in the unadjusted data. First, all location
changes recorded in the metadata were assumed to result in discontinuities and were adjusted.
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Second, some metadata-recorded changes of unknown type were assumed to have resulted in
discontinuities, but not all—a reflection of the possibility that some station changes may be unrelated
to pan operation (e.g., changes in ancillary instrumentation). Finally, abrupt changes were apparent
in the recorded time series, but not recorded in the metadata: the assumption is that some of these
discontinuities may be significant. The second and third discontinuity types are tested statistically,
and those whose effects are significant are adjusted. Thus, the process homogenizes all statistically
confirmed discontinuities and all physical shifts in the pan.

The t-test is used to determine whether two samples from periods bounded by discontinuities
are likely to have come from the same underlying population, that is, that the discontinuity between
them is insignificant. Where the t-test implies a statistically significant difference in the mean across
the candidate discontinuity, the earlier data are homogenized to the latest (in time) subperiod of the
dataset (or subseries) according to the following equation:

EA
pan = μ2 þ Epan − μ1 (3-26)

where EA
pan indicates the homogenized, or adjusted, data, and Epan its unhomogenized equivalent,

and μ1 and μ2 refer to the Epan sample means before and after the candidate discontinuity,
respectively.

Hobbins (2004) applies this guided, semi-objective homogeneity test to 230 pans’ records,
resulting in the removal of 326 abrupt data shifts across 75% of the pans, of which 280 were due to
changes in pan location and 46 were due to unspecified changes. In this manner, 43% of annual data
(at the pans recording year-round Epan) and 55% of warm-season data were homogenized. While the
assumptions inherent in the t-test—that the mean and variance of the data in the subperiods are
stationary—runs counter to the assumption of trends in the data, this source of error is conservative
as trends at a given pan tend to be underestimated when they are derived from data thus
homogenized. In a comparison of trend results for pre- and post-adjustment data across all pans
some differences were noted in the details: the proportions of decreasing trends remained fairly
static: annual 57% to 64%, warm season 62% to 60%; the numbers of significant trends in the annual
data dropped from 64% to 27% and from 56% to 19% in the warm-season data. However, these
differences were not together significant enough to confuse or change the conclusions of the trend
analysis for which the homogenization technique was developed (Hobbins et al. 2004).

Objective Homogeneity Tests
Subjective methods by experienced climatologists may be further informed by such objective
techniques as double mass curves (Kohler 1949) between two stations, or parallel cumulative sums
among several reference stations (Rhoades and Salinger, 1993). Peterson et al. (1998) list and
motivate further objective homogeneity tests applicable to hydrometeorological data series. Objec-
tive tests make different assumptions and can yield different results but, in general, whichever
discontinuity detection and adjustment procedures are used, they are convergent: that is, for a given
station, differently adjusted time series will be more similar to each other than they are to the
unadjusted time series.

Further examples of objective homogeneity tests—used to generate homogeneous Epan data
records for climatological studies in Australia—are the bivariate test (Potter 1981) used by Kirono
and Jones (2007) and the RHTest (Wang and Feng 2004) used by Jovanovic et al. (2008). Both
Kirono and Jones (2007) and Jovanovic et al. (2008) surmise that the Australia-wide negative trends
in Epan uncovered by Roderick and Farquhar (2004) might be artifacts of uncorrected discontinuities.
However, given the worldwide ubiquity of negative trends in Epan (Roderick et al. 2009a) and that the
trends noted in Roderick and Farquhar (2004) are supported by physical synthesis (Roderick et al.
2007), the need for a combined statistical and physical approach to homogeneity is clear: statistical
heterogeneities should be confirmed physically using a physical model such as the PenPan model of
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synthetic Epan (Rotstayn et al. 2006). Using such a physical model to verify results of homogenization
may address questions as to the accuracy of the results, against what data this accuracy should be
measured, and whether or not the errors involved in homogenization are larger than the trends
themselves.

3.3 THE REFERENCE EVAPOTRANSPIRATION CONCEPT

In the agricultural sector, accurate quantification of actual ET from crops (crop ET, ETc) is crucial for
optimizing water-use efficiency, particularly in estimating crop-water demand for irrigation scheduling
purposes. To estimate ETc, we largely rely on the concept of ETrc, in which we estimate ET for a
reference crop under strictly specified conditions: this ETrc rate then represents the evaporation from
an extensive surface of adequately watered, actively growing crop—grass or alfalfa—of uniform height,
subject only to the advective and radiative constraints on ET (see Section 3.1.2). Various coefficients are
then applied to account for the differences of crop types, soil types, phenology, and so on between this
reference estimate and the prevailing conditions to thereby derive ETc [Equation (3-29)], which is a
measure of the water requirements of a given crop under prevailing conditions.

Such approaches have been codified internationally by the UN Food and Agriculture Organi-
zation in Paper 56 (FAO-56, Allen et al. 1998) and across CONUS by the ASCE as the ASCE
Standardized Reference ET Equation (Allen et al. 2005b). As a result, the approach has been adopted
worldwide in the agricultural sector to estimate ETc. Beyond its use in estimating ETc, the ETrc
concept is now finding a place in analysis of agricultural drought and, in combination with remotely
sensed LST (see Section 3.2.6), in estimating landscape-scale ET in the USGS National Water Census.

In this section, we start with the broader perspective of the most common physically descriptive
direct estimator of ET—the Penman–Monteith (P-M) approach; we summarize the concept of ETrc;
then we conduct an empirical sensitivity analysis of ETrc at one site; and finally, we rigorously
decompose the time and space variability of ETrc across CONUS.

3.3.1 Penman–Monteith Approach to ET

First, recall that in estimating ET directly surface characteristics are not constrained but instead vary
with actual land cover, including vegetation, bare soil, and open water. The P-M model of ET is the
most accepted, physically conceptualized, direct estimator of ET (as opposed to remotely sensed
estimates or estimates derived from water balances or E0-driven LSMs). The P-Mmodel is a Penman
(1948)–based combination equation—in other words, a weighted combination of radiative and
advective drivers—that is modified to include in its advective driver a parameterization of the
fine-scale diffusive characteristics of the plants and the surface under variable Θ conditions. In the
P-M model, the fluxes of λET and H are assumed to originate from a combination of bare soil and
plant canopy acting as a combined single “big leaf” (see, e.g., Shuttleworth 1993). Water vapor
diffuses first from the stomates of the canopy against a bulk stomatal resistance rs, and then
against an aerodynamic resistance ra from the canopy to the height in the atmospheric boundary
layer at which T, Rn, and ea are measured. H diffuses only from the canopy (i.e., not from within the
stomates) and thus diffuses only against ra. Land cover determines ra (e.g., through crop height),
while Θ restrictions are reflected in rs, which increases under drier conditions. Together, ra and rs
reflect both the availability of moisture to evaporate and the process of vapor transfer into the
atmosphere, thus their specifications require some characterization of the soil and canopy and their
Θ and Uz. For the general case of ET estimation, Brutsaert (1982) describes the parameter ra. While
the rs concept has been proven useful in simulations and as a diagnostic of conditions of water stress,
it remains the primary constraint on the use of the P-M formulation for ET [Equation (3-27)]. This
constraint is due to unknown distribution of intracanopy radiative heating, spatial variability of
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vapor sources on diurnal and seasonal cycles, seasonality of plant physiology, moisture stress at the
roots, and species-specific physiology; no usable soil, plant, or atmospheric parameterizations have
been developed for rs (Brutsaert 1982).

The general P-M formulation for ET is as follows:

λET =
Δ

Δþ γ
�
1þ rs

ra

�Qn þ
ρacp
ra

Δþ γ
�
1þ rs

ra

� ðesat − eaÞ, (3-27)

where
λET and Qn are in W m−2,
Δ and γ are in Pa K−1,
esat and ea are in Pa,
ρa is the density of moist air in kg m−3,
cp is the specific heat of moist air in J kg−1 K−1, and
rs and ra are in sec m−1.

Qn is derived from the surface energy budget as Rn + Ln−G, where Rn and Ln are previously
defined and G is a function of T. Formulations for these parameters may be found in Shuttleworth
(1993) and Allen et al. (1998).

3.3.2 The ASCE Standardized Reference ET Equation

The ASCE Standardized Reference ET Equation (Allen et al. 2005b), herein known as ASCE05, was
developed from the P-M formulation [Equation (3-27] and has been widely adopted in the United
States. It was an attempt to resolve uncertainties that arise from the variety of ETrc model inputs and
their applications across the United States and to standardize both ETrc estimation and the
determination of crop coefficients for agriculture and landscape use. The ASCE05 formulation of
ETrc is derived as a specific instance of the P-M ET model for the following reference conditions: a
hypothetical, well-watered short crop of height 0.12 m (similar to clipped, cool-season grass) or a
0.50 m tall crop (similar to full-cover alfalfa); a stomatal resistance rs of 70 s m

−1; and an albedo α of
0.23. The formulation is as follows:

ETSZ =
0.408Δ

Δþ γð1þ CdU2Þ
ðRn þ Ln − GÞ 86,400

106

þ γ Cn
T

Δþ γð1þ CdU2Þ
U2

ðesat − eaÞ
103

, (3-28)

where ETSZ is the standardized reference ET for grass (ETos) or alfalfa (ETrs) crop surfaces (mm day−1 or
mm hour−1 for daily or hourly time steps, respectively). The 0.408 coefficient is in units of m2 mmMJ−1.
Other terms on the RHS convert quantities from units used in this chapter to those required in the
ASCE05 ETSZ expression: (86,400/106) converts Rn, Ln, and G from W m2 to MJ m−2 day−1; (1/103)
converts ea and esat from Pa to kPa. Values of the numerator constant Cn (K mm sec3 Mg−1 day−1 or
K mm sec3 Mg−1 hour−1 for daily or hourly time steps, respectively) and the denominator constant
Cd (secm

−1) specific to time step and the choice of grass or alfalfa, and the derivation of all other variables,
are detailed in Allen et al. (2005b), which provides terms standardized for application of ASCE05.

3.3.3 Derivation of ETc from Reference ET

Estimates of ETrc represent evaporation from soil and transpiration by plants under specific
conditions (see Section 3.3.2) and therefore provide an upper limit on ETc, constrained only by
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the advective and radiative drivers of ET. The remaining driver—the moisture required for ETc—
may be supplied by water stored in the soil profile, precipitation, and/or irrigation. Irrigation is
required when the ETc exceeds P and soil water available in the root zone. ETc is used to optimize
water-use efficiency in daily irrigation scheduling programs, water-demand models, and other
applications (Marek et al. 2010). Its accurate quantification is crucial but highly dependent on the
characterization of site location and the representation of topography, wind obstructions, buildings,
roads, hills, drainage, and waterways. In the ETrc paradigm, ETc can be estimated as

ETc = ETrcKcKs, (3-29)

where Kc is a crop coefficient that varies by crop development stage (ranges from 0 to 1), and Ks is a
water-stress coefficient also ranging from 0 to 1.

Ks is equal to 1 when the depth of readily available water in the root zone (RAW) is greater than
or equal to water shortage relative to field capacity (Dr) and for Dr> RAW, Ks can be estimated as
(Allen et al. 2005a)

Ks =
ðTAW − DrÞ

ðTAW − RAWÞ , (3-30)

where TAW is the total available soil water in the root zone. A Ks value of 1 can be assumed for fully
irrigated conditions.

Kc represents an integration of the effects of four characteristics that distinguish a given crop
from the reference crop: crop height, which affects aerodynamic resistance and vapor transfer;
canopy–soil albedo, which affects Rn; canopy resistance to vapor transfer; and evaporation from soil
(Allen et al. 1998). Kc is mainly derived directly from studies of the soil-water balance determined
from cropped fields or from lysimeters. Kc values are estimated under optimal agronomical
conditions, that is, with no issues pertaining to water stress, disease, weed/insect infestation, or
salinity.

3.3.4 Sources of Uncertainty in ETc Estimation

ETc estimation has many sources of uncertainty: errors in the measurement of weather data and
adoption of different methods for estimating ETrc; errors in the identification of crop-growth stages;
differences in the crop varieties due to rapid advances in plant breeding and genomics; errors in the
selection of reference ET weather stations to represent the climatic conditions of a field of interest;
and errors in the ETrc map due to interpolation. Traditionally, point measurements of ETrc input
parameters from the nearest weather station have been used to represent the surrounding area, with
ETrc calculated from that station either used directly or interpolated between weather stations for
deriving ETrc at a point of interest, the assumption being that weather conditions for the reference
crop surface are similar to those in the surrounding region and for the crop in question. However, the
sensitivity of ETrc to each of its drivers varies in space (Irmak et al. 2006), as demonstrated for the
ASCE05 ETrc formulation in Section 3.3.6.

Variability in Kc over large regions is another source of ETc uncertainty, which results from
spatial variability in ETrc and the use of different ETrc formulations and different reference crops. No
consensus exists regarding the suitability of any single ETrc formulation or reference crop for all
climatic and geographic conditions, resulting in different values for ETrc and consequently for Kc.
Other equations in the literature for estimating ETrc range from physically conceptualized models,
such as the Kimberly Penman equation [Equation 4.2.33 in Shuttleworth (1993)], which para-
meterizes the vapor transfer function by the day of year, to T-based formulations such as the
Hargreaves equation (Hargreaves and Samani 1985), which characterizes weather-scale variability
using only daily minimum and maximum T (in Section 3.2.7, we address the dangers of T-based
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models). Colorado uses the Blaney–Criddle approach, whereas Texas uses the P-M equation, while
in the Pacific Northwest the US Bureau of Reclamation favors the Kimberly Penman equation
calibrated in Kimberly, ID. Further, different US states and regions use different reference crops to
develop crop coefficients (e.g., Idaho uses alfalfa, whereas Texas uses grass). Consequently, Kc

developed for a crop type in one region may not be directly applicable to the same crop type in
another region. Therefore, before published Kc values are used, their compatibility with respect to
climatic region, reference crop, and ETrc formulation should be ensured (Sammis et al. 2011).
However, modifying Kc for compatibility with irrigation-water management may add uncertainty, as
statistical approaches are used to develop relationships between, or correction factors for, reported
Kc values. Overall, a combination of one or more of these uncertainties can lead to inaccurate ETc

estimation and consequently result in either over-application of water or lower yield due to plant
stress. Both can cause decline in producers’ net profit and, in the case of over-irrigation, waste limited
freshwater supplies.

3.3.5 Observed Sensitivity Analysis of ETrc
Estimation of ETrc requires four input weather parameters—Rd, U2, T, and RH—each of which has a
high spatial variability. ETrc can be accurately calculated from meteorological data recorded from
weather stations with properly instrumented sensors measuring conditions at a reference crop
surface (grass or alfalfa), under the prevailing assumption that the weather conditions on the
reference crop surface would be similar to that in the surrounding region. If such networks are
sufficiently dense, they can effectively capture the spatial variability in ETrc. For example, real-time
ETrc and/or ETc estimates are available for growers for irrigation scheduling in many parts of the
world from such networks as the California Irrigation Management Information System or the Texas
High Plains ET (TXHPET) Network. However, such networks incur significant installation and
operational costs: as a result, more sophisticated geostatistical techniques have been developed
(Goovaerts 2000) to perform spatial interpolation of either climatic data or daily ETrc (Courault and
Monestiez 1999, Kurtzman and Kadmon 1999). Producers can obtain ETrc values by using geographic
coordinates of their fields with interpolated ETrcmaps. However, high variation in T,Uz, wind direction
and other weather parameters due to both local effects such as topography (Huard 1993, Goovaerts
2000), land use (Seguin et al. 1982, Li et al. 2010), elevation (Dodson and Marks 1997), soil properties
(López-Granados et al. 2005), and regional effects such as atmospheric circulation patterns (Knapp
1992, Buishand and Brandsma 1997) make it difficult to use one predetermined spatial interpolation
technique and/or fitting model for interpolating and mapping ETrc over the region. This underscores
the necessity for a structural analysis of the dataset (Courault andMonestiez 1999) at a daily time step to
select a suitable interpolation technique and a model for creating accurate ETrc maps. The various
interpolation techniques available in the literature have inherent advantages and disadvantages.

In this section, we examine the effects of three of the aforementioned weather parameters (T, U2,
and Rd) to indicate the necessity of accurate data and properly maintained sensors. For this work,
data for 1991 to 2008 were collected from the Bushland weather station located in the High Plains of
Texas (35° 11’ N, 102° 06’ W, 1,170 m elevation) and managed by the TXHPET Network per ASCE
guidelines (Allen et al. 2005b). The typical summer growing season in the region is May to October.
ETrc for grass (ETos) and alfalfa (ETrs) were calculated using the ASCE05 equation [Equation (3-28)].
The sensitivity of ASCE05 ETrc (Allen et al. 2005b) was quantified with respect to T, U2, and
Rd measured at a 2-m height. Sensitivity analyses of each variable were conducted by estimating
its sensitivity coefficients, β (in mm per unit change), following Smajstrla et al. (1987) and Irmak
et al. (2006) as

βX =
ΔETrc

ΔX
, (3-31)
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where βX is the sensitivity coefficient of ETrc with respect to one variable (X), keeping all other
variables constant;ΔX is the perturbation in T, U2, or Rd in increments of 1 K, 1 m s−1, and 25Wm−2,
respectively; and ΔETrc is the response in ETrc.

The sensitivity coefficients β were calculated for ETos and ETrs and graphed to determine
sensitivity of T, U2, and Rd over different cropping seasons (see Figure 3-9). These figures illustrate
an annual cycle in the sensitivity to the driving data, with β dramatically increased during the
summer growing season, when individual drivers significantly affect ETrc estimates. This is of major
concern to producers and groundwater management districts in the Texas High Plains, where corn,
cotton, and sorghum are the major irrigated summer crops. Further, these effects are compounded
when two or more variables covary. These results indicate that, with respect to the variability of ETrc,
U2 is generally the most significant driver, followed by T. However, errors in the solar radiation data

Figure 3-9. The annual cycles of daily average sensitivity coefficients for (top) ETos and (bottom) ETrs
for T (brown), Tdew (red), U2 (green), and Rd (black).
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during the mid-summer growing period also significantly affect ET estimation. For example, a 1-cm
increase in seasonal crop ET demand in the Texas Panhandle due to errors in the measurement of
climate variables could result in wasting more than 20 million m3 of groundwater resources annually
(Marek et al. 2010). Therefore, producers need accurate ETrc data during the summer to manage
their irrigated crops. The adverse effects on producers’ profits of error in estimating ET could be
significant. Considering the need for accurate climate data measured at a reference crop site to
estimate ETrc and ETc accurately, application of coarser and relatively less accurate ETrc maps
available through the North American Land Data Assimilation System (NLDAS) may be limited to
regional and continental-scale applications. In the following section, we decompose the variability of
ETrc in such an application.

3.3.6 Method of Moments Variability Analysis of ETrc
Whether the purpose for estimating ET or E0 is operational (e.g., irrigation scheduling, river
forecasting, reservoir operations) or research oriented (e.g., climate change impact analyses,
ecological research), in terms of science the a priori optimal models are physically based, as these
best represent the physics of ET. However, in terms of accuracy in practice and of practice itself,
the answer may lie in a different model. Model choice, therefore, may be a tradeoff between the
concomitant addition of more variables, more parameters, and therefore more uncertainty against
any potential added physical representativeness. A rigorous variability analysis is a valuable tool in
assisting the modeler in finding this balance.

The variability (or uncertainty) in a hydrologic response, whether modeled or observed, is
driven by the variabilities (or uncertainties) of its drivers. (Parameterizations of the physics in the
model and in the model’s parameter values also drive response uncertainty.) The principles of
Gaussian error propagation are often used to quantify the effects of driver uncertainty on a predicted
or modeled variable. The uncertainties in a model’s drivers—in their observations or, if modeled, in
their representations—propagate through the model to generate uncertainties in its response or
output. Both variability and uncertainty imply a distribution in model outcomes around a mean or
an assumed condition. Typically, the normal (Gaussian, hence the name) distribution is assumed for
the drivers, with the drivers’ standard deviations used to represent their statistical uncertainty. The
drivers may be assumed to be independent or uncorrelated, or they may not be, with the complexity
rising under the latter assumption. Gaussian error propagation is the effect of uncertainty or error in
driving variables on the outcome of a function.

Such techniques have found utility in various hydrologic models. For example, Fisher et al.
(2005) use this technique to assess estimates of eddy covariance-derived E0 from five models from a
wide range of simplicity of formulation and driver suites: T and Qn in the Priestley–Taylor
formulation [Equation (3-11)], T and VPD in the McNaughton–Black formulation, combinations
of advective and radiative drivers in the Penman and P-M formulations [Equations (3-10) and
(3-27), respectively)], and a combination equation for evaporation from the soil and transpiration
from the vegetation considered separately and then combined in the Shuttleworth–Wallace
formulation. They assume that covariances among drivers were negligible, in other words, that
the drivers were independent or uncorrelated. They found that much of the overestimation of E0 by
the Shuttleworth–Wallace formulation was because of the uncertainty in estimating a single
parameter, canopy stomatal resistance. The performance of these E0 measures in then estimating
ET (applying an Θ function) depended on their specific formulations and driver sets: for example,
the Penman equation’s performance was highly sensitive to Uz. In fact, the simplest model—the
Priestley–Taylor equation—performed remarkably well in estimating ET when its αPT parameter was
calibrated to local surface conditions and/or SM; indeed, Fisher et al. (2008) recommend it for
ecosystem models run at larger scales and for assessing global ET trends.

Fisher et al.’s (2005, 2008) findings demonstrate the dangers of model over-decomposing the
uncertainties and variabilities into their drivers is vital to operational hydrologists as doing so
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permits uncertainty reduction by improvements in the drivers and appropriate model selection and
model parameter evaluation. Understanding what drives the variability of a hydrologic response is
therefore crucial as it permits prioritization of these efforts.

Following, we examine the variability of E0 as measured by the ASCE05 ETrc formulation. (For
ease of presentation, ETrc is in units of W m−2 throughout Section 3.3.6.) The central question we
seek to answer is this: “What drives the spatial and temporal variability of E0 across CONUS?” This
method assumes a known relationship between the drivers and a modeled response—here the ETrc
from the ASCE05 ETrc model (Allen et al. 2005b) described in Section 3.3.2—and attributes the
response variability to each driver, through a Gaussian error propagation technique known as the
method of moments. In this technique a functional relationship f(Xi, i = 1 : : : n) among all n drivers
Xi and a model output—here ETrc—is known; one or more statistical moments of ETrc are sought
and are estimated using approximations of f(Xi). This method may be said to be a derived
distribution approach in that the statistics of the distribution of the dependent variable are derived
from the distributions of the independent variables via the functional relationship. Such an analysis
identifies which drivers—by dint of their own uncertainty or variability—introduce the greatest error
and thus require the most correction effort, and which are essential to strike the correct balance
between the competing demands of parameter parsimony and physical representation.

Which member of the family of methods is used depends on which statistical moment of the
response variable is required and the order of approximation to f(Xi). Here we make a first-order
approximation and, as we are interested in examining the variability of E0 in relation to the variabilities in
its drivers, we use the second moment to estimate the variance (mean is the first moment, the variance
the second moment about the mean, skewness the third, and kurtosis the fourth). Thus, the member of
the family of methods we use herein is the “first-order, second-moment analysis.” Computational
tractability may become a limiting issue in estimating higher moments of the response variable.

For a given model using spatially distributed drivers, output variability results from drivers’
variability at a point in space across multiple realizations (e.g., multiple years of data) and spatial
uncertainty for a single realization of drivers owing to each driver’s spatial correlation structure and the
cross-correlations among drivers. While we do not consider the drivers’ spatial correlation structures
here—this is determined by the NLDAS assimilation algorithms—Buttafuoco et al. (2010) show that to
accurately assess model output uncertainty, modeling the drivers’ spatial correlation correctly is crucial
for distinguishing between uncertainties owing to the drivers and those owing to the model.

Following, in Section 3.3.6.1, we describe the use of the ASCE05 ETrc model to estimate spatially
distributed ETrc data series used in the subsequent variability analysis. Then, in Section 3.3.6.2, we map
the variability of ETrc across CONUS. In section 3.3.6.3 we outline the concept used to decompose ETrc
variability into contributions from its drivers using a first-order, second-moment variability analysis.
In Section 3.3.6.4 we quantify the contributions to ETrc of each of the drivers, summarizing the results
in a series of maps demonstrating for various time frames the power of each driver in determining the
variability of ETrc across CONUS and identifying which driver dominates ETrc variability.

3.3.6.1 Driving ETrc with NLDAS Data

Although we use the ASCE05 equation for ETrc (Allen et al. 2005b), the results of our variability
analysis on ETrc are representative of the physics of E0 and may be generalized to most physically
based E0 estimates that take a similar form to the Penman combination equation. We drive the
ASCE05 ETrc model [Equation (3-28)] with the following four meteorological and radiation
variables drawn from NLDAS (Mitchell et al. 2004): T, q, U10, and Rd. (Pa and Ld are also available
from NLDAS, but ASCE05 eschews these inputs. While doing so affects the variability in our output
ETrc, we wish to adhere to the ASCE05 formulation and input suite so that our results remain
general.) The drivers are hourly reanalysis surfaces aggregated to daily means. The results shown in
Figures 3-10 to 3-16 are for 30 years (1980–2009) of daily, NLDAS-forced analyses distributed across
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CONUS at a 0.125° resolution. Similar results may be obtained for time frames as short as the
smallest time step of the dataset (in this case, individual days).

Figure 3-10 shows mean monthly ASCE05-derived ETrc from the 30 year daily reanalysis. As
expected, ETrc is highest in regions that are sunniest, warmest, driest, and/or windiest, although
totals vary widely in magnitude and spatial distribution.

3.3.6.2 Mapping the Variability of ETrc
Figure 3-11 shows the coefficient of variation (CV) of daily ETrc over two monthly time frames.
There is intra-annual change of variability in ETrc: in January, the area of greatest variability of daily
ETrc is in the northern High Plains, west into Montana, and also in eastern Washington and pockets
of the inter-mountain West, while the southern states have uniformly low variability; in July, the
pattern more closely resembles that of the annual time frame (not shown), excepting that the western
United States has almost uniformally low variability.

3.3.6.3 The First-Order, Second-Moment Variability Analysis Framework

Following, we describe a first-order, second-moment variability analysis performed to decompose
the variability in ETrc into the variabilities in all model drivers. Variability in this context refers to the
variances of the response σ2ETrc

and its four drivers σ2X . This technique requires the analytical

Figure 3-10. 30-year climatologic mean ETrc, as estimated by the ASCE05 formulation forced by
NLDAS data, 1980–2009, at the daily time frame and aggregated across (top) January and (bottom)
July (mm day−1). Note the different scales and units for each panel.
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derivation of the sensitivities of the model to its drivers, empirical observation of the variabilities in
each of the drivers varying alone and together in pairs and combining these sensitivities and
variabilities in an expression of the overall variability of ETrc.

The variability in ASCE05-derived ETrc results from the variabilities in each member of its set of
drivers—T, q, U10, and Rd, each assumed to be a random variable with a distribution of known mean
and variance—acting independently and covarying with the others.

We define γ as the vector of all partial derivatives (i.e., the sensitivities of ETrc to its drivers) and
γT as its transpose:

γT def
�
∂ETrc

∂T
∂ETrc

∂q
∂ETrc

∂U10

∂ETrc

∂Rd

�
, (3-32)

in which the partial derivatives are evaluated at all drivers’means across the relevant time frame. We
further define C as the covariance matrix, describing the variances σX2 of, and covariances σX,Y
between, the driving variables:

C def

2664
σ2T σT ,q σT ,U10

σT ,Rd

σq,T σ2q σq,U10
σq,Rd

σU10,T σU10,q σ2U10
σU10,Rd

σRd ,T σRd ,q σRd ,U10
σ2Rd

3775: (3-33)

Figure 3-11. Coefficient of variation of ETrc at daily time frames across (top) January and (bottom)
July. Note the different scales between panels.
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Then, σ2
ETrc

expands completely into the full expression for the variability in ETrc expressed as
contributions from all of its components, as follows:

σ2ETrc
= γTCγ=

8>>>>>>><>>>>>>>:

∂ETrc
∂T

2σ2T þ ∂ETrc
∂T

∂ETrc
∂q σT ,q þ ∂ETrc

∂T
∂ETrc
∂U10

σT ,U10
þ ∂ETrc

∂T
∂ETrc
∂Rd

σT ,Rd
þ

∂ETrc
∂q

2σ2q þ ∂ETrc
∂q

∂ETrc
∂T σq,T þ ∂ETrc

∂q
∂ETrc
∂U10

σq,U10
þ ∂ETrc

∂q
∂ETrc
∂Rd

σq,Rd
þ

∂ETrc
∂U10

2σ2U10
þ ∂ETrc

∂U10

∂ETrc
∂T σU10,T þ ∂ETrc

∂U10

∂ETrc
∂q σU10,q þ ∂ETrc

∂U10

∂ETrc
∂Rd

σU10,Rd
þ

∂ETrc
∂Rd

2σ2Rd
þ ∂ETrc

∂Rd

∂ETrc
∂T σRd ,T þ ∂ETrc

∂Rd

∂ETrc
∂q σRd ,q þ ∂ETrc

∂Rd

∂ETrc
∂U10

σRd ,U10

9>>>>>>>=>>>>>>>;
(3-34)

In Equation (3-34), each line on the RHS represents the contributions to the variability in ETrc
due to the inclusion of a single driver in the ETrc parameterization: the first term on each line
represents the variability arising from the driver considered varying independently of other drivers
and each of the next three terms represents the variability arising from that driver covarying with
each of the other drivers. When the independent variables are uncorrelated, the expression devolves
to simple Gaussian error propagation. However, we cannot assume that the four meteorological and
radiative drivers are uncorrelated.

Figure 3-12. Sensitivity of ETrc to mean Rd (∂ETrc/∂Rd) at the daily time frame across (top) January
and (bottom) July ((mm month−1) (W m−2)−1). Note the different scales and units for each panel.
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All σ2
X and σX,Y are derived empirically from the 30-year NLDAS reanalysis dataset (e.g.,

Figures 3-13 and 3-14). The sensitivities of ETrc to each of its drivers (∂ETrc∕∂X) are derived
analytically from the model formulation by first expressing ETrc as a differentiable expression with
respect to each of its four drivers, as detailed in Hobbins (2016).

Each sensitivity expression is estimated at the means of all drivers that appear in the partial
derivative as overbarred variables. Figure 3-12 shows an example of these sensitivities. Recalling that
all σ2X and σX,Y are quantified through time-series analysis, we can now decompose the contribution
to the overall variability in σ2ETrc

from each driver.
Figures 3-13 and 3-14 show examples spatial patterns of variance and covariance: Figure 3-13

maps σ2Rd
and Figure 3-14 maps σRd ,T . The patterns and magnitudes of the variance of Rd differ

between time frames as different regions are influenced by different weather systems at any given
moment and at any point from season to season. Away from the coasts, the western half and
northeast of CONUS display the least variability in Rd, while the West and Gulf Coasts and the
southeast generally display the greatest variance. Positive covariances indicate that two variables vary
in the same direction. Negative covariances indicate that the two variables are negatively correlated,
with a decrease in one associated with an increase in the other. Modeled annually (not shown), Rd and
T vary together across the vast majority of CONUS: clearer skies are associated with higher T, and
cloudier skies with lower T. In winter, when cold snaps associated with high pressure outbreaks
dominate covariance, T and Rd exhibit negative covariance: clearer skies are associated with lower T.

Figure 3-13. Variance of NLDAS Rd (σ2Rd in W2 m−4) at the daily time frame across (top) January and
(bottom) July. Note the different scales for each panel.
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In summer, except in the far southwest, the covariance pattern is positive: clearer skies and a sun higher
in the sky allow for more solar heating, resulting in higher T. For many pairs of drivers, however,
drawing meaningful conclusions regarding covariance is difficult, and magnitudes can be slight.

It is important to recognize that sensitivities, variances, and covariances interact to affect the
magnitude of variability in ETrc: they can both augment and mitigate ETrc variability. Taking the
parts of the expression for the overall decomposition in overall ETrc variability [Equation (3-34)] that
pertain to Rd and T, for example

σ2ETrc
∼f

	
∂ETrc

∂T
2
σ2T ,

∂ETrc

∂Rd

2
σ2Rd

, 2
∂ETrc

∂T
∂ETrc

∂Rd
σT ,Rd



, (3-35)

It is clear that the contribution to σ2ETrc
from T and Rd acting alone (the first two terms on the RHS)

can only be positive (i.e., augment σ2ETrc
). The same is true for the contributions from all drivers

considered acting alone. However, whether the contribution to σ2ETrc
of Rd and T acting in concert is

to augment or to mitigate depends on the signs of ∂ETrc/∂Rd, ∂ETrc/∂T, and σRd ,T . For instance, as
shown in Figure 3-14, in July Rd and T covary negatively across the southwest and California, while
both ∂ETrc/∂Rd (see Figure 3-12) and ∂ETrc/∂T (not shown) are everywhere positive in this time
frame, leading to a negative RHS third term. This implies that, at least in this region in July, the effect
of Rd and T acting in concert is to mitigate the overall variability in daily ETrc.

Figure 3-14. Covariances of Rd with T, σRd ,T (W m−2 K), as observed from NLDAS data at the daily time
frame across (top) January and (bottom) July. Note the different scales for each panel.
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3.3.6.4 Quantifying Variability Contributions from Drivers

As Equation (3-34) shows, the contribution to the variability in ETrc of any single variable X is a
function of terms comprising contributions due to its own variability σ2

X and to the variability
arising from its covariance with all otherm (m = n− 1) variables Y. The variance terms (i.e., the first
term in each line) are always positive and so always act to augment ETrc variability; the covariances
between variables and sensitivities (i.e., the components of the remaining terms in each line) are
often negative (e.g., see Figure 3-14), in which case they act to mitigate ETrc variability. Here we

Annual

January February March

April May June

July August September

October November December

T U10 q Rd

Figure 3-15. The dominant drivers of variability in annual ETrc and daily ETrc by month.
Source: Hobbins (2016), used with permission.
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define the contribution to overall ETrc variability from any single variable X as the magnitude of the
sum of augmenting and mitigating terms (BX), as follows:

BX def
∂ETrc

∂X

�
∂ETrc

∂X
σ2X þ

Xm
i= 1

�
∂ETrc

∂Yi
σX,Yi

��
: (3-36)

Figure 3-16. Each driver’s percentage contribution to variability of (left column) annual ETrc and
(right column) daily ETrc across the growing season (MJJASO−May, June, July, August, September,
October). Drivers are indicated.
Source: Hobbins (2016). Used with permission.
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Note here that although covariances are commutative (i.e., σX,Y = σY ,X), in estimating BX, we
distinguish between identically defined covariance terms to prevent double counting of their
contributions.

The overall variability in ETrc from all n drivers (n = 4 here) is then

σ2ETrc
=

Xn
x= 1

BX: (3-37)

We then define a variable’s power (ΘX), or its relative strength among all contributors to
ETrc variability, by normalizing its contribution by the sum of contributions for all drivers, as
follows:

ΘX def
BXP
n
x= 1 BX

: (3-38)

By mapping which variable is top ranked [max(ΘX) for all X], Figure 3-15 demonstrates which
drivers contribute the greatest variability to ETrc and that this dominance varies significantly across
time and space. When modeled on an annual basis (i.e., annual ETrc totals derived frommean annual
drivers), T dominates across the vast majority of CONUS (94.4% by area); q dominates across the
Sonoran Desert in the southwest (5.4%), parts of west Texas, and southern Florida; while Rd and U10

account for small areas (0.06% of CONUS) in southern Florida. Such observations at the annual time
frame may underpin the common misconception that T is a suitable driver for ETrc at all time frames
(see Section 3.2.7); however, the figures for daily ETrc for each month demonstrate the spatiotem-
poral volatility of the leading contributors to variability as the top-ranked drivers clearly change
seasonally across CONUS. In the vital late-spring and summer months, Rd becomes the top-ranked
driver across the southeast, while U10 dominates in the west, with T ranked top elsewhere.
Domination by q is limited to the winter months in the northeast, Mid-Atlantic states, and some
areas along the Pacific Coast.

Figure 3-16 indicates the relative proportions of ETrc variability contributed by each driver
across the annual and daily (across MJJASO) time frames. It uncovers transitory shifts in
dominant variability driver that demonstrate the importance of regional and seasonal analyses.
Note that while variability contributions sum to 100% across the complete set of four drivers, a
given driver’s contributions may exceed 100%: these will be offset by variability reductions
(negative values) of other drivers. Rd is much more important at the daily scale than at the annual
scale, particularly in eastern CONUS; this is similar to U10 in the southwest. In general, q
contributes to annual ETrc variability; however, it tends to reduce daily ETrc variability where T
makes the greatest contributions, particularly in the east and north. Many unexplored ways to
examine such datasets using these methodologies remain. Smaller-scale analyses are possible that
reflect the seasonal and regional demands, such as the all-important growing and water-supply
seasons in the western United States. Other E0 formulations and driver sets may uncover different
phenomena: for instance, in using T, q, U10, Rd, Ld, and Pa from NLDAS to drive synthetic Epan
from the PenPan model (Rotstayn et al. 2006), Hobbins et al. (2012) find a bloom of significant
variability contribution from U10 in the late spring and summer across the Colorado Plateau and
Great Basin, a finding with significant implications in determining model type for monitoring or
forecasting E0 across that part region.

These results underscore the importance of such regional and seasonal analyses of E0 and the
dangers of a one-size-fits-all oversimplification in the number and type of drivers. In summary, the
simplicity afforded by parameter parsimony can no longer be substituted for accuracy.
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3.4 TRENDS IN ET AND E0

Few of climate change’s effects on life on Earth will be more immediate than those involving the
hydrosphere. To understand the future effects of an altered hydrologic cycle, hydrologists and water
managers turn to predictions from global and regional climate models, but first it is essential to
establish a baseline for such modeling by rigorously examining past changes both in assessing their
direction, magnitude, and significance and in identifying their drivers.

The hydroclimatologic research community has recently come to recognize Epan as a valuable
metric of E0 for such analyses: Epan is a long and widely observed flux that responds to radiative,
meteorologic, and hydrologic forcings acting globally and at regional and local scales. Trends in these
forcings can be teased out of Epan trends. The worldwide long-term time series of Epan offers a proxy
for long-term climatic trends in its drivers (Roderick et al. 2009a, b), so decomposing Epan trends
may prove useful beyond the hydrologic community. Compared with the number of studies in E0
trends, few of ET itself exist. This dearth of direct observational analysis of ET trends (Jung et al.
2010) is primarily due to the difficulties inherent in calculating secular time series of ET and the
complications of scale (Hobbins 2004), leaving most ET trend studies generally in the context of E0
at a point particularly Epan (e.g., Peterson et al. 1995; Brutsaert and Parlange 1998; Ohmura and
Wild 2002; Roderick and Farquhar 2002, 2004, 2005; Hobbins et al. 2004; Roderick et al. 2007,
2009a)—and not ET at a regional scale. Therefore, a need exists for analyses of trends in ET on
regional spatial scales useful in the resolution of water-management issues raised by an increasingly
variable hydroclimate.

In following sections, then, we detail the use of the Mann–Kendall test, commonly used in
hydrologic trends analyses. This will raise issues relating to the treatment of the effects of serial
correlation on the significance of trends: we propose a simple, intuitive technique to adjust the
critical bounds of test statistics to better assess the significance of trends that are autocorrelated. For a
case study of these techniques, we use a 42-year annual time series of ET derived using Brutsaert and
Stricker’s (1979) AA model of the complementary relationship in regional ET. Hobbins et al. (2001a,
b; 2004) describe the derivation of this data series, so here the following suffices: such a data series
meets the need to estimate ET trends across unmetered regions and requires no surface para-
meterizations; distributed input fields are derived at a spatial resolution as close to the smallest
physically defensible under the complementary relationship paradigm that computational power
limitations will allow; and as the analysis is not limited to stations, trends in ET and its components
may be represented at various spatial breakdowns.

Here, we summarize the recent literature on constraints on and observations of observed secular
trends in ET and its drivers (i.e., the radiative and advective dynamics). We summarize recent studies
that have observed trends in ET and E0 across CONUS and examine such trends as indicators of
climatic change by decomposing them into the trends in their drivers. We identify sources of
consensus and of controversy—in particular, in explaining the falling Epan phenomenon in relation
to trends in the meteorologic, radiative, and hydrologic drivers of ET, we discuss the evaporation
paradox and its resolution.

3.4.1 Trend Analysis Techniques

Various methods may be used to examine temporal trends in hydrologic time series, falling broadly
into parametric and nonparametric types. The former relies on assumptions regarding the
underlying distribution of a population sampled by independent, normally distributed observations
to estimate the parameters of the process. An example is ordinary least squares (OLS) linear
regression, which we use in Section 3.4.2 to make direct comparisons to the work of others. Hirsch
et al. (1992) cover OLS linear regression applied to hydrologic data. Nonparametric tests examine
measurements of a process made in nominal, or ordinal, scales (e.g., the rank of an observation in a
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sample) but make no assumptions as to the underlying distribution of the population. They are
thought to represent the statistics of nonnormally distributed data better than parametric tests (Yue
et al. 2002). A typical nonparametric test used in hydrology is the Mann–Kendall test, which is
covered in Salas (1993). Following, we examine the effects of autocorrelation on the power of this
test, and we use the test to estimate trends in ET (Section 3.4.2.1) and its drivers (Section 3.4.2.4).

Autocorrelation and the Power of the Mann–Kendall Test
The Mann–Kendall test statistic (Z-statistic) is nondimensional, measuring the direction of a
succession of data with time and thereby offering information as to the direction of observed
trends of a time series and a measure of their significance, but providing no quantification of the
magnitude of the trend. The Z-statistic is used to test the null hypothesis (H0) that the data are
identically distributed random observations and not time dependent—in other words, that no trend
exists. Ordinarily—that is, assuming no autocorrelation in the time series beyond that directly
resulting from trends—H0 of no trend cannot be rejected at the α-significance level if Z lies outside
the 1 − α∕2 quantile of the standard normal distribution. Otherwise, H0 must be rejected at the
α-significance level in favor of the alternative hypothesis (Ha) of a positive (or negative) trend if Z
exceeds the critical value of U in a positive (or negative) direction.

Crucially, the power of the Mann–Kendall test—the probability of correctly rejecting H0 and
identifying an existing trend—varies with sample size, trend magnitude, significance level, and the
time-series’ variability and autocorrelation (Yue et al. 2002): indeed, one of the primary assumptions
in the application of nonparametric tests remains that of serial independence (or lack of auto-
correlation). The impact of autocorrelation on the test’s power is also a function of trend magnitude,
sample size, and autocorrelation magnitude (Yue and Wang 2002), increasingly so for lower sample
sizes and lower trend magnitudes. For low sample sizes, Yue and Wang (2002) suggest n < 50,
positive autocorrelation increases the probability of trends being detected; that is, one is more likely
to reject H0 and conclude that a trend exists, falsely or not; negative autocorrelation decreases the
probability of detection, that is, one is more likely to accept H0 and conclude that no trend
exists—again, falsely or not.

Given that ET is a function of a range of hydrologic (SM), meteorologic (T, Uz, and ea), and
radiative (Rd and Ld) drivers that may exhibit strong persistence and be influenced by periodic
phenomena such as the El Niño–Southern Oscillation (ENSO), one should be prepared to account
for the effects of autocorrelation when examining ET trends. Here we examine these effects using an
annual ET dataset (water years 1953 to 1994, so n = 42) derived according to the principles of the
complementary relationship (Section 3.2.3). First, we test for the significance of autocorrelation.
Traditionally, this involves the application of confidence limits to the correlogram, which displays
the autocorrelation ρj of a time series across a range of time lags j. The limits for the γ confidence
level (or α significance level; γ= 1 − α) are defined by ð−U1−α∕2∕

p
n,U1−α∕2∕

p
nÞ. For a given α,

values of ρj within these limits indicate no autocorrelation at lag j; values of ρj outside these limits
indicate significant autocorrelation: positive above and negative below. Figure 3-17 plots these results
for the annual ET data series in the manner of a correlogram, but displayed spatially rather than the
more familiar temporal domain, with “correlomap” representing ρj of annual ET across CONUS.

Our initial suspicion of autocorrelation in annual ET is confirmed: at lag 1, 64% of CONUS
shows a significant positive ρ, particularly in the western and eastern thirds; at lag 2, this
ρ has decayed markedly within the central third and to about 50% of each of eastern and western
thirds; at still higher lags, the positive ρ decays further, all but disappearing by lag 4, at which point
negative ρ begins to appear in isolated, transitory pockets. Further correlomaps (not shown) express
no apparent spatial structure. The bottom panel summarizes these findings, showing the areal
proportions of CONUS with significant ρj (positive or negative) for j = 1 : : : 12.

Trends may be masked by time-series variability, with test power reduced by large variability,
increased for low variability. For a given α, the test becomes more powerful at detecting stronger
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absolute (i.e., either upward or downward) trends than at detecting smaller ones, including in
nonnormally distributed time series often found in hydrology. However, for some distributions,
the relationship between power and absolute trend is weak (e.g., for log–normally distributed time
series—P and Q, often—the power remains constantly low across the range of trends), thereby
complicating analyses of trends, or for sites that have different distributions or different shape
parameter values for a given distribution. For greater α (or smaller confidence levels), the power
increases across the range of trends, but more so for greater absolute trends than for smaller. This
squares with the idea that trends are more likely to be rejected at lower α, more likely to be identified
at higher α.

Figure 3-18 demonstrates the effects of varying α and ρ on the power of the Mann–Kendall
test, summarizing results from 50,000 simulations of a first-order autoregressive [AR(1)] process
(n = 42) with added white noise and lag-1 autoregression coefficients φ1 ranging from −1.0 to +1.0.
Clearly, negative φ1 reduces the variance of the Z population around a zero mean, leading to
increasingly constrictive limits for increasingly negative φ1, and a Z population that, while normal,
has very low variance. The opposite is true for series with positive φ1: the variance of the Z
population is increased around a zero mean, leading to increasingly divergent limits for increasingly

Figure 3-17. Autocorrelation in annual ETmapped and summarized across CONUS: (top) shows sign
and significance of ρj for j = 1 : : : 4 (dark colors indicate 95% significance: red positive, blue
negative), states, and USGS HUC-2 level regions; (bottom) shows the areal proportions of CONUS
with 95% significant positive or negative ρj for j = 1 : : : 12.
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positive φ1, and the appearance of a more uniformally distributed Z population. As indicated by the
variety of limits across confidence limits ranging from 90% to 99%, lowering the confidence (or
raising α) has the obvious effect of increasing the probability of detecting a trend, but increasingly so
for increasingly positive—or decreasingly negative—autocorrelations.

Falsely assuming a process is uncorrelated may lead to errors of a type dependent on the actual
autocorrelation in the series, as follows: (1) an increased probability of Type-I errors (i.e., rejecting
H0 when it is true) for series with positive autocorrelation and (2) an increased probability of Type-II
errors (i.e., accepting H0 when it is false) for series with negative autocorrelation. Thus, assuming
zero autocorrelation in a time series leads to underdetection of trends in negatively autocorrelated
series and overdetection of trends in positively autocorrelated series.

Figure 3-18. The effects of autocorrelation on the power of the Mann–Kendall test: (top) shows
critical Z-statistics for various φ1 (y-axis) and α, and regions of Type-I errors and Type-II errors
invoked by the use of 95% limits for uncorrelated series (red dashed lines) in series that are
autocorrelated; the lower two panels show for a given α (95%) the empirical (middle) and
cumulative (bottom) densities of Z-statistics, with frequencies on the y-axes. All panels share
common x-axes showing a range of Z-statistics (dimensionless).
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Having shown that a series under study is significantly autocorrelated, it remains to account for
this autocorrelation in the trend analyses. Typically, use of the Mann–Kendall test in the detection of
trends in autocorrelated time series has involved first rendering the time series uncorrelated by
applying a process known as “pre-whitening.” This most commonly takes the form of reducing the
raw data by subtraction of an autocorrelated trend, the parameters of which are estimated from the
raw data. The trend is commonly an autoregressive lag-p [AR(p)] process, which may be expressed in
its most general form—one that allows for a trend in the mean and autocorrelation in the series—as
follows:

xi = μðiÞ þ
Xp
j= 1

φjðxi−j − μði − jÞÞ þ εi (3-39)

where
xi = i’th value of x in the time series,
μ = time-series mean,
j = time-index,
p = order of the autoregressive process,
φj = autoregressive coefficients, and
εi = uncorrelated series independent of xi-j, which, if random and normally distributed is called
“white noise.”

μ(i) and μ(i-j) are deterministic functions of the time indexes i and j, which is to say that they
represent a generalized—and therefore potentially nonstationary—mean, or a trend in the mean. An
xi series generated using no deterministic function in the mean—in other words, one with constant μ,
or a stationary time series—will still exhibit short-term trends that result solely from autocorrelation.
Conversely, an xi series generated using a nonstationary mean μ(i) and zero autocorrelation will still
exhibit autocorrelation solely due to the trend in the mean. Writing the xi series in this fashion
[Equation (3-39)] illustrates the interconnectedness or intractability of trends and autocorrelation,
demonstrating that to define a trend in the presence of autocorrelation is essentially to distinguish
between autocorrelation and nonstationary means—a distinction that is, to a great degree, subjective.
Pre-whitening significantly affects trend calculations, lowering any trend if positive autocorrelation
is removed and inflating it if negative: thus, the slope estimated from a pre-whitened series is not the
estimate of the true slope of the series. Yue and Wang (2002) conclude that pre-whitening may be of
little use in a practical, water-resource management–oriented contexts, where the true trend is of
more interest than the statistically “purer” one.

3.4.2 Trends in ET and E0 and the Evaporation Paradox

In general, changes in ET have been examined through either estimates of a mass balance in
basinwide water budgets (Section 3.2.4) or of the energy balance through a mixture of modeling and
observations, while changes in E0 have most commonly been explained using observations. Other
techniques drive land-surface or climate models with long-term reanalyses. Here we do not
thoroughly examine projected future changes in ET, as this—the domain of GCMs—is a
fast-moving field. Rather, we highlight a few influential studies picking out robust changes observed
and predicted in the hydrologic cycle as they pertain to ET and E0. Analyses of E0 trends have taken
different approaches and used different E0 formulations, yielding results that depend significantly on
the region under analysis and, to a lesser extent, on the model (e.g., Chen et al. 2005). Here, we
discuss Epan, for the following reasons: It is a physically observable flux, its long-standing and
worldwide observations yield the most widely distributed set of trends analyses, and analyses of Epan
trends have uncovered phenomena central both to E0 and to its drivers. In any case, few conclusions
are drawn from studies of Epan that do not also relate to other E0 estimators. We demonstrate here
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that examining trends in ET and E0 and in their driving dynamics in the light of their complemen-
tary relationship (Section 3.2.3) permits resolution of the evaporation paradox, until recently a major
source of conceptual uncertainty.

3.4.2.1 Trends in ET

Despite incomplete data records and often contrasting regional trends, the empirical evidence from a
raft of hydrologic fluxes (including ET) and stocks points to an ongoing and future intensification of
the global hydrologic cycle under warming, although evidence exists that intensification of ET fluxes
has become constrained in SM-limited regions of the world (Jung et al. 2010). Much of the question
regarding past (and future) ET trends revolves around the role ET plays in increased global Q, which
results from increased ocean evaporation and, on land, increased P and/or decreased ET (Labat et al.
2004). In a hydrologic cycle of increased intensity, Qmay increase in the face of increasing ET due to
the increase in P far exceeding that of ET (Huntington 2008). While the accelerated hydrologic cycle
should increase renewable freshwater resources and thereby mitigate the growth of water-stressed
populations, Oki and Kanae (2006) warn that under the increased variability in fluxes, withdrawals
for irrigation may be unable to keep pace with food requirements. To mediate the inevitable conflicts
and competition, it is essential accurately assess past changes in ET, understand what drives them,
and project future rates under a changing climate.

Global Observations
The development of global, long-term datasets of ET and related surface heat fluxes is vital in
providing physical evidence-based constraints on climate models and evaluating the effects of
climate change on the hydrologic cycle. The necessary quantification of the energy budget and its
partitioning—including that at the surface for ET—has resulted in a multifaceted effort using data
from many different platforms and modeling approaches. Interested readers are encouraged to
turn to Wang and Dickinson’s (2012) comprehensive review of the observation, modeling, and
variabilities of global terrestrial ET estimation wherein they highlight the uncertainties and
constraints of developing such estimates from techniques that fall into three broad theoretical
approaches: Monin–Obukhov Similarity Theory, Bowen ratio, and P-M. Following we summarize
results from a few recent influential studies estimating global terrestrial ET.

A signal example of the use of combinations of approaches and data sources is the LandFlux
project of the Global Energy and Water Cycle Experiment (GEWEX), which uses remotely sensed
radiation-related observations and verifies them using data from FLUXNET eddy covariance towers.
GEWEX—a research program of the World Climate Research Programme—is an international
collaboration of researchers observing and modeling the Earth’s hydrologic cycle with a goal to
improve by an order of magnitude our ability to model and predict P and ET patterns.

An influential data-driven study of recent (1982–2008) global ET changes (Jung et al. 2010)
combines observations from FLUXNET, meteorological stations, and remote sensing platforms, and
results from an ensemble of LSMs. It notes a globally averaged increase in ET of +7.1 ± 1.0 mm year −1

decade −1 from 1982 to 1997, but that a “switch” occurred in the late 1990s, after which no global
increase occurs in ET (although not dated precisely, they estimate this switch as having occurred in
1998, the year of a major El Niño event). This finding is supported by Vinukollu et al.’s (2011)
examination of the uncertainties in global terrestrial ET as estimated by three physically based
models—the Surface Energy Balance System (Su et al. 2005), a modified P-M equation, and a
variation of the Priestley–Taylor equation—forced by remotely sensed and observational net
radiation (Rn + Ln) and meteorological datastreams. As to what drives this decline in the acceleration
of global ET in the face of a more vigorous hydrologic cycle, Jung et al. (2010) point to SM limitation
in the southern hemisphere (particularly Africa and Australia), with other possible mechanisms
being increasing CO2 leading to stomatal closure, land-use change, and decreasing Uz (stilling).
Beyond the question of whether natural variability or climate change is behind these dynamics, they

EVAPOTRANSPIRATION AND EVAPORATIVE DEMAND 121



raise a vital question, “Are we reaching a limit to the energy- and T-driven acceleration of the global
hydrologic cycle?” If so, this could lead to declines in productivity and in the terrestrial carbon sink
and increasing land-surface warming and intensifying regional land–atmosphere feedbacks as a
growing surface energy budget is partitioned increasingly toward H.

Vinukollu et al. (2011) highlight the uncertainties in global terrestrial ET estimation—earlier
work had reported uncertainties in terrestrial ET that approached 50% of its long-term annual mean
—and find that even though radiation datasets displayed large differences between components and
temporal inconsistencies in satellite sensors and retrieval algorithms, the uncertainty in ET estimates
was significantly greater than that of radiation sets, and that this is primarily due to ETmodel choice.
They conclude that uncertainties and inconsistencies in drivers (especially Rn and T) and the lack of
SM data prevent firm conclusions regarding global terrestrial ET trends.

Current Global Climatology
GCM-modeling results support observation-based trends. Simulations of twentieth-century climate
with mid-range CO2 emission scenarios show that by 2050 in the global mean an increasing T (by
2.3°C) will increase many hydroclimatologic fluxes: P (by 5.2%), ET (by 5.2%), and Q (by 7.3%)
(Huntington 2006). Increasing sea surface temperatures and the salinity of the upper layer of the
ocean both imply an increase in oceanic ET, or at least an increase in net evaporation (i.e., ET− P,
the net flux of water from the surface to the atmosphere; over land, the inverse (P− ET) provides a
measure of Q to the oceans). Held and Soden (2006) find decreasing convective mass fluxes but
increasing horizontal moisture transport and decreasing horizontal H transport outside of the
tropics. In the global mean and over multiples of years, P is balanced by ET, but regionally the ET − P
difference increases with lower tropospheric water vapor: wet regions get wetter and dry regions get
drier—a response that has been reported in many climate change impact studies—and the variance
of ET − P increases, increasing the intensity of both floods and droughts. Their general conclusion—
that the residence time of atmospheric water vapor increases with warming and leads to a weakening
atmospheric circulation—supports work by Bosilovich et al. (2005) for a simulated twentieth-
century climate, who find that the hydrologic intensity, as measured by annual P, increases. Simply
put, the fluxes (P and ET) are growing, but so are stocks (water vapor in the atmosphere). In line with
observations, simulated oceanic P increased, but terrestrial P declined (mainly in the tropics),
whereas terrestrial ET declined with the recycling of continental moisture. An exception to these
trends was North America, where both P and ET increased, leading to increases in moisture
recycling. The global increasing trends in P, ET, total precipitable water, and residence time were all
significant. However, no broad agreement exists as to implications for terrestrial ET.

While GCMs are useful for establishing likely long-term mean conditions under various forcing
scenarios, as deterministic models they do not offer information regarding the uncertainty of their
forecasts. Instead, the range of multiple models’ results is taken as a proxy for climate prediction
uncertainty, a substitution that requires the models themselves be independent. However, algo-
rithms, errors, data, and techniques are shared among models. Thus, relying on the intermodel range
for uncertainty underestimates the true range of uncertainty (Allen and Ingram 2002). Modeling
climate in a probabilistic manner would allow for accurate risk assessment and planning of
infrastructure. To reduce the uncertainty associated with conclusions drawn from GCM results,
improved spatial resolution and temporal extents of observed data are required, and a better process-
level understanding of complex feedbacks such as atmospheric water vapor (the atmosphere’s
dominant greenhouse gas) and changes in cloudiness, cloud type and properties, and snow cover
(Cess 2005). This is an ongoing issue: for instance, it has recently been suggested that this feedback is,
in fact, negative; Soden et al. (2005) refute this, using remote sensing bands to confirm that RH is
preserved in the upper troposphere, in accordance with GCM-modeling practice, and thereby
resolving the modeling uncertainty regarding the water-vapor feedback. The modeling uncertainty
in cloud feedback mechanisms remains.
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Regional ET Trends across CONUS
Following we examine ET trends across CONUS, first as observed by basin budgets (derived as
described in Section 3.2.4), then modeled from radiation and meteorological observations and by a
large-scale LSM. In contrast to the global picture of decreasing terrestrial ET around the globe,
observations over CONUS show that P is increasing faster than Q, with an implied increase in ET
that is supported by basin-budget observational studies over the last half of the twentieth century
(Szilágyi et al. 2001, Brutsaert 2006, Milly and Dunne 2001, Walter et al. 2004, Huntington 2006).
Szilágyi et al. (2001) note a 3% increase in annual ETWB in six basins covering more than 50% of
CONUS. While these basin-derived ET trend rates are uncertain due to the large interannual
variability in the estimates, particularly surface storage terms that are considered stationary (Walter
et al. 2004), the fact that trends are positive in all basins is notable. In the Mississippi River basin,
over the last half of the twentieth century, Milly and Dunne (2001) observe increasing P (+1.78 mm
year−2) leading to increasing Q (+0.95 mm year−2) and ET (+0.95 mm year−2). Brutsaert (2006)
reports increasing ET (+0.39 mm year−2 to 1.89 mm year−2) from CONUS river basins, in line with an
increase in mean ET (+0.44 mm year−2) estimated from pans and global average trends in Rn and T.
Walter et al. (2004) expect soil-limited ET periods to decrease, and thus energy limits to increasingly
dominate. They also observe a statistically significant increasing trend (+1.04 mm year−2) in basin-
derived ET across the six large basins of CONUS. Hobbins (2004) explores the spatial variability of
trends in ETWB more closely, and demonstrate a heterogeneous pattern, shown in Figure 3-19, which
indicates their distribution, direction, and significance in 655 minimally disturbed basins. Note that
these basins are much smaller than those examined in Szilágyi et al. (2001) and Walter et al. (2004).
Few basins show annual ET trends that are significant at the 95% level (as measured by the Mann–
Kendall statistic): only 2.9% are significantly decreasing, and 9.0% are significantly increasing. Of the
remaining basins, 43.2% are decreasing, and 44.9% are increasing. Broadly, basins in the midwest
and south show decreasing ET, whereas those in the High Plains and desert southwest show
increasing ET. The rest of CONUS is a heterogeneous mix of increasing and decreasing ET, with
neither predominating. In Section 3.4.2.3 trends in the driving dynamics of this ET dataset—in other

Figure 3-19. Trends in annual basin-budget ET in 655 basins in the Hydro-Climatic Data Network of
minimally disturbed watersheds (Slack and Landwehr 1992). Trends are measured by the Mann–
Kendall test statistic, with statistical significance assessed at the 95% confidence level. Annual fluxes
of P and Q are from PRISM (PRISM 2004) and USGS (Hydrosphere 1996), respectively. Dark colors
show statistically significant trends: red increasing, blue decreasing. Also shown are the state and
USGS HUC-2 level region boundaries.
Source: Hobbins (2004).
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words, Qn and EA—are examined independently to see if, when combined with proper regard to
physics, they predict these observed ET trends.

To examine trends in modeled ET, Szilágyi (2001) and Szilágyi et al. (2001) use Morton et al.’s
(1985) WREVAP model of the complementary relationship in regional ET (Section 3.2.3) to produce
some of the first studies to determine long-term, large-scale ET trends across CONUS. Szilágyi
(2001) estimates ET at 210 stations across CONUS and shows that monthly complementary
relationship-derived ET increased by 2% to 3% in 1961 to 1990 (+2.5% for annual ET, +3% for
warm-season ET), with the strongest—and only statistically significant trends—in the eastern third
of CONUS (+4% for annual ET; +4.5% for warm-season ET). Then using Epan observations as the
Ep input to the complementary relationship, Szilágyi et al. (2001) note that an 11% increase in P over
their period of interest agrees with the increase in ET: a 6% increase in modeled ET in the warm
season (May–October) and a 3% increase in annual ETWB. They find that, in general, the overstated
increase in complementary relationship–derived ET was due to an assumption that the radiative
budget remained constant across the period, whereas it has in fact increased while the advective
budget remained nearly constant. Hobbins (2004) uses Brutsaert and Stricker’s (1979) AA
complementary relationship model over the period common to Szilágyi (2001) and Szilágyi
et al. (2001) and finds that CONUS-wide, annual ET had increased by 5.5%, supporting, but
exceeding, their findings. Differences may relate to the difference in methodologies and to the fact
that Hobbins (2004) made no assumptions about stationarity in either the advective or radiative
dynamics. Modeling differences aside, the increases in ET estimated by complementary relation-
ship models are in line with long-term increases in T, P, and Q, and they support Brutsaert and
Parlange’s (1998) notion of an accelerated hydrologic cycle over CONUS. Further, they show great
potential in determining and decomposing ET trends (Section 3.4.2.4) and resolving the evapo-
ration paradox (Section 3.4.2.5).

Examining trends in the Mississippi River basin for the last half of the twentieth century using
mass and energy balances from the Community Land Model 3.0 (CLM3.0) model with reanalysis
forcings from the National Centers for Environmental Prediction (NCEP) and National Center for
Atmospheric Research (NCAR) added to observations of P, T, and CC, Qian et al. (2007) confirm the
observations of Milly and Dunne (2001), Szilágyi (2001), and Szilágyi et al. (2001). In the mass
balance (i.e., water budget), increased P (+0.86 mm year−2) led to increased Q (+0.68 mm year−2) and
ET (+0.21 mm year−2). In the energy budget, observed increased cloudiness decreased Rn and H and
increased Ln, while λET increased (+0.025 W m−2 year−1) due to wetter surface conditions. A
sensitivity analysis showed that P trends dominate ET trends, while T and Rn trends have little effect.
This might be expected for water-limited areas: indeed, in eastern and central parts of the basin,
increased P led primarily to increased Q; in the western parts of the basin, increased P led to
increased ET—a distinction expected for water-limited areas (western basin) versus energy-limited
areas (central and eastern basin). Qian et al. (2007) also find ubiquitous, though not statistically
significant, positive ET trends.

Milly and Dunne (2001), Hobbins et al. (2004), and Brutsaert (2006) observe Epan declining
as ET increases, in line with the complementary relationship (see Section 3.2.3), and Rn decreasing
due to reductions in Rd. Decreasing Rn and increasing λET implies a negative H trend (−0.11 W m−2

year−1) and surface cooling, as confirmed by observations (Milly and Dunne 2001). In their energy
balance, Qian et al. (2007) find anH trend of −0.018Wm−2 year−1: in the same direction as Milly and
Dunne (2001) but an order of magnitude greater. Trends in H are clearly a significant source of
uncertainty in energy-balance estimates.

3.4.2.2 Trends in E0
Worldwide studies of trends in Epan are notable for their consensus: Epan appears to be declining
almost globally over the last 30 to 50 years. Roderick et al. (2009a) and Fu et al. (2009) summarize
these studies: briefly, studies that examine trends at multiple (>10) pans, from the United States
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(Peterson et al. 1995, Lawrimore and Peterson 2000, Hobbins et al. 2004), India (Chattopadhyay and
Hulme 1997), China (Liu et al. 2004; Liu and Zeng 2004; Qian et al. 2006; Xu et al. 2006a, b; Wang
et al. 2007; Zhang et al. 2007; Zuo et al. 2006), the former Soviet Union (Peterson et al. 1995, Golubev
et al. 2001), Venezuela (Quintana-Gomez 1998), Thailand (Tebakari et al. 2005), Australia (Roderick
and Farquhar 2004, Kirono and Jones 2007, Jovanovic et al. 2008), and New Zealand (Roderick and
Farquhar 2005) indicate mean declines in annual Epan ranging up to −24.9 mm year−2, with most
studies reporting declines in the range of −2 to −4.5 mm year−2. Given some exceptions to the
downward trend in smaller sets of pans, a conservative estimate of the overall trend would be about
2 mm year−2, or 60 mm year−1 across the period 1961 to 2003. In energetic terms, this is equivalent to
a decline in radiative forcing of 0.16 W m−2 year−1 for a total reduction of about 4.8 W m−2 over the
same period. Roderick et al. (2009a) set this in a climate-change context, stating that this exceeds the
radiative forcing at the top of the atmosphere that would result from an instantaneously doubled
atmospheric CO2 concentration [3–7 W m−2 from IPCC (2007)], and that the trend is an order of
magnitude higher than the trend in the top-of-atmosphere imbalance, which Hansen et al. (2005)
estimate at 0.02 W m−2 year−1 for 1961 to 2003, or about 0.8 W m−2 by 2003.

Across CONUS, Hobbins et al. (2004) examine long-term trends in observed annual Epan at
44 pans and warm-season Epan at 228 pans. Prior to their homogenization (described in
Section 3.2.8.2), the datasets are characterized by their lack of completeness in time and, more
importantly, recurrent heterogeneities that could have introduced spurious biases into analyses of
long-term trends. Of the annual pans, 64% indicated decreasing Epan trends, including nine of the 12
pans with significant (90%) trends. Of the warm-season pans, 60% indicated decreasing Epan,
including 36 of the 43 pans with significant trends. Of the 228 warm-season pans, 60% show
decreasing Epan; of the 43 pans with significant trends, 84% are decreasing. Warm-season Epan was
observed decreasing across most of CONUS but with exceptions in the northwest, the northeast,
around the Gulf of Mexico, South Carolina, and southern Florida.

3.4.2.3 Drivers of Trends in ET and E0
Changes in ET may be due to changes in hydroclimatic drivers—in other words., the radiative and
advective drivers of the evaporative process that also affect E0—and much recent attention has
turned to such changes, particularly Qn and Uz. Other change drivers include Θ, seasonality, land-
cover changes, and consumptive use. Here we summarize such changes, focusing particularly on the
radiative and advective drivers. In the following sections we see how these drivers’ trends combine
under the complementary relationship to resolve trends in ET and E0 (Section 3.4.2.4) that
sometimes appear paradoxical (Section 3.4.2.5).

Terrestrially, Q is increasing faster than P, which raises the question as to what is suppressing
ET. Gedney et al. (2006) associate Q increases with a direct effect of increased atmospheric CO2

through a detection and attribution technique known as “optimal fingerprinting” and find that
among potential causes—climate change and variability, deforestation, and solar dimming—elevated
atmospheric CO2 is suppressing ET from plants by increasing their water-use efficiency, leading
them to transpire less for the same CO2 uptake. However, this mechanism is far from certain,
particularly with respect to the conflicting effects of warming and increased CO2 concentrations
alone or in combination (Huntington 2008). Opposing drivers are warmer canopies (due to
decreased conductance) raising the VPD between the canopy and the atmosphere and so increasing
transpiration and increased T driving plants to increase evaporative cooling.

Changing seasonality increases ET (Huntington 2006): growing seasons are lengthening due to
earlier onset and are associated with higher T in spring and fall (e.g., Serrat-Capdevila et al. 2011).
Dependent on region, longer seasons may also correlate with earlier snowmelt, decreases in spring
snow cover, and lengthening of the frost-free season. FLUXNET-derived T–ET relations
across various vegetation types in North America and Europe display sensitivities on the order of
20 mm K−1. In energy-limited areas, ET increases with T during the twentieth century.
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Local land-cover change affects ET through changes in evaporation of intercepted P, transpiration
from new cover, or evaporation from bare ground. Changes in Q depend on original and replacement
species, plantation age, and hydroclimate, among other factors (Farley et al. 2005). Transpiration
changes result from changes in water availability (rooting characteristics), the radiative driver (albedo
affecting leaf-level Rn, leaf area), and the advective driver (stomatal conductance, turbulence).
Hydrologically, deforestation and afforestation are not reverse processes: changes due to deforestation
also result from soil disturbance, deposition of slash and litter, and, of course, the duration of the
process; compared with afforestation, deforestation is almost instantaneous. As grasslands are replaced
with either shrublands or forest, ET tends to increase more than Q decreases, due to the greater
capacity for transpiration from increased leaf area and increased evaporation from interception
(particularly from conifers’ needle-shaped leaves in wetter regions), but also to replacement species’ use
of deeper water unavailable to the rooting systems of original species (particularly the faster-growing,
deeper roots of eucalypts in drier regions). This phenomenon may be transitory, lasting until steady
state is reached between surface ET and water at depth.

Human-induced ET changes in CONUS may arise particularly from irrigation from ground-
water, but evidence from regions where this is not a factor in the hydrologic cycle supports a
climatological explanation in addition to any anthropogenic impacts. Milly and Dunne (2001) show
that ET increased due primarily to increased P and then to human water use. However, across
CONUS, consumptive use is poorly modeled—it has long been derived from periodic reports
accumulated from county agricultural agencies—although this should change with the advent of the
National Water Census, which will institute near-real-time reporting on a spatially distributed basis.

A great deal of recent attention has been paid to trends in E0 as driven by trends in their
radiative and advective drivers. In the case of the former, this has mostly focused on Rd and the
concept of “global dimming” and subsequent “rebrightening,” and in the case of the latter, to changes
in Uz and the newer concept of “global stilling.” Clearly, any trends in the radiative and advective
drivers also affect ET, and this interplay is examined in Section 3.4.2.4.

Dimming
Changes in the radiation budget occur in both longwave and shortwave radiation fluxes. In terms of
longwave radiation, emissions from increasing concentrations of greenhouse gases such as methane,
CO2, and water vapor have contributed to a radiative imbalance at the top of the atmosphere of
0.9 ±0.5 W m−2 (Trenberth and Fasullo 2010) and so to atmospheric warming—the “greenhouse
effect.” Changes in Rd are due to changes external to the atmosphere system (solar variability), but
also to changes in atmospheric transmission and reflection due to atmospheric composition,
cloudiness, and their interactions.

Stanhill and Cohen (2001) review the instrumented Rd trends across the second half of the
twentieth century and find evidence of global dimming. Briefly, globally averaged Rd has declined by
2.7% decade−1 for a total (by 2000) of 20 W m−2.

To determine the cause of dimming, Stanhill and Cohen (2001) express Rd following Darnell
et al.’s (1992) model, wherein Rd at the evaporating surface is parameterized by proceeding from
knowledge of the extraterrestrial irradiance at the top of the atmosphere Rtoa and then accounting for
scattering, absorption, and reflection of this flux as a function of dust, aerosols, clouds, and humidity
through which it has to pass, using an additive system of transmissivities (τ) to yield Rd, as follows:

Rd =Rtoa expð−τr þ τg þ τw þ τa þ τcÞ (3-40)

where
τr and τg account for Rayleigh scattering and permanent gas absorption;
τw accounts for the effects of atmospheric water vapor; and
τa and τc account for the effects of aerosols and clouds.

126 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



Rtoa is calculated as a function of solar constant, latitude, relative Earth–sun distance, solar
declination, and sunset-hour angle (see Shuttleworth 1993, Allen et al. 1998). Rtoa is stable compared
with other factors: a maximum change across 300 years of only 5.4 Wm−2 is associated with sun-spot
activity but is, in fact, observed as increasing somewhat over the last 150 years; satellite data indicate
short-term variations associated with the 11-year solar cycle at an amplitude of only 1.36 W m−2 or
0.1%. Variations in τr, τg, and τw may be neglected as primary sources of the observed Rd changes as
changes in the atmospheric composition (assuming that all gases radiatively active in the solar
spectrum in the atmosphere are known) and the increase of the global mean depth of water vapor
(∼25 mm) under global warming are insufficient. This leaves the effects of aerosols in the
troposphere on atmospheric heating profiles and the size, lifespan, and radiation properties of
clouds, parameterized through τa and τc.

Natural and anthropogenic aerosols in the troposphere include organic carbon, sulfates, nitrates
(all of which scatter visible light) and black carbon (from industrial activity and biomass burning,
and which absorbs visible light), sea salt, and dust. Unlike CO2, aerosols are neither well mixed
globally nor long lived, so their effects on radiation forcing are regional. A direct radiative effect
occurs through shortwave scattering and longwave absorption and re-emission, while indirect
radiative effects affect the cloud droplet size and number and thereby modify cloud formation,
precipitation efficiency, and reflectivity. Indirect effects include both positive (warming of the Earth-
atmosphere system) and negative (cooling) radiative-forcing effects: increased cloud condensation
nuclei from anthropogenic pollution increase cloud reflection of shortwave radiation (the Twomey
effect) and cloud lifetime effects reduce radiative forcing (cooling the Earth-atmosphere system) by
increasing CC and cloud optical depth (although this may depend on hydroclimatology: the indirect
effect has been shown to increase the cloud reflectivity and CC in humid conditions, but reduce CC
absent such conditions (Qian et al. 2006); carbonaceous aerosols and dust increase radiative forcing
at the top of the atmosphere (particularly in high-albedo regions), reducing RH, CC, and cloud
optical depth, and thereby amplifying the warming; and possible, if unlikely, effects that increases P
due to large aerosols acting as condensation nuclei, leading to lower CC, and so to increased Rd

(Lohmann and Feichter 2005). CC has increased only 1% in the last 50 to 80 years, or, depending on
region, decreased about 1% to 3% decade−1, but (assumed) large uncertainties associated with this
measure result from the very crude gauging of the effects on the radiative changes due to cloud that
CC represents. Empirically, even a 4% decrease in CC over 40 years should lead to only about a
2% decrease in Rd, so again, only around 0.5% decade−1 for this potential cause of Rd reduction—
much lower than the observed 2.7% decade−1 decrease in Rd (Stanhill and Cohen 2001). More
attention is being turned to the effects of aviation and high-altitude cirrus clouds on the reduction in
Rd—another aerosol indirect effect. Other smaller effects include those from volcanoes, solar forcing,
land use, stratospheric ozone, and dust-on-snow and chemical interactions with greenhouse gases
potentially altering their radiative properties.

The scale of the reduction in Rd due to the various aerosol loadings and effects is still under
discussion (e.g., combined direct- and indirect-forced Rn reductions at the surface of up to −20 Wm−2

are reported (Nazarenko and Menon 2005) with estimates of aerosol-induced reductions often orders
of magnitude less than the observed reduction in Rd through the atmosphere (Stanhill and Cohen
2001). For example, for sulfate aerosols, the average of nine studies’ estimates of direct forcing is
−0.44 W m−2 (+/− 0.13 W m−2 standard error), and for 14 studies of indirect forcing 1.28 W m−2

(+/−1.12 W m−2) (Stanhill and Cohen 2001). But this 140-year accumulation represents an annual
decrease of only 2% of the rate observed for the last 40 years. As a comparison, Ld forcing related to
greenhouse gases (GHGs) is 2.45 Wm−2.) Regardless of the scale of reduction in Rd due to a particular
aerosol effect, reductions have been assumed to follow the same spatial distribution as either the
industrial activity that generates aerosols or the pollution paths that concentrate and transport them.
Stanhill and Cohen (2001) conclude that aerosols and cloud cover and their indirect interactions are
the most likely causes of global dimming, but that they are the most complex and difficult to quantify.
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Hydrologic sensitivity to the atmospheric radiation balance motivates intensive ongoing
research efforts into modeling aerosols’ direct and indirect effects. The hydrologic effects of aerosols
range from the obvious—reductions in the Rn (particularly in the direct-beam component of Rd) that
may lead to a suppression of the hydrologic cycle, even in the face of a warming climate—to
suppression of low-intensity P due to the cloud lifetime effect (although modeling studies do not
simulate observations well). Further aerosol effects include those on convection, and thus on both
floods and droughts, and changes in distant regions, for example, a southward shift of the
Intertropical Convergence Zone that may result in Sahelian drought (Lohmann and Feichter
2005). Nazarenko and Menon (2005) demonstrate that modeling the combined effects of both
GHG-forcing and aerosol effects together replicates the dimming and rebrightening that is observed;
neither dynamic does alone. Romanou et al. (2007) cast doubt on the reported rebrightening trend,
given its short period (1984–2000) within such shorter-term (∼decadal) variability from cloud cover
changes from ENSO. The sensitivity of λET to aerosol forcing relative to that of the net heat flux is
due to the regionality of aerosol-forced Rd changes: the combined effect of all forcings is a small
reduction in global mean λET. Romanou et al. (2007) warn that any brightening that may occur
would have the same effect on surface warming as GHG forcing but result in twice the impact on the
hydrologic cycle.

Data since 1990 indicate a reverse of the dimming, or rebrightening, in many regions (Wild et al.
2005). This generalized turnaround is supported on a global scale by satellite observations (Pinker
et al. 2005) and by the earthshine method (using the brightness of the Earth’s reflection from the
moon as a proxy for Earth’s planetary albedo). Wild et al. (2005) attribute Eastern European
rebrightening to the reduction in industrial output following regional regime change there in the late
1980s and, in general, other rebrightening to the implementation of clean-air regulations reducing
atmospheric aerosol pollution. They anticipate a stronger greenhouse signal to be observed from a
brighter atmosphere, after the direct and indirect dimming effects of the aerosols are alleviated.
However, Alpert et al. (2005) cast doubt on dimming as a global phenomenon, instead associating it
with large urban regions and latitudes where industrial activity is at its global height and where the
dimming is at its peak, as opposed to equatorial regions where brightening is often observed in
sparsely populated areas. They cite uncertainty in the understanding of the effects of air pollution on
the atmospheric energy balance, in the use of correlation between the human population and the
sorts of industrial activity that will affect aerosol optical depth, and other effects of urban areas,
including heat island effects and albedo changes. Their results are also in agreement with Pinker et al.
(2005), who observe persistently increasing solar radiation over the ocean and over the tropics, using
satellite data. Complicating this developing picture, Qian et al. (2006) find decreasing trends in Rd
over much of China for 1954 to 2001, but also that the upturn in Rd in the mid 1990s observed
elsewhere in the world was also noted in China, under no such air quality improvement.

Observational uncertainties, identifying which way the aerosol indirect effect should affect Rd,
and the regional versus global issues raised by Qian et al. (2006) all point to the need for resolution of
the issue of aerosols’ effects on the hydrologic cycle: it is a field ripe for further observational and
modeling study. Needed is a better understanding and parameterization of aerosol dynamics and
effects in GCMs, requiring resolution of various uncertainties: aerosol measurement accuracy, their
variation in optical properties, the extent to which a sample represents their spatiotemporal
distribution, their short atmospheric lifetimes, and, significantly, the interactions between aerosols
and clouds (Stanhill and Cohen 2001).

Stilling
Consensus is growing that land-surface Uz is declining worldwide—the “stilling” phenomenon.
Observations from Australia (Roderick et al. 2007, Rayner 2007), China (Xu et al. 2006a, b; McVicar
et al. 2008), Italy (Pirazzoli and Tomasin 2003), the United States (Klink 1999, Hobbins et al. 2004,
Pryor et al. 2007), Canada (Tuller 2004), and the Tibetan Plateau (Shenbin et al. 2006, Zhang et al.
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2007) support the argument that stilling is neither solely a observational quality problem, nor an
isolated or regional one.

The direct effect of Uz is to modify eddy diffusivity: increasing Uz leads to increasing eddy
diffusivity and increasing turbulence, which, all else equal, increase E0 and lead to a complementary
decrease in ET. Ozdogan and Salvucci (2004) suggest four further reasons to explain the strong
correlation of changes in U2 and Ep that they observe: first, the oasis effect, wherein irrigation
affects local wind circulation in both magnitude and direction; second, and akin to the findings of
Alpert and Mandel (1986), that the growth of irrigated crops results in increased surface
roughness over large distances; third, that their Uz instrumentation is affected by local shielding,
either by crop growth or by trees planted specifically to reduce Uz over the crops; and fourth, that Uz

is decreasing due to climatological factors acting on regional or larger scales unrelated to local ET
changes.

Across CONUS, strong regional patterns of statistically significant trends outside the range of
instrumentation variability are evident (Pryor et al. 2007), with eastern CONUS experienced stilling
but the west experiencing both increasing and declining Uz. Unfortunately, trends in wind fields
from reanalyses products, such as those from NCEP–NCAR, are generally not consistent with those
observed at pans (Rayner 2007) or meteorological stations (McVicar et al. 2008). Neither reanalyses
nor gradients derived from daily Pa surfaces have proved useful in attributing Uz trends to large
atmospheric circulation changes, suggesting that daily Uz at the surface is not dominated by large-
scale atmospheric patterns. For the United States, homogeneous, high-quality data sets are needed to
determine whether Uz changes are a regional-scale climatic effect or a local one—for example, from
urbanization or vegetation growth, or from changing local hydrometeorology (e.g., Ozdogan and
Salvucci 2004).

In Australia, development of high-quality Uz datasets is underway. McVicar et al. (2008)
generated new 0.01° U2 grids for Australia that show for a recent 33-year period the stilling
phenomenon otherwise undetected in reanalyses: stilling is evident across nearly 90% of Australia
(significant in 57% by area), with an areal mean trend of −0.009 m s−1 year−1.

3.4.2.4 Decomposition of Trends in ET and E0 in the Complementary Relationship

Following is a first-order determination of the trends in ETWB [derived as the P–Q difference; see
Equation (3-16)] and E0 (observed as Epan) in terms of their hydroclimatic drivers, in other words,
the radiative and advective components just examined in terms of dimming and stilling, respectively
(Section 3.4.2.3). Here, the driving equations for ET and E0 are examined in a general sense that
encodes both components’ dynamics—the regional EA in the vapor transfer component and the
energy flux driving the system in the radiative component Qn—acting under any paradigm,
including that of the complementary relationship (Section 3.2.3).

Starting from a general functional expression λET = f ½QnðtÞ, EAðtÞ,ΔðtÞ, γðtÞ� and assuming
that EA and Qn are independent functions but that Δ and γ are stationary, λET can be expressed as
f ½QnðtÞ, EAðtÞ,Δ, γ�. Therefore, a general expression for temporal trends in ET as a function of trends
in its components, regardless of the actual formulation of ET (i.e., either the complementary
relationship or the traditional paradigm; see Section 3.2.3 for the distinction) is

λ
dET
dt

=
∂ET
∂Qn

dQn

dt
þ ∂ET

∂EA

dEA

dt
, (3-41)

noting that for trends in E0, dET and ∂ET may be replaced by dE0 and ∂E0, respectively.
Following, we first turn to the decomposition of trends in E0 (as represented by Epan) into its

driving trends—radiative and advective—as this is the most intuitively tractable and corresponds
most closely with previous discussion (Section 3.4.2.3) of changes in the radiative and advective
drivers of the evaporative process (dimming and stilling, respectively). Then we similarly examine
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the decomposition of trends in ET. This latter decomposition will first require some validating
examination of the complementary relationship. When trends in the radiative and advective drivers
are examined together as drivers of trends in ET and E0 under complementarity, the evaporation
paradox will resolve (Section 3.4.2.5).

Decomposition of Trends in E0
Roderick et al. (2007) use synthetic Epan from the PenPan model of Rotstayn et al. (2006) to attribute
long-term trends in observed Epan in Australia to trends in its drivers, finding that U2 dominates.
Eslamian et al. (2011) find that, at five stations in semi-arid climates in Iran, P-M ETrc (Monteith
1965) is most sensitive to T and RH, whereas Bois et al. (2005) find that U2 and Rd were the most
effective drivers at stations in France. Tang et al. (2011) attribute temporal trends in P-M ETrc in
northeastern China, finding that ETrc decreased at 1 mm year−2—the same direction and order of
magnitude as Epan trends observed worldwide (see Roderick et al. 2009a)—driven by U2, Qn, and
then ea, but that rising T tended to drive ETrc up.

In a rigorous attribution study on a regional scale, Roderick et al. (2007) decomposed the
observed, generally declining, trends in monthly Epan at 41 Australian stations for a recent 30-year
period using the PenPan formulation of synthetic Epan, which permitted examination of the relative
influence of all physical drivers on the observed Epan trends. In the mean, the Epan trend across all
stations of −2.0 mm year−2 was found to result from a superposition of an increase in Epan of 0.6 mm
year−2 due to increasing Qn, with a decrease in Epan of −2.6 mm year−2 due to a decreasing advective
component (EA), which may be further decomposed (assuming first-order independence of U2, T,
and VPD) to reveal that changes due to both T and VPD were about 0.0 mm year−2, but that the
change due to U2 was −2.7 mm year−2.

Some regional differences emerged: for example, the decreasing radiative driver in northwestern
Australia was in line with the dimming observed across much of the world, but not with the
generality of Australian observations. However, the decline in U2 (mean dU2/dt = −0.01 m s−1 year−1)
was similar to worldwide trends in U2, which show stilling across most land surfaces. While finding
similar results, Rayner (2007) surmises that, as some U2 trends are discontinuous or uncorrelated with
nearby stations, at least some changes are locally driven. Roderick et al.’s (2009b) results—notably, that
T trends were found not be a significant driver of Epan trends—further underscore the dangers of
relying on T-based E0 parameterizations (see Section 3.2.7). They suggest that, given pans’ long-term
worldwide ubiquity and the utility of their attribution technique, pans may have a role as long-term
repositories of radiometric information for periods predating accurate and direct radiometry.

Fu et al. (2009) suggest future research avenues in E0 trends. Uncertainties in Epan trends must be
clarified and the role of homogenization of the record must be quantified. Regional differences in E0
trends must be examined and their regional controls established across other regions, including over
the ocean, where trends in E0 may differ significantly from those on land, due to oceanic heat storages.
Trends in observed Epan and ETrc should be compared and any differences between the two explained.
The globally observed negative Epan trends have been shown generally to result from decreases in
radiative or advective forcing (Fu et al. 2009, Roderick et al. 2009a), or—considering the complemen-
tarity of regional ET and Epan—an increase in actual ET, or a combination of all three dynamics
(Hobbins et al. 2004). As these trends are so widespread, these stark results bear further analysis. A
more formal, global-scale meta-analysis would pull all of these data together to uncover regional
differences in trends and drivers.

In the context of these effects of component trends on ET trends, the critical difference between
complementary relationship models and traditional paradigms (i.e., those in which ET is a function
of E0 mediated by Θ) lies in their functional relationship to trends in the advective component (EA).
In the traditional paradigm—one that ignores the complementarity between ET and E0 described in
Section 3.2.3—trends in ET are a positive function of trends in E0 and therefore a positive function of
trends in EA. Feedbacks between the surface and the dynamic boundary layer are ignored: E0 is a
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driver of ET, not a response to it, and more moisture is presumed to evaporate into the air simply as a
result of the air being drier [i.e., in Equation (3-41), ∂ET∕∂EA > 0]. In complementary relationship–
based estimates of ET this causality is reversed as EA responds to the feedback between regional
advection and ET: when these feedbacks have brought the land surface and atmosphere into
equilibrium, a greater EA is diagnostic of less evaporation into the air. Thus, in contrast to traditional
paradigms, under the complementary relationship hypothesis, ET trends are a negative function of
EA trends [i.e., in Equation (3-41), ∂ET∕∂EA < 0].

Formulating the complementary relationship by the AA model described in Equation (3-15),
the influence of trends in regional EA on trends in ET is made evident by substituting the appropriate
terms for the partial derivatives in Equation (3-41), yielding

λ
dET
dt

= ð2αPT − 1Þ Δ
Δþ γ

dQn

dt
−

γ
Δþ γ

dEA

dt
: (3-42)

Figure 3-20 shows the effects of trends in the two components (dQn/dt and dEA/dt) combined in
the complementary relationship. The first cause of ET trends, a long-term change in EA in the
absence of a change in the energy budget, is akin to moving both ET and E0 in the same direction
along the paired curves (red arrows marked E 0 0

0 and ET 0 0). Under the complementary relationship,
increasing the wetness of an evaporating surface decreases EA and moves the ET–E0 pair to the right
toward their curves’ convergence (shown), whereas decreasing wetness moves the pair to the left and
divergence.

The second cause—a long-term change in Qn in the absence of a change in wetness—shifts both
the horizontal line representing Ew and the curve representing E0 upward in the case of increasing
Qn, or downward in the case of decreasing Qn. Correspondingly, the curve representing ET shifts in a
similar direction (arrows marked E 0

0 and ET
0). Ew is predominantly a function of Qn and is therefore

unaffected by changes in basin wetness alone.
Clearly, these two dynamics do not occur in isolation, but respond to all or any of the causes

discussed in Section 3.4.2.3. For instance, the effect of a long-term decrease in the available energy,

Figure 3-20. Schematic representation of the effects of trends or changes in the driving dynamics of
ET under the complementary relationship. Undisturbed conceptual relations between ET, E0, and Ew
are shown in grey across a notional range of surface Θ. Changes in ET, E0, and Ew due to trends
(decreases shown) in advective forcing (EA) and radiative forcing (Qn) are shown in red and blue,
respectively (opposite-sign changes in EA and Qn result in changes in the opposite directions to the
arrows shown).
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indicated here by a negative trend in Qn, may be an increase in soil moisture and thereby a decrease
in VPD in the overpassing air, which leads, in turn, to a negative trend in regional EA.

Trends in Drivers of Observed ETWB

Following, we demonstrate the power of the complementary relationship hypothesis over the
traditional paradigm in analyzing long-term ET trends. This leads to resolution of the evaporation
paradox (Section 3.4.2.5). We examine trends in annual observations of ETWB and its Qn and EA
components in 655 minimally disturbed basins across CONUS (Table 3-1).

Of these combinations of trends, 48.7% (rows 1, 2, 7, and 8) display trends in ETWB that can be
explained by both the traditional paradigm that holds that E0 is independent of ET and by the
complementary relationship between ET and E0. However, the trends in 43.2% (row 4 and the empty
row 5) of basins can only be explained as a result of the complementary relationship. In these basins,
the trends in EA and Qn are both negative, indicating a decrease in EA of the overpassing air (through
a decrease in either VPD or f(U2)), which under the complementary relationship tends to reflect
increasing regional ET and a decrease in the local radiative flux, which tends to decrease local ET.
The balance of these trends results in an increase in local ET. Applying these two component trends
in the context of the monotonically increasing relationship between ET and E0 central to the
traditional paradigm could only produce a decrease in ETWB. As observations confound these
expectations, the observations have heretofore been described as paradoxical. Trends in the
remaining 8.1% (rows 3 and 6) basins are explicable within the context of the traditional paradigm,
but not in the context of the complementary relationship. Possible explanations for these latter
contradictory basins are as follows: (1) the trends are insignificant, that is, the indicated trend
statistics represent the mean of a noisy dataset and no contradictory dynamic is in fact at work, and
(2) although all three components represent the spatially integrated mean for each basin, the Qn and
EA data result from spatial interpolation from observations that may have been made at some
distance from the basins, while ET trend data are derived from a mixture of basinwide observations
(Q) and spatially interpolated, modeled data (P).

In summary, at the regional scale useful to water managers and climate modelers, making the
familiar assumption that ET can be calculated as a function of some soil moisture measure

Table 3-1. Long-Term Trend Directions in Annual ETWB, Qn, and EA for 42 years in 655 Hydrologically
Undisturbed Basins across CONUS, Denoted by the Sign of the Mann–Kendall Test Statistic [i.e.,
sign(Z( : : : ), where the Ellipsis is EA, Qn, or ET

WB].

% of
basins

sign(Z( : : : )) Explained by : : : ?

EA Qn ETWB CR Trad

1 0.3 + + + ✓ ✓

2 2.8 − + + ✓ ✓

3 7.6 + − + Ð ✓

4 43.2 − − + ✓ Ð
5 0 + + − ✓ Ð

6 0.5 − + − Ð ✓

7 2.4 + − − ✓ ✓

8 43.2 − − − ✓ ✓

Note: The right-hand columns indicate whether the combinations of trend directions for Qn and EA explain the trend
direction in ETWB within the context of the complementary relationship hypothesis (CR) or a traditional relationship (Trad)
between ET and E0: ✓= explained; Ð= not explained. Bordered cells indicate trend combinations that have been
described as paradoxical.
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constrained below an E0 estimate that is itself independent of ET—as is done in many traditional
basin-scale models—is physically indefensible. Combining the radiative and advective fluxes in the
context of the complementary relationship explains observed ET trends better than the traditional
paradigm: 91.9% of the basinwide trends were explained by the complementary relationship as
opposed to only 56.8% by the traditional paradigm. The 43.2% of trends explained under the
complementary relationship but not under the traditional paradigm constitute the subset of basins
exhibiting what was previously considered paradoxical behavior. Any estimation procedure that
ignores the complementary effects of regional advection is therefore fundamentally flawed. To
predict ET trends, one must also make reference to the dynamics of the two components that
constitute both ET rates and how they combine within the complementary relationship to draw
complete conclusions, particularly in areas where the signal from trends in the regional advective
component outweighs that from the local radiative component.

3.4.2.5 Resolution of the Evaporation Paradox

In Sections 3.4.2.1 and 3.4.2.2, we report observations of increasing ET over the global land surface
but decreasing E0. In Section 3.4.2.4, we observe how the directions of 43.2% of CONUS-observed
ETWB trends appear to contradict the traditional paradigm of ET dynamics (i.e., in which land
surface–atmosphere feedbacks are ignored and E0 is treated as independent of Θ and ET). Reverse
trends were also observed between Epan and ET in the southeastern United States, but in the
opposite directions: increasing Epan and decreasing ET (Golubev et al. 2001). How ET and E0
trends may be in opposite directions has fed into talk of an “evaporation paradox.” Other
expressions of this paradox, also known as the “pan evaporation paradox,” are numerous and
include observations of decreasing Epan that seem to contradict increases in observed P (e.g., Cong
et al. 2009) and cloudiness and in GCM-derived ET (e.g., Brutsaert and Parlange 1998), and
increases in T (e.g., Roderick and Farquhar 2002). However defined, this apparent paradox is not
ubiquitous: for example, decreasing Epan was observed in parallel with decreasing ET in Siberia
(Golubev et al. 2001) and northern European Russia (Peterson et al. 1998, Golubev et al. 2001). In
their rigorous global study of ET trends, (Jung et al. 2010) observe that the relative directions of
changes in ET and E0 depended on SM availability, with opposite direction trends observed in SM-
limited regions, but same direction trends (positive) in non-SM-limited regions (e.g., south India,
China). In Section 3.4.2.4, we examine the paradox as expressed in its most essential form: between
ET trends and trends in its drivers. We demonstrate how these trends in ETWB—paradoxical and
parallel trends in ETWB—are explainable given a full understanding of the interrelations of the
fluxes of Epan and ET and of their drivers.

The previously noted seemingly paradoxical behavior has provoked a heuristic argument by
Brutsaert and Parlange (1998) in favor of the complementary relationship. They argue that Epan has
not been treated correctly as an indicator of climate change, but that in nonhumid (water-limited)
environments Epan is not a good predictor of ET, as it does not behave proportionally. Traditionally,
in nonwater-limited environments a pan coefficient of order one is used to convert Epan to Ep, but
when water becomes limited, the traditional conception of Ep as a constant fraction of Epan breaks
down, and the complementarity between ET and Epan becomes obvious.

Roderick and Farquhar (2002) observe the pan evaporation paradox by noting that the global
mean T has increased by 0.15° decade−1 over the last 50 years; that the expected increase in
evaporation from terrestrial open water bodies due to drier air at the surface and evident in an
increase in Epan does not occur; and that, in fact, Epan is decreasing. They propose and examine two
explanations to resolve the paradox: (1) the complementary relationship between E0 and ET and
(2) a decrease in Qn at the Earth’s surface (“dimming”), due, in part, to an increase in the
concentration of aerosols. They conclude that the complementary relationship explanation is not
completely satisfactory for the following two reasons: (1) that Epan in nonwater-limiting environ-
ments is also decreasing, that is, Epan and ET are decreasing together, and (2) that VPD across
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CONUS has remained stationary over the last 50 years. However, the central tenet of Roderick and
Farquhar (2002) is that Epan trends are a function of radiative component trends (dQn/dt) only, not
advective component trends (dEA/dt), and therefore the complementary relationship is not an
important dynamic in determining trends in Epan or, by extension, in ET. This is in marked contrast
to Szilágyi et al. (2001), who assume exactly the opposite: that no Qn trends exist and that ET trends
are due solely to EA trends.

Perhaps in an attempt to force the science to resolve these contradictory assumptions and
explanations, Ohmura and Wild (2002) suggest that ET trends are what is important and that Epan is
only relevant if it offers clues as to their direction. Hobbins et al. (2004) resolve the differences
between Roderick and Farquhar (2002) and Szilágyi et al. (2001) by showing that neither Qn nor
VPD can be assumed to have remained stationary. Their study uses spatially coincident observations
of ETWB and Epan from across all climatic regimes in CONUS and thereby provides the heretofore
missing empirical evidence, showing that ET and Epan are complementary under constant radiative
input, but also that, under declining (or increasing) Qn, both Epan and ET can be expected to decline
(or increase) together without contravening complementarity.

Figure 3-20 shows this resolution, indicating the effects of the two previously competing
explanations for the changes in Epan with relation to ET: decreases in the energetic input to the
surface and the complementary relationship acting to depress E0 and raise ET. Decreasing the
energetic driver alone (through the effects of dimming) decreases both ET and E0 (and, given
sufficient moisture supply, Ew). The complementary relationship hypothesis dictates that decreasing
EA alone, whether through decreases in Uz (stilling) or decreases in VPD [as observed by Hobbins
et al. (2004) across 75% of CONUS] decreases E0 and is as a result of the increase in ET (and vice
versa for increasing EA alone). Whether acting in isolation or together, neither explanation
contradicts the other, and both must be considered together as a robust resolution of the paradox:
together they explain all relative changes in ET and E0 at various time and space scales. In our
examination of the trends in ETWB as a function of both of its components (Qn and EA, see Table 3-1),
the traditional paradigm explained ETWB trends in a little more than half of the basins, while the
complementary relationship explained ETWB trends in more than 90% of them, the difference being
the 43% of the basins whose ETWB trends would heretofore have been described as paradoxical.

The resolution of the evaporation paradox is not merely a nice distinction for climatologists. The
purported existence of the paradox has been used by climate-change naysayers to cast doubt on
“‘climate alarmists’ illusionary world of ‘unprecedented’ global warming” (CSCDGC 2003). How-
ever, here we have shown that the seemingly paradoxical behavior is no more than the consequence
of the dependence of E0 on ET that lies at the heart of the complementary relationship and is
demonstrated to link trends in the two fluxes.

3.5 SUMMARY

This chapter has hewn as closely as possible to discussion of the statistical matters and variability/
uncertainty thrown up by the estimation of the flux of actual ET and of its companion ideal flux, E0.
The latter, conceptual rate is limited only by energy availability and/or the ability of the overpassing
air to bear moisture away, thereby defining the maximal ET rate. It has three primary functions:
assisting in irrigation management and agricultural estimates of ET, driving LSMs to estimate ET,
and indicating hydroclimatologic change. Given that applications of statistics in ET estimation are
limited and further given different models and modeling philosophies, some explication of the
physics of the measures was required; we strove to keep this discussion succinct. In our survey of ET
and E0 topics, whether physical or statistical, we have cast the analyses in terms of statistics,
variability, and uncertainty.
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With regard to observations of ET, we outlined an uncertainty analysis of ET estimated as a
residual of water budgets, provided as an example of the remote sensing of ET a review of the SSEB
model and its application with a MODIS-based thermal dataset, and summarized the physics and
sources of error and uncertainty in the eddy covariance technique and its concomitant global ET
estimation efforts.

For modeled E0 we mentioned the main sources of uncertainty, distinguishing between
formulations based on physics and those based on simple empirical relationships to other drivers.
This distinction is one of the central themes of the chapter, as it relates both to capturing the
variability and trends in E0 and using E0 to force long-term hydroclimatology studies. A classical
sensitivity analysis of one of the most commonly used E0 measures in agriculture—Penman–
Monteith ETrc—was performed. We have underlined the implications for modelers of E0 (and often
hence ET), who must choose the optimal parameterization for E0 from a plethora of models, ranging
from those based solely on T to more complete physically based parameterizations of both radiative
and advective dynamics. Optimal parameterizations strike a balance between parameter parsimony
and accurate physical representation. We have summarized various studies that underscore the
importance of using the best E0 metric: one for which the best available information is available,
including data streams, parameter estimates, and physical formulations. Ideally, these would be
physically based formulations; few regions exist in the world where the supporting data remain
unavailable. A first-order, second-moment uncertainty analysis of ETrc has answered the crucial
question, “Where in space and time can one effectively model E0 with T alone?” and outlined the
implications for E0 parameterization choice, both in short-term variability and long-term trends.

We examined secular trends in both ET as an essential hydrologic variable and E0 as a physical
indicator of hydroclimatology. We suggested an approach to account for autocorrelation in time series
of ET in estimating trend significance. We examined the roles that trends in E0’s primary forcings—
radiation and advection—play in determining its trends, and what these trends can tell us about the
changing state of an anthropogenically warming hydrologic cycle. We resolved the so-called
evaporation paradox as no more than these two drivers covarying, sometimes in concert, sometimes
in opposition, but always within the realm of a thorough physical understanding of evaporation
physics. Here again, secular analyses raised concerns regarding the choice of E0 driving philosophy.

In this chapter we have striven to provide important information about a heretofore missing
link in surface hydrology and have made it available to water managers, climatologists, and
ecologists, or to any student of the surface hydrologic cycle. In the final analysis, the choice of
modeling philosophy and the particular E0 model used depend to a large degree on the purpose for
the E0 estimate to be produced, the availability of the calibrating data across the region of interest,
and the preference of the modeler; here we have attempted to inform that modeler.
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CHAPTER 4

Infiltration and Soil Water
Timothy R. Green
Roger E. Smith
Richard E. Green

4.0 SCOPE AND INTRODUCTION

Water is essential for life, and “soils sustain life” (https://www.soils.org/)— largely by retaining water
and nutrients in the biotic zone. This chapter addresses the critical hydrological processes of surface
infiltration and soil–water flow and storage. First, we lay a basic groundwork for understanding soil
hydraulic properties and processes of water infiltration, soil–water retention, and redistribution.
Next, concepts of natural variability and statistical distributions are introduced. Both continuum
theory (diffuse flow) and preferred flow processes are discussed within a representative volume and
across heterogeneous landscapes, where patterns emerge. This leads to spatial scaling of processes
and variables and effective upscaled parameter estimation. These concepts and methods culminate
in the quantification of uncertainty in measurements and spatial estimates of soil–water and
infiltration flux.

4.0.1 Central Role of Infiltration in Hydrology

Figure 4-1 highlights the central roles of infiltration and soil–water processes in the broader
context of hydrological interactions over space and time. The process of infiltration, where
rainwater enters the soil surface, partitions atmospheric precipitation of water on the land surface
between overland flow (a direct form of runoff) and soil–water intake at a point or discrete area.
Surface runoff and run-on of overland flow may be controlled by intake rates limited at the soil
surface, or by filling the soil with water above infiltration-limiting strata. Likewise, irrigation water
by various delivery methods (e.g., sprinkler, drip, or ponded) is partitioned, even though rates are
controlled to reduce runoff from the application area. Natural and artificial surface water bodies
infiltrate into the subsurface at rates controlled by the media underlying the water body, including
liners intended to reduce infiltration losses. From point to watershed scales, the process of
infiltration is a key to flux partitioning between overland flow and soil water and potentially to
groundwater. Components of the resulting water balance need to be estimated or predicted for
water resource and land management.

Infiltration and soil–water processes interact with other biophysical processes at different scales
in space and time (left panel in Figure 4-1). These interactions, combined spatial variability and
uncertainty about the soil properties and state variables (right panel in Figure 4-1), complicate
hydrologic predictions and present the need for applications of statistics and stochastic methods.

Figure 4-2 illustrates a timeline for advances in infiltration and soil–water research, including
key advances in the areas of physical measurements, theory, and statistical models. Simple
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infiltrometers have been used for more than a century to measure infiltration processes, followed
by a mathematical model for vertical infiltration (Green and Ampt 1911) that is used to this day.
Even so, statistical methods for quantifying natural variability did not emerge widely until the
middle of the twentieth century, as analytical solutions were being derived for the dynamics of
vertical infiltration at a point. Scale issues related to measurements, simulations, and different
applications of hydrological theory arose mainly near the end of the twentieth century. Simulta-
neously, new technologies for automated soil–water measurements were being developed and
applied, which made measurements of spatial variability in soil–water content more broadly
feasible.

4.0.2 Process Interactions Affecting Infiltration and Soil Water

Infiltration capacity ( fc, also called infiltrability) is the maximum rate of infiltration that can occur at
a given time; it is both state and scale dependent. A primary control and negative feedback on
infiltrability is the near-surface soil moisture (water content). Actual infiltration rate ( f ) may change
from rainfall-controlled to soil-controlled as the soil wets up during an infiltration rainfall (or
irrigation) event. An exception to this rule is when a dry surface is hydrophobic or water-repellent
(Bughici and Wallach 2016, Wallach et al. 2013), and the water repellency decreases as the surface
soils wet. Hydrophobic conditions are common in deserts, where organic residues accumulate on the
ground surface, and following forest or grass fires. Thus, initial or antecedent soil moisture state
controls infiltrability in a highly transient manner that is occasionally nonmonotonic (rising and
falling over time).

Figure 4-1. Schematic, infiltration-centric view of hydrological process interactions across space
and time, where spatial variability and uncertainty are implicit. Infiltration is a flux of water at
the soil surface, while soil water is a distributed storage of water. Soil hydraulic properties control
the processes of surface infiltration, soil water redistribution, and groundwater recharge or
capillary rise.
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Scale dependence occurs due to spatial variability of infiltration, which allows runoff from one
location to run on to a neighboring location where it may infiltrate (Blöschl and Sivapalan 1995). The
effective or average infiltration over an area may change depending upon the internal variability, and
the total variance tends to increase with the size of the area (e.g., fractal behavior). Spatial variability
may cause internal runoff to initiate sooner, due to low infiltrability of some areas. However, the
internal runoff tends to infiltrate more readily in neighboring high-infiltrability locations within an
area of interest. As a result, the net or effective infiltrability tends to increase with soil spatial
variability.

The effective infiltrability of an area is further complicated by spatial correlation (e.g., patchi-
ness) and connectivity of patterns, which may increase the net runoff and decrease the net
infiltration. This is the case when fine sediments, including clay particles, are deposited along
pathways of concentrated overland flow to create a semi-permeable surface seal. Vegetation patches,
such as clumps of grass or shrubs, also contribute to spatial variability when soils beneath vegetation
are more permeable than adjacent bare soils. Such vegetation patches often occur in subareas of
microtopographic highs, such that the overall areal infiltrability increases after ponding, as the water
stage rises and inundates more vegetation patches. Thus, spatial variations and patterns within the
landscape provide controls on infiltration dynamics in space and time.

4.0.3 Variability and Uncertainty of Infiltration and Soil Water

As noted previously, surface properties that control infiltrability of water are highly variable in space
and time. All of the main factors of soil formation—parent materials, biota, topography, climate, and
time (Jenny 1946)—interact to determine the current soil hydraulic properties and their spatial
patterns. Soil–water status further interacts with the soil properties to control the temporal
variability of infiltration. Obviously, we are left with a high degree of uncertainty. Statistical
methods should then be invoked, even in the most process-based quantification, to estimate and
predict infiltration rates and the corresponding soil–water contents across space and time.

Figure 4-2. Timeline of infiltration and soil–water research contributions showing when statistical
considerations became a focus of infiltration and soil hydrology research. Time periods of different
activities are approximate.
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4.1 INFILTRATION AND SOIL–WATER DYNAMICS: DESCRIPTION AND
MEASUREMENT

This section provides some historical context, basic principles, and equations used to describe and
quantify soil–water dynamics and infiltration. Plant canopy interception of rainfall and soil-surface
sealing are discussed and illustrated without incorporating these added complexities into the
analyses. Methods and instruments for measuring infiltration and soil–water content are then
discussed in light of the theory, but not in a comprehensive manner. All these topics lay the
foundation for exploring spatial and temporal variability of infiltration and soil moisture.

4.1.1 History: Engineering Treatment of Rainfall Infiltration and Losses

Physical understanding of the movement of water into and within the soil has developed mainly in
the last century (Assouline 2013). The factors that affect uncertainty and variability in soil water and
infiltration are the same, but the emphases of the two branches of knowledge are different. For
example, two Australian scientists, Green and Ampt (1911), published an equation for vertical
infiltration rate into a soil column, describing soil–water infiltration in terms of capillary suction at
the wetting front, with a gradient decreasing in time as the wetting front moves deeper into the soil.
Three decades later, Horton (1939) began to quantify infiltration with equations that also describe a
temporally decreasing rate. While the general understanding of the processes was similar, Green and
Ampt were interested in water movement in the soil, whereas Horton was concerned with losses
from rain and the production of runoff. Horton was aware of Green and Ampt’s work, but he
thought that the decrease in infiltrability with time was related to other processes, such as swelling
and fine particles filling pore spaces (Horton 1936). While understanding of the dynamics of both
soil–water movement and infiltration has made enormous strides in the last half-century, the
uncertainty and variability of natural soil properties often seem overwhelming. In this section the
underlying description of unsaturated soil–water flow and its relation to infiltration is presented to
lay the groundwork for possible treatment of the variability and uncertainties involved. Like many
aspects of engineering in the sphere of natural conditions, even in the presence of these factors,
estimates must be made, and planning must proceed.

4.1.2 Plant Canopy Interception of Rainfall

Before rainfall or sprinkler irrigation contacts the ground or soil surface, a fraction of the ground area
is often filtered by the aboveground plant canopy. The effective leaf area may be quantified by the leaf
area index (LAI, m2 m−2) as the leaf area per unit ground area. For a closed canopy, the LAI will
exceed unity, and much larger values are possible. Scurlock et al. (2001) summarize a global dataset,
where LAI> 8 in 14% of sampled areas. Leaf area affects the interception of both light (solar
radiation) and water (rainfall), which affect soil evaporation and the net rainfall available for soil
infiltration. Our current focus on infiltration begs the question, “How might canopy interception
affect the infiltration amount?” This can be answered for an individual infiltration event and over
longer time periods, such as a crop season.

For small leaf areas, canopy interception is usually negligible (within rainfall estimation error),
but as LAI increases, the maximum interception storage per ground area (depth) may be on the order
of 1 mm for annual crops or >8 mm for dense forests (Herwitz 1985). Water stored on leaves and
stems is available for evaporative loss after the rain ceases. If the canopy is dry before a rainfall event,
the interception depth (potential storage) is subtracted from the total rainfall for that event. For small
events, the fraction of intercepted rainfall that is evaporated may be large, even negating any net
infiltration. Over a crop season, such as a wheat crop in Australia (Leuning et al. 1994), Kozak et al.
(2007) show that the cumulative canopy interception may comprise approximately one-third of the
cumulative rainfall (Figure 4-3).
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The amount of interception depends upon the climate and crop, and its estimation can vary
greatly among canopy interception models. Nonetheless, this example highlights the potential
importance of interception storage. Figure 4-4 illustrates the potential impacts on cumulative
infiltration and other water balance components. This example considers only plant canopy
interception, but Kozak et al. (2007) also explore plant residue interception as additional interception
storage. They investigate models that include interception, but many hydrological infiltration models
do not consider canopy interception. In the following sections, “rainfall”may be considered to be the
“net rainfall” after interaction with the canopy.

Figure 4-3. Cumulative canopy interception (dashed lines show different datasets, and other
bounding lines show modeled interception) and cumulative rainfall (upper black line) versus time
within a crop season for wheat in Wagga Wagga, New South Wales, Australia. The double arrow
and “interception model range” indicate a range of simulated cumulative interception.
Source: Experimental data from Leuning et al. (1994); figure taken from Kozak et al. (2007).

Figure 4-4. Simulated seasonal water balance components with and without simulated canopy
interception for a wheat crop in Australia. In this figure, Net P is precipitation reaching the soil
surface, Ic is canopy interception, Q is surface runoff, I is soil–water infiltration, Es and Ec are
evaporation from soil and canopy, T is plant transpiration, and −ΔS is the negative change in water
storage over the season.
Source: Experimental data from Leuning et al. (1994), and figure from Kozak et al. (2007).
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4.1.3 Local Processes of Soil Water and Infiltration

4.1.3.1 Capillary Pressure Head and Saturation

Our current understanding of infiltration of rainfall (or sprinkler irrigation) is based on the same
theory that describes soil–water flow. Soil is a porous medium in which the intake and movement of
water can be described by conservation of mass (continuity) and Darcy’s Law. Water exists in
unsaturated soil at the intersection of soil particles within the pore space and is lower in pressure
head, ψ (m), than the soil–air phase due to the capillary properties of the air–water interface. Water
content θ (m3 m−3) increases with increasing ψ. In terms of normalized water content, or “effective
saturation” Θ, the relation of water content to soil–water pressure may be expressed as follows
(Smith 1990):

Θ=
θ − θo
θs − θo

=
h
1þ

�ψ
P

�
a
i
−λ
a (4-1)

in which λ, P, and a are parameters, and the subscripts s and o denote saturation and residual water
contents, respectively. van Genuchten (1980) introduced a similar relation earlier. The parameters in
Equation (4-1), however, have graphical meaning (see Figure 4-5).

4.1.3.2 Wetting and Water Transfer Processes

Darcy’s Law is fundamentally empirical but demonstrable, stating that water moves from higher to
lower hydraulic head locations in the soil, where the total hydraulic head (m) is H = ψ− z, and
z (m) is measured downward from the soil surface. Darcy’s Law states that the soil–water flux is
proportional to the total head gradient ∂H/∂z and a coefficient called the soil–water hydraulic
conductivity (K) (m s−1).

q=Kðψ, θÞ∇H (4-2)

in which q is the flux (vector) (m s−1). The units of q relate to a volume (m3) of water crossing a unit
area (m2) per unit time (s). K can be treated as either a function ofψ or θ through the relations shown
in Figure 4-5. The value of K when θ is at its maximum (saturated) and when ψ is near 0 is called the
saturated hydraulic conductivity, Ks.

Figure 4-5. Generalized description of the variation of (a) relative soil–water content and (b) relative
hydraulic conductivity versus soil capillary (pressure) head.

150 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



Rainfall at the soil surface causes water to move into the soil in response to the hydraulic head
gradient of soil water. This gradient includes the depth of surface water, if any, as in irrigation.
When, as a result of continuous rainfall the soil surface becomes saturated, the surface hydraulic
head can increase only to a maximum ponding height allowed by surface detention storage.
Consequently, the local gradient may limit intake rate as described in Equation (4-2) and thus
create local rainfall infiltration excess and Hortonian overland flow (Horton 1936). This is surface-
controlled infiltration, dependent on the rate of rainfall exceeding infiltrability. Runoff can also occur
when a surface soil underlain by a soil of limiting permeability or a bedrock creates soil saturation
that can reach the surface. This runoff mechanism is generally called saturation excess overland flow
(Dunne and Black 1970, Freeze 1974).

4.1.3.3 Infiltrability and Cumulative Infiltration

The rate at which rainfall can enter the soil, determined by the surface value of q [Equation (4.2)], is
called the infiltrability, fc (m s−1). At the beginning of any rainstorm in which rainfall rates exceed
surface soil–saturated hydraulic conductivity is always an initial part of the storm where infiltrability
exceeds rainfall, and all rainfall enters the soil. For storms where rainfall intensity continues to be
greater than Ks for sufficient time, the infiltrability will decrease until it controls the soil–water
intake. This point is often called the ponding time. As shown in the following and elsewhere
(Smith et al. 2002), the description of the onset of ponding (and thus runoff) is made robust and
parsimonious by describing infiltrability in terms of cumulative infiltration, I (m), or total volume
(m3) of water per unit surface area (m2). Given the dependence of water flow processes on spatially
variable soil properties, ponding will clearly occur at various times over different parts of a
catchment. Some efforts have been made to describe and anticipate the effects of this variability
(e.g., Smith and Goodrich 2000).

4.1.4 Infiltration Dynamics

As mentioned previously, water moves from higher to lowerH regions in a continuous soil. This can
result from different wetness or from changes in elevation. It can also occur when roots use water
and create local areas of low pressure head around the roots. Plants can bring water up from the
water table by creating an upward gradient of H. Likewise, water redistributes in response to head
gradients after the end of a rainfall. A wetted zone near the surface will dry at the surface due to
evaporation, but water will also continue to move downward into the soil with accompanying
reduction in saturation near the surface. The movement of soil water in the vertical case is described
by mass conservation in the form of differential continuity, plus Darcy’s Law [Equation (4-2)],
referred to generally as Richards’ Equation, to which we now turn.

