




Symmetrization in Analysis

Symmetrization is a rich area of mathematical analysis whose history reaches back
to antiquity. This book presents many aspects of the theory, including symmetric
decreasing rearrangement and circular and Steiner symmetrization in Euclidean spaces,
spheres, and hyperbolic spaces. Many energies, frequencies, capacities, eigenvalues,
perimeters, and function norms are shown to either decrease or increase under
symmetrization.

The book begins by focusing on Euclidean space, building up from two-point
polarization with respect to hyperplanes. Background material in geometric measure
theory and analysis is carefully developed, yielding self-contained proofs of all the
major theorems. This leads to the analysis of functions defined on spheres and
hyperbolic spaces, and then to convolutions, multiple integrals, and hypercontractivity
of the Poisson semigroup. The author’s star function, which preserves subharmonicity,
is developed with applications to semilinear partial differential equations. The book
concludes with a thorough self-contained account of the star function’s role in complex
analysis, covering value distribution theory, conformal mapping, and the hyperbolic
metric.

A l b e r t Ba e r n s t e i n I I was a professor in the Department of Mathematics at
Washington University in St. Louis until his death in 2014. He gained international
renown for innovative solutions to extremal problems in complex and harmonic
analysis. His invention of the “star function” method in the 1970s prompted an
invitation to the International Congress of Mathematicians held in Helsinki in 1978,
and during the 1980s and 1990s he substantially extended the breadth and applications
of this method.
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Notation

|A|, the operator norm of a matrix A, §7.8
|A|, the linear measure of a subset A of R or T, §11.1
αn, the volume of the unit n-ball, §1.4
AL and SAL classes, §2.1
AL0 and SAL0 classes, §2.2
A(R1, R2), open spherical shell, §9.2
βn−1, the surface measure of the unit (n − 1)-sphere, §4.5
B, the Borel σ -algebra, §1.3
Bc, the set of Borel sets contained in some compact set, §9.2
B

n(r), the open n-ball of radius r centered at the origin, §1.4
B

n(a, r), the open n-ball of radius r centered at a, §1.5
Bt, Brownian motion, §5.7
BV , the space of functions of bounded variation, §4.2
Ĉ, extended complex numbers C ∪ {∞}, §11.4
Cc, continuous functions with compact support, §2.2
c(E), the center of mass of E, §2.6
Cγ , Hölder spaces, §4.8
Cap K, the Newtonian capacity of K, §5.5
Capp K, the variational p-capacity of K, §5.6
CαK, the Riesz α-capacity of K, §5.6
D, open unit disk, §11.1
D(r), open disk of radius r, §11.1
diam E, the diameter of E, §1.7
d(x, E), the distance from point x to set E, §2.4
∂∗E, the reduced boundary of E, §4.3
∂if , the partial derivatives of f , §3.4
∂vf , the derivative of f in direction v, §3.1
Dαf , multiindex notation for derivatives, §4.8



x Notation

�, the Laplace operator, §5.1
d(x, y), spherical distance in §7.1; hyperbolic distance in §7.6
�s, spherical Laplacian, §7.2
�� and related elliptic operators, §9.6, 9.7, 9.8, 9.10, 9.11
�✫, a variant of the �� operator, §10.6
∇s, spherical gradient, §7.2
∇h, hyperbolic gradient, §7.6
E#, rearrangement of a set E, §1.6 and later. The particular type of rear-
rangement (e.g., symmetric decreasing, Steiner, spherical, cap) depends on the
context.
E(δ), the δ-collar of E, §4.4
E(−δ), the δ-core of E, §4.4
Ex, expected value with respect to the Brownian motion starting at x, §5.7
Ẽ, the Gauss symmetrization of set E, §7.7
f ∗, the decreasing rearrangement of f , §1.2
f + = max(f , 0) and f − = max(−f , 0), positive and negative parts of f , §1.3
f #, rearrangement of a function f , §1.6 and later. The particular type of
rearrangement (e.g., symmetric decreasing, Steiner, spherical, cap) depends
on the context.
f �, the �-function, for various types of rearrangement, §9.1, 9.2, 9.6, 9.7, 9.8,
9.10, 9.11
f ✫, a variant of the �-function, §11.1
fH , the polarization of f with respect to H, §1.7
f̃ , the Gauss symmetrization of function f , §7.7
f#μ, the pushforward of μ by f , §1.3
G(x, y,�), Green’s function, §9.4
G(x), Green’s function of unit ball with pole at 0, §9.4
G(Rn), the conformal group of Rn, §7.6
γn, the Gauss measure, §7.7
H

n, the n-dimensional hyperbolic space, §1.6
H, the upper halfplane, §11.1
H(Rn), the set of affine hyperplanes in R

n, §1.7
H(Sn), the intersections of linear hyperplanes in R

n+1 with S
n, §7.1

H+ and H−, two halfspaces determined by affine hyperplane H, §1.7
Hs, Hausdorff measure, §4.1
H(f ), the Riesz energy of f , §8.7
Hk,n, spherical harmonics on S

n of degree k, §8.8
Jf , the Jacobian determinant of f , §4.1
J(f , g, h), triple convolution evaluated at zero, §8.1. More general version in
§8.5.



Notation xi

J-operator for definite integration over balls, spherical caps, and so on,
depending on the type of rearrangement, §9.6, 9.7, 9.10, 9.11
K(θ), open spherical cap on S

n centered at e1, §7.1
K(x, y, t) the Dirichlet heat kernel, §8.6
Kλ(x) = |x|−λ, the Riesz kernel, §8.7
L, the Lebesgue measure on R, §1.2
Ln, the Lebesgue measure on R

n, §1.4
λf , distribution function, §1.1
λ(t+) and λ(t−), one-sided limits, §1.1
Lip, the Lipschitz class, §3.1
λ1(�), the principal Dirichlet eigenvalue of �, §5.3
Lcap K, the logarithmic capacity of K, §5.6
Ms, Ms∗, Minkowski content, §4.4
Mod�, the conformal modulus of �, §5.6 (extended to dimensions n > 2 in
§7.8)
M(K), the space of finite measures on K, §9.2
Mloc(X), the space of locally finite measures on X, §9.2
μ#, rearrangement of a measure, for various types of rearrangement, §§9.5–
9.9, 9.11
μ�, star operation applied to a measure, for various types of rearrangement,
§9.6, 9.7, 9.8, 9.10, 9.11
νn, normalized spherical measure, §8.8
O(n), orthogonal group, §7.1
ω(t, f ), the modulus of continuity of f , §1.7
p∗, the Sobolev conjugate exponent of p, §4.6
P(E), the perimeter of set E, §4.3
R

+ = [0, ∞), the set of nonnegative real numbers
RG and RT , the Grötszsch and Teichmüller rings, §7.8
ρH , reflection in hyperplane H, §1.7
S

n, the n-dimensional unit sphere, §1.6
S(r), the circle of radius r centered at the origin, §11.1
σn−1, the restriction of Hn−1 to S

n−1, §4.5
�-function, see entries above for f � and μ�

✫-function, see entry above for f ✫

T(�), the torsional rigidity of �, §5.7
T✫, the ✫-function of the Nevanlinna characteristic T , §11.2
τ(E), the canonical measure on hyperbolic space, §7.6
Tr(t,�), the trace of the heat kernel, §8.6
uK , the equilibrium potential of K, §5.5
V(f ), the total variation of f , §4.2



xii Notation

W1,p, W1,p
0 , Sobolev spaces, §3.4

W(�), the space of functions whose weak Laplacian is a measure, §9.2
(X,M,μ), measure space, §1.1
χA, characteristic function of set A, §1.1
Yk, a spherical harmonic of degree k, §8.8



Foreword

At the 1973 Symposium at Canterbury on Complex Analysis there were two
stars. One was the star function and the other was its inventor, Al Baernstein.

Suppose u(z) is subharmonic in the annulus {reiθ : r1 < r < r2}, and define

u✫(reiθ ) = sup
E

∫
E

u(reit) dt,

where the supremum is taken over all sets E of measure 2θ in [0, 2π ]. Then u✫

is the star function of u.

Theorem I With the above hypotheses, u✫ is subharmonic in the semiannu-
lus {reiθ : r1 < r < r2, 0 < θ < π}.

(See Corollary 9.10 and the Chapter 9 Notes, with u✫ = u�/r.)
It is amazing how many consequences have been deduced by Baernstein and

others from this innocent-looking theorem, and one purpose of this volume is
to provide a coherent account of what have been the most important. There
are generalizations to higher dimensional Euclidean space but some of the
most interesting results occur when u(z) = log |f (z)| and f is analytic or
meromorphic. These are described in Chapter 11 of this book.

In a short foreword it is impossible to do justice to the full portfolio of results
in this comprehensive book on symmetrization. So I would like to concentrate
on two results in Chapter 11, which were first announced at the Canterbury
conference.

1. Let S be the class of functions

f (z) = z + a2z2 + · · ·
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analytic and univalent in the unit disk |z| < 1. If � is a convex increasing
function we have∫ 2π

0
�

(
log |f (reiθ )|) dθ ≤

∫ 2π

0
�

(
log |k(reiθ )|) dθ ,

where k(z) = z/(1 − z)2 is the Koebe function, with strict inequality unless f
equals the Koebe function or one of its rotates (e−itk(zeit)).

As a corollary, we have for 0 < p < ∞ and 0 < r < 1 that

Mp(r, f ) ≤ Mp(r, k),

where

Mp(r, f ) =
(∫ 2π

0
| f (reiθ )|p dθ

)1/p

.

2. Baernstein originally introduced the star function in order to prove A.
Edrei’s spread conjecture. This is more complicated to formulate and needs
a few definitions. Suppose that u(z) is δ-subharmonic in the plane, that is,
u(z) = u1(z) − u2(z) where u1 and u2 are subharmonic. We define u+(z) =
max(u(z), 0), and

m(r) = m(r, u) = 1

2π

∫ 2π

0
u+(reit) dt

for r > 0. Let

n(r) = 1

2π

∫
{|z|≤r}

�u2 dxdy

and

N(r) = N(r, u) =
∫ r

0
t−1 (n(t) − n(0)) dt + n(0) log r.

Then

T(r) = T(r, u) = m(r, u) + N(r, u)

is the Nevanlinna characteristic of u (the designation is in honor of Rolf
Nevanlinna, the founder of this theory). The deficiency of u is defined by

δ(u) = lim inf
r→∞

m(r, u)

T(r, u)

(so that 0 ≤ δ(u) ≤ 1), and the lower order of u is

μ = lim inf
r→∞

log T(r, u)

log r
.

Then Baernstein’s spread theorem states:
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Theorem II If δ(u) > 0 then for every positive η there is a positive ε and a
sequence of radii rn and sets En of measure at least 2β − η in [0, 2π ] so that
rn → ∞ and

u(rneiθ ) > εT(rn) on En,

where

β = min
(
π , (2/μ) sin−1

√
δ/2

)
.

See Proposition 11.7, which handles the case of u = log |f | with f meromor-
phic and is phrased in terms of a more general growth measure than μ.

This value of β is sharp. When f is meromorphic in the plane and u = log |f |,
we deduce Edrei’s spread conjecture on the size of the set where |f | > 1; in fact
on this set log |f | is comparable to T(r). Applying the result to u = − log |f |
we obtain sharp bounds for the sum of the deficiencies of f . These were known
for μ ≤ 1/2 and conjectured by Edrei when 1/2 < μ < 1. Very little is known
when μ > 1 other than for certain isolated values, as discussed in Note 3 at
the end of Chapter 11.

—Walter Hayman





Preface

Albert Baernstein passed away June 10, 2014, a great loss to mathematics
and to his many friends, colleagues, and students. As recounted in Walter
Hayman’s foreword, Al’s early discovery of the star function, along with its
immediate applications to classical complex analysis, gave him international
prominence, and provided the foundation for a long and productive career
in mathematical analysis. An obituary, including a mathematical sketch and
bibliography, has appeared in the Notices of the American Mathematical
Society (Drasin, 2015).

Al worked on this symmetrization book for many years. Toward the end
of his life, when it became clear he might not finish the work, a group of
friends and former students committed to completing the project in the manner
he envisaged. Al gave his blessing, and shared his files. He had planned eleven
chapters. Eight and a half were essentially complete, and he left a rough outline
of his goals for the remainder.

Richard Laugesen1 and David Drasin were the general coordinators, aided
by Juan Manfredi. In the early stages, Leonid Kovalev provided an essential
service by editing Al’s original LATEX files to label the results, create an index
file, put references into .bib format, and make the notation list. Juan Manfredi
wrote most of the Introduction, and he and Almut Burchard drew the figures for
the book. Burchard provided invaluable help revising Chapter 8, and Laugesen
revised and added material to Chapter 9. Al had prepared the first section of
Chapter 10, and Laugesen and Jeffrey Langford wrote the remainder. David
Drasin and Allen Weitsman wrote Chapter 11, using Al’s earlier account
(Baernstein, 2002) as a guide.

The extended period required to finish the book was warranted, we feel, by
the mathematical vision embedded in Al’s manuscript. We hope his monograph

1
Supported by the Simons Foundation (#429422 to Richard Laugesen).
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will serve as a foundation for further research in symmetrization and its
applications.

Cambridge University Press has always been patient and supportive. Special
thanks go to Juan Manfredi, who contributed to and encouraged the group
effort at every stage. We warmly thank Judy Baernstein for decades of
friendship, and for the hospitality she showed to all mathematicians making
pilgrimages to Washington University in St. Louis.

— David Drasin (Purdue University),
Richard S. Laugesen (University of Illinois),

June 2018



Introduction

This is a book primarily about symmetrization of real-valued functions and
sets. Many extremal problems in mathematics and physics have symmetric
solutions, the quintessential example being the isoperimetric inequality (see
Chapter 4) that among all sets with given volume, the ball possesses minimal
surface area. The book develops and applies symmetrization techniques for
problems in geometry, partial differential equations, and complex analysis.

Other treatments of symmetrization with applications to analysis and partial
differential equations can be found in the works of Bandle (1980), Bennett
and Sharpley (1988), Kawohl (1985), Kesavan (2006), Lieb and Loss (1997),
and Pólya and Szegő (1951). For applications to complex analysis see Duren
(1983), Hayman and Kennedy (1976), Hayman (1989, 1994), and Dubinin
(2014). For applications to Fourier analysis and hyperbolic geometry, one may
consult Beckner (1995).

Each chapter ends with Notes that contain historical remarks and additional
information.

Chapter 1 presents the theory of rearrangements of functions, where one
compares a real-valued function f on a measure space (X,M,μ) with another
function g, defined on a possibly different measure space, such that f and
g have the same “size.” The notion of size corresponds to the distribution
function λf (t) = μ( f > t). To avoid technical difficulties with infinity, we
always assume that λf (t) < ∞, for every t > ess inf f . We consider f and g
to have the same size if they have the same distribution function, in which
case f and g are called rearrangements of each other. We would like to find a
rearrangement g that has “more symmetry” than f .

The simplest case (§1.2) is the decreasing rearrangement of f , denoted f ∗,
which is a decreasing one-variable function defined on the interval [0,μ(X)].

Next in simplicity is the symmetric decreasing rearrangement on R
n (§1.6),

written f #(x). It has the property that ( f # > t) is a ball centered at



2 Introduction

the origin. Before studying f # prerequisites in measure theory are covered
(§§1.3–1.4) in order to present a general version of Ryff’s factorization
theorem (1970). Ryff’s theorem asserts that if (X,M,μ) is a nonatomic
measure space with μ(X) < ∞ and f : X → R is M measurable, then
a measure preserving transformation T : X → [0,μ(X)] exists such that
f = f ∗ ◦ T for almost every x ∈ X. Note that if T is measure preserving,
then f and f ◦ T have the same distribution function. A particular case is
when T(x) = αn|x|n, with αn the volume of the unit ball in R

n. In that case
f # = f ∗◦T (see §1.6), which connects the symmetric decreasing rearrangement
to the decreasing rearrangement through the change of variable T .

Another type of rearrangement central to this book is the polarization
of f with respect to an affine hyperplane H ⊂ R

n, denoted by fH (§1.7).
Polarization involves moving the larger values of f preferentially to one side of
the hyperplane. Polarization with respect to all hyperplanes that do not contain
the origin yields the symmetric decreasing rearrangement f #.

The chapter ends with convergence theorems for f ∗ and f #, covering the
cases of almost everywhere convergence and convergence in measure.

Examples and graphs are included throughout the chapter, in line with the
author’s pedagogical intentions. Some new notions are introduced first in the
discrete case, where functions are just finite sequences and all calculations can
be carried out explicitly.

Chapter 2 covers the foundational inequalities for integrals of functions on
R

n. In Baernstein’s approach a key notion is that of an AL function �(x, y),
which generalizes the condition of nonnegative mixed partials �xy ≥ 0. The
two key results in this chapter are that symmetric decreasing rearrangement
of a continuous function decreases its modulus of continuity, and that certain
integral expressions increase when functions are replaced by their symmetric
decreasing rearrangements.

The proof presented for the decrease of modulus of continuity
(Theorem 2.12) is based on elementary polarization inequalities and the
Arzelà–Ascoli theorem, and does not rely on other inequalities such as the
isoperimetric or Brunn–Minkowski type inequalities.

Given nonnegative functions f , g, along with a nonnegative kernel K and an
AL function � : R+ × R

+ → R
+, the basic inequality in Theorem 2.15 says

that a certain integral expression increases under symmetrization:∫
R2n

�( f (x), g(y))K(|x − y|) dx dy ≤
∫
R2n

�( f #(x), g#(y))K(|x − y|) dx dy.

The proof is presented in stages. First, an analogous inequality is proved in
the simple case of a space consisting of two points (Theorem 2.8), and then
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for the case of polarization with respect to an affine subspace (Theorem 2.9),
and finally for the symmetric decreasing rearrangement (Theorem 2.15). This
structured approach permits easy modification later (Chapter 7) to spheres and
hyperbolic spaces. The proof is done first in the case of continuous �, which
is the most important case for applications, and completed in §§2.8–2.9 for
general AL functions.

In §2.7 many direct consequences of Theorem 2.15 are presented, including
the classical Hardy–Littlewood inequality∫

Rn
fg dx ≤

∫
Rn

f #g# dx, =
∫
R+

f ∗g∗ dx,

as well as the contractivity of rearrangement in the L∞-norm (Corollary 2.23).
Chapter 3 develops the basic Dirichlet integral inequalities for symmetric

decreasing rearrangement. The main result is the inequality∫
Rn

|∇f #|p dx ≤
∫
Rn

|∇f |p dx, 1 ≤ p < ∞,

for f ∈ Lip(Rn,R) satisfying λf (t) < ∞ for all t > inf f (Theorem 3.7) and its
extension to f ∈ W1,p(Rn,R+) (Theorem 3.20). The inequality when p = ∞
is easier, ‖∇f #‖L∞(Rn) ≤ ‖∇f ‖L∞(Rn), and follows from the monotonicity of
the modulus of continuity (Theorem 3.6). Background on Lipschitz functions
is given in §3.1. The proof of Theorem 3.7 (the Lipschitz case) is in §3.2,
ultimately based on the basic inequality in Theorem 2.15. Various comments
are made on the equality case. This section also includes a version valid for
nonnegative functions on a domain � ⊂ R

n (Corollary 3.9), assuming the
function vanishes on the boundary.

Section 3.3 presents a more general inequality for �-Dirichlet integrals∫
Rn

�(|∇f #|) dx ≤
∫
Rn

�(|∇f |) dx,

where � : R+ → R
+ is convex and increasing with �(0) = 0. The proof

is again based on Theorem 2.15. Another approach due to Dubinin based on
polarization is included too.

Sections 3.4 and 3.5 include background material on Sobolev spaces and
functional analysis needed to extend the Dirichlet integral inequality to
functions in the Sobolev space W1,p(Rn,R+). The extension is presented in
§3.6. The chapter ends with §3.7, discussing the continuity of the rearrange-
ment operator f → f # in various situations. The operator is continuous in
Lp(Rn,R+), continuous at the zero function in W1,p(Rn,R+), and continuous
everywhere in W1,p(R,R+) (dimension n = 1), but is discontinuous at a
general Sobolev function when n ≥ 2. The condition for continuity at f , the
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coarea regularity condition discovered by Almgren and Lieb, is presented in
this section.

Chapter 4 is devoted to the isoperimetric inequality and sharp Sobolev
inequalities. It begins with a review of geometric measure theory tools
(Hausdorff measures, area formula, and Gauss–Green theorem) used in this
and later chapters. The convention of Evans and Gariepy (1992) is followed in
this chapter: “measure” means “outer measure.”

Three isoperimetric inequalities are presented: for perimeters (Theorem
4.10), for Hausdorff measures (Corollary 4.13), and for Minkowski content
(Theorem 4.16). If E ⊂ R

n with finite perimeter, finite measure, or finite
Minkowski content, one has

P(E) ≥ P(E#),
Hn−1(∂E) ≥ Hn−1(∂(E#)),
Mn−1∗ (∂E) ≥ Mn−1(∂(E#)),

where P(E#) = Hn−1(∂(E#)) = Mn−1(∂(E#)) = nα1/n
n Ln(E)

n−1
n , and E#

is a ball of the same volume as E. (Here Ln is the n-dimensional Lebesgue
measure.) All three isoperimetric inequalities are deduced from the fact that
symmetrization decreases the Dirichlet integral (Theorem 3.7) or the variation
of a function (Theorem 4.8).

Additional facts from geometric measure theory (the coarea formula and
polar coordinates) are stated in §4.5. This section also shows that the coarea
formula and the isoperimetric inequality for perimeter together imply decrease
of the Dirichlet integral under symmetrization.

Section 4.6 presents the proof of the sharp Sobolev embedding inequalities
for f ∈ BV(Rn), n ≥ 2, which is

‖f ‖ n
n−1

≤ n−1α−1/n
n V( f ).

Equality holds when f = χB for some ball B ⊂ R
n. The proof is reduced to

the radial case by symmetrization. Another proof based on the isoperimetric
inequality and the coarea formula is also included. This shows that the sharp
Sobolev inequality in BV(Rn) is indeed equivalent to the sharp isoperimetric
inequality. Section 4.7 gives the corresponding sharp result for W1,p(Rn) when
1 < p < n, n ≥ 2:

‖f ‖p∗ ≤ (nα1/n
n )−1(p∗/p′)1/p′

(
p′

n

�(n)

�(n/p)�(n/p′)

)1/n

‖∇f ‖p,

where p∗ = np/(n − p) is the Sobolev conjugate of p, and p′ = p/(p − 1)
is the Hölder conjugate, and � is the Gamma function. Equality holds for
gn,p(x) = (1 + |x|p′

)−n/p∗
. The proof of this inequality starts with a
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symmetrization to reduce to radial functions, and then follows a constructive
version of the strategy of the proof by Cordero-Erausquin, Nazaret and
Villani (2004) based on Monge–Kantorovich mass transportation ideas. The
point is that in this proof, the transport map is explicitly constructed.

The last part of the chapter, §4.8, deals with the cases p = n (Moser’s
theorem) and p > n (Morrey’s embedding theorem). Sharp inequalities are
not known in the latter case, while partial results are available in the former.

Chapter 5 covers three classical topics in symmetrization, and includes
historical remarks as well as the needed background in physics to guide the
reader. The first result is that symmetrizing a fixed membrane into a disk of
the same area decreases its principal frequency (the first eigenvalue of the
Laplacian with Dirichlet boundary conditions), as conjectured by Rayleigh in
1877 and proved independently by Faber (1923) and Krahn (1925). The second
result is that symmetrization increases the torsional rigidity of a planar domain,
as conjectured by St Venant in 1856 and proved by Pólya (1948). Lastly, a
closed ball in R

3 is shown to have the smallest Newtonian capacity among all
compact sets with the same volume. This conjecture was raised by Poincaré in
1887 and proved by Szegő (1930). The proofs depend on the decrease of the
Dirichlet integral under symmetric decreasing rearrangement of the function.

Background on weak solutions and spectral theory for the Laplace operator
is presented in §§5.1–5.2 with all details carefully presented. In §5.3 we reach
the proof of the Faber–Krahn theorem: when � is a bounded open set in R

n

and �# is a ball of the same volume, the first eigenvalue λ1 of the Laplacian is
smallest for the ball: λ1(�) ≥ λ1(�

#). The proof relies on expressing the first
eigenvalue as the minimum value of the Rayleigh quotient, by

λ1(�) = min
u

∫
�

|∇u|2 dx∫
�

u2 dx
,

where the minimum is over all u ∈ W1,2
0 (�) with u �≡ 0.

Two useful domain approximation lemmas are proved in §5.4, and then
the Newtonian capacity of a compact set is developed from Coulomb’s
inverse square law in electrostatics, in §5.5. Szegő’s Theorem’s follows from
the variational characterization of Newtonian capacity in terms of Dirichlet
integrals:

Cap(K) = inf

{
1

4π

∫
R3

|∇v|2 dx : v ∈ A(K)

}
where the class of admissible functions is

A(K) = {v ∈ Lip(R3) : 0 ≤ v ≤ 1 in R
3, v = 1 on K, lim

|x|→∞
v(x) = 0}.
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The key point is that if v is admissible for K then v# is admissible for the
symmetrized set K#. Extensions to variational p-capacities, Riesz α-capacities,
and logarithmic capacities are considered in §5.6.

The torsional rigidity of a bounded open set � ⊂ R
n is the quantity

T(�) = 2
∫
�

u(x) dx,

where u satisfies �u = −2 in � with u = 0 in ∂�. It turns out that u(x)
can also be interpreted as the expected lifetime of Brownian motion starting
at x ∈ � and that T(�)/2|�| equals the average lifetime of a particle born
somewhere in �. The key result of §5.7 is that symmetrization increases both
quantities, that is,

T(�) ≤ T(�#).

Chapter 6 discusses Steiner symmetrization. The Steiner symmetrization
of a set or function on R

n = R
k × R

m is obtained by performing symmetric
decreasing rearrangement on the k-dimensional slice Rk×{z}, for each z ∈ R

m.
Basic properties of symmetric decreasing rearrangement that were devel-

oped in Chapter 1 are adapted to Steiner symmetrization in §6.2, and properties
of polarization are adapted in §6.3. Then Theorem 6.8 is an analogue of the
main inequality (Theorem 2.15), taking the form∫

�( f (x), g(x̄))K(|x − x̄|) dx dx̄ ≤
∫

�( f #(x), g#(x̄))K(|x − x̄|) dx dx̄.

In §6.5 we see Steiner symmetrization decreases the modulus of continuity
(Theorem 6.10) and the diameter (Theorem 6.12), and acts contractively on
L∞(X) (Theorem 6.14).

When considering the effect of Steiner symmetrization on Dirichlet integrals
(§6.6), one first splits the gradient as

∇f (x) = (∇yf (x), ∇z f (x)
)

where x = (y, z). Applying on each slice the result for symmetric decreasing
rearrangement from Chapter 3, we find under suitable conditions on f that∫

�(|∇yf #(y, z)|) dy ≤
∫

�(|∇yf (y, z)|) dy

for each z. Integrating over z gives∫
�(|∇yf #(x)|) dx ≤

∫
�(|∇yf (x)|) dx.
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The corresponding inequalities for the transverse gradient ∇z f and full gradient
∇f are obtained in Theorem 6.16:∫

�(|∇zf
#(y, z)|) dy ≤

∫
�(|∇zf (y, z)|) dy

and ∫
�(|∇f #(y, z)|) dy ≤

∫
�(|∇f (y, z)|) dy

for each z. Once again, integrating over z yields inequalities on all of Rn.
While the above statements are simple, the proofs requires a technical

lemma postponed to §6.7. In §6.8 the case of p-Dirichlet integrals is considered
for Sobolev functions (Theorem 6.19). The case p > 1 follows from Theorem
6.16, but the case p = 1 needs additional work.

Steiner symmetrization decreases perimeter and Minkowski content, but in
general it is not known whether it decreases the (n−1)-dimensional Hausdorff
measure (§6.9). Steiner symmetrization also decreases the principal frequency
and various capacities, and increases the torsional rigidity and mean lifetime
of a Brownian particle (§6.10).

Chapter 7 covers symmetrization in the sphere Sn, hyperbolic space Hn, and
Gauss space, and includes as an application a landmark theorem of Gehring on
quasiconformal mappings.

Spheres and hyperbolic spaces have a canonical distance and measure,
and possess rich isometry groups of measure preserving mappings. There are
plenty of hyperplanes in which to polarize, and so most of the theory from
Chapters 2–6 can be extended.

Sections 7.1 and 7.2 introduce the distance and measure on the sphere. The
distance d(x, y) is the length of the shortest circular arc joining points x and y,
and so 0 ≤ d(x, y) ≤ π . The measure σn is the restriction of the n-dimensional
Hausdorff measure Hn to S

n. The unit vector e1 plays the role of origin, in the
sphere, and the metric balls centered at this origin are the open spherical caps

K(θ) = {x ∈ S
n : d(x, e1) < θ}, θ ≤ π .

Hyperplanes in S
n are given by the intersection of the sphere with hyperplanes

in R
n+1 that pass through the origin. Hence the polarization theory from §1.7

carries over to the sphere. Symmetric decreasing rearrangement for sets and
functions extends to the sphere also, using spherical caps rather than Euclidean
balls.

Spherical analogs of inequalities from Chapters 1 and 2 are developed in
§7.3. The basic polarization inequality is Theorem 7.2, and the foundational
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inequality for integrals of functions on S
n under symmetric decreasing rear-

rangement is Theorem 7.3. The proofs are somewhat simpler than in Euclidean
space, due to compactness of the sphere. In §7.4 one finds the decrease of
spherical Dirichlet integrals under symmetric decreasing rearrangement on the
sphere (Theorem 7.4) and the spherical isoperimetric inequality for Minkowski
content (Theorem 7.5).

Cap symmetrization on R
n is presented in §7.5, where spherical (k, n)-

cap symmetrization corresponds to (k, n)-Steiner symmetrization except now
rearranging on k-spheres rather than k-planes. For example, circular sym-
metrization in the complex plane is exactly (1, 2)-cap symmetrization, with
the function made symmetric decreasing about the positive real axis, on each
circle centered at the origin.

Section 7.6 is devoted to symmetrization in the hyperbolic space H
n, which

is modeled by the unit ball Bn endowed with the hyperbolic metric

ds = 2

1 − |x|2 |dx|,

where |dx| is the Euclidean length element. The corresponding hyperbolic
measure has density 2n(1 − |x|2)−n. Polarization is defined in terms of
hyperbolic hyperplanes, and hyperbolic symmetric decreasing rearrangement
is constructed in terms of balls centered at the origin, but with respect to
the hyperbolic measure rather than Euclidean measure. The majority of the
symmetrization results from Chapters 1–5 are shown to hold for hyperbolic
symmetric decreasing rearrangement.

Section 7.7 presents a brief discussion of symmetrization in the Gauss
space (Rn, dμ), where dμ = (2π)−n/2e−|x|2/2 dx. Here sets and functions
are rearranged with respect to the measure dμ. The lack of appropriate
hyperplanes makes the theory quite different from Euclidean, spherical, or
hyperbolic symmetrization. A version of the isoperimetric inequality for the
Gaussian Minkowski content can be proved by using the fact that Gauss space
is the limit of spheres of increasing radius and dimension going to infinity; see
Corollary 7.12.

In the final section, §7.8, the basic theory of quasiconformal mappings
in R

n is discussed, including the equivalence of the analytic and geometric
definitions of quasiconformality (Theorem 7.15). The sharp Hölder continuity
exponent 1/K for K-quasiconformal mappings is obtained by using (n − 1, n)-
cap symmetrization, in Theorem 7.16 and Corollary 7.17. This is a celebrated
theorem of Gehring (1962).

Chapter 8 studies symmetrization and convolution. The Riesz–Sobolev
convolution theorem for nonnegative functions f , g, h on R

n asserts that the
triple convolution
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Rn

∫
Rn

f (−x)g(y)h(x − y) dxdy = f ∗ g ∗ h(0)

increases when f , g, h are replaced by their symmetric decreasing rearrange-
ments. The theorem is proved for functions on the circle S1 in §8.1, using ideas
suggested by the star function in Chapter 9. The version on the circle implies
the version on the real line (§8.2), which in turn implies the version in R

n (§8.3)
for symmetric decreasing rearrangement and (k, n)-Steiner symmetrization.
The Brunn–Minkowski inequality is proved in §8.4 as an application of Riesz–
Sobolev.

A significant extension of the Riesz–Sobolev inequality, valid for multiple
integrals with arbitrarily many functions, is the Brascamp–Lieb–Luttinger
inequality proved in §8.5. It implies that the Dirichlet heat kernel increases
under symmetrization (§8.6). On a bounded open set � ⊂ R

n the Dirichlet
Laplacian has eigenvalues 0 < λ1 ≤ λ2 ≤ . . ., and by writing the heat kernel
K(x, y, t) as an eigenfunction series one arrives at the heat trace

Tr(t,�) =
∫
�

K(x, x, t) dx =
∞∑

j=1

e−λjt.

Luttinger’s Theorem 8.9 says the heat trace increases under rearrangement:

Tr(t,�) ≤ Tr(t,�#),

where �# denotes the symmetric decreasing rearrangement or (k, n)-Steiner
symmetrization of the domain.

The Hardy–Littlewood–Sobolev inequality∫
R2n

f (x)g(y)|x − y|−λ dxdy ≤ C‖f ‖p‖g‖q

holds when p > 1, q > 1, 0 < λ < n. Section 8.7 presents a result of Lieb that
determines the sharp constants for certain special values of the parameters.
A key ingredient is to observe the conformal invariance of the integral
(Proposition 8.12). Theorem 8.15 presents the sharp version (best constant)
of the Hardy–Littlewood–Sobolev inequality for 1 < p < 2 and λ = 2n/p′.
In this case the extremals are constant multiples of (a2 + |x − v|2)−n/p, where
a > 0 and v ∈ R

n.
In §8.8 and §8.10 the endpoint cases λ → n and λ → 0 are investigated,

following ideas of Beckner. The first case yields Gross’s logarithmic Sobolev
inequality (8.62, 8.63), as an infinite dimensional version of Beckner’s loga-
rithmic Sobolev inequality in S

n (Theorem 8.17). The second case gives sharp
inequalities for exponential integrals known as the Lebedev–Milin inequality
(8.69) and Onofri’s inequality (8.70). In §8.9 Beckner’s logarithmic Sobolev
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inequality is used to establish the hypercontractivity of the Poisson semigroup
in a sharp range.

Chapter 9 marks the debut of the star function in the book. Each type of
rearrangement u# has an associated star function u�, which is an indefinite
integral of u#. This chapter proves “subharmonicity” theorems for the star
function, expressing the fact that if u satisfies a Poisson-type partial differential
equation then u� satisfies a related differential inequality. In the simplest case
of a function u in the plane, subject to circular symmetrization, the result says
that if u is subharmonic then so is u�/r. Subharmonicity yields comparison
theorems for solutions of partial differential equations (Chapter 10), and
extremal results in complex analysis (Chapter 11). Recall the complex plane
with circular symmetrization is where the star function first made an impact.

Section 9.1 defines the star function in terms of the decreasing rearrange-
ment on a general measure space, by

u�(x) =
∫ x

0
u∗(s) ds = sup

{∫
E

u dμ : μ(E) = x

}
.

This formula motivates the star function definition for each of the specific
geometries considered later in the chapter: spherical shells, spheres, Euclidean
domains, and so on. Section 9.2 provides an overview of the chapter, and the
next section establishes some facts on measurability.

The Laplacian is usually regarded as a differential operator, but it is more
convenient in §9.4 to formulate the Laplacian as a limit of integral operators,
so that later we can apply rearrangement results for convolutions. Specifically,
the Laplacian at a point equals the difference between the average value of the
function over a small neighborhood and its value actually at the point, as made
precise by Lemma 9.5 for functions and Lemma 9.6 for measures.

The theory of the star function is easiest to grasp in the case of (n−1, n)-cap
symmetrization on a spherical shell, because no boundary conditions need be
imposed. Accordingly, we start with that case in §9.5. Given a measure with
decomposition

dμ = f dLn + dτ − dη

where the function f is locally integrable, Ln is Lebesgue measure and τ and
η are nonnegative measures, the cap symmetrization of μ is defined by

dμ# = f #dLn + dτ # − dη#.

Here f # is symmetric decreasing on each sphere centered at the origin, τ #

is the measure obtained by sweeping the mass of τ on each sphere to the
positive x1-axis, and η# is obtained by spherically sweeping the mass of η
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to the negative x1-axis. The “pre-subharmonicity” result in Theorem 9.7 says
that if u satisfies a semilinear Poisson equation then its cap symmetrization u#

satisfies a corresponding differential inequality:

−�u = φ(r, u) + μ �⇒ −�(u#) ≤ φ(r, u#) + μ#,

although only with respect to test functions that are nonnegative and cap-
symmetric decreasing. The Riesz rearrangement inequality for convolutions is
the key step in the proof of pre-subharmonicity, because it leads to an integral
inequality relating �(u#) and �u, in the weak sense.

Section 9.6 defines the star function for cap symmetrization, which is

u�(r, θ) =
∫
K(θ)

u#(rs) rn−1 dσn−1(s),

where K(θ) ⊂ S
n−1 is the spherical cap of aperture θ centered on the positive

x1-axis. Also defined is an operator �� that is a modified Laplacian in the r
and θ variables. In 2 dimensions �� = r�r−1. The desired subharmonicity
property of the star function (Theorem 9.9) says that

−�u = φ(r, u) + μ �⇒ −��u� ≤ Jφ(r, u#) + μ�,

where the J-operator involves integrating over spherical caps, and μ� is defined
by dμ� = f � drdθ + dτ� (with η being discarded).

A subharmonicity property for the star function in the complex plane follows
as a special case (Corollary 9.10):

�u ≥ 0 �⇒ �(u�/r) ≥ 0,

where this star function relates to circular symmetrization, that is, symmetric
decreasing rearrangement on each circle centered at the origin. (Note the star
function definition in this book differs from the original one in the literature by
a factor of rn−1 – hence the occurrence of u�/r in the last formula.) In other
words, if u is subharmonic then so is u�/r.

The spherical shell results are used in §9.7 to deduce a subharmonicity
theorem on the sphere, and in §9.8 to arrive at a subharmonicity theorem for
(k, n)-cap symmetrization on ring-type domains such as domains in R

3 that are
rotationally symmetric around the vertical axis.

Sections 9.9 and 9.10 develop the star function and subharmonicity result
for the situation most widely used in applications: symmetric decreasing
rearrangement on a domain in R

n (Theorem 9.20). The function u is now
required to be nonnegative and satisfy a zero Dirichlet boundary condition.
Once more, the Riesz rearrangement inequality plays the key role in the proof.
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Finally, subharmonicity for (k, n)-Steiner symmetrization is proved in §9.11,
assuming u ≥ 0 and u → 0 at “horizontal” boundary points.

Chapter 10 establishes comparison principles for solutions of partial dif-
ferential equations. The prototypical result says that the solution of Poisson’s
equation increases in an integral sense when the data in the equation is
rearranged: if −�u = f on � and −�v = f # on �#, with u and v nonnegative
and satisfying Dirichlet boundary conditions, then ‖u‖Lp(�) ≤ ‖v‖Lp(�#) for
each p ≥ 1. Such comparisons have been used in the literature for deriving
sharp bounds on certain eigenvalues, obtaining a priori bounds on solutions,
and comparing Green functions, among other uses.

Integral norm comparisons follow from star function comparisons. The
theory of majorization in §10.1 implies that

∫
�(u) dLn ≤ ∫

�(v) dLn for
all convex increasing � if and only if u� ≤ v�. Thus the task is to prove that
rearranging the data in Poisson’s equation increases the star function of the
solution.

Maximum principles for distributional solutions are proved in §10.2, as
a preliminary step. Section 10.3 contains comparison principles under sym-
metric decreasing rearrangement on a Euclidean domain, firstly for linear
equations of the form −�u + cu = μ where u ≥ 0 satisfies a zero Dirichlet
boundary condition (Theorem 10.10), and then for the semilinear equation
−�u = φ(u)+μ where φ is convex decreasing (Theorem 10.12). The equation
−�u = e−u, for example, relates to the hyperbolic metric, as explained later
in Chapter 11. The comparison results are adapted to Steiner symmetrization
in §10.4.

Underlying each result is a maximum principle argument applied to u�−Jv.
Chapter 9 says that u� is a subsolution of a certain differential inequality and Jv
(which behaves like v�) is a solution of the corresponding differential equation.
Thus in the linear case, u� − Jv is a subsolution and so attains its maximum on
the boundary. We can exploit the boundary conditions on u and v to complete
the proof that u� − Jv ≤ 0. An additional argument is needed for the nonlinear
terms φ(u) and φ(v), to rule out interior maximum points.

Symmetric decreasing rearrangement on the sphere is handled in §10.5. If
−�su = φ(u) + μ and −�sv = φ(v) + μ#, where �s is the spherical
Laplacian, and if u and v have the same mean value over the sphere, then v

has larger Lp-norms than u, and larger oscillation (Theorem 10.16).
Cap symmetrization on spherical shells is the subject of §10.6. Boundary

conditions must be imposed on the inner and outer boundary spheres. Options
include a Dirichlet condition u ≤ v (Theorem 10.18) or a Neumann condition
∂u/∂n = ∂v/∂n = 0 (Theorem 10.20). Results on balls follow as a special
case, by setting the inner radius to zero.
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The final chapter, Chapter 11, presents the original context in which the
star function appeared. As the subject developed and extended beyond one
complex variable some definitions and formulas were slightly modified, and
differ in this book by a factor of 2π from the original papers, as discussed
before Proposition 11.2.

The star function was created to solve the long-standing “spread conjecture”
in Rolf Nevanlinna’s classical theory of meromorphic functions. Being able
to continue Nevanlinna’s growth function T(r) into the upper halfplane as a
subharmonic function, and using it as a vehicle to resolve the conjecture, drew
immediate attention from a broad mathematical community, as indicated in
Professor Hayman’s Foreword.

The first three sections of Chapter 11 provide background in Nevanlinna
theory. For example, the elegant Phragmén–Lindelöf theory of the indicator,
§11.3, is a powerful tool in the study of entire functions. We provide a
full account of the theory, based on geometric properties of trigonometric
convexity, and use it to obtain several applications exploiting this viewpoint.

The first application, Proposition 11.7 in §11.4, is the spread relation. An
immediate corollary is a striking improvement of Nevanlinna’s celebrated
defect relation for general meromorphic functions. Nevanlinna had proved
nearly a century ago that if f is meromorphic in the plane, then

∑
a

δ(a, f ) ≤ 2,

as described in §11.2. Corollary 11.8 shows that the upper bound 2 in the
defect relation can be diminished if we know in addition that the order of f
satisfies 0 < λ < 1. In fact, f need only have Pólya peaks of that order (see
Definition 11.3).

Proposition 11.11 gives another refinement of the defect relation for func-
tions of order λ < 1. Few sharp results are known for λ > 1, other than
isolated values, with Proposition 11.10 a rare exception. Further refinements,
dealing with the “spread” of the value a, are presented too, and a complete
proof is provided for a lemma due to Fuchs (1963) on which a key property
of the indicator depends. The elegant Lemma 11.17 of H. Cartan is proved
along the way; it yields remarkably effective lower bounds on the modulus of
a polynomial P(z) outside a small exceptional set containing the zeros.

After an interlude on subordination in §11.5, the next section, §11.6,
presents applications to functions f (z) analytic and univalent in the unit disk.
The main result, Theorem 11.22, is that if � : R → R is convex, then the
integral mean
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0
�(log |f (reiθ )|) dθ

is maximized when the range of f is symmetric with respect to a ray, such
as for the Koebe function. The primary interest is for Lp-norms, obtained
when �(x) = epx, p > 0. Since the result involves the range of f , there
are interpretations using the Green function (Corollary 11.24) and harmonic
measure (Theorem 11.27).

A feature available only in 2 dimensions is that on a simply connected
domain such as the disk, to any harmonic function u in D may be associated
a conjugate harmonic function v such that f = u + iv is analytic. This is
the subject of §11.8, which also presents historical background. The relation
between u and v has long been a theme in Fourier analysis. Viewing the
situation from complex analysis allows the geometry to appear in a natural
way, in §11.8. The hypotheses about u or f are usually phrased in terms of
“boundary values.” We suppose that

f (z) = u + iv =
∫ π

−π

eiϕ + z

eiϕ − z
dμ(ϕ),

with total variation ‖μ‖ < ∞. For f in a suitable Hardy space, the measure μ

relates to the boundary values of u by dμ(ϕ) = u(eiϕ) dϕ/2π .
When f has this representation, the Lp norms∫ π

−π

|f (reiθ )|p dθ

are maximal for measures μ that concentrate in a particular manner at θ = 0,π ,
and similarly for the Lp norms of u and v; see Theorem 11.28.

If the boundary function u(eiθ ) belongs to Lp then so does v(eiθ ), and there
is a norm bound

‖v‖p ≤ Cp‖u‖p, 1 < p < ∞,

due to M. Riesz. The best constant Cp was obtained later by Pichorides (1972).
For p = 1 the inequality fails, although a weak type inequality still holds. The
main application of this section is to obtain for 0 < p < 1, by using the star
function (and thus complex analysis), the inequality

‖v‖p ≤ Cp‖u‖1, 0 < p < 1,

also identifying the sharp constant Cp. This objective requires significant
additional apparatus, where star functions of the real and imaginary parts of
the boundary functions themselves appear. The key step is Proposition 11.30,
whose formulation uses the counting function N(r, f ) from Nevanlinna theory.
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The final section, §11.9, considers the effect of symmetrization on the
hyperbolic (or Poincaré) metric ρ� for simply or multiply connected domains
� in the plane. This metric may be constructed (Proposition 11.31) on any
domain whose complement has at least two points, as we show by developing
the theory of the universal cover.

A result due to Weitsman (Theorem 11.33) compares the hyperbolic metric
on � to the metric on the circularly symmetrized domain �#, and shows
that the integral means of log 1/ρ� are smaller than those of log 1/ρ�# .
Corollary 11.35 deduces that the hyperbolic metric achieves smaller values on
�# than on �, meaning in essence that the symmetrized domain contains points
“farther from the boundary.” Another consequence says that if f : D → � is
holomorphic (not necessarily univalent) then |f ′(0)| ≤ |ψ ′(0)|, where ψ is the
universal cover map of the unit disk D to �#. This last inequality generalizes
to the maximum modulus of the two functions, and concludes the book.



1

Rearrangements

In the theory of symmetrization one compares a given real-valued function
f on a measure space (X,M,μ) with another function g, defined on a
possibly different measure space, such that f and g have the same “size” but
g perhaps has more symmetry. In this chapter we quantify the notion “size of
a function” by introducing the distribution function λf (t) = μ( f > t) of f .
We consider f and g to have the same size if they have the same distribution
function, in which case f and g are called rearrangements of each other. The
decreasing rearrangement of f , denoted f ∗, which is defined on the interval
[0,μ(X)] ⊂ R, is of particular interest. When X = R

n and μ is n-dimensional
Lebesgue measure, an important role is played by the symmetric decreasing
rearrangement f # of f . Other notions introduced in this chapter include measure
preserving transformations and polarization of functions. The latter is a very
simple rearrangement process defined for functions on R

n.

1.1 The Distribution Function

Let (X,M,μ) be a measure space and f : X → R be a measurable function.
For t ∈ R, we’ll write

( f > t) = {x ∈ X : f (x) > t}.

The distribution function λ : R → [0, ∞] of f , with respect to μ, is defined
as follows:

Definition 1.1 For t ∈ R,

λ(t) = λf (t) = μ( f > t).
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R

t

s

(       )f  > t

b

X

a

Figure 1.1 Level sets of a real-valued function f on a measure space X. The
essential infimum of f is denoted by a, and its essential supremum by b. All
level sets at heights t > a have finite measure, in accordance with Condition
(1.1) below. The example shown has a flat spot at height s.

Our definition differs from that of many authors, who define λ(t)=μ(| f |>t).
If it is necessary to specify μ, we’ll write λf ,μ.

Here are some examples.

Example 1.2 Let f = χA, the characteristic function of a set A ∈ M. Then
λ(t) = 0 for t ≥ 1, λ(t) = μ(A) for 0 ≤ t < 1, and λ(t) = μ(X) for t < 0.

More generally, let f : X → R be a simple function. Then f = ∑n
i=1 αiχEi ,

where the αi are distinct real numbers, and the Ei form a measurable partition
of X; that is, each Ei ∈ M, the Ei are disjoint, and their union is X. By
relabeling, if necessary, we may assume that the αi are arranged in descending
order: α1 > α2 > · · · > αn. Then

( f > t) =
k⋃

i=1

Ei

for t ∈ [αk+1,αk) when 1 ≤ k ≤ n − 1. Also, ( f > t) is empty when t ≥ α1,
( f > t) = X when t < αn. Thus, λ is a step function on R with jumps μ(Ek)

at the points t = αk. It is given by the formula

λ(t) =
k∑

i=1

μ(Ei), αk+1 ≤ t < αk, k = 0, · · · n,

where α0 ≡ ∞,αn+1 ≡ −∞, and the empty sum is interpreted to be zero.

Example 1.3 Let X = [−1, 2] and f (x) = x2. To find ( f > t), think of t
as starting at ∞ then moving downward. We see that the level set ( f > t) is
empty for t ≥ 4 and ( f > t) = [−1, 2] for t < 0. For 1 ≤ t < 4, one calculates
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that ( f > t) is the single interval (t1/2, 2], and for 0 ≤ t < 1, ( f > t) is the
union of two intervals [−1, −t1/2) ∪ (t1/2, 2]. Thus,

λ(t) = 0, t ≥ 4

= 2 − t
1
2 , 1 ≤ t < 4

= 3 − 2t
1
2 , 0 ≤ t < 1

= 3, t < 0.

Example 1.4 Let X = [0, c], where 0 < c < ∞, and f (x) = c2 − x2.
If 0 ≤ t < c2, then ( f > t) is the set of x such that c2 − x2 > t. Thus
( f > t) = {x ∈ [0, c] : x2 < c2 − t} = [0, (c2 − t)1/2), so that

λ(t) = (c2 − t)
1
2 , t ∈ [0, c2].

Also, λ(t) = 0 for t ≥ c2, λ(t) = c for t < 0.

Note that f is a strictly decreasing function on [0, c], and that λ restricted
to the range of f is the inverse function of f . This foreshadows the fact to be
shown in the next section that in general the distribution function of a function
f is the inverse, properly interpreted, of the decreasing rearrangement of f .

We prove now some simple properties of distribution functions.

Proposition 1.5 Let f : (X,M,μ) → R be measurable. Then

(a) λ(t) ↘ as t ↗ on R.
(b) λ(t+) = λ(t), t ∈ R.
(c) If λ(t−) < ∞, then λ(t−) = μ( f ≥ t) = λ(t) + μ( f = t).
(d) If t ∈ (ess inf f , ess sup f ), then 0 < λ(t) < μ(X).
(e) If t ≥ ess sup f then λ(t) = 0. If t < ess inf f then λ(t) = μ(X).
(f) If fn : (X,M,μ) → R is measurable for n ≥ 1 and fn ↗ f pointwise on

X, then λfn ↗ λf pointwise on R.

We remind the reader that λ(t+) and λ(t−) denote limits from the right and
left, respectively. In (f), pointwise convergence on X means that fn(x) → f (x)
for every x ∈ X. The notations ess sup f and ess inf f denote respectively the
essential supremum and essential infimum of f on X.

Parts (a) and (b) of Proposition 1.5 say that λ is decreasing (= nonincreasing)
and right continuous on R. Part (c) tells us that λ has jumps of size μ(f = t)
at values of t which f assumes on sets of positive measure, provided λ(t−) is
finite. The function f : [0, ∞) → R

+ defined by f (x) = x for x ∈ [0, 1], f (x) =
− 1

x for 1 < x < ∞, has λ(0−) = ∞, λ(0) + μ( f = 0) = μ( f ≥ 0) = 1.
Thus, (c) can fail when λ(t−) = ∞.
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Proof of Proposition 1.5 (a) Let −∞ < t1 < t2 < ∞. Then ( f > t2) ⊂
( f > t1). Hence λ(t2) ≤ λ(t1).
(b) Since λ is decreasing,

λ(t+) = lim
n→∞ λ

(
t + 1

n

)
= lim

n→∞μ

(
f > t + 1

n

)
.

Also, ( f > t) is the increasing union of the sets ( f > t + 1
n ). Thus,

lim
n→∞μ

(
f > t + 1

n

)
= μ( f > t) = λ(t).

(c) Since λ(t−) < ∞, there exists N such that λ(t − 1
n ) < ∞ for n ≥ N.

Moreover, ( f ≥ t) is the decreasing intersection of the sets ( f > t − 1
n ). Thus,

μ( f ≥ t) = lim
n→∞μ

(
f > t − 1

n

)
= lim

n→∞ λ

(
t − 1

n

)
= λ(t−).

This proves the first identity in (c). The second identity follows from
μ( f ≥ t) = μ( f > t) + μ( f = t) = λ(t) + μ( f = t).
(d) and (e) These are exercises with the definitions of ess inf and ess sup which
are left to the reader. Note that when t = ess inf f , either λ(t) < μ(X) or
λ(t) = μ(X) can occur, depending on whether or not λ has a jump at
t = ess inf .
(f) For each t we have ( f > t) = ⋃∞

n=1( fn > t) and ( fn > t) ⊂ ( fn+1 > t) for
each n. It follows that λfn(t) = μ( fn > t) ↗ μ( f > t) = λf (t).

In the proofs of (b) and (f) we used the facts that if {An} is an increasing
sequence of measurable sets and A = ⋃∞

n=1 An, then {μ(An)} is an increasing
sequence with limit μ(A). In (c), we used the corresponding fact about
decreasing sequences of sets.

We introduce now one of the principal themes of this book: the concept
of rearrangement of functions. To motivate, we examine first the simpler
case of sequences. Two finite real sequences {ai}n

i=1 and {bi}n
i=1 of the same

length are said to be rearrangements of each other if they consist of the same
numbers but differ perhaps in the order in which the terms are listed. More
formally, the two sequences are rearrangements of each other if for each
t ∈ R, |{i ∈ {1, . . . , n} : ai = t}| = |{i ∈ {1, . . . , n} : bi = t}|, where
|S| denotes the number of elements in the set S. For example, the sequences
(a1, a2, a3, a4, a5) = (5, 7, 2, 5, 6) and (b1, b2, b3, b4, b5) = (6, 7, 5, 2, 5) are
rearrangements of each other.
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It is easy to see that {ai}n
i=1 and {bi}n

i=1 are rearrangements of each other if
and only if the sequences have the same distribution functions. That is,

|{i ∈ {1, . . . , n} : ai > t}| = |{i ∈ {1, . . . , n} : bi > t}|, t ∈ R.

Now let f and g be real valued measurable functions defined on possibly
different measure spaces which have the same total measure. f and g will be
called rearrangements of each other if they have the same size, in the sense of
measures. The distribution functions permit us to make this notion precise.

Definition 1.6 Measurable functions f : (X,M,μ)→R and g : (Y ,N , ν)→R

are said to be rearrangements of each other if μ(X) = ν(Y) and λf (t) = λg(t)
for every t ∈ R. We shall also say in this case that f and g are equidistributed.

For example, if A ∈ M, B ∈ N , then χA and χB are equidistributed if
and only if μ(X) = ν(Y) and μ(A) = ν(B). Note also that the concept of
rearrangement of sequences is in fact the special case of Definition 1.3 when
X = Y = {1, .., n} and μ and ν are counting measures.

1.2 The Decreasing Rearrangement

Suppose that {ai}n
i=1 is a finite sequence in R. Then one can form a possibly

new sequence by listing the terms {ai} in decreasing order, with the under-
standing that if there are k values of i for which ai equals some number
t, then t will be listed k times in the new sequence. The terms of the new
sequence will be denoted a∗

i . The new sequence {a∗
i }n

i=1 is a rearrangement
of the original sequence, in the sense of §1.1. We call {a∗

i }n
i=1 the decreasing

rearrangement of {ai}n
i=1. For example, if (a1, a2, a3, a4) = (5, 7, 2, 6), then

(a∗
1, a∗

2, a∗
3, a∗

4) = (7, 6, 5, 2), while if (a1, a2, a3, a4, a5) = (5, 7, 2, 5, 6), then
(a∗

1, a∗
2, a∗

3, a∗
4, a∗

5) = (7, 6, 5, 5, 2).
Now let (X,M,μ) be a measure space and let f : X → R be a measurable

function. We would like to devise a new function f ∗ which is related to f in
the same way that {a∗

i }n
i=1 is related to {ai}n

i=1. Thus, f ∗ should take on the
same values as f , but should do so in “decreasing order.” In general, there is no
ordering of points on X, so for “decreasing order” to make sense the domain
of f ∗ might have to be some space other than X. We shall take the domain of
f ∗ to be the closed interval [0,μ(X)] of the extended real line, equipped with
the σ -algebra of Lebesgue measurable sets and the 1-dimensional Lebesgue
measure L.

To make precise the phrase “takes on the same values,” we shall interpret it
to mean that f and f ∗ have the same distribution function. Thus, we aspire to



1.2 The Decreasing Rearrangement 21

define a Lebesgue measurable function f ∗ : [0,μ(X)] → [−∞, ∞] such that
x ≤ y �⇒ f ∗(y) ≤ f ∗(x), and λf = λf ∗ on R, where λf ∗(t) = L(f ∗ > t).
If f is a constant c we can take f ∗ ≡ c. In the discussion below we shall always
assume that f is nonconstant.

The theory of f ∗ becomes more awkward and less useful when λf (t) = ∞
for some t > ess inf f . Accordingly, we shall only carry out the construction
when f satisfies the following condition:

λf (t) < ∞, for every t > ess inf f . (1.1)

Condition (1.1) will appear in the hypotheses of many, many results throughout
this book. It is automatically fulfilled when μ(X) < ∞.

Suppose, then, that f : (X,M,μ) → R is measurable and nonconstant, and
that f satisfies (1.1). An example of such a function is shown in Figure 1.1.
Draw the graph of x = λ(t), with t being on the horizontal axis, as in
Figure 1.2. For aesthetic reasons, write

a = ess inf f , b = ess sup f .

Let us temporarily add the assumptions that λ is continuous and strictly
decreasing on [a, b] and that λ(a) = λ(a−). Then λ(a) = μ(X) and λ(b) = 0.
Take x ∈ (0,μ(X)). The horizontal line through x intersects the graph of λ in
exactly one point. Call this point (t, x). Then a < t < b. Define f ∗(x) = t.
Define also f ∗(x) = a for x = μ(X) and f ∗(0) = b. To verify that f ∗ and f
are equidistributed, take t ∈ (a, b), and let x be the corresponding point on the
graph. Then

(f ∗ > t) = [0, x).

R

Rs

+

( )tλ

a t b

Figure 1.2 The distribution function λ of the function f from Figure 1.1.
By construction, λ is decreasing and right continuous. Its value at t equals
the measure of the level set ( f > t). The flat spot of f gives rise to a jump of
λ at s, whose height equals the measure of f −1(s).
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Figure 1.3 The decreasing rearrangement f ∗ of the function f from Figure
1.1. By definition, f ∗ is decreasing, right continuous, and equidistributed
with f . It is constructed as a generalized inverse of the distribution function
λ, shown in Figure 1.2. The flat spot of f ∗ at height s has the same measure
as the flat spot ( f = s).

Thus, λf ∗(t) = L([0, x)) = x. But also λf (t) = x, since (t, x) is on the graph of
λf . We conclude that λf ∗(t) = λf (t) for all t ∈ (a, b). It is easy to see that both
distribution functions equal μ(X) for t ≤ a and both equal zero for t ≥ b. Thus,
f and f ∗ are equidistributed. Moreover, f ∗ is strictly decreasing and continuous
on [0,μ(X)].

We have achieved our goal when λf is continuous and strictly decreasing on
(a, b) and λ(a) = λ(a−). Of course, in this case our construction shows that
the function f ∗ : [0,μ(X)] → R is just the inverse of λf : [a, b] → R.

Now we define f ∗ in the more general case when λ might have jumps and/or
intervals of constancy. Take x ∈ (0,μ(X)). Set

E(x) = {t ≥ 0: λ(t) ≤ x}.
Since λ is decreasing and right continuous, E(x) is a closed interval of the form
[u, ∞). Using Proposition 1.5, one can show that a ≤ u ≤ b. Define f ∗(x) = u.
Define also f ∗(0) = b and f ∗(μ(X)) = a.

Pictorially, for x ∈ (0,μ(X)), the horizontal line at height x either hits
the graph of λ or passes through a vertical gate created by a jump of λ: see
Figure 1.2. In the first case, f ∗(x) is the smallest value of t at which the line
meets the graph. In the second case, f ∗(x) is the value of t over which the gate
sits: see Figure 1.3.

The reader may verify that f ∗ : [0,μ(X)] → [−∞, ∞] is given by the
following formula:

f ∗(x) =

⎧⎪⎪⎨⎪⎪⎩
inf{t ≥ 0: λf (t) ≤ x}, 0 < x < μ(X),

b = ess sup f , x = 0,

a = ess inf f , x = μ(X).

(1.2)
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Proposition 1.7 Let f : (X,M,μ) → R be measurable and satisfy (1.1).
Then

(a) The function f ∗ is decreasing and right continuous on [0,μ(X)), and
f ∗(μ(X)) = f ∗(μ(X)−).

(b) f ∗ is Borel measurable and satisfies λf ∗ = λf on R.
(c) If g : [0,μ(X)] → [−∞, ∞] satisfies the conditions in (a) and (b), then

g = f ∗ on [0,μ(X)].

Proof (a) If 0 < x < y < μ(X) then E(x) ⊂ E(y), so f ∗(x) ≥ f ∗(y). It is also
clear that f ∗(0) ≥ f ∗(x) and that f ∗(μ(X)) ≤ f ∗(y). Thus, f ∗ is decreasing on
[0,μ(X)].

To prove right continuity at x ∈ (0,μ(X)), write u = f ∗(x). Then u =
inf E(x). Given small ε > 0, let y = λ(u−ε). Then y ≥ x, since λ is decreasing.
If y = x then u − ε ∈ E(x), so f ∗(x) ≤ u − ε, which contradicts f ∗(x) = u. So
y > x. Also, if x < z < y then λ(u − ε) > z, so u − ε /∈ E(z). Since E(z) is a
semi-infinite interval, we have u− ε ≤ inf E(z) = f ∗(z). Since f ∗ is decreasing
and u = f ∗(x), we have

f ∗(x) − ε ≤ f ∗(z) ≤ f ∗(x)

when x < z < y. Thus, f ∗ is right-continuous at x. We leave it to the reader to
check that f ∗ is right continuous at 0 and is left continuous at μ(X).
(b) For monotonic functions g on an interval of R the sets (g > t) are intervals.
Thus, such g are Borel measurable. In particular, f ∗ is Borel measurable on
[0,μ(X)].

To show λf = λf ∗ , take t ∈ (ess inf f , ess sup f ) and x ∈ (0,μ(X)). If
f ∗(x)> t then (1.2) implies λ(t) > x. Conversely, if λ(t) > x then t /∈ E(x),
so t < inf E(x) = f ∗(x), where the strict inequality follows from E(x)
being closed. Thus, {x ∈ (0,μ(X)) : f ∗(x) > t)} = {x ∈ (0,μ(X)) : 0 <

x < λ(t)}, and hence λf ∗(t) = λ(t). The verification of this equation for
t ∈ R \ (ess inf f , ess sup f ) is left to the reader.
(c) Take x0 ∈ (0,μ(X)). Let x1 = inf{y ∈ [0,μ(X)] : f ∗(y) = f ∗(x0)} Then
x1 ≤ x0, f ∗(x1) = f ∗(x0), and λf ∗(f ∗(x0)) = x1. Since f , f ∗, and g all have the
same distribution function, it follows that λg(f ∗(x0)) = x1. If λg(t) = x1 for
some t, then the right continuity and monotone decrease of g implies g(x1) ≤ t.
Choosing t = f ∗(x0). we obtain g(x1) ≤ f ∗(x0). Also, g(x1) ≥ g(x0), since g
is decreasing. Hence, g(x0) ≤ f ∗(x0). If we interchange f ∗ and g, the argument
works again, to produce f ∗(x0) ≤ g(x0) and hence f ∗(x0) = g(x0). Thus,
f ∗ = g on (0,μ(X)). The equality still holds at the endpoints because, by part
(a), each function is right continuous at 0, left continuous at μ(X).
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Let f : (X,M,μ) → R and g : (Y ,N , ν) → R be measurable functions
satisfying (1.1). Then f and g are equidistributed if and only if μ(X) = ν(Y)
and f ∗ = g∗ on [0,μ(X)]. The “only if” statement follows from Definition
1.6 and formula (1.2). The “if” part follows from the fact that if f ∗ = g∗

on [0,μ(X)] = [0, ν(Y)], then λf ∗ = λg∗ on R, which we combine with the
equations λf = λf ∗ on R, λg = λg∗ on R.

We describe now the decreasing rearrangements of the functions whose
distribution functions were computed in Examples 1.2–1.4. In each case, the
reader may check that the function asserted to be f ∗ satisfies the conditions in
(a) and (b) of Proposition 1.7, and hence, by (c), really is f ∗.

Example 1.8 f : X → R is given by f = ∑n
i=1 αiχEi , where the αi are distinct

real numbers with α1 > · · · > αn and the Ei form a measurable partition of
a measure space (X,M,μ). To avoid trivialities, we shall assume that each
Ei has positive measure. Then ess inf f = αn. To satisfy condition (1.1), we
assume also that each Ei has finite measure, except perhaps for En. Define
positive numbers m1, . . . , mn by

m1 = μ(E1), m2 = m1 + μ(E2) = μ(E1 ∪ E2), . . .

. . . , mn = mn−1 + μ(En) = μ(X).

Define m0 = 0. Then f ∗ : [0,μ(X)] → R is a decreasing step function taking
values αi on the intervals [mi−1, mi) :

f ∗ =
n−1∑
i=1

αiχ[mi−1,mi)+αnχ[mn−1,mn] =
n−1∑
i=1

(αi−αi+1)χ[0,mi)+αnχ[0,mn]. (1.3)

The second formula, which follows from the first by summation by parts,
expresses f ∗ as a positive linear combination of decreasing characteristic func-
tions, plus a constant function. It is an example of a layer cake representation.
We shall visit this subject again in §1.6.

Example 1.9 X = [−1, 2], f (x) = x2. Then ess inf f = 0, ess sup f = 4, and
μ(X) = 3. Here λ is continuous and strictly decreasing on [0, 4], so f ∗ on [0, 3]
equals (λ|[0,4])

−1. Calculation gives

f ∗(x) = (2 − x)2, 0 ≤ x ≤ 1,

= 1

4
(3 − x)2, 1 ≤ x ≤ 3.

Example 1.10 X = [0, a], where 0 < a < ∞, and f (x) = a2 − x2. Then
μ(X) = a and f ∗ = f .
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As noted in Example 1.9, we observed earlier in this section that if λf is
continuous and strictly decreasing on I = [ess inf f , ess sup f ), then the inverse
function of λ|I equals f ∗. The next proposition tells us in what respects f ∗ and λ

behave like inverse functions when λ has jumps and/or intervals of constancy.

Proposition 1.11 Let f : (X,M,μ) → R, be measurable and satisfy (1.1).
Set a = ess inf f , b = ess sup f . Then

(a) f ∗(λ(t)) ≤ t, t ∈ (a, b), with equality when λ is 1 − 1 in a
neighborhood of t.

(b) λ(f ∗(x)) ≤ x, x ∈ (0,μ(X)), with equality when λ is continuous at
f ∗(x).

(c) f ∗(λ(t)) = t when t = a or t = b.
(d) λ(f ∗(x)) = x when x = 0 or x = μ(X).

The proofs are exercises, which can be expeditiously done by first drawing
pictures to see how the formal arguments should go. In the same vein, but with
less formality, we record some rules of thumb:

If λ jumps downward from x2 to x1 at t0, then f ∗ has constant value t0 on the
interval [x1, x2).

If λ is a constant x0 on [t1, t2), then f ∗ jumps from t2 down to t1 at x0.
The converse statements are also true.

1.3 Induced Measures

Definition 1.12 Let (X,M) and (Y ,N ) be measurable spaces, μ be a
measure on M, and f : X → Y be (M,N ) measurable. Then f#μ is the
measure on N defined by

(f#μ)(E) = μ( f −1E), E ∈ N .

The measure f#μ is called the pushforward of μ by f , and also, when μ is
clear from context, the measure induced by f on N or on Y .

We will say that an integral
∫

X f dμ exists if at least one of the integrals∫
X f + dμ or

∫
X f − dμ is finite.

Proposition 1.13 Let f : X → Y be as in Definition 1.12, and let g : Y → R

be N measurable. Then, whenever the integrals exist,∫
Y

g d(f#μ) =
∫

X
g ◦ f dμ. (1.4)

Proof For g = χE, E ∈ N , (1.4) reduces to Definition 1.12. By linearity,
(1.4) holds when g is simple and nonnegative. If g is nonnegative then g
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is the increasing pointwise limit of nonnegative simple functions (Folland,
1999, p. 47), so (1.4) follows by the monotone convergence theorem. For
general g : Y → R, write g = g+ − g− and use the definition

∫
X h dμ =∫

X h+ dμ − ∫
X h− dμ.

Suppose now that f : (X,M,μ) → R is measurable and satisfies (1.1).
Write

a = a( f ) = ess inf f .

Then −∞ ≤ a < ∞, and f#μ is a Borel measure on R with

(f#μ)((t, ∞)) = λ(t), t ∈ R,

where λ = λf is the distribution function of f . Suppose that a = −∞ or that
μ(X) < ∞. Then λ(t) < ∞ for every t ∈ R. Let ν = νf be the Lebesgue–
Stieltjes measure generated by λ. Then ν is the unique Borel measure on R

such that ν((t, ∞)) = λ(t) for every t. To construct ν one may follow the
method of Folland (1999, Theorem 1.16) with small changes. For example,
one should begin the construction by defining ν((a, b]) = λ(a) − λ(b).
The uniqueness implies that ν = f#μ.

If a > −∞ and μ(X) = ∞, then λ(t) < ∞ for t > a and λ(t) = ∞
for t < a. Construct the associated Lebesgue–Stieltjes measure ν on (a, ∞)

as above, then extend ν to R by specifying that ν({a}) = μ( f = a) and that
ν((−∞, a)) = 0. It is easily checked that again ν = f#μ as measures on R.
We summarize the discussion with

Proposition 1.14 Let f : (X,M,μ) → R be measurable and satisfy (1.1).
Then the Borel measures f#μ and νf coincide on R, where νf is the Lebesgue–
Stieltjes measure generated by λf . Moreover, νf ([t, ∞)) < ∞ for each t > a.

In brief: The measure induced by f on R equals the Lebesgue–Stieltjes
measure generated by the function λf , suitably extended.

For functions g and sets E ⊂ R, we shall often write − ∫
E g dλ instead of∫

E g dν, when the integral exists. When a > −∞ and μ(X) = ∞ one must
bear in mind that according to the definitions∫

E
g dλ ≡

∫
E∩(a,∞)

g dλ − g(a)μ( f = a)χE(a).

This identity holds also when a > −∞ and μ(X) < ∞. The integral on
the right is an ordinary Lebesgue–Stieltjes integral to which the usual rules of
calculus apply.

Let us revisit Examples 1.2 and 1.8. There f is simple, f = ∑n
i=1 αiχEi ,

where the αi are strictly decreasing real numbers and the Ei form a measurable
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partition of X. Then λ is the decreasing step function with jumps of size μ(Ei)

at the αi. The associated Lebesgue–Stieltjes measure is the sum of point masses
at the αi, with mass μ(Ei) at αi. Thus,

νf =
n∑

i=1

μ(Ei)δαi .

Also, for suitable functions g,∫
R

g dλ = −
n∑

i=1

g(αi)μ(Ei).

Returning now to general f , let g be a real-valued Borel measurable function
defined on [a, ∞) when a > −∞ and on R when a = −∞. Set g = 0 on
(−∞, a). Combining Propositions 1.13 and 1.14 and making use, if necessary,
of the convention 0 · ∞ = 0, we obtain∫

X
g ◦ f dμ = −

∫
[a( f ),∞)

g dλf , (1.5)

when either integral exists, where we interpret [−∞, ∞) to be R. Here is a
consequence of (1.5), useful in practice:

Corollary 1.15 If f : (X,M,μ) → R is measurable and nonnegative, and g
is nonnegative and Borel measurable on [0, ∞), then∫

X
g ◦ f dμ = −

∫
(0,∞)

g dλf + g(0)νf ({0}). (1.6)

Proof Note that for nonnegative f we have a( f ) ≥ 0. If a = 0, then (1.5) gives∫
X

g ◦ f dμ =
∫

[0,∞)

g dν =
∫
(0,∞)

g dν + g(0)ν({0}).

Suppose a > 0. Since ν vanishes on (−∞, a), (1.5) gives∫
X

g ◦ f dμ =
∫

[a,∞)

g dν =
∫
(0,∞)

g dν + g(0)ν({a}).

Either way, (1.6) is proved.

Under favorable conditions on f and g, (1.5) and (1.6) can be integrated by
parts to obtain useful formulas. Here is one such result.

Proposition 1.16 Let f be as in Proposition 1.14, and be nonnegative.
Suppose that g : [0, ∞) → R is increasing and continuous, that g is absolutely
continuous on each interval [a, b], 0 < a < b < ∞, and that g(0) = 0. Then∫

X
g ◦ f dμ =

∫ ∞

0
g′(t) λf (t) dt.
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Proof The hypotheses imply that g is nonnegative. Since g is monotonic it is
Borel measurable. Identity (1.6) gives∫

X
g ◦ f dμ = −

∫
(0,∞)

g dλ = lim
a→0+,b→∞

−
∫
(a,b]

g dλ. (1.7)

Assume for the moment that f is bounded and that λ(0) = μ( f > 0) < ∞.
Then λ(t) = 0 for all sufficiently large t, and λ is bounded on (0, ∞). For
0 < a < b < ∞, right continuity of λ together with the argument in Folland
(1999, Th 3.36) and the result in Folland (1999, Cor 3.33) give

−
∫
(a,b]

g dλ =
∫
(a,b]

g′(t)λ(t) dt − g(b)λ(b) + g(a)λ(a).

As a → 0 and b → ∞ the boundary terms on the right tend to zero. Since
g′ ≥ 0 and λ ≥ 0, the integral on the right tends to the corresponding integral
over (0, ∞). Using (1.7), we see that (1.16) is true when f is bounded and
μ( f > 0) < ∞.

Next, suppose that f satisfies the hypotheses of the proposition and also
satisfies λ(t) < ∞ for each t > 0. Put fn = (min( f , n) − 1

n )
+. Each fn is

bounded, and λfn(0) ≤ μ( f > 1/n) < ∞. Thus, for each n ≥ 1,∫
X

g ◦ fn dμ =
∫ ∞

0
g′(t) λfn(t) dt. (1.8)

The sequence { fn} is increasing and converges pointwise to f on X. Since g
is continuous and increasing, the sequence {g ◦ fn} is increasing and converges
pointwise to g ◦ f . By Proposition 1.5(f), the sequence {λfn} is increasing and
converges pointwise to λf on R. Also, g′ ≥ 0. Thus we can apply the monotone
convergence theorem on both sides of (1.8) and conclude (1.16).

Let f be a general function satisfying the hypotheses of the proposition.
Then a = ess inf f ≥ 0 since f is nonnegative, and λf −a(t) = λf (t + a) < ∞
for all t > 0, since f satisfies (1.1), Set G(x) = g(x + a) − g(a). Then
g ◦ f (x) = G( f (x) − a) + g(a). Now (1.16) is valid for f − a and G, and
λ(t) = μ(X) for t < a, so∫

X
g ◦ f dμ =

∫ ∞

0
G′(t)λf −a(t) dt + g(a)μ(X)

=
∫ ∞

0
g′(t + a)λf (t + a) dt + g(a)μ(X) =

∫ ∞

0
g′(t)λ(t) dt.

The choice g(t) = tp, p > 0, is of particular interest.

Corollary 1.17 Let f : (X,M,μ) → R
+ be measurable, and 0 < p < ∞.

Then ∫ ∞

0
f p dμ =

∫ ∞

0
ptp−1λf (t) dt.
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In particular, ∫ ∞

0
f dμ =

∫ ∞

0
λf (t) dt.

Proposition 1.16 admits many variants. For example, if μ(X) < ∞, then
(1.16) is true when g is increasing and not necessarily nonnegative, provided
the term g(0)μ(X) is added to the right-hand side. This may be obtained from
Proposition 1.16 by writing g(x) = g(x) − g(0) + g(0). More generally, if g
has locally bounded variation, then by expressing g as the difference of two
increasing functions we can obtain formulas like (1.16) when the appropriate
integrals exist.

The proof of the following proposition is left to the reader.

Proposition 1.18 Let (X,M,μ) and (Y ,N , ν) be measure spaces with
μ(X) = ν(Y), let f : X → R be M-measurable and g : Y → R be N -
measurable. Suppose that f and g satisfy (1.1). Then the following statements
are equivalent.

(a) f and g are equidistributed, i.e., λf (t) = λg(t) ∀t ∈ R.
(b) f and g have the same essential infimum, call it a, and the induced

measures f#μ and g#ν agree on (a, ∞).
(c) ∫

X
� ◦ f dμ =

∫
Y
� ◦ g dν =

∫
[a,∞)

� d(f#μ)

for all Borel measurable � : [a, ∞) → R with �(a) = 0 for which any of
the integrals exist.

As before, when a = −∞, the interval [a, ∞) is understood to be R. Also
when a = −∞, the condition about �(a) is to be omitted.

A Word about Equidistribution
Let f : (X,M,μ) → R and g : (Y ,N , ν) → R be measurable functions with
μ(X) = ν(Y). The measure ν is now free-standing, and is no longer induced
by f . According to Definition 1.6, f and g are equidistributed if λf = λg on R,
that is, μ( f > t) = ν(g > t) for every t ∈ R. Another way, a priori stronger,
in which f and g could be equidistributed would be for μ( f ∈ E) = ν(g ∈ E)
for every E ∈ B(R). That is, f#μ = g#ν. Consider the following example:

X = Y = (0, ∞), μ = ν = L, f (x) = 1/x,

g(x) = 0 for 0 < x ≤ 1, g(x) = 1/(x − 1) for 1 < x < ∞.



30 Rearrangements

Then λf = λg, but f#μ and g#ν are different, since f#μ({0}) = 0, g#ν({0}) =
L(g = 0) = 1. Thus, functions equidistributed in our sense need not be
equidistributed in the stronger sense.

Let us say that f and g are strongly equidistributed if f#μ = g#ν. When f and
g satisfy (1.1), it turns out that the example illustrates the only way in which
f and g can be equidistributed but not strongly equidistributed. Proofs of the
following assertions are left to the reader.

Fact 1.19 Suppose that f and g satisfy (1.1). Then

(a) If f and g are strongly equidistributed they are equidistributed.
(b) Suppose that f and g are equidistributed. Then they have a common

essential infimum a. If a = −∞ or μ(X) < ∞ then f and g are strongly
equidistributed. If a > −∞ and μ(X) = ∞ then f and g are strongly
equidistributed if and only if μ( f = a) = ν(g = a).

Proposition 1.18 has a version for strongly equidistributed functions: In (b)
change (a, ∞) to [a, ∞), and in (c) drop the condition �(a) = 0.

Joint Distributions
Suppose that we have k real-valued M-measurable functions f1, . . . , fk defined
on the measure space (X,M,μ). Set F = ( f1, . . . , fk). The joint distribution
function λF = λ( f1,...,fk) of the ordered k-tuple of functions ( f1, . . . , fk), or of
the vector function F, is the function defined for (t1, . . . , tk) ∈ R

k by

λF(t1, . . . , tk) = μ({x ∈ X : f1(x) > t1, . . . , fk(x) > tk}).

Two ordered k-tuples ( f1, . . . , fk) and (g1, . . . , gk) are said to have the same
joint distribution if they have the same joint distribution functions. Using the
fact that measures on R

k are determined by their values on sets (t1, ∞)×· · ·×
(tk, ∞), one can mimic the proof of Proposition 1.18 to obtain a version valid
for joint distributions. Write

a( fi) = ess inf fi, a(gi) = ess inf gi

and

R = [a( f1), ∞) × · · · × [a( fk), ∞).

Proposition 1.20 Let (X,M,μ) and (Y ,N , ν) be measure spaces, let
fi : X → R be M-measurable and gi : Y → R be N -measurable, for
i = 1, . . . , n. Suppose that each fi and gi satisfy (1.1). Then the following
statements are equivalent.
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(a) f1, . . . , fk and g1, . . . , gk have the same joint distribution.
(b) a( fi) = a(gi) for each i, and the induced measures F#μ and G#ν agree on

the interior of R.
(c) ∫

X
�( f1(x), . . . , fk(x)) dμ(x) =

∫
Y
�(g1(x), . . . , gk(x)) dν(x)

=
∫

R
� d( f#μ)

for all Borel measurable � : R → R with � = 0 on ∂R for which any of
the integrals exists.

1.4 Measure Preserving Transformations

Let (X,M,μ) and (Y ,N , ν) be measure spaces. A function T : X → Y is said
to be measure preserving from X onto Y if T is (M,N ) measurable, T maps
X onto Y \ N where ν(N) = 0, and T#μ = ν on Y , that is

μ(T−1E) = ν(E), E ∈ N .

Taking E = Y , we see that if such a T exists, then μ(X) = ν(Y). From Folland
(1999, pp. 26–27), it is easy to show that a measure preserving transformation
from (X,M,μ) onto (Y ,N , ν) is also a measure preserving transformation
between the completions of the two measure spaces.

If T : X → Y is measure preserving and g : Y → R is N -measurable, then
Proposition 1.13 shows that∫

Y
g dν =

∫
X

g ◦ T dμ,

whenever either integral exists. We also have

Proposition 1.21 If T : (X,M,μ) → (Y ,N , ν) is measure preserving and
g : Y → R is N - measurable, then g and g ◦ T are equidistributed, i.e.,
λg = λg◦T on R.

Proof Take t ∈ R. Set E = g−1(t, ∞). Then T−1(E) = (g ◦ T)−1(t, ∞), and
λg(t) = ν(E) = μ(T−1(E)) = λg◦T(t).

Of course, λg is computed with respect to ν and λg◦T with respect to μ. The
argument shows that g and g ◦ T are in fact strongly equidistributed, as defined
at the end of §1.3.

Here are some examples of measure preserving transformations.



32 Rearrangements

Example 1.22 Let T be a translation of Rn. That is, T(x) = a + x for some
fixed a ∈ R

n and all x ∈ R
n. Then T is a measure preserving transformation

of (Rn,Mn,Ln) onto itself, where Mn is the class of Lebesgue measurable
subsets of Rn. Likewise, if T is a linear map of Rn onto itself whose deter-
minant satisfies |det T| = 1, then T is a measure preserving transformation of
(Rn,Mn,Ln) onto itself. In particular, if T ∈ O(n), the group of all rotations
and reflections of Rn, then T is Ln − Ln measure preserving.

For the results of Example 1.22, see, for example, Folland (1999, §2.6). The
maps T in Example 1.22 are 1-1. In general, if T : (X,M,μ) → (Y ,N , ν) is
1-1 and almost onto, then it is easy to see that T is measure preserving if and
only if T−1 is. Thus, an injective and surjective T is measure preserving if and
only if E ∈ M �⇒ TE ∈ N and ν(TE) = μ(E).

Example 1.23 Define T : Rn → R
+ by T(x) = αn|x|n, where αn is the

volume of the unit ball in R
n :

αn = Ln(Bn(1)) = πn/2

�(1 + n
2 )

.

The computation of αn is carried out, for example, in Folland (1999, Cor.
2.55). We claim that T is a measure preserving transformation of (Rn,Mn,Ln)

onto (R+,M1,L). Indeed, for b ∈ (0, ∞), T−1[0, b) = B
n((b/αn)

1/n). Thus,
Ln(T−1E) = b = L(E) holds for each interval [0, b). By the usual arguments,
it follows that Ln(T−1E) = L(E) holds for all E ∈ B[0, ∞). Thus, T is mea-
sure preserving from (Rn,B(Rn),Ln) onto (R+,B[0, ∞),L), and also measure
preserving between their completions (Rn,Mn,Ln) and (R+,M1,L).

Example 1.24 Let S1 = {z ∈ C : |z| = 1} denote the unit circle in the
complex plane, and σ denote arclength measure on S

1. Let n be a nonzero
integer, and define T : S

1 → S
1 by T(z) = zn. Then T is a measure

preserving transformation of (S1,M, σ) onto itself, where M denotes the class
of Lebesgue measurable subsets of S1. To prove this, let E = {eiθ : a ≤ θ < b},
−∞ < a < b < 2π + a, be an arc on S

1. Then σ(E) = b − a. One easily
checks that T−1E is the disjoint union of |n| arcs, each of which has arclength
1
|n| (b − a). Thus, σ(T−1E) = σ(E) holds for each such arc E. Arguing as in

Example 1.23, we find that σ(T−1E) = σ(E) holds in fact for all E ∈ B(S1),
and, more generally, for all Lebesgue measurable E ⊂ S

1.

1.5 Nonatomic Measure Spaces

Our chief goal in this section is to prove that under appropriate hypotheses
a function f : X → R can be factored as f = f ∗ ◦ T , where T is a measure
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preserving transformation of the measure space X onto [0,μ(X)] and f ∗ is the
decreasing rearrangement of f . This result is due essentially to Ryff (1970).
An enhanced version will play a key role when we build the theory of the
�-function in Chapter 9. In addition to its usefulness, this factorization is very
pretty. It is not as well known as one might expect.

The main hypothesis required on (X,M,μ) to insure factorization is that
X be nonatomic. In this section, unless otherwise indicated, all subsets of X
that we mention are assumed to be M-measurable. A set E ⊂ X is called an
atom for (X,M,μ) if μ(E) > 0, and if for each E1 ⊂ E, either μ(E1) = 0
or μ(E1) = μ(E). The space (X,M,μ) is called nonatomic if it contains no
atoms.

The space (Rn,Mn,Ln) is nonatomic. To prove this, let E ⊂ R
n be a set

with Ln(E) > 0. Let g(r) = Ln(E ∩ B
n(0, r)). Then g is continuous on

[0, ∞), with g(0) = 0 and limr→∞ g(r) = Ln(E). Thus, there exists r such
that 0 < g(r) < Ln(E).

A prototypical space with an atom is R
n equipped with the measure δa,

which assigns to each E ⊂ R
n the value 1 if a ∈ E and the value 0 if

a /∈ E. The space (Rn,Mn,Ln + δa) also contains an atom, namely {a}. Of
course, (X,M,μ) contains atoms whenever X is at most countable and μ is
not identically zero.

The next two propositions contain some information about nonatomic
measure spaces. To keep the statements and proofs uncluttered we will state
them under the additional assumption that μ(X) < ∞. At the end of the
section, we will present versions for the case when μ(X) = ∞.

Proposition 1.25 Let (X,μ) be a nonatomic measure space for which
μ(X) < ∞. Then

(a) X contains a family of measurable subsets {Et : 0 ≤ t ≤ μ(X)} such that
Et1 ⊂ Et2 whenever 0 ≤ t1 ≤ t2 ≤ μ(X), and μ(Et) = t for each
t ∈ [0,μ(X)].

(b) There exists a measure preserving transformation T of (X,M,μ) onto
([0,μ(X)],B,L).

Proof If μ(X) = 0 the proposition is trivial, so we assume 0 < μ(X) < ∞.
Without loss of generality, we may assume that μ(X) = 1. The main step is to
prove the following claim:

Claim There exists E ⊂ X such that μ(E) = 1
2 .

Proof of claim The proof is in three steps.
Step 1. The nonatomicity implies that X can be expressed as the disjoint

union of two sets with measure strictly between 0 and 1. Thus, there exists
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E1 ⊂ X with 0 < μ(E1) ≤ 1
2 . Applying the same argument to E1, then

repeatedly, we see that there is a sequence Ei of subsets of X such that
μ(Ei) > 0 for each i and limi→∞ μ(Ei) = 0.

Step 2. Fix 0 < t < 1. Let A = {A ⊂ X : 0 < μ(A) ≤ 1
2 t}. By step

1, A is nonempty. I claim that there exists E ∈ A such that μ(E) > 1
4 t. To

verify this, suppose that no such E exists. Then every E ∈ A has μ(E) ≤ 1
4 t.

It follows that if two sets are in A then so is their union. From this, it follows
that finite unions of sets in A are in A and hence so are countable unions.
Let α = sup{μ(E) : E ∈ A}. Then 0 < α ≤ 1

4 t. Take {Ei} ⊂ A such that
μ(Ei) > α − 1

i for i ≥ 1, and set E = ⋃∞
i=1 Ei. Then μ(E) ≥ α since E

contains each Ei, but also μ(E) ≤ α, since E ∈ A. Hence, μ(E) = α ≤ 1
4 t.

By step 1 applied to X \ E, there exists F ⊂ X \ E such that 0 < μ( f ) < 1
4 t.

Then μ(E ∪ F) < 1
2 t, so that E ∪ F ∈ A. But μ(E ∪ F) > μ(E) = α, which

contradicts the definition of α. This contradiction shows that some E ∈ A must
exist with μ(E) > 1

4 t.
Step 3. Take E1 ⊂ X such that β1 ≡ μ(E1) ∈ ( 1

4 , 1
2 ]. This is possible by

step 2. If β1 = 1
2 we are done. Suppose that β1 < 1

2 . From step 2 applied to
X \ E1, with t = 1 − 2β1, it follows that there exists E2 ⊂ X \ E1 such that
β2 ≡ μ(E2) satisfies 1

2 (
1
2 − β1) < β2 ≤ 1

2 − β1. Then

μ(E1 ∪ E2) = β1 + β2 ≤ 1

2

and

μ(E1 ∪ E2) = β1 + β2 >
1

4
+ 1

2
β1 >

3

8
.

If μ(E1 ∪ E2) = 1
2 we are done. If μ(E1 ∪ E2) <

1
2 , take E3 ⊂ X \ (E1 ∪ E2)

such that β3 ≡ μ(E3) satisfies 1
2 (

1
2 − β1 − β2) < β3 ≤ 1

2 − β1 − β1. Then, as
in the previous estimates, one finds that

7

16
< μ(E1 ∪ E2 ∪ E3) ≤ 1

2
.

Continuing, we either encounter an integer m such that μ(
⋃m

i=1 Ei) = 1
2 , or

we construct an infinite disjoint sequence of sets {Ei} such that 1
2 − 2−m−1 <

μ(
⋃m

i=1 Ei) <
1
2 for each m ≥ 1. Then E ≡ ⋃∞

i=1 Ei satisfies μ(E) = 1
2 . The

claim is proved.

Proof of (a) For k = 0, 1, .., 2m − 1, m = 1, 2, . . . we first construct a family
of sets Ak,m. Write X as the union of two disjoint subsets of measure 1

2 . This
is possible by the claim. Denote the sets by A0,1 and A1,1. Write each of A0,1

and A1,1 as the union of two disjoint subsets of measure 1
4 . The subsets of A0,1

are called A0,2 and A1,2, those of A1,1 are called A2,2 and A3,2. Continue the
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process. In this fashion, for each m ≥ 1 X is partitioned into 2m sets Ak,m of
measure 2−m, with the property that Ak,m = A2k,m+1 ∪ A2k+1,m+1.

Let D = {t = k2−m : 0 ≤ k < 2m, m = 1, 2, . . . } denote the subset of [0, 1)
consisting of dyadic fractions. For nonzero t ∈ D, write t = k2−m, and define

Bt =
k−1⋃
j=0

Aj,m.

It is easy to see that Bt depends only on t and not on k and m. It is also obvious
that μ(Bt)= t for t ∈ D and that Bt1 ⊂ Bt2 when t1, t2 ∈ D with 0 ≤ t1 ≤ t2 < 1.

Define E0 to be the empty set, E1 = X, and for t ∈ (0, 1) \ D define

Et =
⋃

s∈D,s<t

Bs.

Since D is countable, each Et is measurable. Using density of D in [0, 1], it
is easy to show that μ(Et) = t. The inclusion assertion in (a) is obviously true.

Proof of (b) Let {Et} be the family of sets constructed in the proof of (a).
Define

T(x) = inf{t ∈ [0, 1] : x ∈ Et}.
Since Et = ⋃

0<s<t Es, it follows that T−1[0, s) = Es for s ∈ [0, 1], The
(X,M,μ) → (R+,B,L)- measurability of T , and the equation μ(T−1E) =
L(E) for B-measurable E ⊂ [0, 1], follow.

Suppose that {ai}k
i=1 is a finite sequence in R, and let {a∗

i } be the sequence
rearranged in descending order. Then there is a permutation π of the integers
{1, . . . , k} such that ai = a∗

π(i) for each i. Proposition 1.26 below asserts a
continuous analog: Each measurable function f on a nonatomic probability
space X with μ(X) < ∞ can be written as f = f ∗ ◦ T a.e., where T is a
measure preserving transformation of X onto [0,μ(X)], which depends on f .
For use in Chapter 9 we shall in fact provide an algorithm for constructing
such a T . As in the proof of Proposition 1.25, we shall assume, without loss of
generality, that μ(X) = 1.

Construction Let (X,M,μ) be a nonatomic measure space with μ(X) = 1,
and let f : X → R be a measurable function. Then f satisfies the finiteness
condition (1.1), and hence f ∗ is well-defined, by (1.2). If s ∈ R and
μ( f = s) > 0 we shall say that f has a flat spot over s; see Figure 1.1.

Assume that f has no flat spots. Then f ∗ is a 1-1 map of [0, 1] onto a set B,
which equals the real line minus at most countably many half-open intervals.
Since f ∗ is strictly decreasing, its inverse function is a well-defined function
from B onto [0, 1], and is Borel measurable since it is decreasing. Moreover,
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f (x) ∈ B for almost every x ∈ X, since f and f ∗ have the same distribution.
Define Tf : X → R almost everywhere on X by

Tf = (f ∗)−1 ◦ f . (1.9)

Then obviously,

f = f ∗ ◦ Tf , a.e. on X.

The measurability properties of f and (f ∗)−1 imply that T = Tf is M − B
measurable. If E ⊂ [0, 1] then T−1(E) = f −1(f ∗(E)). If in addition E is Borel
measurable, then so is f ∗(E), and since μ( f −1A) = L((f ∗)−1A) for all Borel
sets A, we have μ(T−1E) = L(E). This shows that Tf is measure preserving
from (X,M,μ) onto ([0, 1],B,L).

Assume now that f contains flat spots. Let ψ : X → [0, 1] be any measurable
function on X with no flat spots. For example, ψ could be the function T
appearing in the proof of Proposition 1.25. For i ≥ 1, let si run over the set
of values of f with μ( f = si) > 0, and define

Xi = ( f = si), Ii = (f ∗ = si) .

Then each Ii is a half-open interval, and μ(Xi) = λ(Ii), since f and f ∗ are
equidistributed. Define

X0 = X \
∞⋃

i=1

Xi, Y = [0, 1] \
∞⋃

i=1

Ii.

Let f0 be the restriction of f to X0 and g be the restriction of f ∗ to Y . Then
f0 and g are equidistributed and have no flat spots. With the notation of (1.9),
define

T0 = (Tg)
−1 ◦ Tf0 .

For i ≥ 1, set

ψi = ψ |Xi , Ti = Tψi + ai,

where ai is the left endpoint of Ii. Define Tf : X → [0, 1] a.e. by

Tf (x) = Ti(x) for x ∈ Xi, i ≥ 0. (1.10)

Proposition 1.26 Let (X,M,μ) be a nonatomic measure space with
μ(X)<∞ and f : X → R be M measurable. Let T = Tf be given by
(1.9) if f has no flat spots and by (1.10) if f does have flat spots. Then

(a) T is a measure preserving map from (X,M,μ) onto ([0,μ(X)],B,Ln).
(b) f = f ∗ ◦ T for almost every x ∈ X.
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(c) For almost every x ∈ X,

Tx = μ
(

f > f (x)
) + μ

(
f = f (x), ψ > ψ(x)

)
.

Proof Assume μ(X) = 1, without loss of generality.
(a) follows from the facts that the Xi partition X, the Ii and Y partition [0, 1],

and each Ti is measure preserving.
(b) On X0 we have, omitting composition signs,

T0 = T−1
g Tf0 = g−1g∗( f ∗

0 )
−1f0 = g−1f0. (1.11)

The last equality follows from the fact that f0 and g are equidistributed,
hence have the same decreasing rearrangement. Since T0 maps X0 into Y , it
follows that

f ∗T = gT0 = f0 = f , a.e. on X0,

where the second equality follows from (1.11). This confirms (b) for x ∈ X0.
For i ≥ 1 we have f = si on Xi and f ∗ = si on Ii. Also, T maps Xi onto Ii.

Thus f = f ∗ ◦ T = si on Xi, which confirms (b) for almost every x ∈ Xi.
(c) For almost every x ∈ X0, we have

μ( f > f (x)) = μ(f ∗ > f (x)) = μ(f ∗ > f ∗(Tx)) = Tx.

The second equality follows from (b) and the third is true because Tx does not
lie in a flat spot.

For x ∈ Xi with i ≥ 1, we have f (x) = si and Tx = Tψi + ai. Since f ∗ = si

on Ii, we have

ai = μ(f ∗ > si) = μ( f > f (x)).

Arguing as in the case x ∈ X0, with f replaced by ψi and X0 by Xi, we have
on Xi, μ(ψi > ψi(x)) = Tψi x. Since

(ψi > ψi(x)) = ( f = f (x),ψ > ψ(x)),

the proof of (c) is finished.

Proposition 1.26(c) demonstrates in pithy fashion how the map Tf depends
only on f and ψ . See Figure 1.4.

To get a better understanding of the transformation Tf , the reader is advised
to return to Examples 1.8 and 1.9. For the simple function in Example 1.8, the
reader should write down the Tf obtained from any function ψ on X with no
flat spots, while for Example 1.9 he could seek a Tf which is piecewise linear
on (−1, 2).

Suppose now that μ(X) = ∞. We will not aim for the most general results
along the lines of the two previous propositions, but will confine ourselves to
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Figure 1.4 A measure preserving transformation T such that f = f ∗ ◦ T for
the function f shown in Figure 1.1 (see also Figures 1.2 and 1.3). Since f ∗ is
decreasing, the value of T is large where f is small, and vice versa. Outside
of flat spots, T is uniquely determined by f (solid curve). The restriction of
T to a flat spot ( f = s) is an arbitrary measure preserving map onto the
corresponding flat spot of f ∗ (dashed curve).

stating one proposition of each kind. These propositions cover many situations
encountered in practice, and can easily be derived from Propositions 1.25
and 1.26. Details are left to the reader, who is reminded that a measure space
(X,M,μ) is called σ -finite if X is the countable union of sets of finite measure.
Note also that if f satisfied the finiteness condition (1.1), then ( f > ess inf f )
is a σ -finite subset of X, even if X is not.

Proposition 1.27 Let (X,M,μ) be a nonatomic σ -finite measure space with
μ(X) = ∞. Then

(a) X contains a family of measurable subsets {Et : t ∈ [0, ∞)} such that
Et1 ⊂ Et2 whenever 0 ≤ t1 ≤ t2 < ∞, μ(Et) = t for each t ∈ [0, ∞), and⋃

0≤t<∞ Et = X.
(b) There exists a measure preserving transformation T of (X,M,μ) onto

([0, ∞),B,L).

Proposition 1.28 Let (X,M,μ) be a nonatomic measure space with
μ(X) = ∞, and let f : X → R be a measurable function satisfying (1.1). Set
X0 = ( f > ess inf f ). Then there exists a measure preserving transformation
T of (X0,M,μ) onto ([0,μ(X0)),B,L) such that

f = f ∗ ◦ T , μ − a.e on X0. (1.12)

The example X = R, μ = L, f (x) = 1/x on (0, ∞), f (x) = 0 on (−∞, 0],
in which f ∗ = f |[0,∞), shows that even if X is σ -finite we cannot strengthen
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Proposition 1.28 to require that (1.12) hold a.e. on X. Such a strengthening can
be obtained if we permit T to take on the value ∞ and define f ∗(∞) = 0.

1.6 Symmetric Decreasing Rearrangement on R
n

Given f : Rn → R satisfying (1.1), we shall associate to f a rearrangement
f # with domain R

n whose level sets f > t are balls centered at the origin. Its
definition is in terms of the transformation T : Rn → R

+ introduced in §1.4:

T(x) = αn|x|n, x ∈ R
n, αn = Ln(Bn(0, 1)). (1.13)

Definition 1.29 Let f : Rn → R be Lebesgue measurable and satisfy (1.1).
Then f # : Rn → R is the function given by

f # = f ∗ ◦ T ,

where T is defined by (1.13).

Note that f # is defined at all points of Rn, and not just almost everywhere.
The following proposition lists the principal properties of f #. Property (b)

can be expressed by saying that f # is a radial function

Proposition 1.30 Let f be as in Definition 1.15. Then

(a) f # and f are equidistributed.
(b) f #(x) depends only on |x|.
(c) If 0 ≤ |x| ≤ |y|, then f #(y) ≤ f #(x).
(d) For each x ∈ R

n, the function t → f #(tx) is right continuous on (0, ∞).
(e) f # is the unique function defined everywhere on R

n which satisfies (a),
(b), (c), (d).

Proof In §1.4 we saw that T is Ln − L measure preserving. It follows that
f # and f ∗ are equidistributed, and hence so are f # and f . Conclusion (b)
follows from the definition of T , while (c) and (d) are consequences of the
corresponding properties of f ∗. The proof of (e) is left to the reader.

In a nutshell, Proposition 1.30 says that f # is the unique function on R
n

which is constant on spheres |x| = r, is right continuous and decreasing on
rays from the origin, and is equidistributed with f . When the dimension n = 1,
we have f #(x) = f ∗(2|x|).

Functions which are constant on spheres and decreasing on rays from the
origin will be called symmetric decreasing. Accordingly, we shall call f # the
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f
f

#

Figure 1.5 A function f on R
n and its symmetric decreasing rearrangement

f #. Three level surfaces ( f = c) are shown. The function in this example is
nonnegative, with two local maxima and a saddle point, and vanishes at infin-
ity. By definition, f # is the unique radially decreasing, lower semicontinuous
function on R

n that is equidistributed with f .

symmetric decreasing rearrangement of f . Figure 1.5 depicts an example of a
nonnegative function f on R

2 and its symmetric decreasing rearrangement f #.
Next, we consider symmetrization of Lebesgue measurable sets in R

n.

Definition 1.31 Let E be a Lebesgue measurable subset of Rn. Then E# is the
open ball centered at the origin of Rn such that Ln(E#) = Ln(E).

If Ln(E) = 0 then E# is the empty set. If Ln(E) = ∞, then E# = R
n. If

0 < Ln(E) < ∞, then E# = B
n(0, R), where R = R(E), the volume radius of

E, satisfies

αnRn = Ln(E).

We call E# the symmetric decreasing rearrangement of E.
One easily verifies the relations

(χE)
# = χE#

and

(f # > t) = ( f > t)#, t ∈ R.

If E ⊂ R
n is a Lebesgue measurable set and f : E → R is a Lebesgue

measurable function satisfying (1.1), then one can define f # : E# → R by
f # = f ∗ ◦ T , where T is given by (1.13) Later in the book we shall make
use of f # when f is defined only on E. For the present, though, we shall study
f # only for functions f which are defined a.e. in R

n.
In Chapter 7 we’ll take up symmetrization on spheres Sn and on hyperbolic

spaces H
n. The symmetrized objects will again be denoted by E# and f #,

and will be referred to as symmetric decreasing rearrangements. When it is
necessary to indicate the space with respect to which the process is performed,
we shall speak of Rn-symmetric decreasing rearrangement, and so on.
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Lamentably, there is no uniformity of terminology or notation in the
literature on symmetrization. For example, our functions and sets f # and E#

are called by some authors the Schwarz symmetrizations and by others the
point symmetrizations of f and E. They are frequently denoted by f ∗ and
E∗. Books and papers employing various notations include Bandle (1980),
Kawohl (1985), Lieb and Loss (1997), Pólya and Szegő (1951), Bennett and
Sharpley (1988), Alvino et al. (1990), Baernstein (1994), Hayman (1989), and
Dubinin (1993).

We derive now a useful representation for symmetric decreasing rearrange-
ments. For simplicity, we will consider only nonnegative f , but the procedure
can be modified to treat more general f satisfying (1.1).

Consider first nonnegative simple functions f = ∑k
i=1 αiχEi , where the Ei

are disjoint Lebesgue measurable sets of finite positive measure in R
n, the αi

are distinct, and each αi > 0. Relabel so that the αi are in descending order:
α1 > · · · > αk > 0. We are in the situation of Examples 1.2 and 1.8, where the
general X there is now X = R

n. Then f # = α1 on a ball centered at the origin
of measure L(E1), f # = α2 on a spherical ring with measure μ(E2), etc. More
precisely, let

Bj =
⎛⎝ j⋃

i=1

Ei

⎞⎠#

, j = 1, . . . , k.

Then {Bj} is a strictly increasing sequence of open balls centered at the origin,
and we have

f # =
k∑

j=1

αjχBj\Bj−1 =
k∑

j=1

(αj − αj+1)χBj . (1.14)

In the first sum B0 denotes the empty set, and in the second sum αk+1 ≡ 0.
The openness of the balls Bj insures right continuity of f ∗ on rays through the
origin. The reader may check that f # as given by (1.14) and f ∗ as given by (1.3)
do indeed satisfy the defining relation f # = f ∗ ◦ T .

Assume now, more generally, that f : Rn → R is nonnegative and Lebesgue
measurable. For t > 0, write E(t, f ) = ( f > t).

Proposition 1.32 (Layer cake representation) Let f : Rn → R be nonnegative
and Lebesgue measurable. Then, at all x at which f (x) is defined,

f (x) =
∫ ∞

0
χE(t, f )(x) dt. (1.15)

Proof Use the identity

χE(t, f )(x) = χ[0, f (x))(t), t ≥ 0.
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Since E(t, f #) = (E(t, f ))#, Proposition 1.32 implies, for nonnegative
measurable f satisfying (1.1), the representation

f #(x) =
∫ ∞

0
χ(E(t,f ))#(x) dt, x ∈ R

n. (1.16)

In Lieb and Loss (1997), (1.16) is taken as the definition of f #. It is not
difficult to show directly that the function on the right-hand side of (1.16)
satisfies properties (a)–(d) of Proposition 1.30. When f is simple, the integral
in (1.16) reduces to the second sum in (1.14).

Sometimes in manipulations involving the layer cake representation one
must confront measurability questions. Define F : Rn ×R

+ → R by F(x, t) =
χE(t,f )(x) = χ[0,f (x))(t). If one of the variables t or x is held fixed, then
F is clearly a Lebesgue measurable function of the other variable. To see
how F behaves as a function on the product space, write F = χG, where
G = {(x, t) ∈ R

n × R
+ : f (x) − t > 0}. Since f (x) − t is a Ln × L-measurable

function, it follows that G is a Ln ×L-measurable set, and hence F is a Ln ×L-
measurable function on R

n × R
+.

We introduced the layer cake representation in the context of functions on
R

n. But it works similarly on more general measure spaces (X,M,μ). Suppose
that f : X → R

+ is measurable. Then (1.15) holds for x ∈ X at which f (x) is
defined. Moreover, if f satisfies (1.1), then its decreasing rearrangement f ∗ is
given by

f ∗(x) =
∫ ∞

0
χ(E(t,f ))∗(x) dt, x ∈ R

+,

where (E(t, f ))∗ denotes the interval [0,μ(E(t, f ))).

1.7 Polarization on R
n

Let H be an affine hyperplane in R
n. That is, H = a+M, where a ∈ R

n and M
is an (n − 1)-dimensional subspace of Rn. The complement of H in R

n is the
union of two open halfspaces; denote one of them by H+, the other by H−. Let

ρH : Rn → R
n

denote reflection in H. We will write ρ = ρH when the context is clear.
Reflections are isometries of Rn. That is

|ρx − ρy| = |x − y|, x, y ∈ R
n.

In general, a map T : Rn → R
n is an isometry of Rn onto itself if and only

if T has the form
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T(x) = a + Sx, x ∈ R
n,

for some a ∈ R
n and some S in the orthogonal group O(n). Thus, a map is an

isometry of Rn if and only if it is the composition of translations, reflections
and (sense preserving) rotations. As discussed in Example 1.22, isometries
are Ln-measure preserving maps of Rn onto itself. Reflections ρ are special
isometries, with the involutory property ρ ◦ ρ = id.

Let H(Rn) denote the set of all affine hyperplanes in R
n. The proposition

below records a few additional elementary facts about reflections and
hyperplanes.

Proposition 1.33

(a) Let H1, H2 ∈ H(Rn). There exists an isometry T of Rn such that
TH1 = H2.

(b) Let H ∈ H(Rn), and suppose that x ∈ H and y ∈ R
n. Then

|x − y| = |x − ρH(y)|.
(c) Let H ∈ H(Rn), and suppose that x and y are both in H+ or both in H−.

Then |x − y| < |x − ρH(y)|.
(d) Let x and y be distinct points of Rn. There exists a unique H ∈ H(Rn)

such that ρH(x) = y.

Proof (a): If H1 and H2 are parallel, then H1 can be mapped onto H2 by a
translation. If H1 and H2 are not parallel then they have a point in common and
there is a translation which maps H1 and H2 onto subspaces M1 and M2. Then
M1 can be mapped onto M2 by a rotation.

(b) and (c): If H = {x ∈ R
n : x · en = 0} the results are easy. Using (a), the

case of general H can be reduced to that of the special H
(d): Form the line segment with endpoints x and y. Let H be the affine

hyperplane orthogonal to this segment which passes through its midpoint. Then
ρH(x) = y. Verification of the uniqueness statement is left to the reader.

We define now one of the central concepts in our approach to
symmetrization.

Definition 1.34 Let f : Rn → R and H ∈ H(Rn). Then fH : Rn → R
+ is the

function defined by

fH(x) =

⎧⎪⎪⎨⎪⎪⎩
max(f (x), f (ρx)), x ∈ H+,

min(f (x), f (ρx)), x ∈ H−,

f (x), x ∈ H.
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Figure 1.6 A function f on R
n (left, solid curves), its reflection f ◦ ρ

at a hyperplane H (left, dotted curves) and its polarization fH (right).
(The function is the same as in Figure 1.5.) By definition, fH is given by
max{ f , f ◦ ρ} on H+ and by min{ f , f ◦ρ} on H−. Thus, fH is equidistributed
with f , and |∇fH | is equidistributed with |∇f |.

We call fH the polarization of f with respect to H. In fact, fH depends also
on which complementary halfspace is designated H+, but this ambiguity will
usually not cause any difficulties. Figure 1.6 shows an example of a function
f : R2 → R and one of its polarizations. When n = 1, H is a single point.

For E ⊂ R
n the polarization of χE is also the characteristic function of

some set. This set, which we denote by EH , is called the polarization of E with
respect to H. One way to think of EH is like this: Take x, y ∈ R

n with ρHx = y.
If both x and y are in E then both will be in EH . If neither is in E then neither
will be in EH . If one is in E but the other is not, then x and y are not in H; the
member of the pair in H+ will belong to EH but the member in H− will not.
Note in particular that E ∩ H = EH ∩ H.

With the situation of Definition 1.34, define a partition R
n = A ∪ B of Rn as

follows:

A = H ∪ {x ∈ H+ : f (x) ≥ f (ρx)} ∪ {x ∈ H− : f (x) ≤ f (ρ(x))},
B = R

n \ A.

Thus, a point x ∈ R
n belongs to A if and only if fH(x) = f (x), while x ∈ B if

and only if fH(x) = f (ρx) and f (ρx) �= f (x). Notice that H ⊂ A, and that both
A and B are mapped onto themselves by ρ.

Define Tf ,H = T : Rn → R
n by T(x) = x if x ∈ A, T(x) = ρx if x ∈ B. Then

fH = f ◦ T . (1.17)

Proposition 1.35 If f : R
n → R is Lebesgue measurable then T is

(Rn,Mn,Ln) → (Rn,Mn,Ln) measure preserving. Consequently, fH is
Lebesgue measurable, and if f satisfies (1.1), then fH is a rearrangement of f .

Proof T|A is the identity, and T|B = ρ. Moreover, T maps each of A
and B onto itself. The identity and ρ are each measure preserving maps of



1.7 Polarization on R
n 45

(Rn,Mn,Ln) and the sets A and B are Lebesgue measurable when f is. Thus,
T|A is a measure preserving map of A onto itself, and T|B is a measure
preserving map of B onto itself. Let E ⊂ R

n be Lebesgue measurable. Then

T−1(E) = T−1(E ∩ A) ∪ T−1(E ∩ B).

The sets on the right-hand side are disjoint, each is Lebesgue measurable,
and the sum of their Lebesgue measures equals Ln(E). Thus, T is measure
preserving on (Rn,Mn,Ln). The second statement of the proposition follows
from (1.17).

The diameter diam E of a set E ⊂ R
n is defined by

diam E = sup
x,y∈E

|x − y|.

The modulus of continuity ω(t, f ) of a function f : Rn → R is defined by

ω(t, f ) = sup{| f (x) − f (y)| : |x − y| ≤ t}.

The function is uniformly continuous on R
n if and only if limt→0 ω(t, f ) = 0.

The next two propositions show that polarization has a smoothing effect.
The propositions are valid for all real-valued functions on R

n, measurable
or not.

Proposition 1.36 For f : Rn → R and H ∈ H(Rn) holds

diam( fH > t) ≤ diam( f > t), t ∈ R.

Proposition 1.37 For f : Rn → R and H ∈ H(Rn) holds

ω(t, fH) ≤ ω(t, f ), t ∈ R
+.

Proof of Proposition 1.36 It suffices to show that if x, y ∈R
n satisfy fH(x) > t

and fH(y) > t, then there exist z, w ∈ R
n such that

f (z) > t, f (w) > t, and |z − w| ≥ |x − y|. (1.18)

The proof of this statement proceeds by cases and subcases.
Case 1. x, y ∈ H+ ∪ H. There are four possibilities:

(i) f (x) > t and f (y) > t.
(ii) f (x) > t and f (ρy) > t.

(iii) f (ρx) > t and f (y) > t.
(iv) f (ρx) > t and f (ρy) > t.
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If (i) holds, take z = x and w = y. If (ii), take z = x, w = ρy. If (iii) take
z = ρx, w = y, and if (iv), take z = ρx, w = ρy. Using Proposition 1.33(c),
we see that (1.18) holds in each subcase.
Case 2. x, y ∈ H− ∪ H. The analysis works as for Case 1.
Case 3. x and y lie in different complementary open halfspaces. Say x ∈
H+, y ∈ H−. There are two possibilities:

(i) f (x) = fH(x).
(ii) f (x) = fH(ρx).

In subcase (i), take z = x and w = y. Since ρy ∈ H+, we have
fH(ρy) ≥ fH(y) > t. Thus min( fH(y), fH(ρy)) > t, and so we deduce
min( f (y), f (ρy)) > t. In particular, f (y) > t, and (1.18) holds.

In subcase (ii), take z = ρx and w = ρy. Then f (z) = fH(x) > t. Also,
f (w) > t, by the argument in (i). Thus, (1.18) holds.

Proof of Proposition 1.37 It suffices to show: For each x, y ∈ R
n, there exists

z, w ∈ R
n such that

| fH(x) − fH(y)| ≤ | f (z) − f (w)| and |z − w| ≤ |x − y|. (1.19)

Again, the proof proceeds by cases and subcases.
Case 1. x, y ∈ H+ ∪ H. There are four possibilities.

(i) fH(x) = f (x) and fH(y) = f (y).
(ii) fH(x) = f (ρx) and fH(y) = f (y).

(iii) fH(x) = f (x) and fH(y) = f (ρy).
(iv) fH(x) = f (ρx) and fH(y) = f (ρy).

If (i), take z = x, w = y. If (iv), take z = ρx, w = ρy.
To handle (ii), we split the argument into two subsubcases. Suppose first

that, in addition to the assumptions of Case 1(ii), we have fH(x) ≥ fH(y). Then

| fH(x) − fH(y)| = f (ρx) − f (y) ≤ f (ρx) − f (ρy).

The inequality comes from the assumptions that y ∈ H+ ∪ H and fH(y) =
f (y). Then (1.19) is satisfied if we take z = ρx and w = ρy.

If fH(x) < fH(y) and the assumptions of Case 1(ii) are satisfied, then

| fH(x) − fH(y)| = f (y) − f (ρx) ≤ f (y) − f (x).

The inequality comes from the assumptions that x ∈ H+ ∪ H and
fH(x) = f (ρx). Then (1.19) is satisfied if we take z = x and w = y.
Case 2. x, y ∈ H− ∪ H. The analysis is like that of Case 1.
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Case 3. The points x and y lie in different complementary open halfspaces. Say
x ∈ H+, y ∈ H−. Split into the same subcases (i)–(iv) as for Case 1. Choose
z and w as follows: (i) z = x, w = y. (ii) z = ρx, w = y. (iii) z = x, w = ρy.
(iv) z = ρx, w = ρy.

Since x and y are on different sides of H, we have |z − w| ≤ |x − y| in each
subcase. Also, f (z) = fH(x) and f (w) = fH(y) in each subcase, so (1.19) is
satisfied.

The next lemma concerns the relation between polarization and symmetric
decreasing rearrangement. If a function f agrees with its s.d.r. f #, then clearly
f = fH for every hyperplane such that H+ contains the origin. The second part
of the lemma shows that the converse also holds. The first part will be used in
the proof of Theorem 8.11.

Lemma 1.38 Let f be a nonnegative measurable function on R
n satisfying

the usual finiteness condition (1.1). Suppose that f is not Ln-a.e. equal to its
s.d.r. f #.

(a) Let

A1 = {(x, y) ∈ R
n × R

n : f (x) < f (y) and |x| < |y|}.
Then L2n(A1) > 0.

(b) There exists a hyperplane H ∈ H(Rn) with 0 ∈ H+ such that fH is not
Ln-a.e. equal to f .

Proof (a) The set {x ∈ R
n : f (x) �= f #(x)} has positive measure. Since f and

f # have the same distribution, each set ( f > f #) and ( f < f #) also has positive
measure (as explained later in the proof of Theorem 2.15b). By Evans and
Gariepy (1992, p. 47), almost every point of R

n is a point of approximate
continuity for f and for f #. For f , a point x0 of approximate continuity is a point
such that: given ε > 0 there exists δ > 0 and a measurable set E ⊂ B

n(x0, δ)
such that Ln(E) > (1 − ε)αnδ

n and

| f (x) − f (x0)| < ε, ∀x ∈ E.

Fix x0 such that f (x0) < f #(x0) and x0 is a point of approximate continuity
of both f and f #. Set f #(x0) = b. Let B = (f # ≥ b). Then B is a ball centered
at the origin, of radius R, say, which is closed if f # is continuous at R and open
if f # has a jump at R. In any case, x0 ∈ B, and Ln( f ≥ b) = Ln(B). The
approximate continuity of f at x0 implies that f (x) < b for all x in some set E1

of positive measure contained in B. Since Ln( f ≥ b) = Ln(f # ≥ b) = Ln(B),
there is a set E2 ⊂ (|x| > R) of positive measure such that f ≥ b on E2. Then
f (x) < f (y) for all (x, y) ∈ E1 × E2. Also, |x| ≤ R < |y| for (x, y) ∈ E1 × E2.
Thus, we have L2n(A1) ≥ L2n(E1 × E2) > 0.
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(b) Let x0 and y0 be as in the proof of (a). By Proposition 1.16.4, there
exists a unique H ∈ H(Rn) such that ρH(x0) = y0. Let H+ t be the half
space containing x0. Since |x0| < |y0|, the origin is contained in H+. The
approximate continuity of f at x0 and y0 implies that there exists a set E2 of
positive measure containing x0 such that f (x) < f (ρHx) for all x ∈ E2. By
definition, fH(x) = f (ρHx) > f (x) for all x ∈ E2.

1.8 Convergence Theorems for Rearrangements

Suppose that { fn} is a sequence of measurable real valued functions defined on
a measure space (X,M,μ), and that { fn} converges to a function f in some
sense. Is it true that { f ∗

n } converges to f ∗ on [0,μ(X)]? In this section we
will prove two affirmative results and display some counterexamples. Further
results will appear later in the book.

The first result concerns monotone convergence.

Proposition 1.39 Let (X,M,μ) be a measure space and fn : X → R be
measurable for n = 1, 2, . . . . Suppose that fn ↗ f a.e. on X, that each
fn satisfies (1.1), and that f satisfies (1.1). Then f ∗

n ↗ f ∗ at each point of
[0,μ(X)).

The example X = [0, ∞), fn = χ[0,1]∪[2,3]∪···∪[2n,2n+1] shows that { fn} can
converge upward to a function f which does not satisfy (1.1), even though each
fn does. Concerning the endpoint μ(X), the proof will show that

lim
n→∞ f ∗

n (μ(X)) ≤ f ∗(μ(X)). (1.20)

The example X = [0, 1], fn = χ[0,1− 1
n ] shows that strict inequality can hold

in (1.20).

Proof of Proposition 1.39 First, we record a simple inequality for distribution
functions and decreasing rearrangements. Let g and h be measurable functions
on X satisfying g ≤ h a.e. Then λg(t) ≤ λh(t). Suppose that g and h satisfy
(1.1). Then from formula (1.2) for g∗ in terms of λg, we deduce that

g∗(x) ≤ h∗(x), x ∈ [0,μ(X)]. (1.21)

Returning now to the proof of Proposition 1.39, by changing the fn and f on
a set of measure zero, if necessary, we may assume that fn ↗ f at every point
of X. From (1.21), it follows that the sequence { f ∗

n } is increasing on [0,μ(X)].
Let F(x) = limn→∞ f ∗

n (x). Since fn ≤ f on X, we have f ∗
n ≤ f ∗ everywhere on

[0,μ(X)]. Hence F ≤ f ∗ on [0,μ(X)].
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Take 0 ≤ x < μ(X). Suppose that F(x) < f ∗(x). Take s with
F(x)< s< f ∗(x). Since F and f ∗ are decreasing on [0,μ(X)], and f ∗ is right
continuous, we have ( f > s) ⊂ [0, x) and [0, x + ε) ⊂ (f ∗ > s) for some
ε > 0. Thus λF(s) ≤ x and λf ∗(s) > x, so that

λF(s) < λf ∗(s). (1.22)

On the other hand, since f ∗
n ≤ F for each n, and λf ∗

n
= λfn , we have

lim
n→∞ λfn(t) ≤ λF(t), t ∈ R. (1.23)

But by Proposition 1.5(f), the limit on the left-hand side of (1.23) equals
λf (t). Since λf = λf ∗ , the choice t = s contradicts (1.22). We conclude
that F(x) ≥ f ∗(x), and hence that F = f ∗ on [0,μ(X)). This proves Proposition
1.39.

The second result concerns convergence in measure. The result for decreas-
ing rearrangements will be preceded by a convergence result for distribution
functions.

Proposition 1.40 Let (X,M,μ) be a measure space and fn : X → R be
measurable for n = 1, 2, . . . . Suppose that { fn} converges in measure on X to f .
Then

λf (t) ≤ lim inf
n→∞ λfn(t) ≤ lim sup

n→∞
λfn(t) ≤ λf (t−), t ∈ R. (1.24)

From (1.24), it follows that limn→∞ λfn(t) = λf (t) at each continuity point
t ∈ R of λf , and hence for almost every t ∈ R.

Proof of Proposition 1.40 Take t ∈ R and ε > 0. Then

( fn > t + ε) ⊂ ( f > t) ∪ (| f − fn| > ε),

hence λfn(t + ε) ≤ λf (t) + μ(| f − fn| > ε). Letting n → ∞, we obtain

lim sup
n→∞

λfn(t + ε) ≤ λf (t).

Replace t by t − ε, then let ε → 0. This gives the third inequality in (1.24).
To obtain the first inequality in (1.24), use a similar argument starting with
( f > t + ε) ⊂ ( fn > t) ∪ (| f − fn| > ε), along with the right continuity of λf .

Proposition 1.41 Let (X,M,μ) be a measure space and fn : X → R be
measurable for n = 1, 2, . . . . Suppose that { fn} converges in measure on X to f .
Suppose also that each fn satisfies (1.1). Then f satisfies (1.1), and

f ∗(x) ≤ lim inf
n→∞ f ∗

n (x) ≤ lim sup
n→∞

f ∗
n (x) ≤ f ∗(x−), x ∈ (0,μ(X)). (1.25)
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Moreover, if μ(X) < ∞ or if ess inf f > −∞, then { f ∗
n } converges in

measure on [0,μ(X)] to f ∗.

From (1.25), it follows that f ∗
n (x) → f ∗(x) at continuity points of f ∗ in

(0,μ(X)), and hence a.e. on [0,μ(X)]. If μ(X) = ∞ and f ∗(∞) = −∞ then
{ f ∗

n } need not converge in measure. An example is constructed after the proof.
In (1.25), x is confined to the open interval (0,μ(X)). Let us investigate what

happens at endpoints. When x = 0 we have f ∗(0) = ess sup f . It is easy to see
that convergence in measure implies that

ess sup f ≤ lim inf
n→∞ ess sup f ∗

n ,

so that the first inequality in (1.25) holds. Since f ∗(0−) is not defined, there
is no third inequality. When x = μ(X) we have f ∗(μ(X)) = f ∗(μ(X)−) =
ess inf f . The third inequality follows from convergence in measure, but the
first inequality can fail. Consider the following example:

X = [0, 1], fn = χ[0, 1
n ] + 1

2
χ[ 1

n ,1− 1
n ].

Then fn = f ∗
n and { fn} converges in measure to the constant 1/2. For x = 0

strict inequality holds in the first inequality of (1.25) and for x = μ(X) = 1
strict inequality holds in the third inequality.

For more about the case μ(X) = ∞, see (1.27) below.

Proof of Proposition 1.41 Let a = ess inf f . Then a < ∞. If λf (a) < ∞ then
(1.1) holds for f . Suppose that λf (a) = ∞. Take s and t with a < s < t. The
convergence in measure implies that the set | f − fn| > t − s has finite measure
for all sufficiently large n. If λf (t) were infinite, then λfn(s) would be infinite
for all sufficiently large n. But as remarked above, the convergence in measure
also implies lim supn→∞ ess inf fn ≤ ess inf f = a < s. These inequalities
contradict the assumption that (1.1) holds for each fn. Thus, λf (t) < ∞ for all
t > a, and hence (1.1) holds for f .

Next, we prove (1.25). Take x ∈ (0,μ(X)) and δ > 0. Suppose that f ∗(x) >
f ∗
n (x) + δ for infinitely many n. Take t with f ∗(x) − δ < t < f ∗(x). Then for

these values of n,

f ∗
n (x) < t < f ∗(x).

Using right continuity of f ∗, the second inequality implies λf ∗(t) > x. The
first inequality implies λf ∗

n
(t) ≤ x for infinitely many n. These inequalities

contradict the first inequality in (1.24). Thus, the first inequality in (1.25) is
true. If the third inequality in (1.25) were false, there would exist 0 < y < x,
δ > 0 and infinitely many n such that f ∗(y) + δ < f ∗

n (x). Take s, t with
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f ∗(y) < s < t < f ∗(y) + δ. Then λf ∗(s) ≤ y. Also, f ∗
n (x) > t, so that

λf ∗
n
(t) > x, for infinitely many n. Letting s ↗ t, we obtain a contradiction

to the third inequality in (1.24). Thus, the third inequality in (1.25) is also true.
To prove the statement about convergence in measure, take 0 < x1 < x2 <

μ(X). Since f ∗(x1−) < ∞ and f ∗(x2) > −∞, it follows from (1.25) that
the sequences { f ∗

n (x1)} and { f ∗
n (x2)} are bounded. Hence, { f ∗

n } is uniformly
bounded on [x1, x2]. Since, by (1.25), { f ∗

n } converges to f ∗ a.e., the dominated
convergence theorem implies that { f ∗

n } converges to f ∗ in L1[x1, x2], and hence
in measure on [x1, x2]. From this, it follows that the convergence in measure in
fact occurs on every interval [0, M] with 0 < M < ∞.

If μ(X) < ∞, we just saw that { f ∗
n } converges in measure to f ∗ on [0,μ(X)].

Suppose that μ(X) = ∞. Then, by our hypothesis, ess inf f = f ∗(∞)>−∞.
As noted previously, the convergence in measure implies

lim sup
n→∞

f ∗
n (∞) ≤ f ∗(∞).

We claim that the complementary inequality also holds:

f ∗(∞) ≤ lim inf
n→∞ f ∗

n (∞). (1.26)

Suppose that (1.26) is false. Then there exists δ > 0 and infinitely many
n with f ∗

n (∞) + δ < f ∗(∞). Take s, t with f ∗
n (∞) < s < t < f ∗(∞).

Then λf (t) = ∞. The argument in the first paragraph of the proof shows
that λfn(s) = ∞ for all sufficiently large n. For the n with s > ess inf fn, the
functions fn do not satisfy condition (1.1), contrary to hypothesis. Thus (1.26)
is true, and we deduce that

lim
n→∞ f ∗

n (∞) = f ∗(∞). (1.27)

Given ε > 0, take M ∈ (0, ∞) such that f ∗(M−) < f ∗(∞) + ε. Using
(1.25), then (1.27), we see there exists n0 such that n ≥ n0 implies f ∗(M)−ε <

f ∗
n (M) < f ∗(M−)+ ε and | f ∗

n (∞)− f ∗(∞)| < ε. It follows that if x ≥ M and
n ≥ n0, then

f ∗(∞) < f ∗
n (∞)+ε ≤ f ∗

n (x)+ε ≤ f ∗
n (M)+ε < f ∗(M−)+2ε < f ∗(∞)+3ε.

Hence, | f ∗
n (x) − f ∗(x)| < 2ε when x ≥ M and n is sufficiently large.

Since f ∗
n → f ∗ in measure on [0, M], it follows that f ∗

n → f ∗ in measure
on [0, ∞).

Example 1.42 Let f ∈ C1([0, ∞)) be concave and decreasing, with f (0)= 0
and limx→∞ f ′(x) = −∞. Then f ∗ = f . Let {xn} be a sequence in R

+ with
limn→∞ xn = ∞. Take a sequence {δn} in R

+ with limn→∞ δn = 0 and
limn→∞ δnf ′( 1

2 xn) = −∞. Set In = (xn, xn + δn). For n ≥ 1, define fn by
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fn = f on [0, ∞) \ In, fn = 1 on In. Then each fn satisfies (1.1), and { fn}
converges in measure to f on [0, ∞).

We have

f ∗
n (x) = 1, 0 ≤ x < δn,

= f (x − δn), δn ≤ x < xn + δn,

= f (x), xn + δn ≤ x < ∞.

Set Jn = ( 1
2 xn + δn, xn). For x ∈ Jn,

f ∗(x) − f ∗
n (x) = f (x) − f (x − δn) ≤ δnf ′(

1

2
xn).

Thus, limn→∞ infJn |f ∗ − f ∗
n | = ∞, and also limn→∞ L(Jn) = ∞. It follows

that { f ∗
n } does not converge to f ∗ in measure on [0, ∞). Since { f ∗

n } does
converge to f ∗ in measure on each compact subinterval of [0, ∞), it follows
that { f ∗

n } does not converge in measure to any function on the complete interval
[0, ∞).

Propositions 1.39 and 1.41, about decreasing rearrangements of functions on
general measure spaces, immediately imply corresponding convergence results
for symmetric decreasing rearrangements of functions on R

n. Recall that if
f : Rn → R is measurable and satisfies (1.1), then its symmetric decreasing
rearrangement f # : Rn → R is defined by f #(x) = f ∗(αn|x|n), where αn is
the volume of the unit ball in R

n. For ease of future reference, we state the
convergence results in the following proposition.

Proposition 1.43 Let { fn} be a sequence of real valued measurable functions
on R

n, each of which satisfies (1.1).

(a) If fn ↗ f a.e. on R
n and f satisfies (1.1), then f #

n ↗ f # at each point of Rn.
(b) If { fn} converges in measure to f on R

n, then f satisfies (1.1), and for
each x ∈ R

n,

f #(x) ≤ lim inf
n→∞ f #

n (x) ≤ lim sup
n→∞

f #
n (x) ≤ lim

t→1−
f #(tx). (1.28)

Moreover, if ess inf f > −∞, then { fn} converges in measure on R
n to f #.

The last term of (1.28) is to be omitted when x = 0.
Finally, we mention a useful compactness property of decreasing functions.

Lemma 1.44 (cf. Lieb and Loss, 1997, pp. 81, 110) Let { fk} be a sequence of
decreasing nonnegative right-continuous functions on (0, ∞), all of which are
majorized by a real valued function g on (0, ∞). Then there is a subsequence
of { fk} which converges L-a.e. on (0, ∞).
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Proof Let Q be a countable dense subset of (0, ∞). Via the diagonal
argument, we can choose a subsequence of { fk}, also denoted { fk}, such that
g(x) ≡ limk→∞ fk(x) exists and is finite for each x ∈ Q. Extend g to (0, ∞)

by defining g(x) = limy→x+, y∈Q g(y). Then g is decreasing, and it is a simple
exercise to show that g(x) = limk→∞ fk(x) at each point of continuity of f .

1.9 Notes and Comments

Rearrangement of sets played a major role in nineteenth-century research of
Steiner (1842) and H. A. Schwarz (1890) on isoperimetric problems. The
decreasing rearrangement of a function was formally introduced by Hardy
and Littlewood (1930). That paper also contains the birth of what we now
call the Hardy–Littlewood maximal function. The book of Hardy, Littlewood
and Pólya (1952), first published in 1934, contains a chapter on rearrangement
inequalities for sequences and for functions of one variable.

The first use I have found of the term “polarization” in our context is
in a paper by Dubinin (1987). The technique had been applied earlier to
symmetrization problems by Wolontis (1952) and Ahlfors (1973, Lemma 2.2).

Ryff (1970) proves the factorization f = f ∗ ◦ T for f : [0, 1] → R. Chapter 2
of the book by Bennett and Sharpley (1988) contains significant overlap with
our Chapter 1. In particular, our Proposition 1.25 appears as Exercise 17, and
the result of the exercise is used to prove the Ryff factorization for f : X → R

when X is a general finite non-atomic measure space. Brenier (1991) invented a
version of the factorization for Rn-valued functions, which he calls the “polar
factorization.” Brenier’s theory has been applied and further developed by a
number of authors, such as R. McCann. See, for example, McCann (1995) and
McCann (2001). The latter paper factors functions f : M → M, where M is a
compact manifold.

The result in Proposition 1.43 that convergence in measure of { fn} implies
convergence in measure of the symmetric decreasing rearrangements, when
the limit function is essentially bounded below, is due to Almgren and Lieb
(1989, p. 694).



2

Main Inequalities on R
n

The main results of this chapter, Theorems 2.12 and 2.15, give general
inequalities for symmetric decreasing rearrangements of functions f : Rn →R.
Much of the rest of the book is based on these inequalities and on their
spherical and hyperbolic analogues to be proved in Chapter 7. Theorem
2.12 asserts that symmetric decreasing rearrangement decreases the modulus
of continuity of f , while Theorem 2.15 asserts that certain integral expres-
sions increase when functions are replaced by their symmetric decreasing
rearrangements. The proofs of Theorems 2.12 and 2.15 use Theorem 2.9,
which is an analogue of Theorem 2.15 for polarization. Theorem 2.9 is,
in turn, a consequence of Theorem 2.8, which is an elementary version of
Theorem 2.15 involving symmetrization on a space with just two points. In
§2.7 we derive some consequences of the general inequalities. Among the
simplest is the Hardy–Littlewood type inequality

∫
Rn fg dx ≤ ∫

Rn f #g# dx,
where f and g satisfy suitable hypotheses and # denotes symmetric decreasing
rearrangement.

The integral expressions in Theorems 2.8, 2.9, and 2.15 involve functions
�(x, y) of two real variables whose generalized mixed second partial
derivatives satisfy �xy ≥ 0. We have dubbed these functions AL functions.
Section 2.1 contains a few simple results about AL functions, and contains
also a resumé of some facts we will use about convex functions.

The proof of parts (a) and (c) of Theorem 2.15 is completed in §2.5
when � is continuous. To extend those results to discontinuous � requires
a good deal of additional technical work, which is deferred until the last two
sections of the chapter. No essential use of the discontinuous case will appear
later in the book, so the reader so inclined may safely skip these last two
sections.
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2.1 Convex and AL Functions

Let I denote an interval in R. A function f : I → R is said to be convex if for
every x, y ∈ I and t ∈ [0, 1] holds

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y).

If strict inequality holds for every t ∈ (0, 1), then f is said to be strictly
convex.

Convex functions are continuous on the interior of their domain. For this fact
and other information about convex functions, the reader may consult, among
other sources, Hardy et al. (1952), Hörmander (1994), Zygmund (1968), or
Roberts and Varberg (1973). In this section we will use two additional facts.

Fact 2.1 If I is the closed interval [a, b], and f is convex on I, then

max
I

f = max( f (a), f (b)).

Moreover, if f (x) = max( f (a), f (b)) for some x ∈ (a, b), then f is constant on
I (and hence is not strictly convex).

The proof is left to the reader.

Fact 2.2 Suppose that x1 < x2 < x3 < x4 are points of I with x1 + x4 =
x2 + x3, and that f is convex on I. Then

f (x2) + f (x3) ≤ f (x1) + f (x4). (2.1)

If f is strictly convex on I, then strict inequality holds in (2.1).

Proof Let m = 1
2 (x1 + x4). Set f1(x) = f (x)+ f (2m− x). Then f1 is convex on

[x1, x4], with f1(x1) = f1(x4) = f (x1)+f (x4). Since x1+x4 = 2m = x2+x3, we
have f1(x2) = f (x2)+f (x3). Application of Fact 2.1 to f1 yields f1(x2) ≤ f1(x1),
which is (2.1).

If equality holds in (2.1), then f1 achieves its maximum on [x1, x4] at x2, so
that f1 is constant on [x1, x4]. Hence,

f (x1) + f (x4) = f1(x1) = f1(m) = 2f (m).

Thus, f is not strictly convex on I.

Definition 2.3 Let E1, E2 be subsets of R, and f : E1 × E2 → R. We say that
f ∈ AL(E1 × E2) if for every x1, x2 ∈ E1 and y1, y2 ∈ E2 with x1 ≤ x2 and
y1 ≤ y2 holds

f (x1, y2) + f (x2, y1) ≤ f (x1, y1) + f (x2, y2). (2.2)
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Figure 2.1 Graph of a convex function f on an interval [a, b]. By definition,
the graph of f lies below any line segment that interpolates between two
points on the curve (dashed line). Thus, f assumes its maximum either at a or
b (Fact 2.1). Moreover, f1(x) = f (x)+ f (2m − x) is an increasing function of
|x − m| (see the proof of Fact 2.2).

We say that f ∈ SAL(E1 × E2) (the S stands for strict) if strict inequality holds
in (2.2) whenever x1 < x2 and y1 < y2.

Our first fact about AL functions is an analogue of the fact that a C2 function
on an interval I ⊂ R is convex if and only if its second derivative is nonnegative
on I. The subscripts on f below denote partial differentiation.

Fact 2.4 If I1, I2 are intervals in R, and f ∈ C2(I1 × I2), then f ∈ AL(I1 × I2)

if and only if fxy ≥ 0 on I1 × I2. Moreover, if fxy > 0 almost everywhere on
I1 × I2, then f ∈ SAL(I1 × I2).

Proof Let x1 ≤ x2 be points of I1 and y1 ≤ y2 be points of I2. Then∫ y2

y1

∫ x2

x1

fxy(u, v) du dv =
∫ y2

y1

( fy(x2, v) − fy(x1, v)) dv

= f (x2, y2) − f (x2, y1) − f (x1, y2) + f (x1, y1).

The statements in Fact 2.4 follow from the equality of the first and third
terms.

Example 2.5 The function f (x, y) = xy belongs to SAL(R × R).

The next two facts show how AL and convex functions are related.

Fact 2.6 Let g : R → R be convex. Then

f (x, y) ≡ g(x) + g(y) − g(x − y) ∈ AL(R × R).

If g is strictly convex on R, then f ∈ SAL(R × R).

Proof Let x1 ≤ x2 and y1 ≤ y2 be points of R. Then

f (x2, y2) − f (x2, y1) − f (x1, y2) + f (x1, y1)

= g(x1 − y2) + g(x2 − y1) − g(x1 − y1) − g(x2 − y2).
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Now

x1 − y2 ≤ x1 − y1 ≤ x2 − y1;

x1 − y2 ≤ x2 − y2 ≤ x2 − y1; and

(x1 − y2) + (x2 − y1) = (x1 − y1) + (x2 − y2).

The conclusion f ∈ AL(R × R) follows from Fact 2.2 applied to g.
The conclusions involving strictness follow by evident adaptation of the
argument.

Fact 2.7 Let g : R+ → R be convex and increasing. Then

f (x, y) ≡ g(|x|) + g(|y|) − g(|x − y|) ∈ AL(R × R).

If g is strictly convex on R
+, then f ∈ SAL(R × R).

Proof Let g1(x) = g(|x|). Then g1 is convex on R, and is strictly convex on R

if g is strictly convex on R
+. Fact 2.7 follows from Fact 2.6 applied to g1.

2.2 Main Inequalities for Two-Point Symmetrization

In this section, we let X denote the two-point set {1, 2}, d denote the distance
function on X defined by d(x, y) = 1 if x = y, d(x, y) = 0, if x �= y, and μ

denote the measure on X such that μ({x}) = 1 for x = 1, 2.
For functions f : X →R, define the decreasing rearrangement f ∗ : X → R by

f ∗(1) = max( f (1), f (2)), f ∗(2) = min( f (1), f (2)).

Let K : {0, 1} → R and � : f (X) × g(X) → R be given functions. For
f , g : X → R, define

Q( f , g) = Q( f , g, K,�) =
∫

X2
�( f (x), g(y))K(d(x, y)) dμ(x) dμ(y).

Theorem 2.8 Suppose that K(0) ≥ K(1) and that � ∈ AL( f (X) × g(X)).
Then, for f : X → R, g : X → R hold

(a) Q( f , g) ≤ Q( f ∗, g∗).
(b) If K(0) > K(1) and � ∈ SAL(( f (X) × g(X)) then strict inequality holds

in (a) if and only if

f (1) < f (2) and g(1) > g(2), or f (1) > f (2) and g(1) < g(2). (2.3)

(c)
∫

X �( f , g) dμ ≤ ∫
X �( f ∗, g∗) dμ.

(d) If � ∈ SAL(( f (X)× g(X)), then strict inequality holds in (c) if and only if
(2.3) holds.
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Proof First, observe that the set

f (X) × g(X) = {( f (1), g(1)), ( f (2), g(1)), ( f (1), g(2)), ( f (2), g(2))}
does not change when f and g are replaced by f ∗ and g∗. It follows that∫

X2
�( f (x), g(y)) dμ(x) dμ(y) = �( f (1), g(1)) + �( f (1), g(2))

+ �( f (2), g(1)) + �( f (2), g(2))

does not change when f and g are replaced by f ∗ and g∗.
Next, write δ = K(0) − K(1). Then

Q( f , g) = [�( f (1), g(1)) + �( f (2), g(2))]K(0)

+ [�( f (1), g(2)) + �( f (2), g(1))]K(1)

= δ[�( f (1), g(1)) + �( f (2), g(2))]

+ K(1)
∫

X2
�( f (x), g(y)) dμ(x) dμ(y).

(2.4)

It follows that

Q( f ∗, g∗) − Q( f , g)

= δ [�( f ∗(1), g∗(1)) + �( f ∗(2), g∗(2)) − �( f (1), g(1)) − �( f (2), g(2))].

(2.5)

Now δ ≥ 0. If either f or g is constant then the expression in the brackets
equals zero.

Suppose that neither f nor g is constant, and that (2.3) does not hold. If
f (1) > f (2), then f = f ∗ and g = g∗, while if f (1) < f (2), then f (1) =
f ∗(2), f (2) = f ∗(1), g(1) = g∗(2), g(2) = g∗(1). Either way, the expression
in the brackets again is zero.

Suppose (2.3) does hold. If f (1) > f (2) and g(1) < g(2), then f (1) =
f ∗(1), f (2) = f ∗(2), g(1) = g∗(2), g(2) = g∗(1). The term in the brackets
equals

[�( f ∗(1), g∗(1)) + �( f ∗(2), g∗(2)) − �( f ∗(1), g∗(2)) − �( f ∗(2), g∗(1))].

Since � ∈ AL( f (X)× g(X)) = AL( f ∗(X)× g∗(X)), the expression above is
nonnegative. The same argument shows that it is nonnegative when (2.3) holds
with f (1) < f (2) and g(1) > g(2).

We have shown that in all cases the expression on the right-hand side of (2.5)
is nonnegative. This proves conclusion (a) of Theorem 2.8. The same argument
proves (b).
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From (2.4), we see that in the special case when K(0) = 1, K(1) = 0
we have

Q( f , g) =
∫

X
�( f , g) dμ.

Thus, (c) and (d) follow from (a) and (b).

2.3 Main Inequalities for Polarization

Our main goal in this section is to prove Theorem 2.9, an analogue of
Theorem 2.8 in which the role of decreasing rearrangement on the two-point
space X is taken over by polarization of functions defined on R

n. Once again,
we are concerned with an integral functional Q( f , g) defined in terms of fixed
functions K and �. Because the integrals will be taken over sets of infinite
measure, it will be convenient to impose more restrictions on f , g, K, and ψ

than was the case for Theorem 2.8. Accordingly, we shall assume that f , g, and
K are nonnegative, and shall assume that the function � is an AL function on
R

+ ×R
+ = [0, ∞)× [0, ∞) which vanishes on the coordinate axes. The class

of all such � will be denoted by AL0. Thus,

AL0 ≡ {� ∈ AL(R+ × R
+) : �(x, 0) = �(0, y) = 0 x, y ∈ R

+}.

In particular, �(0, 0) = 0 for � ∈ AL0.
The corresponding class of strong AL functions will be denoted by SAL0.

Thus,

SAL0 ≡ AL0 ∩ SAL(R+ × R
+).

For � ∈ AL0, x ∈ R
+ and 0 ≤ y1 ≤ y2, we have

0 ≤ �(x, y2) − �(0, y2) + �(0, y1) − �(x, y1) = �(x, y2) − �(x, y1).

Thus, � is increasing on each vertical line in R
+ × R

+. Similarly, � is
increasing on each horizontal line. Since it vanishes on the coordinate axes, �
is nonnegative on R

+ × R
+.

Functions in AL0 can be viewed as two-variable analogues of increasing
functions of one variable. An increasing function on [0, ∞) can be decomposed
into the sum of a continuous increasing function and a step function. In
§2.8 we will prove a decomposition theorem of this type for AL0 functions,
Theorem 2.25, which will be needed for analysis involving discontinuous �.

Here now are the assumptions and notation for Theorem 2.9.
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(i) f and g are nonnegative Lebesgue measurable functions on R
n with

λf (t) < ∞ and λg(t) < ∞ for all t > 0.
(ii) K : R+ → R

+ is decreasing.
(iii) � ∈ AL0.
(iv) Q( f , g) = Q( f , g, K,�) ≡ ∫

R2n �( f (x), g(y))K(|x − y|) dx dy.
(v) H ∈ H(Rn). H+ and H− are the complementary open halfspaces cut out

by H.
(vi) ρ = ρH (reflection in H) and

A ≡ {(x, y) ∈ (H+)2 : either f (x) < f (ρx) and g(y) > g(ρy),

or f (x) > f (ρx) and g(y) < g(ρy)}.

From the decomposition Theorem 2.25 for AL0 functions, it follows that
functions in AL0 are Borel measurable. Thus, the integrand in (iv) is nonnega-
tive and Borel measurable.

Concerning (v), recall from §1.7 that H(Rn) is the set of all affine hyper-
planes in R

n. The polarization fH : Rn → R of f : Rn → R was defined in §1.7
by the formula

fH(x) = max( f (x), f (ρx)), if x ∈ H+,

= min( f (x), f (ρx)), if x ∈ H−,

= f (x), if x ∈ H,

where ρ = ρH : Rn → R
n denotes reflection in H.

The set A in (vi) depends on H, f , and g. A pair (x, y) is in A if and only if
when we pass to the reflected pair, one of f or g strictly increases and the other
strictly decreases.

Define also, for fixed H,

A0 = {x ∈ H+ : (x, x) ∈ A}. (2.6)

Theorem 2.9 Let assumptions (i)–(vi) be satisfied. Then

(a) Q( f , g) ≤ Q( fH , gH).
(b) If K is strictly decreasing on R

+,� ∈ SAL0(R
+ × R

+), and
Q( f , g) < ∞, then strict inequality holds in (a) if and only if L2n(A) > 0.

(c)
∫
Rn �( f (x), g(x)) dx ≤ ∫

Rn �( fH(x), gH(x)) dx.
(d) If � ∈ SAL0(R

+ × R
+) and

∫
Rn �( f (x), g(x)) dx < ∞, then strict

inequality holds in (c) if and only if Ln(A0) > 0.

Proof In (iv), split the integral defining Q into integrals over H+ × H+,
H+×H−, H−×H+, and H−×H−. As noted in §1.7, ρ is a measure preserving
map of (H+, Ln) onto (H−, Ln) with |x − y| = |ρx − ρy|. Thus, we can write
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H+

H −
ρ

x
y

x
ρ

H

ρ
y

Figure 2.2 A pair of points x, y ∈ H+ and their mirror images ρx, ρy in
the complementary halfspace H−. Since the reflection ρ is an isometry, the
distances from x to y and from ρx to ρy are equal (solid lines) and are strictly
shorter than the diagonal distances from x to ρy and from ρx to y (dashed
lines).

Q( f , g) =
∫

H+×H+
[K(|x − y|) (�( f (x), g(y)) + �( f (ρx), g(ρy)))

+ K(|x − ρy|) (�( f (x), g(ρy)) + �( f (ρx), g(y)))] dx dy.
(2.7)

Fix x, y ∈ H+, as in Figure 2.2. Define f1 and g1 on X = {1, 2} by

f1(1) = f (x), f1(2) = f (ρx), g1(1) = g(y), g1(2) = g(ρy), (2.8)

and define K1 on {0, 1} by K1(0) = K(|x − y|), K1(1) = K(|x − ρy|). With the
notation of §2.2, the integrand in (2.7) equals Q( f1, g1, K1,�). When f and g
in (2.7) are replaced by fH and gH , then f1 and g1 are replaced in the integrand
by ( f1)∗ and (g1)

∗. Using the fact that |x − y| ≤ |x − ρy|, it follows that the
hypotheses of Theorem 2.8 are satsified for each x, y ∈ H+. Conclusions (a)
and (b) of Theorem 2.9 follow from (a) and (b) of Theorem 2.8.

Write∫
Rn

�( f (x), g(x)) dx =
∫

H+
�( f (x), g(x)) dx +

∫
H−

�( f (x), g(x)) dx

=
∫

H+
[�(f (x), g(x)) + �( f (ρx), g(ρx))] dx.

Define f1 as in (2.8), and define g1 as in (2.8) but with y replaced by
x. Then conclusions (c) and (d) of Theorem 2.9 follow from (c) and (d) of
Theorem 2.8.

Theorem 2.9 remains true under some less restrictive hypotheses on f , g, K
and �. A discussion appears in §7.3. Here we just give a sample. Suppose that
f , g and K satisfy (i) and (ii), but for � we require only that � ∈ AL(R+×R

+),
that � ≥ 0 on R

+ × R
+, and that �(0, 0) = 0. We will verify that Theorem

2.9(a) remains valid.
Define �1(x, y) = �(x, y) − �(x, 0) − �(0, y), and observe �1(x, 0) =

�1(0, y) = 0. From the definition of AL function, one easily checks that



62 Main Inequalities on R
n

�1 ∈ AL(R+ × R
+), so that �1 ∈ AL0. Let Q1 denote the integral in (iv)

when � is replaced by �1, and write c = c(K) = ∫
Rn K(|x|) dx. Assume that

c < ∞. Then

Q( f , g) = Q1( f , g) + c
∫
Rn

�( f (x), 0) dx + c
∫
Rn

�(0, g(y)) dy.

The last two terms on the right do not change when f and g are replaced by
their rearrangements fH , gH . The first term increases, by Theorem 2.9(a). Thus,
Q( f , g) ≤ Q( fH , gH) holds when c(K) < ∞.

For general K satisfying (ii) and positive integers m, define Km(t) =
min(K(t), m) if 0 ≤ t ≤ m, Km(t) = 0 if t ≥ m. Then c(Km) < ∞, so
Q( f , g, Km) ≤ Q( fH , gH , Km). Moreover, Km increases pointwise to K on R

+.
Since � ≥ 0, the monotone convergence theorem is applicable, and gives

Q( f , g, K) = lim
m→∞ Q( f , g, Km) ≤ lim

m→∞ Q( fH , gH , Km) = Q( fH , gH , K).

Thus, conclusion (a) of Theorem 2.9 holds for f , g, K, and �.
We shall prove now some results about polarization and symmetric decreas-

ing rearrangement on R
n which will be needed in the two following sections.

Let f : Rn → R be measurable and satisfy λf (t) < ∞ for all t > ess inf f .
The symmetric decreasing rearrangement f # : Rn → R of f was defined in
§1.6. Suppose that the hyperplane H ∈ H(Rn) does not contain the origin.
Let H+ denote the halfspace which contains the origin. Then |ρH x| > |x| for
each x ∈ H+, so that f #(x) ≥ f #(ρx). Thus, by the definition of polarization,
( f #)H = f #. For later reference we give a formal statement of this fact.