4.1.4.1 Richards’ Equation

Here we refer to vertical flow, in which gravity plays a part. Simply combining an expression for mass
conservation,

∂ θ
∂ t

−
∂ q
∂ z

= 0, (4-3)

with Darcy’s Law [Equation (4-2)] yields Richards’ Equation:

∂ θ
∂ t

=
∂
∂ z

�
KðψÞ ∂ψ

∂ z
− KðψÞ

�
(4-4)

In this expression z (m) is measured downward from the soil surface, and t (s) is time.
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4.1.4.2 Boundary and Initial Conditions

For rainfall rate, r, on an initially unsaturated soil, the boundary condition will be the influx that is
equal to r, so long as the soil can respond by adjusting the surface value of ψ to satisfy the flux
boundary condition:

r = − q=KðψÞ
�
1 −

∂ψ
∂ z

�����
z= 0

(4-5)

For values of r> Ks, a point is reached where the surface head gradient cannot satisfy
Equation (4-4) for ψ< 0, and the boundary condition changes to a surface head boundary condition:

ψðz= 0Þ= d (4-6)

where d is the depth of water on the surface (initially d = 0). The time this occurs is called ponding
time, which marks the inception of runoff and soil-controlled infiltration rates. Head boundary
conditions also occur when water appears suddenly on the soil surface in quantities greater than can
be imbibed, such as on soil under furrow irrigation or in channels during flood-wave advance.

Lower boundary conditions vary with local situations, but a general one for natural conditions is
either gravity drainage (dψ/dz = 0) or a water table (ψ = 0) at some large value of z. For deep soils,
the lower boundary condition is not critical. For shallow soils or where a limiting soil interface
occurs, the lower boundary is crucial. At large scales in hydrology the soil depth and the water table
both exhibit variability that can be important.

4.1.4.3 Numerical Solution

Many methods of approximation to the description of infiltration using Equation (4-4) have been
developed and cannot all be presented here (see, e.g., Smith et al. 2002). Figure 4-6 illustrates the
general infiltration behavior under significant values of r (r> Ks). Ponding occurs more rapidly for
larger values of r.

Figure 4-6. Infiltration rate (f) as a function of time for instantaneous ponding and three rainfall
rates, showing the effect of steady rainfall rate on ponding time.
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The methods for numerical solution of Equation (4-4) are not described here, but accurate
solution involves careful choice of numerical increment size to match the scale of spatial and
temporal variations, plus careful selection of methods to minimize errors of mass conservation
(e.g., Smith et al. 2002, Appendix III) and numerical dispersion.

4.1.4.4 Theoretical and Conceptual Approximations

Philip (1957) derived a simple equation for infiltration under ponded boundary conditions:

I = St1=2 þ At (4-7)

in which I is the cumulative infiltration, S is defined as soil sorptivity (m s−1/2), A is an empirical
constant (m s−1) proportional to the field-saturated hydraulic conductivity, and here t is the time (s)
from the start of an infiltration event. Neglecting gravity [i.e., A = 0, Equation (4-7)] is a valid
description for the early-time behavior shown in Figure 4-6, which exhibits the square root of time
behavior proportional to S. This is an important approximation for infiltration analysis when the
storm is intense and short. It also is important for design of field experiments to define infiltration
properties, because sorptivity may be measured relatively easily (Chong and Green 1979, Smith 1999,
Talsma and Parlange 1972).

The simplest analytical solution of Equation (4-3) for infiltration was that of Green and Ampt
(1911), referred to previously:

f =KS þ
GðΔθÞKS

I
(4-8)

where f is infiltration rate; Ks is the saturated hydraulic conductivity; and G is the capillary drive, a
bulk parameter representing soil capillary strength, defined as the integral under the relative
hydraulic conductivity and capillary pressure head relation (Figure 4-5b). The factor Δθ is a
variable—the saturation deficit—defined as θs− θi,, where θi is the initial water content of the surface
soil region. This relation can be derived from Richards’ Equation (4-4) under the assumption that the
rapidly varying K(θ) is a step function.

Further mathematical advances in the solution of Equation (4-4) (e.g., Parlange and Smith 1976,
Talsma and Parlange 1972) have resulted in a more accurate description of the infiltration behavior
under rainfall conditions for both short and long times and for general soil properties:

I =GΔθ ln

�
f

f − KS

�
(4-9)

Equation (4-8) or (4-9) may be converted to relations of f (t) or I (t) by substituting f = dI/dt.
Smith et al. (2002) summarized the various forms of these equations. Time-based forms, t ( f ) and
t (I), result directly, but explicit expressions for f (t) and I (t) given a time of ponding require special
approximation techniques.

4.1.5 Soil–Surface Sealing

The hydraulic properties of the soil surface may be altered by the mechanical impact of water drops
(McIntyre 1958) and by biochemical processes. Mechanical energy is often sufficient to disturb
soil aggregates and separate clay particles from the bulk soil. These finer particles settle last after
surface ponding of water and its suspended sediment, resulting in a fine layer of lower-permeability
material commonly called a surface seal or crust (Assouline 2004, Bosch and Onstad 1988,
Eisenhauer et al. 1992, Fox and Le Bissonnais 1998). In fact, this material is a permeable surface
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skin that impedes infiltration relative to the bulk soil without a seal or crust (Moore 1981). Various
investigators have addressed the topic of surface sealing of bare soil, and some models implement a
surface impedance layer (Ahuja 1983, Baumhardt et al. 1990, Cresswell et al. 1992, Mein and Larson
1973, Smith et al. 1999).

Live vegetation and plant residue that cover the soil surface can protect it from sealing (Duley
1939). Consequently, when plant residue covers only part of the area, the fraction of ground area
covered can affect infiltration significantly (Ruan et al. 2001). To further complicate matters,
microtopography interacts with spatially variable bare-soil surface crusting, which affects the net
infiltration (Fox et al. 1998), and tillage may (temporarily) remove a surface seal (Logsdon et al.
1993). Crusting of bare or partially covered surface soils cannot be ignored in some cases (Ruan et al.
2001), but we will not consider these effects henceforth.

4.1.6 Methods of Measuring Soil Water Content

The Soil Science Society of America has published a comprehensive manual describing a variety of
laboratory and field methods for measuring soil–water content and other soil hydraulic variables
(Klute 1986). Details of these methods cannot be given here. In the laboratory, soil sample water
contents are measured most often by weighing before and after drying. Various dielectric methods
are available based on the dielectric properties of water in field soils. One popular method is time
domain reflectometry (TDR), using insertion probes to obtain an estimate of soil–water content
based on the return (reflection) of a radio frequency signal applied to the probes (Schwartz et al.
2009a, b). Other dielectric sensors measure the resonance frequency of a circuit, which depends upon
the electrical capacitance and its sensitivity to water content (its dielectric constant or permittivity).
Examples of some commercial capacitance-based dielectric sensors include Sentek downhole probes
(Evett et al. 2006, Fares and Alva 2000, Paltineanu and Starr 1997, Schwank and Green 2007,
Schwank et al. 2006, Starr and Rowland 2007), Stevens Hydra Probes (Logsdon et al. 2010, Seyfried
and Grant 2007), and the Decagon ECH2O family of soil–water sensors (Saito et al. 2009).

The backscattering of neutrons by soil water is used in the neutron probe method, where
aluminum or plastic tubes are inserted into the soil, and readings are taken at known distances into
the tube. This method gets the integrated value of an influence volume near the tube (Evett et al.
2006). Gamma ray attenuation can also be used to measure the water content between two parallel
tubes (Rousseva et al. 1988). Methods are available to measure soil-water pressure head, but they are
generally difficult or impractical to apply in the field. Soil-water tensiometers are usable in the field,
but their range of applicability is limited to higher pressures (higher water contents).

Spatial measurements of soil–water content are rare due to the cost of measurement systems and
difficulty collecting samples or measurements rapidly at multiple locations. However, TDR systems
have been mounted on vehicles for rapid measurements over a field or small watershed (e.g., Green
and Erskine 2004, Western and Grayson 1998, Western et al. 1999, Western et al. 2004), as shown in
Plate 4-1. A few studies have used dedicated in-ground dielectric sensors installed at multiple
locations to measure temporal dynamics in a spatial network (e.g., De Lannoy et al. 2006, Green and
Erskine 2011, Lin 2006).

4.1.7 Surface Flux Measurements

Infiltration studies are most satisfying if the conditions of interest can be replicated and the results
carefully measured. This is true for both irrigation applications and for rainfall situations. Empirical
infiltration models require calibration in all cases and duplicating the infinite variety of rainfall rate
patterns is impossible in any case. Thus the infiltrated depth approximation (Smith et al. 2002)
described in Section 4.3.2 is useful for developing parameters for the infiltration model based on
surface boundary conditions that may practically be created in the field. Thus, information from a
ponded surface condition or from a controlled uniform flux application may obtain the same
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physically based parameters. However, performing an infiltration simulation until the late-time,
asymptotic (theoretical) value Ks is reached is not usually practical. Other means are more time and
cost effective. Given the power of modern computer hardware and simulation software, inverse
modeling or parameter identification methods are practical to determine accurate values of in situ
soil infiltration parameters, provided sufficiently simple and appropriate boundary conditions are
maintained.

4.1.7.1 Tension Infiltrometer Methods

In the last few decades, a method for making measurements of surface-soil behavior has been
developed (White et al. 1992), which allows measurement of soil influx from a small disc source
under surface water pressure heads from 0 to −20 cm (approximately). The disc must be in
continuous soil contact over its surface area, for which a fine sand contact material may be required.
Various mathematical approximations for this three-dimensional but symmetrical geometry are
available (Smith et al. 2002), but the inverse modeling approach is the most accurate (e.g., Hydrus2D,
Simunek et al. 1999).

4.1.7.2 Ponded and Rainfall Infiltration and Sorptivity

Ponded upper boundary infiltration may be simulated by simply pouring water into a containing
ring pushed into the surface soil. However, several practical difficulties arise. First, like the tension
infiltrometer, the flow is not one-dimensional vertical, but is in fact three dimensional, unless the
ring is pushed very deep. This is difficult if not impossible to achieve without creating boundary gaps
that allow shortcut flow paths. Water infiltration rates are difficult to measure based on the change in
water elevation. This can be much improved using a Marriott siphon, as for the disc permeameter.
The multidimensionality can be mitigated somewhat by an outer buffer ring (i.e., double-ring
infiltrometer) so that measurement is confined to a center portion, which should generally be one
dimensional at smaller time scales. Lai and Ren (2007) found that lateral flow could be affected by the
size of the infiltrometer and suggested that the outer ring diameter should be larger than 80 cm.

Plate 4-1. A TDR system (TraseBE) is mounted on an all-terrain vehicle (John Deere Gator), where the
TDR rods (30 cm here) are inserted into the soil with a custom-made bracket attached to a hydraulic
soil coring machine (Giddings). A global positioning system (Trimble) is used to navigate to
measurement locations, and TDR-estimated soil water content is recorded along with the spatial
coordinates on a handheld data collector for “on-the-go” (actually stop-and-go) measurements. This
system used for collecting spatial maps of soil water (e.g., Green and Erskine 2004) was based on a
similar system designed by Western and Grayson (1998).
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Rainfall can be simulated with various devices, but uniformity over a given test area is difficult to
accomplish. As for the infiltrometers, a buffer area is required if one-dimensional flow is to be
presumed. Then, measurements are generally confined to observing the onset of runoff and then
estimating the difference between rainfall rate and runoff rate. The runoff rate measured in this test
integrates r− f over the time necessary for the flow to reach a measuring device off site, so the value
of f (t) cannot be determined before runoff occurs and is sometimes difficult to determine after
runoff begins.

Sorptivity (S) is one of the most prominent hydrologic parameters in the early infiltration
process, and estimation of S is one of the more satisfactory field measurements that can be made.
Sorptivity can be obtained either from in situ soil–water redistribution measurements (Chong et al.
1981, 1982a, b) or constant-rate simulated rainfall (Chong 1983). However, the simplest field
method of measuring S is based on Equation (4-7), using a single-ring ponded infiltrometer (Talsma
1969). By inserting the infiltrometer carefully into the soil, S can be estimated rather quickly and
simply by measuring the time required for a given depth of water to infiltrate. Like other ring-
containment methods, care must be taken to minimize soil disturbance at the ring boundary during
insertion. The measurement and interpretation are straightforward, however, and many measure-
ments can be made in an area to determine spatial variability (Smith 1999).

Sorptivity is very sensitive to surface conditions, water content, and soil management. Various
applications of sorptivity have been discussed (Chong and Green 1979, 1983). It has been applied
for characterizing soil compaction (Gardner and Chong 1989, Walker and Chong 1986) and
calculating incipient ponding time, tp, in surface runoff (Kutilek 1980). Because tp is related to
runoff potential of the soil, S has also been related to the USDA runoff curve number (Chong and
Teng 1986).

4.2 SPATIAL AND TEMPORAL VARIABILITY OF SOIL WATER AND INFILTRATION

Variability of atmospheric conditions (weather), soils, terrain, land cover, and management produce
variability of infiltration rates and soil–water contents in space and time. From the previous section,
we also know that the flux and storage of water in soils are nonlinearly related. In this section, we
address the combined spatial and temporal variability of soil water and infiltration in terms of
physical and statistical distributions. Finally, we touch upon the topic of temporal variability of soil
hydraulic properties.

4.2.1 Vertical Soil Heterogeneity Effects on Infiltration

For simplicity and clarity, the infiltration equations given in Section 4.1 were based on uniform soil
profiles and their mathematical approximants. In reality, sediment deposition (parent materials) and
soil development over time result in layered soil profiles. Even when textural stratification is not
pronounced, hydraulic properties change with depth. Clay-sized particles tend to move from the
surface soils (A-horizon) and accumulate in the layers beneath (B-horizon). As a result, Ks is
generally greatest near the surface, with the exception of surface soil sealing (see Section 4.1.5). Beven
(1984) approximates the vertical profile variation using exponential decay functions for Ks and θs.
The resulting equations were solved explicitly for t(I), meaning that I(t) must be solved iteratively.
Details of the derivation and solution are left for the interested reader to explore.

The resulting equations fit field experimental data in layered soils well (Childs and Bybordi
1969). Subsequently, the exponential decrease in Ks has been used in other models, particularly
TopModel (for saturation flow) (Ambroise et al. 1996). However, this approach may be problematic
for large heterogeneous catchments.

156 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



4.2.2 Observations of Space–Time Variability

Although the concept of infiltration varying spatially over a landscape or watershed is well known,
detailed measurements remain rare. To quote Keith Watson (Watson 1965), “It is apparent therefore
that two, rather opposite, sources of information on the infiltration problem are available. On one
hand theoretical and laboratory analyses on restricted models have provided valuable insights into
the physical process; on the other hand, there is a large body of qualitative information available on
such factors (as entrapped air, sub-surface cracking, cover variability and soil variation and
stratification with depth) on infiltration into field soils. Between these extremes it is possible to
make some progress towards a greater quantitative understanding of infiltration in field soils by field
experiments.”

Indeed, some progress has been made in the last five decades following Watson’s premise and
examples, but these are limited. A few notable examples are given here to illustrate spatial variability
over a field or small catchment.

An early study that is often cited regarding spatial variability of infiltration and associated soil
hydraulic properties was conducted on a 150 ha agricultural field in the central valley of California
(Nielsen et al. 1973). Despite being cited more than 1,300 times to date, many may not be familiar
with details of this study (Nielsen et al. 1973 published in Hilgardia, because the paper had not been
readily available in digital libraries until recently). Twenty infiltration plots were installed over
different soil units comprising primarily clay loam and silty clay. Percent clay in 480 samples from
soil profiles was approximately normally distributed (mean = 45.2%, standard deviation = 10.5%).
Ponded infiltration was maintained until soil–water pressure stabilized to 1.83 m depth. The
resulting statistical distribution of Ks (or field-saturated K) over 20 plots at six depths was skewed,
and the data were approximated by a log–normal distribution. The steady infiltration rate after
20 days ranged from 0.5 to 45.7 cm d−1 (0.021 to 1.90 cm h−1). Soil–water content measurements
were normally distributed (mean and standard deviation of 0.433 and 0.046 m3m−3, respectively).

Tricker (1981) conducted a “reconnaissance survey” of spatial patterns by soil type, slope, and
land use in a 3,600 ha catchment in the United Kingdom. The survey was used to stratify 23 sampling
areas, and “representative” areas were sampled by clustering 10 random single-ring infiltration
measurements within each 20 m2 area. At t = 1 h, rates varied within a wide range of 0 to 250 cm h−1.
The total variance included considerable intra-site and inter-site variance, despite their systematic
landscape stratification. In that landscape, land cover (quantified by litter depth) explained 60% of
the variance, and soil physical variables (e.g., texture and A-horizon thickness) were not significant
explanatory variables.

In two other studies, the spatial variability of field infiltration was quantified by fitting Philip’s
infiltration Equation (4-7) to measurements. Sharma et al. (1980) measured infiltration at
26 locations in a 9.6 ha grassland catchment in Oklahoma, named “R-5” that is now well
documented (Heppner and Loague 2008, Loague and Gander 1990, Loague and Kyriakidis 1997,
Mirus et al. 2011). Sharma et al. (1980) noted that I(t) became linear (steady flow) for t> 45 min in
most cases and that fitted values of A were approximately equal to 0.33 f (t = 1 h). The distributions
of both S and A were approximately log–normal, and S and A were linearly correlated (R = 0.81).
Berndtsson (1987) fits Philip’s equation and another model to double-ring infiltrometer
data collected at 52 sample locations in a 19 km2 catchment in northern Tunisia (Berndtsson
and Larson 1987). Table 4-1 shows the resulting statistics for the parameter values, S and A, which
were moderately cross-correlated (R = 0.56). Frequency distributions for both parameters were
approximately exponential with many low values and tails extending through the maxima in
Table 4-1.

More recently, Green et al. (2009) collected single-ring steady infiltration measurements in
randomly clustered patterns of 15 points within 10 landscape positions, which were stratified
based on topographic attributes within a wheat field in Colorado, USA (Figure 4-7). Figure 4-8
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shows the measured steady infiltration rates, illustrating the variations within and among sites. At
each infiltration site, measured late-time infiltration rates were very linear with t (see R2 values in
Table 4-2), indicating quasi-steady flow. The coefficient of variation (CV) ranged from 0.26 to 0.63
for intra-site samples, and CV = 0.51 among all 150 samples, with a range of late-time infiltration
spanning three orders of magnitude (0.2, 166 cm h−1). This range is common even in this type of
agricultural field. In Section 4.3, we discuss these spatial data in terms of autocorrelation structure
and spatial persistence.

4.2.3 Temporal Variability of Soil Hydraulic Properties

Spatial variability of K near the soil surface measured under ponded and tension infiltration was
found to vary temporally in a cultivated field (Logsdon and Jaynes 1996). This type of space–time

Table 4-1. Statistical Properties of Philips’ Infiltration Parameters [Equation (4-7)]. Based on Spatially
Distributed Samples.

Study Parameter n Mean Median
Std.
Dev. Max. Min. CV (%)

Sharma + S (mm h−0.5) 26 50 43 25 106 9.5 49
A (mm h−1) 26 15 14 9 44 1.5 60

Berndtsson S (mm h−0.5) 52 60 40 60 250 0* 99
A (mm h−1) 52 60 35 60 300 0* 106

Source: Berndtsson (1987) and Sharma et al. (1980).
*0 values reported by Berndtsson were due to negative fitted values of A.
Note: S is sorptivity, and A is a constant related to field-saturated hydraulic conductivity. CV is the coefficient of variation.
Mean is the arithmetic mean, and n is the number of samples.

Figure 4-7. Site map for 150 single-ring steady infiltration measurements. Inset shows a schematic
for 15 randomly located points nested within three 10 m × 10 m plots within each “site” or landscape
position in a wheat field in Colorado.
Source: Green et al. (2009).
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variability appears to be the norm rather than the exception, based on previous reviews of the
literature (Green et al. 2003, Strudley et al. 2008). However, direct effects of tillage on soil hydraulic
properties may be rather transient, as surface soils can reconsolidate after just two wet–dry cycles
(Mapa et al. 1986). Therefore, site- or soil-specific temporal variability of soil properties is extremely
difficult to quantify, but some general trends may be expected within the following time scales:

• Days to weeks: large changes after disturbance, such as tillage, followed by relaxation toward the
undisturbed condition due to reconsolidation;

Figure 4-8. Quasi-steady infiltration rates versus the relative nothing (distance due North) to
illustrate variability within and among sites (A-J) shown in Figure 4-7.

Table 4-2. Statistics of Steady Infiltration Rates Measured.

Steady Infiltration Rate (cm d−1) R2†

Site Mean SD‡ CV Min. Max. Mean SD‡

A 30.70 19.25 0.63 0.20 61.47 0.984 0.025
B 37.52 12.04 0.32 21.49 58.12 0.986 0.018
C 60.98 17.60 0.29 38.61 116.01 0.991 0.015
D 47.62 19.51 0.41 11.83 93.02 0.992 0.019
E 37.97 13.61 0.36 22.58 63.26 0.997 0.002
F 68.43 26.28 0.38 24.61 120.40 0.993 0.007
G 100.99 34.64 0.34 45.71 165.72 0.995 0.003
H 57.25 23.42 0.41 19.79 89.66 0.991 0.007
I 51.81 13.23 0.26 32.28 73.99 0.997 0.002
J 83.89 24.30 0.29 49.58 141.63 0.994 0.004
All§ 57.72 29.43 0.51 0.20 165.72 0.992 0.006

Source: Green et al. (2009).
†Coefficient of determination or variance explained by the linear regression fit.
‡Note small sample sizes of n = 15 per site.
§Results from all 150 infiltrometers.
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• Weeks to annual cycles: seasonal changes with climate and weather patterns (e.g., freezing in
winter and desiccation in summer), systematic soil–water-nutrient management, crop rotation,
and traffic patterns; and

• Years to decades: long-term management and climate feedbacks on soil chemistry, biota, and
physical soil development.

Each of these time scales requires careful consideration when designing monitoring and
management programs. Short-term variations can be dominant in many cases, but long-term
effects may require long-term monitoring, which is challenging to maintain.

4.3 SCALING AND ESTIMATION OF SOIL HYDRAULIC PROPERTIES AND
INFILTRATION

Soil hydraulic properties and the associated infiltration and soil–water redistribution processes they
control may be “scaled” to represent flow rates and storages at different spatial scales. The term
“scaling” is used broadly in soil physics, leading to possible confusion. Here, we try to differentiate
universal or nondimensional properties, which result from parameter normalization, from spatial
scaling. The latter scaling emerges from characterizing bulk process behaviors over a range of spatial
scales containing variability of the underlying soil properties and processes (Section 4.2). Another
topic that relates to estimation of soil hydraulic properties is the use of surrogate data in pedotransfer
functions.

4.3.1 Pedotransfer Functions

Although infiltration and soil hydraulic properties can be estimated directly from field and
laboratory measurements (c.f., Section 4.1.7), flux measurements are expensive and often challenging
to collect. Consequently, relationships called pedotransfer functions (PTFs) have been developed
between soil hydraulic properties and more readily available information, such as soil texture.
Hierarchical PTFs (e.g., Rosetta) and Root Zone Water Quality Model, or RZWQM (Ahuja et al.
2000) use cascading levels of information to estimate hydraulic properties with increasing accuracy.
In this approach, soil bulk density or porosity may be added to basic soil texture as input to a PTF.
Likewise, soil–water retention at discrete pressures, such as 1/3 bar (33 kPa) may improve the PTF.
For example, a universal PTF across soil classes has been used to estimate Ks from the “effective
porosity” (θs− to determine accurate values of in situ soil infiltration parameters θ33), where θs is
saturated water content and θ33 is the water content at 33 kPa, as shown in Figure 4-9 (Ahuja et al.
2010). Although this log–log linear or power-law relationship explains most of the variance among
soil classes (R2 = 0.96), variability within a given soil class or among some adjacent classes may not
fit this simple PTF, and the relationship does not hold for aggregated clay Oxisols and Ultisols.
Moreover, Fang et al. (2010) found that values of Ks calibrated to match measured soil moisture in a
loamy soil did not follow this functional relationship well, and this PTF substantially overestimated
Ks for (θs− θ33) > 0.3.

4.3.2 Dimensionless Relationships in Infiltration Processes

Expressing infiltrability fc as a function of I produces a robust relation that collapses the various
relations of Figure 4-5 into a single parsimonious relation independent of rainfall. The relationship
fc (I), which describes infiltrability both before and after ponding, has been termed the infiltrated
depth approximation (Smith et al. 2002). Outside of a small perturbation in the region near ponding,
based on careful solutions to Equation (4-4), it is a very close approximation (Figure 4-10). Others
have referred to this approach as the time compression approximation (Assouline 2013).
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Figure 4-9. Log–log relationship between saturated hydraulic conductivity Ksat (Ks) and effective
porosity (θs− θ33), where θs is saturated water content and θ1/3 (θ33) is the water content at 1/3 bar
(33 kPa).
Source: Ahuja et al. (2010).

Figure 4-10. Dimensionless infiltrability (fc*) converges for different dimensionless rain rates (r*)
when plotted against dimensionless or scaled cumulative infiltration (I*). Normalization
[Equation (4-10)] makes all dimensional curves in Figure 4-6 approximately equal after ponding
occurs.
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The infiltration and soil–water processes have several scaling variables, which can reduce the
parametric diversity and simplify expressions and measurement. Dimensionless variables are
especially useful in characterizing variability across the landscape. One important soil scale
parameter is saturated hydraulic conductivity, KS, with which one may describe relative hydraulic
conductivity, as shown in Figure 4-5b. The practical lower limit of soil–water content, θr, and
the upper limit, θs, are useful for expressing normalized water content, Θ (Equation (4-1)).
For infiltration, each of the theoretically derived expressions contains the basic capillary head
parameter G, defined previously in Equation (4.8). The parameter G combined with the saturation
deficit Δθ forms a basic parameter, C (m) used for normalization. Sorptivity, S, could also be treated
as a normalization parameter, were gravity to be ignored (e.g., horizontal flow). In summary, the
dimensionless values for infiltrability, infiltrated depth, and time are

f c
� =

f c
KS

; I� =
I
C
; t� =

t Ks

C
, (4-10)

where C = G Δθ.
Dimensionless values used here express the relations illustrated in Figure 4-10.

4.3.3 Geostatistical Scaling Methods and Examples

Spatial autocorrelation functions and variograms are common statistical measures of how a
measured variable (e.g., steady infiltration or soil moisture) is related to itself at different separation
or lag distances. The geostatistical literature is too extensive to cover here, other than by sharing
some examples. Green and Erskine (2004) use variogram analysis to explore the spatial statistical
structure and “persistence” of soil moisture. Spatial persistence can be quantified by the Hurst
exponent (η) which is linearly related to the fractal dimension. Here, we prefer η because it is
independent of the dimensionality of the space explored (number of physical dimensions). Burrough
(1981) showed how these coefficients can be estimated from a variogram as follows:

2γðhÞ= E½fvðx þ hÞ − vðxÞg2�= σ2h2η (4-11)

where (h) is the semi-variance of any spatially variable field v(x) as a function of lag distance h
between pairs of points and E[] is the expected value. On the right-hand side, σ2 is the variance of v
(h = 1) for fractional Brownian noise. By fitting the simple power-law equation, we obtain an
empirical value of the Hurst exponent, η. If the variogram model is linear, η = 0.5. Values of η> 0.5
indicate “persistence” in the observed spatial field, which is analogous to temporal persistence (long
memory) observed in time series of some geophysical phenomena (Hurst 1951).

In the spatial context, persistence means that the increase in variance with lag distance h is
greater than linear, rather than leveling off as h increases. The power-law variogram is nonstationary
(no sill) for all η> 0, but practically, a constant variance or sill is approached as η→ 0.

Green and Erskine (2004) used a mobile TDR (see Plate 4-1) to sample the top 30 cm at around
500 locations in radial patterns within a wheat field in Colorado (Figure 4-11a). Using the variogram
analysis described previously, they demonstrated simple fractal-like behavior in the spatial auto-
correlation of TDR measurements (e.g., Figure 4-11b). For the example data shown, the power-law
model fit the experimental variogram well, indicating fractal behavior and spatial structure in the
data over hundreds of meters. The fitted value of η = 0.48 indicates slight anti-persistence with no
apparent sill out to at least 400 m.

Returning to the spatial infiltration data (Green et al. 2009), those sparser data were analyzed for
monofractal and multifractal behavior over a range of different spatial extents (i.e., maximum lag
distances). Although 150 locations comprise a relatively large sample for infiltration, it was
considered “sparse data” for fractal analysis, so landscape slope and other terrain attributes were
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used as surrogates to see if the sparse data displayed artifacts that were not present in the “dense”
topographic data (5 m grid). Figure 4-12 shows estimates of η versus the maximum lag distance for
(a) sparse infiltration and slope data compared with (b) dense slope data. Based on the colocated
sparse data, the values of η for slope and infiltration were anti-correlated, and both displayed distinct
effects of the domain or extent of the data window analyzed. Based on the dense slope data over each
of the two strips (West and East) sampled within the wheat field (planted and fallow), these effects
were not entirely due to the sample locations or data sparseness. Green et al. (2009) concluded that
maximum spatial persistence occurred in measured infiltration at hillslope scales (approximately
200 m) with values of η decreasing rapidly at smaller and larger scales. The physical interpretation is
that hillslope-scale processes affecting soil erosion, deposition, and development may account for the
observed deviations from pure fractal behavior.

4.3.4 Effective Parameters of Heterogeneous Soil

Scale-invariant parameters are desired to simulate infiltration and soil–water redistribution pro-
cesses over all spatial scales. While great progress has been made toward estimating scale-invariant
properties and processes, the spatial variability of real-world soils complicates things (Ahuja and
Garrison 1996).

Figure 4-11. (a) Map of TDR measurement locations (dots) overlaid on the surface elevation
(grayscale) of a wheat field in Colorado, and (b) the resulting experimental semi-variogram of soil
water content (percent volumetric) in the top 300 mm (circles represent data averages of binned
data pairs) fit with a power-law model (line) for one sampling date, June 30, 1999.
Source: Green and Erskine (2004, Figure 9).
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Numerical experiments by Smith and Diekkruger (1996) illustrate the expected effects of the
larger-scale effective ensemble retention and conductivity relations of soils made up of a log–normal
distribution of the parameters used to describe soil hydraulic relations given previously in
Equation (4-1). In simplest terms, random distributions of P increase the effective or ensemble
value of a and tend to decrease the ensemble value of λ.

Smith and Goodrich (2000) illustrated theoretical expectations for the upscaled or areal infiltration
rate patterns of areas composed of randomly varying infiltration characteristics. The parameter Ks is
important in Equations (4-8) and (4-9), and Ks commonly exhibits approximately log–normal
distributions in space (e.g., Nielsen et al. 1973, Figure 16). These distributions were simulated using
a physically based runoff model and a Latin-hypercube simulation method, as well as using spatial
sampling with and without spatial autocorrelation. Briefly, Latin-hypercube numerical simulation

Figure 4-12. Fractal results of Green et al. (2009) for spatial measurements of single-ring steady
infiltration rates at 150 locations (see Figures 4-7 and 4-8), where the Hurst exponent (η) of a
monofractal model is plotted against the maximum “lag” distance between pairs of measured
values (i.e., excluding all pairs with greater lag distances). For comparison, η values were computed
for terrain slope values using (a) “sparse data” only at the locations of infiltration measurements and
(b) “dense data” for all 5 m grid cells from the digital elevation model (DEM) over the whole field
(“Field”) and regionalized samples from the “West” and “East” strips encompassing sites A–E and F–J,
respectively (see Figure 4-7).

164 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



samples parameter values in equal intervals from assumed cumulative distributions to derive the
simulated output distribution of interest. Figure 4-13 illustrates the general nature of their results under
constant rates of rainfall. A log–normal distribution of Ks results in a reduction in the late-time
asymptotic value of fc. Depending on the variance of Ks, some fraction of the area will have Ks greater
than rainfall rate. In addition, the increased variability of ponding time will result in a gradual
development of runoff, as the figure shows, rather than a single time at which the entire area will begin
contributing to runoff. This can be observed and is intuitively expected

Figure 4-14 also shows how the infiltration rate is related to I for different values of
dimensionless rainfall rate (r*) on an area where the coefficient of variation of Ks is 0.6 (similar
to observed variability from Green et al. 2009). Spatial variability blurs the onset of ponding and
smooths the transition to decreased rates of infiltration over time compared with the homogeneous
case (CVKs = 0). Modeling such variability in Ks has demonstrated improvements in watershed
modeling (Smith and Goodrich 2000).

Figure 4-13. Effective Ks (normalized) over a heterogeneous area versus dimensionless rainfall rate
(r/Ks) plotted for different values of the coefficient of variation of Ks (CVKs).
Source: Smith and Goodrich (2000, Figure 2).

Figure 4-14. Infiltration rate (flux) versus cumulative infiltration for different values of dimensionless
rainfall rate (r* = r/Ks) for an example value of the coefficient of variation of Ks (CVKs = 0.6). The
solid line (CVKs = 0) represents the relationship for a homogeneous area with distinct incipient
ponding.
Source: Smith and Goodrich (2000, Figure 3b).
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4.4 UNCERTAINTY IN MEASUREMENT AND SPACE–TIME ESTIMATION

Estimation of infiltration (flux) and soil–water content (storage) at the scales of interest in space and
time is essential. Issues range from basic science across disciplines to management of resources and
environmental policy. From these topics, sources of uncertainty include

• Measurement error at the support scale (size of each sample or zone of influence),

• Parameter estimation error for a given infiltration model,

• Structural errors in the governing equation or model due to unresolved process interactions and
due to processes active in the field but absent in the model,

• Higher dimensionality of the actual process compared with the model (this is closely related to
the previous point),

• Uncertainty of driving forces, particularly weather and management variables, and

• Subscale space–time variability and inference of statistical distributions with limited data.

Some of these sources of uncertainty are combined within or dispersed among the following
subsections.

4.4.1 Local Measurement Uncertainty

Rainfall intensity and duration are critical driving variables for estimating incipient ponding and
subsequent decreasing infiltration rates. Chapter 2 covers details of precipitation estimation. Here,
we highlight some basic potential errors associated with

• Rain gauge catch (underestimation bias), which is worsened by high winds commonly
associated with convective storms;

• Temporal aggregation of recorded data typical of some meteorological networks (e.g., in the
COlorado AGricultural Meteorological nETwork (CoAgMet, http://ccc.atmos.colostate.edu/
~coagmet/) data are aggregated to hourly amounts);

• Sparse spatial measurements, where the meteorological station may be a considerable distance
from the area of interest and the spatial variability of precipitation is not well known (Sivapalan
and Bloschl 1998);

• Temporal gaps (missing data) or poor-quality precipitation data; and

• Variable or changing states of precipitation, most notably from liquid to solid state, but also
thermodynamic differences within phases.

The temperature of infiltrating water affects the dynamic viscosity of water, which affects
infiltration rate (Musgrave 1955). Likewise, the chemical composition of irrigation water may affect
soil–water infiltration through flocculation and dispersion of clay minerals, for example. Even
though some of the thermodynamic and chemical effects may be predictable in theory, large
potential uncertainty exists in estimating water quality characteristics, if they are measured at all.

Initial soil–water content is an important factor for infiltration [e.g., Equation (4.8)], and θ (t) is
typically inferred from dielectric sensors. TDR or capacitance probes are sensitive to soil temperature
and electrical conductivity among other measurement factors. We can account for some of these
factors (Green and Erskine 2011, Schwartz et al. 2009a), but only with partial confidence even in the
best measurement programs. In practice, water content estimated from automated electrical sensors,
including some of our national networks (http://www.wcc.nrcs.usda.gov/scan/), may be highly
uncertain.

Soil hydraulic properties may be our greatest source of uncertainty for predicting infiltration at
the local scale, mainly due to a lack of data. Detailed hydraulic property data underlying the soil
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characteristic curves in Figure 4-4 are rare, especially for K(θ) or K(ψ). As noted earlier, field-based
measurement of sorptivity [S, Equation (4-7)] is more feasible for many points within an area of
interest.

4.4.2 Inverse Methods and Parameter Estimation

Even with the simplest models, the model parameters are estimated by fitting measured data to the
model responses. Some parameter estimation methods could be as simple as minimizing the sum of
squared errors or root mean squared error between measurements and the equation for I(t). In other
cases, more sophisticated parameter estimation methods may be used, which provide optimal
parameters and some measure of parameter uncertainty (Abbaspour et al. 2004, Doherty and Johnston
2003, Fang et al. 2010, Minasny and McBratney 2002). Such information can be used in forward
modeling of infiltration and soil–water processes, ultimately providing estimates of their uncertainty.

4.4.3 Model Process Uncertainty and Preferential Flow

The word model itself indicates that the real-world process is simulated by an idealized conceptual
and mathematical approximation. Total uncertainty of model results can be quantified by compar-
isons with relevant data, but the breakdown of error sources between measured data, model
structure, and parameter values is generally not known. For example, one may lump all of the
differences between simulated and observed data into parameter estimation error, simply because
the model is assumed to represent the processes and their interactions.

Preferential flow (PF) paths into and through soils are often neglected, even though PF may
dominate water and chemical fluxes under certain conditions, including ponding. Thus, if PF occurs
at any time during an infiltration event, model structural error (process omission) may become the
dominant source of uncertainty. To be clear, PF includes a broad class of processes by which flow
paths bypass some or most of the soil matrix. Common forms of PF are

1. Soil macropore flow (e.g., root and earthworm holes with effective diameters greater than the
largest matrix pore; Beven and Germann 1982) and natural pipes on hillslopes (e.g., 10 cm
diameter conduits in the near subsurface; Wilson 2011);

2. Flow fingering due to hydraulic instabilities (Jury et al. 2011), which are usually induced by
wetting of a fine-textured layer over a dry coarser layer. Fingering has been identified and
induced in laboratories under quantifiable and repeatable conditions (Selker et al. 1992), but
detecting and quantifying fingering in the field is difficult; flow instability may also be linked to
water repellency (Bughici and Wallach 2016); and

3. Focusing of variably saturated flow by structured heterogeneity in the porous media, including
lateral subsurface flow in sloping unsaturated soil (Zaslavsky and Sinai 1981).

The latter mechanism (number 3) requires neither macropores nor an impeding layer in terms
of Ks, because fine-scale layers with different water retention and hydraulic properties cause
anisotropy in upscaled unsaturated K. That is, effective values of K parallel to layering exceed values
perpendicular to layering, and the unsaturated anisotropy exceeds the anisotropy at saturation.

4.4.4 Statistical Inference

In the end, flux and storage at different scales should be estimated along with confidence intervals. In
some cases, one may want to know the subgrid variability or variance within a defined spatial zone.
Spatial moments (mean, variance, etc.) may be used to characterize complex spatial patterns at
different times (synoptic views) or average moisture states. In this way, the outcome of complex
processes and their interactions in space and time may be summarized by lumped statistical
distributions. Likewise, the various sources of uncertainty outlined here may propagate to the
distributions of flux and storage needed directly for risk assessment. Other process models may
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“consume” these statistical distributions to produce derived distributions of land–atmosphere and
ecological variables of interest.

4.5 LINKS BETWEEN INFILTRATION AND RUNOFF AT DIFFERENT SCALES

As noted in Section 4.0 and Figure 4-1, infiltration and soil–water processes interact with each other
and with other hydrological processes over a range of space–time scales. At the time scale of a surface
runoff event, the interactions with runoff, run-on, and subsurface lateral flow can be very important.

4.5.1 Runoff, Run-On, and Process Interactions

Scaling of infiltration is complicated by the types of spatial variability illustrated previously (including
KS varying by orders of magnitude) and interactions among subareas along flow paths (Wood 1995).
For infiltration excess overland flow, runoff from upslope may infiltrate downslope on soil surfaces
with higher infiltration capacities, which can make the average infiltrability of a full hillslope or large
area greater than the arithmetic mean. It can also be reduced if flow paths occur on soils with surface
seals, so that the total variance, spatial correlation, and connectivity all need to be estimated. For the
saturation excess mechanism of overland flow generation, surface infiltrability is rarely the limiting
factor, and other complexities, such as subsurface pipes caused by animal boroughs, tree roots, and
subsurface erosion, make the net infiltration and runoff more difficult to predict.

This chapter has primarily addressed diffuse infiltration of rainfall or other distributed sources
of water. Moving up in scale to a large watershed, concentration of runoff into streams and lakes
forms areas of focused infiltration. Surface water infiltration is most important in arid to semi-arid
regions where groundwater levels may be low and hydraulic gradients are downward, at least most of
the time. For example, ephemeral streams emerging from mountainous areas flow into seasonally
dry channels that transmit water readily through coarse-textured streambeds (Constantz et al. 2013,
Constantz et al. 2002). Such streambed infiltration is highly variable in space and time, but
significant for regional water resources. Upscaling of these fluxes remains a challenge.

In a lumped watershed model, or one in which all land areas are connected to a stream or other
water body, subarea interactions between infiltration and runoff are not considered. Only runoff at the
outlet or stream is estimated. However, spatially variable infiltration and routing of runoff along
hillslope areas includes quantification of overland flowmoving on and off of each simulated area. Thus,
run-on and runoff may occur simultaneously. This simple definition encompasses a more restricted
definition by Nahar et al. (2004): “The run-on process can be defined as the infiltration of surface water
that, as it moves downslope, encounters areas where moisture deficit has not yet been satisfied. In such
cases, water available for infiltration includes rainfall and water supply from upslope areas.”

4.5.2 Recent Advances in Simulating Space–Time Infiltration and Soil Water

Several research studies have explored the potential effects of spatial patterns of landscape properties
and space–time precipitation on the resulting patterns of infiltration and soil water. Here we
highlight a study that combined geostatistical scaling of rainfall and soil variables with spatial
infiltration process modeling to derive statistical (multifractal) patterns of infiltration.

Meng et al. (2006) used a universal multifractal (UM) model (Schertzer and Lovejoy 1987) to
generate high-resolution rainfall events and soil spatial patterns as input to the process-based
Hortonian Infiltration and Run-Off/On (HIRO2) model. HIRO2 (fully described in Meng et al. 2008)
is a grid-based spatial hydrology model for rainfall infiltration and runoff events that computes
f (x, t), I (x, t), and θ Δz (x, t), whereΔz is the active soil profile depth and x = [x, y] horizontal location.

Meng et al. (2006) generated multiple rainfall and KS fields with the desired characteristics by
systematically varying the three scaling parameters. Figure 4-15 shows three fields of KS, for example,
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by varying the Levy index for KS (αKs
= 1.5, 1.75, and 2.0). Schertzer and Lovejoy (1987) described

the nature of singularity as “most of the space becomes inactive (darker blue in Figure 4-15), while
the increasingly sparse active regions (dark red) become infinitely active.” To the eye, patches of low
KS (blue) and high KS (red) intensify as αKs

→ 2, which indicates an increasing degree of multifractal
behavior, rather than changes in sparseness and heterogeneity (Lavallée et al. 1993).

Figure 4-16 shows the temporal progression of pairs of spatial fields of rainfall and infiltration
rate for a few snapshots during a rainfall event. Here, space–time rainfall patterns over the field area
of interest resulted from generating a larger fractal pattern of rainfall and moving it at a specified
mean advective velocity of the storm, then using only the spatial area overlaying the area of interest
at each time. At early times of 2 and 10 min after rainfall began, the spatial fields of infiltration mimic
those of rainfall rate, because rainfall controls i. At 50 min, features of both the rainfall and Ks fields
are apparent as the control on infiltration began to change from rainfall to soils. At 90 min, the
infiltration pattern is clearly soil dominated, as seen by the static spatial pattern of KS. Watershed
topography also affects the pattern via infiltration of run-on water.

Figure 4-15. Generated fields of saturated soil hydraulic conductivity (Ks) illustrating the effects of
the Levy index (αKs) in the universal multifractal model.
Source: Meng et al. (2006).

Figure 4-16. Synoptic views of paired rainfall (left field) and infiltration rate (right field) at times of
2, 10, 50, and 90 min after the beginning of a rainfall event, where rainfall is simulated as a universal
multifractal model in space with advection in time, and infiltration fields are simulated with the
process-based HIRO2 model. Soil saturated hydraulic conductivity (Ks) is a single realization of a
universal multifractal model (see Figure 4-15).
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Figure 4-17 plots the power spectra of these spatial fields, including more times, and shows the
graphical progression from rainfall-controlled spatial patterns (nonscaling in this case) at early
times to soil-controlled patterns (scaling) at late times in the infiltration/runoff event. A negative
slope of the power spectrum indicates scaling behavior. Thus, the UM model was useful for
generating input fields and analyzing the space-time structure of the HIRO2 model output i(x, t),
illustrated here, as well as I (x, t) and θ Δz (x, t). Obviously, these examples are theoretical and
based on a research-level computer model that would not be used for most practical problems. The
insights gained about process interactions in space and time provide a consistent understanding of
how point-scale infiltration processes may relate to infiltration and runoff processes over larger,
heterogeneous areas.

In addition to scaling properties of infiltration with dynamic effects of run-on, the spatial
variability affects areal averages of infiltration rate and cumulative infiltration with time. In other
words, characteristics of the internal variability of rainfall, soils, and topography can affect the
average responses over a spatial field or watershed.

4.6 SUGGESTIONS FOR ADVANCING INFILTRATION SCIENCE AND PRACTICE

In this chapter, we discussed a rich history of quantifying water infiltration into soils and associated
flow and storage of water in soils (soil moisture). Analytical equations have been derived to describe
infiltration and soil–water processes, and some of these have been made dimensionless to provide
more universal equations (e.g., Figure 4-10 shows a log–log relationship between scaled infiltrability
fc* and scaled cumulative infiltration I*). However, spatial and temporal variability remain difficult to
quantify, as soil moisture and infiltration display fractal and multifractal behaviors. While geos-
tatistical characterization of space–time patterns and statistical inference may have disappointed
some after a surge of interest and promise in the 1980s, spatial statistics and scaling methods remain
essential for quantifying variability, often at nested scales, across landscapes. The problems that we

Figure 4-17. Power spectra of rainfall (thick, solid line), saturated soil hydraulic conductivity
(Ks; dashed line; thin solid linear regression fit), and simulated infiltration rate (lines with symbols),
showing the temporal progression from nonscaling (in this example), rainfall-controlled infiltration
to scaling, soil-controlled infiltration (after Meng et al. 2006). E(k) is the power spectrum of each
variable, k is the wavenumber, β is the spectral exponent, and t is the time in min after rainfall began
for each spatial field of infiltration.
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need to address are usually greater than our individual measurement scales, so spatial estimation and
averaging or upscaling are essential.

Infiltration and soil–water redistribution in the subsurface are estimated and predicted using
equations with scale-dependent effective parameters, which may be derived explicitly from govern-
ing equations and some knowledge or assumptions about the subscale variability. More commonly,
constant model parameter values are used and calibrated to fit observed fluxes (e.g., runoff) and state
variables (e.g., soil moisture). Whether simple analytical equations or complex numerical models of
the processes and space–time patterns are used, these models must be linked to field observations to
gain verity and instill confidence in the model predictions. This brings us back to measurements and
inference (based on indirect measurements) of water flux and storage in space and time.

4.6.1 Advances in Measurement across Scales

Most of the past and current methods measure soil moisture and infiltration over very limited spatial
scales, where each sample is typically at the submeter scale and rarely above the length scale of an
adult human. In fact, the largest scale of controlled infiltration experiments has been with sprinkler-
simulated rainfall on plots up to about 100 m2 but usually smaller. These costly, isolated research
experiments may be a thing of the past given reductions and redirections of limited research funding.

In contrast, creative thinking and technological advances are likely to yield relatively low-cost
techniques to infer soil moisture in the near surface. One example is COSMOS (see timeline in
Figure 4-2), where the scattering of cosmic radiation is measured at a ground-based station to infer
near-surface soil moisture over areal scales of hundreds of m2 (Desilets et al. 2010, Zreda et al. 2008,
Zreda et al. 2012) and penetration depths of approximately 0.3 m (Franz et al. 2012), depending on
other sources of hydrogen in the measurement zone (air, soils, and vegetation). Another example is
optical cable buried in the near surface at multiple depths. Each cable can estimate soil temperature
accurately at the meter scale (Tyler et al. 2010), and soil moisture may be inferred between cables
(Steeledunne et al. 2010). Real-time measurements with high temporal resolution make inferring
water fluxes possible, and ongoing research may lead to accuracies useful for estimating infiltration
rates over large areas within instrumented fields. Of course, these example methods are still being
explored, and their applications will be limited to research studies for some time.

Ground, airborne, and satellite remote sensing of soil moisture may provide much broader
spatial measurements (Famiglietti et al. 2008) limited to the near surface (i.e., a few centimeters) at
regular temporal intervals. The temporal frequency is limited by the flight time and intervals between
overpasses, but this too is improving. The authors hold little hope for accurately estimating
infiltration processes from remote sensing, but we expect to see rapid advances in various methods
of areal (also aerial) surveillance related to inferring near-surface soil moisture. We also recognize
that gravity methods (e.g., GRACE satellite mission, Rodell et al. 2007) are promising for vertically
integrated water storage and changes over time, but the current spatial resolution (approximately
400 to 600 km, Chen et al. 2005) of GRACE satellite data is a major limitation.

On a more optimistic note, automated data collection across a range of scales has resulted in
exponential growth of data acquisition and storage. Consequently, “data mining” is a discipline in
itself, and we are likely to gain specific and broad knowledge from the wealth of data now being
collected. The powers of observation remain paramount in scientific discovery, and we stress the
value of carefully designed measurements and monitoring. Some level of consistency, even
uniformity, is needed across sites to allow for rigorous multilocation synthesis of data.

4.6.2 Systems Approaches for Simulating Process Interactions

Infiltration and soil–water flow and storage were addressed largely in isolation here to avoid
confusion. As Figure 4-1 illustrates, however, process interactions in the context of whole systems in
space and time cannot be neglected. Certain dominant behaviors may emerge only from studying
infiltration in a relatively broad sphere of geographical, biological, and chemical influences, and its
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spatial context. The illustration of multiscaling infiltration (Meng et al. 2006) was purely physio-
graphical, but the combination of terrain (watershed topography), soil variability, and rainfall
patterns in space and time required a detailed hydrological model to act as a spatial transfer function
from which patterns of infiltration could be explored.

Other models incorporate water interactions with plant growth and projected climate change
(e.g., WAVES, Crosbie et al. 2010, Green et al. 2007) and various agricultural system components, for
example, RZWQM (Ma et al. 1998), including agricultural management (Fang et al. 2012), soil
heterogeneity (Ahuja et al. 2010), and macroporosity (Malone et al. 2001). Continued improvements
and applications of agro-ecosystem models over a range of landscapes and watershed scales
will enhance our understanding of potential interactions between soil hydrological processes and
biological processes. Ideally, the computed process interactions will improve predictions of
infiltration and soil–water distributions over a range of scales.

4.6.3 Computer Decision Aids and Risk Assessments

How does one make informed water resources decisions given all of the complex space–time
interactions noted here? Like it or not, policy and management decisions require “simple answers to
simple questions” (anonymous, but often stated). “Simple questions”may be well posed, usually after
considerable thought and synthesis of knowledge, but “simple answers” are rare or potentially
wrong. The challenge is to condense very complex system behaviors into response functions and
statistical distributions that summarize available information.

A probability density function (pdf) and its integral, a cumulative density function (cdf) of the
derived distribution of interest (e.g., θ (x, t) inferred from measurements or model results), contains
valuable information for threshold analysis and risk assessment. Regional assessments of vulnera-
bility to groundwater contamination have used this general approach (e.g., Loague et al. 1996). When
societal values can be quantified in terms that relate to physical variables, decision making becomes
relatively straightforward.

Computer systems may incorporate very complex statistical and process models that are not
fully exposed to users, while providing elegant and clean (visually simple) user interfaces as decision
aids. This topic (also known as “decisions support systems”) could be a chapter or book of its own,
but suffice it to say that modern computing technologies (local and web based) enable powerful
decision aids driven by rigorous scientific methods and rich data.

LIST OF TERMS

Acronyms

COSMOS Cosmic-ray Soil Moisture Observing System (ground-based sensors)
GRACE Gravity Recovery and Climate Experiment (satellite mission)
HIRO2 Hortonian Infiltration and Run-Off/On model

PTF pedotransfer function
RZWQM Root Zone Water Quality Model (also RZWQM2)
WAVES Water, Atmosphere, Vegetation, Energy, and Solutes model

UM universal multifractal model

Symbols

A empirical constant (m s−1) of the Philips infiltration Equation (4-7)
C basic scaling parameter (m)

CV coefficient of variation = standard deviation ÷ mean value of a variable (-)
CVKs

coefficient of variation of saturated hydraulic conductivity (-)
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d depth of water (m)
E expected value operator
f infiltration rate (m s−1)
fc infiltrability or infiltration capacity (m s−1)
fc* scaled infiltrability (-)
G capillary drive parameter, defined as the integral under the relative hydraulic

conductivity and capillary pressure head relation (m)
h lag distance (m) between pairs of points
H total hydraulic head (m)
I cumulative infiltration (m); i = dI/dt
I* scaled cumulative infiltration (-)
K hydraulic conductivity (m s−1)
Ks saturated hydraulic conductivity (m s−1)

LAI leaf area index (m2 m−2)
q Darcy flux vector (m s−1)
r rainfall rate (m s−1)
r* dimensionless rain rate = r/Ks (-)
R2 coefficient of determination for linear regression
S soil sorptivity (m s−1/2)
t time (s)
t* scaled time (-)
tp time to incipient ponding (s)

v(x) spatially variable field function
x horizontal location, x = (x, y)
z vertical distance (m) measured downward from the soil surface

Δz active soil profile depth (m)
θ soil–water content (m3 m−3)

Δθ saturation deficit (m3 m−3) equal to = θs− θi
θi initial soil–water content (m3 m−3) for the saturation deficit
θs saturated soil–water content (m3 m−3)

θs− θ33 effective porosity (m3 m−3)
θ33 water content (m3 m−3) at 33 kPa (1/3 bar)

λ, P, a parameters of the water retention model, Equation (4-1)
Θ effective saturation (-), Equation (4-1)
α Levy index (αKs

is the Levy index of Ks) of the universal multifractal (-)
γ(h) semi-variance (units of the spatial variable squared)

η Hurst exponent (-)
σ2 variance of v (h = 1) for fractional Brownian noise
ψ pressure head (m)
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CHAPTER 5

Probability Distributions in
Groundwater Hydrology

Hugo A. Loáiciga

5.0 GENERAL

Groundwater hydrology is a discipline of the earth sciences concerned with the quantitative study of
water flow, water storage, chemical transport, and related processes in the subsurface. Groundwater
hydrologists measure properties of soils and rocks to gain an understanding of subsurface hydrologic
processes and to construct predictive models of groundwater phenomena. Those properties include,
but are not limited to, porosity, permeability, hydraulic conductivity, specific storage, specific yield,
and dispersivity. Because of the complex nature of geologic materials, measurements of these
properties exhibit variability even in strata considered to be homogeneous on account of their origin
and basic features (such as mineral composition and textural properties). For example, hydraulic
conductivity measurements made at different locations in an aquifer exhibit substantial variability.
Figure 5-1 exemplifies this, showing a plot of 201 measurement of hydraulic conductivity made in
cohesive sediments of lacustrine origin underlying Mexico City.

The measurements of hydraulic conductivity shown in Figure 5-1 vary over five orders of
magnitude. Those measurements—and those of other aquifer properties—can be analyzed using the
laws of probability and statistics to obtain a proper description of the property (or variable) under
study that goes beyond the calculation of its average, standard deviation, or other indicators of
central tendency, dispersion, and asymmetry. The fitting of an aquifer property with a proper
probability density function (pdf) is a necessary step—after its measurement in the field or in the
laboratory—to arrive at a complete description of its probabilistic characteristics. Analysts can then
use the fitted pdf in various analyses and design modes that provide a wider range of options than
those available when the property is treated deterministically (i.e., as a nonrandom entity).

The previous paragraph should not suggest that all soil and rock properties vary over a wide
numerical range. The porosity of soil and rocks, for example, takes values between 0 and 1. Table 5-1
shows the range of porosity of common rocks. Therefore, in the probabilistic analysis of porosity one
must employ probability density functions defined over a finite domain, or use truncated probability
functions (see, e.g., Loáiciga et al. 1992).

This chapter presents (1) several pdfs commonly used in groundwater hydrology and (2) examples
of how pdfs are used to interpret aquifer properties and groundwater variables in a probabilistic
manner. Several of the examples rely on hydraulic conductivity data. This is because hydraulic
conductivity is an aquifer property that controls themovement of groundwater and dissolved chemicals
in a fundamental manner. Besides its importance in groundwater hydrology, its variability is well suited
for probabilistic analysis. In addition, hydraulic conductivity has been more extensively measured in
situ or in the laboratory than any other aquifer property of relevance in groundwater hydrology. For
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this reason, datasets that can be analyzed with the methods of this chapter are more common for
hydraulic conductivity than for any other aquifer property. This makes the hydraulic conductivity an
attractive property to work with when describing probabilistic methods amenable to the characteriza-
tion of aquifer properties. This chapter uses the symbol K to represent a generic aquifer property or
groundwater variable, although it is customarily used to represent the hydraulic conductivity. Some of
the material presented in this chapter has been borrowed from the works of the author and
collaborators (Loáiciga 2004, 2008a, 2008b, 2014; Loáiciga and Leipnik 2005; Loáiciga et al. 2006).

5.1 DEFINITIONS

5.1.1 Probability Density Function

A pdf, in the univariate case, is a mathematical formula that assigns a nonnegative value to any
number contained in the domain of the pdf. They are functions of the form f(x), in which x denotes
any value at which the function f is calculated. The set of x values over which the function f is defined
is called the domain of the pdf. The pdf integrated over its entire domain yields a value of 1. When
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Figure 5-1. Measurement of hydraulic conductivity (K) in the lacustrine sediments underlying Mexico
City. The horizontal line is the average, 3.94 × 10−8 cm/s.

Table 5-1. Range of Porosity in Near-Surface Common Rocks.

Rock type Range of porosity (%)

Igneous:
basalt
granite

0.22–22.06
1.11–3.98

Sedimentary:
sandstone
breccia
limestone

1.62–26.40
0.78–18.73
0.27–4.36

Metamorphic:
gneiss
marble

0.30–2.23
0.31–2.02

Source: Krynine and Judd (1957).
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integrated over part of its domain, it produces a probability between 0 and 1. The mathematical
formula of a pdf may take many forms. Among the best known and more widely used ones are the
uniform, normal (or Gaussian), the log–normal, the gamma and log–gamma, beta, exponential,
Weibull, Gumbel, student t, and the chi-squared pdfs. In some pdfs the x values are strictly integer
values. These pdfs are more commonly referred to as probability distributions. The binomial,
Poisson, and geometric probability distributions are commonly used.

5.1.2 Correlation Coefficient

Consider two random variables X1 and X2 with expected values (or means) μ1 and μ2, and variances
σ21 and σ22, respectively, that are correlated with correlation coefficient ρ. The following formula
defines the latter:

ρ=
E½ðx1 − μ1Þðx2 − μ2Þ�

σ1σ2
(5-1)

where the symbol E denotes the expectation operator. The correlation coefficient ρ is a normalized
measure of the degree of statistical association between two random variables. Its magnitude falls in
the range [−1, 1]. A value of −1 means perfect negative correlation, a value of +1 denotes perfect
positive correlation, and a value of zero means that the variables X1 and X2 are uncorrelated.

5.1.3 Spatial Correlation

Spatial correlation is a measure of the degree of statistical association among measurements of an
aquifer property made at different locations in an aquifer. Positively correlated measurements occur
when the spatial correlation between two measurements of the property K1 and K2 made at locations
x1 and x2, respectively, ranges between 0 and 1. The closer the spatial correlation is to 1, the greater
the degree of statistical association between the measurements K1 and K2.

5.1.4 Correlation Scale

Correlation scale is the distance between two points x1 and x2 beyond which the aquifer property K1

(at x1) and K2 (at x2) cease to be spatially correlated.

5.1.5 Statistical Homogeneity and Independence

Statistical homogeneity and independence of measurements are conditions that must be met when
attempting to fit a pdf to a sample of measurements of an aquifer property. Statistical homogeneity
implies the pdf of the property in question is the same everywhere in the aquifer or portion of aquifer
in which measurements are made with a similar device or method. In this case, the measurements
exhibit a constant average and a spread of values about the average devoid of spatial trends or spatial
periodic patterns. Independence of measurements implies the value of the measured property at any
location in an aquifer is not related in a probabilistic sense to any other of its values measured at
other locations in the same aquifer. Independent measurements are uncorrelated. Property
measurements can be statistically homogeneous and correlated simultaneously. In the latter instance,
one must resort to geostatistics, a discipline concerned with the study of spatially correlated variables
(Journel and Huijbregts 1978, Dagan 1989, Loáiciga 2010). From a physical standpoint, statistical
homogeneity is approximated in the field when geological processes produce unconsolidated
deposits (clays, silts, sands, gravels, or combinations of these) or consolidated deposits (also called
bedrock aquifers) of similar texture, porosity characteristics, and mineral composition. Indepen-
dence requires physical separations among property measurement locations that ensure the
vanishing of any statistical dependence among its values. Measurement locations so chosen produce
samples of measurements that are uncorrelated. The minimal spatial separation among measure-
ments must exceed the correlation scale of the saturated hydraulic conductivity. The correlation scale
can be estimated using geostatistical procedures (Loáiciga 2010).
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5.2 BASIC NOTATION AND KEY STATISTICS

A sample of nmeasurements of an aquifer property K is assumed available for statistical inference.
The individual measurements are denoted by K1, K2, : : : , Kn, or, symbolically, by, Kj, where
j = 1, 2, : : : , n. The natural logarithm of K is denoted by Y = ln K. The sample of Y values is
denoted by Yj (= ln Kj), where j = 1, 2, : : : , n. The logarithmic transformation is commonly
applied to permeability, hydraulic conductivity, or other aquifer properties that are frequently
found to be log–normally distributed. That is, the property is rendered normally distributed (and
thus symmetric) upon undergoing the logarithmic transformation. The following subsections
introduce several important statistics that describe the central tendency, the degree of spread about
a measure of central tendency, and the skewness of data. The statistics are necessary in fitting pdfs
to measurements of aquifer properties.

5.2.1 The Sample Average

Calculate the sample average of the property K using the following formula:

K =
1
n

Xn
j= 1

Kj (5-2)

The sample average K is an estimate of the unknown population average of K, or μK. The sample
average is a measure of the central tendency of the data it represents.

The sample average of the log property Y is calculated with the following equation:

Y =
1
n

Xn
j= 1

Yj (5-3)

The sample average Y is an estimate of the unknown population average of Y, or μY.

5.2.2 The Geometric Mean

Calculate the sample geometric mean of K (denoted by KG) with the following equation:

KG = eY (5-4)

The sample geometric mean is an estimate of the (unknown) population geometric mean,
KG = exp(μY). The geometric mean is sometimes used as an effective saturated hydraulic conduc-
tivity in groundwater hydrology. The effective saturated hydraulic conductivity is a parameter that
relates the average groundwater specific discharge to the average hydraulic gradient.

5.2.3 The Standard Deviation and Variance

Calculate the sample standard deviation of the property K as follows

σK =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1

Xn
j= 1

ðKj − KÞ2
vuut (5-5)

The sample’s standard deviation σK is an estimate of the unknown population standard
deviation of K, or σK . The sample variance of the property K is equal to σ2K . The sample standard
deviation measures the spread of the data about its average.
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The sample standard deviation of the log property (σY ) is calculated as follows:

σY =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1

Xn
j= 1

ðYj − YÞ2
vuut (5-6)

The sample standard deviation σY is an estimate of the unknown population standard deviation
of Y, σY . The sample variance of log conductivity equals σ2Y .

5.2.4 The Coefficient of Skew

The sample coefficient of skew measures the degree of asymmetry of a set of measurements of the
property K. It may take positive or negative values. The larger the absolute value of coefficient of
skew is the more asymmetric is the pdf of the property K. A symmetric pdf, such as the normal pdf,
has a coefficient of skew equal to zero. The sample coefficient of skew is calculated using the
following equation:

CsK =
n

ðn − 1Þðn − 2Þ
Xn
j= 1

�
Kj − Kj

σK

�
3

(5-7)

The sample coefficient of skew of the log property Y is calculated as follows:

CsY =
n

ðn − 1Þðn − 2Þ
Xn
j= 1

�
Yj − Yj

σY

�
3

(5-8)

If the log property Y is normally distributed, then its coefficient of skew equals zero. In this
instance the sample coefficient of skew of the log property Y tends toward zero. In practice, if
−0.05≤ CsY≤ 0.05, then the log property Y can be assumed to be normally distributed, or
equivalently, that the property K follows a log–normal pdf. Otherwise, that is, if jCsY j > 0.05,
use a skewed pdf to fit the log property Y.

The average, standard deviation, and coefficient of skew can be calculated expeditiously and
accurately using functions available in commercial spreadsheets and numerical software such
Microsoft Excel and MATLAB.

5.3 FREQUENTLY USED PDFS IN GROUNDWATER HYDROLOGY

This chapter presents several pdfs that have been used to model aquifer properties or groundwater
processes. The following sections include several applications.

5.3.1 The Log–Normal pdf

The log–normal pdf has been found to fit many types of data well, including aquifer properties
such as permeability and hydraulic conductivity. Freeze (1975) provides early impetus for using the
log–normal pdf as a statistical model to fit hydraulic conductivity data. Over time, the log–normal
pdf has been accepted as a viable model for describing various aquifer properties (see a discussion of
this topic in Loáiciga et al. 2006). Attractive features of the log–normal pdf in the modeling of some
aquifer properties are (1) it can fit positively skewed data, (2) the parameters of a normally
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distributed log property Y [symbolically Y∼NðμY , σ2Y )] are the population mean μY and the
population variance σ2Y , which are estimable using the standard sample estimators for the mean
and previously introduced variance. Moreover, the quantiles of Y can be obtained straightforwardly
from tabulated quantiles of the standard normal pdf N(0, 1) or from statistical software. The log–
normal pdf, however, cannot be used to model either skewed log data or negatively skewed aquifer
data. Although the log–normal pdf allows positive lower bounds on aquifer data, it does not allow
upper bounds. In contrast, the log–gamma pdf, a generalization of the gamma pdf, can fit skewed
data, with upper and lower bounds, or with upper or lower bounds.

Properties of the Log–Normal pdf
Let K and θ denote an aquifer property and its lower bound, respectively, and Y = ln (K− θ) be the
log property. Evidently, K = expðYÞ þ θ. The three-parameter log–normal pdf is given by the
following formula (μY denotes the population mean of the log property Y):

f KðsÞ=
1

ðs − θÞσY
ffiffiffiffiffi
2π

p exp

�
−
1
2

�
lnðs − θÞ − μY

σY

�
2
�
s > θ (5-9)

in which the lower bound θ is nonnegative due to physical feasibility. The lower bound θ is generally
assumed equal to zero in most applications of the log–normal pdf in groundwater hydrology. The
log–normal pdf in equation (5-9) implies several formulas for the property K, the log property Y, and
their parameters, which follow. In these equations, for the sake of simplicity, the population means of
K and Y are replaced by their sample averages K and Y , respectively. The population standard
deviations of K and Y are replaced by their sample estimates and σK and σY , respectively. CSK denotes
the population and sample coefficient of skew of the property K.

Expected Value of the Property K

K = e

�
Yþ σ2

Y
2

�
þ θ (5-10)

The expected value is estimated by the sample average written in Equation (5-2).

Median of the Property K (K0.50)

K0.50 = eY þ θ (5-11)

The geometric mean of the property K equals KG = θþ expðYÞ, usually with θ = 0, which implies
the geometric mean and the median of log–normally distributed K data are equal to each other.

Equation (5-11) is convenient for estimating the lower bound θ. To do so, the sample estimator
K0.50 is obtained and then substituted in Equation (5-11), which is then solved for an estimate of θ.
Alternatively, Equation (5-10) could also be used to estimate θ. If the sample size is large (say, more
than 30 values of hydraulic conductivity) and K conformed exactly to a log–normal pdf, then the
estimators of θ from either equation will converge to the same value as the sample size increases. The
common assumption in practical applications in groundwater hydrology is that θ= 0.

Mode of the Property K
The mode (KM) is the most likely value of K:

KM = eY−σ
2
Y þ θ (5-12)

Equations (5-10), (5-11), and (5-12) show that KM < K0.50 < K .
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Variance of the Property K (σ2K)
The following formula provides a relation between the variance of the property K and its log
property Y:

σ2K = e2Yþσ2Y · ðeσ2Y − 1Þ (5-13)

The variance of K is estimated by the square of the sample standard deviation in Equation (5-5).

Coefficient of Variation of K (CvK)
For θ= 0∶

CvK =
σK
K

= ðeσ2Y − 1Þ12 (5-14)

The coefficient of variation is a dimensionless ratio that measures the magnitude of the standard
deviation of K relative to its mean. The larger the coefficient of variation is, the larger is the variability
of K about its mean.

Coefficient of Skew of the Property K (CsK)

CsK =
E½K − K�3

σ3K
=

e3 σ
2
Y − 3 σ2Y þ 2

C3
vK

(5-15)

in which Cvk is given by Equation (5-14). The Csk in Equation (5-15) is always positive. It is estimated
with Equation (5-7).

Quantiles of the Property K
For 0< p< 1, PðK ≤ KpÞ= p defines the p-th quantile (Kp) of property K. Kp is given by

Kp = eðYþzpσY Þþ θ (5-16)

In Equation (5-16) zp denotes the p-th quantile of the standard normal variate with zero mean
and unit variance, which is readily obtained with ubiquitous software such as Microsoft Excel, using
the function zp = norm.s.inv(p). The quantile Kp can be obtained directly as follows:

Kp = eYp þ θ (5-17)

where the p-th quantile Yp of the log property Y can be obtained with the norm.inv(p, Y , σY )
function of Microsoft Excel.

5.3.2 The Gamma pdf and Its Special Case the Exponential pdf

The gamma pdf is a versatile model that is used in many fields of science and engineering,
groundwater hydrology included. Loáiciga (2004) proposes the gamma pdf as an alternative to the
log–normal pdf in an analysis of stochastic groundwater flow and solute transport. Loáiciga and
Leipnik (2005) apply the gamma pdf to model water-quality variables.
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Properties of the Gamma pdf
The pdf of a three-parameter gamma-distributed aquifer property K is

gKðsÞ=
�
s−θ
β

�
α js − θj−1 e−ðs−θβ Þ

ΓðαÞ s ≥ θ if β > 0, s ≤ θ if β < 0 (5-18)

in which α and β are shape and scale parameters, respectively, and α > 0; θ is a lower bound of the
variable K when β > 0 and an upper bound when β< 0. Most applications in groundwater
hydrology assume that θ = 0. Γ denotes the gamma function:

ΓðαÞ=
Z∞
0

e−ν να−1 dν (5-19)

The gamma function is widely tabulated and programmed in commercial software (Microsoft
Excel, MATLAB, or MATHEMATICA). The domain of the gamma pdf is ½−∞, θ�when β < 0, which
contains negative numbers and thus violates the nonnegativity of positive-valued aquifer properties.
Noteworthy is that when θ = 0, α= 1, and β > 0, the gamma pdf in Equation (5-18) becomes the
exponential pdf with parameter λ = 1/β. The exponential pdf is given by

hKðsÞ= λ e−λ s s ≥ 0; λ > 0 (5-20)

The next subsection presents a summary of the properties of the gamma pdf for positive or
negative scale parameter β.

Expected Value (Mean) of the Property K

K = α βþ θ (5-21)

Median of the Property K

K0.50 =ψ0.50 βþ θ (5-22)

in which ψ0.50 must be obtained from the integral equation:

1
ΓðαÞ

Zψ0.50

0

e−vvα−1 dv=
1
2

(5-23)

The integral on the left-hand side of Equation (5-23) is called the incomplete gamma function
γðα,ψ0.50Þ (see, e.g., Gradshteyn and Ryzhik 1994), so that Equation (5-23) can be shortened to

γðα,ψ0.50Þ
ΓðαÞ =

1
2

(5-24)

The left-hand side of Equation (5-24) can be evaluated using the GAMMA.INV(probability,
alpha, beta) function in Microsoft Excel, with probability = ½, alpha = α, and beta = β = 1, which
returns the value of ψ0.50.
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Mode of the Property K
when α > 1,

KM = ðα − 1Þ · βþ θ, (5-25)

and it is equal to θ when 0 < α ≤ 1.

Variance of the Property K

σ2K = α β2 (5-26)

Coefficient of Variation of the Property K

CvK =
jα1

2 · βj
jα βþ θj (5-27)

Coefficient of Skew of the Property K

CsK =
2 α β3

σ3K
(5-28)

in which the sign of the skew is determined by that of the shape parameter β. CsK > 0 when β > 0, in
which case the pdf is positively skewed with lower bound θ. CsK < 0 when β < 0, in which case the
pdf is negatively skewed with upper bound θ.

Moment Estimators of the α, β, and θ Parameters
These are deducible from the various properties of the previously described gamma pdf. The
moment estimators are

α=
4
C2
sK

(5-29)

β=
σKCsK

2
(5-30)

θ=K − 2
σK
CsK

(5-31)

in which K , σK , and CsK , in Equations (5-29) through (5-31) represent the sample estimators of the
mean, variance, and coefficient of skewness of the property K, respectively.

Quantiles of the Property K
For 0 < p < 1, P½K ≤ Kp�= p defines the p-th quantile. In particular, K0.50 equals the median. In
general, Kp is given by the following equation:

Kp =K þ
�ψqCsK

2
−

2
CsK

�
σK (5-32)
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in which ψq must be obtained from the following integral equation (0 < p < 1):

1
ΓðαÞ

Zψq

0

e−vvα−1 dv= p if CsK > 0 ði:e:, β > 0Þ (5-33)

with α= 4=C2
sK , or from

1
ΓðαÞ

Zψq

0

e−vvα−1 dv= 1 − p if CsK < 0 ði:e:, β < 0Þ (5-34)

in which α= 4=C2
sK . All the special functions used in the previous equations related to the gamma pdf

are available in commercial software and their calculation is expeditious. In particular, the left-hand
side of Equations (5-33) and (5-34) can be evaluated using the GAMMA.INV(probability, alpha,
beta) function in Microsoft Excel, with probability q = p (if CsK > 0) or 1− p (if CsK < 0), alpha= α,
and beta= β= 1, which returns the value of ψq. In the limit CsK → 0, the factor within brackets in
Equation (5-32) tends to the standard normal quantile zp. Specifically,

lim
CsK→0

�ψqCsK

2
−

2
CsK

�
→ zp (5-35)

so that the quantile Kp in Equation (5-35) becomes Kp =K þ zp σK . In other words, the gamma pdf
approaches the normal pdf when the coefficient of skew tends to zero.

5.3.3 The Log–Gamma pdf

A variant of the gamma pdf is the log–gamma pdf (also called log–Pearson type III), which U.S. federal
agencies use to fit annual streamflow peaks at gauged sites (see, e.g., US Geological Survey 1982).When
using the log–gamma pdf, the assumption is that the logarithm of the property K (i.e., Y = ln(K))
follows the gamma pdf in Equation (5-18) with the shape and scale parameters replaced by αY and βY ,
respectively. In this instance, θ= θY in Equation (5-18) denotes the lower bound of Y when βY > 0, or
its upper bound when βY < 0. The log property Y has the following gamma pdf:

gYðsÞ=
�
s−θY
βY

�
αY js − θY j−1 e−ð

s−θY
βY Þ

ΓðαYÞ
(5-36)

such that s ≥ θY if βY > 0, or s ≤ θY if βY < 0.
Evidently, K = expðYÞ, which is positive with lower or upper bound expðθYÞ depending on

whether βY > 0 or βY < 0, respectively. The pdf of the log–gamma distributed K is

hKðsÞ=
�
lnðsÞ−θY

βY

�
αY j lnðsÞ − θY j−1 e−

	
lnðsÞ−θY

βY



sΓðαYÞ

(5-37)

in which s ≥ eθY if βY > 0, or 0 < s ≤ eθY if βY < 0. Key properties of the log–gamma-distributed
property K are derivable from its pdf (5-37). These are presented next.

Expected Value of the Property K

K =
eθY

ð1 − βYÞαY
(5-38)
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Geometric Mean of the Property K

KG ≡ eEðYÞ = eαYβYþθY (5-39)

Median of the Property K

K0.50 = eψ0.50βYþθY (5-40)

in which ψ0.50 is obtained from the solution of the integral Equation (5-24).

Mode of the Property K
When α > 1,

KM = e
�
ðαY−1Þ βY

βYþ1þθY
�

(5-41)

The mode equals eθY if 0 < αY ≤ 1.

Variance of the Property K

σ2K =K2 ·

�� ð1 − βYÞ2
ð1 − 2 βYÞ

�
αY

− 1

�
(5-42)

in which K (the expected value of K) is given by Equation (5-38).

Coefficient of Variation of the Property K

CvK =
�� ð1 − βYÞ2

ð1 − 2 βYÞ
�

αY
− 1

�1
2

(5-43)

Coefficient of Skew of the Property K

CsK =

�
ð1−βY Þ3
ð1−3 βY Þ

�
αY − 3

�
ð1−βY Þ2
ð1−2 βY Þ

�
αY þ 2

C3
vK

(5-44)

in which CvK is given by Equation (5-43).

Moment Estimators of the Log Parameters αY , βY , and θY
Moment estimators are obtained by resorting to the fact that Y = ln(K) is gamma distributed.
Letting Y , σY , and CsY be the mean, standard deviation, and coefficient of skew of Y, respectively, one
obtains

αY =
4
C2
sY

(5-45)

βY =
σY CsY

2
(5-46)
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θY =Y − 2
σY
CsY

(5-47)

in which Y , σY , and CsY represent in equations the sample estimators of the mean, variance, and
coefficient of skew of the log property Y, respectively, in Equations (5-45) to (5-47).

Quantiles of the Property K
For 0 < p < 1, P½K ≤ Kp�= p defines the p-th quantile (Kp) of the property K. In particular,
K0.50 equals the median. In general, Kp is given by the following equation:

Kp = exp

�
Y þ

�ψqCsY

2
−

2
CsY

�
· σY

�
(5-48)

in which ψq must be obtained from the following integral equations (0 < p < 1):

1
ΓðαYÞ

Zψq

0

e−vvαY−1 dv= p if CsY > 0 ði:e:, βY > 0Þ (5-49)

in which αY = 4=C2
sY , or

1
ΓðαYÞ

Zψq

0

e−vvαY−1 dv= 1 − p if CsY < 0 ði:e:, βY < 0Þ (5-50)

in which αY = 4=C2
sY . The left-hand side of Equations (5-49) and (5-50) can be evaluated using

the GAMMA.INV(probability, alpha, beta) function in Microsoft Excel, with probability q = p
(if CsY > 0) or 1− p (if CsY < 0), alpha = αY , and beta = β = 1, which returns the value of ψq.

In the limit CsY → 0 the factor within brackets in Equation (5-48) tends to the standard normal
quantile zp. Specifically,

lim
CsY→0

�ψqCsY

2
−

2
CsY

�
→ zp (5-51)

so that the quantile Kp in Equation (5-48) becomes

Kp = expðY þ zp σYÞ (5-52)

Therefore, the log–gamma pdf approaches the log–normal pdf when the coefficient of skew
tends to zero (compare Equation (5-52) with Equation (5-16), after setting θ= 0 in the latter
equation).

5.4 ILLUSTRATIVE EXAMPLES

The following sections present applications of the log–normal, gamma, log–gamma, and exponential
pdfs to various groundwater problems, including fitting aquifer data, groundwater flow, and water
quality.
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5.4.1 Application of the Log–Normal pdf to Hydraulic Conductivity Data

The hydraulic conductivity data shown in Figure 5-1 has an average K = 3.94 × 10−8 cm/s, and
standard deviation σK = 3.70 × 10−7, which implies an extraordinarily large coefficient of variation
CvK = 9.4. The coefficient of skew equals 13.7, testimony to acutely right-skewed hydraulic
conductivity data. The K data were log-transformed to produce the log-conductivity data Y in
an attempt to reduce the asymmetry and facilitate fitting a pdf to the hydraulic conductivity data.
The sample average (Y), standard deviation (σY ), and coefficient of skew (CsY) of the log
conductivity data equal −20.30, 2.08, and 0.592, respectively. Although the skew coefficient was
reduced by the log transformation, a histogram of the Y data shown in Figure 5-2 confirms that it is
right skewed.

If the log conductivity Y were normally distributed, its pdf would be (setting θ = 0):

f YðyÞ=
1

2.08
ffiffiffiffiffi
2π

p exp

�
−
1
2

�
y − ð−20.3Þ

2.08

�
2
�

(5-53)

Figure 5-3 graphs Equation (5-53). The graphed normal pdf is symmetric. The log conductivity
data is right skewed. Assuming the log conductivity Y is sufficiently close to a normal pdf, and then
using Equations (5-16) or (5-17) to estimate quantiles of the hydraulic conductivity K, is customary
in applications. For example, if the lower quartile (K0.25) and upper quartile (K0.75) of the hydraulic
conductivity were needed in a simulation study of groundwater flow and chemical and heat
transport, these two values could be approximated as follows (using Equation (5-16) with θ = 0):
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Figure 5-2. Histogram of the log conductivity data Y graphed in Figure 5-1.
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Figure 5-3. Graph of the normal pdf fitted to the log conductivity data graphed in Figure 5-1.
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K0.25 = eYþz0.25σY = e−20.3þð−0.6745Þ 2.08 = 3.75 × 10−10 cm=s (5-54)

K0.75 = eYþz0.75σY = e−20.3þ0.6745 · 2.08 = 6.21 × 10−9 cm=s (5-55)

Under the assumption that hydraulic conductivity K is approximately log–normally distributed,
its pdf is

f KðxÞ=
1

x ð2.08Þ ffiffiffiffiffi
2π

p exp

�
−
1
2

�
lnðxÞ − ð−20.3Þ

2.08

�
2
�

(5-56)

Equation (5-56) is graphed in Figure 5-4. Because of the wide range of the hydraulic conductivity
and the complexity of Equation (5-56)—relative to the normal pdf Equation (5-53)—the latter formula
is easier to work with when making calculations on hydraulic conductivity values.

5.4.2 Application of the Log–Gamma pdf to Fit Hydraulic Conductivity Data

The previous section’s example showed how the logarithmic transformation of hydraulic conduc-
tivity data can reduce its asymmetry and a normal pdf can be fitted to the log conductivity data
reasonably well. One can go one step further and fit an asymmetric pdf to the skewed log
conductivity data. Furthermore, one can carry out a formal statistical goodness-of-fit test to
ascertain whether or not the proposed (asymmetric) pdf is an acceptable match to the hydraulic
conductivity data. With these two aims, that is, fitting a pdf and testing the fit, the log–gamma pdf
(5-37) was fitted to the hydraulic conductivity data graphed in Figure 5-1. Recall that the sample
average, standard deviation, and coefficient of skew of log conductivity are Y = −20.3, σY = 2.08, and
CsY = 0.592, respectively. These were used to calculate the log–gamma parameters αY = 11.4,
β= 0.616, and θY =−27.3 using Equations (5-45), (5-46), and (5-47), respectively. Because CsY

is positive, the hydraulic conductivity has a lower bound equal to exp(θY) = 1.39 × 10−12. The
log–gamma pdf of hydraulic conductivity K is

hKðsÞ=
�
lnðsÞ−ð−27.3Þ

0.616

�
11.4 j lnðsÞ − ð−27.3Þj−1 e−

	
lnðsÞ−ð−27.3Þ

0.616



sΓð11.4Þ (5-57)

Equation (5-57) is graphed in Figure 5-5.
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Figure 5-4. The log–normal pdf fitted to the hydraulic conductivity data K shown in Figure 5-1.
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Use Equation (5-48) to calculate the quantiles of a log–gamma distributed property. Suppose the
quantiles of log conductivity K0.25, K0.50, and K0.75, are wanted. The values ψq= p for p = 0.25, 0.50,
and 0.75 equal 8.98, 11.1, and 13.5, respectively. Calculate the values of the desired quantiles using
Equation (5-48): K0.25 = 3.43 × 10−10, K0.50 = 1.25 × 10−9, and K0.75 = 5.45 × 10−9 cm/s.

Goodness-of-Fit Testing: The Chi-Squared Test
The chi-squared goodness-of-fit test is a formal procedure used to accept or reject a proposed pdf to
fit specific data. The procedure can be used for any type of data. Herein it is used in conjunction with
aquifer properties, such as the hydraulic conductivity. The following steps must be implemented in
applying the chi-squared test:

Step 1. Calculate R saturated hydraulic conductivity (or other groundwater variable) quantiles,
denoted by KΔp < K2Δp < : : : < KRΔp, using the appropriate equation for quantile calculation. The
notation KrΔp implies the probability corresponding to the quantile is r · Δp, in which r = 1, 2, : : : , R,
and the probability increment Δp is defined by Equation (5-58). A suitable range for R is 4 ≤ R ≤ 9.
The quantiles KrΔp, r = 1, 2, : : : , R, are chosen so that they define R + 1 equal-probability,
nonoverlapping intervals of hydraulic conductivity:

PðKrΔp ≤ K ≤ Kðrþ1ÞΔpÞ=PðK < KΔpÞ= PðK > KRΔpÞ=Δp (5-58)

for r = 1, 2, : : : , R− 1, in which

Δp=
1

Rþ 1
(5-59)

is the probability of each of the R + 1 intervals of saturated hydraulic conductivity defined by the
quantiles KrΔp, r = 1, 2, : : : , R. The quantiles satisfy the probability statement:

PðK ≤ KrΔpÞ= r · Δp r= 1, 2, : : : ,R (5-60)

Step 2. The expected number of K measurements that fall in any of the R + 1 (equal-probability)
intervals equals n · Δp, in which n is the number of K measurements available. This number
compares with the actual number of Kmeasurements observed in the r-th interval, nr , r = 1, 2, : : : ,
R + 1. Calculate the test statistic:

D=
1

n · Δp

XRþ1

r= 1

ðnr − n · ΔpÞ2 (5-61)
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Figure 5-5. The log–gamma pdf fitted to the hydraulic conductivity K data shown in Figure 5-1.
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Step 3. Determine the chi-squared critical value associated with a 5% significance level and R − f
degrees of freedom, χ20.05,R−f . The number of degrees of freedom of the chi-squared critical value is

customarily R. However, f = 2 parameters (Y , σY ) must be estimated from the K data for the log–
normal pdf (with lower bound equal to zero), and f = 3 parameters (αY , βY , θY ) must be estimated
from data for the log–gamma pdf. Therefore, the number of degrees of freedom of the chi-squared
critical value becomes R − f . The chi-squared critical value is tabulated in the technical literature. It
can also be obtained using commercial software. Using Microsoft Excel the function CHIS-
Q.INV.RTV(0.05, R − f ) returns the critical value χ20.05,R−f . The software MATLAB returns the

critical value χ20.05,R−f using the command chi2inv(0.95, R-f ).

Step 4. If the test statistic D exceeds χ20.05,R−f , reject the fitted pdf as a suitable probability model for
the K data. Otherwise, accept the fitted pdf as a suitable probability model for the K data.

Calculation Example on How to Fit and Test the Log–Gamma pdf
The goodness of fit of the log–gamma pdf to the K data shown in Figure 5-1 is assessed. The statistics
pertaining to the K data are found at the beginning of Section 5.4.2. Choose R = 9. Quantify nine
quantiles KΔp < K2Δp < : : : < K9Δp using Equation (5-48), which define R + 1 = 9 + 1 = 10 equal-
probability intervals. The probability associated with each interval is Δp = 1/10 = 0.10 so that the
expected number of K measurements in each interval is n Δp = 201 × 0.10 = 20.1. The number
of measurements observed in each interval is counted from the K sample. The test statistic
[D, Equation (5-61)] is calculated and the chi-squared critical value determined. Table 5-2
summarizes the results.

The test statistic D = 6.91 < χ2 (0.05, 9− 3 = 6) = 12.59. Thus, the log–gamma pdf is accepted
as a suitable probability model for the K data used in this example. Figure 5-6 summarizes in
graphical form the key features of this example.

Goodness-of-fit tests other than the chi-square test are available. Benjamin and Cornell (1970)
and Gilbert (1987) review several goodness-of-fit tests.

Table 5-2. Results of the Goodness-of-Fit Test for the Data in Figure 5-1 and the Log–Gamma pdf.

Interval
number

Upper limit
of interval

Expected
number

Observed
number

(nr− n ·Δp)2/
(n ·Δp)

r cm/s n ·Δp nr

1 K0.1 = 1.248 × 10−10 20.10 24 0.757
2 K0.2 = 2.559 × 10−10 20.10 20 0.000
3 K0.3 = 4.494 × 10−10 20.10 14 1.851
4 K0.4 = 7.505 × 10−10 20.10 19 0.060
5 K0.5 = 1.245 × 10−9 20.10 16 0.836
6 K0.6 = 2.119 × 10−9 20.10 28 3.105
7 K0.7 = 3.859 × 10−9 20.10 19 0.060
8 K0.8 = 8.097 × 10−9 20.10 22 0.180
9 K0.9 = 2.433 × 10−8 20.10 20 0.000
10 ∝ 20.10 19 0.060

Test statistic D = 6.91
χ2(0.05, 6) = 12.59
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5.4.3 Application of the Exponential Function to Hydraulic
Conductivity Data

The exponential pdf has found applications in many fields of inquiry, including groundwater
hydrology. Its pdf is

hKðsÞ= λ e−λ s s ≥ 0, λ > 0 (5-62)

The parameter λ can be estimated from the sample average of the property (say, hydraulic
conductivity), K , as follows:

λ=
1

K
(5-63)

The p-th quantile of the exponential pdf is

Kp =
1
λ
ln

�
1

1 − p

�
(5-64)

Table 5-3 lists the hydraulic conductivity values measured with constant-head permeameter
in a silty sand. The exponential pdf was fitted to the K data in Table 5-3 to yield hKðsÞ= 0.538
expð−0.538 sÞ with sample average K = 1.86 and parameter λ = 0:538.

Table 5-4 summarizes the results of the chi-squared test implement to assess the goodness-of-fit
of the exponential pdf to the hydraulic conductivity data in Table 5-3. The test statistic D = 1.23 <
χ2 (0.05, 4− 1 = 3) = 7.81. The exponential pdf is accepted as a suitable model for the data in
Table 5-3. Figure 5-7 graphs the results of the chi-square test.
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5.4.4 Application of the Gamma pdf to Residence Time and Age of Groundwater

The residence time of a groundwater particle (t1) extends from the moment when the particle enters
a groundwater flow system until it exits. In contrast, the age of a water particle (t2) moving in
groundwater is the time elapsed since the particle entered the groundwater flow system (see Loáiciga
2004). Let L be the total distance traveled by a groundwater particle in its journey through an aquifer,
and K denote the hydraulic conductivity of the aquifer. Groundwater flow is assumed to take place
under a constant hydraulic gradient g. The aquifer’s porosity is n. The residence time of a
groundwater particle equals the total travel distance L divided by the average groundwater velocity.
The latter is obtained from Darcy’s law. The residence time is then given by Equation (5-65):

Table 5-3. Measurements of Hydraulic Conductivity in Silty Sand
Obtained with Constant-Head Permeameter.

Sample
number

Sample
identification

code
K

(m/day)

1 GB1-2 0.14
2 GB1-4 3.52
3 GB1-6 1.12
4 GB1-7 4.58
5 GB2-1.5 2.42
6 GB2-3 0.23
7 GB3-2 5.36
8 GB3-3.5 0.63
9 GB3-5 2.51
10 GB4-3 0.72
11 GB4-4 0.95
12 GB5-4 1.21
13 GB5-6 0.76

Average K = 1.86
λ = 0.538

Source: Data from Loáiciga (2008b).

Table 5-4. Results of the Chi-Squared Goodness-of-Fit test Applied to the Data in Table 5-3
and the Exponential pdf.

Interval
number r Interval of K Δp nΔp nr

(nr · n ·Δp)2/
(n ·Δp)

1 < 0.41 0.2 2.6 2 0.36
2 0.41–0.95 0.2 2.6 4 1.96
3 0.95–1.70 0.2 2.6 2 0.36
4 1.70–2.99 0.2 2.6 2 0.36
5 > 2.99 0.2 2.6 3 0.16

Test statistic D = 1.23
χ2 (0.05, 3)= 7.81

196 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



t1 =
n
g
L
K

(5-65)

L and K are random variables. L and K are independent random variables. A gamma pdf is
proposed to characterize the probabilistic characteristics of K. Therefore, the proposed pdf of K is a
two-parameter gamma distribution:

f KðxÞ=
xa2−1 e−

x
b2

Γða2Þ ba22
a2 > 1; b2 > 0; x ≥ 0 (5-66)

in which a2 and b2 are the shape and scale parameters of the gamma distribution, respectively, and
Γð·Þ denotes the gamma function, which defined as follows:

ΓðuÞ=
Z∞
0

e−vvu−1dv (5-67)

The distribution of the total travel distance L is modeled herein by a two-parameter gamma
distribution:

f LðyÞ=
ya1−1 e−

y
b1

Γða1Þ ba11
a1 > 1; b1 > 0; y ≥ 0 (5-68)

The hydraulic conductivity K and total travel distance L have expected values a1 · b1 and a2 · b2,
respectively. Equation (5-65) implies that the residence time is the scaled ratio of two independent
gamma variables, in which the scaling ratio is the constant n/g ≡ a> 0. Loáiciga (2004) derives the
pdf f(t1) of the residence time t1

f 1ðtÞ=
Γða1 þ a2Þ
Γða1ÞΓða2Þ

�
a
b1
b2

�
a2 ta1−1�

t þ a b1
b2

�
a1þa2

t ≥ 0; a= n=g ≥ 0 (5-69)

The average residence time is derived from Equation (5-69) (letting β= ab1=b2):

T1 =
Z∞
0

t f 1ðtÞdt = a
b1
b2

a1
ða2 − 1Þ (5-70)
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Figure 5-7. Example histogram of K data from Table 5-3 indicative of an exponential pdf.
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The average turnover time (T) of groundwater storage is defined as the storage (V) divided by
the average rate of aquifer recharge (or discharge, R). Recharge into an aquifer displaces existing
groundwater, so that the average time that it takes the recharge to replace the groundwater already in
storage equals T. A plausible connection between T and T1 is intuitive. The key to deciphering this
connection is the groundwater age. The age of a groundwater particle (t2) moving through an aquifer
is the time elapsed since the particle entered the aquifer. Its pdf is denoted by f2(t). The latter pdf may
not be specified independently of f1(t), the pdf of the residence time, because t1 and t2 are
interdependent. Such interdependency is deducible from basic mass-balance considerations, as
shown in Loáiciga (2004), who proved that the pdf of the groundwater age, f2(t) is (with β= ab1=b2):

f 2ðtÞ=
1
T
ð1 − F1ðtÞÞ=

1
T

�
1 −

Γða1 þ a2Þ
Γða1ÞΓða2Þ

ta1

a1 βa1
· 2F1

�
a1þ a2, a1; a1þ 1;−

t
β

��
(5-71)

in which F1(t) is the cumulative distribution function of the residence time (this is equal to the
integral of f1(t)); 2F1 denotes Gauss’s hypergeometric function (Gradshteyn and Ryzhik 1994); T is
the expected turnover time of groundwater storage introduced previously. Differentiating in
Equation (5-71) produces the following relationship between f1(t) and f2(t):

f 1ðtÞ= −T
df 2ðtÞ
dt

(5-72)

Equation (5-72) allows us to write the average residence time as follows:

T1 =
Z∞
0

tf 1ðtÞdt = −T
Z∞
0

t
df 2ðtÞ
dt

dt =T (5-73)

Equation (5-73) states that the average residence time equals the average turnover time, that is,
T1 = T. T1 was given in Equation (5-70). The equality T1 = T = V / R introduces a constraint
involving T1, V, and R. For example, if the average recharge rate R is known, the storage volume must
be V = T1 R. If V and R are known, then, from Equation (5-70), a · b1 · a1/[b2 (a2− 1)] = T1 = V/R,
which imposes a constraint on the gamma parameters a1, a2, b1, and b2.

Taking into consideration the pdf f2(t) given in Equation (5-71), the expected groundwater age
is (with β = a b1/b2, in which a2> 2 to achieve convergence to a finite T2):

T2 =
1
T

Z∞
0

t

�
1 −

Γða1 þ a2Þ
Γða1ÞΓða2Þ

ta1

a1 βa1 2F1

�
a1 þ a2, a1; a1 þ 1;−

t
β

��
dt (5-74)

The average age of groundwater expressed by Equation (5-74) must be calculated numerically.
The results presented in this section demonstrate the flexibility of the gamma pdf in modeling

basic groundwater processes analytically. The next section expands on the power of the gamma pdf
to model real-world data.

5.4.5 Application of the Gamma pdf to Model Water Quality of Springs:
Correlated Gamma Variables

Spring water in Las Palmas Creek, Santa Barbara, California, was tested to study the ratio of fecal
coliforms (FC) to fecal streptococcus (FS) in it. FC and FS are enteric bacteria, that is, they live in
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the intestinal tract of warm-blooded animals and are frequently used as indicators of fecal
contamination of water bodies (Loáiciga and Leipnik 2005). Loáiciga and Leipnik (2005) fit FC
and FS values with univariate gamma pdfs, allowing for correlation between them. The ratio FC/FS
was determined from each pair of FC and FS values obtained from a single water sample. This
procedure yielded 38 experimental values of FC/FS. The FC/FS ratio is of interest because, under
suitable conditions, it may be used to discern the origin of enteric bacteria. In Las Palmas Creek, a
FC/FS ratio in the interval [0, 0.4] was deemed of equine origin, while a FC/FS ≥ 3.0 was considered
to be human in origin. The range 0.4< FC/FS < 4.0 was associated with mixed origin (i.e., humans,
horses, and wildlife; Loáiciga and Leipnik 2005). If the sources of enteric bacteria are correctly
identified, management actions are taken to counter the contamination of the spring water. Letting
X1≡ FC and X2 = FS, the correlated (four-parameter) gamma pdfs are

f ðx1Þ=
x 0
1
γα1−1e−

x 0
1
b1

Γðγα1Þbγα11
x1 ≥ ξ1 if b1 > 0, x1 ≤ ξ1 if b1 < 0 (5-75)

f ðx2Þ=
x 0γα2−1
2 e−

x 0
2
b2

Γðγα2Þbγα22
x2 ≥ ξ2 if b2 > 0, x2 ≤ ξ2 if b2 < 0 (5-76)

in which x 0
j = xj − ξj, j = 1, 2; γα1 and γα2 are the marginal shapes of the pdfs of X1 and X2,

respectively; (b1, b2) and (ξ1, ξ2) are scale and location parameters, respectively; and γ is a (collective)
shape parameter of the bivariate distribution of X1 and X2. α1, α2, γ are positive. The correlation
coefficient ρ is defined in terms of the means (μ1, μ2) and variances (σ21, σ22) of X1 and X2, respectively,
and a parameter β is introduced by Loáiciga and Leipnik (2005) to induce statistical dependence
between X1 and X2:

ρ=
μ1, 2
σ1σ2

=
E½ðx1 − μ1Þðx2 − μ2Þ�

σ1σ2
=

β γ
σ1σ2

=
β

b1b2
ffiffiffiffiffiffiffiffiffiα1α2

p (5-77)

The sample estimator of the correlation coefficient is (see Priestly 1989, Shumway and Stoffer
2010):

ρ=
1

σ1σ2
·
1
n

Xn
j= 1

ðx1j − X1Þðx2j − X2Þ (5-78)

where (X1, X2) and (σ1, σ2) are the sample estimators of the means and standard deviations of
X1 = FC, and X2 = FS.

The goal of this application is to present the pdf of the ratio Z = X1/X2 = FC/FS. This pdf
allows a characterization of Z, and, thus, of the origin of enteric bacteria in a probabilistic manner.
Loáiciga and Leipnik (2005) derive the ratio pdf of the two correlated gamma variables, which is as
follows (with ξ1 = ξ2 = 0):

gðzÞ=
X∞
n= 0

Xn
k= 0

Xn
j= 0

ð−1Þnþkþj

�
β

bα11 b
α2
2

�
n �−γ

n

�� n

k

�� n

j

��b−ðγα1þkÞ
1

bγ α2þj
2

�

·
Γðλ1, 2Þ · zλ1þk−n−1

Γðλ1 − nþ kÞ · Γðλ2 − nþ jÞ · z 0λ1, 2 (5-79)
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in which λj = αjðnþ γÞ, j = 1, 2; λ1, 2 = λ1 þ λ2 þ kþ j − 2n:

z 0 =
z
b1

þ 1
b2

(5-80)

and �
λ
k

�
=

λðλ − 1Þ : : : ðλ − kþ 1Þ
k!

(5-81)

is the binomial coefficient for any real λ and nonnegative integer k. The estimated parameters
in the Las Palmas Creek study were b̂1 = b̂2 = 1.0; α̂1 = 2.471; α̂2 = 8.245; β̂= 1.417; γ̂= 0.35, and
ρ̂= 0.40.

Figure 5-8 shows the empirical (obs × 100) and calculated (model × 100) frequencies of the ratio
FC/FS in Las Palmas Creek, Santa Barbara, California (1999–2000). The empirical frequency in each
range was calculated by dividing the number of observations within the range by the sample size
(=38) and then scaling it by 100 for ease of interpretation. The model frequency in each range was
calculated by integrating Equation (5-79) and then scaling it by 100 for ease of interpretation. In
Figure 5-8, the range labeled 0.1 equals the interval [0.0, 0.1], that labeled 0.2 = [0.1, 0.2], and so on.
The last range is ≥ 2.0. Figure 5-8 shows an overall excellent agreement between the empirical and
calculated probabilities. The observed and model-calculated probabilities P(Z≤ 0.4) were 71.1% and
66.1%, respectively, which provides strong evidence of the predominance of equine fecal bacteria in
Las Palmas Creek. A chi-squared goodness-of-fit test was implemented to ascertain the suitability of
the pdf g(z) [Equation (5-79)] for the ratio Z = FC/FS to describe the FC/FS data. The chi-square
statistic χ2ð0.05, 32Þ= 46.19, larger than the test statistic D = 24.70. Thus, the null hypothesis of a
gamma ratio distribution was not rejected at a 5% significance level. The P-value in this case was
approximately 0.85, which demonstrates the robustness of the fit of the model probability to the
empirical data.
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Figure 5-8. Empirical (obs × 100) and calculated (model × 100) frequencies of the ratio FC/FS at Las
Palmas Creek, Santa Barbara, California (1999–2000). FC = fecal coliform concentration; FS = fecal
streptococcus concentration.
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5.5 CONCLUSIONS

This chapter has reviewed several pdfs commonly used in groundwater hydrology. The reviewed
pdfs were illustrated with examples or data processes that demonstrated the richness of application
possibilities in groundwater hydrology.

This chapter’s examples show that probabilistic modeling of asymmetric aquifer properties,
such as the hydraulic conductivity, can be accomplished with the log–gamma pdf with a flexibility
that is unmatched by alternative pdfs.

The gamma pdf was shown to exhibit remarkable flexibility to model groundwater processes,
such as residence time and age.

Many other applications of pdfs in groundwater hydrology are available that this chapter did not
review. One of them is multivariate pdfs, which are used to model several random variables
simultaneously. Other statistical methods in groundwater hydrology involve spatial correlation
(geostatistics) and random fields. These were not pursued herein.
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CHAPTER 6

Modeling Streamflow Variability
A. Cancelliere

6.0 INTRODUCTION

The term streamflow refers to the component of the hydrological cycle that transfers along the
surface of the earth precipitation excess (i.e., not evaporated) in a watershed to the oceans. In a given
point of the hydrographic network, streamflows are the result of the routing of runoff from the
upstream watershed through storage mechanisms and of the subsurface and groundwater flow.
Thus, streamflow variability stems from the variability of the climate forcing (precipitation and
evaporative demand from the atmosphere) and from the dynamics of subsurface and groundwater
flow. Streamflows can be investigated at different time scales, according to the purpose of the
analysis. Broadly speaking, time scales of interest can range from hourly to daily for flood analysis,
from daily to yearly for water management problems (e.g., water supply, hydroelectric production,
navigation, recreational use, pollution control, etc.), up to decades and more to investigate long-term
variability in the hydrological cycle. In the present chapter, methods for the stochastic analysis and
modeling of streamflow variability are illustrated, with a specific focus on water management
purposes. In particular, stochastic features describing variability of streamflow time series at time
scales ranging from weekly to yearly are presented, and the main stochastic models that can be
applied to reproduce such variability are illustrated.

6.1 STOCHASTIC FEATURES OF STREAMFLOW TIME SERIES

When analyzing streamflow variability at time scales ranging fromweekly to yearly, different stochastic
features can be identified, whose origin can be related to the complex mechanisms leading to the
streamflow’s formation. In general terms, different features may arise, or become more evident, as the
time scale of aggregation changes. At longer time scales, sources of variability in streamflows include
natural and/or anthropogenic changes in watershed geomorphology, soil and land use characteristics,
river network, and development of water diversions or transfers from other basins. Changes or long-
term variability in climate may also induce variability in streamflows. Such features are generally
detected at yearly time scales and may also include long-term memory in the series.

Seasonality, in the form of a distinct pattern repeating from year to year, becomes apparent
when data are aggregated at a subyearly time scale. Such pattern is clearly inherited from periodicity
in the meteorological and hydrological drivers (mainly precipitation and temperatures) behind the
streamflow formation due to the rotation of the Earth around the sun.

Short-term memory, in other words, the tendency to observe high streamflows followed by high
streamflows and low values followed by low values, is mainly due to the dynamics of the
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transformation of precipitation into streamflows. This is generally more evident at subyearly time
scales, though in many cases streamflows exhibit short-term memory also at yearly time scales.
Streamflows may also exhibit long-term memory or long-term dependence, a characteristic that has
been found in many geophysical time series.

Finally, intermittency, in other words, temporary lack of streamflow, is due to characteristics of
the meteorological drivers but is also affected by the complex storage mechanisms underlying the
rainfall–streamflow transformation. For instance, in arid or semi-arid climates, intermittent stream-
flows can be observed at different time scales ranging from weekly to (in extreme cases) yearly.

In what follows, some of the aforementioned features are described, and basic statistical tools for
their characterization are illustrated.

6.1.1 Autocorrelation

With reference to a time series, the autocorrelation function (ACF) measures dependence in time,
namely how past values affect present values. The term memory is frequently adopted to describe
such feature of streamflows, and from a physical standpoint, the time dependence often observed in
streamflow series can be ascribed, apart from memory in meteorological forcing, which is generally
less evident, to the complex storage mechanisms involved in the transformation of precipitation into
streamflows. Therefore, basins with large surface storage in the form of lakes, swamps, snow and
glaciers, or significant subsurface and groundwater flows are generally characterized by significant
autocorrelation. With reference to a stationary sample series xt , t = 1, 2, : : : , n, the autocorrelation rk
at lag k can be estimated as (Brockwell and Davis 2002):

rk =
P

n−k
t = 1ðxtþk − xÞðxt − xÞP

n
t = 1ðxt − xÞ2 (6-1)

where x=
P

n
t= 1 xt∕n is the sample mean of the series.

The plot of rk with k generally reveals a decreasing pattern, because the influence of past values
on present ones is expected to decrease with time lag. Fast rate of decay to zero of the
autocorrelogram indicates short memory in the series, while a relatively slow decreasing pattern
may suggest the presence of long-term persistence or long memory in the process. From a
mathematical standpoint, a process is said to have short memory if the autocorrelation function
is absolutely summable, whereas in the opposite case long memory arises (Beran 1994).

Due to the sampling variability of the autocorrelation function, its pattern will generally oscillate
around zero even at large lags. Then statistical tests can be employed to assess whether nonzero
values are due to sampling variability of the autocorrelation or to the presence of time dependence.
Under the zero autocorrelation hypothesis, approximate and asymptotic 95% for rk bounds are given
by �1.96∕

ffiffiffi
n

p
(Brockwell and Davis 1991).

Figure 6-1 shows two examples of annual autocorrelation functions, along with the related 95%
bounds (dashed lines). The figure at the top shows a slow decaying autocorrelation of the annual
flows of the White Nile River at Mongalla, South Sudan, which is indicative of high persistence in the
series. In contrast, the figure on the bottom shows a fast decaying autocorrelation of annual
stramflows of Yakima river at Cle Elum,Washington State, with values not statistically significant for
lags greater than 1.

6.1.2 Seasonality

Like most hydroclimatic series, streamflow series exhibit seasonal (or periodic) patterns at time
scales less than a year. Such short-term periodic behavior is generally due to the annual revolution of
the Earth around the sun, which induces seasonal patterns in all hydroclimatic processes. Seasonality
results in nonstationarity of streamflows at subannual time scales, in the sense that different
probability distributions should be assumed for the different seasons. Generally, this is evident in
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terms of statistical characteristics such as mean, variances, and so on. For instance when analyzing
streamflows at monthly time scales, mean, variances, and other statistics computed separately for
each month will generally exhibit a distinct periodic behavior throughout the year, which is
indicative of the periodic stochastic nature of the series. The simplest way to investigate periodicity
in seasonal series of streamflows is by computing basic statistics for the different seasons. With
reference to a seasonal streamflow series xν,τ, where ν= 1, : : : , n indicates the year, n is the number of
available years of observations and τ= 1, : : : ,ω indicates the season (for monthly series ω= 12), the
seasonal mean, variances, and skewness coefficients can be computed as

xτ =
P

n
ν= 1 xν,τ
n

(6-2)

Figure 6-1. Autocorrelation functions of annual streamflows of the Nile River at Mongalla (a) and of
Yakima river at Cle Elum (b).
Source: Data from Salas et al. (1995). (a) Data from Bonneville Power Plant Administration, (b) personal communication.
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s2τ =
P

n
ν= 1ðxν,τ − xτÞ2

n
(6-3)

Gτ =
P

n
ν= 1ðxν,τ − xτÞ3∕n

s3τ
(6-4)

Furthermore, periodic lag-k autocorrelation and autocovariances can be computed respectively as

rk,τ =
P

n
ν= 1ðxν,τ − xτÞðxν,τ−k − xτÞP

n
t = 1ðxν,τ − xτÞ2

(6-5)

ck,τ =
1
n

Xn
ν= 1

ðxν,τ − xτÞðxν,τ−k − xτÞ (6-6)

where cyclic conditions are assumed, namely xν,τ−k = xν−1,ω−kþτ for τ − k ≤ 0. The plot of the
aforementioned statistics versus the season τ will generally reveal a periodic pattern.

Periodicity can also be investigated making use of the periodogram of the series, namely the
discrete Fourier transform of the sample autocovariance function (e.g., Brockwell and Davis 2002):

InðλkÞ=
1
n

Xn
s= 1

Xn
t = 1

ðxs − xÞðxt − xÞe−iðs−tÞλk (6-7)

where λk are the Fourier frequencies 2πk∕n and n is the length of the sample. The plot of the
periodogram versus the frequency λk represents a useful diagnostic tool, because the presence of a
distinct peak in the plot at frequency λk will indicate periodicity in the series, with period 2π∕λ
expressed in the same units as the aggregation time scale of the original time series (for instance
months). As an example, in Figure 6-2, the periodogram of the monthly streamflow series of Salso
river at Pozzillo is plotted against the frequency λk. From the plot, a peak at frequency λk = π∕6 is
clearly evident that corresponds to a period of 12 months, as expected.

Figure 6-2. Periodogram of Salso at Pozzillo monthly streamflows.
Source: Data from Indelicato et al. (1989) and further updates.
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6.1.3 Storage-Related Statistics and Hurst Effect

Long-term variability in streamflows can also be characterized in terms of reservoirs’ storage-related
statistics. With reference to a series of observations, xt , t = 1, : : : , n, cumulative departures from the
mean (partial sums) can be computed as

Sj = Sj−1 þ ðxj − xÞ j= 1, : : : , n (6-8)

where x is the sample mean and S0 = 0. The series Sj is the basis to compute storage-related statistics
under the assumption of a constant draft equal to the long-term mean. In particular, the plot of Sj
versus j enables derivation of the minimum reservoir capacity Cn needed to supply a demand equal
to the long-term mean, according to the well-known sequent peak algorithm (e.g., Klemeš 1987).

The range is defined as

R�
n = maxðS0, S1, : : : , SnÞ −minðS0, S1, : : : , SnÞ (6-9)

whereas the rescaled range is

R��
n =R�

n∕s (6-10)

where s is the sample standard deviation of the series. Both the range and rescaled range are related
to Cn and therefore have been widely studied and used as a measure of long-term variability in
streamflow series. In particular, the question of their variability with the sample size has been
investigated since the pioneering work by Hurst (1951), who, while studying the long-term storage
requirements for the Nile river, analyzes several geophysical time series including streamflows and
finds empirically that R��

n is proportional to nH , with H > 1∕2. However, from a theoretical
standpoint, it can be shown that, asymptotically, H = 1∕2 for normal independent processes (Feller
1951) and for autoregressive processes (Mandelbrot and Van Ness 1968). Such contrast between
theoretical findings and empirical evidence, often termed Hurst phenomenon or Hurst effect,
suggests that the independence or autoregressive assumption for geophysical series (and streamflow
in particular) may not be adequate to model long-term variability, giving rise to the need for more
complex tools (Mandelbrot 1965). Since Hurst’s work, the quest for an explanation has sparked the
interest of many researchers (see, e.g., Bras 1985, Hipel and McLeod 1994). Among the possible
causes of the observed discrepancy, variability with time of the mean (Boes and Salas 1978), presence
of trends (Bhattacharya et al. 1983), preasymptotic behavior due to limited length of observed
records (Salas et al. 1979), and long-term memory and scaling dynamics of natural processes
(Mandelbrot and Wallis 1968) have been suggested as explanations of the Hurst phenomenon.

Estimators of the H exponent have been proposed by many authors either through parametric
and nonparametric approaches, since Hurst’s original estimator K (Hurst 1951, 1956):

K =
logðR��

n Þ
logðn∕2Þ (6-11)

Estimates ofH can be obtained as the slope of the fitting line, in a log–log scale, of the plot of R��
n

versus n/2 (Wallis and Matalas 1970). Other estimators are based on assuming a stochastic structure
for the underlying series. To this end, estimators based on an autoregressive moving average
(ARMA) process (Siddiqui 1976, Grimaldi 2004, Piccolo 1990) or on Hurst–Kolmogorov dynamics
(Koutsoyiannis 2003) can be adopted. The practical implications of the presence of the Hurst effect
in streamflow series are obviously related to reservoir storage problems either for design or
management. Exponents H greater than 1/2 would imply that larger reservoir storages are required
with respect to the case of independent or autocorrelated streamflow series. However, Klemeš et al.
(1981) analyzes the practical implications of long-term memory in reservoir design, concluding that
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given the uncertainties in available socioeconomic and hydrologic data, use of long-memory models
cannot be justified. Nonetheless, long memory influences the statistical significance of observed
trends in hydroclimatological series, and therefore apparent trends may arise due to persistence in
the series (Cohn and Lins 2005). To this end, models able to reproduce the Hurst effect have been
proposed to describe long-term variability in climate, thus providing an explanation of the apparent
nonstationarities observed in many hydrometeorological series (Koutsoyiannis 2002, 2011).

Example 6-1: Analysis of Variability Features of Poudre River Streamflows

Figure 6-3 shows the plot of the yearly (top) and monthly (bottom) streamflows of the Poudre River
at Mouth of the Canyon. The yearly plot indicates a relatively large variability from year to year while
the monthly plot exhibits a clear periodic (seasonal) pattern in the streamflows.

To characterize the seasonal features, monthly means, standard deviations, and skewness have
been computed from Equations (6-2), (6-3), and (6-4), respectively. Figure 6-4 plots the results. All
statistics change significantly from month to month, which confirms the distinct seasonal pattern of
the underlying monthly series. In particular, the monthly means indicate larger flows during the

Figure 6-3. Poudre River at Mouth of the Canyon river flows (1951–2002) aggregated at an annual
time scale (top) and a monthly time scale (bottom).
Source: Data from Northern Colorado Water Conservancy District.
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spring–summer months and very low flows during the fall and winter, which is distinctive of a
streamflow regime driven by snowmelt.

Furthermore, the autocorrelation features of the series at the annual and monthly time scales
have been determined using Equations (6-1) and (6-5), respectively. Figure 6-5 shows the results. In
panel (a). the autocorrelation rk at annual time scale is shown versus the lag k and the approximate
confidence bounds at 95% level. Panel (b) shows the monthly correlations for lags 1 and 2. From the
figure a relatively weak autocorrelation structure can be observed for the Poudre River annual time
series, which suggests a weak memory of the process from one year to the other. However, as
expected, stronger month-to-month correlations are observed at the monthly time scale. Further-
more, distinctive periodic patterns of monthly correlations can also be observed.

6.2 MODELING OF STREAMFLOW TIME SERIES

Stochastic modeling of streamflow series has become one of the standard tools for approaching
several engineering problems, since the pioneering work of Thomas and Fiering (1962) and

Figure 6-4. Seasonal means, standard deviations (a) and skewness (b) for Poudre River at Mouth of
the Canyon monthly flows (1951–2002).

Figure 6-5. Annual (a) and lag-1 and lag-2 monthly correlations (b) for streamflows of the Poudre
River at Mouth of the Canyon.
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Yevjevich (1963). The availability of mathematical models that can reproduce the main probabilistic
features of streamflows at different time scales, and their evolution with time, provides useful
information for simulation and forecasting studies. Several types of models have been proposed in
literature and have been successfully applied to water resources problems, differing according to the
features they intend to reproduce (e.g., autocorrelation, seasonality, intermittency, and long
memory) and for the type of approach, either parametric or nonparametric. Furthermore, when
the interest lies in modeling complex river systems, the need to account for other features arises. In
what follows, the main types of models that have been proposed for modeling univariate streamflow
series are briefly illustrated. For further details, the reader is referred to Salas (1993), Hipel and
McLeod (1994), and Sveinsson and Salas (2017). Section 6.4 presents the main methodologies
available to model complex river systems.

6.2.1 ARMA Models

Among the several modeling schemes proposed to reproduce stochastic variability of streamflows,
the class of autoregressive moving average models have found probably the most widespread
applications. Among the reasons for their success are their ability to reproduce virtually any observed
autocorrelation function and their relative simplicity. Furthermore, their structure can be linked to
simple conceptual rainfall–streamflow models (e.g., Fiering 1967, Salas and Smith 1981, Salas and
Obeysekera 1992). With reference to a nonseasonal time series Xt , the general form of an
ARMA(p, q) model is

Xt = μþ
Xp
i= 1

ϕiðXt−i − μÞ −
Xq
j= 1

θjεt−j þ εt (6-12)

where ϕ1, : : : ,ϕp are the p autoregressive parameters, θ1, : : : , θq are the qmoving average parameter,
μ is a parameter representing the mean of the process, and εt is a white noise (not autocorrelated)
process with mean zero and variance σ2ε . In practice, generally low-order ARMA models have been
employed for modeling annual streamflows or seasonal flows after seasonal standardization. For
instance, letting p = 1 and q = 0, the well-known lag-1 autoregressive model AR(1) is obtained:

Xt = μþ ϕðXt−1 − μÞ þ εt (6-13)

whose variance and autocorrelation function ρðhÞ are given by

Var ½Xt�=
σ2ε

ð1 − ϕ2Þ (6-14)

ρðhÞ=ϕh (6-15)

Similarly, by letting p = 1 and q = 1, the ARMA(1, 1) is obtained:

Xt = μþ ϕðXt−1 − μÞ − θεt−1 þ εt (6-16)

whose variance and autocorrelation function are given by

Var ½Xt�=
1 − 2ϕθþ θ2

1 − ϕ2 σ2ε (6-17)

ρð1Þ= ð1 − ϕθÞðϕ − θÞ
1 − 2ϕθþ θ2

(6-18)
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ρðhÞ= ρð1Þϕh, h > 1 (6-19)

For the general case of the ARMA(p, q) model, expressions for the variance and autocorrelation
function can be derived making use of the so-called infinite moving average (MA) representation
valid if the process is causal, namely if 1 − ϕ1z − : : : − ϕpz

p ≠ 0 for all jzj ≤ 1 (Brockwell and
Davis 2002):

ρðhÞ=
P∞

j= 0 ψjψjþhP∞
j= 0 ψ2

j
(6-20)

where the coefficients ψj are given by the recursive equation:

ψj −
Xp
k= 1

ϕkψj−k = θj, j= 0, 1, : : : (6-21)

and θ0 = 1 and θj = 0 for j > q and ψj = 0 for j < 0.
Similarly, the variance of the process is given by

Var ½Xt�= σ2ε
X∞
j= 0

ψ2
j (6-22)

Although in some cases Equations (6-20) and (6-22) may be used to derive analytical
expressions of the autocorrelation and variance of an ARMA(p, q) model, in practice, they are
generally computed numerically by truncating the infinite sums to an appropriate value.

Several methods have been proposed to estimate the parameters of an ARMA(p, q) model.
Generally, the mean μ is estimated as the sample mean x. The remaining parameters can be
estimated either by method of moments (MOM) or by least square (LS) or maximum likelihood
(ML) procedures.

For example for the AR(p) and low-order ARMA(p, q), MOM can be employed for deriving
analytical solutions for the parameter estimators. The Yule–Walker equation can be used to derive
MOM estimators for the parameters ϕ1, : : : ,ϕp of an AR(p) model (Brockwell and Davis 2002) as a
function of the estimator rk of ρðhÞ:

rjkj =ϕ1rjk−1j þ : : : þ ϕprjk−pj (6-23)

Writing the aforementioned equations for k= 1, : : : , p, a linear system of p equations can be
solved for the p unknown autoregression parameters. Once the ϕjs are estimated, the variance of the
noise σ2ε can be estimated as

σ̂2ε = s2
 
1 −

Xp
j= 1

ϕjrj

!
(6-24)

where s2 is the sample variance of the available observations.
As a particular case, the following estimators are easily derived for the two parameters ϕ1 and σ2ε

of an AR(1) model:

ϕ̂1 = r1 (6-25)

σ̂2ε = s2ð1 − r21Þ (6-26)
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Likewise, for the ARMA(1, 1) model, the following MOM estimators can be derived (Salas 1993):

ϕ̂1 =
r2
r1

(6-27)

σ̂2ε =
s2ð1 − ϕ̂2

1Þ
ð1 − 2ϕ̂1θ̂1 þ θ̂21Þ

(6-28)

θ̂1 =
−b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ðr1 − ϕ̂1Þ2

q
2ðr1 − ϕ̂1Þ

(6-29)

where b= 1 − 2ϕ̂1r1 þ ϕ̂2
1.

As the orders p and q of ARMA models increases, MOM estimators are more difficult to derive
in closed form. In such cases, the system of equations obtained by equating the theoretical
autocorrelations [given by Equation (6-20)] with the corresponding sample estimates can be solved
numerically for the parameters ϕ1, : : : ,ϕp and θ1, : : : , θq.

As an alternative to MOM, ML methods can be employed for parameter estimation of ARMA
models based on searching the set of parameters that maximize the likelihood function. To this end,
Gaussian likehood is generally assumed, and numerical optimization is applied to find the maximum
(Brockwell and Davis 2002). Approximate maximum likelihood estimates can also be found by
minimizing the sum of squared residuals (Salas 1993):

SSRðϕ1, : : : ,ϕp, θ1, : : : , θqÞ=
X

ε̂2t (6-30)

where ε̂t are the residuals obtained from Equation (6-12) as a function of the observations.
Furthermore, the Hannan–Rissanen algorithm (Hannan and Rissanen 1982) can be employed,

which yields estimates in a least square sense, and they can be used directly or as starting solution for
numerical optimization. The basic idea behind the Hannan–Rissanen algorithm is to consider the
ARMA process as a multiple linear regression of Xt on Xt−1,Xt−2, : : : ,Xt−p and on the residuals
εt−1, εt−2, : : : , εt−q. Because the latter are unknown, first a high-order ARðp�Þ model with
p� > maxðp, qÞ is fitted to the zero mean observations, for instance using the Yule–Walker
equations. Based on such a model, the residuals are computed as

ε�t =Xt − ϕ�
1Xt−1 − ϕ�

2Xt−2 − : : : − ϕ�
p�Xt−p� (6-31)

Then, the preliminary estimates of the ARMA(p, q) model parameters can be found by
regressing Xt on Xt−1,Xt−2, : : : ,Xt−p and on the residuals ε�t−1, ε�t−2, : : : , ε�t−q in other words, by
minimizing the following sum of squares:

SSQðϕ1, : : : ,ϕp, θ1, : : : , θqÞ=
Xn

t = p�þ1

ðXt − ϕ1Xt−1 − ϕ2Xt−2 − : : : − ϕpXt−p

− θ1ε�t−1 − θ2ε�t−2 − : : : − θqε�t−qÞ2 (6-32)

Once the autoregressive and moving average parameters have been determined, the Hannan–
Rissanen estimate of the white noise variance is

σ̂2ε =
SSQ
n − p�

(6-33)
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6.2.2 Modeling of Seasonal Series

As mentioned previously, modeling of streamflows at time scales smaller than a year requires
accounting for the periodic stochastic nature of the underlying time series. Broadly speaking, two
main modeling approaches can be employed to model such periodicity. The first is based on
removing the periodic components and applying a stationary model to the resulting residuals. This
procedure is often referred to as “deseasonalization.” The second approach is based on models that
are intrinsically periodic stochastic and therefore do not require removing the periodicity from the
series in advance.

6.2.2.1 Deseasonalization

The term deseasonalization refers to the removal of deterministic periodic components from a time
series. Although in principle, the resulting residuals should be independent and identically
distributed (i.i.d.), in practice, deseasonalization is generally limited to a few stochastic features
of the time series, and therefore the residuals cannot strictly be considered i.i.d.

Among deseasonalization techniques, perhaps the simplest is to operate a seasonal standardi-
zation of the series using the periodic mean and variance as (e.g., Grimaldi 2004):

yt =
xν,τ − μτ

στ
(6-34)

where yt , t = ðν − 1Þωþ τ is the zero-mean, unit-variance residual series and μτ and σ2τ, τ= 1, : : : ,ω,
are the periodic (seasonal) means and variances, respectively. Although the computed residuals will
have zero mean and unit variance, seasonal patterns in higher-order moments and in the
autocorrelation structure will remain.

As the time scale of the analysis decreases (e.g., weekly or daily), the number of “seasons”
increases and so will the number of means and variances to be considered in Equation (6-34).
Furthermore, high-frequency variations of seasonal statistics due to sample variability will yield
irrregular patterns of the statistics versus the season. Then, to reduce the number of deseasonaliza-
tion parameters, one may smooth the seasonal statistics using, for example, Fourier series. For
illustration, with reference to the seasonal means xτ, τ= 1, : : : ,ω, a linear combination of sine and
cosine curves are fitted to the xτ. The fitted means μ̂τ are given by

μ̂τ =A0 þ
Xnω
k= 1

 
Ak cos

2πkτ
ω

þ Bk sin
2πkτ
ω

!
(6-35)

where nω is the number of coefficients, A0 = 1
ω
Pω

τ= 1 xτ, and the Fourier coefficients Ak and Bk are
given by

Ak =
2
ω

Xω
τ= 1

xτ cos
2πkτ
ω

(6-36)

Bk =
2
ω

Xω
τ= 1

xτ sin
2πkτ
ω

(6-37)

The same approach can be applied with reference to seasonal standard deviations, or to any
other seasonal statistics. The advantage of these procedure is that, generally, a small number of
Fourier components nω is enough to capture the intraannual variability of the statistics and therefore
the overall number of parameters can be significantly reduced.
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Alternatively, normal quantile transformation (NQT) can be employed, which is a particular
case of an equal probability transformation, or probability integral transform. NQT has been used in
several hydrological studies and is fully described in Krzysztofowicz (1997) and Montanari (2005). It
is based on fitting ω cumulative distribution functions (cdf) FτðxÞ to the series xν,τ for fixed
τ= 1, : : : ,ω and by computing the deseasonalized value yt as the value of a standard normal random
variable with the same nonexceedence probability of xν,τ:

yt =Φ←ðFτðxν,τÞÞ (6-38)

where the notation Φ←ðÞ is the inverse of the standard normal cumulative distribution function. The
same approach can also be applied using the empirical distribution functions of xν,τ for fixed τ,
instead of the fitted cdf FτðxÞ.

All of the aforementioned approaches will yield zero mean and unit variance residuals. In
addition, the NQT will yield residuals identically distributed according to a standard normal. Then,
nonseasonal models (e.g., ARMA) can be applied to the residuals either for generation or forecasting
purposes. The generated residuals can then be transformed back in the original domain (McLeod
and Hipel 1978). However, the limitation of the referred approaches is that the season-to-season
correlations may not be adequately modeled.

6.2.2.2 Periodic Models

As already mentioned, the deseasonalization procedures described in Section 6.3.3 will not remove
periodic components in the autocorrelation function, and therefore, when a distinct periodic
behavior in the autocorrelation is observed, other modeling strategies should be employed. From
a physical standpoint, seasonality in the autocorrelation may arise from different prevailing storage
mechanisms in the rainfall–streamflow transformation within the year, especially in the case of
ephemeral/intermittent streamflows. Several models that explicitly account for seasonal components
have been suggested, such as the class of periodic autoregressive moving average (PARMA) and the
seasonal autoregressive integrated moving average. With reference to a seasonal streamflow series
Xν,τ, τ= 1, : : : ,ω, the general form of a PARMA(p, q) model is (Salas 1993):

Xν,τ = μτ þ
Xp
i= 1

ϕi,τðXν,τ−i − μτÞ −
Xq
j= 1

θj,τεν,τ−j þ εν,τ (6-39)

where μτ is the seasonal means, εν,τ is a zero mean seasonal white noise process with seasonal
variances σ2ετ that are uncorrelated with Xν,τ−1,Xν,τ−2, : : : ,Xν,τ−p, and ϕj,τ and θj,τ are the seasonal pω
autoregressive and qω moving average parameters. For instance, by letting p = 1 and q = 0 in
Equation (6-39) the lag-1 periodic autoregressive PAR(1) model is obtained:

Xν,τ = μτ þ ϕτðXν,τ−1 − μτÞ þ εν,τ (6-40)

in which the notation ϕτ =ϕ1,τ is used for simplicity. Similarly, for p = 1 and q = 1 in Equation (6-39)
the PARMA(1,1) model is obtained:

Xν,τ = μτ þ ϕτðXν,τ−1 − μτÞ − θτεν,τ−1 þ εν,τ (6-41)

Seasonal variances and autocorrelation functions can be derived for the general case of the
PARMA(p, q) model using the infinite moving average representation of the process as

στ =
X∞
j= 0

ψ2
j,τ (6-42)
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ρh,τ =
P∞

j= 0 ψj,τψjþh,τ

ðστστ−hÞ2
(6-43)

where the coefficients ψj,τ are given by the following recursions:

ψ0,τ = 0

ψj,τ =
Pp

k= 1 ϕk,τψj−k,τ−k − θj,τ
ψj,τ = 0 for j < 0 and θj,τ = 0 for j > q

(6-44)

Although in some cases Equations (6-42) and (6-43) may be used to derive analytical
expressions of the autocorrelation and variance of a PARMA(p, q) model, in practice, they are
generally computed numerically by truncating the infinite sums to an appropriate value.

Estimation of the parameters for PARMA(p, q) models can be carried out in a similar fashion as
for the ARMA models (see Section 6.3.2). The periodic means μτ are generally estimated using the
seasonal sample means of Equation (6-2) as

μ̂τ = xτ (6-45)

Analytical expressions of the parameters’ estimators can be derived by the method of moments
for low-order PARMA models. For instance, the parameters ϕ1,τ and σ2ετ for the PARMA(1) case are
given by (Salas 1993)

ϕ̂1,τ =
�

sτ
sτ−1

�
r1,τ (6-46)

σ̂2ετ = s2τ − s2τ−1r
2
1,τ (6-47)

where S2τ and r1,τ are the seasonal variances and lag-1 autocorrelation given by Equations (6-3) and
(6-5), respectively.

Similarly, for the case of the PARMA(1, 1) model, the following system of equations can be
employed for estimating the parameters ϕ1,τ, θ1,τ, and σ2ετ by MOM (Salas et al. 1982):

ϕ̂1,τ =
c2,τ
c1,τ−1

(6-48)

θ̂1,τ = ϕ̂1,τ þ
ðs2τ − ϕ̂1,τc1,τÞ
ϕ̂1,τs

2
τ−1 − c1,τ

−
ðϕ̂1,τþ1s

2
τ − c1,τþ1Þ

ðϕ̂1,τs
2
τ−1 − c1,τÞθ̂1,τþ1

(6-49)

σ̂2ετ =
ϕ̂1,τþ1s

2
τ−1 − c1,τþ1

θ̂1,τþ1

(6-50)

where ch,τ are the seasonal autocovariances given by Equation (6-6).
Alternatively, approximate ML estimates of the parameters ϕ1,τ and θ1,τ can be obtained by

minimizing the sum of the square of the residuals
P

n
ν= 1

Pω
τ= 1 ε2ν,τ. The variance of the noise term

can then be estimated as σ̂2ετ = ð1∕nÞPn
ν= 1 ε2ν,τ.

As an alternative to PARMA models, seasonal autoregressive integrated moving average
(SARIMA) models can also be employed to model seasonal streamflows series, especially for

MODELING STREAMFLOW VARIABILITY 215



forecasting (e.g., Valipour 2015, Moeeni and Bonakdari 2016, Fernández et al. 2009, Modarres 2007).
With reference to the seasonal series Xt ,t = ðν − 1Þ�ωþ τ, a SARIMA(p, d, q) × (P, D, Q) process is
defined such that the differenced series, Yt = ð1 − BÞdð1 − BωÞDXt follows the ARMA process
defined as

ϕðBÞΦðBωÞYt = θðBÞΘðBωÞεt (6-51)

where in the Box–Jenkins notation, B is the backward shift operator such that
BkXt =Xt−k, ϕðBÞ= ð1 − ϕ1B − ϕ2B

2 − : : : − ϕpB
pÞ, ΦðBωÞ= ð1 −Φ1Bω −Φ2B2ω −ΦPBPωÞ,

θðBÞ= ð1 − θ1B − θ2B2 − : : : − θqBqÞ, ΘðBωÞ= ð1 − Θ1Bω − Θ2B2ω − ΘQBQωÞ, and εt is a zero-
mean white noise process with variance σε. In applications, D is rarely more than one and the
orders p, q, P, Q of the polynomials are generally limited to 0− 3. Identification of SARIMA
processes is generally carried out by finding the values of d and D such that the differenced series
Yt = ð1 − BÞdð1 − BωÞDXt does not exhibit seasonal components. Then, the autocorrelations of Yt at
lags multiple than ω can be analyzed to estimate the orders P, Q. If r(k) is the sample autocorrelation
of Yt , P and Q should be chosen such that rðωkÞ, k= 1, 2, : : : is compatible with the autocorrelation
function (ACF) of an ARMA(P,Q) model. Finally the orders p and q are selected by trying to match
rð1Þ, rð2Þ, : : : , rðω − 1Þ with the ACF of an ARMA(p, q) model (Brockwell and Davis 2002).

6.2.3 Product Models for Intermittent Flows

Streamflows in arid and semi-arid regions may be intermittent at subannual time scales (daily to
months), exhibiting a pattern of alternating sequence of zero/nonzero flows. The resulting flow
process generally presents higher coefficients of variation and skewness with respect to perennial
flows in humid or temperate regions, which can hinder the applicability of traditional modeling
schemes such as ARMA or PARMA. To model the sequence of zero and nonzero flows, the product
of two mutually independent processes can be considered: a discrete binary one aimed at
reproducing the occurrences of zero and nonzero values and a continuous one for modeling the
nonzero flows, namely:

Xν,τ =Qν,τZν,τ (6-52)

where Qν,τ is a binary Bernoulli (0,1) periodic process, Zν,τ is a periodic autocorrelated process
[e.g., PARMA(p, q)], and the two processes are generally assumed to be mutually independent.

Different approaches have been proposed for modeling the alternating binary sequence Qν,τ of
zero and nonzero flow occurences. For example, Chebaane et al. (1995) propose periodic discrete
autoregressive PDAR(1) for modeling the discrete component Qν,τ. It can be written as

Qν,τ =Vν,τQν,τ−1 þ ð1 − Vν,τÞUν,τ (6-53)

where Vν,τ and Uν,τ are mutually independent, nonautocorrelated periodic Bernoulli processes with
P½Vν,τ = 1�= γτ, P½Uν,τ = 1�= δτ, and Qν,0 =Qν,ω. Estimation of the parameters γτ and δτ of the
PDAR model given by Equation (6-53) can be made by matching the transition probabilities as
(Chebaane et al. 1995)

γ̂τ =
n0τ−1n11τ − n1τ−1n01τ

n1τ−1n0τ−1
(6-54)

and

δ̂τ =
n1τ−1n01τ

n1τ−1n01τ − n0τ−1n10τ
(6-55)

where nijτ , i = 0, 1, j = 0, 1 is the number of all the combinations of flow (1)/no flow (0) transitions
at season τ, and n0τ−1n10τ and n1τ−1n10τ are the numbers of flow and no flow observations,
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respectively. For instance, n11τ is the number of times a nonzero flow occurs at season τ
following a nonzero flow at season τ − 1, while n01τ is the number of times a nonzero flow
occurs at season τ following a zero flow at season τ − 1. In some particular cases (e.g., when
n1τ−1n01τ − n0τ−1n10τ ≤ 0) these estimators may yield unfeasible solutions, then, the alternative
estimators derived by Chebaane et al. (1995) for such particular cases can be employed.
Likewise, two state periodic Markov chains for modeling daily streamflows has been proposed
among others by Aksoy (2003). Because the continuous component Zν,τ of Equation (6-52)
cannot be observed, the parameters of the corresponding PARMA model can be carried out by
relating the first and second order moments of the three processes Xν,τ, Qν,τ, and Zν,τ as
(Chebaane et al. 1995)

μτðXÞ= μτðQÞμτðZÞ (6-56)

σ2τðXÞ= μτðQÞσ2τðZÞ þ μ2τðZÞσ2τðQÞ (6-57)

ρðkÞτðXÞ=
�
ρðkÞτðQÞστðQÞστ−kðQÞ½ρðkÞτðZÞστðZÞστ−kðZÞ þ μτðZÞμτ−kðZÞ�
þ μτðQÞμτ−kðQÞρk,τðZÞστðZÞστ−kðZÞ

�
∕στðXÞστ−kðXÞ (6-58)

where μτðÞ, σ2τðÞ, and ρk,τðÞ represent the periodic expected values, variances, and the lag k
autocorrelation for the corresponding variable at season τ. For instance, Chebaane et al. (1995) derive
MOM estimators for the parameters assuming a PARMA(1) model for the process Zν,τ.

6.2.4 Modeling of Long-Term Variability

Several hydroclimatic processess aggregated at yearly time scales exhibit apparent nonstationarities
in the form of cycles, changes in the mean and other statistics, or shifting patterns from one
stationary state to another, thus departing from the traditional hypothesis that the basic statistical
parameters do not change with time. Such series are generally characterized by Hurst exponents
greater than 0.5 (see Section 6.2.4) and slowly decreasing autocorrelograms, and therefore applica-
tion of traditional modeling schemes such as ARMA models poses some limitations. As a
consequence, over the years, a great deal of statistical hydrology literature emerged aimed at
developing alternative models and estimation techniques that may represent more closely the
behavior of hydrologic time series.

Several physical and stochastic underlying mechanisms and related modeling schemes have
been proposed to explain the behavior of such series, among which scale invariance, long memory,
and nonstationarity of the mean are probably those that have found most widespread consensus
(Bras and Rodriguez-Iturbe 1985, Salas 1993). Nonetheless, no general agreement has been reached
over the preferable modeling approach, while time series analysis modelers recognize that distin-
guishing between long memory and changes in regimes is generally difficult given the length of the
available time series (see, e.g., Banerjee and Urga 2005, Smith 2005). A recent work on long memory
can be found in Koutsoyiannis (2016).

In what follows, three types of models possessing the previously mentioned mechanisms,
namely fractional Gaussian noise (FGN), fractionally integrated moving average (FARMA), and
shifting mean (SL) are illustrated in some detail.

6.2.4.1 Fractional Gaussian Noise

Mandelbrot (1965) and Mandelbrot and Wallis (1968) introduce the FGN model for preserving the
Hurst phenomenon. The model assumes that hydrometeorological series exhibit scale-invariant
behavior when aggregated at any time scale greater than annual. More precisely, let us consider a
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process Xi, defined at a basic time scale, and the corresponding aggregated process ZðkÞ
i , defined at a

time scale k, i.e.,

ZðkÞ
i =

Xik
l= ði−1Þkþ1

Xl, i= 1, 2, : : : (6-59)

Then we assume that the aggregated process ZðkÞ
i exhibits scale-invariant properties, namely,

ðZðkÞ
i − kμÞd

�
k
l

�
H
ðZðlÞ

i − lμÞ (6-60)

where k and l are two generic time scales, μ is the mean of the Xi process, and the symbol d stands for
equality in distribution. Equation (6-60) states that the process mantains the same statistical
behavior at different aggregation time scales, provided that a proper scaling multiplicative coefficient
ðk∕lÞH is applied.

If the process Xi is Gaussian, Equation (6-60) is a discrete FGN. Because in principle different
distributions for Xi can be defined, alternative names have been proposed, e.g., simple scaling signal
(SSS) (Koutsoyiannis 2003) or Hurst–Kolmogorov model (HK) (Koutsoyiannis 2011). Bras and
Rodriguez-Iturbe (1985), for example, show that the process defined by Equation (6-60) preserves the
Hurst behavior with Hurst coefficient H. Furthermore, the autocorrelation ρh does not depend on the
time scale and, for large time lags, is a power function of h. Therefore, the autocorrelation function is
not absolutely summable, and the FGN possesses long memory, at least in mathematical sense. From a
practical standpoint, FGN series cannot be operationally obtained but only approximated. Mandelbrot
and Wallis (1969) propose two approximations consisting of weighting averages of independent
Gaussian variables. Approximations of FGN by means of ARMA processes have been suggested by
O’Connell (1974) and illustrated in detail by Bras and Rodriguez-Iturbe (1985). More recently,
Koutsoyiannis (2011) provides simple algorithms to generate FGN or SSS processes.

6.2.4.2 Long Memory Models

The presence of long memory in hydroclimatic series and in streamflow series in particular has been
examined by several authors, especially in an attempt to explain the Hurst effect. As a consequence,
some models capable of representing many of the previously referred properties have been proposed
in literature and have been applied successfully to various fields, such as geophysical phenomena and
econometric series. A class of models possessing long memory has been introduced independently by
Granger and Joyeux (1980) and Hosking (1981). It generalizes the autoregressive integrated moving
average (ARIMA) process by allowing noninteger values for the degree of differencing d. These
processes are usually referred to as fractionally differenced autoregressive moving average
FARMA(p, d, q), although some authors prefer using the acronyms ARIMA(p, d, q), FARIMA(p,
d, q), or ARFIMA(p, d, q). An advantage of FARMA(p, d, q) models is that, because they are
combinations of ARMA(p, q) processes with fractionally integrated long-memory processes, by
varying the autoregressive and moving average components, one can combine short- and long-
memory effects, thus reproducing the autocorrelation structure of natural processes that exhibit both
short- and long-term persistence.

Consider that Yt is a fractionally differenced autoregressive process FARMA(p, d, q) with
−0.5 < d < 0.5 that satisfies the following difference equation:

ΦðBÞ∇dYt =ΘðBÞεt (6-61)

where Yt has zero mean, B is the backward operator BkXt =Xt−k, ∇d = ð1 − BÞd is the differencing
operator, ΦðBÞ and ΘðBÞ are the p-order autoregressive and q-order moving average polynomials,
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respectively (refer to Section 6.3.3), and εt is a white noise term with zero mean and variance σ2ε . The
differencing operator may be defined by means of the binomial expansion as

∇d = ð1 − BÞd =
X∞
j= 0

πjB j (6-62)

where π0 = 1, πj =
Γð j−dÞ

Γð jþ1ÞΓð−dÞ, j= 1, 2, : : : , and Γð:Þ is the complete gamma function. The auto-

covariance function of the process Yt is given by (Brockwell and Davis 1991)

γYðhÞ=
X∞

k=−∞
γ�ðkÞγXðh − kÞ (6-63)

where γ�ðÞ is the autocovariance function of the ARMA process ΦðBÞWt =ΘðBÞεt withWt =∇dYt ,
and γXðÞ is the autocovariance of a fractionally differenced noise Xt , namely (Brockwell and Davis
1991)

γXðhÞ= σ2ε
Γð1 − 2dÞ
Γ2ð1 − dÞ

Y
0<k≤h

k − 1þ d
k − d

(6-64)

It can be shown that the autocorrelation function of the process Yt for large h behaves as

ρYðhÞ=Ch2d−1 (6-65)

where C is a constant and therefore the FARMA(p, d, q) process possesses long memory provided
d> 0. Furthermore, the d exponent is related to the Hurst coefficientH by the relationship d = H− 0.5,
which shows that for d> 0 FARMA models are able to preserve the Hurst phenomenon.

Estimation of the parameters of a FARMA(p, d, q) model cannot be carried out by means of
traditional ARMA estimation techniques such as the method of moments because the process does
not admit a finite state representation. Therefore, the attention has been devoted mainly to
maximum likelihood estimators. To this end, exact (Gaussian) and approximated likelihood have
been applied. Sowell (1992) and Cheung and Diebold (1994) explore use of exact Gaussian
likelihood, but, due to numerical difficulties, Whittles’ approximation of the Gaussian likelihood
in the frequency domain is generally preferred (Fox and Taqqu 1986, Montanari et al. 1997). With
reference to a mean subtracted observed sample y1, : : : , yn, fitting a FARMA(p, d, q) model requires
estimating a total of pþ qþ 2 parameters, namely pþ q autoregressive and moving average
polynomial coefficients, the fractional exponent d, and the variance of the noise term σε. Setting
β= ðd,ϕ1, : : : ,ϕp, θ1, : : : , θqÞ, the Whittles approximation of the Gaussian likelihood can be
expressed as (Brockwell and Davis 1991)

lWðβÞ= ln

�
1
n

X
j= 1

n
InðλjÞ

f Yðλj; βÞ
�
þ 1

n

X
j= 1

n ln f Yðλj; βÞ (6-66)

where λj are the Fourier frequencies 2πj∕n, InðλjÞ is the periodogram of the observations
[Equation (6-7)], and f YðλÞ is the spectral density of the FARMA model, which is given by

f YðλÞ=
σ2ε
2π

jΘðe−iλÞj2
jΦðe−iλÞj2 j2 sinðλ∕2Þj−2d (6-67)

Note that the Whittle approximation is asympotically valid even in the non-Gaussian case and
therefore can be employed even in the case of nonnormal distributed data. Minimization of
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Equation (6-66) with respect to β and σε will lead to estimates of the parameters. In practice, such
minimization must be carried out numerically and initial values of the parameters are required.
Preliminary estimates of d can be obtained by estimating the Hurst exponent Ĥ from the available
sample and by letting d̂= Ĥ − 0.5. Then, a preliminary filtered series y�t can be computed by applying
the differencing filter of Equation (6-62) to yt . Finally, because such filtered series will follow an
ARMA(p, q) process identical to the ARMA components of the original FARMA process yt ,
traditional ARMA estimation procedures can be applied to get preliminary estimates of
ðϕ̂1, : : : , ϕ̂p, θ̂1, : : : , θ̂q, σ̂εÞ.

6.2.4.3 Shifting Mean Models

Many hydroclimatic series exhibit apparent shifts in one or more of their statistical properties. For
instance, Figure 6-6 shows the plot of the annual average flows of the Niger River at Koulikoro,
which exhibits an apparent random oscillatory behavior compatible with a shifting of mean levels.
Shifting behavior of the mean has also been suggested as a possible explanation of the Hurst
phenomenon since the pioneering work by Hurst (1957), who used a deck of cards to run a rough
simulation experiment in an attempt to devise a model that would explain what he had observed in
natural time series. Since then, models with nonstationary means have been proposed by several
authors including Klemeš (1974), Potter (1976), Boes and Salas (1978), Salas and Boes (1980), and
Sveinsson et al. (2003).

A general definition of a shifting mean (SM) process is as follows:

Xt =Mt þ Zt (6-68)

where Mt is a process that assumes constant values (levels) during variable time spans and Zt is a
noise term. Then, different models can be built depending on the definition of the Mt and Yt

processes. For instance, one may assume that Zt and Mt are mutually independent, Zt an i.i.d.
process with mean μZ and variance σ2Z , and Mt such that

Mt =Mt−1 with probability 1 − p

Mt = ξt with probability p

where ξt is drawn from some distribution with zero mean and variance σ2ξ . Thus the aforementioned
process consists of the superposition of an i.i.d. process with a varying levels process, where each
level remains constant for a time span distributed according to a geometric distribution. Fortin et al.
(2004) show that the aforementioned model can be reformulated as a hidden Markov model.

Figure 6-6. Annual average flows for the Niger River at Koulikoro.
Source: Data from Sveinsson et al. (2003).
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Mean, variance, and lag-h autocorrelation of the SM model have been derived by Salas and Boes
(1980) as

μX = μZ
σ2X = σ2Y þ σ2M

ρh =
σ2Mð1 − pÞh
σ2Y þ σ2M

Fitting an SM model to a series of observations requires estimating the four parameters μZ , σ2Y ,
σ2M , and p. Using the method of moments, the following estimators can be derived, as a function of
the sample mean X, variance s2, and lag-1 and lag-2 autocorrelation coefficients r1 and r2 of the
observed series (Salas and Boes 1980, Sveinsson et al. 2003):

μ̂Y =X

σ̂2M = s2
r22
r1

σ̂2Y = s2 − σ̂2M

p̂= 1 −
r2
r1

Note that the parameter estimates are feasible only if r1 > r2 > r21. Due to sample variability of
the autocorrelogram, infeasible parameters may result, and adjusting procedures such as those
proposed by Sveinsson et al. (2003) can be employed.

Several authors have proposed alternate formulations of SM models. For instance, Sveinsson
et al. (2003) propose an SM model where the levels alternate between high and low values. Ballerini
and Boes (1985) show that by choosing appropriate distributions for theMt and Zt processes, an SM
process that exhibits a Hurst exponent greater that 0.5 may be devised. A model with several levels
spanning with different time scales has been proposed by Koutsoyiannis (2002) to approximate a
fractional Gaussian noise process with Hurst exponent greater that 0.5.

6.2.5 Modeling of Streamflows by Nonparametric Methods

Traditional parametric streamflow modeling has focused on models capable of reproducing several
key statistical features of observed data, including mean, variances, autocorrelation, and cross
correlations. Despite that parametric models have found widespread use for data generation and
forecasting, in some cases drawbacks such as the need to transform the original data to normal and
the nonlinearity of the hydrologic system may limit their application. The aforementioned
difficulties have sparked an increasing attention to nonparametric models aimed at overcoming
some of the drawbacks of traditional parametric models.

Unlike parametric models, nonparametric methods are not based on fixing some functional
form either to express the link between successive values or the probability density function, but
rather, they directly use the observations to generate new data, thus implicitly preserving statistical
features sometimes difficult to reproduce by means of parametric approaches.

Techniques such as block bootstrapping (Kunsch 1989, Vogel and Shallcross 1996), k-nearest
neighbors resampling (KNNR) (Lall and Sharma 1996; Mehrotra and Sharma 2006, Prairie et al.
2007), and conditional density estimate (Sharma et al. 1997) have been developed, with the objective
of generating random synthetic series resembling different features of observed samples without the
need of prior selection of the model’s functional form. Nonparametric approaches have also been
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proposed to account for information from paleohydrological reconstructed data (Gangopadhyay
et al. 2009, Henley et al. 2013). Other applications of nonparametric models relate to spatial and
temporal disagreggation that will be discussed in some detail in Section 6.4.

Bootstrapping is a generation technique based on resampling in a random fashion from an
observed series. When resampling involves one value at a time (simple bootstrapping), it can be
applied to uncorrelated series because the time dependence structure of the observations will not be
preserved. Block bootstrapping, however, is based on resampling sequences of values, thus
preserving up to a certain lag the autocorrelation function of the obervations. Bootstrapping,
however, suffers the drawback of generating values that are identical to the original observations
except for the order. To overcome such drawbacks, hybrid models have been proposed based on a
combination of parametric and resampling approaches (Srinivas and Srinivasan 2001, 2005, 2006;
Kim and Valdés 2005), or more elaborate schemes based on KNNR or conditional density estimate.

KNNR (e.g., Lall and Sharma 1996, Mehrotra and Sharma 2006, Prairie et al. 2007) generates
new values according to the closeness of the distance estimated from current and past known values
and the historical counterparts. For instance, by considering a limited number of sequences of
observations (neighbors) close in the Euclidean sense to given values, a new value is generated by
random extraction from the observations among the successors of the selected neighbors. The
method requires the selection of the k nearest neighbors and the corresponding weights wi that
generally decrease with increasing distance. Lall and Sharma (1996) propose k=

ffiffiffiffi
N

p
, where N is the

number of observations, and the weights are given by

wi =
1∕iP
k
j= 1 1∕j

, i= 1, : : : , k (6-69)

Prairie et al. (2006) propose improvements to the KNNR method, who adopt a local polynomial
regression where the innovations are sampled using KNNR. Salas and Lee (2009) propose two
approaches based on a k-nearest neighbor resampling algorithm with gamma kernel perturbations
for simulating seasonal flows while preserving annual variability.

Conditional density methods (Sharma et al. 1997, Sharma and O’Neill 2002) are based on the
idea that in general terms the generation of a value Xt at time t, based on past values
Xt−1,Xt−2, : : : ,Xt−p can be pursued by sampling from the conditional probability density function
f ðXtjXt−1,Xt−2, : : : ,Xt−pÞ. Then, instead of assuming a parametric form for such conditional
density, the latter is estimated from the sample by means of nonparametric kernel density estimation
methods. For instance, Sharma et al. (1997) propose the following Gaussian kernel density estimator:

f̂ ðxÞ=
Xn
t = 1

K
�x − xt

h

�
(6-70)

where K() is a kernel function that must integrate to 1 and h is a parameter called bandwidth.

6.3 MODELING OF COMPLEX RIVER SYSTEMS

Stochastic modeling of streamflows at different sites within a complex river system is often required
for planning and management purposes, including reservoirs design and operation, low flow and
drought analysis, performance assessmemt of water supply systems under uncertain streamflows,
streamflow forecasting, water allocation problems among different users, and so on. Modeling such
complex systems requires accounting for some statistical features stemming from the topological
structure of the river network. For instance, preservation of autocorrelations and cross-correlations
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is crucial to properly account for the joint occurrence of low or high flows in the different branches of
the river system. Additivity of generated streamflows at merging branches of the river system is
another important issue that must be considered in streamflow generation of complex river
networks. Furthermore, often the streamflow simulation requires the preservation of statistics at
different time scales (e.g., seasonal and annual), which generally cannot be accomplished by simply
building a model at the smaller time scale (e.g., monthly) and by aggregating the generated values at
the larger time scales (e.g., yearly). To account for the aforementioned features, several modeling
schemes have been proposed, generally based on the combination of univariate or multivariate
models and spatial and temporal disaggregation procedures. In what follows, multivariate ARMA
and PARMA models and parametric and nonparametric disaggregation schemes are discussed.
Then, the role of alternative modeling schemes, based on the combination of the aforementioned is
discussed.

6.3.1 Modeling of Multivariate Time Series

Nonseasonal ARMAmodels can be extended to the case of joint generation of multiple time series by
considering instead of a scalar-valued random variable Xt , a vector-valued time series Xt . More
specifically, form sites, let us define by Xt =Xð1Þ

t ,Xð2Þ
t , : : : ,XðmÞ

t the vector of streamflows at time t at
the different sites j= 1, : : : ,m. Then, the multivariate extension of the ARMA(1, 1) model denoted as
MARMA(1, 1) is

Yt =Φ1Yt−1 −Θ1εt−1 þ Bεt (6-71)

where Yt is a zero-mean vector Yt =Xt − μ, μ is the vector of the means of Xt , Φ1 and Θ1 arem ×m
autoregressive and moving average square matrices, B is anm ×mmatrix, and εt is an uncorrelated,
zero-mean and unit variance white noise m × 1 vector such that E½εtεTt �= I where I is the identity
matrix and E½εtεTt−k�= 0 for k ≠ 0.

Extension to the multivariate autoregressive moving average model MARMA(p,q) considers p
autoregressive and q moving average terms and can be written as (Salas 1993)

Yt =
Xp
i= 1

ΦiYt−i −
Xq
j= 1

Θjεt−j þ Bεt (6-72)

where Φi, i= 1, : : : , p and Θi, i= 1, : : : , q are m ×m autoregressive and moving average square
matrices.

The method of moments can be employed to estimate parameter matrices of low-order
MARMA(p, q) models. For instance, with reference to the multivariate lag-1 autoregressive
MAR(1) model the following estimators are available for Φ1 and B (Matalas 1967):

Φ̂1 = M̂1M̂
−1
0 (6-73)

B̂ B̂T = M̂0 − Φ̂1M̂
T
1 (6-74)

where M̂0 and M̂1 are the lag-zero and lag-1 cross-covariance matrices of the observations Xt .
Solving for B̂ in Equation (6-74) can be carried out by using several methods (Salas 1993), and
adjustment procedures are also available to overcome numerical problems that may arise (see,
e.g., Bras and Rodriguez-Iturbe 1985).

As the orders p and q increase, estimation of the parameter matrices of the full multivariate
ARMA(p, q) model is often a complicated task due to numerical difficulties that generally arise.
Therefore, alternative and simpler formulations have been proposed, such as the contemporaneous
ARMA (CARMA) (Matalas 1967, Camacho et al. 1987, Salas 1993), which assumes a diagonal form
for the matrices Φi, i= 1, : : : , p and Θj, j= 1, : : : , q. Such an assumption leads to a dramatic
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simplification of the estimation procedures because it enables decoupling of the model into m
ARMA models that can be estimated in an univariate fashion, while estimation of the matrix B,
whose role is to model jointly the series, can be carried out by the method of moments as a function
of the cross-correlation matrices at different observation lags. However, the drastic reduction of
the number of parameters limits the model’s capabilities to preserve all the cross-correlations at
several lags.

With reference to a CARMA(1, 1) model, the elements of the matrix G=BBT can be estimated
as (Stedinger et al. 1985a)

ĝðijÞ =
mðijÞ

0 ð1 − ϕ̂ðiÞϕ̂ð jÞÞ
1 − ϕ̂ðiÞθ̂ð jÞ− ϕ̂ð jÞθ̂ðiÞþ θ̂ðiÞθ̂ð jÞ

(6-75)

where ϕ̂ðiÞ and θ̂ðiÞ are the autoregressive and moving average parameters of the univariate
ARMA(1, 1) model fitted to site (i), and mðijÞ

0 is the lag-zero cross-correlation between site i and j.
Once the matrix G is found, B can be estimated by solving the matrix equation G=BBT (Bras and
Rodriguez-Iturbe 1985).

Periodic models such as PARMA(p, q) can also be extended to themultivariate case by considering
matrix parameters. For instance, the multivariate version of the PAR(1) [Equation (6-40)] is given by
(Salas and Pegram 1977, Salas 1993)

Yν,τ =Φ1,τYν,τ−1 þ Bτεν,τ (6-76)

where Yν,τ is a zero-mean vector Yν,τ =Xν,τ − μτ, μτ is the seasonal vector of the means of Xν,τ,Φ1,τ is
the ω-periodicm ×m autoregressive matrix, Bτ is a periodicm ×mmatrix, and εν,τ is an uncorrelated,
zero-mean and unit-variance white noisem × 1 vector, i.e., such that E½εν,τεTν,τ�= I and I is the identity
matrix with E½εν,τεTν,τ−k�= 0 for k ≠ 0.

Likewise the general multivariate PARMA(p, q) is defined as

Yν,τ =
Xp
i= 1

Φi,τYν,τ−i −
Xq
i= 1

Θi,τεν,τ−i þ Bτεν,τ (6-77)

where Φi,τ, i= 1, : : : , p are the p ω-periodic m ×m autoregressive matrices and Θi,τ, i= 1, : : : , q are
the q ω-periodic m ×m moving average matrices.

As in the case of nonseasonal modeling, multivariate PARMA can also be formulated in a
contemporaneous fashion, by assuming diagonal autoregressive and moving average matrices Φi,τ
and Θi,τ (Bartolini et al. 1988). Then, the model in Equation (6-77) can be decoupled into m
univariate PARMA, whose autoregressive and moving average periodic components can be
estimated in an univariate setting. Estimation of the periodic matrices Bτ can be pursued similarly
to the nonseasonal case by the method of moments. For instance, estimators for the elements gðijÞτ of
the matrix Gτ =BτBT

τ have been derived by Haltiner and Salas (1988) for the case of PARMA(1, 1)
and by Rasmussen et al. (1996) for the case of PARMA(2, 2).

To reduce the number of parameters when the number of sites increases, contemporaneous
PARMA (CPARMA) models have also been proposed in which the matrices Φi,τ and Θi,τ are
assumed to be diagonal. This leads to strictly preserving only the contemporaneous cross-correlation
among sites, while the preservation of cross-correlations at different time lags (which sometimes can
be neglected) is not ensured. Efstratiadis et al (2014) describe recent advances on the subject.

6.3.2 Disaggregation Models

Joint modeling of streamflows at different sites based on multivariate ARMA or PARMA models
suffers the drawback of not preserving statistics at different scales of aggregation, either in time
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(e.g., monthly streamflows aggregated at yearly scale) or space (merging branches in complex river
systems). This is so, particularly for low-order models. Thus, several disaggregation models have
been proposed to preserve statistics at different scales of aggregation. For instance, Valencia and
Schaake (1973) propose a model to disaggregate annual values atm sites into corresponding seasonal
values such that seasonal values at each site sums up to the corresponding annual value. The model
has the form

Y=AX þ Bε (6-78)

where
X = zero-mean,
m = vector of annual values at the m sites,
Y = zero-mean mω vector of seasonal values (ω number of seasons) at the m sites,
A and B = mω ×m and mω ×mω parameter matrices respectively, and
ε=mω vector of uncorrelated noises.

The parameter matrices A and B can be estimated by the method of moments as

Â= SYXS−1XX (6-79)

B̂ B̂T = SYY − ÂSXY (6-80)

where SWZ is the covariance matrix between the generic vectors W and Z. Whereas the model can
preserve seasonal autocorrelation and cross-correlation among the sites, it does not preserve
autocorrelation between the first season of a year and any preceding season. To overcome such
limitation, Mejia and Rousselle (1976) propose an enhancement of the aforementioned model by
introducing an additional term,

Y=AX þ Bεþ CZ (6-81)

where C is a parameter matrix and Z is a vector of seasonal values from the previous year for each
site. For instance, Z may contain only the last season from the previous year, in which case Z is a
n × 1 vector and Z is a nω × n matrix. Estimators for the matrices A, B, and C based on MOM are
given by Lane (1982) and Salas (1993).

Stedinger and Vogel (1984) propose an alternative scheme, which enables preserving the cross-
correlations at annual scale as

Yt =AXt þ εt (6-82)

εt =Cεt−1 þ ζt (6-83)

where εt is independent of Xt and ζt is a noise term with covariance matrix Sζζ.
Drawbacks of the aforementioned models include the relatively large number of parameters,

which may become an issue especially when the number of sites is large and the available
sample size is small. Furthermore, when the orginal data are preliminarily transformed to
account for nonnormality, additivity is not guaranteed anymore (in the real space data). Thus,
models with reduced number of parameters have been proposed and adjustments techniques
to preserve the additivity of seasonal values at the annual time scale (Stedinger et al. 1985,
Grygier and Stedinger 1988, Lane and Frevert 1990, Koutsoyiannis and Manetas 1996). Simple
stepwise disaggregation schemes have been proposed by Santos and Salas (1992) to reduce the
overall number of parameters while preserving key features in the temporal and spatial
disaggregation.
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Alternatively, nonparametric techniques can be employed to disaggregate streamflows
at different sites spatially and temporally. This includes simple disaggregation techniques
(e.g., Acharya and Ryu 2013, Portela and Silva 2016) and more sophisticated methods.
Nonparametric disaggregation (NPD) is based on sampling from the conditional distribution
of the vector of disaggregated variables Y= ðY1,Y2, : : : ,YmÞ given the aggregated value X,
f ðYjXÞ= f ðY,XÞ∕f ðXÞ, where f ðY,XÞ is the joint probability density function of Y and X and
f ðXÞ is the marginal density of X. NPD requires first a rotation of the lower-level variable vector Y
into a new vector space Z= ðZ1,Z2, : : : ,ZmÞT :

Z=RY (6-84)

where R is am ×m rotation matrix obtained through the Gram Schmidt Orthonormalization such
that the last element of the rotated variable is Zm =X∕

ffiffiffiffi
m

p
. Details on the algorithm to compute R

can be found in Tarboton et al. (1998). The NPD model is based on generating Z first and then
backrotating into Y from Equation (6-84) so that Y=R−1Z.

Tarboton et al. (1998) propose multivariate kernel density estimates to generate Z1,Z2, : : : ,Zd−1
and Zd =X∕

ffiffiffi
d

p
. Prairie et al. (2007) propose a similar approach based on a k-nearest neighbor

technique instead of a multivariate kernel density that enables circumventing the complications
associated with the latter approach as the dimensionality of the problem increases. Lee et al. (2010)
highlight the similarity of NPD with the adjusting procedure proposed by Koutsoyiannis and
Manetas (1996) and suggest some enhancements based on genetic algorithms to preserve cross-
boundary correlations (i.e., correlation between the first season with the last season from the
previous year) and to avoid generation of negative values and repetition of temporal and spatial
historical flow patterns. Models based on copula have also been recently proposed for disaggregating
monthly flows (Li et al. 2013, Hao and Singh 2013).

6.3.3 Modeling Strategies for Complex River Systems

As already mentioned, when modeling complex river systems, a key requisite is that the generation of
series at the different sites should reflect the topology of the river network in terms of cross-
correlation, additivity, and proportionality, in the sense that flows at a downstream site should be
represented as the sum of tributary river flows and channel losses/gains. Furthermore, that statistics
at different times scales (e.g., monthly and annual) be preserved and that the sum of seasonal values
add up to the corresponding annual flows are often desirable. At the same time, as the number of
sites increases, so does the complexity of the model, generally leading to difficulties related to its
implementation and calibration. None of the models proposed so far can satisfy all of these
requisites, and therefore, a preferable approach is to put in place proper modeling strategies based on
the use of a combination of different models as the system requires.

When the interest lies in modeling a complex river system at different sites, application of a
seasonal multivariate model (e.g., traditional multivariate PARMA or multivariate contempora-
neous PARMA) would preserve the statistics (e.g., means, variances, autocorrelations, and cross-
covariances) of the different sites but would not satisfy the additivity requisite. However,
application of disaggregation schemes to the whole system could become cumbersome due to
the relatively large number of sites. Therefore, a preferable approach is to use multivariate models
to simulate flows at key sites (e.g., stations farthest downstream along a main stream) first and then
use one or more disaggregation schemes to disaggregate such generated values into flows at the
other sites. To this end, no general rule exists and the modeler should use his or her judgment and
expertise to choose a modeling strategy that can meet as much as possible the simulation
requirements. In the following example, such a modeling strategy is better illustrated with
reference to a real case.
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Example 6-2: Disaggregation Strategy for Modeling Upper Colorado River System

This example is taken from Salas et al. (2006) and shows a spatiotemporal disaggregation modeling
and generation approach applied to the monthly streamflow data of the Upper Colorado River basin.

Figure 6-7 shows the stations’ locations in the basin. In this example, the disaggregation
approach will be illustrated with reference to part of the Upper Colorado Basin. In principle, only a
multivariate PARMA or CPARMA model could be fitted to monthly flows at all stations. Though
this would preserve the cross-correlations at the different sites, the additivity between upstream and
downstream sites would not be ensured and, furthermore, the statistics at the annual scale would not
be preserved. For instance, application of a monthly multivariate model would not ensure that the
flows (at the monthly time scale, let alone at the annual one) at station 8 would be equal to the sum of
flows at stations 7, 6, and 2. However, application of a combined multivariate–disaggregation
approach will preserve the aforementioned features, as described in the following.

The map shows that stations 8 and 16 control two major sources for the Upper Colorado Basin
and therefore can be both considered key stations for stepwise disagreggation. Further upstream,
stations 2, 6, 7, 11, 12, 13, 14, and 15 are the control stations for the tributaries. Therefore these
stations are considered substations. Then the key stations can be modeled so that the annual flows
of the key stations will be added together to form one series of annual data as an artificial index
station. The artificial index station data can be fitted with an ARMA(1, 1) model and then a
disaggregation model (either a Valencia and Schaake or a Mejia and Rousselle scheme) can be
applied to disaggregate the annual flows of the index station into the annual flows at the key
stations. The key station to substation disaggregation can be done using two groups. The first
group contains key station 8 and substations 2, 6, and 7. The second group contains key station 16

Figure 6-7. Upper Colorado River disaggregation example.
Source: ASCE and Salas (2006).
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and substations 11, 12, 13, 14, and 15. Similarly, the same two groups used for spatial grouping are
adopted for temporal disaggregation.

Note how the resulting generated series will preserve additivity at downstream sites 8 and 16
because the artificial index station represents the sum of the flows. Furthermore, the stepwise
spatiotemporal disaggregation approach will ensure the preservation of additivity at the key stations
and the preservation of statistics at both annual and monthly time scales.

6.4 SOFTWARE TOOLS

Several software tools are available for stochastic modeling of streamflow series among which,
general purpose time series analysis codes can be employed for many modeling problems. In
principle, such general purpose software tools are attractive because they are well documented and
offer a wide range of analysis and modeling capabilities. In general, a distinction can be made
between software specifically oriented toward statistical analysis and general mathematical platforms
for which specific statistical and time series analysis toolboxes are available. Examples of the former
categories include Statistica (http://www.statsoft.com), SPSS (http://www-01.ibm.com/software/
analytics/spss/), Statgraphics (http://www.statgraphics.com), ITSM (Brockwell and Davis 2002),
and others, whereas examples of the latter category are Matlab (https://www.mathworks.com)
and Mathematica (https://www.wolfram.com/mathematica). Besides commercially oriented
software, attention to open source software is increasing, for which many tools are continually
produced and made available by developers from all over the world. One example is R software
(http://www.r-project.org), an open source framework for statistical analysis, and related tools
(e.g., McLeod et al. 2012). Most of the aforementioned software, however, does not account for
issues that are peculiar to streamflow modeling, such as periodicity, cross-correlation, model
validation through storage-related and drought statistics, spatial and temporal disaggregation, and
other features as discussed in some previous sections. However, specifically designed software has also
been developed to support stochastic modeling of streamflows for water engineering problems. Such
software tools have the advantage that the underlying models’ estimation, verification, and validation
procedures involve features that are unique to hydrological time series and streamflows in particular.
Examples of hydrological time series oriented software include SAMS (Salas et al. 2006), LAST (Lane
and Frevert 1990), and SPIGOT (Grygier and Stedinger 1990).

6.5 FURTHER REMARKS

Streamflow analysis and modeling is one of the key steps for a successful water resources
management. The different sources of variability in streamflows must be properly modeled to
assess their impacts on water resources availability. In this chapter, several well-known analysis and
modeling approaches have been presented, and references to some recently emerging techniques
have been provided. The presented models have found widespread application for many water
resources management problems, such as streamflow and drought forecasting, reservoir sizing,
performance assessment of water supply systems, and many others.

As in many engineering modeling exercises, the selection of the appropriate streamflow
modeling strategy should be carried out following a “problem-driven” approach. The modeler
should be aware of the features of streamflow variability to account for given the specific purpose of
the analysis. Answer to questions such as “what are the temporal scales of interest,” “is modeling
different sections of the river system necessary,” “is preservation of statistics at different temporal
scales a key aspect,” “is long-term persistence an important feature to be considered (e.g., for

228 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES

http://www.statsoft.com
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/
http://www.statgraphics.com
https://www.mathworks.com
https://www.wolfram.com/mathematica
http://www.r-project.org


reservoir sizing),” “is intermittency significant in the streamflow series,” and some others, may guide
the modeler in choosing the most appropriate methodology. Data availability may also play a key
role in model selection. Sometimes different approaches may be adopted, and the choice can be made
on the basis of cross-validation procedures that can help to highlight which specific feature of
interest is best preserved by each methodology (Stedinger and Taylor 1982). To this end, only a clear
understanding of the purpose of the anaysis and of the corresponding most relevant streamflow
features can ensure succesful modeling. Finally, the issue of nonstationarity, resulting from the
effects of some anthropogenic and oceanic and atmospheric driving factors, is becoming a topic of
some interest in the field (e.g., Koutsoyiannis 2016, Sveinsson and Salas 2017).
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CHAPTER 7

Flood Frequency Analysis in the
United States

Veronica L. Webster (formerly Veronica Webster Griffis)
Jery R. Stedinger

7.0 GENERAL

A large portion of the US population, infrastructure, and industry is located in flood-prone areas.
Floods cause an average of nearly 100 deaths and cost roughly US$2.3 billion annually. While
hydrologic and hydraulic engineers cannot stop floods from occurring, they should seek structural or
nonstructural strategies to reduce the risk of large economic losses, social disruption, and loss of life.
To identify plans that are economically and socially rational requires an estimate of the risk of
flooding. Accurate estimates of the magnitude and frequency of flood flows are needed for the design
of water-use and water-control projects, for floodplain definition and management, and for the
design of transportation infrastructure such as bridges and roads. This chapter evaluates the methods
currently employed and recently recommended for use in the United States for flood frequency
analysis.

To describe the possible magnitudes of future flood flows and their frequency, one could use
either the empirical distribution represented by the data, or an analytic probability distribution fit to
the data. In practice the true distribution that describes flood events is not known, and thus use of an
empirical distribution may be appealing. However, using a reasonable analytic distribution has
several advantages (Stedinger et al. 1993):

1. It presents a smooth interpretation of the empirical distribution. As a result, quantiles and
other statistics computed using the fitted distribution should be more accurate than those
computed with the empirical distribution.

2. It provides a compact and easy-to-use representation of available data.

3. It is likely to provide a more realistic description of the range of values that a random variable
may assume and their likelihood, in other words, probability of occurrence. For example, by
using the empirical distribution one implicitly assumes that no values larger or smaller than the
sample maximum or minimum can occur. This is unreasonable for flood series.

4. Often one needs to estimate the likelihood of extreme events that lie outside the range of the
sample (either in terms of magnitude or in terms of frequency). Such extrapolation makes little
sense with the empirical distribution.

Distributions commonly employed to model annual maximum flood series include the log–
Pearson type III, generalized extreme value, log–normal, and generalized logistic distributions; see
Stedinger et al. (1993), Kottegoda and Rosso (1997), Hosking andWallis (1997) and references therein).
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For the selected analytic distribution, one must estimate its parameters so that the fitted
distribution is consistent with the available data. Several parameter estimation methods are available,
including maximum likelihood, method of moments, L-moments, and Bayesian inference. Maxi-
mum likelihood methods have the most theoretical appeal and, for many problems, generate
asymptotically the most efficient estimators possible. They are also very flexible. Method of moment
estimators have a long history of use, are often easy to employ, and have intuitive appeal. They
summarize the available data by its sample average and often the sample variance; the parameters of
the analytic distribution are then selected to reproduce those statistics. In several classic cases,
method of moments and maximum likelihood estimators are equivalent. (This is true for the
binomial, Poisson, normal, and exponential distributions with complete samples.) Still other
methods continue to be developed, often for special situations, and are in some cases very attractive.
L-moments are commonly employed for regional analysis of hydrologic variables such as rainfall and
floods (Hosking and Wallis 1997).

Bayesian inference represents a different statistical point of view for parameter estimation. In a
Bayesian statistical framework the unknown parameters are viewed as random variables whose
distribution is derived, conditional on the available data interpreted though the likelihood function
and prior information provided by the analyst. The use of prior information raises interesting issues
about what is known about a distribution from sources beyond the dataset that may be available for a
site. Such information is often subjective. This use of subjective information is attractive to some
groups, while others find it troubling. Bayesian methods are experiencing a resurgence of interest
with the recent development of Monte−Carlo Markov−Chain (MCMC) methods that provide a
Bayesian analysis of a range of problems which were previously intractable; see, for example, Gelman
et al. (1995), Reis and Stedinger (2005), Renard (2011), or Viglione et al. (2013).

The current methodology recommended for flood frequency analysis by US federal agencies is
presented in Bulletin 17B (IACWD 1982). Under the assumption that annual maximum flood series
are a sample of independent and identically distributed events, Bulletin 17B fits a log–Pearson type
III (LP3) distribution to a flood series. The recommended technique is to fit a Pearson type III (P3)
distribution to the logarithms of the flood series using the method of moments (MOM). Estimates of
the mean, standard deviation, and skew coefficient of the sample data’s logarithms are computed
using traditional moment estimators. However, because the data available at a site are generally
limited to less than 100 years, and is often less than 30 years in length, the skewness estimator can be
particularly unstable. Therefore, Bulletin 17B recommends combining the at-site skew with regional
skew information to obtain a more accurate skewness estimator. Bulletin 17B includes several
additional procedures to adjust sample moments and improve flood quantile estimates. The
following sections discuss three major features of the Bulletin: regional skew coefficients, low
outliers and the conditional probability adjustment, and historical flood peaks.

Because of the importance of the LP3 distribution in the United States, this chapter focuses
primarily on the characteristics of the LP3 distribution and its applicability in flood frequency analysis,
the value of regional skew information, and recommended procedures for low outlier adjustment and
the incorporation of historical flood information. Innovations in the new Bulletin 17C are outlined.
Uncertainty and variability in flood control projects and possible methods to incorporate climate
variability and climate change into flood frequency analyses are also discussed.

7.1 EVOLUTION OF BULLETIN 17B

Bulletin 17B (IACWD 1982) describes uniform flood frequency techniques recommended for use by
US federal agencies. Although now 35 years old, Bulletin 17B is the most recent document in a series
of publications by the US government attempting to provide a uniform and accurate method for
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estimating flood quantiles (Griffis and Stedinger 2007a). The development of a uniform procedure
for flood frequency analysis began as part of a larger movement to improve water management
practices. In the mid-1960s it became apparent that uniform flood frequency methods were needed
for the development of a national flood insurance program in the United States and to facilitate the
interaction among various levels of government and private enterprise that share water resource
systems (Thomas 1985).

Prior to the 1960s, the United States lacked a national policy for prioritizing water projects.
Congress and the Bureau of the Budget (BoB) required that all projects pass an economic feasibility
test (i.e., that benefits would exceed costs) as outlined in Circular A-47 (Caulfield 2000). All agencies
involved in water resources planning were required to submit details of their programs to the BoB for
review.

In the early 1960s, Congress began advocating uniform standards for the evaluation and
formulation of water projects by federal agencies. The movement toward uniform procedures began
in July 1961 when President John Kennedy proposed the Water Resources Planning Act. Although the
Act was not finalized until 1965, a Water Resources Council (WRC) was formed in October 1961 as
stipulated in the president’s bill. The charge of the council was to review current policies, standards, and
procedures for the formulation and evaluation of water projects and to develop new uniform standards
to be employed by all federal agencies. The new standards were completed by May 1962 and submitted
to President Kennedy for review. Shortly afterward, the new standards were published as Senate
Document No. 97, and Circular A-47 was annulled (Holmes 1979, pp. 43–44, Caulfield 2000).

Under the direction of the BoB, the uniform standards outlined in Senate Document No. 97 were
intended to facilitate coordination of interagency water projects with three main objectives:
economic development, preservation of natural resources, and the well-being of the people (Coffey
2005, personal communications). With regard to these objectives, on August 10, 1966, the BoB for
President Lyndon Johnson submitted a report with recommendations for the development of a
national flood-damage abatement program. Published as House Document No. 465, the report led to
the National Flood Insurance Act of 1968.

Recommendation 2 ofHouse Document No. 465 was for the WRC to establish a panel consisting
of hydrologists, statisticians, and economists to “present a set of techniques for frequency analyses
that are based on the best of known hydrological and statistical procedures.” The WRC did so in
September 1966 under the direction of the BoB. In December 1967, the WRC published Bulletin 15,
“A Uniform Technique for Determining Flood Flow Frequencies”; this was the first set of uniform
flood frequency techniques to be employed by all federal agencies (Water Resources Council 1967).

Benson (1968) discusses the analysis employed in developing Bulletin 15. Six procedures were
considered and ultimately the LP3 distribution with a regional skew coefficient was recommended.
The procedures considered were the most common techniques employed by federal agencies at that
time, including graphical distribution-free methods and various statistical distributions; Bulletin 13,
“Methods of Flow Frequency Analysis,” published in April 1966, describes those methods (Inter-
agency Committee on Water Resources 1966).

Bulletin 15 was a significant step toward the development of a uniform procedure for flood
frequency analysis; however, it was not as uniform as originally intended (Thomas 1985, p. 324).
Uniform procedures were not specified for the treatment of outliers or the estimation of the regional
skew, and no recommendation was made for the use of historical data.

In the years following, Bulletin 15 evolved in response to efforts that aimed to improve various
aspects of the recommended techniques. Bulletin 17, “Guidelines for Determining Flood Flow
Frequency,” was published in March 1976, and was quickly succeeded by Bulletin 17A, published in
June 1977. The latter version included a clarification that the computation of weighted moments
reflecting available historical information was to be employed before weighting the sample skew with
a regional skew; this is the only significant difference between Bulletin 17 and 17A (Thomas 1985).
However, discrepancies still existed in the treatment of low outliers, and thus Bulletin 17B was
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published in September 1981. Bulletin 17B also includes a revised weight for skew estimation
(Thomas 1985). Bulletin 17B, last revised in March 1982, is the methodology currently recom-
mended for flood frequency analysis by federal agencies in the United States.

7.2 CHARACTERISTICS OF THE LP3 DISTRIBUTION

The LP3 distribution is an extension of the Pearson type III family of distributions, one of several
families of distributions proposed by the statistician Pearson as a model of random variables (Bobee
and Ashkar 1991). The LP3 distribution is used extensively in hydrologic applications and is
currently recommended for use by US federal agencies for flood frequency analyses as described by
Bulletin 17B, but its properties are not always well understood. The primary goals of this section are
(1) to provide a clear and concise presentation of the characteristics of the LP3 distribution,
including L-moments, product moments in both real space and log space, and their relationship, and
(2) to define combinations of the log space skew and the log space standard deviation that are
consistent with the characteristics of real US flood data and for which the LP3 distribution is a
reasonable model of the distribution of annual maximum flood series from unregulated watersheds.

7.2.1 Log Space Characteristics

The LP3 distribution describes a random variable Q whose logarithms are P3 distributed. Thus,
Q = exp(X) if a base-e conversion is employed. To simplify the discussion, all results presented in
this section use base-e natural logarithms, although any base could be employed; Bulletin 17B
employs base-10 common logarithms. [If Y = log10(Q), then Y = log10(e) and X = 0.4343 X; thus,
Y has a scaled version of the X distribution with the same skew.]

The P3 distribution has shape, scale, and location parameters α, β, and τ with the probability
density function

f XðxÞ=
1

jβjΓðαÞ
�
x − τ
β

�
α−1

exp

�
−
x − τ
β

�
(7-1)

defined for α> 0 and (x − τ)/β> 0, where Γ(α) is the complete gamma function.
The parameters of the P3 distribution are functions of the first three population moments

(μx, σx, and γx):

α=
4
γ2x

; β=
σxγx
2

; τ= μx − 2
σx
γx

(7-2)

By definition the standard deviation σx is positive; therefore, the skewness coefficient γx and the
parameter β must have the same sign. For a positively skewed distribution, β is positive and τ is the
lower bound of the P3 distribution with an unbounded tail for larger quantiles. For a negatively
skewed distribution, β is negative and τ is the upper bound of the P3 distribution that is unbounded
below. The existence of an upper bound for flood flows with the LP3 distribution can be a concern
(Gilroy 1972). This issue is addressed later in this section.

Figure 7-1 illustrates the shape of the P3 density function for four values of the population skew
coefficient γx with mean μx = 1 and lower bound τ = 0. Only cases with positive skew coefficients
are shown; the shape and scale of the P3 density function are the same for negative values of γx when
μx and σx are held constant. However, the location parameter τ changes from a lower bound to an
upper bound as the resultant distribution with negative skew is the reverse reflection about the mean
of the distribution with positive skew of the same magnitude.
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7.2.2 Real Space Characteristics

The LP3 distribution has the following probability density function:

f QðqÞ=
1

jβjqΓðαÞ
�
ln q − τ

β

�
α−1

exp

�
−
ln q − τ

β

�
=

1
jβjΓðαÞ

expðτ∕βÞ
q1þ1∕β

�
ln q − τ

β

�
α−1

(7-3)

where ln Q = X has a P3 distribution with parameters α, β, and τ. The density function is defined for
α> 0, 0< q≤ exp(τ) for γx< 0, and exp(τ)≤ q for γx> 0. When γx goes to 0, the LP3 distribution
converges to a log–normal distribution.

The rth noncentral moment of Q is

E½Qr�= erτ
�

1
1 − rβ

�
α

(7-4)

for β< 1/r (Bobee, 1975, Equation 13; Johnson et al. 1994, pp. 383–384). Using Equation (7-4) the
product moments of Q are

μQ = eτ
�

1
1 − β

�
α

for β < 1

σ2Q = e2τ
��

1
1 − 2β

�
α
−
�

1
1 − β

�
2α
�

for β < 1∕2

γQ =
E½Q3� − 3μQE½Q2� þ 2μ3Q

σ3Q
for β < 1∕3 (7-5)

The product moments are infinite for values of β outside of these ranges.
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Figure 7-1. Probability density function for P3 distribution with τ = 0; μx = 1; and γx = 0.7, 1.4, 2.0,
and 2.8.
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Using Equation (7-5), the real space Cv = σQ/μQ can be computed from

Cv =
��

1þ β2

1 − 2β

�
α
− 1

�
1∕2

=
��

1þ ½σxγx�2
4½1 − σxγx�

�
4∕γ2x

− 1

�
1∕2

(7-6)

for β< 1/2 or σxγx< 1, and γx≠ 0. When γx goes to 0, the LP3 distribution converges to a
log–normal distribution for which the real space Cv and real space skew γQ are computed as
follows:

Cv = ½expðσ2xÞ − 1�1∕2 (7-7)

γQ = 3Cv þ C3
v (7-8)

Figure 7-2 illustrates the shape of the LP3 density function for different combinations of α and β
with m = exp(τ). (Recall α= 4∕γ2x.) Bobee (1975) and Bobee and Ashkar (1991) also illustrate these
forms of the LP3 density function; however, a different parameterization is employed herein
resulting in a permutation of the patterns. Table 7-1 summarizes the various forms of the density
function resulting from different combinations of α and β. The shape of the density function at the
bound exp(τ) is always controlled by α (or |γx|). The density function at q = exp(τ) is infinite at the
upper/lower bound when 0< α< 1 (|γx|> 2) and does not have a tail when 1< α< 2 (1.414< |γx|< 2).
When 2 < α (|γx|< 1.414), the form of the density function at q = exp(τ) at the bound ranges from a
short tail to a long, thin tail as α increases from two to larger values.

For β > 0, corresponding to γx > 0, exp(τ) is the lower bound of the LP3 distribution and the
distribution is unbounded above. The rth moment of Q only exists for β < 1/r, independent of α,
and thus β affects the thickness of the upper tail. Figure 7-2 illustrates as cases P1 to P3 the
LP3 density functions with β > 0, which emulate the corresponding P3 density functions for each
range of γx.

For β< 0, corresponding to γx< 0, the LP3 distribution has a lower bound of 0 and an upper
bound of exp(τ). As illustrated in Figure 7-2, β < 0 yields several forms of the LP3 density function.
This occurs because q is now allowed to approach 0, unlike for β> 0 when qmust exceed exp(τ). For
β< 0, the LP3 density function in Equation (7-3) is a function of q−(1+1/β). Therefore, for β<−1, the
density function is inversely proportional to qp for negative p and thus goes to infinity when q goes to 0.
For −1< β<−1/2, the density function is proportional to qp, where p is between 0 to 1; this causes the
density function to go to 0 quasi-linearly when q goes to 0. For −1/2< β< 0, the density function is
proportional to a power of q greater than 1, and has a thin tail as q goes to 0. Thus, β controls the shape
of the density function at q = 0.

When considering the shape of the LP3 distribution in log space as in Figure 7-1, the mean
and standard deviation are not of concern because they only affect the location and scale of
the distribution, respectively, and not the shape. When converting from log space (Figure 7-1) to
real space (Figure 7-2), the mean only affects the scale of the LP3 distribution. However, the
standard deviation through the value of β affects the shape of the distribution in real space. As
Figure 7-2 illustrates, the shape of the LP3 distribution in real space is a complex function of both α
and β and is thus a function of the log space standard deviation σx and the log space skew γx; see
Equation (7-2).

While Figure 7-2 clearly shows the relationship between γx and the LP3 parameters α and β, less
clear is how σx relates to the various forms of the LP3 density function. Regions P1 to P3 and N1 to
N9 in Figure 7-3 represent the combinations of σx and γx, which result in the 12 forms of the LP3
density function previously shown in Figure 7-2.
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7.2.3 LP3 Model for Annual Flood Series

Concerns have been raised regarding how appropriate the LP3 distribution is as a model of annual
maximum flood series. One concern is the existence of an upper bound for flood flows when
modeled by the LP3 distribution. Another issue is the range of LP3 parameter values that is
reasonable. In this section, parameter values for the LP3 distribution that are thought to produce
reasonable flood-like distributions are juxtaposed with the observed characteristics of real flood
series using statistics in both log space and real space. The analysis demonstrates that the
characteristics of real US flood data across the 14 regions delineated by the US Geological Survey
fall well within the range of parameters for which the LP3 distribution is thought to produce
reasonable flood-like distributions.

Log Space Model. In the literature, log space skews for floods are commonly restricted to the
range ±1.0 (Chowdury and Stedinger 1991, Spencer and McCuen 1996, Cohn et al. 1997,

Table 7-1. Shape of LP3 Density Function for Different Combinations of α and β.

γx> 0 γx< 0

β> 0 0 > β>−1/2 −1/2> β>−1 −1> β

2< α
(1.414> |γx|)

P1. Long, thin
upper tail; thin
lower tail

N1. Bell shape,
thin upper tail

N2. Thin upper
tail

N3. Reverse
J-shape
(infinite at
zero)

1< α< 2
(2> |γx|>
1.414)

P2. Mode close to
lower bound, no
lower tail

N4. Mode close to
upper bound,
no upper tail

N5. No tails* N6. No tail at
upper bound

0< α< 1
(|γx|> 2)

P3. Reverse J-shape
(infinite at lower
bound), thick
upper tail

N7. J-shape
(infinite at
upper bound)

N8. No tails,
infinite at
upper
bound

N9. U-shape
(infinite at
zero and
upper bound)*

*Bobee (1975) subdivides these cases into two classes, but neither is of interest here.
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Figure 7-3. Log space skew versus log space standard deviation as a function of LP3 parameters α
and β (with base-e transformations).
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Whitley and Hromadka 1999, McCuen 2001). Although a log space population skew of γx = ±1.0
would seem to be very extreme, having sample skews on the order of −1.0 is not uncommon. For a
partition of the United States into 14 regions, Landwehr et al. (1978) report mean regional log space
skew values in the range (−0.4, +0.3). Hardison (1974) reports mean regional log space skew values
in the range (−0.5, +0.6), with a standard error for individual station estimators of 0.55 (corre-
sponding to a mean square error MSE(GR) of 0.302). Thus, a range of (−1.0, +1.0) for the log space
skew is certainly within the distribution of site-to-site variability reported by Hardison.

Subsequent work by Tasker and Stedinger (1986) indicates MSE(GR) = 0.302 is most likely too
large; in that study, their regional log space skew has an MSE of 0.11. Several recent studies report
values of the same order (Rasmussen and Perry 2000; Pope et al. 2001; Martins and Stedinger 2002;
Reis et al. 2003, 2004, 2005; Feaster et al. 2009; Gotvald et al. 2009; Weaver et al. 2009). A log space
skew range of (−1.0, +1.0) is consistent with MSE(GR) on the order of 0.100 and a mean within
(−0.4, +0.4). But is the LP3 density function a reasonable model for annual maximum flood series
with log space skews in this range?

Real Space Model. The shape of the LP3 density function is a complex function of α and β and thus
the log space standard deviation σx and skew γx. Therefore, reasonable ranges of values for both σx
and γx should be considered. In flood frequency analysis, a long thin upper tail is viewed as physically
reasonable, representing increasingly infrequent combinations of hydrologic factors that contribute
to increased runoff. The theory of extremes provides insight as to what is reasonable: if the
probability distribution of the largest floods in a year is a distribution that looks exponential or
Pareto-like with a long upper tail, then the annual maximum would have a Gumbel-like distribution
with a long upper tail and a shorter lower tail (Kottegoda and Rosso 1997, pp. 428–440).

First consider the shape of the LP3 density function for positive γx (corresponding to β> 0) as
illustrated in Figure 7-2. The shape of the density function is appropriate with 0 < γx< 1.414
(case P1). With 1.414< γx< 2 (case P2), the upper tail is still reasonable representing increasingly
unlikely combinations of rainfall possibilities and watershed states that result in ever larger annual
maximum floods, but the mode is very close to the lower bound and the density function goes to zero
rapidly at the lower bound; however, this is not necessarily a concern in flood frequency analysis
wherein the larger quantiles are of interest.

With γx> 2 (case P3), while the upper tail is perhaps reasonable, the density function is infinite
at the lower bound, suggesting that low-flow values are infinitely more likely than other values; again,
this is not a reasonable model for annual maximum flood series. A similar problem exists with
−1.414 < γx< 0 and β<−1 (case N3) at zero.

In cases N1 and N2 of Figure 7-2 with −1.414< γx< 0 and −1< β< 0, the density function has
a very short tail at the upper bound, but overall the shape is reasonable. Still, the use of a distribution
with an upper bound to model flood series is a concern because one cannot say with certainty that
the upper bound will not be exceeded (Gilroy 1972) and imagining or anticipating a finite upper
bound just beyond the range of floods historically experienced makes little physical sense in
unregulated natural watersheds. National experience indicates that substantially larger floods can
occur, though they are increasingly infrequent. In the remaining cases (N4–N9), with γx<−1.414
and β< 0, the LP3 density function is either infinite at the upper bound or does not have an upper
tail and therefore is not a physically reasonable model for flood series.

Overall, evaluation of the shape of the LP3 density function in Figure 7-2 indicates that
distributions with log space skews |γx|≤ 1.414 are physically reasonable descriptions of floods
provided β>−1. Although γx as large as +2.0 may also yield a reasonable shape of the LP3 density
function, Buckett and Oliver (1977), Griffis (2006), and Griffis and Stedinger (2007b) suggest that log
space skew values should be restricted to |γx|≤ 1.414 for the shape of the log space density function
to be reasonable for modeling flood flows. An interest here is to determine reasonable combinations
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of σx and γx. Because β = (σxγx)/2, the proposed ranges for γx and β jointly determine a reasonable
range for σx.

Reasonable Values of the Real Space Cv and Skew γQ. For a partition of the United States into
14 regions, Landwehr et al. (1978) analyze the sampling properties of the real space Cv and skew γQ
employing a total of 1,351 observed flood sequences. Using the regional data provided by Landwehr
et al. (1978), results in Griffis and Stedinger (2007b) indicate that 95% of the estimates of real space
Cv in the United States are within (0.1, 1.8), and that 95% of the real space sample estimates of skew
in the United States are within (0.1, 3.7). Adjusting the computed sample skew ranges for bias, Griffis
and Stedinger (2007b) suggest that a reasonable range for the true population skew γQ is (0.1, 6.2),
which is a larger interval because sample skewness estimators are bounded (Kirby 1974).

Using Equations (7-5) and (7-6), one can compute combinations of the log space standard
deviation σx and the log space skew γx that correspond to real space Cv values of 0.1 and 1.8 and real
space skew γQ values of 0.1 and 6.2. Figure 7-4 illustrates these combinations. Also shown in the
figure are the 14 regional means reported by Landwehr et al. (1978) with a correction for bias in the
mean values of the skew and a 90% confidence interval for the true mean of the log space skew. These
values are clustered together with an average σx of approximately 0.6 and an average γx of -0.1. The
curves for β = −1/2 and −1 are included in Figure 7-4 to relate the realistic combinations of σx and
γx to the forms of the LP3 density function represented in Figures 7-2 and 7-3. The shaded region
indicates the combinations of σx and γx that result in reasonable values for both the real space Cv and
γQ, and also yield appropriate probability density functions (pdfs). This range is generally dominated
by the value of γQ; it is restricted by the upper bound on Cv only for −0.4> γx> −0.9. For γx<−0.9,
the value of σx is further restricted by the need for β to be greater than −1 for the pdf to be
reasonable, but as expected, real data do not plot near that region of the parameter space.

Figure 7-4 shows that a log space skew of −1.4 combined with σx in the range of 0.6 to 1.4 yields
reasonable Cv values of 0.4 to 0.9 and real space skews that are certainly within reasonable bounds
(γQ≥ 0). For a log space skew of +1.4, reasonable values of γQ≤ 6.2 are only obtained when σx≤ 0.3,
yielding Cv≤ 0.4. Log space skews γx> 1.4 must be paired with smaller, less common values of the Cv

to obtain reasonable values of the real space skew. This suggests that γx = 1.4 is indeed an extreme
value and a reasonable upper bound for hydrologic applications of the LP3 distribution in the United
States.

β
β

σ

γ

Figure 7-4. Log space skew versus log space standard deviation (with base-e transformations) as a
function of real space Cv and skew; o represents Landwehr et al. (1978) regional data with 90%
confidence intervals for the true mean log space skew.
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Overall, analysis of the mathematical characteristics of the LP3 distribution in relation to what
would be expected of an annual maximum flood series in the United States indicates that surely
|γx|≤ 2, although |γx|≤ 1.414 is more realistic. If a hydrologist believes |γx|> 1.414 is needed to
describe a flood series, then perhaps another distribution would provide a more realistic description
of the data. Within the parameter ranges Figure 7-4 describes, the LP3 distribution with a log
transformation of the data as recommended by Bulletin 17B is certainly a reasonable model for
annual maximum flood series at most locations in the United States and other parts of the world
where zero annual maximums are rare. However, if annual maximum series frequently hit a true
lower bound, such as zero for annual floods, then a different model may be appropriate for frequency
analysis, or one can model only the values above some threshold (Griffis et al. 2004).

7.2.4 L-Moments

In addition to traditional product moments, the shape of a distribution can be described in terms of
the L-moment ratios τ3 (L-skewness) and τ4 (L-kurtosis):

τ3 =
6β2 − 6β1 þ β0

2β1 − β0

τ4 =
20β3 − 30β2 þ 12β1 − β0

2β1 − β0
(7-9)

where βk = E{[X F(X)]k} are called probability-weighted moments (Hosking and Wallis 1997).
L-moment ratio diagrams have been recommended to choose between probability distributions in
regional frequency analyses (see Stedinger et al. 1993, Peel et al. 2001, and references therein). Many
studies indicate that the generalized extreme value (GEV) and log–normal (LN) distributions are
consistent with observed values of τ3 and τ4 computed with regional flood data. The log–normal
distribution is a special case of the LP3 distribution for γx = 0. However, L-moments for the LP3
distribution were not available until recently (Griffis and Stedinger 2007b).

Hosking and Wallis (1997) provide the following approximation for τ4 for the LP3 distribution
when γx = 0 accurate to within 0.0005:

τ4 = 0.12282þ 0.77518τ23 þ 0.12279τ43 − 0.13638τ63 þ 0.11368τ83 (7-10)

For the LP3 distribution with γx≠ 0, Griffis and Stedinger (2007b) develop the needed
expressions for τ4 as a function of τ3 of the form:

τ4 = aþ bτ3 þ cτ23 þ dτ33 (7-11)

For a given τ3, with the coefficients in Table 7-2, the approximations yield values of τ4 accurate
to within 0.008 over the range τ3(min)≤ τ3≤ 0.9, wherein Table 7-2 specifies the minimum value
τ3(min) for each value of γx; these are obtained as σx approaches 0.

Figure 7-5 presents the L-moment ratio diagram for the LP3 distribution relative to other
well-known distributions computed using approximations provided by Hosking and Wallis
(1997). The light gray region represents the τ4–τ3 space covered by the LP3 distribution with
|γx| ≤ 1.4; the darker gray region represents the τ4–τ3 space corresponding to the reasonable
combinations of σx and γx identified in Figure 7-4. The product–moment skew of the
LN distribution is also shown suggesting how the skew of the LP3 distribution relates to the
L-skew τ3. The curve labeled OLB represents that overall lower bound for the τ4–τ3 space given by
1
4 ð5τ23 − 1Þ ≤ τ4 (Hosking 1990).
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Figure 7-5 shows that the L-skew of the LP3 distribution can be negative when the log space
skew is negative and σx is small; however, these negative L-skew values are avoided for realistic
combinations of σx and γx. With the same value of τ3, thinner tailed distributions can be obtained
using the LP3 distribution with γx< 0. The τ4–τ3 space covered by the LP3 distribution lies slightly
beneath the τ4–τ3 curve for the GEV distribution in the area around the Gumbel distribution, which
is the region of interest; it is also below the generalized logistic (GLO) distribution. Overall, because
the LP3 distribution has two shape parameters α and β, the L-moment ratios cover a two-
dimensional space, and thus the LP3 distribution appears more flexible than the GEV and LN
distributions. Moreover, the LP3 distribution recognizes that floods are nonnegative, whereas fitted
GEV and GLO distributions with shape parameter κ≥ 0, and sometimes κ< 0, assign nonzero
probabilities to negative flows.

Table 7-2. Coefficients of the Cubic Approximation in Equation (7-11) of τ4 as a Function of τ3 for the
LP3 Distribution for Select Values of the Log Space Skew.

Log space
skew, γx

Coefficient

τ3 (min)a b c d

−1.4 0.0602 −0.1673 0.8010 0.2897 −0.2308
−1.0 0.0908 −0.1267 0.7636 0.2562 −0.1643
−0.5 0.1166 −0.0439 0.6247 0.2939 −0.0740
0.0 0.1220 0.0238 0.6677 0.1677 0.0000
0.5 0.1152 0.0639 0.7486 0.0645 0.0774
1.0 0.1037 0.0438 0.9327 −0.0951 0.1701
1.4 0.0776 0.0762 0.9771 −0.1394 0.2366

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
L-skewness, 

0 1.43 4.19 14.4 83.3
Skew of LN Distribution

τ

τ

Figure 7-5. L-moment ratio diagram including generalized logistic (GLO), generalized extreme value
(GEV), log–normal (LN), generalized Pareto (GPA), Pearson type III (P3), Gumbel, normal, and log–
Pearson type III (LP3). The light gray region represents LP3 distribution with |γx|≤ 1.414, the dark
gray region has restricted values of σx and γx, as shown in Figure 7-4. The curve labeled OLB
represents the overall lower bound for τ4−τ3 space.
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7.3 ESTIMATION PROCEDURES FOR COMPLETE SAMPLES

The hydrologic literature has explored several parameter estimation methods for the LP3 distribu-
tion, including the MOM in both log space and real space, maximum likelihood estimators (MLE),
and the method of mixed moments (MXM). Bobee and Ashkar (1991) provide a detailed review of
these and other less common estimation techniques for use with the LP3 distribution and estimation
techniques for other members of the gamma family. Johnson et al. (1994, pp. 355–378) and the
references provided therein discuss estimation techniques for the gamma distribution. This section
discusses the log space MOM estimator with regional skew information recommended by Bulletin 17B.
An example is provided for a complete sample; additional procedures for low outlier adjustment and
the incorporation of historical flood information are not employed. Section 7.4 addresses those issues
and changes to appear in Bulletin 17C.

Another parameter estimation technique that has received attention in the hydrologic literature is
the method of L-moments (see Section 7.2.4). L-moment estimators have been shown to be effective
for regional analyses (see previous citations) but are generally not optimal for the analysis of a single set
of data (Landwehr et al. 1979, Martins and Stedinger 2000), and thus are not considered here.

7.3.1 Log Space Method of Moments

The parameters of the LP3 distribution can be estimated using log space MOM by fitting a P3
distribution to the logarithms of the flood peaks, denoted {X1, : : : , XN}. Estimates of the population
mean μx, standard deviation σx, and skew coefficient γx of the logarithms of the station data are
computed using traditional moment estimators:

X =
1
N

XN
i= 1

Xi

Sx =
�

1
N − 1

XN
i= 1

ðXi − XÞ2
�
1∕2

Gx =
N

ðN − 1ÞðN − 2ÞS3
XN
i= 1

ðXi − XÞ3 (7-12)

The parameters of the P3 distribution (α, β, and τ) are then estimated by equating the sample
product moments (X, Sx, and Gx) to the population moments (μx, σx, and γx), resulting in the
following parameter estimators:

α̂=
4
G2
x
; β̂=

SxGx

2
; τ̂=X − α̂ β̂ =X − 2

Sx
Gx

(7-13)

The pth quantile of the fitted distribution can be written as Xp =X þ SxKpðGxÞ. Here KpðGxÞ is a
frequency factor that is the pth quantile of a standard P3 variate with skew coefficient Gx, mean 0, and
variance 1. The flood flow Q with cumulative probability p is then Qp = exp(Xp). With this
parameterization computing the values of α, β, or τ is not necessary.

Because of its computational ease, the log space moment method is appealing and is presumably
why Beard (1962) suggests its use in the Bulletin. The only complication was the need for frequency
factors that were later tabulated by Benson (1968) and are provided in the Bulletin; Kirby (1972)
provides an excellent approximation. Today they can be computed directly with built-in functions in
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many software packages, including Microsoft Excel and MATLAB (Mathworks 2012). Log space
MOM is the parameter estimation technique currently recommended in Bulletin 17B, but with a
slight modification to incorporate regional skew information to improve the accuracy of the
skewness estimator. This procedure is discussed as follows.

7.3.2 Log Space Method of Moments with Regional Skew

The data available at a given site are generally limited to less than 100 years and often less than 30 years
in length. Such short records produce skewness estimators that are sensitive to extreme events. The
accuracy of the station skewness estimator should be improved by combining it with a regional
skewness estimator obtained by pooling data from nearby sites (Hardison 1974). Bulletin 17B
recommends combining the sample skew Gx and the regional skew GR to obtain a weighted skew:

Gw =WGx þ ð1 −WÞGR (7-14)

where

W =MSEðGRÞ∕½MSEðGxÞ þMSEðGRÞ� (7-15)

Here MSE(Gx) is the estimated mean square error (equal to variance plus bias squared) of the
sample skew, and MSE(GR) is the mean square error of the regional skew. Estimates of the regional
skew and its variance are obtained from a separate regional analysis such as that described by
McCuen (1979) or Reis et al. (2005).

Bulletin 17B recommends approximating MSE(Gx) as a function of the sample skew Gx and
the record length N using the equation provided therein. That equation is based on the Monte
Carlo study reported in Wallis et al. (1974) and yields relative errors as large as 10% within the
hydrologic region of interest (Griffis, 2003). Griffis et al. (2004) provide the relatively more precise
approximation:

MSEðGxÞ=
�
6
N
þ aðNÞ

��
1þ

�
9
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þ bðNÞ

�
γ2x þ

�
15
48

þ cðNÞ
�
γ4x

�
(7-16)

where a(N), b(N), and c(N) are corrections for small samples:

aðNÞ= −
17.75
N2 þ 50.06

N3

bðNÞ= 3.93
N0.3 −

30.97
N0.6 þ 37.1

N0.9

cðNÞ= −
6.16
N0.56 þ

36.83
N1.12 −

66.9
N1.68 (7-17)

This approximation was developed for record lengths N≥ 10 and population skews |γx|≤ 1.414.
Within that range, the maximum relative error was –0.62%. Therefore, this approximation is
substantially more accurate than the approximation provided by Bulletin 17B and is consistent with
the asymptotic variance for Gx provided by Bobee (1973). Griffis and Stedinger (2009) provide
similar approximations of the bias and variance of skew estimators.

The Bulletin 17B inverse-MSE weighting scheme was adopted from Tasker (1978) but was
extended to address bias in the sample skew estimate. Equation (7-14), with the weight in
Equation (7-15), minimizes the MSE of the skewness estimator provided G is unbiased and
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independent of Gx (Griffis 2003); however, it need not yield the minimum MSE quantile estimator.
Griffis and Stedinger (2009) investigate an alternative weighting scheme that minimizes theMSE of the
quantile estimator; however, they observe only modest improvements in theMSE of quantile estimates.

Griffis et al. (2004) illustrate the value of regional skew information for reducing the MSE of
estimates of the 99th percentile. They observe a 22% reduction in the MSE of the 99th percentile
estimates when a regional skew of 0 with the Bulletin skew estimation error of 0.302 (Hardison, 1974,
and IACWD, 1982) is employed in samples of size 10; a 7.5% reduction is observed in samples of size
100. Greater reductions occur when a more informative regional skew is employed. They observe
reductions of 31% and 18% in sample sizes of 10 and 100, respectively, when a regional skew of 0 is
employed with an estimation error of 0.100, a value derived by Tasker and Stedinger (1986).
Rasmussen and Perry (2000), Pope et al. (2001), Martins and Stedinger (2002), and Reis et al. (2003,
2004, 2005) obtain similar values for the variance of the regional skew more recently, using
statistically efficient and relatively unbiased methods.

Using a Monte Carlo analysis, Griffis and Stedinger (2007c) quantitatively evaluate the
efficiency of the Bulletin 17B MOM estimator with regional skew information relative to real space
method of moments, method of mixed moments, traditional MLEs, and anMLE/Bayesian procedure
with a prior to reflect regional skew information. They evaluate the relative performance of the
parameter estimation methods using the MSE of estimates of the 100-year event (Q0.99) for several
cases chosen to reflect the reasonable parameter values identified in Figure 7-4. Overall, their results
demonstrate that the log space method of moments estimator is robust and performs well when
employed with informative regional skew information.

Only a modest range of log space skewness values is physically reasonable for natural
unregulated watersheds and is particularly likely in the United States given our hydrologic
experience (see Section 7.2). Therefore, a regional model of the skew is likely to be highly
informative, and as the Monte Carlo results of Griffis et al. (2004) and Griffis and Stedinger
(2007c) show, that information is quite valuable. Within this limited range of skew values, the LP3
distribution is more flexible than a two-parameter log–normal distribution but should not deviate
too far from that reasonable two-parameter model. Thus, instead of employing the method of mixed
moments to avoid use of the skew, using the method of moments with physically and hydrologically
reasonable skew information is sensible. Furthermore, use of the log space method of moments
estimator is advantageous as it allows regional skew information to be easily incorporated into a
fairly simple and widely accepted parameter estimation method.

In addition, use of a log transformation of the data, as employed by Bulletin 17B, makes sense
because large flood values would dominate real space sample moment estimates. However, the log
transformation will give low outliers an increased weight, which is a concern in flood frequency
analysis wherein the larger events are the primary interest. Furthermore, the log transformation
cannot be applied to zero flood years. To account for low outliers and zero flood years, Bulletin 17B
recommends performing a conditional probability adjustment (Jennings and Benson, 1969).
Alternatively, one could employ the expected moments algorithm (EMA) originally developed by
Cohn et al. (1997) for incorporating historical information in flood frequency analyses and later
extended by Griffis et al. (2004) to handle low outliers and to employ regional skew information.
EMA is a direct generalization of the MOM procedures recommended by Bulletin 17B that can deal
with censored data. Section 7.4 discusses these procedures further, and they are the basis of the
Bulletin 17C that is under review.

Example 7.1

This example illustrates the use of log space MOM with regional skew information to fit an LP3
distribution to a complete sample and to estimate design events, such as the magnitude of the
100-year flood event. The sample data employed herein is the record of annual flood peaks from
1928 to 1971 for Little River at Linden, North Carolina, USGS gauging station number 02103500.

FLOOD FREQUENCY ANALYSIS IN THE UNITED STATES 247



Table 7-3 provides the sorted sample data. To simplify the analysis, this example does not consider
the presence of historical data and possible low outliers.

Here Q represents the true annual flood peaks and is assumed to follow an LP3 distribution, and
X represents the base-e logarithms of the annual peaks and follows a P3 distribution. The sample
contains N = 44 observations. In log space, the maximum observation is 9.51 and the minimum
observation is 7.17. The sample moments of the logarithms calculated using Equation (7-12) are
X = 8.210, Sx = 0.500, and Gx = 0.653.

To improve the estimate of the skew, a weighted skew is then computed using Equation (7-14)
with the weight given by Equation (7-15). The MSE of the sample skew is computed to be 0.171 using
Equation (7-16) with the correction factors given by Equation (7-17). A regional skew of +0.4 is
obtained from the Bulletin 17B skew map. As the skew map was used, an MSE of 0.302 is assumed for
the regional skew as recommended by Bulletin 17B. The resulting weighted skew is 0.561. This is
significantly closer to the value of the at-site sample skew than the regional skew because the MSE of
the sample skew is nearly half that of the regional skew. Conversely, if the regional skew is assigned
an MSE of 0.100 (Tasker and Stedinger 1986), the resulting weighted skew would be 0.493.
Decreasing the MSE of the regional skew effectively increases the weight on the value of the
regional skew in Equation (7-14). The result is a weighted skew coefficient closer in value to the more
accurate regional skew.

The final fitted LP3 distribution matches the estimated moments in log space [and correspond-
ing parameters calculated using Equation (7-13)]:

X = 8.210, Sx = 0.500, andGx = 0.561

ðα̂= 12.7, β̂= 0.140, and τ̂= 6.43Þ

The magnitude of the 100-year event (or 99th percentile of the fitted distribution) is computed as
Q0.99 = exp½X þ SxK0:99ðGxÞ�= 14,403.3 ft3∕s, wherein the frequency factor K0:99ðGxÞ has a value of
2.728 given Gx = 0.561. Repeating these computations for a range of percentiles with cumulative
probabilities 0< p< 1, corresponding to exceedance probabilities 1 − p, yields the frequency curve
illustrated in Figure 7-6. For comparison, the frequency curve obtained using MSE(GR) = 0.302 per
Bulletin 17B is plotted relative to the curve obtained usingMSE(GR) = 0.100, per Tasker and Stedinger
(1986), to illustrate the difference. The sample data points are also included in the figure; these points
were plotted using Blom’s plotting position formula, i/(N+1) for the ith largest observation.

Table 7-3. Annual Flood Peaks for Little River at Linden, North Carolina.

Date Q (ft3/s) Date Q (ft3/s) Date Q (ft3/s) Date Q (ft3/s)

1951 1,300 1956 2,590 1971 3,540 1931 4,980
1940 1,710 1953 2,610 1932 3,590 1949 5,260
1933 1,760 1941 2,840 1939 3,600 1955 5,370
1962 1,930 1946 2,840 1966 3,640 1936 5,630
1934 2,280 1967 2,950 1963 3,850 1954 5,770
1969 2,400 1943 2,970 1959 4,320 1952 5,860
1970 2,400 1947 3,010 1958 4,340 1929 6,160
1935 2,470 1942 3,060 1937 4,500 1965 7,400
1968 2,490 1960 3,180 1948 4,500 1930 10,300
1938 2,500 1957 3,310 1944 4,860 1928 13,000
1950 2,580 1961 3,320 1964 4,940 1945 13,500
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7.4 ESTIMATION PROCEDURES WITH HISTORICAL INFORMATION AND LOW
OUTLIERS

In addition to using regional skew information, Bulletin 17B recommends special procedures for
handling zero flows, low outliers, and historical peaks. This section briefly describes those
procedures. The expected moments algorithm (EMA), originally developed by Cohn et al. (1997)
to incorporate historical information in flood frequency analyses, and the extension by Griffis et al.
(2004) to handle low outliers and to employ regional skew information, is also discussed.

7.4.1 Low Outliers

Bulletin 17B defines outliers as “data points which depart significantly from the trend of the
remaining data.” The Bulletin uses a log transformation of the data; therefore, one or more unusual
low-flow values can distort the entire fitted frequency distribution. Thus, low outliers are censored to
improve the reliability of the larger flood quantile estimates of interest. Furthermore, the log
transformation cannot be applied to zero flood years.

Low outliers are identified in log space by using the mean and standard deviation of the
complete sample to specify a “truncation level”:

XL =X − KNS (7-18)

which is defined by the one-sided 10% significance level for a P3 distribution with zero skew (i.e., a
two-parameter log–normal distribution). This is a Grubbs–Beck test. Bulletin 17B tabulates the 10%
frequency factors KN for the smallest observation in a sample drawn from a normal distribution as a
function of sample size (for 10≤N≤ 149). Sample values below the truncation level are considered
to be outliers.

Bulletin 17B recommends a conditional probability adjustment (CPA) of the frequency curve
when low outliers are identified, when the record contains zero flood years, or when a recording
threshold results in a truncated dataset. These critical events are censored from the record of size N
and a P3 distribution F(x) is fit to the r retained logarithms of the flood flows that exceeded the
truncation level XL. CPA was developed by Jennings and Benson (1969) to account for the removal
of zero-flow events from the record before fitting the LP3 distribution.

The probability that a given event exceeds the truncation level is estimated as pe = r/N. The
formula for conditional probability expressed in terms of exceedance probabilities indicates that the

Figure 7-6. Frequency curve for Little River at Linden, North Carolina.
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flood flows exceeded with a probability p≤ pe in any year are obtained by solving p = pe(1− F(x)) to
obtain F(x) = 1− p/pe. Whereas the CPA method defines a legitimate distribution, it is generally
replaced with an approximating LP3 distribution; this is necessary to combine the computed station
skew with regional skew information and to employ the procedures that compute confidence
intervals for quantiles. Also, Bulletin 17B recommends performing CPA to adjust for any low
outliers, missing values from incomplete records, and/or zero flood years before employing the
historical flood algorithm, which would use the adjusted sample moment estimates. The new EMA
(Cohn et al. 1997, Griffis et al. 2004) solves these problems: EMA provides a direct fit of the LP3
distribution to the entire dataset, simultaneously employing historical and regional skew information
and adjusting for any low outliers, missing values from an incomplete record, and/or zero flood
years. Section 7.4.3 discusses EMA further.

The distribution F(x) fit to the uncensored data is employed to compute three quantiles Q0.99,
Q0.90, and Q0.50, which will be exceeded with probabilities p = 0.01, 0.10, and 0.50. These three
quantiles are then used to compute the three “synthetic” moments for a new P3 distribution
according to

Gsyn = − 2.50þ 3.12

�
log10

�
Q0.99

Q0.90

��
∕
�
log10

�
Q0.90

Q0.50

��
Ssyn = log10ðQ0.99∕Q0.50Þ∕ðK0.99 − K0.50Þ
Msyn = log10ðQ0.50Þ − K0.50Ssyn (7-19)

where K0.99 and K0.50 are P3 frequency factors computed using the synthetic skew Gsyn (provided
by the first equation) for cumulative probabilities of 0.99 and 0.50, respectively. Here the term
synthetic is used to refer to the moments of an approximating P3 distribution. The approximation
for the synthetic skew is said to be appropriate for skew coefficients on the interval (−2.0, +2.5)
(IACWD, 1982). However, Griffis (2003) demonstrates that the absolute error in the computed
skew is unnecessarily large (~4%) for |γx| ≤ 0.2, which is in the center of the hydrologic region of
interest.

In the absence of historical flood information, the final fitted distribution used to estimate the
frequency of the r above threshold values is given by the synthetic mean and standard deviation
and a weighted skew obtained by combining the synthetic skew with a regional skew using
Equation (7-14). When historical flood information is available, the procedures become more
complicated as the Bulletin’s recommended procedures for incorporating historical peaks are
performed separately from the procedures for low outlier identification and the subsequent
adjustment of the fitted distribution, and the order in which these procedures are performed is
dependent on the value of the skew. Griffis and Stedinger (2007a) discuss these issues in more detail.

7.4.2 Historical Flood Information

In addition to regional skew information, historical flood information can be used to increase the
effective record length at a site. Historical information includes written records such as newspaper
accounts of exceptionally large floods and flood markers such as flood lines on buildings. Figure 7-7
shows a flood record that contains both historical and systematic (or gauged) data. In most cases the
historical record would end when a stream gauge was installed; however, historical information
could also include data for a stream in which a gauge was removed or lost and then perhaps
reestablished. As Figure 7-7 illustrates, only the exceptionally large peaks are recorded in the
historical period because they exceeded some perception threshold, or because the event was large
enough to leave physical evidence. The historical threshold, denoted T, corresponds to “the discharge
above which some sort of permanent flood record would be created” (Cohn et al. 1997). The
magnitudes of any annual peak floods in the historical period that failed to exceed T are not
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recorded. In this way, historical information represents a censored sample, which is the term used in
statistics to describe a sample where an observation must exceed a threshold to be recorded. The
magnitudes of all floods in the systematic period are known.

The logarithms of the flood record illustrated in Figure 7-7 can be expressed as the union of four
sets (Cohn et al. 1997):

fXg= fX>
S g∪fX>

Hg∪fX<
Sg∪fX<

Hg (7-20)

where
fX>

S g = logarithms of floods greater than T, which occurred during the systematic record and
whose magnitudes were measured by stream gauge (of which there were N>

S values);
fX>

Hg = logarithms of floods greater than T, which occurred during the historical period
(of which there were N>

H values);
fX<

Sg = logarithms of floods less than T, which occurred during the systematic period and
whose magnitudes were measured by stream gauge (of which there were N<

S values); and
fX<

Hg = logarithms of floods less than T, which occurred during the historical period and thus
were not measured, except that their magnitudes are known not to exceed T (of which there
were N<

H values).

In addition, if low outliers are identified using a low outlier threshold such as Equation (7-18),
then the set fX<

Sg can be expressed as

fX<
Sg= fX<

Lg∪fX>
L g (7-21)

where
fX<

Lg = logarithms of floods, which occurred during the systematic period and are less than XL

(of which there were N<
L values); and

fX>
L g = logarithms of floods that occurred during the systematic period and are greater than XL

but less than log(T) (of which there were N>
L values).

To use historical information, Bulletin 17B recommends computing adjusted sample moments
in which the values in the systematic record below the historical flood threshold are used to represent
unobserved floods in the historical period for computing the moment estimators for the entire
period. The problem with the Bulletin 17B approach is that it places too much reliance upon the
observed systematic flood peaks, which are conceptually replicated as many times as necessary to
represent the below-threshold peaks during the historical period, whereas historical peaks above the

1920 1940 1960 1980

F
lo

od
 P

ea
ks

Year of Record

Historical Threshold

Figure 7-7. Flood record with both historical and systematic data.
Note: Units = log(cfs).
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threshold are assigned a weight of one. In the extreme case that a historical perception threshold was
never exceeded, the Bulletin 17B approach cannot use that information.

The adjusted sample mean is computed as

M
∼
=

WΣX>
L þ ΣX>

S þ ΣX>
H

NH þ NS −W · N<
L

(7-22)

where the historic record length NH =N<
H þ N>

H , the systematic record length
NS =N<

S þ N>
S = ðN<

L þ N>
L Þ þ N>

S , and

W = ðN<
H þ N<

SÞ∕N<
S (7-23)

Thus, the effective total record length is N>
H þ N>

S þWN<
S =NH þ NS. And, the denominator

ðNH þ NS −W · N<
LÞ in Equation (7-22) appropriately reflects the effective number of years of

record associated with the sample mean and the historic peaks. Appendix 7A provides plotting
positions consistent with the previously described paradigm.

7.4.3 Expected Moments Algorithm

Cohn et al. (1997) originally developed the EMA to incorporate historical information in flood
frequency analyses. The algorithm employs an iterative procedure for computing parameter estimates
using censored data. The process begins with an initial set of parameter estimates obtained using the
systematic stream gauge record and then updates the parameters using the known magnitudes of
historical peaks and the expected contribution to the moment estimators of the below-threshold floods.

EMA can also include regional skew information and censored low outliers represented by an
additional perception threshold. Griffis et al. (2004) describe the performance of the EMA with
regional skew information and low outliers and discuss the advantages of EMA over the Bulletin’s
conditional probability adjustment. EMA uses historical information more efficiently than the
Bulletin 17B procedures (Cohn et al. 1997, England et al. 2003, Griffis 2008) and can incorporate a
much wider range of flood information, including thresholds that were never exceeded, or floods
whose values are described by ranges. Appendix 7B describes the EMA procedure in more detail.

Example 7-2

This example illustrates censoring of low outliers and the application of subsequent procedures, namely
CPA and EMA, to adjust the distribution fit to the retained observations. The sample data considered
herein comprise the record of annual flood peaks from 1929 to 1973 for Back Creek near Jones Springs,
West Virginia, USGS gauging station number 01614000. These data are employed in Bulletin 17B to
illustrate the use of CPA. Table 7-4 provides the sorted sample data. Data are unavailable for 1932
through 1938, except for 1936, for which a value of 22,000 ft3/s was estimated using data from a nearby
site. The Bulletin indicates that this flow value could be treated as historical data; however, it was omitted
from the dataset as the example provided therein was only to illustrate the application of CPA. To
simplify the discussion in this example, the presence of historical data will also not be considered.

Here Q represents the true annual flood peaks and is assumed to follow an LP3 distribution, and
X represents the base-e logarithms of the annual peaks and follows a P3 distribution. The sample
contains N = 38 observations. In log space, the maximum observation is 10.02 and the minimum
observation is 6.284. The sample moments of the logarithms calculated using Equation (7-12) are
X = 8.570, Sx = 0.646, and Gx = –0.731.

Low Outlier Identification. Equation (7-18) is used to compute the truncation level XL = 6.852 in
log space, equivalent to 946 ft3/s in real space. One low outlier is identified with a real space value of
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536 ft3/s, which is three times smaller than the next smallest observation of 1,600 ft3/s. This value is
censored from the record, reducing the sample size from N = 38 to r = 37. The probability of an
observation exceeding the truncation level is given by pe = 37/38 = 0.974. The sample moments
of the 37 above-threshold observations are estimated using Equation (7-12): X = 8.632, Sx = 0.529,
and Gx = 0.631.

Conditional Probability Adjustment. Following Bulletin 17B procedures, the sample moments of
the above-threshold observations are used in the equation F(x) = 1− p/pe to compute the
logarithms of the flood flows with exceedance probabilities p = 0.50, 0.10, and 0.01, which yields
the real space values: Q0.50 = 5,214.6 ft3/s, Q0.90 = 11,213.1 ft3/s, and Q0.99 = 24,140.8 ft3/s. Forcing
the fitted P3 distribution through these three quantiles, the synthetic moments Msyn, Ssyn, and Gsyn

of the unconditional P3 distribution are estimated using Equation (7-19):

Msyn = 8.614, Ssyn = 0.533, and Gsyn = 0.625:

wherein the frequency factors K0:99 = 2.772 and K0:50 = −0.104 needed to computeMsyn and Ssyn are
obtained using Gsyn = 0.625.

The MSE of the synthetic skew coefficient is computed to be 0.188 using Equation (7-16) with the
correction factors in Equation (7-17). The synthetic skew Gsyn is substituted for the sample skew Gx in
Equation (7-14) to obtain a weighted skew for the adjusted sample. A regional skew of +0.5 with an
MSE of 0.302 is obtained from the Bulletin 17B skew map. The resulting weighted skew is 0.577.

Following Bulletin 17B procedures, the final fitted LP3 distribution has the following sample
moments in log space [and corresponding parameters calculated using Equation (7-13)]:

X = 8.614, Sx = 0.533, and Gx = 0.577:

ðα̂= 12.0, β̂= 0.154, and τ̂= 6.77Þ

Expected Moments Algorithm. The sample record consists of Ns = 38 observations in which one
low outlier was identified (N<

L = 1) using Equation (7-18). No historic information is considered in
this example (NH = 0). The initial moments (μ̂1, σ̂1, γ̂1) used in the EMA are the sample moments of
the entire systematic record computed using Equation (7-12):

μ̂1 = 8.570, σ̂1 = 0.646, and γ̂1 = −0.731:

Table 7-4. Annual Flood Peaks for Back Creek near Jones Springs, West Virginia.

Date Q (ft3/s) Date Q (ft3/s) Date Q (ft3/s) Date Q (ft3/s)

1969 536 1946 4,020 1963 5,190 1971 8,360
1947 1,600 1931 4,060 1973 5,210 1929 8,750
1950 3,010 1941 4,160 1965 5,600 1951 9,150
1940 3,130 1949 4,230 1954 6,200 1953 9,820
1958 3,240 1962 4,380 1939 6,300 1955 10,700
1957 3,420 1948 4,460 1970 6,680 1930 15,500
1960 3,740 1968 4,640 1942 6,700 1972 18,700
1944 3,880 1966 4,670 1959 6,800 1943 22,400
1956 3,880 1961 4,700 1967 7,080
1964 3,960 1952 5,100 1945 8,050
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The first iteration i = 1 computes the parameters (α̂iþ1, β̂iþ1, τ̂iþ1) of the P3 distribution using
these initial sample moments in Equation (7-2):

α̂2 = 7.483, β̂2 = −0.236 and τ̂2 = 10.34:

The sample moments updated with the expected contribution of the low outlier used in place
of its actual value are then computed using Equations (7-32), (7-34), and (7-35) as detailed in
Appendix 7B. Here the expected contribution from the low outlier is computed using the censoring
threshold Xc equal to 7.378, which is the value in log space of the smallest retained observation. In
each iteration of the EMA, the skew estimate is also updated using the regional skew information.
Here the sample skew is weighted with the regional skew using an equivalent record length ni
computed using Equation (7-36) assuming MSE(GR) = 0.302 is consistent with use of the map
skew. The MSE of the sample skew with Ns years of data is estimated at each iteration using
Equation (7-16). Successive iterations repeat the calculations until the moments differ by less than
0.01% from the results of the previous iteration. Table 7-5 presents the iterative results of the EMA.
The EMA converged in eight iterations for this sample yielding moments’ estimates

X = 8.596, Sx = 0.566, and Gw = 0.377:

These values represent the log space sample moments of the final fitted LP3 distribution using
EMA, for which the corresponding parameters calculated using Equation (7-13) are

α̂= 28.1, β̂= 0.107, and τ̂= 5.594:

Figure 7-8 shows the frequency curves obtained using CPA and EMA and the sample data
plotted using Blom’s plotting position formula. In addition, the frequency curve obtained using the
standard log space method of moments procedure with regional skew information is included for
comparison. The latter curve, labeled MOM, represents the distribution fit to the data using all
observed values with no adjustments to account for the low outlier. The MOM curve was obtained
using the unadjusted sample mean X = 8.570, the unadjusted sample standard deviation Sx = 0.646,
and a weighted skew Gw = −0.236 obtained by combining the unadjusted sample skew
Gx = –0.731 with the regional skew using Equation (7-14).

The LP3 distributions fit using the two low outlier adjustment estimation procedures, CPA
and EMA yield similar estimates within the data. However, the LP3 distribution fit using EMA
provides slightly smaller estimates of the upper quantiles beyond the 100-year event (exceedance

Table 7-5. Iterative Parameter Adjustment Using EMA for Back Creek, West Virginia.

Iteration α β τ μ σ γ

1 − − − 8.570 0.646 −0.731
2 7.48 −0.236 10.34 8.588 0.589 0.150
3 178 0.044 0.733 8.594 0.571 0.339
4 34.9 0.097 5.223 8.595 0.567 0.371
5 29.1 0.105 5.538 8.596 0.567 0.376
6 28.2 0.107 5.585 8.596 0.566 0.377
7 28.1 0.107 5.592 8.596 0.566 0.377
8 28.1 0.107 5.594 8.596 0.566 0.377
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probability < 0.01) than the LP3 distribution fit using CPA. This would be rectified if the unusually
small 1,600 ft3/s value used as the upper bound for the censored 536 ft3/s observation was also treated
as a low outlier; then both would be represented as≤ 3040 ft3/s. The LP3 distribution fit by MOM
overestimates all of the sample values within the middle of the data and provides a relatively low
estimate of the largest observation and quantiles beyond the data; this suggests the value of the low
outlier adjustment.

7.4.5 What’s Next: Bulletin 17C

Bulletin 17, adopted in 1976, and then Bulletin 17B, adopted in 1982, have guided US flood frequency
analysis computations. With the great progress in statistical methods since the mid-1980s, the time
has clearly come for a revised Bulletin that makes use of those advances.

Bulletin 17B (pp. 27–28) itself includes a list of issues recommended for additional research;
Bulletin 17C specifically addresses the following four topics (England et al. 2016):

• Flood-frequency distribution selection and fitting procedures,

• Identification and treatment of outliers,

• Treatment of historical information, and

• Confidence limits for the Pearson type III distribution.

Topics left to be addressed by other studies include treatment of mixed distributions,
precipitation as a measure of flood potential, flood risk at ungauged sites or sites with limited
records and impacts of urbanization and reservoirs. Lamontagne et al. (2012) describe improve-
ments in regional skew estimation.

With regard to distribution selection, the LP3 distribution with three parameters is highly
flexible, and evidence has generally demonstrated that it provides reasonable descriptions of the
distribution of flood flows (Figure 7-5, and results in Griffis and Stedinger, 2007b, Cohn et al. 2016).
The key issue is how to fit an LP3 distribution efficiently to provide accurate estimates of flood
quantiles and of flood risk.

As discussed previously, a wide range of methods have been proposed, and log space moments,
while not always the best, generally do well (Griffis and Stedinger 2007c). However, it is clear that
when flood records contain zero and almost zero “flood” flows, the whole distribution of the annual
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Figure 7-8. Frequency curves for Back Creek, West Virginia, obtained using CPA and EMA to adjust for
the removal of one low outlier.
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flood series is not well described by an LP3 distribution, and the log space method of moments
implicitly gives too much weight to the smallest values (because of the log transformation, zeros
would have a value of negative infinity, while unusually small flood flows have logarithms that fall far
to the left of other values). Bulletin 17B tries to deal with this problem by using a Grubbs–Beck low
outlier test for normal data to identify “outliers” that were dropped from the moment analysis; then the
conditional moment adjustment discussed previously could be used with an LP3 distribution fit to
retained flood values. Unfortunately, some flood records can contain many zeros and unusually small
flood flows, and the Grubbs–Beck test is constructed to look to see if the smallest observation in a
normal sample is unusually small. However, if a flood record has k zero flood values, then the smallest
nonzero flood value should be distributed as the (k+1)th smallest value in the sample, not the smallest.

In addition to consideration of what has historically been called “outliers,” some records do not
include the smallest values because of the use of crest-stage gauges, where some flows are not large
enough to be recorded. The recording threshold can change through time when different instru-
ments were employed. Even more important, historical and physical paleoflood records can provide
a tremendous amount of information on the risk of large floods. Use of EMA can capture that
information, while the method of weighted moments in Bulletin 17B generally does not do as well
and works with only a single threshold (Cohn et al. 1997).

A major motivation for a Bulletin 17C was adoption of EMA as the appropriate extension of the
method of log moments to deal with historical and paleoflood records. EMA allows multiple
exceedance thresholds and use of ranges to describe observations. EMA can provide a direct fit of the
LP3 distribution using the entire dataset, simultaneously employing regional skew information and a
wider range of historical flood and threshold-exceedance information, while adjusting for any low
outliers, missing values from an incomplete record, or zero flood years. No need exists to change the
basic rules of the frequency analysis by use of a new distribution, or to adopt a radically different
fitting procedure. Still with log space method of moments estimators, unusually small values can
distort the fitted distribution, while zeros should not occur at all. Figure 7-8 provides an example
wherein representing the smallest flood as less than the second smallest flood results in an important
difference in the fitted distribution (MOM versus EMA or CPA). Because EMA represents zeros and
unusual small flows as less than the smallest retained value (i.e., a censored value with that upper
bound), the smallest retained value must not be an unusually small value given the distribution of the
larger flood flows, whose distribution is what is important.