Proposition 2.10 Suppose that H ∈ H(Rn) with 0 /∈ H and 0 ∈ H+. Then

( f #)H = f #

for each measurable f : Rn → R with λf (t) < ∞ for all t > ess inf f .

We note also that for f as in Proposition 2.10, Proposition 1.35 of §1.7 states
that f and fH are rearrangements of each other, so that ( fH)# = f #.

The other results we need are about continuous nonnegative functions on
R

n with compact support. Symmetric decreasing functions in this class can be
conveniently characterized in terms of polarization inequalities.

Proposition 2.11 Let f ∈ Cc(R
n,R+). Then

(a) f # ∈ Cc(R
n,R+).

(b) If f �= f #, there exists H ∈ H(Rn) with 0 /∈ H and 0 ∈ H+ such that∫
Rn

f f # dx <

∫
Rn

fH f # dx.
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Proof of (a) It is clear that f # is nonnegative. We assume in the rest of the
proof that f is not identically zero. Then, since Ln( f # > 0)=Ln( f > 0)<∞,
it follows that ( f # > 0) is a ball of finite measure. Hence, f # has compact sup-
port. Let M = supRn f = supRn f # and (a, b) be a nonempty open subinterval of
(0, M). Since f is continuous and minRn f = 0, the set ( f ∈ (a, b)) is open and
nonempty, so that Ln( f ∈ (a, b)) > 0. Thus, Ln( f # ∈ (a, b)) > 0 for all such
(a, b). Since f # is symmetric decreasing, it must therefore be continuous.

Proof of (b) For H ∈ H(Rn) with 0 /∈ H and 0 ∈ H+, Theorem 2.9(c) applied
with �(x, y) = xy and Proposition 2.10 give∫

Rn
f f # dx ≤

∫
Rn

fH ( f #)H dx =
∫
Rn

fH f # dx. (2.9)

By Theorem 2.9(d), to find an H for which strict inequality holds in (2.9) is
equivalent to finding an H whose associated set A0 has positive Ln measure,
when g = f #.

Since f �= f #, from uniqueness of the symmetric decreasing rearrangement
(Proposition 1.30(e)), it follows that f is not symmetric decreasing on R

n.
Thus, there exist x, y ∈ R

n with |x| ≤ |y| and f (x) < f (y). Take t such that
f (x) < t < f (y). Let

E1 = ( f > t), E2 = ( f # > t).

Then E1 and E2 are open sets with the same positive finite Ln measure, E2 is
a ball centered at the origin, y ∈ E1, and x /∈ E1. Since |x| ≤ |y|, it follows that
E1 is not a ball centered at the origin, and hence E1 �= E2. Next, we shall show
the stronger conclusion that neither of the sets E1 nor E2 contains the other.

Suppose we had E2 ⊂ E1. Then E1 would be an open set containing the
open ball E2 which has the same measure as E2. This is possible only if E1

coincides with E2. But we saw above that E1 �= E2. Thus, E2 is not a subset
of E1.

Suppose we had E1 ⊂ E2. Then Ln(E2 \ E1) = 0, since the sets have the
same measure. Thus, E1 is dense in E2. Since f > t on E1, we have f ≥ t
on E2. Hence, x /∈ E2. On the other hand, y ∈ E1 ⊂ E2. Since E2 is a ball
centered at the origin, we would have |y| < |x|. But this contradicts our earlier
specification that |x| ≤ |y|. Thus, E1 is not a subset of E2.

We have shown now that there exist points x1 and y1 with x1 ∈ E2 \E1, y1 ∈
E1 \ E2. Let H be the affine hyperplane whose associated reflection ρ satisfies
ρx1 = y1. Since E2 is a ball centered at the origin, we have |x1| < |y1|, from
which it follows that x1 and the origin lie in the same open halfspace defined
by H, call it H+. Now

f (x1) ≤ t < f #(x1) and f #(y1) ≤ t < f (y1). (2.10)
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From (2.10), it follows that f (x1) < f (y1) and f #(y1) < f #(x1). Since
y1 = ρx1 and f , f # are continuous, there is an open neighborhood U of x1

with U ⊂ H+ such that, for every x ∈ U,

f (x) < f (ρx) and f #(ρx) < f #(x).

Thus, the set A0 in (2.6) for f and f # contains U, and hence Ln(A0) > 0.
As noted at the beginning of the proof, Proposition 2.11(b) now follows from
Theorem 2.9(d).

2.4 Symmetrization Decreases the Modulus of Continuity

Recall that the modulus of continuity ω(t, f ) of a function f : Rn → R is
defined for t > 0 by

ω(t, f ) = sup{|f (x) − f (y)| : x, y ∈ R
n, |x − y| ≤ t}.

In Proposition 1.37 we proved that polarization decreases the modulus of
continuity. That is, for all real functions f on R

n, t > 0 and affine hyperplanes
H holds

ω(t, fH) ≤ ω(t, f ).

In this section we will prove that, for appropriate functions f on R
n, the

modulus of continuity decreases when f is changed to its symmetric decreasing
rearrangement f #. This is one of the fundamental results of symmetrization
theory. It will, for example, play a prominent role in our proof of the
isoperimetric inequality in Chapter 4.

Theorem 2.12 Let f ∈ C(Rn,R), with λf (t) < ∞ for all t > ess inf f . Then,
for every t > 0 holds

ω(t, f #) ≤ ω(t, f ). (2.11)

Proof Assume first that f is nonnegative and has compact support, so that
f ∈ Cc(R

n,R+). If f ≡ 0 then (2.11) holds. In the sequel, we assume that
f is not identically zero. By Proposition 2.11(a), we already know that f # is
continuous; (2.11) will provide a sharp version of this Proposition.

Let R = diam supp f , the diameter of the support of f . Define a set
S = S( f ) ⊂ Cc(R

n,R+) as follows:

S = {F ∈Cc(R
n,R+) : ω(·, F) ≤ ω(·, f ) on (0, ∞),

λF = λf on (0, ∞), and diam supp F ≤ R}. (2.12)
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Define also a number d = d( f ) by

d = inf
F∈S

‖F − f #‖2,

where ‖g‖2 denotes the L2(Rn,Ln) norm of a function g.
Claim 1. There exists F0 ∈ S such that d = ‖F0 − f #‖2.
Claim 2. F0 = f #.
More precisely, Claim 2 asserts that any F0 ∈ S which has minimal L2

distance to f # must equal f #.
If the claims are true, then f # ∈ S, so that ω(·, f #) ≤ ω(·, f ) on (0, ∞),

which is (2.11). Thus, Theorem 2.12 will be proved for compactly supported f
once we have proved Claims 1 and 2.

Proof of Claim 1 Let {fk}∞k=1 be a sequence in S such that limk→∞‖fk −
f #‖2 = d. We would like to obtain a subsequence of {fk} which converges
uniformly on R

n. An obstacle to doing this is that the supports of the fk
might drift off to infinity. Accordingly, we define a possibly new minimizing
sequence {Fk} as follows: For a given k ≥ 1, if supp fk contains a point x with
|x| ≤ R, let Fk = fk. If not, choose a point xk such that fk(xk) > 0. Such a point
exists because fk has the same distribution as f , and hence is not identically
zero. We have |xk| > R. Let H = Hk ∈ H(Rn) be the affine hyperplane such
that ρH xk = 0, and let H+ be the corresponding halfspace which contains the
origin. Let Fk = ( fk)H .

We saw in §1.7 that polarization decreases the diameter of the support,
decreases the modulus of continuity, and preserves the distribution function.
Thus, each Fk ∈ S. Moreover, if k is an index for which Fk = ( fk)H , then by
Theorem 2.9(c), with �(x, y) = xy, Proposition 2.10, and the fact that fk and
Fk are rearrangements of each other, we have∫

Rn
(Fk − f #)2 =

∫
Rn

F2
k +

∫
Rn

( f #)2 − 2
∫
Rn

Fkf #

≤
∫
Rn

f 2
k +

∫
Rn

( f #)2 − 2
∫
Rn

fkf # =
∫
Rn

( fk − f #)2.
(2.13)

Thus, d ≤ ‖Fk − f #‖2 ≤ ‖fk − f #‖2, and hence limk→∞‖Fk − f #‖2 = d, so
that {Fk} is also a minimizing sequence.

Let k be an index such that Fk = ( fk)H . Since fk(xk)> 0 and diam supp fk ≤ R,
we have fk(0) = 0. It follows that Fk(0) = fk(xk) > 0. Since diam supp Fk ≤ R,
it follows that supp Fk ⊂ B(R) = {x ∈ R

n : |x| ≤ R}. If Fk = fk, then supp
fk ⊂ B(2R). Thus,

supp Fk ⊂ B(2R), ∀ k ≥ 1. (2.14)
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Since ω(·, Fk) ≤ ω(·, f ) and supRn Fk = supRn f , the functions Fk form
a uniformly bounded equicontinuous sequence in R

n. By the Arzelà–Ascoli
Theorem, see for example Rudin (1964, p. 144), there exists a subsequence of
{Fk}, which we will also denote by {Fk}, which converges uniformly on B(2R).
By (2.14), the convergence is in fact uniform on R

n.
Let F0 = limk→∞ Fk. One easily sees that

diam supp F0 ≤ lim inf
k→∞

diam supp Fk

and that ω(·, F0) ≤ lim infk→∞ ω(·, Fk). Thus, diam supp F0 ≤ R and
ω(·, F0) ≤ ω(·, f ). Moreover, uniform convergence implies convergence in
measure. From Proposition 1.41 and the fact that the decreasing rearrange-
ments F∗

k are all equal to f ∗, we deduce that F∗
0(x) ≤ f ∗(x) ≤ F∗

0(x−) for
each x ∈ [0, ∞). From Proposition 2.11(a) and Definition 1.29 of symmetric
decreasing rearrangement, we see that f ∗ and F∗

0 are continuous on [0, ∞).
Thus, F0

∗ = f ∗, so that λF0 = λf and thus F0 ∈ S. Since the Fk are uniformly
bounded in B(2R) and are all zero outside B(2R), and f # is bounded and has
compact support, the dominated convergence theorem may be invoked to give
limk→∞‖Fk − f #‖2 = ‖F0 − f #‖2. Since the limit on the left equals d, Claim 1
is proved.

Proof of Claim 2 Suppose that F0 �= f #. By Proposition 2.11(b), there exists
H ∈ H(Rn) with 0 ∈ H+ such that

∫
Rn F0f # <

∫
Rn(F0)Hf #. By the argument

in (2.13), it follows that

‖(F0)H − f #‖2 < ‖F0 − f #‖2. (2.15)

But, as noted in the second paragraph of the proof of Claim 1, the
polarization of a function in S is also in S. Thus (F0)H ∈ S. The right-hand
side of (2.15) equals d, so we have a contradiction to the definition of d. We
conclude, therefore, that F0 = f #. Claim 2 is proved.

Conclusion of the proof of Theorem 2.12 We have now verified Theorem 2.12
for compactly supported f ∈ C(Rn,R+). Suppose that f is an arbitrary
function satisfying the hypotheses of Theorem 2.12. One easily sees that
ω(2t, f ) ≤ 2ω(t, f ). It follows that if ω(t, f ) = ∞ for some t > 0, then
ω(t, f ) = ∞ for all t > 0, so that (2.11) is automatically satisfied. We assume
henceforth that ω(t, f ) < ∞, for all t > 0.

Let {αm} be a strictly decreasing sequence with limm→∞ αm = ess inf f .
The hypotheses λf (t) < ∞ for t > ess inf f and ω(t, f ) < ∞ for t > 0 imply,
via a simple argument by contradiction, that lim|x|→∞ f (x) exists and equals
ess inf f .
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Let fm = max( f ,αm). Then fm − αm is continuous, nonnegative, and
compactly supported. Thus, writing f #

m = ( fm)#,

ω(·, f #
m) = ω(·, f #

m − αm) = ω(·, ( fm − αm)
#) ≤ ω(·, fm − αm) = ω(·, fm).

One easily sees that f #
m = max( f #,αm) and that ω(·, fm) ≤ ω(·, f ).

Fix t > 0, and let x, y ∈ R
n satisfy |x − y| ≤ t. Then

|f #(x) − f #(y)| = lim
m→∞ |f #

m(x) − f #
m(y)| ≤ lim inf

m→∞ ω(t, f #
m) ≤ lim inf

m→∞ ω(t, fm)

≤ ω(t, f ).

Thus, ω(t, f #) ≤ ω(t, f ). The proof of Theorem 2.12 is complete.

As a by-product of the proof, we have a corollary.

Corollary 2.13 Let f ∈ C(Rn,R+), with λf (t) < ∞ for all t > 0. Then

diam supp f # ≤ diam supp f . (2.16)

Proof If f has compact support, then in the proof above we showed that
f # = F0 ∈ S, so that in particular (2.16) holds. For general f ∈ C(Rn,R+),
(2.16) holds for the functions fm at the end of the proof of Theorem 2.12. Since
fm and f #

m converge pointwise to f and f #, respectively, and diam supp fm ≤
diam supp f , (2.16) easily follows for f .

Using Corollary 2.13, we can prove the isodiametric inequality:

Corollary 2.14 For each measurable set E ⊂ R
n holds

diam E# ≤ diam E. (2.17)

An equivalent form of (2.17) is

Ln(E) ≤ αn

(
diam E

2

)n

where αn is the volume of the unit ball.

Proof We may assume that E is bounded, for otherwise (2.17) is trivial. For
n = 1, 2, . . . define fn(x) = (1−n d(x, E))+ where d(x, E) = inf{|x−y| : y ∈ E}.
Since fn = 1 on E, it follows that E# ⊂ supp f #

n . By Corollary 2.13,

diam E# ≤ diam supp f # ≤ diam supp f #
n .

Letting n → ∞ yields (2.17).
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2.5 Symmetrization Increases Certain Integrals in R
n

Theorem 2.15 in this section contains the main integral inequalities in our
approach to symmetrization on R

n. The theorem has the same structure as
Theorem 2.9, but now integrals involving two functions f and g on R

n will be
compared with integrals involving their symmetric decreasing rearrangements
f # and g# instead of with their polarizations fH and gH . Theorem 2.9 will be a
principal tool in the proof of Theorem 2.15.

Here are the hypotheses and definitions for Theorem 2.15. The first four
hypotheses are the same as the first four hypotheses for Theorem 2.9. But the
set A defined in (V) is different from the set A in Theorem 2.9.

(I) f and g are nonnegative Lebesgue measurable functions on R
n with

λf (t) < ∞ and λg(t) < ∞ for all t > 0.
(II) K : R+ → R

+ is decreasing.
(III) � : R+ × R

+ → R
+ is in AL0.

(IV) Q( f , g) = Q( f , g, K,�) ≡ ∫
R2n �( f (x), g(y))K(|x − y|) dx dy.

(V) A ≡ {(x, y) ∈ R
2n : f (x) < f (y) and g(x) > g(y)}.

Concerning (III), recall that AL0, defined in §2.3, is the subclass of AL
functions on R

+ × R
+ which vanish on the coordinate axes.

Theorem 2.15 Let assumptions (I)–(IV) be satisfied, and the set A be defined
by (V). Then

(a) Q( f , g) ≤ Q( f #, g#).
(b) Suppose that neither f nor g is identically zero, that K is strictly

decreasing on R
+, that � ∈ SAL0, and that Q( f , g) < ∞. Then equality

holds in (a) if and only if there exists a translation T of Rn such that

f = f # ◦ T and g = g# ◦ T , a.e. on R
n. (2.18)

(c)
∫
Rn �( f (x), g(x)) dx ≤ ∫

Rn �( f #(x), g#(x)) dx.
(d) If � ∈ SAL0 and

∫
Rn �( f (x), g(x)) dx < ∞, then equality holds in (c) if

and only if L2n(A) = 0.

Observe that inequalities (a) and (c) in Theorems 2.9 and 2.15 are parallel,
but the equality conditions (b) and (d) differ a bit from theorem to theorem.

Concerning (b), note that translations are Ln-measure preserving and satisfy
K(|Tx − Ty|) = K(|x − y|). Thus, the “if” part of (b) is trivial.

To get some idea of what (d) is about, we confirm half of it in a special
case. If g = φ ◦ f for some increasing function φ, then A is empty. Also in
this case, g# = φ ◦ f #. Now, if functions f and h have the same distribution,



2.5 Symmetrization Increases Certain Integrals in R
n 69

and if φ is increasing, then it is not difficult to show that the pairs ( f ,φ ◦ f )
and (h,φ ◦ h) have the same joint distribution. Thus, ( f , g) and ( f #, g#) have
the same joint distribution. By Proposition 1.18(a),

∫
Rn �( f (x), g(x)) dx =∫

Rn �( f #(x), g#(x)) dx.
As with Theorem 2.9, the hypotheses on f , g, K, and � can be relaxed. For

example, Theorem 2.15 can be extended to general nonnegative � ∈ AL(R+×
R

+) with �(0, 0) = 0 in the same way that Theorem 2.9 was extended in the
paragraphs after its proof. A discussion of extensions appears in §7.3.

Our scheme for proving Theorem 2.15 is as follows:

1. In the remainder of this section, we prove (a) and (c) under the additional
assumption that � is continuous. The proof will be similar to the proof in
§2.4 that symmetric decreasing rearrangement decreases the modulus of
continuity.

2. The proofs of (b) and (d) will appear in the next section.
3. The extension to discontinuous � requires a decomposition theorem for

AL0 functions which is deferred to §2.8. The proof of Theorem 2.15 is
completed in §2.9.

For most applications of Theorem 2.15 one can assume that � is in fact con-
tinuous. The reader who chooses to skip the rather technical Sections 2.8 and
2.9 can do so without missing anything essential for the remainder of this book.

Proof of (a) and (c) when � is Continuous
Assume, in addition to (I), (II), (IV), that � ∈ AL0 ∩ C(R+ × R

+). It will
suffice to prove (a) and (c) under the additional assumptions that

K(0) < ∞ and K(t) = 0, for all sufficiently large t. (2.19)

For suppose we have proved 2.15(a) under the stated restrictions on K. Then,
for general decreasing K : R+ → R

+, for positive integers m set Km(t) =
min(K(t), m) for 0 ≤ t ≤ m, Km(t) = 0 for t ≥ m. Then 2.15(a) holds when
K is replaced by Km. Moreover, Km(t) ↗ K(t) for each t ∈ [0, ∞). In §2.3 we
noted that AL0 functions are nonnegative. Thus, for almost every x, y ∈ R

n,
0 ≤ �( f (x), g(y))Km(|x − y|) ↗ �( f (x), g(y))K(|x − y|) as m → ∞.
and likewise when f and g are replaced by f # and g#. Using the monotone
convergence theorem, we obtain

Q( f , g, K,�) = lim
m→∞ Q( f , g, Km,�)

≤ lim
m→∞ Q( f #, g#, Km,�) = Q( f #, g#, K,�).

Similar considerations show that it suffices to prove (c) when K satisfies (2.19).
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Proof of Theorem 2.15(a), Part 1
Assume first that f and g are in Cc(R

n,R+). Let S( f ) and S(g) denote the
subsets of Cc(R

n,R+) associated with f and g respectively via (2.12). Define
S ⊂ S( f ) × S(g) and d ≥ 0 by

S = S( f , g) = {(F, G) ∈ S( f ) × S(g) : Q( f , g) ≤ Q(F, G)},
d2 = inf

(F,G)∈S
‖f # − F‖2

2 + ‖g# − G‖2
2,

where ‖·‖2 is the norm in L2(Rn,Ln).
Let {fk}∞k=1 and {gk}∞k=1 be sequences in S( f ) and S(g) respectively such that

d2 = lim
k→∞

‖f # − fk‖2
2 + ‖g# − gk‖2

2. (2.20)

We shall choose possibly new minimizing sequences {Fk} and {Gk} consist-
ing of functions with uniformly bounded supports. Fix a number R so large that
2R ≥ max(diam supp f , diam supp g). For k ≥ 1, let Bk and B′

k be closed balls

of radius R such that Bk contains the support of fk and B′
k contains the support

of gk. We consider three cases.

Case 1. If Bk ∩ B′
k is nonempty and Bk ∪ B′

k intersects B(2R), the closed ball
with radius 2R centered at the origin, take Fk = fk and Gk = gk.
Case 2. Suppose that Bk ∩ B′

k is nonempty and Bk ∪ B′
k does not intersect

B(2R). Let xk be a point of Bk ∪ B′
k closest to the origin, and let H be the affine

hyperplane passing through the midpoint of the line segment from 0 to xk and
orthogonal to it. One easily verifies that the origin and Bk ∪ B′

k lie on different
sides of H. Let H+ be the halfspace containing the origin. Define Fk = ( fk)H

and Gk = (gk)k.
Case 3. Suppose that Bk ∩B′

k is empty. Let H1 be the affine hyperplane passing
through the midpoint of the line segment connecting the centers of Bk and
B′

k and orthogonal to it. If 0 /∈ H1, let H+
1 be the halfspace which contains

the origin. If 0 ∈ H1 we can take H+
1 to be either of the complementary

halfspaces. Suppose that Bk ⊂ H+
1 ; the argument when B′

k ⊂ H+
1 is analogous.

The supports of ( fk)H1 and (gk)H1 are each contained in Bk. If Bk ∩ B(2R) is
nonempty, define Fk = ( fk)H1 and Gk = (gk)H1 . If Bk ∩ B(2R) is empty, let xk

be the point of Bk closest to the origin, and define Fk and Gk to be the respective
polarizations of ( fk)H1 and (gk)H1 in the affine hyperplane H passing through
the midpoint of the line segment joining the origin to xk and orthogonal to that
segment. Take H+ to be the halfspace containing the origin.

In Case 1, the supports of Fk and Gk are contained in B(6R); in Cases 2
and 3 they are contained in B(4R). Thus the supports of all the Fk and Gk are
contained in B(6R).
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As in the proof of Theorem 2.12, each set S( f ) and S(g) is mapped into
itself by polarization. By Theorem 2.9, polarization increases the Q integral.
Thus, (Fk, Gk) ∈ S for k ≥ 1. The computation in (2.13) shows that ‖Fk −
f #‖2 ≤ ‖fk − f #‖2 and ‖Gk − g#‖2 ≤ ‖gk − g#‖2. Thus, (2.20) holds when fk
and gk are replaced by Fk and Gk.

By the Arzelà–Ascoli Theorem, there is a subsequence of {(Fk, Gk)},
denoted also by {(Fk, Gk)}, such that {Fk} converges uniformly in R

n to a
function F0 ∈ Cc(R

n,R+) and {Gk} converges uniformly in R
n to a function

G0 ∈ Cc(R
n,R+). Since the sequences are uniformly bounded and have

uniformly bounded supports, the dominated convergence theorem can be
applied to prove that

d2 = ‖F0 − f #‖2
2 + ‖F0 − f #‖2

2. (2.21)

As in the proof of Theorem 2.12, F0 and G0 belong respectively to S( f )
and S(g). To obtain (F0, G0) ∈ S, we need to know that Q(F0, G0) ≥ Q( f , g).
Let M be a number with M ≥ max(‖f ‖∞, ‖g‖∞). Then M is an upper bound
for each Fk and Gk. As noted at the beginning of §2.3, � is increasing
on each horizontal and each vertical line, from which we deduce that
0 ≤ �(Fk(x), Gk(y)) ≤ �(M, M). Moreover, �(Fk(x), Gk(y)) = 0 if either
x or y lies outside B(6R), K is nondecreasing, and K(0) < ∞, by assumption
(2.19). Thus,

0 ≤ �(Fk(x), Gk(y))K(|x − y|) ≤ �(M, M)K(0)χB(6R)×B(6R)(x, y). (2.22)

The dominated convergence theorem is again applicable, and yields
limk→∞ Q(Fk, Gk) = Q(F0, G0). Thus, Q(F0, G0) ≥ Q( f , g), so that
(F0, G0) ∈ S.

Suppose that F0 �= f # or that G0 �= g#, say the former. Proceed as in
the proof of Claim 2 in §2.4. There exists H ∈ H(Rn) such that ‖(F0)H −
f #‖2 < ‖F0 − f #‖2. Also, ‖(G0)H − g#‖2 ≤ ‖G0 − g#‖2, as in (2.13). Thus,
((F0)H , (G0)H) ∈ S, so that from (2.21) it follows that ‖(F0)H − f #‖2

2 +
‖(G0)H − g#‖2

2 < d2.
This contradiction to the definition of d shows that (F0, G0) = ( f #, g#), so

that ( f #, g#) ∈ S. In particular, Q( f , g) ≤ Q( f #, g#). Theorem 2.15 is proved
when f and g are in Cc(R

n,R+).

Proof of Theorem 2.15(a), Part 2
Assume that f , g ∈ L∞(Rn), that K satisfies (II) and (2.19), and that f and g
have compact support, say supp f ⊂ B(R) and supp g ⊂ B(R) for some R ∈
(0, ∞). Take sequences {fk}∞k=1 and {gk}∞k=1 in Cc(R

n,R+) such that fk → f
in L2(Rn,Ln) and gk → g in L2(Rn,Ln). We assume also that the support of
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each fk and gk is contained in B(R), and that ‖fk‖∞ ≤ ‖f ‖∞, ‖gk‖∞ ≤ ‖g‖∞.
By passing to a subsequence, if necessary, we may assume further that fk → f
and gk → g a.e. on R

n. Then estimate (2.22) holds with Fk and Gk replaced by
fk and gk and M ≥ max(‖f ‖∞, ‖g‖∞). The dominated convergence theorem
gives

lim
k→∞

Q( fk, gk) = Q( f , g). (2.23)

Now fk and gk converge in measure to f and g, respectively. From
Proposition 1.41 and Definition 1.29, it follows that f #

k and g#
k converge in

measure to f # and g#, respectively. Choose subsequences which converge
a.e. The functions f #

k and g#
k are all supported in B(R) and have sup norms

bounded above by M. Thus, (2.22) holds for f #
k and g#

k , and so does (2.23),
with Q( f , g) replaced by Q( f #, g#). Since Q( fk, gk) ≤ ( f #

k , g#
k) for each k, we

have Q( f , g) ≤ Q( f #, g#), as desired.

Proof of Theorem 2.15(a), Part 3
Assume that f and g are arbitrary functions satisfying (I) and that K satisfies
(II) and (2.19). For k ≥ 1, Let

fk = χB(k) min( f , k), gk = χB(k) min(g, k).

Then fk ↗ f and gk ↗ g a.e. As remarked at the beginning of
the proof, we know that � is increasing on each horizontal and vertical
line. Thus, �( fk(x), gk(y)) ≤ �( fk(x), gk+1(y)) ≤ �( fk+1(x), gk+1(y)), so
that 0 ≤ �( fk(x), gk(y))K(|x − y|) ↗ �( f (x), g(y))K(|x − y|) a.e. on
R

2n. The monotone convergence theorem gives Q( fk, gk) ↗ Q( f , g). By
Proposition 1.39 and Definition 1.29, monotone increasing convergence of a
nonnegative sequence of functions implies monotone increasing convergence
of the sequence of symmetric decreasing rearrangements. Thus Q( f #

k , g#
k) ↗

Q( f #, g#). Since Q( fk, gk) ≤ Q( f #
k , g#

k) for each k, we have Q( f , g) ≤
Q( f #, g#). Theorem 2.15(a) is completely proved for continuous �.

Proof of Theorem 2.15(c)
For continuous, compactly supported f and g, the proof that the integral∫
Rn �( f (x), g(x)) dx increases under symmetric decreasing rearrangement can

be accomplished in the same way that Q( f , g) is shown to increase. The only
noteworthy difference is that in the definition of S( f , g) the condition involving
Q is replaced by the condition
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Rn

�( f (x), g(x)) dx ≤
∫
Rn

�(F(x), G(x)) dx.

The approximation steps Parts 2 and 3 are carried out just as in the proof of
Theorem 2.15(a).

Another way to establish Theorem 2.15(c) is to observe that it is a limiting
case of Theorem 2.15(a). For ε > 0, take K = χ[−ε,ε]. Then for f , g satisfying
(I) and � satisfying (III), Theorem 2.15(a) gives∫

|x−y|≤ε

�( f (x), g(y)) dx dy ≤
∫

|x−y|≤ε

�( f #(x), g#(y)) dx dy. (2.24)

If, for example, f , g ∈ Cc(R
n,R+), then, as the reader is invited to show,

lim
ε→0

1

αnεn

∫
|x−y|≤ε

�( f (x), g(y)) dx dy =
∫
Rn

�( f (x), g(x)) dx, (2.25)

where αn is the volume of the unit ball in R
n. Identity (2.25) also holds when f

and g are replaced by f # and g#. Thus, Theorem 2.15(c) for f , g ∈ Cc(R
n,R+),

follows from (2.24) and (2.25).

2.6 Proofs of the Uniqueness Statements

Proof of Theorem 2.15(b)
Let f , g, K, and � satisfy the assumptions of Theorem 2.15(b). As noted after
the statement of Theorem 2.15, if a translation T exists for which (2.18) holds
for f and g then Q( f , g) = Q( f #, g#). Let us assume then that no such T exists
and that Q( f , g) < ∞. We shall prove that

Q( f , g) < Q( f #, g#). (2.26)

Write E(t, f ) = ( f > t), E(t, g) = (g > t). Assume for now that the sets
E(t, f ) and E(t, g) are bounded for every t > 0. For bounded measurable sets
E ⊂ R

n we shall let c(E) denote the center of mass of E. Thus,

c(E) = 1

Ln(E)

∫
E

x dLn.

The proof of (2.26) under the added boundedness hypothesis is split into
two cases.
Case 1. Assume there exist s ∈ (0, ess sup f ) and t ∈ (0, ess sup g) such that
c(E(s, f )) �= c(E(t, g)). Performing a translation and rotation, if necessary, we
may assume that c(E(t, g)) = −Re1 and c(E(s, f )) = Re1 for some 0<R<∞.
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Write x1 = x·e1. Let H be the hyperplane x1 = 0, and H+ = {x ∈ R
n : x1 > 0}.

Then, with ρ denoting reflection in H,

RLn(E(s, f )) =
∫

E(s, f )
x1 dx =

∫
E(s,f )∩H+

x1 dx −
∫
ρE(s,f )∩H+

x1 dx. (2.27)

Let A1 = (E(s, f )\ρE(s, f ))∩H+. Since R > 0 and x1 > 0 on H+, it follows
from (2.27) that Ln(A1) > 0. Similarly, letting A2 = (E(t, g) \ ρE(t, g))∩ H−,
we have Ln(A2) > 0. If x ∈ A1 and z ∈ A2, then f (ρx) ≤ s < f (x) and
g(ρz) ≤ t < g(z). Thus, if (x, y) ∈ A1 × ρA2, then x, y ∈ H+, f (ρx) < f (x),
and g(y) < g(ρy). Hence, A1 × ρA2 ⊂ A, where A is the set in (v), so that
L2n(A) ≥ L2n(A1 × ρA2) > 0. From Theorems 2.9(b) and 2.15(a), we deduce
Q( f , g) < Q( fH , gH) ≤ Q( f #, g#), which confirms (2.26).
Case 2. Assume that c(E(s, f )) = c(E(t, g)) for every s ∈ (0, ess sup f ) and
t ∈ (0, ess sup g). Then, by fixing s and letting t vary, and vice versa, we see
that all the sets E(s, f ) and E(t, g) have a common center of mass, which we
may take to be the origin. If f and g were both symmetric decreasing then
(2.18) would hold with T the identity map, contrary to our assumption. Thus,
at least one of f or g is not a.e. equal to its symmetric decreasing rearrangement,
say f �= f #. Now

( f �= f #) = ( f < f #) ∪ ( f # < f ) =
⋃

s

( f ≤ s < f #) ∪
⋃

s

( f # ≤ s < f ),

where s runs through the set of positive rational numbers. Thus, there exists
s > 0 such that at least one of the sets E1 ≡ ( f # ≤ s < f ) or E2 ≡ ( f ≤
s < f #) has positive Ln-measure. The sets E(s, f ) and E(s, f #) have the same
measure, and E1 = E(s, f ) \ E(s, f #), E2 = E(s, f #) \ E(s, f ). We conclude that
both E1 and E2 have positive measure. Now E(s, f #) is an open ball B(R) for
some R > 0. If x ∈ E1 and z ∈ E2, then |z| < R ≤ |x|, and f (z) ≤ s < f (x).
Hence,

(x, z) ∈ E1 × E2 �⇒ |z| < |x| and f (z) < f (x). (2.28)

Define F : Rn × (Rn \ {0}) → R
n × R

n by

F(x, w) = (x, ρ(x, w)), (2.29)

where ρ(·, w) denotes reflection in the hyperplane H(w) orthogonal to the line
through 0 and w which passes through 1

2 w. It is easy to verify that F is Lipschitz
on each compact subset of Rn × (Rn \ {0}), and that F maps Rn × (Rn \ {0})
onto (Rn × R

n) \ {(x, y) : |x| = |y|}.
In particular, F(Rn × (Rn \ {0})) contains E1 × E2. Let E3 = F−1(E1 × E2).

Since locally Lipschitz maps take nullsets to nullsets, it follows that
L2n(E3) > 0. Hence,

∫
Rn dw

∫
Rn χE3(x, w) dx > 0. Take w such that
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E4 ≡ {x ∈ R
n : (x, w) ∈ E3} has Ln(E4) > 0, and write ρx = ρ(x, w).

If x ∈ E4, then (x, ρx) ∈ E1 × E2. From (2.28), we see that

x ∈ E4 �⇒ |ρx| < |x| and f (ρx) < f (x). (2.30)

Write H = H(w), and let H+ denote the halfspace which contains the origin.
Note that if x ∈ E4, then the inequality |ρx| < |x| implies that x ∈ H− and
ρx ∈ H+. Take t ∈ (0, ess sup g). Let E5 = (E(t, g)\ρE(t, g))∩H+. If Ln(E5)

were zero, a “balancing” argument like the one in Case 1 would imply that the
center of mass of E(t, g) is in H ∪ H−. This contradicts our assumption that
the center of mass of E(t, g) is the origin, Thus, Ln(E5) > 0. Using (2.30), we
see that ρE4 × E5 ⊂ A, where A is the set in (v). As in Case 1, we deduce that
Q( f , g) < Q( f #, g#).

We have now proved Theorem 2.15(b) under the additional assumption
that all of the sets E(t, f ) or E(t, g) are essentially bounded. Let us
address the remaining case, when at least one of these sets is essentially
unbounded. Suppose, say, that E(s, f ) is essentially unbounded for a certain
s ∈ (0, ess sup f ). Write E1 = E(s, f ). Take any t ∈ (0, ess sup g). Write
E2 = E(t, g). Since E1 and E2 have finite measure, there exists R0 such that
for each R ≥ R0 the ball B(R) = (|x| < R) satisfies

Ln(B(R) \ E1) > 0 and Ln(B(R) ∩ E2) >
1

2
Ln(E2). (2.31)

There exist points of density x0 of E1 such that |x0| is arbitrarily large. Take
such an x0 with |x0| > 4R0. After rotation, we may assume that x0 lies on the
positive x1-axis. Write x0 = 4Re1. Let w0 be a point of density of B(R) \ E1,
and let H be the affine hyperplane orthogonal to the line through x0 and w0

which passes through their midpoint. Let ρ denote reflection in H. Then ρ

maps balls centered at x0 to balls centered at w0 with the same radius. Choose
δ so small that B ≡ B(x0, δ) satisfies Ln(B ∩ E1) >

1
2Ln(B), Ln((ρB) \ E1) >

1
2Ln(B), B ⊂ R

n \ B(3R), and ρB ⊂ B(R). Let E3 = {x ∈ B ∩ E1 : ρx /∈ E1}.
Then Ln(E3) > 0, since E3 is the intersection of two subsets of B each of
which has measure larger than 1

2Ln(B). Moreover,

x ∈ E3 �⇒ f (x) > s ≥ f (ρx). (2.32)

Let z ∈ B(R). Then |z − w0| ≤ 2R and |z − x0| ≥ 3R. Hence, |z − w0| <
|z−x0|, so that z and x0, hence B(R) and x0, lie on different sides of H. Let H+

be the halfspace which contains B(R), and let E4 = {y ∈ B(R)∩E2 : ρy /∈ E2}.
From the second inequality in (2.31), and the fact that B(R) and ρB(R) are
disjoint, it follows that Ln(E4) > 0. Moreover,

y ∈ E4 �⇒ g(y) > t ≥ g(ρy). (2.33)
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From (2.32) and (2.33) it follows that the set A of (v) contains ρE3 × E4.
Hence L2n(A) > 0. As in Cases 1 and 2, we deduce that Q( f , g) < Q( f #, g#).
The proof of part Theorem 2.15(b) is complete.

Proof of Theorem 2.15(d)
Let f , g, and � satisfy the assumptions of Theorem 2.15(d). Recall that the set
A of (V) is

A = {(x, y) ∈ R
2n : f (x) < f (y) and g(x) > g(y)}.

Suppose that L2n(A) = 0. Take s ∈ (0, ess sup f ), t ∈ (0, ess sup g). Suppose
that λf (s) ≤ λg(t); if the contrary holds, we reverse the roles of f and g in the
argument to follow. Then E(s, f #) ⊂ E(t, g#), so that

Ln( f # > s, g# > t) = λf (s). (2.34)

Also, ( f > s) = ( f > s, g > t) ∪ ( f > s, g ≤ t). Suppose that the second
set on the right has positive measure. Then λg(t) ≥ λf (s) > Ln( f > s, g > t).
Hence, Ln(g > t, f ≤ s) > 0. Now (g > t, f ≤ s) × ( f > s, g ≤ t) ⊂ A.
So if ( f > s, g ≤ t) had positive Ln-measure then A would have positive L2n-
measure, contrary to our assumption. Thus, the sets ( f > s) and ( f > s, g > t)
differ by a nullset, and hence (2.34) holds when f # and g# are replaced with f
and g.

We have shown that Ln( f > s, g > t) = Ln( f # > s, g# > t) for
every s and t. Thus, ( f , g) and (f #, g#) have the same joint distribution. By
Proposition 1.18,∫

Rn
�( f (x), g(x)) dx =

∫
Rn

�( f #(x), g#(x)) dx.

Conversely, suppose that L2n(A) > 0. Let F be the map (2.29). Then, as in
the proof of Case 2 of Theorem 2.15(b), L2n(F−1(A)) > 0, and there exists
w ∈ R

n \ {0} such that E ≡ {x ∈ R
n : (x, w) ∈ F−1(A)} has Ln(E) > 0.

Let H = H(w), and let ρ denote reflection in H, as in the proof of Theorem
2.15(b). If x ∈ E, then (x, ρx) ∈ A, and hence f (x) < f (ρx), g(x) > g(ρx).
Take H+ to be a halfspace defined by H which intersects E in a set of positive
measure. Then E ∩ H+ is a subset of the set A0 of (2.6). Thus Ln(A0) > 0, and
from Theorems 2.9(d) and 2.15(c) follow∫

Rn
�( f (x), g(x)) dx <

∫
Rn

�( fH(x), gH(x)) dx

≤
∫
Rn

�( f #(x), g#(x)) dx.

The proof of Theorem 2.15(d) is complete.
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2.7 Direct Consequences of the Main Inequalities

This section contains some inequalities that follow immediately or with
modest additional effort from Theorem 2.15. As always for us, f # denotes
the symmetric decreasing rearrangement of a function f defined on R

n, and
f ∗ the decreasing rearrangement of a function defined on an arbitrary measure
space X.

The inequalities have associated equality statements. We will provide these
statements for Corollaries 2.16 and 2.19; the reader is invited to supply others
with the aid of parts (b) and (d) of Theorem 2.15.

Corollary 2.16 Let f and g be nonnegative Lebesgue measurable functions
on R

n with λf (t) < ∞ and λg(t) < ∞ for all t > 0. Then∫
Rn

fg dx ≤
∫
Rn

f #g# dx =
∫
R+

f ∗g∗ dx. (2.35)

If
∫
Rn fg dx < ∞, then equality holds in (2.35) if and only if

L2n({(x, y) ∈ R
2n : f (x) < f (y) and g(x) > g(y)}) = 0.

Proof The inequality in (2.35) is from Theorem 2.15(c) with �(x, y) = xy.
Equality of the second and third integrals comes from the representations given
by Definition 1.29: f # = f ∗ ◦ T , g# = g∗ ◦ T , where T(x) = αn|x|n is measure
preserving from (Rn,Ln) to (R+,L). The uniqueness statement comes from
Theorem 2.15(d).

The next corollary may be regarded as a generalization of (2.35).

Corollary 2.17 Let (X,μ) be a measure space, and f and g be nonnegative
measurable functions on X with λf (t) < ∞ and λg(t) < ∞ for all t > 0. Then∫

X
fg dμ ≤

∫
R+

f ∗g∗ dx. (2.36)

When μ(X) < ∞, the integral on the right need be taken only over [0,μ(X)].

Proof of Corollary 2.17 Assume first that f and g are simple. Write

f =
k∑

i=1

αiχEi , g =
m∑

i=1

βiχFi ,

where the αi and βi are positive, the Ei are disjoint, the Fi are disjoint, and
each Ei and Fi have positive μ-measure. For i = 1, . . . , k take disjoint closed
intervals Ii ⊂ R such that L(Ii) = Ei. Let

f1 =
k∑

i=1

αiχIi .
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For each i ∈ {1, . . . , k}, let Jij, j = 1, . . . , m be disjoint closed subintervals
of Ii such that L(Jij) = μ(Ei ∩ Fj). Let

g1 =
k∑

i=1

m∑
j=1

βjχJij .

Let X1 = ⋃k
i=1 Ei ∪

⋃m
i=1 Fi and S = ⋃k

i=1 Ii. The joint distribution of ( f , g)
on (X1,μ) is the same as that of ( f1, g1) on (S,L). Thus, using (2.35),∫

X
fg dμ =

∫
X1

fg dμ =
∫

S
f1g1 dx

=
∫
R

f1g1 dx ≤
∫
R+

f ∗
1 g∗

1 dx =
∫
R+

f ∗g∗ dx.

This proves (2.36) for simple f and g. For general f and g satisfying the
assumptions of Corollary 2.17, we use a standard method for approximating
nonnegative measurable functions by simple functions. For k ≥ 1 and x ∈ X, if
f (x) ≥ k, define fk(x) = k. If f (x) ≤ k and i+ j2−k ≤ f (x) < i+ (j+1)2−k, for
integers i ∈ {0, . . . , k−1} and j ∈ {0, . . . , 2k −1}, define fk(x) = i+ j2−k. Then
fk ↗ f at every point of X where f is defined, and hence a.e. By Proposition
1.39, f ∗

k ↗ f ∗ on R
+. Let gk denote the corresponding approximants to g.

Then, using the monotone convergence theorem,∫
X

fg dμ = lim
k→∞

∫
X

fkgk dμ ≤ lim inf
k→∞

∫
R+

f ∗
k g∗

k dx =
∫
R+

f ∗g∗ dx.

Next, we prove an inequality that goes in the opposite direction from
Corollary 2.17. Assume that μ(X) < ∞. Set A = μ(X). For nonnegative
measurable f on X, define a function f∗ on [0, A] by

f∗(x) = f ∗(A − x).

Then f∗ is increasing, and, since x → A−x is L-measure preserving, f∗ is a rear-
rangement of f ∗ and hence of f . We call f∗ the increasing rearrangement of f .

Corollary 2.18 Let (X,μ) be a measure space with μ(X) < ∞, and f and g
be nonnegative measurable functions on X. Then, with A = μ(X),∫ A

0
f∗g∗ dx ≤

∫
X

fg dμ. (2.37)

Proof Assume first that f ∈ L∞(X) and g ∈ L1(X) Take a number M ≥ ‖f ‖∞,
and define h = M − f . Then h ≥ 0 and h∗ = M − f∗. By Corollary 2.17 and
the fact that g∗(x) = 0 for x ≥ A,∫

X
gh dμ ≤

∫ A

0
g∗h∗ dx = M

∫ A

0
g∗ dx −

∫ A

0
g∗f∗ dx.
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Since
∫

X gh dμ = M
∫

X g dμ − ∫
X gf dμ and

∫
X g dμ = ∫ A

0 g∗ dx, (2.37)
follows. Corollary 2.18 is proved when f ∈ L∞, g ∈ L1.

For general nonnegative f and g, set fk = min( f , k), gk = min(g, k)
for k ≥ 1. Then fk and gk increase a.e. to f , respectively g. Also, ( fk)∗ =
min( f∗, k), g∗

k = min(g∗, k), so ( fk)∗ and g∗
k increase a.e. to f∗ and g∗,

respectively. The validity of (2.37) for f and g follows from its validity for
fk, gk and the monotone convergence theorem.

Corollary 2.19 Let f and g be nonnegative Lebesgue measurable functions
on R

n with λf (t) < ∞ and λg(t) < ∞ for all t > 0, and let K : R+ → R
+ be

decreasing. Then∫
R2n

f (x)g(y)K(|x − y|) dx dy ≤
∫
R2n

f #(x)g#(y)K(|x − y|) dx dy.

Suppose that neither f nor g is identically zero, that K is strictly decreasing
on R

+ and that Q( f , g) < ∞. Then equality holds if and only if there exists a
translation T of Rn such that f = f # ◦ T and g = g# ◦ T a.e. on R

n.

Proof Apply Theorem 2.15(a) and (b) with �(x, y) = xy.

The inequality in Corollary 2.19 is a special case of the Riesz convolution
inequality, which will be proved in Chapter 8.

The next three corollaries contain inequalities for convex integrands.
Let � : R+ → R

+ be convex and increasing. Then, by Fact 2.7,

�(x, y) ≡ �(x) + �(y) − �(|x − y|) ∈ AL(R+ × R
+). (2.38)

Corollary 2.20 Let f and g be nonnegative Lebesgue measurable functions
on R

n with λf (t) < ∞ and λg(t) < ∞ for all t > 0, and let � : R+ → R
+ be

convex and increasing with �(0) = 0. Then∫
Rn

�(|f #(x) − g#(x)|) dx ≤
∫
Rn

�(|f (x) − g(x)|) dx. (2.39)

The choice �(t) = tp shows that, for 1 ≤ p < ∞, the map f → f # is a
contraction on Lp(Rn,Ln):∫

Rn
|f #(x) − g#(x)|p dx ≤

∫
Rn

|f (x) − g(x)|p dx, 1 ≤ p < ∞.

In Corollary 2.23 below it is shown that contractivity also holds for p = ∞.
But for 0 < p < 1 it fails. Consider, for example, on R, f = χ[− 1

2 , 1
2 ],

g = 2χ[− 1
2 , 1

2 ] + 3χ[−1,− 1
2 ]∪[ 1

2 ,1]. Then, we have

‖f − g‖p
p = 1p + 3p, ‖f # − g#‖p

p = 2 · 2p.
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Since xp is concave for 0 < p < 1, it follows that ‖f − g‖p < ‖f # − g#‖p.
Using the same kind of argument, one can show that for every � which fails
to be convex, (2.39) will fail for some f and g.

Proof of Corollary 2.20 Suppose first that f and g are bounded and have
compact support. Let � be the function in (2.38). Then∫

Rn
�

(
f (x), g(x)

)
dx

=
∫
Rn

�
(

f (x)
)

dx +
∫
Rn

�
(
g(x)

)
dx −

∫
Rn

�
(|f (x) − g(x)|) dx.

When f and g are changed to f # and g#, Theorem 2.15(c) implies that the
left-hand side increases, while the first two integrals on the right-hand side do
not change. Since all the integrals are finite, (2.39) follows.

For general f and g satisfying the hypotheses of Corollary 2.20, define,
for k ≥ 1, fk = χB(k) min( f , k), gk = χB(k) min(g, k). One easily checks
that |fk − gk| ≤ |fk+1 − gk+1|, so that �(|fk − gk|) ↗ �(|f − g|) a.e. By
Proposition 1.39 and Definition 1.29, f #

k ↗ f # and g#
k ↗ g#. By Fatou’s lemma

and the monotone convergence theorem,∫
Rn

�(|f # − g#|) dx ≤ lim inf
k→∞

∫
Rn

�(|f #
k − g#

k |) dx

≤ lim inf
k→∞

∫
Rn

�(|fk − gk|) dx =
∫
Rn

�(|f − g|) dx.

Corollary 2.21 Let (X,μ) be a measure space, f and g be nonnegative
measurable functions on X with λf (t) < ∞ and λg(t) < ∞ for all t > 0,
and � : R+ → R

+ be convex and increasing with �(0) = 0. Then∫
R+

�(|f ∗ − g∗|) dx ≤
∫

X
�(|f − g|) dμ. (2.40)

Proof Suppose first that f and g are simple. Let f1 : R→R
+ and g1 : R→R

+

be the functions defined in the proof of Corollary 2.17. Then ( f , g) and
( f1, g1) have the same joint distribution, and so do ( f #, g#) and ( f ∗

1 , g∗
1). Using

Proposition 1.18(a) and Corollary 2.20, we have∫
R+

�(|f ∗ − g∗|) dx =
∫
R+

�(|f ∗
1 − g∗

1|) dx =
∫
R

�(|f #
1 − g#

1|) dx

≤
∫
R

�(|f1 − g1|) dx =
∫

X
�(|f − g|) dμ.

Suppose next that f and g are bounded, and that μ( f > 0) < ∞,
μ(g > 0) < ∞. Let fk and gk be the simple approximants to f and g defined
in the proof of Corollary 2.17. By Proposition 1.39, f ∗

k ↗ f ∗ and g∗
k ↗ g∗.
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Moreover, all the f ∗
k and g∗

k are zero on [A, ∞), where A = max(λf (0), λg(0)).
In (2.40), replace f and g by fk and gk. The dominated convergence theorem can
be applied to pass to the limit on each side, and we obtain (2.40) for f and g.

Next, assume that f and g are arbitrary functions satisfying the hypotheses
of Corollary 2.21, and that (X,μ) is σ -finite. Let Xk be an increasing
sequence of subsets of X with finite measure whose union is X. Let
fk = χXk min( f , k), gk = χXk min(g, k). Then Proposition 1.39 and the
argument at the end of the proof of Corollary 2.20 establish (2.40).

Finally, if (X,μ) is an arbitrary measure space, let Y = ( f > 0) ∪ (g > 0).
The hypotheses λf (t) < ∞ and λg(t) < ∞ for all t > 0 imply that Y is
σ -finite. Moreover, ( f |Y)∗ = f ∗, and similarly for g. Thus,∫

R+
�(|f ∗ − g∗|) dx ≤

∫
Y
�(|f − g|) dμ =

∫
X
�(|f − g|) dμ.

Corollary 2.22 Let f and g be nonnegative Lebesgue measurable functions
on R

n with λf (t) < ∞ and λg(t) < ∞ for all t > 0, let � : R+ → R
+ be

convex and increasing with �(0) = 0, and let K : R+ → R
+ be decreasing.

Then ∫
R2n

�(|f #(x) − g#(y)|)K(|x − y|) dx dy

≤
∫
R2n

�(|f (x) − g(y)|)K(|x − y|) dx dy.

Proof Like that of Corollary 2.20, except that Theorem 2.15(a) is used instead
of Theorem 2.15(c).

We turn now to the contractivity of the decreasing and symmetric decreasing
rearrangements on L∞.

Corollary 2.23

(a) Let (X,μ) be a measure space, and let f , g : X → R
+ with λf (t) < ∞ and

λg(t) < ∞ for all t > 0. Then

‖f ∗ − g∗‖L∞(R+) ≤ ‖f − g‖L∞(X,μ). (2.41)

(b) Let f , g : Rn → R
+ with λf (t) < ∞ and λg(t) < ∞ for all t > 0. Then

‖f # − g#‖L∞(Rn) ≤ ‖f − g‖L∞(Rn).

Proof From Definition 1.29, (b) is a consequence of (a). So we just need to
prove (a). Suppose first that Y ≡ ( f > 0) ∪ (g > 0) has finite measure.
Then ‖f − g‖L∞(Y ,μ) = limp→∞‖f − g‖Lp(Y ,μ) and ‖f ∗ − g∗‖L∞([0,μ(Y)]) =
limp→∞‖f ∗ − g∗‖Lp([0,μ(Y)]).



82 Main Inequalities on R
n

Since ‖f − g‖L∞(Y ,μ) = ‖f − g‖L∞(X,μ) and ‖f ∗ − g∗‖L∞([0,μ(Y)]) =
‖f ∗ − g∗‖L∞(R+), (2.41) follows.

For general f and g satisfying the hypotheses of Corollary 2.23(b), define,
for k ≥ 1, fk = ( f − 1

k )
+, gk = (g − 1

k )
+. Then the set where fk or gk is

positive has finite measure. Also, f ∗
k = ( f ∗ − 1

k )
+ and g∗

k = (g∗ − 1
k )

+,

‖f − g‖L∞(X,μ) = lim
k→∞

‖fk − gk‖L∞(X,μ)

and

‖f ∗ − g∗‖L∞(R+) = lim
k→∞

‖f ∗
k − g∗

k‖L∞(R+).

Thus, the validity of (2.41) for f and g follows from its validity for each fk
and gk.

2.8 Decomposition of Monotone and AL0 Functions

Let M denote the set of all increasing functions f : R+ → R
+ with f (0) = 0.

Recall that R+ = [0, ∞), and that “increasing” means nondecreasing. Let P
be the set of points in R

+ at which f has a jump. Then P is at most countable,
and f is continuous on R

+ \ P.
For p ∈ P, define a function φp ∈ M by

φp(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if 0 ≤ x < p,

f (p) − f (p−) if x = p,

f (p+) − f (p−) if x > p.

For p = 0, we interpret p− = 0.
It is easy to see that φp ∈ M, that f −φp ∈ M and that f −φp is continuous

at p as well as on R
+ \ P. In similar fashion, defining τ = f − ∑

p∈P φp, one
can verify that τ is continuous on R

+ and that τ ∈ M. We state this result as
a decomposition theorem:

Theorem 2.24 Let f ∈ M and P be its set of jump points. Then

f (x) = τ(x) +
∑
p∈P

φp(x), ∀ x ∈ R
+,

where τ ∈ M ∩ C(R+).

Associate to f a nonnegative Borel measure μ on R
+ by setting μ([0, x)) =

f (x−). See, for example, Folland (1999, §1.5). Then p ∈ P if and only if
μ({p}) > 0. In fact, μ({p}) = f (p+) − f (p−). Under suitable additional
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hypotheses on f , such as right continuity, there is a 1–1 correspondence
between f and μ. But in general, since μ can see only f (p+) − f (p−) and
cannot detect f (p), different f can have the same μ. Let κ be the measure
obtained from μ by subtracting all its point masses. Then for μ, we have the
decomposition

μ = κ +
∑
p∈P

μ({p})δp,

where κ is a continuous nonnegative Borel measure on R
+ (continuous means

that the measure of each single point is zero) and δp denotes the unit point
mass at p.

Next, recall that AL0 is the set of all functions in AL(R+×R
+) which vanish

on the coordinate axes. Our main goal in this section is to prove decomposition
results for AL0 akin to the ones proved above for M. For z = x+iy ∈ R

+×R
+,

define rectangles R(z) and R(z) by

R(z) = [0, x) × [0, y), R(z) = [0, x] × [0, y].

Let f ∈ AL0. In this section, we will usually write f (x, y) instead of f (z).
Associate to f a nonnegative Borel measure μ on R

+ × R
+ by setting

μ(R(z)) = lim
t→0+

f (x − t, y − t). (2.42)

The limit exists since f is increasing on horizontal and vertical lines
For a ∈ R

+, b ∈ R
+, let V(a) be the vertical half-line a + iR+ through

x = a and let H(b) = R
+ + ib be the horizontal half-line through y = b.

Define sets P, A, and B, associated with f , by

P = {p ∈ R
+ × R

+ : μ({p}) > 0}, A = {a ∈ R
+ : μ(V(a) \ P) > 0},

B = {b ∈ R
+ : μ(H(b) \ P) > 0}.

The sets P, A and B are at most countable. For p ∈ P, a ∈ A, b ∈ B, define
nonnegative Borel measures νp, λa, λb on R

+ × R
+ as follows:

• νp = μ({p})δp.
• λa is the restriction of μ to V(a) \ P.
• λb is the restriction of μ to H(b) \ P.

Thus, for example, for each Borel set E ⊂ R
+ × R

+,

λa(E) = μ((V(a) \ P) ∩ E).

Then νp is a point mass at p, while λa, λb are line masses that assign measure
zero to each point. Let κ be the measure obtained by subtracting all the νp, λa
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and λb from μ. Then κ is a nonnegative measure that assigns measure zero to
each point and to each horizontal and each vertical line in R

+ × R
+. We have

μ = κ +
∑
a∈A

λa +
∑
b∈B

λb +
∑
p∈P

νp. (2.43)

To construct a corresponding decomposition of f , one must pay close
attention to detail. First, we need an analogue of the fact that increasing
functions on R

+ have left- and right-hand limits at each point. Take w =
u + iv ∈ R

+ ×R
+. Since f is increasing on coordinate lines, it follows that the

limit

f (u+, v) ≡ lim
t→0+

f (u + t, v)

exists, as do the corresponding limits f (u, v+), f (u−, v) and f (u, v−). Limits
also exist for f (z) when z approaches w within an open coordinate quadrant
with origin w. For example,

lim
(s,t)→(0,0), s>0, t>0

f (u − s, v − t) = μ(R(w)). (2.44)

To prove (2.44), let s and t be small positive numbers. Say 0 < t < s. Since
f is increasing on coordinate lines, we have

f (u − s, v − s) ≤ f (u − s, v − t) ≤ f (u − t, v − t).

By (2.42), as s and t approach zero, the terms on the left and the right
approach the common limit μ(R(w)).

Denote the left-hand side of (2.44) by f (u−, v−). The limits associated with
the other three open coordinate quadrants will be denoted by f (u+, v−), etc.
The reader may verify that they exist, and that we have

f (u+, v+) = μ(R(w)),

f (u+, v−) = μ(R(w) ∪ V1(w)),

f (u−, v+) = μ(R(w) ∪ H1(w)),

f (u−, v−) = μ(R(w)),

where H1(w) is the horizontal segment from (0, v) to w, closed on the left,
open on the right, and V1(w) the vertical segment from (u, 0) to w, closed on
the bottom, open on the top. We also obtain the easily checked formulas

μ(H1(w)) = f (u−, v+) − f (u−, v−),

μ(V1(w)) = f (u+, v−) − f (u−, v−),

μ({w}) = f (u+, v+) − f (u−, v+) + f (u−, v−) − f (u+, v−).

(2.45)
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We are now ready to construct our decomposition of f . Take p ∈ P. Write
p = u + iv, where u, v ∈ R

+. Define φp : R+ × R
+ → R by

φp(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 < x < u or 0 < y < v,

c1, if x = u and y > v,

c2, if x = u and y = v,

c3, if x > u and y = v,

c4, if x > u and y > v,

(2.46)

where

c1 = f (u, v+) − f (u−, v+) + f (u−, v−) − f (u, v−),

c2 = f (u, v) − f (u−, v) + f (u−, v−) − f (u, v−),

c3 = f (u+, v) − f (u−, v) + f (u−, v−) − f (u+, v−),

c4 = f (u+, v+) − f (u−, v+) + f (u−, v−) − f (u+, v−).

(2.47)

Claim φp ∈ AL0 and f − φp ∈ AL0.

Proof Let R denote a closed rectangle in R
+ × R

+ with sides parallel to the
coordinate axes and vertices z1, z2, z3, z4, where z1 is the northeast vertex and
the remaining vertices are labelled in counterclockwise order. Let R denote
the set of all such R. Then φp is in AL0 if and only if

φp(R) ≡ φp(z1) − φp(z2) + φp(z3) − φp(z4) ≥ 0 (2.48)

for all R ∈ R, and f − φp ∈ AL0 if and only if

φp(R) ≤ f (R), ∀ R ∈ R. (2.49)

If R does not contain p then φp(R) = 0, so (2.48) and (2.49) hold. If R does
contain p, one considers subcases according to whether p is a vertex, belongs to
the interior of a boundary side, or belongs to the interior of R. If R is subdivided
into two rectangles R1, R2 by insertion of a new horizontal or vertical boundary
side, then g(R) = g(R1) + g(R2) for all functions g. From this, one sees that it
suffices to verify (2.48) and (2.49) when p is a vertex of R. If p is the southwest
vertex, then, using (2.46)–(2.47),

φp(R) = c4 − c1 + c2 − c3 = f (u+, v+) − f (u, v+) + f (u, v) − f (u+, v)

= lim
t→0+

f (R(t)),

(2.50)

where R(t) is the rectangle with southwest vertex at (u, v), northeast vertex at
(u + t, v + t). Since f ∈ AL0, the last expression is ≥ 0. Thus (2.48) holds.
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In general, if R, R′ ∈ R with R ⊂ R′, then the definition of AL and a subdivision
argument show that f (R) ≤ f (R′). Thus, in (2.50), f (R(t)) ≤ f (R) for small t,
so that (2.49) also holds.

In similar fashion, one shows that (2.48) and (2.49) hold when p is the
southeast, northeast, or northwest vertex of R. The claim is proved.

Let νp be the measure associated to φp. Then νp assigns mass c4 to R(w) if
p ∈ R(w), and assigns mass zero to R(w) for other w ∈ R

+ ×R
+. From (2.45)

and (2.47) it follows that c4 = μ({p}). Thus, νp = μ({p})δp.
Supposing that the set P of point masses for μ is non-empty, enumerate it as

P = {p1, p2, . . . }. Let φ1 be the function constructed from f and p1 as above.
Set f1 = f − φ1. Then f1 and φ1 are in AL0, by the claim. Suppose that fn has
been constructed for n ≥ 1. Let φn+1 be the function constructed from fn and
pn+1, and let fn+1 = fn − φn+1. Define a function F on R

+ × R
+ by

F = f −
∑
p∈P

φp. (2.51)

The series
∑

p∈P φp has nonnegative terms. Each fn is in AL0, hence is
nonnegative. The nth partial sum of the series equals f − fn, so the partial sums
are bounded above by f . Thus, the series converges pointwise on R

+ × R
+. F

is the pointwise limit of the functions fn ∈ AL0, hence F ∈ AL0. The measure
associated to two functions in AL0 is the sum of their associated measures. It
follows that the measure associated to fn is the measure μ associated to f with
the point masses at p1, . . . , pn removed, and the measure associated to F is μ

with all of its point masses removed. From (2.43), we deduce that the measure
associated to F is

μ1 ≡ κ +
∑
a∈A

λa +
∑
b∈B

λb. (2.52)

We now turn attention to the line masses in μ. Recall that a ∈ A means that
μ(V(a) \ P) > 0, where V(a) is the vertical half-line through x = a. Define,
for a ∈ A,

σa(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0, if 0 ≤ x < a,

F(a, y) − F(a−, y), if x = a,

F(a+, y) − F(a−, y), if x > a.

(2.53)

For b ∈ B, define σ b by

σ b(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ y < b,

F(x, b) − F(x, b−), y = b,

F(x, b+) − F(x, b−), y > b.

(2.54)
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For fixed y, σa(x, y) takes on at most three different values: It is zero to the
left of the line x = a. At (a, y) and at (x, y) for x > a its values are chosen so
that the jumps σa(a, y) − σa(a−, y) and σa(a+, y) − σa(a, y) are equal to the
corresponding jumps of F to the left and right of (a, y). Corresponding remarks
apply to the behavior of σ b along vertical lines.

Claim σa, σ b, F − σa, and F − σ b are in AL0.

Proof We will give the proofs for σa and F − σa. As with φp, the claims
are equivalent to the inequalities 0 ≤ σa(R) ≤ F(R) for R ∈ R. If R does
not intersect the line V(a), then σa(R) = 0, and we are done. To prove the
inequalities when R intersects V(a), it suffices to consider the two cases when
the eastern boundary or the western boundary of R lies on V(a). Consider
the first case. For t > 0, let R1(t) be the rectangle whose eastern boundary
coincides with that of R and whose western boundary is on the line V(a − t).
Then, using (2.53),

σa(R) = lim
t→0+

F(R(t)).

Since 0 ≤ F(R(t)) ≤ F(R) for small t, the desired inequalities follow. The
proof of the second case is analogous.

Next, take a ∈ R
+ and consider a rectangle R(x, y) = [0, x) × [0, y) with

(x, y) ∈ R
+ × R

+. If x ≤ a, then both σa(x−, y−) and λa(R(x, y)) equal zero.
If x > a, then

σa(x−, y−) = σa(a+, y−) = F(a+, y−) − F(a−, y−)

= μ1(V1(a, y)) = λa(R(x, y)).

Thus, the measure associated with σa is λa. Similarly, the measure associ-
ated with σ b is λb.

Take again a ∈ R
+. For y ∈ R

+,

σa(a, y+) − σa(a, y−) = F(a, y+) − F(a−, y+) − F(a, y−) + F(a−, y+)

≤ F(a+, y+) − F(a−, y−) − F(a−, y−)+ F(a−, y+),

(2.55)

where the inequality follows from the fact that for the AL0 function F,
F(x, t+)− F(x, t−) is an increasing function of x. Since F has no point masses
in its associated measure, from the third equation in (2.45) we deduce that the
last expression in (2.55) is zero. Since σa ∈ AL0, σa(a, y) is an increasing
function of y. It follows that σa(a, y) is a continuous function of y. If x > a, a
similar argument shows that σa(x, y) = σa(a+, y) is an increasing continuous
function of y. If x < a then σa(x, y) = 0. Thus, we have shown that:
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For each fixed x ∈ R
+, σa(x, y) is a continuous increasing function of

y ∈ R
+.

Similarly, for each fixed y ∈ R
+, σ b(x, y) is a continuous increasing

function of x ∈ R
+.

Finally, define τ = F − ∑
a∈A σa − ∑

b∈B σ b. Then, as in the analysis of
the point masses, τ ∈ AL0. Using (2.52), we find that the measure associated
to τ is κ . From τ(x−, y−) = κ(R(z)) and the fact observed before (2.43)
that κ assigns zero measure to points and coordinate lines, it follows that τ ∈
C(R+ ×R

+). Recalling (2.51), we have proved the result we sought about the
decomposition of f :

Theorem 2.25 For f ∈ AL0, we can write

f = τ +
∑
a∈A

σa +
∑
b∈B

σ b +
∑
p∈P

φp, (2.56)

where τ ∈ AL0∩C(R+×R
+), the equation holds at each point of R+×R

+, and
the functions σa , σ b,φp are defined in (2.53), (2.54) and (2.46) respectively.

For the benefit of readers who begin to read this section here at its
end, we note that the discussion of AL0 functions f and their associated
objects μ, κ , τ ,φp begins about one page after the beginning of the section.
The beginning of the section is devoted to analogous objects for increasing
functions of one variable.

2.9 Proof of Theorem 2.15 for Discontinuous �

Let f , g, K be as in the statement of Theorem 2.15 and � ∈ AL0. We shall
prove inequality (a) of Theorem 2.15:

Q( f , g) ≡
∫
R2n

�( f (x), g(y))K(|x − y|) dx dy ≤ Q( f #, g#). (2.57)

The proof of (c) is similar. Once (a) and (c) are established, the proofs of (b)
and (d) given in §2.6 remain valid for discontinuous �.

In our proof of (2.57) we may assume, as in §2.5, that K(0) < ∞ and that
K(t) = 0 for all sufficiently large t. For positive integers m, set �m(x, y) =
�(x, y) if x ≥ 1/m and y ≥ 1/m, �m(x, y) = 0 for other (x, y) ∈ R

+ × R
+.

Then each �m ∈ AL0, and � is the increasing pointwise limit of {�m}. By the
monotone convergence theorem, if (2.57) is true for each �m it is true for �.
Thus, we may assume that there exists a0 > 0 such that �(x, y) = 0 if either
x < a0 or y < a0.
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Decompose � as in (2.56). Each a ∈ A, each b ∈ B, and the real and
imaginary parts of each p ∈ P are ≥ a0. Each function in the decomposition is
nonnegative. Equation (2.57) has already been proved when � is continuous.
So to prove (2.57) for general �, we just need to prove it when � is replaced
by σa, σ b or φp.

First, we examine φp, which we shall call simply φ. By its construction, φ
belongs to AL0, takes on at most four different positive values, and φ(s, t) = 0
if 0 ≤ s < a0 or 0 ≤ t < a0. Fix δ with 0 < δ < a0. Then, for (x, y) ∈ R

2n,

φ( f (x), g(y))K(|x − y|) ≤ (maxφ)K(0)χf>δ(x)χg>δ(y).

By assumption (I), each of the sets f > δ and g > δ has finite Lebesgue
measure in R

n. With the aid of the dominated convergence theorem, to prove
(2.57) for φ it will suffice to express φ as the pointwise limit on R

+ × R
+

of a uniformly bounded sequence of continuous functions which vanish on
{(s, t) ∈ R

+ × R
+ : s ≤ δ or t ≤ δ}.

For our proof to work, the approximating sequence must converge to φ at
every point of R+ × R

+. Almost everywhere convergence will not suffice.
Write p = p1 + ip2. From the definition of φ in §2.8, one can check that

φ = α1η1 + α2η2 + α3η3 + α4η4,

where the constants αi are defined by

α1 = c4 − c1 + c2 − c3, α2 = c1 − c2, α3 = c3 − c2, α4 = c2,

and the functions η1, . . . , η4 are the characteristic functions of the respec-
tive sets

(p1, ∞) × (p2, ∞), [p1, ∞) × (p2, ∞),

(p1, ∞) × [p2, ∞), [p1, ∞) × [p2, ∞).

For c > 0, each of the one-variable functions χ(c,∞) and χ[c,∞) is the
pointwise limit on R

+ of a sequence of continuous functions uniformly
bounded by 1. If c > δ, we can also require the approximating functions
to vanish on [0, δ]. Suitable products of the one-variable functions furnish
appropriate two-variable approximations to the ηj. Thus, (2.57) holds for each
ηj, and hence for φ.

Finally, we shall verify (2.57) for σa. The argument for σ b requires obvious
changes. In (2.51), replace f by �. We shall continue to denote the function on
the left of (2.51) by F. Define functions h1, h2 on R

+ by

h1(t) = F(a, t) − F(a−, t), h2(t) = F(a+, t) − F(a, t).
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By (2.53), for (s, t) ∈ R
+ × R

+,

σa(s, t) = χ[a,∞)(s)h1(t) + χ(a,∞)(s)h2(t). (2.58)

Near the end of §2.8, we showed that σa is continuous and increasing on
vertical lines. It follows that h1 and h2 are continuous and increasing on R

+.
Also, h1 and h2 vanish on [0, a), and hence on [0, a0).

Replacing h1 and h2 by max(h1, m) and max(h2, m) where m is a positive
integer, and bearing in mind the monotone convergence theorem, we may
assume that the hj in (2.58) are bounded on R

+, as well as continuous.
Approximate χ[a,∞) and χ(a,∞) by suitable one-variable uniformly bounded
continuous functions, as in the proof for φ. Replace the characteristic functions
in (2.58) by their approximants. The resulting two-variable functions are
continuous, uniformly bounded, belong to AL0, and converge to σa pointwise
on R

+ × R
+. Equation (2.57) holds when these two-variable functions are

substituted for �. Applying the dominated convergence theorem, as in the
proof for φ, we obtain (2.57) when σa is substituted for �.

2.10 Notes and Comments

For �(x, y) = xy, Theorem 2.15(a) is a special case of an inequality of F. Riesz
(1930) when n = 1 and of Sobolev (1938) when n ≥ 1. We shall take up the
general Riesz–Sobolev inequality and some of its generalizations in Chapter 8.

The special case of Theorem 2.15(c) when f = g = 1 and � is continuous is
essentially due to Crowe, Rosenblum and Zweibel (1986, Thm. 3). Again with
continuous �, Almgren and Lieb (1989, p. 691) state Theorem 2.15(c) and a
more general version of Theorem 2.15(a) in which K(|x−y|) is replaced on the
left side of the inequality by W(ax + by) and on the right side by W#(ax + by),
with a, b ∈ R and W : Rn → R

+. They prove their inequality for general
� by reducing it to the case �(x, y) = xy, then invoking the Riesz–Sobolev
Theorem. By contrast, the proof given here for continuous � makes use only
of elementary results for polarization and two-point symmetrization, and of the
Arzelà–Ascoli Theorem to supply a compactness ingredient. In Chapter 7 we
shall see that Theorem 2.15 carries over to spheres and hyperbolic spaces, with
essentially the same proof. The Almgren–Lieb version of Theorem 2.15(a),
with W(ax + by) instead of K(|x − y|), has an analogue for circles, to be
presented in Chapter 8, but I know of no comparable theorem for higher
dimensional spheres or hyperbolic spaces.

The use of polarization to obtain Riesz-type integral inequalities appears in
Baernstein and Taylor (1976) in the context of spheres. The proof in that paper
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was inspired by the proof of Ahlfors (1973, Lemma 2.2), although his proof
appears to be incomplete. Other papers using polarization to prove integral
inequalities, by Beckner, Brock, Solynin, and others, will be cited in Chapters
4, 7, and 8.

The inequality of Corollary 2.16,
∫

fg ≤ ∫
f #g#, is in Hardy, Littlewood, and

Pólya (1952, p. 278) for functions of one variable. The contraction inequalities,
Corollaries 2.20 and 2.21, were apparently first proved, independently and
respectively, by Chiti (1979) and Crandall and Tartar (1980). A result like
Corollary 2.22 is in Almgren and Lieb (1989, p. 693).

A number of authors have used isoperimetric or Brunn–Minkowski-type
inequalities to prove that symmetrization decreases the Lipschitz norm of
functions. The proofs can usually be easily modified to obtain the more general
modulus of continuity decrease asserted by Theorem 2.12. As in our proof of
Theorem 2.15, the proof of Theorem 2.12 presented here uses only elementary
inequalities, together with the Arzelà–Ascoli Theorem. In Chapter 8 we shall
use the general Riesz inequality in R

n to prove the general Brunn–Minkowski
inequality |A + B|1/n ≥ |A|1/n + |B|1/n in R

n.



3

Dirichlet Integral Inequalities

For functions f : Rn → R and � : R+ → R
+, the �-Dirichlet integral of f is

the integral
∫
Rn �(|∇f |) dx. When �(t) = tp,

∫
Rn |∇f |p dx is called simply the

p-Dirichlet integral of f . The principal results of this chapter are Theorems 3.7,
3.11, and 3.20. Theorem 3.7 asserts that if f is Lipschitz and its distribution
function satisfies mild assumptions, then for p ≥ 1 the p-Dirichlet integral
decreases when f is replaced by its symmetric decreasing rearrangement
f #. The proof is based on the double integral inequality Corollary 2.22.
Theorem 3.11 is an extension of Theorem 3.7: it says that for Lipschitz
functions, symmetrization decreases �-Dirichlet integrals for all convex �. In
Theorem 3.20 we return to p-Dirichlet integrals, and prove that, when p ≥ 1,
symmetrization decreases the p-Dirichlet integral of nonnegative functions in
the first order Sobolev space W1,p(Rn).

Sections 3.1 and 3.4 provide introductory material on Lipschitz and first
order Sobolev functions, respectively. Section 3.6 contains a discussion of the
phenomenon that while ‖fn − f ‖Lp(Rn) → 0 implies ‖f #

n − f #‖Lp(Rn) → 0,
(under reasonable conditions), it is not true in general that ‖fn − f ‖Lp(Rn) → 0
and ‖∇fn − ∇f ‖Lp(Rn) → 0 imply ‖∇f #

n − ∇f #‖Lp(Rn) → 0.

3.1 Lipschitz Functions

Let (X, dX) and (Y , dY) be metric spaces. A function f : X → Y is said to be
Lipschitz if there is a constant C such that

dY( f (x), f (y)) ≤ CdX(x, y), ∀ x, y ∈ X.

Of course, Lipschitz functions are uniformly continuous.
It is easy to see that if one such constant exists, then there is a least such

constant, called the Lipschitz constant of f . Denote this constant by ‖f ‖Lip(X,Y),
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and let Lip(X, Y) denote the set of all Lipschitz functions from X to Y . General
references for Lipschitz functions include Evans and Gariepy (1992) and
Federer (1969).

In this chapter, we shall have occasion to use two basic results about
Lipschitz functions, the Extension Theorem and Rademacher’s Theorem.

Theorem 3.1 (Extension Theorem) Let (X, dX) be a metric space, A ⊂ X,
and f ∈ Lip(A,R). There exists f ∈ Lip(X,R) such that f = f on A and
‖f ‖Lip(A,R) = ‖f ‖Lip(X,R).

The proof is simple: Take

f (x) = inf
a∈A

{ f (a) + ‖f ‖Lip(A,R)dX(x, a)}.

A proof that f has the required properties when X = R
n is in Federer (1969,

p. 202); the same proof works for any metric space X.
When the target space R is replaced by R

n, n ≥ 2, it is still possible to
extend f ∈ Lip(A,Rn) to some f ∈ Lip(X,Rn), but the Lipschitz constant
of any such extension must sometimes be strictly larger than the Lipschitz
constant of f . An example is in Federer (1969, p. 202). When X = R

m,
Y = R

n, norm preserving extensions do exist. This is known as Kirszbraun’s
Theorem. It is proved in Federer (1969, p. 202).