Hydrologists have understood this for a long time; they have used “professional judgement” to
ignore the smaller values in many records. A general problem is that the smallest observations in a
record can distort the exceedance probabilities assigned to the large floods of interest. Bulletin 17C
now calls such small values potentially influential low floods (PILFs). Bulletin 17C includes a new
multiple Grubbs–Beck outlier test (MGBT) for identifying PILFs (Cohn et al. 2013). Spencer and
McCuen (1996) and Lamontagne and Stedinger (2015) discuss such tests and their use. Cohn et al.
(2016) and Lamontagne et al. (2016) report extensive studies on the impact on robustness and
quantile estimation precision of the identification of PILFs with the MGBT followed by use of EMA.
Depending on the total sample size, and the rank of different observations, a sequential test identifies
smaller observations that may be unusually influential in the fitting process; then, with EMA those
PILFs are described as being smaller than the smallest retained observation. This makes the resulting
EMA–MGBT fitting procedure very robust in that unusually small annual floods are not allowed to
distort the distribution fit to the larger flood values. And what is remarkable is this: the identification
of PILFs and their representation as less-than values generally does not diminish the precision of
flood quantile estimators when the log space skew is zero or greater, while it increases the precision of
quantile estimators when the log skew is less than zero. An increase occurs because the log space
method of moments is not the optimal estimation procedure.

Thus, the EMA–MGBT generally makes flood frequency analysis based on the LP3 distribution
with EMA both more accurate and more robust. In addition, EMA can deal with regional skew and
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with historical and paleoflood information, and low flows, with a range of thresholds. The MGBT
and the EMA computations are computationally involved; however, EMA–MGBT computer codes
are available from the US Geological Survey and the US Army Corps of Engineers. These codes also
include uncertainty analyses that provide accurate confidence intervals for computed flood quantiles
based on the information considered in the computation, observed flood flows, floods described as
less than a threshold or within an interval, regional skew information, and historical flood data.

7.5 INCORPORATION OF CLIMATE CHANGE AND CLIMATE VARIABILITY INTO
FLOOD FREQUENCY ANALYSIS

The current techniques for flood frequency analysis presented in Bulletin 17B assume annual
maximum floods are stationary, and thus the distribution of flood flows is not significantly affected
by climatic trends or cycles (Olsen et al. 1999, Hirschboeck et al. 2000). However, the current
scientific consensus is that indeed trends are occurring in flood risk (Georgakakos et al. 2014). Hirsch
and Archfield (2015) observe that floods may not be larger, just more frequent, whereas in the past
increased frequency can be a temporary and natural oscillation rather than a trend. Moreover, what
is often overlooked is that despite the possibility of trends in streamflow statistics, short records give
us only limited precision of the value of those statistics in the first place (Stedinger and Griffis 2011).
This section considers how the Bulletin 17B framework can be modified to account for predictable
variations in flood records due to climatic variability.

Climatic patterns that may result in long-term variability in flood risk include the Pacific
decadal oscillation (PDO) and the Northern Atlantic oscillation (NAO) (Olsen et al. 1999, Garbrecht
and Piechotab2006). These patterns exhibit low-frequency variability with shifts that last on the
order of decades. For the Upper Mississippi River Basin, Olsen et al. (1999) relate annual maximum
flows to PDO and NAO using linear regressions and find PDO and NAO explain little of the
variation in flood peaks. Using nonparametric tests on monthly data for stations across the United
States, Tootle et al. (2005) identify significant differences in streamflow between the cold and warm
phases of both the PDO and NAO at several stations.

Another climatic pattern that may affect the magnitude of annual maximum flood flows is the El
Niño–southern oscillation (ENSO). However, these events occur over a relatively short time frame
(generally 12 to 18 months) and thus are not expected to result in long-term changes in flood risk.
For the Upper Mississippi River Basin, Olsen et al. (1999, p. 1511) observe that “as long as the
frequency and intensity of El Niño events are not changing over time, flood frequency analysis
naturally accounts for climate variability associated with El Niño events.”Nevertheless, ENSO events
can impact flood risk in a given year. Tootle et al. (2005) identify significant differences in monthly
streamflow between the cold (La Niña) and warm (El Niño) phases in Florida, the Southwest, and the
Pacific Northwest. Kiem et al. (2003), Grantz et al. (2005), Twine et al. (2005), Tootle et al. (2006),
and Ward et al. (2014) also investigate the influence of ENSO on streamflow. The results of these
studies indicate that incorporating effects of ENSO into forecasts of flood risk in any year can be
worthwhile to adjust reservoir flood-storage requirements. Alternative approaches are discussed as
follows.

7.5.1 Block Adjustment versus Parametric Adjustment

Two approaches for incorporating ENSO forecasts into computations of flood risk are block
and parametric adjustments of the distribution parameters. Each approach has advantages and
disadvantages.

Block adjustment is a simple approach wherein the flood events are categorized according to
whether they occurred when the ENSO phase was warm, neutral, or cold, and a separate distribution

FLOOD FREQUENCY ANALYSIS IN THE UNITED STATES 257



is fit to each category. Hamlet and Lettenmaier (1999) employ this approach in developing a
probabilistic streamflow forecast model. Hirschboeck et al. (2000) discuss potential causes of mixed
distributions that may be enhanced by ENSO teleconnections. In essence, categorizing the flood
series in this way is analogous to mixtures of distributions employed when floods arise from different
types of events, such as snowmelt versus rainstorms (see Waylen and Woo 1982). However, unless
the individual categories are composed of events with distinctly different distributions, it would be
better to develop one model for the entire flood series using a parametric approach so that fewer
parameters need be estimated and more data are available to do so; if one categorizes the data, how
should one proceed if one category contains relatively few observations?

Parametric adjustment is a more sophisticated approach. It adds relatively few parameters to the
standard model. With this approach, one would attempt to develop a relationship relating climate
indices to variations in the statistical properties of floods. This could be accomplished by regressing
the distribution parameters on climatic indices describing ENSO; indexes such as the Niño-3.4 sea
surface temperature (SST) anomalies, the Southern Oscillation Index (SOI), or the Multivariate
ENSO Index (MEI) could be employed (Piechota et al. 2006). Kashelikar and Griffis (2008) and
Kashelikar (2009) consider regressing the P3 location parameter on Niño-3.4 SST anomalies at sites
throughout the United States; Fritsch (2012), Salvadori and Griffis (2013), and Salvadori (2013)
extend that body of work to consider estimation of the P3 location and scale parameters as a function
of MEI, as well as indices associated with NAO, PDO, and the Atlantic multidecadal oscillation
(AMO). Li and Tan (2015) include an additional index to describe human development in a basin.

Time-dependent models of distribution parameters could be employed in a similar fashion to
reflect observed trends in stream flows. Several studies have suggested such an approach. For
example, Strupczewski et al. (2001) employ time-dependent parameters of a P3 distribution; Coles
(2001, p. 106) and El Adlouni et al. (2007) consider GEV models with time-dependent parameters.
The next section discusses three possible parametric approaches that employ climate indices
describing ENSO.

7.5.2 Incorporation of ENSO Effects Using Parametric Relationships

To incorporate the effects of ENSO into flood frequency forecasts, Kashelikar and Griffis (2008)
introduce a regression model to relate parameters of the P3 distribution (μ, σ, and γ) to an
appropriate climate index, such as the SST anomalies. A model for the mean μ is

μt = β0 þ β1ct þ εt (7-24)

Here μt is the mean computed using the logarithms of flood peaks observed over the 10-year
period ending at time t (i.e., μt is the mean of the logarithms Xt-9, Xt-8, : : : , Xt), β0 and β1 are
regression parameters, and εt is the independent model error. The ENSO state and intensity are
represented by the climate index ct observed at time t. Use of a 10-year moving window to compute
the mean avoids dampening of the climate signal.

Using the model in Equation (7-24), a one-year ahead forecast of the mean to year T+1 would be

μ̂Tþ1 = β0 þ β1ĉTþ1 (7-25)

wherein ĉTþ1 is a forecasted value of the climate index. A similar approach could be used to update
(forecast) the value of the standard deviation σ, and possibly the skew γ of the P3 distribution, such
that the logs of the flood peaks would be modeled as Xt ~ P3[μ(t), σ(t), γ(t)]. The updated parameters
would then be used to forecast flood risk for the next year.

Coles (2001, pp. 105–108) employs a similar approach to account for nonstationarity in annual
maximum sea levels due to ENSO. Let GEV(ξ, α, κ) denote the GEV distribution with location
parameter ξ, scale parameter α, and shape parameter κ (Stedinger et al. 1993). Coles suggests
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modeling the annual maximum sea level Zt in year t as a function of the Southern Oscillation Index
in year t, SOI(t), using the GEV distribution so that

Zt ∼GEVðξðtÞ, α, κÞ (7-26)

where

ξðtÞ= β0 þ β1SOIðtÞ þ εt (7-27)

Coles notes that similar expressions could be used to model α(t) and κ(t), although with limited data
estimating parameters for the model of κ(t) with adequate precision would be difficult.

A model wherein nonstationarity is expressed in terms of both the mean and the standard
deviation is particularly appropriate for flood statistics. Using the LP3 model as recommended by
Bulletin 17B, the logs of the flood peaks Xt could then be modeled as Xt ~ P3[μ(t), σ(t), γ], wherein
μ(t) and σ(t) are modeled as functions of a climate index such as SST. But one might believe that the
coefficient of variation Cv of the flood distribution remains constant over time. In this case, if the
mean scales with changes due to ENSO, then a corresponding change in the standard deviation must
also occur. The model Xt ~ P3[μ(t), σ(t), γ] could capture this; however, estimating additional
parameters for σ(t) could be difficult with limited data. Moreover, not clear is whether this would
ensure a constant real space Cv. An alternative approach would be to use the model

Xt ∼P3½μðtÞ, σ, γ� (7-28)

where

μðtÞ= β0 þ β1SSTðtÞ þ εt (7-29)

Here the standard deviation and skew of X = ln(Q) are independent of time; as a result the
coefficients of variation and skewness of Q will also be independent of time. This is an advantageous
characteristic that follows from modeling the logarithm of the flows.

Overall, the model in Equations (7-28) and (7-29) is a reasonable approach to incorporate
climate variability due to ENSO into forecasts of flood risk described by a time-varying LP3
distribution. A similar approach may be used to incorporate the effects of climate change in the flood
estimates by regressing the LP3 parameters on alternative climatic indices, such as those describing
the PDO and NAO (e.g., Fritsch 2012, Salvadori and Griffis 2013, Salvadori 2013).

Example 7-3

This example illustrates the application of ENSO climate index–parameter relationships for one-year
ahead forecasts of flood risk obtained using the LP3 distribution. The sample data employed herein is
the record of annual flood peaks from 1930 to 2005 for New River near Galax, Virginia, USGS
gauging station number 03164000. Table 7-6 provides the sorted sample data. Note that data at this
site are available beginning in 1930. However, as SST anomalies are only available beginning in 1950,
the flood peak in 1941 is the earliest value needed to compute sample means over a 10-year window
for use in Equation (7-29). To simplify the analysis, the presence of historic data and possible low
outliers are not considered in this example. In addition, regional skew information is not employed
to improve the estimate of the skew coefficient.

Here Q represents the true annual flood peaks and is assumed to follow an LP3 distribution, and
X represents the natural logarithms of the annual peaks and follows a P3 distribution. The sample
contains N = 65 observations. In log space, the maximum observation is 11.42 and the minimum
observation is 8.73. The sample moments of the logarithms calculated using Equation (7-12) are
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X = 9.990, Sx = 0.550, andGx = 0.060. An estimate of the flood risk (i.e., the LP3 quantile with specified
cumulative probability p) using traditional log space MOM procedures would then be computed as

Q̂p = expfX þ SxKpðGxÞg

For example, the estimate of the 100-year event (p = 0.99) for use in water resources planning
and management in year 2006 would be

Q̂0.99 = expf9.990þ 0.550ð2.370Þg= 80,368.4 ft3∕s:

This would be a reasonable estimate based on the available record, assuming the influence of ENSO
on flood risk is negligible.

To incorporate the effects of ENSO, one first needs to estimate the regression parameters in
Equation (7-29). Table 7-7 shows the needed SST anomalies in year t and the corresponding sample
means of the logarithms computed over a 10-year window ending in year t. Ordinary least squares
regression of μ(t) on SST(t) yields regression parameters β0 = 10.04 and β1 = 0.082; β1 is
significantly different from zero at the 5% level. A one-year ahead forecast of the mean is obtained
using these regression parameters in Equation (7-25):

μ̂Tþ1 = 10.04þ 0.082 ĉTþ1

wherein ĉTþ1 is the forecasted value of the SST anomaly. To illustrate the value of the proposed
model, consider two possible values of the SST anomaly: ĉTþ1 = 0.2, corresponding to a mild El Niño
event, and ĉTþ1 = 1.2, corresponding to a strong El Niño event. These anomalies yield forecasted
means of 10.06 and 10.14, respectively.

Table 7-6. Annual Flood Peaks for New River Near Galax, Virginia.

Year Q (ft3/s) Year Q (ft3/s) Year Q (ft3/s) Year Q (ft3/s)

1988 6,200 1969 14,600 2003 24,400 1957 33,300
2000 7,510 1986 14,800 1960 24,900 1996 34,700
1971 8,340 1942 15,000 1998 25,600 1979 37,300
1941 8,940 1943 15,400 1975 26,200 1945 38,000
1968 9,350 1948 15,400 1980 26,500 1951 38,000
1985 10,500 1953 15,900 1976 26,600 1990 39,800
2002 11,100 1947 16,400 1961 26,900 1959 40,700
2005 11,600 1954 16,400 1974 27,200 1973 42,800
1967 12,000 1982 17,200 1970 27,400 2004 43,900
1964 12,600 1962 18,700 1977 28,400 1994 48,500
1950 13,200 1956 19,600 1991 28,400 1992 49,500
1999 13,400 1981 19,800 1949 30,000 1989 54,100
1944 13,600 1946 22,000 1966 30,500 1995 68,700
1958 13,700 1984 22,000 1983 30,500 1978 91,000
1997 14,200 1965 22,500 1972 30,700
2001 14,300 1955 23,900 1993 31,300
1952 14,500 1987 24,300 1963 31,500

260 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



A one-year ahead forecast of the flood risk using the proposed model to incorporate the effects
of ENSO is then obtained using the forecasted mean combined with the sample standard deviation
and skew coefficient computed for the entire period of record. For example, the estimate of the
100-year event (p = 0.99) for use in water resources planning and management in year 2006 would
be Q̂0:99 = expf10:06þ 0:550ð2:370Þg= 85,902.7 ft3∕s given a forecasted SST anomaly of 0.2. This
estimate is 5,534.4 ft3/s greater than the estimate obtained using the traditional model wherein the
mean is averaged over the entire period of record. A greater difference between the two models is
observed when the SST anomaly corresponds to a strong ENSO event. The one-year ahead estimate
of the 100-year event is 93,243.6 ft3/s given an SST anomaly of 1.2, which is 12,875.3 ft3/s greater than
that obtained using the traditional model.

Figure 7-9 provides frequency curves that represent the forecasted flood magnitudes correspond-
ing to various probabilities of exceedance at New River for the year 2006. The frequency curve labeled
MOMwas obtained using a traditional LP3 model wherein log space moments are computed using the
entire period of record. The MOM curve yields smaller estimates of flood magnitude for all exceedance
probabilities as compared with the estimates obtained using the proposed model with SST(2006) = 0.2
and SST(2006) = 1.2. These results clearly indicate the impact of ENSO events on flood risk. The
sample data plotted using Blom’s plotting position formula are also shown for comparison.

7.6 CLOSING REMARKS

Flood frequency analyses continue to improve as records get longer, flood frequency analysis
methods get better, and greater computing power and computer software are available for analyses.
This chapter has described in detail the flood frequency analysis methods that have been used in the
United States with the Bulletin 17-17A-17B series starting in 1976. Bulletin 17C should soon be

Table 7-7. SST Anomalies and Corresponding 10-Year Means for New River Near Galax, Virginia.

Year μ (t) SST (t) Year μ (t) SST (t) Year μ (t) SST (t)

1950 9.880 −0.777 1969 9.898 0.687 1988 9.946 −0.820
1951 9.910 −0.083 1970 9.906 −0.260 1989 9.962 −0.830
1952 9.896 −0.133 1971 9.885 −0.770 1990 9.972 0.163
1953 9.887 0.507 1972 9.896 0.333 1991 9.976 0.113
1954 9.879 −0.740 1973 9.913 −0.393 1992 9.990 1.307
1955 9.887 −0.933 1974 9.920 −0.617 1993 9.995 0.867
1956 9.887 −0.507 1975 9.925 −0.623 1994 10.008 −0.213
1957 9.906 0.427 1976 9.931 −0.420 1995 10.025 −0.323
1958 9.893 0.330 1977 9.938 −0.060 1996 10.031 −0.597
1959 9.917 −0.080 1978 9.968 −0.567 1997 10.024 0.357
1960 9.923 −0.217 1979 9.979 0.173 1998 10.026 1.613
1961 9.932 −0.070 1980 9.983 −0.043 1999 10.018 −0.587
1962 9.929 −0.727 1981 9.981 −0.357 2000 10.003 −0.223
1963 9.942 −0.020 1982 9.977 0.300 2001 9.997 0.030
1964 9.927 −1.023 1983 9.983 1.877 2002 9.988 0.163
1965 9.930 0.233 1984 9.984 −0.210 2003 9.989 −0.327
1966 9.941 −0.227 1985 9.971 −0.930 2004 9.999 −0.097
1967 9.926 −0.617 1986 9.964 −0.283 2005 9.990 0.227
1968 9.906 −0.927 1987 9.967 1.120
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officially adopted representing a significant advance in flood frequency methods and our ability to
represent a broader range of flood data both at site and regional. In addition, it provides much better
estimates of the uncertainty in estimated flood quantiles and distribution parameters. Moreover,
Bulletin 17C is fully implemented in computer codes with documentation available from the US
Geological Survey and the US Army Corps of Engineers. This reduces the opportunity for errors and
makes the best methods available to hydrologists conducting flood risk studies. A future challenge is
changes that will occur in flood distributions due to climate variability and climate change. This
chapter has also discussed how those concerns might be addressed.

APPENDIX 7A: PLOTTING POSITIONS FOR USE WITH LOW OUTLIERS AND
HISTORICAL INFORMATION

Bulletin 17B includes plotting positions for historical flood data, but Hirsch and Stedinger (1987)
provide a framework for more precise plotting positions that are applicable with multiple historical
flood thresholds. In their framework, the exceedance probability qe of the historical threshold may be
estimated by Z∕ðNS þ NHÞ, where Z =N>

S þ N>
H is the number of flood events that exceeded the

perception threshold over the entire period (historic and systematic) of length NS +NH. If the Z
observations that exceeded the historical flood threshold are ranked from j = 1, : : : , Z, plotting
positions approximating the exceedance probabilities within the interval (0, qe) are given by

pZj = qe

�
j − a

Z þ 1 − 2a

�
(7-30)

Plotting positions within (qe, 1) for the remaining N<
S below threshold floods are then

pj = qe þ ð1 − qeÞ
�

j − a
N<

S þ 1 − 2a

�
(7-31)

for j= 1, : : : ,N<
S (Stedinger et al. 1993, pp. 18.41–18.42).
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Figure 7-9. Frequency curves representing one-year ahead forecast for year 2006 at New River near
Galax, Virginia. Forecasts obtained using traditional method of moments model (MOM) and a
proposed model to incorporate ENSO effects assuming SST(2006) = 0.2 and 1.2.
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APPENDIX 7B: EXPECTED MOMENTS ALGORITHM

The EMA for low outlier adjustment, and the incorporation of regional skew information and
historical information in flood frequency analyses with the LP3 distribution includes the following
steps:
Step 1. Using all observations in the systematic record fXSg, compute initial estimates of the sample
moments (μ̂1, σ̂1, γ̂1).
Step 2. For i = 1, 2, : : : , the parameters of the P3 distribution (α̂iþ1, β̂iþ1, τ̂iþ1) are estimated using
the previously computed sample moments.

α̂iþ1 = 4∕γ̂2i ; β̂iþ1 =
1
2
σ̂iγ̂i; τ̂iþ1 = μ̂i − α̂iþ1β̂iþ1

Step 3. Estimate new sample moments (μ̂iþ1, σ̂iþ1, γ̂iþ1) using expected moments such as

μ̂iþ1 =
P

X>
S þP

X>
L þ N<

LE½X<
L� þ

P
X>
H þ N<

HE½X<
H �

NS þ NH
(7-32)

where E½X<
L� is the expected value of an observation in the systematic period known to have a value

below the low outlier threshold XL, and E½X<
H � is the expected value of the logarithm of an event in

the historic period that failed to exceed the perception threshold T. The expected values are
conditional expectations given that X< Xc and X< Y = log(T), respectively. Here Xc denotes the
EMA censoring threshold, which is defined as the smallest retained observation. Use of the smallest
retained observation rather than XL to define the possible range of censored values made the EMA
algorithm less sensitive to the distribution of low outliers (Griffis 2003). With the current parameter
estimates (α̂iþ1, β̂iþ1, τ̂iþ1), the conditional expectation E½X<

L� is expressed in terms of the incomplete
gamma function (Cohn et al. 1997):

E½X<
L�= τþ β

Γ
h
Xc−τ
β , αþ 1

i
Γ
h
Xc−τ
β , α

i (7-33)

The expression for the conditional expectation E½X<
H � is equivalent to Equation (7-33), except

the censoring threshold Xc is replaced by the logarithm of the perception threshold Y = log(T).
The second and third moments are estimated using
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γ̂iþ1 =
1
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wherein c2 = ðNS þ N>
HÞ∕ðNS þ N>

H − 1Þ, c3 = ðNS þ N>
HÞ2∕½ðNS þ N>

H − 1ÞðNS þ N>
H − 2Þ�, and

n = additional years of record assigned to the regional skew. Here γ̂iþ1 is a weighted skewness
estimator. To ensure that EMA is consistent with Bulletin 17B when no low outliers are identified
[i.e., γ̂iþ1 =GW in Equation (7-14)], the required value of n is

n= ðNS þ NHÞ
MSEðγ̂Þ
MSEðGRÞ

(7-36)

In this sense, n is the regional skew weight measured in years.
The expected contribution of the values below the low outlier threshold XL to the second and

third central moments (m = 2 and 3, respectively) is (Cohn et al. 1997)

E½ðX<
L − μÞm�=

Xm
j= 0

ðmj Þβ jðτ − μÞm−j
Γ
h
Xc−τ
β , αþ j

i
Γ
h
Xc−τ
β , α

i (7-37)

The expression for the expected contribution of the unobserved values in the historic period
E½ðX<

H − μÞm� is equivalent to Equation (7-37), except the censoring threshold Xc is replaced by the
logarithm of the perception threshold Y = log(T).
Step 4. Convergence. In general, steps 2 and 3 are repeated until the parameter estimators for the P3
mean, standard deviation, and skew values converge. It is recommended, however, that EMA be
employed first with all available data, both systematic and historical data, and regional skew
information, to obtain initial estimates of the mean and standard deviation. To do so, steps 2 and 3
should be repeated until the moment estimators converge, wherein Equations (7-32), (7-34), and
(7-35) are computed by including any possible low outliers in the set fX>

L g; the terms involving the
expected contribution from low outliers are omitted from the computations. Once the estimators
converge, those values should then be used in Equation (7-18) to define the low outlier threshold,
wherein the systematic record length NS is used to define the frequency factor KN. If low outliers are
identified, then the EMA analysis should be repeated (steps 2 and 3 to convergence) treating the low
outliers as censored observations that are known to be smaller than the smallest observation
retained.
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8.0 INTRODUCTION

In other chapters, some features of the hydrologic cycle dealing with the occurrence of extreme
events such as extreme maximum precipitation and extreme maximum floods have been addressed.
This chapter addresses another feature of the hydrologic cycle that deals with the opposite extreme
or the other end of the spectrum, in other words, the occurrence of periods of low flows and drought.
Whereas a flood is quite visible and generally gets prompt attention from the public, the media, and
other institutions, a drought may not receive similar attention because it may take a while before
its impacts and consequences become noted. The effects of periods of low flows and drought can be
quite significant and sometimes devastating to the environment and to society. In the following
sections we describe some concepts and definitions associated with low flow and drought
phenomena and present some tools for analyzing them. Because of the random nature of such
phenomena, the methods are based on probabilistic and stochastic concepts. Several problems in
water resources and environmental engineering require the estimation of some low flow quantities
and the estimation of drought properties. For example, the design of the storage capacity of a
reservoir for water supply (conservation) is related to the occurrence of periods of low flows and
drought. Low-flow characteristics of streams are commonly used in the planning and management
of water resources systems, such as in designing water supply works, analyzing environmental
impacts of water resources development, modeling stream water quality, regulating instream water
uses, and improving the general understanding of natural regulated stream systems (Tasker 1987).
Also, certain water quality standards are based on specific low-flow quantiles.

Low flow at a site is often characterized by an index of low flow. For example, a widely used
index of low flow is the 7 day, 10 year low flow, which is the discharge having a 10 year return period
derived from a frequency curve of the lowest average flow for seven consecutive days in a year (Riggs
1980). In some cases, low-flow data may be serially uncorrelated. In those cases, one may apply the
usual procedures of frequency analysis and estimate useful statistics such as return period and risk.
However, when the time series of low flows are time dependent, the usual frequency analysis
assuming independence does not apply nor do the methods for estimating the return period and risk.
In this chapter we consider both cases. In addition, this chapter includes characterizing droughts by
stochastic methods. Drought is generally a complex phenomenon, which may involve a wide range

269



of temporal and spatial scales, and several hydrometeorological variables such as precipitation,
temperature, soil moisture, streamflow, groundwater levels, and water storages may be necessary for
drought identification and characterization depending on the particular problem at hand. In
addition, many other variables may be necessary for drought forecasting (e.g., Wong et al. 2013)
and to quantify drought impacts and consequences on the environment and society. As the title of
the chapter implies, the emphasis here is based on streamflow as the key variable of analysis, and in
the case of drought characterization the focus is on multiyear droughts. A vast amount of literature is
available for analyzing various aspects of droughts such as definition, identification, prediction,
impacts, adaptation, and management (e.g., Alley 1984, Frick et al. 1990, Guttman 1998, Wilhite
2000, Svoboda 2000, Heim 2002, Panu and Sharma 2002, Salas et al. 2005, Bond et al. 2008, Mishra
and Singh 2010, Sheffield et al. 2012a).

Following this introductory section, the next section describes definitions of low flow and
drought. Then Section 8.2 introduces some elementary concepts and procedures for determining the
frequency analysis of low flows using empirical methods, and Section 8.3 describes in some detail
frequency analysis using traditional univariate distribution functions including the case of inter-
mittent low-flow data. Section 8.4 includes the case of regional analysis of low flows. Section 8.5
describes the analysis of autocorrelated low flows based on low-order discrete and continuous
stochastic models, and Section 8.6 discusses the characterization of multiyear droughts based on
analytical approximations. The sections include the estimation of return periods of low flows and
droughts, respectively. The case of regional droughts is briefly discussed in Section 8.7, and the
effects of hydraulic structures on low flows are briefly described in Section 8.8. The chapter ends with
a section of closing remarks, which includes some concepts and references on the effect of climate
variability on low flows and droughts.

8.1 LOW FLOW AND DROUGHT DEFINITIONS

Before statistically characterizing low flows and droughts, it is necessary to define them precisely.
Since both terms relate to those conditions where streamflow reaches some undesirable levels, there
are some similarities as well. In the following two sections, we include definitions that have
been suggested in literature, and indicate those cases where some similarities and differences arise
between them.

8.1.1 Definitions of Low Flows

Several definitions of low flows are found in the hydrologic literature. Two of the most popular ones
utilized in practice are called low flow and low-flow duration. Sometimes the terms low-flow volume,
low-flow discharge, and low-flow stage are utilized to emphasize that the underlying variable is either
volume, discharge, or stage, respectively. The term low flow refers to the minimum flow of a stream
over a consecutive number of days that may occur during a given time period (generally a year). The
term low-flow duration is defined as the number of consecutive days in which the flow (series) is
below a certain threshold value or crossing level. In either case, the referred quantities are random
variables so one must describe them in frequency terms.

The definition of low flow depends on the specified time duration d and the Tu, as shown in
Figure 8-1. Assuming a daily streamflow hydrograph, typical values of d are 1 day, 5 days, 7 days,
10 days, and higher, depending on the problem, while the unit time period Tu is generally a year or a
fraction of a year (e.g., the dry season). The year is the unit time period most commonly used for
most problems involving low-flow analysis (U.S. Army Corps of Engineers 1964). Figure 8-1 shows
schematically the definition of flow volume vi and low-flow discharge qi for the specified time
duration d. Thus, one can obtain m values of v1, : : : , vm and q1, : : : , qm from the daily hydrograph.
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For example, assuming d = 10 days and Tu = 365 days, one can get m = 356 values of both vi and
qi (considering overlapping). Thus, the low-flow volume for the given year, say year 1, is
V1 = minðv1, : : : , vmÞ and the low-flow discharge is y1 = minðq1, : : : , qmÞ. Considering N years of
record (i.e., total number of time periods Tu) we will have the sequences of low-flow volumes
V1, : : : ,VN and low-flow discharges y1, : : : , yN that can be used for frequency analysis. Example 8-1
illustrates some of these concepts.

Another type of low-flow index has been used in hydrologic practice where the duration of low
flows (and related quantities) is the variable of concern. Low-flow duration is defined as the number
of consecutive time intervals (e.g., days) in which the flow series is below a certain threshold or
crossing level. The low-flow spell has an associated low-flow volume (or cumulative flow deficit),
which is the accumulated flow below the crossing level. The low-flow intensity is defined as the ratio
of the low-flow volume and the duration of the low-flow spell. This type of analysis is called “low-
flow duration analysis” (US Army Corps of Engineers 1975, Viessman et al. 1989). This is also
referred to as “low-flow spells frequency analysis” (Shaw 1988).

Referring to Figure 8-2, let us assume that Qt is a daily flow hydrograph (although the time
interval may be hours, days, weeks, etc.) A low flow occurs when Qt is below the crossing level
(discharge) Qo for a consecutive number of days or duration d. The figure shows four low-flow
spells during the unit period Tu. In general, we may have m low-flow episodes during the unit time

Qt

t

Unit time period 

d d d

qi vi
vmv1

Figure 8-1. Definitions of time interval, d, unit time period Tu, flow volume v, and flow discharge q.
Source: Salas et al. (2018).
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d

dd
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i3=v3

Figure 8-2. Definition of low-flow duration d, low-flow deficit v, and low-flow intensity I relative to
the threshold discharge Q0. The graph shows four episodes of low flows.
Source: Salas et al. (2018).
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period Tu, with durations, d1, : : : , dm, low-flow deficits v1, : : : , vm, and low-flow intensities i1, : : : , im.
Note, however, that in some cases, low-flow spells may not occur in a particular year, and in those
cases, the low-flow variables equal zero. Generally for most water resources applications we are
interested in the maximum values, in other words., the longest dry period D, the largest deficit V, and
the largest intensity I, each of which is a random variable. Thus, for N years of data available and
Tu = 1 year, we will have the sequences of low-flow durations, D1, : : : ,DN, low-flow deficits
V1, : : : ,VN, and low-flow intensities I1, : : : , IN. The frequency analysis of each sequence will provide
the information needed to make probability statements about the variable of interest.

The various aforementioned low-flow definitions are particularly useful in perennial rivers.
However, in streams of semi-arid and arid regions where the flow regime may be intermittent and
zero values of flows may occur, appropriate adjustments may be needed for determining the
corresponding frequency distribution as outlined in Section 8.3.2. In addition, other characteristics
of low flows such as the duration of zero flows (e.g., considering Qo = 0 in Figure 8-2) may be of
interest, and determining the frequency distribution of the longest duration of zero flows (per year)
may be needed. Also another way of analyzing low flows in streams of intermittent flow regime may
be selecting an appropriate time scale of the hydrograph under consideration, for example, weekly
instead of daily, so as to avoid the zero flow values, then the low-flow analysis for such a scale can be
performed as described previously.

8.1.2 Definition of Drought

A drought is a complex phenomenon that evolves through time and space in a random fashion. It
may be characterized by its initiation, duration, magnitude (accumulated deficit), intensity,
termination, and spatial extent. These characteristics may be determined by comparing a water
supply time series with a water demand series. Because water supply quantities such as streamflows
are stochastic variables the corresponding drought characteristics are also random and must be
described using stochastic methods. Let us consider a stochastic water supply series denoted by
xt , t = 1, 2, : : : and a constant water demand threshold denoted by x0. Following the drought
definition that Yevjevich (1967) suggests, a drought event is taken as a succession of consecutive
periods (run) in which the water supply xt remains below x0 where the run is preceded and
succeeded by water supply that is equal to or bigger than x0. Thus, the drought length L (or negative
run length) is the number of consecutive time intervals (e.g., years) in which xt < x0, preceded and
followed by (at least one period where) xt ≥ x0. Figure 8-3 schematically shows this drought
definition. In addition, the drought magnitude or accumulated deficit (run sum) is the total deficit
throughout the drought duration [i.e., D=

PtþL−1
j= t ðx0 − xjÞ], and the drought intensity is the mean

deficit over the drought duration, (i.e., I = D/L). Furthermore, d0 ≥ 0 represents any given drought
magnitude, and i0> 0 represents any given value of the intensity. To analyze the severity of droughts
and the associated risks, we need to specify the drought event under consideration. For instance, one
may consider only the duration of a drought regardless of the magnitude, or drought duration with a
certain degree of deficit, or duration and a given intensity, and so on.

Worth noting are the similarity and differences between the definitions of low-flow duration
(deficit and intensity) depicted in Figure 8-2 and the definition of drought duration (magnitude and
intensity) shown in Figure 8-3. The similarity of the definitions is fairly obvious, but the main
difference is in the ensuing analysis of the data arising from both definitions (figures). While the low-
flow duration (and magnitude and intensity) in Figure 8-2 yields a maximum value per year, and the
set of maximums is analyzed using frequency analysis methods (Sections 8.2 and 8.3), the drought
length/duration (and magnitude and intensity) in Figure 8-3 give information that can be analyzed
statistically but generally. Because of the small number of drought events that can be obtained from
the underlying flow series, the analysis involves analytical approximations and stochastic simulation
(Section 8.6). Furthermore, also note that in some cases where low flows are autocorrelated also,
stochastic modeling approaches may have to be applied (Section 8.5).
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8.2 EMPIRICAL FREQUENCY ANALYSIS OF LOW FLOWS

The empirical frequency distribution of low flows may be determined using a certain plotting
position formula. The procedure is straight forward but will be summarized here for completeness.
Let us assume that the sample of the low-flow variable of interest is denoted as y1, : : : , yN , where N is
the sample size. We will also assume that the sample has been arranged from the smallest value to
the largest one so that y1 represents the minimum and yN the maximum. Then, an estimate of the
cumulative probability corresponding to the ordered value yi is given by i∕ðN þ 1Þ, which is the
Weibull plotting position formula. The literature has suggested alternative plotting position formulas
(e.g., Stedinger et al. 1993), but for the purpose of this chapter we will use the Weibull formula.
Because we assumed that the sample is ordered from the smallest to the largest, one can write

FðiÞ= PðY ≤ yiÞ= i∕ðN þ 1Þ, i= 1, : : : ,N (8-1)

in which F(i) is the nonexceeding probability. Thus Equation (8-1) gives the estimate of the
cumulative distribution function (CDF). This distribution is also referred to as the empirical CDF or
empirical frequency curve.

This formula is quite simple, but one must be aware of special cases where appropriate
interpretation and adjustments may be necessary. For instance, if the sample is a random sample in
the sense that the sequence of observations is independent (uncorrelated), then one can use the
nonexceedance probability F(i) = q to determine the return period of the value of interest. Per
illustration, if we are concerned with determining the return period of, say yi, one can calculate it by
T = 1∕FðiÞ= 1∕q. Note that sometimes F(i) = q has been called the exceedance probability,
particularly in relation to low flows. However, in this chapter we will stick to the usual terminology
and jargon commonly found in statistical literature, which is FðiÞ=PðY ≤ yiÞ= q = nonexceedance
probability. Also, in cases where the observations are autocorrelated, applying the methods outlined
in Section 8.5 instead may be useful, and where the sample has been censored, appropriate
adjustments may be necessary as described in Section 8.3.2. In addition, the foregoing plotting
position formula may provide a quick estimate of the probabilities of low-flow events and return
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Figure 8-3. Water supply xt, water demand x0, and drought properties: (a) duration L, (b) magnitude
(accumulated deficit) D, and (c) intensity I. Also specific drought magnitude and intensity thresholds
d0 and i0 are shown.
Source: Salas et al. (2005).
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periods, but generally employing appropriate probabilistic or stochastic methods is better. This is
even more so in the analysis of multiyear droughts where even records of 100 years may not be
enough for estimating drought properties reliably. This is the case, for example, for determining the
return period of multiyear droughts or for characterizing critical droughts. In these cases, applying
approximate analytical techniques or stochastic simulations such as those described in Sections 8.5
and 8.6 may be necessary.

8.3 PROBABILITY DISTRIBUTION OF LOW FLOWS

When a historical streamflow record is available at a site of interest, low streamflow quantiles can be
estimated via frequency analysis. The standard procedure is to pick a probability distribution that
adequately describes the low streamflow series, to estimate the parameters of the probability
distribution, and then to estimate the relevant quantile from the distribution. The following sections
describe fitting univariate distributions, how to handle sites with intermittent (nonperennial)
streamflows, and the regionalization of low flows and droughts.

8.3.1 Fitting of Univariate Distributions

The most challenging issue with estimating low-flow quantiles at sites with historical records is the
choice of an appropriate probability distribution to describe the low-flow series. The few studies that
investigate fitting probability distributions to low-flow series do not reach a consensus as to the best
probability distribution to employ in practice. Tasker (1987) uses a bootstrap resampling experiment at
20 Virginia rivers to analyze how the three-parameter Weibull (W3), log–Pearson type III (LP3), log
Boughton, and Box–Cox distributions reproduce streamflow quantiles, recommending the W3 and
LP3 distributions. Condie and Nix (1975) recommend the W3 distribution for best describing the
lower bound of Canadian rivers. Vogel and Kroll (1989) employ a regional probability plot correlation
coefficient (PPCC) test at rivers in Massachusetts to compare various probability distributions,
recommending the two- and three-parameter log–normal (LN2 and LN3), LP3, and W3 distributions.
Onöz and Bayazit (2001) use a PPCC test to examine the fit of probability to low flows at a several
European rivers and recommend the use of the general extreme value (GEV) distribution.

Pearson (1995) employs an L-moment analysis of 1 day annual minimum flows at more than
500 New Zealand rivers, concluding that no single two- or three-parameter distribution provides an
adequate fit. Vogel and Wilson (1996) also employ L-moment diagrams to examine 1 day annual
minimum flows at more than 1,400 river sites across the United States and recommend the use of the
three-parameter Pearson (P3) distribution based on a visual interpretation of the L-moment
diagrams. Kroll and Vogel (2002) use an L-moment weighted distance measure to compare the
fit of probability distributions to 7 day annual minimum flows at more than 1,500 river sites across
the United States. They recommend the LN3 distribution at perennial sites and the P3 at intermittent
sites due to patterns in the shift of L-moment ratios.

In this section, we illustrate the applications of the log–Pearson type III, log–normal three-
parameter (log–normal 3), the Weibull, and the GEV models for fitting the distribution of low-flow
variables. The fitting procedure is essentially based on the method of moments (MOM), although the
literature proposes several other methods, such as the maximum likelihood and probability weighted
moments. Detailed examples are included and in most cases the fitted and empirical CDFs are
compared graphically.

8.3.1.1 Fitting the Log–Pearson Type III Distribution

Only a limited number of probability distributions are commonly fit to low-flow series, and in the
United States this is typically the LP3 distribution. The Committee on Surface-Water Hydrology of
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the Hydraulics Division (ASCE 1980) recommends fitting low-flow series with the LP3. In addition,
in Bulletin 17, the US Water Resources Council recommends the LP3 distribution to describe annual
maximum flows (USIAC 1982), and its common use to describe low flows is by default. The LP3 has
also been employed in several USGS studies. The LP3 is a flexible distribution and converges to an
LN2 distribution when the log skew approaches zero. Typically, the LP3 is parameterized by the
method of moments. Whereas weighted skew maps and generalized least squares regression
estimators of the skew have been recommended for flood flow series, no such tools have been
recommended for low flows, and typically at-site skew estimators are employed, even though they
have been shown to have high bias and variance in small samples (Stedinger et al. 1993).

If one defines a d day low streamflow series as x1, x2, : : : , xN, and the logarithm of this series as
y1, y2, : : : , yN, i.e., yi = ln(xi), the log space moments of the series are

μ̂y =
XN
i= 1

yi
N

(8-2)

σ̂y =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i= 1ðyi − μ̂yÞ2
N − 1

s
(8-3)

γ̂y =
N
P

N
i−1ðyi − μ̂yÞ3

ðN − 1ÞðN − 2Þσ̂3y
(8-4)

The quantile of interest can then be estimated as

x̂q = expðμ̂y þ Kqσ̂yÞ (8-5)

where Kq is the frequency factor that may be obtained from tables (e.g., USIAC 1982) or can be
estimated approximately using the Wilson–Hilferty transformation as

Kq =
2
γ̂y

�
1þ zqγ̂y

6
−
γ̂2y
36

�
3
−

2
γ̂y

(8-6)

in which zq is the inverse standard normal variate such that P(Z≤ zq) = q where Z∼N(0, 1). This
approximation is generally considered adequate when 0.01≤ q≤ 0.99 and |γ|< 2 (Kirby 1972).
When γ̂y → 0, Kq→ zq, and the LP3 distribution turns into an LN2 distribution.

Example 8-1: Estimation of the 7 Day, 10 Year Low Streamflow, × 7,10 Based on the
Log–Pearson Type III Distribution

Table 8-1 contains 7 day annual minimum flows for Penns Creek at Penns Creek, PA (USGS
#01555000), for the 76 year period from 1930 to 2005. The 7 day annual minimum is the lowest
average daily streamflow over a 7 day period during the water year. The water year for low
streamflow series typically begins during the high flow period of the year so that a single low-flow
period is not included in two consecutive years. Here the water year was defined as April 1 to
March 31.

Using these data, the following statistics were calculated based on Equations (8-2), (8-3), and
(8-4), respectively: μ̂y = 4.13, σ̂y = 0.43, γ̂y = 0.77. To estimate the 7 day low streamflow that has a
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nonexceedance probability of 1/10 = 0.1, in other words, the 10th percentile of the distribution of
annual minimum flows, the appropriate frequency factor is the inverse of the standard normal
variate with a nonexceedance probability of 10%, in other words, P(Z ≤ z0.1) = 0.1. Employing a
table for a standard normal distribution, z0.1 = −1.282. Using this value, the frequency factor
obtained from Equation (8-6) is Kq = K0.1 = −1.17. From this the x7,10 can be estimated from
Equation (8-5) as

x̂7,10 = x̂0.1 = exp½4.13þ ð−1.17Þ × 0.43�= 37.6 ft3∕s

Note that if one instead fits a two-parameter log–normal distribution to the 7 day annual
minimum flows, then

x̂7,10 = x̂0.10 = exp½μ̂y þ z0.10σ̂y�= exp½4.13þ ð−1.282Þ × 0.43�= 35.8 ft3∕s

x̂7,10 = x̂0.10 = exp½μ̂y þ z0.10σ̂y�= exp½4.13þ ð−1.282Þ × 0.43�= 35.8 ft3∕s

8.3.1.2 Fitting the Three-Parameter Log–Normal Distribution (LN3)

The probability density function of the LN3 distribution is

f ðxÞ= 1

ðx − x0Þσy
ffiffiffiffiffi
2π

p exp

�
−
½lnðx − x0Þ − μy�2

2σ2y

�
, x0 < x < ∞ (8-7)

Table 8-1. 7 Day Annual Minimum Flows for Penns Creek at Penns Creek, PA.

Year
7 day min

(ft3/s) Year
7 day min

(ft3/s) Year
7 day min

(ft3/s) Year
7 day min

(ft3/s)

1930 30 1949 55 1968 56 1987 60
1931 46 1950 73 1969 69 1988 58
1932 39 1951 54 1970 63 1989 84
1933 82 1952 47 1971 62 1990 171
1934 70 1953 43 1972 79 1991 52
1935 44 1954 42 1973 84 1992 82
1936 35 1955 52 1974 88 1993 72
1937 69 1956 166 1975 78 1994 117
1938 56 1957 47 1976 85 1995 51
1939 37 1958 61 1977 103 1996 107
1940 61 1959 43 1978 72 1997 82
1941 46 1960 65 1979 151 1998 39
1942 67 1961 43 1980 50 1999 50
1943 48 1962 33 1981 65 2000 62
1944 56 1963 42 1982 57 2001 53
1945 89 1964 31 1983 57 2002 55
1946 78 1965 34 1984 81 2003 221
1947 70 1966 24 1985 49 2004 204
1948 47 1967 93 1986 66 2005 44
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where x0, σy, and μy are the location, scale, and shape parameters, respectively. The CDF, defined as
FðxÞ= ∫ x

x0
f ðxÞ dx, cannot be integrated explicitly, thus, numerical procedures or tables for the

normal distribution must be used to calculate either probabilities for a given value of x or quantiles
for a given probability.

The moment estimators of the parameters of the LN3 distribution are (Yevjevich 1972)

μ̂y =
1
N

XN
i= 1

lnðxi − x̂0Þ, (8-8)

σ̂y =
�
ð1∕NÞ

XN
i= 1

½lnðxi − x̂0Þ − μ̂y�2
�
1∕2

, (8-9)

x̂0 = μ̂x

�
1 −

η̂xω1∕3

ð1 − ω2∕3Þ
�
, (8-10)

in which

η̂x =
σ̂x
μ̂x

(8-11)

and

ω=
1
2

�
−γ̂x þ ðγ̂2x þ 4Þ1∕2� (8-12)

where μ̂x, σ̂x, and γ̂x are respectively the mean, standard deviation, and the skewness coefficient of
the x’s. Note that the moment solution requires that γ̂x > 0.

Example 8-2: Estimation of the 1 Day, 10 Year Low Flow × 1,10 Based on the LN3 Distribution

Table 8-2 gives the 1 day low flows for the San Pedro River at the Villalba gauging station in Mexico
for 1939–1991. The results are obtained following the method of moments procedure described
previously. Using the data of Table 8-2 the following 1 day low flow statistics are obtained:

μ̂x =
1
N

XN
i= 1

xi = 0:3306m3∕s

σ̂x =
�
1
N

XN
i= 1

ðxi − μ̂xÞ2
�
1∕2

= 0:1465m3∕s

γ̂x =
N

ðN − 1ÞðN − 2Þσ̂3x
XN
i= 1

ðxi − μ̂xÞ3 = 0.5853

Equations (8-11) and (8-12) give η̂x = 0.4431 and ω= 0.7493, respectively.
Then applying Equations (8-10), (8-8), and (8-9) gives the moment estimates of the parameters

of the LN3 distribution for the 1 day low flows for the San Pedro River, respectively,
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x̂0 = −0.4296m3∕s, μ̂y = −0.287, and σ̂y = 0.1945. Figure 8-4 shows the graphical fitting of the LN3
distribution using the MOM. Then the 10 year 1 day low flow is

x̂1,10 = x̂0.1 = x̂0 þ expðμ̂y þ z0.1σ̂yÞ= −0.4296þ exp½−0.287
þ ð−1.2816Þð0.1945Þ�= 0.155 m3∕s

where z0.1 = −1.282 is the 10% quantile of the standard normal distribution.

Table 8-2. 1 Day Low Flows for the San Pedro River at Villalba, Mexico, for 1939–1991.

Year x (m3/s) Year x (m3/s) Year x (m3/s)

1939 0.6220 1957 0.0790 1975 0.4090
1940 0.6850 1958 0.1150 1976 0.5070
1941 0.4520 1959 0.4010 1977 0.4160
1942 0.3050 1960 0.2620 1978 0.2500
1943 0.6480 1961 0.2620 1979 0.4190
1944 0.4850 1962 0.1850 1980 0.3000
1945 0.4470 1963 0.2290 1981 0.7040
1946 0.4850 1964 0.3570 1982 0.4430
1947 0.4310 1965 0.1390 1983 0.3670
1948 0.3920 1966 0.3300 1984 0.1770
1949 0.2260 1967 0.3390 1985 0.3097
1950 0.2640 1968 0.3280 1986 0.3905
1951 0.1950 1969 0.3480 1987 0.4417
1952 0.1840 1970 0.2080 1988 0.3846
1953 0.1320 1971 0.3090 1989 0.2740
1954 0.1400 1972 0.3770 1990 0.1750
1955 0.2450 1973 0.3950 1991 0.1288
1956 0.1500 1974 0.2740

Source: CONAGUA (2016).

Figure 8-4. Empirical and fitted frequency curves for the 1 day low flows of the San Pedro River in
Mexico, based on MOM estimates of the parameters of the LN3 distribution.
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8.3.1.3 Fitting the Extreme Value Type III (Weibull) Distribution

The probability density function of the Weibull distribution is (Gumbel 1958)

f ðxÞ= k
ðv − εÞ

�
x − ε
v − ε

�
k−1

exp

�
−
�
x − ε
v − ε

�
k
�
, ε ≤ x < ∞: (8-13)

where ε, k, and v are the location, scale, and shape parameters, respectively, such that k> 0 and
(v− ε)> 0. Likewise, the cumulative probability distribution function is

FðxÞ= 1 − exp

�
−
�
x − ε
v − ε

�
k
�

(8-14)

Kite (1988) shows that based on the method of moments the parameters may be estimated by

ε̂= μ̂x þ σ̂x½1 − Γð1þ 1∕kÞ�Bk (8-15)

v̂= ε̂ − Bkσ̂x (8-16)

k̂=
1

a0 þ a1γ̂x þ a2γ̂2x þ a3γ̂3x þ a4γ̂4x þ a5γ̂5x þ a6γ̂6x
(8-17)

where the approximation is valid in the range −1.04≤ γx≤ 2, Bk = ½Γð1þ 2∕kÞ − Γ2ð1þ 1∕kÞ�−1∕2
Γ(.) = complete gamma function
a0 = 0.277597
a1 = 0.323127,
a2 = 0.061656,
a3 = −0.020235,
a4 = −0.007321,
a5 = 0.005578,
a6 = −0.001094, and
μ̂x, σ̂2x, and γ̂x = sample mean, variance, and skewness coefficient, respectively.

Example 8-3: Estimating the 1 Day, 10 Year Low Flow × 1,10 Based on the Weibull Distribution

We will use the 1 day low flow data for the San Pedro River at Villalba, Mexico, for 1939–1991
(Table 8-2). The results are obtained using the MOM procedures described previously. From
Example 8-2, the sample mean, standard deviation, and skewness coefficient are μ̂x = 0:3306m3∕s,
σ̂x = 0:1465m3∕s, and γ̂x = 0.5853, respectively. Then, applying the MOM procedure gives
k̂= 2.0693, Bk = ½Γð1þ 2∕kÞ − Γ2ð1þ 1∕kÞ�−1∕2 = ½0.9863 − ð0.8858Þ2�−1∕2 = 2.2269, ε̂= μ̂x þ
σ̂x½1 − Γð1þ1∕kÞ�Bk = 0.3306þ ð0.1465Þð1 − 0.8858Þð2.2269Þ= 0.0417, and v̂= ε̂ − Bkσ̂x = 0.0417 −
ð2.2269Þð0.1465Þ= 0.3678.

Thus, the moment estimates of the parameters of the Weibull distribution for the 1 day low-flow
sample data of the San Pedro River are ε̂= 0.0417m3∕s, k̂= 2.0693, and v̂= 0.3678m3∕s. Figure 8-5
shows the corresponding fitted distribution.

Then from Equation (8-14), the q-th quantile may be written as

xq = εþ ðν − εÞ½− lnð1 − qÞ�1∕k
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so that the 10 year, 1 day low flow is

x̂1,10 = x̂0.1 = 0.0417þ ð0.3678 − 0.0417Þ½− lnð1 − 0.1Þ�1∕2.0693 = 0.152m3∕s

8.3.1.4 Fitting the General Extreme Value Distribution

The GEV has been applied to many hydrologic events for a long time (e.g., NERC 1975). Various
forms and parameterizations of the GEV have been utilized in practice. Here we will follow that
utilized by Raynal-Villasenor (2013), where the probability density function is defined as

f ðxÞ= 1
α
expf−½1 − βðω − xÞ∕α�1∕βg½1 − βðω − xÞ∕α�ð1∕βÞ−1 (8-18)

in which ω is the location parameter, α is the scale parameter, and β is the shape parameter. Also
−∞ < x ≤ ω − α∕β for β< 0 and ω − α∕β ≤ x < ∞ for β> 0. Likewise, the cumulative probability
distribution function is

FðxÞ= 1 − expf−½1 − βðω − xÞ∕α�1∕βg (8-19)

The moments estimators of the GEV distribution are

ω̂= μ̂ −
α̂
β̂
Γð1þ β̂Þ þ α̂

β̂
, (8-20)

α̂=
jβ̂jσ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð1þ 2β̂Þ − Γ2ð1þ β̂Þ
q , (8-21)

and the shape parameter (β) may be estimated by Raynal-Villasenor (2013)

Figure 8-5. Empirical and fitted frequency curves for the San Pedro River at Villalba (Mexico), based
on MOM estimates of the parameters of the Weibull distribution.
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β̂= 0.24662þ 0.286678γ̂þ 0.072454γ̂2 þ 0.010176γ̂3 þ 0.000816γ̂4

þ 0.000037γ̂5 (8-22a)

for β< 0 and −19.0 < γ̂ ≤ −1.1396 and

β̂= 0.279434 − 0.333535γ̂þ 0.048305γ̂2 þ 0.024414γ̂3 þ 0.003765γ̂4

− 0.000263γ̂5 (8-22b)

for β> 0 and −1.1396 ≤ γ̂ < 11.35. Note that L-moment estimators are often used to parameterize
the GEV distribution (see Stedinger et al. 1993 for fitting procedures), because L-moment estimators
can have better properties than MOM estimators for real-space distribution with three or more
parameters.

Example 8-4: Estimation of the 1 Day, 10 Year Low Flow × 1,0.1 Based on the GEV Distribution

The 1 day low-flow data for the San Pedro River in Mexico for 1939–1991 are also used in this
example (Table 8-2). The estimation results have been obtained using the previously described
procedures. The following statistics have already been obtained in Examples 8-2 and 8-3 as
μ̂x = 0.3306, σ̂x = 0:1465m3∕s, and γ̂x = 0.5853. Then Equations (8-22b), (8-20), and (8-21) give,
respectively, β̂= 0.4965, ω̂= 0.3668m3∕s, and α̂= 0.158m3∕s.

Figure 8-6 shows the fitted distribution for the GEV. From Equation (8-19) one may find that
the 10 year, 1 day low flow is

x̂1,10 = x̂0.1 =ωþ α
β

	�
− ln

�
1 −

1
T

��
β
− 1



= 0.3668þ 0.158

0.4965

	�
− ln

�
1 −

1
10

��
0.4965

− 1



= 0.153m3∕s

Figure 8-6. Empirical and fitted frequency curves for the low flows of the San Pedro River in Mexico,
based on MOM estimates of the parameters of the GEV distribution.
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Note that the value obtained is practically the same as that obtained using the Weibull
distribution because it may be shown that the two distributions are equivalent.

Furthermore, as a matter of comparison we fitted the log–Pearson type III distribution, using the
procedure outlined in Section 8.3.1.1 and obtained x̂0.1 = 0.156m3∕s. Thus, the estimates based on
the Weibull, GEV, LN3, and LP3 distributions are respectively 0.152, 0.153, 0.155, and 0.156—in
other words, they are very close. Note, however, that the sample size in this case is N = 53. The
results may have a wider variation for small sample sizes, smaller values of the nonexceedance
probability q, and for datasets with larger skews.

8.3.2 Case of Intermittent Flows

A common issue in hydrology is intermittent streamflows, where the hydrologic record contains
values recorded as zero. This typically occurs when the catchment area is small, the region is arid,
precipitation is stored for long periods as snow or ice, or the groundwater storage is depleted during
periods of little or no precipitation. When the streamflow is recorded as zero, it may actually be zero,
or may be too small to be measured by the recording instrumentation.

Typical hydrologic frequency analyses, which often rely on log-transformed distributions,
must be adapted to handle intermittent flows. Even when a real-spaced probability distribution,
such as the GEV, is employed, a truncation of the lower tail of the distribution at zero is still a
problem. While several techniques have been proposed to address this situation in regional
frequency analyses, the most common is the use of a conditional probability adjustment
(e.g., Haan 1992, USIAC 1982). This method, which represents the streamflow series as a mixed
distribution with a point mass at zero and a continuous distribution to describe the nonzero
observations, was originally recommended by Jennings and Benson (1969) for flood frequency
analysis. While an argument could be made to employ a truncated distribution to describe the
nonzero observations, with the truncation point at the measurement detection limit, typically a
nontruncated distribution is used.

Assume one is confronted with the typical problem of estimating some streamflow quantile,
xq, where q is the probability of the streamflow X to be less than or equal to xq can be written as

PðX ≤ xqÞ= FðxqÞ= q (8-23)

If one has a streamflow series of length N, of which N0 of the values are reported as zero, an
estimator of the probability of a zero flow is

q̂0 = PðX = 0Þ= N0

N
(8-24)

If q ≤ q̂0, then x̂q = 0. If instead q > q̂0, then one calculates an adjusted probability qa as

qa =
q − q̂0
1 − q̂0

(8-25)

and then determines the qa
th percentile of the distribution of the nonzero observations as

PðXNZ ≤ xqÞ= qa (8-26)

where XNZ is the variable defining flows greater than zero, in other words, nonzeros.
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Example 8-5: Estimation of the 7-Day 10-Year Minimum Flows for the Case of Zero
Flood Years

Table 8-3 gives the 7 day average annual minimum streamflows for Twelve Mile Creek near
Waxhaw, North Carolina (USGS gauge #02146900), from 1961 to 2002. For two years (1970 and
1983), the 7 day annual minimum was recorded as zero. Assume one wishes to estimate x7,10, in
other words, the 7 day, 10 year annual minimum streamflow using a log–Pearson type III
distribution. The x7,10 is the 10th percentile of the distribution of 7 day annual minimums, in
other words, q = 0.1.

Using information from Table 8-3, we have N = record length = 42 and N0 = number of years
when 7 day annual minimum flows equals zero = 2. Then, Equations (8-24) and (8-25) give

q̂0 =
N0

N
=

2
42

= 0.0476 and qa =
q − q̂0
1 − q̂0

=
0.1 − 0.0476
1 − 0.0476

= 0.055:

The x7,10 is thus estimated as the 5.5th percentile of the distribution of the nonzero 7 day annual
minimums. Using the nonzero 7 day annual minimum flows and Equation (8-2), (8-3), and (8-4) we
get μ̂y = 0.0022, σ̂y = 1.439, and γ̂y = −1.089, respectively. Also applying the Wilson–Hilferty
transformation [Equation (8-6)] where zq = −1.598 is the 5.5th percentile of the standard normal
distribution, we obtain the frequency factor Kq = −1.812. Thus, the x̂7,10 is estimated as
x̂7,10 = x̂0.10 = exp½0.0022 − 1.812 × 1.439�= 0.074 ft3∕s.

8.4 REGIONAL ANALYSIS OF LOW FLOWS

Regional hydrologic analysis refers to the use of information from one or more gauged river sites
to improve the estimation of a hydrologic statistic or parameter at the site of interest. In these
situations, the site of interest typically has either no streamflow measurements (ungauged) or a
limited record (partially gauged). Regional analysis typically involves selecting a homogeneous
region of gauged sites that is similar to the site of interest and then employing that region of sites for
estimation at the ungauged or partially gauged site.

Table 8-3. 7 Day Annual Minimum Flows for Twelve Mile Creek near Waxhaw, NC (USGS #02146900).

Year
7 day
min Year

7 day
min Year

7 day
min Year

7 day
min

1961 0.400 1972 0.833 1983 0.000 1994 2.600
1962 0.500 1973 1.414 1984 2.000 1995 1.943
1963 0.529 1974 2.314 1985 0.553 1996 3.900
1964 6.071 1975 7.614 1986 0.094 1997 1.414
1965 3.371 1976 1.743 1987 0.096 1998 2.943
1966 0.543 1977 1.561 1988 1.031 1999 0.299
1967 2.471 1978 1.714 1989 6.371 2000 0.461
1968 0.014 1979 3.471 1990 1.287 2001 0.041
1969 1.686 1980 0.291 1991 3.600 2002 0.070
1970 0.000 1981 0.681 1992 2.843 — —
1971 6.686 1982 1.157 1993 1.130 — —
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8.4.1 Methods for Selecting Homogeneous Regions

For many low streamflow studies, determining a homogeneous region within which low streamflow
processes are similar is beneficial. This is especially true when one has limited historical streamflow
data at the site of interest, and information from other sites in the region must be transferred to the
site of interest to improve low streamflow estimators at the site of interest. Low streamflow
estimation techniques such as regional regression and index flow are based on a homogeneous
region. Hosking and Wallis (1997) state that, “Of all the stages in a regional frequency analysis
involving many sites, the identification of homogeneous regions is usually the most difficult and
requires the greatest amount of subjective judgment.”

Although techniques have been developed to determine homogeneous regions when historical
streamflow records are available at the site of interest, such as L-moment techniques (Hosking and
Wallis 1997), streamflow data are not available at ungauged and partially gauged river sites. Thus,
even if homogeneous regions were developed, one may have a problem determining which region
the site of interest should include.

If contiguous regions are developed, then a site is placed into a region based on its geographic
location. These regions are often developed based on drainage basins. For instance, the USGS has
broken the conterminous United States into 18 regions containing the drainage areas of major basins
and then subdivided these regions into 221 subregions based on smaller drainage areas. This
classification is the basis of hydrologic unit codes (HUCs) by which watersheds are catalogued
(USGS 2010a), and often state-based hydrologic studies develop regions based on a combination of
HUCs and state boundaries.

For discontiguous regions, an allocation rule is required to place an ungauged or partially gauged
site within a specific region. These rules must be based on watershed characteristics that can be
measured at the ungauged or partially gauged site. The methods presented as follows identify several
techniques that have been applied to develop homogeneous regions for low streamflow estimation.

Hayes (1992) uses a residual pattern approach to develop homogeneous regions. In this technique
a global regression model between the flow characteristic of interest and watershed characteristics is
first developed for all sites in a region, and the residuals from this model are mapped and generalized
into homogeneous regions. One drawback of this approach is that the initial regression model, which
was developed using all potential sites, may be incorrect for the specific region developed, creating an
incorrect grouping of sites. Typically, with this technique, contiguous regions are developed, and thus
placing an ungauged site in a region is based on its geographic location.

Another technique is the use of multivariate statistics to determine homogeneous regions.
Nathan and McMahon (1990) compare several low-flow regionalization techniques, including
cluster analysis, multiple regression, and principal component analysis. Their analysis recommends a
weighted cluster analysis that creates groups that minimize the sum of squared errors between
observations and the group’s weighted mean (Ward’s method). This method creates discontiguous
regions, and thus a method for placing ungauged sites in a region is necessary. Nathan and
McMahon (1990) suggest using Andrews curves for a decision rule, though Laaha and Blöschl
(2006a) suggest that discriminant analyses and classification trees may also be used.

Still another approach is to use classification and regression tree (CART) models. These were
first applied to the problem of low streamflow regionalization by Laaha and Blöschl (2006a). With
this supervised classification technique, the initial heterogeneous domain is broken into several more
homogeneous groups by maximizing the homogeneity of low flows and catchment characteristics
simultaneously within each group. Usually the homogeneity is measured in terms of minimizing the
variance of the low-flow statistic of interest. Laaha and Blöschl (2006a) note that the benefits of this
technique include its nonparametric structure, the interpretability of small groupings, its ability to
handle nonlinear relationships, and the lack of sensitivity to unusual sites (outliers). One major
problem with this technique is that with large trees interpreting relationships is difficult. Once a
regression tree has been developed, it can be employed to place ungauged sites in a region.
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Young et al. (2000) and Laaha and Blöschl (2006a, b) examine a final approach, which is to use
seasonality to group sites. This method assumes that the time of occurrence of low flows indicates the
dominant hydrologic processes and thus can be used to determine low-flow regions. While Young et
al. (2000) find the spatial variability of low-flow seasons to be relatively small in the United Kingdom,
Laaha and Blöschl (2006a, b) find the spatial variability of low-flow seasonality to be very high in
Austria, a humid, mountainous region. Ideally with this method regions are spatially contiguous, and
thus placing an ungauged site in a region is based on its location.

Laaha and Blöschl (2006a) compare all four of the aforementioned regionalization methods to
estimate the specific discharge exceeded 95% of the time at 325 watersheds in Austria. After
determining homogeneous regions, they develop regional regression models in each region and
perform a delete-one cross-validation to compare the regionalization techniques. They find that
regions based on seasonality create the best groupings in Austria, though note that this may be the
result of the wide variety of differences in seasonal low-flow processes within the study area. They
also note that all methods appear to underestimate specific discharge at wet catchments.

8.4.2 Methods for Regional Analysis and Estimation

Several common methods have been applied to estimate low streamflow statistics at a site of interest
using regional information. As mentioned previously, these techniques are commonly employed
where little or no streamflow data are available at the site of interest. This section discusses two such
techniques: low streamflow regional regression and baseflow correlation.

8.4.2.1 Regional Regression

When no historic streamflow record is available at the site of interest, a regional regression model
may be developed. In this technique, a relationship is developed between the streamflow statistic of
interest and watershed characteristics at gauged sites within the region, and then watershed
characteristics at the ungauged site are employed to determine a streamflow estimate at the site
of interest. Typically, these models have the following form:

Qd,T = eβ0Xβ1
1 X

β2
2 : : : eε (8-27)

where
Qd,T = d day,
T = year low streamflow statistic,
Xi = watershed characteristics,
βi = model parameters to be estimated, and
ε = model error term. The form of this model is consistent with a theoretically based low
streamflow watershed model derived from hillslope discharge models (Vogel and Kroll 1992).

When the logarithm of this equation is taken, one obtains a linear relationship:

lnðQd,TÞ= β0 þ β1 lnðX1Þ þ β2 lnðX2Þ þ : : : þ ε (8-28)

The parameters of this equation can then be estimated using ordinary, weighted, or generalized
least squares regression procedures (Stedinger and Tasker 1986). For ordinary least squares
parameter estimators to be efficient, the model residuals need to be independent and homoscedastic
(constant variance). Weighted least squares is employed to address heteroscedasticity (nonconstant
variance) of the model residuals, while generalized least squares can be employed to address both
heteroscedasticity and the lack of independence of the model residuals. Kroll and Stedinger (1998)
show that if the model error variance in the regional regression model is large, which is typical for
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low-flow regional regression, the model error variance overwhelms the time sampling error, and
ordinary least squares produces similar parameter estimators as generalized least squares.

Low-flow regional regression models have been developed for many regions throughout the
world, including Europe (e.g., Gustard et al. 1989, Laaha and Blöschl 2007), Australia (Nathan and
McMahon 1992), and the United States (e.g., Thomas and Benson 1970, Kroll et al. 2004). One
challenging aspect of developing low-flow regional regression models is determining the appropriate
catchment characteristics to use as explanatory variables in the models. Whereas a theoretically
derived model is available (Vogel and Kroll 1992), a common approach is using stepwise regression
procedures (Tallaksen and van Lanen 2004). Such procedures are useful when the number of
potential explanatory variables is large to help determine the significant variables to include in the
final model (Kroll et al. 2004). Tallaksen and van Lanen (2004) and Kroll et al. (2004) list some
catchment characteristics commonly employed in low-flow models, including drainage area,
annual average rainfall, soil index, mean basin elevation, and summer precipitation. Hydro-
geologic indexes, such as the baseflow index (Institute of Hydrology 1980) or baseflow recession
constant (Vogel and Kroll 1996, Tallaksen 1995) have been shown to greatly improve low
streamflow regional regression models (Kroll et al. 2004), though often these indexes are difficult
to obtain at ungauged river sites.

In most instances, the standard errors associated with low-flow regression models have been
relatively high (Vogel and Kroll 1992, Smakhtin 2001). One reason may be low-flow processes are
too complex to be described with a linear or log–linear model. Another reason may be that important
explanatory variables have been excluded from these models, and/or the watershed characteristics
employed as explanatory variables have not been of high quality. Regardless of these issues, regional
regression is still a common technique applied in low streamflow estimation.

Typically, a statistical computing package is employed to develop regression models, especially
when ordinary least squares regression procedures are used to determine parameter estimators.
Hirsch et al. (1993) provide an excellent review of regression analysis, including the formulas used in
linear regression, a procedure for developing and testing a regression model, confidence and
prediction intervals, model diagnostics, and model selection. The US Geological Survey (USGS
2010a) has the publicly available software package GLSNet to perform generalized least squares
regression procedures (e.g., Stedinger and Tasker 1986, Kroll and Stedinger 1998).

8.4.2.2 Baseflow Correlation

The baseflow correlation (or baseflow regression) method is a data transfer technique where
information is transferred from a nearby long-record gauge to a short-record gauge. Baseflow
correlation can be performed with only a minimal number of streamflow measurements at the
partial record site (i.e., 5–15 measurements). One key assumption is the streamflow at the short- and
long-record sites is under baseflow conditions, meaning that all contributions to streamflow are from
groundwater discharge, which is typically considered to be at least three days after the peak of the
hydrograph.

The baseflow correlation method was proposed by Stedinger and Thomas (1985) and has several
assumptions. The first assumption of the baseflow correlation method is a linear relationship
between yi, the logarithm of the d day annual minimum flows at an ungauged site, and those at a
gauged site, xi:

yi = αþ βxi þ εi, (8-29)

where α and β are regression model parameters, and εi are independent normal error terms with a
mean of zero and a constant variance, σ2ε (i.e., εi ∼Nð0, σ2εÞ).

Second, because annual minimum flows are not available for the ungauged site, the relationship
between d day annual minimum flows is assumed to be similar to the relationship between
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instantaneous baseflows. In a large simulation experiment, Zhang and Kroll (2007b) find that this is
generally a reasonable assumption, though in some cases wide variations occur. Thus, the linear
relationship between baseflow measurements at the ungauged site, ~yi, and corresponding baseflows
at the gauged site, ~xi, is given by

~yi = αþ β~xi þ εi, (8-30)

where εi ∼Nð0, σ2εÞ.
The third assumption is that the annual minimum streamflows are described by an LP3

distribution. By this assumption, the logarithm of Q7,10 at the ungauged site can be estimated by

lnðQ̂7,10Þ= μ̂y þ Kyσ̂y (8-31)

where
μ̂y = estimator of the log-space mean,
σ̂y = estimator of the log-space variance, and
Ky = associated frequency factor for the LP3 distribution.

The frequency factor is a function of the log-space skew of the 7 day annual minimum flows and
the percentile of interest. In the baseflow correlation method, the frequency factor for the ungauged
site, Ky, is assumed equal to the frequency factor for the gauged site, Kx, an assumption Zhang and
Kroll (2007b) find has little impact on the performance of this method. Thus, only estimators of μ̂y
and σ̂y are required; Stedinger and Thomas (1985) suggest the unbiased estimators:

μ̂y = aþ bmx (8-32)

σ̂2y = b2s2x þ s2e

�
1 −

s2x
ðL − 1Þs2~x

�
(8-33)

where
mx and s2x = log-space mean and variance of the 7 day annual minimum flows at the gauged site,
respectively,
s2~x = sample variance of the logarithms of the concurrent flows at the gauged site;
L = number of concurrent baseflow measurements, and
a, b, and s2e = ordinary least squares estimators of the parameters α, β, and σ2ε estimated using
baseflowmeasurements at the ungauged site as a function of the concurrent flows at the gauged site.

Stedinger and Thomas (1985) derive the variance of the Q7,10 estimator as

Var½lnðQ̂7,10Þ� ≅
s2e
L
þ ðmx −m~xÞ2s2e

ðL − 1Þs2~x
þ b2s2x

n
þ K2

y

4σ̂2y

�
4b2s4xs2e
Ls2~x

þ 2b4s4x
n

þ 2s4e
L

�
þ 2bs2xðmx −m~xÞKys2e

Lσ̂ys2~x
(8-34)

where m~x is the sample mean of the logarithms of the flows at the gauged site. Stedinger and Thomas
(1985) examine the performance of baseflow correlation with 20 pairs of streamflow sites. Reilly and
Kroll (2003) expand this analysis to more than 1,300 streamflow sites in the United States and find this
method to perform well if nearly independent baseflow measurements were obtained. Reilly and Kroll
suggest choosing one baseflow measurement from at least 10 consecutive streamflow recessions and
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choosing a long-record site within 200 km of the short-record site. Zhang and Kroll (2007b) examine
the tradeoffs between the number of required streamflows and the correlation coefficient between the
baseflows at the two sites. Zhang and Kroll (2007a) showed that when only five measurements are
available, employing multiple long-record sites can improve the performance of this technique.

8.5 ANALYSIS OF AUTOCORRELATED LOW FLOWS

To quantify the return period and risk of low flows events it is convenient to analyze the time series
dependence structure of low flows. For this purpose, the mathematical models to be applied may
consider the low flow as a continuous or discrete variable, depending of the complexity of the
temporal dependence. In any case, some simple models are described in this section along with
illustrative examples. Likewise, the estimation of return period and risk are described for the case of
discrete variables.

8.5.1 Modeling of Autocorrelated Low Flows

Time series of low flows may be time dependent (autocorrelated) due to the effect of ground water,
lake regulations, wetland storage, and channel storage. Several models representing the dependence
structure of this type of process have been proposed in the hydrological literature (e.g., Salas 1993).
One of the simplest models is the first-order autoregressive, which is generally adequate for modeling
hydrologic processes having short-term time dependence. For processes with a more complex
autocorrelation structure, autoregressive moving average (ARMA) models may be more applicable.
Also, extensions or modifications thereof, for example, the gamma autoregressive (GAR) model
(Fernández and Salas 1990) may be useful. Furthermore, shifting mean (SM) models (Sveinsson et al.
2003) may be necessary where long-term climate variability affects hydrological processes. In
addition, where the hydrological process is a discrete autocorrelated variable defined by a finite
number of states, then Markov chain models and discrete autoregressive (DAR) and discrete ARMA
(DARMA) models may be useful (e.g., Salas 1993). In this section, we provide some details of the
simple models.

8.5.1.1 Simple Markov Chain

A simple model for representing the dependence structure of low flows is the Markov-dependent
process with two states and a homogeneous transition probability matrix, i.e., a simple Markov chain
(e.g., Fernández and Salas 1999a, 1999b). The two states may represent above or below a critical level.
Let Yt represent a time series of low flows and Y0 a certain threshold (e.g., the sample mean or a
particular quantile). Consider the states Yt< Y0 and Yt≥ Y0 and for convenience we will denote
those states as zero and one, respectively. A simple Markov chain that represents the sequence of
zeros and ones is defined by its transition probability matrix: p00 =PðYt < Y0jYt−1 < Y0Þ,
p01 = PðYt ≥ Y0jYt−1 < Y0Þ, p10 = PðYt < Y0jYt−1 ≥ Y0Þ, and p11 = PðYt ≥ Y0jYt−1 ≥ Y0Þ. It fol-
lows that p00 þ p01 = 1 and p10 þ p11 = 1. Furthermore, p0 =PðYt < Y0Þ and p1 = PðYt ≥ Y0Þ are the
unconditional probabilities of states 0 and 1, respectively, and p0 þ p1 = 1.

Thus, to characterize the simple Markov chain estimating the transition probabilities is
necessary. Jackson (1975) shows that maximum likelihood estimates of such transition probabilities
can be obtained from a sample of the underlying process as follows. Let Nij be the number of
transitions from state i to state j. Then

p̂01 =
N01

N0
=

N01

N00 þ N01
(8-35)
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p̂10 =
N10

N1
=

N10

N10 þ N11
(8-36)

And the remaining elements are p̂00 = 1 − p̂01 and p̂11 = 1 − p̂10.
Although p̂01 and p̂10 may be calculated by counting the occurrence of zeros and ones from the

available sample, the procedure is reliable only if a large number of occurrences of zeros and ones can
be obtained from the available record. However, for the typical lengths of hydrologic records and for
the cases where Y0 is small (such as for low-flow studies), zeros are rare with a small probability of
occurrence, consequently the foregoing procedure for estimating the probability matrix based on
Equations (8-35) and (8-36) is unreliable. An alternative procedure is to assume a bivariate
distribution function for (Yt, Yt−1), so that p00 can be determined from

p00 = PðYt < Y0jYt−1 < Y0Þ=
PðYt < Y0 andYt−1 < Y0Þ

PðYt−1 < Y0Þ

For instance, for a bivariate normal distribution, Cramer and Leadbetter (1967) give

p00 = p0 þ
1

2πp0

Zρ
0

exp½−Y2
0∕ð1þ zÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p dz (8-37)

in which ρ = lag-one serial correlation coefficient of Yt. In addition, the following relationship,
proposed by Sen (1976), completes the transition probabilities:

p10 = PðYt < Y0jYt−1 ≥ Y0Þ=
p0

1 − p0
ð1 − p00Þ (8-38)

Figure 8-7 shows the relationship among p00, p0, and ρ obtained from Equation (8-37) by
numerical integration, which can be used as a first approximation for calculating the transition

Figure 8-7. Relationship among p00, p0, and ρ obtained by numerical integration for a bivariate
normal process.
Source: Fernández and Salas (1999a).
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probabilities. Also, Example 8-7 illustrates the estimation of transition probabilities for the Parana
River 7 day low flows.

For the case of low flows, the focus is on computing the probability that Yt< Y0 occurs for the
first time at the nth time step, f n,Y0

, where Y0 is the critical event. This represents a sequence of state
one during the first n−1 time steps and state zero at the nth time step, in other words,

Then, the probability f n,Y0
, can be calculated as

f 0,Y0
= 0

f 1,Y0
= p0

f 2,Y0
= p1p10 = ð1 − p0Þp10
: : : :

f n,Y0
= p1 pn−211 p10 = ð1 − p0Þpn−211 p10, n ≥ 2 (8-39)

The probability f n,Y0
will be useful for calculating the return period and risk as we will see in

Section 8.6.2.

8.5.1.2 Autoregressive Moving Average Models

The family of ARMA models has been widely used for modeling hydroclimatic processes at various
time scales, such as annual streamflows (e.g., Salas et al. 1980, Loucks et al. 1981, Salas 1993). The
ARMA(p, q) model is defined as (Box and Jenkins 1976)

Yt = μþ
Xp
j= 1

ϕjðYt−j − μÞ þ εt −
Xq
j= 1

θjεt−j

ϕðBÞðYt − μÞ= θðBÞεt (8-40)

where
μ, ϕ 0s, θ 0s, and σ2ðεÞ = parameters of the model,
p = order of the autoregressive terms, and
q = order of the moving average terms, ϕðBÞ= −ϕ1B

1 − ϕ2B
2− · · · −ϕpB

p, θðBÞ= − θ1B1−
θ2B2− · · · −θqBq, and BiZt =Zt−i.

Particular models derived from Equation (8-40) are the ARMA(p, 0) or autoregressive AR(p)
and the ARMA(0, q) or moving average MA(q) models. These models assume that the variable Yt is
normally distributed, hence their applications to modeling hydroclimatic time series generally
require that the underlying data be converted to normal by some appropriate transformation (e.g.,
Box and Cox 1964). However, some models with ARMA-type dependence structure are applicable to
skewed marginal distributions. Some of these models can accommodate variables with gamma-
marginal distribution functions, such as GAR models. Also, for processes consisting of discrete-
valued random variables there are discrete DARMA models, which are more suitable for modeling

States: : : : : : : . 1, 1, 1, 1, : : : : : : . 1, 1, 0
Time step: : : : : : : . 1, 2, 3, 4, : : : : : : . (n−2), (n−1), n
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persistence characteristics with longer memory than simple Markov chain models. Low-order
models are most widely used for modeling streamflow time series (Salas et al. 2001). Some of them
are described in the following subsections.

8.5.1.3 The ARMA(1, 1) Model

The ARMA(1,1) model is defined as (Box and Jenkins 1976, Salas and Pielke 2003)

Yt = μþ ϕ1ðYt−1 − μÞ þ εt − θ1εt−1 (8-41)

where μ, ϕ1, θ1, and σ2ε are model parameters. It is a Gaussian stationary-dependent process with
a continuous valued variable Yt. It may be shown that the lag-k autocorrelation function of the
ARMA(1, 1) process is ρkðYÞ= bϕk−1

1 , k ≥ 1 where b= ð1 − ϕ1θ1Þðϕ1 − θ1Þ∕ð1þ θ21 − 2ϕ1θ1Þ=
ρ1ðYÞ. In the case that θ1 = 0, Model (8-41) becomes the AR(1) process, and its autocorrelation
function is ρkðYÞ=ϕk

1, k ≥ 1. Note that the parameters of the ARMA(1, 1) and AR(1) models
are constrained, which in turn implies certain relationships between ρ2(Y) and ρ1(Y) (Box and
Jenkins 1976).

8.5.1.4 First-Order Gamma-Autoregressive Model

The GAR(1) model assumes that the underlying series is Markov dependent with a gamma marginal
distribution, thus the model does not require variable transformation. Lawrance and Lewis (1981)
develop the first-order gamma-autoregressive model, which is defined as

Yt =ϕYt−1 þ εt (8-42)

where
Yt = gamma-dependent variable at time t,
ϕ = autoregression coefficient, and
εt = independent variable.

The only difference with the well-known AR(1) model is that Yt has a marginal distribution
given by the three-parameter gamma density function,

f YðyÞ=
αβðy − λÞβ−1 exp½−αðy − λÞ�

ΓðβÞ , (8-43)

in which λ, α, and β are the location, scale, and shape parameters, respectively. Thus, a noise term εt
must be found so that when incorporated into the autoregressive Equation (8-42), it will produce a
variable Yt that is gamma distributed as in Equation (8-43). Gaver and Lewis (1980) find that for
integer values of β, the noise ε of Equation (8-42) is given by

ε= λð1 − ϕÞ þ
Xβ
j= 1

ηj (8-44)

where
ηj = 0 with probability ϕ,
ηj = exp(α) with probability (1 − ϕ), and
exp(α) = an exponentially distributed random variable with expected value 1/α.
This approach is valid for skewness coefficient less than or equal to 2. In addition, Lawrance

(1982) finds another solution for noninteger values of β based on the shot-noise process used by
Weiss (1977). In this case, ε can be obtained by
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ε= λð1 − ϕÞ þ η (8-45)

and

η= 0 if M = 0

η=
XM
j= 1

EjϕUj if M > 0 (8-46)

in whichM is a discrete random variable Poisson distributed with mean value equal to - β ln(ϕ). The
set (Uj) comprises independent identically distributed (iid) random variables with uniform (0, 1)
distribution and the set (Ej) comprises iid random variables exponentially distributed with mean 1/α.

The estimation of model parameters, in other words, λ, α, β, and ϕ, can be made by the method
of moments (Fernández and Salas 1990). The population moments of the underlying variable, Yt,
may be expressed as a function of the parameters of the GAR(1) model as

μ= λþ ðβ∕αÞ (8-47a)

σ2 = β∕α2 (8-47b)

γ= 2∕
ffiffiffi
β

p
(8-47c)

ρ1 =ϕ (8-47d)

where μ, σ2, γ, and ρ1 are the population mean, variance, skewness coefficient, and lag-one
autocorrelation coefficient of Yt, respectively. These moments can be estimated based on the
sample Y1, Y2, : : : , YN, using the well-known relationships:

m=
1
N

XN
i= 1

Yi (8-48a)

s2 =
1

N − 1

XN
i= 1

ðYi −mÞ2 (8-48b)

g1 =
N

ðN − 1ÞðN − 2Þs3
XN
i= 1

ðYi −mÞ3 (8-48c)

r1 =
1

ðN − 1Þs2
XN−1

i= 1

ðYi −mÞðYiþ1 −mÞ (8-48d)

where N is the sample size. However, for dependent and nonnormal variables these estimators are
biased (Fernández and Salas 1990). Hence, some corrections are needed before using them for
solving the system of Equations (8-47a–d) to estimate the parameters of the GAR(1) model (only the
estimator of the expected value can be used without a correction factor).
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Wallis and O’Connell (1972) suggest the following correction to obtain an unbiased estimator of
ρ1 for an AR(1) model:

ρ̂1 =
r1N þ 1
N − 4

(8-49)

in which r1 is given by Equation (8-48d). Also, Matalas (1966) and O’Connell (1977) show that if the
variables follow an AR(1) process, an unbiased estimator of the variance can be obtained by

σ̂2 =
N − 1
N − K

s2 (8-50)

where K = ½Nð1 − ρ̂21Þ − 2ρ̂1ð1 − ρ̂N1 Þ�∕½Nð1 − ρ̂1Þ2� and s2 and ρ̂1 are given by Equations (8-48b) and
(8-49), respectively. In addition, Fernández and Salas (1990) suggest the following correction to
obtain an unbiased estimator of γ for a GAR(1) process:

γ̂=
γ̂0

ð1 − 3.12ρ3.71 N−0.49Þ (8-51)

where γ̂0 is the skewness coefficient suggested by Bobee and Robitaille (1975) for independent
gamma variables as

γ̂0 =
Lg1½Aþ BðL2∕NÞg21�ffiffiffiffi

N
p (8-52)

in which

L=
N − 2ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p , A= 1þ 6.51 N−1 þ 20.2 N−2, and B= 1.48 N−1 þ 6.77 N−2 (8-53)

Therefore, the general procedure to estimate the parameters of a GAR(l) model based on
available sample series is as follows: (1) estimates of the meanm, variance s2, skewness coefficient g1,
and lag-one autocorrelation coefficient r1, are obtained from the sample using Equations (8-48a–d);
(2) the unbiased autocorrelation coefficient, ρ̂1, is determined from Equation (8-49) as a function of
N and r1; (3) with this value of ρ̂1, the unbiased variance σ̂2 is estimated from Equation (8-50);
(4) with the values of N, ρ̂1, and g1, the unbiased estimate γ̂ of γ is determined from Equation (8-51);
and (5) Equations (8-47a–d) are used to estimate the set of model parameters λ, α, β, and ϕ.

8.5.1.5 The DARMA(1, 1) Model

In Section 8.5.1.1 we discussed the simple Markov chain considering the state zero, in which Yt < Y0,
and state one, where Yt ≥ Y0. For convenience, we can also use an additional symbol, say X, to
denote the states zero and one, i.e., X is a discrete random variable where X = 0 if Yt < Y0 and X = 1
if Yt ≥ Y0. Saying this another way, a continuous valued process Yt was censored or clipped at Y0

leading to a discrete valued process Xt. If the original hydrological process Yt is autocorrelated, then
the clipped process Xt is also expected to be autocorrelated (Salas et al. 2001). What we did in
Section 8.5.1.1 was to model the sequence of zeros and ones using a simple Markov chain. We could
also say that we modeled the variable X with a simple Markov chain.

In some cases, modeling the X process with a simple Markov chain is adequate, but for cases
where the underlying process Y has longer dependence, in other words, an autocorrelation function
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that persists for long time, a model with a more flexible correlation structure may be necessary to
represent Xt. Thus, we will assume that the autocorrelation of Xt can be represented by a DARMA
process. For example, the DARMA(1, 1) model is defined as (Jacobs and Lewis 1977a, b)

Xi =UiZi þ ð1 − UiÞWi−1, i= 1, 2, : : : (8-54)

where
Ui = an independent Bernoulli (0,1) process with parameter P(Ui = 1) = β,
Zi = another independent Bernoulli (0,1) process with P[Zi = 0] = π0 and P[Zi = 1] = π1, and
Wi−1 is a discrete AR(1) process, in other words, a DAR(1) process with parameters λ and π0.

The autocorrelation function of the DARMA(1, 1) model is ρkðXÞ= cλk−1, k ≥ 1 with c = (1− β)
(λ + β− 2 λ β). When β = 0, Xi becomes the DAR(1) process. In general, the DAR(1) process is
defined as

Xi =ViXi−1 þ ð1 − ViÞZi i= 1, 2, : : : (8-55)

where Vi is an independent Bernoulli (0,1) process with parameter λ, and Zi is as defined previously.
The autocorrelation function of the DAR(1) model is ρkðXÞ= λk, k ≥ 1.

Example 8-6: Estimation of the 7 Day, 10 Year Low Flow Based on the GAR(1) Model

Table 8-4 gives the 7 day low-flow data for the gauging station Mapocho River at Rinconada de
Maipú, Chile, for 1980–2007 (i.e., N = 28). Figure 8-8 shows the time series data. The following
statistics are obtained directly from historic data using Equations (8-48a–d): m = 14.30, s2 = 5.572,
g1 = 0.298, and r1 = 0.358. Also from Equation (8-49) the unbiased estimate of the lag-1
autocorrelation coefficient is ρ̂1 = 0.459, and Equation (8-50) gives the estimate of the standard deviation
σ̂= 5.74 [refer to Equation (8-50) for the value of K = 2.59]. In addition, from Equation (8-53),
one obtains L = 5.004, A = 1.258, and B = 0.062 so that Equation (8-52) gives γ̂0 = 0.355, the unbiased
estimate of γ0 for independent values. Furthermore, from Equation (8-51) the unbiased estimate of the
skewness coefficient (for autocorrelated data) becomes γ̂= 0.368. Summarizing, the unbiased estimates
of the GAR(1) model statistics are μ̂= 14.30, σ̂= 5.74, γ̂= 0.368, and ρ̂1 = 0.459. Using these values in
Equations (8-47a–d), the estimates of the parameters of the GAR(1) model are obtained as λ̂= −16.9,
α̂= 0.946, β̂= 29.5, and ϕ̂= 0.459.

Table 8-4. 7 Day Low Flows (m3/s) of the Mapocho River at Rinconda de Maipú, Chile, for 1980–2007.

Year Q (m3/s) Year Q (m3/s) Year Q (m3/s)

1980 18.29 1990 11.26 2000 11.91
1981 8.53 1991 10.80 2001 19.73
1982 9.04 1992 15.90 2002 19.54
1983 11.70 1993 19.41 2003 24.90
1984 13.74 1994 13.87 2004 18.19
1985 12.76 1995 12.31 2005 26.30
1986 16.87 1996 7.11 2006 18.23
1987 22.79 1997 8.75 2007 14.30
1988 2.42 1998 9.91 — —
1989 12.46 1999 9.42 — —

Source: Banco Nacional de Aguas, Dirección General de Aguas, Ministerio de Obras Públicas, Chile.
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Using these parameters and the generating procedure of Equations (8-42) and (8-44),
1,000 values of 7 day low flows were obtained. Figure 8-9 shows the CDF of these values and
the CDF of the historical data. Thus, the 10 year low flow, in other words, the low flow corresponding
to 0.1 nonexceedance probability based on the simulated GAR(1) model, gives a value of 6.8 m3/s.
However, the 10 year low flow obtained from the historical data is 8.53 m3/s (because it corresponds
to the third value of the historic series using the Weibull plotting position). For comparison, if a
three-parameter gamma distribution function for independent values is also fitted (i.e., ρ1 = 0) using
the unbiased statistics m = 14.30, σ2 = 5.572, and γ̂0 = 0.355 (from the foregoing calculations) and
the parameters of the gamma distribution estimated from Equations (8-47a–c) (λ̂= −17.1, α̂= 1.012,
and β̂= 31.7), the value 7.4 m3/s is obtained for the 10 year, 7 day low flow. Figure 8-9 also shows the
CDF of the gamma independent series.

8.5.2 Return Period and Risk of Low Flows

In Section 8.5.1.1, simple Markov chains were introduced as one of the simplest models that can be
used to represent the dependence structure of two-state discrete processes. To estimate the return
period and risk of low-flow events some additional definitions and concepts are presented here
including an example.

Figure 8-8. Time series data of 7 day low flows of the Mapocho River at Rinconada de Maipú for
1980–2007.

Figure 8-9. CDF of the 7 day low flows of the Mapocho River at Rinconada de Maipú, Chile, obtained
from historical data, independent gamma, and the GAR(1) model based on 1,000 generated values.
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The return period of a particular event has been generally defined as “the average number of
time steps (e.g., years) required to the first occurrence of the event.” For instance in relation to the
event Yt< Y0 the assumption is that such event has occurred in the past, a finite time τ has elapsed
since then, and the interest is in the remaining waiting time N for the next occurrence of Yt< Y0. An
alternative definition of return period is “the expected value of the number of time steps between any
two successive occurrences of the event.” In this case, the assumption is that an event Yt< Y0 has just
occurred and the interest is in the time of arrival of the next event Yt< Y0. This definition is
equivalent to the previous one when the time past τ, after the occurrence of Yt< Y0, is equal to zero.
In practice, both definitions have been accepted as being equivalent because in simple cases such as
those related to independent annual flood events they lead to the same result. But they lead to
different results when they are applied to complex hydrological events such as autocorrelated low
flows.

To estimate the return period of an event Yt< Y0, the following probability given in
Equation (8-39) is needed:

f n,Y0
= PðYt < Y0 occurs for the first time at the nth time stepÞ

where f 0,Y0
= 0. Let N denote the random variable defining the number of time steps needed to the

first occurrence of such an event. Then, considering the first definition of return period given
previously, the return period T is the expected value of N:

T = EðNÞ=
X∞
n= 0

nf n,Y0

In addition, if a critical low-flow value Y0 is specified so that the occurrence of the event Yt< Y0

produces a failure, and L is the project life measured in the same time units as time steps (usually
years), then the risk of failure can be defined as

RL,Y0
= PðYt < Y0 occurs at least once in L time stepsÞ

Furthermore, the following probability is equivalent for evaluating the risk, i.e.,

Sn,Y0
= PðYt < Y0 has occurred at or before time step nÞ

Then the risk of failure of a project with a project life L is SL,Y0
. Note that the foregoing

definitions assume that τ> 0 (the time past after the occurrence of a failure event) and the interest is
to estimate the probability of the time it will take for the failure event to occur for the first time after
the construction of the project. Such time has been denoted by N.

For estimating the return period of a low-flow event, we first need to determine f n,Y0
, the

probability that Yt< Y0 occurs for the first time at the nth time step, in which Y0 is the critical value.
Under the assumption that the sequence of zeros and ones may be modeled by a first-order Markov
chain, the probability f n,Y0

may be determined from Equation (8-39). Then, the return period
considering the first definition is given by (Fernández and Salas 1999a)

T = EðNÞ=
X∞
n= 0

nf n,Y0
= 1þ 1 − p0

p10
(8-56)

In addition, Sn,Y0
, the probability that event Yt< Y0 occurred at or before time step n, can be

determined by
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S0,Y0
= 0

S1,Y0
= p0

S2,Y0
= S1,Y0

þ f 2,Y0

: : : :

Sn,Y0
= Sn−1,Y0

þ f n,Y0
, n ≥ 2 (8-57)

Therefore, for n = L, the risk of failure becomes (Fernández and Salas 1999a)

SL,Y0
= 1 − ð1 − p0Þð1 − p10ÞL−1 (8-58)

Furthermore, for estimating the return period considering the second definition discussed
previously, one must calculate f w, the probability that a failure event occurs after another failure
event occurred w time steps earlier, in other words, we are interested in T =EðWÞ. Then considering
the sequence of zeros and ones in the following sketch,

illustrates that after the occurrence of zero (i.e., the event Yt < Y0), it takes w steps for the occurrence
of another zero. Then, in this case,

f 0 = 0

f 1 = p00

f 2 = p01p10

: : : :

f w = p01p
w−2
11 p10, w ≥ 2 (8-59)

and the return period is given by (Fernández and Salas 1999a)

T = EðWÞ=
X∞
w= 0

wf w = p00 þ
p01
p10

ð1þ p10Þ (8-60)

where p00 and p10 can be obtained from Equations (8-37) and (8-38), respectively.

Example 8-7: Estimating the Return Period and Risk of Low-Flow Events

This example illustrates the procedure for calculating the return period and risk of a low-flow event.
The estimation of return period and risk related to low-flow events in the Paraná River at Corrientes,
Argentina, is of special interest because of the importance of navigation on that river (Paoli et al.
1994). Figure 8-10 shows the 7 day low-flow time series for 1904–1992. The low-flow values of
interest are the minimum observed value that occurred in 1944, the 10 year minimum annual flow,
and the 50 year minimum annual flow. We would like to determine the following statistics: (a) return
period of the observed minimum 7 day low flow and the risk that a flow equal to or smaller than the
historical (observed) value will occur in the next 30 years; (b) 10 year low flow, Q10; and (c) 50 year
low flow, Q50.

States: 0, 1, 1, 1, 1, : : : : : : . 1, 1, 0
Time step: 0, 1, 2, 3, 4, : : : : : : . (w−2), (w−1), w
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(a) Return period and risk
Table 8-5 shows the basic statistical properties of the series of 7 day low flows. Because the
observed time series is skewed (skewness coefficient is 1.024) transforming the original series
into Gaussian series is necessary before applying Equation (8-37). Thus, the original data was
log-transformed, and Table 8-6 shows some basic properties of the log-transformed series.

Because the minimum low-flow value is X0 = 4,070m3∕s, the corresponding value in the
log-transformed (normal) domain is Y0 = 3.610. Then one can calculate p0 using the normal
distribution function as

p0 = PðY < 3.61Þ= P

�
Z <

3.61 − 3.975
0.138

�
= 0.0041

With this value of p0 and ρ= 0.506 one can determine the value of p00 from Equation (8-37) as

Figure 8-10. Annual 7 day low flows of the Parana River at Corrientes, Argentina, for 1904–1992.
Source: Fernández and Salas (1999b).

Table 8-5. Statistical Properties of the 7 Day Low Flows of
the Paraná River at Corrientes, Argentina.

Statistical property Value

Period of record 1904–1992
Length of record (years) 89
Mean (m3/s) 9,915
Minimum (m3/s) 4,070
Standard deviation (m3/s) 3,208
Skew coefficient 1.024
Lag-1 correlation 0.491

Source: Fernández and Salas (1999b).
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p00 = p0 þ
1

2πp0

Zρ
0

exp½−Y2
0∕ð1þ zÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p dz= 0.00514

Then from Equations (8-38) and (8-56) we get

p10 =
p0

ð1 − p0Þ
ð1 − p00Þ= 0.0039954 and

T = 1þ 1 − p0
p10

= 1þ 1 − 0.0041
0.0039954

≈ 250 years

Also, the risk of failure for a project life of 30 years can be computed from Equation (8-58) as

SL,Y0
= 1 − ð1 − p0Þð1 − p10ÞL−1 = 1 − ð1 − 0.0041Þð1 − 0.0039954Þ30−1 = 0.113

(b) 10 year low flow
Solving Equations (8-37), (8-38), and (8-56) numerically for values of T = 10 and ρ= 0.506,
one obtains Y10 = 3.7981. Then, Q10 = 103.798 = 6,282m3∕s.

(c) 50 year low flow
Similarly, for T = 50 and ρ= 0.506 the 50 year low flow discharge is
Q50 = 103:6912 = 4,911m3∕s.

8.6 STATISTICAL CHARACTERIZATION OF MULTIYEAR DROUGHTS

As indicated in Section 8.1, Yevjevich (1967) introduces the definition of a drought event as the
succession of consecutive intervals where the hydrological variable of interest remains below a
threshold level x0. Thus for a fixed threshold x0, the main drought characteristics are drought length
L (length of negative run or number of consecutive intervals where Xt< x0 followed and preceded by
at least one interval where Xt≥ x0), drought magnitude or accumulated deficit D (sum of the
individual deficits St = x0− xt over the drought duration L), and drought intensity, defined as the
ratio of drought magnitude to the drought length, I =D∕L.

Table 8-6. Statistical Properties of the Log-Transformed Series of 7 Day
Low Flows of the Paraná River at Corrientes, Argentina.

Statistical property
Transformed value,

Y = log(X)

Mean 3.975
Minimum 3.610
Standard deviation 0.138
Skew coefficient ∼ 0.0
Lag-1 correlation 0.506

Source: Fernández and Salas (1999b).
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The probabilistic characterization of drought events is more complex than for low flows. Indeed,
the need to consider at least two characteristics (e.g., length and magnitude), which are not mutually
independent, coupled with the relatively short hydrologic records that are generally available, makes the
traditional inferential approach (i.e., fitting a distribution function to the observed drought characteris-
tic) applicable only when long records are available. However, such difficulties can be circumvented by
deriving analytically the probability distributions of drought properties, assuming that a certain
stochastic model represents the underlying hydrological series. Then, instead of fitting a probability
distribution directly to the historical drought characteristics one may fit a stochastic model to the
underlying hydrological series and determine the distribution and the parameters of the drought
properties either by analytical methods or by Monte Carlo simulation. In this section we describe
alternative statistical methods for characterizing droughts, namely empirical methods based on
historical data or based on simulated series and analytical methods based on closed form or approximate
equations. Mishra and Singh (2011) is a recent review of drought modeling concepts and methods.

8.6.1 Probability Distributions and Moments of Drought Characteristics

Finding the distribution and moments of droughts can be a complex undertaking because of the
multiple variables that are needed to define them. For this reason, we approach the problem by
determining the statistical properties of individual variables first, then bringing them together in a
joint framework. This procedure is described in the following sections.

8.6.1.1 Probability Distribution and Moments of Drought Length

The properties of run length and its application to drought have been widely investigated in the
literature. For example, Downer et al. (1967) study the distribution and the statistical moments of
positive and negative run lengths for a sequence of independent identically distributed normal and
log–normal random variables. Also, Llamas and Siddiqui (1969) consider the case of a two-state
lag-1 Markov process and derive analytical expressions for determining the probabilities of runs of
wet and dry years of specified lengths. Since then numerous studies and developments have been
reported (e.g., Sen 1976; Chang et al. 1984a, b; Loaiciga and Leipnik 1996; Salas et al. 2001; Loaiciga
2005; Cancelliere and Salas 2010).

The simplest way to model drought length is assuming that the underlying water supply series is
iid. In this case, the probability mass function (PMF) of drought length is geometric:

f LðℓÞ= PðL= ℓÞ= ð1 − p1Þℓ−1p1 (8-61)

where p1 = PðXt > x0Þ is the parameter. The foregoing equation enables computing the probability
that a drought will last exactly ℓ time-steps. Then, the CDF, in other words, the probability that a
drought has a length equal to or smaller than ℓ time steps, can be computed as

PðL ≤ ℓÞ=
Xℓ

j= 1

ð1 − p1Þj−1p1 = 1 − ð1 − p1Þℓ (8-62)

Consequently, the expected value and the variance of drought length are given respectively by

EðLÞ= 1∕p1 (8-63)

VarðLÞ= ð1 − p1Þ∕p21 (8-64)

The iid assumption may be acceptable in some cases, for instance when dealing with yearly
precipitation where the autocorrelation structure may be negligible. However, when dealing with
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streamflows, the time-dependence structure is generally significant and therefore a model that is
capable of representing such temporal dependence may be needed. For example, if a Markov model
(Markov chain) is adopted for modeling the sequence of deficits and surpluses, the PMF of drought
length can be derived analytically. For a stationary simple Markov chain, the PMF of drought length
is also geometric:

f LðℓÞ= P½L= ℓ�= ð1 − p01Þℓ−1p01 (8-65)

where the parameter p01 is the transition probability as defined previously. Equation (8-65)
enables computing the probability that a drought will last exactly ℓ time steps. The CDF of L, in
other words, the probability that a drought has a length equal to or smaller than ℓ time steps, is
given by

P½L ≤ ℓ�=
Xℓ

j= 1

ð1 − p01Þj−1p01 = 1 − ð1 − p01Þℓ (8-66)

Likewise, the probability that a drought has a length greater that ℓ time steps is

P½L > ℓ�= 1 − P½L ≤ ℓ�= ð1 − p01Þℓ (8-67)

The expected value and the variance of drought length follow from Equation (8-65) as

EðLÞ= 1
p01

(8-68)

VarðLÞ= 1 − p01
p201

(8-69)

Given a sample x1, x2, : : : , xN, where N is the sample size, and the threshold x0, the transition
probability p01 can be estimated using maximum likelihood by counting the number of times a
deficit is followed by a surplus N01 and the number of times a deficit is followed by a deficit N00. Then

p̂01 =
N01

N00 þ N01
(8-70)

Similarly, one can estimate p1 by counting the number of surpluses N1 as

p̂1 =N1∕N (8-71)

In practice these equations can be employed only if a sufficient number of transitions N00 and
N01 are observed. However, if the hydrological series is short or the threshold x0 low, the number of
observed transitions may be too small and the estimation of p01 by Equation (8-70) and p1 by
Equation (8-71) may be unreliable.

An alternative is to use a parametric approach similar to that shown in Section 8.5. By definition,
p01 can be written as
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p01 = 1 − p00 = 1 − P½Xt ≤ x0jXt−1 ≤ x0�= 1 −
P½Xt ≤ x0,Xt−1 ≤ x0�

P½Xt−1 ≤ x0�
(8-72)

where P½Xt ≤ x0,Xt−1 ≤ x0� is the joint distribution of Xt and Xt−1 and P½Xt−1 ≤ x0� is the CDF of
Xt−1. Assuming a bivariate normal distribution for (Xt, Xt−1), the following expression can be
adopted to estimate p01 (Cramer and Leadbetter 1967):

p̂01 = 1 − p̂0 −
1

2πp̂0

Zρ
0

exp½−x20∕ð1þ zÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p dz (8-73)

where ρ = lag-1 serial correlation coefficient of Xt, p̂0 = 1 − p̂1, and p̂0 can be estimated by

p̂0 =Φ
�
x0 − μ̂x
σ̂x

�
(8-74)

where Φ(.) represents the standard normal CDF, and μ̂x and σ̂x are the sample mean and sample
standard deviation of Xt, respectively.

Furthermore, when the underlying series exhibits a strong autocorrelation or serial dependence
a better alternative to the lag-1 Markov model for modeling the sequences of deficits and surpluses is
the DARMA(1, 1) model of Equation (8-54) in Section 8.5.1.5. Low-order DARMA models,
originally introduced by Jacobs and Lewis (1977, 1978), have been applied to daily precipitation
(Chang et al. 1984a) and monthly streamflows (Chebaane et al. 1995). Also Chung and Salas (2000)
use a DARMA(1, 1) model to derive the return period and risk of droughts. In particular, they show
that the DARMA(1, 1) model is better than the simple Markov chain for modeling drought length
probabilities where streamflows exhibit strong autocorrelation, as is the case of the Niger River’s
annual streamflows. The probability distribution of the length L of a run of state i = 0 (drought
length) for a DARMA(1, 1) model has been derived by Chang et al. (1984b). The expectation of L is

E½L�= π0½1 − βλþ βð1 − λ − βþ 2βλÞf1 − π0g�
f1 − π0g½1 − λð1 − βÞf1 − βπ0g − βπ0f1 − βð1 − λÞg� (8-75)

Other properties and applications of DARMA models for modeling drought lengths can be
found in the literature (e.g., Chebaane et al. 1995, Salas et al. 2001, Cancelliere and Salas 2010). As an
alternative to DARMA models, higher-order Markov chains have been proposed (e.g., Akyuz et al.
2012, Tabari et al. 2015). Also, drought-length properties related to periodic processes such as
monthly streamflows have been reported by Cancelliere and Salas (2004).

Example 8-8: Fitting the Probability Distribution of Drought Lengths

Table 8-7 lists 119 years of records (1984–2002) of annual streamflows of the Poudre River at the
Mouth of the Canyon gauging station. Because diversions and storage facilities are upstream from
the gauging station, the measured flows have been adjusted (naturalized) so as to approximate the
natural flows that would have existed at the site. Figure 8-11 shows the time series of annual flows
and the threshold x0 = 299,000 ac-ft (equal to the long-termmean). The figure indicates that various
drought episodes have occurred on the Poudre River throughout the historical record, such as those
of the 1930s and 1950s. In particular, two 8 year droughts occurred in the years 1930–1937 and
1987–1994. The coefficients of variation, skewness, and lag-1 serial correlation are 0.36, 0.98, and
0.153, respectively, which are characteristic of streams in the semi-arid western United States.
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Because the lag-1 autocorrelation coefficient is small, a lag-1 Markov model has been adopted to
derive the PMF of drought length. Thus, by counting the number of transitions between states, the
following results are obtained:N00 = 39 and N01 = 27. Then, applying Equation (8-70), the estimate
of the parameter p̂01 of the geometric distribution is

p̂01 =
N01

N00 þ N01
=

27
39þ 27

= 0.41

Then, from Equation (8-65) the PMF of drought length is

f LðℓÞ= P½L= ℓ�= ð1 − 0.41Þℓ−10.41, ℓ= 1, : : : :

Table 8-7. Annual Streamflows (thousands acre-ft) of the Poudre River at Mouth of the Canyon
(1884–2002).

Year
Streamflow

ft3/s Year
Streamflow

ft3/s Year
Streamflow

ft3/s Year
Streamflow

ft3/s

1884 695 1914 410 1944 236 1974 329
1885 514 1915 230 1945 249 1975 278
1886 338 1916 270 1946 203 1976 206
1887 332 1917 520 1947 336 1977 129
1888 202 1918 320 1948 226 1978 330
1889 224 1919 150 1949 379 1979 372
1890 264 1920 410 1950 205 1980 471
1891 298 1921 437 1951 330 1981 193
1892 236 1922 199 1952 316 1982 298
1893 252 1923 453 1953 202 1983 702
1894 341 1924 481 1954 122 1984 440
1895 392 1925 211 1955 167 1985 261
1896 255 1926 428 1956 242 1986 368
1897 377 1927 264 1957 441 1987 169
1898 221 1928 325 1958 289 1988 287
1899 420 1929 330 1959 251 1989 192
1900 516 1930 227 1960 238 1990 268
1901 368 1931 172 1961 350 1991 295
1902 206 1932 232 1962 312 1992 237
1903 353 1933 272 1963 155 1993 286
1904 395 1934 127 1964 192 1994 190
1905 378 1935 277 1965 340 1995 358
1906 300 1936 263 1966 150 1996 321
1907 410 1937 198 1967 247 1997 366
1908 290 1938 358 1968 264 1998 282
1909 500 1939 212 1969 256 1999 384
1910 290 1940 149 1970 351 2000 198
1911 230 1941 212 1971 367 2001 200
1912 350 1942 360 1972 238 2002 95
1913 230 1943 369 1973 377 — —

Source: Northern Colorado Water Conservancy District, Loveland, Colorado.
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Figure 8-12 shows the derived geometric PMF and the sample frequency distribution of
observed drought lengths. The probability of a drought longer than the longest one observed on
record can be computed by Equation (8-67) as

P½L > 8�= 1 − P½L ≤ 8�= ð1 − 0.41Þ8 = 1.5%

In addition, one can calculate E(L) and σðLÞ from Equations (8-68) and (8-69), respectively.
They give E(L) = 2.44 and σðLÞ= 1.87 years, respectively.

If sufficiently long records of the underlying hydrological series are available (as is the case for the
data in this example), one may be able to estimate the parameters of the probability distribution of
drought length from the observed drought events. For example, assuming that a simple Markov chain
represents the underlying series of zeros and ones, Equation (8-68) can be used to estimate p01 as

p̂01=
1

ÊðLÞ =
1
μ̂L

where μ̂L can be estimated from the sample of observed droughts as

Figure 8-12. Sample PMF of drought length (histogram) and PMF obtained from the fitted simple
Markov chain model (continuous line) for the annual flows of the Poudre River at Mouth of the Canyon.

Figure 8-11. Annual flow records of the Poudre River at Mouth of the Canyon (1884–2002) and
threshold level x0 equal to the long-term mean.
Source: Salas et al. (2005).
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μ̂L = ð1∕mÞ
Xm
i= 1

Li

wherem is the number of drought episodes. For example, Table 8-8 gives the durations of the various
drought lengths that occurred on the Poudre River. The sample mean of drought length is μ̂L = 2.39, so
that p̂01 = 0.418. This would be an alternative procedure for estimating the parameter of the geometric
distribution as referred to in the first part of this example.

8.6.1.2 Fitting Probability Distributions to Drought Magnitude and Drought Intensity

Long records of hydrologic data may enable fitting the distribution of drought magnitude and
intensity. For example, one may assume that the probability distribution of drought magnitude is a
two-parameter gamma as

Table 8-8. Drought Length (L), Drought Magnitude (D), and Drought Intensity (I) Identified for the
Streamflows of the Poudre River at Mouth of the Canyon (1884–2002) Assuming a Threshold
x0 = μx = 299 × 103 acre-ft.

Begin year End year L (years) D (103 acre-ft) I (103 acre-ft/year)

1888 1893 6 318.07 53.01
1896 1896 1 44.01 44.01
1898 1898 1 78.01 78.01
1902 1902 1 93.01 93.01
1908 1908 1 9.01 9.01
1910 1911 2 78.02 39.01
1913 1913 1 69.01 69.01
1915 1916 2 98.02 49.01
1919 1919 1 149.01 149.01
1922 1922 1 100.01 100.01
1925 1925 1 88.011 88.011
1927 1927 1 35.011 35.011
1930 1937 8 624.09 78.011
1939 1941 3 324.03 108.01
1944 1946 3 209.03 69.678
1948 1948 1 73.011 73.011
1950 1950 1 94.011 94.011
1953 1956 4 463.05 115.76
1958 1960 3 119.03 39.678
1963 1964 2 251.02 125.51
1966 1969 4 279.05 69.761
1972 1972 1 61.011 61.011
1975 1977 3 284.03 94.678
1981 1982 2 107.02 53.511
1985 1985 1 38.011 38.011
1987 1994 8 468.2 58.525
1998 1998 1 17.356 17.356
2000 2002 3 404.01 134.67

Mean 2.39 177.68 72.76
Variance 4.10 25,829.14 1,200.64
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f DðdÞ=
1

βDΓðrDÞ
�
d
βD

�
rD−1

e−
d
βD (8-76)

where βD and rD represent the scale and shape parameters, respectively. The moment estimators of
βD and rD are given by

β̂D = σ̂2D∕μ̂D and r̂D = μ̂2D∕σ̂2D (8-77)

where μ̂D and σ̂2D are the sample mean and variance, respectively, which may be determined from the
observations of drought magnitude Dj as

μ̂D =
1
m

Xm
j= 1

Dj and σ̂2D =
1

m − 1

Xm
j= 1

ðDj − μ̂DÞ2:

Similarly, one may assume a two-parameter gamma distribution for the drought intensity, fI(i),
and use the method of moments for estimating the parameters β1 and r1.

Example 8-9: Fitting the Probability Distribution of Drought Magnitude and Drought Intensity
for the Annual Flows of the Poudre River at the Mouth of the Canyon

Table 8-8 gives the drought length, magnitude, and intensity of the droughts identified for the annual
flows of the Poudre River at the Mouth of the Canyon (see Example 8-8), assuming a threshold x0
equal to the mean. One may observe that the drought with the largest magnitude (624.09 × 103 ac-ft)
occurred in 1930–1937 and lasted eight years. We would like to determine the probability that
droughts larger than the maximum observed drought magnitude will occur on the Poudre River.

Using the sample mean μ̂D and variance σ̂2D obtained in Table 8-8, we apply the moment
Equation (8-77) for estimating the parameters of the gamma distribution for drought magnitude as

β̂D = σ̂2D∕μ̂D = 25829.14∕177.68= 145.37 and

r̂D = μ̂2D∕σ̂2D = ð177.68Þ2∕25829.14= 1.22

Likewise, the corresponding parameter estimates for drought intensity are

β̂I = σ̂2I∕μ̂I = 16.5 and r̂I = μ̂2I∕σ̂2I = 4.41

Replacing the parameters in the corresponding probability distributions, the probability of
various drought events can be computed. Alternatively, one may be interested in determining
drought magnitude or intensity corresponding to a given probability.

For instance, the probability of a drought magnitude greater than the largest observed value
(i.e., D = 624.09 × 103 ac-ft) can be computed by integrating the corresponding PDF as

P½D > 624.09�= 1 −
Z624.09
0

1
145.37Γð1.22Þ

�
d

145.37

�
1.22−1

e−
d

145.37 dd= 0.02

The foregoing integral can be determined using standard routines for computing the gamma
integral. For instance, using Matlab, the command P = gamcdf(624.09, 1.22, 145.37) = 0.978 can be
used to estimate the required integral. In a similar fashion, one can compute the probability that a
drought with intensity greater than a fixed value, say 130 × 103 ac-ft/year, will occur as
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P½I > 130�= 1 −
Z130
0

1
16.50Γð4.41Þ

�
d

16.5

�
4.41−1

e−
d

16.50dd= 0.067

In addition, one may want to determine the drought magnitude for a given exceedance
probability, for example, p = 5%, using the inverse of the gamma distribution. This can be achieved
numerically by using, for instance, the Matlab function gaminv(q, r, β), where q is the nonexceedance
probability, and β and r are the parameters. In our case, q = 1 − 0.05 = 0.95, and the desired
drought magnitude is obtained as D = gaminv(0.95, 1.22, 145.37) = 496.22 × 103 ac-ft.

8.6.1.3 Analytical Approximations of Probability Distributions of Drought Magnitude

Drought magnitude (accumulated deficit) may be considered as a random sum of random variables, in
other words., the sum of L deficits St = x0 − Xt , where drought length L is a random variable. The
analytical derivation of the probability distribution of drought magnitude is generally cumbersome and
closed-form solutions are feasible only in a few cases (e.g., Sen 1976). However, analytical approx-
imations have been proposed that overcome the difficulties of applying the inferential approach when a
small number of droughts are observed. Such analytical approximations are generally based on
deriving the moments of drought magnitude as a function of the moments of the individual deficits
and the moments of drought length. Such moments can then be used to estimate the parameters of
probability distributions by the method of moments. To this end, several authors have adopted the
gamma distribution as the underlying distribution of drought magnitude (e.g., Guven 1983, Shiau and
Shen 2001, Bonaccorso et al. 2003, Gonzalez and Valdes 2003, Salas et al. 2005, Mishra et al. 2009).