In general, Lipschitz extensions of f ∈ Lip(A, Y) to supersets of A need not
be unique. If, however, Y is complete, then it is easy to see that f has a unique
continuous extension to the closure A of A, and that this extension still has
Lipschitz constant ‖f ‖Lip(A,Y).

Rademacher’s theorem asserts that real-valued Lipschitz functions on R
n are

differentiable almost everywhere. Proofs may be found, for example, in Evans
and Gariepy (1992) or Federer (1969).

Theorem 3.2 (Rademacher) Let f ∈ Lip(Rn,R). Then f is differentiable at
Ln-almost every x ∈ R

n.

Recall that a function f : Bn(x, R) → R is said to be differentiable at x if
there exists a linear map L : Rn → R such that

f (y) = f (x) + L(y − x) + o(|x − y|), y → x. (3.1)

One sometimes writes L = Df (x), and calls Df (x) the derivative of f at x.
There exists v ∈ R

n such that L(y) = v · y for all y ∈ R
n. We shall denote v by

∇f (x), and call ∇f (x) the gradient of f at x. In our context, Df (x) and ∇f (x)
are essentially the same object, though technically Df (x) ∈ (Rn)∗, the vector
space dual to R

n, whereas ∇f (x) ∈ R
n.
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Equation (3.1) can be written as

f (y) = f (x) + ∇f (x) · (y − x) + o(|y − x|), y → x. (3.2)

Taking y = x + tei, t ∈ R, in (3.2), one sees that if f is differentiable at x,
then for i = 1, . . . , n, the ith partial derivative ∂f

∂xi
≡ ∂if evaluated at x exists,

and is equal to the ith component of ∇f (x). Thus,

∇f (x) = (∂1f (x), . . . , ∂nf (x)), (3.3)

and |∇f (x)| is defined by

|∇f (x)|2 =
n∑

i=1

(∂if (x))
2.

There are occasions when all the partial derivatives of f exist at x, but
f fails to be differentiable at x. In that case we still define ∇f (x) by (3.3).
Later on, when we study weak derivatives, the functions ∂if will exist in some
generalized sense, and ∇f will be defined to be the object (∂1f , . . . , ∂nf ).

For v ∈ R
n let

∂vf (x) = lim
t→0

f (x + tv) − f (x)

t

denote the derivative of f at x in the direction v. If f is differentiable at x
then ∂vf (x) exists, and ∂vf (x) = ∇f (x) · v. Moreover, if f is Lipschitz in a
neighborhood of x with constant C, then |∂vf (x)| ≤ C|v|. From Rademacher’s
Theorem 3.2, we deduce

Corollary 3.3 Let f ∈ Lip(Rn,R). Then ∂vf exists a.e. for each v ∈ R
n, and

‖∂vf ‖∞ ≤ ‖f ‖Lip(Rn,R)|v|.
In particular, if f ∈ Lip(Rn,R), then all the partial derivatives of f exist at

almost all points of Rn, and we have ‖∂if ‖∞ ≤ ‖f ‖Lip(Rn,R) for i = 1, . . . , n.
If f ∈ Lip(Rn,R), then the Rn-valued function ∇f is defined a.e. on R

n, and
is Lebesgue measurable (each ∂if is the a.e. limit of the measurable sequence
gk(x) ≡ k( f (x + k−1ei) − f (x))). Write ‖∇f ‖∞ for the essential supremum of
|∇f | over Rn.

Corollary 3.4 Let f ∈ Lip(Rn,R). Then ∇f ∈ L∞(Rn,Rn), and

‖∇f ‖∞ = ‖f ‖Lip(Rn,R).

Proof At each point of differentiability of f it follows from (3.2) that

|∇f (x)| = sup
|v|=1

|∂vf (x)|.
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Thus, from Corollary 3.3 we have |∇f (x)| ≤ ‖f ‖Lip(Rn,R) at points of
differentiability, so that ‖∇f ‖∞ ≤ ‖f ‖Lip(Rn,R).

If ‖f ‖Lip(Rn,R) = 0 the opposite inequality is also true. If ‖f ‖Lip(Rn,R) > 0,
take 0 < α < ‖f ‖Lip(Rn,R). There exist x, y ∈ R

n such that | f (x) − f (y)| >

α|x − y|. After translation and rotation, we may assume that x = 0, y = re1,
for some r > 0, and that f (re1) > f (0). By continuity, there exists ε > 0 such
that for each x in the cube Q = [−ε, ε]n we have f (x + re1) − f (x) > rα.
Let Q′ = {x ∈ Q : x1 = 0}, and write x = (x1, y), where y ∈ R

n−1. Then∫
[0,r]×Q′

∂1f (x) dx =
∫

Q′
dy

∫ r

0
∂1f (x1, y) dx1 =

∫
Q′
( f (r, y) − f (0, y)) dy.

The first equality is from Fubini’s theorem. The second equality comes from
the fact that the restriction of a Lipschitz function to a line is a Lipschitz
function of one variable, hence is an absolutely continuous function of one
variable, and thus is the indefinite integral of its derivative. The third term is
> rαLn−1(Q′), and the first term is ≤ rLn−1(Q′)‖∇f ‖∞. We conclude that
‖∇f ‖∞ > α, and hence that ‖∇f ‖∞ ≥ ‖f ‖Lip(Rn,R).

Corollary 3.5 Let f ∈ Lip(Rn,R). For fixed c ∈ R, let E = ( f = c). Then
∇f = 0 a.e. on E.

Proof Let

E1 = {x ∈ E : f is differentiable at x} and

E2 = {x ∈ E1 : x is a point of density of E1}.
Then Ln(E \ E1) = 0 and Ln(E1 \ E2) = 0. To prove the corollary, it suffices
to prove that ∇f (x0) = 0 for each x0 ∈ E2.

Take x0 ∈ E2. We may assume that x0 = 0. Suppose that ∇f (0) �= 0. Let

K =
{

y ∈ S
n−1 : y · ∇f (0) ≥ 1

2
|∇f (0)|

}
.

Choose R so small that if 0 < |x| ≤ R then

| f (x) − f (0) − x · ∇f (0)| < |x| |∇f (0)|
4

.

If x ∈ E1 then f (x) = f (0) = c, so if |x| ≤ R and x ∈ E1 then |x · ∇f (0)| <
1
4 |x| |∇f (0)|. Let K(R) = {x ∈ R

n : 0 < |x| < R, x/|x| ∈ K}. Then K(R) ∩ E1

is empty. This is incompatible with our assumption that 0 is a point of density
of E1. We conclude that ∇f (0) = 0.

Here now is our first result on the theme that symmetrization decreases the
size of the gradient. For f ∈ Lip(Rn,R), note that inf f = ess inf f .
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Theorem 3.6 Let f ∈ Lip(Rn,R), and suppose that λf (t) < ∞ for all
t > inf f . Then f # ∈ Lip(Rn,R), and

‖∇f #‖∞ ≤ ‖∇f ‖∞.

Proof By Theorem 2.12, the moduli of continuity of f and f # satisfy

ω(t, f #) ≤ ω(t, f ), t > 0.

Also, it follows from the definitions that

‖f ‖Lip(Rn,R) = sup
t>0

ω(t, f )

t
.

Thus, ‖f #‖Lip(Rn,R) ≤ ‖f ‖Lip(Rn,R). By Corollary 3.4, this inequality is
equivalent to the conclusion of Theorem 3.6.

3.2 Symmetrization Decreases the p-Dirichlet Integral
of Lipschitz Functions

Theorem 3.7 Let f ∈ Lip(Rn,R) and suppose that λf (t) < ∞ for all
t > inf f . Then ∫

Rn
|∇f #|p dx ≤

∫
Rn

|∇f |p dx, 1 ≤ p < ∞. (3.4)

For 0 < p < 1, Theorem 3.7 is false. To get counterexamples for n = 1,
take a ∈ [0, 1). Let fa : R → R

+ be the piecewise linear function which is zero
for |x| ≥ 1, has fa(a) = 1, and is linear on each of [−1, a] and [a, 1]. Then
f ′
a = 1/(1 + a) on (−1, a), f ′

a = −1/(1 − a) on (a, 1), and f ′
a = 0 on |x| > 1.

Thus, ∫
R

| f ′
a|p dx = (1 + a)1−p + (1 − a)1−p.

One easily checks that all the fa for 0 ≤ a < 1 have the distribution function
λ(t) = 2(1 − t)+ for t > 0, λ(t) = 2 for t ≤ 0. Thus, f #

a = f0. Since x → x1−p

is strictly concave on R
+, we see that∫

R

| f ′
a|p dx <

∫
R

| f ′
0|p dx =

∫
R

|( f #
a )

′|p dx

when 0 < a < 1.
Counterexamples of the same type can be constructed in R

n as follows. Take
again a ∈ [0, 1). Define S = Sa : Bn(1) → B

n(1) by

S(x) = (1 − |x|)ae1 + x, x ∈ B
n(1).
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Then for 0 < r ≤ 1, S maps the sphere |x| = r 1-1 onto the sphere with
radius r, center (1 − r)ae1. If 0 < r1 < r2 ≤ 1 then, as is easily shown,
the sphere S(|x| = r1) lies strictly inside the sphere S(|x| = r2). Moreover,
S(|x| = 1) = (|x| = 1). We conclude that S maps Bn(1) bijectively onto itself.

Define f0 : Rn → R
+ by f0(x) = (1 − |x|)+, and set fa = f0 ◦ S−1

a . For
t ∈ (0, 1), ( fa > t) is a ball of radius 1 − t contained in B

n(1). So we have
again f #

a = f0. Moreover, ( fa = t) and ( f0 = t) have the same (n − 1)-
dimensional Hausdorff measure for each t, |∇fa| is nonconstant on ( fa = t)
for 0 < t < 1, and t → tp is strictly convex. An argument with the coarea
formula, to be given in §4.5, shows that∫

Rn
|∇fa|p dx <

∫
Rn

|∇f0|p dx =
∫
Rn

|∇f #
a |p dx, 0 < p < 1, 0 < a < 1.

For decreasing rearrangements f ∗ of functions of one variable the analogue
of (3.4) holds also for 0 < p < 1. See Theorem 3.13 in §3.3.

The uniqueness problem associated with Theorem 3.7 is surprisingly com-
plicated, as discovered by Brothers and Ziemer (1988). They show among
other things that if f ≥ 0 and λf is absolutely continuous on R

+ then finite
equality in (3.4) for some p ∈ (1, ∞) implies that f = f # ◦T for some isometry
T of Rn, but that such a uniqueness result need not hold when λf has a singular
component. For more recent results on this problem, see Cianchi and Fusco
(2006) and Burchard and Ferone (2015).

Proof of Theorem 3.7 For ε > 0, let

E(ε) = {(x, y) ∈ R
n × R

n : |x − y| < ε}.
Assume for now that inf f = 0. Apply Corollary 2.22 with f = g, �(t) = tp,

and K(x) = χ[0,ε]. The result is∫
E(ε)

|f #(x) − f #(y)|pdx dy ≤
∫

E(ε)
| f (x) − f (y)|pdx dy. (3.5)

For fixed x, let y = x + εz. Then dy = εn dz. Divide (3.5) by ε−n−p. Fubini’s
theorem gives ∫

Rn
dx

∫
Bn(1)

∣∣∣∣ f #(x + εz) − f #(x)|
ε

∣∣∣∣p dz

≤
∫
Rn

dx
∫
Bn(1)

∣∣∣∣ f (x + εz) − f (x)|
ε

∣∣∣∣p dz.

(3.6)

We want to pass to the limit ε → 0. Assume, in addition to f ≥ 0, that f has
compact support, say f (x) = 0 for |x| ≥ R. Suppose also that ε < 1. Then for
x ∈ R

n and z ∈ B
n(1), we have
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ε

∣∣∣∣p ≤ ‖f ‖p
Lip(Rn,R)

|z|pχBn(R+1)(x).

Since
∫
Rn χBn(R+1)(x) dx

∫
Bn(1) |z|p dz < ∞, the dominated convergence

theorem permits passage to the limit inside the integral on the right-hand
side of (3.6). At points of differentiability of f , the integrand approaches
|∇f (x) · z|. Since, by Rademacher’s Theorem 3.2, almost all points are points
of differentiability, the right-hand side of (3.6) tends to the limit∫

Rn
dx

∫
Bn(1)

|∇f (x) · z|p dz.

Write z = (z1, . . . , zn), and set

Cp =
∫
Bn(1)

|z1|p dz.

Then, for a ∈ R
n, ∫

Bn(1)
|a · z|p dz = Cp|a|p.

We conclude that

lim
ε→0

∫
Rn

dx
∫
Bn(1)

∣∣∣∣ f (x + εz) − f (x)|
ε

∣∣∣∣p dz = Cp

∫
Rn

|∇f |p dx. (3.7)

Since f and f # have the same distribution, f # is also nonnegative with
compact support. By Theorem 3.6, f # ∈ Lip(Rn,R). Thus, the same argument
yields (3.7) when f is replaced by f #. From (3.6), we see that (3.4) holds for
nonnegative compactly supported f .

Let now f be a general function satisfying the assumptions of Theorem 3.7.
Then, from the assumptions f ∈ Lip(Rn,R) and λf (t) < ∞ for t > inf f , it
follows that

lim
x→∞ f (x) = inf f . (3.8)

Take a strictly decreasing sequence {αm}, m ≥ 1, with αm ↘ inf f . Let
fm = ( f − αm)

+, χm = χ( f>αm), and χm = χ(f #>αm). Then fm ∈ Lip(Rn,R),
and Corollary 3.5 implies that ∇fm = 0 a.e. on ( f = αm). It follows that
∇fm = χm∇f a.e. in R

n. Also, from the uniqueness of symmetric decreasing
rearrangements (see Proposition 1.30), we have f #

m = (f # −αm)
+. Thus ∇f #

m =
χm∇f #. By (3.8), fm has compact support, so (3.4) holds for each fm. Since
χm ↗ 1 and χm ↗ 1 on the sets ( f > inf f ) and (f # > inf f #) respectively,
and since ∇f = 0 a.e. on ( f = inf f ), ∇f # = 0 a.e. on (f # = inf f #), the
monotone convergence theorem shows that (3.4) holds for f .
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For f ∈ Lip(Rn,R) and −∞ ≤ a < b ≤ ∞, define g : Rn → R by

g(x) =

⎧⎪⎪⎨⎪⎪⎩
b, if f (x) ≥ b,

f (x), if a ≤ f (x) ≤ b,

a, if f (x) ≤ a.

Thus, g is a truncation of f . Then ‖g‖Lip(Rn,R) ≤ ‖f ‖Lip(Rn,R), and from
Corollary 3.5 it follows that ∇g = χf −1(a,b)∇f a.e. Also, from uniqueness
of symmetric decreasing rearrangements it follows that g# is obtained by
truncating f # in the same way that g is obtained by truncating f . That is, the
truncation and symmetric decreasing rearrangement operators commute. Thus,
∇g# = χ(f #)−1(a,b)∇f #. Applying (3.4) to g, we see that Theorem 3.7 implies a
generalization of itself:

Corollary 3.8 Let f ∈ Lip(Rn,R) and suppose that λf (t) < ∞ for all
t > inf f . Then, for −∞ ≤ a < b ≤ ∞,∫

(f #)−1(a,b)
|∇f #|p dx ≤

∫
f −1(a,b)

|∇f |p dx, 1 ≤ p < ∞.

Next, we shall establish a symmetrization inequality for Dirichlet integrals
of functions defined on subsets of Rn. For E ⊂ R

n a Lebesgue measurable set
and f : E → R a Lebesgue measurable function satisfying

λf (t) < ∞, ∀t > ess infE f ,

we have defined, after Definition 1.31, the symmetric decreasing rearrange-
ment f # : E# → R by

f #(x) = f ∗(αn|x|n), x ∈ E#.

Here αn = Ln(Bn(1)) and E# is the ball in R
n centered at the origin

with Ln(E#) = Ln(E). The distribution function λf and the decreasing
rearrangement f ∗ are computed with respect to Ln on E.

Corollary 3.9 Let � be an open subset of Rn with Ln(�) < ∞, and let f be
a nonnegative Lipschitz function on � such that f = 0 on ∂�. Then∫

�#
|∇f #|p dx ≤

∫
�

|∇f |p dx, 1 ≤ p < ∞. (3.9)

Proof Define g : Rn → R by g = f on �, g = 0 on R
n \ �. Then g ∈

Lip(Rn,R), ∇g = ∇f a.e. on �, and ∇g = 0 a.e. on R
n \ �. Here, one uses

Corollary 3.5 to insure that ∇g = 0 a.e. on ∂�. Moreover, we have g# = f # on
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�#, g# = 0 on R
n \ �#, where g# is the symmetric decreasing rearrangement

computed with respect to R
n. Applying Theorem 3.7 to g, we obtain∫

�#
|∇f #|p dx =

∫
Rn

|∇g#|p dx ≤
∫
Rn

|∇g|p dx =
∫
�

|∇f |p dx.

In Corollary 3.9 we assumed that f ≥ 0. If f is strictly negative somewhere
in � and f = 0 on ∂�, then the extension g in the proof is still in Lip(Rn,R),
but does not satisfy all the hypotheses of Theorem 3.7, since inf g < 0, but
λg(t) = ∞ for t < 0. Thus, the proof of Corollary 3.9 just given breaks down.
For n = 1, however, Corollary 3.9 remains true even without the nonnegativity
assumption on f (assuming f = 0 on ∂�). This is a consequence of the result
to be proved in Chapter 7 that circular symmetrization decreases Dirichlet
integrals for Lipschitz functions defined on a circle (Theorem 7.4). By contrast,
for n ≥ 2, vanishing of f on ∂� is not sufficient for (3.9) to hold.

Example 3.10 Let � = B
n(1), f (x) = |x| − 1, |∇f (x)| = 1. Then (3.9) is

false for every n ≥ 2 and every 1 ≤ p < ∞. We carry out the computations
for n = 2. Write r = |x|.

λf (t) = π(1 − (1 + t)2), −1 ≤ t ≤ 0,

f #(x) = (1 − r2)1/2 − 1, |∇f #(x)| = r

(1 − r2)1/2
, x ∈ B

2(1).

∫
B2(1)

|∇f |p = π ,∫
B2(1)

|∇f #|p = 2π
∫ 1

0

(
r

(1 − r2)1/2

)p

r dr = π

∫ 1

0

(
s

1 − s

)p/2

ds.

For p = 1,
∫ 1

0 (
s

1−s )
1/2 ds = π

2 > 1. For p ≥ 1, by convexity,∫ 1

0

(
s

1 − s

)p/2

ds ≥
(∫ 1

0

(
s

1 − s

)1/2

ds

)p

> 1.

Thus, ∫
B2(1)

|∇f |p <

∫
B2(1)

|∇f #|p, ∀ p ∈ [1, ∞).

Corollary 3.9 is of course still true for Lipschitz functions in � satisfying
f ≥ c in �, f = c on ∂�. The corollary is also still true for nonnegative
Lipschitz functions on domains of infinite volume, vanishing at the boundary,
if we add the assumption Ln( f > t) < ∞ for all t > 0.
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3.3 Symmetrization Decreases the �-Dirichlet
Integral of Lipschitz Functions

Theorem 3.11 Let f ∈ Lip(Rn,R), and suppose that λf (t) < ∞ for all
t > inf f . Let � : R+ → R

+ be convex and increasing, with �(0) = 0. Then∫
Rn

�(|∇f #|) dx ≤
∫
Rn

�(|∇f |) dx. (3.10)

More generally, it is true under the assumptions of Theorem 3.11 that∫
(f #)−1(a,b)

�(|∇f #|) dx ≤
∫

f −1(a,b)
�(|∇f |) dx, −∞ ≤ a < b ≤ ∞.

The deduction of the latter inequality from Theorem 3.11 is the same as
the deduction of Corollary 3.8 from Theorem 3.7. Similarly, the extension
argument used to deduce Corollary 3.9 from Theorem 3.7 works for �-
Dirichlet integrals, and produces the following result: If � is an open subset of
R

n with Ln(�) < ∞, f ∈ Lip(�,R+), and f = 0 on ∂�, then∫
�#

�(|∇f #|) dx ≤
∫
�

�(|∇f |) dx.

When � is strictly concave on R
+, the argument in §3.2 for �(t) = tp,

0 < p < 1, shows again that∫
Rn

�(|∇f #|) dx >

∫
Rn

�(|∇f |) dx

when f is one of the functions fa, 0 < a < 1, constructed at the beginning of
§3.2. On the other hand, for decreasing rearrangements f ∗ of functions of one
variable the analogue of (3.10) is true when � is any increasing function. This
result is included in Theorem 3.13, to be presented later in this section.

Proof of Theorem 3.11 It suffices to prove Theorem 3.11 under the additional
assumptions that f is nonnegative and has compact support; the passage
to general functions is accomplished in the same way as in the proof of
Theorem 3.7.

Assume then that f ∈ Lip(Rn,R+) and that f has compact support. Let
M = ‖∇f ‖∞. Then M = ‖f ‖Lip(Rn,R), by Corollary 3.4, so that M < ∞. By
Theorem 3.6, we know that f # ∈ Lip(Rn,R) with ‖∇f #‖∞ ≤ M. Thus, the
function

g(r) ≡ f #(re1)
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is in Lip(R+,R+), and is decreasing. Hence g′ exists a.e. in R
+, g′ ∈ L∞(R+),

−M ≤ g′ ≤ 0 a.e. in R
+, and for almost every x ∈ R

n we have

|∇f #(x)| = −∂f #

∂r
(x) = −g′(|x|).

Let R be large enough so that supp f ⊂ B
n(0, R). Then g(r) = 0 for r ≥ R.

Let ε > 0 be given. Define δ by

ε = δ βn−1

[
M�′(M+) + �(M) + Rn

n
�′(M+)

]
,

where βn−1 = nαn is the surface measure of the sphere S
n−1 (Folland, 1999,

p. 80), and �′(M+) is the derivative from the right of � at M. The existence
of �′(M+) is shown, for example, in Zygmund (1968, p. 21).

Define the Borel measure ν on R
+ by

dν(r) = rn−1 dr.

Then ∫
Rn

�(|∇f #|) dx = βn−1

∫ R

0
�(|g′(r)|) dν(r). (3.11)

By Lusin’s Theorem, there is a continuous function h on [0, R] such that
0 ≤ h ≤ M on [0, R] and h = −g′ on [0, R] \ E, where ν(E) < δ.

Let {ai}m
i=0 be a sequence in R

+ with 0 = a0 < a1 < · · · < am = R such
that the oscillation of h over each [ai−1, ai] is less than δ. For i = 1, . . . , m, let

bi = g(ai), Ii = g−1(bi−1, bi), Ai = f −1(bi−1, bi), μi = Ln(Ai).

Then Ii is an open subinterval of (ai−1, ai), and μi = βn−1ν(Ii).
Jensen’s inequality (Rudin, 1966, p. 61) asserts that if μ is a probability

measure on a space X, F : X → R is measurable, and � is a convex function
on h(X), then �(

∫
X F dμ) ≤ ∫

X �(F) dμ. Applied to the measure 1
μi

dx on Ai,
Jensen’s inequality gives

1

μi

∫
Ai

�(|∇f |) dx ≥ �

(
1

μi

∫
Ai

|∇f | dx

)
. (3.12)

It is possible that bi−1 = bi for some i. In this case Ai and Ii are empty,
and we interpret the expressions in (3.12), and similar ones involving averages
with respect to ν over Ii, to be zero.

By Corollary 3.8 with p = 1, the integral on the right-hand side of (3.12)
decreases when f is replaced by f # and Ai by (f #)−1(bi−1, bi). Multiplying by
μi and summing over i, we obtain∫

Rn
�(|∇f |) dx ≥

m∑
i=1

μi �

(
1

ν(Ii)

∫
Ii

|g′| dν

)
. (3.13)
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Write

�

(
1

ν(Ii)

∫
Ii

|g′| dν

)
− 1

ν(Ii)

∫
Ii

�(|g′|) dν

= �

(
1

ν(Ii)

∫
Ii

|g′| dν

)
− �

(
1

ν(Ii)

∫
Ii

h dν

)
+ �

(
1

ν(Ii)

∫
Ii

h dν

)
− 1

ν(Ii)

∫
Ii

�(h) dν

+ 1

ν(Ii)

∫
Ii

�(h) dν − 1

ν(Ii)

∫
Ii

�(|g′|) dν

= si + ti + ui.

(3.14)

Now g is constant on (ai−1, ai)\Ii. From (3.11), (3.14), and (3.13) we obtain∫
Rn

�(|∇f #|) dx = βn−1

m∑
i=1

∫
Ii

�(|g′|) dν =
m∑

i=1

μi
1

ν(Ii)

∫
Ii

�(|g′|) dν

=
m∑

i=1

μi�

(
1

ν(Ii)

∫
Ii

|g′| dν

)
−

m∑
i=1

μi(si + ti + ui)

≤
∫
Rn

�(|∇f |) dx −
m∑

i=1

μi(si + ti + ui).

(3.15)

Since |g′| = h except on E, and each of |g′| and h is nonnegative and
≤ M, their ν-averages over each Ii lie between 0 and M, and differ by at most
Mν(E ∩ Ii)/ν(Ii). From convexity of �, it follows that

|si| ≤ �′(M+)M
ν(E ∩ Ii)

ν(Ii)
.

Similarly,

|ui| ≤ �(M)
ν(E ∩ Ii)

ν(Ii)
.

Each of the terms �
(

1
ν(Ii)

∫
Ii

h dν
)

and 1
ν(Ii)

∫
Ii
�(h) dν is at most �(supIi

h)

and at least �(infIi h). Since 0 ≤ supIi
h − infIi h ≤ δ, we have

|ti| ≤ �′(M+)δ.

Since μi = βn−1ν(Ii) and ν(E) < δ, the last three estimates imply∣∣∣∣∣
m∑

i=1

μi(si + ti + ui)

∣∣∣∣∣
≤ βn−1

[
�′(M+)Mδ + �(M)δ + ν([0, R])�′(M+)δ

] = ε.

This last estimate and (3.15) complete the proof of Theorem 3.11.
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We derived our Dirichlet integral inequalities from the “main integral
inequality,” Theorem 2.15(a), which was itself obtained from integral inequal-
ities involving polarization. There is another approach which bypasses the
general integral inequalities and uses polarization in a different way to produce
Dirichlet integral inequalities for symmetric decreasing rearrangements.

Let f ∈ Lip(Rn,R), let H be an affine hyperplane in R
n, and select a

complementary half space H+ for H. Recall that for x ∈ H+ the polarization
fH of f is defined by fH(x) = max( f (x), f (ρx)), where ρ is reflection in H.
Since polarization decreases the modulus of continuity (Proposition 1.37), it
follows that fH ∈ Lip(Rn,R), with ‖fH‖Lip(Rn,R) ≤ ‖f ‖Lip(Rn,R). The argument
below will show that in fact the two norms are equal.

Let A = {x ∈ H+ : f (x) > f (ρx)}, B = {x ∈ H+ : f (x) < f (ρx)}, and C =
{x ∈ H+ : f (x) = f (ρx)}. Then |∇fH(x)| = |∇f (x)| and |∇fH(ρx)| = |∇f (ρx)|
at points of A at which both f and f ◦ ρ are differentiable, and |∇fH(x)| =
|∇f (ρx)| and |∇fH(ρx)| = |∇f (x)| at points of B at which both f and f ◦ ρ

are differentiable. Note that ρ is an isometry, so |(∇( f ◦ ρ))(x)| = |(∇f )(ρx)|,
which for short we write as |∇f (ρx)|.

If f1, f2 ∈ Lip(Rn,R), then Corollary 3.5 applied to f1 − f2 implies that
∇f1 = ∇f2 a.e. on ( f1 = f2). At points x of ( f1 = f2) where both f1 and f2 are
differentiable and ∇f1 = ∇f2, the definition of differentiable shows that the
functions max( f1, f2) and min( f1, f2) are differentiable, and each has gradient
∇f1(x) = ∇f2(x). Thus, at almost all points x ∈ C, each of the four functions
f , f ◦ρ, fH and fH◦ρ is differentiable, and the norm of each of the four gradients
is |∇f (x)|.

These arguments show that for all functions � : R+ → R
+ and almost all

x ∈ H+ we have

�(|∇f (x)|) + �(|∇f (ρx)|) = �(|∇fH(x)|) + �(|∇fH(ρx)|).
Writing

∫
Rn �(|∇f (x)|) dx = ∫

H+ �(|∇f (x)|) dx + ∫
H+ �(|∇f (ρx)|) dx, we

obtain the following result:

Proposition 3.12 Let � : R
+ → R

+ be a nonnegative Borel function,
f ∈ Lip(Rn,R), and H ∈ H(Rn). Then fH ∈ Lip(Rn,R), and∫

Rn
�(|∇fH)|) dx =

∫
Rn

�(|∇f |) dx.

From Proposition 1.18 in Chapter 1, it follows that Proposition 3.12 is
equivalent to the statement that |∇f | and |∇fH| are equidistributed on R

n.
To deduce Theorem 3.11 from Proposition 3.12, one can adapt the proofs of

Theorems 2.12 and 2.15(a). It suffices to prove Theorem 3.11 for nonnegative
Lipschitz f with compact support. As in the proof of Theorem 2.12, set
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S = {F ∈ Cc(R
n,R+) : ω(·, F) ≤ ω(·, f ) on (0, ∞),

λF = λf on (0, ∞), and diam supp F ≤ diam supp f }.
Define

S1 =
{

F ∈ S :
∫
Rn

�(|∇F|) dx ≤
∫
Rn

�(|∇f |) dx

}
.

Let d = infF∈S1‖F − f #‖L2(Rn). As in the proof of Theorem 2.12, there is
a sequence {Fk} in S1 which converges uniformly in R

n to a function F0 ∈ S
such that ‖F0 − f #‖L2(Rn) = d. Since ω(·, F0) ≤ ω(·, f ), it follows that F0 is
Lipschitz. If F0 ∈ S1, then, as before, one can show that F0 = f #, and Theorem
3.11 is proved. For F0 to be in S1, it is sufficient that∫

Rn
�(|∇F0|) dx ≤ lim sup

k→∞

∫
Rn

�(|∇Fk|) dx. (3.16)

The functions ∇Fk are uniformly bounded in L∞(Rn) and are all supported
in a fixed ball. Thus, they form a bounded sequence in Lp(Rn) for each p > 0.
Fix p ∈ (1, ∞). By the Banach–Saks Theorem, see for example Wojtaszczyk
(1991, p. 101), there is a subsequence of the Fk for which the arithmetic means
of the corresponding ∇Fk converge in Lp(Rn)-norm. From here, an argument
which we leave to the interested reader shows that if � is convex then (3.16)
holds.

If � is not convex then (3.16) need not hold.
We look briefly now at inequalities of integrals of Dirichlet type for

decreasing rearrangements f ∗ of functions f of one real variable. The following
result is due to Yanagihara (1993). A similar theorem was independently found
by Stanoyevitch (1994).

Theorem 3.13 Let f : [0, 1] → R be differentiable a.e., and let � : R×R
+ →

R
+ be Borel measurable. If y2 → �(y1, y2) is an increasing function on R

+

for each y1 ∈ R, then∫
[0,1]

�(f ∗(x), |(f ∗)′(x)|) dx ≤
∫

[0,1]
�( f (x), | f ′(x)|) dx.

In particular, for every increasing � : R+ → R
+, we have∫

[0,1]
�(|(f ∗)′(x)|) dx ≤

∫
[0,1]

�(| f ′(x)|) dx. (3.17)

Using the identity (1.5), one can give an equivalent statement of (3.17) in
terms of distribution functions: λ|(f ∗)′|(t) ≤ λ| f ′|(t), for every t ∈ R. As noted
at the beginning of this section, the inequality corresponding to (3.17) for
symmetric decreasing rearrangements can fail when � is concave. Inequality
(3.17) is due to Chong (1975); special cases had been proved earlier by Ryff
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and by Duff. Of course, Theorem 3.13 is true when [0, 1] is replaced by [0, A]
for any finite positive A. Under appropriate hypotheses on λf it is also true
when [0, 1] is replaced by (0, ∞) in the left-hand integral and by an infinite
subinterval of R in the right-hand integral.

Proof of Theorem 3.13 By Ryff’s Theorem, Proposition 1.26, there is a mea-
sure preserving transformation T : [0, 1] → [0, 1] such that f = f ∗◦T a.e. Now
f ′(x) exists a.e. by assumption, and (f ∗)′(x) exists a.e., since f ∗ is decreasing.
Since T is measure preserving, it follows that

E ≡ {x ∈ [0, 1] : f (x) = f ∗(T(x)), f ′(x) exists, and (f ∗)′(Tx) exists}
has L(E) = 1. Using again that T is measure preserving, one shows that for
x ∈ E, |(f ∗)′(Tx)| ≤ | f ′(x)|; see for example Yanagihara (1993). Thus,∫

[0,1]
�(f ∗(x), |(f ∗)′(x)|) dx =

∫
[0,1]

�(f ∗(Tx), |(f ∗)′(Tx)|) dx

≤
∫

[0,1]
�( f (x), | f ′(x)|) dx,

which is (3.17).

The integral functionals in Theorem 3.13 may depend on both f and | f ′|,
whereas in our statement of Theorem 3.11 the functionals depend only on |∇f |.
In fact, one can generalize Theorem 3.11 to obtain the inequality∫

Rn
�(f #, |∇f #|) dx ≤

∫
Rn

�( f , |∇f |) dx, (3.18)

provided � : R × R
+ → R

+ is a bounded Borel function such that y2 →
�(y1, y2) is an increasing convex function on R

+ for each y1 ∈ R which
vanishes at y2 = 0, and f satisfies the assumptions of Theorem 3.11. To
prove (3.18), one first takes �(y1, y2) = χ(a,b)(y1)�0(y2), where �0 is
convex and increasing on R

+ with �0(0) = 0. Then (3.18) is the truncated
version of (3.10) stated right after (3.10). To complete the proof of (3.18), one
makes appropriate modifications in the standard arguments involving linear
combinations and monotone convergence that permit results about integrals of
characteristic functions to be extended to results about integrals of nonnegative
functions. Details are left to the reader.

3.4 Sobolev Spaces W1,p(Rn)

This section is a brief introduction to the theory of first order Sobolev spaces on
open subsets of Rn. Good references for this theory include Evans and Gariepy
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(1992), Maz’ja (1985), and Ziemer (1989). Throughout this section � will
denote an open subset of Rn. We shall write Lp(�) for the Lebesgue space of
real valued functions in Lp(�,Ln). The notation �1 � � means that �1 is an
open set whose closure is a compact subset of �.

A measurable function f : � → R is said to be locally integrable on � if
f ∈ L1(�1) for each �1 � �. The set of all locally integrable functions on
� will be denoted by L1

loc(�). More generally, for 0 < p ≤ ∞, Lp
loc(�) will

denote the set of measurable functions f : � → R such that f ∈ Lp(�1) for
every �1 � �. Note that if 0 < p1 ≤ p2 ≤ ∞, then Lp2

loc(�) ⊂ Lp1
loc(�).

Let f ∈ L1
loc(�) and i ∈ {1, . . . , n}. A function gi ∈ L1

loc(�) is said to be the
weak partial derivative of f with respect to xi if∫

�

f ∂iφ dx = −
∫
�

giφ dx, ∀ φ ∈ C1
c (�).

When gi exists we will write ∂if = gi, and when gi exists for each i we will
write ∇f = (∂1f , . . . , ∂nf ). For 1 ≤ p < ∞, define

W1,p(�)

= { f ∈ Lp(�) : each ∂if exists in the weak sense and is in Lp(�)}.
The sets W1,p(�) are called first order Sobolev spaces. Define

‖f ‖W1,p(�) = ‖f ‖Lp(�) + ‖∇f ‖Lp(�).

Then

W1,p(�) = { f ∈ L1
loc(�) : each ∂if exists in the weak sense

and ‖f ‖W1,p(�) < ∞}.
Note that if f ∈ W1,p(�) and F is a function on � which agrees a.e. in � with
f , then F ∈ W1,p(�). It is an easy exercise to show that ‖·‖W1,p(�) is a norm on
W1,p(�), and that (W1,p(�), ‖·‖W1,p(�)) is a Banach space.

The local Sobolev space W1,p
loc (�) is defined to be

W1,p
loc (�) = { f ∈ Lp

loc(�) : f |�1 ∈ W1,p(�1), ∀ �1 � �}.
Let K : Rn → R be a function satisfying

K ≥ 0, K ∈ C∞(Rn), supp K ⊂ B
n(1),

∫
Rn

K dx = 1. (3.19)

We shall refer to such functions as nonnegative smooth bump functions.
For ε > 0, define Kε : Rn → R and �ε ⊂ � by

Kε(x) = ε−nK(xε−n), �ε = {x ∈ � : d(x, ∂�) > ε},
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where d denotes distance. For f ∈ L1
loc(�), the convolution

fε(x) ≡ f ∗ Kε(x) ≡
∫
Rn

f (x − y)Kε(y) dy, x ∈ �ε (3.20)

is uniquely defined in �ε , where in the last integral f may be extended from �

to R
n in arbitrary fashion.

Proofs of the next two propositions may be found, for example, in Evans
and Gariepy (1992, pp. 123, 125).

Proposition 3.14 Let K satisfy (3.19) and fε be defined by (3.20). Then

(a) If f ∈ L1
loc(�) then fε ∈ C∞(�ε).

(b) If f ∈ W1,p
loc (�), then ∂ifε = Kε ∗ ∂if on �ε , for 1 ≤ p ≤ ∞.

(c) If f ∈ W1,p
loc (�) and 1 ≤ p < ∞, then limε→0‖fε − f ‖W1,p(�1)

= 0, for
every �1 � �.

Proposition 3.15 Let 1 ≤ p < ∞. Then for each f ∈ W1,p(�), there exists
{ fk}∞k=1 ⊂ W1,p(�) ∩ C∞(�) such that fk → f in W1,p(�).

From Proposition 3.15, one sees that when 1 ≤ p < ∞ the Banach
space W1,p(�) may be identified with the completion of C∞(�) in the norm
‖·‖W1,p(�)

For 1 ≤ p < ∞, the space W1,p
0 (�) is defined to be the norm-closure in

W1,p(�) of C∞
c (�). Thus, for 1 ≤ p < ∞,

W1,p
0 (�) = {

f ∈ W1,p(�) : ∃ { fk}∞k=1 ⊂ C∞
c (�) such that

lim
k→∞

‖f − fk‖W1,p(�) = 0
}
.

For general �, W1,p
0 (�) is a proper subspace of W1,p(�). But when

� = R
n, the two spaces coincide:

Proposition 3.16 W1,p
0 (Rn) = W1,p(Rn), 1 ≤ p < ∞.

Sketch of proof It suffices to show that each f ∈ W1,p(Rn) can be approx-
imated in the W1,p(Rn)-norm by a sequence of functions in W1,p

0 (Rn). The
reader may verify that such a sequence is given by fk = fgk, where gk(x) = 1
for 0 ≤ |x| ≤ k, gk(x) = 2 − |x|

k for k ≤ |x| ≤ 2k, gk(x) = 0 for |x| ≥ 2k.

Proposition 3.15 is not true when p = ∞, that is, W1,∞(�) is strictly
larger than the closure of C∞(�) ∩ W1,∞(�) in the W1,∞-norm. It is true
that W1,∞(�) is the closure of C∞(�) ∩ W1,∞(�) in the weak-* topology
carried by W1,∞(�) as the dual space of the Banach space W−1,1(�). See
Ziemer (1989, p. 187) for a description of the spaces W−1,p, and discussion of
the duality
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W1,p = (W−1,p′
)∗, 1 < p ≤ ∞,

where p′ is the Hölder conjugate exponent of p : 1
p + 1

p′ = 1.

The W1,∞ spaces are essentially the same as Lipschitz spaces:

Proposition 3.17 Let f ∈ L1
loc(�), where � is a convex domain. Then

f ∈ W1,∞(�) if and only if there exists g ∈ Lip(�,R) ∩ L∞(�) such that
g = f a.e. in �.

Proof Let f ∈ W1,∞(�), and let K be a nonnegative smooth bump function.
Set fε = f ∗ Kε , ε > 0. Then fε ∈ C∞(�ε) and ∇fε = Kε ∗ ∇f in �ε , by
Propositions 3.14 parts (a) and (b). From the convolution equation, it follows
that ‖∇fε‖L∞(�ε ,R) ≤ ‖∇f ‖L∞(�). The argument in the proof of Corollary 3.4
of §3.1 gives ‖fε‖Lip(�ε ,R) ≤ ‖∇f ‖L∞(�). Since limε→0 fε = f a.e. in �, it
follows that there exists a set E ⊂ � with Ln(E) = 0 such that | f (x)− f (y)| ≤
‖∇f ‖L∞(�)|x−y|, whenever both x and y are in �\E. Since �\E is dense in �,
f has a continuous extension g to � which satisfies ‖g‖Lip(�,R) ≤ ‖∇f ‖L∞(�)

and g = f a.e. in �. Since ‖f ‖L∞(�) ≤ ‖f ‖W1,∞(�) < ∞, we have also
g ∈ L∞(�).

Conversely, suppose that g ∈ Lip(�,R) ∩ L∞(�). To finish the proof of
Proposition 3.17, we need to show that ∇g exists in the weak sense on �, and
that this weak gradient belongs to L∞(�). By Corollaries 3.3 and 3.4 of §3.1,
the ∂ig exist pointwise a.e. in �, and belong to L∞(�). So it suffices to show
that the pointwise derivatives ∂ig are also weak derivatives. Take φ ∈ C1

c (�).
Then, for each i ∈ {1, . . . , n},∫

�

g ∂iφ dx = lim
ε→0

∫
�

φ(x + εei) − φ(x)

ε
g(x) dx

= lim
ε→0

∫
�

g(x − εei) − g(x)

ε
φ(x) dx = −

∫
�

∂igφ dx.

The equalities are justified by the dominated convergence theorem and the
fact that both g and φ satisfy Lipschitz conditions. We have shown that the a.e.
pointwise partial derivatives are indeed also weak derivatives.

3.5 Weak Compactness

Our next main goal is to extend Theorem 3.7 from Lipschitz to Sobolev
functions. The proof will use some results about weak compactness in Lp. This
section contains a summary of these results. For more information, one may
consult Dunford and Schwartz (1958), Wojtaszczyk (1991), or various other
sources.
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Let B be a real Banach space (complete normed linear space), B∗ be its dual
space, and [x, y] denote the action of the linear functional y ∈ B∗ on x ∈ B. The
weak topology on B is the coarsest topology on B – the one with the fewest
open sets – with respect to which the maps x → [x, y] from B to R are all
continuous. The weak∗ topology on B∗ is the coarsest topology on B∗ with
respect to which the maps y → [x, y] from B∗ to R are all continuous.

A set A ⊂ B is said to be relatively weakly compact if the closure of
A in the weak topology is compact in the weak topology. According to the
Eberlein–Šmulyan Theorem, A is relatively weakly compact if and only if A is
relatively weakly sequentially compact, that is: each sequence in A contains a
subsequence that weakly converges in B to some element of B. Also, according
to Alaoglu’s Theorem, each norm-bounded subset of B∗ is relatively compact
in the weak-* topology. The converse statement is easy to prove. Thus: A ⊂ B∗

is relatively compact in the weak-* topology if and only if A is norm-bounded.
If (X,μ) is a sigma-finite measure space, then for 1 ≤ p < ∞, the dual of

the Banach space Lp(X,μ) can be identified with Lq(X,μ), where 1
p + 1

q = 1,
and q ≡ ∞ when p = 1. The identification is accomplished by means of the
pairing [f , g] = ∫

X fg dμ, where f ∈ Lp and g ∈ Lq.
If 1 < p < ∞, then Lp = (Lq)∗, and the corresponding weak-* topology on

Lp coincides with the weak topology on Lp. From the theorems of Alaoglu and
Eberlein–Šmulyan, it follows that:

For 1 < p < ∞, each norm-bounded sequence { fj} ⊂ Lp contains a
subsequence, also denoted { fj}, which weakly converges to some f ∈ Lp. That
is, there exists f ∈ Lp such that

lim
j→∞

∫
X

fjg dμ =
∫

X
fg dμ, ∀g ∈ Lq. (3.21)

For p = 1 things are more complicated. Norm-bounded sets are not
necessarily relatively weakly compact. Instead, we have the following charac-
terization, due to Dieudonné (1951). See Dunford and Schwartz (1958, p. 371)
and Wojtaszczyk (1991, p. 137) for related results. A set A ⊂ L1 is said to be
uniformly integrable if for each ε > 0 there exists δ > 0 such that for each
measurable E ⊂ X with μ(E) < δ we have

∫
E | f | dμ < ε for every f ∈ A.

Theorem 3.18 (Dieudonné) Let μ be a Radon measure on a locally compact
topological space X. Then a set A ⊂ L1(X,μ) is relatively weakly compact if
and only if the following three conditions hold:

(a) A is norm bounded in L1.
(b) A is uniformly integrable.
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(c) For each ε > 0 there exists a compact set K ⊂ X such that∫
X\K

| f | dμ < ε, ∀ f ∈ A.

Morrey (1940) was perhaps the first to apply weak compactness arguments
in the context of Sobolev spaces. Radon measures are, by definition, nonnega-
tive regular Borel measures on X which are finite on compact sets. See Folland
(1999). We shall refer to condition (c) as the tail condition.

From the theorems of Dieudonné and Eberlein–Šmulyan we see that:
If the sequence { fj} ⊂ L1 is uniformly integrable, is norm-bounded in L1,

and satisfies (c), then { fj} contains a subsequence which weakly converges in
L1 to some f ∈ L1.

A further, perhaps surprising, consequence of Dieudonné’s Theorem is this:
A ⊂ L1 is relatively weakly compact if and only if the set |A| ≡ {| f | : f ∈ A}
is relatively weakly compact. Of course, the same is true for Lp, 1 < p < ∞,
by Alaoglu’s Theorem.

Functions f ∈ L1(X, dμ) may be identified with (signed) measures f dμ. The
L1 norm of f equals the total variation of f dμ. The space M(X) of all Borel
measures with finite total variation on R

n is the dual of the space C0(X) of all
continuous functions on X which have limit zero at ∞. So, if { fj} is a norm-
bounded sequence in L1(X, dμ), then { fj} need not contain a subsequence
converging in the weak topology on L1(X, dμ), but there is a subsequence of
{ fj dμ} converging to some measure ν ∈ M(X) in the weak-* topology on
M(X). Then (3.21) holds for all continuous g vanishing at ∞, with dν on the
right instead of f dμ. If we assume that the supports of all the fj are contained
in a single compact set, then ν is absolutely continuous with respect to μ if and
only if { fj} is uniformly integrable.

In the next section we shall need an alternative characterization of uniform
integrability. For f ∈ L1(X,μ) with X and μ as above, define

I(t, f ) =
∫

X
(| f | − t)+ dμ, t ≥ 0.

Lemma 3.19 Let A ⊂ L1(X,μ) be norm-bounded in L1. Then the following
are equivalent:

(a) A is uniformly integrable.
(b) limt→∞ supf ∈A I(t, f ) = 0.

Proof Since A is uniformly integrable if and only if |A| is, we may assume
that all functions in A are nonnegative.
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Suppose that (b) is false. Then there exist ε > 0, functions fj ∈ A, and
numbers tj > 0 such that I(tj, fj) ≥ ε for j ≥ 1 and limj→∞ tj = ∞. Let
Ej = { f > tj}. Then

ε ≤
∫

Ej

( fj − tj) dμ <

∫
Ej

fj dμ. (3.22)

On the other hand, μ(Ej)tj ≤ ∫
Ej

f dμ ≤ supf ∈A

∫
X f dμ. Since A is norm-

bounded, it follows that limj→∞ μ(Ej) = 0. With (3.22), this shows that A can
not be uniformly integrable. We have proved that (a) implies (b).

Suppose (a) is false. Then there exist ε > 0, sets Ej and functions fj ∈ A
such that limj→∞ μ(Ej) = 0 and

∫
Ej

fj ≥ ε, for j ≥ 1. Let tj = 1
2ε(μ(Ej))

−1.
Then limj→∞ tj = ∞, and

ε ≤
∫

Ej

[( f − tj) + tj] dμ ≤ I(tj, fj) + tjμ(Ej) = I(tj, fj) + ε

2
.

Thus I(tj, fj) ≥ 1
2ε for each j, so (b) is false. The proof is complete.

3.6 Symmetrization Decreases the p-Dirichlet
Integral in W1,p(Rn)

Theorem 3.7 asserts that ‖∇f #‖Lp(Rn) ≤ ‖∇f ‖Lp(Rn) when 1 ≤ p < ∞, f is
Lipschitz on R

n, and its distribution function satisfies

λf (t) < ∞, ∀ t > inf f . (3.23)

Our aim in this section is to extend this symmetrization inequality from
Lipschitz functions to Sobolev functions.

Theorem 3.20 Let 1 ≤ p < ∞ and f ∈ W1,p(Rn,R+). Then f # ∈ W1,p(Rn),
and

‖∇f #‖Lp(Rn) ≤ ‖∇f ‖Lp(Rn). (3.24)

The R
+ in W1,p(Rn,R+) means that f in Theorem 3.20 is assumed to

be nonnegative. By contrast, Theorem 3.7 was applicable to all real valued
Lipschitz functions satisfying (3.23). The reasons for the difference are as
follows: To talk about f # for the f in Theorem 3.20 we need f to satisfy (3.23),
with inf replaced by ess inf . If f ∈ W1,p(Rn) then f ∈ Lp(Rn). As the reader
may easily verify, if f ∈ Lp(Rn) for some 0 < p < ∞, then f satisfies the
ess inf version of (3.23) if and only if f ≥ 0 a.e. Thus, f ∈ W1,p(Rn) satisfies
the ess inf version of (3.23) if and only if f ≥ 0 a.e.
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As just noted, Theorem 3.20 carries with it the assumption that f ∈ Lp(Rn),
whereas in Theorem 3.7 there is no such explicit assumption on the size of
f . One can formulate other generalizations of Theorem 3.7, with conclusion
(3.24), which involve less restriction or different restriction on the size of f
and different assumptions about the nature of ∇f , but we will not pursue them
in this book.

Theorem 3.11, the assertion that symmetrization decreases the �-Dirichlet
integral, also admits extensions from Lipschitz to Sobolev functions; see
Brothers and Ziemer (1988).

The analogue of Theorem 3.20 for p = ∞ goes as follows: If f ∈ W1,∞(Rn),
with f not necessarily nonnegative, and f satisfies λf (t) < ∞ ∀ t >

ess inf f , then

‖∇f #‖L∞(Rn) ≤ ‖∇f ‖L∞(Rn).

This inequality follows from Proposition 3.17 and Theorem 3.6.
Here are two corollaries of Theorem 3.20.

Corollary 3.21 Let 1 ≤ p < ∞, f ∈ W1,p(Rn,R+), and 0 ≤ a < b ≤ ∞.
Then ∫

(f #)−1(a,b)
|∇f #|p dx ≤

∫
f −1(a,b)

|∇f |p dx.

Proof Apply Theorem 3.20 to g = min(( f − a)+, b − a). The implication
f ∈ W1,p(Rn,R+) �⇒ g ∈ W1,p(Rn) and ∇g = χf −1(a,b)∇f a.e. can be proved
by adapting the proof of Evans and Gariepy (1992, p. 130, Theorem 4(iii)).

Corollary 3.22 Let 1 ≤ p < ∞, � be an open subset of Rn and f ∈
W1,p

0 (�,R+). Then f # ∈ W1,p
0 (�#,R+), and

‖∇f #‖Lp(�#) ≤ ‖∇f ‖Lp(�).

The proof of Corollary 3.22 will be given after the proof of Theorem 3.20.

Proof of Theorem 3.20 For j ≥ 1, let Fj = Kεj ∗ fj, where K is a smooth bump
function as defined in (3.19) and { fj} is the sequence appearing in the proof of
Proposition 3.16. Then Fj ∈ C∞

c (Rn), each Fj ≥ 0, and the reader may verify
that if εj goes to zero sufficiently rapidly then Fj → f in W1,p(Rn). Each Fj

satisfies the hypotheses of Theorems 3.6 and 3.7, so F#
j ∈ Lip(Rn,R+) and

‖∇F#
j ‖p ≤ ‖∇Fj‖p, j ≥ 1, (3.25)
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where here and throughout the proof we write ‖·‖p = ‖·‖Lp(Rn). If g : Rn →R
n

is a vector field with components gi, then |g|2 ≡ ∑n
i=1 g2

i , and we write
‖g‖p = ‖(|g|)‖p.

The statement Fj → f in W1,p(Rn) means that ‖Fj − f ‖p → 0 and ‖∇Fj −
∇f ‖p → 0. The second fact implies that

lim
j→∞

‖∇Fj‖p = ‖∇f ‖p. (3.26)

Moreover, Corollary 2.20 implies ‖F#
j − f #‖p ≤ ‖Fj − f ‖p. We conclude that

F#
j → f # in Lp(Rn). Observe, in particular, that f # ∈ Lp(Rn). Also, (3.25) and

(3.26) imply that the partial derivatives of F#
j form a bounded set in Lp(Rn).

Suppose that 1 < p < ∞. Then, as discussed in §3.5, there is a subsequence
of {F#

j }, also denoted {F#
j }, and a vector field g = (g1, . . . , gn) ∈ Lp(Rn,Rn)

such that for i = 1, . . . , n, {∂iF#
j } converges weakly in Lp to gi as j → ∞. Take

h ∈ Lq(Rn,Rn) with ‖h‖q = 1, where q is the Hölder conjugate exponent of p.
Then ∫

Rn
g · h dx = lim

j→∞

∫
Rn

∇F#
j · h dx ≤ lim inf

j→∞
‖∇F#

j ‖p.

Taking the sup over all h, we deduce

‖g‖p ≤ lim inf
j→∞

‖∇F#
j ‖p. (3.27)

Take φ ∈ C1
c (R

n) and i ∈ {1, . . . , n}, then∫
Rn

giφ dx = lim
j→∞

∫
Rn

φ∂iF
#
j dx

= − lim
j→∞

∫
Rn

F#
j ∂iφ dx = −

∫
Rn

f #∂iφ dx,

where the last equality follows from the fact noted above that ‖F#
j − f #‖p → 0.

Thus, the weak first order partial derivatives of f # coincide with the gi. From
(3.26), (3.25), and (3.27), we deduce

‖∇f #‖p = ‖∇g‖p ≤ ‖∇f ‖p.

Theorem 3.20 is proved for 1 < p < ∞.
The proof for p = 1 is exactly the same as for 1 < p < ∞ once we

know that for each i ∈ {1, . . . , n}, the sequence {∂iF#
j } is relatively weakly

compact in L1(Rn). From (3.25) and (3.26), we know that these sequences
are norm bounded in L1. By Dieudonné’s Theorem, to prove the relative weak
compactness it will suffice to show that the sequences are uniformly integrable
and satisfy the tail condition (c) of Dieudonné’s Theorem, Theorem 3.18.
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From Lemma 3.19, it follows that the desired uniform integrability is
equivalent to the condition

lim
t→∞ sup

j

∫
Rn

(|∇F#
j | − t)+ dx = 0. (3.28)

By Theorem 3.11, each integral on the left side of (3.28) increases when the
F#

j are replaced by Fj. Since ‖∇Fj − ∇f ‖1 → 0, it follows that the sequence

{∇Fj} is relatively weakly compact in L1, hence uniformly integrable. Invoking
Lemma 3.19 again, we conclude that the limit in (3.28) equals zero when the
F#

j are replaced by Fj. Thus (3.28) holds as stated, and the sequences {∂iF#
j }

are uniformly integrable.
To prove that the sequences {∂iF#

j } satisfy the tail condition, it is equivalent
to show that

lim
R→∞

sup
j

∫
|x|≥R

|∇F#
j | dx = 0. (3.29)

The F#
j and |∇F#

j | are functions of |x|. Moreover, |∇F#
j (x)| = − ∂F#

j
∂r for

almost every x ∈ R
n, F#

j is Lipschitz, and F#
j is decreasing on rays. Thus,∫

|x|≤R
F#

j dx ≥ F#
j (R)αnRn.

Here, and below, we write F#
j (R) instead of F#

j (Re1). Recall that αn and βn−1

denote respectively the volume of the unit ball in R
n and the surface measure

of the unit sphere Sn−1 ⊂ R
n. Using ‖F#

j ‖1 = ‖Fj‖1 with the inequality above,
we obtain

F#
j (R) ≤ α−1

n R−n
∫

|x|≤R
F#

j dx ≤ α−1
n R−n‖Fj‖1.

Thus,∫
|x|≥R

|∇F#
j | dx = −βn−1

∫ ∞

R

∂F#
j

∂r
(r)rn−1 dr

= βn−1

[
Rn−1F#

j (R) + (n − 1)
∫ ∞

R
F#

j (r)r
n−2 dr

]
≤ βn−1α

−1
n ‖Fj‖1

[
R−1 + (n − 1)

∫ ∞

R
r−2 dr

]
= n2‖Fj‖1R−1,

(3.30)

where in the last line we used the fact that βn−1 = nαn.
Since the sequence {‖Fj‖1} is bounded, (3.29) follows from (3.30).

Theorem 3.20 is proved completely.
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The proof of Theorem 3.20 would be easier if we knew that Fj → f in
W1,p(Rn) implies F#

j → f # in W1,p(Rn). For then (3.26) would hold when
Fj and f are replaced by their symmetric decreasing rearrangements, and the
proof of Theorem 3.20 would be finished by application of (3.26) and (3.25).
We shall see though, in the next section, that Fj → f in W1,p(Rn) does not
imply F#

j → f # in W1,p(Rn).

Proof of Corollary 3.22 Let { fk} ⊂ C∞
c (�,R+) be chosen such that

limk→∞‖f − fk‖W1,p(�) = 0. Extend each fk to Fk : Rn → R by setting
Fk = 0 on R

n \ �. Then {Fk} is a Cauchy sequence in W1,p(Rn). Let F denote
its limit function. Then, in �, F satisfies F = f and ∇F = ∇f a.e. In R

n \ �,
the Lp convergence implies F = 0 a.e., so that ∇F = 0 a.e., by Evans and
Gariepy (1992, p. 130, Theorem 4(iv)). Thus, F ∈ W1,p(Rn,R+), F = χ�f
a.e., and ∇F = χ�∇f a.e. in R

n. By Theorem 3.20, F# ∈ W1,p(Rn) and
‖∇F#‖Lp(Rn) ≤ ‖∇F‖Lp(Rn). Since F ≥ 0 in � and F = 0 a.e in R

n \ �,
it follows that F# = χ�# f # a.e. We conclude that f # ∈ W1,p(�#), that
∇F# = χ�#∇f # a.e., and that ‖∇f # ‖Lp(�#) ≤ ‖∇f ‖Lp(�).

We still must show that f # ∈ W1,p
0 (�#). To do this, we use functional

analysis. As in the proof of Theorem 3.20, we may assume that ∇F#
j converges

weakly in Lp(Rn) to the vector field ∇F#. By Mazur’s Theorem (Wojtaszczyk,
1991, II.A.5), there is a sequence with terms of the form

∑N(j)
i=j λi,j∇F#

i which

converges strongly in Lp(Rn) to ∇F#, where the λi,j are nonnegative with∑N
i=1(j)λi,j = 1, and the N(j) are finite. Then

∑N(j)
i=j λi,jF#

j converges strongly

in W1,p(Rn) to F#. It is easy to see that each F#
j has compact support in �#.

From the definition of W1,p
0 , we conclude that f # ∈ W1,p

0 (�#).

3.7 Continuity and Discontinuity of the Symmetric
Decreasing Rearrangement Operator

This section contains a brief discussion of some elegant and surprising results
of Almgren and Lieb (1989). The results are too beautiful to omit but too
technical to expound in any detail in this book. We will supply neither
motivation nor proofs, for both of which we refer the reader to the superbly
written article of Almgren and Lieb (1989).

In this section we will write f # =Rf and will always assume that 1 ≤ p<∞.
Corollary 2.20 asserts that the (nonlinear) operator R is a contraction on
Lp(Rn,R+). In particular, R is a strongly continuous mapping of Lp(Rn,R+)
into itself: If fk, k ≥ 1, and f are nonnegative functions in Lp(Rn) such that
fk → f in the Lp(Rn)-norm, then Rfk → Rf in the Lp(Rn)-norm. Moreover,
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if f ∈ W1,p(Rn,R+), then ‖∇Rf ‖p ≤ ‖∇f ‖p, by Theorem 3.20. Thus, as a
mapping of W1,p(Rn,R+) equipped with the W1,p(Rn)-norm into itself, R is
strongly continuous at the zero function.

In view of this evidence, it seems plausible that R : W1,p(Rn,R+) →
W1,p(Rn,R+) would be strongly continuous everywhere on W1,p(Rn,R+).
For n = 1 this surmise was proved by Coron in 1984. But for n ≥ 2 it
was disproved by Almgren and Lieb. In fact, Almgren and Lieb discovered a
condition, dubbed by them coarea regularity, which is necessary and sufficient
for R to be strongly continuous at a given function. We will state their
theorem, which is on p. 694 of Almgren and Lieb (1989), and then explain
their definition.

Theorem (Almgren–Lieb) Let n ≥ 2 and f ∈ W1,p(Rn,R+ ). Then
R : W1,p(Rn,R+) → W1,p(Rn,R+) is strongly continuous at f if and only
if f is coarea regular.

Take f ∈ W1,p(Rn,R+). Then λf (t) < ∞ for each t > 0. Decompose λf as

λf (t) = Ln( f > t, ∇f �= 0) + Ln( f > t, ∇f = 0) ≡ Af (t) + Bf (t).

Almgren and Lieb call Af the coarea distribution function and Bf the
residual distribution function of f . Each of Af and Bf are decreasing functions
on (0, ∞). The measure on (0, ∞) induced by Af turns out to be locally
absolutely continuous with respect to Lebesgue measure. But the locally
absolutely continuous and singular components of the measure Bf can both
be nontrivial.

Definition f ∈ W1,p(Rn,R+) is called coarea regular if the Borel measure
induced on (0, ∞) by Bf is purely singular with respect to L. Otherwise, f is
called coarea irregular.

In Almgren and Lieb (1989, chapter 5) it is proved that when n = 1
every f ∈ W1,p(Rn,R+) is coarea regular, but when n ≥ 2 the subsets of
W1,p(Rn,R+) consisting of regular and of irregular functions are each norm-
dense in W1,p(Rn,R+).

By contrast, Burchard (1997) proved that the corresponding operator R is
strongly continuous on W1,p(Rn,R+) with respect to Steiner symmetrization.

3.8 Notes and Comments

Special cases of the decrease of Dirichlet integrals under symmetrization,
under various regularity hypotheses, were established by Faber, Krahn, Pólya,



118 Dirichlet Integral Inequalities

and Szegö in the period 1923–1948 en route to the solution of famous
optimization problems for fundamental frequencies, electrostatic capacity, and
torsional rigidity. We’ll discuss these problems in Chapter 5. The book Pólya
and Szegő (1951) presents a number of such results. From a different direction,
Gehring (1961), in his study of quasiconformal mappings, was led to prove that
the 3-Dirichlet integral in R

3 decreases under symmetric decreasing rearrange-
ment and spherical symmetrization. Mostow (1968) extended Gehring’s results
to n-Dirichlet integrals in R

n. The first comprehensive result is apparently
due to Sperner (1973), who proved for smooth nonnegative functions the
result stated here as Theorem 3.7, that symmetric decreasing rearrangement
decreases the p-Dirichlet integral on R

n for every p ≥ 1 and n ≥ 1. The
extension to Sobolev functions, Theorem 3.20, is due to Hildén (1976), while
the extension to �-Dirichlet integrals, Theorem 3.11, is due to Bandle (1980)
for real analytic f and to Brothers and Ziemer (1988) for more general func-
tions. The proofs in these papers are derived from the isoperimetric inequality,
and require careful analysis of level sets. The latter aspect became more
incontestably rigorous after Federer’s precise coarea formula (1959, 1969)
became a working tool. In §4.5 we’ll see how some of these arguments go.

The proofs presented here of Dirichlet integral inequalities were sketched
in Baernstein (1994). These proofs do not use the isoperimetric inequality, but
instead view the Dirichlet integral as a limiting case of integrals on R

n × R
n

to which the inequalities of Chapter 2 apply. Thus, the Dirichlet integral
inequalities appear as fairly close descendants of the two-point symmetrization
result Theorem 2.8. Beckner (1992) takes a similar point of view.

The results obtained for R
n in this chapter go over with little change to

spheres and hyperbolic spaces. See Chapter 7.
The idea of Proposition 3.12, which provides another way to obtain Dirichlet

integral inequalities via polarization, is due to Dubinin (1987). He further
develops this idea in several papers, such as Dubinin (1993). In this connection,
see also Brock and Solynin (2000).

There also are weighted Dirichlet integral inequalities, in which one com-
pares integrals taken with respect to more general measures than Lebesgue
measure. See, for example, Epperson (1990), Schulz and Vera de Serio (1993),
Talenti (1997), and Bobkov and Houdré (1997).



4

Geometric Isoperimetric and Sharp
Sobolev Inequalities

In its most basic form the isoperimetric inequality asserts that among all simple
closed curves in R

2 with the same length, the circle encloses maximum area.
Alternatively, among all simple closed curves enclosing the fixed area, the
circle has the smallest length. Still another statement: Let L be the length of
the curve and A be the area it encloses. Then

L2 ≥ 4πA.

Equality holds when the curve is a circle.
A generalization of the isoperimetric inequality to R

n may be stated as
follows: For all reasonable sets E ⊂ R

n we have

area(∂E) ≥ area(∂E#) (4.1)

where E# is the open ball centered at the origin with the same Ln- measure as
E, area means (n − 1)-dimensional surface area, and we write ∂E# instead of
the more precise ∂(E#).

What is the meaning of “surface area” of ∂E for general sets E? There are
many possibilities; see, for example, Federer (1969, p. 261). Here we shall
consider three versions of (n − 1)-dimensional area: The (n − 1)-dimensional
Hausdorff measure Hn−1(∂E), the Minkowski content Mn−1(∂E), and the
perimeter P(E). The “reasonable sets” E will be Ln-measurable sets of finite
measure in the Hausdorff and Minkowski cases, and sets of “finite perimeter”
in the perimeter case.

The main isoperimetric inequalities for Rn are presented in Theorem 4.10,
Corollary 4.13, and Theorem 4.16. Theorem 4.10 asserts that for all E with
finite perimeter we have P(E) ≥ P(E#). This result is a special case of the
extension of the Dirichlet integral inequality ‖∇f #‖1 ≤ ‖∇f ‖1 to functions
of “bounded variation” on R

n. With the aid of a little geometric measure
theory, we then show that Theorem 4.10 implies that (4.1) holds when “area”
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is taken to mean Hn−1 and E is an Ln-measurable set with Ln(E) < ∞. This
is Corollary 4.13. In Theorem 4.16, we prove that for the same class of sets E,
(4.1) holds when area is taken to mean (n − 1)-dimensional lower Minkowski
content. The Minkowski result is a simple consequence of Theorem 2.12,
which asserts that symmetrization decreases the modulus of continuity.

The Sobolev Embedding Theorem asserts that for 1 ≤ p < n, functions f ∈
W1,p(Rn) satisfy inequalities ‖f ‖p∗ ≤ C(n, p)‖∇f ‖p, where p∗ = np/(n − p).
In Theorems 4.21 and 4.23 we prove this inequality with smallest possible
C(n, p). Theorem 4.21 treats the case p = 1 and Theorem 4.23 the case 1 <

p < n. In Section 4.8 we briefly mention some other best possible inequalities
in Sobolev spaces.

Tools for Chapter 4 include functions of bounded variation, the area
and coarea formulas, and the Gauss–Green Theorem for transformation of
integrals. These topics are briefly discussed in Sections 4.1, 4.2, and 4.5.

4.1 Hausdorff Measures, Area Formula, and the
Gauss–Green Theorem

Hausdorff measures are the most commonly used set functions to measure the
size of lower dimensional subsets of Rn. They are defined as follows. Let E be
any set in R

n. For 0 < δ ≤ ∞ and 0 ≤ s < ∞ define

Hs
δ(E) = inf

∞∑
j=1

αs
diam Cj

2
,

where diam denotes diameter,

αs = π s/2

�( s
2 + 1)

,

and the infimum is taken over all sequences of sets {Cj} such that diam Cj ≤ δ

for each j and
⋃∞

j=1 Cj ⊃ E. Here � denotes the usual gamma function. Note
that αn agrees with our earlier use of αn to denote Ln(Bn(1)).

Define now

Hs(E) = lim
δ→0

Hs
δ(E).

The limit exists since Hs
δ(E) is an increasing function of δ. The quantity

Hs(E) ∈ [0, ∞] is called the s-dimensional Hausdorff measure of E. The set
function Hs is countably sub-additive. In the terminology of most texts Hs is
an outer measure on the set of all subsets of Rn. Its restriction to the class of
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measurable sets is a countably additive measure. Here a set E ⊂ R
n is defined

to be measurable if

Hs(B) = Hs(B ∩ E) + Hs(B \ E)

for every set B ⊂ R
n.

The terminology in Evans and Gariepy (1992) is a bit different: for those
authors, “measure” means “outer measure.” We shall follow their practice.
Then for arbitrary sets E ⊂ R

n, Ln(E), denotes the Lebesgue outer measure
of E.

Proposition 4.1 For every set E ⊂ R
n,

Hn(E) = Ln(E).

For a proof, see Evans and Gariepy (1992, p. 70). The proof there uses the
isodiametric inequality, Corollary 2.14.

It is easy to see that Hs ≡ 0 when s > n and that H0({x}) = 1 for each
x ∈ R

n when s = 0. From the latter, it follows that

H0(E) = number of points in E (4.2)

for every E ⊂ R
n.

Next, we want to show that if m is an integer with 1 ≤ m ≤ n−1 and E ⊂ R
n

is a nice m-dimensional set, then Hm(E) equals the m-dimensional surface area
of A computed in the “usual way.” Suppose, for example, that E ⊂ R

3 is the
graph of some function h ∈ C1(R2,R) over an open set A ⊂ R

2. Then, writing
x = (x1, x2),

E = {(x1, x2, h(x)) : x ∈ A}.
In calculus books, the surface area of E is usually defined to be

Area(E) =
∫

A
(1 + |∇h|2)1/2 dx.

To confirm that ∫
A
(1 + |∇h|2)1/2 dx = H2(E), (4.3)

one may apply the area formula. To explain this formula, let us first consider
a linear map L : Rm → R

n, where 1 ≤ m ≤ n − 1. Then L has a polar
decomposition

L = O ◦ S,

(see Evans and Gariepy, 1992, p. 87) where S : Rm → R
m is a symmetric linear

map and O : Rm → R
n is an orthogonal linear map. Orthogonal means that
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Ox·Oy = x·y for all x, y ∈ R
m. For A ⊂ R

m, we have Lm(SA) = | det S|Lm(A),
and it is also true that Hm(OA) = Lm(A). Proofs are in Evans and Gariepy
(1992, p. 92). Consequently,

Hm(LA) = | det S|Lm(A), A ⊂ R
m.

Now O∗ ◦ O = I, the identity map on R
m, from which we deduce L∗L = S2.

The map L∗L is positive semidefinite, and we have

| det S| = (det(L∗L))1/2.

Define the Jacobian J of L to be the nonnegative constant

J = JL = (det(L∗L))1/2.

We have shown that

Hm(LA) = JLLm(A), A ⊂ R
m. (4.4)

Suppose now that f : R
m → R

n is any Lipschitz function. Then f is
differentiable a.e. For such x, denote by Df (x) the n × m matrix whose (i, j)
entry is ∂fi/∂xj, and define the Jacobian of f to be

J(x) = Jf (x) = (det ((Df (x))∗(Df (x)))1/2.

Theorem 4.2 (Area Formula) Let f ∈ Lip(Rm,Rn), 1 ≤ m ≤ n and A be a
Lm-measurable set in R

m. Then∫
A

Jf dLm =
∫
Rn

H0(A ∩ f −1(y)) dHm(y).

As noted in (4.2), H0 is the counting measure on R
n. For m = n the

area formula reduces to the usual change of variable formula for mappings
f : Rn →R

n.
To prove the area formula, one splits the integral on the left into a large

number of small pieces on which f is approximately linear, then uses (4.4). For
details, see Evans and Gariepy (1992, p. 96).

If f is 1-1 on A, the area formula simplifies to∫
A

Jf dx = Hm( f (A)). (4.5)

For the rest of this section we shall confine attention to the case m =
n − 1. If L : Rn−1 → R

n is linear, then a special case of the Cauchy–Binet
Formula (Evans and Gariepy, 1992, p. 89) tells us that

det(L∗L) =
n∑

i=1

det((PiL)
∗(PiL)),
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where Pi : Rn → R
n−1 is the projection map defined by

Pi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , , xn).

Set Li = PiL. Then

det(L∗L) =
n∑

i=1

det(L∗
i Li),

and Li is the (n − 1) × (n − 1) matrix obtained by deleting the ith row of the
matrix for L.

For f = ( f 1, . . . , f n) ∈ Lip(Rn−1,Rn), it follows that

(Jf )
2 =

n∑
i=1

J2
gi

, (4.6)

where gi is the map of Rn−1 into itself given by

gi = ( f 1, . . . , f i−1, f i+1, . . . , f n).

Assuming that f is 1–1 on the Ln−1-measurable set A ⊂ R
n−1, (4.5) and

(4.6) give us the formula

Hn−1( f (A)) =
∫

A

n∑
i=1

J2
gi

dx.

The right side is the usual definition of (n − 1)-dimensional surface area for
the parametric hypersurface f (A).

Suppose that a set E ⊂ R
n is represented by a graph:

E = {(x, h(x)) : x ∈ A}
where A ⊂R

n−1 and h ∈ Lip(Rn−1,R). Then E = f (A) where f (x) = (x, h(x)),
and (4.6) becomes

J2
f = 1 +

n−1∑
i=1

(
∂h

∂xi

)2

.

Hence, we have

Hn−1(E) =
∫

A
(1 + |∇h|2)1/2 dx. (4.7)

In particular, for n = 3 this confirms (4.3).
To conclude this section we put on record a statement of the Gauss–Green

Theorem in a form we will use in the sequel. The Gauss–Green Theorem is
also known as the Divergence Theorem. Our statement is taken from Evans
(1998, p. 626).
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Theorem 4.3 (Gauss–Green Theorem) Suppose that � is a bounded domain
in R

n with C1 boundary and that u ∈ C1(�,Rn). Then∫
∂�

u · ν dHn−1 =
∫
�

div u dx. (4.8)

Here div u = ∑n
i=1 uxi and ν(x) is the outward pointing unit normal vector

to ∂� at the point x ∈ ∂�. One says that � has a C1 boundary if for each
x0 ∈ ∂� there exist a number r > 0 and a function h ∈ C1(Rn−1,R)

such that – upon relabeling and reorienting the coordinate axes if necessary –
we have

� ∩ B(x0, r) = {x ∈ B(x0, r) : xn > h(x1, . . . , xn−1)}. (4.9)

This form of the Gauss–Green Theorem may be proved as follows. Take a
finite open cover of � consisting of balls B(xi, ri) as in (4.9) with xi ∈ ∂�, and
an open set �1 with �1 ⊂ �. Take a partition of unity {ζi} subordinate to the
cover. Replacing u by uζi, the problem is reduced to proving (4.8) when u is
compactly supported in � or is compactly supported in one of the B(xi, ri). In
the first case, by integrating first in the xi variable one obtains

∫
�

uxi dx = 0
for each i. Hence ∫

�

div u dx = 0, (4.10)

which gives (4.8).
In the second case, one makes a change of variables in which B(xi, ri) ∩ ∂�

is transformed to a set in R
n−1, then does clever manipulations to establish

(4.8). For n = 2 and n = 3 see, for example Folland (2002, Appendix B.7).
Straightforward modifications give (4.8) for general n. From (4.7), it follows
that the surface measure used by Folland coincides with Hn−1.

By means of geometric measure theory the Gauss–Green Theorem can be
extended to much more general sets and functions. See, for example, Evans
and Gariepy (1992, p. 209) or Federer (1969, p. 478).

We note here that for u ∈ C1
c (�,Rn), formula (4.10) is true for every open

set � ⊂ R
n, bounded or not, without any assumptions on ∂�. In particular,

we can take � = R
n. If u belongs to the Sobolev space W1,1(Rn,Rn) the

results stated in Section 3.5 imply that u is the limit in W1,1(Rn,Rn) norm of a
sequence of compactly supported C∞ vector fields. It follows from (4.10) that∫

Rn
div u dx = 0, ∀ u ∈ W1,1(Rn,Rn). (4.11)



4.2 Functions of Bounded Variation in R
n 125

4.2 Functions of Bounded Variation in R
n

For f ∈ L1
loc(R

n), define

V( f ) = sup
φ

∫
Rn

f div φ dx,

where the sup is taken over all φ ∈ C1
c (R

n,Rn) with supRn |φ| ≤ 1. We call
V the total variation of f over Rn. It is an interesting exercise to prove that
when n = 1, V( f ) is finite if and only if f coincides almost everywhere with a
function of bounded variation on R in the usual sense, and then V( f ) equals the
classical total variation of this function. See Evans and Gariepy (1992, p. 220)
for an analogous interpretation when n ≥ 2.