More specifically, assuming serial independence for the underlying hydrological variable, the
expected value and variance of D are given by the following expressions (Sen 1977):

EðDÞ= EðLÞ EðSÞ= μLμS (8-78)

VarðDÞ= EðLÞVarðSÞ þ VarðLÞE2ðSÞ= μLσ2S þ σ2Lμ2S (8-79)

where
individual deficit S = truncated variable S = x0− Xt such that x0> Xt and t is any time interval,
μL and μS = means of L and S, respectively, and
σ2L and σ2S = corresponding variances.

The gamma distribution with PDF,

f DðdÞ=
1

βΓðrÞ
�
d
β

�
r−1

e−
d
β, (8-80)

is assumed as the distribution of drought magnitude D where r and β are the parameters. Then using
the method of moments and Equations (8-78) and (8-79), the gamma parameters can be expressed
as a function of the moments of deficit S and drought length L as

r=
μ2Lμ2S

μLσ2S þ σ2Lμ2S
(8-81)

β=
μLσ2S þ σ2Lμ2S

μLμS
(8-82)
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The foregoing equations allow expressing the PDF of drought magnitude [Equation (8-80)] as a
function of the moments of drought length L and deficit S. The moments of L can be determined
based on the procedure outlined in Section 8.6.1.1, while the moments of S can be estimated from the
sample mean and sample variance of the observed deficits, in other words,

μ̂S =
1
k

Xk
i= 1

Si (8-83)

σ̂2S =
1

k − 1

Xk
i= 1

ðSi − μ̂SÞ2 (8-84)

Alternatively, another method can be employed for estimating the moments of the individual
deficits S, noting that the expected value and the variance of S can be computed as a function of the
probability distribution of the underlying hydrological variable Xt. This method is particularly useful
in cases of short records or in cases where the threshold level x0 is small (lower than the sample
mean). In these cases, the number of drought events obtained from the historical records will be
small, and consequently the statistics derived from them will be unreliable. Bonaccorso et al. (2003)
derive the moments of S for the case of normal, log–normal, and gamma-distributed Xt and the
related expressions of the parameters r and β of the gamma distribution for drought magnitude,
under the assumption of negligible autocorrelation in the series. Table 8-9 gives the mean μS and
variance σ2S of the deficits, and Table 8-10 gives the parameters r and β for the three referred
distributions, where the threshold is parameterized as (Yevjevich 1967)

x0 = μx − ασx = μxð1 − αCvxÞ (8-85)

where μx and Cvx are the mean and the coefficient of variation of the underlying hydrological
variable Xt, and α is a threshold coefficient. For instance, if α = 0, then x0 = μx.

Example 8-10: Fitting the Probability Distribution of Drought Magnitude for the Annual Flows of
the Salso River at Pozzillo Reservoir (Italy) Based on Analytical Approximations

Table 8-11 shows the annual flows of the Salso River at Pozzillo reservoir (Italy) for 1959–1998
(i.e., 40 years of records). The coefficients of variation and skewness and the lag-1 serial correlation are
0.64, 1.51, and −.02, respectively. Table 8-12 reports the main characteristics of the droughts identified
assuming a threshold x0 = 159.89 mm (the long-termmean). The table shows that only nine droughts
occurred during the historical period 1959–1998. We are interested in computing the probability of
observing a drought with magnitude larger than the maximum observed. However, the number of
identified droughts is inadequate to fit a probability distribution to the observed drought statistics.

Therefore, the previously outlined approach will be adopted for deriving the probability
distribution of drought magnitude. Such an approach capitalizes on the statistics of the whole
deficit series and therefore leads to more reliable estimation of the probability distribution of drought
characteristics, especially when the number of observed droughts is limited. We assume the gamma
PDF for drought magnitude D as in Equation (8-80), in which the parameters r and β will be
estimated using Equations (8-81) and (8-82), where the moments of the deficit S are replaced by their
sample moments, and the moments of L are computed from Equations (8-63) and (8-64). The
sample moments of the observed deficits S are

μ̂S =
1
k

Xk
i= 1

Si = 51.65 and σ̂2S =
1

k − 1

Xk
i= 1

ðSi − μ̂SÞ2 = 1,857.3

in which k = 27 is the number of the observed deficits Si.
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Table 8-10. Parameters of the Gamma Distribution of Drought Magnitude for Different Distributions
of Xt.

Distribution of Xt R β

Normal (μx, σx)

−αþϕð−αÞ

p0

�
p0

−αþϕð−αÞ

p0

�
2
−p1

�
αϕð−αÞp0

þϕ2ð−αÞ
p2
0

−1
� σx

h
p0
p1


−αþϕð−αÞ

p0

�
2
−
�
αϕð−αÞp0

þϕ2ð−αÞ
p2
0

−1
�i


−αþϕð−αÞ

p0

�
Log–normal (μy, σy)


1−αCvx−Δ

p0

�
2

p0

1−αCvx−Δ

p0

�
2
−p1

�
Δ2

p2
0
−expðσ2y Þ Ψp0

� μx

h
p0
p1


1−αCvx−Δ

p0

�
2
−Δ2

p2
0

þexpðσ2yÞ ψ
p0

i

1−αCvx−Δ

p0

�

Gamma (rx, βx)

1−αCvx− Θ

p0

�
2n

p0

1−αCvx− Θ

p0

�
2
−p1

h
Θ2

p2
0
−Ω
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Cv2xþ1

�io μx

�
p0
p1
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p0

�
2
−Θ2

p2
0

þΩ
p0
ðCv2xþ1Þ

�

1−αCvx− Θ

p0

�
Source: Bonaccorso (2002), Cancelliere et al. (2003).

Table 8-11. Annual Flows (mm) of the Salso River at Pozzillo Reservoir (1959–1998).

Year Streamflows Year Streamflows Year Streamflows Year Streamflows

1959 149.72 1969 245.65 1979 158.23 1989 14.66
1960 147.58 1970 101.45 1980 157.10 1990 15.07
1961 138.91 1971 79.91 1981 172.96 1991 61.45
1962 128.81 1972 282.73 1982 138.54 1992 142.12
1963 209.52 1973 511.62 1983 91.21 1993 124.77
1964 334.31 1974 103.02 1984 144.02 1994 171.48
1965 175.08 1975 68.29 1985 202.29 1995 51.45
1966 198.02 1976 395.02 1986 108.79 1996 372.73
1967 201.72 1977 53.41 1987 153.67 1997 109.29
1968 120.16 1978 132.14 1988 157.31 1998 71.56

Table 8-12. Main Characteristics of the Droughts Identified for the Flows of the Salso River at Pozzillo
Reservoir (1959–1998), Assuming a Threshold x0 = μx = 159.89 mm.

Begin year End year L (years) D (mm) I (mm/year)

1959 1962 4 74.56 18.64
1968 1968 1 39.73 39.73
1970 1971 2 138.43 69.21
1974 1975 2 148.48 74.24
1977 1980 4 138.70 34.67
1982 1984 3 105.91 35.30
1986 1993 8 501.31 62.66
1995 1995 1 108.44 108.44
1997 1998 2 138.94 69.47
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Conversely, the mean and the variance of L are determined from Equation (8-63) and (8-64),
respectively, as

EðLÞ= 1
p1

= 3.08 years andVarðLÞ= 1 − p1
p21

= 6.39 years2

where p1 = 0.325 has been computed following the same procedure as that outlined in Section 8.6.1.1.
Then, the parameters r and β of the gamma distribution are computed from Equations (8-81) and
(8-82), respectively, as

r=
μ2Lμ2S

μLσ2S þ σ2Lμ2S
= 1.109

β=
μLσ2S þ σ2Lμ2S

μLμS
= 143.23

Note that for estimating the parameters r and β, the whole series of 27 deficits has been used,
which should lead in principle to more reliable estimates as compared with the case when r and β are
estimated directly from the observed nine droughts.

Then the probability of observing a drought with a magnitude greater than the largest observed
in the historical record, i.e., D = 501.31, is computed by

P½D > 501.31�= 1 −
Z501.31
0

1
143.23Γð1.109Þ

�
d

143.23

�
1.109−1

e−
d

143.23dd= 0.037

The foregoing integral is computed using the Matlab gamma function command:

gamcdfð501.31, 1.109, 143.23Þ= 0.963

Example 8-11: Deriving the Probability Distribution of Drought Magnitude for the Annual Flows
of the Salso River at Pozzillo Reservoir Using an Alternative Method

In this example, the probability distribution of drought magnitude for the Salso River at Pozzillo
Reservoir is derived, using the alternative approach outlined previously. More specifically, we are
interested in analyzing drought characteristics considering the threshold level x0 = 80mm. This
threshold represents about 50% of the sample mean, and not many drought events will result from
the empirical flow data, as Table 8-13 shows, where only six droughts occurred in 1959–1998.
Furthermore, the number of deficits is only eight, which is too small to apply the procedure
illustrated in Example 8-10. Therefore, the alternative approach will be applied for deriving the
probability distributions of drought magnitude. Such an approach capitalizes on the statistics
computed from the whole hydrological series and therefore leads to more reliable estimation of the
probability distribution of drought characteristics, especially when the number of observed droughts
is small.

Assuming the gamma distribution is the underlying model for drought magnitude, its
parameters r and β can be determined from the equations in Table 8-10. We also assume that
the distribution of the streamflow series for the Salso River is gamma with parameters rx and βx.
Because the mean and variance of the historical streamflows are μ̂x = 159.89 and σ̂2x = 10,397,
respectively, using the method of moments we estimate the parameters rx and βx as
r̂x = μ̂2x∕σ̂2x = 2.46 and β̂x = σ̂2x∕μ̂x = 65.02. And the coefficient of variation is Ĉv = σ̂x∕μ̂x = 0.64.
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Also, because the assumed threshold is x0 = 80mm, the threshold coefficient α can be computed
from Equation (8-85) as

α=
μx − x0
σx

=
159.89 − 80

101.96
= :783

And the parameters r and β of the gamma distribution of drought magnitude are computed
using the equations of the last row of Table 8-10. Thus, the following results are obtained:

p0 =G½rx, rxð1 − αCvÞ�= 0.23, p1 = 1 − p0 = 0.77

Θ=G½rx þ 1, rxð1 − αCvÞ�= 0.0736, Ω=G½rx þ 2, rxð1 − αCvÞ�= 0.0192,

r̂=

�
1 − αCv − Θ

p0

�
2n

p0
�
1 − αCv − Θ

p0

�
2
− p1

h
Θ2

p20
− Ω

p0

�
C2
v þ 1

�io = 1.767, and

β̂=
μx
h
p0
p1

�
1 − αCv − Θ

p0

�
2
− Θ2

p20
þ Ω

p0

�
C2
v þ 1

�i
�
1 − αCv − Θ

p0

� = 20.55:

Then, the probability that a drought with magnitude greater than the largest observed drought
magnitude is computed as

P½D > 148.82�= 1 −
Z148.82
0

1
20.55Γð1.767Þ

�
d

20.55

�
1.767−1

e−
d

20.55dd= 0.004

Again, the previous integral can be computed using one of the numerical standard routines for
computing the gamma integral.

8.6.1.4 Analytical Approximations for Determining the Joint Probability Distributions of
Drought Characteristics

In some practical problems, considering two or more drought characteristics may be necessary. For
instance, one may be interested in computing the probability that a drought of magnitude D exceeds
a certain value given that the duration of the drought is equal to a given number of years. Because the
drought characteristics, L, D, and I are not mutually independent, one must use a multivariate

Table 8-13. Main Characteristics of the Droughts Identified for the Flows of the Salso River at Pozzillo
Reservoir (1959–1998) Assuming a Threshold x0 = 80 mm.

Begin year End year L (years) D (mm) I (mm/year)

1971 1971 1 0.09 0.09
1975 1975 1 11.71 11.71
1977 1977 1 26.59 26.59
1989 1991 3 148.82 49.61
1995 1995 1 28.55 28.55
1998 1998 1 8.44 8.44
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formulation to model their joint occurrence. For this purpose, one may use bivariate distributions for
any pair of drought characteristics or copulas (e.g., Salas et al. 2005, Shiau 2006, Serinaldi et al. 2009,
Songbai and Singh 2010). Such an approach, however, requires a rather long series of observations,
because it requires estimating the parameters of the distributions that are to be fitted to the observed
droughts.

An alternative approach is based on conditional distributions, which capitalizes on the links
between D and L and between I and L. For example, the bivariate PDF of D and L, f D,Lðd, ℓÞ can be
expressed as the product of the conditional distribution of the two variables as (e.g. Salas et al. 2005)

f D,Lðd, ℓÞ= f DjL= ℓðdÞf LðℓÞ (8-86)

where f DjL= ℓðdÞ is the distribution of D conditional on a fixed value of L, and f LðℓÞ is the marginal
PDF of L. A similar expression can be written for the bivariate distribution of I and L as

f I,Lði, ℓÞ= f IjL= ℓðiÞf LðℓÞ (8-87)

Thus, the joint distributions f D,Lðd, ℓÞ and f I,Lði, ℓÞ can be determined once the conditional
distributions f DjL= ℓðdÞ and f IjL= ℓðiÞ and the marginal distribution f LðℓÞ are known. Some authors
have assumed a parametric distribution for DjL, and have estimated the parameters from observed
droughts (e.g., Guven 1983, Sharma 1995, Shiau and Shen 2001). In some cases, due to the limited
number of droughts that can be observed from the available records, synthetic generation (Wang and
Salas 1989; Shiau and Shen 2001) or long hydrologic series reconstructed from tree ring records
(e.g., Gonzalez and Valdes 2003, Biondi et al. 2005) have been utilized.

Alternatively, an approach similar to that described in Section 8.6.1.3 can be employed for
estimating the parameters of the distribution of DjL that capitalizes on analytical expressions of the
moments of drought magnitude. More specifically, the approximate moments of drought magnitude
computed based on the distribution of the underlying process Xt and on the threshold are used to
estimate the parameters by the method of moments. This enables exploiting the available
information from the observed series, thus allowing a reliable estimation of the distribution of
drought characteristics even for a relatively short sample series.

Assuming the underlying series Xt is iid., the mean and variance of drought magnitude
conditional on a fixed drought length L= ℓ are given respectively by

EðDjL= ℓÞ= ℓEðSÞ (8-88)

VarðDjL= ℓÞ= ℓVarðSÞ (8-89)

However, the iid assumption is not valid because most hydrologic series exhibit significant
autocorrelation. In this case, the computation of the conditional moments of drought magnitude is
more involved, and no closed-form solution is available. Nevertheless, some approximations have
been suggested (e.g., Salas et al. 2005, Biondi et al. 2005, Cancelliere and Salas 2010). For example,
Cancelliere and Salas (2010) provide empirical approximations that enable computing the condi-
tional moments as a function of the skewness coefficient of the underlying variable Xt , the threshold
parameter α, and the lag-1 autocorrelation coefficient ρ1. The proposed approximations for the mean
and the variance of drought magnitude of fixed length ℓ are (Cancelliere and Salas 2010)

EðDℓÞ= μSamℓbm (8-90)

VarðDℓÞ= σ2Savℓbv (8-91)

LOW FLOWS AND DROUGHTS 313



where EðDℓÞ and VarðDℓÞ are respectively the expected value and variance of the drought magnitude
of length ℓ for series that are autocorrelated and skewed; μS and σ2S are respectively the expected value
and variance of a single-year deficit assuming that the series are skewed but uncorrelated, thus they
are functions of the given marginal distribution; and the threshold x0, and the parameters am, bm, av,
and bv are related to ρ1 and x0 through the following expressions:

am = 1.0þ ð:6983α − :5592Þρ1 þ ð−:6634α − :3418Þρ21 (8-92a)

bm = 1.0þ ð−0.1840αþ 0.5903Þρ1 þ ð0.1865αþ 0.0839Þρ21 (8-92b)

av = 1.0þ ð0.7415α − 1.0325Þρ1 þ ð−0.7969α − 0.0928Þρ21 (8-93a)

bv = 1.0þ ð−0.4414αþ 1.078Þρ1 þ ð0.4175αþ 0.5707Þρ21 (8-93b)

Note that for ρ1 = 0, EðDℓÞ= μSℓ and VarðDℓÞ= σ2Sℓ because am = bm = av = bv = 1.
Cancelliere (2008) compares several distributions by simulation, including log–normal, gamma,

and beta, among others, for drought magnitude conditioned on a fixed drought length where the
underlying series is autocorrelated. In particular, the method of moments has been applied to
estimate the parameters of each distribution, using the approximate moments derived in Equa-
tions (8-90) and (8-91). The results of the comparisons based on statistical goodness-of-fit tests
reveal that the beta distribution is to be preferred, besides it is bounded, as is the case of the drought
magnitude.

The beta PDF takes the form (Johnson et al. 1994)

f DjL= ℓðdÞ=
1

Bðp, qÞ
ðd − aÞp−1ðb − dÞq−1

ðb − aÞpþq−1 ða ≤ d ≤ bÞ (8-94)

where Bðp, qÞ is the complete beta function, and a and b are the lower and upper bounds,
respectively. In our case, a= 0 and b= ℓxo, because a drought of length ℓ cannot have magnitude
greater than ℓxo, and the parameters p and q can be estimated as a function of the first two moments
of the drought magnitude μD =EðDℓÞ and σ2D =VarðDℓÞ as (Cancelliere and Salas 2010)

p=
�
μD
σD

�
2
�
1 −

μD
ℓxo

�
−

μD
ℓxo

(8-95)

q=
μDðℓxo − μDÞ

σ2D
− ð1þ pÞ (8-96)

where μD and σ2D are determined from Equations (8-90) and (8-91), respectively. Then, the bivariate
PDF of drought magnitude and length takes the following form:

f D,Lðd, ℓÞ=
1

Bðp, qÞ
ðdÞp−1ðℓxo − dÞq−1

ðℓxoÞpþq−1 f LðℓÞ, ð0 ≤ d ≤ ℓxoÞ (8-97)

where f LðℓÞ is the PDF of drought length (Section 8.6.1.1).
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Furthermore, from the conditional distribution of drought magnitude given drought length, the
conditional distribution of drought intensity I given drought length L can be obtained. Indeed,
because drought intensity is the ratio of drought magnitude and drought length, in other words,
I =D∕L, the conditional PDF of drought intensity I given a fixed length L= ℓ can be derived from
Equation (8-94) as

f IjLðiÞ=
1

Bðp, qÞ
ðiÞp−1ðx0 − iÞq−1

ðx0Þpþq−1 , ð0 ≤ i ≤ x0Þ (8-98)

where p and q are given by Equations (8-95) and (8-96), respectively. Thus, the bivariate PDF of
drought intensity and length can be found as (Cancelliere and Salas 2010)

f I,Lði, ℓÞ=
1

Bðp, qÞ
ðiÞp−1ðx0 − iÞq−1

ðx0Þpþq−1 f LðℓÞ, ð0 ≤ i ≤ x0Þ (8-99)

By integrating the bivariate PDFs, the occurrence probability of various drought events can be
found (Salas et al. 2005). For example, for specific drought events using the previously described
models we have

(1) for drought event E = [D> d0 and L= ℓ0 (ℓ0 = 1, 2, : : : )]:

P½D > d0, L= ℓo�=
Zℓoxo
d0

f D,Lðz, ℓ0Þdz= f Lðℓ0Þ
Zℓ0x0
d0

1
Bðp,qÞ

ðzÞp−1ðℓ0x0 − zÞq−1
ðℓ0x0Þpþq−1 dz (8-100)

(2) for drought event E = [D> d0 and L ≥ ℓ0 (ℓ0 = 1, 2, : : : )]:

P½D > d0, L ≥ ℓ0�

=
X∞
ℓ= ℓ0

Zℓ0x0
d0

f D,Lðz, ℓÞdz=
X∞
ℓ= ℓ0

�
f LðℓÞ

Zℓxo
d0

1
Bðp,qÞ

ðzÞp−1ðℓx0 − zÞq−1
ðℓx0Þpþq−1 dz

�
(8-101)

(3) for drought event E = [I> i0 and L= ℓ0 (ℓ0 = 1, 2, : : : )]:

P½I > i0, L= ℓ0�=
Zx0
i0

f I,Lðz, ℓ0Þ dz= f Lðℓ0Þ
Zx0
i0

1
Bðp,qÞ

ðzÞp−1ðx0 − zÞq−1
ðx0Þpþq−1 dz (8-102)

(4) for drought event E = [I> i0 and L ≥ ℓ0 (ℓ0 = 1, 2, : : : )]:

P½I > i0, L ≥ ℓ0�

=
X∞
ℓ= ℓ0

Zx0
i0

f I,Lðz, ℓÞ dz=
X∞
ℓ= ℓ0

�
f LðℓÞ

Zx0
i0

1
Bðp,qÞ

ðzÞp−1ðx0 − zÞq−1
ðx0Þpþq−1 dz

�
(8-103)

Furthermore, the marginal probability of drought events E = {D> d0} or E = {I> i0} can be
obtained from Equations (8-101) or (8-103), respectively, by letting ℓ0 = 1. Note that despite the
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apparent complexity of the aforementioned expressions, the integrations can be carried out
efficiently using numerical tools for the beta PDF that are available in most statistical software.

8.6.2 Return Period of Multiyear Droughts

The return period of a drought event may be defined as the average elapsed time, or mean
interarrival time, between two such events (Lloyd 1970, Loaiciga and Mariño 1991, Fernández and
Salas 1999a). Shiau and Shen (2001) develop a formulation for determining the return period of
droughts with magnitude greater than or equal to a given value. Cancelliere and Salas (2004) extend
such a formulation for drought length in periodic series, while Cancelliere et al. (2003), Gonzalez and
Valdes (2003), Salas et al. (2005), and Biondi et al. (2005) include other characteristics such as
drought length and intensity, under the assumption of lag-1 Markov dependence.

The return period (or mean recurrence time) of droughts for any of the drought scenarios and
events E as specified previously, e.g., E = {L= ℓ0 and D > d0} may be estimated as the average of the
recurrence times as

T =
1

ðNE − 1Þ
XNE−1

j= 1

TEð jÞ (8-104)

in which TEð jÞ denotes the recurrence time of two successive drought events and NE is the number
of such drought events. Equation (8-104) is particularly useful for determining the return periods of
drought events based on a historical sample (particularly for a long record) or a sample generated
from a stochastic model. An alternative procedure based on analytical formulations is given in the
following.

To derive an analytical expression for estimating T, the formulation proposed by Shiau and Shen
(2001) for the case of drought events characterized only by the drought magnitude can be extended
to the more general case of drought events jointly defined in terms of drought magnitude and length
(or drought intensity and length). For this purpose, the interarrival time T(E) between two droughts
events E [e.g., E = (D > d0 and L= ℓ0)] may be written as (Cancelliere and Salas 2002, Gonzalez and
Valdes 2003, Salas et al. 2005)

T =
EðLÞ þ EðLnÞ

PðEÞ (8-105)

where E(L) and EðLnÞ are the expected values of the duration of specific drought event and
nondrought event, respectively, and P(E) is the joint probability of the specific drought event that
may be determined from Equations (8-100)–(8-103) as the case may be. For the case of a lag-1
Markov process, E(L) can be computed from Equation (8-68) and EðLnÞ can also be obtained from
Equation (8-68) by replacing p01 with p10. Alternatively, E(L) and EðLnÞ can be estimated from the
sample mean of the observed drought length and nondrought length, respectively. Note that
although for an autocorrelated process, the independence assumption between drought events is not
exactly met, yet Equation (8-105) provides an excellent approximation (e.g., Salas et al. 2005,
Cancelliere and Salas 2010).

Example 8-12: Computing the 50 Year Drought Magnitude for the Salso River at Pozzillo
Reservoir

In this example, the 50 year (return period) drought magnitude for the Salso River at Pozzillo
Reservoir (see Examples 8-10 and 8-11) will be computed assuming a threshold x0 equal to the mean.
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For the drought event E = {D> d}, i.e., a drought with a magnitude greater than d, the associated
return period will be computed by Equation (8-105), in other words,

T =
EðLÞ þ EðLnÞ
PðD > dÞ

In our case, E(L) and EðLnÞ will be estimated using the sample means of the observed drought
length L and nondrought length Ln. The desired T year magnitude d can be computed by solving for
d in the following equation:

P½D > d�= Lþ Ln
T

where the probability can be computed by making use of the gamma CDF as in Example 8-10. In our
case, the following results are obtained:

L= 3 years, Ln = 1.5 years, and P½D > d�= Lþ Ln
T

= 0.09

Then, the drought magnitude d can be computed (as in Example 8-10) as the value with
exceedance probability 0.09. Recalling from Example 8-10 that the parameters of the gamma
distribution of drought magnitude for Salso River at Pozzillo Reservoir are r = 1.109 and β = 143.23
the following Matlab command is used to find the 50 year accumulated deficit d as

d= gaminvð1 − 0.09, 1.109, 143.23Þ= 372.12mm

Example 8-13: Calculating the Return Period of Drought Magnitude and Length for the Annual
Flows of the Poudre River at the Mouth of the Canyon (Table 8-7)

In this example, we will analyze drought magnitude and length for the annual flows of the Poudre
River at the Mouth of the Canyon. In particular, the return period associated with a drought of
length L = 3 and magnitude greater than 300,000 ac-ft will be computed using the analytical
approximations for the joint distribution of drought length and magnitude illustrated in
Section 8.6.1.4. In what follows we will use the threshold x0 = 299,000 acre-ft (the sample mean)
and the threshold coefficient α= 0 [refer to Equation (8-85)].

The return period of such critical drought will be computed by Equation (8-105), in other
words,

T =
EðLÞ þ EðLnÞ

PðL= ℓ0,D > d0Þ
=

EðLÞ þ EðLnÞ
PðL= 3,D > 300Þ

where E(L) and EðLnÞ are, respectively, the expected values of the durations of specific drought
events and nondrought events. These expected values can be estimated as the sample mean of
observed drought length L and nondrought length Ln, which gives L= 2.4 years and Ln = 1.9 years.
Furthermore, the probability P(L = 3, D> 300) can be computed by Equation (8-100). The
parameters p and q of the beta distribution can be estimated by Equations (8-95) and (8-96), in
which the mean and standard deviation of drought magnitude EðDℓÞ and VarðDℓÞ, are given by the
empirical expressions (8-90) and (8-91), respectively.

The coefficients in Equations (8-90) and (8-91) are computed considering that α = 0 and
ρ1 = 0.153 (Example 8-8) as
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am = 1.0þ ð:6983α − :5592Þρ1 þ ð−:6634α − :3418Þρ21 = 0.906

bm = 1.0þ ð−0.1840αþ 0.5903Þρ1 þ ð0.1865αþ 0.0839Þρ21 = 1.092

av = 1.0þ ð0.7415α − 1.0325Þρ1 þ ð−0.7969α − 0.0928Þρ21 = 0.840

bv = 1.0þ ð−0.4414αþ 1.078Þρ1 þ ð0.4175αþ 0.5707Þρ21 = 1.178

and the moments μ̂S and σ̂2S will be determined from the expressions reported in Table 8-9. For this
purpose, we assume that the marginal distribution of the Poudre River annual streamflow series is
log–normal, and applying the method of moments, the parameters are estimated as

σ̂y =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
σ̂2x
μ̂2x

þ 1

�s
= 0.347 and μ̂y = lnðμ̂xÞ −

σ̂2y
2

= 5.64

in which μ̂x = 299 and Ĉvx = 0.36. Then the mean μ̂S and the variance σ̂2S of the individual deficits are
computed as (Table 8-9)

μ̂s = exp

�
μ̂y þ

1
2
σ̂2y
��

1 − α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðσ̂2yÞ − 1

q
−
Δ
p0

�
= 72.401

σ̂2s = expð2μ̂y þ σ̂2yÞ
�
expðσ̂2yÞ

p0
· Ψ −

Δ2

p20

�
= 2,071.44

where

p0 =Φ
�
1
2
σ̂y þ

lnð1 − αĈvxÞ
σ̂y

�
= 0.569, Δ=Φ

�
−
1
2
σ̂y þ

lnð1 − αĈvxÞ
σ̂y

�
= 0.431, and

Ψ=Φ
�
−
3
2
σ̂y þ

lnð1 − αĈvxÞ
σ̂y

�
= 0.301:

For ℓ= 3, Equations (8-90) and (8-91) yield, respectively,

μ̂D = μ̂Samℓbm = 217.89 and σ̂2D = σ̂2Savℓbv = 6,348.40,

and the parameters p and q of the beta distribution are obtained from Equations (8-95) and (8-96),
respectively, as

p=
�
μ̂D
σ̂D

�
2
�
1 −

μ̂D
ℓxo

�
−

μ̂D
ℓxo

= 5.419 and q=
μ̂Dðℓxo − μ̂DÞ

σ̂2D
− ð1þ pÞ= 16.89

Therefore, the probability of the drought E = {D> d0 and L = 3} is obtained from Equation
(8-100) as

P½D > do, L= 3�= f Lð3Þ
Z3x0
d0

1
Bðp,qÞ

ðzÞp−1ð3x0 − zÞq−1
ð3x0Þpþq−1 dz
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From Example 8-8, f Lð3Þ= ð1 − 0.41Þ3−1 0.41= 0.143 and the integral can be computed using,
for instance, the Matlab function betacdf as

Z3x0
d0

1
Bðp,qÞ

ðzÞp−1ð3x0 − zÞq−1
ð3x0Þpþq−1 dz= 1 − betacdf ½d0∕ð3�x0Þ, p, q�= 0.155

It follows that P½D > d0, L= 3�= 0.0222, and the corresponding return period is

T =
Lþ Ln

P½D > do, L= 3� = 194 years

The foregoing procedure can be repeated for different values of d0 and Land for different types
of drought events, such as those indicated in Equations (8-100)–(8-103). For instance, Figure 8-13
shows the return periods of droughts defined as E= fD > d0 and L= ℓ0ðℓ0 = 1, 2, : : : Þg, which
were obtained from Equation (8-105) for various values of the deficit coefficient δ= d0∕x0 and
threshold x0 = μx.

8.7 REGIONAL ANALYSIS OF DROUGHTS

Drought identification and characterization in a region is an important component of drought
mitigation and management studies. While drought analysis at individual sites provides useful
information on drought occurrences in a watershed, regional analysis enables identifying droughts
that affect a region, considering the duration, magnitude (or intensity), and areal extent of the
drought based on data that are available at several sites of the study region (e.g., Tase 1976, Santos
1983, Rossi et al. 1992, Shin and Salas 2000, Rossi and Cancelliere 2003). As presented in this chapter
regional analysis of drought differs from regional analysis of low flows. In regional analysis of low
flows, the objective is determining low-flow characteristics at sites with short records or at ungauged

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

R
et

u
rn

 p
er

io
d

 (
ye

ar
s)

Drought length (years)

0

0,25

0,75

1,25

2

Symbol =do/Xoδ

Figure 8-13. Return period of drought events defined by E = [D > d0 and L = ℓ0 (ℓ0 = 1, 2, : : : )] for
the Poudre River at Mouth of the Canyon annual flows obtained from Equation (8-105) for various
values of the deficit coefficient δ and the threshold x0 = μx.
Source: Cancelliere and Salas (2010).
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sites, while in regional analysis of drought one would like to identify and characterize the variability
of drought as it varies through the region. Presenting regional drought analysis in detail would be too
lengthy for this chapter. We simply outline the underlying definitions following the method
originally developed by Tase (1976).

Let us consider a region having a total area A and m precipitation stations located within and
nearby the area of interest. Station k has an area of influence denoted by s(k) (e.g., defined by the
Tiessen polygon), which may be expressed as a fraction a(k) of the total area as

aðkÞ= sðkÞP
m
j= 1 sð jÞ

(8-106)

in which A = s(1) + s(2) + : : : + s(m). In addition, we will denote by XtðkÞ the precipitation at
station k at time t, and x0ðkÞ the threshold level for station k. Then the following indicator variable
can be defined for station k:

ItðkÞ= 0 if XtðkÞ ≥ x0ðkÞ
ItðkÞ= 1 if XtðkÞ < x0ðkÞ (8-107)

which indicates that if a deficit occurs at time t at site k, i.e., XtðkÞ < x0ðkÞ, then ItðkÞ= 1. And the
fraction of the area affected by deficit in a time t is denoted as areal coverage of deficit and is given by
the index

Adt =
Xm
k= 1

aðkÞItðkÞ (8-108)

Then a regional deficit occurs at time t if the areal coverage of deficit Adt exceeds a given
threshold ac (Tase 1976). Accordingly, the areal (regional) deficit Dt can be determined by

Dt =
Xm
k= 1

aðkÞ ItðkÞ½x0ðkÞ − XtðkÞ� if Adt ≥ ac (8-109)

The index Adt is a measure of the area affected by deficit, expressed as a fraction of the total area
that ranges between 0 and 1, while the index Dt provides a measure of the total amount of deficit in
the area (region). It is basically the sum of the deficits at each site weighted by the corresponding
influence areas (computed for example by the Thiessen polygons).

Regional drought is defined as a consecutive sequence of regional deficits preceded and
succeeded by surpluses. Then the duration of the regional drought can be characterized by

L= tf − ti þ 1 (8-110)

where ti and tf are such that Dti−1 = 0, Dt > 0 for ti ≤ t ≤ tf , and Dtfþ1 = 0. In addition, regional
drought magnitude can be determined as

DM =
Xtf
t = ti

Dt (8-111)

and the regional drought intensity by

DI =
DM
L

(8-112)
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Furthermore, the mean areal coverage of drought can be computed by

AD=
1
L

Xtf
t = ti

Adt (8-113)

Once the time series of regional deficit Dt and the threshold ac have been determined, one can
apply the drought analysis methods described previously for determining the statistical properties of
droughts, such as expected values, variances, distribution, and return period of drought events. Note
that the foregoing definitions of regional drought have been illustrated using precipitation as the key
hydrological input representing water supply in the study region, and several developments and
applications thereof are available (e.g., Tase 1976, Santos 1983, Rossi et al. 1992, Rossi and
Cancelliere 2003). However, the application of regional drought as described previously for
hydrological inputs other than precipitation have not been made.

8.8 EFFECTS OF HYDRAULIC STRUCTURES ON LOW FLOWS

Human intervention directly and indirectly alters the natural flow regime of river systems (Wang
and Cai 2009). Indirect effects occur by changes in natural phenomena such as climate and changes
in vegetation, land use, soil, and topography. River works such as dams, river diversions, major
mining explorations and operational activities, and groundwater pumping for many water supply
purposes directly alter the natural flow regime of streams and river systems. For several decades,
many studies have been conducted to identify the effects of water development on the natural
streamflows. For example, Dynesius and Nilsson (1994) report that 77% of the total flow of the
largest rivers in the United States, Canada, Europe, and the former Soviet Union was affected by
dams, reservoirs, aqueducts, and irrigation. They estimate that hydrologic alterations have occurred
in 60% of rivers all over the world, including more than 85% of US rivers and 60% to 65% of
European rivers. In many of those rivers significant changes of the natural flow regime have been
observed, such as decreasing flows during the wet season while increasing flows during the dry
season. While control of natural flow regime has proper functions for regulating water supply and
flood control, it conflicts with other functions of the streams and rivers such as those related to their
natural environment and ecology.

The variability of streamflows through time at a given cross-section of a river is called flow
regime. Natural flow regime refers to the condition before the development of rivers, without
controlling the flow regime by hydraulic structures. Rivers have their own natural flow regime
characteristics based on the climate, morphology of the river basin, and land use, and these flow
regime characteristics maintain the health of the river environment. However, artificial river works
such as dams changes the natural flow regime and consequently their various statistical
characteristics.

Flow duration curves (FDC) and the Indicator of Hydrologic Alteration (IHA) have been useful
for identifying the degree of alteration in flow regime resulting from the effects of hydraulic
structures. Natural flows vary over the year, and FDC is one of the methods used to identify the flow
variability from low flows to floods. An FDC for a given site of a river is a plot of flow against the
percentage of time the flow has been equaled or exceeded. Flow records of 10 years or more
adequately define the shape of the curve (Hadley et al. 1987, Maheshwari et al. 1995, Subramanya
1994). In low-flow studies, the main interest is the low-flow section of a FDC. The section may be
determined as part of the curve with flows below median flow that corresponds to the discharge
equal to or exceeding 50% (Smakhtin 2001). The Indicators of Hydrologic Alteration (IHA),
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developed by The Nature Conservancy (Richter et al. 1997), are based on 32 indexes that define a
series of biologically relevant hydrologic attributes and then quantify hydrologic alterations
associated with anticipated perturbations arising from the effect of hydraulic structures by
comparing the hydrologic regimes from pre-impact and post-impact time frames. Poff et al. (1997)
and Richter et al. (1997) classify flow regime in terms of magnitude of flow, frequency of its
occurrence, duration, timing of a specific flow, and rate of change. Zhang et al. (2015a, b) assess
temporal and spatial alteration of flow regimes in some reservoir-regulated rivers in China using
IHA. During the post-regulation period, they show a decrease in the high-flow magnitudes and an
increase in the low flows (relative to those during the pre-regulation period). Table 8-14 shows
several flow regime characteristics related to low flows.

Much has been written about the impacts on low flows by hydraulic structure such as dams
(e.g., Homa et al. 2013). The typical differences in the FDCs are that the flows, at the low-flow section
of the FDC during the post-impact period, become greater than those for the pre-impact period.
However, the opposite occurs for the flows at the high-flow section of the FDC (e.g., Gippel and
Stewardson 1995, Gustard et al. 1989, Hadley et al. 1987, McMahon and Finlayson 2003). Also, the
annual minimum flows affected by regulation by dams generally increase compared with the pre-
regulation period (Richter et al. 1997, Magilligan and Nislow 2005).

Figure 8-14 shows the Han River in Korea where several dams have been constructed. The
multipurpose dams impound water during the rainy season (June–September) and then the stored
waters in the reservoirs are released to be used for water supply in urban areas during the low-flow
period (November–March). Likewise, the Geum River has two multipurpose dams that also store the
rain waters that are then released to be used downstream during low-flow periods. For illustration,
Figure 8-15 shows the comparison of the average daily flows obtained using the flow data for the pre-
impact period (1921–1940) and the flows for the post-impact period (1988–2007). Clearly the flows
during the low-flow period are generally larger in the post-impact period than in the pre-impact
period. Also, Figure 8-16 shows the comparison of the FDCs obtained for the two periods. As
expected, the flows in the lower portion of the curve are bigger for the post-impact period than for
the pre-impact period. This effect also becomes evident for the 1 day and 30 day minimum flows as
shown in Figures 8-17 and 8-18, respectively.

Table 8-14. Low-Flow Hydrologic Parameters Used in the Indicators of Hydrologic Alteration (IHA).

IHA statistics group
Regime

characteristics
Low-flow hydrologic

parameters

Group 2: Magnitude and duration
of annual extreme discharge
conditions

Magnitude
Duration

Annual minima. 1 day means
Annual minima. 3 day means
Annual minima. 7 day means
Annual minima. 30 day means
Annual minima. 90 day means

Group 3: Timing of annual extreme
discharge conditions

Timing Julian date of each annual 1 day
minimum discharge

Group 4: Frequency and duration
of high and low pulses

Frequency
Duration

No. of low pulses each year
Mean duration of low pulses within
each year

Group 5: Rate and frequency of
water condition changes

Rate of change
Frequency

Means of all negative differences
between consecutive daily values

No. of falls

Source: Modified from Richter et al. (1997).
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8.9 CLOSING REMARKS

In the statistical analysis of low flows and droughts discussed in this chapter we made the
implicit assumption that the underlying data and models thereof are stationary (i.e., the model
statistics and parameters remain constant through time). However, this assumption may not
be valid in some cases. The basic data used for deriving low flows and droughts may be
nonstationary for several reasons such as human intervention in the landscape and water cycle,
natural events such as volcanic explosions or forest fires, the effect of low-frequency components
of oceanic–atmospheric phenomena, and global warming (Salas et al. 2012). Numerous studies
and reports assess changes (e.g., increasing or decreasing trends) in low-flow conditions in
individual rivers, regions, and worldwide (e.g., Lins and Slack 1999, Douglas et al. 2000, Yue et al.
2003, Svensson et al. 2005, Hannaford and Marsh 2006), and the results of either significant
increases, decreases, or no changes vary depending on the country and region of study and the
tests utilized.

Figure 8-14. The Han and Geum river basins in Korea.

LOW FLOWS AND DROUGHTS 323



Figure 8-15. The daily average flows for the pre- and post-regulation periods in the Han river at Koan
station, Korea.

Figure 8-16. Daily flow duration curve in the Han River at Koan, Korea.

Figure 8-17. 1 day minimum flows for the Han River at the Koan station during the pre-impact and
post-impact periods.

324 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



In most if not all cases, the justification of such studies has been the concern for the possible
effects of anthropogenic global climate change on low flows and droughts. However, determining the
cause of any change in low flows is not an easy task. The problem is even more difficult when trying
to assess with confidence the impacts of future climate change because of the uncertainties in climate
models and the complexity of the relationships of various components of the hydrologic cycle
(Hannaford and Marsh 2006). In some cases, such as in the Midwest in the United States, changes in
low flows may be related to similar changes in precipitation (e.g., Douglas et al. 2000). However, it
has been argued that in some places, such as Iowa (where agricultural lands comprise more than 70%
of the land area), increases in precipitation alone do not explain the observed increases in baseflow and
most likely result from improvements in land management practices (Schilling and Libra 2003). In
addition, studies in the United Kingdom based on a benchmark network of 120 relatively undisturbed
catchments indicate no compelling evidence of trends in low flows (Hannaford and Marsh 2006).
Furthermore, studies based on 21 daily river flows in many locations worldwide suggest increases in
low flows for 10 of the stations (Svensson et al. 2005), and the authors argue that such increases are not
consistent with an intensification of the hydrological cycle in a warming climate that would result in
more severe droughts and that the cause of such increases may be the increasing number of reservoirs
in the basins. The authors conclude that such “modifications to the river flow regime would likely
obscure any recent alteration in the hydrological cycle due to climate change.”

Despite the limitations and uncertainties involved in projecting the global climate into the
future, many studies aim to determine the impacts of climate change on low flows and droughts at
the continental, country, regional, and basin scales (e.g., Ryu et al. 2011, van Lanen et al. 2007). In
addition to the difficulty of quantifying the effects of land-use changes on low flows and droughts,
distinguishing between the effects of low-frequency components of the oceanic–atmospheric system
and those from global warming is not feasible at present. Studies addressing the effect of large-scale
low-frequency components of the climate system on the variability of runoff and droughts include,
for example, Ozger et al. (2009) and Gudmundsson et al. (2011). Furthermore, some studies
(e.g., Dai et al. 2004) have attributed the severity of droughts in the past decades to global warming.
However, Sheffield et al. (2012b) argue that several studies and reports, including the IV Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC Climate Change 2007), have
overestimated the increase of global drought because the computations were made using the Palmer
Drought Severity Index (PDSI) based on a temperature-driven potential evapotranspiration (PE).
However, the drought estimates using the same PDSI, but where PE is determined based on a more
realistic model involving energy, humidity, and wind speed, suggested that minor change in drought
occurred in the past decades (Sheffield et al. 2012b).

Figure 8-18. 30 day minimum flows for the Han River at the Koan station during the pre-impact and
post-impact periods.
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As reported in Section 8.6, a problem in characterizing multiyear droughts is the limited sample
size commonly available from historical instrumental records. For example, based on the 1911–1998
record of the Meuse River, concluding whether drought has become more severe or frequent is not
possible (van Lanen et al. 2007). One technique that has been helpful to extend streamflow records is
based on tree ring records, which enable streamflow reconstruction back in time (e.g., Loaiciga et al.
1993, Meko et al. 2001, Woodhouse 2001, Biondi and Strachan 2011). Often the reconstructed flow
records show that periods of low flows and droughts more severe than those observed from
instrumental records have occurred in the past (e.g., Meko et al. 1995, Meko et al. 2001, Gonzalez
and Valdes 2003, Gedalof et al. 2004, Tarawneh and Salas 2008). A stochastic nonparametric
approach for streamflow generation combining observational and paleoreconstructed data has also
been suggested (Prairie et al. 2008). Furthermore, alternative stochastic models capable of generating
nonstationary-like changes in streamflow sequences have been developed (e.g., Montanari et al.
2000, Koutsoyiannis 2002, Sveinsson et al. 2003). Data generated based on these models can be
utilized for drought analysis using some of the empirical methods included in this chapter. Lastly,
recent advances have been made in developing statistical analysis of extreme events under
nonstationary conditions (e.g., Villarini et al. 2009, Vogel et al. 2011, Salas and Obeysekera
2014, Lopez and Frances 2013). Although the main applications of those techniques focus on
extreme flood and sea level events, some advances have been made to analyze low flows and droughts
as well (e.g., Garcia Galiano et al. 2011, Arpita and Mujumdar 2015, Kwon and Lall 2016, Cancelliere
and Bonaccorso 2016).
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LIST OF SYMBOLS

The following symbols are used in this chapter:
A area of a roof draining to a storage unit (m2)

ABMP surface area of a specific best management practice (BMP; m2)
Aw wetted area of channel cross-section (m2)
B storage volume of a rain barrel or cistern (l)

Bw wetted top width of channel cross-section (m)
b rainfall inter-event time (h)
b average rainfall inter-event time (h)
C runoff coefficient

Cin influent event-mean concentration (EMC) (mg/l)
Cout effluent EMC (mg/l)
C* background EMC or irreducible minimum concentration (mg/l)
c celerity of kinematic wave through a channel reach (m/s)
E number of exceedances per year

E[·] expected value of a random variable
F(·) cumulative distribution function
f(·) probability density function
f(b) probability density function of inter-event time
f(t) probability density function of rainfall event duration
f(v) probability density function of rainfall event volume
fc ultimate infiltration capacity of soil (mm/h)
G water use rate from a storage unit for rainwater harvesting (l/day)

Gmax maximum use rate that may be provided by a storage unit for a specified reliability
(l/day)

Gp(0) probability per use/load cycle that some spill occurs
g plotting position parameter in Cunnane formula
h degree of imperviousness expressed as a fraction (dimensionless)
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I inflow rate to a channel reach (m3/s)
i imperviousness ratio, between 0–1
J rank of the event (in descending order of magnitude) in Cunnane formula
K Muskingum K value of a channel reach (h)
k aerial removal rate constant (m/day)
L number of subintervals in the Latin hypercube sampling method
M pollutant mass (g/m2)
m kinematic ratio of a channel reach
N number of years of record
O outflow rate from a channel reach (m3/s)
Pw perimeter of the wetted portion of a channel reach’s cross section (m)
Q flow rate (m3/day)
Qo peak discharge rate from a detention pond resulting from a rainfall event falling on

the upstream catchment (mm/h)
Qp peak discharge rate of a runoff event regarded as a random variable
q BMP hydraulic loading rate (m/day)
qo discharge per unit top width normally determined for half of the peak discharge (m3/s)
qp specific peak discharge rate (m3/s)
Ra annual total volume of runoff generated from the roof of a building (l)
Rc annual total volume of water collected in a rainwater storage unit that is subsequently

utilized instead of being spilled (l)
Re reliability of a storage unit in supplying water, defined as the fraction of time when

use needs are satisfied by water collected in the storage unit (dimensionless)
Remax maximum reliability that may be achieved given a location, roof area, and use rate

(dimensionless)
Sd area-weighted depression storage of the impervious and pervious areas (mm)
Sdd difference between Sil and Sdi (mm)
Sdi depression storage of the impervious area (mm)
Sdp depression storage of the pervious area (mm)
Sil initial loss of the pervious area (mm)
Siw initial soil wetting infiltration volume (mm)
So channel bottom slope (m/m)
SQo

maximum storage volume utilized during the passage of a runoff event through a
detention pond that resulted in a peak outflow rate of Qo (m

3)
(Sq, q) a pair of storage volume and discharge rate of a detention pond (mm, mm/h)

s standard error of the regression
T time since the start of the routing calculation (h)
Td annual total length of time when water needs to be withdrawn from a storage unit (h)
TR return period of a given peak discharge rate (years)
t rainfall event duration (h)
t average rainfall event duration (h)
tc time of concentration of a catchment (h)
tcc adjusted time of concentration of a catchment for incorporation of the effects of a

downstream channel reach (h)
tsd storage-delay time of a channel reach (h)

u(T) instantaneous unit hydrograph of a channel reach
V average flow velocity through a channel reach (m/s)

VBMP flow volume that passes through the BMP (m3)
VR urban runoff (m3)
Vo flow volume that by-passes around the BMP (m3)
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v rainfall event volume (mm)
v average rainfall event volume (mm)
vc runoff from a roof top area that can be collected into a rainwater storage unit as a

result of a rainfall event (mm)
vff first flush to be diverted away from the rainwater storage unit (mm)
vr runoff volume from a catchment per rainfall event (mm)
X random variable used in describing the derived distribution theory, or the weighting

factor used in Muskingum–Cunge channel routing
x specific value of random variable X
xp x value of p percentile

(Y, y) random variable and a specific value of it
(Z, z) random variable and a specific value of it, or standard normal quantile corresponding

to exceedance probability
ζ distribution parameter of rainfall event volume (1/mm)

δ(T) Dirac delta function of time T
σ standard deviation of the instantaneous unit hydrograph of a channel reach
σ̂ sample standard deviation
θ average number of rainfall events per year
ε random variable
λ distribution parameter of rainfall event duration (1/h)
ϕ coefficient used in converting rainfall event volume to volume of runoff that can be

collected from a roof to a storage unit (dimensionless)
ω independent-uniform-random number
ψ distribution parameter of interevent time (1/h)
μ̂ sample mean

9.0 GENERAL

Urban areas are characterized by the predominance of impervious surfaces (e.g., paved roads and
roofs) and the presence of manmade or hydraulically improved drainage systems (e.g., sewers). As a
result, the response of an urban catchment to rainfall is much faster than that of a rural catchment of
equivalent area, slope, and soils. Stormwater from urban areas is therefore characterized by larger
volumes and higher peak flows. In addition, stormwater from urban areas is also heavily polluted.
Proper control and management of stormwater from urban areas is needed to reduce downstream
flooding, avoid excessive rates of erosion, and improve water quality.

Urban stormwater management is implemented through the adoption of nonstructural
practices and the use of structural infiltration, conveyance, and storage facilities designed to control
the quantity and improve the quality of runoff from urban areas. Stormwater models are developed
to numerically model the rainfall–runoff transformation processes, stormwater transport, detention
and overflow processes, and water quality degradation and improvement processes occurring on
catchments and through stormwater management systems. Most existing stormwater models are
deterministic in nature because neither the input nor the output of these models is described as
random variables. These models have been widely and routinely used for the planning, design, and
analysis of stormwater management systems. The Storm Water Management Model SWMM
(Rossman 2010) and the Hydrologic Modeling System HEC-HMS (USACE 2010) are examples
of such stormwater models.

However, the random nature of the hydrological processes involved and the uncertainty
associated with the variables, model structure, and parameters, must be taken into account in the
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analysis, planning, design, and operation of stormwater management systems. Statistical methods
have been widely used to model hydrometeorological variables that are considered random variables.
One of the major applications of these methods is determining the likelihood of occurrence of events
with certain characteristics, by means of frequency analysis or fitting of probability density functions.
A traditional outcome of such application is the set of intensity–duration–frequency (IDF) curves,
which are graphical representations of the relationship between the average rainfall intensity,
duration, and return period (Akan and Houghtalen, 2003). Other applications include the estimation
of flood frequencies, risk analysis, the characterization of pollutant concentrations in runoff, the
statistical interpolation and downscaling/upscaling of variables, regional analysis for the estimation
of flood peaks from urban areas, and the determination of critical threshold values for design. An
example of the latter is the concept of water quality capture volume (WQCV), which corresponds to
a certain volume of runoff representative of frequent events that has to be controlled to accomplish
specific water quality treatment goals (UDFCD 2001).

The conventional statistical methods used in urban stormwater management are mainly for
rainfall and flood frequency analysis purposes. These methods are usually discussed in ordinary
hydrology books; some are also presented in other chapters of this book. In this chapter we introduce
two statistical approaches that have recently been developed and applied to urban stormwater
systems. In Section 9.1, we present the so called Analytical Probabilistic Stormwater Models
(APSWM), which allow estimation of the frequency of several variables relevant to hydrologic
analysis and design using closed-form analytical equations. These models are developed based on
the probability distributions of the local rainfall event characteristics and the properties of the
catchments and drainage elements. The APSWM is a valuable complement to the two conventional
approaches used in urban stormwater management (i.e., the design storm approach and the use of
continuous simulations).

In Section 9.2, we introduce uncertainty analysis applied to urban catchments, particularly to
the performance of best management practices (BMPs), which are widely used to control the
quantity and quality of urban runoff. Several methods differing in their assumptions and level of
complexity are described and used to demonstrate that designs based only on median conditions
cannot provide reliable pollutant removal rates.

9.1 ANALYTICAL PROBABILISTIC STORMWATER MODELS

This section presents a collection of analytical equations that can be used for stormwater modeling
and design. This collection of equations is referred to as the APSWM. Following an overview of the
general methodology, the APSWM development process is illustrated.

9.1.1 Overview

The probability of occurrence and annual/seasonal averages of some output variables of interest in
hydrologic modeling can only be determined through either the use of design storms of various
return periods or the use of continuous simulation with long-term observed rainfall data as input
followed by frequency analysis on the output. Currently, the design storm approach is widely used in
regular stormwater management planning and design studies (WEF and ASCE 2012).

Design storms are hypothetical rainfall events associated with specified return periods. The
specified return periods correspond to the desired level of risk that components of a stormwater
management system need to be designed for. The basic assumption made in the use of design storms
is that the return period of the resulting runoff and peak flow is the same as that of the input design
storm. This assumption may result in significant errors in some cases (Adams and Howard 1986).
Research (e.g., Marsalek 1978, Urbonas 1979, Packman and Kidd 1980, Beaudoin et al. 1983,
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Marsalek and Watt 1984, Voorhees and Wenzel 1984, Wenzel and Voorhees 1984, Levy and
McCuen 1999, Nnadi et al. 1999, and others) has been conducted to understand the limitations of the
design storm approach and to ensure its proper use in engineering practice. Most of these studies
focus only on flood peak estimation because runoff volume was not the main concern before
stormwater quality control was required. Urbonas (1979) concludes that it is possible to develop
design storms that, when used together with a stormwater model, can reasonably predict peak flows
from small urban basins of various return periods. Comparing design storm and continuous
simulation results, Packman and Kidd (1980) point out that the proper selection of design storms
and antecedent catchment conditions is of paramount importance if the probabilities of rainfall and
runoff are to be considered equal. Studying the applications of the design storm approach for
different locations, Beaudoin et al. (1983), Wenzel and Voorhees (1984), Voorhees and Wenzel
(1984), and Nnadi et al. (1999) conclude that significant parameter sensitivity does exist and an
appropriate choice of design storm parameters is essential to produce peak flows of desired return
periods.

Although the basic assumption of the design storm approach is not proven to always be
acceptable, due to its simplicity and reproducibility, it is still widely used in planning and design.
Thus, the approach commonly taken in stormwater management is that, unless runoff volume is of
specific interest or the project is of great importance, continuous simulation is not conducted even
though it may provide more accurate estimates of peak discharge frequencies.

The analytical probabilistic approach was developed to provide an alternative to the two
conventional approaches (e.g., Guo and Adams 1998a, b; 1999a, b). This approach estimates flood
peak and volume frequency distributions using closed-form analytical equations, which are derived
from the probability distributions of the local rainfall event characteristics and the properties of the
catchments. More recently, the capabilities of the analytical probabilistic approach were expanded
with (1) the derivation of additional equations to separately model channel reaches (Guo and Zhuge
2008, Guo et al. 2009); (2) the incorporation of a hydrologic element aggregation strategy and a
probabilistic rainfall areal reduction method (Guo and Dai 2009); (3) the application of the analytical
probabilistic approach to study low-impact development practices such as rainwater harvesting
systems, green roofs, rain gardens, and bioretention systems (Guo and Baetz 2007, Zhang and Guo
2013a, 2013b, 2014); and (4) the consideration of both infiltration and saturation-excess runoff (Guo
et al. 2012). Hereinafter, the analytical equations derived in the aforementioned publications that are
useful for stormwater modeling and stormwater management purposes are collectively referred to as
the analytical probabilistic stormwater models, or simply the APSWM.

Historically, Eagleson (1972) first applies the analytical probabilistic approach for relating flood
frequency characteristics with rainfall and catchment characteristics. Afterward, research was
conducted to relate runoff and flood frequencies to basin geomorphology and rainfall characteristics
(e.g., Hebson and Wood 1982, Cordova and Rodriguez-Iturbe 1983, Diaz-Granados et al. 1984,
Sanchez 1986, Wood and Hebson 1986, Bierkens and Puente 1990, Shen et al. 1990, Sivapalan et al.
1990, Cadavid et al. 1991, Raines and Valdes 1993, Kurothe et al. 1997). Similar approaches have
been used to study urban stormwater management problems (e.g., Howard 1976, Cha and Bras 1979,
Di Toro and Small 1979, Small and Di Toro 1979, Adams and Bontje 1984, Loganathan and Delleur
1984, Di Toro 1984, Loganathan et al. 1985, 1994, Cruise and Singh 1988, Li and Adams 1994, Barbe
et al. 1996, Papa and Adams 1997, Papa et al. 1999, Guo and Urbonas 2002, Behera et al. 2006).
Adams and Papa (2000) summarize advances made in the application of the analytical probabilistic
approach to the urban stormwater management problems. More recently, similar approaches were
developed for locations where the rainfall characteristics differ significantly from those observed
in Canada and the United States (e.g., Bacchi et al. 2008; Balistrocchi et al. 2009; Andrés-Doménech
et al. 2010, 2012; Zegpi and Fernández 2010).

The approach described in this section is essentially statistical. It differs from stochastic
approaches used to model soil moisture dynamics and streamflows at the catchment scale
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(e.g., Rodriguez-Iturbe et al. 1999, Botter et al. 2007). Those stochastic approaches follow from the
theory of continuous stochastic dynamical systems or stochastic differential equations (Rodriguez-
Iturbe et al. 1999, Daly and Porporato 2010). For example, Botter et al.’s (2007) approach begins by
assuming that the daily rainfall is given by a Poisson process with exponentially distributed rainfall
depths. After considering the soil moisture dynamics in the root zone, recharge events are modeled
as a filtered Poisson process. This filtered Poisson process has the same distribution as the rainfall
events but with a different frequency. The recharge events ultimately drive the groundwater storage,
which is modeled as a linear reservoir. Using the linear reservoir and the filtered Poisson process, a
stochastic differential equation can be derived. In this case, this amounts to an ordinary differential
equation and an additive noise term. The steady-state solution of this stochastic equation results in
the probability distribution function of streamflows at the outlet of the catchment.

The analytical probabilistic approach used here has in common with the stochastic approach the
representation of rainfall depths and time between rainfall events as exponentially distributed
random variables. However, the analytical probabilistic approach models rainfall durations at the
hourly timescale using an exponential distribution. Thus, the individual rainfall events have variable
durations, whereas the stochastic approach utilizes a fixed daily duration. The analytical probabilistic
approach is suitable for urban catchments with small drainage areas, from several to a few hundred
hectares. It was mainly developed for stormwater management purposes, whereas the stochastic
approach is more appropriate to model soil moisture and streamflow distributions at the catchment
scale for an overall lumped hydrologic system.

9.1.2 Rainfall Characterization

Presented here is an alternative way of characterizing local rainfall conditions that can be used in
stormwater management planning and design. How natural, individual rainfall events are separated
from each other is presented first, followed by the fitting of probabilistic models for rainfall event
characteristics.

9.1.2.1 Separation of Rainfall Events

The analytical probabilistic approach begins with the separation and analysis of rainfall events
observed at a specific location. A continuous rainfall series recorded at a weather station is separated
into individual rainfall events. The criterion for distinguishing between consecutive events is a
minimum time period without rainfall, referred to as the minimum interevent time or interevent
time definition (IETD). Rainfall periods separated by a dry interval equal to or longer than the
selected IETD are considered as separate rainfall events. The IETD chosen should be long enough to
ensure the statistical independence between consecutive events. At the same time, the selected IETD
should not be so long as to combine meteorologically separate rainfall events into one single event.
An objective technique for obtaining an appropriate IETD is by examining the relationship between
the IETD and the resulting average annual number of rainfall events observed. When further
increases of the IETD beyond a threshold level do not result in significant changes in the average
annual number of events, that threshold level can be chosen as the IETD.

An appropriate IETD may also be selected following Cruise and Arora’s (1990) strategy for
formulating and testing Poisson partial duration models. By assuming that the length of the dry
interval between consecutive rainfall events (hereinafter referred to as the interevent time and
denoted as b) is exponentially distributed, the occurrence of storm events can be approximated as a
Poisson process if the rainfall event duration t is much smaller than b (Restrepo-Posada and
Eagleson 1982). Selection of different IETD values will result in different numbers of rainfall events
every year. If the occurrence of these events is Poissonian, then the numbers of events occurring
during each consecutive year must follow the Poisson distribution. The test suggested by Cruise and
Arora (1990), which was first proposed by Cunnane (1979), relies on the well-known fact that the
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mean and variance of the Poisson distribution are equal. Therefore, if the ratio r = Var[n]/E[n] is
formed for the annual number of event series, where n is the annual number of events and Var[·] and
E[·] are the variance and expectation operations, respectively, r should approach unity as the IETD is
increased. Ashkar and Rousselle (1987) point out that once a series has been accepted as Poisson
admissible, the likelihood of correlation between the events is greatly reduced. Therefore, a statistical
test may be devised for r based on the approximation that the factor (N− 1)r is χ2 distributed with
(N− 1) degrees of freedom (Cunnane 1979), where N is the number of years of record. The critical
values (denoted as rc, both the lower and upper bounds) can thus be determined for selected levels of
significance (Cruise and Arora 1990).

Other methods are available to assist in the selection of an appropriate IETD. Eagleson (1972),
Restrepo-Posada and Eagleson (1982), Adams et al. (1986), Adams and Papa (2000), and Andrés-
Doménech et al. (2010) provide details. Previous research has shown that a six- to twelve-hour IETD
is appropriate for most locations in the United States and Canada (Cordova and Bras 1981, Restrepo-
Posada and Eagleson 1982, Bonta and Rao 1988, Guo and Baetz 2007).

9.1.2.2 Probabilistic Models of Rainfall Event Characteristics

For planning and design purposes, urban catchments are often small in size, ranging from several
hectares to a few hundred hectares. The development of APSWM assumes that rainfall on catchments
of such size is adequately described by a representative point rainfall. Each rainfall event as observed at
a point is characterized by its rainfall volume (v), rainfall duration (t), and the interevent time (b)
before the rainfall event occurs. After the separation of rainfall events, a historical rainfall record can be
viewed as comprising a time series for each of the aforementioned rainfall event characteristics. The
individual values of v, t, and b contained in each of their respective time series may be subjected to
frequency analyses. Histograms for v, t, and b can be prepared, and probability density functions
(PDFs) can be fitted to the histograms. An average annual number of storm events can also be obtained
from these statistical calculations. Exponential PDFs have been found to often fit such histograms
satisfactorily (Eagleson 1972, 1978; Howard 1976; Adams and Bontje 1984; Adams et al. 1986).
However, in some locations the Weibull distribution is more appropriate for v (Bacchi et al. 2008,
Balistrocchi et al. 2009); in some locations the generalized Pareto distribution is more appropriate for v
and t (Andrés-Doménech et al. 2010); and in some locations the two-parameter gamma distribution is
more appropriate for v and t (Zegpi and Fernández 2010).

The development of APSWM employs the exponential distributions for rainfall characteristics
(Table 9-1). The joint PDFs of v, t, and b are sometimes also required. In cases where the random
variables are statistically independent, the joint PDF is the product of their marginal PDFs. As shown
in Adams and Papa (2000), for most Canadian locations, only weak correlations exist between
rainfall event volume and duration. Therefore, in this development, the three rainfall event
characteristics are treated as statistically independent. For some locations, v and t were found to
be closely correlated (e.g., Rivera et al. 2005, Zegpi and Fernández 2010). For those locations, care
should be taken in applying the APSWM.

Table 9-1. Probabilistic Models of Local Rainfall Characteristics.

Rainfall characteristic Exponential PDF
Distribution parameter

estimation

Volume, v (mm) f ðvÞ= ζ expð−ζvÞ ζ= 1
v

Duration, t (h) f ðtÞ= λ expð−λtÞ λ= 1
t

Interevent time, b (h) f ðbÞ=ψ expð−ψbÞ ψ= 1
b

Average annual or seasonal number of rainfall events θ
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Table 9-1 shows that ζ, λ, and ψ are distribution parameters, while θ is the annual or seasonal
total number of rainfall events. The parameters ζ, λ, and ψ may be estimated from, respectively, v,
the average event volume, t, the average event duration, and b, the average interevent time of the
rainfall record. For locations throughout Canada, estimates of the values of these parameters may be
found in Adams and Papa (2000), and for locations throughout the United States, they can be found
in Driscoll et al. (1989) or Wanielista and Yousef (1993). More up-to-date values of these parameters
may be obtained by conducting rainfall event separation and statistical analysis using local and
up-to-date rainfall data.

Using probabilistic models of storm events to represent local rainfall conditions is advantageous.
First of all, the complete spectrum of the frequency distributions of the two major storm event
characteristics (i.e., v and t) are properly described and represented. This is important for the design
of water quality and erosion control facilities. Second, the actual durations of storm events are
studied and characterized as opposed to subjectively selected durations in the development and
specification of design storms. Third, by describing and including the frequency distribution of
interevent times, the impact of dry periods and consecutive storms may be considered as well.

In processing some rainfall data, many rainfall events were found to have volumes less than a
very low threshold level, and the total volume of these small events contributes a very low percentage
to the total rainfall volume (Guo and Adams 1998a, Bacchi et al. 2008). To ensure that moderate to
large events are properly represented by the fitted theoretical distributions, storms with a volume less
than a threshold level may be omitted in the frequency analyses to determine the statistics of rainfall
event characteristics. The omission of small events can be justified given that such events result in
negligible amount of runoff on most urban catchments.

9.1.3 Event-Based Rainfall-Runoff Transformation

Rainfall-runoff transformation employed in the APSWM is similar to that used in the design storm
and continuous simulation approaches but on a rainfall event-by-event basis. In this subsection,
the rainfall-runoff transformations over the impervious and pervious areas of an urban catchment
are characterized first, followed by a description of the combination of runoff generated from
impervious and pervious areas.

9.1.3.1 Impervious Areas

Using the analytical probabilistic approach, the input storm event and the output runoff event are
both treated as a whole and no time-step-by-time-step calculations are made within individual
events. A runoff event is characterized by runoff event volume, runoff event duration, and peak
discharge rate. The runoff event volume is calculated as the difference between the volume of the
input rainfall event and the total volume of hydrologic losses.

Interception and depression storage losses are lumped together; the sum of the two losses is
referred to as depression storage losses. In developing the probabilistic models, surface depressions
are assumed to be filled before any runoff occurs for each rainfall event and the dry period that
follows is always assumed to be long enough that water accumulated in the depression storage areas
is completely evaporated (or infiltrated for pervious areas) and surface depressions are empty at the
beginning of each rainfall event.

Like many numerical hydrologic models, in calculating the total rainfall losses, an urban
catchment is divided into impervious (subscript i) and pervious (subscript p) areas. For impervious
areas, the infiltration loss is assumed to be zero and the input rainfall volume is totally converted to
runoff volume after filling the impervious area depression storage, Sdi (in mm). Thus, runoff volume
generated from impervious areas, vri (in mm), can be calculated as follows:

vri =
�
0, v ≤ Sdi
v − Sdi, v > Sdi

(9-1)
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9.1.3.2 Pervious Areas

For pervious areas, the input rainfall volume fills the pervious area depression storage, Sdp, and
infiltrates into the soil; the rainfall volume remaining after the filling of depression storage and
infiltration into the soil becomes surface runoff. The units of Sdi and Sdp are mm of water over the
entire impervious area and the entire pervious area, respectively. The duration of infiltration is
essentially the same as the rainfall duration, because runoff from the pervious surfaces is assumed to
take negligible time to reach the impervious portions of the catchment or the sewer system. Thus,
infiltration on the pervious portions of an urban catchment ceases soon after the rainfall event ends.
The total infiltration losses within a runoff event are considered as the combination of two parts,
namely, losses due to initial wetting of the soil and losses as a result of infiltration at a constant rate,
f c, throughout the duration of the runoff event. That is

Smf = Siw þ f ct (9-2)

where
Smf = maximum possible infiltration losses during a rainfall event,
Siw = initial soil wetting infiltration volume, which is assumed to be the same for all rainfall events,
f c = the ultimate infiltration capacity of the catchment soils.

Guo and Adams (1998a) show that the value of Siw can be estimated based on the infiltration
parameters of the soils and climatic conditions of the region. The runoff volume from the pervious
areas of an urban catchment, vrp (in mm), can then be calculated as

vrp =
�
0, v ≤ Sdp þ Siw þ f ct
v − Sdp − Siw − f ct, v > Sdp þ Siw þ f ct

(9-3)

To simplify expressions, the sum of Sdp and Siw is denoted as Sil hereafter and is referred to as
pervious area initial losses. Equation (9-3) implies that for runoff to occur on a pervious area, the
input rainfall event volume must be greater than the sum of the pervious area depression storage and
the maximum possible infiltration volume within the rainfall event.

9.1.3.3 Combination of Impervious and Pervious Areas

The overall runoff generation of the urban catchment is the area-weighted combination of the runoff
from the pervious and impervious portions of the catchment. In an urban catchment, Sdi is usually
less than Sdp. Therefore, if v is less than Sdi, then v must be less than ðSil þ f ctÞ. If the fraction of the
impervious area of the urban catchment is h, then combining Equations (9-1) and (9-3) gives the
following equation for urban catchments:

vr = hvri þ ð1 − hÞvrp =
( 0, v ≤ Sdi
hðv − SdiÞ, Sdi < v ≤ Sil þ f ct
v − Sd − f cð1 − hÞt, v > Sil þ f ct

(9-4)

where Sd = hSdi þ ð1 − hÞSil , which is the area-weighted depression storage of the impervious areas
and the initial losses of the pervious areas of the urban catchment.

Many continuous or event simulation models employ similar rainfall–runoff transformation
mechanisms but on a time-step-by-time-step basis, with a determination of rainfall losses for each
time step. In contrast, the rainfall–runoff transformation considered here for the development of
probabilistic models is based on individual events, calculating total runoff volume for each individual
event. Nevertheless, the same physical processes (i.e., interception, depression storage, and infiltra-
tion losses) are considered and mathematically represented.
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9.1.4 Derived Probability Distributions of Runoff Characteristics

The general theory underlying the APSWM development is described here first. Based on this theory,
the probability distributions of runoff characteristics from small catchments are then derived. Also
illustrated here is the development of APSWM for three different stormwater management planning
and design purposes: the design of detention ponds for flood control, the routing of flood waves
through channel reaches, and the evaluation of the performance of low-impact development practices.

9.1.4.1 Derived Probability Distribution Theory

The derived probability distribution theory states that the probability distribution of a dependent
random variable is fundamentally related to, andmay be derived from, those of the independent random
variables using the functional relationship between the dependent and independent random variables.

Consider a one-to-one and monotonic functional relationship, y = g(x), which transforms
values of an independent random variable X to values of a dependent random variable Y. The inverse
of this function is x = g−1(y). The cumulative distribution function (CDF) of Y is

FYðyÞ=P½Y ≤ y�
=P½X ≤ g−1ðyÞ�
= FXðg−1ðyÞÞ

=
Z

g−1ðyÞ

−∞
f XðxÞdx (9-5)

where P[·] = probability that the condition specified inside the brackets is satisfied, FXðg−1ðyÞÞ is the
CDF of X, because g−1(y) = x, fX(x) is the PDF of X. The interval (−∞, g−1(y)) defines the range of X
such that the corresponding values of Y is less than a specific value y.

If fX(x) and g−1(y) are both known, the CDF of Y, FY(y), can be obtained by carrying out
the integration shown in Equation (9-5). The PDF of Y is the first derivative of FY(y) with
respect to y.

If a dependent random variable Z is a function of multiple random variables, the theory can also
be applied to derive the PDF of Z. For instance, consider Z a function of two random variables X and
Y given by

z= gðx, yÞ (9-6)

where z, x, and y are, respectively, specific values of Z, X, and Y. The joint PDF of X and Y is denoted
as f X,Yðx, yÞ. The domain of X and Y such that the corresponding Z values are less than or equal to a
specific value z is denoted as Rz . Following the same logic as for the case of a single independent
random variable, the CDF of Z is determined by integrating the joint PDF of X and Y over the
domain of X and Y values included in Rz . That is,

FZðzÞ =P½Z ≤ z�
=
ZZ
Rz

f X,Yðx, yÞdxdy (9-7)

The domain Rz is expressed in terms of x, y, and z and is determined based on the functional
relationship expressed in Equation (9-6). The integration in Equation (9-7) will make x and y
disappear, and the CDF of Z, FZðzÞ, may be obtained as a function of z only. The PDF of Z can then
be determined by differentiating its CDF with respect to z:
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f ZðzÞ=
d
dz

ZZ
Rz

f X,Yðx, yÞdxdy (9-8)

The previously described procedure constitutes the fundamentals of the derived probability
distribution theory, which may be applied to derive the PDF of a random variable that is a function
of other random variables. Success of such a derivation depends upon the determination and
integration of the joint probability density function of the independent random variables. Adams
and Papa (2000) provide more details about the derived probability distribution theory.

9.1.4.2 Runoff Event Volume

Equation (9-4) describes the functional relationship between the dependent random variable vr and
independent random variables v and t. (In describing random variables, a capital letter is
conventionally used to represent the random variable itself, whereas the corresponding lower case
letter is used to represent a particular value that the random variable may take. Throughout this
chapter, this convention is followed as much as possible, but at the same time, as long as no risk of
confusion exists, capital letters representing random variables are not introduced to reduce the total
number of symbols used). Guo and Adams (1998a) derive the probability distribution of VR using
the derived probability distribution theory and this functional relationship. The probability per
rainfall event that the generated runoff volume is greater than vr was also determined. This
probability, denoted as P½VR > vr�, represents the exceedance probability of VR and is given by the
following equation:

P½VR > vr�=

8>>>>>>>>><>>>>>>>>>:

expð−ζSdiÞ, vr = 0

expð−ζSdi − ζ
h vrÞ, 0 < vr ≤ hSdd

λ
λþ ζ f c − ζ f ch

expð−ζSd − ζvrÞ

þ ζ f cð1 − hÞ
λþ ζ f c − ζ f ch

exp

�
−ζSdi þ

λ
f c
Sdd −

1
h

�
ζþ λ

f c

�
vr

�
, vr > hSdd

(9-9)

In Equation (9-9), Sdd = Sil − Sdi.
The CDF of VR can be easily determined from Equation (9-9), from which its PDF can also be

determined. Knowing the PDF of VR, Guo and Adams (1998a) determine the expected value of VR

per rainfall event. This expected value can be expressed as follows:

EðVRÞ= h
ζ expð−ζSdiÞ þ λð1−hÞ

ζðζ f cþλÞ expð−ζSilÞ (9-10)

The average annual runoff volume is the product of EðVRÞ and θ. Equations (9-9) and (9-10) are
the first part of the APSWM. Using these equations, the average annual runoff volume and the
probability distribution of runoff event volume from an urban catchment can be analytically
determined.

9.1.4.3 Runoff Event Peak Discharge Rate

The rising and recession shapes of runoff hydrographs are approximated by triangular shapes. The
time base of a runoff hydrograph, or the duration of a runoff event, is estimated through the use of
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the catchment time of concentration. For this purpose, the term time of concentration, denoted tc, is
defined as the time required for runoff to travel from the most remote portion (time-wise) of the
catchment to its outlet. The duration of the runoff event can then be estimated as t + tc (i.e., the
duration of the rainfall event plus the catchment time of concentration). This can be drawn from
the observation that runoff at the outlet starts at the beginning of the corresponding rainfall event if
the delay caused by the time needed to fill the depressions of the catchment is negligible, and that it
takes time tc for the last drop of water falling on hydraulically the most remote part of the catchment
to contribute flow to the outlet.

The catchment time of concentration is treated as a constant independent of rainfall
characteristics for the determination of flood frequencies. In this regard, the catchment time of
concentration can be viewed as a parameter combining the effects of catchment slope, roughness,
length, shape, and topology. The peak discharge rate, Qp, of a triangular hydrograph with runoff
volume vr and time base (t + tc) is determined from the hydrograph geometry as

Qp =
2vr
t þ tc

(9-11)

Note that this expression for peak discharge rate is independent of the ratio between the time to
peak and the time base of a hydrograph. Arguably, Equation (9-11) may provide good estimates of
peak discharge rates for some runoff events, but poor estimates for other events. When the interest is
not in the determination of the peak discharge rate of a specific event, but in the determination of the
exceedance probability of peak discharge rates from thousands of independent runoff events, the
triangular hydrograph assumption for individual events may be justified.

Combining Equation (9-11) with Equation (9-4), the peak discharge rate Qp resulting from a
rainfall event with volume v and duration t can be expressed as

Qp =

8>>>><>>>>:
0, v ≤ Sdi
2hðv − SdiÞ

t þ tc
, Sdi < v ≤ Sil þ f ct

2½v − Sd − f cð1 − hÞt�
t þ tc

, v > Sil þ f ct

(9-12)

Equation (9-12) describes the functional relationship between the dependent random variable
Qp and independent random variables v and t. Based on this relationship and the derived probability
distribution theory, Guo and Adams (1998b) derive the probability distribution of Qp. For two types
of catchments, the exceedance probability per rainfall event, P½Qp > qp�, can be summarized as
follows. For catchments with f c < Sdd∕tc,

P½Qp > qp�=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

2hλ
2hλþ ζqp

exp
�
−ζSdi −

ζtc
2h

qp
�
, qp < 2f ch

2λζð1 − hÞðqp − 2f chÞ
ð2hλþ ζqpÞð2λþ ζqp þ 2f cζ − 2hf cζÞ

exp

�
−
ðζSil − λtc − f cζtcÞqp − 2f cζhSdi þ 2λhSdd

qp − 2f ch

�
þ 2hλ
2hλþ ζqp

exp
�
−ζSdi −

ζtc
2h

qp
�
, 2f ch ≤ qp <

2hSdd
tc

λ
λþ ζ

	qp
2 þ f c − f ch


 exp�−ζSd − ζtc
2
qp
�
, qp ≥

2hSdd
tc

(9-13)
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For catchments with f c ≥ Sdd∕tc,

P½Qp > qp�=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

2hλ
2hλþ ζqp

exp

�
−ζSdi −

ζtc
2h

qp

�
, qp <

2hSdd
tc

2λζð1 − hÞð2f ch − qpÞ
ð2hλþ ζqpÞð2λþ ζqp þ 2f cζ − 2hf cζÞ

exp

�
−
ðζSil − λtc − f cζtcÞqp − 2f cζhSdi þ 2λhSdd

qp − 2f ch

�
þ 2λ
2λþ ζðqp þ 2f c − 2f chÞ

exp

�
−ζSd −

ζtc
2
qp

�
,

2hSdd
tc

≤ qp < 2f ch

λ

λþ ζ
�
qp
2 þ f c − f ch

� exp

�
−ζSd −

ζtc
2
qp

�
, qp ≥ 2f ch

(9-14)

Equations (9-13) and (9-14) also form part of the APSWM.

9.1.4.4 Runoff Routing through Detention Ponds

For the sizing of urban flood control detention ponds, regulatory agencies often require that for a
series of return-period design storm events up to and including the most severe one, peak discharges
for developed conditions with flood control in place shall not exceed peak discharges under existing
land-use conditions or some other specific values (Walesh 1989). The design storm approach has
therefore naturally been used for designing flood control detention facilities to satisfy this type of
continuous probability criteria (Akan 1989, WEF and ASCE 2012). Inherent in the design storm–
based approach is the assumption that the return period of a design storm equals the return period of
the peak discharge rate from the catchment resulting from the input design storm and the
consequent peak outflow rate from the flood control pond. Continuous simulation involves the use
of long-term historical precipitation records together with a simulation model to evaluate the
simulated historical response of a proposed detention pond. The design is modified so as to produce
an acceptable statistical performance of the system, consistent with the specified continuous
probability criteria for flood control. The disadvantage of the continuous simulation approach is
that it involves many more computational steps, and depending on how frequency analysis is
performed on the continuous simulation results, the final design results may not be as reproducible
as those from the design storm approach. As a result, continuous simulation is not commonly used
in sizing flood control detention facilities.

Guo and Adams (1999b) develop probabilistic models to approximate continuous simulation
results for the sizing of flood control detention facilities. Assuming that (1) the inflow hydrograph is
triangular in shape, (2) the detention facility is empty at the start of any flood-producing runoff event,
and (3) the outflow hydrographs have a linear rising limb, then Figure 9-1 may be used to represents
the routing of the hydrograph through a detention facility for each runoff event. Figure 9-1 shows that
the time base of the inflow hydrograph is (t + tc), where t is the duration of the causal rainfall event and
tc is the catchment time of concentration. The outflow occurs immediately after the start of the inflow
hydrograph. Because the outflow at an instant of time is directly proportional to the storage volume
reached at that time, the highest storage volume is reached only when the inflow and outflow
hydrographs intersect, and afterward the outflow rates would always be greater than the inflow rates.
That is why the outflow hydrograph intersects with the inflow hydrograph at the peak of the outflow
hydrograph and along the recession limb of the inflow hydrograph. The volume of the runoff event,
vr , in mm of water over the catchment, entering the detention facility equals the area enclosed by the
inflow hydrograph. The shaded area in Figure 9-1, denoted SQo

(mm), equals the maximum storage
volume utilized during the passage of the runoff event. Hence, the peak outflow rate, Qo, is the
discharge rate of the detention facility at storage volume SQo

.
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Figure 9-1 shows that

SQo
=

1
2
ðQi − QoÞðt þ tcÞ (9-15)

where Qi is the peak inflow rate and has the units of Qo, (mm/h), and t and tc are both in h.
Rearranging Equation (9-15), and noting that vr = 1

2Qiðt þ tcÞ, the following is obtained:

Qo =
2ðvr − SQo

Þ
t þ tc

(9-16)

Substituting Equation (9-4) for the expression of vr into Equation (9-16) results in the following:

Qo =

8>>>>><>>>>>:

0, v ≤ Sdi
2½hðv − SdiÞ − SQo

�
t þ tc

, Sdi < v ≤ Sil þ f ct

2½v − Sd − f cð1 − hÞt − SQo
�

t þ tc
, v > Sil þ f ct

(9-17)

To use Equation (9-17), the relationship between SQo
and Qo must be known. In the case where

the storage–discharge relationship of a pond can be expressed in a functional form, this functional
form can be substituted into Equation (9-17), and Qo may be expressed as an explicit function of v, t,
catchment hydrologic parameters, and constants/coefficients included in the functional storage–
discharge relationship. However, the storage–discharge relationships of actual detention facilities are
often only available in a tabular form, with pairs of storage–discharge values corresponding to
various water levels in the detention facility. In these cases, if the storage–discharge table is not
replaced with a fitted analytical function, Equation (9-17) can only be solved iteratively by trial and
error using the storage–discharge table of the detention facility.

In developing the probabilistic model, the solution of Equation (9-17) is not explicitly sought,
but rather interest resides in the probability per rainfall event that Qo exceeds a given value q,
denoted P½Qo > q�. If Sq is the storage volume of the detention facility at which the routed discharge
rate from the facility equals the given value q, then this Sq value can be used as the SQo

value in
Equation (9-17) to derive P½Qo > q� based on Equation (9-17) and the probability distributions of
v and t. For any given value q, the corresponding Sq value can be determined from the storage–
discharge table of the detention facility, through interpolation if necessary.

Outflow Hydrograph
Inflow Hydrograph

t + tc

Figure 9-1. Routing of hydrographs through a flood control detention facility.
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In a typical design scenario, the values for storage volume in the storage–discharge table are
estimated from the grading plan of the detention facility, and discharge values are determined from
the selected orifice size and the hydraulic head over the orifice at the corresponding storage volume.
Due to natural terrain conditions or the installation of an orifice and weir combination as the outflow
control device, the storage–discharge relationship may be discontinuous. As a result, devising an
analytical function for the storage–discharge relationship may be problematic. Thus, the strategy
used in Guo and Adams’s (1999b) derivation is that the storage–discharge relationship is treated as
comprising discrete combinations of (Sq, q). For each of these combinations, P½Qo > q� is derived.
The ordered combinations of P½Qo > q� for all possible discrete values of q, which are of interest in
planning and design, forms the probability distribution of the peak outflow rate Qo. This strategy
greatly simplifies the derivation that would be required if the storage–discharge relationship is
treated as a function and substituted into Equation (9-17).

Following that simplifying strategy and utilizing the functional relationship between dependent
random variable Qo and independent random variables v and t as described in Equation (9-17), Guo
and Adams (1999b) derive an analytical expression for the exceedance probability of P½Qo > q� as a
function of contributing catchment hydrologic parameters, parameters reflecting local climatic
conditions, and q and the corresponding Sq values. The P½Qo > q� results presented in the following
are different for four possible types of (Sq, q) combinations.

For Type 1 (Sq, q) combinations with q < 2f ch and Sq < hSdd − qtc∕2,

P½Qo > q�= 2hλ
2hλþ ζq

exp

�
−ζ

�
qtc
2h

þ Sdi þ
Sq
h

��
(9-18)

For Type 2 (Sq, q) combinations with q < 2f ch and Sq ≥ hSdd − qtc∕2,

P½Qo > q� = λ
λþ ζ

	q
2 þ f c − f ch


 exph−ζ�qtc
2

þ Sd þ Sq
�i

þ 2λζð1 − hÞð2f ch − qÞ
ð2hλþ ζqÞð2λþ ζqþ 2f cζ − 2hf cζÞ

exp

"
−
ðζSil − λtc − f cζtcÞq − 2f cζðhSdi þ SqÞ þ 2λðhSdd − SqÞ

q − 2f ch

#
(9-19)

For Type 3 (Sq, q) combinations with q ≥ 2f ch and Sq < hSdd − qtc∕2,

P½Qo > q� = 2hλ
2hλþ ζq

exp
h
−ζ

�qtc
2h

þ Sdi þ
Sq
h

�i
þ 2λζð1 − hÞðq − 2f chÞ
ð2hλþ ζqÞð2λþ ζqþ 2f cζ − 2hf cζÞ

exp

�
−
ðζSil − λtc − f cζtcÞq − 2f cζðhSdi þ SqÞ þ 2λðhSdd − SqÞ

q − 2f ch

�
(9-20)

For Type 4 (Sq, q) combinations with q ≥ 2f ch and Sq ≥ hSdd − qtc∕2,

P½Qo > q�= λ

λþ ζ
�
q
2 þ f c − f ch

� exp

�
−ζ

�
qtc
2

þ Sd þ Sq

��
(9-21)

With the upstream catchment characterized by its area, h, Sdi, Sil, f c, and tc, and the downstream
detention pond described by the ordered pairs of (Sq, q) values, the probability of the outflow
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from the detention pond exceeding each q value can therefore be evaluated analytically using
Equation (9-18) through (9-21). Through interpolation and extrapolation of the ordered pairs of
(Sq, q) values, the pond storage volume corresponding to any specific pond outflow value of interest
may be obtained, the probability that the pond outflow exceeding that specific outflow value can also
be analytically evaluated using Equations (9-18) through (9-21). In a design situation, the q values
and their exceedance probabilities will be given according to the flood control criteria, and the
required corresponding Sq values may be obtained through trial-and-error calculations using
Equations (9-18) through (9-21). These equations form the part of the APSWM that facilitates
the probabilistic routing of runoff through flood control detention ponds and the hydrologic design
of detention ponds to satisfy continuous probability criteria.

Guo and Adams (1999a) also derive analytical equations that can be used for the analysis of
detention ponds for stormwater quality control purposes. Those equations are not presented here
because the format of the design criteria for stormwater quality control is not that uniform across
jurisdictions, whereas equations derived in Guo and Adams (1999a) can only be used to estimate the
stormwater capture efficiency and average detention time provided by quality-control detention
ponds. Although inappropriate, some jurisdictions still specify stormwater quality control criteria in
terms of design storms.

9.1.4.5 Runoff Routing through Channel Reaches

A channel reach, such as a stream segment, drainage ditch, or sewer pipe, usually attenuates and
translates runoff peaks. In stormwater management studies, runoff routing through channel reaches
is often conducted not to provide detailed real-time flood wave behavior, but to determine flood
frequency distributions at downstream locations of interest. The design storm approach, as used in
stormwater management, properly models only changes (attenuation and translation) to individual
hydrographs; the quantification of the associated shift or statistical transformation of peak inflow as
a random variable is not attempted.

Guo et al. (2009) propose a probabilistic channel-routing method and derive analytical equations
that can be used to determine the changes to the entire probability distribution of flood peaks induced
by channel reaches. The analytical equations eliminate a major deficiency of the design storm approach
by appropriately following not only the key hydrologic changes that a channel reach typically makes to
individual inflow hydrographs, but also the transformations in the probability distribution taking place
from the upstream to the downstream cross-sections of a channel reach.

Similar to any time-step-by-time-step channel routing method, the probabilistic channel-
routing method was developed by first considering the physical characteristics of a channel reach
and the equations governing flood flows. The difference is that the probabilistic approach needs a
more concise way of representing the effect of a channel reach on the reduction of flood peaks. To
understand this concise representation, the following brief review of conventional channel routing
calculations is provided first.

Probabilistic channel routing is based on the widely used Muskingum–Cunge channel routing
method (Fread 1993), which employs the equation of continuity:

I − O=
dS
dT

(9-22)

where I is the inflow rate to the reach, O is the outflow rate from the reach, and S is the storage of
water within the entire reach at time T. McCarthy (1938) first expresses S as

S=K½IX þ Oð1 − XÞ� (9-23)

where K is a routing coefficient and X is a weighting factor.
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Cunge (1969) shows that X can be related to the reach characteristics as follows:

X =
1
2

�
1 −

qo
Sf cΔx

�
(9-24)

where qo is the discharge per unit top width of the channel, c is the celerity of a kinematic (or
diffusive) wave, and Δx is the length of the reach. The friction slope Sf may be approximated as the
initial slope of the energy grade line (Fread 1993), or simply by the slope of the channel reach. The
value of c is estimated as a function of the average velocity V by

c=mV (9-25)

where m is the kinematic ratio, which depends on the shape of the cross-section of the reach (Fread
1993). It can be estimated using

m=
5
3
−
2
3

Aw

BwPw

dPw

dy
(9-26)

where
Bw = top width of the channel,
Aw = cross-sectional area,
Pw = shear perimeter, and
y = water depth of the channel cross-section.

Alternatively, a diffusive wave celerity equation (Jain 2001) may be used to estimate c, in which
case the ratio between wave celerity and flow velocity may be different from m. The kinematic wave
celerity is often used in practice, for the sake of simplicity. A more recent alternative for computing X
was presented by Dooge (1982).

The value of K is commonly estimated as the travel time of the wave through the reach:

K =
Δx
c

(9-27)

Thus, both K and X values can, to some extent, be related to the physical characteristics of the
reach. Routing can be done using either constant m and c parameters (i.e., using a single average
discharge and velocity) or variable parameters (i.e., estimated for each new discharge and velocity
during the routing process). Equations (9-22) through (9-27) form the basis of the Muskingum–Cunge
channel-routing method. It blends the greater predictive ability of the diffusion wave method with the
simplicity of hydrologic routing, resulting in one of the most commonly used general techniques.

The probabilistic channel-routing method presented in Guo et al. (2009) is made possible by
concisely representing the major effect that channel reaches have on event hydrographs. With
distributed lateral inflows into a channel reach treated as outflows from adjacent catchments joining
at the downstream end of the channel reach, the translation and storage effects on the upstream
inflow hydrographs exerted by the channel reach are considered separately in the development of the
probabilistic channel-routing method. If rain falling on a catchment is viewed as inflow to it, then in
terms of flow routing, a lumped catchment also exerts translation and storage effects on inflow
hydrographs. Therefore, only for the purpose of calculating the flood peak reduction caused by a
channel reach, the channel reach may be viewed as equivalent to a catchment. Nevertheless, physical
and functional differences exist between a catchment and a channel reach. In the development of the
probabilistic channel-routing method, with appropriate attention paid to the differences between a

PROBABILISTIC MODELS FOR URBAN STORMWATER MANAGEMENT 349



channel reach and a catchment, a channel reach is treated as an equivalent catchment for quantifying
its flood peak reduction effects.

Because unit hydrographs of catchments are commonly used to combine and represent all the
effects catchments exert on incoming effective rainfall hyetographs, a unit-hydrograph-like mathe-
matical analogy was made and obtained for a channel reach, with the potential to represent all the
effects that channel reaches exert on inflow hydrographs. To this end, Equations (9-22) and (9-23)
are used to solve for O in response to a unit impulse inflow into the reach at time zero, which results
in the instantaneous unit hydrograph (IUH) from the channel reach:

uðTÞ= e
−T

Kð1−XÞ

Kð1 − XÞ2 −
Xδð0Þ
ð1 − XÞ (9-28)

In Equation (9-28), u(T) is the IUH of the channel reach and δ(0) is the Dirac delta function at
time T = 0. The IUH of a channel reach shows a negative impulse at T = 0 and exponential
recession afterward. Other than the initial negative impulse, it is similar to the response of a single
linear reservoir to an instantaneous but unit input.

With Equation (9-28) as the IUH of a channel reach, the channel reach can in fact be treated as a
catchment for flow-routing purposes. In essence, channel reaches transform inflow hydrographs in a
manner similar to the way catchments transform effective rainfall hyetographs: by attenuating and
translating the input. Because the time base of a runoff hydrograph is assumed to be equal to the
duration of the causal rainfall event plus the catchment tc, the latter should explicitly include the
translation time over the catchment and the storage-induced delay time by the catchment.
The longer the catchment tc, the greater the degree of peak attenuation. In probabilistic channel-
flood routing, the flood peak reduction effect of a channel reach is accounted for by increasing the tc
of the upstream catchment that discharges into the channel reach.

The difference between a channel reach and a catchment is that pure translation (which does
not occur in nature but occurs in calculation if X = 0.5 when the Muskingum–Cunge channel-
routing method is used) of water occurring in a channel reach does not attenuate incoming flood
peaks, whereas translation of water on a catchment always results in attenuation of peak rainfall
input. This is because pure translation of water inside a spatially confined channel may not cause
diffusion of water and hence does not change the temporal shape of the inflow hydrograph,
whereas translation of water on a catchment surface facilitates concentration of spatially
distributed rainfall and simultaneously diffuses the incoming rainfall hyetograph in time. This
difference necessitates that the additional delay time that should be added to the tc of the upstream
catchment, to account for the flood attenuation effect of a downstream channel reach, should only
be the storage-induced delay time of the channel reach, not the translation time of flood waves
through the channel reach; although the two occur in nature simultaneously and may be
proportional to each other.

Temporary storage of water causes the storage-induced delay time of both a catchment and a
channel reach. The functional effects are the same: the spreading in time of inflow hydrographs and
the reduction of inflow peaks. The physical difference is that storage over a catchment includes
surface depression, distributed pond/reservoir storage, and valley storage of river flows. These are
lumped, as being a part of the catchment. Whereas the storage a channel reach provides includes
only its valley storage. The concept of storage-induced delay time (simply referred to as storage-delay
time) is introduced for the purposes of separating translation from storage and accounting for the
flood attenuation effect of a channel reach.

To estimate the storage-delay time tsd of a channel reach, the moments of the IUH of the
channel reach are examined. The first moment of the IUH about the origin is found to be equal to K.
The second moment of the IUH about the mean (σ2) is found to be (Guo et al 2009)
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σ2 =K2ð1 − 2XÞ (9-29)

The first moment about the origin is a measure of the average time it takes for a unit impulse
inflow to pass through a reach and become a flood wave in the process. The standard deviation σ,
i.e., the square root of the second moment about the mean, characterizes the increase in the duration
(temporal width) of the flood wave as it travels through the reach.

The functional difference between a catchment and a channel reach results in the fact that,
unlike a catchment, the mean of the IUH of a channel reach, which measures the wave translation
time through the reach, does not change the shape of an inflow hydrograph and does not directly
contribute to the storage-induced delay time of the channel reach. The standard deviation of the
IUH, however, does characterize the increase in the width or duration of a flood wave as it travels
through the reach. The tsd of the channel reach should approximately equal the amount of increase in
the duration of a flood wave as it travels through the reach and should therefore be proportional to
the standard deviation of the IUH.

Assuming that the tsd of a channel reach is directly proportional to the standard deviation of its
IUH, the special case with X = 0 (level-surface storage) may be considered, so as to determine the
value of the proportionality between tsd and σ. Equation (9-24) shows that short flat reaches, or short
reaches with rough surfaces, have X close to zero. These reach characteristics make them behave
more like a catchment with little storage. Because the time of concentration of a catchment without
storage effects equals the longest time of travel of a wave through the catchment, the tsd of a reach
with X = 0 can therefore be equated to the time of travel through the reach. The time of travel for
water droplets through the reach is mK, where K is the wave travel time through the reach and m is
the kinematic ratio, which is the ratio between wave celerity and flow velocity. Because σ = K when
X = 0, the proportionality between tsd and σ is thus m for the special case of X = 0. The duration of
the causal rainfall event may affect the proportionality constant as well. Longer rainfall events may be
associated with slightly smaller proportionality constants. However, to achieve an accuracy that is
normally expected for planning and design purposes, these details can be neglected, and it is assumed
that when X = 0, tsd = mσ for all rainfall events.

Generalizing this reasoning to cases with nonzero X values, the tsd of a channel reach is then
mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
, and the time base of any flood hydrograph will increase by mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
after passing

through the channel reach. Because the K, X, and m values of a reach provide sufficient information
about the reach for Muskingum–Cunge routing calculations, mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
captures and condenses

this information. If tsd is not too long, as compared with the tc of the upstream catchment, the
channel reach can be lumped with the upstream catchment for routing purposes, and the time of
concentration of the lumped equivalent catchment is:

tcc = tc þ tsd = tc þmK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
(9-30)

This tcc combines the rainfall–runoff routing effect of the upstream catchment and the peak
attenuation effect of the downstream channel reach. The other parameters of this equivalent
catchment are the same as those of the catchment upstream of the inflow cross-section of the channel
reach. Using tcc as the tc in Equations (9-13) and (9-14), the exceedance probability distribution of
peak flows from the reach can be analytically determined. Separate calculation of tsd based on the
physical characteristics of the channel reach makes its flood peak attenuation effect explicit and
accountable.

9.1.4.6 Conversion from Event-Based Exceedance Probability to Return Period

The previously presented derived probability distribution results comprise the main part of the
APSWM. The majority of them are expressed in the form of the exceedance probability of a quantity
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of interest per rainfall event. The conversion from exceedance probability per rainfall event to return
period is as follows:

TR =
1
θP

(9-31)

where
TR = return period (in years) of the quantity of interest,
θ = average number of rainfall events per year, and
P = exceedance probability per rainfall event.

If the quantity of interest is the runoff event volume from a catchment, then P is P½Vr > vr� as
shown in Equation (9-9); if the quantity of interest is the peak outflow rate from a detention pond as a
result of a runoff event, then P is P½Qo > q� as shown in Equations (9-18) through (9-21). Thus, a simple
inversion of the previously derived exceedance probabilities can convert the APSWM results to return
periods. To apply APSWM for a specific location, event-based analysis of precipitation records must be
conducted to obtain the values of θ and the other three distribution parameters (i.e., ζ, λ, and ψ).

9.1.4.7 Sizing of Storage Units for Rainwater Harvesting

The analytical probabilistic approach can also be effectively used for the study of low-impact
development (LID) practices such as rain gardens, green roofs, and rainwater harvesting systems. As
an example, derived equations that can be used for sizing storage units for rainwater harvesting are
presented here.

Advocated by green building design principles is the use of rainwater storage units to collect roof
runoff during nonwinter seasons for nonpotable uses (Kibert 2005). Depending on the type, design,
and construction of roofs, some may collect 100% of rainfall and convert it to runoff, while some may
convert only a fraction of rainfall to runoff. As a general case, a factor ϕ may be applied to convert
rainfall to runoff. In climates where evaporation during rainfall events is high and cannot be
neglected, the ϕ values may be further reduced to account for this loss of evaporation during rainfall
events. In some green building applications, diverting the first flush of each event away from the
rainwater storage unit may be desirable. If this is required, the volume of runoff that can be collected
in the storage unit from a rainfall event is

vc =
�
0, v ≤ vf f
ϕðv − vf f Þ, v > vf f

(9-32)

where
v = depth or volume of the rainfall event,
vff = designated first flush depth, and
vc = runoff that can be collected into the storage unit; these variables are all measured in
depth (mm) of water over the rooftop area.

Given the marginal PDF of v (Table 9-1) and the functional relationship between vc and v as
shown in Equation (9-32), the probability distribution of vc can be obtained by using the derived
probability distribution theory. The expected value of vc per rainfall event, E[vc], can then be
determined as well. The annual total volume of runoff (denoted as Ra) generated from the roof after
diverting first flush is the product of E[vc] and θ. It can be expressed as

Ra =A
θφ
ζ
e−ζvf f (9-33)
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where A is the area of the vertical projection of the roof (hereafter referred to as the rooftop area) and
θ is the average number of rainfall events per year when the storage unit is in operation. With ζ
expressed in 1/mm, A in m2, and vff and vc in mm over the rooftop area, the Ra calculated using
Equation (9-33) has the unit of liters (L). If other unit systems are used, proper unit conversion needs
to be applied. Guo and Baetz (2007) provide detailed derivations.

Water collected in the storage unit during rainfall events is used for landscaping, hardscape
cleaning, and/or maintenance purposes during dry periods between successive rainfall events.
Within the duration of individual rainfall events, no water needs to be taken from the storage unit.
Thus, the annual total length of time when water needs to be withdrawn from the storage unit is

Td = θE½b�= θ
Z∞
b= 0

bψe−ψbdb=
θ
ψ

(9-34)

where E[b] is the expected value of interevent time b.
Depending on the size of the storage unit, the local climate, and the use rate, water may not be

available when it is needed. The reliability of the storage unit in supplying water is defined as the
fraction (or percentage) of time when use needs are satisfied by water collected in the storage unit.
This reliability is denoted as Re (dimensionless). The average daily rate of water use from the storage
unit is denoted as G (L/day), and G is considered as a constant. If G varies significantly from month
to month or season to season, the following equations may be used separately for individual seasons
within which G remains relatively constant.

A first-hand estimate of the maximum use rate that may be provided by a storage unit with a
reliability of Re is

Gmax =
Ra

TdRe
=

Aϕψ
ζRe

e−ζvf f (9-35)

This maximum rate can only be provided when the storage unit is large enough to capture and
store 100% of collectable runoff from all rainfall events. In reality, spills from the storage unit may
occur when it is full while more rain water is still draining to it. Even if the storage unit is large
enough for individual rainfall events, when one rainfall event is followed closely by another, spills
may still occur because the storage unit is not empty when the next event occurs.

To estimate the required storage volume for a desired use rate and reliability, the amount of rain
water that can be actually collected and subsequently used has to be determined. This is done by
determining the total volume that is spilled from the storage unit. To determine the annual total spill
volume, a use/load cycle (referred to as the current cycle or the cycle) starting from the beginning of a
dry period, or the end of the last rainfall event, is analyzed. The interevent times, durations, and
depths of rainfall events comprising each use/load cycle are treated as statistically independent,
exponentially distributed random variables. The probability per cycle of a spill volume equaling or
exceeding a given value is derived using the derived probability distribution theory by Guo and Baetz
(2007). As a part of this probability, the probability per cycle that some spill occurs (denoted GP(0),
where the argument 0 indicates that the spill is greater than zero) is derived to be

GPð0Þ=
�

Aϕψ
Aϕψþ ζG

þ ζG
Aϕψþ ζG

e−ζB∕ðAϕÞ−ψB∕G
�
e−ζvf f (9-36)

where B is the size of the storage unit in L.
The annual total spill volume is simply the product of the annual number of cycles and the

expected value of spill per cycle. The annual total volume collected into the storage unit and utilized
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subsequently is denoted as Rc. Rc can be calculated as the annual total volume of runoff collected
from the roof with diversion of first flush (i.e., Ra) minus the annual total spill volume, or (Guo and
Baetz 2007)

Rc =
Aφθ
ζ

½e−ζvf f − GPð0Þ� (9-37)

The length of time that this captured volume sustains various uses is simply Rc divided by the
use rate G. Because the annual total length of dry periods when water is required is θ∕ψ [from
Equation (9-34)], the reliability of having water in the storage unit when needed is

Re =
Rc∕G
θ∕ψ

=
Aϕψ

Aϕψþ ζG
e−ζvf f ½1 − e−ζB∕ðAϕÞ−ψB∕G� (9-38)

Equation (9-38) may be used to determine the reliability for a given location, roof area, storage
unit size, and use rate. Equation (9-38) shows that given a location, roof area, and use rate, the
maximum reliability that can be achieved is

Remax =
Aϕψ

Aϕψþ ζG
e−ζvf f (9-39)

This maximum reliability can only be achieved when B approaches infinity. Similarly, given a
desired reliability Re and infinite storage volume, the maximum sustainable use rate can be obtained
by solving Equation (9-38) for G. The result is

Gmax =
Aϕψ
ζ

�
e−ζvf f

Re
− 1

�
(9-40)

The most common application is to determine the required storage volume knowing the desired
reliability, roof area, and average water use rate. This required storage volume is obtained by solving
Equation (9-38) for B:

B=
AϕG

ζGþ Aϕψ
ln

�
Aϕψe−ζvf f

Aϕψe−ζvf f − ReðAϕψþ ζGÞ
�

(9-41)

In using Equation (9-41), care must be taken to ensure that the desired Re is less than or equal to
the maximum that may be achieved.

9.1.5 Example 9-1: Flood Quantile Estimation and Flood Control Detention Pond
Design in Chicago, Illinois

Guo and Baetz (2007) give example applications of the sizing equations for rainwater harvesting for
two locations: Chicago, Illinois and Phoenix, Arizona. Presented here are example applications of
flood quantile estimation and flood control analysis using the APSWM; Guo (2001) provides more
details about these example applications, whereas Quader and Guo (2006) and Guo and Markus
(2011) report additional example applications of the APSWM for real watersheds in Ontario,
Canada, and the Chicago area, respectively.

As a first step in using the APSWM, the event-based local rainfall statistics must be obtained. To
represent the climate in the Chicago area, a 50-year hourly historical rainfall record (from 1948 to
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1997) from the Midway Airport in Chicago was analyzed. A minimum inter-event time of 12 h was
used to separate the continuous hourly record into individual events, and rainfall events with
volumes less than 0.5 mm were omitted from statistical analysis. To avoid snowfall events, data from
November through March were not included in the analysis. The average rainfall event volume,
average rainfall event duration, and average interevent time were found to be 13.3 mm, 8.62 h, and
90.9 h, respectively. With these mean values and using the method of moments, exponential
distributions may be fitted to rainfall event volume, duration, and inter-event time (see Table 9-1).
The annual average number of rainfall events was determined to be 45.

For flood control analysis and design, the purpose of conducting design storm modeling or
continuous simulations and applying the analytical probabilistic approach is to determine peak flood
discharge rates of various return periods from a catchment of interest and to design flood control
structures to satisfy flood control requirements. In the example study, the continuous hourly rainfall
data from the Midway Airport in Chicago, the fitted exponential distributions, and the design storms
developed for the Chicago region were used for comparison purposes.

A hypothetical urban catchment in the Chicago area has an area of 259 hectares and an
imperviousness of 35%. The average slope of the catchment is 0.005 m/m. The US Environmental
Protection Agency’s Stormwater Management Model, Version 4, or SWMM4 (Huber and Dickinson
1988) was used for continuous simulation. Table 9-2 lists the other hydrologic parameters input to
the SWMM4 model to represent the catchment.

The peak discharge rates of individual runoff events were determined from the simulated
continuous flow series. These individual peak discharge rates were then ranked in descending order.
The peak discharge rate exceedance probability is determined using the Weibull plotting position
formula. This exceedance probability is then converted to a corresponding return period according
to Equation (9-31). Plotting of these peak discharge rates versus their corresponding return periods
in a graph facilitates the estimation of peak discharge rates of desired return periods from simulated
continuous flow series.

For design storm modeling, both SWMM4 and the Hydrologic Engineering Center–Hydrologic
Modeling System (HEC-HMS) developed by the US Army Corps of Engineers (USACE 1998) were
used. The HEC-HMS model allows the choice of several precipitation loss calculation methods and
several runoff routing methods. The “initial and uniform loss rate” method was selected because
it closely resembles the method used in the analytical probabilistic approach. The Clark unit
hydrograph method was chosen for catchment runoff routing calculations. The Clark unit hydro-
graph method requires the input of the catchment time of concentration and storage coefficient,
which were estimated by comparing the peak discharge rates simulated using the SWMM4 model
with those simulated using the HEC-HMS model under the same input design storms. This
estimation procedure ensures that the same test catchment is represented both in the SWMM4
model and in the HEC-HMS model.

Table 9-2. Hydrologic Parameters of Test Catchment Used in SWMM4.

Sdi
(mm)

Sdp
(mm)

fm
(mm/h)

fc
(mm/h)

k
(h−1) R

Manning’s n

Catchment
width (m)

Impervious
areas

Pervious
areas

0.0 4.6 76.2 3.6 4.14 0.01 0.05 0.25 9144

Source: Guo (2001).
Notes: This application of SWMM4 uses the Horton infiltration model where fm is the maximum infiltration capacity of the
soil; fc is the ultimate infiltration capacity of the soil; k is the infiltration capacity decay coefficient; and R is a constant,
considered to be much less than one, used in kd = Rk for the determination of kd, where kd is the decay coefficient for the
infiltration capacity recovery curve.
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Using the HEC-HMS model with the “initial and uniform loss rate” option, all rainfall is treated
as lost until the volume of initial loss is satisfied, and then rainfall is lost at a constant rate. The
constant loss rate is taken as the minimum ultimate infiltration rate used with the Horton infiltration
equation in the SWMM4 model. The initial loss volume is the sum of pervious area depression
storage and pervious area initial soil wetting infiltration volume. The pervious area initial soil wetting
infiltration volume Siw was used in the APSWM and is defined in Guo and Adams (1998a). The value
of Siw for this example was estimated using a procedure outlined in Guo and Adams (1998a), based
on the Horton infiltration parameter values input to the SWMM4 model.

Design storms with return periods from two months to 100 years were obtained from Huff and
Angel (1992) for the Chicago region. Peak discharges computed using these design storms are
extremely sensitive to storm duration. Although some stormwater management ordinances specify
the use of 24 h design storms regardless of the size of the catchment, shorter-duration design storms
are deemed appropriate for small urban catchments. Given that the time of concentration and
storage coefficient of the catchment were estimated to be 1.9 and 0.25 h, respectively, the 6 h duration
design storms were chosen initially. To verify the appropriateness of this choice and demonstrate the
effect of the duration of design storms, the 3 h and 24 h design storms were also simulated.

Huff and Angel (1992) classify the rainstorms depending on which quartile of the storm period
received the heaviest rainfall. Design storms of a specified duration and return period can have four
different temporal distributions: peaking in the first, second, third, and fourth quartile. These
different temporal distributions will affect the peak discharge as well. To demonstrate this effect, for
the 6 h design storms, two types of temporal distributions were used: one peaking in the first quartile
and the other peaking in the third quartile within the duration of the storm. Two types of temporal
distributions were used for the 3 h duration storms: one peaking in the first quartile and the other
peaking in the second quartile. For the 24 h design storms, only one temporal distribution peaking in
the third quartile was used because storms of durations from 12 to 24 h most often peak in the third
quartile (Huff and Angel 1992).

Two continuous SWMM4 simulation runs were performed, one with detention storage to
reduce peak flow by 50% for return periods from two to 100 years and the other without detention
storage. In applying the analytical probabilistic approach, Equations (9-13) and (9-14) were used to
calculate peak flow exceedance probabilities for the case of a catchment without downstream
detention pond; and Equations (9-18) through (9-21) were used to calculate the peak outflow
exceedance probabilities from the detention pond servicing the upstream catchment. Figure 9-2

Figure 9-2. Comparison of SWMM4 continuous simulation and analytical probabilistic results.
Source: Guo (2001).
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compares the analytical probabilistic and continuous simulation results for the two cases. The case
without a detention pond is referred to as “No Control” and the one with a detention pond is referred
to as “50% Reduction of Peak Flow.” Figure 9-3 shows the storage–discharge relationship of the
pond. In fact, Equations (9-18) through (9-21) were coded into the spreadsheet shown in Figure 9-3
to determine, through trial and error, the required storage volume to satisfy the flood control
criterion. In this case, the criterion is to reduce peak discharge rates by approximately 50% for return
periods from two to 100 years. Figure 9-2 indicates that for the two cases, the analytical probabilistic
approach generates very similar peak discharge–frequency relationships to those generated from
SWMM continuous simulations.

For design storm modeling, the same two cases were modeled using the HEC-HMS model and
the SWMM4 model under single-event mode. For the case of urban catchment without flood
control, Figure 9-4 presents the comparison, which shows that the 24 h design storms produced
much lower peak discharges for all return periods. The 3 h design storms were found to produce
peak discharges similar to those generated from the 6 h storms for the test catchment. To avoid
overcrowding, Figure 9-4 does not show peak discharges generated from 3 h design storms.
Examining Figures 9-2 and 9-4 together, the peak discharge–frequency relationship generated by
the 6 h duration design storms is clearly in close agreement with that generated from continuous

λ
ζ   =

θ
  =
  =

Figure 9-3. Sample spreadsheet application of the analytical probabilistic approach.
Source: Guo (2001).
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simulation. This suggests that the choice of design storm durations on the order of 3 to 6 h is
appropriate for the test catchment. Figure 9-4 also shows that the use of different types of 6 h
duration design storms resulted in different peak discharge rates and that the differences are larger
for higher-return periods.

For the case of an urban catchment serviced by a downstream detention pond, comparisons
similar to those in Figure 4 were observed. The 24 h storms produced much lower peak discharge
rates, while the 3 h and 6 h storms resulted in similar peak discharges. For the sake of clarity,
Figure 9-5 contains only the six-h storm results. Again, Figure 9-5 shows that, using the design storm
approach, the difference in peak discharge rates due to the use of different models and different types
of design storms becomes larger for higher-return periods. For return periods of 25 years, 50 years,
or 100 years, when only 6 h design storms are used, the maximum difference in peak discharge rates
can be as high as 45% of the average predicted peak discharge rates for the same frequency but using
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Figure 9-4. Comparison of design storm modeling and analytical probabilistic results for the test
catchment without flood control.
Source: Guo (2001).
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Figure 9-5. Comparison of design storm modeling and analytical probabilistic results for the test
catchment serviced by a flood control detention pond.
Source: Guo (2001).
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different models or different input design storms. Figures 9-4 and 9-5 show that the analytical
probabilistic approach generated similar results to those generated from using the design storm
approach with 6 h duration design storms. Input parameters for the analytical probabilistic approach
were not in any way calibrated but were simply taken from the same parameters or calculated from
related parameters used in the other two approaches.

In a design situation, the main objective is to find the required storage volume. To compare
results, two levels of control criteria were investigated. Level 1 requires that the peak discharge rate
from the detention pond with a return period of 100 years not exceed 0.028 m3/s per hectare of
upstream catchment area. Level 2 requires that the peak discharge rate from the detention pond with
a return period of 100 years not exceed 0.042 m3/s per hectare of upstream catchment area. Using the
design storms with a return period of 100 years, through trial and error, the storage volume required
to satisfy a control criterion can be determined using the SWMM4 model or the HEC-HMS model.
The required storage volume determined from the design storm approach will obviously vary
depending on which model or which type of design storm is used. This storage volume will also
conceivably vary if different durations of the design storms are used. To demonstrate this variability,
the 3 h, 6 h, and 24 h design storms were all used to determine the required storage volume. Table 9-3
presents results of these modeling runs. The storage volume determined from the analytical
probabilistic approach was obtained by using the spreadsheet shown in Figure 9-3 where Equa-
tions (9-18) through (9-21) are embedded. Only one storage volume value can be obtained for each
control level from the analytical probabilistic approach.

Table 9-3 shows that the storage volume determined using the design storm approach can vary
significantly depending on which model and design storm are used. In fact, for control level 1, the
maximum difference can be 75% of the average value, while for control level 2, the maximum
difference can be about 130% of the average value. The 24 h design storm resulted in much lower
storage volume requirements as compared with those resulting from the 3 and 6 h storms. This is a
result of the combination of the much less intense 24 h storm and the small test catchment. As shown
previously, 24 h storms are not appropriate for the test catchment that has a time of concentration of
1.9 h. When the results from the 24 h storms are excluded, Table 9-3 shows that for control level 1,
the maximum difference can be 41% of the average value, whereas for control level 2, the maximum

Table 9-3. Comparison of Flood Control Detention Volume Requirements Determined Using Different
Methods.

Approach (method) used

Vol. required to
satisfy level 1

control (×1,000 m3)

Vol. required to
satisfy level 2

control (×1,000 m3)

SWMM with 3-h storm peaking in 1st quartile 170 144
SWMM with 3-h storm peaking in 2nd quartile 178 155
SWMM with 6-h storm peaking in 1st quartile 173 144
SWMM with 6-h storm peaking in 3rd quartile 211 184
SWMM with 24-h storm peaking in 3rd quartile 113 26
HEC-HMS with 3-h storm peaking in 1st quartile 211 185
HEC-HMS with 3-h storm peaking in 2nd quartile 226 207
HEC-HMS with 6-h storm peaking in 1st quartile 212 186
HEC-HMS with 6-h storm peaking in 3rd quartile 254 229
HEC-HMS with 24-h storm peaking in 3rd quartile 136 49
Analytical probabilistic approach 175 154

Source: Guo (2001).
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difference can be 47% of the average value. The storage volume determined from the analytical
probabilistic approach is within the range determined from the design storm approach with storm
durations of 3 or 6 h.

Results presented in this example indicate that design storm modeling can provide results for
the estimation of peak discharge frequency relationships similar to those generated from the other
two approaches when appropriate design storm types and durations are chosen. At the same time,
this example also shows that significantly different results may be obtained if different design storms
are used. This is a result of the theoretical deficiencies associated with the design storm approach. In
this example study, quantification of the magnitude of the differences resulting from the use of
different design storms was for the purpose of discouraging their use in planning and design studies.
When applied properly, continuous simulation is expected to provide the most accurate results
because it does not require any simplifying assumptions. This example shows that the analytical
probabilistic approach can generate results similar to continuous simulation but with much less
effort. The analytical probabilistic approach may therefore serve as a complement for use in urban
stormwater management planning and design.

9.2 PERFORMANCE MODELING FOR BMP POLLUTANT REMOVAL WITH
UNCERTAINTY ANALYSIS

This section presents a collection of methods for uncertainty assessment applied to the performance
of BMP’s in terms of total suspended solid removal. These methods can serve as a complement to the
tools traditionally used in the design of these drainage practices. Following an overview of the topic
of interest and the BMP’s modeling strategy, the different methods and their sensitivities are
described and then applied in an example.

9.2.1 Overview

Most of the urban hydrologic models are deterministic and ignore uncertainty, despite the fact that
uncertainty analysis can lead to diverse results, offering the decision maker more information and
options. In the case of water quality modeling, uncertainties can be even larger, and systems and/or
facilities can be very unpredictable. This includes uncertainties in models representing pollutant
removals in stormwater BMPs, which are widely used to reduce nonpoint-source pollutants. Much
information on the performance of hydrologic infrastructures has been published (Chow et al. 1988;
ASCE and WEF 1992; Urbonas and Roesner 1993; Guo and Adams 1999a; Guo and Urbonas, 1996,
2002). However, BMP performance in the treatment of pollutants remains a popular research topic.
Currently, the most common approach is to treat BMPs as deterministic systems characterized by a
percent-concentration reduction. Percent removal concentrations of pollutants for BMP evaluation
are strongly discouraged. They can be problematic because the cleaner the input runoff, the more
difficult its treatment becomes. To overcome the previous, the performance of BMPs can be
represented by an effluent concentration independent of inflow concentration (Strecker et al. 2001,
Huber 2006). In this section we describe the construction of a BMP performance model with
uncertainty analysis and evaluate this model’s performance by comparing its results with observed
data from Park et al. (2011) and Park and Roesner (2012).

9.2.2 BMP Performance Modeling

The classical model for water treatment is the first-order decay model, widely used to describe
pollutant removal in treatment plants, wetlands, swales, etc. (Carleton et al. 2001, Braskerud 2002,
Wong et al. 2006). The performance of volumetric BMPs for stormwater is closely related to water

360 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



treatment in wetlands; it uses variables such as geometric storage shape, inflow and outflow rates,
and influent and effluent concentrations. One of the models used in modeling both systems is the
k-C*model. The model has been applied to constructed wetland performance, which has resulted in
good reproducibility of real situations (Kadlec 2000, 2003; Rousseau et al. 2004, Stone et al. 2004). It
incorporates “irreducible minimum concentration” to the first-decay equation, where the observed
effluent concentration converges to a constant value. Assumptions of steady-state and plug flow
conditions, typical of flow hydrodynamics within wetland systems (Kadlec and Knight 1996), are
adopted. The model is defined by

Cout =C� þ ðCin − C�Þe−k∕q (9-42)

where
Cin and Cout = influent and effluent event mean concentration (EMC) (mg/l),
C* = background EMC or irreducible minimum concentration (mg/l),
k = aerial removal rate constant (m/day),
q=Q∕ABMP = BMP hydraulic loading rate (m/day),
Q = average inflow rate (m3/day), and
ABMP = surface area of the BMP (m2).

Although the model assumes steady-state flow conditions, the BMP fills quickly and drains over
a long period (24 to 72 h) at an essentially constant rate. For that reason, the assumption is
reasonable for BMPs. The k-C* model has been used to model wetland performance, and many
studies have verified that this model characterizes the removal of pollutants by wetlands very well
(Kadlec and Knight 1996; Kadlec 2000, 2003; Braskerud 2002; Rousseau et al. 2004; Lin et al. 2005).
Wong et al. (2002, 2006) and Huber et al. (2006) use the k-C* model to simulate stormwater BMPs
because the characteristics of wetlands, detention basins and retention ponds are similar.

Uncertainty in the BMP performance to be discussed here includes (1) the uncertainty in the
input pollutant concentration of the runoff, Cin, which can be calculated using a log–normal
distribution of EMC from field data or literature, and (2) the uncertainty in BMP treatment
effectiveness, which is accounted for by associating the uncertainty with the key performance
parameters of the k-C* model.

9.2.2.1 Uncertainty of Cin
BMP performance data from the International Stormwater BMP Database (www.bmpdatabase.org)
maintained by ASCE and the US Environmental Protection Agency (USEPA) can be used for
characterizing uncertainty in Cin. For example, Table 9-4 lists the locations, number of datasets, and

Table 9-4. Examples of Detention Basins.

BMP type BMP name, location

BMP size

Number of
datasets Volume (m3)

Surface
area (ha) Length (m)

Detention
basin

15/78, Escondido, CA 17 1,122.54 0.0977 60.96
5/605 EDB, Downey, CA 2 364.66 0.0598 47.24
605/91 edb, Cerritos, CA 5 69.57 0.0114 22.86
Manchester, Encinitas, CA 12 252.79 0.0304 22.86

Source: Park et al. (2011).
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sizes of four dry detention BMPs for retrieved total suspended solids (TSS) data, a representative
nonpoint-source pollutant. TSS distributions for both Cin and Cout in these locations are well
represented as log–normal probability plots (Figure 9-6). Table 9-5 shows the results of three
goodness-of-fit tests using the well-known chi–squared, Kolmogorov–Smirnov, and Anderson–
Darling tests. To apply these tests for normality, all Cin and Cout values were transformed using the
natural logarithm (D’Agostino and Stephens 1986, Kottegoda and Rosso 1997). All tests at a
significance level of 0.1 showed that a log–normal distribution can be accepted for both observed Cin

and observed Cout.

9.2.2.2 Uncertainty of Parameter k

The parameter k is related to q with a power function in the k-C*model (Schierup et al. 1990, Lin et al.
2005). However, the variance of Cout, simulated with the k-C*model, changes dramatically depending
on k. Therefore, applying a prediction interval in the k versus q regression line is necessary. A
prediction interval focuses on the variance of individual data, whereas a confidence interval focuses on
the variance of a regression line. The prediction is calculated as (Kutner et al. 2004)

Mean� t0.025s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðX − XÞ2P

n
i= 1ðXi − XÞ2

s
(9-43)

Figure 9-6. Log–normal probability plots of observed Cin and Cout in detention basins.
Source: Park et al. (2011).

Table 9-5. Results of Goodness-of-Fit Tests; Observed Cin and Cout from Figure 9-6.

Test

Critical value (α = 0.10)

DecisionCin Cout

Chi–square 0.663 0.860 Accept
Kolmogorov–Smirnov 0.789 0.852 Accept
Anderson–Darling 0.567 0.685 Accept

Source: Park et al. (2011).
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where
t = critical value of the t distribution for the appropriate degree of freedom (n− 2),
n = number of total data,
s = standard error of the regression,
X = average q at which the confidence interval is calculated,
X = mean of observed q from monitoring data, and
Xi = individual observed q from monitoring data.

For TSS in BMPs, Figure 9-7 exhibits a power regression relation given by k= 1.4841q0.9721,
similar to the ones identified by Schierup et al. (1990) and Lin et al. (2005). A regression of estimated
k using Equation (9-42) versus observed q for each storm event was performed with a 95% prediction
interval of 0.4370. Then, the vertical distribution generating k depending on q is considered a two-
parameter log–normal distribution.

9.2.2.3 Estimation of C*

This approach assumes a known constant value of C* because its uncertainty is less relevant than
the uncertainty of Cin or k. This also helps with reducing the number of parameters needed in the
uncertainty analysis. From the minimum Cout in the dataset and the range of C* suggested in the
literature (Table 9-6), we choose a value of C* = 10 mg/L.

What follows is the uncertainty analysis considering three cases, which require specific
information (Table 9-7): uncertainty in Cin, uncertainty in k, and uncertainty in both. For example,

Figure 9-7. Estimated k versus q using individual storm events for detention basins.
Source: Park et al. (2011).

Table 9-6. Typical Background Concentration Values Proposed in Literature.

Literature TSS (mg/L)

Kadlec and Knight (1996) 5.1 + 0.16 Cin
Barrett (2004) 5∼ 20
Crites et al. (2006) 6

Source: Park et al. (2011).
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to analyze the uncertainty in Cin, the required information is the log–transformed standard deviation
of Cin and the log–transformed means of Cin and k. The standard deviation of k can be estimated
from the distance of the prediction interval between the median k and the 95% prediction interval
shown in Figure 9-7.

9.2.3 Methods for Uncertainty Analysis

Three methods, the derived distribution method (DDM) for the analytical method, the first-order
second moment (FOSM) for the approximation method, and the Latin hypercube sampling (LHS)
for the Monte Carlo simulation, are applied for estimating uncertainty of Cout in the k-C* model.

9.2.3.1 Derived Distribution Method

In the DDM, the PDF of a variable Y = gðXÞ can be obtained given the PDF of X, f xðxÞ. The
transformation from the PDF of X to that of Y entails the substitution of the inverse function of Y
solved for X in the PDF of X. Then, the PDF of Y is (Salas et al. 2004)

f YðYÞ=
���� dg−1ðYÞdy

���� f x½g−1ðYÞ� (9-44)

In our case, the variable Y is Cout, and the variable X would be either Cin or k.

9.2.3.2 First-Order Second Moment

In cases where analytical methods such as DDM are cumbersome to apply, approximate methods
have been suggested. For example, FOSM uses a Taylor-series expansion of the performance
function and enables estimating the mean and variance of the performance function as

EðYÞ= E½gðX1, · · · ,XnÞ�≈ gðμ1, · · · , μnÞ (9-45)

VarðYÞ=Var½gðX1, · · · ,XnÞ�≈
Xn
j= 1

�
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∂Xi

�
2

μ
VarðXiÞ þ

Xn
i= 1

Xn
j= 1

�
∂g
∂Xi

�
μ

�
∂g
∂Xj

�
μ
CovðXi,XjÞ

(9-46)

Table 9-7. Required Parameters Information of Cin and k for Uncertainty Analyses.

Input parameters Cin K

Log–transformed statistical
properties

Mean
= 5.038

Std. dev.
= 0.6083

Mean = log
(1.4841q0.9721)

Std. dev.
= 0.437

Uncertainty
in

Cin ✓ ✓ ✓ –
k (with constant Cin) ✓ – ✓ ✓

k (with constant q) ✓ – ✓ ✓

Cin and k ✓ ✓ ✓ ✓

Source: Park et al. (2011).
✓ = required information for uncertainty computation.
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Assuming that the Xi‘s are independent variables, CovðXi,XjÞ= 0. Then the variance of Y is

VarðYÞ=Var½gðX1, · · · ,XnÞ�≈
Xn
j= 1

�
∂g
∂Xi

�
2

μ
VarðXiÞ (9-47)

where μ̂ln x and σ̂ln x can be calculated from the sample mean and standard deviation of
log–transformed X. Finally, the inverse of the CDF is calculated to quantify the percentile of the
log–normal distribution using the estimated parameters (Salas et al. 2004):

Xp = expðμln x � Zσln xÞ (9-48)

where Z is the standard normal quantile corresponding to exceedance probability, and Xp is the X
value of p percentile.

9.2.3.3 Latin Hypercube Sampling

LHS is a stratified sampling method to reduce variance and sampling error. The steps to apply the
method are as follows (Tung and Yen 2005):

1. Select the number of subintervals, L, and divide the range [0, 1] into L equal intervals.

2. For each subinterval, define ωi as independent-uniform-random numbers from ωl∼U
	
0,1
L



for

l = 1, 2, : : : , L. Then, a sequence of probability values um is generated as

a. ui = l−1
L þ ωl l= 1, 2, : : : , L

3. Compute Zl = F−1ðulÞ, in which Fð⋅Þ is the CDF of the random variable of standard normal
distribution.

4. Compute mean and standard deviation from log–transformed Cin or k.

5. Compute generated Cin or k assuming log–normal distribution as Xl = expðμlnx þ ZlσlnxÞ.
6. Apply generated Cin or k to the k-C* model.

9.2.4 Sensitivity Results

The distribution of Cout for the k-C*model is then estimated with the two identified distributed input
parameters, Cin and k. Results of uncertainty in Cin, uncertainty in k, and uncertainty in both Cin and
k can be computed. These results assume that geometric (ABMP) and hydrological parameters (Q)
don’t have uncertainty. In addition, the background concentration (C*) is fixed at 10 mg/L because
the minimum value of the observed data used was close to that concentration. Cin and k were
represented as log–normal distributions because their observed distributions are very close to log–
normal (Figure 9-6).

9.2.4.1 Sensitivity of Uncertainty in Cin
The following log–normal distribution f Cin

ðCinÞ for Cin is assumed with a mean value μLnCin
and

standard deviation σLnCin
from the selected TSS of detention basins in the BMP database (see also

Figure 9-6):

f Cin
ðCinÞ=

1ffiffiffiffiffi
2π

p
CinσlnCin

exp

�
−
1
2

�
lnðCinÞ − μlnCin

σlnCin

�
2
�

(9-49)
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According to Equation (9-44), the PDF for Cout, f ðCoutÞ is given by

f Cout
ðCoutÞ=

���� dg−1ðCoutÞ
dCout

���� f cin ½g−1ðCoutÞ� (9-50)

where,

g−1ðCoutÞ=C� þ ðCout − C�Þ expðk∕qÞ=Cin (9-51)

���� dg−1ðCoutÞ
dCout

����= �� expðk∕qÞ��= expðk∕qÞ (9-52)

Substituting Equation (9-51) and Equation (9-52) into Equation (9-50), the resulting PDF for
the effluent EMC, f outðCoutÞ, is

f ðCoutÞ=
1ffiffiffiffiffi

2π
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(9-53)

Adopting the relationship k= 1.4841q0.9721 (Figure 9-8), we obtain

f ðCoutÞ=
1ffiffiffiffiffi

2π
p h
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(9-54)

Equation (9-54) shows that f ðCoutÞ is a three-parameter log–normal distribution, whose scale
parameter ð1.481q−0.0279Þ and location parameter ðC�f1 − 1∕ expð1.481q−0.0279ÞgÞ vary with q.
f ðCoutÞ is very sensitive to the value of expð1.481q−0.0279Þ when it is a function of q and becomes
closer to the two-parameter log–normal distribution as expð1.481q−0.0279Þ approximates to 1.
However, f ðCoutÞ changes to the three-parameter log–normal distribution for values of
expð1.481q−0.0279Þ much greater than 1.

Figure 9-8a shows comparisons of the PDFs for the three methods: DDM, LHS, and FOSM. DDM
is derived from Equation (9-54) with constant q. Cout assumes a two-parameter log–normal distribu-
tion. The PDF obtained using FOSM differs from the DDM and the LHS when q is both 0.01 and
5 m/day. Conceptual differences among the three methods explain this discrepancy. No assumptions
regarding the distribution of Cout are required by DDM and LHS methods. In contrast, a known PDF
must be assumed for Cout when using the FOSM method. This assumption makes the method simpler
but introduces error. DDM is the most accurate method, but defining the exact value corresponding to a
specific percentile is difficult because an extra computation is needed to estimate the percentile from the
PDF matched with Cout. With LHS, estimating the precise value of a specific percentile is relatively easy.

For q = 0.01 and 5 m/day, expð1.481q−0.0279Þ is 5.41 and 4.13, respectively. Both values are
much greater than 1, and the PDF in Equation (9-54) differs from the log–normal distribution to a
large extent. This creates the differences observed between the DDM and LHS PDFs and the log–
normal PDF obtained using FOSM. Thus, LHS gives the correct representation rather than FOSM
because the LHS PDFs coincide with the DDM PDFs.
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The obtained PDFs of Cout represent the observed data well (Figure 9-8b). The 95% and 50%
confidence intervals represent the high variability of the data, with Cout values being higher and more
scattered for large values of q. Most of the observed data are low q values. As expected, about half of
the observed data are placed out of the 50% confidence interval and two points (5% of the total data)
are located outside of the 95% confidence interval. Figure 9-8c compares the 50% and 95% upper and
lower confidence intervals obtained using LHS and FOSM. With the exemption of the lower 95%
confidence limits, the rest of the limits are very similar. Hence, the distributed Cout is essentially
identical for LHS and FOSM.

9.2.4.2 Sensitivity of Uncertainty in k with Constant q

A constant value of q must be adopted to determine the effect of Cin on the uncertainty of Cout with
respect to k. In this case, we use q = 0.1 m/day. The mean and standard deviation of the log-
transformed k are obtained from Table 9-7. The uncertainty in k with constant Cin for DDM can be
simplified as follows:

f ðCoutÞ=
1ffiffiffiffiffi

2π
p

ln
�

Cin−C�
Cout−C�
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�i
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1A2
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Figure 9-8. Uncertainty in Cin: (a) PDFs comparison of f(Cout) among DDM, LHS, and FOSM; (b) PDFs
of LHS, including confidence intervals (CIs) and observed data; and (c) comparison of CIs between
LHS and FOSM.
Source: Park et al. (2011).
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Figure 9-9a shows both PDFs for values of Cin = 100 mg/L and 350 mg/L. In this case, only
DDM and LHS are used for the uncertainty analysis. FOSM cannot be used because the Cout

distribution of Equation (9-55) is difficult to define. Both methods produce very similar distributions
and represent a higher variability in Cout as Cin increases. In other words, predicting Cout is more
difficult for a high Cin at a constant q. Figure 9-9b shows the PDFs of Cout for the observed data when
q is restricted to 0.1 m/day. This figure shows the PDF computed using LHS, but almost identical
results are obtained with the PDFs using DDM, as Figure 9-9a illustrates. The 95% and 50%
confidence intervals become wider as q increases. For this analysis, only three observed data points
from Table 9-7 were available as q = 0.1 m/day; two of the three points lie within the 50% confidence
interval and the third is within the 95% confidence interval.

9.2.4.3 Sensitivity of Uncertainty in k with Constant Cin
A constant value of Cin = 170 mg/L is assumed to determine the effect of q on the uncertainty of k.
In this case, the mean and standard deviation of log-transformed k are obtained from Table 9-7.
Figure 9-10a shows PDFs for values of q = 0.01 m/day and 5 m/day. Then, the DDM is given by

Figure 9-9. Uncertainty in k with constant q: (a) PDFs comparison of f(Cout) as a function of Cin using
q = 0.1 m/day between DDM and LHS and (b) PDFs from LHS, including confidence intervals (CIs)
and observed data.
Source: Park et al. (2011).
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Again, we use only DDM and LHS for the uncertainty analysis for the same reason given in the
previous subsection. Both the DDM and LHS methods produce very similar distributions and
represent higher variability in Cout as q increases. In other words, the shapes of the PDFs of Cout

demonstrate a more positive skew with decreasing q. As a result, predict Cout for high q is more
difficult at a constant Cin.

Figure 9-10b shows PDFs of Cout for the observed data obtained from Table 9-4 when Cin is
restricted to 170 mg/L. The 95% and 50% confidence intervals are plotted as well. These intervals
indicate that Cout values are higher and a little more scattered for larger values of q. Two of the three
observed datasets are scattered within the 50% confidence interval, and a third point is located within

Figure 9-10. Uncertainty in k with constant Cin: (a) comparison of f(Cout) as a function of q using
Cin = 170 mg/L between DDM and LHS and (b) PDFs from LHS, including confidence intervals (CIs)
and observed data.
Source: Park et al. (2011).
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the 95% confidence interval. Although having only three datasets available for comparison, they do
validate that PDFs of the k-C* model describe the behavior of observed data. Based on the previous
results, the shape of the PDF as a function of Cin was found to show more change of variance than as
a function of q. It can be concluded that Cin is a more sensitive variable than q for the uncertainty in k
when the k-C* model is considered with TSS.

9.2.4.4 Sensitivity in Both Cin and k

This section assumes no correlation between Cin and k to simplify the calculations. Because of
mathematical complexities, the DDM cannot be applied to derive f ðCoutÞ when uncertainties in both
Cin and k are simultaneously applied to the k-C*model. Thus, we use the FOSMmethod and the LHS
method, which have been shown to generate similar distributions as the DDM method.

Figure 9-11a shows a comparison of both PDFs for q = 0.01 and q = 5 m/day. Both
distributions are relatively similar for q = 5 m/day, but differences are observed in the peak values
for q = 0.01 m/day. The distribution of Cout is skewed to the right for both values of q. As mentioned
previously, the FOSM assumes a log–normal distribution. Thus, the shapes of the PDFs generated by
the LHS and FOSMmethods are expected to differ. Figure 9-11b shows the PDFs obtained with LHS,
their confidence intervals of 50% and 95%, and the observed data. About two-thirds of the total data

Figure 9-11. Uncertainty in both Cin and q: (a) PDFs comparison of f(Cout) as a function of q between
LHS and FOSM; (b) PDFs from LHS, including confidence intervals (CIs) and observed data; and
(c) comparison of CIs between LHS and FOSM.
Source: Park et al. (2011).
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are located within the 50% confidence interval, and all observed data are located within the placed
95% confidence interval.

Figure 9-11c compares the 50% and 95% confidence intervals obtained using LHS and FOSM
when uncertainties in Cin and k are considered. These methods produce different distributions
because the FOSM analysis ensures a log–normal distribution for Cout, whereas the LHS method
does not. Nevertheless, confidence intervals between LHS and FOSM are not substantially different.
Thus, the assumption of a log–normal distribution for Cout seems to be practical for estimating the
variance of Cout.

9.2.5 Example 9-2: Uncertainty Analysis of BMP Performance for TSS Removal in
Los Angeles, California

The following example, adapted from Park and Roesner (2012), illustrates how the BMP perfor-
mance model and the FOSM uncertainty analysis previously discussed can be applied to a given
catchment. To create the example, 60 years of continuous hourly rainfall data for Los Angeles
International Airport (LA) were obtained from the National Climatic Data Center (NCDC)
and input into the storage, treatment, overflow, and runoff model (STORM) (USACE 1977) to
simulate the volumes involved. This location was chosen because all of the detention basins shown in
Table 9-4 are located in the area, and the sampling duration is the minimum time unit used by
STORM. The rain gauge NCDC Cooperative Observer Program (COOP) ID number is 045114, and
the records span the period from January 1, 1950, to December 31, 2009. Event-based urban runoff
quality data used to develop the statistical characteristics Cin and k were taken from Sections 9.2.2.1
and 9.2.2.2. An IETD of 6 h and a minimum threshold runoff depth of 0.01 in. (0.254 mm) were
specified to separate the flow data into individual events. For this example, the catchment has an area
of 1 acre (4,045 m2), imperviousness of 40%, a BMP volume of 0.2 in. (≈5.0 mm), and a BMP surface
area to watershed area ratio of 0.01. Uncertainty in the imperviousness is not considered. Table 9-8
summarizes these and other relevant data.

The runoff coefficient for STORM was calculated using the catchment imperviousness ratio (i)
between 0 and 1, by means of the following expression widely used in many US municipalities
(Urbonas et al. 1990):

C= 0.85i3 − 0.78i2 þ 0.774iþ 0.04 (9-57)

Further, for this example, urban runoff (VR) is introduced to the BMP at a rate equal to the
lowest inflow value or the average drawdown rate specified for the BMP. When the BMP is full, the
flow is bypassed around the BMP and discharged directly to the receiving water. The total volume of
storm flow that passes through the BMP is designated as VBMP. The difference (VR−VBMP) is VO, the
volume of runoff that bypasses the BMP (see Figure 9-12). The total pollutant load from any storm is

Table 9-8. Values Employed for STORM Parameters.

Parameters Value

Area (acre) 1 (= 4,046.86 m2)
Depression storage (in.) 0.1 (= 2.54 mm)
Evaporation (in./day) 0.18 (= 4.57 mm)
Interevent time (h) 6
First flush depth (in.) 0
Time of concentration (h) 0.1

Source: Park and Roesner (2012).
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calculated as the sum of pollutant load discharged from the BMP plus the pollutant load bypassed
directly to the receiving water. As discussed previously, a storm is defined as a period of rainfall that
is preceded and succeeded by a period equal to or longer than the selected IETD.

9.2.5.1 Load Frequency Curve Approach

Load duration curves (LDCs) have been suggested by Stiles (2001). Several researchers (Stiles 2001;
Cleland 2002, 2003; Bonta and Cleland 2003; O’Donnell et al. 2005) have utilized LDCs to estimate
the total maximum daily load (TMDL), because this method is capable of identifying daily loads
that account for the time variability of water quality. A maximum concentration standard and a
hydrologic flow duration curve (FDC) can identify a TMDL appropriate for the full range of
streamflow conditions, and the maximum daily load can be verified for any given day (USEPA
2007). Although LDCs have become more widely used and accepted for pollutant loads estimation,
considering the pollutant-reducing physical model is necessary. The current LDC method only
accounts for flow variables and does not consider other variables because it does not incorporate
all relevant physical processes (Shen and Zhao 2010). In this example, we adopt an approach for
estimating the pollutant load exceedance frequencies resulting from BMPs with their estimates of
the certainties (or uncertainties). If a target water quality standard is specified as an average load
and an upper limit on that load, which is not to be exceeded more than n times per year, the
algorithm presented will assist in the design of a BMP that will meet the criteria with 95% certainty.
The method is simple, but it is a step forward in linking BMP performance to receiving water
quality.

This study used the load frequency curve (LFC) instead of the LDC. As water quality regulations
containing exceedance frequency criteria of storm events for instream concentrations and/or BMP
loads are more commonly used, the certainty (or uncertainty) of meeting these criteria becomes
important, and the proper design point on the load exceedance frequency curve becomes an issue.

The following steps demonstrate the method for computing a pollutant-load frequency curve on
an event basis according to Figure 9-12:

1. STORM simulates VR for an event.

2. The pollutant mass in the runoff (MR) is computed by multiplying VR and the TSS EMCs in the
runoff from the catchment Cin = ðCin � εinÞ, where Cin is the average inflow concentration and
εin is a random variable taken from the log–normal distribution of Cin from Figure 9-6.

3. VR is divided into VBMP and VO by STORM.

4. The pollutant mass that bypasses the BMP (Mo) is computed by multiplying Mo and Cin.

5. The pollutant mass that leaves the BMP (Mout) is computed by multiplying VBMP and the Cout

estimated by the k-C* model for the situation of uncertainties in both Cin and k as in
Section 9.2.4.4. Note that C* is estimated to be 10 mg/L as shown in Table 9-6.

6. The total pollutant mass discharged to the receiving waters for the event (MTOT) is computed
by adding Mo and Mout.

Figure 9-12. Schematic of an urban stormwater system.
Source: Park and Roesner (2012).
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7. A long-term hourly rainfall record is input to STORM to generate a time series of the mass
loads identified in steps 2 to 6.

8. The exceedances per year are computed by ranking the TSS event loads. LFCs are plotted using
the plot–position formula proposed by Cunnane (1978):

TR =
N þ 1 − 2g

J − g
(9-58)

where
TR = return period, which indicates a fraction of a year (years),
N = number of years of record,
J = rank of the event (in descending order of magnitude), and
g = plotting position parameter (0.4 in this case).

The number of exceedances per year E can be calculated from the return period TR as follows:

E=
1
TR

(9-59)

To develop the statistical characteristics of the mass loads for an event, the median, 95% upper
confidence limit (UCL) and lower confidence limit (LCL) for TSS loads in the runoff (MR) and in the
bypass (Mo) are computed as

Min,median =Cin,medianV (9-60)

M95%UCL =Cin,95%UCLV (9-61)

M95%LCL =Cin,95%LCLV (9-62)

where M and V correspond to MR and VR and Mo and Vo, for runoff and bypass calculations. To
compute 95% confidence limits (CLs) for Cout, we must estimate μlnCout

and σlnCout
. The 95% CLs of

Cout are then

Cout,95%UCL = expðμlnCout
þ 1.96σlnCout

Þ (9-63)

Cout,95%LCL = expðμlnCout
− 1.96σlnCout

Þ (9-64)

The TSS load that leaves the BMP and its 95% CLs are determined also using Equation (9-60)
through Equation (9-62). In this case,M and C correspond toMout and Cout. Finally, the uncertainty
in MTOT can be determined by means of Monte Carlo simulations.

The FOSM method was applied to the k-C* model with parameters defined according to the
aforementioned protocol, assuming that the two variables Cin and k are independent because the
correlation coefficient between k and Cin computed from the observed data is small enough to allow
for Cin and k to be regarded as independent.

9.2.5.2 Application Results

Figure 9-13 shows the LFCs of TSS event loads resulting from the 60 year simulation. Each point is a
storm event load computed using the procedure described in the previous subsection. The blue
points and curves result from simulations of the catchment loads without BMPs. Because no
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treatment occurs, the scatter in the event loads is entirely due to the uncertainty in the TSS
concentration in the runoff. Moreover, Figure 9-13 reveals interesting information regarding the
design of BMPs. For example, suppose that the target water quality standard for this example
requires the TSS load from the catchment not to exceed 0.23 g/m2 more than four times per year. In
that case, the median untreated catchment runoff load that is exceeded four times per year
(i.e., 0.85 g/m2) would have to be reduced 73% by the BMP to be implemented. The figure also
shows that the median pollutant concentration discharged from the BMP designed with the
parameter values adopted in this study will be equal to the allowable target water quality standard.
However, 50% of the time the target water quality standard will be exceeded by as much as a factor of
approximately 3.8 (the value of the 95% UCL). Thus, to be 95% certain that we will not exceed the
target water quality standard, the BMP must be designed so that the 95% UCL meets the target,
which means that the median value must be approximately 0.06 g/m2. Conceptually, by sizing the
BMP such that its 95% CLs meet the target criteria, the load-frequency target value for the watershed
TSS load is likely to be met. However, for the case illustrated here, an extended detention BMP able
to meet this target water quality standard seems unlikely, because the median TSS load reduction
would need to be about 94%. Such a performance level far exceeds the capability of traditional
current BMPs. Overall, it seems certain that sizing BMPs based on median EMCs of runoff will not
provide reliable pollutant removal from stormwater discharges to receiving waters.

9.3 SUMMARY

Stormwater management is a growing concern in many parts of the globe. Alongside the more
traditional problems of water supply and distribution, as well as sewage collection, stormwater
management has become a relevant topic in urban hydrology. In accordance with the overall theme
of this monograph, we have described and illustrated the use of probability distributions in
stormwater modeling and design. We presented two approaches for stormwater management

Figure 9-13. Load frequency curves, including confidence limits, for the requirements of load and
exceedance.
Source: Park and Roesner (2012).
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modeling and analysis where probability distributions can be of great utility. Section 9.1 describes the
first approach, which resulted in a package of tools named APSWM. Section 9.2 describes the second
approach, which deals with uncertainty in the performance of BMPs.

In summary, the APSWM is a collection of analytical equations that can be used for stormwater
modeling and design. In terms of accuracy, the APSWMmay provide a good compromise between the
simple design storm approach and the more laborious continuous simulation approach. Section 9.1.4.1
describes the general theory underlying the APSWM development. The development of APSWM was
then illustrated with three different stormwater management planning and design purposes. The first
purpose is the design of detention ponds for flood control. Closed-form analytical equations were
obtained that can be used to select the appropriate sizes of detention ponds. In Section 9.1.4.5, a
probabilistic channel-routing method was developed to explain the effect of channel routing on the
probability distribution of flood peaks. Subsection 9.1.4.7 demonstrates the use of APSWM equations
to study the performance of low-impact development practices. Specifically, this demonstration
focused on the sizing of storage units for rainwater harvesting. Section 9.1 ends with an application
example, which illustrates the use of APSWM for flood quantile estimation and flood control detention
pond design in Chicago. The example subsection also includes references to additional case studies
using APSWM. All these case studies show that, for a location of interest, with the completion of the
rainfall event–based analysis and quantification of the distribution parameter values representing the
climate conditions of the location, the application of APSWM is computationally more efficient than
either the design storm or the continuous simulation approaches.

The second part of this chapter, Section 9.2, shows the importance and utility of incorporating
uncertainty analysis when examining the performance of BMPs. This is demonstrated using the k-C*
model and TSS as the representative pollutant. Three different methods were used to estimate
uncertainty: DDM, FOSM, and LHS. The methods differ in their assumptions. For example, FOSM
can be used as an alternative to DDM when the functional relationship involved in the DDM
transformation is too complex and hence difficult to handle analytically. As a sampling technique,
LHS generally offers a wider applicability than DDM and FOSM. The three methods rely on the
same statistical representation of the uncertainty in the k-C* model. This representation uses a
log–normal distribution to quantify the distribution of the influent event mean concentration. This
distribution together with DDM can be used to obtain the distribution of the effluent event mean
concentration. Uncertainty in the parameter k is also taken into consideration. k is modeled using a
log–normal distribution as well but conditioned on the value of the BMP hydraulic loading
rate. Section 9.2.4.1 examines the effect of influent concentration uncertainty alone on BMP
performance. Sections 9.2.4.2 and 9.2.4.3 examine the effect of uncertainty in k on BMP perfor-
mance, whereas Section 9.2.4.4 examines the joined effect of uncertainties in both variables. For the
latter, the input concentration and k are treated as being statistically independent. Lastly, in
Subsection 9.2.5, the application of the uncertainty analysis method FOSM is illustrated in detail
using an example of TSS load reduction by an extended detention pond in Los Angeles.

The application of uncertainty analysis to BMP performance evaluation not only serves to
illustrate the application of probabilistic methods in stormwater management, but more important,
it highlights the need to account for uncertainty in the design and evaluation of stormwater
infrastructure for water quality control. The computational efficiencies provided by the APSWM can
facilitate wider applications of uncertainty analysis in stormwater management planning and design.
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CHAPTER 10

Analysis of Water Quality Random
Variables

Jim C. Loftis

GLOSSARY

Alpha (α): Level of significance or tail area associated with a statistical interval or hypothesis test

Box plot or box-and-whiskers plot: Graphical representation of distribution of subpopulation
consisting of 25th and 75th percentiles (box), median, extremes (whiskers whose value depends on
software package), and usually outliers

Censored observation: Reported laboratory measurement that has been altered by the laboratory,
typically a nondetect or trace value reported as less than a certain numerical value

Coliform: Large class of bacteria found in water and soil; specific types, E-coli and fecal coliforms
are used as indicators of human or livestock pollution

Confidence interval: Statistical interval computed to contain the true value of a population
parameter with specified probability or confidence level, 1− α
Continuous distribution: Distribution of a random variable that can take on any value within a
certain range, for example, all real numbers

Cryptosporidium: Genus of protozoans that can cause gastrointestinal illness

Cumulative distribution function (cdf):Nonexceedance probability associated with a given value
of a particular random variable

Detection limit: For a given laboratory method, the lowest concentration that is statistically
different from zero, for example three times the standard deviation of repeated measurements at
zero concentration

Discrete distribution: Distribution of a random variable that can take on only certain values,
typically integers

Empirical distribution function (edf): Estimated value of cdf obtained from observed data

Enterococcus A genus of bacteria common in human intestinal tracts

Event mean concentration: Mass-averaged mean concentration of a particular constituent for a
particular storm or runoff event

Geometric mean: nth root of the product of n observations

Geosmin: Organic compound, produced by blue-green algae, that imparts an earthy taste and
odor to drinking water at parts per trillion level
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Giardia: Genus of protozoans that can cause gastrointestinal illness

Maximum likelihood estimate: A parameter estimate that maximizes a likelihood function that
then makes what has actually been observed as probable as possible

Most probable number (MPN): An estimate of microbial concentration based on fermentation
and test for presence or absence in successive dilutions

Nondetect (ND): Laboratory measurement below the detection limit, typically reported as “less
than” the detection limit

Nonparametric method: Statistical method that does not depend upon the distribution of the
sampled population

Order statistic: Observation corresponding to a given rank. The nth order statistic is the smallest
observation and has rank 1

Outlier: Observation that is apparently inconsistent with the distribution of other similar
observations

Parameter (of a distribution): A defining numerical characteristic of a population or distribution,
such as mean and variance for the normal distribution

Parametric method: Statistical method that assumes a particular probability distribution for the
sampled population

Percentile: The specific value of a distribution such that a given percentage of the distribution is
equal to or below that value

Population: The set of all possible sampling units for a given situation (see target population and
sampled population)

Practical quantification limit (PQL or QL): Lowest concentration level for a specific laboratory
method that results in acceptable precision (standard deviation of repeated measurements at that
concentration); also called the reporting limit (RL)

Precision: Statistical measure of repeatability, usually expressed as a standard deviation

Prediction interval: Statistical interval constructed from background data to contain a future
sample or samples with specified probability if no change has occurred

Probability: Measure (zero to one) of likelihood of a certain outcome of a chance experiment

Probability density function (pdf): Mathematical description of a probability distribution, from
which specific probabilities are derived by integration between appropriate limits

Probability distribution: Mathematical or graphical description of the frequency of particular
events, such as drawing successive samples from a given population

Proportion: Fraction of a given population that has a certain attribute

Quantile: The specific value of a distribution such that a given fraction of the distribution is equal
to or below that value

Random variable:Mathematical variable whose value depends to some extent on the outcome of a
chance experiment

Sampled population: Set of all sampling units that can actually be sampled in a given sampling
program

Sampling unit: In environmental statistics, a physical quantity of an environmental medium, such
as air, water, or soil, that could be analyzed in the laboratory or field

Seasonality: Annual cyclic pattern in population parameters, such as mean and variance
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Serial correlation: In a time series, carryover of information, redundancy, or tendency of
successive observations to remain above or below the mean

Standard error: Sample standard deviation of an estimate of a parameter, such as the standard
error of the sample mean; the standard error is a measure of precision of a parameter estimate

Reporting limit (RL): Lowest concentration level for a specific laboratory method that results in
acceptable precision (standard deviation of repeated measurements at that concentration); also
called the practical quantitation limit (PQL)

Resource Conservation and Recovery Act (RCRA): Federal legislation that regulates disposal of
solid and hazardous wastes

Target population: Set of all possible sampling units of interest in a given sampling program

Time series plot: Graphical plot of measurements over time

Total organic carbon (TOC): Laboratory measurement of total organic constituent concentration
in water

Trace: Common term for a laboratory measurement falling above the detection limit and below
the practical quantitation limit

Unbiased: Descriptor for a statistical method for which the average result tends to the true value
over a large number of repeated applications for the same population

10.0 GENERAL

The topic of water quality distributions is as large as the topic of water quantity distributions. So
treating the subject in a single chapter is very difficult, and we must therefore limit the discussion to a
few characteristics that are of particular interest and importance to practitioners and that are
different in some way from water quantity. Of course, much of the discussion of water quantity
distributions can be applied to water quality as well.

This chapter will briefly discuss the following topics:

• Special characteristics and practical applications of water quality random variables,

• Most commonly used distributions—both continuous and discrete,

• Transformations and testing for goodness of fit,

• Nonparametric characterization using quantiles,

• Censored observations,

• Probability sampling versus stochastic processes/serial correlation,

• Seasonal and flow effects, and

• Multivariate characterization.

10.1 SPECIAL CHARACTERISTICS OF WATER QUALITY RANDOM VARIABLES

Water quality random variables have several important characteristics that strongly affect their
distributions and that, to some extent at least, differ from water quantity random variables:

1. While both water quality and quantity are multivariate, a very large number of random
variables of different types characterize water quality. These include physical, chemical, and
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biological measurements, with as many as 20, 50, or more measurements from field instru-
ments and multiple laboratories required to characterize a single water sample.

2. Obviously, opportunities exist for many types of error to creep into measurements in the field,
during handling and transport, or in the laboratory. Not surprisingly then, data quality is
frequently lacking.

3. At the same time, laboratory techniques are constantly being developed and improved, and
methods or laboratories are often changed for cost or other reasons. Measuring certain
low-level constituents at the level of nanograms per liter (ng/L) or parts per trillion is now
possible—and sometimes necessary. The taste and odor compound, geosmin, for example, is
detectable by sensitive humans at about 5 ng/L. As measurement methods change over time, so
does the measurement error variance of water quality observations. The variance may change
from sample to sample, particularly for biological measurements, and does not always decrease
over time.

4. Water quality data from low-level measurements, particularly organics, also frequently include
nondetects (recorded for example as <5.0 μg/L), which result from censoring of measured
values by the laboratory. The presence of nondetects obviously complicates statistical analysis
of data, particularly when the detection limit or censoring level changes over time.

5. Water quality datasets are not often symmetrically distributed for several reasons, including
the presence of nondetects, relationships with precipitation and/or streamflow, and the
importance of biological variables and processes.

6. And finally, characterizing water quality random variables in a rigorous sampling context—
which requires that the population of interest, or target population, is specified in advance of
sampling—may be difficult or impossible. As a simple example, if one is interested in studying
the effects of fire on water quality, the sampling program is limited by the fact that one does not
know in advance when and where the fire will occur.

Helsel and Hirsch (2002, p. 2) provide a similar list of special characteristics for water resources
data in general.

Note at the outset that characteristic 6 is probably the most important. Consequently, data users
often waste a great deal of time arguing about whether or not the data are normally distributed, when
the far more important question is whether or not the data adequately represent the real population
of interest.

10.2 PRACTICAL APPLICATIONS OF WATER QUALITY DISTRIBUTIONS

The distribution of a water quality random variable depends on the particular population of interest,
which in turn depends upon the intended use of the data for a particular application. The following
describes three of the more common broad categories of monitoring, and then the next sections
discuss the probability distributions that have been most useful for those applications.

First, routine, fixed-station monitoring of streams and lakes is important for assessing
compliance with stream standards and suitability for intended uses such as drinking water, contact
recreation, and aquatic habitat. Routine monitoring should be accompanied by the production of
routine reports, which generally include statistical summaries and some type of trend analysis.
Sound network design and data analysis are critical for getting the most from limited and usually
shrinking budgets for routine monitoring, but many routine monitoring programs produce more
data than useful information (Ward et al. 1986). Furthermore, a sound statistical foundation is often
lacking when stream standards and compliance criteria are established.
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Second, limited-duration intensive surveys are needed to augment routine monitoring when
evaluating the impacts of certain human activities or rare events such as fires or floods, particularly
when a large suite of constituents and a high level of spatial and temporal resolution are required.
Multivariate methods and mapping may be particularly important for characterizing the impact of
pollution sources. Unless the results of similar surveys are available, the probability distributions of
variables of concern may not be known until after the study is complete.

And third, regulatory monitoring for compliance with permits is somewhat different from
routine monitoring to assess use-based standards compliance, although the ultimate purpose of
protecting beneficial uses is the same. Monitoring for permit compliance focuses on the known
location of discharge into a receiving water, for example the outfall of a wastewater treatment plant
or the entire area covered by a landfill overlying an aquifer. For this type of monitoring detailed
requirements for monitoring and statistical analysis of data are often needed to assess compliance. A
notable example is Resource Conservation and Recovery Act (RCRA) compliance monitoring of
groundwater at landfills and other waste disposal facilities. Guidance for this type of monitoring
includes a recommendation for evaluating the distribution of constituents of concern (EPA 2009).

The following paragraphs briefly discuss the parametric distributions, both continuous and
discrete, that are most commonly used in water quality. The mathematical formulae for the
probability density functions (pdfs) and parameters are widely available in texts on probability
theory (e.g., Wackerly et al. 2008). With the exception of theWeibull distribution, all are discussed in
McBride (2005) within the context of water quality management. [Note: Chapter 10 of McBride
(2005) requires an important correction. On p. 220 in the caption to Table 10.3 and in Example 10.3
on page 221, “for a 3 × 10 mL, 3 × 1 mL, and 3 × 0.1 mL” should be replaced with “for a 3 × 100 mL,
3 × 10 mL, and 3 × 1.0 mL.” Personal communication from the author.]

10.3 THE NORMAL DISTRIBUTION

To begin the discussion of continuous distributions, the normal distribution is generally the most
widely used. Because the normal distribution is well covered in all statistical texts and elsewhere in
this monograph, the normal distribution needs no general description here.

As discussed earlier, many water quality random variables are not normally distributed unless
they are transformed, and even then transformations are not always successful in achieving
normality. Parametric representations of water quality distributions are of limited utility, and most
practitioners should rely most heavily on nonparametric (also referred to as distribution-free)
approaches. For most routine water quality data analysis, nonparametric approaches can be used
without any pretesting to evaluate the form of the distribution. This approach reduces work, costs,
and complexity of the resulting report without compromising the validity or value of the information
produced.

Nevertheless, the normal distribution is of central importance in water quality statistics for
several reasons. First, in some cases the normal distribution is a good fit to water quality data. As one
example, Nakano et al. (2015) find that the normal distribution is a good fit for nitrate concentra-
tions in groundwater on the main island of Okinawa in Japan. And in other cases, transformations of
the data can often be used to achieve normality, as discussed later. Second, sample means tend to be
normally distributed, regardless of the underlying distribution, via the central limit theorem
(Wackerly et al. 2008). The number of samples required to achieve normality of the sample mean
depends on the type and degree of departure from normality. Means—taken over days, months, or
even years—are often analyzed statistically. Sample size calculations for estimation of means with a
desired error and confidence level are generally based on the approximate normality of the sample
mean (Gilbert 1987, p. 31). Third, measurement errors and instrument noise tend to be normally
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distributed. Finally, the normal distribution is very commonly used in nonparametric statistical
methods because the test statistic is often approximately normally distributed for larger sample sizes.

10.4 TESTS FOR NORMALITY AND TRANSFORMATIONS

Whether necessary or not, testing water quality data for normality and attempting transformations
before employing nonparametric methods is fairly common practice. EPA (2009) states that “Testing
of normality is ubiquitous in environmental statistical analysis,” and certainly a parametric model
based on a particular distribution is useful in several applications. Therefore, in keeping with the
major theme of this monograph, assume that we have water quality data that are collected from a
target population of interest by an appropriate sampling scheme, such as simple random sampling or
systematic sampling of the entire population of interest (Gilbert 1987). Furthermore, we wish to
select an appropriate distribution as the foundation for a statistical model. In many cases, experience
with similar datasets will provide sufficient or at least some guidance. If more guidance is needed, the
traditional approach involves inspection of probability plots (usually for linearity or presence of
outliers) for alternative distributions and/or hypothesis testing, for example, using a null hypothesis
that the given set of data comes from a normal (or other specified) distribution.

This is in fact the approach that the U.S. Environmental Protection Agency advocates (EPA
2009). The recommended approach is to test first for normality by an appropriate test of hypothesis
and then to attempt Box–Cox transformations using the “ladder of powers” described in Helsel and
Hirsch (2002). The form of those transformations is

yk =
�
xλ for λ ≠ 0
log x for λ= 0

(10-1)

where λ can be any real number, but for the ladder of powers is taken as

λ= 0,
1
4
,
1
3
,
1
2
, 1, 2, 3, 4

If an acceptable degree of normality is not achieved, then nonparametric methods would be
used. In EPA (2009) and elsewhere, “acceptable” is defined in terms of failure to reject a null
hypothesis of normality based on an appropriate hypothesis test, but the conclusion may depend on
the sample size as noted later.

In applying EPA (2009), the most common use of the transformed observations is construction
of prediction limits using the formula for normally distributed data. Valid limits can be obtained,
even though the backtransformed mean of the transformed data (logs, for example) is not the mean
of the original data. (It is the geometric mean in the preceding example.)

An obvious problem with this approach, and with testing for normality or other distributions in
general, is that the hypothesis test is more sensitive (powerful) as the sample size increases. Thus,
larger datasets are more likely to result in a rejection of the null hypothesis of normality or
transformed normality and therefore in the use of nonparametric prediction limits. However,
nonparametric prediction limits can be no wider than the difference between the largest and smallest
observation and have significance levels no smaller than 1∕ðn − 1Þ, where n is the number of
observations. Therefore, parametric tests, when appropriate, have an advantage for small sample
sizes in both the achievable significance level and the power at a given significance level.

However, unless one has additional evidence (from a similar monitoring program perhaps) to
support an assumption of some particular distribution, conclusively determining the distribution
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when sample sizes are small is not possible. Thus, when the choice of a parametric method is based
primarily on normality testing using a small sample size, the assumed significance level for the
chosen parametric method may be incorrect. Therefore, both parametric and nonparametric
approaches have limitations, especially for small sample sizes, and the best choice will depend
upon the application.

For applications in which hypothesis tests for distribution fit are needed, EPA (2009)
recommends and describes the Shapiro–Wilk procedure for sample sizes of 50 or less and the
Shapiro–Francia procedure for larger sample sizes. EPA (2009) also recommends Filliben’s
probability plot correlation coefficient as the logical test to accompany visual inspection of the
normal probability plot and as having similar power to the Shapiro–Wilk procedure. Gilbert (1987,
pp. 158–162) describes the Shapiro–Wilk W test for samples sizes of 50 or smaller and D’Agostino’s
test for sample sizes of 50 or larger. Many other tests, such as the popular chi-squared goodness of fit
and Kolmogorov–Smirnov are available in statistical texts, for example Zar (1999), and statistical
software packages, and testing may be applied to other distributions as well.

The EPA software package ProUCL provides routines for distribution fitting, outlier analysis,
and many statistical procedures that are widely applied in water quality data analysis. In particular,
the package includes most of the procedures for the analysis of censored data that are described later
in this chapter. The software and accompanying documentation, including user and technical guides,
are free to download at https://www.epa.gov/land-research/proucl-software.

The ProUCL technical guide (Singh and Singh 2015, p. 18) makes the important point that
observations that appear to be either outliers or high values from the population of interest may
actually represent a different population altogether—a contaminated area of soil or a water quality
contamination event, for example. The total group of observations, including the high values, may
appear to be adequately modeled by a log–normal distribution, when in fact two different
distributions are present. In practice, separating out the high values and modeling them separately
or as a mixture may or may not be advisable, depending on the actual population of interest and
associated information needs. However, if the actual target population is carefully defined, as
discussed elsewhere in this chapter, a logical approach to distribution fitting should become
apparent.

10.5 THE LOG–NORMAL DISTRIBUTION

The log–normal distribution, also discussed in other chapters, is probably the most widely applicable
distribution for modeling water quality variables of all types given that it has a lower bound of zero
and positive skewness. The latter is extremely common in water quality observations, especially but
not limited to microbiological variables, which are prone to include a few values that are much larger
than the rest. As just a few examples, Masago et al. (2002) find that a log–normal distribution was
acceptable for Cryptosporidium levels in the Sagami River, Japan, based on goodness-of fit-testing at
a significance level of 0.05, and provides a better fit than a normal distribution or negative binomial
distribution. Çelo et al. (1999) find that heavy metal concentrations were log–normally distributed in
sediments along the Albanian coast. Mujeriego and Peters (2008) find that microbial quality of
reclaimed water was “adequately interpreted” by a log–normal distribution. Wang et al. (2007)
observe a log–normal distribution for event mean concentrations of total phosphorus in surface
runoff from multiple land uses in a hilly area around Taihu Lake in eastern China. Dolgonosov and
Korchagin (2014) find that a seasonal log–normal model provides a good description of the
distribution of stream flow and several water quality variables for the Moskova River in Russia.
The water quality variables were turbidity, color index, alkalinity, permanganate oxidability,
chloride, total microbial count, total coliforms, and fecal streptococci.
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And, in a principal component analysis (PCA; to be described further in this chapter) of water
quality variables from the Illinois River Basin in Arkansas and Oklahoma, Olsen et al. (2012) find
that all 26 chemical and biological variables included in the PCA were right-skewed and better
described by a log–normal distribution than by a normal distribution.

The log–normal distribution is extremely easy to use because the logs of the observations are
normally distributed. Thus standard normal tables can be used to make probability statements.
Gilbert (1987, Chapter 13) presents a particularly thorough discussion of the log–normal distribu-
tion with environmental applications, from which a few key concepts are repeated here:

• Parameters of the distribution are the mean and variance of the logs.

• Mean and variance of the untransformed observations are obtained from transformation
equations that include both of these parameters (Gilbert 1987, p. 167).

• Antilog of the mean of the logs is the median (equal to the geometric mean) of the
untransformed observations.

• Other percentiles correspond to normal percentiles of the logs and are obtained by exponentia-
tion thereof.

• Therefore, a confidence interval for the median may be obtained by computing a confidence
interval for the mean of the logs and exponentiating (Gilbert 1987, p. 173; Helsel 2012, p. 119).

• Gilbert (1987, pp. 165–166, 172) presents the best (minimum-variance unbiased) estimators for
the mean and median of the untransformed log–normal distribution and for the corresponding
variance of those estimates. These estimators require the use of a function denoted as Ψ ()
for which the first few terms of an infinite series are presented and can easily be computed
via spreadsheet. Simpler estimators perform well only for large sample sizes (Gilbert 1987,
pp. 167–168, 171–172).

Helsel (2012, pp. 115–118) discusses several options for computing confidence intervals for the
mean of the log–normal distribution, including a bootstrapping approach. Bootstrapping involves
repeated sampling with replacement from the original dataset to obtain many (hundreds or
thousands) of estimates, from which a confidence interval is obtained by computing the desired
percentiles.

10.6 OTHER CONTINUOUS DISTRIBUTIONS: GAMMA, WEIBULL, AND BETA

Other continuous distributions that are sometimes used in modeling water quality random variables
are the gamma, Weibull, and beta. Gilbert (1987, p. 157) presents their density functions. Wackerly
et al. (2008, pp. 185–200) discuss the gamma and beta distributions, while McBride (2005, pp. 31–33)
provides additional discussion of the gamma and beta distributions regarding water quality
applications and states that the beta distribution is particularly useful as a prior distribution in
Bayesian analysis. A few example applications from the literature follow.

Behera et al. (2000) studied the distribution of event mean concentrations of 15 urban runoff
quality constituents representing chemical and bacteriological pollutants, nutrients, and heavy
metals. Using a Kolmogorov–Smirnov test to assess goodness of fit, the authors conclude that the
log–normal, gamma, and exponential distributions were all useful for describing runoff quality
constituents. The exponential distribution is actually a special case of the gamma distribution
(McBride 2005, p. 32).

In a study of the distributions applicable at three stages (settled water, filtered water, and final
water) within a water treatment plant, Nwaiwu and Bitrus (2005) also use a Kolmogorov–Smirnov
test to evaluate goodness of fit of alternative distributions. In the words of the authors, “For the
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settled water, colour and turbidity are lognormally distributed while pH is normally distributed;
filtered water has colour, turbidity, free chlorine and total chlorine log normally distributed while pH
has gamma distribution for best fit. The log normal distribution fitted all the parameters undertaken
for the final water.”

Thompson et al. (2000) analyzed polycyclic aromatic hydrocarbon (PAH) sediment and oyster
contamination data collected at Murrells Inlet, South Carolina. They find that the Weibull
distribution generally provides an adequate fit (and better fit than the log–normal distribution)
to the data considered. The authors also explore several methods of estimating Weibull parameters
from censored (nondetect) data, to be discussed in a later section. EPA (2009) mentions prediction
limits based on the gamma distribution (Bhaumik and Gibbons 2006) and Weibull distribution
(Cameron 2007).

10.7 THE BINOMIAL AND HYPERGEOMETRIC DISTRIBUTIONS

Moving now to discrete distributions, the binomial is most broadly applicable. The binomial
distribution gives the probability of x successes in n independent trials, each with probability of
success p. p and n are the parameters of this distribution (McBride 2005, p. 143; Wackerly et al. 2008,
p. 100.) Thus any dichotomous variable is always binomially distributed if sampling is random or
samples are otherwise independent.

The binomial is an extremely important discrete distribution for water quality applications
because of its applicability for setting and evaluating stream standards and because it is the basis for
many nonparametric methods. Because any distribution is adequately characterized by a sufficient
number of quantiles, the binomial distribution can be used to develop any required probability of
occurrence within any interval when those quantiles are known. In that sense, the binomial
distribution is ultimately the only distribution that one would ever need. Or, more realistically,
the binomial distribution can be used to develop probability statements about order statistics, on
which nonparametric methods are based. Those probability statements then form the basis for
nonparametric interval estimates and hypothesis tests (Conover 1980). The binomial and cumulative
binomial distributions are conveniently evaluated with statistical software (including statistical
functions in Microsoft Excel).

As a practical application of the binomial distribution, suppose that one wishes to evaluate the
performance of an effluent standard and monitoring strategy designed to indicate compliance when
the effluent is below a fixed limit (of say 1 mg/L biochemical oxygen demand, BOD) at least 90% of
the time. The discharge permit requires 20 samples per month with no more than two (10%)
exceeding 1 mg/L BOD.

Now suppose that the effluent is actually above the limit 15% of the time. What is the probability
that the monitoring program will correctly conclude that the discharger is out of compliance? The
desired probability is the probability of obtaining more than two samples above the limit (successes)
out of 20 when p = 0.15. This probability is 1 minus the cumulative binomial distribution with
x = 2, n = 20, and p = 0.15, which turns out to be 1.0–0.405 or about 0.6. Thus a 60% chance exists
of correctly concluding the effluent standard is violated, and a 40% chance exists of erroneously
concluding that the discharger is in compliance.

Given that this type of analysis is extremely simple to perform, that it is not more widely used in
setting compliance criteria and designing monitoring strategies for permit compliance is somewhat
surprising. McBride (2005, p. 183–192) expands upon this discussion, using the binomial distribu-
tion and “classical approach” to determine the number of allowable exceedances to control risk to
both “producer” (discharger) and “consumer” (beneficial use) and then extends the discussion to the
development of such rules using a Bayesian approach. The binomial distribution is also applicable to
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evaluating probabilities of a given number or proportion of samples being recorded above or below
one or more threshold levels and thus for answering “several relevant questions about censored data”
(Helsel 2012, p. 142–152).

A variation of the binomial distribution, the hypergeometric distribution, provides the
probability of obtaining x successes in sampling without replacement in a finite population of
N trials containing exactly D successes (McBride 2005, p. 147; Wackerly et al. 2008, p. 125). Helsel
(2012, p. 147) provides an example application for determining the largest expected number of
exceedances, y, (of a standard or detection limit), for a confidence level of 1 − α, in a given future
number of samples, m, after observing zero exceedances in the first n samples. First define
H(x; n, D, N) as the cumulative hypergeometric distribution giving the probability of x or fewer
exceedances out of n samples drawn without replacement from N total samples, of which D are
exceedances. Note that in this example N = nþm. The largest expected number of future
exceedances, y, is therefore the smallest value of D for which the probability of x = 0 exceedances
in the first n trials is less than α; or in the aforementioned notation, the smallest value of y for
which

Hð0; n, y, nþmÞ < α (10-2)

Helsel (2012, p. 147) gives a numerical example and the required Minitab commands.
Note that this example does not include estimation of the proportion of exceedances, p, in the

overall population. However, p can be estimated from the same data and is simply the number of
nonconforming samples over the total number of samples. Confidence intervals for p are discussed
later in this chapter.

10.8 OTHER DISCRETE DISTRIBUTIONS AND MICROBIOLOGICAL VARIABLES

For biological monitoring, parametric descriptions of other discrete distributions are often applica-
ble. McBride (2005) presents an excellent discussion of the applicable distributions and includes
chapters on “Microbial Water Quality and Human Health” (Chapter 9) and “MPNs and Micro-
biology” (Chapter 10; see correction in Section 10.2). MPN refers to “most probable number” in
microbial assays that use fermentation of successive dilutions in which presence should be indicated
if at least one cell is present. Chapter 9 of McBride (2005) discusses statistical approaches to analysis
of exposure assessment, dose response, risk profiling, and risk communication.

10.8.1 The Poisson Distribution

The Poisson distribution (McBride 2005, p. 144; Wackerly et al. 2008, p. 131) is commonly used to
model microbial counts in water. The single parameter of this distribution is both the mean and
variance, which are identical. The mean and variance are counts, not concentrations, and scale
directly with the sample volume (Loftis et al. 1999).

Young and Komisar (1999) use the Poisson distribution to model variability of Cryptosporidium
oocysts and Giardia cysts in water. Haas and Rose (1996) find that the distribution of
Cryptosporidium oocysts is consistent with the Poisson distribution. Gale et al. (2002) find that
total coliforms were Poisson distributed in 5,000 volumes of treated water. McBride (2005) notes
that the standard tables for MPNs are all based on random sampling from Poisson distributions.
However, some “untidy aspects of MPN tables and their usage” are discussed at length in McBride
(2005, Chapter 10).
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10.8.2 The Negative Binomial Distribution

Another relative of the binomial distribution, the negative binomial distribution, provides the
probability associated with a given number of trials, n, required to achieve the kth success when each
trial has a success probability p (Wackerly et al. 2008, p. 121). The possible values of n are k, k + 1,
k + 2, : : : . , and the parameters of the distribution are k and p. McBride (2005, pp. 36, 145) describes
the distribution is described as applicable for describing the distribution of Cryptosporidium oocysts
in water bodies (Gale 1998). The distribution is always overdispersed, meaning that the variance is
always greater than the mean. The variance increases with the value of k, which is therefore called the
dispersion parameter.

In Young and Komisar (1999), cited previously regarding the Poisson distribution, the negative
binomial distribution is used to model situations in which clumping of the (oo)cysts occurs.
Petterson (2001) finds that virus counts on salad crops irrigated with wastewater were best fitted by a
negative binomial distribution rather than Poisson, indicating overdispersion and viral clumping.
Crohn and Yates (1997) assume a negative binomial distribution of virus densities and use a volume-
varying version of the negative binomial distribution to develop a one-sided confidence interval for
the mean virus concentration in treated water. The dispersion parameter, k, is estimated from data
collected prior to water treatment.

10.8.3 The Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution in which there are
m possible outcomes to each trial with probabilities p1, p2, : : : , pm, which sum to 1. McBride (2005,
pp. 148, 222–224) describes the multinomial distribution and its use in developing exact MPNs.

10.9 NONPARAMETRIC REPRESENTATIONS

Continuing the discussion from Section 10.4, many, if not most, water quality random variables are
not well described by either the normal distribution or log–normal distributions, thus greatly
reducing the applicability of many classical statistical methods. And, certainly, many water quality
data sets are not well described by any common parametric distribution. Therefore, nonparametric
methods have become an (if not yet “the”) accepted norm for water quality data analysis. Most data
analysis tasks can be accomplished by nonparametric methods that are easy to understand and
implement in statistical software, perform nearly as well (in terms of power and validity of
significance level) as parametric alternatives when the data are normally distributed, and perform
much better as the data depart from normality.

In a nonparametric view, the distribution is characterized only by the data themselves, that is, order
statistics, and their associated quantiles (or percentiles). Any distribution is adequately characterized by
a sufficiently large number of quantiles, each corresponding to a left-tail (nonexceedance) probability,
p, and therefore representing a binomial distribution with parameter p. Thus the basis for many
nonparametric methods is the binomial distribution and its normal approximation (Conover 1980,
pp. 52, 95–142).

We shall briefly discuss both point and confidence interval estimates of quantiles and of
nonexceedance probabilities, p, with more attention to the former because the estimation of non-
exceedance probabilities is central to flood frequency analysis, discussed elsewhere in this monograph.

10.9.1 Nonparametric Estimation of Quantiles and Proportions

For common values of p and confidence level 1 − α, tables are readily available for nonparametric
confidence intervals on quantiles. The tables give the ranks of the observations that form the
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confidence interval (Hahn and Meeker 1991, p. 82). Alternatively, and for other situations, one can
use the cumulative binomial distribution as described in Conover (1980, p. 112) or Hahn andMeeker
(1991, p. 83). Briefly, the procedure is as follows for sample size n, probability level p*, and confidence
level 1 − α (Iyer 2000):

1. Define B(x,m,p) as the cumulative binomial probability of x or fewer successes in m trials with
probability of success p.

2. For each integer x = 0,1, : : : ,n, compute B(x,n,p*)

3. Select a value of B(x,n,p*) that is approximately equal to α/2. Denote this entry as α1 and the
corresponding value of x as r− 1.

4. Select another value of B(x,n,p*) that is approximately equal to 1− α/2. Denote this entry as
1− α2 and the corresponding value of x as s− 1.

5. A confidence interval for the p* th quantile with confidence level greater than or equal to
1− α1− α2 is given by the interval [x(r), x(s)] where x(r) and x(s) are the order statistics of
rank r and s, respectively.

The required cumulative binomial probabilities are conveniently evaluated in Microsoft Excel
with the statistical function, BINOM.DIST.

Gilbert (1987, p. 141) gives the following approximate formula (appropriate for n> 20), where
l and u define the ranks of the lower and upper limits, respectively, and Z1−α∕2 is the standard normal
random variable with left-tail probability 1 − α/2.

1= p�ðnþ 1Þ − Z1−α∕2½np�ð1 − p�Þ�1∕2 (10-3)

u= p�ðnþ 1Þ þ Z1−α∕2½np�ð1 − p�Þ�1∕2 (10-4)

Because l and u are not integers, the limits are usually approximated by interpolation between
the appropriate order statistics.

As in flood frequency analysis, the value of p corresponding to a given observation (and
equivalently, proportion or cumulative distribution function, cdf) is most commonly the Weibull
plotting position, p=m∕nþ 1, where m is the rank of the observation and n is the total number of
observations.

A similar concept is the proportion of the distribution that lies below a fixed level, x0, not
corresponding to an actual observation. That proportion is estimated as p= x∕n, where x is the
observed number of observations (“successes”) that lie below the fixed limit, x0, out of a total number
of observations (“trials”) n.

In regulatory applications, in particular, confidence intervals both for quantiles and propor-
tions (equivalently, cdfs) are often useful. Such intervals can help determine whether a given
dataset or sample size is adequate either for setting standards or assessing compliance (McBride
2005, pp. 179–185).

As was the case for quantiles, nonparametric confidence intervals on a proportion are readily
available in tables and graphs (Gilbert 1987, p. 257; Hahn and Meeker 1991, pp. 104–107).
Alternatively a “conservative two-sided 100(1 − α) % confidence interval for p” is given by Hahn
and Meeker (1991, p. 104) as follows,

½p1, p2�=
��

1þ ðn − x þ 1ÞF1
x

�
−1
,

�
1þ n − x

ðx þ 1ÞF2
�

−1
�

(10-5)
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where
x = observed number of “successes” in n trials; thus, the point estimate of p= x∕n;
p1, p2 = lower and upper confidence limits, respectively;
F1 = quantile of the F distribution with left-tail probability of 1− α/2 and degrees of freedom
n1= 2n − 2x þ 2 and n2= 2x; and
F2 = quantile of the F distribution with left-tail probability of 1− α/2 and degrees of freedom
n1= 2x þ 2 and n2= 2n − 2x.

The F distribution quantiles can be evaluated using the Microsoft Excel function F.INV.
The following gives a large-sample approximate formula for situations in which both np and

nð1 − pÞ are greater than 5 (according to Gilbert 1987, p. 143) or 10 (according to Hahn and Meeker
1991, p. 106).

½p1, p2�= p� Z1−∝∕2

�
pð1 − pÞ

n

�
1∕2

(10-6)

where
p = point estimate of the desired probability = x/n, and
Z1−α∕2 = standard normal random variable with left-tail probability 1 − α/2.

10.9.2 Box-and-Whisker Plots

The estimated quartiles (25th and 75th percentiles) of a distribution define the interquartile range,
which along with the median, form the basis of the box-and-whisker plot (boxplot), the most widely
used graphical representation of water quality distributions. The quartiles are shown as a box, median
within the box, and upper and lower extreme values as whiskers. Most statistical software packages can
produce these plots with various options for defining the whiskers and plotting outlying values beyond
the whiskers, along with additional information such as sample size. In the default options of Minitab,
for example, the whiskers extend to the actual data point that lies just inside a point defined as 1.5 times
the interquartile range beyond the end of the box. The values outside the whiskers are plotted as
asterisks. Minitab, with default options, was used to create Figure 10-1.

Figure 10-1. Boxplot of total phosphorus concentrations for 2009–2011 at two monitoring stations
in the Colorado–Big Thompson Project operated by Northern Water. Stations are Adams Tunnel
(AT), East Portal (EP), and Olympus Tunnel (OLY).
Source: Data provided by Northern Water (2012), Berthoud, Colorado.
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Box-and-whisker plots are found in essentially all US Geological Survey (and many other)
publications on water quality and are perhaps the best way to succinctly describe the distribution of
data for a given subpopulation and to compare subpopulations across locations, seasons, or years.
The example boxplot in Figure 10-1 compares total phosphorus concentrations at two surface water
stations in the Colorado–Big Thompson Project near Estes Park, Colorado.

The upstream station, AT–EP, is located at the east portal of the Adams Tunnel, which
transports water from Grand Lake, west of the Continental Divide. The downstream station, OLY
(Olympus Tunnel), is located at an outlet from Lake Estes, which receives additional phosphorus
inputs from the city of Estes Park and thus exhibits slightly higher total phosphorus concentrations.

10.10 CENSORED OBSERVATIONS

The sensitivity of laboratory methods has limits, and most laboratories will record low-level
measurements as nondetect (ND) or less-thans (e.g., < 10.0 μg/L) when the measured concentration
in the sample has a signal-to-noise ratio that is deemed to be unacceptably small. The critical level,
called the detection limit, is derived statistically from the standard deviation of multiple blanks or
laboratory spikes and is both laboratory and method specific. The data record is censored by the
laboratory at the detection limit. The record may be censored again at a higher level called the
practical quantitation limit or PQL, with observations between the detection limit and PQL recorded
as a “trace.” Obviously the presence of NDs complicates data analysis, particularly when the fraction
of NDs is large and/or when the detection limit changes over time. The fraction of NDs is frequently
at or close to 100% for low-level constituents, such as volatile organic compounds in groundwater.

By far the most common method of dealing with NDs in data analysis is simply to substitute a
numerical value for the ND. Usually this value is zero, the detection limit, or half the detection limit.
Any of these simple substitution methods introduces some level of error into the analysis.
Substituting the detection limit or half the detection limit is particularly problematic when the
detection limit changes over time due to changes in analytical techniques or simply recalculation of
the limit by the laboratory.

Finding observations as different as < 0.5 and < 50.0 within the same data record for the same
constituent is not uncommon. Furthermore, all too common is to see higher (sometimes much higher)
reporting limits (RLs) later in the record when analytical methods and sensitivity should be improving
and detection limits decreasing. This is a strong indication that a data quality problem is associated with
the laboratory, and the issue should be addressed as soon as the results are received. As Helsel (2012,
pp. 86–87) notes, a very few high nondetects can greatly affect the results of data analysis, particularly
when simple substitution is used, and nondetects that have higher RLs than any uncensored
observation in the dataset have no useful information content and may be dropped from the dataset.

Many methods improve upon simple substitution for estimating population parameters.
Because of the great significance of this issue in groundwater quality data analysis, the aforemen-
tioned RCRA guidance (EPA 2009, Chapter 15) devotes considerable attention to the issue and
summarizes important findings from several researchers. The ultimate goal of RCRA monitoring is
to detect changes in groundwater quality at regulated facilities. Therefore, the discussion in EPA
(2009) primarily concerns the effects of alternative methods for handling nondetects on the results of
statistical tests—prediction limits in particular. Much broader in scope is Helsel’s (2012) extremely
thorough discussion of the problem in general and of the available methods for dealing with it
(including statistical software applications).

For the present purpose of discussing statistical distributions, four approaches are mentioned in
particular. The first is application of nonparametric methods when the censored values can be
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assigned appropriate ranks. If multiple censoring levels or uncensored values are below the reporting
limit, the data are postcensored at the highest reporting limit (Helsel 2012, p. 13).

The second is maximum likelihood estimation (MLE) techniques assuming a particular
distribution such as normal or log–normal. An example is Cohen’s table adjustment method for
estimation of the mean and variance (Gilbert 1987, p. 182; EPA 2009, Chapter 15; Helsel 2012, p. 65)
or the more versatile and accurate maximum likelihood methods afforded by statistical software
(Helsel 2012, pp. 67–70). The statistical software approach easily accommodates multiple censoring
levels (with uncensored values in between). Furthermore, this approach incorporates both detection
limits and quantitation limits by coding separate intervals for nondetects and trace-level measure-
ments. Helsel (2012, p. 65) notes that MLE approaches are generally appropriate only for samples
sizes greater than 30 or 50 to 70 for skewed populations.

The third approach is regression on order statistics (ROS), which involves computing a linear
regression equation relating the observed uncensored concentrations, or logs thereof, to their
corresponding normal scores. This approach is described and recommended in EPA (2009,
Chapter 15). Helsel (2012, pp. 79–86) discusses alternative ROS approaches and the supporting
literature, stating that the method is appropriate for smaller sample sizes (n< 30) than is MLE.

A fourth alternative is the Kaplan Meier (KM) approach. Like ROS, EPA (2009, Chapter 15)
describes and recommends this approach, and Helsel (2012, pp. 70–79) provides a thorough
discussion and supporting literature.

Most approaches to dealing with censored data are either nonparametric or assume a normal or
transformed normal distribution. An exception is the study by Thompson et al. (2000), mentioned
previously in discussing the Weibull distribution. The authors explore several methods of estimating
Weibull parameters from censored (nondetect) data for PAHs in sediment and oysters in a South
Carolina estuary. The methods include simple substitution of half the detection limit, maximum
likelihood, and regression of the linearized distribution function based on noncensored observations
only. In tests on artificially censored simulated Weibull data, the latter two methods provide good
agreement with the full dataset, while simple substitution provided large root mean squared errors in
one of two simulated datasets used in the study.

10.10.1 Empirical Distribution Functions and Summary Statistics for
ROS and KM

Both the ROS and KM approaches involve computing empirical (cumulative) distribution functions
(edfs), using both censored and uncensored data. The KM approach computes conditional “survival
probabilities” for each RL and uncensored observation, while the ROS approach computes plotting
positions for each RL and then distributes the uncensored observations evenly below, between, and
above the RLs as appropriate.

ROS can be accomplished in either fully parametric or “robust” forms (Helsel 2012, pp. 79–86).
In the fully parametric form (also in Gilbert 1987, p. 181), the regression line itself is used to obtain
estimates of the mean and standard deviation. The censored values are not used directly, but of
course play a role in establishing plotting positions for the uncensored values. In the robust form, the
regression line is used to impute values for censored measurements, and summary statistics are then
computed using both uncensored observations and imputed values for censored observations. Thus,
while the specified distribution is assumed for censored values, the goodness of fit of that distribution
to uncensored values will not affect the results, hence the term “robust.” EPA (2009, pp. 15–15 to
15–20) includes a step-by-step procedure and a numerical example.

To obtain summary statistics via KM, Helsel (2012, pp. 73–76) presents nonparametric
approaches using the KM edf. EPA (2009, pp. 15–9 to 15–13) includes a step-by-step procedure
and numerical example for obtaining the KM edf and estimates of the mean and variance based on a
normal distribution of the data or transformed data.
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10.10.2 Quantiles and Boxplots Using Censored Data

Helsel (2012, pp. 126–136) discusses nonparametric confidence limits on the median and other
quantiles for censored data, which are based on binomial probabilities and the KM approach.
Another alternative for estimating distribution parameters and their confidence intervals is boot-
strapping or repeated sampling from the observed data with replacement. Helsel (2012, pp. 136–140)
discusses this approach, with particular attention to censored data.

The manner in which nondetects are handled can significantly affect the boxplot. If the highest
reporting limit is less than the 25th percentile, the use of simple substitution would not affect the box
but would affect the whiskers. Helsel (2012, pp. 44–46) recommends plotting the maximum RL as a
horizontal line on the boxplot. Portions of the box above the limit are drawn with solid lines.
Portions of the box below the limit may be blanked out or computed by KM or ROS and drawn with
dashed lines.

Overall, many options are available for dealing with censored data in computing percentiles and
other summary statistics, and no single accepted best approach exists. Helsel (2012, pp. 87–92)
reviews 15 papers that compare alternative procedures, 14 of which use simulated data and one uses
two levels of analytical procedures and real data. A set of detailed recommendations for specific
circumstances is presented as well. Briefly, though, for 50% or fewer censored observations, either the
KM or an imputation method like robust ROS, is recommended. Both KM and robust ROS are
included in the ProUCL software package mentioned previously.

10.10.3 Avoidance of Censoring by Using All Measurements

In some cases, the problem of censored data can be avoided altogether by requiring the laboratory
to provide both the actual measurement obtained (including negative values) and either the
detection limit and/or an estimate of the precision (standard deviation) of the measurement
(Porter et al. 1988). Then one would have the option of censoring or using all measurements
without censoring and would be able to interpret individual observations in light of the
measurement error. Helsel (2012, p. 33) notes that potential problems exist with reporting of
all laboratory instrument readings without supplementary information about instrument error,
citing a study by Antweiler and Taylor (2008), in which censored data techniques were compared
with using all instrument readings in measurement of a series of trace-level constituent con-
centrations. Important to note is that this study used actual measurements—44 distinct datasets
ranging in size from 34 to 841 samples—whereas most other comparisons, including 14 of those in
the aforementioned review, are based on simulated data. The latter allows for more thorough and
fully controlled comparisons.

Nevertheless, in the Antweiler and Taylor (2008) study the nonparametric KM technique was
the best overall performer, followed by three “acceptable” techniques: robust ROS, substituting half
the detection limit, and assigning a random number between zero and the detection limit. Somewhat
surprisingly, use of laboratory-generated data below the detection limit was no better than the
acceptable procedures. Maximum likelihood techniques performed poorly.

10.11 WATER QUALITY POPULATIONS OF INTEREST DEFINED

When we use a probability distribution, such as a normal distribution with a specified mean and
variance, to model a particular water quality (or quantity) random variable, we are referring to a
particular water quality population. In a rigorous sense, that population must consist of a defined
and countable number of sampling units (such as 1 L samples of water). Clearly, most water quality
monitoring programs do not fully define the population of interest.
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Examples of complete definitions would be “the total mass of water that flows past a certain
stream cross-section over a 10 year period” or “the total mass of water contained in a reservoir (or
aquifer) at a particular point in time.”However, if we say simply that the population of interest is the
water represented by a group of wells or several locations in a reservoir sampled over a 2 year period,
defining a corresponding set of discrete sampling units is not possible. The latter case is almost
universal in practice; thus, we rarely find good correspondence between applied probability
distributions and real water quality populations. To repeat a statement made at the beginning of
this chapter, we may spend a lot of time arguing about whether or not the data are normally
distributed, when the far more important problem is to define the real population of interest and to
ensure that the data adequately represent that population.

10.12 PROBABILITY SAMPLING

To obtain valid estimates of the parameters of a particular distribution, a probability sampling
approach must be employed (Gilbert 1987, pp. 20–23). From a valid probability sample, one can
obtain unbiased estimates of the mean and/or other distribution parameters. The precision of those
estimates is expressed by the corresponding standard error, from which, in turn, a confidence
interval for the parameter of interest may be obtained.

As mentioned previously, the population of interest or target population must consist of a
countable number of physical sampling units. Furthermore, the sampled population must be the
same as the target population, and every sampling unit in the target/sampled population must have
an equal (or at least known) probability of being sampled. Thus, the samples must be drawn at
random, or there must at least be a random start followed by fixed-interval (systematic) sampling
with additional requirements and concerns (Gilbert 1987, Chapter 8).

Therefore, as just one example, obtaining valid estimates of long-term means of water quality at
a given location is impossible from short-term monitoring because the target and sampled
populations are not the same. Obviously, achieving these requirements for probability sampling
and for obtaining valid estimates of population (distribution) parameters is frequently impossible.
However, if these basic requirements and the limitations of not achieving them are carefully noted,
then a great deal of confusion and unnecessary argument can be avoided, leading to more effective
monitoring programs and more meaningful interpretation of data therefrom.

10.13 TIME SERIES AND STOCHASTIC PROCESSES

Let us now consider sampling at a single location of interest over time. For most water quality data
records, the order and time of observations are important. Thus, the data from a particular location
consist of a time series. Stochastic hydrologists often define a time series as a segment of a realization
of a stochastic process (Box and Jenkins 1976, p. 24). While useful for many purposes and essential
for studying long-term patterns and behavior, this interpretation of time series has a few important
consequences with regard to our discussion of distributions. First and foremost, valid probability
sampling (according to our earlier definition) of a stochastic process is impossible because a
stochastic process can have more than one realization, yet we can observe only one of those. Even if
we believe that a given process is ergodic (representable by a single realization over a sufficiently long
time period), that the target and sampled population would be the same in practical situations is
highly unlikely. A “very long” record of a water quality process that is stationary (not changing in
fundamental process parameters over time) could represent an exception, if such a thing exists.
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In most instances, therefore, distinguishing between a probability sampling view of data analysis
and a stochastic process view will be necessary. The two types of models are quite different, and the
same terminology (for example the “mean”) can have quite different interpretations in each model
type. This is not to say, however, that both types of models cannot be applied to the same (reasonably
long) dataset—only that the data analyst should be clear about which type of model underlies a given
conclusion. Such conclusions would include the statistical significance of trend or width of a
confidence interval for the mean or median.

10.14 IMPORTANCE OF SERIAL CORRELATION

In general, both deterministic patterns, such as seasonality, and/or long-term trend and serial
correlation or redundancy are present in water quality processes. We shall discuss seasonality and
trend in subsequent sections and so focus here on serial correlation. Serial correlation appears in the
form of random short-term trends or “runs” in a time series. What is classified as short or long term
is arbitrary and will depend on the time scale of interest (Loftis et al. 1991). Essentially all water
quality variables are serially correlated if sampled systematically on a short enough time interval. As
automated, nearly continuous monitoring becomes more common, serial correlation becomes more
of a concern, at least potentially.

When considering serial correlation in water quality data and appropriate distributions,
distinguishing between probability sampling models and stochastic process models as discussed
previously is critical. Characterizing serial correlation or redundancy in information from
one observation to the next is at the heart of modeling stochastic processes, and so in the
stochastic processes view of water quality, we know how to handle serial correlation. However,
in random probability sampling, serial correlation has no meaning (with an exception noted
in the later “aside”), because the samples have no particular order. We have no problem there
either.

The in-between case of systematic (fixed-interval) sampling of a specified target population
(e.g., monthly, weekly, or daily sampling over a given year of interest) is where things can get a bit
confusing. In systematic probability sampling, obtaining valid estimates of the target population
mean or other parameters is possible if one has or assumes a random start and the entire population
is sampled; that is, the period of interest equals the period of sampling.

Systematic sampling is often more practical and is often better than random sampling.
Obviously monthly sampling is more practical than collecting 12 random samples over the course
of the year. And in general, systematic sampling is better than random sampling when patterns over
time or space are present in the target population, both for mapping and for estimating population
parameters. Those patterns may be either deterministic (seasonality or trend) or random (serial
correlation). In fact, spatial correlation is the basis for contour mapping and any type of spatial
interpolation, such as kriging. [As an aside, samples that are collected more or less at random over
space or time can be indexed spatially and temporally as they are collected and then analyzed for
temporal or spatial correlation using geostatistical approaches (semivariograms), which then
facilitate interpolation with error estimates by the process of kriging. However, systematic sampling
is better suited for this purpose.]

The main problem with systematic sampling lies in the difficulty of obtaining a valid standard
error for the quantity being estimated when serial correlation is present. Gilbert (1987, Chapter 8)
presents several methods (such as multiple systematic samples or Yates’ method) of doing this, and
geostatistical approaches (kriging) may be useful as well. But this is not a simple task, and no simple,
broadly applicable approaches exist. Remember that we are talking about target population
parameters here, not stochastic process parameters.
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10.14.1 Serial Correlation and Probability Sampling

However, in the case of probability sampling, the effect of serial correlation in a systematic sample is
the same as that of sampling a significant fraction of the population. As the level of correlation
increases, the effective fraction of the population sampled increases as well, and at some point we
approach a complete census, where the standard error of the mean or other parameter of interest
approaches zero. Thus we would obtain a nearly identical and perfect estimate of the parameter every
time we sampled the same population at the same frequency.

10.14.2 Serial Correlation and Stochastic Processes

The effect of serial correlation on estimates of stochastic process parameters is just the opposite.
Suppose that we are interested in the long-term mean of some water quality variable at a particular
location but we have only a few years of monthly data. The long-term mean can be viewed as the
mean of an (infinitely long) stochastic process that adequately models the time series of data that we
have. The mean of the available time series is probably our best estimate of the process mean. It is
also the best estimate of the population mean of continuous measurements of water quality at that
location over the period of record. However, the period-of-record mean and the long-term process
mean are not the same parameter. Consequently, the estimates of the two parameters have different
standard errors even though the point estimates are the same. As noted previously, the standard
error of the sample mean of the specific period will decrease with increasing serial correlation, while
the standard error of the estimated process mean will increase with increasing serial correlation. Both
of these are true because more serial correlation implies more information about the neighborhood
of each observation and less information about the long term.

So specifying the type of model to apply in a given situation based on what type of information is
needed, specific period or long term, is critical. And, again, for specific-period parameters, simply
ignoring the effect of serial correlation is “safe” or “conservative” in the sense that the actual standard
error will be smaller than that resulting from independent observations. (This might not be safe, of
course, if the actual standard error would result in a different statistical conclusion, for example, a
significant difference between two groups.) For long-term means, it is possible to correct for the
effect of serial correlation using available formulas (Gilbert 1987, pp. 38–40).

10.14.3 Trend and Serial Correlation

Most water quality monitoring programs are as much or more concerned with detecting and
estimating trends as with estimating annual or seasonal means. And here again the interpretation
depends on the time period of interest and the corresponding view of the target population from
either probability sampling or stochastic process standpoints (Loftis et al. 1991). If the period of
interest is the same as the period of monitoring, then a probability sampling view is appropriate,
while if the period of interest is long term compared with the period of monitoring, then a stochastic
process view is appropriate. The meaning of trend is different between the two views. In the
stochastic process view, a trend is usually defined as a change in the underlying mean of the process,
continuing into the future. In the probability sampling view, a trend usually means that a pattern
exists of increasing or decreasing observations from earlier times to later times with no concern for
what happens in the future. As discussed earlier, the distinction between serial correlation and trend
is subjective in either view. Generally, long-term changes, or changes associated with a particular
influence such as land use or climate change, would be regarded as trends, while short-term,
apparently random, changes would be modeled as serial correlation.

However, the effect of serial correlation on the precision of estimates of model parameters, such
as trend magnitude, is opposite in the two views. In the probability sampling view, little, if any, need
exists to distinguish between serial correlation and trend. Both are simply patterns in the population,
and as the density of sampling increases, the precision of the pattern description or associated
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parameter estimates improves, and with continuous (well-calibrated) monitoring, the description is
essentially perfect.

In the probability sampling view, if one computes, for example, a linear trend magnitude using
linear regression (assuming the model is otherwise appropriate), then the computed p-value will be
conservative (too large) in the presence of serial correlation. In this view, the p-value associated with
a given set of n (equally spaced) observations is loosely interpreted as the probability of getting as
large a slope as the computed one from a random set of n observations (same spacing and located in
the same period of record) when the computed slope for a continuous record of the same period is
actually zero. Of course, the best way to model trends in this view is probably not a straight line
through the data. See Helsel and Hirsch (2002, pp. 285–292) for discussion of various smooths.

However, in the stochastic process view, only so much information about the underlying process
can be obtained from any period of monitoring, and the more serial correlation is present, the less
long-term information is present in short-term data. So, as in the case of estimating means in the
stochastic process view, considering serial correlation is necessary when testing for trend or
estimating trend magnitudes of stochastic processes as well. In this case, the p-value would be
interpreted as the probability of getting as large a slope as the computed one from a randomly chosen
set of n observations with the same spacing starting at any point in the process, not necessarily
anywhere close to the period of record. In this case, the computed p-value will be too small, unless
corrected for serial correlation (Hirsch and Slack 1984).

10.14.4 Automated Sampling, Nearly Continuous Monitoring

The aforementioned arguments and distinctions between the two views become most important
with automated samplers producing high-frequency, nearly continuous records and very large
sample sizes. In the probability sampling view, which requires that the entire target population is
sampled, serial correlation can be “safely” (but perhaps not optimally) ignored. Estimates of
population parameters will be better than computed precisions imply, and standard errors will
approach zero as a complete census of the population is approached. When a complete census is
achieved, a probability distribution model is not really needed because any desired frequency of a
given event can be computed directly from the data.

In the stochastic process view, serial correlation must be considered as part of the model and
accounted for or removed by averaging over large enough time periods so that the resulting averages
are nearly independent. In many cases of course the choice of view is not clear cut, requiring
creativity, multiple interpretations perhaps, and most certainly great care in explanation of
assumptions underlying data analysis.

10.15 SEASONALITY AND FLOW EFFECTS

For most surface water quality random variables, the distribution varies with streamflow/runoff
properties. Because the latter generally exhibit somewhat predictable seasonal patterns, water quality
varies seasonally as well. For some variables, temperature or diurnal variation is important. Weekly
cycles may be introduced by weekly patterns in human activity.

There are many approaches to characterizing seasonal and/or flow effects. The simplest
approach is simply to divide the year into appropriate seasons or flow ranges and treat each season
as a separate population. Of course, choosing the number of separate seasons and how to define them
“appropriately”may be difficult, especially because the timing and magnitude of spring runoff, storm
events, or other patterns may vary greatly from year to year.

Other approaches may involve building seasonality, flow, and other effects into models for the
analysis of water quality time series. The current state of the art is represented by a method called
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weighted regressions on time, discharge, and season (WRTDS) described in Hirsch et al. (2010).
The approach is suitable for the analysis of long-term time series of surface water quality data and
allows for “maximum flexibility in representations of long-term trend, seasonal components, and
discharge-related components of the behavior of the water-quality variable of interest.”

The general form of the WRTDS equation follows:

LnðcÞ= β0 þ β1t þ β2 lnðQÞ þ β3 sinð2πtÞ þ β4 cosð2πtÞ þ ε (10-7)

where
ln = natural log transform,
β’s = fitted regression coefficients,
c = concentration,
Q = discharge,
t = time in years, and
ε = unexplained variation or noise.

The weighted regression approach allows the regression coefficients, and thus the concentration
versus discharge relationship, seasonal patterns, and trend components, to vary over time. In the
regression estimation of the coefficients, each actual observation is weighted according to distance
from the point being estimated, and the distance has three components: time, season, and flow.
Obviously, observations closer to the estimation point are more relevant and will therefore have
larger weights.

The WRTDS method is now incorporated into a package called EGRET, Exploration and
Graphics for RivEr Trends: An R-package for the analysis of long-term changes in water quality
and streamflow. A user guide for EGRET is available at http://pubs.usgs.gov/tm/04/a10/ (Hirsch and
Di Cicco 2015).

10.16 MULTIVARIATE CHARACTERIZATION

Because water quality at a particular location in time and space is characterized by a large number of
measurements—chemical, physical, and biological—reducing the number of dimensions using a
multivariate approach is often desirable. The most common of these is principal component analysis
(PCA). The details of PCA may be found in many texts. Manly (1994) provides a very readable
introduction, while Johnson and Wischern (1998) provide more mathematical detail. In PCA,
correlation among n variables is used to replace the original set of variables with a new set of n
variables, each of which is a linear combination of the original set. The sum of variances of the
original and new variables is the same, but the new variables are ordered such that the first has the
largest variance, the next has the second largest variance, and so on.

Most commonly, the original variables are initially standardized by subtracting the mean and
dividing by the standard deviation, so that all are dimensionless, the variance of each is one, and the
sum of variances is n. Thus variables of different types, units, and orders of magnitude may be
combined. If the original variables are normally distributed, the standardized variables will be
standard normal deviates, Z. Each new variable is called a principal component (PC). The variance of
each principal component is the corresponding eigenvalue of the correlation matrix. The coefficients
of the standardized original variables in the linear combination that defines a given PC (called PC
coefficients) are the elements of the corresponding eigenvector.

If the correlation among the original variables is strong, the first two (or at most three) PCs
will contain much (more than 50%) of the variance of the original set, in which case a two- or
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three-dimensional characterization of water quality may be possible. Because the magnitude of the
PC coefficients defines the importance of each original variable in a given PC, relating each of the
first two or three PCs for a given water quality dataset to a particular pollution source or natural
driver of water quality is often possible.

Mapping of the first few principal components can be used both to establish a relationship of a
principal component to a particular pollution source and to map the effect of a given source on water
quality. For example, in a principal component analysis of water quality data from the Illinois River
Watershed in Oklahoma (Olsen et al. 2012), the first two principal components were clearly related
to land application of poultry waste and municipal waste treatment discharges, respectively. In PC1,
the important variables were aluminum, arsenic, copper, E-coli, Enterococcus, fecal coliform, iron,
potassium, nickel, total coliform, TOC, total phosphorus, and zinc. These variables are strongly
associated with poultry feed or poultry waste. In PC2, the important variables were chloride, sodium,
and sulfate, which are associated with wastewater treatment plant effluent.

The spatial patterns of the first two principal components were also aligned with the same
association between PCs and contaminant sources. PC1 had the highest values immediately
downstream of the greatest concentration of poultry houses, and the values decreased as one
moved downstream. Because the largest coefficients in PC1 also corresponded with the constituents
that are present in poultry waste, a clear relationship was established between PC1 and land
application of poultry waste. A similar spatial pattern and relationship were found between PC2 and
municipal waste treatment discharges.

The same paper discusses alternatives for data preparation prior to PCA, based on a literature
review of 49 articles, many of which also relate principal components to specific pollution sources. Of
particular interest here is the distribution of original variables, prior to PCA. The development of
principal components does not require a multivariate normal distribution. However, nonnormality
will affect the correlation matrix and distribution of the standardized variables. Johnson and
Wischern (1998, p. 459) state that “inferences can be made from the sample components when the
population is multivariate normal,” and Legendre and Legendre (1998) state that ensuring that the
distributions are “reasonably unskewed” is important. In the Illinois River case study, all the 26
variables (chemical and bacterial) included in the PCA were right skewed, and a log transform
resulted in “more normal” data based on visual inspection of probability plots. Therefore, the data
were log transformed prior to PCA.

Many other multivariate methods are employed in water quality studies, including factor
analysis (which is similar to and may begin with PCA), discriminant function analysis, multivariate
ANOVA, and cluster analysis. Manly (1994) and Johnson and Wischern (1998) are good references
for these methods, as well as for PCA. Helsel (2012, Chapter 13, pp. 269–296) discusses multivariate
methods for censored data. Other than cluster analysis, all these methods depend on the correlation
matrix and are thus affected by nonnormality of the data. Cluster analysis is most commonly based
on Euclidian distance between observation vectors.

10.17 SUMMARY

For modeling chemical concentrations, the log–normal distribution is the most useful parametric
option. Other transformations in addition to the log are sometimes used, and several other
distributions may be appropriate, particularly discrete distributions for microbiological monitoring.
The binomial distribution is necessary for setting water quality standards that are based on percentiles
and for establishing permit monitoring requirements and compliance criteria that include an allowable
number of exceedances in a given number of samples. The binomial distribution also forms the basis
for nonparametric descriptions of the distribution in terms of percentiles. For most routine
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applications, such descriptions are generally more appropriate than parametric distribution models.
Interval estimates of quantiles and cumulative probabilities are needed to assess the adequacy of a given
monitoring program or dataset to provide the needed precision in nonparametric characterization.
Several alternatives for such estimates were presented or referenced.

One of the most important and challenging aspects of characterizing water quality distributions
is the interpretation of censored or nondetect observations. The usual alternative of substituting half
the detection limit has many shortcomings, especially when the detection limit changes over time
and/or when a few large nondetect observations are present. Many options exist for interpreting
censored observations, the most promising of which appear to be the Kaplan–Meier approach and
robust regression on order statistics.

The problem of selecting an appropriate distribution for water quality data is generally less
difficult and less important than the problem of carefully defining the population of interest. Two
alternatives exist: probability sampling of a target population for the purpose of estimating population
parameters and sampling to create a time series for estimating parameters of a stochastic process
model. Either or both approaches may be appropriate, depending on the time scale of interest.
However, the interpretation of model parameters, such as the mean, and the importance of serial
correlation is very different between the two approaches. With a few exceptions, serial correlation can
be ignored in probability sampling, but is, of course, the basis for stochastic process models.

Seasonality and flow effects are key drivers that determine water quality distributions. The
simple alternative of partitioning observations into multiple subpopulations according to season or
flow is often appropriate. However, for long records in particular, statistical models may be used to
describe seasonal patterns, flow effects, and trend. The new modeling package called EGRET, being
developed by USGS, provides a great deal of flexibility for incorporating these effects into a weighted
regression approach that can be useful for interpreting changes in water quality over time.

Finally, because water quality is often described in terms of dozens of separate measurements of
chemical, physical, and biological measurements, multivariate approaches are often used to reduce
the number of variables and to investigate and map the overall impact of particular land use changes
or contaminant sources. Of the available multivariate techniques, PCA has been most widely applied.
An assumption of a multivariate normal distribution is not a requirement of PCA. However, because
the correlation matrix is generally the starting point for PCA, nonnormality will affect the results of
this and most other multivariate methods.
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CHAPTER 11

Multivariate Frequency
Distributions in Hydrology

Hemant Chowdhary, M.ASCE
Vijay P. Singh, Dist. M.ASCE

11.0 GENERAL

Hydrological variables are characterized by a significant stochastic component and therefore most
hydrological planning strategies and designs are based on frequency analysis of the pertinent
variables. Owing to the dominant role of single variables, these plans and designs are typically based
on univariate frequency analysis. Being multidimensional in nature, a fuller description of
hydrological processes is, however, given in terms of more than one variable. For example, knowing
the intensity, duration, and/or areal coverage of a storm event together with the amount of
precipitation itself may be important. Similarly, for a flood event, along with knowing the peak
flow, its duration and/or volume may also be useful. Likewise, while severity is the main feature, the
duration and/or areal extent of drought are important factors to be considered simultaneously.
Water quality variables are normally considered one at a time when assessing the quality of water.
Simultaneous consideration of two or more variables is, however, required for certain adverse
impacts that different pollutants may collectively have on aquatic life and/or in impairing a water
body for specific designated uses, for example, even though survival of fecal coliforms in seawater
mainly depends on the presence of sunlight, intensity of solar radiation, temperature, salinity, and
pH also significantly affect the dynamics of the survival rate. To develop better risk management
strategies and emergency preparedness plans, simultaneous consideration of two or more hydro-
logical variables may be beneficial in various situations. The realization that hydrological design and
risk management procedures can benefit from the multivariate consideration of the processes
involved is growing. Multivariate analyses provide a comprehensive view of the associated stochastic
processes and render greater efficiency to hydrological design and management strategies.

Considerable research has addressed the hydrological frequency analyses of precipitation and
flow variables owing to their dominant role in most hydrologic engineering designs. Flood frequency
analysis is traditionally done by fitting univariate distributions to peak flows observed at the location
of interest along a river or stream. The main objective of various drainage designs, for example, dam
spillways or bridges, has been to estimate a flow that will have an average interarrival period larger
than a specified design return period. Although such designs have been based on flood peaks,
associated flood volume and duration constitute important hydraulic design factors in flood
management programs and in analyzing the risk of damage due to floods. It is intuitive to expect
that severity of damage to residential and commercial properties, crops, hydraulic infrastructure,
rural or urban utilities, and traffic interruptions on highways due to flooding are all functions of the
combined effects of peak flow, volume, and duration of a flood event. Thus, multivariate analysis,
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rather than univariate analyses of only flow peaks, may be beneficial and can result in the
improvement of management strategies and better assessment of potential risk (De Michele et al.
2005, Salvadori and De Michele 2004).

In the past, bivariate and multivariate frequency analyses in hydrology have been done on a
limited basis. These applications employed bivariate or trivariate normal, log–normal, exponential,
Gumbel, and general extreme value distributions. Most of these studies involved multivariate normal
distribution, which has elegant statistics and well-established inference procedures. In some instances,
marginals were transformed to normal distribution before using multivariate normal distribution.
However, at times, the constituent marginals may be non-Gaussian or may not necessarily result in
multivariate normality even when they are normally distributed individually. Furthermore, individual
processes may comprise different marginals that cannot be represented by the conventional bivariate
or multivariate distributions, which require that the marginals have to be of the same type. The copula-
based multivariate frequency analysis methods overcome this limitation and thus have greater
potential for numerous hydrological applications. The copula-based multivariate frequency analysis
is a fairly new approach, and its applicability and usefulness in the field of hydrology are being actively
researched. This chapter presents multivariate hydrological frequency analysis, elaborating the copula
approach, as employed for rainfall, flood, and drought processes. Section 11.1 below provides a brief
review of application of multivariate distributions in hydrology. Section 11.2 presents the conventional
distribution functions that have been traditionally used for the purpose. Section 11.3 elaborates the
copula concept and the various types of copula models that are used in hydrology. Because various
copulas are capable of characterizing a broad range of dependence, the selection of appropriate copulas
for different hydrological applications becomes a nontrivial task. This section on bivariate copula
fitting gives details of the procedures for selection and estimation of copula parameters. Section 11.4
illustrates the use of the copula method by presenting a few examples wherein potential copulas for
multivariate extreme rainfall, flood, and regional flood management processes are identified.

11.1 MULTIVARIATE DISTRIBUTIONS IN HYDROLOGY

From time to time, some studies have emphasized the importance and usefulness of simultaneous
consideration of dominant and associated variables. Most of these studies have involved various
important features of storms or floods, such as storm depth, duration, average intensity, maximum
intensity, time to peak, interarrival period, and number of storms in a specified period; flood volume,
duration, and peak flow and time to peak flow; or drought severity and duration, among others. Studies
involving storm characteristics have had different objectives, such as simulation of rainfall field, rainfall–
runoff modeling, and derivation of frequency distributions for flood peak, urban storm volume, or
annual precipitation. Similarly, studies with flow variables have been conducted for various purposes,
such as checking the adequacy of dam spillway, floodplain zoning, risk assessment of levees and
embankment, retention basin design, derivation of flood frequency distribution at a station downstream
of a confluence, and improvement of the efficiency of parameter estimates of frequency distributions.

While most earlier studies consider independence among variables, many of the latter
studies incorporate dependence features inherent among associated variables being analyzed
simultaneously. A brief account of these studies done in the past, employing conventional and
copula-based approaches, is presented here.

11.1.1 Hydrometeorological Applications

One of the earliest works on frequency distributions for rainfall variables is that of Grace and
Eagleson (1966), which studied storm depth, storm duration, and interstorm time duration.
Todorovic and Yevjevich (1969) investigate the probability distributions of precipitation intensities
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considering six descriptors: (1) number of storms in a fixed interval of time, (2) number of storms
producing a given amount of precipitation, (3) time elapsed between a reference time and the end of
a storm, (4) total precipitation of a given number of storms, (5) precipitation of a particular storm
from a sequence of storms, and (6) total precipitation in a specified time interval. While deriving the
peak flood frequency distribution from climatic and catchment variables together with the functional
relationships provided by the kinematic wave method of hydrograph forecasting, Eagleson (1972)
fits univariate exponential distributions to storm intensity, depth, and duration. Although Grace and
Eagleson (1966) consider storm depth and duration strongly correlated, Eagleson (1972) considers
these two variables to be independent. Carlson and Fox (1976) adapt the derived flood frequency
distribution (DFFD) model of Eagleson (1972) for a snowmelt–flood frequency model.

In another interesting study, Eagleson (1978) derives the distribution of annual precipitation from
the joint distribution of storm interarrival time and storm depth. Even a few years of storm event data
was noted as being sufficient for obtaining the distribution of annual precipitation and for having lesser
variance as compared with one obtained using a long-term annual precipitation record. Eagleson
(1978) also emphasizes the linkages of evapotranspiration with interstorm duration, start and end of
infiltration process with storm duration, and infiltration and runoff with storm depths. The derived
distribution technique of Eagleson (1972) was also employed by Chan and Bras (1979) for obtaining a
probability distribution of urban storm volume above a specified threshold. Cordova and Bras (1981)
employ this same technique to derive the probability distribution of the infiltration volume. Similarly,
Diaz-Granados et al. (1984) use the same storm characteristics for deriving flood frequency distribu-
tion based on geomorphoclimatic instantaneous unit hydrograph (GcIUH) theory.

Contrary to the common perception of mutual independence among storm intensity and
duration, Cordova and Rodriguez-Iturbe (1985), while obtaining the probabilistic structure of storm
surface runoff, conclude that the correlation between the two variables has an important effect. The
storm intensity and duration are considered bivariate exponentially distributed as per Nagao and
Kadoya’s (1971) proposed distribution. Significant correlation between storm intensity and duration,
at higher soil moisture content, increases the probability of occurrence of storm surface runoff.
Bacchi et al (1994) employ a bivariate exponential model, earlier proposed by Gumbel (1960a), for
modeling extreme storm intensity for given durations. However, only one set of model parameters
was obtained for each rainfall station by pooling the data of a few specific durations (1, 3, 6, 12, and
24 h), which was mentioned as one of the limitations of the study. In a study similar to that of
Cordova and Rodriguez-Iturbe (1985), Kurothe et al. (1997) also employ the bivariate exponential
model for rainfall intensity and duration, while deriving flood frequency distribution using GcIUH
theory. This bivariate exponential distribution, proposed earlier by Gumbel (1960a) and applied later
by Bacchi et al. (1994), admitted only negatively correlated random variables.

Goel et al. (2000) extend the work of Kurothe et al. (1997) on the DFFD model by employing the
model proposed by Nagao and Kadoya (1971) that admitted both positive and negative correlation
among rainfall intensity and duration. Extending the works of Sackl and Bergmann (1987) and Goel
et al. (1998), Yue (1999) satisfactorily models daily peak storm intensity and storm volume from two
rainfall stations from different climatic regions in Japan using bivariate normal distribution by first
transforming the marginals to normality. In other studies, Yue (2000a, 2001a, 2002) employ bivariate
mixed Gumbel, Gumbel logistic, and log–normal models, respectively, for the same two variables.

In all of these studies, either the same types of distributions had been assumed for the marginals,
or they had been transformed to normal distributions. In hydrological literature, bivariate distribu-
tion with different marginals, as given by Finch and Groblicki (1984), was first applied by Singh and
Singh (1991) for the weakly associated rainfall intensity and depth variables with product–moment
correlation jρj ≤ 1∕3. For a wider range of dependency (with Spearman’s correlation of
−7∕12 ≤ ρs ≤ 1), Long and Krzysztofowicz (1995) construct a newer family of bivariate probability
density functions with specified marginals. The dependence structure serves as a density weighting
function that describes the dependence within the Fréchet bounds and involves probability integral
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transforms of the two variates. The ability to control the shape of bivariate density independently of
the degree of association is cited as the advantage of the method. Furthering this work, Kelly and
Krzysztofowicz (1997) construct a meta-Gaussian bivariate density involving the normal quantile
transform (NQT) of the two variates that can belong to any arbitrary marginals and have any
possible dependence. This work was among the first in bivariate frequency analysis that considered
different marginal distributions with flexible covariance structures. In fact, Moran et al. (1970)
propose such use of meta-Gaussian bivariate density much earlier, while designing experiments to
ascertain if average rainfall in an area increases by cloud seeding. Herr and Krzysztofowicz (2005)
also derive the bivariate distribution of point or areal precipitation amounts at two stations or areas
using a meta-Gaussian distribution and demonstrate its application in real-time forecasting.

11.1.2 Hydrological Applications

Following the development of univariate functions for largest flood exceedances, Todorovic (1971)
introduces another important feature of times of occurrence of extreme floods. This may be regarded
as the beginning of the bivariate or multivariate consideration in the field of flood frequency analysis.
Todorovic and Woolhiser (1972) highlight the significance of the time of occurrence of an extreme
flood event during any year, linking it to the variable within-year flood damage function. Gupta et al.
(1976) present a synthesis of the aforementioned approach, in which distributions of largest
exceedances and the corresponding times of occurrences are obtained as marginals of their joint
distribution, assuming the two variables are independent. The use of this methodology for two rivers in
the United States demonstrated the applicability of the bivariate approach but did not show a
significant improvement over the approach presented by Todorovic (1971) and applied by Todorovic
and Woolhiser (1972). In further development and generalization of his and his coworkers’ work,
Todorovic (1978) highlights various properties of flood events, such as peak flow and corresponding
duration and volume and times of occurrence of the peaks, arising from a partial duration series (PDS).
Distributions of peak flood flow, its time of occurrence, and flood volume were derived on the basis of
characteristics of these processes rather than by assuming any standard forms.

Ashkar and Rousselle (1982) utilize the multivariate nature of the flood process for deriving
distributions of flood duration and flood volume for three river stations in Canada. Kavvas (1982)
models the time of flood occurrence and peak flow using a two-dimensional nonhomogeneous
stochastic trigger model by considering flood occurrences as primary events that trigger flood peaks
at a secondary level. Using the principle of maximum entropy (POME), Krstanovic and Singh (1987)
derive bivariate Gaussian and exponential distributions for flood peak and volume, with constraints
specified in terms of variance, covariance, and cross-covariance. Consideration of flood volume and
duration for flood risk assessment, in conjunction with the flood peak flow, was also advocated by
Correia (1987). Providing a practical example, Sackl and Bergmann (1987) indicate the usefulness of
a bivariate model of direct runoff flood peak and volume for the design of retention basins. They
propose that the design volume could be obtained by modeling normalized flood peak and volume as
a bivariate normal distribution. In an indirect approach, Rosbjerg (1987) obtains the frequency
distribution of annual maximum flood from successive peak floods, employing the Marshall–Olkin
bivariate exponential distribution (Marshall and Olkin 1967) that considered Poissonian occurrence
times and admitted positive dependence only.

Haan and Wilson (1987) demonstrate applicability of the method of derived distributions for
flood volume and flood peak using the Soil Conservation Service (SCS) and rational methods,
respectively. It was opined that better estimates of design quantiles can be obtained by such a derived
distribution method and establishing the viability of such an alternative procedure can also be
important for its application for ungauged regions. In an interesting study Raynal-Villasenor and
Salas (1987) employ logistic and mixed bivariate extreme value distributions, as given by Gumbel
(1960b), for estimating parameters of the underlying extreme value marginals with better efficiency.
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The approach was used for extending shorter extreme value data with the help of longer periods of
other associated data. Further, the approach was applied for obtaining a flood frequency distribution
downstream of a confluence, based on the flood information from two upstream stations in the form
of a convolution equation given by Woodroofe (1975). Extending the work of Escalante and Raynal-
Villasenor (1994) and Raynal-Villasenor and Salas (1987), Escalante and Raynal-Villasenor (1998)
demonstrates the suitability of a multivariate extreme value distribution with mixed Gumbel
marginals for modeling marginals in incomplete multivariate datasets from 42 gauging stations
in northern Mexico.

Stating the importance of understanding flood events as a whole, Goel et al. (1998) study the
bivariate distribution of normalized flood peak and volume data of a partial duration series for an
Indian river also. For the risk assessment of levees and embankments, the US Army Corps of
Engineers (USACE 1999) studied the conditional probability of failure function based on flood peak
and duration. Adopting an approach similar to that taken by Goel et al. (1998), Yue et al. (1999)
employ a bivariate Gumbel mixed model, originally proposed by Gumbel (1960b), for obtaining
pairwise joint and conditional probabilities for flood peak, volume, and duration data from a
Canadian river. Yue (2000b, 2001b) also applies the bivariate log–normal distribution and bivariate
extreme value distribution for multivariate flood frequency analysis.

Overall, bivariate normal, log–normal, exponential, or Gumbel (called mixed Gumbel) dis-
tributions have typically been applied for hydrologic variables, such as flood peak, and associated
volume and duration. Extensive efforts, spanning decades of research in the area of flood frequency
analysis, have resulted in the identification of some plausible candidate distribution functions. The
lack of multivariate distributions featuring marginals from different distributions restricts the ability
to utilize and fit such suitable univariate distributions directly. Choulakian et al. (1990) note that
such restriction makes migration from univariate to multivariate flood frequency analysis subopti-
mal. Another disadvantage of using conventional multivariate formulations is of association
measure, directly or indirectly, linked to the Pearson linear correlation measure. The Pearson
coefficient is not invariant to nonlinear monotonic transformations and depicts linear correlation
rather than the functional association and may also not even be estimable in certain situations,
involving heavy-tailed distributions (Genest and Favre 2007). The copula concept, which overcomes
some of the restrictions posed by the conventional multivariate distributions, has been emerging as a
new way of multivariate frequency distribution analysis.

Multivariate distribution modeling, through joint and conditional distributions, characteriz-
ing different dependence structures, is an active area of research (Kotz et al. 2000, Sarabia Alzaga
and Go´mez De´niz 2011) encompassing various applications in hydrology and water resources,
such as frequency analysis, streamflow or rainfall simulation, geostatistical interpolation, bias
correction, and downscaling. Owing to the intuitive nature of its construction mechanism, the
copula approach has been increasingly applied in recent years for hydrological applications, and its
applicability and advantages are being studied in greater detail. Various dependence models in
hydrology and water resources include topics such as frequency analysis (Favre et al. 2004,
Salvadori and De Michele 2010, Hao and Singh 2013a), streamflow simulation or disaggregation
(Hao and Singh 2013b, Li et al. 2013), drought characterization (Kao and Govindaraju 2010,
Khedun et al. 2012, Hao et al. 2014, Hao and Singh 2015a), geostatistical interpolation (Bardossy
and Li 2008), bias correction (Piani and Haerter 2012, Vogl et al. 2012, Mao et al. 2014), error or
uncertainty analysis (Villarini et al. 2008, Chowdhary and Singh 2010, AghaKouchak et al. 2010a,
b), downscaling (Laux et al. 2011, Van den Berg et al. 2011, Verhoest et al. 2015), and statistical
forecasting (Khedun et al. 2014).

Extreme events involving joint occurrences, in particular, that lead to serious economic
damage have attracted a lot of attention recently (Dutfoy et al. 2014, Davison and Huser 2015).
The provision of copulas as viable alternative has resulted in heightened activity in formulating
multivariate distributions to model the nonlinear dependence of hydroclimatic variables in a suite
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of applications (Salvadori and De Michele 2007, Schoelzel and Friederichs 2008, Jaworski et al.
2010, Hao and Singh 2015b). These methods illustrate different ways of modeling dependence
structures and have advantages and disadvantages. Chowdhary et al. (2011) outline the process of
selecting suitable copulas to model the dependence structure, which is an important task and a
continuing challenge. The following text about conventional and copula-based multivariate
distribution methods will help the reader understand the important facets of these highly useful
hydrologic analyses.

11.2 CONVENTIONAL MULTIVARIATE DISTRIBUTIONS USED IN HYDROLOGY

Traditionally, bivariate normal, log–normal, exponential, or Gumbel (called mixed Gumbel)
distributions have been applied for hydrological variables, such as flood peaks and associated flood
volume and duration. Alternatively, marginals are transformed to normal distributions, using the
Box–Cox transformation or two-step power transformation, before using bivariate normal distri-
bution for fitting the data. The random bivariate ðX,YÞ is used henceforth for bivariate frequency
analysis. Multivariate distributions are also used, but on a very limited basis. The joint density
functions of the bivariate distributions employed in hydrological studies are presented here in the
following subsections.

11.2.1 Bivariate Normal Distribution

The joint probability density function (pdf) and cumulative distribution function (cdf) for a bivariate
normal random vector ðX,YÞ are given by

f X,Yðx, yÞ=
1

σXσY
ϕBVNðzX , zY ; ρÞ (11-1)

where ZX =
X−μX
σX

,ZY =
X−μY
σY

,
and

ϕBVNðz1, z2; ρÞ=
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p exp

�
−

1
2ð1 − ρ2Þ ðz

2
1 − 2ρz1z2 þ z22Þ

�
(11-2)

where
−∞ < zx, zy < ∞, −1 < ρ < 1, σX , σY > 0, −∞ < x, y < ∞, and μX , μY are real valued,
μX and σX ⇒ mean and standard deviation of X,
μY and σY ⇒ mean and standard deviation of Y , and
ρ ⇒ the measure of linear association.
Pearson’s linear coefficient of correlation is given by

ρ=CorrðX,YÞ=E½ðX − μXÞðY − μYÞ�
σXσY

(11-3)

The joint pdf for a bivariate normal random vector ðX,YÞ is given by

FX,Yðx, yÞ=ΦBVNðzX , zY ; ρÞ (11-4)
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with

ΦBVNðz1, z2; ρÞ=
Zz2
−∞

Zz1
−∞

ϕBVNðr, s; ρÞdr ds (11-5)

Figure 11-1 shows joint and marginal distribution characteristics of a bivariate normal
distribution, ðX,YÞ∼BVN½ð100, 50Þ, ð100, 40; 40, 25Þ�, that is, having ρ= 0.8. The numbers within
parentheses here are the means vector and the covariance matrix of the depicted bivariate normal
distribution.

11.2.2 Bivariate Log–Normal Distribution

A bivariate log–normal density function can be obtained through the transformation of the
aforementioned normal bivariate density function. Two positive variates ðW1,W2Þ∼BVLNOR if
ðlogW1, logW2Þ= ðX,YÞ∼BVNOR. The joint distribution f W1,W1

ðw1,w2Þ can be written as

f W1,W2
ðw1,w2Þ=

1
w1w2σXσY

ϕBVN

�
log w1 − μX

σX
,
log w2 − μY

σY
; ρ
�
, w1,w2 > 0 (11-6)

80 90 100 110 120
0

0.01

0.02

0.03

0.04

x

f(
x)

x

y

80 90 100 110 120
35

40

45

50

55

60

65

00.020.040.060.08
35

40

45

50

55

60

65

f(y)

y

levels of f(x,y)

80
90

100
110

120

35
40

45
50

55
60

65
0

1

2

3

4

5

6
x 10-3

xy

f 
(x

,y
)

Figure 11-1. Joint and marginal distribution for a bivariate normal random vector.
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The cdf FU ,Vðu, vÞ is given by

FU ,Vðu, vÞ=ΦBVN

�
log u − μX

σX
,
log v − μY

σY
; ρ
�
, u, v > 0 (11-7)

This distribution is restricted for variates that can only take positive values. Here μX , σX are the
mean and standard deviation of X. Similarly, μY , σY are the mean and standard deviation of Y .