We define f : Rn → R to be a function of bounded variation if f ∈ L1(Rn)

and V( f ) < ∞. The set of functions of bounded variation in R
n is denoted by

BV(Rn). It is a Banach space with the norm

‖f ‖BV = ‖f ‖L1(Rn) + V( f ).

Proposition 4.4 If f ∈ W1,1(Rn), then

V( f ) =
∫
Rn

|∇f | dx. (4.12)

Proof Take φ ∈ C1
c (R

n,Rn) with supRn |φ| ≤ 1. Then fφ ∈ W1,1(Rn,Rn).
Application of the Gauss–Green identity (4.11) to u = fφ yields∫

Rn
f div φ dx = −

∫
Rn

∇f · φ dx.

Taking the sup over all φ, (4.12) follows.

As a consequence of Proposition 4.4, we have W1,1(Rn) ⊂ BV(Rn), with
‖f ‖W1,1 = ‖f ‖BV .

Proposition 4.5 Let f ∈ L1
loc(R

n). Then f ∈ BV(Rn) if and only if there exists
a Radon measure μ on R

n and a μ- measurable function σ : Rn → R
n such

that |σ(x)| = 1 for μ-almost every x ∈ R
n and∫

Rn
f div φ dx = −

∫
Rn

φ · σ dμ, φ ∈ C1
c (R

n,Rn). (4.13)

Proof Take f ∈ BV(Rn). Define a linear functional L : C1
c (R

n,Rn) → R by
L(φ) = − ∫

Rn f div φ dx. Then, we have

|L(φ)| ≤ V( f )‖φ‖L∞(Rn). (4.14)
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Take ψ ∈ Cc(R
n,Rn) and a bounded open set � ⊂ R

n which contains the
support of ψ . There exists a sequence {φk} ⊂ C1

c (R
n,Rn) such that the support

of each φk is contained in � and {φk} converges uniformly to ψ in R
n. Define

L(ψ) = lim
k→∞

L(φk).

By (4.14), the limit exists, is independent of the approximating sequence,
and satisfies (4.14) with ψ in place of φ. Thus, we have extended L to a
linear functional defined on all of Cc(R

n,Rn) that satisfies (4.14). The Riesz
Representation Theorem for existence of vector valued measures (Evans and
Gariepy, 1992, p. 49) produces a Radon measure μ and a unimodular function
σ : Rn → R

n such that

L(ψ) =
∫
Rn

ψ · σ dμ, ψ ∈ Cc(R
n,Rn).

Thus, (4.13) holds. Moreover, from the construction of μ, or from taking
suprema in (4.13), it follows that

μ(Rn) = V( f ), (4.15)

so that the measure μ is finite.
This proves the “only if” part of Proposition 4.5. The “if” part is obtained

by taking suprema in (4.13).

The arguments giving (4.15) show also that for every open set � ⊂ R
n

we have

μ(�) = sup
φ

∫
Rn

f div φ dx,

where the sup is taken over all φ ∈ C1
c (R

n,Rn) with supRn |φ| ≤ 1 and supp
φ contained in �. Thus, μ(�) can be interpreted as the total variation of f
over �.

The measure μ is unique, while the function σ is uniquely determined up to
a set of μ-measure zero.

In Evans and Gariepy (1992), the measure we are calling μ is denoted
by ‖Df ‖.

Proposition 4.5 tell us that a function f ∈ L1(Rn) is in BV(Rn) if and only if
its distributional partial derivatives are finite real valued (signed) measures on
R

n. The measure corresponding to ∂f /∂xi is σ · ei dμ. The Rn-valued measure
σ dμ is the distributional gradient of f .

If f ∈ W1,1(Rn) then the Gauss–Green Theorem as applied in the proof of
Proposition 4.4 implies the equation

σ dμ = ∇f dx. (4.16)
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It follows that μ and Ln are mutually absolutely continuous, with dμ =
|∇f | dx, and σ = ∇f

|∇f | at points where |∇f | > 0. The set where ∇f = 0 has
μ-measure zero, so we can define, for example, σ = 0 at points where ∇f = 0.

If f ∈ BV(Rn) has absolutely continuous σ dμ then from (4.13) it follows
that its distributional gradient is a function in L1(Rn), and hence f ∈ W1,1(Rn).
Combined with the paragraph above, we see that a function in BV(Rn) belongs
to W1,1(Rn) if and only if its associated measure σ dμ is absolutely continuous
with respect to Ln.

If f ∈ BV(Rn) ∩ C1(Rn) then the Gauss–Green theorem implies that (4.16)
holds for f . Thus σ dμ is absolutely continuous, and hence f ∈ W1,1(Rn). This
gives the inclusion

BV(Rn) ∩ C1(Rn) ⊂ W1,1(Rn). (4.17)

The inclusion is still true if we replace C1 by Lip. To see this, just confirm
that

∫
Rn div ( fφ) dx = 0 when f ∈ Lip(Rn), φ ∈ C1

c (R
n,Rn), then reason as

in C1 case.
The next result asserts that the total variation enjoys a lower semicontinuity

property. We do not assume in this proposition that any of the total variations
are finite.

Proposition 4.6 Suppose that { fk} ⊂ L1
loc(R

n) and that fk → f in L1
loc(R

n).
Then

V( f ) ≤ lim inf
k→∞

V( fk).

Proof This easily follows from the definition of V( f ).

Proposition 4.7 Suppose that f ∈ BV(Rn). There exists a sequence { fk} ⊂
BV(Rn)∩ C∞(Rn) such that fk → f in L1(Rn) and V( fk) → V( f ) as k → ∞.

Proof This proposition is a special case of Theorem 2 in Evans and Gariepy
(1992, p. 172). We will construct an approximating sequence in our setting, and
refer the reader to Evans and Gariepy for proof that this sequence possesses the
requisite properties.

Let B(r) = B
n(0, r) denote the open ball with radius r centered at the origin

in R
n. Let μ be the measure associated with f by Proposition 4.5, and let ε > 0

be given. Choose R so large that μ(Rn \ B(R + 1)) < ε, and define open sets
Wk by

W1 = B(R + 2), Wk = B(R + k + 1) \ B(R + k − 1), k ≥ 2.

Let {ζk} be a sequence of functions with ζk ∈ C∞
c (Rn), 0 ≤ ζk ≤ 1,

supp ζk ⊂ Wk for k ≥ 1, and
∑∞

k=1 ζk ≡ 1 on R
n. Let K : Rn → R

+ be



128 Geometric Isoperimetric and Sharp Sobolev Inequalities

a nonnegative smooth bump function with support in B(1), as in §3.4. Recall
that Kδ(x) = δ−nK(δ−1x) and that ∗ denotes convolution. For each k ≥ 1,
choose εk so small that the support of Kεk ∗ ( f ζk) is contained in Wk and that

‖Kεk ∗ ( f ζk) − f ζk‖L1(Rn) < εk and ‖Kεk ∗ ( f ∇ζk) − f ∇ζk‖L1(Rn) < εk.

Define

fε =
∞∑

k=1

Kεk ∗ ( f ζk).

Then fε ∈ C∞(Rn), and, as ε → 0, fε → f and V( fε) → V( f ). To obtain
an approximating sequence, as in the statement of the proposition, just take a
sequence of εs tending to zero and consider the corresponding fε .

With our new tools in hand we return to the subject of symmetriza-
tion. According to Theorem 3.20, for nonnegative f ∈ W1,1(Rn) we have
‖∇f #‖L1(Rn) ≤ ‖∇f ‖L1(Rn). By Proposition 4.4, this may be restated as
V(f #) ≤ V( f ) for f ∈ W1,1(Rn). The theorem below tells us that symmetriza-
tion in fact decreases the total variation of all functions of bounded variation.

Theorem 4.8 If f ∈ BV(Rn,R+) then f # ∈ BV(Rn) and

V(f #) ≤ V( f ).

Proof Let { fk} be a sequence satisfying the conditions of Proposition 4.7.
Then each fk ∈ W1,1(Rn), by (4.17). By construction, each fk is nonnegative.
By Theorem 3.20, V( f #

k ) ≤ V( fk). Also, fk → f in L1(Rn), so Corollary 2.20
implies that f #

k → f # in L1(Rn). From Proposition 4.6 it follows that

V(f #) ≤ lim inf
k→∞

V( f #
k ) ≤ lim inf

k→∞
V( fk) = V( f ).

Since ‖f #‖L1(Rn) = ‖f ‖L1(Rn), Theorem 4.8 may also be stated as

‖f #‖BV(Rn) ≤ ‖f ‖BV(Rn),

when f is nonnegative.

4.3 Isoperimetric Inequalities for Perimeter
and Hausdorff Measure

Throughout this section

E ⊂ R
n

will denote a Ln-measurable set. We shall use the notations for BV(Rn)

functions established in §4.2. In particular, V( f ) equals the total variation of f
over Rn, and BV(Rn) functions are assumed to be in L1(Rn).
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Definition 4.9 E has finite perimeter if χE ∈ BV(Rn).

Thus, E has finite perimeter if and only if Ln(E) < ∞ and V(χE) < ∞.
We write

P(E) = V(χE),

and call P(E) the perimeter of E.
The perimeter in this sense was introduced by Caccioppoli (1953) and

De Giorgi (1954, 1955). See Ziemer (1989) for more references. Its exact
definition varies from author to author. Our definition matches the one in Evans
and Gariepy (1992), Ziemer (1989), and Giusti (1984). Other relevant sources
involving isoperimetry and perimeter include Talenti (1993), Chavel (2001),
and Burago and Zalgaller (1988).

Suppose that � is a bounded domain in R
n with C1-boundary and that φ ∈

C1(Rn,Rn) with supRn |φ| ≤ 1. Then the Gauss–Green formula (4.8) gives∫
�

divφ dx =
∫
∂�

φ · ν dHn−1,

where ν is the unit exterior normal vector field on ∂�. From the definition
of V(χ�) it follows that � has finite perimeter and that P(�) ≤ Hn−1(∂�).
On the other hand, ν is defined and continuous at every point of ∂�. We can
uniformly approximate ν on ∂� by restrictions to ∂� of vector fields φ on R

n

satisfying |φ| ≤ 1. It follows that

P(�) = Hn−1(∂�), for bounded C1 domains � ⊂ R
n. (4.18)

Equality (4.18) still holds for piecewise C1 domains, in particular for
domains bounded by polyhedra. But if we take � = D \ A where D is the
unit disk in the complex plane and A is a small closed line segment in D with
length L, then P(�) = P(D) = 2π whereas H1(∂�) = 2π + L. In general,
if sets E1 and E2 differ by a Ln-null set then it follows from the definition
of perimeter that P(E1) = P(E2). It is also true that P(E) ≤ Hn−1(∂E) for
every set E ⊂ R

n of finite perimeter. This is the content of Proposition 4.11
below.

Recall from Example 1.23 in §1.4 that αn = Ln(Bn(0, 1)) = πn/2

�( n
2 +1) , and

set βn−1 = nαn. In §4.5, with the aid of the coarea formula, we shall show that
P(Bn(1)) = βn. Taking this for granted now, it follows that for the ball Bn(R)
we have

P(Bn(R)) = βn−1Rn−1 = nα1/n
n Ln(Bn(R))

n−1
n . (4.19)

Here now is the isoperimetric inequality for perimeter.

Theorem 4.10 For every set E ⊂ R
n with finite perimeter we have

P(E) ≥ P(E#) = nα1/n
n Ln(E)

n−1
n . (4.20)
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Proof To get the inequality apply Theorem 4.8 with f = χE. The equality
statement follows from (4.19).

Our next aim is to show that (4.20) still holds when P(E) is replaced by
Hn−1(∂E). Consider first the case when E has finite perimeter. It will suffice
then to show that P(E) ≤ Hn−1(∂E). To prove the latter inequality, it appears
that one must wade a bit into the waters of geometric measure theory. We shall
sketch the argument, and refer to Evans and Gariepy (1992) for details.

Since χE ∈ BV(Rn), by Proposition 4.5 there exist a Radon measure μ on
R

n and a μ-measurable function σ : Rn → R
n with |σ | = 1 μ-a.e. such that∫

E
divφ dx = −

∫
Rn

φ · σ dμ, φ ∈ C1(Rn,Rn). (4.21)

Let x0 ∈ R
n \ ∂E and B be be an open ball containing x0 whose closure does

not intersect ∂E. The left-hand integral in (4.21) is zero for all φ ∈ C1(Rn,Rn)

with support in B. Thus, the support of μ is contained in ∂E. This is to be
expected, since σ dμ can be viewed as the gradient of χE, which is locally
constant in the complement of ∂E.

The reduced boundary ∂∗E of E may be defined to be the set of x ∈ ∂E such
that the limit

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

σ (y) dμ(y)

exists in R
n, equals σ(x), and has norm 1. It is clear that ∂∗E is contained

in the support of μ. On the other hand, from the Lebesgue–Besicovitch
differentiation theorem (Evans and Gariepy, 1992, p. 43), it follows that

μ(Rn \ ∂∗E) = 0.

This definition of ∂∗E depends on the choice of σ , which is uniquely
determined only up to a set of μ-measure zero. Two different σ s will produce
∂∗Es which differ at most by a μ-nullset. So properly speaking the reduced
boundary of E is not a single set but an equivalence class of sets.

Proposition 4.11 For a set E ⊂ R
n of finite perimeter, the measure μ satisfies

dμ = χ∂∗E dHn−1 (4.22)

as Borel measures in R
n.

This proposition is Evans and Gariepy (1992, Thm. 2.3 (iii)). It is the main
link between perimeter and Hausdorff measure.

From (4.22) and (4.15) we see that P(E) = V(χE) = μ(Rn) = Hn−1(∂∗E).
Since ∂∗E ⊂ ∂E, we have
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Corollary 4.12

P(E) ≤ Hn−1(∂E),

for every set E ⊂ R
n with finite perimeter.

Here now is the isoperimetric inequality for Hausdorff measure:

Corollary 4.13 For every Ln-measurable set E ⊂ R
n with Ln(E) < ∞ and

every n ≥ 2 we have

Hn−1(∂E) ≥ Hn−1(∂(E#)) = nα1/n
n Ln(E)

n−1
n . (4.23)

Proof If E has finite perimeter the result follows from Corollary 4.12 and
Theorem 4.10. Let E be any set satisfying the hypotheses of Corollary 4.13. If
Hn−1(∂E) = ∞ we are done, so assume Hn−1(∂E) < ∞. Then Ln(∂E) = 0,
so that Ln(E) = Ln(E). Since also ∂E ⊃ ∂E, it will suffice to prove (4.23)
when E is closed.

For R > 0, write B(R) = B
n(0, R), S(R) = ∂(B(R)), and ER = E ∩ B(R).

Then we have

∂(ER) = (∂E ∩ B(R)) ∪ (E ∩ S(R)),

so

Hn−1(∂(ER)) ≤ Hn−1(∂E) + Hn−1(E ∩ S(R)). (4.24)

Thus, Hn−1(∂(ER)) < ∞. By a theorem of Federer (see Evans and Gariepy,
1992, p. 222), this implies that ER has “locally finite perimeter.” Using the
definitions, it is easy to see that a bounded set with locally finite perimeter has
finite perimeter, so ER has finite perimeter. Inequalities (4.24) and (4.23) give

Hn−1(∂E) ≥ nα1/n
n Ln(ER)

n−1
n − Hn−1(E ∩ S(R)). (4.25)

Now Ln(E) < ∞. From the polar coodinates expression of Ln(E) =∫
Rn χE dLn, there follows existence of a sequence {Rk} with

lim
k→∞

Rk = ∞ and lim
k→∞

Hn−1(E ∩ S(R)) = 0.

Letting R → ∞ in (4.25) through the sequence {Rk}, (4.23) follows.

When E is the complement of the unit ball we have 0 < Hn−1(∂E) < ∞,
∂(E#) is the empty set, and Ln(E) = ∞. Thus, the assumption in Corollary
4.13 that E have finite measure cannot be dropped.

If we write L = H1, A = H2, and V = H3, then for n = 2 and n = 3, the
isoperimetric inequality (4.23) can be written (respectively) as

L2 ≥ 4πA and A3 ≥ 36πV2.
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4.4 Isoperimetric Inequalities for Minkowski Content

Let E ⊂ R
n be a subset of Rn, not necessarily measurable. Define

d(x, E) = distance from x to E = inf
y∈E

|x − y|.

Also, for δ > 0, define

E(δ) = {x ∈ R
n : d(x, E) < δ}, E(−δ) = {x ∈ E : d(x, Ec) ≥ δ),

where Ec ≡ R
n \ E. Then E(δ) is open, E(−δ) is closed, and E(−δ) ⊂ E ⊂

E(δ). It is a simple exercise to show that

(∂E)(δ) = E(δ) \ E(−δ). (4.26)

We shall call E(δ) the δ-collar of E. If, for example, E is the unit circle
|z| = 1 in the complex plane and δ < 1, then E(δ) is the annulus 1 − δ < |z| <
1 + δ. In any dimension, if E is a ball with radius R then E(δ) is the concentric
open ball with radius R+ δ, while E(−δ) is the concentric closed ball of radius
R − δ when δ ≤ R, and is empty when δ > R.

Here are the main symmetrization results involving collars.

Theorem 4.14 Let E ⊂ R
n and δ > 0. Then

(i) E#(δ) ⊂ E(δ)#, and
(ii) E(−δ)# ⊂ E#(−δ).

Corollary 4.15 Let E ⊂ R
n and δ > 0. Then

(a) Ln(E(δ)) ≥ Ln(E#(δ)),
(b) Ln(E#(−δ)) ≥ Ln(E(−δ)),
(c) Ln((∂E)(δ)) ≥ Ln((∂E#)(δ)).

Parts (a) and (b) of the corollary follow right away from (a) and (b) of the
theorem. Part (c) of the corollary follows from (4.26), (a) and (b).

Proof of Theorem 4.14(a) Since E ⊂ E and E(δ) = E(δ), we may assume
that E is closed. We may also assume that Ln(E(δ)) < ∞. Set

f (x) =
(

1 − d(x, E)

δ

)+
, x ∈ R

n.

Then f ∈ C(Rn, [0, 1]) and {x : f (x) > 0} = Eδ . By the triangle inequality, the
function d(·, E) is in Lip(Rn) with Lipschitz constant ≤ 1. Thus, f ∈ Lip(Rn),
with Lipschitz constant ≤ δ−1. Since symmetrization decreases the modulus
of continuity (Theorem 2.12), we have
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�(t, f #) ≤ �(t, f ) ≤ t

δ
, t ∈ (0, ∞),

where � denotes modulus of continuity.
Take x ∈ E#(δ) and y ∈ E# such that |x − y| < δ. Then

1 − f #(x) = f #(y) − f #(x) ≤ �(|y − x|, f #) ≤ |y − x|
δ

< 1,

so that f #(x) > 0.
We saw above that f −1(0, ∞) = E(δ). Thus (f #)−1(0, ∞) = E(δ)#, and

hence x ∈ E(δ)#, which proves (a).

Proof of Theorem 4.14(b) We may assume that E(−δ) is nonempty. Since
E(−δ) is contained in the interior E0 of E and E0(−δ) = E(−δ), we may
also assume that E is open.

We have (E(−δ))(δ) ⊂ E. Applying (a) to the set E(−δ), it follows that

(E(−δ)#)(δ) ⊂ (E(−δ))(δ)# ⊂ E#. (4.27)

Take x ∈ E(−δ)#. Suppose that x /∈ E#(−δ). Then d(x, (E#)c) < δ, so there
exists y ∈ (E#)c such that |x − y| < δ. Then y ∈ E(−δ)#(δ), so from (4.27),
we obtain y ∈ E#, a contradiction. We conclude that x ∈ E#(−δ), which
proves (b).

Next, we introduce the Minkowski content. Let A ⊂ R
n be a subset of Rn,

not necessarily measurable, and s ∈ [0, n]. Recall that

αs = π s/2

�( s
2 + 1)

.

When s is an integer, αs is the s-dimensional Lebesgue measure of the unit ball
in R

s. Define

Ms
∗(A) = lim inf

δ→0

Ln(A(δ))

αn−sδn−s
,

M∗s(A) = lim sup
δ→0

Ln(A(δ))

αn−sδn−s
.

Ms∗(A) and M∗s(A) are called the s-dimensional lower and upper
Minkowski content of A respectively. When Ms∗(A) = M∗s(A), the common
value is called the s-dimensional Minkowski content of A and is denoted by
Ms(A).

If A is Ln-measurable then Mn(A) = Ln(A) = Hn(A). If B is a ball of
radius R in R

n, then it is easy to show from the definition of Mn−1, the coarea
formula (4.32) and (4.19) that

Mn−1(∂B) = Hn−1(∂B) = nαnRn−1.
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Much more generally, a theorem of Federer (1969, p. 275) asserts that if s is
an integer m ∈ {0, . . . , n} and A is a closed and m-rectifiable set in R

n, then

Mm(A) = Hm(A).

The set A ⊂ R
n is defined to be m-rectifiable if there exists a bounded set

S ⊂ R
m and a Lipschitz function f : S → R

n such that A ⊂ f (S). Using the
Lipschitz Extension Theorem 3.1, it is easy to show that the finite union of
m-rectifiable sets is m-rectifiable. In particular, if � is a domain in R

n with
Lipschitz boundary, then ∂� is (n − 1)-rectifiable.

For m = n − 1, Corollary 4.15 immediately implies the isoperimetric
inequality for Minkowski content:

Theorem 4.16 For each Ln-measurable set E ⊂ R
n with Ln(E) < ∞, we

have

Mn−1
∗ (∂E) ≥ Mn−1(∂(E#)) = nα1/n

n Ln(E)
n−1

n .

Next, we examine some relations between Minkowski content and
perimeter. The remarks above about (n − 1)-rectifiability, combined with
(4.18), show that

Mn−1(∂�) = Hn−1(∂�) = P(�), for bounded C1 domains � ⊂ R
n,

where P denotes perimeter in R
n.

For general measurable sets E ⊂ R
n, perimeter and Minkowski content are

related as follows:

Proposition 4.17 For every set E ⊂ R
n of finite perimeter, we have

P(E) ≤ Mn−1
∗ (∂E).

Proposition 4.17 and Theorem 4.10, the isoperimetric inequality for perime-
ter, provide another proof of Theorem 4.16 for sets E with finite perimeter.
The set E = B \ A with B the unit disk in the complex plane and A a small line
segment in B of length L, which we considered in §4.3, satisfies

P(E) = π , Mn−1(∂E) = Hn−1(∂E) = π + L.

Thus, strict inequality can occur in Proposition 4.17.

Proof of Proposition 4.17 Since E has finite perimeter, we have Ln(E) < ∞.
Also, we may assume that Ln(E) > 0 and that Mn−1∗ (∂E) < ∞. The latter
implies that Ln(∂E) = 0, so that P(E) = P(E). Also ∂E ⊃ ∂E, so we may
assume that E is closed.
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For δ > 0, define the function gδ : Rn → [0, 2] by

gδ(x) =
⎧⎨⎩

(
1 − d(x,E)

δ

)+
, if x ∈ Ec,

min
{

1 + d(x,Ec)
δ

, 2
}

, if x ∈ E.

The reader may verify that gδ is Lipschitz with Lipschitz constant at most
1/δ. Thus gδ is differentiable Ln-a.e., and |∇gδ| ≤ 1/δ. Moreover, for each
ε > δ, ∇gδ = 0 at all points in the complement of (∂E)(ε). Thus, we have∫

Rn
|∇gδ| dx ≤ δ−1Ln((∂E)(ε)).

Taking ε = δ + δ2, this inequality gives

lim inf
δ→0

∫
Rn

|∇gδ| dx ≤ 2Mn−1
∗ (∂E). (4.28)

We continue to write ε = δ + δ2. The support of gδ is contained in E(ε),
and the finiteness of Mn−1∗ (∂E) implies Ln((∂E)(ε)) < ∞ for all sufficiently
small δ. Hence

Ln(E(ε)) ≤ Ln(E) + Ln((∂E)(ε)) < ∞.

It follows that each gδ belongs to L1(Rn), and hence each gδ ∈ W1,1(Rn). The
integral on the left side of (4.28) equals V(gδ). Moreover, as δ → 0, we have

‖gδ − 2χE‖L1(Rn) ≤ 2Ln(E(ε) \ E(−ε)) → 2Ln(∂E) = 0.

From the definition of perimeter, the lower semicontinuity of variation
(Proposition 4.6), and (4.28) we obtain

P(E) = V(χE) ≤ 1

2
lim inf
δ→0

V(gδ) ≤ Mn−1
∗ (∂E).

4.5 Coarea Formula

Throughout this section, we let m and n be nonnegative integers with

0 ≤ m ≤ n.

The area formula, Theorem 4.2, tells us how to change variables in integrals
involving f : Rm → R

n. Now we shall present a corresponding formula for
f : Rn → R

m.
First, consider a linear map L : Rn → R

m. We saw in §4.1 that L∗ : Rm →
R

n has a polar decomposition L∗ = O ◦ S, where S : R
m → R

m is
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symmetric and O : Rm → R
n is orthogonal. Thus, L : Rn → R

m has a polar
decomposition

L = S ◦ O∗,

where S : Rm → R
m is symmetric and O : Rm → R

n is orthogonal.
Define the Jacobian J of L to be the nonnegative constant

J = JL = |det S| = (det(LL∗))1/2.

One can view O∗ as the orthogonal projection of Rn onto an m-dimensional
subspace M ⊂ R

n and S as a self-map of M. Then JL tells us about distortion
of area within M : For sets A ⊂ M,

Hm(LA) = JLHm(A).

For “n-dimensional” sets A ⊂ R
n we have

Proposition 4.18 (Coarea Formula for linear maps) For Ln-measurable sets
A ⊂ R

n,

JLLn(A) =
∫
Rm

Hn−m(A ∩ L−1y) d Lm(y). (4.29)

If L is the orthogonal projection of Rn onto the subspace {x ∈ R
n : xm+1

= · · · = xn = 0} then (4.29) follows from Fubini’s Theorem. The case when L
is the orthogonal projection onto some subspace can be reduced via rotations
to the special case above. To handle the general case when L = S ◦ O∗, first
get a formula like (4.29) corresponding to O∗, then apply the usual Rm → R

m

change of variable formula to S. For details, see Evans and Gariepy (1992,
p. 104).

Suppose now that f : Rn → R
m is any Lipschitz function. For x at which f

is differentiable, define the Jacobian of f to be

J(x) = Jf (x) = (det(Df (x)(Df (x))∗)1/2.

Theorem 4.19 (Coarea Formula) Let f ∈ Lip(Rn,Rm), 1 ≤ m ≤ n, and A be
a Ln-measurable set in R

n. Then∫
A

Jf dLn =
∫
Rm

Hn−m(A ∩ f −1y) dLm(y).

As with the area formula, the Coarea Formula is deduced from the linear
case by splitting the left-hand integral into a large number of small pieces. For
details, see Evans and Gariepy (1992, p. 112).

The Coarea Formula leads to a more general change of variable for-
mula (Evans and Gariepy, 1992, p. 117):
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Theorem 4.20 (Coarea change of variable formula) If f ∈ Lip(Rn,Rm), 1 ≤
m ≤ n, and g ∈ L1(Rn,R), then the restriction of g to f −1y is Hn−m-integrable
for Ln-almost every y ∈ R

n, and∫
Rn

gJf dLn =
∫
Rm

dLm(y)
∫

f −1y
g dHn−m.

Let us consider the case m = 1. If f ∈ Lip(Rn,R) then Df = ∇f =
( fx1 , . . . , fxn), and

Df (Df )∗ =
n∑

i=1

( fxi)
2 = |∇f |2.

Thus,

Jf = |∇f |.
The coarea and change of variables formulas become∫

A
|∇f | dLn =

∫
R

Hn−1(A ∩ f −1y ) dy (4.30)

and ∫
Rn

g|∇f | dLn =
∫
R

dy
∫

f −1y
g dHn−1. (4.31)

Polar Coordinates and Hausdorff Measure on Spheres
For n ≥ 1, define f ∈ Lip(Rn,R+) by f (x) = |x|. Then ∇f = x

|x| for x ∈
R

n \{0}. For r > 0, write S(r) = ∂Bn(r). The Coarea Formula (4.31) becomes,
for g ∈ L1(Rn), ∫

Rn
g dLn =

∫ ∞

0
dr

∫
S(r)

g(x) dHn−1(x).

For E ⊂ S(r), the definition of Hausdorff measure gives

Hn−1(E) = rn−1Hn−1(r−1E).

Thus, ∫
Rn

g dLn =
∫ ∞

0
rn−1dr

∫
Sn−1

g(rx) dHn−1(x). (4.32)

Folland (1999, Th 2.49) uses facts about product measures to show existence
of a unique positive Borel measure σn−1 on S

n−1 for which (4.32) holds for all
allowable g. The uniqueness implies that

Hn−1(E) = σn−1(E), ∀ Borel E ⊂ S
n−1.
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Thus, σn−1 equals the restriction of Hn−1 to S
n−1. We shall call σn−1 the

canonical measure on S
n−1.

Note also that if E ⊂ S(r) then

Hn−1(E) = rn−1σn−1(r
−1E).

For n ≥ 1, set

βn−1 = σn−1(S
n−1).

Recall from Example 2 in §1.4 that αn = Ln(Bn(0, 1)) = πn/2

�( n
2 +1) . From the top

line on (Folland, Gerald 2002, p. 77) we see that βn−1 = nαn. Since �(x+1) =
x�(x), it follows that

βn−1 = 2πn/2

�( n
2 )

.

Returning now to general f ∈ Lip(Rn,R) and taking A = R
n in (4.30), we

obtain ∫
Rn

|∇f | dLn =
∫
R

Hn−1( f = t) dt.

If f ∈ Lip(Rn,R) and ess inf |∇f | > 0, then for fixed t ∈ R we can replace
the L1 function g in (4.31) by gχf>t|∇f |−1 and obtain∫

f>t
g dLn =

∫ ∞

t
ds

∫
f =s

g
1

|∇f | dHn−1. (4.33)

Recall the notation λf (t) = Ln( f > t). If λf (t) < ∞, the choice g = χf>t

in (4.33) gives

λf (t) =
∫ ∞

t
ds

∫
f =s

1

|∇f | dHn−1. (4.34)

If, for example, f ∈ Lip(Rn) is nonnegative with λf (t) < ∞ for every t > 0
and |∇f | is essentially bounded from below, then (4.34) can be differentiated
to give

λf
′(t) = −

∫
f =t

1

|∇f | dHn−1

for almost every t ∈ (0, ∞).

Isoperimetry and Dirichlet Integrals
In §4.3 we established the isoperimetric inequality for perimeter as a simple
consequence of the Dirichlet integral inequality

∫
Rn |∇f #| dx ≤ ∫

Rn |∇f | dx.
In previous treatments of our subject the order is usually reversed: The
isoperimetric inequality, for Hausdorff measure, say, is taken as known. Then
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Dirichlet integral inequalities are proved with the aid of the Coarea Formula.
Here, with several loose ends, is a sketch of the argument.

Suppose that f is a nonnegative function in C∞
c (Rn) and that 1 ≤ p < ∞.

Write Et = ( f = t). By the Coarea Formula,∫
Rn

|∇f |p dx =
∫ ∞

0
dt

∫
Et

|∇f |p−1 dHn−1. (4.35)

Fix t ∈ (0, ∞). Define a measure μ on Et and a number k by

dμ(x) = χEt

dHn−1(x)

|∇f (x)| , k = μ(Et).

Take p ∈ [1, ∞). By Jensen’s inequality and the isoperimetric inequality for
Hausdorff measure (4.23),∫

Et

|∇f |p−1 dHn−1 =
∫

Et

|∇f |p dμ ≥ k

(
1

k

∫
Et

|∇f | dμ

)p

= k1−pHn−1(Et) ≥ k1−pnα1/n
n Ln( f ≥ t).

(4.36)

Since λf = λf # , it follows from (4.34) that f and f # have the same k. Also,
if f is replaced by f # then the inequality in (4.36) becomes an equality. Thus,
for almost every t,∫

Et

|∇f |p−1 dHn−1 ≥
∫

Et

|∇f #|p−1 dHn−1.

From (4.35) follows the desired inequality∫
Rn

|∇f |p ≥
∫
Rn

|∇f #|p, 1 ≤ p < ∞.

For careful versions of this argument, see, for example, Hildén (1976);
Talenti (1976a); Aubin (1976); Sperner (1973); Brothers and Ziemer (1988).

4.6 Sharp Sobolev Embedding Constant for p = 1

Given n ≥ 1 and p ∈ [1, n), define

p∗ = np

n − p
.

The exponent p∗ is called the Sobolev conjugate exponent of p.
In the next two sections ‖f ‖p will denote the Lp-norm in Lp(Rn,Ln). The

Sobolev embedding theorem (Evans and Gariepy, 1992, p. 138) asserts the
existence of constants C(n, p) such that
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‖f ‖p∗ ≤ C(n, p)‖∇f ‖p, f ∈ W1.p(Rn), 1 ≤ p < n. (4.37)

These inequalities can be succintly restated as

W1,p(Rn) ↪→ Lp(Rn),

where ↪→ is read “is continuously embedded in”.
In this section and the next we shall prove these inequalities with the best

possible, that is, the smallest, values of C(n, p). This section is devoted to the
case p = 1, the next to 1 < p < n.

Theorem 4.21 For f ∈ BV(Rn), n ≥ 2, we have

‖f ‖ n
n−1

≤ n−1α−1/n
n V( f ). (4.38)

Equality holds when f = χB for some ball B ⊂ R
n.

Recall from §4.2 that W1,1(Rn) ⊂ BV(Rn) and that for the total variation V
we have V( f ) = ‖∇f ‖1 for f ∈ W1,1(Rn). Thus, Theorem 4.21 is a slightly
extended version of (4.37) when p = 1. In view of the equality statement in
the theorem the constant on the right in (4.38) is certainly best possible within
BV(Rn). This constant is still best possible in the smaller space W1,1(Rn).
To see this take R ∈ (0, 1). Let fR be the function that is 1 on |x| ≤ 1 − R,
zero on |x| ≥ 1, and (1 − |x|)/(1 − R) on R < |x| < 1. Then fR ∈ W1,1(Rn).
As R → 1, we have

‖fR‖ n
n−1

→ (αn)
n−1

n and ‖∇fR‖1 → nαn.

On the other hand, the proof of Theorem 4.21 will show that for f ∈
W1,1(Rn) strict inequality always holds in (4.38) unless f ≡ 0.

The constant on the right in (4.38) is the reciprocal of the isoperimetric
constant studied in Sections 4.3 and 4.4. It turns out that the sharp Sobolev
inequality (4.38) is in fact equivalent to the sharp geometric isoperimetric
inequality. At the end of this section we shall comment further on this
phenomenon.

Proof of Theorem 4.21 Suppose first that f ∈ W1,1(Rn). Since |∇f | = ∇| f |
a.e., we may assume that f ≥ 0. By Theorem 3.20 or Theorem 4.8, we may
also assume that f is symmetric decreasing. Let

h(r) = f (re1).

Then h is a decreasing function on [0, ∞). The proof of Theorem 3.20 shows
that h is absolutely continuous on each compact subinterval of (0, ∞). Since
f ∈ W1,1(Rn) ⊂ L1(Rn), it follows that limr→∞ h(r) = 0. Thus, the
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nonpositive function h′ belongs to L1(r, ∞) for each r ∈ (0, ∞), and we have
the following formulas:

h(r) = −
∫ ∞

r
h′(s) ds, r ∈ (0, ∞), (4.39)

‖f ‖
n

n−1
n

n−1
= βn−1

∫ ∞

0
|h(r)| n

n−1 rn−1 dr,

‖∇f ‖1 = βn−1

∫ ∞

0
|h′(r)| rn−1 dr.

Lemma 4.22 Let h : (0, ∞) → R
+ be decreasing, satisfy limr→∞ h(r) = 0,

and be absolutely continuous on each compact subinterval of (0, ∞). Then for
each γ > 1, ∫ ∞

0
h(r)γ

′
rγ−1 dr ≤ γ−1

{∫ ∞

0
|h′(r)| rγ−1 dr

}γ ′

. (4.40)

If equality holds for some γ ∈ (0, ∞), then h ≡ 0.

Here γ ′ = γ
γ−1 is the Hölder conjugate exponent of γ .

Application of Lemma 4.22 with γ = n yields the desired inequality (4.38)
for f ∈ W1,1(Rn). Take f ∈ BV(Rn). By Proposition 4.7, there is a sequence
{ fk} in W1,1(Rn) such that V( fk) → V( f ) and fk → f in Ln(Rn) as k → ∞.
Choose a subsequence, still denoted { fk}, which converges to f a.e. in R

n. Then

‖f ‖ n
n−1

≤ lim inf
k→∞

‖fk‖ n
n−1

≤ lim inf
k→∞

n−1α−1/n
n V( fk) = n−1α−1/n

n V( f ).

The first inequality follows from Fatou’s Lemma. This proves the inequality
in Theorem 4.21 for f ∈ BV(Rn), modulo the Lemma. To prove the statement
about equality suppose that the ball B has radius R. Then, using P to denote
perimeter,

V(χB) = P(B) = Hn−1(∂B) = βn−1Rn−1 and ‖χB‖ n
n−1

= (αnRn)
n−1

n .

Since βn−1 = nαn, the equality statement in Theorem 4.21 follows.

Proof of Lemma 4.22 Define functions F, G, and K from R into R
+ by

F(x) = eγ x|h′(ex)|, G(x) = e(γ−1)xh(ex), K(x) = e(γ−1)xχ(−∞,0)(x).

Equation (4.39) is valid for our h. Setting r = ex, s = ey, (4.39) becomes

G(x) =
∫
R

F(y)K(x − y) dy = F ∗ K(x).
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Also, by the definitions of F and G,∫
R

Gγ ′
dx =

∫ ∞

0
h(r)γ

′
rγ−1 dr, (4.41)

and

‖F‖1 =
∫
R

|h′(r)| rγ−1 dr.

By a special case of Young’s inequality for convolution (Rudin, 1966,
Exercise 4c, p. 148),

‖G‖γ ′ ≤ ‖F‖1‖K‖γ ′ ,

with strict inequality unless F ≡ 0. Also, γ ′(γ − 1) = γ , so∫
R

Kγ ′
dx = 1

γ
. (4.42)

The desired inequality (4.40) follows from (4.41)–(4.42).

Our proofs of the isoperimetric inequality Theorem 4.10 and the sharp
Sobolev inequality Theorem 4.21 are based on the result that symmetrization
decreases the Dirichlet integral. Theorem 4.21 is due to Federer and Fleming
(1960), who derive the sharp Sobolev inequality from the isoperimetric
inequality and the Coarea Formula. Here is a sketch of their argument, as
presented in Ziemer (1989).

Take a nonnegative function f ∈ C∞
c (Rn). Let ft = min( f , t). Set At =

{x : f (x) ≥ t} and g(t) = ‖ft‖ n
n−1

. Then for h > 0, we have

0 ≤ ft(x) ≤ ft+h(x) ≤ ft(x) + hχAt(x), x ∈ R
n. (4.43)

Write m(t) = Ln(At)
n

n−1 . Then we get

g(t) ≤ g(t + h) ≤ g(t) + hm(t),

from (4.43) and Minkowski’s inequality. Thus g is Lipschitz on [t0, ∞) for
each t0 > 0 and for almost every t,

0 ≤ g′(t) ≤ m(t).

From Sard’s Theorem and the Implicit Function Theorem it follows that for
a.e. t the set f −1(t) is a smooth manifold, and that f −1(t) = ∂At. Assuming the
isoperimetric inequality (4.23) for such sets, we have

m(t) ≤ n−1α−1/n
n Hn−1( f = t), for almost every t.
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Thus

‖f ‖ n
n−1

= lim
t→∞ g(t) =

∫ ∞

0
g′(t) dt ≤ n−1α−1/n

n

∫ ∞

0
Hn−1( f = t) dt

= n−1α−1/n
n

∫
Rn

|∇f | dx.

The last equality comes from the Coarea Formula (4.30). This establishes
the sharp Sobolev inequality for smooth functions f when p = 1.

Federer and Fleming also observe that this sharp Sobolev inequality is in
fact equivalent to the isoperimetric inequality. Take a nice set E and h > 0.
Suppose that the Sobolev inequality is true, Apply it to the function

f (x) =
(

1 − d(x, E)

h

)+
.

Represent Ln(0 < f < 1) via the Coarea Formula, then let h → 0.
The isoperimetric inequality for Hausdorff measure follows. For more detail,
see Ziemer (1989, p. 83).

4.7 Sharp Sobolev Embedding Constants for 1 < p < n

Recall that

p∗ = np

n − p
and p′ = p

p − 1
.

For n ≥ 2 and p ∈ (1, n) define functions g = gn,p by

g(x) = (1 + |x|p′
)−n/p∗

. (4.44)

Theorem 4.23 Let f ∈ W1,p(Rn), 1 < p < n, n ≥ 2. Then we have

‖f ‖p∗ ≤ (nα1/n
n )−1(p∗/p′)1/p′

(
p′

n

�(n)

�(n/p)�(n/p′)

)1/n

‖∇f ‖p. (4.45)

Equality holds for f = gn,p.

It is easy to check that equality also holds for all functions ag(bx + c), with
a, b, c real constants such that b �= 0.

Note that

g(x) ∼ |x|−
n−p
p−1 , |∇g| ∼ |x|− n−1

p−1 , x → ∞.

It follows that ∇g ∈ Lp(Rn) for 1 < p < n and that g ∈ Lp(Rn) for 1 < p <√
n, g /∈ Lp(Rn) for p ≥ √

n. Thus g ∈ W1,p if and only if 1 < p <
√

n.
The ratio ‖f ‖p∗/‖∇f ‖p is maximized over W1,p(Rn) by g when 1 < p <

√
n.
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When
√

n ≤ p < n the constant on the right in (4.45) is still best possible for
f ∈ W1,p(Rn), as one sees by approximating g by ghR, where hR(x) = 1 on
|x| < R, hR(x) = 2 − |x|

R for R ≤ |x| ≤ 2R, hR(x) = 0 for |x| ≥ 2R and R is
large.

Theorem 4.23 is due, independently, to E. Rodemich (unpublished, 1960s),
Talenti (1976a), and Aubin (1976). We shall follow a fascinating and different
proof, recently discovered by Cordero-Erausquin, Nazaret, and Villani (2004).
Their proof appears also in Villani (2003, p. 201).

Proof of Theorem 4.23 First we shall verify the equality statement. Let a, b, c
be positive numbers with c < ab. Then∫ ∞

0
(1 + ra)−brc−1 dr = 1

a

∫ 1

0
s

c
a −1(1 − s)b− c

a −1 ds = �( c
a )�(b − c

a )

a�(b)
.

(4.46)
The first equality comes from the change of variable s = ra/(1− ra) and the

second from Euler’s identity for the beta function. Write

B = �(n/p)�(n/p′)
�(n)

.

Passing to polar coordinates and using (4.46), one computes∫
Rn

|∇g|p dx = βn−1np(p′)p−2(p∗)−p/p′
B

and ∫
Rn

gp∗
dx = βn−1(p

′)−1B.

After some manipulations with p, p′, and p∗, one finds that ‖g‖p∗/‖∇g‖p

equals the constant on the right side of (4.45). The equality statement in
Theorem 4.23 is proved.

To prove inequality (4.45), take f ∈ W1,p(Rn). We may assume that f ≥ 0.
Since Dirichlet integrals decrease under symmetrization (Theorem 3.20), we
may also assume that f is symmetric decreasing on R

n. Since f ∈ Lp(Rn) and
p∗ > p, it follows that

∫
|x|≥1 f p∗

dx < ∞. Approximating f by min( f , N)

for large N, we may also assume that f is bounded, which insures that∫
|x|≤1 f p∗

dx < ∞. Finally, multiplying f by a suitable constant, we may
assume that ∫

Rn
f p∗

dx =
∫
Rn

gp∗
dx (4.47)

where g = gn,p is the function of (4.44).



4.7 Further Sharp Sobolev Embedding Constants 145

Define functions F, G on R
n and F1, G1 on R

+ by

F = f p∗
, G = gp∗

,

F1(r) =
∫ r

0
F(se1)s

n−1 ds, G1(r) =
∫ r

0
G(se1)s

n−1 ds.

Define also ψ1 : R+ → R
+ and T : Rn → R

n by

ψ1 = G−1
1 ◦ F1, T(x) = x

|x|ψ1(|x|).

Using (4.47), one sees that if f > 0 on R
n then ψ1 maps R+ 1 − 1 onto R

+,
while if f has compact support then ψ1 maps [0, R0) 1 − 1 onto R

+, where R0

is the smalllest R such that f (Re1) = 0.
For 0 ≤ R1 < R2, the relation F1 = G1 ◦ ψ1 gives∫ R2

R1

F(re1)r
n−1 dr =

∫ ψ1(R2)

ψ1(R1)

G(se1) sn−1 ds.

It follows that ∫
E

F dx =
∫

T(E)
G dx (4.48)

for all polar rectangles of the form E = {ry : r ∈ [R1, R2], y ∈ E′}, where E′

is a Borel set on S
n−1, and this implies that (4.48) holds for all Ln-measurable

sets E ⊂ R
n. We also have∫

T(E)
G(y) dy =

∫
E

G(Tx)JT(x) dx,

where JT is the Jacobian of T . Combined with (4.48), we deduce that

F = (G ◦ T) JT , on R
n, (4.49)

and hence, for measurable functions H : Rn → R
+,∫

Rn
G H dx =

∫
Rn

(H ◦ T)F dx. (4.50)

Define φ1 : R+ → R
+ and φ : Rn → R

+ by

φ1(r) =
∫ r

0
ψ1(s) ds and φ(x) = φ1(|x|).

Then

T = ∇φ, on R
n.

Now φ1 is an increasing convex function on [0, ∞). For a, b ∈ R
n the

function t → |a + tb| is convex on R, and hence t → φ1(|a + tb|) is convex on
R. Thus, φ is a convex function on R

n.
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Let D2φ = (
∂2φ
∂xi∂xj

)i,j denote the Hessian matrix of φ. Then D2φ(x) is
nonnegative and symmetric at each point x, hence has nonnegative eigenvalues
λ1, . . . , λn. at each point. Thus, using the arithmetic-geometric inequality, at
each point of Rn we have

JT = det DT = det D2φ =
n∏

i=1

λi ≤
(

1

n

n∑
i=1

λi

)n

=
(

1

n
tr D2φ

)n

=
(

1

n
�φ

)n

.

Taking H = G−1/n in (4.50) and using (4.49), we obtain∫
Rn

G1− 1
n dx =

∫
Rn

F1− 1
n J1/n dx ≤ 1

n

∫
Rn

F1− 1
n �φ dx

= −1

n

∫
Rn

∇(F1− 1
n ) · ∇φ dx

= −1

n

n − 1

n

∫
Rn

F−1/n ∇F · ∇ φ dx

≤ 1

n

n − 1

n

∫
Rn

F−1/n|∇F| |∇φ| dx

= 1

n

n − 1

n

∫
Rn

F−1/n|∇F| |T| dx.

(4.51)

From the definitions, it follows that

F−1/n|∇F| = p∗f p∗/p′ |∇f | = p∗F1/p′ |∇f |.
So, using Hölder’s inequality,

1

n

n − 1

n

∫
Rn

F−1/n|∇F| |T| dx = n − 1

n

p

n − p

∫
Rn

F1/p′ |T||∇f | dx

≤ n − 1

n

p

n − p

(∫
Rn

F|T|p′
dx

)1/p′

‖∇f ‖p.

(4.52)

Using (4.50) with H(x) = |x|p′
,∫

Rn
F|T|p′

dx =
∫
Rn

|x|p′
G dx. (4.53)

Combining (4.51)–(4.53), we obtain

‖∇f ‖p ≥ n(n − p)

p(n − 1)

(∫
Rn

G
n−1

n dx

)(∫
Rn

|x|p′
G dx

)−1/p′

. (4.54)
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In the derivation of (4.54) all but three of the steps were equalities. Suppose
that f = g. Then T(x) = x and φ(x) = 1

2 |x|2, so JT
1/n = 1

n�φ = 1. Also,
since G and φ are both radial with G decreasing, φ increasing,

∇G · ∇φ = −|∇G||∇φ|.
Thus, the two inequalities in (4.51) are each equalities.

Now we examine (4.52). For equality to hold in Hölder’s inequality∫
h1h2 ≤ ‖h1‖p‖h2‖p′ with nonnegative h1 and h2, it is necessary and

sufficient that h2 = chp−1
1 a.e. for some constant c. Take

h1 = |∇g|, h2(x) = G1/p′
(x)|T(x)| = |x|gp∗/p′

(x).

Calculation gives

|∇g(x)| = c|x|p′−1g(x)1+ p∗
n , x ∈ R

n.

Thus, we have

|∇g(x)|p−1 = c|x|(p−1)(p′−1)g(x)(1+ p∗
n )(p−1)

where c denotes a constant which can change from line to line. But

(p′ − 1)(p − 1) = 1 and

(
1 + p∗

n

)
(p − 1) = p∗/p′.

Thus hp−1
1 = ch2, so in (4.52) Hölder’s inequality holds with equality when

f = g.
We’ve shown now that equality holds in (4.54) when f = g. Thus, recalling

(4.47),

‖∇f ‖p ≥ ‖∇g‖p, when
∫
Rn

f p∗
dx =

∫
Rn

gp∗
dx.

Theorem 4.23 is proved.

Like the proof just given, the proofs of Theorem 4.23 by Aubin and
Talenti employ an initial symmetrization to reduce the problem to an extremal
problem for integrals of functions of one variable. They solved this extremal
problem by invoking a theorem of Bliss (1930), whose proof involves calculus
of variations. The proof by Cordero-Erausquin et al. (2004) does not use
symmetrization. Instead, given any two nonnegative functions f and g with
gradients in Lp(Rn) and with

∫
Rn f p∗

dx = ∫
Rn gp∗

dx, they invoke a theorem
of Brenier to produce a convex φ : Rn → R such that T = ∇φ, F = f p∗

and
G = gp∗

satisfy (4.49) above:

F = G ◦ T JT . (4.55)

The rest of their proof is exactly like the one presented here.
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Another way to state (4.55) is as follows: Consider the measures μ and ν on
R

n defined by dμ = F dx, dν = G dx. Then T#(μ) = ν, that is,

ν(E) = μ(T−1E), for all Borel sets E ⊂ R
n.

In Villani (2003) one learns that this T solves the Monge Transportation
Problem for the given measures μ and ν.

By performing the initial symmetrization as we have done here, one can
immediately write down the mapping T . No deep theorem like Brenier’s is
needed.

4.8 More about Sobolev Spaces

In the preceding two sections we saw that W1,p(Rn)⊂ Lp∗
(Rn) when 1 ≤ p< n,

where p∗ = np
n−p . For p = n one might expect that functions in W1,n are in

L∞(Rn), but the function

f (x) = (log+(1/|x|))α

furnishes a counterexample when 0 < α < n−1
n .

If n < p < ∞ then W1,p(Rn) is contained in L∞(Rn). In fact, a good deal
more is true. Given n ≥ 2 and n < p < ∞, define γ by

γ = 1 − n

p
.

Theorem 4.24 (Morrey’s Embedding Theorem) For n ≥ 2 and n< p<∞,
there exist constants C(p, n) such that each equivalence class in W1,p(Rn)

contains a function f such that

| f (x) − f (y)| ≤ C(n, p) ‖∇f ‖p |x − y|γ , x, y ∈ R
n, (4.56)

and

‖f ‖L∞(Rn) ≤ C(n, p) ‖f ‖W1,p(Rn). (4.57)

Functions f satisfying (4.56) are said to satisfy a Hölder condition of order
γ , or to be γ -Hölder continuous. The set of all functions which are γ -Hölder
continuous in a domain � is denoted by Cγ (�). Thus, Morrey’s Theorem can
be restated as

W1,p(Rn) ↪→ Cγ (Rn) ∩ L∞(Rn), n < p < ∞.

A proof of (4.56) is in Evans and Gariepy (1992, p. 143). To get (4.57), use
(4.56) together with the assumption f ∈ Lp(Rn).

Note that γ → 1 as p → ∞. Thus, in the limit, Morrey’s The-
orem “converges” to the identification W1,∞(Rn) = Lip(Rn) ∩ L∞(Rn)

(Proposition 3.17).
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We saw above that in the borderline case p = n functions in W1,n can
be unbounded. The following results, though, show that they cannot be very
unbounded. To get a clean statement we shall leave W1,n(Rn) and consider
instead the space W1,n

0 (�), the closure of C1
c (�) in the W1,n-norm, where � is

an open set in R
n with Ln(�) < ∞. Set

δn = (nα1/n
n )

n
n−1 .

Theorem 4.25 (Moser) For each n ≥ 2 there exists a constant Cn such that
for each � with Ln(�) < ∞ and each f ∈ Wn,1

0 (�) with ‖∇f ‖n ≤ 1, we have

1

Ln(�)

∫
�

exp[δn| f | n
n−1 ] dx ≤ Cn. (4.58)

If n
n−1 is replaced by larger number then the integral in (4.58) can diverge. If

δn is replaced by any larger number the integral still converges, but can be made
arbitrarily large by appropriate choice of f . The most remarkable aspect of the
theorem is the uniform boundedness at the critical exponent δn. This property
has applications to curvature problems in geometry. See, for example, Chang
(1996).

One may assume in Moser’s theorem that f ≥ 0. To prove his theorem,
Moser begins with a symmetrization of f , under which the gradient integral
decreases, as in Corollary 3.9, while the integral involving f remains the same.
The reduced problem involving one-variable integrals is difficult, but Moser
(1970/71) managed to solve it. A shorter proof of the one-variable problem is
in Marshall (1989).

As far as I know, the best constants on the right-hand sides of (4.56), (4.57)
and (4.58) are not known. For Moser’s Theorem, it is known that extremal
functions exist (Carleson and Chang, 1986).

Returning to the global space W1,n(Rn), by applying Moser’s Theorem to
the function ( f − t)+, we get∫

f ≥t
exp(δn( f − t)

n
n−1 ) dx ≤ CnLn( f ≥ t)

for t > 0, provided f ∈ W1,n(Rn) with f ≥ 0 and ‖∇f ‖n = 1.

Higher Order Sobolev Spaces
An n-tuple α = (α1, . . . ,αn) with the αi nonnegative integers is called a multi-
index. The number |α| = ∑n

i=1 αi is called the order of α. For functions f ,
write

Dαf = ∂ |α|f
∂α1 x1 · · · ∂αn xn

.
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Let � be an open set in R
n and f ∈ L1

loc(�). For a multi-index α, the function
g ∈ L1

loc(�) is said to be the weak αth derivative of f if∫
�

fDαφ dx = (−1)|α|
∫
�

gφ dx, ∀ φ ∈ C∞
c (�).

When g exists we’ll write Dαf = g and say that Dαf exists in the weak sense.
For p ∈ [1, ∞) and integers n ≥ 1, k ≥ 1, define the space Wk,p(�) to be

the set of all f ∈ Lp(�) such that Dαf exists in the weak sense and is in Lp(�)

for each α with |α| ≤ k.
Define the norm in Wk,p(�) to be

‖f ‖p
Wk,p(�)

=
∫
�

∑
0≤|α|≤k

|Dαf |p dx.

The space Wk,p(�) is the closure of C∞
c (�) in this norm, hence is a Banach

space. Accounts of Wk,p(�) may be found in Gilbarg and Trudinger (1983);
Maz’ja (1985); Ziemer (1989).

For k and p given, set

q = np

n − kp
, 1 ≤ p <

n

k
, 1 ≤ k ≤ n − 1.

By iterating the result W1,p ↪→ Lp∗
, one obtains for Wk,p the embedding

Wk,p(Rn) ↪→ Lq(Rn), 1 ≤ p <
n

k
.

The corresponding result for p > n
k is

Wk,p(Rn) ↪→ BCm,β(Rn),
n

k
< p < ∞,

where the integer m and the number β ∈ (0, 1] are determined by

k − n

p
= m + β.

Here BCm,β is the set of bounded functions whose derivatives of order ≤ m
are bounded and continuous, with mth order partials Hölder continuous of
order β.

Take n ≥ 3, k = 2, and 1 ≤ p < n
2 . Then

q = np

n − 2p
.

If f ∈ W2,p(Rn) then f = cK ∗ (�f ), where K is the Riesz kernel of order
n−2. In Chapter 8, when we take up the Hardy–Littlewood–Sobolev inequality,
we shall use this representation to obtain the best constant in the inequality

‖f ‖q ≤ C‖�f ‖p.
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We shall also discuss there a generalization of Moser’s inequality (4.58) due
to Adams (1988), which, in particular, gives sharp exponential integrability
results for the borderline cases p = n/k.

4.9 Notes and Comments

The isoperimetric inequality for length and area in the plane goes back to
antiquity. See Tikhomirov (1990) for discussion of the supposed work of
Queen Dido (c.800 BC) and of the Greek mathematician Eudoxus (324 BC).
Good sources for the more recent past and for the present include Osserman
(1978), Burago and Zalgaller (1988), Federer (1969), Chavel (2001), Talenti
(1993), and the article on isoperimetry in Hazewinkel (1995).

For Hausdorff measure we have mainly followed Evans and Gariepy (1992).
Other sources include Ziemer (1989), Mattila (1995) and Folland (1999).
The notions of perimeter and of functions of bounded variation on R

n in the
sense presented here grew out of work by Caccioppoli and De Georgi in the
1950s. Good introductions to the theory include Evans and Gariepy (1992),
Giusti (1984), and Ziemer (1989). The isoperimetric inequality for perimeter,
Theorem 4.10, is due to De Giorgi. Talenti (1993) contains a nice variational
proof. Proofs of the isoperimetric inequality for Minkowski content, Theorem
4.16, can be found, for example, in Federer (1969, p. 278), Burago and
Zalgaller (1988, p. 84), and Chavel (2001, p. 77). The proofs by Federer
and Burago–Zalgaller are based on the Brunn–Minkowski inequality, which
we will take up in Chapter 8. Chavel’s is based on Steiner symmetrization,
which we study in Chapter 6. Corollary 4.13 about Hausdorff measure
is from Federer (1969, Theorem 4.5.9 (31)). He attributes it to Sobolev
(1938).

The Coarea Formula, Theorem 4.19, in its modern generality was discovered
by Federer (1959). According to Federer (1969, p. 207) the Area Formula is
“classical,” and the proof presented in Federer (1969, p. 243) “follows the
spirit” of a proof by Kolmogorov in 1932.

The Sobolev Embedding Theorem is essentially due to Sobolev (1938).
Morrey’s Embedding Theorem 4.24 is in Morrey (1938). Theorem 4.21, the
sharp Sobolev inequality for p = 1, and its equivalence to the isoperimeric
inequality, are due to Federer and Fleming (1960). As discussed in the text,
the sharp Sobolev inequality for 1 < p < n is due independently to Rodemich,
Aubin and Talenti. The proof presented in this book is a hybrid using both
the “classical” method of symmetrization and the recent mass transportation
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approach of Cordero-Erausquin et al. (2004). That paper contains a number of
interesting related results and open problems.

In addition to Evans and Gariepy (1992) and Ziemer (1989), good references
for Sobolev spaces include Maz’ja (1985) and Gilbarg and Trudinger (1983).
The latter, though, considers only spaces of functions on bounded domains,
whereas we are concerned mostly with functions defined in all of Rn.



5

Isoperimetric Inequalities for Physical
Quantities

In this chapter we apply the decrease under symmetrization of the L2-Dirichlet
integral, proved in Chapter 3, to solve three famous extremal problems of
classical mathematical physics: among all bounded open sets in the plane with
the same area the disk has smallest principal frequency and largest torsional
rigidity, while among all compact sets in R

3 with the same volume the ball has
smallest Newtonian capacity.

The principal frequency result had been conjectured by Lord Rayleigh in
1877, the torsional rigidity result by St. Venant in 1856, and the capacity result
by Poincaré in 1887. For frequency, the first proofs were given independently
by Faber and Krahn in 1923–1925, for torsional rigidity by Pólya in 1948, and
for capacity by Szegő in 1930. Moreover, the mathematical problem whose
solution gives the torsional result gives also the result that among all domains
� ⊂ R

n with fixed volume, the mean lifetime of a Brownian motion started at
a random point of � and killed when it reaches ∂� is largest when � is a ball.
We shall also obtain symmetrization inequalities involving other notions of
capacity. Corollary 5.16, for example, is Carleman’s result that symmetrization
of ring domains in the plane increases the conformal modulus.

To formulate the problems in terms of Dirichlet integrals we shall introduce
some standard analytic tools such as weak solutions of Poisson equations and
approximation of general open sets by smoothly bounded open sets.

5.1 Weak Solutions of �u = −f

The Laplace operator � on R
n is the operator defined by

�u =
n∑

i=1

uxixi ,
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where u is some C2 function defined in a subset of R
n. In this section we

assume that � is a bounded open subset of Rn. For u ∈ C2(�), v ∈ C1(�)

we have

div(v∇u) = ∇u · ∇v + v�u.

If v is also compactly supported in �, then application of the Gauss–Green
formula (Theorem 4.3) to the vector field v∇u gives∫

�

v �u dx +
∫
�

∇u · ∇v dx = 0.

For f ∈ C(�), it follows that u ∈ C2(�) is a solution of �u = −f if and only if∫
�

∇u · ∇v dx =
∫
�

f v dx, ∀ v ∈ C1
c (�). (5.1)

By approximation, if (5.1) holds for all v ∈ C1
c (�) then it still holds for

all v ∈ W1,2
0 (�). Moreover, (5.1) makes sense if we assume only that u ∈

W1,2(�) and that f ∈ L2(�). Accordingly, we define u to be a weak solution of
�u = −f in � if u ∈ W1,2(�), f ∈ L2(�), and (5.1) holds for all v ∈ W1,2

0 (�).
In this chapter we are often interested in solutions u of �u = −f which

vanish on ∂�. If u is continuous on � this means that u(x) → 0 as x → ∂�.
The appropriate weak notion is to assume that u ∈ W1,2

0 (�). Thus, we arrive
at the following definition.

Definition 5.1 u is a weak solution of

�u = −f in �, u = 0 on ∂�,

if u ∈ W1,2
0 (�), f ∈ L2(�) and (5.1) holds for all v ∈ W1,2

0 (�).

Here is the basic existence and uniqueness theorem for weak solutions in
bounded open sets �.

Proposition 5.2 For each f ∈ L2(�,R), there exists a unique function
u ∈ W1,2

0 (�) such that u is a weak solution of

�u = −f in �, u = 0 on ∂�.

Proof Write H = W1,2
0 (�). For u, v ∈ H, define

B(u, v) =
∫
�

∇u · ∇v dx.

The usual inner product on H making it a real Hilbert space is

[u, v] ≡
∫
�

uv dx + B(u, v).
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Letting ‖·‖H denote the norm associated with [·, ·], Schwarz’s inequality gives

|B(u, v)| ≤ ‖u‖H‖v‖H . (5.2)

Suppose that n ≥ 2. Set p = 2n
n+2 . Then 1 ≤ p < 2, and the Sobolev

conjugate exponent p∗ = np
n−p equals 2. For u ∈ H, set u = 0 in R

n \ �.

Then the extended u belongs to W1,2(Rn). By the Sobolev embedding theorem
(Theorem 4.23) and the finiteness of Ln(�), we have

‖u‖L2(�) ≤ C1‖∇u‖Lp(Rn) = C1‖∇u‖Lp(�) ≤ C2B(u, u)1/2,

where C1 depends only on n, and C2 on n and Ln(�). Thus

B(u, u) ≥ C3‖u‖2
H , (5.3)

where C3 depends only on n and Ln(�).
It follows from (5.2) and (5.3) that the symmetric bilinear form B is itself an

inner product on H and that the pair (H, B) is a Hilbert space. Take f ∈ L2(�).
From Schwarz’s inequality and (5.3), it follows that the linear functional
v → ∫

�
f v dx is bounded on (H, B). By the Riesz Representation Theorem

for Hilbert spaces (Evans, 1998, p. 639), there exists a unique u ∈ H such that
for every v ∈ H,

B(u, v) =
∫
�

f v dx. (5.4)

Thus (5.1) is fulfilled, and Proposition 5.2 is proved for n ≥ 2. The case n = 1
is left to the reader.

With the situation of Proposition 5.2, define an operator K : L2(�) → H
by Kf = u. Then K is linear and �(Kf ) = −f , in the weak sense, for each
f ∈ L2(�). Thus, K is a right inverse of −�.

For f ∈ L2(�) and u = Kf , we have

B(u, u) =
∫
�

fu dx ≤ ‖f ‖L2(�)‖u‖L2(�) ≤ C‖f ‖L2(�)B(u, u)1/2,

where the first equality is from (5.4) and the last inequality is from (5.3). Thus
B(u, u) ≤ C‖f ‖L2(�). Another application of (5.3) shows that

‖u‖H ≤ C‖f ‖L2(�),

where C depends only on n and Ln(�). We have shown that K is a bounded
operator from L2(�) into H = W1,2

0 (�).
Next, take f , g ∈ L2(�). Write u = Kf , v = Kg. Then∫

�

(Kf )g dx =
∫
�

ug dx = B(u, v),
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where we have applied (5.4) with the roles of u and v reversed. Since B is
symmetric, it follows that K is symmetric when L2(�) is equipped with its
usual inner product. Moreover, B(u, u) > 0 unless ∇u = 0 a.e. which, via
(5.1), implies that f = 0 a.e.. Thus,

∫
�
(Kf )f dx > 0, unless f = 0 in L2(�), so

that K is a positive symmetric operator.
By the definition of ‖·‖H we have ‖u‖L2(�) ≤ ‖u‖H . Thus, the inclusion map

i : H → L2(�) is bounded. The Rellich–Kondrachov Theorem (Evans, 1998,
p. 274) asserts that much more is true: the operator i is compact. Compactness
means that each bounded sequence {uk} in H contains a subsequence whose
image under i is norm-convergent in L2(�). It follows that i ◦ K is a compact
operator from L2(�) into L2(�).

Let us suppress the inclusion i and regard K as a map from L2(�) into itself.
Then the discussion above shows that K is compact, symmetric, and positive.
The spectral theory of such operators (see Evans, 1998, pp. 643–645) leads
to the following statements. As always in this section, � is assumed to be a
bounded open subset of Rn.

Proposition 5.3

(a) There is a countably infinite orthonormal basis {uk}∞k=1 of L2(�)

consisting of eigenfunctions of K.
(b) Let μk be the eigenvalue corresponding to uk. Then each μk is positive

real, and

lim
k→∞

μk = 0.

Recall that μ is an eigenvalue of K with corresponding eigenfunction u
if u �≡ 0 and Ku = μu. A proof of Proposition 5.3 can be gleaned from
Theorems 6 and 7 of Evans (1998, pp. 643–645), bearing in mind that L2(�)

is a separable infinite dimensional Hilbert space and that strictly positive
symmetric operators can have only positive eigenvalues.

From Proposition 5.3(b), it follows that one can relabel the sequence of
eigenvalues so that they lie in descending order:

μ1 ≥ μ2 ≥ · · · > 0. (5.5)

Proposition 5.4 With the situation of Proposition 5.3, the largest eigenvalue
μ1 of K satisfies

μ1 = max

{∫
�

(Kf )f dx : ‖f ‖L2(�) = 1

}
.
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Proof For f ∈ L2(�) and {ui} an orthonormal basis of eigenfunctions, one has

f =
∞∑

i=1

aiui,

where ai = ∫
�

fui dx and the series converges in L2(�). Moreover,

∞∑
i=1

a2
i = ‖f ‖2

L2(�)
.

Thus, if ‖f ‖L2(�) = 1,∫
�

(Kf )f dx =
∞∑

i=1

μia
2
i ≤ μ1

∞∑
i=1

a2
i = μ1,

with equality when f = u1.

5.2 Eigenvalues of the Laplacian

We continue to assume that � is a bounded open subset of R
n. Let

K : L2(�) → W1,2
0 (�) be the right-inverse of −� defined in §5.1. Suppose

that u ∈ L2(�) is an eigenfunction of K with eigenvalue μ. Then u ∈ W1,2
0 (�)

since K maps L2(�) into W1,2
0 (�), and u is a weak solution of

u = −�(Ku) = −μ�u.

Set λ = 1/μ. Then u is a weak solution of

�u = −λu in �, u = 0 on ∂�. (5.6)

Solutions u �≡ 0 of (5.6) are said to be eigenfunctions of −� in � with
corresponding eigenvalue λ. Thus, u is an eigenfunction of −� if and only if
u is an eigenfunction of K, and the corresponding eigenvalues are reciprocals
of each other.

A priori, eigenfunctions of −� belong only to W1,2
0 (�). Via elliptic

regularity, one can show that they in fact belong to C∞(�). Moreover, if ∂� is
sufficiently smooth, then eigenfunctions extend continuously to � and solve
the boundary value problem (5.6) in the classical sense. See, for example,
Evans (1998, p. 335) or Gilbarg and Trudinger (1983).

The boundary condition u = 0 on ∂� is called the Dirichlet boundary
condition, and the eigenfunctions and eigenvalues in (5.6) are called Dirichlet
eigenfunctions and eigenvalues. The Neumann boundary value problem
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�u = −λu in �, ∇u · ν = 0 on ∂�,

is also of considerable interest, the corresponding eigenvalues and eigenfunc-
tions being prefixed by “Neumann.” Here ν is the unit exterior normal vector
field on ∂�, and one assumes that ∂� is sufficiently regular that ν can be
suitably defined. In this book we shall consider only the Dirichlet boundary
condition, and thus for us “eigenvalue” and “eigenfunction” are understood to
mean Dirichlet eigenvalue or eigenfunction.

List the eigenvalues μk of K in decreasing order, as in (5.5). Define

λk = μ−1
k , k = 1, 2, . . .

Then, by Proposition 5.3,

0 < λ1 ≤ λ2 ≤ · · · (5.7)

and

lim
k→∞

λk = ∞.

In the list (5.7) each eigenvalue of −� is listed according to its multiplicity.
That is, a number λ appears in the list m times if the nullspace of � + λ

has dimension m. The next proposition asserts, among other things, that λ1 is
simple, that is, has multiplicity m = 1. Thus λ1 < λ2. We call λ1 the principal
eigenvalue of −� on �.

Proposition 5.5 For a bounded open subset � of Rn we have

λ1 = min

{∫
�

|∇u|2 dx : u ∈ W1,2
0 (�), ‖u‖L2(�) = 1

}
. (5.8)

The minimum is attained by each eigenfunction u with eigenvalue λ1 and
‖u‖L2(�) = 1. Moreover, if � is connected then each eigenfunction for λ1

is either positive in � or negative in �, and any two eigenfunctions for λ1 are
multiples of each other.

Formula (5.8) is called the variational principle, or Rayleigh’s formula, for
the principal eigenvalue. The formula can be restated as

λ1 = min

∫
�

|∇u|2 dx∫
�

u2 dx
, (5.9)

where the minimum is over all u ∈ W1,2
0 (�) with u �≡ 0. The ratio in this

formula is called the Rayleigh quotient of u.
Proposition 5.5 is taken from Theorem 2 on p. 336 of Evans (1998), to which

we refer for proofs of the statements following “Moreover.”
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Proof of (5.8) and its equality statement Let u1 ∈ W1,2
0 (�) be an eigenfunc-

tion for λ1 with ‖u1‖L2(�) = 1. Then u1 ∈ C∞(�). By the Gauss–Green
theorem, ∫

�

|∇u1|2 dx = −
∫
�

u1�u1 dx = λ1

∫
�

u2
1 dx = λ1,

which confirms the equality statement in (5.8).
To prove the inequality statement in (5.8) we may assume that u ∈ C2

c (�).
Define f = −�u. Then f ∈ Cc(�). Since K is the right-inverse of � we also
have f = −�(Kf ). The uniqueness assertion in Proposition 5.2 implies that
Kf = u.

The positive symmetric operator K : L2(�) → L2(�) has a positive
symmetric square root K1/2. Write g = K1/2f . Then∫

�

|∇u|2 dx = −
∫
�

u�u dx =
∫
�

uf dx =
∫
�

(Kf )f dx =
∫
�

g2 dx,

and ∫
�

u2 dx =
∫
�

(Kf )2 dx =
∫
�

(Kg)g dx.

From these two equalities and Proposition 5.4 with w = g/‖g‖L2 , we obtain
when ‖u‖L2(�) = 1 that∫

�

|∇u|2 dx =
∫
�

g2 dx∫
�
(Kg)g dx

≥ λ1.

This is the inequality statement for (5.8).

5.3 Symmetrization Decreases the Principal Eigenvalue

We continue to let � denote a bounded open subset of Rn, and will denote by
λ1(�) the principal eigenvalue of −� on �. When n = 2 we can interpret
� as a membrane or drumhead, and then

√
λ1(�) represents the smallest

natural frequency at which the drum can oscillate. Accordingly, λ1(�) has
been called the principal frequency, the fundamental frequency, the bass note,
or the principal tone of the drum. We shall continue to use this language in all
dimensions.

What does the size or shape of � tell us about λ1(�)? To begin with, let
us consider dilations of �. If u is an eigenfunction on � with eigenvalue λ

and ρ > 0 is a positive constant, then the function uρ(x) = u(x/ρ) is an
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eigenfunction for −� on the domain ρ� with eigenvalue ρ−2λ. In particular,
for the principal eigenvalues we have

λ1(ρ�) = ρ−2λ1(�).

If ρ becomes large then λ1(ρ�) becomes small. This suggests that large
domains tend to have small principal eigenvalues.

For another example, take positive numbers a and b and let �a,b be the
rectangle (0, aπ) × (0, bπ) in R

2. Then

u(x1, x2) = sin
x1

a
sin

x2

b

is a positive eigenfunction of −� on �a,b with eigenvalue a−2 + b−2. Since
u > 0 in �a,b and eigenfunctions corresponding to distinct eigenvalues are
orthogonal, a−2 + b−2 must be the principal eigenvalue of �a,b. If we
specialize to b = 1/a, then L2(�a,b) = π2 for all a > 0 while

λ1(�a,b) = a2 + a−2,

which is minimal for a = 1. So if two rectangles in R
2 have the same area,

the longer thinner one has the larger principal eigenvalue. Put another way, the
more symmetric rectangle has the smaller principal eigenvalue.

Among all bounded open � ⊂ R
n with the same Lebesgue measure, which

ones have smallest λ1? The rectangle example suggests that the minimizing �,
if there is one, should be as symmetric as possible, and thus is quite likely to
be a ball of the prescribed measure. For n = 2 this result was conjectured by
Lord Rayleigh in 1877 (see Rayleigh, 1945, pp. 339–340), who wrote:

If the area of a membrane be given, there must evidently be some form of boundary for
which the pitch (of the principal tone) is the gravest possible, and this form can be no
other than the circle.

We shall also refer to the associated n-dimensional statement as Rayleigh’s
Conjecture.

Conjecture (Rayleigh) For each bounded open set � ⊂ R
n we have

λ1(�) ≥ λ1(�
#). (5.10)

Rayleigh’s Conjecture was independently proved by Faber (1923) and
Krahn (1925) in 2 dimensions, and by Krahn in all dimensions (see Lumiste
and Peetre, 1994, pp. 139–174).

Theorem 5.6 (Faber–Krahn) Rayleigh’s Conjecture (5.10) is true.
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Proof By Proposition 5.5 there exists a positive function u ∈ W1,2
0 (�) with

‖u‖L2(�) = 1 such that

λ1(�) =
∫
�

|∇u|2 dx. (5.11)

By Corollary 3.22, u# ∈ W1,2
0 (�#) and∫

�#
|∇u#|2 dx ≤

∫
�

|∇u|2 dx. (5.12)

Since u and u# have the same distribution, we have ‖u#‖L2(�#) = ‖u‖L2(�) = 1,
so by Proposition 5.5,

λ1(�
#) ≤

∫
�#

|∇u#|2 dx.

Inequality (5.10) now follows from (5.12) and (5.11).

A different rearrangement proof of the Faber–Krahn theorem will be given
in Example 10.11, based on an elliptic comparison theorem.

Next, we shall compute the principal eigenvalue and associated eigenfunc-
tions for the unit ball Bn = {x ∈ R

n : |x| < 1}. Let u be an eigenfunction
for λ1(B

n). By Proposition 5.5, u is either everywhere positive or everywhere
negative in B

n. Let us assume u is positive. Then, since symmetrization
decreases Dirichlet integrals, u# is also a minimizer for (5.11) and hence is
also an eigenfunction for λ1(B

n). Since any two eigenfunctions for λ1(B
n) are

multiples of each other, and u and u# have the same distribution, we must have
u = u#. Thus, u is positive and symmetric decreasing on B

n. To normalize, let
us take u(0) = 1, instead of normalizing ‖u‖L2(�).