11.2.3 Bivariate Exponential Distribution

The joint probability distribution function FX,Yðx, yÞ and the density function f X,Yðx, yÞ for a
bivariate exponential random vector ðX,YÞ are given by
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and
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where x, y ≥ 0, ηX , ηY ≥ 0, and 0 ≤ θ ≤ 1
ηXηY

.

The marginal densities and cdfs for X and Y are
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and

FXðxÞ= 1 − exp
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The domain of θ is obtained by observing that the joint probability evaluated at any ðx, yÞ is
always less than or equal to the corresponding marginal probability. That is,

FX,Yðx, yÞ= 1 − exp

�
−

x
ηX

�
− exp

�
−

y
ηY

�
þ exp

�
−

x
ηX

−
y
ηY

− θ
x
ηX

y
ηY

�
≤ FXðxÞ= 1 − exp

�
−

x
ηX

�
, (11-12)

which implies that

−
x
ηX

�
1þ θ

y
ηY

�
≤ 0 or

�
1þ θ

y
ηY

�
≥ 0 or θ ≥ 0

because 0 ≤ y < ∞ and 1
ηY

> 0.
And f ðx, yÞ ≥ 0 for x, y ≥ 0 implies that
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f X,Yð0, 0Þ=
�

1
ηX

1
ηX

− θ
�

≥ 0 or θ ≤
1

ηXηX

Thus, the range of possible values for θ is 0 ≤ θ ≤ 1
ηXηX

.
X and Y are independent if and only if

FX,Yðx, yÞ= FXðxÞFYðyÞ=
�
1 − exp

�
−

x
ηX

���
1 − exp

�
−

y
ηY

��
(11-13)

This relationship is true if and only if θ= 0. Consequently, a nonzero value of θ implies
dependence between X and Y . Further, the correlation between X and Y is always negative and is
bounded by 0 on the upper end (Gumbel 1960a). Figure 11-2 shows a probability density of a typical
bivariate exponential distribution, ðX,YÞ∼BVEXP

	
1
ηX

= 0.05 , 1
ηY

= 1.2 , θ= 0.06


, given by the

aforementioned joint distribution.

11.2.4 Bivariate Largest Extreme Value or Gumbel Distribution

The joint probability density function for a bivariate extreme value (or Gumbel) random vector
ðX,YÞ is given by

FX,Yðx, yÞ= FXðxÞFYðyÞ exp
�
−θ

�
1

ln FXðxÞ
þ 1
ln FYðyÞ

�
−1
�
, 0 ≤ θ ≤ 1 (11-14)

where −∞ < x, y < ∞.
The marginals FXðxÞ and FYðyÞ are Gumbel distributed, and the probability distribution and

density function are, respectively, of the form

FXðxÞ=ϕLEV

�
x − γX
αX

�
(11-15)
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Figure 11-2. Example of a bivariate exponential pdf.
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f XðxÞ=
1
σ
ϕLEV

�
x − γX
αX

�
(11-16)

with

ΦLEVðzÞ= exp½− expð−zÞ�
ϕLEVðzÞ= exp½−z − expð−zÞ�

The parameter θ is related to the Pearson correlation coefficient ρ through the relationship

θ= 2b1 − cosðπ
ffiffiffiffiffiffiffiffi
ρ∕6

p
Þc for 0 ≤ ρ ≤ 2∕3

Note that the bivariate Gumbel distribution is defined only for random variables that are
positively correlated with 0 ≤ ρ ≤ 2∕3. Double differentiation of the joint cdf in (11-14) yields the
probability density function as

f X,Yðx, yÞ= f XðxÞf YðyÞ expð−θAÞ
��

1 −
θA2

B2
X

��
1 −

θA2

B2
Y

�
−

2θA3

ðBXBYÞ2
�

(11-17)

where A, B, and C are given by

A=
�

1
BX

þ 1
BY

�
−1
; BX = ln½FXðxÞ�; BY = ln½FYðyÞ�

when θ = 0, FX,Y(x, y)= FX(x)FY(y) and fX,Y(x, y) = fX(x)fY(y), which implies that X and Y are
independent.

Figure 11-3 illustrates the characteristics of a bivariate Gumbel distribution for ρ= 0.4
(or θ= 0.623), γX = 100, αX = 5, γY = 50, and αY = 2.

11.3 COPULA METHOD AND ITS USE IN HYDROLOGY

Copulas are functions that “couple”marginal probabilities or standard uniform probabilities to their
joint probability distributions. Benefiting from the key invariance property of the copula CθðuÞ, of a
d-dimensional uniformly distributed random vector U= ðU1,U2, : : :UdÞ, the joint probability
distribution function FXðXÞ of arbitrarily distributed random variables Xi ∀ i= 1∶d can be expressed
through the inverse probability integral transformation Xi = F−1

X ðUiÞ, in terms of its respective
marginal probability distributions as FXðXÞ=Cθ½FXi

ðXiÞ�. Here, θ is the association parameter
vector that characterizes the dependence structure of U or X. Figure 11-4 shows this conceptuali-
zation of a copula, adapted from Favre et al. (2004). The parameters of copula-based distributions are
related to the nonparametric dependence measures Spearman’s rho and Kendall’s tau, which
represent functional association among the random variables under consideration. Several copula
classes exist, and a multitude of families reside within each class. Although not every copula family is
comprehensive enough to admit the whole range of dependence space, availability of many copula
types provides the scope for representing any dependence structure through one or more alter-
natives. As copulas allow arbitrary marginals, including complex mixture distributions, generation of

416 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES: METHODS AND APPLICATIONS



any combination of associated random variables is a comparatively easier process. Thus, copulas
overcome many of the limitations of conventional distributional forms and offer new possibilities for
various multivariate hydrological applications that were hitherto restricted by the constraints of
available distributions.

The copula theory has been in vogue for some time now, especially with respect to actuarial
science and finance applications (Frees and Valdez 1998), but its application to hydrological
engineering is recent (Genest and Favre 2007). Though many available copula families provide a
wide choice of dependence structure, selecting appropriate copulas for different hydrological
applications becomes a nontrivial task. Graphical and analytical statistical inference procedures
for ascertaining the suitability of copula models are beginning to evolve and are being developed and
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Marginal distributions

Copula
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Figure 11-4. Schematization of copula concept.
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Figure 11-3. Example of a bivariate Gumbel distribution.
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tested, and presently experience of their usage is limited. Overall, the topic of copula is still in the
initial phase of development in general, its usage in hydrological engineering, in particular, is an area
of active research.

11.3.1 Copula Concept

Unlike conventional multivariate frequency distributions, copula-based distributions are expressed
in terms of the constituent marginal probabilities and more advantageously in terms of uniform
marginals. Although the development and application potential of copulas is a topic of current
research, it is rooted in the theorem due to Sklar (1959). According to this theorem, the joint
distribution function of any randomly distributed pair ðX,YÞ may be written as

Hðx, yÞ=C½FðxÞ,GðyÞ�, x, y∈R (11-18)

Here, FðxÞ and GðyÞ are marginal probability distributions and take I= ½0,1�. C∶I×I→I, a
mapping function, is the “copula.” It also means that a valid probabilistic model for ðX,YÞ is obtained
whenever the three constituents, C, FX , and GY , are chosen from given parametric families, namely

Fðx; δÞ, Gðy; ηÞ, Cðu, v; θÞ
where

δ and η ⇒ parameter vectors of the marginal distributions,
θ ⇒ dependence parameter vector, and
u and v⇒ quantiles of the uniformly distributed variables U = FðXÞ and V =GðYÞ, respectively.
A copula surface has an important property of being bounded by the Fréchet–Hoeffding bounds,

corresponding to the perfect negative and positive dependence, respectively. The Fréchet–Hoeffding
lower and upper bounds, usually denoted by �Wðu, vÞ andMðu, vÞ, for every ðu, vÞ, satisfy the inequality

�Wðu, vÞ ≤ Cðu, vÞ ≤ Mðu, vÞ

The product copula, denoted by Πðu, vÞ, is another important copula that corresponds to the
independence between ðu, vÞ and lies between the Fréchet–Hoeffding bounds. These three special
copulas are given as

�Wðu, vÞ= maxðuþ v − 1,0Þ, Mðu, vÞ= minðu, vÞ, andΠðu, vÞ= uv

The copula families that allow for the representation of a full range of dependence, from
perfectly negative to perfectly positive, are termed comprehensive copulas. The range of dependence
parameter θ in real-valued parameter bivariate copulas corresponds to the range of dependence it
can represent. Figure 11-5 shows graphs of cdfs of these copulas in three-dimensional form and as
level curves. The property of copula level curves to correspond to u or v values at their intersection
with the upper axis or the right axis, respectively, allows omitting their labeling.

11.3.2 Copula Classes

Copula types are broadly categorized in four classes: Archimedean, extreme value, elliptical, and
other miscellaneous class. Copulas can also be categorized as single-parameter or vector-parameter
copulas, depending on the comprehensiveness with which the dependence structure is defined.
Furthermore, for any copula, three more copulas can be derived by using simple relationships, and
these are called associated copulas. Joe (1997) and Nelsen (2006) provide a theoretical background
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and properties of many copula types. Salvadori et al. (2007) is a useful reference for working on
copula applications in the field of hydrology. Genest and Favre’s (2007) overview of copula
estimation and inference procedures provides details of several important aspects of copula
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modeling, including the recently proposed goodness-of-fit tests. This chapter makes substantial use
of these sources.

11.3.2.1 Archimedean Copulas

The Archimedean copulas have been widely employed owing to their easy construction, wider range,
and various admissible dependence and several other nice properties (Nelsen 2006). Of the several
copula families, the Archimedean family has also been frequently applied in the field of hydrology.
This copula family has the form

ϕ½Cðu, vÞ�=ϕðuÞ þ ϕðvÞ

where a continuous, strictly decreasing, and convex mapping function ϕðtÞ∶I→½0,∞�, with ϕð1Þ= 0,
is called a generating function. This, in turn, satisfies the requirement of convexity of the cdf level
curves and results in a valid copula. The copula probability is obtained as

Cðu, vÞ=ϕ½−1�fϕðuÞ þ ϕðvÞg (11-19)

Here, function ϕ½−1�ðtÞ∶½0,∞�→I is the pseudo-inverse of the generating function. It is
continuous and nonincreasing on ½0,∞� and strictly decreasing on ½0,ϕð0Þ� and is given by

ϕ½−1�ðtÞ=
�
ϕ−1ðtÞ ∀ 0 ≤ t ≤ ϕð0Þ
0 ∀ ϕð0Þ ≤ t < ∞ (11-20)

The generator is termed “strict,” and the resulting copula is a strict copula when ϕð0Þ=∞. The
dependence parameter θ is hidden in the generating function ϕðtÞ, e.g., for the Frank copula, which
has been employed for several hydrological applications, the generating function involves θ in the
form

ϕðtÞ= − ln

�
1 − e−θt

1 − e−θ

�
, θ∈ ð−∞,∞Þ \ f0g

The inverse of this strict generating function is given by

ϕ−1ðtÞ= −
1
θ
ln½1 − ð1 − e−θÞe−t�

Employing this generating function, its inverse, and the form of the Archimedean copulas given
in Equation (11-19), the bivariate cdf Cθðu, vÞ for the Frank copula is obtained as

Cθðu, vÞ= −
1
θ
ln

�
1 −

ð1 − e−θuÞð1 − e−θvÞ
1 − e−θ

�
(11-21)

Double differentiating this copula probability, the copula density is obtained as

cθðu, vÞ=
∂2Cθðu, vÞ
∂u ∂v

=
θe−θðuþvÞ

ð1 − e−θÞ½expð−θCθÞ�2
(11-22)
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For Archimedean copulas, the joint probability function for the bivariate random variable
ðX,YÞ in its original domain, using Equations (11-18) and (11-19), can be written as

Hðx, yÞ=Cθðu, vÞ=C½FðxÞ,GðyÞ�=ϕ½−1�fϕ½FðxÞ� þ ϕ½GðyÞ�g (11-23)

The joint pdf for ðX,YÞ, taking f ðxÞ and gðyÞ as marginal densities, can be obtained as

hðx, yÞ= ∂2Cθðu, vÞ
∂u ∂v

∂u
∂x

∂v
∂y

=
∂2Cθðu, vÞ
∂u ∂v

∂FðxÞ
∂x

∂GðyÞ
∂y

= f ðxÞgðyÞ cθðu, vÞ (11-24)

For the Frank copula, the joint cdf for ðX,YÞ, using Equations (11-21) and (11-23), is obtained as

Hðx, yÞ= −
1
θ
ln

�
1 −

ð1 − e−θFXðxÞÞð1 − e−θFY ðyÞÞ
1 − e−θ

�

Similarly, its joint pdf, using Equations (11-22) and (11-24), is obtained as

hðx, yÞ= f ðxÞgðyÞ θe−θ½FðxÞþGðyÞ�

ð1 − e−θÞ½expð−θCθÞ�2

The Archimedean copula is a fairly large class, owing to easier evolution of newer copulas by
coining valid generating functions as defined by Equation (11-19). Nelsen (2006) enumerates 22
single-parameter bivariate Archimedean copulas along with their generating functions, probability
distribution functions, and admissible dependence ranges. Ali–Mikhail–Haq (AMH), Clayton,
Frank, Genest–Ghoudi (GG), Gumbel–Barnett (GB), Gumbel–Hoogaurd (GH), and Joe are some
of the commonly used Archimedean copulas. Figure 11-6 illustrates GH, Frank, and Clayton
copulas using 500 randomly generated pairs of ðu, vÞ for three different dependence strengths,
equivalent to Kendall’s tau of 0.25, 0.50, and 0.75. These three values indicate increasing strength
of association between u and v, which is apparent from the scatter plots. Perceiving the difference
in the nature of the three copulas for low-dependence values such as 0.25 is graphically difficult.
For higher values of Kendall’s tau such as 0.50 and 0.75 the difference becomes increasingly
apparent, and the scatter plots start depicting features that are specific to these copulas. Table 11-1
gives expressions for the generating function, copula probability, and parameter space for a few
copula families.

11.3.2.2 Extreme Value Copulas

Extreme value copulas are suitable when associated random variables of interest are formed by
component-wise maxima. A copula C� is considered an extreme value copula if a copula C exists
such that

C�ðu, vÞ= lim
n→∞

Cnðu1∕n, v1∕nÞ
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Figure 11-6. Illustration of GH, Frank, and Clayton copulas through 500 random bivariate (U, V)
samples for increasing strengths of association. The left, middle, and right panels correspond to
Kendall’s tau τ values of 0.25, 0.50, and 0.75, respectively. The numbers following copula names are
dependence parameter θ and corresponding τ values.

Table 11-1. Generating Function, Probability Function, and Parameter Space for a Few Copula
Families. u

∼
= − ln u and v

∼
= − ln v Have Been Used in a Few Expressions.

Copula Generator ϕðtÞ Cθðu,vÞ
Parameter
space

AMH ln 1−θð1−tÞ
t

u v
1−θð1−uÞð1−vÞ ½−1, 1Þ

Clayton 1
θ ðt−θ − 1Þ ½maxðu−θ þ v−θ − 1,0Þ�−1∕θ ½−1,∞Þ \ f0g

FGM n.a. u v½1þ θð1 − uÞð1 − vÞ� ½−1, 1�
Frank − ln e−θt−1

e−θ−1 − 1
θ ln½1 − ð1−e−θuÞð1−e−θvÞ

ð1−e−θÞ � ð−∞,∞Þ \ f0g
Galambos n.a. u v exp½ðu∼−θ þ v

∼−θÞ−1∕θ� ½0,∞Þ
GG ð1 − t1∕θÞθ fmaxð1 − ½ð1 − u1∕θÞθ þ ð1 − v1∕θÞθ�1∕θ,0Þgθ ½1,∞Þ
GB lnð1 − θ ln tÞ u v expð−θ ln u ln vÞ ð0, 1�
GH ð− ln tÞθ exp½−ðu∼θ þ v

∼θÞ1∕θ� ½1,∞Þ
Joe − ln½1 − ð1 − tÞθ� 1 − ½ð1 − uÞθ þ ð1 − vÞθ − ð1 − uÞθð1 − vÞθ�1∕θ ½1,∞Þ
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Here C implies a copula representing a set of independent and identically distributed random
variables ðXi,YiÞ; i= 1∶n, and C� is the joint distribution of their component-wise maxima XðnÞ and
YðnÞ. GH and Galambos and Husler-Reiss (HR) are commonly used extreme value copulas. Note that
GH is also an Archimedean copula, besides being an extreme value copula. Table 11-1 gives
expressions for the copula probability and parameter space for GH and Galambos copulas. The
generating function is not applicable for the Galambos copula as it does not belong to the
Archimedean copula class.

11.3.2.3 Meta-Elliptic Copulas

Elliptical copulas are elliptically contoured distributions, such as normal, Student-t, and Cauchy
copulas. The marginals of these distributions are also from the same distribution families and
elliptical in nature. When marginals of different types and possibly non-elliptic nature are used with
multivariate elliptical copulas then they are termed meta-elliptical copulas. Denoting the inverse
normal probability transform by Φ−1 and with θ∈ ½−1, 1�, the bivariate Gaussian copula is given as

Cðu, vÞ=
Z

Φ−1ðuÞ

−∞

Z
Φ−1ðvÞ

−∞

1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − θ2

p exp

�
−
s2 − 2θst þ t2

2ð1 − θ2Þ
�
ds dt (11-25)

Similarly, the bivariate Student-t copula for ν > 2 degrees of freedom, taking its probability
transform as t−1ν and with θ∈ ½−1,1�, is given by

Cðu, vÞ=
Z

t−1ν ðuÞ

−∞

Z
t−1ν ðvÞ

−∞

1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − θ2

p
�
1þ s2 − 2θ st þ t2

νð1 − θ2Þ
�
−ðνþ2Þ∕2

ds dt (11-26)

11.3.2.4 Miscellaneous Copulas

The Farlie–Gumbel–Morgenstern (FGM), Plackett, and Raftery copulas fall under the miscella-
neous copula class. Table 11-1 gives the copula probability and parameter space for the FGM
copula. The generating function is not applicable for FGM copulas, as it does not belong to the
Archimedean copula class. The FGM copula is not comprehensive, as copulas of this family only
have a dependence range of Kendall’s tau of −2∕9 ≤ τ ≤ 2∕9 or Spearman’s rho of
−1∕3 ≤ ρs ≤ 1∕3. The limited range of admissible dependence restricts the use of this family
for hydrologic applications to only weakly associated variables. The Plackett family of copulas were
proposed by Plackett (1965), based on the assumption of a constant cross-product ratio θ ≥ 0 for a
given ðu,vÞ as

θ=
P½U ≤ u,V ≤ v�P½U > u,V > v�
P½U > u,V ≤ v�P½U ≤ u,V > v�

=
Cðu, vÞ½1 − u − v þ Cðu, vÞ�
½u − Cðu, vÞ�½v − Cðu, vÞ� (11-27)

Considering a contingency table with ðu, vÞ as the point of demarcation, the numerator in this
equality represents the product of probabilities of occurrence in the positive diagonal quadrants,
whereas the denominator is the product of probabilities of occurrence in the negative diagonal
quadrants. Thus, values of θ > 1 indicate positive dependence, and values of θ < 1 represent
negative dependence. This is a comprehensive copula, as values of θ= 0 and θ=∞ represent
perfectly negative and positive dependence, respectively. A value of θ= 1 indicates independence.
The copula probability can be expressed explicitly by solving Equation (11-27) as
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Cðu, vÞ = 1þ ðθ − 1Þ ðuþ vÞ
2 ðθ − 1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðθ − 1Þ ðuþ vÞ�2 − 4 u v θ ðθ − 1Þ

p
2 ðθ − 1Þ (11-28)

11.3.2.5 Associated Copulas

Three more associated copulas can be derived for any copula family from any of the aforementioned
copula classes (Michiels and Schepper 2008). These are obtained as

C
0 ðu, vÞ= u − Cðu, 1 − vÞ (11-29a)

C
00 ðu, vÞ= v − Cð1 − u, vÞ (11-29b)

Cðu, vÞ= uþ v − 1þ Cð1 − u, 1 − vÞ (11-29c)

The first two transformations reverse the nature of dependence in positive and negative
quadrants and can be employed for obtaining a positive quadrant dependent (PQD) copula from
a negative quadrant dependent (NQD) copula and vice versa. The third copula is known as the
survival copula, as it involves a joint distribution of ð1 − U , 1 − VÞ that appears related to the
survival probabilities FðxÞ= PðX > xÞ= 1 − FðxÞ and GðyÞ=PðY > yÞ= 1 − GðyÞ, respectively.
Such associated copulas greatly enhance the variety of available copulas.

Salvadori et al. (2007) provide definitions and construction of other copulas in the
Archimedean, extreme value, meta-elliptical, and miscellaneous copula classes.

11.3.3 Dependence through Copulas

Pearson’s correlation coefficient, which is invariably linked to the dependence parameter of the
conventional multivariate distributions, is not invariant to nonlinear monotonic increasing trans-
formations. In contrast, copulas bring out intervariable dependence among multivariate random
variables and possess useful properties of invariance with respect to strictly monotonically increasing
transformations.

11.3.3.1 Invariance Property of Copulas

Considering any monotonically increasing transformation of ðX,YÞ, such as Z1 = ξðXÞ and
Z2 =ψðYÞ, and taking H�ðz1, z2Þ, F�

Z1
ðz1Þ, and G�

Z2
ðz2Þ as the new joint and marginal distributions

of the transformed variables ðZ1,Z2Þ, the joint distribution in terms of an assumed copula C�, using
Equation (11-18), is given as

H�ðz1, z2Þ=C�½F�
Z1
ðz1Þ,G�

Z2
ðz2Þ�, z1, z2 ∈R (11-30)

Because the transformations are monotonically increasing, the marginals of the transformed
variables can also be expressed as

F�
Z1
ðz1Þ= PðZ1 ≤ z1Þ= P½ξðXÞ ≤ z1�= P½X ≤ ξ−11ðz1Þ�= FX½ξ−1ðz1Þ�
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and similarly,

G�
Z2
ðz2Þ= Pr :ðZ2 ≤ z2Þ=P½ψðYÞ ≤ z2�= P½Y ≤ ψ−1ðz2Þ�=GY ½ψ−1ðz2Þ�

From first principles and using the copula definition given in Equation (11-18), the joint
distribution of ðZ1,Z2Þ may be obtained as

H�ðz1,z2Þ= P½ðZ1 ≤ z1Þ, ðZ2 ≤ z2Þ�= Pf½X ≤ ξ−1ðz1Þ�, ½Y ≤ ψ−1ðz2Þ�g
=H½ξ−1ðz1Þ,ψ−1ðz2Þ�=CfFX ½ξ−1ðz1Þ�,GY ½ψ−1ðz2Þ�g
=C½F�

Z1
ðz1Þ,G�

Z2
ðz2Þ� (11-31)

Equations (11-30) and (11-31) show that C=C�; in other words, the copula associated with
random variables ðX,YÞ is invariant to any monotonically increasing transformation of the
marginals. Further, because the copula characterizes the dependence between X and Y , a faithful
graphical representation of dependence should exhibit the same invariance property. Among various
possible statistics, the pair of ranks of the two variables, say ðRi, SiÞ, is the statistic that retains the
maximum amount of information. Rescaling by a factor of 1∕ðnþ 1Þ gives a set of points in the unit
square ½0, 1�2, forming the domain of the “empirical copula” and formally defined as

Cnðu, vÞ=
1
n

Xn
i= 1

1

�
Ri

nþ 1
≤ u,

Si
nþ 1

≤ v

�
(11-32)

Here, 1(A) denotes the indicator function of the ðU ,VÞ set. The random variables ðU ,VÞ can be
considered just another monotonically increasing transformation of ðX,YÞ by their respective scaled
rankings. In fact, this is also equivalent to transforming ðX,YÞ by their respective empirical
probability integrals, say FnðXÞ and GnðYÞ, given as

U =
RankðXÞ
nþ 1

= FnðXÞ, V =
RankðYÞ
nþ 1

=GnðYÞ (11-33)

11.3.3.2 Nonparametric Measures of Association

In view of the invariant property of the rank-based dependence structure, the two well-known
nonparametric measures, namely Spearman’s rho and Kendall’s tau, are employed. Spearman’s rho is
based on the correlation between pairs of ranks of the bivariate random vector ðX,YÞ. In that sense it
is identical to Pearson’s product–moment correlation coefficient of ranks of ðX,YÞ. Considering ðR, SÞ
to be of length n, the sample version of Spearman’s rho, after algebraic simplification, is given by

ρns =
CovðR, SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðRÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp =

12
nðnþ 1Þðn − 1Þ

Xn
i= 1

RiSi − 3
nþ 1
n − 1

(11-34)

MULTIVARIATE FREQUENCY DISTRIBUTIONS IN HYDROLOGY 425



Under the null hypothesis of independence, H0∶C=Π, ρns has a normal distribution with zero
mean and variance 1∕ðn − 1Þ. Thus, for the α significance level and with zα∕2 as normal α∕2 quantile,ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p jρns j > zα∕2 would indicate significant dependence. The population version of Spearman’s
rho, as n→∞, is given by

ρs = 12 E

�
Ri

ðnþ 1Þ
Si

ðnþ 1Þ
�
− 3= 12 E½u v� − 3

= 12
Z
½0,1�2

u v cθ du dv − 3

= 12
Z

u v dCðu, vÞ − 3

= 12
Z

Cθðu, vÞdu dv − 3 (11-35)

Any of the latter three equalities in Equation (11-35) provides a means of obtaining the
relationship between the dependence parameter θ and the measure of association ρs.

Similarly, the association measure Kendall’s tau is based on the notion of concordance and
discordance among the pairs of random vectors ðX,YÞ. Two pairs ðXi,YiÞ and ðXj,YjÞ, for i, j∈ 1∶n,
are concordant when ðXi − XjÞðYi − YjÞ > 0 and discordant when ðXi − XjÞðYi − YjÞ < 0. Consid-
ering Pn and Qn as the number of concordant and discordant pairs of ðX,YÞ, the empirical version of
Kendall’s tau is the proportion of the difference of concordant and discordant pairs and is obtained as

τn =
Pn − Qn�

n
2

� =
4

nðn − 1Þ Pn − 1= 4
n

n − 1
Wn −

n − 3
n − 1

(11-36)

Here Wn = 1
n

P
n
i= 1 Wi and Wi is the bivariate probability integral transform (BIPIT) variate

given by

Wi =
1
n
#fj∶Xj ≤ Xi,Yj ≤ Yig=Cn

�
Ri

nþ 1
,

Si
nþ 1

�
(11-37)

Under the null hypothesis of independence, H0∶C=Π, τn has a normal distribution with zero
mean and variance 2ð2nþ 5Þ∕f9nðn − 1Þg. Thus, for the α significance level, significant dependence

is indicated when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9nðn − 1Þ∕f2ð2nþ 5Þgp jτnj > zα∕2. The population version of Kendall’s tau, as

n→∞, is given by

τ= 4 E½Wi� − 1

= 4
Z

Cðu, vÞdCðu, vÞ − 1

= 4
Z

Cθ cθ du dv − 1 (11-38)

The latter two equalities provide relationships between dependence parameter θ and the
measure of association τ. For Archimedean copulas, Genest and Mackay (1986), alternatively,
show that
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τ= 1þ 4
Z

ϕðtÞ
ϕ0 ðtÞ dt (11-39)

For some copulas these relationships are derivable in closed form, while a numerical solution
could be obtained in other cases. Table 11-2 provides a few examples of closed-form solutions for
relationships between the dependence parameter θ and Spearman’s rho or Kendall’s tau coefficients.
Note that specific levels of association invariably correspond to a different dependence parameter θ
for different copula types owing to the difference in their construction. For this reason, dependence
parameter θ is not suitable for comparison of association level among different copulas.

11.3.3.3 Qualitative Assessment of Dependence

A qualitative graphical assessment and reaffirmation of the level of association can be done by
plotting chi-plots and Kendall or K-plots as proposed by Fisher and Switzer (2001) and Genest and
Boies (2003), respectively. Whereas chi-plots are akin to chi-square statistics for independence in a
two-way contingency table, K-plots are similar to Quantile-Quantile or QQ-plots. Conceptually, a
chi-plot is a scatter plot of the measure of distance between an observation and the center of all
observations and the chi-square test statistic for independence in a two-way frequency table
generated for the four regions delineated by the observation under consideration. Formally, this
is a plot of ðλi, χiÞ, where

χi =
Hi − Fi Giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fið1 − FiÞGið1 − GiÞ
p and λi = 4 signðF∼iG

∼
iÞmaxðF∼2i ,G

∼2
i Þ (11-40)

where F
∼
i = Fi − 1∕2,G

∼
i =Gi − 1∕2 ∀ i∈ 1∶n and

Hi =
1

n − 1
#
�
j ≠ i∶Xj ≤ Xi,Yj ≤ Yi

�
=

nWi − 1
n − 1

, (11-41)

Fi =
1

n − 1
#
�
j ≠ i∶Xj ≤ Xi

�
, and Gi =

1
n − 1

#
�
j ≠ i∶Yj ≤ Yi

�
(11-42)

Table 11-2. Relationships between Dependence Parameter θ and the Nonparametric Association
Measures, Kendall’s Tau τ and Spearman’s Rho ρs, for Six Copula Families.

Copula Kendall’s tau τ Spearman’s rho ρs

AMH 3θ−2
3θ − 2ð1−θÞ2

3θ2 lnð1 − θÞ 12ð1þθÞ
θ2 dilogð1 − θÞ − 24ð1−θÞ

θ2 lnð1 − θÞ − 3ðθþ12Þ
θ

Clayton θ∕ðθþ 2Þ Closed form n.a.
FGM 2θ∕9 θ∕3
Frank 1þ 4

θ ½D1ðθÞ − 1� 1 − 12
θ ½D2ð−θÞ − D1ð−θÞ�

Galambos Closed form n.a. Closed form n.a.
GH 1 − 1∕θ Closed form n.a.
Plackett Closed form n.a. ðθþ1Þ

ðθ−1Þ −
2θ

ðθ−1Þ2 lnðθÞ
Raftery 2θ∕ð3 − θÞ θð4 − 3θÞ∕ð2 − θÞ2
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The plot may also include control limits at ordinates of �cp∕
ffiffiffi
n

p
. A scatter of the chi-plot

predominantly within these control limits indicates independence among the variables and vice
versa. Based on a simulation study, Fisher and Switzer (2001) provide values of cp = 1.54, 1.78, and
2.18 corresponding to p-values of 0.90, 0.95, and 0.99, respectively. When the scatter is largely on the
upper side of the control limit, it indicates a positive dependence, whereas when it is on the lower
side of the limits, it indicates a negative dependence. The authors also recommend avoiding outliers
by plotting only those points that satisfy

jλij ≤ 4

�
1

n − 1
−
1
2

�
2

Figure 11-7 gives the chi-plots for the random samples from the GH, Frank, and Clayton
copulas, considered in Section 11.3.2.1. Because these samples pertain to positive dependence, they

λ i

χ i
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Figure 11-7. Chi-plots for random bivariate samples of (U, V) of size 500 from GH, Frank, and Clayton
copulas for increasing strengths of association. The left, middle, and right panels correspond to
Kendall’s tau τ values of 0.25, 0.50, and 0.75, respectively. The numbers following copula names are
dependence parameter θ and corresponding τ values.
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all appear on the upper half of the chi-plots and plot increasingly farther from χi = 0 for Kendal’s tau
equal to 0.25, 0.50, and 0.75, respectively. Two distinct groupings of points on the right side are
apparent for the GH and Clayton copulas, and these characterize differences in upper- and lower-tail
dependence features of these copulas. This is elaborated in the next section.

K-plots, however, are scatter plots of observed and expected order statistics of the BIPIT variable
W =HðX,YÞ=CðU ,VÞ of the same size, under the null hypothesis of independence between its
components X and Y or U and V . Formally, Genest and Boies (2003) suggest plotting the pairs
ðWi∶n,HðiÞÞ for i∈ 1∶n, where

Hð1Þ < Hð2Þ < : : : < HðnÞ

are the order statistics associated with Hi defined for the chi-plot in Equation (11-40). Wi∶n is the
expected value of the ith statistic of the variable W from a random sample of size n under the
assumption of independence between X and Y or U and V . Assuming the cdf and pdf of W to be
K0ðwÞ and k0ðwÞ under the assumption of independence, the pdf of its ith order statistic, say
f wðiÞ ðwðiÞÞ, is given as

f wðiÞ ðwðiÞÞ= n

�
n − 1
i − 1

�
k0ðwÞK0ðwÞi−1½1 − K0ðwÞ�n−i

The expected value of wðiÞ, as reported by Genest and Favre (2007), is given as

E½wðiÞ�=Wi∶n = n

�
n − 1
i − 1

�Z
1

0
wk0ðwÞK0ðwÞi−1½1 − K0ðwÞ�n−idw (11-43)

where

K0ðwÞ=P½UV ≤ w�=
Z

1

0
P

�
U ≤

w
v

�
dv

=
Z

w

0
1dv þ

Z
1

w

w
v
dv=w − w logðwÞ

and

k0ðwÞ= − logðwÞ

The diagonal line HðiÞ =W1∶n on the K-plot indicates independence, whereas the curve given by
K0ðwÞ=w − w logðwÞ corresponds to a perfect positive dependence. In case of a perfect negative
dependence, all the points would lie on the x-axis as all Hi = 0. Figure 11-8 gives K-plots for the
random samples from the GH, Frank, and Clayton copulas, considered in Section 11.3.2.1. Because
these samples pertain to positive dependence, they all plot on the left side of the diagonal line and are
increasingly closer to the perfect positive dependence curve for the three cases of Kendall’s tau equal
to 0.25, 0.50, and 0.75, respectively.

11.3.3.4 Tail Dependence Characteristics

The nonparametric association measures, Spearman’s rho and Kendall’s tau, provide an idea of the
overall dependence, considering all regions of the domain I. However, such generalized measures fail
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to differentiate among varying dependence strengths in different regions of the domain. Information
on the dependence strength in the tails, upper right and lower left, may be important from the
perspective of modeling of extremes. For this, the dependence in the upper-right and lower-left
quadrants of I, denoted by upper-tail dependence λU and lower-tail dependence λL, are quantified.
Conceptually, tail dependence quantifies the probability of a variable attaining an extreme value
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Figure 11-8. K-plots for random bivariate samples of (U, V) of size 500 from GH, Frank, and Clayton
copulas for increasing strengths of association. The left, middle, and right panels correspond to
Kendall’s tau τ values of 0.25, 0.50, and 0.75, respectively. The numbers following copula names are
dependence parameter θ and corresponding τ values.
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given that the other variable occurred with an extreme value. Formally, the upper-tail dependence is
defined as the conditional probability that Y is greater than or equal to the 100t-th percentile of FY

given that X is greater than the 100t-th percentile of FX as t approaches 1 (Nelsen 2006). This can be
expressed and obtained in terms of copula probability as

λU = lim
t→1−

P½Y > F−1
Y ðtÞjX > F−1

X ðtÞ�= lim
t→1−

P½FYðYÞ > tjFXðXÞ > t�

= lim
t→1−

P½V > tjU > t�= lim
t→1−

P½V > t,U > t�
P½U > t�

= lim
t→1−

1 − 2t þ Cðt, tÞ
1 − t

= 2 − lim
t→1−

1 − Cðt, tÞ
1 − t

(11-44)

The lower-tail dependence λL is defined analogously and is given as

λL = lim
t→0þ

P½Y ≤ F−1
Y ðtÞjX ≤ F−1

X ðtÞ�= lim
t→0þ

P½FYðYÞ ≤ tjFXðXÞ ≤ t�

= lim
t→0þ

P½V ≤ tjU ≤ t�= lim
t→0þ

P½V ≤ t,U ≤ t�
P½U ≤ t�

= lim
t→0þ

Cðt, tÞ
t

(11-45)

These expressions are evaluated when the limits exist, providing values of upper- and lower-tail
dependences. Nelsen (2006) and Salvadori et al. (2007) provide expressions of tail dependence for
most of the available copula types. Table 11-3 gives these values for some of the copulas.

Abberger (2005) indicates that the significance of tail dependence can also be qualitatively
established by employing chi-plots. For this, only those ðλi, χiÞ pairs that come from either the
upper-right or the lower-left quadrant are plotted. Figures 11-9 and 11-10 illustrate such chi-plots
for upper and lower tails for the random samples from three copulas considered in Section 11.3.2.1.
A falling trend leading to extreme points within the control limit indicates insignificant tail
dependence. Such is the case for the upper tail for the Clayton copula and for both lower and
upper tails for the Frank copula. For the lower tail of the Clayton copula and both lower and upper
tails of the GH copula, a significant tail dependence is apparent. The significant tail dependence is
also stronger for the increasing value of Kendall’s tau and is indicated by higher χi values in the
extreme region near λi = 1.

11.3.4 Parameter Estimation Methods

The copula dependence parameters can be estimated using methods such as (1) moment-like
method (MOM), based on inversion of nonparametric dependence measures; (2) canonical or
maximum pseudo-likelihood (MPL) method; and (3) exact maximum likelihood (EML) method.
The first two methods completely rely on the relative ranks of joint variates and thus render the
determination of dependence structure completely independent of the choice of marginals. These
three methods are outlined as follows.

11.3.4.1 Moment-Like Method Based on Inversion of Dependence Measures

This approach is based on the assumption that bivariate dependence structure is fully defined by
the relative ranks of the constituent variables. The nonparametric estimates of θ based on
Spearman’s rho ρs or Kendall’s tau τ, are obtained from Equations (11-35) or (11-36). For some
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copula families, these relationships are obtained in closed form. For example, for the FGM copula,
these relationships are

ρs =
θ
3

and τ=
2θ
9

and for − 1 ≤ θ ≤ 1

This results in a restricted admissible dependence space of −0.3333 ≤ ρs ≤ 0.3333 or
−0.2222 ≤ τ ≤ 0.2222. Based on these, the sample-based estimates of θ, much like a moment-
based estimate, are obtained, respectively, as

�θn = 3 ρns and θ
∼
n =

9τn
2

i

i
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Figure 11-9. Upper-tail characteristics depicted by chi-plots for only the upper-right quadrant
samples of the random bivariate samples of size 500 from GH, Frank, and Clayton copulas for
increasing strengths of association. The left, middle, and right panels correspond to Kendall’s tau τ
values of 0.25, 0.50, and 0.75, respectively. The numbers following copula names are dependence
parameter θ and corresponding τ values.
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Table 11-2 gives these relationships for a few copula families. For the cases in which closed
forms are not available, numerical integration can be followed for relating the dependence parameter
θ with τ and/or ρs. These relationships also define the dependence space for each copula,
corresponding to the domain of dependence parameter θ. Note, however, that this method is
applicable to the single-parameter copula families only.

Considering general relationships θ= gðτÞ and θ= hðρÞ, which could be established for various

copula families, the approximate 100ð1 − αÞ% confidence intervals can be computed for θ
∼
n and �θn,

respectively, following Genest and Rivest (1993) and Borkowf (2002), as

θ
∼
n � zα∕2

1ffiffiffi
n

p 4 Sjg 0ðτnÞj and �θn � zα∕2
1ffiffiffi
n

p σnjh0ðρns Þj (11-46)

with

S2 =
1
n

Xn
i= 1

ðWi þW
∼

i − 2WÞ2 and σ2n = 144ð−9A2
n þ Bn þ 2Cn þ 2Dn þ 2EnÞ
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Figure 11-10. Lower-tail characteristics depicted by chi-plots for only the lower-left quadrant
samples of the random bivariate samples of size 500 from GH, Frank, and Clayton copulas for
increasing strengths of association. The left, middle, and right panels correspond to Kendall’s tau τ
values of 0.25, 0.50, and 0.75, respectively. The numbers following copula names are dependence
parameter θ and corresponding τ values.
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where

W
∼

i =
1
n
#f j∶Xi ≤ Xj,Yi ≤ Yjg,

An =
1
n

Xn
i= 1

Ri

nþ 1
Si

nþ 1
,Bn =

1
n

Xn
i= 1

 Ri

nþ 1

�
2
 Si
nþ 1

�
2
,

Cn =
1
n3

Xn
i= 1

Xn
j= 1

Xn
k= 1

Ri

nþ 1
Si

nþ 1
1ðRk ≤ Ri, Sk ≤ SjÞ þ

1
4
− An,

Dn =
1
n2

Xn
i= 1

Xn
j= 1

Si
nþ 1

Sj
nþ 1

max
 Ri

nþ 1
,

Rj

nþ 1

�
,

and

En =
1
n2

Xn
i= 1

Xn
j= 1

Ri

nþ 1

Rj

nþ 1
max

 Si
nþ 1

,
Sj

nþ 1

�
Values of θ

∼
n and �θn likely differ significantly, and in such a case either an average value or the one

with least variance is selected.

11.3.4.2 Maximum Pseudo-Likelihood (MPL) Method

In this method, one tries to keep the dependence structure completely independent of the margins
that are represented nonparametrically by the respective scaled ranks. Only the dependence
parameter is obtained by maximizing the likelihood function. The log-likelihood function, assuming
that Cθ is absolutely continuous with density cθ, is of the form

lðθÞ=
Xn
i= 1

log
h
cθðF

∼
XðxiÞ, F

∼
YðyiÞÞ

i
=

Xn
i= 1

log

�
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�
Ri
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,

Si
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��
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where F
∼
XðxÞ=Ri∕ðnþ 1Þ and F

∼
Yð yÞ= Si∕ðnþ 1Þ are rank-based nonparametric marginal proba-

bilities. In other words, the maximum likelihood estimates of only θ are obtained in this method.

11.3.4.3 Exact Maximum Likelihood (EML) Method

In this classical or exact maximum likelihood method, all parameters appearing in the log-likelihood
function given by

lðθ, δ, ηÞ=
Xn
i= 1

logfcθ½FXðx; δÞ, FYðy; ηÞ�g (11-48)

are simultaneously estimated. Here, δ and η are parameters of the marginals FXðx; δÞ and FYð y; ηÞ,
and θ is the dependence parameter vector. Another variant of this approach is referred to as the
inference from margins (IFM) method, wherein univariate maximum likelihood estimates of δ and η
are first obtained separately, and then the estimate of θ is obtained by maximizing the likelihood
function. The log-likelihood function for this can be expressed as

lðθÞ=
Xn
i= 1

logfcθ½�FXðx; δÞ, �FYð y; ηÞ�g (11-49)

where �FXðx; δÞ and �FYð y; ηÞ indicate marginals having parameters δ and η, which are obtained on a
univariate basis. The IFM approach is advocated for multivariate copulas of larger dimensions when
estimation through the classical approach becomes computationally unwieldy. By this method all
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inferences that are made on a univariate level can be taken forward while performing multivariate
analysis. Furthermore, Joe (2005) finds the IFM method to be nearly as efficient as the EML method.
However, caution has to be exercised while employing the IFM method, as misspecification of
marginals may affect the dependence estimation. Interesting to note is that although the classical
maximum likelihood approach is more general, smaller mean squared errors were reported for the
MPL method in a simulation study reported by Tsukahara (2005).

11.3.5 Copula-Based Random Generation

Copulas facilitate multivariate random number generation, as the procedure based on the condi-
tional distribution is easily extendable to larger dimensions. The conditional bivariate probability
cuðvÞ=Cðu, vjU = uÞ considered for generating copula-based bivariate random numbers is given as

cuðvÞ=Cðu, vjU = uÞ=PðV ≤ vjU = uÞ

= lim
Δu→0

Cðuþ Δu, vÞ − Cðu, vÞ
Δu

=
∂Cðu, vÞ

∂u
(11-50)

This conditional probability is itself a cumulative distribution function, and therefore the
transformation V� = cuðVÞ results in V�∼Uð0, 1Þ, which does not depend on U. Thereby, v may be
obtained as V = c−1u ðV�Þ. Utilizing this, the following steps may be used to generate bivariate random
numbers for ðX,YÞ (Nelsen 2006):

1. Generate two sets of n standard uniform random numbers as ui and v�i for i= 1:n.

2. As the copula for ðX,YÞ, HX,Yðx, yÞ=C½FXðxÞ, FYðyÞ�=Cðu, vÞ is known, an expression for

cuðvÞ= ∂Cðu,vÞ
∂u is obtained. From this, an inverse expression c−1u ðv�Þ can also be obtained.

3. Then, the corresponding vi is obtained from vi = c−1u ðv�i Þ. The set ðu, vÞ comprising ðui, viÞ is
the randomly generated pairs from copula Cðu, vÞ.

4. The bivariate random numbers in the original domain ðX,YÞ is then obtained as
ðxi, yiÞ ∀ i= 1∶n, where xi = F−1

X ðuiÞ and yi = F−1
Y ðviÞ.

11.3.6 Copula Selection Process

The main objective in the copula selection process is to represent the dependence structure of the data
under consideration adequately. A popular notion claims that the copula method overcomes various
limitations faced by functional distributional forms, including those with restricted dependence space
and difficulty in having their multivariate extensions. However, this is not entirely true, as most copulas
also are not comprehensive and cover a limited dependence space individually. Their multivariate
extensions also invariably come with various additional restrictions; for example, extension to
multivariate single-parameter copulas entails all pairwise dependence to be equal, and fully nested
Archimedean copulas require certain dependence compatibility conditions to be met. Another
important aspect in copula selection is ensuring suitability in terms of tail dependence characteristics.
Certain copulas may exhibit similar overall dependence features, while possessing different lower- and/
or upper-tail dependence characteristics. The compatibility of copula tail dependence characteristics
with that exhibited by the process under consideration thus becomes an important goal. Furthermore,
while the forms of functional multivariate distributions lack in terms of variety, a problem of a different
nature exists with copulas, and that is of a vast solution space (Michiels and Schepper 2008). Numerous
classes and types of copulas exist, making the identification of suitable ones a nontrivial task.

Intuitively, the copula selection process can be split in two parts. In the first stage, the plausible
copula types can be screened from the pool of all available copulas on the basis of admissible
dependence ranges and tail dependence characteristics of individual copula types vis-à-vis the
dependence characteristics of the data under consideration. Parameter estimation and goodness-of-fit
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tests for only those copulas that are screened in the first stage can then follow as a second stage to select
a final set of suitable copulas.

Michiels and Schepper’s (2008) inventory of admissible dependence space for 29 copulas comes
in handy when screening for plausible copulas in the first stage. Each of these copula types may have
three additional associated copulas, making the inventory even richer. Table 11-3 gives an adapted
and abridged version of this inventory for 10 commonly used copula types. The shaded cells in the
table imply admissibility of corresponding dependence ranges for different copula types. The table
also lists lower- and upper-tail dependence coefficients λL and λU as defined in Equations (11-27)
and (11-28). On the basis of strength of dependence and tail dependence characteristics of the data
under consideration, a short list of plausible copula types can be made. An assessment of
dependence, along with p-values, can be made by computing the values of Spearman’s rho ρs
and/or Kendall’s tau τ based on observed data. The tail dependence characteristics of the process
under consideration can be known from the expert knowledge about that process. The chi-plots for
the upper and lower tails, as suggested by Abberger (2005), also help corroborate the values of tail
dependence coefficients λL and λU .

Generally, more than one feasible copula structure may constitute the copula test space. In the
second stage, parameters of all the short-listed copula families are estimated using one or more
parameter estimation methods. Ascertaining the adequacy of the hypothesized copulas is then
imperative. This can be normally accomplished in three ways: (1) graphical methods, (2) error
statistics, and (3) formal goodness-of-fit statistics. A randomly generated test dataset from the Clayton
copula, with Kendall’s tau τ= 0.5, is used to illustrate these goodness-of-fit tests. Figure 11-11
plots this test dataset.

11.3.6.1 Graphical Goodness-of-Fit Methods

Several graphical approaches can be employed that utilize different features for making comparisons.
Graphical comparison of the superimposed scatter plots of observed and simulated data is an

Figure 11-11. Scatter plot of a random test dataset of size 50 of the Clayton copula with Kendall’s tau
of 0.5 or dependence parameter θ= 2.0. The marginal histograms on the sides are nearly uniformly
distributed.

MULTIVARIATE FREQUENCY DISTRIBUTIONS IN HYDROLOGY 437



intuitive way of qualitatively assessing the suitability of the hypothesized copulas. Important to note
here is that both very small and very large generated sample sizes can provide misleading
comparisons. Figure 11-12 illustrates such comparison of the Clayton copula test dataset with
four copula families: Galambos, GH, Clayton, and Frank. The figure shows that the conspicuous
lower tail in the test data is better represented by the random data from the Clayton copula as
compared with the other copulas. This method, however, is better suited for bivariate cases only, as
similar comparisons in higher dimensions become difficult. Furthermore, comparison of the ordered
empirical probabilities with corresponding computed probabilities can be made, revealing the extent
to which the copula surface fits the scaled ranks of observed data. Figures 11-13 and 11-14 provide
this comparison in two ways. In the former case, the empirical and computed probabilities are
plotted against the observation numbers that are ranked as per the empirical probabilities. In the
latter case, the empirical probabilities are plotted against the computed probabilities, making the
vicinity of the diagonal line the desirable region. Both of these comparative plots show that the
Clayton copula performs better for the test dataset. The other two graphical options are related to the
K-plots. In one option, the empirical and theoretical probability distributions, KnðwÞ and KθnðwÞ, of
the BIPIT variate W =CðU ,VÞ can be compared—with their closeness supporting nonrejection of
the hypothesized copula. Figure 11-15 illustrates this plot for the test dataset, showing that the
theoretical probability distributions of W for the Clayton copula better matches the empirical
distribution, especially in the lower-tail region. The second option is much like a QQ-plot—a scatter
plot between the observed order statistics Wð1Þ ≤ Wð2Þ ≤ : : : ≤ WðnÞ of W and the corresponding

Figure 11-12. Comparison of Clayton copula test data with sets of 500 generated random samples
based on dependence parameters obtained by the MPL method. Solid circles in gray are the random
samples, whereas plus symbols represent test data. The numbers following the copula names are
dependence parameter θ and corresponding τ values.
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Figure 11-13. Comparison of empirical and MPL method–based computed probabilities for the
Clayton copula test data. Lines in black and solid gray circles are empirical and computed
probabilities, respectively. The numbers following copula names are dependence parameter θ and
corresponding τ values.
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Figure 11-14. Comparison of empirical and MPL method-based computed probabilities for the
Clayton copula test data. The diagonal lines represent equivalence of empirical and computed
probabilities.
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expected order statistics based on the hypothesized copula. Again, conformation to the line from
origin and having unit slope suggest nonrejection of the hypothesized copula. Figure 11-16 illustrates
this comparison for the test dataset, again showing that the Clayton copula provides the best match
as compared with the other three copulas. This plot is also referred to as the “generalized K-plot.”

11.3.6.2 Error Statistics of Fit

A quantitative assessment of the performance of various copula families can be made by comparing
the maximized log-likelihood or Akaike information criterion (AIC) values. Various error statistics,
such as the root mean square error (RMSE), mean absolute error (MN-A-ERR), and maximum
absolute error (MX-A-ERR), reflect other important characteristics of comparison of empirical and
computed probabilities. Considering the empirical and computed bivariate probabilities as wo

i and w
c
i

for i= 1∶n in a sample of size n, respectively, these error statistics are obtained as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i= 1

ðwo
i − wc

i Þ2
s

(11-51a)

MN–A–ERR=
1
n

Xn
i= 1

jðwo
i − wc

i Þj (11-51b)

MX–A–ERR= max
i= 1∶n

jðwo
i − wc

i Þj (11-51c)
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Figure 11-15. Comparison of empirical Kn(w) and theoretical KθnðwÞ probability distribution functions
of the bivariate integral transform variable W= C(U, V) for various copulas. The step functions are
empirical distributions, and the curves are the MPL method–based theoretical distributions.
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Table 11-4 gives these error statistics for the test dataset with respect to the MPL method. As
expected, the least errors correspond to the Clayton copula because the test dataset was generated
based on the Clayton copula.

11.3.6.3 Analytical Goodness-of-Fit Tests

Genest et al. (2009) present a review of the available analytical goodness-of-fit tests for copulas,
including those proposed by Wang and Wells (2000), Fermanian (2005), and Genest et al. (2006),

Figure 11-16. Generalized K-plots between observed W(i) and corresponding expected Wi:n order
statistics of the MPL method–based bivariate probability integral transform variableW = C(U, V) for
various copulas. The line through the origin with unit slope indicates equivalence between the two
order statistics. The numbers following copula names are dependence parameter θ and
corresponding τ values.

Table 11-4. Three Error Statistics for Fitting Four Copulas to Clayton Copula Test Dataset with
Respect to the MPL Method.

Copula family

MPL-based copula model

RMSE MN-A-ERR MX-A-ERR

Clayton 0.0185 0.0156 0.0398
Frank 0.0244 0.0186 0.0645
Galambos 0.0302 0.0226 0.0743
GH 0.0296 0.0223 0.0733
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among others, and recommend a few Cramer–von Mises type test statistics based on Rosenblatt’s
transformation. The validity of the parametric bootstrap procedure, proposed by Genest et al. (2006),
and for the empirical copula-based test statistics, proposed by Fermanian (2005), has since been
formally established by Genest and Remillard (2008). Three goodness-of-fit test statistics, proposed
by Fermanian (2005) and Genest et al. (2006), are discussed here to test the adequacy of the
hypothesized copulas formally. The first one is the Cramer–von Mises type statistic proposed by
Fermanian (2005), which is based on the comparison of empirical and parametric copula
probabilities given by the process

ffiffiffi
n

p ðCn − CθnÞ and can be obtained as

CMn = n
Xn
i= 1
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(11-52)

Genest et al. (2006) give the other two Cramer–von Mises and Kolmogorov type statistics as
variants of those that Wang and Wells (2000) propose. Providing an objective comparison of the
empirical and theoretical probabilities of the BIPIT variate W , these are based on the process
KnðwÞ=

ffiffiffi
n

p fKnðwÞ − KθnðwÞg and can be obtained as
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Tables 11-5 and 11-6 give these three goodness-of-fit test statistics for the test dataset with
respect to MOM and MPL methods, respectively. Higher p-values for the Clayton copula for all
three statistics indicate that it is most viable among the four copulas considered for the test dataset.
This is expected because the test dataset came from the Clayton copula. The p-values for the CMn

statistic for the Frank copula are also comparatively higher and may be owing to the fact that both
the Clayton and Frank copulas have insignificant upper-tail dependence. In that sense these
statistics may not have a desirable discriminatory power between the Clayton and Frank copulas.
The extremely low p-values of all three statistics rule out the Galambos and GH as plausible
copulas.

Overall, the copula selection process can be summarized in the following steps:

1. Get an initial idea of the dependence level from the scatter plot of scaled ranks.

2. Quantify the strength of dependence by computing nonparametric dependence measures, such
as Spearman’s rho and Kendall’s tau.

3. Reaffirm the significance of dependence using the chi-plot and/or the K-plot.
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4. Observe the significance of tail dependence by using the chi-plot and compare this with the
available expert knowledge about the process under consideration.

5. Preselect one or more copula types that offer the dependence level and the tail dependence
under consideration.

6. Estimate copula parameters by one or more methods.

7. Assess the adequacy of hypothesized copulas on the basis of graphical diagnostic plots.

8. Assess the adequacy of hypothesized copulas on the basis of one or more analytical goodness-
of-fit test statistics.

9. Identify suitable copula models on the basis of the aforementioned assessment.

11.4 ILLUSTRATIVE EXAMPLES

Many studies emphasize the importance of multivariate hydrological frequency analysis. These
studies have involved storm or flood variables, such as storm depth, duration, average intensity,

Table 11-5. Goodness-of-Fit Statistics for Fitting Four Copulas to the Clayton Copula Test Dataset
with Respect to the Inversion of Dependence Measure (MOM) Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn Clayton 0.777 1.725 0.980 1.877 0.956 1.887 0.960
2.070 0.990 1.925 0.971 1.903 0.962

Frank 1.430 2.080 0.280 2.009 0.240 1.957 0.235
1.982 0.240 1.964 0.239 1.968 0.234

Galambos 1.780 1.816 0.070 1.878 0.074 – –
1.655 0.040 1.876 0.076 – –

GH 1.768 1.862 0.060 1.862 0.070 1.843 0.063
1.981 0.100 1.896 0.063 1.890 0.070

Sn Clayton 0.034 0.112 0.920 0.121 0.912 0.123 0.892
0.130 0.930 0.131 0.910 0.122 0.901

Frank 0.122 0.132 0.060 0.120 0.048 0.119 0.044
0.119 0.050 0.127 0.062 0.118 0.045

Galambos 0.204 0.150 0.010 0.158 0.007 – –
0.157 0.010 0.159 0.012 – –

GH 0.174 0.122 0.020 0.120 0.011 0.117 0.005
0.120 0.000 0.117 0.006 0.118 0.009

Tn Clayton 0.503 0.837 0.820 0.876 0.862 0.880 0.856
0.884 0.860 0.894 0.843 0.880 0.864

Frank 0.864 0.889 0.090 0.849 0.044 0.839 0.035
0.842 0.020 0.841 0.042 0.835 0.034

Galambos 0.973 1.098 0.460 1.129 0.486 – –
1.102 0.440 1.118 0.468 – –

GH 0.955 1.033 0.060 0.855 0.019 0.857 0.014
0.800 0.000 0.850 0.013 0.861 0.016

Note: S* implies the critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.
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maximum intensity, time to peak, interarrival period, and number of storms in a specified period; or
flood volume, duration and peak flow, and time to peak flow; among a few others. Studies involving
storm characteristics have been carried out for purposes such as simulation of rainfall field, rainfall–
runoff modeling, and derivation of frequency distributions for flood, urban storm volume, or annual
precipitation. Similarly, studies with flow variables have been done for various applications,
including checking the adequacy of dam spillways, carrying out risk assessments of levees and
embankments, designing retention basins, deriving flood frequency distributions at a station
downstream of a confluence, and improving the efficiency of parameter estimates of frequency
distributions. Fitting the joint distribution is central to all such applications. The following examples
illustrate fitting of copula-based bivariate distributions to flood and rainfall variables that would be
required for designing structures that involve risk of failure due to multiple rainfall or flow variables.

11.4.1 Example 11-1: Peak Flow and Volume

The annual peak and average daily flows of the Greenbrier River at Alderson station (USGS Station
#03183500) located in West Virginia are considered in this application for obtaining their joint
distribution. The Greenbrier River is a tributary of the New River in the southeastern part of the state

Table 11-6. Goodness-of-Fit Statistics for Fitting Four Copulas to the Clayton Copula Test Dataset
with Respect to the MPL Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn Clayton 0.855 2.404 0.780 2.552 0.736 2.651 0.753
2.332 0.690 2.550 0.753 2.665 0.751

Frank 1.493 1.844 0.210 2.033 0.219 1.997 0.210
2.162 0.200 1.959 0.207 1.994 0.211

Galambos 2.271 1.833 0.040 1.952 0.028 – –
1.754 0.010 1.909 0.020 – –

GH 2.191 1.949 0.040 1.940 0.023 1.915 0.022
2.126 0.040 1.880 0.020 1.932 0.025

Sn Clayton 0.038 0.131 0.840 0.132 0.843 0.137 0.847
0.123 0.800 0.132 0.834 0.139 0.839

Frank 0.126 0.105 0.030 0.120 0.040 0.120 0.040
0.114 0.040 0.117 0.034 0.121 0.042

Galambos 0.248 0.190 0.000 0.184 0.009 – –
0.169 0.000 0.189 0.009 – –

GH 0.209 0.141 0.000 0.131 0.004 0.130 0.005
0.134 0.000 0.127 0.003 0.132 0.007

Tn Clayton 0.526 0.851 0.770 0.902 0.817 0.911 0.809
0.841 0.730 0.931 0.801 0.917 0.803

Frank 0.880 0.822 0.020 0.841 0.034 0.835 0.029
0.815 0.020 0.833 0.029 0.847 0.033

Galambos 1.036 1.136 0.340 1.148 0.340 – –
1.107 0.270 1.156 0.334 – –

GH 1.028 0.918 0.010 0.904 0.007 0.895 0.010
0.866 0.000 0.890 0.011 0.895 0.012

Note: S* implies the critical value of a test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.
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and is approximately 165mi (265 km) long. Through the New, Kanawha, and Ohio Rivers, it is part of
the Mississippi River watershed. A river-gauging station is located at Alderson at latitude 37°43′27″
and longitude 80°38′30″, commanding a drainage area of 1,364 mi2. This analysis considers 110
years of data, from 1896 to 2005. The preparation of annual maximum flood data is an important
first step as the selection of maximal events for bivariate data becomes slightly ambiguous. Extreme
flood events with respect to the safety of drainage systems are invariably primarily associated with
peak flows that cause overtopping of crests of dams or levees, or inundation of floodplains. Any high
volume or long duration of flow by itself may not be any cause for concern when flows are lesser than
the design capacity of the system. Detrimental effects of high volume and/or duration of flow are also
important, but they typically only come into play when a primary failure occurs due to higher peak
flows. Annual maximum flood events have therefore been considered in this study on the basis of
annual peak flows, and the associated volumes have been obtained from the record of average daily
flows. A base flow of 2.5× 103 ft3/s has been subtracted to obtain flood volumes. The flood duration is
taken as the period associated with the annual maximum flow when average daily flows contiguously
remained above the base flow. Figure 11-17 gives time series of these two datasets, QP in 103 ft3/s and
VP in 103 ft3/s-days. Figures 11-18a and 11-18b show the scatter plots of these bivariate data and of
their scaled ranks, along with the respective histograms. As scaled ranks are empirical probabilities,
they are roughly uniformly distributed between 0 and 1.

11.4.1.1 Potential Marginal Distributions

Several candidate distributions, such as two- and three-parameter log–normal (LN2 and LN3), two-
parameter gamma (G2), Pearson type III (P3), log–Pearson type III (LP3), and largest extreme value
(LEV), are considered for fitting annual peak flow and volume data on a univariate basis. On the
basis of Kolmogorov–Smirnov, Anderson Darling, and chi-squared fit statistics and the overall fit of
the QQ plots, P3 and three-parameter Weibull (W3) distributions were selected as marginal
distributions for the two variables, respectively. The pdfs for P3 and W3 distributions f XðxÞ and
f Yð yÞ for flood peak flow X =QP and volume Y =VP, respectively, are given as

f XðxÞ=
1

jαX j
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�
where −∞ < γX < ∞, −∞ < αX < ∞, and βX > 0 are location, scale, and shape parameters,
respectively; x ≥ expðγXÞ ∀ αX > 0 and x ≤ expðγXÞ ∀ αX < 0;
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Figure 11-17. Time series of annual peak flows QP, in 103 ft3/s (or cusec) and corresponding flood
volumes VP, in 103 ft3/s-day (or cusec-day) at Alderson on Greenbrier River.
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and

f Yð yÞ=
βY
αY

�
y − γY
αY

�
βY−1

exp

�
−
�
y − γY
αY

�
βY
�

where −∞ < γY < ∞ and αY , βY > 0 are location, scale, and shape parameters, respectively, and
γY ≤ y < þ∞.

The MLEs of parameters for these two marginals are obtained as γ̂X = 4.601, α̂X = 6.197,
β̂X = 5.101, and γ̂Y = 28.361, α̂Y = 122.185, β̂Y = 1.326. The corresponding standard errors are
Seγ̂X = 4.332, Seα̂X = 1.365, Seβ̂X = 1.715, and Seγ̂Y = 1.907, Seα̂Y = 6.093, Seβ̂Y = 0.107. Figures 11-18c
and 11-18d show the overlay of probability density curves of these distributions and the corre-
sponding histograms, respectively. Figure 11-19 shows the corresponding QQ plots, along with 95%
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Figure 11-18. Characteristics of observed bivariate annual peak flow (QP, in 103 ft3/s) and
corresponding flood volumes (VP, in 103 ft3/s-day) at Alderson on Greenbrier River: (a and b) scatter
plot and histograms in original domain and of ranks; (c and d) histograms with Pearson type III and
three-parameter Weibull pdfs for QP and VP, respectively.
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confidence intervals. The narrow confidence bands indicate comparatively lesser uncertainty in
parameter estimation which is expected for a 110 years dataset.

11.4.1.2 Dependence Structure and Copula Test Space

The scatter plots in Figure 11-18a and b indicate a positive association between annual peak flow and
volume data. The sample estimates of Pearson’s correlation coefficient, Kendall’s tau, and Spear-
man’s rho, 0.466, 0.391, and 0.557, with corresponding p-values of 2.9e-07, 1.78e-09, and 3.0e-10,
respectively, corroborate this assertion. Figure 11-20 shows that a significant positive dependence is
also indicated by both chi- and K-plots. Considering data exclusively from the lower-left and upper-
right quadrants, as suggested by Abberger (2005), the chi-plots in Figure 11-21 exhibit lower- and
upper-tail dependence features. Figure 11-21a clearly indicates that evidence exists of lower-tail
dependence as a few points close to λi = 1 show significance. More important, Figure 11-21b
indicates upper-tail independence, as points in the end zone are within the control limits for the
p-value of 0.95. Based on sample Kendall’s tau value of 0.391 and the features of lower- and upper-tail
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Figure 11-19. QQ plots for Example 11-1 for peak flow (QP) and volume (VP) data fitted with P3 and
W3 distributions, respectively.
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Figure 11-20. Characterization of dependence between annual flood peak flow and volume for
Example 11-1 using (a) chi-plot and (b) K-plot.
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dependence, two Archimedean copulas, Clayton and Frank, and two extreme value copulas,
Galambos and GH, are selected. To appreciate the problems that arise due to misspecification,
two more copulas, AMH and FGM, are also short-listed, noting that the sample dependence is
beyond the admissible ranges for these copulas. Although more copulas could have been considered
at this initial screening stage, only these six are included in the copula test space, primarily to keep
the process shorter.

11.4.1.3 Estimation of Dependence Parameter

The dependence parameters for the six copula families under consideration are estimated by (1)
MOM inversion of dependence measures and (2) MPL and IFM methods. These point estimates
along with standard errors and the interval estimates, corresponding to a coverage probability of
0.95, are given for these methods in Table 11-7. The estimates for AMH and FGM copulas are not
obtainable for this dataset, as the values of τ are beyond the admissible limits. The AMH copula
requires τ to be between −0.1817 and 0.3333, and for the FGM copula τmust be in the range of −2/9
to 2/9 (or −0.222 to 0.222). This illustrates the limitations of these copula families, similar to that
faced by some of the conventional functional distributions.

Table 11-7 includes the maximized log-likelihood values (LLmax) for the six copula families.
These results show that the standard errors of the dependence parameter estimates from this method
are much lower than those for the MOMmethod. For the AMH and FGM copulas the optimal values
of dependence parameters lie at the end of the parameter space and correspond to much lower values
of τ than those obtained from the sample dataset. The maximum log-likelihood value for the Clayton
copula is the largest among them all. Even though the sample Kendall’s tau is much higher than the
maximum permissible value for the AMH copula, the maximized log-likelihood value for this copula
is less by only a small amount as compared with the Clayton copula.

Except for the AMH and Clayton copulas, the standard errors for dependence parameter
estimates from the IFM estimation method are similar to those for the MPL method. For the AMH
and Clayton copulas the standard errors are substantially less for the MPL method. For the FGM
copula the optimal value lies at the end of the parameter space and corresponds to a much lower
value of τ than that obtained from the sample dataset. The maximized log-likelihood value for the
AMH copula is highest and is even slightly greater than that of the Clayton copula. Thus, from the
point of view of maximum log-likelihood values the Clayton copula can be said to perform better
for the MPL method, whereas the AMH copula is marginally better for the IFM method.
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Figure 11-21. Characterization of (a) lower- and (b) upper-tail dependence between annual flood
peak flow and volume for Example 11-1 using chi-plots.
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Comparison of standard errors and confidence intervals among different copulas is not appro-
priate, as the dependence parameter has different scaling and sensitivity with respect to the
association measures for various copulas. The MPL method, followed by the IFM method, may be
preferable over the MOM method as they result in significantly lower standard errors for
respective copulas.

11.4.1.4 Assessment of Copula Fitting

The relative suitability of plausible copula families is ascertained in multiple ways by employing (1)
graphical methods, (2) error statistics, and (3) formal goodness-of-fit statistics.

Graphical Goodness-of-Fit Tests

First, the observed data are compared with a large number of generated random samples. For this
application, a set of random samples of size 500 is generated for each of the six copula families under
consideration, utilizing MOM, MPL, and IFM method–based parameters. As the AMH and FGM
copulas do not cover the expected dependence range for the MOMmethod, they are not included in
these plots. Figures 11-22 to 11-24 show this comparison of observed and randomly generated
samples and that the general nature of the spread of observed data matches with that of random
samples. However, a closer look reveals that the Galambos and GH copulas exhibit upper-tail
dependence that does not have similar representation in the observed data. Also, very high flows with
moderate volumes are not represented by the simulated set. The simulated sets of the other four
copulas provide adequate representation, except for the differences around the lower tail where the
AMH and Clayton copulas seem to be performing better.

Table 11-7. Point and Interval Dependence Parameter Estimates for Example 11-1 for the Six Copulas
under Consideration with Respect to the Three Estimation Methods. Interval Estimates Correspond to
a Coverage Probability of 0.95.

Method/
copula
family Theta (θ̂)

Lower
confidence
limit

Upper
confidence
limit

Standard
error

Confidence
width LLmax

MOM
Clayton 1.283 0.722 1.844 0.286 0.561 –
Frank 4.036 2.631 5.441 0.717 1.405 –
Galambos 0.917 0.631 1.202 0.146 0.286 –
GH 1.642 1.361 1.922 0.143 0.281 –
MPL
AMH 0.995 0.900 1.090 0.049 0.095 24.490
Clayton 1.220 1.031 1.409 0.097 0.189 25.451
FGM 0.995 0.823 1.167 0.088 0.172 14.811
Frank 3.970 3.807 4.133 0.083 0.163 19.646
Galambos 0.800 0.665 0.935 0.069 0.135 16.367
GH 1.529 1.388 1.670 0.072 0.141 16.118
IFM
AMH 0.988 0.852 1.124 0.070 0.136 23.708
Clayton 1.059 0.605 1.513 0.231 0.454 23.417
FGM 0.995 0.826 1.164 0.086 0.169 14.533
Frank 4.043 3.882 4.204 0.082 0.161 19.754
Galambos 0.739 0.603 0.875 0.070 0.136 14.636
GH 1.478 1.336 1.620 0.072 0.142 15.089
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Figure 11-22. Comparison of observed and MOM method–based random samples for Example 11-1
for various copulas. Solid circles are random samples (size 500), whereas plus symbols represent
observed data. Numbers in name strips are dependence parameter estimates with corresponding
Kendall’s tau values in parenthesis.
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Figure 11-23. Comparison of observed and MPL method–based random samples for Example 11-1
for various copulas. Solid circles are random samples (size 500), whereas plus symbols represent
observed data. Numbers in name strips are dependence parameter estimates with corresponding
Kendall’s tau values in parenthesis.
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Second, comparison of empirical probabilities with computed probabilities, which Figures 11-25
to 11-27 depict for the three-parameter estimation methods, reveals the extent to which the
computed copula surface would fit the empirical copula surface of the scaled ranks of observed
data. This comparison is shown in two ways: (1) as scatter plots with diagonal lines signifying
equivalence, as in the top panels of these figures, and (2) as plots with respect to the ranked
observation numbers, as in the lower panels. The matching for the AMH and Clayton copulas,
followed by the Frank copula, is better than for the other three copulas, with differences between
computed and empirical probabilities being minimal for the Clayton copula.

Third, comparison of empirical and computed probability distributions of the BIPIT variate
KnðwÞ and KθnðwÞ, given in Figures 11-28 to 11-30 for the three methods, shows that the matching is
best for the Clayton copula, followed by the AMH and Frank copulas. Finally, the generalized
K-plots in Figures 11-31 to 11-33 provide comparison of observed and expected order statistics of
the BIPIT variate. Again, the figures show that the matching is best for the Clayton copula, followed
again by the AMH and Frank copulas. The graphical fit for the Clayton copula is clearly the best in all
the four graphical methods, among the six copulas considered. The relative superiority can, however,
be further established by looking at error statistics and results of the formal statistical tests.

11.4.1.5 Various Error Statistics of Fit

A quantitative assessment of the performance of various copula families is made by comparing the
maximized log-likelihood values. As all the copulas considered in this study involve fitting a single
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Figure 11-24. Comparison of observed and IFM method–based random samples for Example 11-1.
Solid circles are random samples (size 500), whereas plus symbols represent observed data. Numbers
in name strips are dependence parameter estimates with corresponding Kendall’s tau values in
parenthesis.
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Figure 11-25. Comparison of empirical and MOM method–based computed probabilities for
Example 11-1 for various copulas. In the top panel, the comparison takes the form of a scatter plot
with a diagonal line signifying equivalence. In the lower panel, the comparison is with respect to
ranked observation numbers with solid circles for empirical probabilities and solid lines for the
computed probability. Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-26. Comparison of empirical and MPL method–based computed probabilities for
Example 11-1 for various copulas. In the top panel, the comparison takes the form of a scatter plot
with diagonal lines signifying equivalence. In the lower panel, the comparison is with respect to
ranked observation numbers with solid circles for empirical probabilities and solid lines for the
computed probability. Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-27. Comparison of empirical and IFM method–based computed probabilities for
Example 11-1 for various copulas. In the top panel, the comparison takes the form of a scatter plot
with diagonal lines signifying equivalence. In the lower panel, the comparison is with respect to
ranked observation numbers with solid circles for empirical probabilities and solid lines for the
computed probability. Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-28. Graphical goodness-of-fit test using K-plots for MOM method–based estimation for
Example 11-1 for various copulas. Step functions are empirical distributions Kn(w), and curves are
theoretical distributions KθnðwÞ of the bivariate integral transform variable W= C(U, V). Numbers in
name strips are dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.
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Figure 11-29. Graphical goodness-of-fit test using K-plots for MPL method–based estimation for
Example 11-1 for various copulas. Step functions are empirical distributions Kn(w), and curves are
theoretical distributions KθnðwÞ of the bivariate integral transform variable W= C(U, V). Numbers in
name strips are dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.
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Figure 11-30. Graphical goodness-of-fit test using K-plots for IFMmethod–based estimation for Example
11-1 for various copulas. Step functions are empirical distributions Kn(w), and curves are theoretical
distributions KθnðwÞ of the bivariate integral transform variableW= C(U, V). Numbers in name strips are
dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.

W(i)

W
i:n

0.0

0.2

0.4

0.6

0.8

1.0
Clayton: 1.28 (0.39) Frank: 4.04 (0.39)

Galambos: 0.92 (0.39)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
GH: 1.64 (0.39)

Figure 11-31. Graphical goodness-of-fit test using generalized K-plots for MOM method-based
estimation for Example 11-1 for various copulas. The diagonal line indicates equivalence between
observed W(i) and corresponding expected Wi:n order statistics of the bivariate probability integral
transform variable W= C(U, V). Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-32. Graphical goodness-of-fit test using generalized K-plots for MPL method-based
estimation for Example 11-1 for various copulas. The diagonal line indicates equivalence between
observed W(i) and corresponding expected Wi:n order statistics of the bivariate probability integral
transform variable W= C(U, V). Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-33. Graphical goodness-of-fit test using generalized K-plots for IFM method-based
estimation for Example 11-1 for various copulas. The diagonal line indicates equivalence between
observed W(i) and corresponding expected Wi:n order statistics of the bivariate probability integral
transform variable W= C(U, V). Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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parameter, comparing the maximized log-likelihood value or AIC value would be equivalent. The
maximized log-likelihood values for the AMH and Clayton copulas, as given in Table 11-7, are
greatest among the six copulas considered and support the conclusions drawn from the previous
graphical goodness-of-fit tests. Table 11-8 shows other error statistics RMSE, MN-A-ERR, and
MX-A-ERR, showing that the errors for the MOM method are lesser as those of the MPL and IFM
methods. The Clayton copula yields the lowest errors in all cases except two of the three methods of
parameter estimation. For the MOM method, the FGM copula yields the largest errors in all these
error categories. The reasoning for the poor performance of the FGM copula is obvious, as this
copula admits τ up to 0.222 only, whereas the sample estimate is much higher at 0.391. A
comparatively better performance of the AMH copula than the FGM copula may be attributed
to the fact that although this copula also does not cover the desired range of τ, the shortfall from the
largest permissible value of 0.333 is not that large. Thus, from the point of view of all these error
statistics the Clayton copula may be taken to have performed better than all others, which is
consistent with the inference from graphical results.

11.4.1.6 Analytical Goodness-of-Fit Tests

The formal goodness-of-fit tests are carried out for the three-parameter estimation methods by
evaluating the Cramer–von Mises type statistics CMn, Sn, and T n. For this, a parametric bootstrap
procedure is employed for simulating random samples of sizes 100; 1,000; and 10,000. The values of
these three statistics, their p-values, and the critical values at the 5% significance level are computed.
Simulations are run for each combination of sample size, copula, and method of estimation, except
for the Galambos copula for which only the 100 and 1,000 sample size runs were made due to large
computational time requirements. Chowdhary et al. (2011) present results from another set of three
simulations for each of these cases for sample sizes 100; 1,000; 10,000; and 100,000. An important
observation in all these cases is that values of these statistics stabilize sufficiently, even when the

Table 11-8. Various Error Statistics for Example 11-1 for the Six Copulas under Consideration with
Respect to the Three Estimation Methods.

Method/copula
family RMSE MN-A-ERR MN-ERR MX-A-ERR

MOM
Clayton 0.013 0.011 0.007 0.034
Frank 0.019 0.016 0.007 0.047
Galambos 0.022 0.018 0.007 0.059
GH 0.022 0.018 0.007 0.059
MPL
AMH 0.018 0.015 0.014 0.047
Clayton 0.014 0.012 0.008 0.036
FGM 0.034 0.029 0.029 0.082
Frank 0.019 0.016 0.007 0.048
Galambos 0.025 0.020 0.012 0.068
GH 0.024 0.020 0.012 0.067
IFM
AMH 0.018 0.015 0.014 0.046
Clayton 0.014 0.012 0.009 0.037
FGM 0.024 0.020 0.017 0.064
Frank 0.040 0.035 0.035 0.091
Galambos 0.032 0.022 −0.017 0.086
GH 0.024 0.018 −0.006 0.064
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sample size is 10,000, which is also in agreement with the observations made by Genest and Favre
(2007). Tables 11-9 to 11-11 list the simulation results for the three methods of parameter estimation.
These tests were not carried for the AMH and FGM copulas for the MOM and MPL methods and for

Table 11-9. Goodness-of-Fit Statistics for Example 11-2 for the MOM Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn Clayton 2.115 3.448 0.480 3.779 0.541 3.828 0.522
Frank 4.228 3.582 0.010 3.820 0.034 3.838 0.030
Galambos 6.095 3.431 0.000 3.839 0.003 – –
GH 6.051 4.111 0.000 3.583 0.003 3.687 0.001

Sn Clayton 0.065 0.148 0.510 0.150 0.511 0.153 0.526
Frank 0.226 0.155 0.000 0.149 0.002 0.156 0.005
Galambos 0.331 0.155 0.000 0.157 0.000 – –
GH 0.329 0.165 0.000 0.152 0.000 0.153 0.000

Tn Clayton 0.706 0.993 0.420 0.958 0.414 0.976 0.429
Frank 0.964 1.039 0.480 1.040 0.483 1.038 0.506
Galambos 1.141 1.022 0.000 1.026 0.009 – –
GH 1.136 1.011 0.000 1.026 0.009 1.029 0.007

Note: S* implies critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.

Table 11-10. Goodness-of-Fit Statistics for Example 11-1 for the MPL Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn AMH 4.290 6.228 0.220 7.133 0.230 7.259 0.227
Clayton 3.402 4.906 0.240 5.693 0.244 5.563 0.257
Frank 4.223 4.141 0.050 3.855 0.032 3.981 0.035
Galambos 8.488 4.900 0.000 – – – –
GH 8.165 4.428 0.000 4.751 0.001 4.718 0.002

Sn AMH 0.167 0.240 0.170 0.251 0.179 0.259 0.183
Clayton 0.123 0.170 0.240 0.191 0.227 0.192 0.226
Frank 0.225 0.158 0.010 0.152 0.003 0.159 0.005
Galambos 0.499 0.226 0.000 – – – –
GH 0.483 0.183 0.000 0.190 0.000 0.196 0.001

Tn AMH 1.011 1.109 0.080 1.106 0.121 1.137 0.126
Clayton 0.917 1.012 0.140 1.061 0.143 1.044 0.145
Frank 0.964 1.032 0.480 1.033 0.483 1.033 0.495
Galambos 1.409 1.087 0.000 – – – –
GH 1.389 1.080 0.000 1.082 0.001 1.089 0.001

Note: S* implies critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.
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the FGM copula for the IFM method as the dependence range did not include the sample estimates in
these cases. The results for all three statistics from any of the three methods do not provide any
evidence for rejecting the hypothesis of the Clayton copula as a valid model for the peak flow and
volume data under consideration. For the IFM method, the results for the AMH copula also do not
provide any evidence for rejection. At the same time, the basis for rejecting the hypothesis of the Frank,
Galambos, and GH copulas being viable models at the 5% significance level is overwhelming. Barring a
partial support for the Frank copula in terms of the T n statistic, this inadequacy of support for these
three copulas is based on the results of all three statistics for all three methods.

Thus, all the graphical and analytical goodness-of-fit test results indicate nonrejection of the
Clayton copula as a suitable copula for the flood peak flow and volume data under consideration.
The AMH copula may also be considered equally competitive for this specific dataset when IFM
method is considered but may not be preferable in general as it admits a limited positive dependence
only. At the same time, these results also provide sufficient basis for rejecting the Frank, Galambos,
and GH copulas as viable options, at least for this dataset. Taking the MPL method-based Clayton
copula as the finalized copula model for the joint distribution of peak flow and volume data under
consideration, Figure 11-34 gives the joint probabilities and densities in the original domains of the
variables. The left panel provides a perspective view of joint probability and density, while the right
panel gives the corresponding contours. Figure 11-34a illustrates a close match between computed
and empirical probabilities, wherein the observed data are plotted over the joint probability surface.

11.4.2 Example 11-2: Storm Duration and Depth

This example uses the hourly rainfall data from the Baton Rouge metropolitan airport station in
Louisiana, USA, for 60 hydrological years from 1947 to 2006 for obtaining their joint distribution. A
period of 6 h of rainfall hiatus is considered for defining rainfall events to enhance mutual
independence of various rain events. A minimum of one tenth of an inch of rainfall qualifies to
be counted as a rainfall event. The yearly extreme event is selected on the basis of the storm that has
the largest rainfall volume (i.e., rainfall depth), resulting in identification of 60 rain storms. From the

Table 11-11. Goodness-of-Fit Statistics for Example 11-1 for the IFM Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn Clayton 2.356 4.299 0.410 4.900 0.423 4.831 0.428
Frank 4.277 3.485 0.020 3.915 0.028 3.767 0.026
Galambos 7.309 5.007 0.020 – – – –
GH 7.206 3.586 0.000 3.955 0.000 3.984 0.001

Sn Clayton 0.076 0.132 0.350 0.158 0.393 0.156 0.401
Frank 0.230 0.156 0.000 0.159 0.005 0.153 0.005
Galambos 0.425 0.184 0.000 – – – –
GH 0.421 0.165 0.000 0.181 0.000 0.177 0.000

Tn Clayton 0.762 0.857 0.240 0.967 0.270 0.967 0.283
Frank 0.968 1.048 0.490 1.039 0.481 1.040 0.486
Galambos 1.310 1.062 0.000 – – – –
GH 1.304 1.053 0.010 1.066 0.000 1.066 0.001

Note: S* implies critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.
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hourly observations of these annual maximum storms, storm depth (i.e., volume per unit area) VP in
in. and storm duration DP in hours are obtained. The left-side panel of Figure 11-35 shows the time
series of these two variables.

Several candidate distributions, such as normal, LN2 and LN3, G2, P3, LP3, LEV, and two- and
three-parameter Weibull are considered for fitting the annual maximum storm depth, duration,
average intensity, and maximum intensity on a univariate basis. Based on the Kolmogorov–Smirnov,
Anderson Darling, and chi-squared fit statistics and the overall fit of the QQ plots, LP3 and W3
distributions were selected as marginal distributions for these four variables, respectively.
Table 11-12 gives the MLEs and corresponding standard errors for the parameters of these
marginals. The right-side panel of Figure 11-35 shows the overlay of probability density curves
of these distributions and the corresponding histograms. The corresponding QQ plots, along with
95% confidence intervals, are shown in Figure 11-36. The confidence bands indicate comparatively
moderate uncertainty in parameter estimation, which is expected for a 60 year dataset.

11.4.2.1 Dependence Structure and Copula Test Space

Figure 11-37 shows the scatter plots of the bivariate data of annual maximum storm duration
ðX =DPÞ and depth ðY =VPÞ, of their scaled ranks, and of the computed probabilities ðF̂X , F̂YÞ,
along with the respective histograms. Being empirical probabilities, scaled ranks are roughly
uniformly distributed between 0 and 1. The histograms for computed probabilities are not nearly
as uniform as those of the scaled ranks, as observed data are not sufficient to match the expected
frequency of occurrence in all ranges satisfactorily. These scatter plots indicate a moderate positive
association between storm duration and depth. The sample estimates of Pearson’s correlation
coefficient, Kendall’s tau, and Spearman’s rho of 0.445, 0.238, and 0.351, with corresponding
p-values of 3.0e-04, 0.007, and 0.006, respectively, corroborate this assertion. Both chi- and K-plots
also indicate a weak positive dependence (Figures 11-38a and 11-38b). Considering data exclusively
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Figure 11-34. Three dimensional and contour plots of joint probability functions for Example 11-1
along with superimposed empirical probabilities in the three-dimensional plot (subplots a and b);
and joint density functions as three dimensional and contour plots (subplots c and d).
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Figure 11-35. Time series (left-side panel) and histograms (right-side panel) of annual maximum
storm depth VP (in in.) and duration DP (in hours) for Baton Rouge rainfall station. The fitted
probability density functions of LP3 and W3 distributions are plotted over the respective histograms.

Table 11-12. Maximum Likelihood Parameter Estimates for the Selected Distributions for Annual
Maximum Storm Depth VP and Storm Duration DP for Baton Rouge Rainfall Station.

Variable
Finalized
distribution

Parameter estimates Standard errors

Location Scale Shape Location Scale Shape

VP LP3 0.281 0.116 11.432 0.493 0.053 9.268
DP W3 6.383 18.891 1.238 0.306 2.137 0.144
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Figure 11-36. QQ plots for annual maximum storm depth VP and storm duration DP for Baton Rouge
rainfall station data fitted with LP3 and W3 distributions, respectively.
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from the lower-left and upper-right quadrants, as suggested by Abberger (2005), the chi-plots in
Figures 11-38c and 11-38d exhibit lower- and upper-tail dependence features. Figure 11-38c clearly
shows no evidence of the lower-tail dependence as none of the points close to λi = 1 are significant.
Figure 11-38d does not indicate upper-tail dependence convincingly as only one point in the end
zone is barely beyond the control limits corresponding to a p-value of 0.95. Based on a sample
Kendall’s tau value of 0.238 and features of lower- and upper-tail dependence, six copulas—AMH,
Clayton, FGM, Frank, Galambos, and GH—are selected. Although the FGM copula admits a
Kendall’s tau value of up to 2/9 only, it is also short-listed because sometimes the estimated value by
optimization may be lower than this limiting value. Although more copulas could have been
considered at this initial screening stage, only these six are included in the copula test space to keep
the process shorter.
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Figure 11-37. Scatter plots and histograms of observed bivariate annual maximum storm duration
(X= DP) and corresponding storm volume ( Y= VP) data of Baton Rouge rainfall station in
(a) original domain, (b) as ranks, and (c) as W3 and LP3 computed probabilities, respectively.
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ŝ 0.351

Figure 11-38. Characterization of dependence between annual maximum storm duration and depth
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11.4.2.2 Estimation of Dependence Parameter

The dependence parameters for the six copula families under consideration are estimated by the (1)
MOM inversion of dependence measures and (2) MPL and IFM methods. Table 11-13 gives these
point estimates along with standard errors and the interval estimates, corresponding to a coverage
probability of 0.95. The estimate for the FGM copula is not obtainable for this dataset, as the value of
τ is beyond the admissible limits of −2/9 to 2/9 (or −0.222 to 0.222).

Table 11-13 includes the LLmax for the six copula families. These results show that the standard
errors of the dependence parameter estimates from this method are much lower than those for the
MOMmethod. Note that for the FGM copula, the optimal value of dependence parameter lies at the
end of the parameter space and corresponds to a marginally lower value of τ than that obtained from
the sample dataset. For the MPL method, the maximum log-likelihood value for the Galambos
copula is largest among them all, followed by that of the GH copula. For the IFM method, the values
for the Galambos copula followed by the GH copula are also higher. Except for the Clayton copula,
the standard errors for the dependence parameter estimates from this method are similar to those for
the MPL method. For the Clayton copula, the standard errors are substantially lesser for the MPL
method, which corresponds to the much lower value of dependence parameter and consequently
Kendall’s tau value that is returned by the IFM method.

Thus, from the point of view of maximum log-likelihood values, the Galambos copula followed
by the GH copula may be stated to be better for both the MPL and the IFM methods. Comparison of
standard errors and confidence intervals among different copulas is not appropriate as the

Table 11-13. Point and Interval Dependence Parameter Estimates for Example 11-2 for the Six
Copulas under Consideration with Respect to the Three Estimation Methods. Interval Estimates
Correspond to a Coverage Probability of 0.95.

Method/
copula
family Theta (bθ) Tau (bτn∕bτθ) Lower C.L. Upper C.L.

Standard
error

Conf.
width LLmax

MOM
AMH 0.811 0.238 0.422 1.201 0.390 0.199 –
Clayton 0.626 0.238 0.064 1.188 0.562 0.287 –
Frank 2.251 0.238 0.559 3.943 1.692 0.863 –
FGM 0.580 0.238 0.264 0.897 0.316 0.161 –
GH 1.313 0.238 1.032 1.594 0.281 0.143 –
MPL
AMH 0.802 0.235 0.574 1.030 0.228 0.117 3.918
Clayton 0.543 0.214 0.360 0.726 0.183 0.093 3.937
FGM 0.995 0.221 0.800 1.190 0.195 0.100 3.778
Frank 2.290 0.242 2.042 2.538 0.248 0.126 3.929
Galambos 0.633 0.268 0.417 0.849 0.216 0.110 5.369
GH 1.351 0.260 1.126 1.576 0.225 0.115 5.130
IFM
AMH 0.804 0.236 0.582 1.026 0.222 0.113 4.546
Clayton 0.385 0.161 0.067 0.703 0.318 0.162 3.244
FGM 0.995 0.221 0.808 1.182 0.187 0.096 4.466
Frank 2.491 0.261 2.246 2.736 0.245 0.125 4.717
Galambos 0.593 0.248 0.397 0.789 0.196 0.100 5.868
GH 1.315 0.240 1.102 1.528 0.213 0.109 5.473
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dependence parameter has different scaling and sensitivity with respect to the association measures
for various copulas. The MPL and IFM methods may be preferable over the MOM method as they
result in significantly lower standard errors for the respective copulas.

11.4.2.3 Assessment of Copula Fitting

The relative suitability of plausible copula families is ascertained by employing (1) graphical
methods, (2) error statistics, and (3) formal goodness-of-fit statistics.

11.4.2.4 Graphical Goodness-of-Fit Tests

First, the observed data are compared with a large number of generated random samples. For this
application, a set of random samples of size 500 is generated for each of the six copula families under
consideration, utilizing the MOM, MPL, and IFM method–based parameters. As the FGM copula
does not cover the expected dependence range for the MOMmethod, it is not included in these plots.
The Galambos copula is also dropped to maintain evenness in the figure. Figures 11-39 to 11-41
show this comparison of observed and randomly generated samples for the three-parameter
estimation methods. These plots show that the general nature of the spread of observed data
matches with that of the random samples. However, a closer look reveals that the AMH, Clayton,
and FGM copulas do not represent higher-duration higher depth data well enough. The Frank
copula also fails to represent the observed data with respect to the IFM method. The Galambos and

Figure 11-39. Comparison of observed and MOM method–based random samples for Example 11-2
for various copulas. Solid circles are random samples (size 500) and plus symbols are observed data.
Numbers in name strips are dependence parameter estimates with corresponding Kendall’s tau
values in parenthesis.
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GH copulas represent these extreme values better and indicate the possibility of a dataset possessing
the upper-tail dependence.

Second, comparison of empirical probabilities with computed probabilities, as depicted in
Figures 11-42 to 11-44 for the three methods of parameter estimation, reveals the extent to which the
computed copula surface would fit the empirical copula surface of the scaled ranks of observed data.
This comparison is shown in two ways: (1) as scatter plots with diagonal lines signifying equivalence,
as in the top panels of these figures, and (2) as plots with respect to the ranked observation numbers,
as in the lower panels. The matching for the GH copula is better than others for the MOM method,
especially in the higher joint probability region. For the MPL and IFM methods, both the Galambos
and GH copulas are better than all others, even when the differences in the lower region of
probability are not significant. For the Clayton copula for the IFM method, in which a significant
underestimation of dependence strength is present, the differences are not perceivable to that extent.

Third, the comparison of empirical and computed probability distributions of the BIPIT variate
KnðwÞ and KθnðwÞ, given in Figures 11-45 to 11-47 for the three methods, shows that the matching is
best for the Galambos and GH copulas, especially in the higher ranges of w. The matching for
Clayton copula for the IFM method is most inferior, which may again be attributed to the
underestimation of the dependence parameter. Finally, the generalized K-plots in Figures 11-48
to 11-50 provide comparison of observed and expected order statistics of the BIPIT variate. This
comparison reveals the differences more effectively, clearly showing that the matching for the
Galambos and GH copulas is much better and is worst for the Clayton copula.

11.4.2.5 Various Error Statistics of Fit

The maximized log-likelihood values for the Galambos and GH copulas (Table 11-13) are maximum
among the six copulas considered and support the conclusions based on the previous graphical
goodness-of-fit tests. Table 11-14 shows a comparison of other error statistics, RMSE, MN-A-ERR,
and MX-A-ERR. The errors for all three methods are comparable with the exception of the Clayton
copula for the IFM method. The reasoning for the poor performance of the Clayton copula for IFM
is rooted in its inefficiency in capturing the correct dependence of the sample. Thus, from the point
of view of these error statistics, all copulas perform about the same.

11.4.2.6 Analytical Goodness-of-Fit Tests

The formal goodness-of-fit tests are carried out for the three-parameter estimation methods by
evaluating the Cramer–von Mises type statistics CMn, Sn, and T n. For this, a parametric bootstrap
procedure is employed for simulating random samples of sizes 100; 1,000; and 10,000. The values of
these three statistics, their p-values, and the critical values at the 5% significance level are computed.
Two simulations are run for each combination of sample size, copula model, and method of
estimation, except for the Galambos copula for which runs are not made owing to large time
requirements, and the FGM for which the dependence parameter is out of the desirable range. An
important observation in all cases is that the values of these statistics stabilize sufficiently when the
sample size is 10,000, which is in agreement with the observations made by Genest and Favre (2007).
Tables 11-15 to 11-17 list these results for the three methods of parameter estimation. The results for
all the three statistics from any of the three methods do not provide any evidence for rejecting any of
the copulas, except that the Clayton copula is on the verge of rejection on the basis of a few instances.
Significantly higher p-values of the Galambos and GH copulas support the inferences made on the
basis on graphical results and error statistics.

Thus, all the graphical and analytical goodness-of-fit test results indicate nonrejection of the
Galambos and GH copulas and indicate their suitability for the annual maximum storm duration
and depth data under consideration. Other copulas, even when they do not result in rejection by
formal tests may not be preferred for this dataset as they do not fare well with respect to matching
with random samples. Most comparisons being similar for the Galambos and GH copulas, those
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Figure 11-42. Comparison of empirical and MOM method–based computed probabilities for
Example 11-2 for various copulas. In the top panel, the comparison takes the form of a scatter plot
with diagonal lines signifying equivalence. In the lower panel, the comparison is with respect to
ranked observation numbers, with solid circles for empirical probabilities and solid lines for
computed probabilities. Numbers in name strips are dependence parameter estimates with
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Figure 11-43. Comparison of empirical and MPL method–based computed probabilities for
Example 11-2 for various copulas. In the top panel, the comparison takes the form of a scatter plot
with diagonal lines signifying equivalence. In the lower panel, the comparison is with respect to
ranked observation numbers, with solid circles for empirical probabilities and solid lines for
computed probabilities. Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-44. Comparison of empirical and IFM method–based computed probabilities for
Example 11-2 for various copulas. In the top panel, the comparison takes the form of a scatter plot
with diagonal lines signifying equivalence. In the lower panel, the comparison is with respect to
ranked observation numbers, with solid circles for empirical probabilities and solid lines for
computed probabilities. Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Figure 11-45. Graphical goodness-of-fit test using K-plots for MOM method–based estimation for
Example 11-2 for various copulas. Step functions are empirical distributions Kn(w), and curves are
theoretical distributions KθnðwÞ of the bivariate integral transform variable W= C(U, V). Numbers in
name strips are dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.
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Figure 11-46. Graphical goodness-of-fit test using K-plots for MPL method–based estimation for
Example 11-2 for various copulas. Step functions are empirical distributions Kn(w), and curves are
theoretical distributions KθnðwÞ of the bivariate integral transform variable W= C(U, V). Numbers in
name strips are dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.
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Figure 11-47. Graphical goodness-of-fit test using K-plots for IFM method–based estimation for
Example 11-2 for various copulas. Step functions are empirical distributions Kn(w), and curves are
theoretical distributions KθnðwÞ of the bivariate integral transform variable W= C(U, V). Numbers in
name strips are dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.
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Figure 11-48. Graphical goodness-of-fit test using generalized K-plots for MOM method-based
estimation for Example 11-2 for various copulas. The diagonal line indicates equivalence between
observed W(i), and corresponding expected Wi:n order statistics of the bivariate probability integral
transform variable W= C(U, V). Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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obtained from the IFM method may be preferred because the association parameter Kendall’s tau
returned by this method is closer to the sample estimate.

11.4.3 Example 11-3: Regional Flood Risk Management

With respect to flood hazard, the regional emergency management service is sized so as to provide
adequate services to different affected areas within its jurisdiction. Optimal sizing is ascertained on
the basis of likelihood of joint occurrence of floods in different regions. If less likelihood exists of
simultaneous flooding of different subregions, then a smaller facility may suffice. However, owing to
mutual dependence in risk of flooding in neighboring subregions, the likelihood of experiencing
simultaneous flooding is usually more than their product likelihood. Furthermore, conditional
probabilities of flooding in one subregion, given that the neighboring subregion experiences a certain
level of flooding, is also different as compared with when the two processes are independent. This
aspect is illustrated by considering annual peak flow data from two adjacent subbasins within
Kanawha basin in West Virginia. The two subbasins considered are the Greenbrier and the Gauley
subbasins. For the Greenbrier subbasin, the annual peak flow data at Hilldale station (USGS ID
#03184000) is considered, while for the Gauley subbasin, the annual peak flows at Mt. Outlook
station on Meadow River (USGS ID #03190400) is considered. The Hilldale station, at latitude
37° 38′ 24″ and longitude 80° 48′ 19″, has a drainage area of 1,619 mi2, while the Mt. Outlook station,
at latitude 38° 11′ 23″ and longitude 80° 56′ 49″, has a drainage area of 365 mi2. Hilldale has 75 years
of data from 1936 to 2011, while the Mt. Outlook station has 42 years of data from 1966 to 2011. The
joint probability analysis, accomplished on the basis of 42 years of concurrent data at the two
stations, attempts to answer the following three questions: (1) which copula(s) can adequately
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Figure 11-49. Graphical goodness-of-fit test using generalized K-plots for MPL method-based
estimation for Example 11-2 for various copulas. The diagonal line indicates equivalence between
observed W(i), and corresponding expected Wi:n order statistics of the bivariate probability integral
transform variable W= C(U, V). Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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represent the simultaneous occurrence of annual peak flows in the two subbasins, (2) what is the
return period of simultaneous occurrence of 100 year return period flows at both Hilldale and Mt.
Outlook stations, and (3) what is the conditional probability of exceedance of 100 year return period
flow in one subbasin, given that 100 year flow has been exceeded in the other subbasin?

The time series of annual peak flows at Hilldale (QpHD) and at Mt. Outlook (QpMO) obtained
from the website of the National Water Information System of the USGS are shown in the left-side
panel of Figure 11-51. Of the several candidate distributions considered, the LP3 and P3 are selected
for the annual maximum peak flows at these two stations, respectively. Table 11-18 gives the MLEs
and corresponding standard errors for parameters of these marginals. The overlay of probability
density functions of these distributions and the corresponding histograms are shown in the right-
side panel of Figure 11-51. The distribution fits are indicated by the corresponding QQ plots, along
with 95% confidence intervals (Figure 11-52).

11.4.3.1 Dependence Structure and Copula Test Space

Figure 11-53 shows the scatter plots of the bivariate data of annual peak flow at Hilldale ðX =QpHDÞ
and Mt. Outlook ðX =QpMOÞ, of their scaled ranks, and of the computed probabilities ðF̂X , F̂YÞ, along
with the respective histograms. These scatter plots indicate a moderate positive association between the
two peak flow series. The sample estimates of Pearson’s correlation coefficient, Kendall’s tau, and
Spearman’s rho of 0.489, 0.469, and 0.660 with corresponding p-values 0.001, 1.25e-05, and 2.0e-06,
respectively, corroborate this assertion. A positive dependence is also indicated by both chi and
K-plots (Figures 11-54a and 11-54b). Considering data from the lower-left and upper-right quadrants
exclusively, chi-plots in Figures 11-54c and 11-54d exhibit lower- and upper-tail dependence
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Figure 11-50. Graphical goodness-of-fit test using generalized K-plots for IFM method-based
estimation for Example 11-2 for various copulas. The diagonal line indicates equivalence between
observed W(i), and corresponding expected Wi:n order statistics of the bivariate probability integral
transform variable W= C(U, V). Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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Table 11-14. Various Error Statistics for Example 11-2 for the Six Copulas under Consideration with
Respect to the Three-Parameter Estimation Methods.

Method/Copula
family RMSE MN-A-ERR MN-ERR MX-A-ERR

MOM
AMH 0.025 0.021 0.012 0.052
Clayton 0.025 0.021 0.012 0.056
Frank 0.023 0.021 0.012 0.049
GH 0.021 0.018 0.012 0.045
MPL
AMH 0.025 0.021 0.012 0.052
Clayton 0.026 0.022 0.015 0.058
FGM 0.024 0.021 0.013 0.048
Frank 0.023 0.020 0.011 0.050
Galambos 0.020 0.016 0.008 0.049
GH 0.020 0.017 0.009 0.048
IFM
AMH 0.025 0.021 0.012 0.052
Clayton 0.029 0.024 0.021 0.062
FGM 0.024 0.021 0.013 0.048
Frank 0.023 0.020 0.009 0.053
Galambos 0.020 0.017 0.010 0.046
GH 0.021 0.018 0.011 0.045

Table 11-15. Goodness-of-Fit Statistics for Example II for MOM Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N =

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn AMH 2.199 2.769 0.106 2.520 0.104 2.572 0.110
2.205 0.067 2.512 0.113 2.540 0.109

Clayton 2.275 2.460 0.100 2.503 0.083 2.514 0.088
2.709 0.100 2.568 0.102 2.481 0.080

Frank 1.974 2.616 0.220 2.454 0.153 2.405 0.166
2.284 0.150 2.377 0.170 2.436 0.153

GH 1.550 2.579 0.465 2.385 0.432 2.460 0.430
2.317 0.490 2.376 0.409 2.442 0.432

Sn AMH 0.165 0.296 0.353 0.251 0.266 0.265 0.294
0.261 0.292 0.269 0.306 0.266 0.287

Clayton 0.132 0.210 0.300 0.224 0.297 0.246 0.320
0.218 0.330 0.225 0.310 0.238 0.310

Frank 0.207 0.251 0.150 0.234 0.095 0.240 0.116
0.243 0.070 0.236 0.120 0.235 0.107

GH 0.216 0.258 0.131 0.235 0.094 0.242 0.097
0.253 0.140 0.250 0.095 0.243 0.103

(Continued)
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Table 11-15. Goodness-of-Fit Statistics for Example II for MOM Method. (Continued)

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

Tn AMH 1.104 1.418 0.576 1.405 0.552 1.414 0.565
1.422 0.551 1.423 0.575 1.410 0.567

Clayton 0.911 1.308 0.510 1.242 0.515 1.268 0.535
1.220 0.420 1.233 0.515 1.268 0.535

Frank 1.260 1.423 0.520 1.418 0.454 1.418 0.487
1.422 0.480 1.412 0.490 1.420 0.485

GH 1.271 1.485 0.475 1.427 0.485 1.436 0.483
1.426 0.520 1.428 0.510 1.437 0.482

Note: S* implies critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.

Table 11-16. Goodness-of-Fit Statistics for Example 11-2 for the MPL Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn AMH 2.211 3.072 0.210 3.555 0.281 3.861 0.274
3.777 0.270 3.844 0.297 3.873 0.278

Clayton 2.417 3.848 0.150 3.932 0.223 3.734 0.214
3.970 0.220 3.509 0.215 3.626 0.206

Frank 1.959 2.509 0.250 2.494 0.230 2.615 0.229
2.606 0.210 2.617 0.236 2.606 0.225

GH 1.435 2.541 0.560 2.972 0.666 3.033 0.627
2.888 0.650 2.932 0.616 3.043 0.627

Sn AMH 0.167 0.224 0.280 0.239 0.275 0.240 0.291
0.216 0.210 0.249 0.302 0.243 0.286

Clayton 0.137 0.241 0.360 0.252 0.421 0.242 0.396
0.210 0.370 0.236 0.410 0.237 0.392

Frank 0.206 0.213 0.070 0.238 0.117 0.237 0.116
0.239 0.110 0.236 0.123 0.238 0.119

GH 0.201 0.255 0.140 0.269 0.197 0.267 0.189
0.259 0.150 0.254 0.166 0.265 0.189

Tn AMH 1.114 1.439 0.570 1.366 0.513 1.376 0.508
1.321 0.500 1.367 0.524 1.378 0.512

Clayton 0.960 1.264 0.490 1.267 0.559 1.247 0.544
1.233 0.500 1.245 0.536 1.235 0.536

Frank 1.256 1.429 0.420 1.396 0.470 1.401 0.492
1.368 0.430 1.398 0.496 1.403 0.489

GH 1.246 1.389 0.580 1.391 0.501 1.392 0.486
1.400 0.510 1.377 0.490 1.389 0.486

Note: S* implies critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.
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features. The latter two figures clearly show no evidence of lower- or upper-tail dependence as none of
the points close to λi = 1 show significance. Based on a sample Kendall’s tau value of 0.469 and features
of lower- and upper-tail dependence, six copulas—Clayton, Frank, GH, N12, N13, and N14—are
selected. The latter three copulas refer to even-numbered copulas listed in Table 4.2 of Nelsen (2006).
Although more copulas could have been considered at this initial screening stage, only six were
included to keep the selection process shorter.

11.4.3.2 Estimation of Dependence Parameter

The dependence parameters for the six copulas under consideration are estimated by the MPL
method. Table 11-19 gives the point estimates along with standard errors and the interval estimates,
corresponding to a coverage probability of 0.95. This table also includes LLmax values for the six
copulas. The LLmax value for the Frank copula is largest of them all, followed by that of the N13 and
N14 copulas. Thus, from the point of view of maximum log-likelihood values, it may be stated that
these three copulas are better.

Table 11-17. Goodness-of-Fit statistics for Example 11-2 for the IFM Method.

Statistic Copula
Observed
statistic

Critical test statistic S* and P-value for a run of N=

100 1,000 10,000

S* P-val S* P-val S* P-val

CMn AMH 2.208 3.704 0.210 3.919 0.282 3.882 0.283
2.987 0.220 3.659 0.269 3.798 0.281

Clayton 3.031 4.063 0.130 3.836 0.123 3.715 0.109
3.834 0.110 3.612 0.109 3.719 0.107

Frank 1.918 2.611 0.210 2.566 0.251 2.588 0.246
2.575 0.280 2.542 0.235 2.586 0.247

GH 1.543 3.492 0.650 3.042 0.530 3.038 0.555
2.887 0.550 2.983 0.562 3.063 0.560

Sn AMH 0.167 0.218 0.250 0.239 0.303 0.240 0.297
0.215 0.250 0.227 0.257 0.238 0.282

Clayton 0.185 0.268 0.280 0.252 0.229 0.250 0.219
0.243 0.180 0.239 0.225 0.249 0.220

Frank 0.200 0.223 0.140 0.230 0.118 0.232 0.121
0.237 0.100 0.237 0.126 0.230 0.117

GH 0.215 0.334 0.200 0.273 0.168 0.277 0.169
0.259 0.120 0.266 0.152 0.277 0.167

Tn AMH 1.112 1.309 0.430 1.383 0.506 1.375 0.514
1.335 0.470 1.362 0.514 1.369 0.510

Clayton 1.076 1.390 0.630 1.389 0.511 1.390 0.509
1.374 0.520 1.390 0.488 1.390 0.507

Frank 1.236 1.394 0.580 1.387 0.494 1.378 0.491
1.351 0.600 1.378 0.475 1.378 0.489

GH 1.270 1.421 0.510 1.416 0.490 1.412 0.501
1.405 0.550 1.411 0.498 1.415 0.493

Note: S* implies critical value of the test statistic at a significance level of 5%, and P-val indicates the p-values of the
observed test statistic.
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11.4.3.3 Assessment of Copula Fitting

The relative suitability of plausible copula families is ascertained in multiple ways by employing (1)
graphical methods, (2) error statistics, and (3) formal goodness-of-fit statistics.

11.4.3.4 Graphical Goodness-of-Fit Tests

First, the observed data are compared with a set of randomly generated samples of size 500.
Employing the MPL method, Figure 11-55 shows this comparison of observed and randomly
generated samples. These plots indicate that although the general nature of the spread of observed
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Figure 11-51. Time series (left-side panel) and histograms (right-side panel) of annual peak flows at
Hilldale (X=QPHD) and Mt. Outlook (Y=QPMO). The fitted probability density functions of LP3 and
P3 distributions are plotted over the respective histograms.

Table 11-18. Maximum Likelihood Parameter Estimates for the Selected Distributions for Annual
Peak Flows QpHD and QpMO at Hilldale and Mt. Outlook Stations, Respectively.

Variable
Finalized
distribution

Parameter estimates Standard errors

Location Scale Shape Location Scale Shape

QpHD LP3 5.823 0.020 291.679 7.828 8.47E-05 71964.64
QpMO P3 0.106 0.092 1.948 0.0003 0.0008 0.512
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data somewhat matches that of the random samples, the match in the lower and upper tails is not
satisfactory except for the Frank and N13 copulas.

Second, comparison of empirical probabilities with computed probabilities (Figure 11-56)
reveals the extent to which the computed copula surface would fit the empirical copula surface of the
scaled ranks of observed data. This comparison is shown as probabilities plotted with respect to the
ranked observation numbers. Although matching for all copulas appears satisfactory, it is compara-
tively better for the Frank and N13 copulas. Third, comparison of empirical and computed
probability distributions of the BIPIT variate KnðwÞ and KθnðwÞ (Figure 11-57) shows that the
matching is again comparatively better for the Frank copula, followed by the N13 copula.

11.4.3.5 Error Statistics and Analytical Goodness-of-Fit Tests

The maximized log-likelihood values for the Frank and N13 copulas, as given in Table 11-19, are the
two largest among the copulas considered and support the conclusions based on the previous
graphical goodness-of-fit tests. Table 11-20 provides other error statistics, RMSE, MN-A-ERR, and
MX-A-ERR, showing that the Frank copula has three of the four errors lowest among all copulas.
Thus, from the point of view of these error statistics, the Frank copula performs better than the

Figure 11-52. QQ plots for annual peak flows at Hilldale (X=QPHD ) and Mt. Outlook (Y=QPMO)
data fitted with LP3 and P3 distributions, respectively.

Figure 11-53. Scatter plots and histograms of observed bivariate annual peak flows at Hilldale
(X=QPHD) and Mt. Outlook (Y=QPMO) stations in original domain (left), as ranks (middle), and as
LP3 and P3 computed probabilities (right), respectively.
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Figure 11-54. Characterization of dependence between annual peak flows at Hilldale and
Mt. Outlook stations using (a) chi-plot, (b) K-plot, (c and d) chi-plots for lower and upper tails.

Table 11-19. Point and Interval Estimates of the Dependence Parameter for Example 11-3 for the Six
Copulas under Consideration Using the MPL Estimation Method. Interval Estimates Correspond to a
Coverage Probability of 0.95.

Method/
copula
family Theta (bθ) Tau (bτn∕bτθ) Lower C.L. Upper C.L.

Standard
error

Conf.
width LLmax

MPL
Clayton 1.220 0.379 0.936 1.504 0.284 0.145 8.999
Frank 5.338 0.477 5.058 5.618 0.280 0.143 11.346
GH 1.773 0.436 1.504 2.042 0.269 0.137 9.186
N12 1.200 0.444 0.878 1.522 0.322 0.164 9.646
N13 3.758 0.451 3.496 4.020 0.262 0.134 10.693
N14 1.353 0.460 1.041 1.665 0.312 0.159 9.988
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others. The formal goodness-of-fit tests are carried out for the three-parameter estimation methods
by evaluating the Cramer–von Mises type statistics CMn, Sn, and T n. For this, a parametric
bootstrap procedure is employed to simulate 10,000 sets of random samples of size 42, equivalent to
the size of the observed dataset. Table 11-21 gives the values of these three statistics, their p-values,
and the critical values at the 5% significance level. Results of the three statistics indicate that sufficient
ground exists for rejection of the Clayton copula, as the p-value for one statistic is less than 0.05 and
is quite low for the other two statistics. However, the p-values for the Frank copula are very high and
largest among them all. The p-values for all other copulas are moderate and thus do not immediately
disqualify them as viable options.

Thus, all the graphical and analytical goodness-of-fit test results indicate nonrejection of the
copulas other than the Clayton copula. However, considering relative suitability, the Frank copula
appears most suitable and has been considered further for the joint modeling of annual maximum
peak flows at Hilldale and Mt. Outlook stations.

11.4.3.6 Information from Joint Distribution Modeling

As discussed previously, the Frank copula is considered representative of the bivariate data under
consideration and copula-based joint and conditional distributions are obtained. Figure 11-58 shows

Figure 11-55. Comparison of observed and MPL method–based random samples for annual peak
flows at Hilldale and Mt. Outlook stations. Solid circles are random samples (size 500), and plus
symbols are observed data. Numbers in name strips are dependence parameter estimates with
corresponding Kendall’s tau values in parenthesis.
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the return periods in years corresponding to the exceedance probability of two types of joint events.
The left panel corresponds to “OR” events, that is, when flows at either any one or at both of the
stations exceed certain threshold flows. The right panel corresponds to “AND” events, that is, when
flows at both of stations exceed certain threshold flows simultaneously. These joint return period
plots could be used for answering questions such as, “What is the return period of events when flows
in (1) either one or both rivers and, in (2) both rivers simultaneously exceed their respective 100 year
floods?” Considering the LP3- and P3-based estimated 100 year flood values for Hilldale and
Mt. Outlook stations as 2,400 m3/s and 705m3/s, respectively, the return period for exceedance of
either one or both of these flows in respective rivers can be read from the “OR” events plot as about
50 years. Similarly, the return period for simultaneous exceedance of these flows in the two rivers is
about 2,000 years. Simple probability computations yield computed values for these “OR” and
“AND” return periods as 51 years and 1,970 years respectively. This is very useful information for
establishing flood management services in the region. For example, as the “AND” return period is
very large (2,000 years), the chance that a 100 year flood will occur in both subbasins in the same year
is virtually insignificant. In other words, not establishing two separate services that are individually
capable of managing flood management and relief services in these two subbasins would be prudent.
Instead, only one such service or two services with reduced capacities in each area should be able to
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Figure 11-56. Comparison of empirical and MPL method–based computed probabilities of annual
peak flows at Hilldale and Mt. Outlook stations. The comparison is with respect to ranked
observation numbers, with solid circles for empirical probabilities and solid lines for computed
probabilities. Numbers in name strips are dependence parameter estimates with corresponding
Kendall’s tau values in parenthesis.
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jointly manage the flood menace in the two areas. Furthermore, the “OR” return period of 51 years
indicates that flood management services in support of a 100 year flood will on average be required
once in 50 years, in one of the two subbasins. This discounts for the negligible chances of a 100 year
flood occurring in the two rivers simultaneously.

Figure 11-59 plots the conditional probabilities. The left panel shows the probability of flows at
Hilldale station exceeding a certain value given that flood flow at Mt. Outlook station is more than a
certain value. Similarly, the right panel provides the probability of flows at Mt. Outlook station
exceeding a certain value given that flood flow at Hilldale station is more than a certain value.
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Figure 11-57. Graphical goodness-of-fit test using K-plots for the MPL method–based estimation for
Example 11-3. Step functions are empirical distributions Kn(w), and curves are theoretical
distributions KθnðwÞ of the bivariate integral transform variableW= C(U, V). Numbers in name strips
are dependence parameter estimates with corresponding Kendall’s tau values in parenthesis.

Table 11-20. Various Error Statistics for Example 11-3 for the Six Copulas under Consideration.

Method/Copula
Family RMSE MN-A-ERR MN-ERR MX-A-ERR

MPL
Clayton 0.041 0.034 0.029 0.106
Frank 0.021 0.018 0.015 0.063
GH 0.027 0.022 0.020 0.060
N12 0.031 0.026 0.020 0.085
N13 0.028 0.024 0.019 0.081
N14 0.028 0.023 0.017 0.075
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Considering the thresholds in two rivers as their 100 year flood, the probability of a flood at Hilldale
exceeding its 100 year value of 2,400 m3/s, given that a flood at Mt. Outlook exceeded its 100 year
flood value of 705 m3/s, is read from the left panel as about 5%. Similarly, the probability of a flood at

Table 11-21. Goodness-of-Fit Statistics for Example 11-3 for the MPL Method.

Statistic Copula Observed statistic S* P-val

CMn Clayton 2.940 2.835 0.042
Frank 0.777 1.944 0.906
GH 1.263 2.241 0.449
N12 1.693 2.375 0.203
N13 1.422 2.291 0.325
N14 1.336 2.390 0.391

Sn Clayton 0.191 0.250 0.142
Frank 0.109 0.207 0.859
GH 0.165 0.247 0.357
N12 0.123 0.225 0.402
N13 0.112 0.201 0.562
N14 0.109 0.228 0.523

Tn Clayton 0.919 1.140 0.355
Frank 1.108 1.228 0.479
GH 1.152 1.299 0.488
N12 0.821 1.079 0.634
N13 0.908 1.088 0.537
N14 0.860 1.074 0.586

Note: S* implies critical value of the test statistic based on 10,000 simulation runs at a significance level of 5%, and P-val
indicates the p-values of the observed test statistic.
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Figure 11-58. Contours of return periods in years corresponding to joint events of exceedances at
Hilldale or Mt. Outlook stations. The left panel correspond to “OR” events when flows exceed certain
values at either any one or at both stations. The right panel corresponds to events when flows
exceed certain values at both stations simultaneously. Units for flows plotted on both axes in both
the panels is 103 m3/s (or cubic meter per second, or cumec).
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Mt. Outlook exceeding its 100 year value of 705 m3/s, given that a flood at Hilldale station exceeded
its 100 year flood value of 2,400 m3/s, is read from the left panel as about 5%. Computed values of
these probabilities are 5.08% and 5.09%, respectively. These conditional probability estimates should
help in making management decisions during a flood in one of the rivers in that it provides a chance
estimate if the other river will also get flooded and may need flood relief assistance. This shows that
when one of the rivers experiences a 100 year flood, about a 5% chance exists that the other river will
also experience a 100 year flood. This requires caution to avoid exhausting all resources in the
subbasin experiencing a 100 year flood as a 5% chance, which is significant, exists that the other
subbasin may also see flooding. A better scheme may be to keep some reserve capacity or arrange for
additional support in such situation.
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CHAPTER 12

Hydrologic Record Events
Richard M. Vogel
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GLOSSARY

AM: Annual maximum series, which is the series of the largest value observed in each year; this
series is often used in computations of flood frequency

Bivariate (multivariate) distribution: The joint distribution for two (n) random variables X1 and
X2 (X1, : : : , Xn) defined on the same probability space, which describes the probability of events
defined in terms of both X1 and X2 (defined in terms of X1, : : : , Xn)

Bivariate (multivariate) record (after Nagaraja et al. 2003): Let X = (X1, X2) [X = (X1, : : : Xn)]
be a bivariate (multivariate) random variable with an absolutely continuous cumulative distribu-
tion function or cdf, F and probability density function or pdf, f. Let Fj and fj be the marginal cdf
and pdf of Xj, j = 1, 2 (j = 1, : : : n). Also let X(i) = [X1(i), X2(i)] {X(i) = [X1(i), : : : Xn(i)]}, with
1≤ i≤m, denote a random sample of size m from F

DEFINITION 1: a bivariate (multivariate) record of first kind is said to occur at time k if both of
X1(k) and X2(k) [all X1(k), : : : Xn(k)] exceed—or are smaller than—X1(i) and X2(i) [X1(k), : : :
Xn(k)], with i< k

DEFINITION 2: a bivariate (multivariate) record of second kind is said to occur at time k if at least
Xj(k), with j = 1, 2 (j = 1, : : : n) exceeds—or is smaller than—all preceding Xj(i), with i< k

EEPE: Expected exceedance probability of an envelope; EEPE is the most appropriate summary
measure if one’s concern is with making a probabilistic statement regarding the single envelope
based on historical observations

EPEE: Exceedance probability of the expected envelope; EPEE is the most appropriate summary
measure if one’s concern is with making a probabilistic statement regarding the envelope expected
to occur for a group of sites of given characteristics (i.e., number of sites, record lengths, cross-
correlation, etc.)

Exceedance probability: The likelihood or probability that a random variable will be exceeded

EXP: Exponential probability distribution

GEV: Generalized extreme value probability distribution

GPA: Generalized Pareto probability distribution
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GUM: Gumbel probability distribution

HU: Hydrologic unit

Lower record: Smallest observed value of a random variable during a particular time period

Monte Carlo experiment: An experiment in which a series of random variables are generated and
that series is then used to compute a particular statistic; by repeating the experiment over and over,
one may generate a large sample of the particular statistic of interest whose behavior can then be
explored

Parametric properties: Properties pertaining to a random variable when that random variable is
assumed to follow a particular probability distribution

Plotting position: An empirical estimate of the nonexceedance probability associated with an
observation of a random sample from a (possibly unknown) probability distribution

POT: Peaks over threshold, which denotes the series that results from removing all values of the
original series below some threshold value

Quantile: Value of a random variable that is exceeded by some probability p, often denoted as xp,
where x is the random variable and p is the exceedance probability

Record: Largest or smallest observed value of a random variable during a particular time period

Record of the first kind: See Section 12.2.4

Record of the second kind: See Section 12.2.4

Record of the third kind: See Section 12.2.4

Record of the fourth kind. See Section 12.2.4

Recurrence interval. Length of time between two events such as the length of time between two
floods

T:Average return period or time or recurrence interval between the occurrence of two events, or in
the context of floods, the average time one must wait until the occurrence of the next flood event

Upper record: Largest observed value of a random variable during a particular time period

12.0 GENERAL

A record event is defined as an event whose magnitude exceeds, or is exceeded by, all previous events.
One thing is certain: a record event, no matter how large or long standing, will eventually be broken
(Glick 1978). Thus, the probability that the largest observed flood discharge on a river will be
exceeded is 1, and this is true even if the flood’s magnitude has an upper bound. However, we do not
know the magnitude of the next record flood, other than that it will be greater than the current
record flood, that is, the largest observed flood on record. Also, we do not know when the next record
flood will occur. The same ideas apply to droughts, or to any other hydrologic flux. Other hydrologic
records of interest might include the largest 24-hour rainfall on record, the lowest 7-day streamflow
on record, the lowest value of soil moisture on record, and so on. Historically, engineers have always
shown particular interest in such records. For example, most hydrology textbooks and manuals list
record rainfall amounts that have occurred for various durations. Similarly, for flood discharges,
envelope curves based on record floods have been drawn to bound our experience on floods for a
particular region, and such curves have found widespread usage in engineering practice for the
design of dams and other important facilities in the vicinity of rivers such as nuclear power plants.
What is missing from our historical interest in hydrologic records is a theory that enables us to make
probabilistic statements about their future occurrence. The purpose of this chapter is to provide such
a theoretical framework for describing the probabilistic behavior of hydrologic record events.
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The largest or smallest event exhibited within a sequence is a statistical property of a sequence
that has long attracted the attention of hydrologists in dealing with floods and droughts through
extreme value theory. However, study of record hydrologic events through the formal theory of
records has only recently been undertaken, particularly studies of record floods. See Vogel et al.
(2001) and Castellarin et al. (2005).

Surely all extraordinary floods are record floods, though not all record floods are extraordinary
floods. What distinguishes an extraordinary flood from a flood of record, from a probable maximum
flood, or from a 10,000-year flood? The theory of records can provide us with both a mathematical
framework for dealing with such questions and a methodology for estimating the probability of
occurrence associated with record floods. This chapter combines a theoretical framework for
applying the theory of records to flood and other hydrologic processes, while simultaneously
documenting numerous recent studies and approaches that have used the theory of records to assign
probabilistic statements to extraordinary floods for the purpose of flood management and planning.

Since the pioneering work of Chandler (1952), a rich theory on the mathematics of record events
has been developed leading to several summary texts (Ahsanullah 1995, 2004; Arnold et al. 1998;
Nevzorov 2001; Arnold et al. 2008). Within the context of the theory of order statistics, Arnold et al.
(2008) provide a pedagogic treatment of the theory of records, suited for teaching the material in this
chapter from the point of view of a mathematician. Mathematical interest in the theory of records
seems to parallel general human interest in records, since the Guinness Book of World Records was
first introduced in 1955. By 1974, the Guinness Book of World Records became the top-selling
copyrighted book in publishing history and has become the authoritative source of records in nearly
all fields of human and nonhuman endeavor (Roberts 1991).

The theory of records relies heavily upon the theory of order statistics (David and Nagaraja 2003)
and extreme order statistics, as well as on the theory of extremes (Gumbel 1958). The theory of extremes
has received a great deal of attention since its introduction by Gumbel (1958), with many advances
occurring in the field of hydrology (see Katz et al. 2002, for a recent overview of the field within the
context of hydrology). Given the close association between the theory of records and water resource
applications, surprisingly few water resource studies have applied the theory of records (Vogel et al.
2001, Nagaraja et al. 2003, Castellarin et al. 2005, Douglas and Vogel 2006, Serinaldi and Kilsby 2018).

Consider the following definition of record events. Let X1, X2, : : : , Xn, represent a sequence of
annual maximum (AM) flood observations, where n is the total number of time periods for which
observations are available. The observation Xi is the n year record flood, which is denoted as Y, if Xi

exceeds all previous records in the sequence of length n, or when Y = max(X1, X2, : : : , Xn).
Ahsanullah (1995, 2004), Arnold et al. (1998, 2008), and Nevzorov (2001) introduce the entire upper
record value sequence as follows. The observation Xj is called an upper record if Xj>Xi for every i< j.
The times at which these records occur are termed the record time sequence Tm, where the first
observation is a record so that T0 = 1, the second record occurs at time t = j, so that the record time is
T1 = j, and so on. The record value sequence is then Rm =XTm

where m = 1, 2, : : : . One can also
define the interrecord time sequence as Δm =Tm − Tm−1, m = 1, 2, 3, : : : . The number of upper
recordsNn in a series of n observations can also be tracked. For example, given the following sequence of
n = 6 observations (50, 30, 60, 10, 80, 70), the upper record event is Y = 80, the resulting upper record
time sequence (T0 = 1, T1 = 3, T2 = 5), the resulting upper record value process (R1 = 50, R2 = 60,
R3 = 80), the interrecord time sequence ½Δ1 =T1 − T0 = 2,Δ2 =T2 − T1 = 2�, and the number of
records in this series of n = 6 values is Nn = 3 records. All of these record value statistics apply to flood
series and resulting flood management problems as described here.

The theory of records centers on probability distributions that are expressible in density,
cumulative, and inverse closed forms. It is in this context that the adaptation of the theory of records
to hydrologic studies is discussed. Note that in hydrologic studies, distributions expressible only in
closed density form, such as the log–normal, and log–Pearson distributions, are used extensively,
particularly in studies of floods. The theory of records does not per se exclude probability distributions
that are not expressible in cumulative and inverse closed forms, but the current literature does not draw
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attention to the use of simulation andMonte Carlo techniques to address properties of record events in
terms of distributions that are not expressible in cumulative and inverse closed forms.

Much of the hydrologic literature assumes flood events are independent and identically
distributed (iid). Interestingly, as we show in this chapter, much of the theory of records depends
only on the iid assumption. Unfortunately, the iid assumption, underlying much of the theory of
records, is hydrologically questionable. Though observations of flows lend some credence to the
assumption of iid in the case of floods, the same cannot be said in reference to droughts. In the case
of droughts, persistence, measured by serial correlation, is generally accepted and addressed primary
by assuming low flows are generated by stationary stochastic processes. The general acceptance of
climate change by the scientific community has prompted increased attention in dealing with
nonstationarity of hydrologic stochastic processes. It remains to be seen to what extent and in what
manner properties of record events predicated on the assumption of iid would be affected by
accounting for variations in the tail weights of probability distributions and nonstationarity. Arnold
et al. (2008) briefly consider the case of “records in improved populations” for the case when the
process of interest X, is stochastically ordered, so that the process is nonstationary.

This presentation of the theory of records follows the classical theory of record-breaking processes.
Thus an objective frequency-based approach that assumes stationary extreme value processes is
adopted. It is well documented in several places that the theory of records has a connection to both the
theory of extremes and to the theory of order statistics. There are numerous recent developments in the
theory of extremes and the theory of order statistics. Given that these three theories are connected,
considering connections among extreme value theory, order statistics, record-breaking theory, and
other complications due to nonstationarity, along with Bayesian-based statistical analyses, is important.
It is anticipated that future work on record processes in hydrology will address these and other issues.

The following summarizes our current knowledge of the theory of record events, along with
some new results directed to hydrologic studies. The chapter is broken into three sections:
(1) parametric results, (2) nonparametric results, and (3) applications of the theory of record
events to envelope curves. In the section on parametric results, we summarize the distributional
properties of the flood of record Y and the entire upper record sequence Rm, corresponding to
various commonly used probability distributions for X. In the section on nonparametric results, we
summarize the statistical properties of the recurrence time (or return period) of the records Y and the
nonparametric properties of record-breaking processes, such as the distribution of the number of
records in an n year sequence termed Nn. The last section summarizes a few recent case studies that
have applied the theory of records to estimate the exceedance probability associated with envelope
curves and have tested the theory of records for evaluating the independence of flood records.

12.1 PARAMETRIC PROPERTIES OF HYDROLOGIC RECORDS

All statistical methods can be classified as either parametric or nonparametric. Parametric methods are
generally based on an underlying assumption regarding the distribution of the random variable of
interest, whereas nonparametric methods generally do not require such assumptions. For example, all
of the expressions for the first two moments of X and Y for various assumed probability density
functions (pdfs) given in Tables 12-1 and 12-2 are parametric results. Nonparametric methods tend to
focus on the ranked or ordered observations because ordered observations have various theoretical
properties that are independent of the distribution of the random variable of interest. In the following
sections we review both parametric and nonparametric properties of record events.

12.1.1 The Probability Distribution, Quantile Function, and Moments of Record
Floods

In this section we consider some probability distributions that arise in the theory of extremes
(Beirlant et al. 2004) and are commonly used in flood frequency analysis, such as the exponential
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(EXP) and generalized Pareto (GPA) distributions used in the analysis of flood peaks over a
threshold (POT), and the Gumbel (GUM) and generalized extreme value (GEV) distributions
used for modeling AM flood series. Further, we only consider exact results, so that in instances
when only asymptotic results are available, we do not report them, because in the field of
hydrology flood samples are usually not nearly long enough for asymptotic results to apply. We
begin by summarizing the pdf, cumulative density function (cdf), quantile function, and moments
(where possible) of a record flood drawn from these distributions and the moments of the record
process Rm.

Suppose the iid annual maximum flood series X has a known cdf FX(x). The cdf for the record
flood Y is then

FYðyÞ= ½FXðyÞ�n (12-1)

where n is the length of the series of annual maximum floods. Similarly, the pdf of Y can be obtained
by differentiation of Equation (12-1):

Table 12-1. The Properties of the Random Variable X and Its Record Process Y for a Gumbel and a
Generalized Extreme Value Distribution.

Gumbel distribution Generalized extreme value distribution

cdf of X FXðxÞ= exp
n
− exp

�
− ðx−ξÞ

α

�o
FXðxÞ= exp

�
−
h
1 − κ · ðx−ξÞα

i
1∕κ

�
f or κ ≠ 0

Mean of X μx = ξþ γα μx = ξþ α½1 − Γð1þ κÞ�∕κ
Variance of X σ2x = ðπαÞ2∕6 σ2x = α2fΓð1þ 2κÞ − ½Γð1þ κÞ�2g∕κ2
Quantile of X xðpxÞ= ξ − α ln

�
− lnðpxÞ

�
xðpxÞ= ξþ α

κ ½1 − ð− lnðpxÞÞκ�
Quantile of Y yðpyÞ= ξ − α ln

�
− lnðpyÞ

n

�
yðpyÞ= ξþ α

κ

h
1 −

�
− lnðpyÞ

n

�
κ
i

Mean of Y μy = ξþ αðγþ lnðnÞÞ
= μx þ α lnðnÞ

μy = ξþ α
κ

h
1 − Γð1þκÞ

nκ

i
Variance of Y σ2y = σ2x = π2α2

6 σ2y =
� α
κ ·nκ

�
2fΓð1þ 2κÞ − ½Γð1þ κÞ�2g

Note: cdf = cumulative density function.

Table 12-2. Properties of the Random Variable X and Its Record Process Y for the Exponential and
Generalized Pareto Distributions.

Exponential distribution Generalized pareto distribution

cdf of X FXðxÞ= 1 − expð−βðx − ξÞÞ FXðxÞ= 1 − ½1 − βðx − ξÞ�1∕κ
Mean of X μx = ξþ ð1∕βÞ μx = ξþ ½1∕ðβð1þ κÞÞ�
Standard
deviation of X

σx = 1∕β σx = ð1∕βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ½1þ ð2∕κÞ� − Γ2½1þ ð1∕κÞ�

p
Quantile of X xðpxÞ= ξ − ðlnð1 − pxÞ∕βÞ xðpxÞ= ξþ ½1 − ð1 − pxÞκ�∕ðκβÞ
Quantile of Y yðpyÞ= ξ − lnð1−p1∕ny Þ

β yðpyÞ= ξ − ð1−p1nyÞκ
β ·κ

Mean of Y μy = ξþ 1
β
P

n
ν= 1

1
ν Not available

Variance of Y σ2y = 1
β
P

n
ν= 1

1
ν2 Not available

Note: cdf = cumulative density function.
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f YðyÞ= dFYðyÞ∕dy (12-2a)

or in terms of the original pdf and cdf of X (Ang and Tang 1984):

f YðyÞ= n½FXðyÞ�n−1f xðyÞ (12-2b)

All of the extreme value pdfs considered here have quantile functions that can be expressed
analytically, hence we found it useful to derive moments of Y using the fact that

μr =
Z1
0

yrðpÞdp (12-3)

where μr denotes the rth moment of Y about the origin, and p= FYðyÞ and yðpÞ are the quantile
functions of the record floods Y. The quantile function is also sometimes referred to as the inverse of
the cdf. All the results in the following section regarding the properties of Y are derived from
Equations (12-1)–(12-3).

We begin by summarizing the properties of record floods drawn from GUM and GEV
distributions, followed by a summary of the properties of record floods drawn from EXP and
GPA distributions. Further details on all four of these distributions, including their product
moments, L-moments, parameter estimators, and goodness-of-fit tests, can be found in Hosking
andWallis (1997) and Stedinger et al. (1993). Gumbel (1958) provides a comprehensive treatment of
the GUM and EXP distributions.

12.1.2 The Gumbel Distribution

If X arises from a GUM distribution, then its cdf is

FXðxÞ= exp

�
− exp

�
−
ðx − ξÞ

α

	

(12-4)

where ξ is the location parameter and α is the scale parameter. The location parameter ξ is equal to
the mode of x, which can be determined by setting df xðxÞ∕dx= 0 and solving for xmode = ξ where
f xðxÞ= dFxðxÞ∕dx. The mean and variance of X are μx = ξþ γα and σ2x = ðπαÞ2∕6 respectively,
where γ= 0.5772 is the Euler number. The quantile function of a GUM variable is given by

xðpxÞ= ξ − α lnð− lnðpxÞÞ (12-5)

where px = FXðxÞ. The range of x in Equations (12-4) and (12-5) is unbounded both above and below
so that −∞ < x < ∞.

Substitution of Equation (12-4) into Equations (12-1) and (12-2) leads to the cdf and pdf of the
record flood series Y generated from GUM samples of length n. Inversion of the cdf of Y leads to the
quantile function for the record flood Y drawn from a GUM sample of length n:

yðpyÞ= ξ − α ln

�
−
lnðpyÞ
n

	
= ξ − α lnð− lnðpyÞÞ þ α lnðnÞ (12-6)

where py = FYðyÞ= FXðyÞn. Note that the quantile functions of the Y series and the X series differ
only by the constant term α lnðnÞ, and for the special case when n = 1, the quantile function of the Y
series is identical to the quantile function for the X series in Equation (12-5). Therefore, if the
distribution of annual maximum floods follows a GUM distribution, the distribution of the record

496 STATISTICAL ANALYSIS OF HYDROLOGIC VARIABLES



flood Y will also be Gumbel. This is consistent with the findings of Gumbel (1958), Ang and Tang
(1984), Lambert and Li (1994), and others.

Exact expressions for the mean, μy, and variance, σ2y , of record floods drawn from a GUM series
of length n were first introduced by Gumbel (1958) and may be derived by substitution of
Equation (12-6) into Equation (12-3) and using the fact that μy = μ1 and σ2y = μ2 − μ21, leading to

μy = ξþ αðγþ lnðnÞÞ= μx þ α lnðnÞ (12-7a)

σ2y = σ2x =
π2α2

6
(12-7b)

where γ = 0.5772 is the Euler number. As expected, all moments of Y reduce to the moments of X
when n = 1, and Y always has exactly the same variance as X, regardless of n. Because both X and Y
are Gumbel, they also both have skewness of 1.1396. Arnold et al. (1998, Equations 2.7.15 and 2.7.16)
also report the mean and variance of Y; however, their expressions were found to be in error because
they do not reduce to the moments of X when n = 1, nor do they reproduce the expected moments
when we performed Monte Carlo experiments to check Equation (12-7). The mode of Y, also given
by Gumbel (1958), is easily derived by setting df yðyÞ∕dy= 0 and solving for y, where f yðyÞ is given
by Equation (12-2), resulting in

ymode = ξþ α lnðnÞ (12-8a)

Thus, the mean record event μy is always greater than its mode ymode by an amount equal to
γσx

ffiffiffi
6

p
∕π= 0.45σx = 0.45σy. Similarly, the mean of x is also always greater than its mode by the same

amount, 0.45σx. Gumbel (1958) also reports the median of Y as

yð0.5Þ= ξþ αð0.36651þ lnðnÞÞ (12-8b)

which always lies between the mode and mean. Figure 12-1 compares the exceedance probability
½1 − FxðyÞ� of the mean y= μy, median yð0.5Þ, and mode ymode of y with the expected exceedance
probability 1/(n + 1), illustrating that all three measures of central tendency of the flood of record y
tend to be exceeded more frequently than one would expect, on average, for a given sample size n.
Note that the sample estimator of the nonexceedance probability of the ith observation in a sample
ordered in ascending order, i/(n + 1), known as the Weibull plotting position, yields unbiased
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Figure 12-1. Exceedance probability of various measures of central tendency associated with the
flood of record from a Gumbel distribution.
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estimates of the exceedance probability of any random variable, regardless of its underlying
distribution.

L-moments are often preferred over ordinary moments, for parameter estimation and
goodness-of-fit evaluation (Hosking and Wallis 1997, Stedinger et al. 1993). The first L-moment
of Y is equal to the first ordinary moment of Y given in Equation (12-7a). The second L-moment of
Y, denoted λ2ðyÞ, is identical to the second L-moment of X, denoted λ2ðxÞ, which are both given by

λ2ðyÞ= λ2ðxÞ= α lnð2Þ (12-9)

The L-skew of both X and Y is equal to 0.1699, and the L-kurtosis of both X and Y is equal to
0.1504.

Arnold et al. (1998) document that the upper record process (i.e., the time sequence of
record events in a series of extremes; see Section 12.1) for the case when X follows a Gumbel pdf is
defined by

Rm = ξþ α lnðR�
mÞ (12-10)

where R�
m is a gamma (m + 1, 1) random variable, so that the mean and variance of the upper record

process is given by

E½Rm�= ξ − αγþ α
Xm
j= 1

1
j

(12-11)

Var½Rm�= α2
�
π2

6
−
Xm
j= 1

1
j2

�
(12-12)

where again γ = 0.5772 is the Euler number.

12.1.3 The Generalized Extreme Value Distribution

Douglas and Vogel (2006) first derived the cumulative distribution function, quantile function,
moments, and L-moments of the record floods Y for the case when the flood series Xi follows a GEV
distribution. The origins of the GEV distribution can be traced to a paper by Fisher and Tippett
(1928), which seems to be the first account of what today is referred to as the GEV model. Later the
GEVmodel was discussed by Mises (1936) and subsequently applied by Jenkinson (1955) and is now
perhaps the most widely accepted distribution for modeling flood series in the world (see Table 1 of
Vogel and Wilson 1996). Its cdf is

FXðxÞ= exp

�
−
�
1 − κ ·

ðx − ξÞ
α

�
1∕κ

	
f or κ ≠ 0 (12-13)

where ξ is the location parameter, α is the scale parameter, and κ is the shape parameter (Jenkinson
1955). As the shape parameter κ approaches zero, the GEV distribution approaches a GUM (or
extreme value type I) distribution. The mean and variance of x are given by μx = ξþ α½1 − Γð1þ κÞ�=κ
and σ2x = α2fΓð1þ 2κÞ − ½Γð1þ κÞ�2g=κ2. The range of x in Equation (12-13) is −∞ < x < ξþ a

κ
for κ > 0 and ξþ a

κ ≤ x < ∞ for κ < 0, so that both X and Y will have an upper bound when
κ> 0, as Enzel et al. (1993) and others suggest. Chowdhury et al. (1991) provide goodness-of-fit tests
and hypothesis tests for the GEV distribution.

The quantile function for the original flood series X is obtained by solving Equation (12-13) for x
which yields
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xðpxÞ= ξþ α
κ
½1 − ð− lnðpxÞÞκ� (12-14)

where px = FXðxÞ. Substitution of Equation (12-13) into Equations (12-1) and (12-2) leads to the cdf
and pdf of the record flood series Y generated from GEV samples of length n. The inverse
distribution of Y leads to the quantile function for the record flood Y, drawn from a GEV sample of
length n:

yðpyÞ= ξþ α
κ

�
1 −

�− lnðpyÞ
n

	
κ
�

(12-15)

where py = FYðyÞ= FXðyÞn. When n = 1, the quantile function of Y in Equation (12-15) reduces to
the quantile function for the X series in Equation (12-14). Note that Equation (12-15) is similar in
form to the quantile function for the original GEV variate X, given in Equation (12-14). Douglas and
Vogel (2006) use the quantile function in Equation (12-14) to derive the moments and L-moments of
Y when X arises from a GEV pdf. The mean, μy, and variance, σ2y , of Y are

μy = ξþ α
κ

�
1 −

Γð1þ κÞ
nκ

�
(12-16a)

σ2y =
�

α
κ · nκ

	
2
fΓð1þ 2κÞ − ½Γð1þ κÞ�2g (12-16b)

Similar to the quantile function, the first two moments of Y differ in form from those of X, only
by the additional term, nκ. Figure 12-2 compares the exceedance probability ½1 − FxðμyÞ� of the mean
record flood from a GEV distribution, for various values of the shape parameter, with the expected
exceedance probability 1/(n + 1). Figure 12-2 documents that the mean record flood (in real space)
from a GEV distribution tends to be exceeded less frequently than one would expect for a given
sample size n when the shape parameter is negative.

The first L-moment of Y is identical to the mean of Y in Equation (12-16a). The second
L-moment of Y is

λ2ðyÞ=
α
κ
Γð1þ κÞ

nκ
ð1 − 2−κÞ (12-17)
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Figure 12-2. Exceedance probability of the mean flood of record μy from a GEV distribution for
various values of the shape parameter.
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The mode of Y is easily derived by setting df yðyÞ∕dy= 0 and solving for y, where f yðyÞ is given
by Equation (12-2), resulting in

ymode = ξþ α
κ

�
1þ

�
κ − 1
n − κ

	
k
�

(12-18)

The L-skew and L-kurtosis of Y are the same as for the original X series given by Stedinger et al.
(1993), Hosking and Wallis (1997), and others. Thus, if X follows a GEV distribution, then Y is also
GEV with the same shape parameter κ. Only their means and coefficients of variation differ. We are
unaware of any previous work summarizing the pdf or moments of the upper record process for the
GEV case, analogous to the results for the Gumbel distribution in Equations (12-10)–(12-12).

12.1.4 The Exponential Distribution

For an AM series of floods distributed as a GUM distribution, Stedinger et al. (1993) and others show
that the POT flood series will follow an EXP distribution with pdf, cdf, and quantile function given
by f XðxÞ= β expð−βðx − ξÞÞ, FXðxÞ= 1 − expð−βðx − ξÞÞ, and xðpxÞ= ξ − ðlnð1 − pxÞ∕βÞ, respec-
tively, with mean and standard deviation given by μx = ξþ ð1∕βÞ and σx = 1∕β, respectively. Here ξ
is generally the threshold value above which flood peaks are reported, hence it is given or assumed,
along with the flood series. Substitution of the EXP cdf into Equation (12-1) yields the cdf of the
maximum value, which is easily inverted to obtain the quantile function of the record flood for an
EXP variable:

yðpyÞ= ξ −
ln
�
1 − p1∕ny

�
β

(12-19)

where py = FYðyÞ. Gumbel (1958) and Arnold et al. (1998) report exact expressions for the mean and
variance of Y (as well as other properties) when X arises from a standard exponential distribution
that assumes ξ = 0 and β = 1. Those expressions can be generalized for the exponential distribution
introduced here, leading to expressions for the mean and variance of the record flood:

μy = ξþ 1
β

Xn
ν= 1

1
ν

(12-20a)

σ2y =
1
β

Xn
ν= 1

1
ν2

(12-20b)

Raqab (2004) derives recurrence relations for the moments of order statistics from a generalized
EXP distribution. Numerical integration also provides exact estimates of the moments of Y by
substitution of Equation (12-19) into Equation (12-3). Parameter estimates ξ and β obtained from
the X series may be used in Equation (12-19) to generate series of record floods or to characterize the
pdf or cdf of the Y series using Equations (12-1) and (12-2).

12.1.5 Generalized Pareto Distribution

In the case where an AM series of floods follows a GEV distribution, Stedinger et al. (1993) and
others show that the POT flood series follows a GPA distribution with pdf, cdf, and quantile
function given by f XðxÞ= β½1 − expð−κβðx − ξÞÞ�ð1−κÞ∕κ, FXðxÞ= 1 − ½1 − βðx − ξÞ�1∕κ, and
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xðpxÞ= ξþ ½1 − ð1 − pxÞκ�∕ðκβÞ, respectively, with the mean and standard deviation given by
μx = ξþ ½1∕ðβð1þ κÞÞ� and σx = ð1∕βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ½1þ ð2∕κÞ� − Γ2½1þ ð1∕κÞ�

p
. Here again, ξ is the thresh-

old value above which flood peaks are reported. Applying Equation (12-1) to the GPA cdf yields the
cdf of Y, which is easily inverted to obtain the quantile function of the record flood for a GPA
process:

yðpyÞ= ξ −

�
1 − p1∕ny

�
κ

βκ
(12-21)

where py = FYðyÞ. Balakrishnan and Ahsanullah (1994) derive recurrence relations for the moments
of order statistics for a GPA distribution, but we were unable to obtain closed-form solutions to
either the moments or L-moments of Y for the GPA distribution. Arnold et al. (1998) report exact
expressions for the mean and variance of Y when X arises from a Pareto model, which is
parameterized quite differently from the GPA model. Numerical integration provides exact estimates
of the moments of Y by substitution of Equation (12-21) into Equation (12-3). Estimates of ξ, κ, and β
obtained from the X series may be used in Equation (12-21) to generate series of record floods or to
characterize the pdf or cdf of the Y series using Equation (12-1) and Equation (12-2).

Tables 12-1 and 12-2 summarize the parametric properties of hydrologic records.

12.2 NONPARAMETRIC STATISTICAL PROPERTIES OF HYDROLOGIC RECORDS

For a discussion of the distinction between parametric and nonparametric approaches to summa-
rizing the statistical properties of hydrologic records, see Section 12.1.

12.2.1 The Recurrence or Waiting Time of Record Floods

Interestingly Wilks (1959) and Gumbel (1961) show that the probability distribution of the
unconditional waiting or recurrence time to the next record flood has no moments, thus other
measures are needed to define the waiting time to the next record flood. That this important yet
paradoxical result has received so little attention in the water resources literature is surprising. The
only publication we could find in the field of water resources that cited either of these papers is
Castellarin et al. (2005). Chandler (1952) and Gumbel (1961) give the pdf of the waiting time T to
exceed the mth largest observation in a sample of size n as

f TðtÞ=
�
n
m

	
mt−m−1

�
1 −

1
t

	
n−m

for t ≥ 1 (12-22)

For example, the expected value of the waiting time T is given by E½T�= n∕ðm − 1Þ, which is
clearly infinite for the record flood (m = 1), but finite for all other order statistics. Similarly, all
upper moments of T corresponding to the record flood are infinite.

Equation (12-22) written from m = 1 gives the pdf of the waiting time to exceed the record
flood, which yields

f TðtÞ=
n
t2

�
1 −

1
t

	
n−1

for t ≥ 1 (12-23)

Figure 12-3 illustrates the pdf of the recurrence time for the three cases n = 10, 50, and 100.
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Gumbel (1961) also gives the cdf of the waiting time to exceed the record flood as

FTðtÞ=
�
1 −

1
t

	
n

(12-24)

The quantile function for the waiting time to exceed the record flood is easily obtained from
Equation (12-24) as

TðpÞ= 1

1 − p1∕n
(12-25)

where p= FTðtÞ.
In addition to the expectation of the recurrence time of the record flood, other measures of

central tendency such as the mode, median, and geometric mean of the recurrence time exist for the
record flood. Because the moments of the recurrence times do not exist, one could use the mode,
median, quantiles, and possibly upper L-moments to describe the recurrence time of the record flood
distribution in lieu of the moments.

Gumbel (1961) gives the geometric mean TG, median Tmedian, and mode Tmode of the waiting
time to the next record flood as

TG = exp

"Xn
j= 1

1
j

#
≅ γþ lnðnÞ= 1.78n (12-26)

Tmedian =
21∕n

ð21∕n − 1Þ ≅
n

lnð2Þ þ
1
2
= 1.44nþ 0.5 (12-27)

Tmode =
nþ 1
2

(12-28)

Note that in general Tmode < n < Tmedian < TG. Clearly these measures of central tendency of the
waiting time to the next record flood vary over a significant range from roughly 0.5n to 1.8n.
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Figure 12-3. Probability distribution of the recurrence time to the next record flood for a sample of
size n = 10, 50, and 100 years, after just having observed a record flood.
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12.2.2 The Probability Distribution of the Number of Record Events

The time of occurrence at which record highs occur in the original sequence may be expressed as the
series of binary variates:

Yi =
�
1 if Xi = maxðX1,X2, : : : ,XiÞ
0 otherwise

(12-29)

Let R denote the number of record-breaking events in an n year period where

R=
Xn
i= 1

Yi (12-30)

If themax function in Equation (12-29) is replaced bymin, one obtains the lower record events.
Alternatively, one can switch from upper- to lower-record events, by replacing the original sequence
with −X1, −X2, : : : , −Xn. Some initial theoretical results are taken from the mathematics literature,
and others are introduced here for the first time.

David and Barton (1962) first introduce an expression, using Stirling numbers, for the exact
probability mass function (pmf) for the number of upper- and lower-record events in an n year
period. A much simpler yet identical expression for the exact pmf of R, denoted Pn½R= r� (see Vogel
et al. 2001), is defined by the recursion

Pj½R= r�=
�
1 −

1
j

	
Pj−1½R= r� þ

�
1
j

	
Pj−1½R= r − 1� (12-31)

for r≥ 1 and j≥ 2 with the initial values P1½R= 0�= 0 and P1½R= 1�= 1. Glick (1978) also reports the
asymptotic result for large sample sizes:

Pn½R= r�= ½lnðnÞ�r−1
n · ðr − 1Þ! (12-32)

Combining the definition of the cmf P½R ≤ r�= P
r
k= 1 P½R= k� with the asymptotic result in

Equation (12-32), and after algebra, we obtain

P½R ≤ r�= Γðr, lnðnÞÞ
ΓðrÞ (12-33)

where Γðx, yÞ is the incomplete gamma function defined by Γða, bÞ= ∫ ∞
b ta−1e−tdt. Note that the

gamma function is a special case of the incomplete gamma function whereby ΓðaÞ=Γða, 0Þ.
Figure 12-4 illustrates the agreement between the asymptotic approximation of the cmf and the
exact result for n = 10 and 100. We recommend the use of the exact result.

12.2.3 Moments of the Number of Record-Breaking Events

The first observation is defined to be a record event. The following results for the mean and variance
of R are due to Glick (1978):

μR =
Xn
i= 1

1∕i (12-34)
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and

σ2R =
Xn
i= 1

1∕i −
Xn
i= 1

1∕i2 (12-35)

Zafirakou-Koulouris (2000, p. 26) derived an exact expression for the skewness of R:

γR =
P

n
i= 1 1∕i − 3

P
n
i= 1 1∕i2 þ 2

P
n
i= 1 1∕i3�P

n
i= 1 1∕i −

P
n
i= 1 1∕i2

�
3=2

(12-36)

as well as an approximation to the kurtosis of R

κR ≅ 3.19 −
1.42
n

−
5.43
n2

− 0.00419
ffiffiffi
n

p
(12-37)

The approximation in Equation (12-37) is accurate to at least three decimal places for
4 ≤ n ≤ 100.

Vogel et al. (2001) use moment diagrams based on Equations (12-34) to (12-37) to show that in
spite of the central limit theorem, the tail behavior of the distribution of R differs significantly from
other common distributions even for large sample sizes. Among distribution functions commonly
used, the distribution of R closely resembles the normal distribution, though only approximately.
Table 12-3 summarizes the moments and moment ratios of the number of record-breaking events in
a series of length n.

12.2.4 Multivariate Record Events

Hydrologists have a long-standing and continuing interest in reducing the sampling errors
associated with the estimates of specific statistical properties of hydrologic sequences, for example,
the parameters of distributions presumed to provide a good probabilistic description of the
sequences, or more generally, the moments of the distributions determined from the sequences.
Achieving reduction in sampling error via the transfer of information from sequences at nearby sites
to a sequence at a particular site is referred to as regionalization, which is a means of augmenting
time averages through spatial averages. Collectively the sites comprise a region. Techniques of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

P
n

[R
<r

]

No. of Record Floods r, in n Years

Exact, n=10

Asymptotic, n=10

Exact, n=100

Asymptotic, n=100

Figure 12-4. Comparison of exact and asymptotic cmfs for the number of record floods in 10- and
100 year periods.
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regionalization must contend with the structure of dependence exhibited by the set of m regional
sequences. In the following discussions, the lengths of the sequences are assumed to be the same, n, at
all sites unless otherwise noted. Further assumed is that the sequences are realizations of a stationary
multivariate stochastic process.

The dependence structure may be expressed in terms of the matrix of pairwise product-moment
correlations between the sequences:

R=

266664
1 r1,2 r1,3 r1,4 r1,m
r2,1 1 r2,3 r2,4 r2,m
r3,1 r3,2 1 r3,4 r3,m
r4,1 r4,2 r4,3 1 r4,m
rm,1 rm,2 rm,3 rm,4 1

377775 (12-38)

As is well known, R is a symmetric matrix: rj,k = rk,j, ∀j, k, and rj,k = 1 for j= k, where rj,k → ρj,k
as n → ∞. If rj,kðρj,kÞ= 0 and ∀j ≠ k, then R ≡ I, where I is the identity matrix. In general, the
effectiveness of regionalization in transferring information to a site of interest from nearby sites
diminishes as ρj,k → 1. The univariate probability distributions describing the sequences at each of
the m sites are the marginal distributions of the multivariate distribution defining the structure of
dependence between the m sequences.

Little hydrologic attention has been directed to multivariate distributions, apart from the
multivariate normal distribution, in particular the bivariate normal distribution. Among recent
publications on multivariate distributions in hydrology are Kallache et al. (2013), Bardossy and
Horning (2016), and Salvadori et al. (2016). Transformations of hydrologic sequences to provide
better descriptions by specific univariate distributions do not ensure that a multivariate distribution
having those univariate distributions as its marginal distributions will satisfactorily describe the
sequences collectively. Multivariate normal distributions have normal marginal distributions, but
multivariate distributions other than multivariate normal distributions may have nonnormal
marginals. Moreover, product moment correlations are not invariant to transformation.

Flood experience is often summarily reported in terms of flood envelope curves as suggested by
Jarvis (1926). The record floods at sites within a specified region, paired with the drainage areas at the
sites, are plotted relative to a specified enveloping line, that is, a line below which all paired points lie.
The enveloping line is a basis of regionalization, as the line is defined by the flood experience as a
function of drainage area at the various sites. The probability that a flood at a specific site will exceed
the flood defined by the envelope line for that site provides a regional basis for assessing the flood risk
at that site. The probability of exceeding the envelope line at a particular site depends upon the
degree of dependence among the record floods at the regional sites, and that dependence is a

Table 12-3. Moments and Moment Ratios of the Number of Record Breaking Events, R.

Moment or moment ratio Theoretical expression

Mean μR =
P

n
i = 1

1
i

Variance σ2R =
P

n
i= 1

1
i −

P
n
i= 1

1
i2

Skewness γR =
�P

n
i = 1

1
i − 3

P
n
i= 1

1
i2 þ 2

P
n
i= 1

1
i3

�
∕
�P

n
i = 1

1
i −

P
n
i= 1

1
i2

�
3∕2

Kurtosis κR = 3.19 − 1.42 1
n − 5.43 1

n2 − 0.00419
ffiffiffi
n

p

Coefficient of variation CvðRÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i= 1

1
i −

P
n
i = 1

1
i2

q
∕
P

n
i= 1

1
i
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function of the dependence structure of the sequences from which the record floods are derived and
upon the length of the sequences. However, the dependence between sequences is not a major
determinant, as that correlation tends to zero as the length of the sequences increases.

The dependence among the record flows may be expressed by the symmetric matrix of the
product–moment correlations between the record flows:

W =

266664
1 w1,2 w1,3 w1,4 w1,m

w2,1 1 w2,3 w2,4 w2,m

w3,1 w3,2 1 w3,4 w3,m

w4,1 w4,2 w4,3 1 w4,m

wm,1 wm,2 wm,3 wm,4 1

377775 (12-39)

If jρj, kj < 1 and ∀j ≠ k, then

lim
n→∞

W → I (12-40)

where I denotes the identity matrix—the correlation between record values is asymptotically zero. If
jρj,kj= 1, then jwj,kj= 1 and ∀j,k. See Sibuya (1960) and Husler and Reiss (1989). Two general
properties of the distribution of record events within sequences are suggestive of Equation (12-40). First,
record events tend to be sparsely distributed over a sequence. For example, from Equations (12-34)
and (12-35), the expected number of records in sequences of length n= 10 is approximately 2.93
with standard deviation equal to about 1.17. For n= 106, the mean number of record events is about
14.39 with standard deviation equal to about 3.57. See, for example, Glick (1978). Second, record
events tend to occur early in a sequence. Unlike the correlation between sequences that can be
estimated directly from the sequences, the correlation between records must be inferred from the rj,k
given the length of the sequences, n.

In an unpublished manuscript, Matalas and Olsen (personal communication) provided values
of w corresponding to values of ρ and n. Table 12-4 illustrates that given ρ, w decreases as n increases.
As ρ increases, w decreases at a slower rate as n increases. The correlations between record events
reported by Matalas and Olsen were obtained via simulation of bivariate normal sequences of
length n, fxt∶t = 1, : : : , ng, and fyt∶t = 1, : : : , ng:

xt = εt (12-41a)

yt = ρεt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
δt (12-41b)

where ∀t, xt , yt , εt , and δt are each distributed as Nð0, 1Þ, and εt and δt are mutually independent.
For each specified value of the couple ðρ, nÞ, M = 50,000 paired sequences fxg and fyg were
generated, and from each of the paired sequences, the record values of the sequences were obtained.
The correlation w was given by the correlation between the M = 50,000 paired record values.

Table 12-4. Correlation Between Records, w, Corresponding to Correlation Between Sequences, ρ,
Given n.

n\ρ 0.1 0.2 0.4 0.6 0.8 0.9

50 0.009 0.028 0.099 0.238 0.490 0.690
100 0.014 0.027 0.080 0.200 0.446 0.657
200 0.004 0.013 0.055 0.159 0.395 0.616
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In a real-world context, the relation between w and ρ given n may be viewed in terms of
Walker’s (1999) partition of 423 sites in the United States into three regions, an eastern region
consisting of 189 sites, a midwestern region consisting of 120 sites, and a western region consisting of
114 sites. At each site, sequences of annual floods were of length n= 50. The average correlations, r,
among the sequences were 0.212 for the eastern region, 0.177 for the midwestern region, and 0.420
for the western region. Under the assumption that floods at a given site are independently and
identically distributed, the mean correlations between the record floods, w, inferred from the r’s, are
0.03 in the eastern region, less than 0.03 in the midwestern region, and about 0.10 in the western
region.

If the number of sites in a region is M, the mean distance between the sites would increase as
the area of the region increases, and the mean correlation between the sequences would decrease.
In a small region where the distances between the sites are small, the correlation between
sequences would tend to be large. Orographic effects on meteorological attributes of a region
would render the mean correlation between the sequences smaller than they would be in the
absence of those effects, whatever the area of the region may be. Moreover, if the length of each of
the M sequences is n, the correlations between the sequences would be less if the sequences are
nonconcurrent than if the sequences are concurrent. Thus, in general hydrologic settings of
orographic effects and nonconcurrency of sequences, the mean correlation between record events
would be smaller than they would otherwise be if the orographic effects were absent and if the
sequences were all concurrent.

In the previous discussions, the dependence between sequences and the dependence between the
record events within the sequences were expressed in terms of the correlations between the
sequences and between the record events. Dependence is defined by the multivariate distribution
underlying the m regional sequences. Unless dependence is linear, correlation may grossly
misrepresent the degree of dependence. If the marginal distributions associated with the m
dimensional distribution function for the region are assumed to be of a certain form, then the
correlations purporting to define the degree of dependence between sequences may not be able to
attain their full mathematical range (−1, 1). For example, the marginal distributions of the bivariate
Farlie–Gumbel–Morgenstern distribution yield a dependence structure marked by jρj < 1∕3,
whatever the marginal distributions are. Schucany et al. (1978) give the upper bound on jρj for
various marginal distributions, and Butkiewicz and Hys (1977) give a detailed account of the
dependence structure in the case of Weibull marginal distributions of the bivariate Farlie–Gumbel–
Morgenstern distribution and of its multivariate extension.

Bivariate distributions, such as the Farlie–Gumbel–Morgenstern distribution, for which the
dependence structure is marked by correlations considerably less than their full mathematical range,
have limited hydrologic utility because the distribution is itself limited to accommodating absolute
values of cross-correlations equal to or less than 1/3. However, such distributions are potentially
useful in dealing with situations of low-level dependence structure, situations that arise in studies of
regions of large spatial scope. In reference to the record events within sequences, the dependence
structure tends to low-level dependence as the sequence lengths n increases. The current dependence
structures of record events within hydrologic sequences is a lower level than in the past, and it is a
higher level than it will be in the future.

The statistics regarding the number of records within a sequence has been dealt with extensively.
For a summary account refer to Arnold et al. (1998). To determine the number of record events
within a region, the multivariate structure underlying the observed sequences—at least the
dependence structure of the sequences—must be accounted for (see Vogel et al. 2001).

At present the literature on the statistics of records from several sequences is relatively sparse.
Several definitions have been proposed for bivariate records. Arnold et al. (1998) list four definitions
of bivariate records and note where others may be found in the literature. In reference to random
variables X and Y , the four definitions are
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1. A record of the first kind occurs at time k, if Xk exceeds all preceding Xi or Yk exceeds all
preceding Yi, or both;

2. A record of the second kind occurs at time k, if Xk exceeds the current record value X� or Yk

exceeds the current record value Y�, or both;

3. A record of the third kind occurs at time k, if Xk exceeds X� and Yk exceeds Y�; and

4. A record of the fourth kind occurs at time k, if Xk exceeds all preceding Xi and Yk exceeds all
preceding Yi.

Nagaraja et al. (2003) account for bivariate records of the second and fourth kinds assuming the
underlying distribution to be the Farlie–Gumbel–Morgenstern and the normal bivariate distribu-
tions. The correlation between the number of records in each of two sequences, both of length n, and
the means and standard deviations of the total number of records in the sequences are given. The
hydrologic shortcoming of the Farlie–Gumbel–Morgenstern distribution, restriction to low-level
dependence, is noted. Transformation of observed flood sequences at two sites on the upper
Mississippi river to correspond to normally distributed marginal distributions facilitates estimation
of the expected number of future record flows at the sites.

12.3 FLOOD ENVELOPE CURVES: APPLICATION OF THE THEORY OF RECORDS

We begin this section by introducing one of the most common applications of the theory of records
to hydrology: envelope curves. A flood envelope curve (Figure 12-5) represents an upper bound on
our flood experience in a region and is formed by the record floods for all sites in a region. This
section reviews the historical (nonprobabilistic) applications of envelope curves and follows with
some recent research and applications that describe how to provide a probabilistic interpretation of
envelope curves. Because envelope curves provide an upper bound on our flood experience, they are

Figure 12-5. Example maximum peak discharge data, Q, and drainage area, A, envelope curve for
observations within the Arkansas and South Platte River Basins in Colorado.
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often compared loosely to other estimates of extraordinary floods such as the probable maximum
flood. A goal of this section is to enable hydrologists to make such comparisons among extraordinary
floods more objective, by including a probabilistic interpretation of all such estimates of extraordi-
nary floods.

12.3.1 Envelope Curves: Historical Background

Envelope curves are relatively simple empirical relationships between the maximum peak flow
experienced in a region and drainage area. Peak flow data are one of the most important measures of
extreme floods (e.g., Dalrymple 1964). Figure 12-5 shows an example envelope curve, with the points
that control the envelope summarized in Table 12-5. Figure 12-5 plots peak flow versus drainage
area. Table 12-5 and Figure 12-5 show that the two flood events in June of 1921 (points 1–5) and
1965 (points 8–10) are responsible for the records that define both envelopes depicted.

The most basic envelope curve formula is that attributed to Myers (Jarvis et al. 1936, Creagher
et al. 1945):

Q=CAn (12-42)

where
Q = peak discharge (ft3/s),
C = coefficient,
A = drainage area (mi2), and
n = exponent less than unity.

As Creagher et al. (1945, p. 125) note, values assigned to n by various investigators have ranged
from 0.3 to 0.8. Based on the data for the Arkansas and South Platte Rives (Figure 12-5), a change
appears to occur in the envelope curve parameters C and n that may be scale dependent.

12.3.1.1 Traditional Envelope Curve Applications

Envelope curves have a long history in flood hydrology studies (Fuller 1914, Meyer 1917, Alvord and
Burdick 1918, Mead 1919, Linsley et al. 1949, Dalrymple 1964). In flood hydrology studies, regional
peak discharge envelope curves are useful for four main purposes: (1) to expand the flood database
for the watershed of interest with data from nearby streams, (2) to portray extreme flood potential in
a region of interest, (3) to gain an understanding of the regional hydrometeorology corresponding to
the largest floods on record, and (4) as a basis for comparison of probabilistic estimates of peak
discharge and/or design floods. Peak flow envelope curves have traditionally been used to examine
maximum floods in many locations such as the United States (Crippen and Bue 1977, O’Connor and
Costa 2004), Puerto Rico (Smith et al. 2005), Italy (Marchetti 1955), and globally (Costa 1987a,
Herschy 2003). They have also been used to examine physical causes of extraordinary floods on small
basins (e.g., Costa 1987b) and for differentiation between rainfall and snowmelt floods (Jarrett 1990).

Flood envelope curves provide an upper bound on the maximum peak streamflow that might be
expected at a site of interest based on data from the surrounding region. Usually, a record flood that
lies near the envelope curve may be two or three times larger than a flood of record from a particular
site within that region (Crippen and Bue 1977). Envelope curves for a region are often used as a guide
to making rule-of-thumb estimates of the magnitude of high flood discharges that may be expected
at a given site on a stream. For example, envelope curves have been used for comparing design flood
discharges for new and existing dams (Creagher et al. 1945, Bureau of Reclamation 1987, Cudworth
1989). Envelope curves are routinely used by hydrologic and hydraulic engineers to judge the
adequacy of probable maximum flood (PMF) estimates (Cudworth 1989, p. 177). They provide a
useful empirical comparison of maximum observed floods within a region to the flood behavior at a
particular site described by a design flood, PMF, or quantile estimate from a frequency curve. The
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largest historic peaks within a region are also used for PMF comparisons (Bullard 1986). Our
probabilistic analysis of envelope curves, which is provided later on in this chapter, makes such
comparisons more objective than using an envelope curve without a probabilistic basis.

Envelope curves can be used in research studies that seek to improve our understanding of the
mechanisms that give rise to extraordinary floods. For example, one could explore flood seasonality,
flood process (snowmelt, thunderstorms, general storms, rain on snow, etc.), and flood hydromete-
orology (storm type, duration, areal extent, etc.) for each of the largest floods. This information can
then be used to enhance our understanding and prediction of floods in the future. Matthai (1990)
describes several limitations of envelope curves, including data quality problems, partial area rainfall/
runoff representation, and the curve’s nonrepresentativeness of the geologic and climatic conditions
at one’s point of interest.

12.3.1.2 Envelope Curve Relationships

In addition to the most commonly used envelope curve relation in Equation (12-42), several others
have been proposed. Myers and Jarvis (Jarvis 1926, Jarvis et al. 1936) recommend n = 0.5 and use a
modified form of Equation (12-42) as (see Linsley et al. 1949, p. 574):

Q= 100b
ffiffiffiffi
A

p
(12-43)

withQ and A defined as previously, and b a constant that ranges from about 1 to 300 based on data in
Table 12-11 of Linsley et al. (1949). Linsley et al. (1958, p. 211) make the following remarks regarding
the Myers formula [Equation (12-43)]: “Only luck will permit the selection of the correct value of b
for a basin. Formulas of this type should never be used for engineering design.”

Based on the data they had at the time for the United States and at other locations around the
world, Creagher et al. (1945) recommend a modified form of Equation (12-42):

Q= 46CA0:894ðA−0:048Þ (12-44)

However, they note that this envelope relation did not bound the 1940 storm in North Carolina
or the May–June 1935 Texas storm. A more flexible form of an envelope curve formula with five
parameters was presented by Crippen (1982):

Q=K1AK2ðAC1 þ C2ÞK3 (12-45)

where C and K are empirical constants. Meyer (1994) uses Equation (12-45) to estimate maximum
flood flows in northern and central California. In addition to the aforementioned equations, many
other formulas have been proposed (Jarvis et al. 1936, Creagher et al. 1945, Linsley et al. 1949).

An equivalent form of Equation (12-42) with peak flow expressed as a unit discharge q (where
q = Q/A) is (Creagher et al. 1945)

q=CAn−1 (12-46)

Figure 12-6 shows this common relationship, using the data from Figure 12-5. The relation in
Equation (12-46) yields a straight line in log space (e.g., Jarvis 1926; Creagher et al. 1945; Matalas
1997, 2000; Castellarin et al. 2005). We recommend the use of Equation (12-46), which we employ in
Section 12.3.2 for developing a probabilistic interpretation of envelope curves.

Unit discharge envelope curves can be based on other variables, such as elevation (e.g., Figure 12-7),
in addition to drainage area. Castellarin et al. (2007) introduce a multivariate approach to the
development of probabilistic regional envelope curves, including both geomorphologic factors and
climatic factors.
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Some early empirical efforts attempted to provide a probabilistic interpretation to record floods.
Fuller (1914) presents three equations that relate mean annual floods, drainage area, return period,
and maximum floods:

Q=CA0:8 (12-47)

Q=Qð1þ 0:8 log10TÞ (12-48)

Qmax =Qð1þ 2A−0:3Þ (12-49)

where
Q = mean annual flood,
Q = greatest 24 h discharge during a period of years T (maximum 1 day flood),
Qmax = maximum peak flow based on the 1 day maximum, and
C = coefficient that is assumed to be constant for the river at the point of observation.

Fuller (1914) as cited in Meyer (1917) was the first to define a regional flood probability in the
context of an envelope curve.

After the mid-1950s in the United States, envelope curves did not typically have any
probability or frequency associated with them (Crippen and Bue 1977, Crippen 1982). As IACWD
(1986, p. 71) notes, “This magnitude is unqualified by any statement of probability or frequency of
occurrence. For this reason, and because the relationship between the envelope curve and the
observational data is not prescribed by any specific hydrologic theory, the proper usage and
interpretation of the envelope curve are not clear.” For envelope curves to be most useful, a
probabilistic interpretation is needed and was recently proposed by Castellarin et al. (2005) and
Vogel et al. (2007).

Figure 12-6. Example of maximum unit peak discharge data, q, and drainage area, A, envelope
curve for observations within the Arkansas and South Platte River basins in Colorado.
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12.3.2 Probabilistic Interpretation of Envelope Curves

Consider an envelope curve that plots the logarithm of the ratio of the record flood to the drainage
area, ln(Q/A), versus ln(A) as was shown earlier in Figure 12-6 and Equation (12-46). We term
such an envelope curve a “regional envelope curve” (REC) because it reflects our regional experience
of record floods. Consider the REC in Figure 12-8 (Jarvis 1926) along with the envelope curve
described by

ln

�
Q
A

	
= aþ b lnðAÞ (12-50)

If the envelope curve is assumed to be linear (in log space) with a given slope b, the intercept a
in Equation (12-50) may be estimated by forcing the REC to bound all record floods to the
present, say up to the year n. See Castellarin et al. (2005) as well as Equation (12-53) and (12-54)
and associated discussion for further information on how to estimate the slope term b for a
region. Let Xi

j denote the annual maximum flood in year i = 1, 2, : : : n at site j = 1, 2, : : : M,

where M is the number of sites in the region. Let XðiÞ
j denote the flood flow of rank (i) at site j,

where ranking is from smallest (1) to largest (n). The REC’s intercept up to the year n can then be
expressed as

Figure 12-7. Example of flood envelope curve based on watershed elevation for observations within
the Arkansas and South Platte River basins, Colorado.
Source: England et al. (2010).
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aðnÞ = max
j= 1, : : : ,M

�
ln

�
XðnÞ
j

Aj

	
− b ln

�
Aj

�

(12-51)

where Aj is the area of site j = 1, 2, : : : M.
Castellarin et al. (2005) propose a probabilistic interpretation of an REC defined by

Equation (12-50) that is based on the following assumptions:
The study region is homogeneous in the sense of the index-flood hypothesis (see, e.g., Dalrymple

1960) and therefore, the probability distribution of standardized annual maximum peak flows is the
same for all sites in the region (or in the pooling group of sites; e.g.,Burn 1990, Castellarin et al.
2001). The standardized annual maximum peak flow, X′, is defined for a given site as the annual
maximum peak flow, X, divided by a site-dependent scale factor, μX (i.e., the index flood), assumed in
this study to be equal to the at-site mean of X. Under this assumption, the flood quantile with
exceedance probability p, denoted as xp, is given by

xp = μXx 0
p (12-52)

where x′p is the regional dimensionless flood quantile with exceedance probability p.
The relationship between the index flood μX and basin area A is of the form

μX =C Abþ1 (12-53)

where C is a constant and b is the same as in Equations (12-50) and (12-51).
Combining Equations (12-52) and (12-53) leads to a relation between ln(xp/A) and ln(A) that is

analogous to Equation (12-50):

ln

�
xp
A

	
= ln

�μX x 0
p

A

	
= ln

�
C x 0

p

�
þ b lnðAÞ (12-54)

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10

lo
g(

Q
/A

)

log(A)

Figure 12-8. Flood experience accrued prior to 1925, discharge, Q in ft3/s, and drainage area, A in
mi2; elements of experience (+) and element of experience (•) defining the intercept of the envelope
curve (thick gray line).
Source: Jarvis (1926).
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The formal analogy between Equations (12-51) and (12-54) originates from the simplifying
assumptions and implies that if the index flood scales with the drainage area, then the slope of the
REC for a region can be identified from this scaling relationship. More importantly, Castellarin et al.
(2005) show that the assumptions also imply that (1) a probabilistic statement can be associated with
the intercept a(n) of Equation (12-50), which is determined from the largest standardized annual
maximum peak flow observed in the region [here standardization is achieved via the index-flood
method using Equation (12-53) to express the index flood], and (2) the exceedance probability
(p-value) of the REC is equal to the p-value of the standardized maximum flood (hereafter referred to
as regional record flood, Y′).

The following two sections illustrate how, under these fundamental assumptions, the problem of
estimating the exceedance probability of an REC can be placed within the context of the theory of
records and the actual estimation of the exceedance probability of an REC can be addressed.

12.3.2.1 Envelope Curves and the Theory of Records

The REC provides an upper bound on record-breaking flood experiences to date and therefore is
closely connected with the theory of records (Vogel et al. 2001, 2007). Castellarin et al. (2005) analyze
the gains in regional flood experience summarized by the REC in the context of record-breaking
events and evaluate the behavior of sequences of regional record floods for cross-correlated regions
through repeated Monte Carlo simulations. See Castellarin et al. (2005) for a description of how
those experiments were performed. According to the authors, the regional gain in flood experience
that causes an upward shift in the REC involves all sites in the region in a “competition” to break the
upper bound that forms the REC. In a region with M sites, a new record event (hereafter referred to
as envelope record) occurs when at least one site experiences a record flood event and the magnitude
of that flood also exceeds the upper bound identified by the current REC. When a new envelope-
record event is experienced, the REC is shifted upward, with the slope b held constant, to bound the
new gain in regional flood experience.

Under the hypotheses adopted here [see Equations (12-52) to (12-54)], which are identical to
those described by Castellarin et al. (2005, Section 2.1), the temporal dynamics of the REC coincides
with the temporal dynamics of the record-breaking process of the series of maxima of the M
standardized annual floods, which is always a univariate iid sequence even in the presence of intersite
correlation.

Figure 12-9 compares the theoretical average number of records μR for a univariate iid sequence
[Equation (12-34)] with the average number of envelope records obtained from Monte Carlo
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Figure 12-9. Values of fμR for a univariate iid sequence of record-breaking events and average
number of envelope records obtained through Monte Carlo experiments for different cross-
correlated regions.
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experiments. Figure 12-9 considers regions withM = 2 to 200 sites, each with sample lengths n = 1
to 200 years both with and without cross-correlation. All curves reported in Figure 12-9 are nearly
coincident, and analogous outcomes can be obtained for the variance of the number of record events
σ2R [Equation (12-35)], showing the equivalence between the temporal dynamics of the record series
for a realization of an iid sequence of random variables and of an REC.

Even though the moments of the number of envelope-record breaking events depend neither on
the regional parent distribution of flood flows, nor on the degree of cross-correlation among flood
sequences (see, e.g., Figure 12-9), these aspects are critical when estimating the exceedance
probability of the envelope, as detailed in the next subsection.

12.3.2.2 Exceedance Probability of Envelope Curves

We describe how to estimate the exceedance probability of an REC under the hypotheses given in
Equations (12-52) to (12-54), which are the same hypotheses as in Castellarin et al. (2005). Let the
variables xi, yi, and zi represent three different random variables related to the annual maximum
flood at site i, the flood of record (FOR) at site i and the ordinate of the point on the envelope curve
corresponding to site i, respectively. Also, let Ai denote the drainage area at site i. The scatter diagram
of lnðyiÞ versus lnðAiÞ, where yi ≡ xðnÞi (FOR at site i), is an expression of our flood experience over
the period t = 1 to t = n. Our experience may be bound by an enveloping line, that is, a line below
which all our experience, expressed in terms of FORs and their relation to drainage area, lies (see the
gray line in Figure 12-8). The enveloping line is set with a slope, b, and passes through that
observation, such that all other points lie below the line, hence the name, envelope line. The envelope
line [Equation (12-50)] may also be rewritten as

lnðziÞ= aþ b lnðAiÞ (12-55)

Consider the derivation of the probability of exceeding the envelope curve at a particular site
i at time t = n + 1, where, perhaps, a water project is envisaged at the site. Vogel et al. (2007)
address this problem by considering a hypothetical region consisting of M sites where the
sequence length n at each site is sufficiently long (in the limit as n→∞), such that the matrix of
the correlations between record values may be represented by an identity matrix, W ≈ I [see
Equations (12-39) and (12-40)]. At time t = nþ 1, the flood at site i will be a flood of record, Ri at
that site with probability

PðRiÞ= ðnþ 1Þ−1; ∀i (12-56)

Given that the flood of record event Ri occurs at site i, the record flood will exceed the envelope
value at that site, Ei with probability given by

PðEijRiÞ=
Z∞
zi

dGðnÞðYiÞ (12-57)

where zi denotes the ordinate of the point on the envelope line given in Equation (12-55)
corresponding to the abscissa, ln(Ai), whereas

GðnÞ½Yi�= Fn½Xi�= Pr½Yi > yi� (12-58)

is the distribution of the FOR in a sequence of length n.
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Of interest here is the occurrence of both events Ei and Ri, at time t = n + 1, that is, having
observed at time t = n + 1 a record flood at site i that also exceeded the envelope. This particular
event, which we term EiRi, will occur with exceedance probability given by

PðEiRiÞ= PðRiÞPðEijRiÞ

= ðnþ 1Þ−1
Z∞
zi

dGðnÞðYiÞ (12-59)

Note that all sites are not equal because site i = i′ is the site that defines the current (t = n)
envelope and for which the record flood, zi 0 = xðnÞi 0 , falls on the envelope curve. All future record
floods at that site will exceed the envelope line, so that

PðEi 0 jRi 0 Þ=
Z∞

zi = xðnÞ
i 0

dGðnÞðyi 0 Þ= 1 (12-60)

whereby

PðEi 0Ri 0 Þ= PðRi 0 ÞPðEi 0 jRi 0 Þ
= PðRi 0 Þ
= ðnþ 1Þ−1 (12-61)

If a water project is contemplated at site i, then of particular interest at that site is the local
exceedance probability in year ðnþ 1Þ of the envelope line defined in year n, that is, the probability that
the flow in year ðnþ 1Þ at site i will exceed the envelope line defined in year n (see Vogel et al. 2007):

ΦiðziÞ =
�
PðEi 0Ri 0 Þ; if i= i 0

PðEiRiÞ; if i ≠ i 0

=
� ð1þ nÞ−1; if i= i 0

ð1þ nÞ−1 R∞
zi
dGðnÞðYiÞ; if i ≠ i 0

(12-62)

Equation (12-62) yields an exceedance probability corresponding to the ordinate of the point on
the envelope line zi corresponding to the abscissa, ln(Ai), based on M samples, each of length n.
Hence the probability ΦiðziÞ is a random variable with a distribution and moments that depend
upon the distributional properties of both the ordinate of the envelope line zi as well as the flood
series at site i.

Vogel et al. (2007) consider two summary measures of ΦiðziÞ: (1) its expectation E½ΦiðziÞ�,
which we term the expected exceedance probability of an envelope (EEPE), and (2) ΦiðE½zi�Þ, which
we term the exceedance probability of the expected envelope (EPEE). The EEPE is defined by

E½ΦiðziÞ�=
� ð1þ nÞ−1; if i= i 0R∞

0

h
ð1þ nÞ−1 R∞

zi
GðnÞðYiÞdz

i
gðMnÞðziÞdz; if i ≠ i 0 (12-63)
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where gðMnÞðziÞ= dGðMnÞðziÞ
dz and ΦiðziÞ is given in Equation (12-62). Here gðMnÞðziÞ represents the pdf

associated with the value of the envelope curve at a particular site i. Because the envelope is defined
by flood series atM independent sites, each of length n, the record length associated with the pdf of z,
gðMnÞðziÞ, is equal to Mn. Similarly, the EPEE is defined by

ΦiðE½zi�Þ=
� ð1þ nÞ−1; if i= i 0

ð1þ nÞ−1 R∞
μz dGðnÞðYiÞ; if i ≠ i 0 (12-64)

where μz denotes the expectation of z.
The summary measures EPEE and EEPE represent two different probabilistic statements

regarding an envelope curve. If one’s concern is with making a probabilistic statement regarding
the single envelope based on historical observations, then EEPE is an appropriate summary measure,
whereas if one’s concern is with making a probabilistic statement regarding the expected envelope,
then EPEE is an appropriate summary measure.

For example, if flood series x arises from a GUM model with cumulative distribution function
given in Equation (12-4), and the envelope curve is based onMn iidGUM observations, according to
Equation (12-7a) the expectation of the envelope curve is given by

μz = ξþ αðγþ lnðMnÞÞ (12-65)

where ξ is the GUM location parameter, α is the GUM scale parameter, M is the number of sites,
each with sample size n, and γ is the Euler number.

Substitution of Equation (12-65) into Equation (12-64) yields the cdf of the record flood at site i
denoted as G(n)(Yi), whereby the exceedance probability of the envelope given in Equation (12-64)
becomes

ΦiðziÞ=
1 − GðnÞðziÞ

nþ 1
=

1 − exp
�
−n exp

�
− zi−ξ

α

��
nþ 1

; f or i ≠ i 0 (12-66)

The EPEE is obtained by substitution of zi = μz from Equation (12-65) into Equation (12-66),
which, after subsequent algebra, leads to

ΦiðμzÞ=EPEE=
1 − exp

�
− expð−γÞ

M

�
nþ 1

; f or i ≠ i 0 (12-67)

where ΦiðμzÞ denotes the exceedance probability associated with the expected envelope curve μz , at
site i, when flows are iid as Gumbel.

The EEPE for the GUM case is obtained by substitution of ΦiðziÞ, given by Equation (12-66),
and gðmnÞðziÞ= dGðmnÞðziÞ

dz into Equation (12-63), which leads to

E½ΦiðziÞ�= EEPE=
Z∞
0

1 − exp
�
−n · exp

�
− z−ξ

α

��
nþ 1

dGðmnÞðziÞ
dz

dz f or i ≠ i 0

=
1

nþ 1

�
1 −

M
M þ 1

�
1 − exp

�
−nðM þ 1Þ · exp

�
π

Cv

ffiffiffi
6

p − γ
			�

≈
1

ðnþ 1ÞðM þ 1Þ (12-68)
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where Cv is the coefficient of variation of the annual maximum flood flows x. Figure 12-10 illustrates
the ratio of the exact and approximate expressions for EEPE given in Equation (12-68) as a function
of M, n, and Cv. Figure 12-10 (see also Vogel et al. 2007) illustrates that the approximation is
generally excellent whenever the product M n>3, regardless of the value of Cv.

Figure 12-11 (Vogel et al. 2007) provides a comparison of the values of EPEE and EEPE for the
Gumbel case and illustrates that the values of EEPE are always greater than those of EPEE. Figure 12-11
illustrates that over the range of values ofM considered, the increase in the ratio of EEPE to EPEE asM
increases strongly indicates that the ratio converges to a value equal to approximately 1.781. Vogel et al.
(2007) prove the correctness of the analytic expressions of EPEE and EEPE for the iid GUM case
through a series of Monte Carlo simulation experiments and provide a close analytical expression of
the EPEE for the iid GEV case, which using the usual notation reads

ΦiðμzÞ= EPEE=
1 − exp

h
− ðΓð1þκÞÞ1∕κ

M

i
nþ 1

; if i ≠ i 0 (12-69)

where Γ(.) is the gamma function and κ is the shape parameter of the GEV distribution. As expected,
EPEE for the GEV case in Equation (12-69) reduces to EPEE for the GUM case in Equation (12-67) as
κ approaches zero.

12.3.3 Exceedance Probability of Empirical Envelope Curves

In most practical applications, the datasets that can be used to construct empirical envelope curves
consist of a limited number of years (i.e., the hypothesis that in the limit n→∞ cannot be applied).
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Figure 12-10. Comparison of the exact and approximate expressions for EEPE given in
Equation (12-68).
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Figure 12-11. Comparison of the ratio of EEPE (Equation (12-68)) to EPEE [Equation (12-67)] for the
Gumbel case (M = no. of sites and n = sample size at each site).
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In addition, actual flood records in neighboring watersheds often exhibit significant values of the
cross-correlation coefficient. Nonetheless, it is exactly under these circumstances that an estimation
of the exceedance probability of the envelope curve is needed for the design and operation of large
dams. Recall that if one’s concern is with making a probabilistic statement regarding the single
envelope curve based on historical observations, then EEPE is an appropriate summary measure,
whereas if one’s concern is with making a probabilistic statement regarding the expected envelope
curve, then EPEE is an appropriate summary measure. This subsection illustrates how to estimate
EPEE for envelope curves constructed from real-world datasets that exhibit limited flow records of
varying length and are cross-correlated. We are unaware of any efforts as of yet to estimate EEPE
from such real-world datasets.

Castellarin et al. (2005) show under two fundamental hypotheses (see beginning of Sec-
tion 12.3.2) the problem of estimating the EPEE reduces to estimating the exceedance probability of
the largest value in a regional sample of standardized annual maximum peak flows (i.e., observed
peak flows divided by the mean annual flood). Their work’s primary challenge involves estimation of
the regional information content of concurrent cross-correlated flood series of equal length.
Castellarin et al. (2005) use results from Matalas and Langbein (1962) and Stedinger (1983) to
quantify the regional information content using the concept of the equivalent number of indepen-
dent annual maxima. Castellarin et al. (2005) express the equivalent number of independent
observations, or number of effective observations neff, as n times the equivalent number of
independent sequences MEC, which can be estimated from

M̂EC =
M

1þ ρβðM − 1Þ
, with β= 1.4

ðnMÞ0.176
ð1 − ρÞ0.376

(12-70)

where ρβ and ð1 − ρÞ0.376 are average values of the corresponding functions of the correlation
coefficients [i.e., ρβ is the average of the M(M− 1)/2 values of ρk,jβ, where ρk,j is the correlation
coefficient between annual maximum floods at sites k and j, with 1≤ k < j≤M). Although here we
assume that ρk,j is the linear correlation between the annual maximum floods, one could also define it
as the linear correlation between the logarithms of the annual maximum floods (see, e.g., Stedinger
1981). Castellarin (2007) presents an algorithm that relaxes the need for concurrent series, enabling
the estimation of neff for real-world datasets.

For a regional dataset consisting of M annual maximum series (AMS) that span n years, the
actual distribution of the flood series in time (e.g., missing data, different installation years for
different gauges, etc.) can be taken into account as follows. First, one identifies the number of years,
n1, for which the original dataset includes only one observation of the annual maximum discharge,
that isM− 1 observations are missing (for example, some gauges may not be operational, or may not
be installed yet). These n1 observations are effective by definition. Second, the dataset containing the
n− n1 remaining years is subdivided into Nsub≤ (n− n1) subsets; each one of them (say subset s) is
selected in such a way that all its Ls≤M sequences are concurrent and of equal length ls and are
therefore suitable for the application of the estimator proposed by Castellarin et al. (2005). Using this
splitting criterion, the effective number of observations neff can be calculated as the summation of the
effective sample years of data estimated for all Nsub subsets,

n̂ef f = n1 þ
XNsub

s= 1

n̂ef f ,s = n1 þ
XNsub

s= 1

Ls ls

1þ
h
ρβ
i
Ls
ðLs − 1Þ

, with β= 1.4
ðLs lsÞ0.176h

ð1 − ρÞ0.376
i
Ls

(12-71)

For a description of the development of Equation (12-72), see Castellarin et al. (2005,
Equation 19).
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As described previously, n1 represents the number of times annual floods were observed at one
site only (and possibly single observations or indirect measurements at miscellaneous sites), that is,
the total number of years in which Ls = 1. The notation ½ · �Ls in Equation (12-71) indicates that the
average terms ρβ and ð1 − ρÞ0.376, which have the same meaning as in Equation (12-70), are to be
computed with respect to the Ls > 1 annual flood sequences that form subset s. The β exponent in
Equation (12-70) coincides formally with β in Equation (12-71). This is consistent with the fact
that the Ls sequences forming each subset s are concurrent and of equal length (ls) (e.g., see
Figure 12-12), which was the condition adopted for the identification of the empirical relationship
in Equation (12-71).

The EPEE value can be estimated by representing the intersite correlation from a suitable model
of cross-correlation versus distance between sites (see, e.g., Tasker and Stedinger 1989, Troutman
and Karlinger 2003) and by using an appropriate plotting position with the overall sample years of
data set equal to n̂ef f . Castellarin (2007) shows that the selection of the cross-correlation model has
limited impact on the reliability of EPEE values and recommends the use of the model introduced by
Tasker and Stedinger (1989) to approximate the true annual peak cross-correlation function ρi,j as a
function of the distance di,j among sites i and j,

ρi,j = exp

�
−

λ1 di,j
1þ λ2 di,j

	
(12-72)

where λ1> 0 and λ2≥ 0 are the regional parameters that may be estimated by either ordinary or
weighted least squares procedures.

Castellarin (2007) addresses the problem of selecting a suitable plotting position for estimating
EPEE. Cunnane (1978) introduces the general plotting position:

p̂EE = 1 −
n̂ef f − η

n̂ef f þ 1 − 2η
(12-73)

where η is the plotting position parameter, and n̂ef f is the empirical estimate of neff given in
Equation (12-71). Each plotting position is characterized by a particular η value (see, e.g., Table 12-6

Year 1 2 n

Site 1
Site 2

...
Site M

Subset n1 1 12 13 32

2 31

n1

Site 1
Site 2

...
Site M

Subset

Rearranged Sample

Original Sample

n 1

n1

Figure 12-12. Subdivision of a descriptive example of M annual maximum series of flood flows that
globally span n years (each square represents one observation) into n1 single observations and three
subsets (i.e., 1, 2, and 3) containing only concurrent sequences of equal length. The rearranged
sample highlights the subdivision.
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for selection criteria). The results reported in Castellarin (2007) indicate that, among several possible
options, a quantile-unbiased plotting position should be used for estimating EPEE. Castellarin (2007)
derives a quantile-unbiased plotting position for use with the GEV distribution. The proposed
plotting position is a very compact and easy to apply asymptotic formula for the estimation of the
exceedance probability of the largest value in a GEV sample, in which the parameter η of
Equation (12-73) depends on the shape parameter κ of the fitted GEV distribution,

ηðkÞ= expðγÞ − 1
expðγÞ −

π2

12 expðγÞ κ; ηðκÞ= 0.44 − 0.46 κ (12-74)

where, as usual, γ = 0.5772 is Euler’s constant. Equation (12-74) should only be applied when
neff ≥ 10 and −0.5< k <0.5.

12.4 APPLICATIONS OF THE THEORY OF RECORDS: CASE STUDIES

The following sections provide three case studies. The first two case studies derive probabilistic
regional envelope curves based on (1) annual maximum flood observations in north central Italy and
(2) precipitation observations in Austria. The third case study examines the record-breaking
properties of flood observations for the continental United States.

12.4.1 Application of Probabilistic Regional Envelope Curves

This section summarizes two real-world applications of the theory of records. In both cases, an
estimate of the average recurrence interval TEC = EPEE associated with the expected regional
envelope curve is obtained. The first example assesses the applicability of probabilistic regional
envelopes of flood flows for design-flood estimation in ungauged basins over a wide geographical
region in north central Italy (see Castellarin 2007). The second example refers to the construction of
probabilistic envelope curves for record rainfall events of various durations that were observed in
Tyrol (Austria). The second example also provides an assessment of the resulting probabilistic
envelope curve using a very long synthetic rainfall series generated through a stochastic rainfall
model (Viglione et al. 2012). Other practical applications of probabilistic regional envelopes of
record floods may be found in Guse et al. (2009, 2010) for the region of Saxony, Germany, and in
Padi et al. (2011) for the African continent, while probabilistic envelopes of extreme rainstorms are
also developed in Castellarin et al. (2009) for north central Italy.

Table 12-6. Parameterization of a Probabilistic Regional Envelope Curve (p).

Name Description* η TEC

Weibull Probability unbiased for all distributions 0.00 neff +1
Cunnane Approximately quantile unbiased 0.40 1.67· neff+0.3
Gringorten Optimized for Gumbel distribution 0.44 1.79· neff+0.2
Hazen A traditional choice 0.50 2· neff
GEV Quantile unbiased for the maximum of a

GEV sample
0.44−0.46·κ nef fþ0.12þ0.92κ

0.56þ0.46κ

*See also Stedinger et al. (1993).
Note: Plotting positions: η is the parameter of the plotting position as in Equation (12-75); κ is the shape parameter of the
GEV distribution; neff is the effective sample years of data; and TEC = 1/EPEE is the recurrence interval assigned to neff.
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12.4.1.1 Probabilistic Regional Envelope Curves for Flood Flows in North Central Italy

We briefly summarize an application of probabilistic regional envelope curves performed by
Castellarin (2007). The study considers flood discharge data for 33 unregulated catchments in
north central Italy, which are illustrated in Figure 12-13. The discharge data were collected by the
National Hydrographic and Hydrometric National Service of Italy. The record length at the stations
varies from a minimum of 15 years to a maximum of 74 years with a mean value of 32 years.

Previous studies indicate that the flood frequency regime presents only a limited degree of
heterogeneity over the whole study area and proposes a subdivision of the area into three subregions
with an acceptable degree of homogeneity. Also, the GEV distribution was shown to be a suitable
regional parent distribution for the annual maximum flood flow sequences in the study area
(Castellarin 2007 and references therein).

Figure 12-13 reports three subregions (regions W, western; C, central; and E, eastern), which
mainly reflect climatic differences existing in the study area. Table 12-7 lists some characteristics of
the study area, such as the number of sites, the overall sample years of data, the number of years for

Figure 12-13. North central Italy: 33 basins, grouped into three homogeneous regions (top panel),
and empirical regional envelope curves for the three subregions of the study area (bottom panel).
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which annual floods are available at one site only [i.e., n1 in Equation (12-71)], and a regional
estimate of the shape parameter κ of the GEV estimated as described in Hosking and Wallis (1997).

Figure 12-13 illustrates envelope curves constructed for regions W, C, and E. Table 12-7 reports
the estimates of the parameters λ1 and λ2 of the cross-correlation model in Equation (12-72)
obtained for the entire study area. The estimates were obtained by applying a weighted least squares
regression algorithm that weights each sample cross-correlation coefficient between two sequences
(sites) proportionally to the number of concurrent annual floods. Table 12-7 also reports the
estimates of the envelope slopes b̂, obtained by regressing the empirical values of the index-flood
(i.e., at-site estimates of mean annual flood) against the drainage areas of the corresponding basins,
along with the values of the intercept a, computed as follows,

a= max
j= 1, : : : ,M

�
ln

�
Qj

Aj

	
− b̂ lnðAjÞ



(12-75)

where Qj denotes the maximum flood observed at site j = 1, 2, : : : M, andM is the number of sites in
the region, while Aj is the area of site j. Recall that Equation (12-75) is based on the index flood
assumption as was discussed earlier in Section 12.3.2. Finally, Table 12-7 lists the coefficients η of the
plotting position estimator calculated using the asymptotic relation of Equation (12-74) as a function of
the κ values, and the resulting estimate of the expected recurrence interval, TEC = 1/EPEE. Recall that
TEC is the expected recurrence interval associated with our estimate of the effective record length neff,
associated with the expected envelope. The probabilistic envelope curves in Figure 12-13 can be used to
obtain a graphical estimate of the TEC year flood (envelope flood quantile) at any ungauged site within
each region as a function of the catchment area alone (TEC values are indicated in Table 12-7).

Castellarin (2007) assesses the reliability of estimates of envelope flood quantiles for ungauged
sites through a comprehensive cross-validation procedure. Those experiments illustrate that the
accuracy of envelope quantiles are comparable to the reliability of regional predictions produced by
the application of the index-flood approach. In summary, envelope flood quantiles are attractive
because they (1) can be easily determined for ungauged sites graphically as a function of the
catchment area alone, (2) do not require any extrapolation of an assumed flood frequency
distribution, and (3) were shown to be conservative by Castellarin (2007) in that overestimation
tends to prevail due to the possible presence of regional heterogeneities.

Table 12-7. Characteristics of Regions W, C, and E in N Italy.

Characteristics Region W Region C Region E

Number of sites 6 10 17
Number of observations 159 339 572
Number of single observations (n1) 12 0 11
Estimated shape parameter κ −0.34 −0.09 −0.11
Estimated envelope slope [see Equation (12-55)], b̂ −0.21 −0.61 −0.16
Calculated envelope intercept [see Equation (12-55)], a 3.61 4.62 2.05
Parameter λ1 (km−1) of the correlation model (see
Equation 12-72)

For all 3 regions: 4.052·10−5

Parameter λ2 (km−1) of the correlation model (see
Equation 12-72)

For all 3 regions: 1.606·10−5

Parameter of the GEV plotting position, η(k) of (see
Equation 12-74)

0.596 0.481 0.490

Recurrence interval, TEC (years) 258 412 751
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9.4.1.2 Probabilistic Regional Envelope Curves for Record Rainfall Events in Tyrol, Austria

Castellarin et al. (2009) first introduced depth–duration envelope curves (DDECs), which, analogous
to RECs for flood flows, are graphical representations of the maximum observed point rainfall depth
(or record rainfall depth) for a given duration over a region. Of interest here is the probabilistic
interpretation of DDECs which Castellarin et al. (2009) introduces, which is analogous to the
probabilistic interpretation of RECs for flood flows. The probabilistic interpretation of DDECs relies
on the assumption that the spatial variability of rainfall annual maxima for a given duration τ can be
described by the variability of mean annual precipitation (MAP). Viglione et al. (2012) show that
if (1) the L-moment ratios of rainfall extremes can be assumed to be constant in space and
(2) a nondecreasing scaling law holds between the mean annual maximum rainfall depth mτ (for
duration τ) and MAP, an analytical relationship results between the local MAP value and the T year
rainfall depth quantile associated with duration τ, hτ,T. When L-moment ratios can be assumed to be
constant in space and the scaling law between mτ and MAP assumes the form

mτ = aτ · MAPbτ (12-76)

the relationship between hτ,T and MAP becomes

hτ,T
MAP

= kτ,T ·
mτ

MAP
= kτ,T · aτ · MAPðbτ−1Þ (12-77)

where aτ and bτ are regional coefficients, whereas kτ,T is a growth factor depending on duration τ and
recurrence interval T. Probabilistic DDECs were applied and validated in north central Italy
(Castellarin et al. 2009) and in the Austrian district Tyrol (Viglione et al. 2012). A brief illustration
of the Austrian application is reported here below.

Tyrol is located in the western part of Austria within the Alpine region and has an area of about
10,600 km2. Table 12-8 describes the study area and the available raingauge network.

An envelope of the record rainstorms observed in the study area for the durations of interest can
be fit using a mathematical relationship analogous to Equation (12-77), in which kτ,T is replaced by a
coefficient, which we term kτ,MAX, whose meaning is analogous to the intercept a in Equation (12-75)
for the REC of flood flows and that can be computed from the observed rainfall data as

kτ,MAX = max
j= 1, : : : ,M

(
hτ,MAX,j

âτ · MAPb̂τ
j

)
(12-78)

Table 12-8. The 73 Rain Gauges in Tyrol (Austria) Considered in Viglione et al. (2012), the 22 Stations
Used for the Comparison are Highlighted in Black; the Gray Scale Shows the Mean Annual
Precipitation (MAP).

No. of gauges 73
Altitude (m a.s.l) 493 (min) 1,297 (mean) 2,850 (max)
MAP (mm) 548 (min) 1,110 (mean) 1,732 (max)
Series length (years) 1 (min) 10 (mean) 31 (max)
Station-years of data 695

Note: a.s.l. = above sea level.
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where estimates of aτ and bτ of Equation (12-78) are obtained through a regression analysis; hτ,MAX,j

in Equation (12-78) denotes the maximum rainfall depth observed for duration τ at site j = 1, 2, : : : ,
M, and M is the number of sites in the region; and MAPj is the local value of the mean annual
precipitation.

RECs for flood flows and DDECs for rainfall are analogous concepts that share an identical
probabilistic interpretation. An estimated recurrence interval can be associated with kτ,MAX. The
empirical estimator of the number of effective observations [Equation (12-71)] yields an estimate of
the exceedance probability of the empirical DDECs. Table 12-9 reports the estimates of the
parameters of the model [Equation (12-77)] for the durations of interest, together with the estimates
of the number of effective observations and the corresponding estimated recurrence intervals
obtained by applying a suitable plotting position.

Viglione et al. (2012) assess the validity of the recurrence intervals estimated for each empirical
DDEC by comparing the envelope curves with quantiles of rainfall depth associated with the same
recurrence intervals retrieved from very long series of synthetic rainfall series generated through an
adaptation of the stochastic rainfall model presented in Sivapalan et al. (2005). Viglione et al.’s (2012)
stochastic rainfall model was calibrated locally (i.e., site by site) for a subset of 22 gauges spanning the
entire range of empirical MAP values (see Figure 12-14) and evenly scattered over the study region
(see Table 12-8). Figure 12-15 illustrates the results of this comparison, showing a good agreement
between DDECs and rainfall quantiles retrieved from long synthetic series, thus supporting the
meaningfulness of the proposed DDECs and the reliability of their probabilistic interpretation. For
further details, the interested reader is referred to Viglione et al. (2012).

12.4.2 Record-Breaking Properties of Floods in the United States

The theory of records offers a framework for understanding the probabilistic behavior of extreme
events, which is nearly independent of the theory of extremes. Thus examining probabilistic
properties of floods is possible without resorting to assumptions regarding a probability distribution.
Other than a probability distribution, the other common assumption is that floods are iid events.
Because the iid assumption is the only assumption required for most theoretical results pertaining to
record events, the theory of records has been suggested for testing the iid assumption (Foster and
Stuart 1954). This is a very unique aspect of the theory of records, that is, many of the theoretical
results only depend on the single iid assumption. Thus an evaluation of whether or not samples
behave as expected under the theory of records may be considered a test of the iid assumption. In the

Table 12-9. Characteristics of the Annual Maximum Rainfall Depths for Different Durations,
Calibrated Coefficients of the Cross-Correlation Formula [Equation (12-72)], Empirical DDEC
Parameters, and Estimated Recurrence Interval (the Number of Stations Considered Is 73 for a Total
of 695 Observations for All Durations).

Duration τ (hours): 0.25 1 3 6

Estimate of bτ in Equation (12-77) 0.682 0.518 0.440 0.433
Estimate of aτ in Equation (12-77) 0.091 0.490 1.15 1.59
Calculated kτ,MAX in Equation (12-78) 3.80 3.51 3.49 2.94
Parameter λ1 (10−4 km−1) of the correlation model,
Equation (12-72)

5.99 8.87 4.57 5.40

Parameter λ2 (10−4 km−1) of the correlation model,
Equation (12-72)

2.05 2.84 1.41 3.38

Number of effective observations n̂ef f in Equation (12-71) 663.9 679.5 665.0 484.1
Recurrence interval, T (years) 1,328 1,359 1,330 968
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following example from Vogel et al. (2001), the record-breaking properties of historical annual
maximum flood records in the United States were examined to determine whether or not they
behave like serially independent events.

To perform these experiments, the Hydro-Climatic Data Network (HCDN) compiled by Slack
et al. (1993) was employed, which comprises average streamflow values recorded on a daily,
monthly, and annual basis in the entire United States spanning the time period 1874–1988. For the
purpose of this study, only data pertaining to the 48 conterminous states were considered, which
correspond to 18 water resources regions. To enable an effective summary of our results, three meta-
regions of the United States were employed: the east, midwest, and west. Respectively, these consist
of two-digit HUs 1–6, 7–12, and 13–18. This analysis does not consider regions outside of the
continental, conterminous United States of America.

Observations of floods in a region are correlated in space, which influences the sampling properties
of the moments of the number of record events, R, given in Equations (12-34 to 12-37). The record-
breaking properties were derived for serially independent but spatially correlated events, as in
Section 12.2.3. To detect any serial dependence of the record-breaking floods in the United States,
the record-breaking frequency of actual floods was compared with their theoretical counterparts.

In Figures 12-16 to 12-18, theoretical and sample estimates of the mean, standard deviation, and
coefficient of variation of the number of record floods in an n year period were compared for the
eastern, midwestern, and western regions of the United States, respectively. Sample estimates of
skewness and kurtosis are known to be significantly biased, so they were not calculated (Wallis et al.
1974, Vogel and Fennessey 1993). The vertical lines (with the small horizontal lines at the end) on
either side of the theoretical values denote approximate 89% Chebyshev 3σ error bars for each
statistic (Ross 1994). Chebyshev’s inequality for any random variable X with mean μ and variance σ2

is given by

Figure 12-14. DDECs for different durations (0.5 to 6 h) in Tyrol, Austria. The circles represent MAP
versus the rescaled maximum recorded rainfall depth for the 73 rainfall stations. The grayscale is
proportional to the sample lengths. The envelope curve of Equation (12-77) is shown by the
continuous line. The dashed line represents the scaling relation between (mτ/MAP) and MAP of
Equation (12-76).
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P½jX − μj ≥ c� ≤ σ2

c2
(12-79)

where c is a constant equal to half the width of the confidence interval; which here is set equal to 3σ,
which implies that P[|X− μ|≥3σ]≤0.11, or else P[|X− μ|≤3σ]≥0.89, which is a crude approxima-
tion, but very convenient here as it can be easily parameterized to document the influence of spatial
correlation on the width of the derived intervals. Analogous confidence intervals are constructed for
the statistics sR and Cv[R]. The heavy confidence intervals denote intervals based on the assumption
of spatial independence (ρ = 0) of the flood observations. The light-weight confidence intervals
(shown only for μR) are based on the assumption that the cross-correlation of the flood observations
is equal to the average cross-correlation of flow records for all sites in the region. According to
Walker (1999), average cross-correlations of the annual maximum flow records in the eastern,
midwestern, and western regions of the United States are 0.23, 0.19. and 0.42, respectively. These
sample estimates of the average spatial correlation of the annual maximum flood series were
computed for all possible pairs of observations, which had at least 10 years of record in common.
Employing the regional average value of cross-correlation is the simplest approach to describe the
distribution of spatial correlations in a region.

Stedinger (1983), Hosking andWallis (1988), and Douglas et al. (2000) also use regional average
values of cross-correlation to describe the dependence between flow series at different sites. Douglas
et al. (2000) compare the use of regional trend tests of US flood records based on (1) regional average
spatial cross-correlations and (2) the boot-strap approach for preserving the empirical regional
distribution of the spatial dependence of flood observations. They find good agreement between
these two approaches. Nevertheless, our use of a regional average spatial cross-correlation is a gross
simplification, because the complex spatial and temporal climatic mechanisms, which give rise to

Figure 12-15. Comparison between empirical DDECs and synthetic rainfall quantiles for the return
period given by the DDEC procedure. The figure is analogous to Figure 12-14 but only the 22 stations
used for the comparison are highlighted (open black circles). The rainfall quantiles, resulting from
the stochastic generation of 1 million years of rainfall, are indicated by solid gray squares. The 90%
confidence bounds are also indicated in gray.
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flood observations, will lead to spatial correlation structures, which in turn depend strongly upon
how the regions are defined.

In computing the moments of the number of record events, R, all possible overlapping sets of n
year periods within the HCDN database were considered. Table 12-10 reports the number of such
nonoverlapping n year periods available in each region. The reason that confidence intervals widen
as n increases is due to the fact that in each region the number of nonoverlapping sets of n year
samples decreases as n increases. The confidence intervals reflect the increasing uncertainty
associated with our ability to determine properties of record-breaking events as n increases. If
smaller regions were used, the confidence intervals would have widened. If the sample estimates of
mean R, reported in top graph of Figures 12-16 to 12-18, fall within the reported 89% confidence
intervals for μR (which account for cross-correlation), it can be concluded that the flood series in that
region are serially independent, because that was the only assumption required for the theoretical

0

1

2

3

4

5

6

7

Years, n

E
[R

]

Sample Estimate - EAST
Theoretical Estimate, E[R]

 = 0.23

 = 0

0

1

2

3

Years, n

s[
R

]

Sample Estimate - EAST

Theoretical Estimate, s[R]

= 0

= 0

0
0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Years, n

C
v[

R
]

Sample Estimate - EAST

Theoretical Estimate, Cv[R]

Figure 12-16. Comparison of the sample and theoretical estimates of E[R], s[R], and Cv[R] as a
function of n for the eastern region.
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analysis. Note that the confidence intervals for μR, which account for the spatial correlation of the
flood observations, are much wider than the confidence intervals that assume spatial independence.

In general, Figures 12-16 to 12-18 illustrate that when one accounts for the spatial correlation of
the flood observations, the observed regional mean R falls within the 89% confidence intervals for μR
for all three US regions. However, if the flood observations are assumed to be spatially independent
(which they are not), we would mistakenly conclude that flood observations in the midwestern and
western regions of the United States are serially dependent. Hence our results indicate that flood
observations in the eastern United States are consistent with the theory of record-breaking
phenomena for serially independent processes. This example shows that the theory of record-
breaking processes provides a comprehensive mathematical framework for evaluating the frequency
and magnitude of extreme events and can be applied to identifying nonstationarity in hydrological
records.
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Figure 12-17. Comparison of the sample and theoretical estimates of E[R], s[R], and Cv[R] as a
function of n for the midwestern region.
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Figure 12-18. Comparison of the sample and theoretical estimates of E[R], s[R], and Cv[R] as a
function of n for the western region.

Table 12-10. Number of Nonoverlapping n-Year Periods in Each Region.

Record Length, n East Midwest West

10 2,680 1,919 1,561
20 1,164 838 665
30 650 432 350
40 418 278 200
50 270 151 136
60 112 66 63
70 36 23 22
80 11 3 4
Total 5,341 3,710 3,001
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12.5 CONCLUSIONS

We have reviewed various theoretical properties associated with the record-breaking behavior of a
single time series or many sets of such observations. While our focus has been on flood and extreme
rainfall events, the theory described here applies to many other natural hazards, including droughts,
landslides, earthquakes, wind loads, sea levels, temperatures and others. We have discussed
parametric record-breaking properties, which generally depend on assumptions concerning the
probability distribution of the observations. We have also discussed nonparametric record-breaking
properties, which generally only depend on the assumption that the series is independent and
identically distributed.

The theory of records relies heavily upon the theory of order statistics (David and Nagaraja
2003) and extreme order statistics, as well as on the theory of extremes (Gumbel 1958). Interestingly,
much of the theory of records is independent of the theory of extremes. Remarkably, only recently
was the theory of records first applied to water resources data (Vogel et al. 2001), thus many
opportunities exist for new avenues of research concerning record processes. We have summarized
two recent case studies, which have applied the theory of records to assign an exceedance probability
associated with an envelope curve of extreme hydrological events (i.e., floods and rainstorms)—a
task that was thought to be impossible before Vogel et al.’s (2007) work. We have also summarized a
case study that explored the nonparametric record-breaking properties of flood events in the
continental United States. Given ever-increasing concerns over the degree of change associated with
the future frequency and magnitude of natural hazards, developments and applications associated
with the theory of records are likely to play an increasingly important role.

Because a fundamental assumption associated with much of the theory of records involves an
assumption of stationarity, extensions to the theory may be needed to account for nonstationary
record processes. For example, many examples now extend the stationary theory of extremes into the
nonstationary domain (e.g., Furrer et al. 2010, Sankarasubramanian and Lall 2003, Towler et al.
2010, Vogel et al. 2011; Serago and Vogel, 2018; Salas et al. 2018). Similar extensions are needed to
enable the theory of records to account for nonstationary processes.

As it has been emphasized, an attractive property of the theory of records is that much of the
theory only depends upon the assumption that flood sequences are iid. Two properties under the iid
assumption in the theory of records complicate the task of determining the extent to which observed
sequences yield record events that accord with the theory. First, the expected number of records
reflected by a sequence of length n is very sparse. For “long” hydrologic sequences, n∼ 100, the
expected number of record events is about 5. For long surrogate hydrologic sequences (e.g., tree rings
and mud varves, n∼ 1,000), the expected number of record events is about 7.5. For sequences of
geologic length, n∼ 1,000,000, the expected number of record events is about 14.4. The longer a
sequence is, the more pronounced is the degree of sparsity of record events. Second, regardless of the
length of a sequence, record events tend to occur early in the sequence. The longer the sequence is,
the more apparent is the “earliness.” As put by Arnold et al. (1998), “we shall never see the 50th
record-breaking event, for in expectation, we will all be dead”. These two factors and others render
the task of detecting evidence counter to the iid assumption quite challenging.

Many fundamental hydrologic problems depend critically upon an understanding of the theory
of extremes, records, and order statistics. We expect that combining these three theories, along with
developments in nonstationarity and Bayesian statistics, may lead to numerous extensions to the
results presented here. For example, the traditional concepts of the probable maximum precipitation
(PMP) and the probable maximum flood (PMF) are used widely in the design of hydraulic
structures, yet have never been fully analyzed within the domain of the theory of record processes.
Only recently has a rigorous theoretical approach to a probabilistic assessment of the PMP
(Koutsoyiannis 1999, Salas et al. 2013) and PMF (Vogel et al. 2007, Salas et al. 2013) been given.
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Tremendous opportunities remain associated with the application of the theory of records to
estimation of extreme rainfall and flood probabilities, including traditional deterministic criteria,
such as the PMP and PMF.
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advective limit for ET, 75–76, 75e
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(APSWM): conversion from exceedance
probability to return period, 351–352; derived
probability distribution theory, 342–343;
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356f–358f, 359t; overview, 336–338; rainfall
characterization, 338–340; rainfall event
characteristics, 339–340, 339t; rainfall-runoff
transformation, 340–341; runoff event peak
discharge rate, 343–345; runoff event volume,
343; runoff routing through channel reaches,
348–351; runoff routing through detention
ponds, 345–348, 346f

annual extremes for different durations,
24t–25t, 24–26, 26f, 50–51, 69f–70f

APSWM. see analytical probabilistic
stormwater models

aquifers. see groundwater hydrology
Archimedean copulas, 420–421, 422f, 422t
ARMA modeling: low flow analysis, 290–294;
streamflow analysis, 210–212

ASCE Standardized Reference ET Equation
(ASCE05), 102, 102e

Atlas 14 (NOAA), 29, 29f
atmospheric evaporative demand (E0):
complementarity with ET, 81–83, 82f,
129–133; concept of, 71–73; drivers and
limits, 74–78, 125–129; evaporation paradox
and, 133–134; as limit to ET, 78–79;
measurement of, 73–74; models of, 78–101;
observations, 96–101; physics of, 73–78;
temperature-based formulations, 93–95, 94f;
trend decomposition, 130–132, 131f; trends,
124–129

autocorrelation: evapotranspiration, 117–120,
118f, 119f; low flows, 288–299; soil properties,
162–163; streamflow time series, 204, 205f

automated sampling, 400
autoregressive moving average (ARMA)
models: low flow analysis, 290–294;
streamflow, 210–212

Back Creek, West Virginia, flood frequency
analysis, 252–255, 253t, 254t, 255f

basin water balance estimates for ET, 83–85,
83e–84e, 91

Baton Rouge, Louisiana, storm duration and
depth analysis, 460–461, 462f–463f, 462t,
463–465, 464t, 465f–466f, 467, 468f–474f,
473, 475t–477t

Bayesian methods, 234
best management practices (BMP) for pollutant
removal, 360–374, 361t–364t, 362f–363f,
367f–370f, 371t–372t, 374f

beta distribution, 388–389
binomial distribution, 389–390
bivariate exponential distribution, 414–415,
415f

bivariate extreme value type I distribution,
415–416, 417f

bivariate log-normal distribution, 413–414
bivariate normal distribution, 412–413, 413f
bootstrap sampling, 46–49, 47f, 48e, 48f
box-and-whisker plots, 393–394, 393f, 396
Budyko framework for ET, 79–81, 80e–81e,
80f

Bulletin 13, Methods of Flow Frequency
Analysis (IACWR 1966), 235

Bulletin 15, A Uniform Technique for
Determining Flood Flow Frequencies
(WRC 1967), 235

Bulletin 17B, Guidelines for Determining Flood
Flow Frequency (IACWD 1982), 234–236,
246–247, 249–252, 257

Bulletin 17C, Guidelines for Determining Flood
Flow Frequency (IACWD), 255–257

capillary pressure head, 150, 150f
CDFs. see cumulative distribution functions
censored water quality data, 394–396
channel reaches, 348–351
Chicago, Illinois, flood control analysis,
354–360, 355t, 356f–358f, 359t

chi-squared test, 193–194, 194t, 195f
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climate change: flood frequency analysis and,
257–261; low flows and drought and, 325;
precipitation frequency analysis and, 51–52

coefficient of skew: defined, 183, 183e; gamma
PDF, 187; log-gamma PDF, 189; log-normal
PDF, 185

coefficient of variation: gamma PDF, 187;
log-gamma PDF, 189; log-normal PDF, 185

complementarity of regional ET and E0, 81–83,
82f, 129–133, 131f, 132t

complex river system modeling, 222–228
conditional probability adjustment (CPA),
250, 253

copulas: analytical goodness-of-fit tests,
441–443, 443t–444t, 458–460, 459t–460t,
461f, 467, 473, 475t–477t, 479, 481, 484t;
Archimedean, 420–421, 422f, 422t;
assessment of fitting, 449, 451, 458–460, 465,
467, 473, 478–479, 481; concept of, 417f, 418;
dependence and, 424–436; dependence
structure and test space, 446f–448f, 447–448,
461, 463, 463f, 474, 477, 480f; derivation of
associated copulas, 424; error statistics of fit,
440–441, 441t, 451, 458, 458t, 467, 475t, 479,
481, 483t; estimation of dependence
parameter, 431–436, 448–449, 449t, 464–465,
464t, 477, 480t; exact maximum likelihood
method of estimation, 435–436; extreme
value, 421, 423; graphical goodness-of-fit
methods, 437–438, 438f–441f, 440, 449,
450f–457f, 451, 465, 465f–466f, 467,
468f–474f, 478–479, 481f–483f; invariance
property, 424–425; maximum pseudo-
likelihood method of estimation, 435;
meta-elliptic, 423; miscellaneous, 423–424;
moment-like method of estimation, 431,
433–435; nonparametric measures of
association, 425–427, 427t; overview,
416–418; peak flow and volume analysis,
444–449, 445f–448f, 449t, 450f–458f, 451,
458–460, 458t–460t, 461f; potential marginal
distributions, 445–447, 446f; qualitative
assessment of dependence, 427–429, 428f,
430f; random number generation and, 436;
regional flood risk analysis, 473–474,
478–479, 478t, 480t, 481–485, 483t–484t;
selection process, 436–443, 437f; storm
duration and depth analysis, 460–461,
462f–463f, 462t, 463–465, 464t, 465f–466f,
467, 468f–474f, 473, 475t–477t; tail dependence

characteristics, 429–431, 432t, 433f–434f; types
of, 418–424

correlation coefficient, 181, 181e
correlation scale, 181
CPA (conditional probability adjustment),
250, 253

crop ET (ETc). see reference crop ET
cumulative distribution functions (CDFs):
copulas, 418, 419f; empirical frequency
analysis and, 273–274, 273e, 395;
precipitation frequency analysis, 10–11,
11t, 34f

cumulative probability plots, 10–11, 69f–70f

daily precipitation time series, 22–23, 22f–23f
dam effects on low flows, 321–323
Darcy’s Law, 150, 150e
DARMA modeling: drought length, 302; low
flows, 293–294

decision making aids for infiltration and soil
water processes, 172

derived distribution method, uncertainty
analysis, 364

derived probability distributions: runoff
characteristics, 342–354; runoff event peak
discharge rate, 343–345; runoff event volume,
343; runoff routing through channel reaches,
348–351; runoff routing through detention
ponds, 345–348, 346f; theory, 342–343

descriptive indexes for precipitation extremes,
53–54, 53t

deseasonalization, 213–214, 213e–214e
design storms, 336–337
detention ponds: flood control analysis,
354–360, 355t, 356f–358f, 359t; runoff
routing, 345–348, 346f

dimensionless relationships in infiltration,
160–162, 161f

dimming, 126–128
disaggregation models, 224–228
discrete ARMA modeling: drought length, 302;
low flows, 293–294

diversion effects on low flows, 321–323
droughts: climate change and, 325; DARMA
modeling, 302; defined, 272, 273f;
intensity, 305–307, 320; length, 300–305,
303t, 304f, 305t; magnitude, 305–308,
310–312, 320; overview, 2–3, 269–270;
probability distributions, 300–308, 310–316;
regional analysis, 319–321; return period,
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316–319, 319f; statistical characterization,
299–319

duration: of drought, 272, 273f; of low flow, 271,
271f; of storm, 460–461, 462f–463f, 462t,
463–465, 464t, 465f–466f, 467, 468f–474f,
473, 475t–477t

Durbin-Watson test, 40, 40e

E0. see atmospheric evaporative demand
eddy covariance technique, 85–88, 85e, 87e
effective saturation, 150, 150e, 150f
El Niño southern oscillation (ENSO), 257–261,
260t, 261t, 262f

EMA. see expected moments algorithm
EML (exact maximum likelihood) method,
435–436

empirical analysis: low flows, 273–274;
precipitation frequency analysis, 10–11; water
quality variables, 395

energy balance modeling, 88–93, 89f, 92f, 93f
ENSO (El Niño southern oscillation), 257–261,
260t, 261t, 262f

enteric bacteria, spring water quality modeling,
198–200, 200f

envelope curves. see flood envelope curves
Epan. see pan evaporation
EQRM (equi-ratio quantile matching), 36–37,
36f, 37e

ET. see evapotranspiration
ETc (crop ET). see reference crop ET
ETCDI (Expert Team on Climate Change
Detection and Indexes), 53–54, 53t

(ETWB). see water balance-derived ET
evaporation. see evapotranspiration (ET)
evaporation paradox, 133–134
evapotranspiration (ET): advective limit, 73–74,
73e; atmospheric evaporative demand
(see atmospheric evaporative demand);
autocorrelation, 117–120, 118f, 119f; Budyko
framework, 79–81, 80e–81e, 80f;
complementarity with E0, 81–83, 82f,
129–133; defined, 71; dimming and, 126–128;
drivers and limits, 74–78, 125–129, 132–133,
132t; eddy covariance estimation, 85–88, 85e,
86f, 87e; energy and water limits, 79–81;
energy balance modeling, 88–93, 89f, 92f, 93f;
estimation of, 72; evaporation paradox and,
133–134; GCM modeling and, 122; global
observations, 121–122; Mann-Kendall test,
117–120, 119f; measurement of, 73–74;

models, 78–101; moisture availability limit,
74–75, 74e; overview, 2; Penman-Monteith
approach, 101–102, 102e; physics of, 73–78;
radiative driver, 76–78, 76e–77e, 76f;
reference crop ET (see reference crop ET);
regional trends across CONUS, 123–125,
123f; remote sensing and, 88–93, 89f, 92f, 93f;
stilling and, 128–129; trend analysis, 116–134;
utilization of concept, 71–72; water balance
estimates, 83–85, 83e–84e, 91

exact maximum likelihood (EML) method,
435–436

exceedance probability of envelope curves,
516–522, 519f, 521f, 522t

expected moments algorithm (EMA), 252,
253–255, 254t, 255f, 256–257, 263–264

expected value: gamma PDF, 186; log-gamma
PDF, 188; log-normal PDF, 184

Expert Team on Climate Change Detection and
Indexes (ETCDI), 53–54

exponential distribution: bivariate, 414–415,
415f; groundwater hydrology, 186; hydraulic
conductivity data, 195–196, 196t;
precipitation data, 13; record events, 495t, 500

extreme events: droughts (see droughts); floods
(see flood frequency analysis); precipitation
(see precipitation extremes); record events
(see record events)

extreme value copulas, 421, 423
extreme value type I distribution: hydrologic
analysis, 415–416, 417f; precipitation
extremes, 12; record events, 495t, 496–498,
497f

extreme value type III distribution: low flow
frequency analysis, 279–280, 280f;
precipitation data, 12; water quality variables,
388–389

FARMA (fractionally differenced autoregressive
moving average) models, 218–220

FDCs (flow duration curves), 321–322, 324f
first-order gamma-autoregressive modeling,
291–295, 295f, 295t

first-order second moment, uncertainty
analysis, 364–365

flood control. see urban stormwater
management

flood envelope curves: basic formula, 509, 509e;
empirical, 519–522, 521f, 522t; exceedance
probability, 516–522, 519f, 521f, 522t;
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historical background, 508f, 509, 510t, 511;
overview, 508–509; probabilistic
interpretation of, 513–519, 514f, 522–526,
523f, 524t, 525f, 526t, 527f–528f;
relationships, 511–512, 512f, 513f; theory of
records and, 515–516, 515f; traditional
applications, 509, 511

flood frequency analysis: annual flood series
model, 240–243; block adjustment, 257–258;
case studies of record events, 522–532;
copula-based analysis, 473–474, 478–479,
478t, 480t, 481–485, 483t–484t; envelope
curves (see flood envelope curves); estimation
procedures, 245–257; expected moments
algorithm, 252, 253–255, 254t, 255f, 256–257,
263–264; historical information and, 250–252,
251f, 256–257, 262; log-Pearson type III
distribution and, 234, 236–238, 240–244; low
outliers, 249–250, 252–253, 256, 262; method
of moments (MOM), 245–248; moments of
number of record events, 503–504, 505t;
multivariate distributions, 410–412, 504–508,
506t; nonparametric properties of record
events, 501–508; overview, 2, 233–234;
parametric adjustment, 257–258; parametric
properties of record events, 494–501;
parametric relationships, 258–259; probability
distribution of number of record events, 503,
504f; recommendations under development,
255–257; record theory and, 491–533;
recurrence time for record event, 501–502,
502e; regional risk analysis, 473–474, 478–479,
478t, 480t, 481–485, 483t–484t; runoff routing
through channel reaches, 348–351; theory of
records and, 526–531, 529f–531f, 531t; waiting
time for record event, 501–502, 502e

Florida: annual precipitation extreme, example,
24t–25t, 24–26, 26f; climate cycles and
rainfall, 51–52, 52f; intensity-duration-
frequency curve for rainfall, 26–28, 27f

flow duration curves (FDCs), 321–322, 324f
FLUXNET, 85, 86f
fractional Gaussian noise model, 217–218
fractionally differenced autoregressive moving
average (FARMA) models, 218–220

frequency analysis: of floods (see flood
frequency analysis); of low flows, 273–274

frequency distributions, 28–29, 29f
frequency factors, 18–19

gamma distribution: drought magnitude, 307,
309t–310t; groundwater hydrology, 185–188;
precipitation data, 13; residence time and age
of groundwater, 196–198, 197f; spring water
quality modeling, 198–200, 200f; water
quality variables, 388–389

Gauley subbasin, West Virginia, regional flood
risk analysis, 473–474, 478–479, 478t, 480t,
481–485, 483t–484t

Gaussian distribution. see normal distribution
general circulation model (GCM) simulations:
evapotranspiration and, 122; precipitation
extremes and, 56

generalized extreme value (GEV) distribution:
low flow series, 280–282, 281f; precipitation
data, 13; record events, 495t, 498–500, 499f

generalized Pareto distribution, 495t, 500–501
geometric mean, 182, 182e
geostatistical scaling methods, 162–163, 163f,
164f

Geum River basin, Korea, low flow analysis,
322, 323f

GEV distribution. see generalized extreme value
distribution

glossaries: record events, 491–492; water quality
variables, 381–383

goodness-of-fit tests: annual extremes for
different durations, 24t–25t, 24–26, 26f;
copula selection, 437–438, 438f–441f,
440–443, 443t–444t, 449, 450f–457f, 451,
458–460, 459t–460t, 461f, 465, 465f–466f,
467, 468f–474f, 473, 475t–477t, 478–479, 481,
481f–483f, 484t; daily precipitation time
series, 22–23, 22f–23f; hydraulic conductivity
data, 193–194, 194t, 195f; L-moment
diagrams, 21; normal distributions, 20;
quantitative measures, 21

gravity drainage, 152
Greenbrier River, West Virginia, peak flow and
volume analysis, 444–449, 445f–448f, 449t,
450f–458f, 451, 458–460, 458t–460t, 461f

Greenbrier subbasin, West Virginia, regional
flood risk analysis, 473–474, 478–479, 478t,
480t, 481–485, 483t–484t

green building design principles, 352–354
ground-based measurements of precipitation,
6–7

groundwater hydrology: coefficient of skew,
183, 183e; geometric mean, 182, 182e;
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notations for aquifer properties, 182;
overview, 2; probability density functions,
183–190; probability distributions, 179–201;
residence time and age, 196–198, 197f; sample
average, 182, 182e; spring water quality
modeling, 198–200, 200f; standard deviation,
182–183, 182e–183e; statistical definitions,
180–181; variance, 182

Guidelines for Determining Flood Flow
Frequency, Bulletin 17 series (IACWD),
234–236, 246–247, 249–252, 255–257

Gumbel distribution. see extreme value type I
distribution

Han River basin, Korea, low flows analysis, 322,
323f–325f

historical information: flood frequency analysis
and, 250–252, 251f, 256–257, 262;
precipitation frequency analysis and, 31–32

homogeneity: Epan data, 99–101; precipitation
extremes, 42–44; statistical, 181

homogeneous region selection for low flow
analysis, 284–285

Hortonian overland flow, 151
Hurst effect, 162, 207–208, 217–221
hydraulic conductivity: aquifers, 179, 180f;
exponential PDF application, 195–196, 196t;
infiltration and, 150–151; log-gamma PDF
application, 192–194, 193f, 194t, 195f; log-
normal PDF application, 191–192, 191f–192f;
temporal variability, 158–160; vertical soil
heterogeneity, 156

HYDRO-35, 28–29
hydrologic analysis: bivariate exponential
distribution, 414–415, 415f; bivariate extreme
value type I distribution, 415–416, 417f;
bivariate log-normal distribution, 413–414;
bivariate normal distribution, 412–413, 413f;
copula method, 416–443 (see also copulas);
flood events, 410–412; hydrometerological
applications, 408–410; multivariate
distributions, 408–416; overview, 3, 407–408

hydrologic cycle: evapotranspiration
(see evapotranspiration); floods (see flood
frequency analysis); groundwater
(see groundwater hydrology); infiltration
(see infiltration); multivariate frequency
distributions in (see hydrologic analysis);
precipitation extremes (see precipitation
extremes); record events (see record events);

soil water (see soil water); stormwater
management and (see urban stormwater
management); streamflow (see streamflow)

hydrologic design: future data sources, 52–53;
future of, 57

hypergeometric distribution, 390

IDF (intensity-duration-frequency) curves:
precipitation extremes, 26–28, 27f

IDWM (inverse distance weighting method),
32–33

IETD (interevent time definition), 51
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