Committing a slight abuse of notation, we write u(r) = u(x) when r = |x|.
Then u is a decreasing function on [0, 1]. By elliptic regularity theory, u is
continuous on [0, 1] with u(1) = 0, and u ∈ C∞(0, 1). By the chain rule,

�u = u′′ + (n − 1)r−1u′,

where the prime denotes differentiation with respect to r.
By equating coefficients, one verifies that the singular boundary value

problem

U′′(r) + (n − 1)r−1U′(r) = −U(r) on (0, ∞), U(0) = 1, (5.13)

has solution

U(r) =
∞∑

k=0

(−1)k2−2k�(n/2)

k!�(k + n
2 )

r2k.
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The Bessel function Jν of the first kind of order ν ∈ R is defined by the
series

Jν(r) = rν
∞∑

k=0

(−1)k2−2k2−ν

k!�(k + ν + 1)
r2k.

Take

ν = n

2
− 1, n ≥ 1.

Then the solution U of (5.13) can be written as

U(r) = 2ν�(ν + 1)r−νJν(r).

For ν ≥ 0 the zeros of Jν are symmetrically placed on R and there are
infinitely many of them. See, e.g., Lebedev (1972). Denote by jν the smallest
positive zero of Jν . Then the function v(r) = U(jνr) satisfies v(0) = 1,
v(r) > 0 on [0, 1), v(1) = 0 and, using (5.13),

v′′(r) + (n − 1)r−1v′(r) = −j2νv(r).

Thus, v(x) is a positive eigenfunction of −� on B
n with v = 0 on ∂Bn and

v(0) = 1. We conclude that v = u, and that λ1(B
n) = j2ν . These facts, and a bit

more, are summarized in the following proposition.

Proposition 5.7 Let ν = n
2 − 1. Then

(a) λ1(B
n) = j2ν .

(b) u(x) = 2ν�(ν + 1)(jν |x|)−νJν(jν |x|) is the eigenfunction associated with
λ1(B

n), normalized by u(0) = 1.
(c) If B is an open ball in R

n of radius R, then

λ1(B) = R−2j2ν = α2/n
n (Ln(B))−2/nj2ν .

Taking B = �#, the Faber–Krahn Theorem can be restated as follows.

Corollary 5.8 For each bounded open set � ⊂ R
n we have

λ1(�) ≥
(Ln(�)

αn

)−2/n

j2n
2 −1,

with equality when � is a ball.

Returning to unit balls, we note that J−1/2(r) = (2/πr)1/2 cos r and that
J1/2(r) = (2/πr)1/2 sin r. Thus, for n = 1 we have λ1(B

1) = π2/4, u(x) =
cos(π2 x), and for n = 3, λ1(B

3) = π2, u(x) = (πx)−1 sin (πx).
For n = 2,

j0 ≈ 2.4, λ1(B
2) ≈ 2.42, u(x) = J0(j0|x|).
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In these formulas, u continues to denote the principal eigenfunction of the
unit ball with u(0) = 1.

In addition to the Faber–Krahn Theorem, there are a number of other
“isoperimetric inequalities” involving eigenvalues. For example, in 1955
Payne, Pólya and Weinberger (1955) conjectured that for bounded open sets
in R

n the ratio

λ2(�)/λ1(�)

is maximal when � is a ball. This conjecture was proved by Ashbaugh and
Benguria (1992). Their article from 1994 surveys related work and lists many
open problems.

If we think of � as representing a “clamped plate” rather than a membrane,
then the fundamental mode of vibration is determined by the smallest eigen-
value �1(�) and corresponding eigenfunction u of the problem

��u = �u, in �, u = ∇u = 0 on ∂�.

The partial differential equation is understood to hold in the weak sense,
and the boundary conditions to mean that u ∈ W2,2

0 (�). The variational
characterization of �1 is

�1(�) = min

{∫
�

|�u|2 dx : u ∈ W2,2
0 (�), ‖u‖L2(�) = 1

}
.

The minimum is achieved by eigenfunctions corresponding to �1(�).
Rayleigh also conjectured that among all � ⊂ R

2 with fixed Lebesgue
measure, �1(�) is minimal when � is a ball (see Rayleigh, 1945, p. 382).
The conjecture was finally proved by Nadirashvili (1993). Ashbaugh and
Benguria (1995) proved the corresponding result when n = 3. For n ≥ 4,
the analogue of Rayleigh’s plate conjecture remains open. See Ashbaugh,
Benguria, and Laugesen (1997) for an excellent survey of pertinent results
and open problems, and Chasman and Langford (2016) for the vibrating plate
problem in Gauss space.

5.4 Domain Approximation Lemmas

Let � be a domain (connected open set) in R
n. In the next section, and in some

later chapters, we will need to approximate general domains by domains with
smooth boundary. In this section we establish some results along these lines.

Recall that for x ∈ R
n and E ⊂ R

n, Ec ≡ R
n \ E and d(x, E) =

inf{|x − y| : y ∈ E}. The notation E1 � E2 means that E1 is a compact subset
of E2. For ε > 0, set



164 Isoperimetric Inequalities for Physical Quantities

�ε = {x ∈ � : d(x, ∂�) > ε}.

Then �ε is an open subset of �, but is not necessarily connected.

Lemma 5.9 (Domain Approximation Lemma 1) Let � be a bounded domain
in R

n. Given ε > 0 there exists a C∞ domain �′ such that

�ε � �′ � �.

Proof We may assume that �ε is nonempty. Fix x0 ∈ �ε . For δ > 0, let Dδ be
the set of all points x ∈ � for which there exists a curve γ ∈ C([0, 1],�) such
that γ (0) = x0, γ (1) = x, and mint∈[0,1] d(γ (t), ∂�) > δ. An easy argument
shows that each Dδ is open and connected. The connectedness of � implies
that

⋃
δ Dδ = �. Also, �ε � �, since � is bounded. The sets Dδ increase as

δ decreases, and so there exists δ such that

�ε ⊂ Dδ .

Furthermore, Dδ ⊂ �δ , so that Dδ � �. This δ is fixed for the rest of the proof.
Let K : Rn → R

+ be a smooth nonnegative bump function as in §3.4,
and for η > 0, let Kη(x) = η−nK(η−1x). Let f = Kη ∗ χ�δ/2 . Then
f ∈ C∞(Rn, [0, 1]). Since Dδ � �δ/2 � �, we can choose η small enough
so that f = 1 on Dδ and f is compactly supported in �.

By Sard’s Theorem (see Smith, 1983, p. 342), the set of critical values of f
has L1-measure zero. Fix a regular value t ∈ (0, 1). The set ( f > t) is an open
set compactly contained in �. The implicit function theorem implies that the
boundary of each component of f > t has C∞ boundary, as defined in Evans
(1998, p. 626), and that the closures of the components are disjoint. Let �′ be
the component of f > t which contains x0. Since x0 ∈ �ε ⊂ Dδ ⊂ ( f > t) and
Dδ is connected, we must have Dδ ⊂ �′. This �′ satisfies the requirements of
Lemma 5.9.

The next Domain Approximation Lemma will be about unbounded domains
�. For such domains, given ε > 0 and R ∈ (0, ∞), set

�ε(R) = �ε ∩ B
n(R),

where �ε has the same meaning as above.

Lemma 5.10 (Domain Approximation Lemma 2) Let � be an unbounded
domain in R

n. Given ε > 0 and R ∈ (0, ∞), there exists a C∞ domain �′ such
that

�ε(R) � �′ � �.
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Proof Assuming that �ε(R) is nonempty, take x0 ∈ �ε(R). For positive num-
bers δ and S, let Dδ(S) be the set of all points x in � for which there exists a path
γ ∈ C([0, 1],�) such that γ (0) = x0, γ (1) = x, mint∈[0,1] d(γ (t), ∂�)> δ

and maxt∈[0,1] |γ (t)| < S. The Dδ(S) are open, connected, compactly contained
in � and increase when δ decreases and S increases. The union over δ and S of
all the Dδ(S) equals �. The proof that some Dδ(S) is contained in suitable �′

proceeds as in Lemma 5.9.

By repeated application of Lemma 5.9 or 5.10, we obtain the following
result, which is valid for all domains �, bounded or unbounded.

Lemma 5.11 (Domain Approximation Lemma 3) Let � be a domain in R
n.

There exists a sequence of domains

�(1) � �(2) � · · ·
such that each �(j) is C∞, and

∞⋃
j=1

�(j) = �.

Such a sequence is sometimes called a smooth or a regular exhaustion of �.
If � is a disconnected open set in R

n, then by regularly exhausting each
component of � and forming appropriate unions we can construct a regular
exhaustion of �. Of course, the sets �(j) in this exhaustion will eventually
become disconnected.

5.5 Symmetrization Decreases Newtonian Capacity

Let K be a nonempty compact subset in R
3. For μ ∈ M+(K), the set of

nonnegative Borel measures on K, define

V(μ) =
∫

K×K
|x − y|−1 dμ(x) dμ(y), (5.14)

V(K) = inf{V(μ) : μ ∈ M+(K) : μ(K) = 1}, (5.15)

Cap(K) = V(K)−1. (5.16)

When K is the empty set we define V(K) = ∞ and Cap(K) = 0.
The quantity V(μ) is called the Newtonian energy of μ, V(K) the Newto-

nian energy of K, and Cap(K) the Newtonian capacity of K. The adjectives
electrostatic or gravitational are sometimes used instead of Newtonian. In this
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section we will not consider any other energies or capacities, and so the
adjective Newtonian will be dropped. References for this section include Lieb
and Loss (1997), Hayman and Kennedy (1976), and Landkof (1972). Because
of different normalizations, our value of Cap(K) differs from Landkof’s by
a factor of π . The potential kernels in Hayman and Kennedy (1976) are the
negative of ours. Kellogg (1967) discusses some of the physical background.

What is “energetic” about V , and what does the “capacity” of K have to do
with the ability of K to hold something? To find out, we shall take a quick and
informal detour through electrostatics. According to Coulomb’s inverse-square
law, electrical charges q1 and q2 at points x1 and x2 of R3 repel each other with
a force of magnitude q1q2|x1 − x2|−2. Here q1 and q2 can be either positive or
negative, and if they have opposite sign the force is understood to be attractive.
So if q is a charge at a fixed point a ∈ R

3, then the force exerted by q on a unit
positive charge located at x is given by the vector field

F(x) = q
x − a

|x − a|3 .

Set u(x) = q|x − a|−1. Then ∇u = −F, and we call u the potential function
of the charge q at the point a. Now

u(x) =
∫
γ

F · dx

where the line integral is taken over any path γ from ∞ to x not passing
through a. Thus, u(x) is the work required to bring a positive unit charge from
∞ to x when the charge q is fixed at a. Typically, q is measured in coulombs
and u in volts.

From now on, we shall mostly consider only positive charges. Let K be a
nonempty compact subset of R3, which we imagine to be a perfect conductor
with the rest of R3 being a vacuum. Let μ ∈ M+(K) and V(μ) be defined by
(5.14). Then for Borel sets E ⊂ K, μ(E) represents the amount of charge in E.
If μ is a continuous measure, i.e. has a continuous charge density, then V(μ)

is a limit of sums of the form∑
μ(Ki)μ(Kj)|xi − xj|−1 = 2

∑
1≤i<j≤N

μ(Ki)μ(Kj)|xi − xj|−1

where the Ki are disjoint Borel sets with union K, xi ∈ Ki, and the first sum
is over all pairs of indices (i, j) with 1 ≤ i ≤ N, 1 ≤ j ≤ N, and i �= j. The
second sum is twice the total work required to move charges q1, . . . , qN with
strengths qi = μ(Ki) from ∞ to the points xi. Thus, V(μ) may be interpreted
as twice the work required to distribute a unit point charge at ∞ onto the set K
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so that each Borel subset E of K has charge μ(E). This is one reason we call
V(μ) the energy of μ.

By similar reasoning, one sees that the force F(x) on a positive unit charge
at x ∈ R

3 exerted by the charge distribution μ is given formally by

F(x) =
∫

K

x − y

|x − y|3 dμ(x).

The Newtonian potential u of μ is defined on R
3 by

u(x) =
∫

K
|x − y|−1 dμ(y).

Then ∇u = −F, and u(x) is the work required to bring a unit positive charge
from ∞ to x when the charge distribution μ is fixed on K.

The energy V(K) is defined in (5.15) to be the infimum of all energies
V(μ) as μ runs over nonnegative charge distributions on K with total charge
one. Frostman (1935) proved that if V(K) < ∞ then in fact a minimizing
μ exists and is unique. Moreover, if K is a nice set, then the potential u of
the minimizing μ is constant on K. It follows that the electric force field F
created by μ is zero in the interior of K, and that the tangential component of
F on ∂K is also zero. If the charges are all confined to K and if the system of
charges reaches the distribution μ, then the charges will move no more: they
have reached equilibrium. Accordingly, the energy minimizing μ is called the
equilibrium distribution of K. The energy V(K) of the set K equals the energy
of its equilibrium distribution.

We continue to assume that K is a nice set with V(K) < ∞, and will denote
now the equilibrium measure of K by μK . Let ν be any nonnegative Borel
measure on K with ν(K) > 0, and denote its Newtonian potential by uν . Then

V(ν) =
∫

K
uν dν ≤ ν(K)‖uν‖K ,

where ‖u‖K ≡ supK u. Since ν/ν(K) is a probability measure, the definition of
V(K) gives

V(K)[ν(K)]2 ≤ V(ν).

Combining the two inequalities, we obtain

ν(K)/‖uν‖K ≤ 1/V(K).

By definition (5.16), the right-hand side equals Cap(K). Moreover, the
equilibrium potential uK ≡ uμK takes the constant value V(K) on K, so that
equality holds when ν = μK . Thus

Cap(K) = sup{ν(K)/‖uν‖K : ν ∈ M+(K), ν(K) > 0}.
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The sup need be taken only over ν with ‖uν‖K = 1, or over ν with ‖uν‖K ≤ 1.
We conclude that

Cap(K) equals the maximum amount of charge K can hold while keeping
the voltage at most 1 everywhere on K.

In electrostatics, capacity is also called capacitance.
Let us return now to mathematics, and discuss a symmetrization problem for

capacity. Poincaré (1887) asserted that among all compact K ⊂ R
3 with the

same volume, Cap(K) is smallest when K is a ball, and offered a partial proof.
Another partial proof was given by Krahn (1925). Szegő (1930) gave the first
complete proof.

Theorem 5.12 (Szegő) For each compact K ⊂ R
3, we have

Cap(K) ≥ Cap(K#). (5.17)

Recall that for measurable sets E ⊂ R
n, E# is the open ball centered at the

origin with the same Lebesgue measure as E. We have defined the capacity
only for compact sets. That is why we take the closure of K# in (5.17).

If B is a closed ball in R
3 of radius R, then Cap(B) = R, by Landkof (1972,

p. 163) or Lieb and Loss (1997, p. 164), and so another way to state Szegő’s
Theorem is

Cap(K) ≥ (α−1
3 L3(K))1/3,

where α3 = 4π
3 is the volume of the unit ball in R

3.
To prove Szegő’s Theorem, we need a variational characterization of Cap(K)

in terms of Dirichlet integrals. Let

A(K) = {v ∈ Lip(R3) : 0 ≤ v ≤ 1 in R
3, v = 1 on K, lim

x→∞ v(x) = 0}.

Proposition 5.13 For compact K ⊂ R
3 we have

Cap(K) = inf

{
1

4π

∫
R3

|∇v|2 dx : v ∈ A(K)

}
. (5.18)

If v ∈ A(K), then v# ∈ A(K#). Thus, once we have proved Proposition 5.13,
Theorem 5.12 is an immediate consequence of the fact that symmetrization
decreases Dirichlet integrals (Theorem 3.6 or 3.11).

Proof The complement of K in R
3 is the disjoint union of countably many

connected open sets, exactly one of which, call it �0, is unbounded. Let K0 =
R

3 \ �0. Then K0 equals K with its holes filled in, and ∂K0 ⊂ K ⊂ K0.
By Landkof (1972, p. 162), we have

Cap(K) = Cap(K0) = Cap(∂K0). (5.19)
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Denote by D(K) the right-hand side of (5.18). If v ∈ A(K), define v0 by
v0 = v on �0, v0 = 1 on K0. One easily checks that v0 ∈ A(K0) and that∫
R3 |∇ v0|2 dx ≤ ∫

R3 |∇ v|2 dx. Thus, D(K0) ≤ D(K). The opposite inequality
is trivial, since K ⊂ K0. Using also (5.19), we see that each side of (5.18) is
unchanged when K is replaced by K0. Thus it suffices to prove Proposition 5.13
for compact K for which � ≡ R

3 \ K is connected. We may further assume
that Cap(K) > 0, since if Cap(K) = 0 we can express K as a decreasing
intersection of sets with positive capacity, and then use continuity properties
of Cap and D as in (5.24) and (5.25) below. Thus, for the rest of the proof of
Proposition 5.13, we assume that:

Assumption A1. � ≡ R
3 \ K is connected, and Cap(K) > 0.

By Frostman’s Theorem (see Hayman and Kennedy, 1976, p. 235), the
infimum of V(μ) in (5.15) is attained by a unique probability measure μK

on K called the equilibrium measure or equilibrium distribution. The function

uK(x) =
∫
R3

|x − y|−1 dμK(y), x ∈ R
3,

is called the equilibrium potential of K. It is harmonic in �, and satisfies
0 ≤ uK ≤ V(K) in R

3 with uK = V(K) on K except for a set of Newtonian
capacity zero. Write, for simplicity, u = uK .

In addition to Assumption A1, let us assume temporarily that ∂� is C∞.
Choose R large enough that K ⊂ B

3(R), and write �(R) = � ∩ B
3(R). In

this case each point of ∂�(R) is regular for the Dirichlet problem (Gilbarg
and Trudinger, 1983, pp. 24–27), and Theorem 6.14 of Gilbarg and Trudinger
(1983, p. 107) shows that u ∈ C2(�(R)).

The integral defining u also shows ∇u is bounded in |x| ≥ R, and that

u(x) = R−1 + O(R−2),
∂u

∂r
= −R−2 + O(R−3), (5.20)

uniformly for |x| = R with R large. These facts imply that u ∈ Lip(�). Also
u ≡ V(K) on K, and so it follows that u ∈ Lip(R3).

The Gauss–Green formula (4.8), applied in �(R) to the vector field u∇u,
along with harmonicity of u and (5.20), gives∫

B3(R)
|∇u|2 dx =

∫
�(R)

|∇u|2 dx

= −
∫
�(R)

u�u dx +
∫
∂�

u
∂u

∂ν
|dx| +

∫
|x|=R

u
∂u

∂r
|dx|

= V(K)

∫
∂�

∂u

∂ν
|dx| + O(R−1).
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Here |dx| denotes the Hausdorff measure H2 and ν the outer unit normal.
Letting R → ∞, we deduce∫

R3
|∇u|2 dx = V(K)

∫
∂�

∂u

∂ν
|dx|.

Applying Gauss–Green again in �(R), this time to the vector field ∇u, and
then recalling (5.20), we obtain∫

∂�

∂u

∂ν
|dx| = −

∫
|x|=R

∂u

∂r
|dx| = 4π + O(R−1).

The last two equalities give∫
R3

|∇u|2 dx = 4πV(K). (5.21)

Set now vK = u/V(K). Then vK ∈ A(K), and by (5.21),∫
R3

|∇vK |2 dx = 4π
1

V(K)
= 4π Cap(K). (5.22)

Compact sets have finite capacity, so (5.22) implies that ∇vK ∈ L2(R3).
Let v denote an arbitrary function in A(K) with ∇v ∈ L2(R3). Set φ =

v−vK . Then φ = 0 on K and at ∞. From Gauss–Green and (5.20), we deduce∫
B3(R)

∇vK · ∇φ dx =
∫
�(R)

∇vK · ∇φ dx =
∫

|x|=R
φ
∂vK

∂r
|dx| = o(1)

as R → ∞. Hence∫
B3(R)

|∇v|2 dx =
∫
B3(R)

|∇vK |2 dx +
∫
B3(R)

|∇φ|2 dx + o(1)

and so by letting R → ∞,∫
R3

|∇v|2 dx ≥
∫
R3

|∇vK |2 dx. (5.23)

From (5.22) and (5.23), it follows that

Cap(K) = 1

4π

∫
R3

|∇vK |2 dx = 1

4π
inf

{∫
R3

|∇v|2 dx : v ∈ A(K)

}
.

Proposition 5.13 is proved when ∂� is C∞.
Let now � be any domain satisfying assumption A1 and let R be so large

that K ⊂ B
3(R − 2). Recall that

D(K) ≡ inf

{∫
R3

|∇v|2 dx : v ∈ A(K)

}
.
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Given 0 < ε ≤ 1, the domain approximation Lemma 5.10 applied to �

furnishes a bounded domain �′ � � with C∞ boundary such that �′ contains
the sphere |x| = R, and d(x, K) < ε for each x ∈ � \ �′ with |x| < R. Let
�′′ = �′ ∪ (|x| > R). Then �′′ is a domain, and K′′ ≡ R

3 \ �′′ is compact.
If x ∈ K′′ then d(x, K) < ε. For positive integers m, let Km be the set K′′

corresponding to ε = 1/m.
Take v ∈ A(K). Set

γm = inf
x∈Km

v and vm = min

{
v

γm
, 1

}
.

Then vm ∈ A(Km), so

D(Km) ≤
∫
R3

|∇vm|2 dx ≤ γ−2
m

∫
R3

|∇v|2 dx.

Taking the inf over v ∈ A(K) yields

D(Km) ≤ γ−2
m D(K).

Since v ∈ Lip(R3), we have γm → 1 as m → ∞. Thus

lim sup
m→∞

D(Km) ≤ D(K).

The reverse inequality, with lim inf in place of lim sup, is also true since
K ⊂ Km and hence D(K) ≤ D(Km). We conclude that

lim
m→∞D(Km) = D(K). (5.24)

From the continuity of capacity (Landkof, 1972, p. 141), it follows that

lim
m→∞ Cap(Km) = Cap(K). (5.25)

Since, by the first part of the proof, Cap(Km) = 1
4πD(Km) for each m, (5.24)

and (5.25) imply the desired inequality Cap(K) = 1
4πD(K).

The main ingredient of the above proof is inequality (5.23), which asserts,
roughly, that among all reasonable functions in � with boundary values 1 on K
and 0 at ∞, the minimizer vK of the Dirichlet integral is the competitor which
is harmonic in �. This is a special case of Dirichlet’s principle. See Evans
(1998) or Gilbarg and Trudinger (1983) for more.

5.6 Other Types of Capacity

The term “capacity” is applied to many different sorts of set functions. In
this section we will briefly examine two families of capacities, each of which
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contains the Newtonian capacity studied in §5.5, and will also take a look at
the logarithmic capacity in the plane.

5.6.1 Variational p-Capacity

For n ≥ 1, let U be an open subset of Rn and K be a compact subset of U. The
pair (K, U) is called a condenser. In electrostatics, condensers are also called
capacitors.

For 1 ≤ p < ∞, the (variational) p-capacity of the condenser (K, U) is
typically defined to be

Capp(K, U) = inf

{∫
U

|∇u|p dx : u ∈ A(K, U)

}
where A(K, U) is the class of all u ∈ Lip(Rn) satisfying

u = 1 on K, 0 ≤ u ≤ 1 in R
n, u = 0 on R

n \ U, u(x) → 0 as x → ∞.

As usual, we get the same infimum if the competing functions are taken
over various other classes. See the treatment in Evans and Gariepy (1992) of
“capacity” for an approach using Sobolev functions.

Proposition 5.13 shows that when n = 3 the variational 2-capacity of
(K,R3) coincides with the Newtonian capacity of Cap(K) of K, except for
a factor of 4π . We also saw in §5.5 that Cap(K) can be interpreted as the
maximum amount of charge K can hold when the voltage drop between
any point of K and ∞ is at most 1. For general open U ⊂ R

3 with
K ⊂ U, Capp(K, U) has a similar interpretation: Imagine that both K and
∂U are conductors, which are separated by some insulating material. Place
a positive charge distribution μ on K with total charge Q and a negative
charge distribution ν on ∂U with total charge −Q. Then, apart from constants,
Cap2(K, U) equals the maximum Q over all μ and ν for which the Newtonian
potential u of μ + ν satisfies supK u − inf∂U u ≤ 1.

Returning now to Capp for general p, we note that if u ∈ A(K, U) then it is

easy to see that u# ∈ A(K#, U#). From Theorem 3.6 or Theorem 3.11, about
decrease of p−Dirichlet integrals under symmetrization, we obtain:

Theorem 5.14 (Symmetrization decreases the capacity of condensers) For
K ⊂ U ⊂ R

n as above, we have

Capp(K, U) ≥ Capp(K#, U#), 1 ≤ p < ∞, n ≥ 1.

For the energy functional
∫ |∇u|p dx, the associated Euler–Lagrange

equation is the “p-Laplace equation”

− div(|∇u|p−2∇u) = 0. (5.26)
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Solutions to (5.26) are called p-harmonic functions. For p = 2, (5.26) reduces
to �u = 0, and so 2-harmonic functions in open subsets of Rn are ordinary
harmonic functions.

For an introduction to Euler–Lagrange equations, see Evans (1998,
chapter 8) or Gilbarg and Trudinger (1983, §11.5). For more about p-harmonic
functions, variational methods, and related topics, see Heinonen et al. (1993)
and Iwaniec and Martin (2001).

A real function u on an open set � is said to be a weak solution of the
p-harmonic equation if u ∈ W1,p(�) and for every v ∈ W1,p

0 (�),∫
�

|∇u|p−2∇u · ∇v dx = 0.

For p = 2, interior elliptic regularity (Evans, 1998, p. 316) insures that weak
solutions of �u = 0 are in fact in C∞(�). But when p > 2, the p-Laplace
equation becomes degenerate at points where ∇u = 0, and when 1 < p < 2
it becomes singular at those points. The best one can say about regularity of
solutions when p �= 2 is that u ∈ C1,α(�) for some α < 1 depending on
p and n. For n = 2 the best possible exponent α was found by Iwaniec and
Manfredi (1989).

For n ≥ 1, it turns out that a minimizer u of the p-Dirichlet integral
over A(K, U) is (weakly) p-harmonic in U \ K and thus solves the Dirichlet
problem for the equation (5.26) with boundary values u = 1 on ∂K, u = 0
on ∂U. Conversely, Lipschitz solutions to this Dirichlet problem also solve
the minimization problem. “Lipschitz” can be replaced by “Sobolev,” in which
case the boundary values are to be understood in the trace sense. For existence
of minimizers, see Heinonen et al. (1993) or Evans (1998, p. 448). (The C∞-
Urysohn Lemma as in Folland (1999, p. 245) produces a smooth function on
R

n which is 1 on K, zero on ∂U, which insures that the “admissible set” in
Evans (1998) is not empty.)

When p = 2, the minimizer u is harmonic in U\K with u = 1 on ∂K, u = 0
on ∂U. This function u is called the harmonic measure of ∂K with respect to
U \ K.

Apart from p = 2, the most interesting p-capacity in R
n is when p = n. This

is because the n-Dirichlet integral is conformally invariant: If F is a conformal
mapping between domains �1 and �2 in R

n and u is a suitable function on
�2, then ∫

�2

|∇u|n dx =
∫
�1

|∇(u ◦ F)|n dx.

It follows that the n-capacity of a condenser in R
n is invariant under conformal

maps. Capn is therefore called the conformal capacity. Because of conformal
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invariance, the n-Laplace equation plays an important role in quasiconformal
analysis in R

n. See, for example, Iwaniec and Martin (2001).

5.6.2 Riesz α-Capacity

Let 0 < α < n and K be a compact subset of Rn. Define the Riesz α-energy
Wα(K) of K by

Wα(K) = inf
∫

K×K
|x − y|α−n dμ(x) dμ(y),

where the infimum is taken over all probability measures μ on K.
Define the Riesz α-capacity Cα(K) of K by

Cα(K) = (Wα(K))−1.

For α = 2 and n = 3, C2(K) is the Newtonian capacity studied in §5.5.
In the notations for energy and capacity we have suppressed the dependence
on n. References for α-capacity include Landkof (1972) and Hayman and
Kennedy (1976). (We have followed the notation of Landkof (1972) except
for a normalizing constant. Our Cα(K) is the same as Hayman–Kennedy’s
Cn−α(K)n−α .)

When α = 2 and n ≥ 3 the kernel |x|2−n is harmonic in R
n \ {0}. The proof

of Proposition 5.13 in §5.5 carries over without change to give an extension of
that proposition to all dimensions n ≥ 3:

C2(K) = 1

(n − 2)βn−1
Cap2(K,Rn), n ≥ 3, (5.27)

where βn−1 is the Hausdorff measure of the sphere S
n−1.

By Theorem 5.14, it follows that for compact K ⊂ R
n,

C2(K) ≥ C2(K#) n ≥ 3. (5.28)

Watanabe (1983) (see also Betsakos (2004) and Méndez-Hernández (2006))
proved that the analogue of (5.28) holds when n ≥ 2 and 0 < α < 2. It is not
known if (5.28) holds when n ≥ 3 and 2 < α < n.

The potential theory associated with α = 2 is closely connected with the
theory of Brownian motion. Similarly, the potential theory associated with 0 <

α < 2 is related to the theory of symmetric α-stable processes, also called
stable Lévy processes. References include Doob (1953), Hoel et al. (1972),
Betsakos (2004), Wu (2002), and Blumenthal and Getoor (1968).
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5.6.3 Logarithmic Capacity

For compact K ⊂ R
n, define the logarithmic energy Wn(K) of K to be

Wn(K) = inf
∫

K×K
log

1

|x − y| dμ(x)dμ(y),

where the infimum is over all Borel probability measures μ on K. The
logarithmic capacity of K, which we shall denote by Lcap(K), is defined to be

Lcap(K) = e−Wn(K).

We shall restrict the rest of our discussion to the case n = 2. In addition
to Hayman and Kennedy (1976) and Landkof (1972), good accounts of log
capacity in the plane can be found in Tsuji (1975), Ransford (1995), and
Kellogg (1967).

To interpret logarithmic potential theory electrostatically, imagine a doubly
infinite cylinder K̂ in R

3 with axis parallel to the x3-axis and base K in the
x1x2 plane, with K compact. For μ ∈ M+(K), μ(K) = 1, define a measure μ̂

on K̂ by dμ̂ = dμ dx3. Then μ̂ describes a charge distribution on K̂ which is
uniform in the x3-direction and has total charge 1 per unit x3-length. One can
show that the Newtonian potential u of μ̂ depends only on x1 and x2, and apart
from a constant multiple, is given by the logarithmic potential

u(x) =
∫

K
log

1

|x − y| dμ(y), x = (x1, x2) ∈ R
2.

Like the kernels |x|2−n in R
n, the kernel − log |x| is harmonic in R

2 \ {0}. But
unlike |x|2−n, − log |x| does not approach zero as x → ∞. This causes the
logarithmic potential theory in R

2 to differ from the Newtonian theory in R
n

for n ≥ 3.
When B is a closed disk of radius R the uniform probability measure on ∂B

is the minimizing measure for the W2(B) problem. It follows that W2(B) =
log 1

R , and hence Lcap(B) = R. One can also show that when U = R
2, then

Cap2(K,R2) = 0

for every compact K ⊂ R
2. Thus, in contrast to (5.27) when n ≥ 3, Lcap(K) is

not a function of Cap2(K,R2). There is, though, a more complicated formula
connecting log capacity with the variational 2-capacity:

Lcap(K) = lim
R→∞

R exp

(
− 2π

Cap2(K,B2(R))

)
, (5.29)

whose proof we sketch below. Since, by Theorem 5.14, symmetrization
decreases the capacity of condensers when n = p = 2, from (5.29) we obtain:
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Theorem 5.15 For each compact K ⊂ R
2, we have

Lcap(K) ≥ Lcap
(

K#
)

.

Theorem 5.15 appears in Szegő (1930), along with Theorem 5.12 about
capacity in R

3.

Proof To prove (5.29) we use the fact that logarithmic capacity in the plane
can be expressed in terms of Green functions (Tsuji, 1975, p. 83), (Ahlfors,
1973, p. 27). Given compact K ⊂ R

2, let � ⊂ R
2 be the unbounded

component of the complement of K. Assume that Lcap(K) > 0, and let
g(x) = g(x, ∞) be the Green function of the domain �∪ {∞} on the Riemann
sphere with pole at ∞. Then g is harmonic in �, g(x) → 0 as x tends to most
points of ∂�, and

g(x) = log |x| + γ + o(1), x → ∞, (5.30)

for some real constant γ = γ (K). It turns out that γ = W2(K), so that

− log (Lcap(K)) = γ = lim
x→∞[g(x, ∞) − log |x|].

Continuing now with our sketch of proof of (5.29), we assume that � has
C∞ boundary. After this case is done, we can pass to the case of arbitrary K
as in the proof of Proposition 5.13. For large positive values of t the level set
�(t) = g−1(t) is an analytic Jordan curve enclosing K in its interior. Let �t be
the intersection of � with the inside of �(t). Then �t is a domain, and 1−(g/t)
is the harmonic measure of K with respect to �t. Set Ut = �t ∪ K. Then

Cap(K, Ut) =
∫
�t

|∇g/t|2 dx = t−2
∫
�(t)

g
∂g

dν
|dx|

= t−1
∫
�(t)

∂g

dν
|dx| = 2π t−1.

(5.31)

To obtain the last equality, use the fact that
∫
�(t)

∂g
dν |dx| does not change if we

change the path of integration to |x| = r for large r, differentiate (5.30) with
respect to r, then let r → ∞.

Next, choose a nonnegative function ε(R) decreasing to zero such that∣∣g(x) − γ − log |x|∣∣ < ε(R)

for every |x| = R when R is large. For fixed R, take

t1 = log R + γ − ε(R), t2 = log R + γ + ε(R).

Then

�t1 ⊂ B
2(R) \ K ⊂ �t2 .
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The capacity of a condenser (K, U) decreases if K stays fixed and U
increases. Thus

Cap(K, Ut2) ≤ Cap(K,B2(R)) ≤ Cap(K, Ut1). (5.32)

Formula (5.29) easily follows from (5.31) and (5.32).

Suppose now that U is a simply connected domain in R
2 and that K is a

compact connected subset of U. Then � = U \ K is called a ring domain.
The ring domain is called nondegenerate if K has more than one point and U
is not the whole plane. When the domain is nondegenerate there is a unique
number R ∈ (1, ∞) and a conformal mapping f of � onto the annulus A(R) =
{1 < |z| < R}; see Ahlfors (1973, p. 255). The (conformal) modulus of the
ring domain � is defined to be

Mod� = log R.

It is clear that the modulus of a ring domain is a conformal invariant. As
discussed above, the variational 2-capacity of condensers in the plane is also a
conformal invariant. For the annulus A(R) the modulus is, of course,

Mod A(R) = log R.

The harmonic measure of |x| = 1 with respect to A(R) is the function ω(x) =
log(R/|x|)/ log R. We have

Cap2(B
2(1),B2(R)) =

∫
A(R)

|∇ω|2 dx = 2π

log R
.

The first equality follows from the relation between variational 2-capacity
and harmonic measure discussed in the paragraph above (5.27). The second
equality is a simple computation. We conclude that for nondegenerate ring
domains U \ K the capacity of the associated condenser (K, U) is reciprocal to
the modulus, i.e.,

Mod(U \ K) = 2π

Cap2(K, U)
.

By Theorem 5.14, symmetrization decreases the p-capacity when
n = p = 2. Combining with (5.29), we obtain a theorem of Carleman (1918):

Corollary 5.16 (Carleman) Let U \ K be a nondegenerate ring domain, with
K ⊂ U, K compact and connected, U connected and simply connected. Then

Mod(U \ K) ≤ Mod (U# \ K#).
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5.7 Symmetrization Increases Torsional Rigidity
and Mean Lifetime

Let � be a bounded open set in R
n. By Proposition 5.2, the Poisson boundary

value problem

�u = −2 in �, u = 0 on ∂�,

has a unique weak solution u ∈ W1,2
0 (�). By interior elliptic regularity (Evans,

1998, p. 316), u is in fact in C∞(�). If ∂� is sufficiently smooth, then u is a
classical solution to the Poisson boundary value problem (Evans, 1998, §6.3).
Define also

T(�) = 2
∫
�

u dx.

When n = 2 and � is simply connected, u is called the stress function and
T(�) the torsional rigidity of �. One imagines an infinitely long cylinder with
axis parallel to the x3-axis in R

3 and with cross-section �. When the cylinder
is twisted around its axis at a rate of φ angular units per unit length, the stress
vector equals μφ times the curl of the vector field (0, 0, u), where μ is the
shear modulus. The torsional rigidity turns out to equal the torque required
to accomplish a unit angle of twisting per unit length, divided by the shear
modulus. See Bandle (1980, p. 63), Pólya and Szegő (1951, §5.2).

For ease of reference, we shall continue to call u the stress function in
all dimensions and for all bounded open �, simply connected or not. In this
general context, the pde �u = −2 is the Euler equation corresponding to the
energy functional

I(w) = 1

2

∫
�

|∇w|2 dx −
∫
�

2w dx.

See Evans (1998, p. 435). From the Remark in Evans (1998, p. 452), it follows
that the function u is the unique minimizer of I(w) over w ∈ W1,2

0 (�). Since
I(u) ≥ I(|u|), we must have u ≥ 0.

By Gauss–Green,∫
�

|∇u|2 dx = −
∫
�

u�u dx =
∫
�

2u dx.

It follows that

I(u) = −
∫
�

u dx = −1

2
T(�). (5.33)

Let v denote the solution of the symmetrized problem

�v = −2 in �#, v = 0 on ∂�#.
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The function u# is in W1,2
0 (�#). Applying Corollary 3.22 (symmetrization

decreases the Dirichlet integral of Sobolev functions), we obtain

I(u) ≥ I(u#) ≥ I(v).

From (5.33) we deduce:

Theorem 5.17 (Pólya) For bounded open sets � ⊂ R
n, we have

T(�) ≤ T(�#). (5.34)

The phenomenon that among all simply connected plane domains of fixed
area the disk has largest torsional rigidity had been suggested by St. Venant
in 1856. The first proof was given by Pólya (1948). Proofs appear also in
Pólya and Szegő (1951, chapter V) and Bandle (1980, p. 67), along with
related results. Later in this book, Theorem 10.10 proves a pointwise inequality
u#(x) ≤ v(x) (due to Talenti) that integrates over �# to give another proof of
Pólya’s Theorem 5.17.

Incidentally, for the ball Bn(R), the stress function v is

v(x) = 1

n
(R2 − |x|2).

Mean Lifetimes of Brownian Particles
Standard Brownian motion in R

n is a stochastic process Bt with values in R
n

starting at a point B0 = x ∈ R
n that satisfies certain hypotheses. Rather than

list them, we advise the non-probabilistic reader to think of Brownian motion
as a continuous n-dimensional random walk by a particle that is equally likely
to go in any direction. Let � be a bounded open subset of Rn. We shall always
assume our Brownian motion starts in �. Define the exit time from � to be the
random variable τ� on the Brownian probability space defined by

τ� = first time that the Brownian particle leaves �.

One can think of the particle as dying when it hits ∂�. Then τ� is the particle’s
age at death.

Let g be a bounded function in C∞(�). Suppose that u is a solution to the
Poisson boundary value problem

1

2
�u = −g in �, u = 0 on ∂�.

Then, as with the stress function, u ∈ C∞(�) and the boundary condition
is classically satisfied for smooth enough ∂�. The solution u to this Poisson
problem has a probabilistic representation:
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u(x) = Ex

(∫ τ�

0
g(Bt) dt

)
, x ∈ �, (5.35)

where ExY denotes the mean of a random variable Y on the Brownian
probability space when the particle starts at x. This representation is an
example of Dynkin’s Formula in probability theory.

Here is an outline of a proof for (5.35), taken from Durrett (1984,
pp. 251–252) and with details omitted. By Itô’s formula, for 0 < t < τ�,

u(Bt) = u(B0) +
∫ t

0
∇u(Bs) · dBs + 1

2

∫ t

0
�u(Bs) ds.

Let t → τ�. Since u satisfies the Poisson equation and vanishes on ∂�, it
follows that

0 = u(B0) +
∫ τ�

0
∇u(Bs) · dBs −

∫ τ�

0
g(Bs) ds. (5.36)

If the particle starts at x ∈ � then B0 ≡ x. Moreover, the stochastic integral
involving dBs is the limit of a martingale. When we apply Ex to (5.36) the
stochastic integral term vanishes, and the result is exactly (5.35).

Let’s specialize now to g ≡ 1. The solution u is then the stress function of
� and (5.35) gives

u(x) = Ex(τ�), x ∈ �.

The expression Ex(τ�) represents the average lifetime of a particle started
at x. Suppose that we choose the starting point x according to a uniform
distribution on �. Then

M(�) ≡ 1

Ln(�)

∫
�

u(x) dx = 1

Ln(�)

∫
�

Ex(τ�) dx

can be regarded as the average lifetime of a particle born at random somewhere
in �. From the definition of T(�), we see that

M(�) = 1

2Ln(�)
T(�).

Thus, Theorem 5.17 may be restated as:

Corollary 5.18 (Symmetrization increases the mean lifetime) For bounded
open � ⊂ R

n, we have

M(�) ≤ M(�#).

For further inequalities connecting the mean lifetime and geometric or
function theoretic quantities, see Bañuelos and Carroll (1994) and Bañuelos
et al. (2002).
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5.8 Notes and Comments

In this chapter most of the history and citations are imbedded in the text.
Here we shall just mention a survey article by Payne (1967) discussing
problems open at the time, some still open, and a list compiled by J. Hersch
of many articles related to Pólya-Szegő type inequalities. The list appears in
Pólya (1984) as part of Hersch’s commentary on item 177 in Pólya’s list of
publications. A wealth of extremal results and conjectures on eigenvalues of
the Laplacian can be found in a recent book on shape optimization and spectral
theory (Henrot, 2017).

As noted in §3.3, Dirichlet integrals do not change under polarization in a
hyperplane H ⊂ R

n. It follows that

λ1(�) ≥ λ1(�H),

for bounded open sets �. Similar inequalities hold for the other physical
quantities considered in this chapter.
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Steiner Symmetrization

6.1 Definition of Steiner Symmetrization

Let n and k be integers with n ≥ 2 and 1 ≤ k ≤ n − 1. Set m = n − k.
Decompose x = (x1, . . . , xn) ∈ R

n as

x = (y, z) = (y1, . . . , yk, z1, . . . , zm).

Then R
n = R

k × R
m, and R

n is foliated into parallel affine k-planes
{(y, z) : y ∈ R

k}, indexed by z. For example, when k = 1, Rn is foliated into
lines parallel to the x1-axis, i.e., orthogonal to the hyperplane x1 = 0. Such
a line intersects this hyperplane at the point (0, z). When k = n − 1, Rn is
foliated into parallel affine hyperplanes orthogonal to the xn-axis, and z ∈ R is
the “height” at which the hyperplane hits the xn-axis.

Let E ⊂ R
n be an Ln-measurable set. Set

E(z) = {y ∈ R
k : (y, z) ∈ E}, z ∈ R

m.

We call E(z) the slice of E through z. By Fubini’s Theorem, E(z) is
Lk-measurable for Lm-almost every z ∈ R

m. For measurable E(z), define E#(z)
to be the symmetric decreasing rearrangement of E(z) in R

k. Then E#(z) is the
open ball centered at the origin in R

k with the same Lk-measure as E(z). Set
E#(z) = ∅ if E(z) is not Lk-measurable. Note that we have E#(z) = {0} when
Lk(E(z)) = 0.

Definition 6.1 For 1 ≤ k ≤ n − 1, the (k, n)-Steiner symmetrization of E is
the set

E# = {(y, z) : y ∈ E#(z), z ∈ R
m} =

⋃
z∈Rm

(E#(z) × {z}).

This notation E# was used earlier to denote the n-dimensional symmetric
decreasing rearrangement of E, which can be regarded as the (n, n)-Steiner
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symmetrization. In this chapter, though, we reserve E# to denote (k, n)-Steiner
symmetrization with 1 ≤ k ≤ n − 1.

The function h(x) = h(y, z) = αk|y|k − Lk(E(z)) is Ln-measurable on R
n

(the E(z) term by Fubini’s Theorem), and E# = {h < 0}. Thus, E# is an
Ln-measurable set. Also,

Ln(E#) =
∫
Rm

Lk(E#(z)) dz =
∫
Rm

Lk(E(z)) dz = Ln(E). (6.1)

To visualize the (1, n)-Steiner symmetrization of E, take a line L in R
n which

is orthogonal to the hyperplane x1 = 0. Compute the 1-dimensional measure
of L ∩ E. Replace L ∩ E with an open interval symmetric about x1 = 0 which
has the same length as L∩E. Then E# is the union of these intervals as L ranges
over all such lines.

To visualize (n − 1, n)-Steiner symmetrization, slice E with an affine
hyperplane H orthogonal to the xn-axis. Compute the (n − 1)-dimensional
measure of H ∩ E. Replace H ∩ E with an (n − 1)-dimensional open ball
centered on the xn-axis which has the same Ln−1-measure as H ∩ E. Then E#

is the union of these (n − 1)-balls as H ranges over all such hyperplanes.
As an interesting conceptual exercise, the reader is invited to visualize (2, 4)-

Steiner symmetrization in R
4. If successful, he or she can then try (k, n)-

symmetrization in R
n for general 2 ≤ k ≤ n − 2. A generic example of a

bounded set E ⊂ R
n and its Steiner symmetrization is depicted in Figure 6.1.

Next, let Z be an open set in R
m. Define the open set X ⊂ R

n by

X = R
k × Z.

Let f : X → R
+ be a nonnegative Ln-measurable function on X. Assume

that for Lm-almost every z ∈ Z the slice function f z ≡ f (·, z) satisfies

Lk( f z > t) < ∞, for every t > 0. (6.2)

n−kn−k

E (z)

z

k
E   z( )

k #

z

0

E E #

R

R

R

R

Figure 6.1 A measurable set E ⊂ R
n and its (k, n)-Steiner symmetrization

E#. For any z ∈ R
n−k, the k-dimensional slice of E# through z is the centered

open ball that has the same k-dimensional measure as the corresponding slice
of E.
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Condition (6.2) will be called the finiteness condition. In the Steiner context,
we do not require that Ln( f > t) < ∞ for all t > 0.

The symmetric decreasing rearrangement ( f z)# is well defined on R
k when

(6.2) is satisfied. Set ( f z)# ≡ 0 for the z ∈ R
m at which (6.2) is not satisfied.

Definition 6.2 For 1 ≤ k ≤ n − 1, the (k, n)-Steiner symmetrization of f is
the function f # defined on X by

f #(x) = f #(y, z) = ( f z)#(y), y ∈ R
k, z ∈ Z.

For example, to construct the (1, n)-Steiner symmetrization of f on X =
R× Z with Z ⊂ R

n−1, consider lines in Z orthogonal to the hyperplane x1 = 0
which intersect this hyperplane at points (0, z), with z ∈ Z. On each such line,
replace f by its 1-dimensional symmetric decreasing rearrangement.

For (n − 1, n)-Steiner symmetrization, Z ⊂ R is a countable union of open
intervals. On each affine hyperplane R

n−1 × {z} with z ∈ Z, replace f by
its (n − 1)-dimensional s.d.r. on that hyperplane. Thus, f is a function of n
variables, but f # depends on only the two variables |y| and z. The line {(0, xn) ∈
R

n : xn ∈ R} is the axis of symmetry for the symmetrized function.
For general k, the (k, n)-Steiner symmetrization f # depends on n − k + 1

variables. The author finds it useful to view f (y, z) as a family of functions of
y depending on an m-dimensional parameter z.

According to Definition 1.29 in Chapter 1, each of the ( f z)# is defined
everywhere on R

k. Hence, f # is defined everywhere in X. Also, if z is such
that (6.2) holds, then the sets {y ∈ R

k : f (y, z) > t}#
and {y ∈ R

k : f #(y, z) > t}
are equal for each t > 0. Since the set of z at which (6.2) fails is an Lm-nullset,
it follows that the sets {x ∈ R

n : f (x) > t}# and {x ∈ R
n : f #(x) > t} differ at

most by an Ln-null set. Hence, f # is Ln-measurable on X. Moreover, since the
slice functions f z and ( f #)z are equidistributed on R

k for Lm-almost every z, it
follows as in (6.1) that f and f # are equidistributed on X ⊂ R

n.
We have defined (k, n)-Steiner symmetrization with respect to a certain

distinguished m-plane, namely x1 = · · · = xk = 0. Given any affine m-plane
H ⊂ R

n, one can define in the same way Steiner symmetrization of sets or
functions with respect to H. For example, the (1, n)-Steiner symmetrization of
a set E with respect to an affine hyperplane H is the union of line segments
centered on H and orthogonal to H, the length of each segment being equal
to the 1-dimensional measure of the intersection of E with the line containing
that segment. Almost all the results to follow involving Steiner symmetrization
with respect to x1 = · · · = xk = 0 are still valid for Steiner symmetrization
with respect to any H. To verify this, one can inspect the proofs, or one can
reduce the case of general H to that of special H by means of an isometry
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T = a + S of Rn onto itself which maps H onto x1 = · · · = xk = 0. Here
a ∈ R

n and S ∈ O(n).
Chapters 1–5 contain 32 theorems, corollaries and propositions involving

the symmetric decreasing rearrangement f # on R
n. They are listed below.

• Chapter 1: Propositions 1.30 and 1.43.
• Chapter 2: Propositions 2.10 and 2.11, Theorems 2.12 and 2.15, Corollaries

2.13, 2.16, 2.19, 2.20, 2.22, and 2.23(b).
• Chapter 3: Theorems 3.6, 3.7, 3.11, and 3.20; Corollaries 3.8, 3.9, 3.21, and

3.22.
• Chapter 4: Theorems 4.8, 4.10, 4.14, and 4.16; Corollaries 4.13 and 4.15.
• Chapter 5: Theorems 5.6, 5.12, 5.14, 5.15, and 5.17, and Corollary 5.18.

Most of these results assert that some functional increases or decreases under
s.d.r. In the rest of this chapter we shall present Steiner counterparts. The
reader may verify at the end of the chapter that practically all the items in
the table have either been given a Steiner version or have been shown not to
have one. Some Steiner results are proved just like they were in the s.d.r. case,
or as consequences thereof, but in some situations, especially inequalities for
Dirichlet integrals, significantly new tools must be constructed. Our plan is to
start with results from Chapter 1, then move monotonically upward to end with
results from Chapter 5.

In the rest of this chapter the integers n ≥ 1 and 1 ≤ k ≤ n − 1 will
be fixed, and f # will always denote the (k, n)-Steiner symmetrization, unless
otherwise noted. We shall often invoke Fubini’s Theorem, without saying so.
Bear in mind that we are Steiner symmetrizing only nonnegative functions
whose slice functions satisfy the finiteness condition (6.2), whereas the results
for symmetric decreasing rearrangements on R

n often just assumed that f is a
real valued function satisfying

λf (t) = Ln( f > t) < ∞, ∀ t > ess inf f , (6.3)

which is condition (1.1) in Chapter 1.

6.2 Steiner Counterparts for Results in Chapter 1

According to Proposition 1.18(a), a function and its s.d.r. have the same
distribution. In the discussion after Definition 6.2, we noted that this is also true
for each of the (k, n)-Steiner symmetrizations. Parts (b)–(e) of Proposition 1.30
are not true for Steiner symmetrization, but evident analogues hold for the slice
functions f z.
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Now let { fj} be a sequence of nonnegative Ln-measurable functions on
X = R

k × Z, Z open in R
m, each of which satisfies (6.2).

Proposition 6.3 (a) If fj ↗ f Ln-a.e. on X, and f satisfies (6.2), then
f #
j ↗ f # Ln-a.e. on X.

(b) If fj → f in measure on X and each fj satisfies (6.3), then f #
j → f # in

measure on X.

At the end of this section we give an example showing that (b) can fail if
(6.3) does not hold.

Proof of Proposition 6.3(a) The hypothesis of (a) implies that f z
j ↗ f z Lk-

a.e for Lm-almost every z. By Proposition 1.43(a), for Lm-almost every z,
f #
j (y, z) ↗ f #(y, z) at each y ∈ R

k. Thus, f #
j ↗ f # Ln-a.e. in X.

To prove (b) we need the following lemma, in which ∗ denotes decreasing
rearrangement and X an arbitrary measure space.

Lemma 6.4 Let f and g be nonnegative measurable functions on a measure
space (X,μ) which satisfy λf (t) < ∞, λg(t) < ∞ for every t > 0. Then for
each ε > 0 and M > 0 we have

μ(| f ∗ − g∗| ≥ ε) ≤ 6Mε−1μ(| f − g| ≥ ε/3) + max{λf (M), λg(M)}.
Proof Assume first that max{‖f ‖L∞ , ‖g‖L∞} ≤ K < ∞. Let E =
(| f − g| ≥ ε/3), Ec = X \ E and α = μ(E). Define

F = fχEc , G = gχEc .

Then 0 ≤ F ≤ f and 0 ≤ G ≤ g. Moreover, the following inequalities hold:

‖F − G‖L∞ ≤ ε/3, (6.4)

f ∗(x + α) ≤ F∗(x), g∗(x + α) ≤ G∗(x), x ∈ (0, ∞). (6.5)

Inequality (6.4) is clear. As for (6.5), f and F agree except on the set E, so
( f > t) ⊂ (F > t) ∪ E, hence

λf (t) ≤ λF(t) + α, t ≥ 0. (6.6)

Take x ∈ (0, ∞). Let t = F∗(x). Then λF(t) = μ(F > F∗(x)) = μ(F∗ >

F∗(x)) ≤ x, so by (6.6),

λf (t) ≤ x + α.

If f ∗(x+α) were strictly greater than t, then right continuity of f ∗ would imply
λf (t) > x+α, contradicting the inequality above. Thus, f ∗(x+α) ≤ t = F∗(x),
which is (6.5).
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By Corollary 2.23 and (6.4), we have ‖F∗ − G∗‖L∞ ≤ ε/3, from which
follows

μ(| f ∗ − g∗| ≥ ε) ≤ μ(| f ∗ − F∗| ≥ ε/3) + μ(|G∗ − g∗| ≥ ε/3). (6.7)

Also, using (6.5),

μ(| f ∗ − F∗| ≥ ε/3) ≤ 3

ε

∫ ∞

0
( f ∗ − F∗) dx

≤ 3

ε

∫ ∞

0
( f ∗(x) − f ∗(x + α)) dx

= 3

ε

∫ α

0
f ∗(x) dx ≤ 3

ε
Kμ(| f − g| ≥ ε/3).

The same inequality holds when f ∗ and F∗ are replaced by g∗ and G∗.
Combined with (6.7), we obtain

μ(| f ∗ − g∗| ≥ ε) ≤ 6ε−1Kμ(| f − g| ≥ ε/3). (6.8)

Now let us drop the assumption that f and g are in L∞(X), and let both
ε and M be given. Define (new) functions F and G by F = min( f , M),
G = min(g, G). By (6.8),

μ(|F∗ − G∗| ≥ ε) ≤ 6ε−1Mμ(|F − G| ≥ ε/3).

Now F∗ = min( f ∗, M). Thus F∗ = f ∗ on [xM , ∞), where xM is the smallest
point such that f ∗(xM) = M. Then xM = λf (M). Similar considerations hold
for G∗ and g. Thus,

μ(| f ∗ − g∗| ≥ ε) ≤ max{λf (M), λg(M)} + μ(|F∗ − G∗| ≥ ε). (6.9)

Combining (6.9), (6.10) and the pointwise inequality |F − G| ≤ | f − g|, we
obtain

μ(| f ∗ − g∗| ≥ ε) ≤ max{λf (M), λg(M)} + 6ε−1Mμ(| f − g| ≥ ε/3).

The lemma is proved.

Proof of Proposition 6.3(b) Let now X resume its position as R
k × Z, take

μ = Ln and consider fj and f as in Proposition 6.3(b). The finiteness of
λf (t) is part of Proposition 1.41. Recall that the k-dimensional s.d.r. h# for
h : Rk → R

+ is related to the decreasing rearrangement by h#(y) = h∗(αk|y|k).
Then using Lemma 6.4 with f replaced by a slice function f z and g by f z

j , for
fixed ε and M, we obtain
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Ln(| f #− f #
j |≥ ε) =

∫
Z
Lk(|( f z)# − ( f z

j )
#| ≥ ε) dz

≤ 6Mε−1
∫

Z
Lk(| f z− f z

j | ≥ ε/3) dz +
∫

Z
[λf z(M)+ λf z

j
(M)] dz

= 6Mε−1Ln(| f − fj| ≥ ε/3) + λf (M) + λfj(M).

Let j → ∞, apply Proposition 1.40, then let M → ∞. The result is

lim
n→∞Ln(| f # − f #

j | ≥ ε) = 0.

The proof just given of Proposition 6.3 obviously works when { fj} is a
nonnegative sequence in R

n satisfying the (6.3) and converging in measure
to f , with # denoting s.d.r. Thus, we have a new proof of the convergence in
measure statement of Proposition 1.41.

The following example with (1, 1)-Steiner symmetrization in R
2 shows that

the finiteness assumption Ln( fj > t) < ∞ for each j and for each t > 0 in
Proposition 6.3(b) cannot be replaced by the weaker finiteness condition that
each fj satisfy (6.2).

Example 6.5 Define � on R
+ by �(t) = 1/t for 0 < t < 1, �(t) = 0 for

t ≥ 1. For 0 < δ < 1, it is easily checked that

�(t) − �(t + δ) > 1/2, for 0 < t < δ1/2.

Define �(t, δ) = �(t) for δ < t < 1 and �(t, δ) = 0 for other t ∈ R
+. Then

�∗(t) = �(t) and

�∗(t, δ) = �(t + δ), t ∈ (0, ∞).

It follows that

L({t ∈ R
+ : |�(t) − �(t, δ)| > 0}) = δ (6.10)

and

L({t ∈ R
+ : |�(t) − �∗(t, δ)| > 1/2}) > δ1/2. (6.11)

For i ≥ 1 and j ≥ 1, define fj(y, z) on R
2 as follows: fj(y, z) = 0 when z ≤ 0

and

fj(y, z) = �(2|y|, i−2j−1), i − 1 < z ≤ i, i ≥ 1.

Then each fj satisfies (6.2). Let f (y, z) = �(2|y|) for z > 0 and f (y, z) = 0 for
z ≤ 0. From (6.10) and (6.11), it easily follows that for j ≥ 1,

L2(| f − fj| > 0) ≤ j−1π2/6
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and

L2(| f # − f #
j | > 1/2) = ∞.

Thus, { fj} converges in measure to f , but the (1, 1)-Steiner symmetrizations
{ f #

j } do not converge in measure to f #.

6.3 Steiner Analogues for Two Simple Polarization Results

Recall from §1.7 that H(Rn) is the set of all affine hyperplanes in R
n. Suppose

that H ∈ H(Rn) has the form

H = H1 × R
m, where H1 ∈ H(Rk). (6.12)

This means that vectors in R
n normal to H are parallel to R

k. If (6.12) holds
then for y ∈ R

n, z ∈ R
m,

ρH(y, z) = (ρH1 y, z), (6.13)

where ρH denotes reflection in H.
Moreover, for nonnegative measurable functions f on X the slices f z satisfy

( f z)H1 = ( fH)z, z ∈ Z. (6.14)

In the two propositions to follow, the # denotes (k, n)-Steiner symmetriza-
tion of functions on X = R

k × Z.

Proposition 6.6 Let f be a nonnegative measurable function on X for which
almost every slice function f z, z ∈ Z, satisfies the finiteness condition
Lk( f z > t) < ∞ for each t > 0. If H ∈ H(Rn) satisfies (6.12), and
0 /∈ H, 0 ∈ H+, then

( f #)H = f #. (6.15)

Proposition 6.7 Suppose that f ∈ Cc(X) and that f �= f #. Then there exists
H ∈ H(Rn) of the form (6.12) with 0 /∈ H, 0 ∈ H+ such that∫

X
f f # dx <

∫
X

fHf # dx. (6.16)

Proposition 6.6 follows easily from (6.13), (6.14) and Proposition 2.10,
applied to the slice functions. The proposition can fail if H ∈ H(Rn) does
not satisfy (6.12).

Proposition 6.7 follows from the Fubini decomposition, Proposition 2.11(b),
a points of density argument and continuity on Z of the functions
z → ∫

Rk f z ( f z)# dy and z → ∫
Rk( fH)z ( f z)# dy.
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The Steiner analogue of Proposition 2.11(a), which asserts that f ∈ Cc(X)

implies f # ∈ Cc(R
n), also remains true in the Steiner case. It will be proved

in §6.5.

6.4 Certain Integral Functionals Increase or Decrease
under Steiner Symmetrization

Theorem 2.15, one of the main results of Chapter 2, asserts that, under
appropriate assumptions, the integrals∫

R2n
�( f (x1), g(x2))K(|x1 − x2|) dx1 dx2

and ∫
Rn

�( f (x), g(x)) dx

decrease when f and g are replaced by their symmetric decreasing rearrange-
ments. Theorem 2.15 spawns various other integral inequalities for s.d.r.s,
embodied in Corollaries 2.16, 2.19, 2.20, and 2.22.

All of these integral inequalities remain true for Steiner symmetrization.
We record them in a megatheorem, Theorem 6.8. Notation is as follows:

• n = k + m, 1 ≤ k ≤ n − 1. Z is an open set in R
m. X = R

k × Z.
• f # denotes the (k, n)-Steiner symmetrization of f . If x ∈ R

n then x = (y, z)
with y ∈ R

k, z ∈ Z.
• x1 and x2 denote points of Rn, with respective decompositions

xi = (yi, zi), i = 1, 2.

Theorem 6.8 Suppose that:

(i) f and g are nonnegative Ln-measurable functions on X satisfying the
finiteness condition (6.2) for Lm-almost every z ∈ Z.

(ii) K : R+ → R
+ is decreasing.

(iii) � : R+ × R
+ → R

+ is in AL0 (defined in §2.3).
(iv) � : R+ → R

+ is convex and increasing, with �(0) = 0.

Then: ∫
X2
�( f (x1), g(x2))K(|x1 − x2|) dx1 dx2

≤
∫

X2
�( f #(x1), g#(x2))K(|x1 − x2|) dx1 dx2,

(6.17)
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X
�( f (x), g(x)) dx ≤

∫
X
�( f #(x), g#(x)) dx, (6.18)

∫
X

fg dx ≤
∫

X
f #g# dx, (6.19)

∫
X2

f (x1)g(x2)K(|x1 − x2|) dx1 dx2

≤
∫

X2
f #(x1)g

#(x2)K(|x1 − x2|) dx1 dx2,
(6.20)

∫
X
�(| f # − g#|) dx ≤

∫
X
�(| f − g|) dx, (6.21)

∫
X2
�(| f #(x1) − g#(x2)|)K(|x1 − x2|) dx1 dx2

≤
∫

X2
�(| f (x1) − g(x2)|)K(|x1 − x2|) dx1 dx2.

(6.22)

Moreover, if f , g, K, and � satisfy the hypotheses of Theorem 2.15(b), then
equality holds in (6.17) and (6.20) if and only if there exists a translation T of
R

n such that f = f # ◦ T and g = g# ◦ T, Ln-a.e.
If � satisfies the hypotheses of Theorem 2.15(d), then equality holds in

(6.18) and (6.19) if and only if the set

Az ≡ {(y1, y2) ∈ R
2k : f (y1, z) < f (y2, z) and g(y1, z) > g(y2, z)}

has L2k(Az) = 0 for Lm-almost every z ∈ Z.

Proof The integral on the left side of (6.17) equals∫
Z2

dz1dz2

∫
R2k

�( f (y1, z1), g(y2, z2))K((|y1 − y2|2 + |z1 − z2|2)1/2) dy1dy2.

For a ≥ 0, the function t → K((t2 + a2)1/2) is nonnegative and decreasing
on [0, ∞). By Theorem 2.15(a), for each fixed z1, z2, the integral with respect
to dy1 dy2 increases when f (y1, z1) and g(y2, z2) are replaced by f #(y1, z1) and
g#(y2, z2), where # denotes s.d.r. on R

k. We conclude that inequality (6.17)
remains true when # denotes (k, n)-Steiner symmetrization.

Each of the inequalities (6.18)–(6.22) can be similarly proved for Steiner
symmetrization using Fubini’s Theorem and the corresponding s.d.r inequali-
ties in Chapter 2.

The equality statements can be derived from Theorems 2.15(b), 2.15(d) and
point of density arguments. Details are left to the reader.
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6.5 Steiner Symmetrization Decreases
the Modulus of Continuity

For s.d.r.s, a cornerstone of the theory expounded in Chapter 2 is Theorem
2.12, which asserts that the modulus of continuity of a continuous function
on R

n decreases under symmetric decreasing rearrangement. This decrease
was a principal ingredient in our proof of the basic inequalities for s.d.r. in
Theorem 2.15. Now we will return the favor: with the aid of the integral
inequalities, we shall prove that continuity moduli decrease under Steiner
symmetrization.

We shall also require a small generalization of the s.d.r. modulus of
continuity result which we record as the following lemma. In the lemma,
we use g̃ to denote the k-dimensional s.d.r. of a nonnegative function g on
R

k. Note that if limy→∞ g(y) = 0, then g satisfies the finiteness condition
Lk(g > t) < ∞ for every t > 0, so that g̃ exists.

Lemma 6.9 Let g and h be nonnegative continuous functions on R
k with

limy→∞ g(y) = limy→∞ h(y) = 0. Then for each t > 0,

sup{|g̃(y1) − h̃(y2)| : (y1, y2) ∈ R
2k, |y1 − y2| ≤ t}

≤ sup{|g(y1) − h(y2)| : (y1, y2) ∈ R
2k, |y1 − y2| ≤ t}.

(6.23)

Proof Fix t > 0. Assume first that g and h have support in an open ball B(R)
centered at the origin. Let

A = {(y1, y2) ∈ B(R + t) × B(R + t) : |y1 − y2| ≤ t}.
Then

sup{|g(y1) − h(y2)| : (y1, y2) ∈ R
2k, |y1 − y2| ≤ t}

= sup{|g(y1) − h(y2)| : (y1, y2) ∈ A}

= lim
p→∞

[∫
A

|g(y1) − h(y2)|p dy1 dy2

]1/p

= lim
p→∞

[∫
|y1−y2|≤t

|g(y1) − h(y2)|p dy1 dy2

]1/p

.

In the second equality, the limit of the p-norms equals the complete
supremum rather than the essential supremum because the functions g and
h are continuous on R

k. By the definition of s.d.r., g̃ and h̃ are also supported
in B(R), and by Theorem 2.12, g̃ and h̃ are continuous on R

k. Thus, the same
identities hold when g and h are replaced by g̃ and h̃. By Corollary 2.19 with
K = χ[0,ε], the last integral decreases when f and g are replaced by their s.d.r.s.
Thus, (6.23) holds when g and h have compact support.
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If g and h are continuous nonnegative functions tending to zero at ∞, then
(g−ε)+ and (h−ε)+ have compact support. The s.d.r. of (g−ε)+ is (g̃−ε)+.
For fixed t, the sup on the right-hand side of (6.23) is the increasing limit of
the sups for (g − ε)+ and (h − ε)+. The corresponding statement holds for the
s.d.r.s. Thus, the validity of (6.23) for each (g − ε)+ and (h − ε)+ implies its
validity for g and h.

Let us return now to our usual Steiner setup: X = R
k × Z, where 1 ≤ k ≤

n − 1 and Z is an open subset of Rm. Here is the main theorem about Steiner
symmetrization and the modulus of continuity ω.

Theorem 6.10 Let f be a continuous nonnegative function on X such that

lim
y→∞ f (y, z) = 0, ∀ z ∈ Z. (6.24)

Then

ω(t, f #) ≤ ω(t, f ), 0 < t < ∞.

If (6.24) holds for a particular z then, as noted above, the slice function f z

satisfies the finiteness condition (6.2) for that z. In general the converse is false.
But if f is uniformly continuous on X then (6.2) for a given z does imply (6.24)
for that z. In fact, for uniformly continuous f , satisfying (6.24) for all z ∈ Z
is equivalent to satisfying (6.2) for all z ∈ Z, which is equivalent to satisfying
(6.2) for almost every z ∈ Z.

The hypothesis in Theorem 6.10 is a bit stronger than the hypothesis in
Theorem 2.12. The nonnegativity hypothesis in Theorem 6.10 is there because
we have only considered Steiner symmetrizations for nonnegative functions.
Hypothesis (6.24) can probably be weakened, but we will not pursue this
question now.

Proof Let t > 0 be given. Take x1 = (y1, z1), x2 = (y2, z2) with |x1 − x2| ≤ t
and x1, x2 ∈ X. Define s by s2 = t2 − |z1 − z2|2. Apply Lemma 6.9 with
g = f z1 , h = f z2 and t replaced by s. Then

| f #(x1) − f #(x2)| = |g̃(y1) − h̃(y2)|
≤ sup

|v1−v2|≤s
|g(v1) − h(v2)| ≤ sup

|u1−u2|≤t
| f (u1) − f (u2)|

= ω(t, f ).

Thus, ω(t, f #) ≤ ω(t, f ).

Our next goal is to prove a Steiner version of the isodiametric inequality.
Again, the proof is based on a lemma which generalizes the s.d.r. case. In the
statement of the lemma, the tilde denotes s.d.r. on R

k.
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Lemma 6.11 Let E1 and E2 be nonempty Lk-measurable subsets of Rk. Then

sup{|y1 − y2| : y1 ∈ Ẽ1, y2 ∈ Ẽ2} ≤ sup{|y1 − y2| : y1 ∈ E1, y2 ∈ E2}. (6.25)

Proof If one of the sets is unbounded then the right-hand side of (6.25) is
infinite and the inequality holds. So assume E1 and E2 are bounded. Take
0 < p < ∞. Apply Corollary 2.19 with f = χE1 , g = χE2 and K(t) =
(Mp − tp)+, where M is so large that y1 ∈ E1, y2 ∈ E2 imply |y1 − y2| < M
and y1 ∈ Ẽ1, y2 ∈ Ẽ2 imply |y1 − y2| < M. After cancellation of the term
MpLk(E1)Lk(E2), we obtain∫

Ẽ1×Ẽ2

|y1 − y2|p dy1 dy2 ≤
∫

E1×E2

|y1 − y2|p dy1 dy2.

Taking pth roots and letting p → ∞, we see that the essential supremum of
the function |y1 − y2| over Ẽ1 × Ẽ2 is ≤ its essential supremum over E1 × E2.
Since Ẽ1 and Ẽ2 are balls, the essential supremum of |y1 − y2| over Ẽ1 × Ẽ2

equals the true supremum. The essential supremum over E1 × E2 is ≤ the true
supremum. Inequality (6.25) follows.

Here now is the Steiner version of the isodiametric inequality. In the
theorem, the # denotes (k, n)-Steiner symmetrization.

Theorem 6.12 Let E ⊂ X be Ln-measurable. Then

diam E# ≤ diam E. (6.26)

Proof Take x1 = (y1, z1), x2 = (y2, z2) ∈ E#. Application of Lemma 6.11 to
the slice sets E(z1), E(z2) yields

|y1 − y2| ≤ sup{|v1 − v2| : v1 ∈ Ez1 , v2 ∈ Ez2}.

Squaring this inequality and adding |z1 − z2|2 to both sides, we obtain

|x1 − x2|2 ≤ sup{|(v1, z1) − (v2, z2)|2 : v1 ∈ Ez1 , v2 ∈ Ez2}.

The points (v1, z1) and (v2, z2) on the right-hand side belong to E, so the
right-hand side is ≤ (diam E)2. Taking the sup over all x1 and x2, we obtain
(6.26).

Corollary 6.13 Suppose that f is a continuous nonnegative function on X for
which every slice function f z satifies the finiteness condition (6.2). Then the
Steiner symmetrization f # satisfies

diam supp f # ≤ diam supp f . (6.27)
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Proof Let E = ( f > 0). Then E# = ( f # > 0). Applying (6.26) and using the
fact that the diameter of a set equals the diameter of its closure, we obtain

diam supp f # = diam E# ≤ diam E = diam supp f ,

which is (6.27).

The last result of this section asserts that Steiner symmetrization acts
contractively on L∞(X).

Theorem 6.14 Let f , g : X → R
+, and suppose that f z and gz satisfy the

finiteness condition (6.2) for almost every z ∈ Z. Then

‖f # − g#‖L∞(X) ≤ ‖f − g‖L∞(X). (6.28)

Proof If f and g have compact support then (6.28) is a limiting case of the
Lp-contraction property, as in the proof of Corollary 2.23 in Chapter 2.

To prove (6.28) in general, we argue as follows. If ‖f # − g#‖L∞(X) = 0 we
are done. Otherwise, take 0 < α < ‖f # − g#‖L∞(X). Let

A = {x ∈ X : | f (x) − g(x)| > α}, B = {x ∈ X : | f #(x) − g#(x)| > α}.
Then

0 < Ln(B) =
∫

Z
Lk(Bz) dLm(z).

Let

G1 = {z ∈ Z : Lk(Az) > 0}, G2 = {z ∈ Z : Lk(Bz) > 0}.
Then Lm(G2) > 0. If z ∈ G2, then ‖f̃ z − g̃z‖L∞(Rk) > α. Since s.d.r. acts con-
tractively (Corollary 2.23(b)), we have ‖f z−gz‖L∞(Rk) > α, which implies that
Lk(Az) > 0 and hence that z ∈ G1. Thus G2 ⊂ G1, so that Lm(G1) > 0 and

Ln(A) =
∫

Z
Lk(Az) dLm(z) ≥

∫
G1

Lk(Az) dLm(z) > 0.

Thus, ‖f − g‖L∞(X) > α, from which (6.28) follows.

6.6 Steiner Symmetrization Decreases Dirichlet Integrals

Let

X = R
k × Z

with Z ⊂ R
m open, and let # denote (k, n)-Steiner symmetrization. For

functions f (x) = f (y, z) on X having first order partial derivatives in some
sense we write
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∇f (x) = (∇y f (x), ∇z f (x)),

where

∇yf =
(

∂f

∂y1
, . . . ,

∂f

∂yk

)
, ∇zf =

(
∂f

∂z1
, . . . ,

∂f

∂zm

)
.

Suppose that f ∈ Lip(X,R+) and that

lim
y→∞ f (y, z) = 0, ∀ z ∈ Z. (6.29)

Then each slice function f z is in Lip(Rk) and, by (6.29), f z vanishes at ∞.
Theorem 3.11, about decrease of integrals under s.d.r., is applicable, and gives∫

Rk
�(|∇yf #(y, z)|) dy ≤

∫
Rk

�(|∇yf (y, z)|) dy, z ∈ Z.

Fubini’s Theorem gives∫
X
�(|∇yf #(x)|) dx ≤

∫
X
�(|∇yf (x)|) dx.

In this section we will prove inequalities like this for the transverse gradient
∇zf and the full gradient ∇f . To accomplish this, we need to know how
integrals involving ∂f

∂zi
(y, z) behave when f is symmetrized in the y-variables.

It turns out that they behave remarkably well.
Before examining the integrals we first record the Steiner version of the fact

that symmetrization decreases the Lipschitz norm.

Proposition 6.15 Let f ∈ Lip(X,R+), and assume that the limit condition
(6.29) holds for each z ∈ Z. Then f # ∈ Lip(X), and

‖f #‖Lip(X) ≤ ‖f ‖Lip(X), (6.30)

‖∇f #‖L∞(X) ≤ ‖∇f ‖L∞(X). (6.31)

As noted in §6.5, functions satisfying (6.29) satisfy the finiteness condition
(6.2) for every z, so the Steiner symmetrization f # is well-defined.

Proof Using decrease of continuity modulus under Steiner symmetrization
(Theorem 6.10), the proof of (6.30) is the same as in the s.d.r. case (Theorem
3.6). If Z is convex then the proof of Corollary 3.4 works when R

n is replaced
by X, and shows that

‖f ‖Lip(X) = ‖∇f ‖L∞(X), ‖f #‖Lip(X) = ‖∇f #‖L∞(X).

Thus, (6.31) holds when Z is convex.
Consider now general open Z. If ‖∇f #‖L∞(X) = 0 then (6.31) holds.

Suppose that ‖∇f #‖L∞(X) > 0. Take 0<α< ‖∇f #‖L∞(X). Set E = (|∇f #| > α)
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⊂ X, and F = {z ∈ Z : Lk(E(z)) > 0}. Then Ln(E) > 0, and by Fubini’s
Theorem, Lm(F) > 0. Let z0 be a point of density of F, B an open ball in R

m

with z0 ∈ B ⊂ Z, and X0 = R
k × B. Then Fubini implies Ln(E ∩ X0) > 0,

which implies that ‖∇f #‖L∞(X0) > α. Hence, using convexity of X0,

α < ‖∇f #‖L∞(X0) = ‖f #‖Lip(X0) ≤ ‖f ‖Lip(X0) = ‖f ‖L∞(X0)

≤ ‖f ‖L∞(X).

Inequality (6.31) follows.

Here now is the main result about Steiner symmetrization and Dirichlet
integrals.

Theorem 6.16 Let f ∈ Lip(X,R+), and assume that the limit condition (6.29)
holds for each z ∈ Z. Then there exists a set E ⊂ Z with Lm(Z \ E) = 0 such
that, for each z ∈ E, f and f # are differentiable at (y, z) for Lk-a.e y ∈ R

k, and
for each convex increasing function � : R+ → R

+ with �(0) = 0, we have∫
Rk

�(|∂zi f
#(y, z)|) dy ≤

∫
Rk

�(|∂zi f (y, z)|) dy, i = 1, . . . , m, (6.32)∫
Rk

�(|∇zf
#(y, z)|) dy ≤

∫
Rk

�(|∇zf (y, z)|) dy, (6.33)∫
Rk

�(|∇f #(y, z)|) dy ≤
∫
Rk

�(|∇f (y, z)|) dy. (6.34)

Note that we do not assume that f (y, z) → 0 when z approaches the
boundary of Z or when z → ∞. The term “differentiable” in the statement
of the theorem means that f is differentiable as a function of all n variables
y1, . . . , yk, z1, . . . , zm.

Together with the theorems of Rademacher and Fubini, Theorem 6.16
immediately implies

Corollary 6.17 Let f ∈ Lip(X,R+), and assume that the limit condition
(6.29) holds for each z ∈ Z. Then∫

X
�(|∂zi f

#(x)|) dx ≤
∫

X
�(|∂zi f (x)|) dx, i = 1, . . . , m,∫

X
�(|∇zf

#(x)|) dx ≤
∫

X
�(|∇zf (x)|) dx,∫

X
�(|∇f #(x)|) dx ≤

∫
X
�(|∇f (x)|) dx. (6.35)

Proof of Theorem 6.16 Assume first that f also satisfies the following con-
dition, which we’ll call Condition S: For each compact A ⊂ Z, there exists
R ∈ (0, ∞) such that f (y, z) = 0 whenever |y| ≥ R and z ∈ A.



198 Steiner Symmetrization

Define the set P to be the set of all z ∈ Z such that f is differentiable at (y, z)
for Lk-almost every y ∈ R

k.
By Proposition 6.15, f # is also Lipschitz, and it is easy to see that f # also

satisfies Condition S. Let P be obtained from f # like P is obtained from f .
By Rademacher’s Theorem 3.2, we know that f is differentiable Ln-a.e.

on X. From Fubini’s Theorem, it follows that Lm(Z \ P) = 0. The same is
true for f # and P. Define

E = P ∩ P.

Next, we will show that if f satisfies Condition S and a ∈ E, then (6.34)
holds when z = a and �(x) = x. Let B = B

m(a, ρ) be an open k-ball centered
at a with compact closure in Z. There exists R such that f (y, z) = 0 whenever
|y| ≥ R and z ∈ B. Let K = χ[0,1], and let ε > 0 be small. Define

I(ε, f ) =
∫
Rk×Rk×B

| f (y, a)− f (v, w)| K(ε−1(|y−v|2 +|a−w|2)1/2) dy dv dw.

Integrate first with respect to dy dv. By Corollary 2.19, applied in R
k to the

functions f (·, a) and f (·, w), we see that for each fixed w ∈ B, I(ε, f ) decreases
when f is replaced by its (k, n)-Steiner symmetrization f #. Thus

I(ε, f #) ≤ I(ε, f ). (6.36)

Let v = y + εs, w = a + εt. Then s ∈ R
k, t ∈ B

m(0, ρ/ε), and

I(ε, f ) = εn
∫
Rk×Rk×Bm(0,ρ/ε)

| f (y, a) − f (y + εs, a + εt)|

K((s2 + t2)1/2) dy ds dt.

Multiply I(ε, f ) by ε−n−1. The integrand is uniformly bounded above, and
vanishes outside a compact subset of Rk×R

k×R
m when ε is sufficiently small.

Since a ∈ E, f is differentiable at (y, a) for Lk-a.e y, so as ε → 0 the integrand
converges to |∇f (y, a)·(s, t)| for Lk-a.e y. The dominated convergence theorem
gives

lim
ε→0

I(ε)ε−n−1 =
∫
Rk×Rk×Rm

|∇f (y, a) · (s, t)|K((s2 + t2)1/2) ds dy dt.

Putting p = (s, t) ∈ R
n, as in the proof of Theorem 3.7 we have∫

Rk×Z
|∇f (y, a) · (s, t)|K((s2 + t2)1/2) ds dt

= |∇f (y, a)|
∫

|p|≤1
|p · e1| dLn(p) = C1|∇f (y, a)|,
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where C1 depends only on n. Thus

lim
ε→0

I(ε)ε−n−1 = C1

∫
Rk

|∇f (y, a)| dy, a ∈ E. (6.37)

The same equality holds when f is replaced by f #. From (6.36) and (6.37)
we see that ∫

Rk
|∇f #(y, a)| dy ≤

∫
Rk

|∇f (y, a)| dy, a ∈ E.

We have shown that (6.34) holds when �(x) = x and f satisfies Condition S.
Next, we shall retain the assumption that f satisfies Condition S, and will

show that (6.34) is true for arbitrary � satisfying the stated hypotheses. At first
we will follow the argument used for the symmetric decreasing rearrangement
case, Theorem 3.11. Fix a ∈ E. By Condition S, the support of f (·, a) is
contained in a k-ball |y| ≤ R. Let M = ‖f ‖Lip(X,R), and let ε > 0 be given.
Define δ by

ε = δβk−1

[
M�′(M+) + �(M) + Rn

n
�′(M+)

]
.

Define also

g(r) = f #(re1, a), G(r) = |∇f #(re1, a)|,
Ii = g−1(bi, bi−1), dν(r) = rk−1dr.

(6.38)

Then g is Lipschitz and decreasing, but G need not be decreasing and might

be defined only if L1-a.e. It is easy to see that ∂f #

∂zi
(·, a) is a radial function on

R
k for each i = 1, . . . , m. So is |∇yf #(y, a)|. Thus |∇f #(·, a)| is also radial,

and |∇f #(y, a)| = G(|y|). Moreover, using Lk-a.e. differentiability of f a and
proceeding as in the proof of Proposition 6.15, we obtain

‖G‖L∞[0,R] ≤ ‖f #‖Lip(X0) ≤ ‖f ‖Lip(X0) ≤ M,

where X0 is as in Proposition 6.15 with z0 there replaced by a. We also have∫
Rk

�(|∇f #(y, a)|) dy = βk−1

∫ R

0
�(G(r)) dν(r). (6.39)

By Lusin’s Theorem, there is a continuous function h on [0, R] and a set
B ⊂ [0, R] such that 0 ≤ h ≤ M on [0, R], h = G on [0, R] \ B, and ν(B) < δ.

Let {ai}j
i=0 be a sequence in R

+ with 0 = a0 < a1 < · · · < aj = R such
that the oscillation of h over each [ai−1, ai] is less than δ. Let b0 = g(a0), and
for i = 1, . . . , j, set

bi = g(ai), Ai = ( f a)−1(bi, bi−1), Bi = ( f a)−1(bi).
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Let A′
i and B′

i be the sets obtained by changing f to f # in the definition of Ai

and Bi. Then∫
Rk

�(|∇f (y, a)|) dy =
j∑

i=1

∫
Ai

�(|∇f (y, a)|) dy +
j∑

i=0

∫
Bi

�(|∇f (y, a)|) dy,

(6.40)

and the analogous formula holds when f is replaced by f #, Ai by A′
i, and Bi

by B′
i.

Now f a is constant on Bi, so ∇yf (y, a) = 0 for Lk-almost every y ∈ Bi. It is
not true, though, that ∇zf (y, a) must vanish for Lk-a.e y ∈ R

k. Thus, the inte-
grals over the Bi in (6.40) can be positive. It is this phenomenon which makes
the Steiner case more difficult than the s.d.r. case proved in Theorem 3.11.

To surmount this obstacle, we shall establish a lemma.

Lemma 6.18 Let f and X be as in the statement of Theorem 6.16. Suppose
that a ∈ Z is such that f and f # are differentiable at (y, a) for Lk-almost every
y ∈ R

k, and that b ∈ [0, ∞) is such that B ≡ ( f a)−1(b) has Lk(B) > 0. Then
the restriction of |∇f (·, a)| to B has the same distribution, with respect to Lk,
as |∇f #(·, a)| restricted to B′, where B′ = ((f #)a)−1(b).

We shall prove Lemma 6.18 in §6.7. Let us assume it for the time being.
Next, we claim that∫

A′
i

|∇f #(y, a)| dy ≤
∫

Ai

|∇f (y, a)| dy, i = 1, . . . , j. (6.41)

To prove this, fix i. Take a sequence {ψj}j≥1 ⊂ C1(R) such that
ψj(bi) = 0, ψ ′

j ≥ 0 on R and limj→∞ ψ ′
j (t) = χ(bi,bi−1)(t) for every t ∈ R.

Then each ψj ◦ f ∈ Lip(Rn,R), and each point of differentiability of f is a
point of differentiability of ψj ◦ f . The same considerations apply to f #. The
first part of the proof is applicable to ψj ◦ f on the slice z = a, and we obtain∫

Rk
|∇(ψj ◦ f )#(y, a)| dy ≤

∫
Rk

|∇(ψj ◦ f )| dy. (6.42)

Furthermore, for any increasing (=nondecreasing) function ψ on [0, ∞)

with ψ(0+) = 0, the functions ψ ◦ f a and ψ ◦ ( f #)a have the same distribution
on R

k, hence the same s.d.r. on R
k. The second function is already symmetric

decreasing. We deduce that (ψj ◦ f )# = ψj ◦ f #, so that in (6.42) the left-hand
integrand can be replaced by |∇(ψj ◦ f #)|.

Now ∇(ψj ◦ f ) = (ψ ′
j ◦ f )∇f at points of differentiability of f . Letting

j → ∞, the dominated convergence theorem implies that the right-hand side
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of (6.42) converges to the right-hand side of (6.41), The same is true for the
left-hand sides. We have proved the claim (6.41).

Write

μi = Lk(Ai).

Then∫
Ai

�(|∇f (y, a)| dy ≥ μi�

(
μ−1

i

∫
Ai

|∇f (y, a)| dy

)
≥ μi�

(
μ−1

i

∫
A′

i

|∇f #(y, a)| dy

)

= μi�

(
ν(Ii)

−1
∫

Ii

G(r) dν(r)

)
=

∫
A′

i

�(|∇f #(y, a)|) dy + μi(si + ti + ui),

(6.43)

where the first inequality is by Jensen’s inequality, the second by (6.41), and
the first equality by the definitions (6.38) of Ii, g, G, and ν. The numbers si, ti
and ui are defined as in the proof of Theorem 3.11 between (6.15) and (6.16),
except that here we substitute G for |g′| and j for m. The argument in the proof
of Theorem 3.11 carries over verbatim to give∣∣∣∣∣∣

j∑
i=1

μi(si + ti + ui)

∣∣∣∣∣∣ ≤ ε.

Summing in (6.43), we obtain

j∑
i=1

∫
Ai

�(|∇f (y, a)|) dy ≥
j∑

i=1

∫
Ai

�(|∇f #(y, a)|) dy − ε. (6.44)

By Lemma 6.18, when the Ai and A′
i are replaced by Bi and B′

i there is
equality in (6.44). From (6.40) and (6.44), we thus obtain∫

Rk
�(|∇f #(y, a)|) dy ≥

∫
Rk

�(|∇f (y, a)|) dy − ε.

Modulo Lemma 6.18, we have now proved (6.34) for all � when f satisfies
Condition S.

Next, let us obtain (6.34) without assuming that f satisfies Condition S.
Suppose that f satisfies the hypotheses of Theorem 6.16. Let {sj}∞j=1 be a
sequence of positive numbers decreasing to zero. Define fj = ( f − sj)

+.
Then each fj is Lipschitz, hence is differentiable in X except for an Ln-nullset.
Moreover, ( fj)# = ( f # − sj)

+.
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Let Pj be the set of all z ∈ Z such that fj is differentiable at (y, z) for Lk-a.e
y ∈ R

k. As before, “differentiable” means differentiable as a function of all n
variables y1, . . . , yk, z1, . . . , zm. Let P be the set obtained by replacing fj by f
in the definition of Pj. From Fubini’s Theorem, it follows that Lm(Z \ Pj) = 0
for each j and that Lm(Z \ P) = 0.

We claim that each fj satisfies Condition S. The claim is equivalent to
saying that for each s > 0 and each compact K ⊂ R

m there exists R such
that | f (y, z)| < s whenever |y| ≥ R and z ∈ K. If this last statement did not
hold, then using the Bolzano–Weierstrass Theorem and the Lipschitzness of
f we could find some z ∈ K, some s0 > 0 and a sequence {yi} ⊂ R

k with
limi→∞ |yi| = ∞ such that | f (yi, z)| ≥ s0 for every i. But this violates the
limit hypotheses (6.29), thereby proving the claim.

Let A = {x ∈ X : f (x) = 0} and A(z) be the slice of A through z. Fix

z ∈
(⋂∞

j=1 Pj

)
∩ P. Write∫

Rk
�(|∇f (y, z)|) dy =

∫
A(z)

�(|∇f (y, z)|) dy +
∫
Rk\A(z)

�(|∇f (y, z)|) dy.

The differentiability of f at Lk-almost every y ∈ R
k insures that the gradient

appearing in the integrals is well-defined except for a set of Lk-measure zero.
Also, f and each fj are differentiable at (y, z) except for y in a Lk-nullset
which is independent of j. Take a (y, z) which is such a point of common
differentiability. If f (y, z) ≤ sj then fj has a local minimum in an n-dimensional
neighborhood of (y, z), so that ∇fj(y, z) = 0, while if f (y, z) > sj, it is clear
that ∇fj(y, z) = ∇f (y, z). Thus, as j → ∞, |∇fj(y, z)| ↗ |∇f (y, z)|Lk-a.e. on
the set of y with f (y, z) > 0. By the monotone convergence theorem,

lim
j→∞

∫
Rk\A(z)

�(|∇fj(y, z)|) dy =
∫
Rk\A(z)

�(|∇f (y, z)|) dy. (6.45)

At y ∈ A(z), f and each of the fj achieve the local minimum zero, so again
∇f (y, z) = ∇fj(y, z) = 0 when (y, z) is a point of differentiability for all of
these functions. Since Lk-almost every y satisfies this differentiability condi-
tion, we have �(|∇fj(y, z)|) = �(|∇f (y, z)|) = 0 for Lk-almost every y ∈ A(z).

From this equation and (6.45), we conclude that for z ∈
(⋂∞

j=1 Pj

)
∩ P,

lim
j→∞

∫
Rk

�(|∇fj(y, z)|) dy =
∫
Rk

�(|∇f (y, z)|) dy. (6.46)

Let Pj and P be the sets corresponding to Pj and P when f is changed to f #.
The complement in Z of each of these sets has Lm-measure zero, and (6.46)
remains valid when f and the fj are replaced by f # and ( fj)#. Let
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E =
⎛⎝ ∞⋂

j=1

Pj

⎞⎠ ∩ P ∩
⎛⎝ ∞⋂

j=1

Pj

⎞⎠ ∩ P.

Take z ∈ E. We know that each integral on the left in (6.46) decreases when
fj is changed to ( fj)#. Thus, applying (6.46) to the f #

j ,∫
Rk

�(|∇f #(y, z)|) dy ≤
∫
Rk

�(|∇f (y, z)|) dy.

We have now completely proved (6.34), modulo Lemma 6.18.
To prove (6.32) and (6.33), we replace the integrals I(ε, f ) used in the proof

of (6.34) with different integrals. Let a ∈ Z be as above. To obtain (6.32), take,
for fixed i ∈ {1, . . . , n},

I1(ε, f ) =
∫
Rk

| f (y, a + εei) − f (y, a)| dy,

and to obtain (6.33), take

I2(ε, f ) =
∫
Rk×Sm−1

| f (y, a + εz) − f (y, a)| dy dσ(z),

where σ denotes Lebesgue surface measure on the unit sphere S
m−1 in R

m.
The arguments giving (6.37) also give

lim
ε→0

I1(ε, f )ε−1 =
∫
Rk

|∂zi f (y, a)| dy

and

lim
ε→0

I2(ε, f )ε−1 = C
∫
Rk

|∇zf (y, a)| dy, (6.47)

where C = ∫
Sm−1 |e1 · z| dσ(z).

The inequality I1(ε, f ) ≥ I1(ε, f #) follows from the contraction property
for s.d.r. (Corollary 2.20), applied in R

k to the two functions f (y, a) and
f (y, a + tei). The analogous inequality for I2 also follows from Corollary 2.20,
provided we first integrate in the y-variables. Thus,

∫
Rk |∂zi f (y, a)| dy and∫

Rk |∇zf (y, a)| dy each decrease when f is changed to f #.
Lemma 6.18 is still true when the full gradient is replaced by ∂zi or ∇z.

The function G introduced before (6.39) should be replaced by |∂zi f
#(re1, a)|

or |∇zf #(re1, a)|. With these changes, the proofs of (6.32) and (6.33) can be
accomplished by repeating the arguments used to prove (6.34). Theorem 6.16
is now completely proved, modulo Lemma 6.18.

By further use of functionals like I(ε, f ) one can establish still more
rearrangement inequalities involving ∇yf and the derivatives ∂zi f .
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6.7 Proof of Lemma 6.18

If b = 0, the discussion between (6.42) and (6.43) shows that ∇f (y, a) =
∇f #(y, a) = 0 Lk-a.e on B and B′, respectively, and we are done.

Suppose b > 0. Then replacing f by ( f − 1
2 b)+, if necessary, we may assume

that f satisfies Condition S of §6.6. We may also assume that ‖f ‖Lip(X) ≤ 1.
For small ε > 0 and points w ∈ S

m−1, define sets Bε and Bε,w ⊂ R
k by

Bε = (b − 2ε < f a < b + 2ε), Bε,w = (b − ε < f a+εw < b + ε).

From the Lipschitz condition on f and fact that f (y, a) = b for y ∈ B, it
follows that

B ⊂ Bε,w ⊂ Bε . (6.48)

Take 0 < p < ∞. The arguments giving (6.47) also give

lim
ε→0

ε−p
∫
Sm−1

dσ(w)

∫
B

| f (y, a + εw) − b|p dy

= Cp

∫
B

|∇zf (y, a)|p dy = Cp

∫
B

|∇f (y, a)|p dy,
(6.49)

where Cp = ∫
Sm−1 |e1 · z|p dσ(z). The equality |∇f (y, a)| = |∇zf (y, a)| holds

for Lk-a.e y ∈ B, since f (·, a) is Lipschitz on R
k and constant on B.

For each w ∈ S
m−1 we also have

lim
ε→0

∫
Bε\B

ε−p| f (y, a + εw) − b|p dy = 0. (6.50)

In fact, since f has Lipschitz norm ≤ 1 and | f (y, a) − b| < 2ε, for each ε

the integral on the left-hand side is ≤ 3pLk(Bε \B). The set B is the decreasing
intersection of the sets Bε , and since λf a(t) < ∞ for t > 0, the Bε have finite
measure for small ε. Thus, in (6.50), the limit as ε → 0 is zero. Since the
bound 3pLk(Bε \ B) on the integrals holds simultaneously for all w ∈ S

m−1, if
we replace B by Bε \ B on the left side of (6.49) the dominated convergence
theorem implies that the limit in (6.49) is zero. Consequently, (6.49) remains
valid if we replace B on the left by Bε . Then (6.48) implies we can replace Bε

by Bε,w. We conclude that

lim
ε→0

ε−p
∫
Sm−1

dσ(w)

∫
Bε,w

| f (y, a + εw) − b|p dy = Cp

∫
B

|∇f (y, a)|p dy.

(6.51)
Let B′

ε,w be formed from f # like Bε,w was formed from f . Then (6.51) is true
when f is changed to f # and Bε,w to B′

ε,w. The distribution with respect to Lk

of f a+εw on Bε,w is the same as the distribution of ( f #)a+εw on B′
ε,w. Thus, for

small ε,
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Bε,w

| f (y, a + εw) − b|p dy =
∫

B′
ε,w

| f #(y, a + εw) − b|p dy. (6.52)

From (6.51) and (6.52), we obtain∫
B

|∇f (y, a)|p dy =
∫

B′
|∇f #(y, a)|p dy, 0 < p < ∞.

Since f satisfies Condition S, for fixed a ∈ Z the function |∇f (y, a)| has
compact support in R

k. To complete the proof of Lemma 6.18, it suffices to
prove the following claim.

Claim If g and h are nonnegative L∞ functions on finite measure spaces
(X,μ) and (Y , ν), respectively, if μ(X) = ν(Y), and if∫

X
gp dμ =

∫
Y

hp dν, ∀ p ∈ (0, ∞), (6.53)

then the distribution of g with respect to μ on X is the same as the distribution
of h with respect to ν on Y .

Proof Take M ≥ max{ess sup g, ess sup h}. By Corollary 1.17, (6.53) is the
same as ∫ M

0
tp−1λg(t) dt =

∫ M

0
tp−1λh(t) dt.

Let Q = λg −λh. Then Q ∈ L∞[0, M]. Taking p = 1, 2, . . . it follows that Q
is orthogonal to all polynomials on [0, M]. By the Weierstrass approximation
theorem, Q is orthogonal to all continuous functions, hence Q = 0 L-a.e. on
[0, M]. Since Q is right continuous, it follows that Q = 0 at all points of [0, M].
Thus λg(t) = λh(t) for every t ∈ [0, M].

The claim is proved and, with it, Lemma 6.18 and Theorem 6.16.

6.8 Steiner Symmetrization Decreases p-Dirichlet
Integrals in W1,p(Rn)

For brevity, we confine attention to the most basic theorem about Steiner
symmetrization of Sobolev functions. There are many possible refinements,
variants and extensions. In this section # denotes (k, n)-Steiner symmetriza-
tion. The set Z will be all of R

m, so that X = R
k × R

m = R
n. We

continue with the notation that points x ∈ R
n are written as x = (y, z) =

(y1, . . . , yk, z1, . . . , zm), ∇f is the n-dimensional gradient of functions on R
n,

and ∇yf , ∇zf are the gradients with respect to the y and z variables, respectively.
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Theorem 6.19 Let f ∈ W1,p(Rn,R+) and 1 ≤ p < ∞. Then f # ∈ W1,p(Rn),
and ∫

Rn
|∂zi f

#(x)|p dx ≤
∫
Rn

|∂zi f (x)|p dx, i = 1, . . . , m, (6.54)∫
Rn

|∇zf
#(x)|p dx ≤

∫
Rn

|∇zf (x)|p dx, (6.55)∫
Rn

|∇f #(x)|p dx ≤
∫
Rn

|∇f (x)|p dx. (6.56)

Proof As in the proof of the s.d.r. case (Theorem 3.20), take a nonnegative
sequence { fj} ⊂ C∞

c (Rn) such that ‖fj − f ‖W1,p(Rn) → 0. Each fj is Lipschitz
and has compact support in R

n, so for each z ∈ R
m the slice function f z

j is

Lipschitz and has compact support in R
k. Corollary 6.17 is applicable, and

shows that inequalities (6.54)–(6.56) hold for each fj. When 1 < p < ∞ the
proof of (6.54)–(6.56) for f now proceeds exactly as it did in Theorem 3.20.

To finish the proof for p = 1, we just need to show that the set {∇f #
j } is

relatively weakly compact in L1(Rn). As in §3.6, this is equivalent to showing
that {∇f #

j } is norm-bounded in L1(Rn), is uniformly integrable, and satisfies
the tail condition

lim
R→∞

sup
j

∫
|x|≥R

|∇f #
j | dx = 0. (6.57)

The norm boundedness follows from Corollary 6.17. Taking �(s) = (s−t)+

in Corollary 6.17, we deduce uniformly integrability just as in the proof of
Theorem 3.20. Thus, to finish the proof of Theorem 6.19, we just need to verify
(6.57). It will suffice to verify it separately for |∇yf #

j | and |∇zf #
j |.

Inequality (3.30) is valid for each ( f #
j )

z, and gives∫
|y|≥r

|∇yf #
j (y, z)| dy ≤ r−1k2

∫
Rk

f #
j (y, z) dy, r > 0. (6.58)

For fixed R > 0, let

E1 =
{

x : |z| ≥ 1

2
R

}
, E2 =

{
x : |z| ≤ 1

2
R, |y|2 ≥ R2 − |z|2

}
.

Then {|x| ≥ R} ⊂ E1 ∪ E2. From (6.58) we deduce∫
E2

|∇yf #
j | dx =

∫
|z|≤ 1

2 R
dz

∫
Rk

|∇yf #
j | dy

≤ k2
∫

|z|≤ 1
2 R
(R2 − |z|2)−1/2 dz

∫
Rk

f #
j (y, z) dy

≤ 2k2R−1
∫
Rn

f #
j dx.



6.8 Steiner Symmetrization Decreases p-Dirichlet Integrals 207

Thus,∫
|x|≥R

|∇yf #
j | dx ≤

∫
E1

+
∫

E2

≤
∫

|z|≥ 1
2 R

|∇yf #
j | dx + 2k2R−1

∫
Rn

f #
j dx.

By Theorem 6.16 and Fubini’s Theorem, the integral over |z| ≥ 1
2 R increases

when f #
j is replaced by fj. The integral over Rn does not change. So∫

|x|≥R
|∇yf #

j | dx ≤
∫

|z|≥ 1
2 R

|∇yfj| dx + 2k2R−1
∫
Rn

fj dx. (6.59)

Now { fj} converges to f in W1,1-norm. Thus, the fj are norm-bounded in
L1(Rn), and the ∇fj are relatively weakly compact in L1(Rn), hence satisfy the
tail condition. From (6.59), it follows that (6.57) is true when ∇ is replaced
by ∇y.

To analyze
∫
|x|≥R |∇zf #| dx, we again split the integral into parts over E1 and

E2. The integral over E1 satisfies the tail condition, by the same argument as
above. But the integral over E2 requires different arguments, since estimate
(6.58) stems from the fact that for s.d.r.s the norm of the gradient equals the
negative of the radial derivative. Nothing like this is true for ∇z.

Set

D(R) = {x ∈ R
n : |y| ≥ R, |z| ≤ R}.

Then the integrals of |∇zf #
j | over E2 satisfy the tail condition if and only if the

integrals over D(R) do.
Assume that the integrals over D(R) do not satisfy the tail condition. Then

there exist η > 0, a sequence Rj → ∞ and a subsequence of the original { fj},
also denoted { fj}, such that∫

D(Rj)

|∇zf
#
j | dx ≥ η, j = 1, 2, . . . (6.60)

Fix j ≥ 1, z ∈ R
m and write g = fj. For y ∈ R

k with |y| = r, write also
g#(r, z) = g#(y, z). Since |y| ≥ R implies g#(y, z) ≤ g#(R, z), we have∫

|y|≥R
|∇zg

#(y, z)| dy ≤
∫

g#≤g#(R,z)
|∇zg

#(y, z)| dy. (6.61)

For b ∈ [0, ∞), write∫
g#≤b

|∇zg
#(y, z)| dy =

∫
g#<b

|∇zg
#(y, z)| dy +

∫
g#=b

|∇zg
#(y, z)| dy. (6.62)

The function g is Lipschitz and, having compact support, satisfies Con-
dition S of §6.6. Let us suppose that z belongs to the set E described in
Theorem 6.16. If Lk({y : g(y, a) = b}) > 0, then g satisfies the hypotheses
of Lemma 6.18, and the lemma implies that
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g#=b

|∇zg
#(y, z)| dy =

∫
g=b

|∇zg(y, z)| dy. (6.63)

Actually, Lemma 6.18 states equality for the full gradients rather than the
z-gradients. Since the y-gradients vanish Lk-a.e on g# = b and g = b, (6.63) is
also correct.

Next, the argument used to get (6.41) is valid with ∇z in place of ∇, and
produces ∫

g#<b
|∇zg

#(y, z)| dy ≤
∫

g<b
|∇zg(y, z)| dy.

With (6.62) and (6.63), this gives∫
g#≤b

|∇zg
#(y, z)| dy ≤

∫
g≤b

|∇zg(y, z)| dy. (6.64)

We also have the inequality

g#(R, z) ≤ α−1
k R−k

∫
|y|≤R

g#(y, z) dy ≤ α−1
k R−k

∫
Rk

g#(y, z) dy

= α−1
k R−k

∫
Rk

g(y, z) dy. (6.65)

Define

Aj(R) =
{
(y, z) ∈ R

n : fj(y, z) ≤ α−1
k R−k

∫
Rk

fj(v, z) dv

}
∩ {|z| ≤ R}.

Taking b = g#(R, z) and recalling that g = fj, (6.61), (6.64), (6.65) imply
that for almost every z ∈ R

m with |z| ≤ R, we have for each j ≥ 1,∫
|y|≥R

|∇zf
#
j (y, z)| dy ≤

∫
Rk

|∇zfj(y, z)|χAj(R)(y, z) dy. (6.66)

Integration of (6.66) over |z| ≤ R gives∫
D(R)

|∇zf
#
j | dx =

∫
|z|≤R

dz
∫

|y|≥R
|∇zf

#
j | dy ≤

∫
Rn

|∇zfj|χAj(R) dx

≤
∫
Rn

|∇zf − ∇zfj| dx +
∫
Rn

|∇zf |χAj(R) dx

=
∫
Rn

|∇zf − ∇zfj| dx +
∫
Rn

|∇zf | χAj(R) χf>0 dx.

(6.67)

Equality in the last line follows from the fact that ∇f = 0 Ln-a.e. on the set
where f = 0. Next, recall that ∇zfj → ∇zf and fj → f in the L1(Rn)-norm.
If a sequence converges in L1 then some subsequence converges a.e. Choose a
subsequence, still denoted { fj}, such that fj → f Ln-a.e. in R

n and

lim
j→∞

∫
Rk

| f (v, z) − fj(v, z)| dv = 0 (6.68)
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for almost every z ∈ R
m. The existence of a subsequence satisfying the latter

condition follows from the fact that the functions

pj(z) ≡
∫
Rk

| f (v, z) − fj(v, z)| dv

converge to zero in the L1(Rm) norm when j → ∞.
Define

qj(z) =
∫
Rk

fj(v, z) dv, j ≥ 1.

If z satisfies (6.68) and also
∫
Rk f (v, z) dv < ∞, then the sequence {qj(z)} is

convergent, hence bounded. Thus, {qj(z)}j≥1 is bounded for Lm-almost every
z ∈ R

m.
A point x = (y, z) ∈ R

n belongs to Aj(Rj) if and only if |z| ≤ Rj and

fj(x) ≤ α−1
k R−k

j qj(z). (6.69)

Suppose that x is a point such that f (x) > 0, limj→∞ fj(x) = f (x), z satisfies
(6.68), and

∫
Rk f (v, z) dv < ∞. Since Rj → ∞, (6.69) shows that x fails to be

in Aj(Rj) for all sufficiently large j. We conclude that

lim
j→∞

χAj(Rj) χf>0 (x) = 0

for Ln-almost every x ∈ R
n.

Taking R = Rj in (6.67) and applying the dominated convergence theorem
to the second integral on the far right, we obtain

lim
j→∞

∫
D(Rj)

|∇zf
#
j | dx = 0.

This contradicts (6.60). We conclude that the integrals of |∇zf #
j | over E2

indeed do satisfy the tail condition (6.57). The proof of Theorem 6.19 is
complete.

The next two corollaries are Steiner versions of the s.d.r. results Corollaries
3.21 and 3.22.

Corollary 6.20 Let 1 ≤ p < ∞, f ∈ W1,p(Rn,R+), and 0 ≤ a < b ≤ ∞.
Then ∫

( f #)−1(a,b)
|∂zi f

#(x)|p dx ≤
∫

f −1(a,b)
|∂zi f (x)|p dx, i = 1, . . . , m,∫

( f #)−1(a,b)
|∇zf

#(x)|p dx ≤
∫

f −1(a,b)
|∇zf (x)|p dx,∫

( f #)−1(a,b)
|∇f #|p dx ≤

∫
f −1(a,b)

|∇f |p dx.
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Proof Let ψj be the C1 functions with ψ ′
j → χ(a,b) used to prove (6.41).

Apply Theorem 6.19 to the ψj ◦ f , then pass to the limit. See Evans and
Gariepy (1992) for validity of the chain rule in the Sobolev context, and for
other technical points.

Since ∇f = 0 Ln-a.e on sets f = c (Evans and Gariepy, 1992, p. 130), the
open interval (a, b) in Corollary 6.20 can be replaced by [a, b), (a, b], or [a, b].

Corollary 6.21 Let 1 ≤ p < ∞, � be an open subset of Rn and f ∈
W1,p

0 (�,R+). Then f # ∈ W1,p(�#,R+), and∫
�#

|∂zi f
#(x)|p dx ≤

∫
�

|∂zi f (x)|p dx, i = 1, . . . , m,∫
�#

|∇zf
#(x)|p dx ≤

∫
�

|∇zf (x)|p dx,∫
�#

|∇f #|p dx ≤
∫
�

|∇f |p dx.

Moreover, f # ∈ W1,p
0 (�#).

Proof The proof is exactly the same as for Corollary 3.22. The only new detail
perhaps requiring explication is the fact that if h is a nonnegative function with
compact support in �, then h# has compact support in �#. This point will be
discussed in §6.9.

6.9 Steiner Symmetrization Decreases Surface Area

We continue with the setting of §6.8:

X = R
k × R

m,

where 1 ≤ k ≤ n − 1, and m = n − k. The superscript # will denote the
(k, n)-Steiner symmetrization of a set or function.

The isoperimetric inequalities of Chapter 4 state that passing from a suitable
set E ⊂ R

n to its s.d.r. decreases the surface area of ∂E. The s.d.r. is a ball of the
same volume, and “surface area” was interpreted to be the perimeter P(E), the
(n−1)-dimensional Hausdorff measure Hn−1(∂E), or the (n−1)-dimensional
Minkowski content Mn−1(∂E). In the section at hand, we will present
corresponding results involving the (k, n)-Steiner symmetrization E# of E.

In §4.3, P(E) was defined in terms of functions of bounded variation on R
n.

Theorem 4.8 asserts that for f ∈ BV(Rn,R+) the total variation V( f ) decreases
under s.d.r. Our first order of business provides the Steiner counterpart.
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Theorem 6.22 If f ∈ BV(Rn,R+) then f # ∈ BV(Rn,R+) and

V( f #) ≤ V( f ).

Proof The same as the proof of Theorem 4.8, except we use Theorem 6.19(c)
instead of Theorem 3.20 to obtain for the approximating functions

V( f #
j ) = ‖∇f #

j ‖L1(Rn) ≤ ‖∇fj‖L1(Rn) = V( fj).

Let E be an Ln-measurable set in R
n. Recall that E has finite perimeter if

χE ∈ BV(Rn), that is:

Ln(E) < ∞ and V(χE) < ∞,

in which case we define

P(E) = χE.

Applying Theorem 6.22 to χE we obtain

Theorem 6.23 For every set E ⊂ R
n with finite perimeter, we have

P(E#) ≤ P(E). (6.70)

Thus, Steiner symmetrization decreases the perimeter.
According to Corollary 4.12, for sets E of finite perimeter we have P(E) ≤

Hn−1(∂E). Equality holds when E is a ball. Thus, when Ln(E) < ∞, the
s.d.r. case of (6.70) implies that s.d.r. also reduces Hn−1(∂E). But for Steiner
symmetric sets, the Hausdorff measure of the boundary can be strictly larger
than the perimeter. Take, for example, E to be the square (−1, 1) × (−1, 1)
in R

2 from which two horizontal slits {(x1, a2) : a1 ≤ |x1| < 1} have been
removed. Here 0 < a1 < 1, |a2| < 1. Then E is (1, 1)-Steiner symmetric,
with P(E) = 8 and H1(E) = 8 + 2(1 − a1).

The s.d.r results about Minkowski content also readily extend to the Steiner
setting. We review the definitions: E denotes an arbitrary subset of Rn; d(x, E)
is the distance in R

n from x to E. For δ > 0, the δ-collar E(δ) and δ-core
E(−δ) of E are defined by

E(δ) = {x ∈ R
n : d(x, E) < δ}, E(−δ) = {x ∈ E : d(x, E) ≥ δ}.

The lower (n−1)-dimensional Minkowski content Mn−1∗ (A) of a set A ⊂ R
n

is defined by

Mn−1
∗ A = lim inf

δ→0

Ln(A(δ))

2δ
.

The upper (n − 1)-dimensional Minkowski content M∗(n−1)(A) of A is
defined the same way, but with lim sup in place of lim inf . If Mn−1∗ (A) =
M∗(n−1)(A), the common value is called the (n − 1)-dimensional Minkowski
content of A and is denoted Mn−1(A).
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Theorem 6.24 Let E ⊂ R
n and δ > 0. Then

(a) E#(δ) ⊂ E(δ)#;
(b) E(−δ)# ⊂ E#(−δ).

Corollary 6.25 Let E ⊂ R
n and δ > 0. Then

(a) Ln(E(δ)) ≥ Ln(E#(δ));
(b) Ln(E#(−δ)) ≥ Ln(E(−δ));
(c) Ln((∂E)(δ)) ≥ Ln((∂E#)(δ)).

Theorem 6.26 For each Ln-measurable set E ⊂ R
n with Ln(E) < ∞,

we have

Mn−1(∂(E#)) ≤ Mn−1
∗ (∂E).

The same inequality holds when the lower contents are replaced by the upper
contents.

These are the Steiner versions of Theorem 4.14, Corollary 4.15, and
Theorem 4.16. The statements are identical, with one exception: in Theorem
6.26 E# is no longer a ball, so we cannot state a formula for the Minkowski
content of its boundary.

Proofs of 6.24–6.26 Consider Theorem 6.24(a). If E is unbounded then
Ln(E(δ)) = ∞ and (a) is true. Thus, we may assume that E is bounded,
and also, as in the proof of Theorem 4.14, that E is closed. Set

f (x) =
(

1 − d(x, E)

δ

)
, x ∈ R

n.

By Theorem 6.10, ω(t, f #) ≤ ω(t, f ) for all t > 0. The proof of Theorem
4.14(a) carries over to prove (a). The proofs of Theorem 6.24(b), Corollary
6.25 and Theorem 6.26 are now accomplished in exactly the same way as the
corresponding results in Chapter 4.

According to Theorem 6.26, Steiner symmetrization decreases the (n − 1)-
dimensional Minkowski contents.

To complete the parallel with s.d.r., we would like to prove that

Hn−1(∂E#) ≤ Hn−1(∂E) (6.71)

for all sets E ⊂ R
n of finite measure. If E# is a bounded domain with Lipschitz

boundary, then ∂E# coincides with its measure theoretic boundary ∂∗E#. Thus,

Hn−1(∂E#) = P(∂E#) ≤ P(E) ≤ Hn−1(∂E),
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where the first equality follows from Evans and Gariepy (1992, Theorem 5.7.2
and Lemma 5.8.1(ii)), the first inequality holds by (6.70), and the second
inequality by Corollary 4.12. So, (6.71) is true when E# is a bounded domain
with Lipschitz boundary. If E itself is a bounded domain with Lipschitz
boundary, it is not hard to show that the same is true for E#, so it is true at least
that Steiner symmetrization reduces the Hausdorff measure of the boundary of
Lipschitz domains.

For rough sets E it appears to be not known if (6.71) is always true or not.
A partial result, due to Sperner (1979), shows that (6.71) holds when k = n−1
and E satisfies some extra conditions.

Theorem 6.24 enables us to take care of a loose end in the proof of
Corollary 6.21.

Corollary 6.27 Let � be an open set in R
n and f ∈ Cc(�). Then f # ∈

Cc(�
#).

Proof Extend f to be zero in R
n \ �. Then Theorem 6.10 implies continuity

of f # on �#. To show that the support of f # is a compact subset of �#, set
A = {x ∈ � : f (x) > 0}. Then supp f = A. Take 0 < δ < d(A, ∂�). Then
A ⊂ �(−δ). Hence

A# ⊂ �(−δ)# ⊂ �#(−δ), (6.72)

where the second inclusion is by Theorem 6.24(b). But A# = {x ∈�# : f #(x)> 0}.
From (6.72), it follows that

d(supp f #, ∂�) = d(A#, ∂�) ≥ δ

so that supp f # is a compact subset of �#.

6.10 Steiner Symmetrization Increases or Decreases
Physical Quantities

We continue with the setting of the previous two sections

X = R
k × R

m,

where 1 ≤ k ≤ n − 1, and m = n − k. The superscript # will denote the
(k, n)-Steiner symmetrization of a set or function.

In Chapter 5 we showed that under symmetric decreasing rearrangement of
the domain, the principal eigenvalue decreases, various capacities decrease,
the torsional rigidity increases, and the mean lifetime of a Brownian particle
increases. All of this is still true for Steiner symmetrization.



214 Steiner Symmetrization

Theorem 6.28 λ1(�
#) ≤ λ1(�).

Theorem 6.29 Capp(K#, U#) ≤ Capp(K, U), 1 ≤ p < ∞.

Theorem 6.30 T(�) ≤ T(�#) and M(�) ≤ M(�#).

In the first and third theorems � is a bounded domain in R
n. In the second

theorem U is an open subset of Rn and K a compact subset of U.
For definitions, see Theorems 5.6, 5.14, 5.17, and Corollary 5.18. Recall that

T in Theorem 6.30 stands for torsional rigidity defined in §5.7.
For reasons explained in §5.6, Theorem 6.29 implies that Szegő’s theorems

about decrease of logarithmic and Newtonian capacity (Theorems 5.14 and
5.15) remain valid for Steiner symmetrization. So does Carleman’s theorem
about ring domains (Corollary 5.16), which is a consequence of the logarithmic
capacity decrease.

Proofs of Theorems 6.28–6.30 For the arguments proving Theorems 5.6–5.17
and Corollary 5.18 to carry over to their Steiner counterparts Theorems 6.28
and 6.30, we just need to know that Steiner symmetrization preserves the
space W1,2

0 (�) and decreases the L2-norm of the gradient. This is true by
Corollary 6.21.

For the proof of Theorem 5.14 to carry over to Theorem 6.29, we just need
to know that if u ∈ Lip(Rn) satisfies

K ⊂ (u = 1) ⊂ (u > 0) ⊂ V , 0 ≤ u(x) ≤ 1 ∀ x ∈ R
n, (6.73)

and

lim
x→∞ u(x) = 0, (6.74)

then u# ∈ Lip(Rn), ‖∇u#‖L2(Rn) ≤ ‖∇u‖L2(Rn), and (6.73)–(6.74) are satisfied
when u, K and U are replaced by u#, K# and U#.

The Lipschitz property of u# and decrease of norm of gradient follow from
Corollary 6.17. Relations (6.73) are true because u and u# have the same
distribution on R

n. As for (6.74), for each ε > 0 there exists R < ∞ such that
(u > ε) ⊂ B

n(0, R). Since the ball Bn(0, R) is Steiner symmetric, it follows
that (u# > ε) ⊂ B

n(0, R). This implies limx→∞ u#(x) = 0.

6.11 Notes and Comments

As often in symmetrization theory, our terminology in this chapter is far
from universal. For example, Burago and Zalgaller (1988), Sperner (1979),
and many other authors restrict the term Steiner symmetrization to mean our
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(1, n)-Steiner symmetrization. Burago and Zalgaller call (n − 1, n)-Steiner
symmetrization Schwarz symmetrization, while Sperner calls it Blaschke
symmetrization. For Chavel (2001), Schwarz symmetrization is our symmetric
decreasing rearrangement.

Steiner invented (1, 2)-Steiner symmetrization in 1838 as a device for
proving the isoperimetric inequality in the plane, but he was unable to
give a rigorous proof. See pp. 75–91 in Volume 2 of his collected works
Steiner (1882). A main sticking point was to prove that symmetric decreasing
rearrangement can be realized as the appropriate limit of a sequence of
Steiner symmetrizations having various axes of symmetry. Fortified with more
powerful mathematical tools such as the Hausdorff metric, rigorous versions
of his arguments appeared in the twentieth century. See, for example Brascamp
et al. (1974) and Talenti (1993).

Schwarz (1884) used (2, 3)-Steiner symmetrization in his research on the
isoperimetric inequality in R

3. The article of Stammbach (2012) gives some
historical context of the work of Schwarz and Steiner.

In Talenti’s proof (1993) of the isoperimetric inequality for perimeter in R
n,

the main ingredient is Theorem 6.23, the fact that perimeter decreases under
(1, n)-Steiner symmetrization.

Sarvas (1972) may be among the first to consider (k, n)-Steiner symmetriza-
tion for the full range k ∈ {1, . . . , n}. He proves Theorem 6.29, that these
symmetrizations decrease variational p-capacities.

Pólya and Szegő (1951, p. 154) give a semi-rigorous proof of the Dirichlet
integral inequality (6.35) and the capacity inequalities in Theorem 6.23 for
(1, 2)-, (1, 3)- and (2, 3)-Steiner symmetrizations. See also Pólya and Szegő
(1945). The first modern proof of these inequalities is due to Gehring (1961)
for n = 3. See also Sarvas (1972) for a simpler proof.

Sperner (1979) proved Theorems 6.10 and 6.26, along with a number of
other interesting properties of (k, n)-Steiner symmetrization.

Brock and Solynin (2000) carry out a careful study showing how (k, n)-
Steiner symmetrizations f # can be approximated by polarizations.

Burchard (1997) showed that (1, n)-Steiner is distinctive, in that the operator
which sends f to its (k, n)-Steiner symmetrization is strongly continuous in
W1,p(Rn) when k = 1. The Almgren–Lieb Theorem, see §3.7, implies this is
false for k ≥ 2.

Most studies of Steiner symmetrization operate in R
n rather than our space

X = R
k × Z. The introduction of Z and the “almost every slice” version

of inequalities such as (6.34) is implicit in Sperner (1979). I have not seen
before inequalities like (6.32) and (6.33) involving ∂zi and ∇z. Nor have I seen
anything like Lemma 6.18.
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Symmetrization on Spheres, and Hyperbolic
and Gauss Spaces

So far our principal object of study has been the symmetric decreasing
rearrangement of functions on R

n. In this chapter we shall study symmetric
decreasing rearrangements on spheres S

n and hyperbolic spaces H
n. We

shall also introduce “(k, n)-cap symmetrization” in R
n, which is like Steiner

symmetrization except that the rearranging is done on copies of Sk instead of
R

k. Just about everything we proved for s.d.r. and Steiner symmetrization is
still true for these new symmetrizations, with the same or simpler proofs. All
we need are suitable replacements on S

n and H
n for the distance function |x−y|

and measure Ln, a good understanding of metric balls, rich isometry groups,
and plenty of hyperplanes in which to polarize.

As an application of cap symmetrization, in §7.8 we shall prove a landmark
theorem of Gehring about distortion of quasiconformal maps in R

n. Also,
in §7.7 we shall give a short discussion of a method of symmetrization
on R

n in which the rearranging is done with respect to the Gauss measure

dμ = (2π)−n/2e− 1
2 |x|2 dx.

7.1 The Sphere S
n

The unit sphere S
n ⊂ R

n+1 is

S
n = {x ∈ R

n+1 : |x| = 1},
where | · | denotes the Euclidean norm. Note that Sn contains the (n + 1)-
dimensional coordinate vectors e1, . . . , en+1. We shall think of the east pole e1

as being the origin of Sn.
Each orthogonal linear transformation T ∈ O(n+1) maps Sn onto itself. By

linear algebra, given x, y ∈ S
n with x �= ±y there exists T ∈ O(n + 1) such that

Tx = e1 and Ty = c1e1 + c2e2 with c1 ∈ (−1, 1), c2 > 0, and c2
1 + c2

2 = 1.
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Define the distance d(x, y) between x and y to be the shorter arc length distance
between Tx and Ty on the unit circle in the plane spanned by e1 and e2. Put
another way: there is a unique circle of radius 1 centered at 0 ∈ R

n+1 which
contains x and y. Then d(x, y) is the shorter arc length distance on that circle
between x and y. To complete the definition of d, if x = y we define d(x, y) = 0
and if x = −y we define d(x, y) = π .

The group O(n + 1) acts isometrically on (Sn, d). That is,

d(x, y) = d(Tx, Ty), T ∈ O(n + 1).

Accordingly, d is called the invariant distance on S
n. It is also called the

canonical distance, the intrinsic distance, or the geodesic distance on S
n.

“Intrinsic” signifies that the distance is computed without leaving S
n, in

contrast to the “chordal distance” |x − y|, which is computed relative to R
n+1.

As for “geodesic,” if we endow S
n with the Riemannian metric inherited from

R
n+1 with its usual metric, then

d(x, y) = min L(γ ),

where L(γ ) is the Riemannian length of the path γ , and the minimum is taken
over all paths on S

n connecting x and y. The minima are achieved by arcs of
great circles, so that these circles are geodesics for the spherical Riemannian
metric.

We shall usually refer to d as the canonical distance on S
n.

Since the arc length distance between two points on a circle of radius 1
equals the angle θ ∈ [0,π ] between them, and the dot product x · y in R

n+1

equals |x||y| cos θ , we obtain

cos d(x, y) = x · y, x, y ∈ S
n.

The chordal distance on S
n is related to the canonical distance by

|x − y|2 = 2 − 2 cos d(x, y).

In §4.5 we defined the canonical measure σn on S
n to be the unique

nonnegative Borel measure for which the polar coordinate decomposition
dLn+1 = rn dσn dr holds. With the aid of the coarea formula, we showed that

σn = Hn restricted to S
n.

From the definition of Hausdorff measure, it is clear that σn enjoys the
invariance property

σn(TE) = σn(E), E ∈ B(Sn).

For θ ∈ [0,π ], set

K(θ) = {x ∈ S
n : d(x, e1) < θ} = {x ∈ S

n : x · e1 > cos θ}.
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Then K(θ) is the open unit ball in S
n centered at e1 with radius θ with

respect to the canonical distance function d. As a subset of Rn+1, K(θ) is an
open spherical cap on S

n centered at e1. In the next section, we shall see that

σn(K(θ)) = βn−1

∫ θ

0
sinn−1 t dt, 0 ≤ θ ≤ π . (7.1)

We shall say that a set E ⊂ S
n is σn-measurable if it belongs to the

completion with respect to σn of the Borel σ -algebra B(Sn).
In §1.7 we defined H(Rn) to be the set of all affine hyperplanes in R

n. Define
now H0(R

n) = {H0 ∈ H(Rn) : 0 ∈ H0}, and define

H(Sn) = {H0 ∩ S
n : H0 ∈ H0(R

n+1)}.
Let us call elements of H(Sn) hyperplanes on S

n, or s-hyperplanes. Thus,
s-hyperplanes are intersections of Sn with n-dimensional subspaces of Rn+1.
Each s-hyperplane lives on S

n, and is an (n − 1)-dimensional sphere in R
n+1

of radius 1, center 0 ∈ R
n+1. The complement of H in S

n is the union of two
hemispheres; denote one of them by H+, the other by H−.

For H = H0 ∩ S
n, let ρ = ρH denote reflection in R

n+1 with respect to H0.
Then ρH is an involutive isometry of Sn which maps H+ one-one onto H− and
is the identity on H. Given f : Sn → R and H ∈ H(Sn), define the polarization
fH : Sn → R of f with respect to H by

fH(x) =

⎧⎪⎪⎨⎪⎪⎩
max( f (x), f (ρx)), x ∈ H+,

min( f (x), f (ρx)), x ∈ H−,

f (x), x ∈ H.

The reader may verify that the results in §1.7 of Chapter 1 about hyperplanes
and polarizations on R

n remain true for hyperplanes and polarizations on S
n.

All one need do is change |x − y| to d(x, y) and Ln to σn.
Our next job is to define symmetric decreasing rearrangement for sets

and functions on S
n. For a σn-measurable E ⊂ S

n we define its symmetric
decreasing rearrangement E# as follows:

• If 0 < σ(E) ≤ βn and E �= S
n, then E# is the open spherical cap K(θ) with

σn(E) = σn(K(θ)).
• If σn(E) = 0 then E# is empty.
• If E = S

n then E# = S
n.

The last specification turns out to be convenient later.
Next, define a map T : Sn → [0,βn] by

T(x) = σn(K(θ))
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where θ = d(x, e1). Then x lies on the boundary, relative to S
n, of the

cap K(θ). One shows, as in Example 1.23 of §1.4, that T is a measure
preserving map from the completion of (Sn,B(Sn), σn) onto the completion
of ([0,βn],B([0,βn]),L). If f : S

n → R is σn-measurable, we define its
symmetric decreasing rearrangement f # by

f # = f ∗ ◦ T .

Here f ∗ is the decreasing rearrangement on f . As noted in §1.2, when the
measure space on which f is defined is finite, then the finiteness condition
(1.1) of Chapter 1 is automatically fulfilled. Thus, in contrast to the R

n case,
every a.e.-defined real valued f on S

n has an s.d.r.
The s.d.r. f # is constant on the boundaries of the caps K(θ), and decreases

as θ increases. All the other features of s.d.r. on R
n proved in §1.6 are also true

for s.d.r. on S
n, with obvious modifications, as the reader may check.

7.2 Spherical Coordinates on S
n

In calculus, we learn to parameterize S
1 by

x1 = cos θ , x2 = sin θ ,

with 0 ≤ θ ≤ 2π , and parameterize S
2 by

x1 = cos θ1, x2 = sin θ1 cos θ2, x3 = sin θ1 sin θ2,

with 0 ≤ θ1 ≤ π , 0 ≤ θ2 ≤ 2π . On S
2, the coordinates have been chosen so

that θ1 is the angle between the point x and the east pole e1.
We describe now n-dimensional versions of these coordinatizations. Let

n ≥ 2, and define the open set V in R
n by

V = (0,π)n−1 × (0, 2π).

Define F : V → R
n+1 by F(�θ) = x, where �θ = (θ1, . . . , θn), x =

(x1, . . . , xn+1), and

x1 = cos θ1, xn+1 =
n∏

i=1

sin θi, xj =
⎛⎝j−1∏

i=1

sin θi

⎞⎠ cos θj, 2 ≤ j ≤ n.

(7.2)
The reader may check that F(V) ⊂ S

n, that F is 1–1 on V , and that

S
n \ F(V) = {x ∈ S

n : xn+1 = 0, xn ≥ 0}. (7.3)



220 Symmetrization on Spheres, and Hyperbolic and Gauss Spaces

The last two statements can be checked by an inductive argument starting with
n = 2.

For x ∈ S
n the coordinate θ1 tells us the angle that x makes with e1 in R

n+1.
The other spherical coordinates specify the position of x within the (n − 1)-
sphere ∂K(θ1).

From (7.3), we see that σn(S
n \ V) = 0. The area formula (4.5) gives for

σn-measurable A ⊂ S
n, ∫

F−1(A)
JF dx = σn(A), (7.4)

where

J2
F = det[(DF)∗(DF)].

Here DF is the (n+1)×n matrix whose (i, j) entry is ∂xi
∂θj

. Denote the entries

of (DF)∗(DF) by gij. Then gij = ∂F
∂xi

· ∂F
∂xj

. By an exercise for the reader we
have,

gij = 0 if i �= j, g11 = 1, gii =
i−1∏
j=1

sin2 θj, 2 ≤ i ≤ n.

Thus, we get

JF = sinn−1 θ1 sinn−2 θ2 · · · sin θn−1. (7.5)

Let h be a nonnegative σn-measurable function on S
n. As in Evans and

Gariepy (1992, p. 99), formula (7.4) can be generalized to the change of
variable formula ∫

Sn
h dσn =

∫
V
(h ◦ F) JF dLn.

From (7.5) it follows that∫
Sn

h dσn =
∫ π

0
sinn−1 θ1 dθ1

∫ π

0
sinn−2 θ2 dθ2 · · ·

· · ·
∫ π

0
sin θn−1 dθn−1

∫ 2π

0
h(x1, . . . , xn+1) dθn,

(7.6)

where the xj are related to the θj by (7.2).
If h is radial on S

n, that is, depends only on the angle θ between a point on
S

n and e1, then (7.6) simplifies to∫
Sn

h dσn = βn−1

∫ π

0
h(θ) sinn−1 θ dθ ,

where we have employed the usual abuse of notation equating h with h ◦ F.
In particular, taking h = χK(θ), we obtain
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σn(K(θ)) = βn−1

∫ θ

0
sinn−1 t dt, 0 ≤ θ ≤ π ,

which confirms formula (7.1).
Next, we consider spherical coordinates in R

n. Assume n ≥ 2. Then each
x ∈ R

n \ {0} can be written in exactly one way as x = r y, with r ∈ (0, ∞), y ∈
S

n−1. Let W = (0, ∞) × (0,π)n−2 × (0, 2π), where the middle factor set
is to be omitted when n = 2. Define G : W → R

n by G(�θ) = x, where
�θ = (r, θ1, . . . , θn−1), x = (x1, . . . , xn), and

x1 = r cos θ1, xn = r
n−1∏
i=1

sin θi, xj = r cos θj

j−1∏
i=1

sin θi, 2 ≤ j ≤ n − 1.

(7.7)
Then G is 1–1 on W, and R

n \ G(W) = {x ∈ R
n : xn = 0, xn−1 ≥ 0} has

Ln-measure zero.
If h is a nonnegative measurable function on R

n then∫
Rn

h dLn =
∫ ∞

0
rn−1 dr

∫
Sn−1

h(ry) dσn−1(y)

=
∫ ∞

0
rn−1 dr

∫ π

0
sinn−2 θ1 dθ1

∫ π

0
sinn−3 θ2 dθ2 · · ·

· · ·
∫ π

0
sin θn−2 dθn−2

∫ 2π

0
h(x1, . . . , xn) dθn−1,

where the xj are related to the r and θj by (7.7). The first equality was
established in §4.5 and the second equality follows from (7.6). The equality
of the first and third quantities can be succinctly expressed as

dx1 dx2 · · · dxn = rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dr dθ1 · · · dθn−1.

Given a domain � ⊂ R
n \ G(W) and a function u ∈ C2(�), let v = u ◦ G in

�′ ≡ G−1(�) ⊂ V . Then for n ≥ 3 we have the following formula for �u in
spherical coordinates, see Vilenkin (1968, p. 493) or Atkinson and Han (2012,
p. 94):

�u = r1−n∂r(r
n−1vr) + r−2 sin2−n θ1 ∂θ1

(
sinn−2 θ1 ∂θ1v

)
+ r−2

n−1∑
j=2

sinj+1−n θj

⎛⎝j−1∏
i=1

sin θi

⎞⎠−2
∂

∂θj

(
sinn−j−1 θj ∂θjv

)
.

(7.8)

Here �u is evaluated at a point x ∈ � and the functions on the right side are
evaluated at y = G−1(x). When j = n−1, the term sinn−j−1 θj is understood to
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be 1. When some θj are equal to 0, formula (7.8) remains true if suitably rewrit-
ten: expand ∂

∂θj

(
sinn−j−1 θj ∂θjv

)
using the product formula, and simplify.

Often, we will not distinguish between u and v. For example, if u is a radial
function, that is, depends only on r = |x|, then (7.8) can be written as

�u = r1−n∂r(r
n−1∂ru) = urr + n − 1

r
ur, (7.9)

while if u depends only on r and θ1 then writing θ = θ1, we have

�u = r1−n∂r(r
n−1∂ru) + r−2 sin2−n θ ∂θ (sinn−2 θ ∂θu)

= urr + n − 1

r
ur + r−2uθθ + r−2(n − 2) cot θ uθ .

(7.10)

Identities (7.9) and (7.10) remain true when n = 2.
Returning now to functions on S

n, assume that � is an open subset of Sn,
that n ≥ 2 and that f ∈ C2(�). Take R1, R2 with 0 < R1 < 1 < R2 < ∞,
and let �̂ = {rx : r ∈ (R1, R2), x ∈ �}. Extend f to a function f̃ : �̂ → R by
f̃ (rx) = f (x). Then f̃ ∈ C2(�̂). Define the function �sf on S

n by

�sf (x) = �f̃ (x), x ∈ �,

where � denotes the Laplace operator in R
n+1.

The operator �s is called the spherical Laplace operator on S
n. It coincides

with the Laplace–Beltrami operator when S
n is equipped with the Riemannian

metric inherited from the Euclidean metric on R
n+1. In spherical coordinates

on S
n, the volume element of this metric is

dσn = sinn−1 θ1 sinn−2 θ2 · · · sin θn−1 dθ1 dθ2 · · · dθn.

See (7.6). From (7.8), with n replaced by n + 1, we obtain, when n ≥ 2, the
coordinate representation

�sf = sin1−n θ1 ∂θ1(sinn−1 θ1 ∂θ1 f )

+
n∑

j=2

sinj−n θj

⎛⎝j−1∏
i=1

sin θi

⎞⎠−2
∂

∂θj

(
sinn−j θj∂θj f

)
.

(7.11)

When n = 1, (7.11) simplifies to �f = fθθ .
Let again � ⊂ S

n and �̂ be as above. Given a function f on �, extend it to
f̃ on �̂. If f is differentiable at a point x ∈ � then f̃ is also differentiable at x,
as a function on R

n+1. We define the spherical gradient of f at x to be

∇sf (x) = ∇ f̃ (x).

Then ∇sf (x) is a vector in R
n+1. From the nondependence of f̃ on r, it

follows that ∇sf (x) is tangent to S
n at x. That is, ∇sf (x) · x = 0.
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Finally, suppose that we again have � ⊂ S
n. This time, let f : � → R

n+1

be a tangential vector field on S
n. Thus, we have f (x) · x = 0 for each x ∈ �.

Letting again f̃ (rx) = f (x), define the spherical divergence of f to be the scalar
function

divs f (x) = div f̃ (x), x ∈ �.

If � ⊂ S
n has C1 boundary and f ∈ C1(�), then by passing to �̂ the reader

may check that we still have a Gauss–Green Theorem:∫
∂�

f · ν dHn−1 =
∫
�

divs f dσn,

where ∂� denotes boundary relative to S
n, and ν(x) is the outward pointing

unit normal vector to ∂� at x which lies in the tangent space of S
n at x.

If � = S
n, the formula becomes∫

Sn
divs f dσn = 0.

Like �s, the operators ∇s and divs coincide with the Riemannian gradient
and Riemannian divergence when S

n is endowed with the Riemannian metric
inherited from Rn+1. See, e.g. Spivak (1965), Chavel (1993), and Bérard (1986)
for discussion of calculus on manifolds. Here, we shall just write down the
coordinate expressions for these operators on S

n, and will observe that the
formula

�sf = divs(∇sf )

is valid.

7.3 Inequalities for Spherical Symmetrization, Part 1

All of the inequalities involving polarization and s.d.r. on R
n which were

proved in Chapters 1–5 remain true for polarization and s.d.r. on S
n, often

with fewer restrictions on the data. In this section we shall elaborate on
this statement for Chapters 1 and 2. Chapters 3–5 are treated in the next
section.

In this section, # will denote s.d.r. on the sphere S
n, and fH will denote the

polarization of f : Sn → R with respect to an s-hyperplane H ∈ H(Sn).
As noted in §7.1, the pertinent results in Sections 1.5 and 1.6 remain valid on

S
n. The same is true for the convergence in measure result, Proposition 1.43(b).

Indeed, in the spherical case we have σn(S
n) < ∞. From Proposition 1.41, it

follows that fn → f in measure implies f #
n → f # in measure for every sequence

of real valued σn- measurable functions, even those with ess inf = −∞.
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After changing R
n to S

n, dx to dσn(x), |x − y| to d(x, y), and 0 ∈ R
n

to e1 ∈ S
n, all of the following results from Chapter 2 and their proofs,

sometimes simplified, remain valid for polarization and s.d.r on S
n : Theorem

2.9, Propositions 2.10, 2.11, Theorem 2.12, Corollary 2.13, Theorem 2.15,
Corollaries 2.16, 2.19, 2.20, 2.22, 2.23(b).

Conditions like λf (t) < ∞ are automatically satisfied on S
n. The spherical

version of Proposition 2.11 is true for all continuous f on S
n, not just

nonnegative f . In Theorem 2.15(b), the map T , which was a translation in the
R

n case, becomes an element of O(n + 1) in the S
n case.

For future reference, we state the spherical version of Corollary 2.19
explicitly.

Corollary 7.1 Let f and g be nonnegative Lebesgue measurable functions on
S

n and let K : R+ → R
+ be decreasing. Then∫

Sn×Sn
f (x)g(y)K(d(x, y)) dx dy ≤

∫
Sn×Sn

f #(x)g#(y)K(d(x, y)) dx dy.

The R
n versions of the main integral inequalities, Theorems 2.9 for polar-

ization and Theorem 2.15 for symmetrization, were stated and proved for
nonnegative integrands. In the spherical case, not only do the nonnegative
versions remain true, but also the finiteness of the measure σn makes feasible
formulations in which the integrands can change sign. Two such results are
stated below, as Theorems 7.2 and 7.3.

We write σ = σn and Lp(Sn) = Lp(Sn, σ).

Hypotheses and Definitions
Let H ∈ H(Sn) be an s-hyperplane, and ρ = ρH be the reflection in H.
The complementary open hemispheres of H are denoted by H+ and H−.
Assume that

f and g are σn-measurable real functions on S
n, (7.12)

K : [0,π ] → R is decreasing, and K(d(e1, x)) ∈ L1(Sn), (7.13)

� : R × R → R is in AL(R × R), (7.14)

�( f (x), g(y))K(d(x, y)), �( fH(x), gH(y))K(d(x, y)) ∈ L1(Sn × S
n), (7.15)

and

�( f (x), g(x)), �( fH(x), gH(x)) ∈ L1(Sn). (7.16)

Let

Q( f , g) = Q( f , g, K,�) ≡
∫
Sn×Sn

�( f (x), g(y))K(d(x, y)) dσ(x) dσ(y),
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A ≡ {(x, y) ∈ (H+)2 : either f (x) < f (ρx) and g(y) > g(ρy),

or f (x) > f (ρx) and g(y) < g(ρy)},

and A0 ≡ {x ∈ H+ : (x, x) ∈ A}.
Theorem 7.2 Let assumptions (7.12)–(7.16) be satisfied. Then

(a) Q( f , g) ≤ Q( fH , gH).
(b) Suppose that neither f nor g is constant, that K is strictly decreasing on

R
+, and that � ∈ SAL(R × R). Then equality holds in (a) if and only if

(σ × σ)(A) = 0.
(c)

∫
Sn �( f (x), g(x)) dσ(x) ≤ ∫

Sn �( fH(x), gH(x)) dσ(x).
(d) If � ∈ SAL(R × R) then equality holds in (c) if and only if σ(A0) = 0.

Proof The result is derived from the two-point symmetrization inequality
Theorem 2.8, just as Theorem 2.9 was. Note that hypothesis (7.15) insures
that Q( f , g) and Q( fH , gH) are well defined and are finite.

Theorem 7.3 Suppose that assumptions (7.12), (7.13), and (7.14) are
satisfied, that (7.15) and (7.16) are satisfied with f #, g# replacing fH , gH ,
that

A1 ≡ {(x, y) ∈ S
n × S

n : f (x) < f (y) and g(x) > g(y)},

and that

�( f (x), 0) and �(0, g(y)) are in L1(Sn).

Then

(a) Q( f , g) ≤ Q(f #, g#).
(b) Under additional assumptions that neither f nor g is constant, that K is

strictly decreasing on [0,π ], and that � ∈ SAL(R × R), equality holds in
(a) if and only if there exists T ∈ O(n + 1) such that

f = f # ◦ T and g = g# ◦ T , a.e. on S
n.

(c)
∫
Sn �( f (x), g(x)) dσ(x) ≤ ∫

Sn �(f #(x), g#(x)) dσ(x).
(d) If � ∈ SAL(R × R) then equality holds in (c) if and only if σ(A1) = 0.

Proof of Theorem 7.3(a) We sketch the proof when � ∈ C(R × R). The
passage to discontinuous � is done as in the proof of Theorem 2.15.

Define

�1(s, t) = �(s, t) − �(s, 0) − �(0, t) + �(0, 0), (s, t) ∈ R
2.
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Note that
∫
Sn K(d(x, y)) dσ(y) is the same for all x. So, integrating first with

respect to y, we obtain∫
Sn×Sn

|�( f (x), 0)K(d(x, y))| dσ(x) dσ(y)

=
∫
Sn

|�( f (x), 0)| dσ(x)
∫
Sn

|K(d(e1, x))| dσ(x) < ∞.

Similarly, �(0, g(y))K(d(x, y)) belongs to L1(Sn × S
n). We conclude that

�1( f (x), g(y))K(d(x, y)) ∈ L1(Sn × S
n), and likewise when f and g are

replaced by f # and g#. Furthermore, the integrals
∫
Sn �( f (x), 0) dσ(x) and∫

Sn �(0, g(y)) dσ(y) do not change when f and g are replaced by f # and g#.
Thus, to prove the theorem, it suffices to prove it when � is replaced by �1. In
the argument to follow we shall use Q( f , g) to denote Q( f , g, K,�1).

We have �1 ∈ AL(R × R), and �1 vanishes on the coordinate axes. From
the definition of AL, it follows that �1 is nonnegative in the first and third
quadrants, nonpositive in the second and fourth quadrants. Furthermore, within
each quadrant, |�1(s, t)| increases as |s| increases with t fixed or as |t| increases
with s fixed.

Assume now that f and g are continuous and that K is bounded on [0,π ].
Define

S( f ) = {F ∈ C(Sn,R) : �(·, F) ≤ �(·, f ) on (0, ∞), λF = λf on R},
S = S( f , g) = {(F, G) ∈ S( f ) × S(g) : Q( f , g) ≤ Q(F, G)}, and

d2 = inf
(F,G)∈S

‖f # − F‖2
2 + ‖g# − G‖2

2,

where ‖·‖2 is the norm in L2(Sn).
Let { fk} and {gk} be sequences in S( f ) and S(g) respectively such that

d2 = lim
k→∞

‖f # − fk‖2
2 + ‖g# − gk‖2

2.

By the Arzelà–Ascoli Theorem, there is a subsequence of {( fk, gk)}, also
denoted {( fk, gk)}, such that { fk} and {gk} respectively converge uniformly
on S

n to continuous functions F0 and G0. Since the sequences are uniformly
bounded and the measure σ is finite, the dominated converges theorem yields

d2 = ‖F0 − f #‖2
2 + ‖G0 − g#‖2

2.

We have F0 ∈ S( f ), G0 ∈ S(g). There exists M such that

|�1( fk(x), gk(y))K(d(x, y))| ≤ M, ∀ x ∈ S
n, y ∈ S

n, k ≥ 1.

By the dominated convergence theorem, limk→∞ Q( fk, gk) = Q(F0, G0). Thus
Q( f , g) ≤ Q(F0, G0), so that (F0, G0) ∈ S. Via Theorem 7.2, and taking H
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to be an appropriate s-hyperplane with e1 ∈ H+, one shows as in the proof
of Theorem 2.15 that F0 = f # and G0 = g#, so that (f #, g#) ∈ S, hence
Q( f , g) ≤ Q(f #, g#). Conclusion (a) is proved when f and g are continuous
and K is bounded.

Next, we continue to suppose that K is bounded, and will assume that f and g
are in L∞(Sn). Take sequences { fk} and {gk} of functions in C(Sn,R) such that
fk → f and gk → g in L2-norm and a.e., and also ‖fk‖L∞ ≤ ‖f ‖L∞ , ‖gk‖L∞ ≤
‖g‖L∞ for each k. Some subsequence also has the corresponding convergence
properties for { f #

k } and {g#
k}. An argument with the dominated convergence

theorem gives Q( f , g) ≤ Q(f #, g#), as desired.
Let now f , g, and K be any functions satisfying the hypotheses of

Theorem 7.3. For m ≥ 1, define fm(x) = f (x) if x ∈ [−m, m], fm(x) = m
if f (x)≥ m, fm(x) = −m if f (x) ≤ −m. Define gm and Km in the same way.
Then for m ≥ 1 we have∫

Sn×Sn
�1( fm(x), gm(y))Km(d(x, y)) dσ(x) dσ(y)

≤
∫
Sn×Sn

�1( f #
m(x), g#

m(y))Km(d(x, y)) dσ(x) dσ(y).
(7.17)

We noted above that |�1| increases on horizontal and vertical half lines
within a quadrant when we walk along the half line toward infinity. It follows
that, for almost every (x, y) and every m ≥ 1, we have

|�1( fm(x), gm(y))Km(d(x, y))| ≤ |�1( f (x), g(y))K(d(x, y))|.
By hypothesis, the function on the right is in L1(Sn ×S

n). Thus, as m → ∞,
the dominated convergence theorem implies that the sequence on the left in
(7.17) converges to Q( f , g). Since f #

m = (f #)m, the same reasoning shows that
the sequence on the right (7.17) converges to Q(f #, g#). Part (a) of Theorem 7.3
is proved for continuous � ∈ AL(R × R).

Proof of Theorem 7.3(b), for continuous � Since Q( f , g) = Q( f ◦ T , g ◦ T),
the “if” part is clear. To obtain the “only if” part, define the center of mass c(E)
of a σ -measurable set E ⊂ S

n with σ(E) > 0 to be

c(E) = 1

σ(E)

∫
E

x dσ(x).

Then c(E) ∈ B
n+1(0, 1), the open unit ball in R

n+1. For T ∈ O(n + 1), the
linearity of T gives c(TE) = Tc(E). In particular, if c(E) = 0 then c(TE) = 0
for every T ∈ O(n + 1). Also,

c(E) · ej = 1

σ(E)

∫
E

x · ej dσ , 1 ≤ j ≤ n + 1.
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Set E(t, f ) = {x ∈ S
n : f (x) > t} and If = (ess inf f , ess sup f ). Then

0 < σ(E(t, f )) < σ(Sn) for t ∈ If . Define

c1(t) = c(E(t, f )), c2(t) = c(E(t, g)),

where t ∈ If in the definition of c1 and t ∈ Ig in the definition of c2.
We now proceed by cases and subcases.
Case 1. Assume there exists t ∈ If such that c1(t) = 0 or there exists s ∈ Ig

such that c2(s) = 0. Say the latter. Take such an s ∈ Ig and take any t ∈ If .
Write

E1 = E(t, f ), E2 = E(s, g), Ec
i = S

n \ Ei, i = 1, 2.

Then c(E2) = 0, and also c(Ec
2) = 0.

Let a be a point of density of E1 and b be a point of density of Ec
1. Let

H be the bisecting s-hyperplane of a and b, and H+ be the complementary
hemisphere containing a. If B is a sufficiently small ball centered at a then we
have

σ [{x ∈ B : x ∈ E1, ρHx /∈ E1}] > 0. (7.18)

Moreover, (7.18) still holds, with the same B, when H is replaced by any
s-hyperplane H̃ which is sufficiently close to H. Here we may define the
distance d1 between H and H̃ to be θ , where θ ∈ [0,π/2] is the angle between
two corresponding normal vectors.

Assuming, as we may, that B ⊂ H+, it follows that there exists ε > 0
such that

σ [{x ∈ (H̃)+ : f (x) > t, f (ρx) ≤ t}] > 0, (7.19)

where ρ = ρH̃x and H̃ is any s-hyperplane with 0 ≤ d1(H, H̃) < ε.
Next, with H and H+ as above, we examine E2.

Subcase 1. Suppose that the set

ρ(Ec
2 ∩ H+) ∩ E2 (7.20)

has positive measure. Then

σ [{y ∈ H+ : g(y) ≤ s, g(ρHy) > s}] > 0. (7.21)

Combining (7.21) with (7.19), then using Theorems 7.1(b) and 7.2(a), we
obtain Q( f , g) < Q( fH , gH) ≤ Q(f #, g#), as desired.

Subcase 2. Suppose that the set in (7.20) has measure zero. Write ρ = ρH .
Then, except for a null set, ρ(Ec

2 ∩ H+) ⊂ Ec
2 ∩ H−. If the difference between

the two sets had positive measure then c(Ec
2) could not be zero. Thus, except

for a null set we get ρ(Ec
2 ∩ H+) = Ec

2 ∩ H−. It follows that the sets E2 and Ec
2
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are essentially symmetric with respect to ρ, i.e., ρ(E2) = E2 except for a null
set, and likewise for Ec

2.
We know that E2 ∩ H+ and Ec

2 ∩ H+ each have positive measure. By a real
variable exercise, given δ > 0 there exist a′, b′ ∈ H+ such that a′ is a point of
density of E2, b′ is a point of density of Ec

2, and d(a′, b′) < δ. By the essential
symmetry of E2, ρH(a′) is also a point of density of E2. Let H̃ be the plane
bisecting ρH(a′) and b′. Then, as in the proof of (7.19), (7.21) holds, with H
replaced by H̃. For small enough δ we have d1(H, H̃) < ε. Then (7.19) also
holds, and we conclude as before that Q( f , g) < Q(f #, g#). Case 1 of Theorem
7.3(b) is proved.

Case 2. If no c1(t) or c2(s) is ever zero for any t ∈ If or s ∈ Ig, then there
are two subcases: c1(t) and c2(s) are distinct nonzero numbers for some t and
s, or c1(t) = c2(s) = nonzero constant for all relevant t. The proofs of each
subcase can be accomplished by modifying the proof of Theorem 2.15(b). In
addition to the usual spherical adjustments, the hyperplane H(w) appearing in
that proof should be replaced by the s-hyperplane bisecting the points e1 and
w ∈ S

n.
This completes the proof of Theorem 7.3(b) when � is continuous. Verifi-

cation of parts (c) and (d) of Theorem 7.3, and the extension to discontinuous
�, is left to the reader.

In Chapter 2, each of Corollaries 2.16, 2.19, 2.20, 2.22 and 2.23(b) states
integral inequalities involving nonnegative integrands. As observed at the
beginning of this section, these results remain valid in the spherical case.
Theorem 7.3 permits us to prove versions of these corollaries involving
integrands that are not necessarily nonnegative. Here is just one example: the
inequality ∫

Sn
f (x)g(x) dσ(x) ≤

∫
Sn

f #(x)g#(x) dσ(x)

is true when f ∈ Lp(Sn), g ∈ Lp′
(Sn), where p and p′ are conjugate Hölder

exponents.

7.4 Inequalities for Spherical Symmetrization, Part 2

For f ∈ Lip(Sn,R), we define the Lipschitz norm by

‖f ‖Lip(Sn) = sup
x,y∈Sn

| f (y) − f (x)|
d(x, y)

,

where d is the canonical distance on S
n.
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If ‖f ‖Lip(Sn) < ∞, then application of Rademacher’s Theorem 3.2 to the
extension f̃ , studied in §7.2, shows that f is differentiable σn-a.e on S

n. Thus,
the spherical gradient ∇sf exists a.e, as a vector in R

n+1 which is tangent vector
to S

n. Denote by |∇sf | the length of this vector in R
n+1.

Here is the main theorem about the decrease of spherical Dirichlet integrals
under spherical symmetrization. Throughout this section, f # denotes the
spherical s.d.r. of f . Also, set

K(x, ε) = {y ∈ S
n : d(x, y) < ε}.

Theorem 7.4 Let f ∈ Lip(Sn,R) and � : R
+ → R

+ be convex and
increasing, with �(0) = 0. Then∫

Sn
�(|∇sf

#|) dσn ≤
∫
Sn

�(|∇sf |) dσn. (7.22)

Proof For ε > 0, σ = σn, and Kε = χ[0,ε], define

I(ε, f ) =
∫
Sn×Sn

| f (y) − f (x)| Kε(d(x, y)) dσ(x) dσ(y)

=
∫
Sn

dσ(x)
∫
K(x,ε)

| f (y) − f (x)| dσ(y).

Then, by the spherical version of Corollary 2.19 we get

I(ε, f #) ≤ I(ε, f ).

We claim that for all f ∈ Lip(Sn,R),

lim
ε→0

ε−n−1I(ε, f ) = Cn

∫
Sn

|∇sf | dσ(x), (7.23)

where Cn is a constant depending only on n. In fact,

Cn = βn

π(n + 1)
= 1

π
αn+1, n ≥ 1. (7.24)

Once (7.23) is proved, we will have (7.22) for �(x) = |x|. The pas-
sage from |x| to general � can then be accomplished as in the proof of
Theorem 3.11.

Proof of (7.23) At points of differentiability x ∈ S
n of f , and each y ∈ S

n,
define R(x, y) by

f (y) − f (x) = ∇sf (x) · (y − x) + R(x, y),

where · is the inner product in R
n+1. Then, for almost every x, we have

|R(x, y)| ≤ 2‖f ‖Lip(Sn)|y − x|
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and

lim
y→x

R(x, y)|x − y|−1 = 0.

Thus we can write

I(ε, f ) =
∫
Sn×Sn

|∇sf (x) · (y − x)| Kε(d(x, y)) dσ(x) dσ(y) + Pε , (7.25)

where

|Pε | ≤
∫
Sn×Sn

|R(x, y)|Kε(d(x, y)) dσ(x) dσ(y).

Integrating first with respect to y, and using σ(K(x, ε)) ≤ Cnε
n, we obtain,

for some constant Cn, not necessarily the one in (7.24),

ε−n−1|Pε | ≤ Cn

∫
Sn

sup
y∈K(x,ε)

ε−1|R(x, y)| dσ(x).

The integrand in the last integral is bounded, and approaches zero as ε → 0
for almost every x. By the dominated convergence theorem, we see that

lim
ε→0

ε−n−1Pε = 0. (7.26)

To analyze the first term on the right in (7.25), take a point of differentiability
x ∈ S

n, assume ∇sf (x) �= 0, and define a ∈ S
n by

∇sf (x) = a|∇sf (x)|.
Since ∇sf (x) is tangent to S

n at x, we have a · x = 0, and hence∫
Sn

|∇sf (x) · (y − x)| Kε(d(x, y)) dσ(y) = |∇sf (x)|
∫
K(x,ε)

|a · y| dσ(y).

Since a ∈ S
n and a · x = 0, there exists T ∈ O(n + 1) such that Te1 = x and

Te2 = a. Letting y = Tz in the integral on the right, we obtain∫
Sn×Sn

|∇sf (x) · (y − x)| Kε(d(x, y)) dσ(x) dσ(y)

= Cn(ε)

∫
Sn

|∇sf (x)| dσ(x)
(7.27)

where Cn(ε) = ∫
K(ε)

|e2 · z| dσ(z). Integrating in spherical coordinates, one
can show that

lim
ε→0

ε−n−1Cn(ε) = π−1(n + 1)−1βn.

Then (7.23) and (7.24) follow from (7.25), (7.26) and (7.27). This completes
our proof of Theorem 7.4.
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Theorem 7.4 is the spherical version of Theorems 3.7 and 3.11. It implies
that the spherical versions of Corollaries 3.8 and 3.9 are true. The reader may
verify also that the inequality

‖∇sf
#‖L∞(Sn) ≤ ‖∇sf ‖L∞(Sn)

is valid for f ∈ Lip(Sn,R). This is the spherical version of Theorem 3.6.
One may form Sobolev spaces W1,p(Sn,R) of functions on spheres.

Theorem 3.20 and its Corollaries 3.21 and 3.22 remain valid. In spherical
versions of Theorem 3.20 and Corollary 3.21 one can drop the nonnegativity
assumption on f .

In the discussion after the proof of Corollary 3.9 we remarked that for n = 1
the nonnegativity assumption on f in that result could be removed. To see this,
suppose that � ⊂ R is open, with L(�) < ∞, and that f ∈ Lip(�,R) with
f = 0 on ∂�. By running all the component intervals together, we may assume
that � is a finite open interval, then by translation and dilation we may assume
that � = (−π ,π). Now f (−π) = f (π) = 0, so we may identify f with
a Lipschitz function f0 on the unit circle. The validity of Theorem 7.4 for f0
implies the validity of the inequality∫

�

�(|(f #)′|) dx ≤
∫
�

�(| f ′|) dx

for all convex increasing � with �(0) = 0, where f # denotes s.d.r. on � ⊂ R.
By straightforward modification of the R

n case, one can define spherical
versions of the total variation of a function, the space BV(Sn,R), and the
perimeter P(E) of a set E ⊂ S

n. For example, for f ∈ L1(Sn, σn),

V( f ) ≡ sup
φ

∫
Sn

f divs φ dσn,

where φ runs through all functions φ ∈ C1(Sn,Rn) with supSn |φ| ≤ 1, and
divs denotes the spherical divergence defined in §7.2.

One may check that the spherical versions of the following symmetrization
results are true: Theorems 4.8, 4.10, 4.14, 4.16, Corollary 4.15.

The gist of these results is that s.d.r. on S
n reduces the total variation of

functions, the perimeter of sets, and the (n − 1)-dimensional spherical lower
Minkowski content of the boundary. Corollary 4.13 asserts that s.d.r. on R

n

reduces the (n − 1)-Hausdorff measure of the boundary. The analogue for
spherical s.d.r. is probably true, but I have not thoroughly checked it.

Theorems 4.10 and 4.16 contain simple formulas for the measure of
the boundary of Euclidean balls in terms of their volume. Except in low
dimensions, there are no straightforward formulas for the measure of the
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boundary of spherical caps in terms of their spherical volumes. Since ∂K(θ)

is the (n − 1)-sphere in R
n+1 with center (cos θ) e1, radius sin θ , in terms of

radii, we do have the simple formula

Hn−1(∂K(θ)) = βn−1 sinn−1 θ .

Much of the early work on isoperimetry on spheres was done in the context
of Minkowski content. For emphasis, the spherical version of Theorem 4.16 is
stated as Theorem 7.5.

Theorem 7.5 For each σn-measurable set E ⊂ S
n, we have

Mn−1
∗ (∂E) ≥ Mn−1(∂(E#)).

Here, # denotes s.d.r. on S
n, and M is computed like its counterpart in

R
n, except that the collar E(δ) and the core E(−δ) are computed using the

canonical distance d on S
n. For example, for E ⊂ S

n we have

E(δ) = {x ∈ S
n : d(x, E) < δ}.

Sobolev embedding theorems exist in the S
n setting. Here is one, which

is more often called the Poincaré inequality: For f ∈ L1(Sn, σn) with
distributional derivatives in Lp(Sn, σn),

‖f − fav‖p∗ ≤ Cp‖∇ f ‖p, 1 ≤ p < n,

where p∗ = np
n−p and ‖·‖p denotes the norm in Lp(Sn, σn), and fav =

1
βn

∫
Sn f dσn.

Apparently, the best constants Cp are not known.
For a proper open subset � ⊂ S

n the analysis in §§5.1–5.3 of eigenvalues
of the Laplacian with Dirichlet boundary conditions remains valid. We just
have to use the spherical Laplacian �s instead of the Euclidean Laplacian �.
Thus, there is a smallest nonnegative number λ1 = λ� for which the p.d.e.
�su = −λ1u has a solution u ∈ W1,2

0 (�) which is not identically zero. One
such eigenfunction, call it u1, is the the nonnegative minimizer of

∫
�

|∇su|2dσn

over all u ∈ W1,2
0 (�) with

∫
�

u2 dσn = 1. By the consequences of Theorem
7.4, we see that the Faber–Krahn Theorem 5.6 is still valid on S

n :

λ1(�
#) ≤ λ1(�), for Dirichlet eigenvalues,

where # denotes spherical s.d.r.
If U is a proper open set in S

n, K is a compact subset of U and 1 ≤ p < ∞,
we can define the variational p-capacity of the spherical condenser (K, U)

to be

Capp(K, U) = inf

{∫
U

|∇su|2 dσn

}
,
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where the infimum is taken over all u ∈ Lip(Sn) with u = 1 on K, u = 0 on
S

n \ U and 0 ≤ u ≤ 1 in S
n. It follows again from Theorem 7.4 that

Capp(K#, U) ≤ Capp(K, U).

Let again � be a proper open subset of Sn. Define the torsional rigidity of �
to be

T(�) = 2
∫
�

u dσn,

where u ∈ W1,2
0 (�) is the solution of the Poisson problem �su = −2 in �.

Then Pólya’s Theorem 5.17 remains true in the spherical setting:

T(�) ≤ T(�#).

This can be proved using Dirichlet integrals, as in the Euclidean case.

7.5 Cap Symmetrizations

Let n ≥ 2. For x = (x1, . . . , xn) ∈ R
n \ {0} write x = r y, where r = |x| and

y = x/r ∈ S
n−1. For an Ln-measurable set E ⊂ R

n and r > 0, set

E(r) = {y ∈ S
n−1 : r y ∈ E}.

Then E(r) is σn−1-measurable for L-almost every r. For such r, let E#(r) ⊂
S

n−1 denote the spherical symmetrization of E(r) with respect to the origin
e1 ∈ S

n−1 ⊂ R
n. If E(r) is not measurable, set E#(r) = ∅. Also, define

E#(0) = {0} if 0 ∈ E, E#(0) = ∅ if 0 /∈ E.
The (n − 1, n)-cap symmetrization of E is defined to be the subset E# of Rn

given by

E# =
⋃

r∈R+
rE#(r).

Thus, for almost every r > 0, the intersection of E# with the sphere |x| = r
is all of |x| = r if E contains |x| = r, is empty if E intersects |x| = r in a set
of measure zero, and is an open spherical cap centered on the positive x1-axis
with the same spherical measure as (|x| = r)∩E if the intersection has positive
measure and is not all of |x| = r. Furthermore, 0 ∈ E# if and only if 0 ∈ E. By
the same argument as for Steiner symmetrization, E# is Ln-measurable. The
symmetrized set E# has the positive x1-axis as ray of symmetry. Of course, one
can perform (n−1, n)-cap symmetrizations with respect to any half-line in R

n.
Next, let A be an open subset of R+. Define the set X by

X = {r y : r ∈ A, y ∈ S
n−1}.
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Then X is an open subset of R
n which may or may not contain 0. Suppose

that f : X → R is Ln-measurable. Then for L-almost every r ∈ A, the slice
function f r defined on S

n−1 by f r(y) = f (r y) is σn−1-measurable, so it has
an (n − 1)-dimensional spherical symmetric decreasing rearrangement ( f r)#.
Define the (n − 1, n)-cap symmetrization f # of f to be the real valued function
defined Ln-a.e. on X by

f #(x) = f #(r y) = ( f r)#(y)

when r > 0 and f r is measurable. If 0 ∈ X, define f #(0) = f (0). If f r is not
measurable, leave f # undefined on |x| = r.

In the plane, circular symmetrization is the name commonly used for
(1, 2)-cap symmetrization.

As with Steiner symmetrization, the (n − 1, n)-cap symmetrization f # is
Ln-measurable. The restriction of f # to spheres |x| = r, r ∈ A, is symmetric
decreasing, with maximum at x = re1. By passing to polar coordinates and use
of Fubini’s theorem, one finds that f # and f are equidistributed on X, as well as
on each sphere within X.

Next we define (k, n)-cap symmetrization. Suppose n ≥ 3 and that k is an
integer with 1 ≤ k ≤ n − 2. Write m = n − k. Decompose x = (x1, . . . , xn) ∈
R

n as

x = (w, z) = (w1, . . . , wk+1, z1, . . . , zm−1).

Then R
n = R

k+1 ×R
m−1, and R

n is foliated into parallel affine (k + 1)-planes
{(w, z) : w ∈ R

k+1} indexed by z.
Let E ⊂ R

n be an Ln-measurable set. Define E(z), the slice of E through
z, by

E(z) = {w ∈ R
k+1 : (w, z) ∈ E}, z ∈ R

m−1.

Then E(z) is Lk+1-measurable for Lm−1-almost every z ∈ R
m−1. For measur-

able E(z), define E#(z) to be the (k, k + 1)-cap symmetrization of E(z) (with
respect to the positive x1-axis in R

k+1). Define the (k, n)-cap symmetrization
E# of E by

E# =
⋃

{(w, z) : w ∈ E#(z)},
where the union is over all z ∈ R

m−1 for which E#(z) is measurable.
Let us say that a set X ⊂ R

n is ring-type if X is open and each slice X(z) ⊂
R

k+1 is has the form X(z) = {r y : r ∈ A(z), y ∈ S
k}, where A(z) is an open

subset of R+. If we express points x ∈ R
n as x = (r y, z) with r ∈ R

+, y ∈ S
k,

z ∈ R
m−1, then X being ring-type means that if (r y, z) ∈ X for some y then

(r y, z) ∈ X for all y. Set

Z = {z ∈ R
m−1 : X(z) is not empty}.
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Let f : X → R, with X ring-type and f Ln-measurable. Define the (k, n)-cap
symmetrization of f to be the real valued function f # defined Ln-a.e. on X by

f #(x) = f #(ry, z) = ( f z)#(ry), z ∈ Z,

where ( f z)# is the (k, k + 1)-cap symmetrization of f z.
Then E# and f # are Ln-measurable, E# and E have the same measure, and f #

and f have the same distribution. The same is true for each appropriate slice.
We have defined now (k, n)-cap symmetrization for each 1 ≤ k ≤ n − 1.

By far, the most frequently encountered case is (n − 1, n). The simplest case
with k ≤ n−2 is (1, 3), which is associated with cylindrical coordinates in R

3.
In the decomposition x = (r y, z), z = x3 is the “height” of x, r ∈ R

+ is the
distance from x to the x3-axis, and when r > 0, y is the point 1

r (x1, x2) ∈ S
1.

For E ⊂ R
3, the set E# is the union of circular arcs centered on the x3-axis,

parallel to the x1x2-plane, symmetric with respect to the positive x1-axis, and
containing the point (r e1, z) when nonempty.

Chapter 6 contains 27 theorems, corollaries, propositions and lemmas
involving Steiner symmetrization. All remain true for cap symmetrization,
provided the statements are adjusted to account for the fact that the basic
symmetrization process is carried out on spheres rather than Euclidean spaces.
To illustrate, we will state and outline proofs of cap versions of Theorem 6.8
(general integral inequalities) and Theorem 6.16 (Dirichlet integral inequali-
ties). The reader, we hope, will be able to supply appropriate statements for
the other results as needed. A systematic study of cap symmetrization can be
found in Van Schaftingen (2006).

Let X ⊂ R
n be ring-type. Then x ∈ X can be written as x = (r y, z), with

r ∈ A(z) ⊂ R
+, y ∈ S

k, and z ∈ Z ⊂ R
m−1, as above. If f is an integrable or

nonnegative Ln-measurable function on X, we can write dx = rkdr dσk(y) dz.
Fubini’s Theorem gives∫

Rn
f (x) dx =

∫
Z

dz
∫

A(z)
rk dr

∫
Sk

f (r y, z) dσk(y).

Here and later, when k = n − 1 the terms involving z are to be omitted and
X will reduce to the form X = {ry : r ∈ A, y ∈ S

k}, for some open set A ⊂ R
+.

Next, let f and g be nonnegative Ln-measurable functions on X, K : R+ →
R

+ be decreasing, and � ∈ AL0. Let x1 and x2 denote points of X, with
respective decompositions xi = (riyi, zi). Define

Q( f , g) =
∫

X2
�( f (x1), g(x2))K(|x1 − x2|) dx1 dx2.
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Then Q( f , g) equals∫
Z2

dz1 dz2

∫
A(z1)×A(z2)

rk
1rk

2 dr1 dr2∫
Sk×Sk

�( f (r1y1, z1), g(r2y2, z2))K(|x1 − x2|)dσk(y1)dσk(y2),

with

|x1 − x2|2 = (r2 − r1)
2 + r1r2|y1 − y2|2 + |z1 − z2|2.

By the nonnegative version of Theorem 7.3, applied with K replaced by a
suitable function K1 depending on r1, r2, z1 and z2, it follows that each of the
integrals over Sk × S

k increases when f and g are replaced by their (k, n)-cap
symmetrizations f # and g#. Thus, we have

Q( f , g) ≤ Q(f #, g#).

This shows that conclusion (7.22) of Theorem 6.8 holds with cap sym-
metrization in place of Steiner symmetrization. By similar arguments, the other
inequalities asserted by Theorem 6.8 are also valid for cap symmetrization.
Here is a formal statement.

Theorem 7.6 Let X be a ring-type set in R
n, f and g be nonnegative Ln-

measurable functions on X, K : R+ → R
+ be decreasing, � ∈ AL0, and

� : R+ → R
+ be convex and increasing with �(0) = 0. Then inequalities

(6.17)–(6.22) of Theorem 6.8 hold, when # denotes (k, n)-cap symmetrization
in R

n, 1 ≤ k ≤ n − 1.

The corresponding equality statements are like those in Theorem 6.8. For
(6.17) and (6.20) of Theorem 6.8, we just have to change T from a translation
of Rk to an orthogonal transformation of Rk+1 such that f (r y, z) = f #(r Ty, z)
and g(r y, z) = g#(r Ty, z) for Ln-almost every (r y, z) ∈ X. For (6.18) and
(6.19), we just have to replace the sets Az by sets

A(r,z) = {(y1, y2) ∈ S
k × S

k : f (r y1, z) < f (r y2, z)

and g(r y1, z)) > g(r y2, z)},
and require that (σk ×σk)(A(r,z)) = 0 for Lm-a.e (r, z) with z ∈ Z and r ∈ A(z).

In Theorem 7.6 we assumed that all functions appearing inside integrals
were nonnegative. There is another version of Theorem 7.6 derived from
Theorem 7.3 and including necessary and sufficient equality statements, in
which f , g, K,� and � need not be nonnegative, but instead must satisfy
integrability assumptions. We will forgo a detailed statement of this alternate
version, but will use particular cases as the need arises.
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Next, we take up the behavior of Dirichlet integrals under cap symmetriza-
tion. The notations X, x = (r y, z), etc. have the same meaning as previously in
this section. Define also

Z′ = {(r, z) ∈ R
+ × Z : r ∈ A(z), z ∈ Z}.

f # will denote the (k, n)-cap symmetrization of f , with 1 ≤ k ≤ n − 1, it being
understood that when k = n − 1 all terms involving Z are to be omitted. We
shall also write σ instead of σk.

Theorem 7.7 Let f ∈ Lip(X,R). Then there exists a set E ⊂ Z′ with
Lm(Z′ \ E) = 0 such that, for each (r, z) ∈ E, f and f # are differen-
tiable at (r, y, z) for σk-a.e y ∈ S

k, and for each convex increasing function
� : R+ →R

+ with �(0) = 0 we have∫
Sk

�(|∂zi f
#(r y, z)|) dσ(y) ≤

∫
Sk

�(|∂zi f (r y, z)|) dσ(y), 1 ≤ i ≤ m − 1,

(7.28)∫
Sk

�(|∇zf
#(r y, z)|) dσ(y) ≤

∫
Sk

�(|∇zf (r y, z)|) dσ(y), (7.29)∫
Sk

�(|∂rf #(r y, z)|) dσ(y) ≤
∫
Sk

�(|∂rf (r y, z)|) dσ(y), (7.30)∫
Sk

�(|∇f #(r y, z)|) dσ(y) ≤
∫
Sk

�(|∇f (r y, z)|) dσ(y). (7.31)

In (7.28) we have |∇zf |2 = ∑m−1
i=1 |∂zif |2. In (7.31), ∇ denotes the full

gradient in R
n. “Differentiable” means differentiable in all n variables. There

are lots of other inequalities like (7.28)–(7.31). For example, if we define
∇sf (r, y, z) to be the spherical gradient of the function f (r, ·, z), then by
Theorem 7.4, (7.31) holds when ∇f is replaced by ∇sf . We have the identity

|∇f |2 = |∂rf |2 + r−2|∇sf |2 + |∇zf |2. (7.32)

The proof we sketch below can be modified to give (7.31) when |∇f | is
replaced by the square root of the sum of any two summands on the right-hand
side of (7.32).

Of course, each of the Dirichlet integral inequalities in (7.28)–(7.31) can be
integrated, to produce inequalities such as∫

X
�(|∇f #|) dx ≤

∫
X
�(|∇f |) dx.

Sketch of proof of Theorem 7.7 The proof follows the proof of the Steiner
case, Theorem 6.16, but is made a bit simpler by the compactness of Sk. For
example, we do not need to introduce a condition like Condition S.
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In essence, all we need do is represent the various L1-Dirichlet integrals as
limits of integrals that decrease under cap symmetrization. Let us illustrate by
examining the full gradient case (7.31) when k = n − 1. Then X = {r y : r ∈
A, y ∈ S

n−1} where A is an open set in R
+. There is a set E ⊂ A with

L(A \ E)= 0 such that f and f # are differentiable, as functions of n variables,
at σn−1-almost every point r y when r ∈ A. We may exclude the point r = 0
from E.

Fix a ∈ E. Let A be an open annulus in X which contains a. For small ε > 0,
define

I(ε, f ) =
∫
Sn−1

dσ(y)
∫
A

| f (u) − f (a y)|K(ε−1|a y − u|) du.

Here K = χ[0,1], u denotes a point of R
n, σ = σn−1 and du denotes

n-dimensional Lebesgue measure. Let ε be so small that u ∈ B
n(a y, ε) implies

u ∈ A, where B
n denotes an open ball in R

n. Then

I(ε, f ) =
∫
Sn−1

dσ(y)
∫
Bn(ay,ε)

| f (u) − f (a y)| du

= εn
∫
Sn−1

dσ(y)
∫
Bn(0,1)

| f (a y + εs) − f (a y)| ds,

so that

ε−n−1I(ε, f ) =
∫
Sn−1

dσ(y)
∫
Bn(0,1)

ε−1| f (a y + εs) − f (a y)| ds.

Since f is Lipschitz, the integrand in the last integral is uniformly bounded
for y ∈ S

n−1. At points a y of differentiability of f , as ε → 0 the integrand
converges to |∇f (a y) · s|. Since a ∈ E, σn−1-almost all points a y are points of
differentiability. As in the proof of Theorems 6.16 and 3.7, we obtain

lim
ε→0

ε−n−1I(ε, f ) = C1

∫
Sn−1

|∇f (a y)| dσ(y), (7.33)

where C1 = ∫
Bn(0,1) |e1 · s| ds.

As in the Steiner case, the integral inequalities in Theorem 7.6 imply that cap
symmetrization decreases moduli of continuity. Thus, f # is Lipschitz when f
is, and (7.33) holds when f is replaced by f #.

We can write

I(ε, f ) =
∫
A

rn−1 dr
∫
Sn−1×Sn−1

| f (a y)− f (r v)|K(ε−1|a y−r v|) dσ(y) dσ(v).

Using |a y−r v|2 = (a−r)2+|y−v|2 and the Sn−1-version of Corollary 2.22,
we conclude that each of the integrals over Sn−1 × S

n−1 decreases when f is
replaced by f #. Thus, I(ε, f #) ≤ I(ε, f ) for each small ε, so
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Sn−1

|∇f #(a y)| dσ(y) ≤
∫
Sn−1

|∇f (a y)| dσ(y)

for almost every a ∈ A. Our proof of (7.31) for (n − 1, n)-Steiner symmetriza-
tion and �(t) = t is complete.

To go from �(t) = t to general convex � one can follow the model of
Theorem 6.16, which includes proving a cap version of Lemma 6.18. But if
all one wants is the inequality for p-Dirichlet integrals, p ≥ 1, then things are
much easier: in the argument just given, simply substitute | f (u) − f (a y)|p for
| f (u) − f (a v)|.

Let us remain for a moment with (n−1, n)-cap symmetrization. Take a ∈ E,
as before, and set

I1(ε, f ) =
∫
Sn−1

| f ((a + ε)y) − f (a y)| dσ(y).

For Lipschitz f on X, we obtain as above

lim
ε→0

ε−1I1(ε, f ) =
∫
Sn−1

|∂rf (a y)| dσ(y).

The Lp-contraction property, Corollary 2.20, holds for s.d.r. on S
n−1. Thus,

I1(f #, ε) ≤ I1(ε, f ) for each small ε > 0. We conclude that∫
Sn−1

|∂rf #(a y)| dσ(y) ≤
∫
Sn−1

|∂rf (a y)| dσ(y), a ∈ E.

This proves that (7.30) holds when �(t) = t. The passage to general � is
like that in (7.31).

Inequalities (7.28) and (7.29) are vacuous for (n−1, n)-cap symmetrization.
To prove (7.28)–(7.31) for (k, n)-cap symmetrization when 1 ≤ k ≤ n − 2,
we just need to find appropriate I-functionals. The proofs of Theorem 6.16 and
of the (n − 1, n)-cap case should furnish the so-inclined reader with sufficient
clues.

This concludes our outline of the proof of Theorem 7.7.

7.6 Hyperbolic Symmetrization

Let M be a simply connected Riemannian manifold of dimension n ≥ 2.
Suppose that M has constant sectional curvature κ . If κ > 0 then M is isometric
to the sphere |x| = κ−1/2 with the metric induced by the usual metric on R

n+1.
If κ = 0 then M is isometric to R

n with the usual metric. If κ < 0 then
M is said to be a model for hyperbolic n-space, or a hyperbolic space form,
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with curvature κ . Any two models with the same curvature are isometric. See
Chavel (1993, §2.3) and Chavel (2001) for differential geometric background.

By H
n, we will mean any such M equipped with the pertinent metric, having

κ = −1. We will examine three models for Hn.
Ball model M = B

n, the open unit ball in R
n. The hyperbolic metric is given

infinitesimally by

ds = 2

(1 − |x|2) |dx|, x ∈ B
n, (7.34)

where |dx| denotes the usual line element in R
n.

Halfspace model M = {x ∈ R
n : xn > 0}, where xn = x · en. The hyperbolic

metric is given by

ds = x−1
n |dx|, x ∈ M.

The ball and halfspace models are also called the Poincaré ball and Poincaré
halfspace.

Hyperboloid model (see Vilenkin and Klimyk, 1991)

M =
{

x ∈ R
n+1 : x2

1 = 1 +
n+1∑
i=2

x2
i

}
.

The metric is induced by the bilinear form

B(x, y) = −x1y1 +
n+1∑
i=2

xiyi,

which is positive definite on the tangent space of M.
In the hyperboloid model, if one takes the origin to be the point e1, then

one can construct a symmetrization theory in which the symmetrized sets E#

are spherical caps on the hyperboloid with center at e1. Thus, the theory looks
something like the symmetrization theory on S

n. On the whole, though, I think
it more convenient to develop hyperbolic symmetrization theory in the context
of the ball model. So from now on in this section we will work with B

n,
equipped with the metric (7.34).

For x, y ∈ B
n, define

d(x, y) = inf L(γ ),

where the infimum is taken over all Lipschitz curves γ : [a, b] →B
n connect-

ing x and y, and

L(γ ) =
∫ b

a
2(1 − |γ (t)|2)−1|γ ′(t)| dt.
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For Ln-measurable E ⊂ B
n, define the measure τ = τn by

τ(E) =
∫

E
2n(1 − |x|2)−n dLn(x).

Then d and τ are called the canonical hyperbolic distance and canonical
hyperbolic measure on B

n, or on H
n.

For a ∈ R
n, R > 0, define S(a, R) = S = ∂Bn(a, R). Define also Rn =

R
n ∪ {∞}. Define ρ = ρS : Rn : → Rn, the reflection in S, to be

ρ(x) = a + R2(x − a)

|x − a|2 .

Then ρ is the identity on S, ρ is 1–1 on Rn, and ρ maps the set inside S onto
the set outside S. Let G(Rn) be the group of homeomorphisms of Rn generated
by the orthogonal group O(n), all reflections in affine hyperplanes H ∈ H(Rn),
and all reflections in spheres S(a, R) as a ranges over Rn and R over (0, ∞).
When n = 2, G(R2) is the set of all Möbius transformations and their complex
conjugates. For dimensions n ≥ 3 the maps in G(Rn) are still called Möbius
transformations, or conformal transformations. Their theory is worked out in
Ahlfors (1981), Reshetnyak (1989), Iwaniec and Martin (2001), and in various
books on hyperbolic geometry. G(Rn) is often called the conformal group
of Rn.

Define

G(Bn) = {T ∈ G(Rn) : TBn = B
n},

and define a set H ⊂ B
n to be a hyperbolic hyperplane if H = B

n ∩ S(a, R) for
some a, R for which S(a, R) ∩ S

n−1 has dimension n − 2 and intersects S
n−1

orthogonally, or if H = B
n ∩ H0 for some H0 ∈ H(Rn) for which H0 ∩ S

n−1

has dimension n − 2 and intersects Sn−1 orthogonally. Set

Hh(B
n) = the set of all hyperbolic hyperplanes in B

n.

Proposition 7.8 The hyperbolic distance d and measure τ are G(Bn)-
invariant. That is,

d(Tx, Ty) = d(x, y) and τ(TE) = τ(E),

for every T ∈ G(Bn), x, y ∈ B
n, and Ln-measurable E ⊂ B

n.

For a proof, see Ahlfors (1981, p. 18).

Proposition 7.9

(a) For each x ∈ B
n there exists T ∈ G(Bn) such that Tx = 0.

(b) For each H ∈ Hh(B
n), ρH ∈ G(Bn).

(c) For each x, y ∈ B
n with x �= y there exists H ∈ Hh(B

n) such that
ρH(x) = y.
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The proof is left to the reader. The reader may also show that the geodesic
arc from 0 to a point x ∈ B

n is the ray from 0 to x, so that

d(0, x) = log
1 + |x|
1 − |x| .

Another computation shows that for the ball B
n(0, R) with Euclidean

radius R,

τ(Bn(0, R)) = 2nβn−1

∫ R

0
(1 − r2)−nrn−1 dr, 0 < R < 1. (7.35)

Set pn(R) = ∫ R
0 (1 − r2)−nrn−1 dr, and, for fixed n, define for x ∈ B

n,
s ∈ (0, ∞), Bh(x, s) = {y ∈ B

n : d(y, x) < s}. Then Bh(x, s) is the hyperbolic
ball centered at x with hyperbolic radius s. If s and R are related by s = log 1+R

1−R ,
then Bh(0, s) = B

n(0, R), and

τ(Bh(x, s)) = τ(Bh(0, s)) = 2nβn−1pn(R). (7.36)

When n = 2 the integral defining p2 can be evaluated, and we find that

τ(B2
h(x, s)) = 2π cosh2 s

2
.

For general n ≥ 2, it is true that

τ(Bn
h(x, s)) ∼ Cne(n−1)s, s → ∞,

for a constant Cn depending on n.
Define U : Bn → R

+ by U(x) = τ(Bn(0, |x|)). Then U is a measure
preserving map of (Bn, τ) onto (R+,L).

For Ln-measurable E ⊂ B
n, define E#, the hyperbolic s.d.r. of E, to be the

ball Bh(0, s) with the same τ -measure as E. Then s can be obtained from τ(E)
via (7.35) and (7.36). For Ln-measurable f : Bn → R satisfying the finiteness
condition

τ( f > t) < ∞, for every t > ess inf f , (7.37)

define f #, the hyperbolic symmetric decreasing rearrangement of f , to be the
function on B

n given by

f #(x) = f ∗(Ux)

where f ∗ is the decreasing rearrangement of f . Here, of course, the distribution
function of f is computed using the measure τ .

As in the Euclidean and spherical cases, f # and f have the same distribution,
with respect to τ . The function f #(x) depends only on the hyperbolic distance
from x to 0, and f #(x) decreases as d(0, x) increases.

In §6.1 we gave a list of all the results about Euclidean s.d.r. which were
proved in Chapters 1–5. With only a few exceptions, all of the results in that list
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remain valid for hyperbolic s.d.r., and can be obtained by suitable modification
of the Euclidean proofs. We will not provide any proof of this claim, but instead
will leave verification of particular results to the interested reader. Because of
noncompactness, the hyperbolic symmetrization theory is usually more akin
to the Euclidean theory than to the spherical theory. Occasionally, though,
the Euclidean proofs do not carry over. To see what to do then, the reader
may find the spherical proofs in §7.3 and §7.4 good sources for non-Euclidean
substitutes.

The hyperbolic analogue of Theorems 3.11 and 7.4 asserts that∫
Bn

�(|∇hf #|) dτ ≤
∫
Bn

�(|∇hf |) dτ ,

where � is increasing and convex with �(0) = 0, f is hyperbolically Lipschitz
and satisfies the finiteness condition (7.37), f # denotes hyperbolic s.d.r., and
∇hf , the hyperbolic gradient of f , may be defined by

∇hf (x) = 1

2
(1 − |x|2)∇f (x), x ∈ B

n,

with ∇f the Euclidean gradient. At points x of differentiability of f we have
the formula

|∇hf (x)| = lim sup
y→x

| f (y) − f (x)|
d(x, y)

,

where d is the canonical distance on B
n.

One more time, we want to stress that the theory of symmetrization
constructed in this book works essentially the same way in the Euclidean,
spherical and hyperbolic cases, and is based upon properties of polarization
with respect to hyperplanes in the various geometries. Propositions 7.8 and 7.9
tell us much of what we need to know about polarization in the hyperbolic
case. But we also need a few additional properties. For example, we need to
know that if x and y in B

n belong to the same complementary component of
some H ∈ Hh(B

n), then

d(x, y) < d(x, ρHy).

To verify this, we may assume that H is the intersection of B
n with the

hyperplane xn = 0, and that x and y have positive nth components. Let γ1, γ2

be the geodesics connecting x to y and x to ρ y, respectively, where ρ = ρH .
Let γ3 be the curve defined by γ3(t) = γ2(t) if γ2(t)·en ≥ 0 and γ3(t) = ργ2(t)
if γ2(t) · en ≤ 0. Then, with L denoting hyperbolic length,

d(x, ρ y) = L(γ2) = L(γ3) ≥ d(x, y), (7.38)
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with equality if and only if γ3 is a reparameterization of γ1. But it is not hard to
show that complementary components of hyperbolic hyperplanes are geodesi-
cally convex. Since γ3 passes through H, it cannot be a reparameterization of
γ1. Thus, strict inequality holds in (7.38).

7.7 Gauss Space Symmetrization

Write x = (x1, . . . , xn) for points x ∈ R
n. Define the standard Gauss measure

γn on R
n by

γn(E) = (2π)−n/2
∫

E
e− 1

2 |x|2 dx,

where dx = dLn(x) and E is an Ln-measurable set. Then γn is the product
measure of n copies of the 1-dimensional Gauss measure γ1, and γn(R

n) = 1.
Denote the cumulative distribution function of γ1 by �. Then

�(t) = γ1(−∞, t) = (2π)−1/2
∫ t

0
e− 1

2 s2
ds, t ∈ R.

The set Rn, equipped with the measure γn, is called n-dimensional Gauss
space. For a ∈ R, define

G(a) = {x ∈ R
n : x1 ≤ a}.

The G(a) are closed halfspaces in R
n. Define also G(−∞) = ∅, G(∞) = R

n.
Given an Ln-measurable set E ⊂ R

n, define Ẽ to be the halfspace G(a) such
that γn(E) = γn(G(a)). Then

γn(E) = γn(Ẽ) = �(a), when Ẽ = {x ∈ R
n : x1 ≤ a}.

We could, if we like, take the symmetrized sets to be half spaces of the form
{x ∈ R

n : x · ν ≤ a}, where ν is any fixed unit vector in R
n. But we will stick

to the case ν = e1.
Define U : Rn → (0, 1) by

U(x) = γn(G(x1)) = �(x1).

Then U is a measure preserving transformation of (Rn, γn) onto ((0, 1),L).
Given an Ln-measurable function f : R

n → R, define a new function
f̃ : Rn → R by

f̃ = f ∗ ◦ U,

where f ∗ is the decreasing rearrangement of f , and the distribution of f is
computed using the measure γn. Then f and f̃ have the same distribution with
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respect to γn. The function f̃ is a function of the first component x1 which
decreases as x1 increases on R. We call f̃ the Gauss symmetrization of f and Ẽ
the Gauss symmetrization of E.

To me, Euclidean, spherical and hyperbolic symmetrization all look
alike. But Gauss symmetrization looks different. Since the Gauss measure
is not translation invariant, there is no simple rearrangement analogous to
polarization. Accordingly, I shall refrain from calling Gauss symmetrization a
s.d.r., and will denote it with a tilde rather than a #.

It turns out that Gauss space may be realized as a limit of spheres of
increasing radius with dimension going to infinity. This fact is often attributed
to Poincaré, but Stroock (1993, p. 77) points out that it was already known to
Mehler in 1866. We shall call it the Mehler–Poincaré formula. A proof appears
in McKean (1973). Here is the result.

Proposition 7.10 Fix n ≥ 1. Let E ⊂ R
n be Ln-measurable. For N ≥ n, set

EN = {x ∈ R
N : |x| =

√
N, (x1, . . . , xn) ∈ E}.

Then

lim
N→∞

λN(EN) = γn(E),

where λN is the uniform probability measure on the sphere ∂BN(0, N1/2)⊂R
N .

For E ⊂ R
n and δ > 0, recall from §4.4 that the δ-collar of E is the set

E(δ) = {x ∈ R
n : d(x, E) < δ},

where d denotes Euclidean distance.

Theorem 7.11

γn(E(δ)) ≥ γn(Ẽ(δ)), ∀ E and δ.

Corollary 7.12 For each Ln-measurable set E ⊂ R
n, we have

lim inf
δ→0

1

δ
[γn(E(δ)) − γn(E)] ≥ lim

δ→0

1

δ
[γn(Ẽ(δ)) − γn(Ẽ)]. (7.39)

This theorem and corollary are among the main results for Gauss sym-
metrization. They are due to Borell (1975). The expression on the left side
of (7.39) may be called the lower (n − 1)-dimensional Gaussian Minkowski
content of ∂E. It is the most frequently used version of surface area in
Gauss space. Accordingly, (7.39) is often called the isoperimetric inequality
for Gauss space. As in the Euclidean, spherical, and hyperbolic settings,
the isoperimetric inequality implies that Gauss symmetrization decreases the
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modulus of continuity. It is also closely linked to inequalities for Dirichlet-like
integrals.

Borell’s proof of Theorem 7.11 in Borell (1975) made use of the Mehler–
Poincaré formula and of Theorem 7.5, the analogue of Theorem 7.11 on
spheres. A different proof was found later by Ehrhard (1983b, 1984). Borell
(1985) gave still another proof, based on comparison theorems for parabolic
PDE involving the Ornstein–Uhlenbeck operator � − x · ∇. (See the endnotes
to Chapter 10 for references to such comparison theorems.) In Chapter 8
we shall explore related topics such as hypercontractivity of semigroups and
logarithmic Sobolev inequalities.

The Gaussian Hardy–Littlewood type inequality∫
Rn

fg dγn ≤
∫
Rn

f̃ g̃ dγn

for nonnegative f and g is easily established: by layer cake representations, the
problem reduces to the case f = χA, g = χB. Then the inequality follows from
the fact that one of Ã, B̃ contains the other. However, Theorem 2.15 does not
carry over from the Euclidean setting.

In addition to the works of Borell and Ehrhard cited above, references for
Gauss symmetrization and related topics include Ledoux (1994), Epperson
(1990), González (2000), and Bobkov (1996).

A well-known result in Gauss space for which symmetrization might be
relevant is the Gaussian correlation inequality. Let A and B be closed convex
sets in R

n which are balanced, in the sense that if a point x is in one of the sets,
then −x is also in that set. The correlation inequality says that

γn(A ∩ B) ≥ γn(A)γn(B).

For n = 1 the result is trivial, since the only sets satisfying the assumptions are
closed intervals centered at the origin. For n = 2 the inequality was proved by
Pitt (1977). Partial results were obtained by Schechtman et al. (1998) among
others. The inequality was proved in all dimensions by Royen (2014), who
handled also a larger class of measures, the gamma distributions. Royen’s
methods do not involve symmetrization.

7.8 Hölder Continuity of Quasiconformal Mappings

For n × n real matrices A denote by |A| the operator norm of A :

|A| = sup{|A x| : x ∈ R
n, |x| = 1}.
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For n ≥ 2, let f be an orientation preserving C1-homeomorphism of a
domain � ⊂ R

n onto another domain �′ ⊂ R
n. Denote by Df (x) the n ×

n-matrix of first order partial derivatives of f at x and by J(x) = Jf (x) the
determinant of Df (x). Then for x ∈ �,

|Df (x)| = lim
r→0

r−1 sup
|y|=r

| f (x + r y) − f (x)|.

Accordingly, |Df (x)| is called the maximal stretch of f at x. The maximal
stretch equals the largest singular value of Df (x). We also have

J(x) = lim
r→0

α−1
n r−nLn( f (Bn(x, r))),

so that J(x) measures the infinitesimal distortion of volume near x. Since J(x)
also equals the product of the singular values of Df (x), we have Hadamard’s
inequality:

Jf (x) ≤ |Df (x)|n, x ∈ �.

If Hadamard’s inequality partially reverses for f and its inverse f −1, we say
that f is quasiconformal. More precisely, let K be a real number with K ≥ 1.
We say that the orientation preserving C1-homeomorphism f : � → �′ is
K-quasiconformal in � if the inequalities

|Df (x)|n ≤ Kn−1Jf (x) and |D( f −1)(x)|n ≤ Kn−1Jf −1(x) (7.40)

hold for every x ∈ � and x ∈ �′, respectively. Via calculations with singular
values, (7.40) implies that

λ1(x) ≤ K2− 2
n λn(x), x ∈ �,

where λ1(x) is the maximal stretch of f at x, and λn(x) the minimal stretch.
Thus, quasiconformal maps map infinitesimal balls onto infinitesimal ellip-
soids for which the ratio of the largest to the smallest semiaxis is uniformly
bounded above in �.

There are interesting homeomorphisms which are limits of smooth K-
quasiconformal maps in some natural sense but fail to be in C1. Thus, one
seeks definitions of K-quasiconformality in which the smoothness requirement
is relaxed. Many definitions have been introduced. Here, we shall consider two
types of definitions, the analytic and the geometric.

Definition 7.13 (Analytic definition) The homeomorphism f : � → �′ is
K-quasiconformal if f ∈ W1,n

loc (�,Rn), f −1 ∈ W1,n
loc (�

′,Rn) and (7.40) holds
a.e. in � and �′.

Using Evans and Gariepy (1992, p. 150) and some facts about homeo-
morphisms, one can show that the W1,n hypotheses can be replaced by the
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requirement that f and f −1 each be locally absolutely continuous on almost all
lines in �, respectively �′, which are parallel to one of the coordinate axes.

Examples
For n ≥ 2 and K ≥ 1, set f (x) = x|x|K−1 and g(x) = x|x| 1

K −1. Then f and g
are homeomorphisms of Rn onto itself. In fact, they are “radial stretch maps,”
which map rays through the origin onto themselves. At each x ∈ R

n \ {0}, the
map f has one eigenvalue of size KrK−1, corresponding to the radial derivative,
and n−1 eigenvalues of size rK−1, corresponding to the tangential derivatives,

where r = |x|. The map g = f −1 has n − 1 eigenvalues of size r
1
K −1 and

one eigenvalue of size 1
K r

1
K −1. Thus, a.e., f and g satisfy both inequalities in

(7.40). More precisely, f satisfies the first with equality, while g satisfies the
second with equality. In particular, f and g are L-quasiconformal maps of Rn

onto itself for all L ≥ K, but for no L < K.
For n = 2 the 1-quasiconformal homeomorphisms coincide with the

(univalent) conformal mappings. But for n ≥ 3 the updating of a theorem
of Liouville tells us that a 1-quasiconformal map f : � → R

n must be the
restriction to � of a Möbius transformation F of Rn onto Rn.

Let U be a domain in R
n such that Rn \ U is connected in Rn, and let S be a

compact connected subset of U. Set R = U \ S. Then R is connected and open.
We call R a ring domain in R

n. In §5.6 we considered ring domains in R
2. For

general n ≥ 2, define Mod R, the modulus of the ring domain R, to be

Mod R = [βn−1/Capn(S, U)]−1/(n−1),

where Capn denotes the variational n-capacity of the condenser (S, U), defined
in §5.6.

If R(a, b) = {a < |x| < b} is a spherical shell in R
n, then, as with n = 2, the

minimizing function u in the extremal problem defining Capn(S, U) turns out
to be

u(x) = [log(b/a)]−1 log(b/|x|), x ∈ R,

from which we deduce, as with n = 2, that

Mod R(a, b) = log (b/a).

Definition 7.14 (Geometric definition) The homeomorphism f : � → �′ is
K-quasiconformal if

1

K
Mod R ≤ Mod f (R) ≤ K Mod R

for every ring domain R such that R ⊂ �.
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The K-quasiconformal stretch maps f (x) = x|x|K−1, g(x) = x|x| 1
K −1 give

equality in the second, respectively first inequality when R = R(a, b).

Theorem 7.15 A homeomorphism f satisfies the analytic definition if and
only if it satisfies the geometric definition.

For n = 3 this theorem is due to Gehring (1962, Theorem 4). The proof is
valid for all n ≥ 2. To prove that analytic implies geometric, take a ring domain
R with R ⊂ �. Take a function v ∈ Lip(Rn,R) with v = 0 on R

n\f (U), v = 1
on f (S), and 0 ≤ v ≤ 1 in f (R). Let u = v ◦ f . Then, ignoring smoothness
questions, the obvious extension of u to R

n is a competing function for the
problem of determining Capn(S, U). From the chain rule, it follows that

|∇u| ≤ |(∇v) ◦ f | |Df |,
then by (7.40),∫

R
|∇u|n dx ≤

∫
R

|(∇v) ◦ f |nKn−1Jf dx = Kn−1
∫

f (R)
|∇v|n dx.

It follows that Capn(S, U) ≤ Kn−1 Capn( f (S), f (U)), whence

Mod f (R) ≤ K Mod R.

The left-hand inequality in the geometric definition is proved by applying the
right-hand inequality to f −1. For more detail, and the proof that geometric
implies analytic, we refer the reader to Gehring (1962) or Iwaniec and Martin
(2001).

By assumption, quasiconformal maps are continuous. Conformal maps are

infinitely differentiable, but the stretch map f (x) = x|x| 1
K −1 show that K-

quasiconformal maps need not even be Lipschitz when K > 1. Is there
anything at all, beyond continuity, that one can say about the regularity of
quasiconformal maps? The theorem and corollary below show that the answer
is emphatically positive.

Theorem 7.16 Let f be a K-quasiconformal homeomorphism of B
n onto

�′ ⊂ R
n, with f (0) = 0 and d(0, ∂�′) ≤ 1. Then

| f (x)| ≤ Cn,K |x|1/K , ∀ |x| ≤ 1/2.

Here B
n is the open unit ball of Rn, d denotes Euclidean distance, and Cn.K

denotes a constant depending on n and K, which can change from line to line.

Corollary 7.17 Let f be a K-quasiconformal homeomorphism of � ⊂ R
n

onto �′ ⊂ R
n, and let S be a compact subset of �. Then

| f (x) − f (y)| ≤ η Cn,K |x − y|1/K , ∀x, y ∈ S,
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where η = (a + b)c−1/K with

a = d( f (S), ∂�′), b = diam f (S), c = d(S, ∂�).

Theorem 7.16 is an analogue for quasiconformal maps of Schwarz’s Lemma
and the Koebe one-quarter theorem. Corollary 7.17 says thst K-quasiconformal
maps are Hölder continuous with exponent K−1 on compact subsets of �, with
constant depending only on n, K, the distances of S and f (S) to the boundaries
of their containing domains, and the diameter of f (S). The stretch map f (x) =
x|x| 1

K −1 shows that 1/K can be replaced by no larger exponent.
Our proof of Theorem 7.16 and Corollary 7.17 follows the approach of

Gehring (1962). It involves some special ring domains, the Grötzsch rings
RG(a) and the Teichmüller rings RT(b). For a ∈ (0, ∞), define RG(a) to
be the exterior of the unit ball in R

n from which the half-line x1 ≥ a has
been removed. For b ∈ (0, ∞), define RT(b) to be R

n with the two half-lines
x1 ≤ −1 and x1 ≥ b removed. Define functions φ and ψ by

logφ(a) = Mod RG(a), 1 < a < ∞,

logψ(b) = Mod RT(b), 0 < b < ∞.

Theorem 7.18

(a) ψ(b) = φ2((1 + b)1/2).
(b) a−1φ(a) strictly increases for a ∈ (1, ∞), with

lim
a→1

a−1φ(a) = 1, lim
a→∞ a−1φ(a) = Cn,

where the constant Cn is finite.

In dimension n = 2 Theorem 7.18 may be expeditiously proved by
conformal mapping. See Lehto and Virtanen (1973) or Ahlfors (1966). For
n ≥ 3, see Lemmas 6 and 8 of Gehring (1961), or Iwaniec and Martin (2001),
or Anderson et al. (1997).

Proof of Theorem 7.16 Take x ∈ B
n with |x| ≤ 1/2, set y = f (x), let R be

the ring domain obtained by removing the closed line segment [0, x] from
B

n, and set R′ = f (R) = �′ \ f ([0, x]). Then each circle of radius ≤ |y|
intersects the image of f ([0, |x|), and each circle of radius ≥ 1 intersects the
complement of �′. Let u be a competing function for the problem of finding
Capn( f ([0, x]),�′). Then, we have

sup
|z|=r

u(z) = 1, 0 ≤ r ≤ |y|, inf
|z|=r

u(z) = 0, 1 ≤ r < ∞. (7.41)
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Let u# denote the (n−1, n)-cap symmetrization of u. Then u# is Lipschitz in
R

n since u is. Let R′′ be the ring domain obtained by removing line segments
L1 and L2 from R

n, where L1 is −∞ < z1 ≤ −1 and L2 is 0 ≤ z1 ≤ |y|.
From (7.41) it follows that u# is a competitor for the problem of finding
Capn(L2,Rn\L1). Applying conclusion (7.31) of Theorem 7.7, with �(t) = tn,
we deduce that Mod R′ ≤ Mod R′′ . Thus,

1

K
Mod R ≤ Mod R′ ≤ Mod R′′. (7.42)

Moduli of ring domains are preserved by Möbius transformations, in
particular inversions such as z → z|z|−2. Thus Mod R = Mod RG(|x|−1) and
Mod R′′ = Mod RT(|y|−1). From (7.42), and setting s = |x|−1, t = |y|−1, we
conclude that

φ1/K(s) ≤ ψ(t). (7.43)

With Theorem 7.18(b), (7.43) implies that ψ(t) ≥ s1/K ≥ 21/K . Set tK =
ψ−1(21/K). Then t ≥ tK , and from Theorem 7.18 it follows that

t−1ψ(t) ≤ Cn
1 + tK

tK
≡ Cn,K ,

where Cn is the constant in Theorem 7.18(b). Thus s1/K ≤ Cn,K t, which is

| f (x)| ≤ Cn,K |x|1/K .

Proof of Corollary 7.17 Take x0, y0 ∈ S with |x0 − y0| ≤ c/2. Let

g(x) = 1

a + b
[f (x0 + cx) − f (x0)], x ∈ B

n.

Then g satisfies the hypotheses of Theorem 7.16, with x = c−1(y0 − x0).
Theorem 7.16 implies the conclusion of Corollary 7.17 holds with the same
Cn,k as in Theorem 7.16.

If x0, y0 ∈ S satisfy |x0 − y0| ≥ c/2, then one easily shows that the desired
conclusion holds with C = 2. Thus, the desired conclusion holds for all
x0, y0 ∈ S if we replace Cn,K by max(Cn,K , 2).

Functions f that satisfy the defining dilatation inequalities for quasiconfor-
mal maps but are not necessarily one-to-one are called quasiregular mappings,
or mappings of bounded distortion. It turns out that quasiregular mappings are
also Hölder continuous. For the theory of these maps, see Iwaniec and Martin
(2001), Reshetnyak (1989) or Anderson et al. (1997).
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7.9 Notes and Comments

Schmidt (1943) proved the isoperimetric inequality in S
n and H

n using the
(2, n)-symmetrization. Sperner (1973) showed that the Dirichlet integral does
not increase under decreases under symmetric decreasing rearrangement on
S

n. Pólya (1950) introduced the circular symmetrization, which is (1, 2)-cap
symmetrization in our notation. Pólya and Szegő use both the circular and
spherical ((2, 3)-cap) symmetrization in their book (1951). Hayman (1950)
gave a number of applications of circular symmetrization to complex function
theory, and provided detailed proofs of its properties in the book (1994). More
can be found in Chapter 11.

Sarvas (1972) proved that (k, n)-Steiner and (k, n)-cap symmetrization does
not increase capacity of ring domains. Symmetrization in the Gauss space was
introduced and developed, together with its (k, n)-variant, in a series of papers
by Ehrhard (1983b; 1983a; 1984).

For n = 2, the Hölder continuity of quasiconformal maps (Corollary 7.17)
was known since early stages of the development of the theory. Ahlfors (1954)
proved it, remarking that it “was undoubtedly known to Teichmüller, if not
already to Grötzsch.” Morrey (1938) gave a proof based on the analytic def-
inition of quasiconformality. Mori (1956) used a symmetrization argument to
prove the sharp inequality | f (x)−f (y)| ≤ 16|x−y|1/K for quasiconformal self-
maps of the disk fixing the origin. While 16 is the best constant independent
of K, it remains unknown (Bhayo and Vuorinen, 2011) whether it can be
improved to 161−1/K . Gehring (1962) proved the Hölder continuity for n = 3,
and his proof extends to all dimensions. A proof by a different method was
given by Väisälä (1961).

The theory of quasiconformal mapping has been originally developed in
dimension 2: see Ahlfors (1966), Lehto and Virtanen (1973), Astala et al.
(2009). Its extension to higher dimensions is presented, e.g., in Iwaniec
and Martin (2001), Anderson et al. (1997), and Baernstein and Manfredi
(1983). The books Reshetnyak (1989) and Rickman (1993) develop the theory
of quasiregular mappings, which are not required to be homeomorphisms.
The extension of the quasiconformal theory beyond R

n was initiated by
Mostow (1968) who used it to prove a strong rigidity theorem: two compact
Riemannian manifolds of constant negative curvature and dimension n ≥ 3
that are diffeomorphic must be conformally equivalent.
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Convolution and Beyond

The Riesz–Sobolev convolution theorem asserts that for nonnegative functions
f , g, h on R

n the integral∫
Rn×Rn

f (−x)g(y)h(x − y) dx dy = f ∗ g ∗ h(0)

increases when f , g, and h are replaced by their symmetric decreasing rear-
rangements. When at least one of f , g, h is already symmetric decreasing, we
proved this inequality in Corollary 2.19.

In this chapter we begin by proving the analogue of the general Riesz–
Sobolev inequality for convolution on the unit circle S1. The special case when
one of the functions is symmetric decreasing is Corollary 7.1. The general
circle version easily implies the general version on R, which in turn implies
the general version on R

n for (1, n)-Steiner symmetrization, which, we show,
implies the general version for s.d.r. and (k, n)-Steiner symmetrization on R

n.
In §8.4 we use the Riesz–Sobolev theorem to obtain the Brunn–Minkowski

inequality about the volume radius of the vector sum A + B of sets A
and B in R

n. Then, using a consequence of Brunn–Minkowski, we prove a
major generalization of the Riesz–Sobolev inequality, due to Brascamp, Lieb,
and Luttinger, in which there are any number p ≥ 2 of input functions.
The Brascamp–Lieb–Luttinger theorem and Trotter’s product formula for the
solution of the heat equation enable us to deduce a theorem of Luttinger, which
asserts that symmetrization increases the trace of the Dirichlet heat kernel of
domains in R

n.
In §8.7 we give a proof of Lieb’s sharp Hardy–Littlewood–Sobolev inequal-

ity f ∗ g ∗ Kλ(0) ≤ Cλ,n‖f ‖p‖g‖p, where Kλ(x) = |x|−λ, p ∈ (1, 2), λ = 2n/p′,
and Cλ,n is an explicit constant. In addition to the Riesz–Sobolev inequality, the
proof uses conformal invariance properties of the HLS integral to transform
the problem to an equivalent problem on the sphere S

n. Following Beckner,
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we then show that if we rephrase Lieb’s inequality in terms of spherical
harmonic multiplier operators, and then let p → 2, we obtain S

n versions
of Gross’s logarithmic Sobolev inequalities and Nelson’s hypercontractivity
theorem. When p → 1, we obtain sharp bounds on

∫
Sn eF in terms of Dirichlet-

like integrals, which for n = 1 and n = 2 reduce to inequalities of Lebedev–
Milin and Onofri, respectively.

8.1 A Riesz-Type Convolution Inequality on S
1

For real-valued functions f , g on the unit circle S
1 = {x ∈ C : |x| = 1}, define

their convolution f ∗ g : S1 → R to be the function

f ∗ g(eiθ ) =
∫ π

−π

f (eiφ)g(ei(θ−φ)) dφ, θ ∈ R,

whenever the integral exists. One easily shows that convolution is commutative
and associative, that is, f ∗g = g∗f and f ∗(g∗h) = ( f ∗g)∗h. The function in the
latter identity will be denoted f ∗ g ∗ h. An alternate notation for convolution is

f ∗ g(x) =
∫
S1

f (y)g(xy) dσ1(y), x ∈ S
1,

where the bar denotes complex conjugation.
Given real-valued functions f , g, h on S

1, define

J( f , g, h) =
∫ π

−π

∫ π

−π

f (e−iφ)g(eiθ )h(ei(φ−θ)) dθ dφ. (8.1)

Then

J( f , g, h) = f ∗ g ∗ h(1),

from which we see that J does not depend on the order of its arguments.

Theorem 8.1 [Baernstein, 1989a] Suppose that f , g, and h are either
nonnegative measurable functions on S

1, or that f , g, h ∈ L1(S1) and the
product f #(e−iφ)g#(eiθ )h#(ei(φ−θ)) ∈ L1(S1 × S

1). Then

J( f , g, h) ≤ J( f #, g#, h#), (8.2)

where # denotes symmetric decreasing rearrangement on S
1.

Since the convolution of two L1 functions is in L1, for the product
f (e−iφ)g(eiθ )h(ei(φ−θ ) to be integrable, it suffices that two of the functions be
in L1 and the third be in L∞. Also, according to Young’s inequality (Zygmund,
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1968, p. 37 or Folland, 1999) it suffices for integrability that f ∈ Lp, g ∈ Lq,
h ∈ Lr, where p, q, r ∈ (1, ∞) with 1

p + 1
q + 1

r = 2.
If one of f , g, or h is already symmetric decreasing, then J( f , g, h) increases

under polarization (see Corollary 7.1). But in the general case this need not
be so. For example, let f = g = h = χA, where A is the image of [−ε, ε] ∪
[π − ε,π + ε] under the exponential map φ → eiφ , with 0 < ε < π/4. Take
H to be the intersection of S1 with the line y = −x. Then

J( f , g, h) = 12ε2 and J( fH , gH , hH) = 9ε2.

Furthermore, the usual proofs of the R-version of (8.2) do not work in the S1

case. So to prove Theorem 8.1 we need a different kind of argument. The proof
below is suggested by considerations involving the star function f �, which we
will study in Chapters 9–11.

Proof of Theorem 8.1 Assume first that f , g, and h are nonnegative. Express-
ing f , g, and h by their layer cake representations (§1.6, Proposition 1.32), we
see that if (8.2) holds whenever f , g, and h are characteristic functions, then
it holds for all triples of nonnegative functions. Let An be the collection of all
sets E ⊂ S

1 such that E is the union of at most n disjoint closed intervals on S
1.

For each measurable E ⊂ S
1 the function χE is the a.e. limit of a sequence χAn

with An ∈ An. Thus, to prove (8.2) for all characteristic functions, it suffices to
prove that for each fixed n ≥ 1, (8.2) holds when f = χE1 , g = χE2 , h = χE3 ,
with E1, E2, E3 ∈ An.

Let

Q = [0,π ] × [0,π ] × [0,π ]

and fix n. Define F : Q → R
+ by

F(θ1, θ2, θ2) = sup J(E1, E2, E3) (8.3)

where the supremum is taken over all sets E1, E2, E3 with each Ei ∈ An and
σ1(Ei) = 2θi for i = 1, 2, 3. It is straightforward to show that the supremum
is in fact achieved by some triple of competing sets, and that F is continuous
on Q.

Define also G : Q → R
+ by

G(θ1, θ2, θ3) = J(χI1 ,χI2 ,χI3),

where Ii = [−θi, θi], i = 1, 2, 3, and we follow the usual practice of identifying
sets {eiφ : φ ∈ A} ⊂ S

1 with sets A ⊂ R mod 2π . Then (χEi)
# = χIi .

Denote the interior of Q by Qo, and denote the coordinate vectors in R
3 by

e1, e2, e3.
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Claim 8.2 Suppose that �θ = (θ1, θ2, θ2) ∈ Qo. Then for at least one
i ∈ {1, 2, 3},

lim inf
t→0

t−2[F(�θ + tei) + F(�θ − tei) − 2F(�θ)] ≥ −2. (8.4)

If F is twice differentiable at �θ then the expression on the left equals the
partial derivative Fθiθi(

�θ).
Assume for now that the claim is true. Fix ε > 0. Define H : Q → R by

H(�θ) = F(�θ) − G(�θ) − ε

3∑
i=1

θi(π − θi).

Since F and G are continuous, H achieves a maximum value M in Q.
We shall show that M ≤ 0.

Take �θ0 ∈ Q such that H(�θ0) = M. Write �θ0 = (θ1, θ2, θ3), and let E1, E2, E3

be competing sets for which the supremum in (8.3) is achieved. Then

F(�θ0) =
∫ π

−π

∫ π

−π

χE1(e
−iφ)χE2(e

iθ )χE3(e
i(φ−θ)) dθ dφ . (8.5)

Consider now four cases.
Case 1. �θ0 ∈ ∂Q. Then some θi is equal to either 0 or π . Say θ1 = 0. Then
E1 is a single point, and F(�θ0) = G(�θ0) = 0. If θ1 = π , then E1 = S

1, and
F(�θ0) = G(�θ0) = 4θ2θ3. Either way, M = H(�θ0) = 0.

Case 2. �θ0 ∈ Qo, and some θi is greater than or equal to the sum of the other
two. Say θ1 ≥ θ2 + θ3. Using the bound χE1 ≤ 1 in (8.5), we have F(�θ0) ≤
4θ2θ3. Also,

G(�θ0) = J(χI3 ,χI1 ,χI2) =
∫ θ3

−θ3

χI1 ∗ χI2(e
iφ) dφ,

and

χI1 ∗ χI2(e
iφ) =

∫ θ2

−θ2

χ1(e
i(φ−θ)) dθ .

If |φ| ≤ θ3 and |θ | ≤ θ2 then |φ − θ | ≤ θ1. Thus

χI1 ∗ χI2(e
iφ) = 2θ2, |φ| ≤ θ3,

hence G(�θ0) = 4θ2θ3, and we again have M ≤ 0.

Case 3. �θ0 ∈ Qo and θ1 + θ2 + θ3 ≥ 2π . Note that the definition of Q forces
each θi to be less than the sum of the other two.
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For functions f ∈ L1(S1), write m( f ) = ∫ π

−π
f dθ . Then f ∗ 1 is the constant

function m( f ). From this, we deduce that if f , g, h are three functions for which
the integrand in (8.1) is integrable, then

J(1 − f , 1 − g, h) = m(h) − m( f )m(h) − m(g)m(h) + J( f , g, h).

Since 1 − χE = χS1\E, this implies the symmetry relation

F(π − θ1,π − θ2, θ3) = F(θ1, θ2, θ3)+ 4θ3(π − θ1 − θ2), ∀ (θ1, θ2, θ3) ∈ Q.

Translating both variables in the defining integral by 1, we see that the same
relation holds for G. We conclude that

H(θ1, θ2, θ3) = H(π − θ1,π − θ2, θ3), ∀ (θ1, θ2, θ3) ∈ Q. (8.6)

Assuming now that (θ1, θ2, θ3) = �θ0 is a maximizing point for H, we see
that (π − θ1,π − θ2, θ3) is also a maximizing point. By hypothesis, π − θ1 +
π − θ2 ≤ θ3. Thus, by Case 2, M = H(π − θ1,π − θ2, θ3) ≤ 0.

Case 4. Q, the interior of Q, θ1 + θ2 + θ3 < 2π and each θi is strictly smaller
than the sum of the other two. Assume that (8.4) is satisfied with i = 3. By the
symmetry relation in (8.6), we may assume that θ1 + θ2 ≤ π . Suppose also,
without loss of generality, that θ1 ≥ θ2. We have

G(θ1, θ2, s) =
∫ s

−s
χI1 ∗ χI2(e

iφ) dφ, s ∈ [0,π ].

Thus G is a differentiable function of s, with partial derivative

Gs(θ1, θ2, s) = 2χI1 ∗ χI2(e
is).

The function χI1 ∗ χI2(e
is) is an even function of s. Since θ1 + θ2 ≤ π , this

function is constant for 0 ≤ s ≤ θ1 − θ2, zero for θ1 + θ2 ≤ s ≤ π , and
linear with slope −1 for θ1 − θ2 ≤ s ≤ θ1 + θ2. Our hypothesis implies that
θ1 − θ2 < θ3 < θ1 + θ2. It follows that G(θ1, θ2, s) is a twice continuously
differentiable function of s in some neighborhood of θ3. Its derivative satisfies

Gθ3θ3(
�θ0) = −2

and hence, by Claim 8.2,

lim inf
t→0

t−2[H(�θ0 + te3) + H(�θ0 − te3) − H(�θ0) ≥ 2ε.

Such a �θ0 cannot maximize H. We conclude that Case 4 cannot occur. Since
Cases 1–4 exhaust all possibilities, it follows that H ≤ 0 in Q. Since ε was
arbitrary, we must have F ≤ G in Q. As explained at the beginning of the proof,
this inequality implies that J( f , g, h) ≤ J(f #, g#, h#) holds for all nonnegative
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f , g, h. We have proved Theorem 8.1 for nonnegative functions, modulo the
claim.

Proof of Claim 8.2 Let E1, E2, and E3 be extremal sets for �θ , where E3 is the
complex conjugate of the set E3. Then σ1(E3) = σ(E3) = 2θ3. Set P(eiφ) =
χE1 ∗ χE2(e

iφ). Then P is a periodic piecewise linear function of φ, and

F(�θ) =
∫

E3

P(eiφ) dφ. (8.7)

Each Ei is the union of ki disjoint closed nondegenerate intervals, with
1 ≤ ki ≤ n. Say k1 ≤ k2 ≤ k3. We will prove that the claim holds with i = 3.

For m ∈ R, δ > 0 write I(m, δ) = [m − δ, m + δ]. Then E3 = ∪k3
i=1I(mi, δi)

for some mi and δi. For t > 0, define

E+
3 (t) = ∪k3

i=1I(mi, δi + t), E−
3 (t) = ∪k3

i=1I(mi, δi − t).

We assume that t is small enough so that the intervals defining E+
3 (t) are

disjoint and the intervals defining E−
3 (t) are nondegenerate. Set bi = mi + δi,

ai = mi − δi. Then∫
E+

3 (t)
P dφ +

∫
E−

3 (t)
P dφ − 2

∫
E3

P dφ

=
k3∑

i=1

{∫ bi+t

bi

−
∫ bi

bi−t
−

∫ ai+t

ai

+
∫ ai

ai−t
P dφ

}
.

For i = 1, . . . , k3, let λ+
i be the derivative of P from the right at bi and λ−

i be
the derivative from the left at bi. Let μ+

i and μ−
i be the analogous derivatives

from the right and left respectively of P at ai. Then each of these slopes has
absolute value ≤ k1. To see this, first examine the case k1 = 1 and verify that
the slopes are either ±1 or zero. For general k1, observe that P is the sum of k1

functions, each of which has slopes of absolute value ≤ 1.
Calculation gives∫ bi+t

bi

P dφ = tP(eibi) + 1

2
λ+

i t2,
∫ bi

bi−t
P dφ = tP(eibi) − 1

2
λ−

i t2,∫ ai+t

ai

P dφ = tP(eiai) + 1

2
μ+

i t2,
∫ ai

ai−t
P dφ = tP(eiai) − 1

2
μ−

i t2,

so that∫
E+

3 (t)
P dφ +

∫
E−

3 (t)
P dφ − 2

∫
E3

P dφ = 1

2
t2

k3∑
i=1

(λ+
i + λ−

i − μ+
i − μ−

i )

≥ −2t2k1k3.
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The first term on the left is at most F(θ1, θ2, θ3 + k3t) and the second is at most
F(θ1, θ2, θ3 − k3t). Combining with (8.7), we obtain

F(θ1, θ2, θ3 + k3t) + F(θ1, θ2, θ3 − k3t) − 2F(θ1, θ2, θ3) ≥ −2t2k1k3.

Replacing t by t/k3 and recalling that k1 ≤ k3, we obtain (8.4). The claim is
proved.

It remains to complete the proof of Theorem 8.1. Suppose finally that
f , g, h ∈ L1(S1) and that f #(e−iφ)g#(eiθ )h#(ei(φ−θ)) is in L1(S1 ×S

1). Let fn be
the truncation defined by fn = f if | f | ≤ n, fn = −n if f ≤ −n, fn = n if f ≥ n.
Define gn and hn similarly. Applying (8.2) to the functions | f |, |g| and |h|, we
see that f (e−iφ)g(eiθ )h(ei(φ−θ)) ∈ L1(S1 × S

1). The dominated convergence
theorem gives limn→∞ J( fn, gn, hn) = J( f , g, h), and likewise for the s.d.r. of
these functions. Thus, to prove (8.2) in general, we just need to prove it for f , g
and h bounded.

Take c ∈ R
+ such that | f |, |g| and |h| are ≤ c. Then f + c, g + c, and h + c

are nonnegative. Denoting the mean value of f by m( f ), we expand

J( f + c, g + c, h + c) = J( f , g, h) + c[m( f )m(g) + m(g)m(h) + m(h)m( f )]

+ c2[m( f ) + m(g) + m(h)] + c3,

and apply (8.2) to the left-hand side. Since the terms involving mean values do
not change under rearrangement, it follows that (8.2) holds for f , g, and h, and
the proof of Theorem 8.1 is complete.

8.2 Riesz’s Convolution Inequality on R

For real-valued functions f , g on R, the convolution f ∗g : R → R is defined by

f ∗ g(x) =
∫
R

f (y)g(x − y) dy, x ∈ R,

whenever the integral exists. As on the circle, convolution on R is commutative
and associative.

Given real-valued functions f , g, h on R, define

J( f , g, h) =
∫
R×R

f (−x)g(y)h(x − y) dx dy = f ∗ g ∗ h(0).

Recall that for functions f on R
n, the distribution function λf (t) is defined by

λf (t) = Ln( f > t). Our usual finiteness condition for nonnegative functions is

λf (t) < ∞, ∀ t > 0. (8.8)
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Theorem 8.3 (F. Riesz, 1930) Suppose that f , g, and h are nonnegative
measurable functions on R satisfying the finiteness condition (8.8). Then

J( f , g, h) ≤ J(f #, g#, h#), (8.9)

where # denotes symmetric decreasing rearrangement on R.

Proof Assume first that f , g, and h are all supported in an interval [−A, A] with
0 < A < π/3. Then f ∗ g ∗ h is supported in [−3A, 3A] ⊂ (−π ,π). Define
f1, g1, h1 on S

1 by f1(eiθ ) = f (θ), etc., where |θ | ≤ π . Then

f ∗ g ∗ h(θ) = f1 ∗ g1 ∗ h1(e
iθ ), |θ | ≤ π .

It is also true that f #(θ) = f #
1 (e

iθ ), where f #
1 denotes the s.d.r. of f1 on S

1.
Taking θ = 0 and applying Theorem 8.1, inequality (8.9) follows.

Next, assume that f , g and h are all supported in some interval [−A, A] with
0 < A < ∞. Take α > 3A/π . This time, define f1, g1, h1 on R by f1(x) =
f (αx), etc. Then f1, g1, h1 are compactly supported in (−π/3,π/3), and

f ∗ g ∗ h ∗ (αx) = α2f1 ∗ g1 ∗ h1(x).

Also, we have the equation f #(αx) = f #
1 (x). Thus, the validity of (8.9) for f , g, h

follows from its validity for f1, g1, h1.
Let now f , g, h be any three functions satisfying the hypotheses. For m ≥ 1,

define fm = fχ[−m,m], etc. Then J( fm, gm, hm) ≤ J( f #
m, g#

m, h#
m). By monotone

convergence, J( fm, gm, hm) → J( f , g, h) as m → ∞, and by Proposition 1.39
and monotone convergence, J( f #

m, g#
m, h#

m) → J(f #, g#, h#). Thus, (8.9) holds
for f , g, h.

Burchard and Hajaiej (2006, p. 16) give a simple example for which (8.9) is
false when f , g, h are replaced by their polarizations instead of their symmetric
decreasing rearrangements.

8.3 The Riesz–Sobolev Inequality

The convolution f ∗g of two real-valued functions on R
n is defined by the same

formula as when n = 1, except that now x and y denote points of Rn. Given
real-valued functions f , g, h on R

n, define

J( f , g, h) =
∫
Rn×Rn

f (−x)g(y)h(x − y) dx dy = f ∗ g ∗ h(0).

Theorem 8.4 (Sobolev, 1938) Suppose that f , g, and h are nonnegative
measurable functions on R

n satisfying the finiteness condition (8.8). Then

J( f , g, h) ≤ J(f #, g#, h#), (8.10)



262 Convolution and Beyond

where # denotes symmetric decreasing rearrangement on R
n or (k, n)- Steiner

symmetrization on R
n, 1 ≤ k ≤ n.

Proof Step 1. For x, y ∈ R
n write x = (x1, u), y = (y1, v) where u, v ∈ R

n−1.
For nonnegative f , g, h on R

n we can write

J( f , g, h)

=
∫
Rn−1×Rn−1

(∫
R×R

f (−x1, −u)g(y1, v)h(x1 − y1, u − v) dx1 dy1

)
dudv.

Let f s denote the (1, n)-Steiner symmetrization of f (with respect to the
hyperplane x1 = 0). Then f s is obtained by changing each function f (·, u)
to its symmetric decreasing rearrangement on R. By Theorem 8.3, each of the
dx1 dy1 integrals increases when we change f , g and h to f s, gs and hs. Thus,

J( f , g, h) ≤ J( f s, gs, hs). (8.11)

Since J is invariant under simultaneous rotation of the three functions, it also
decreases under Steiner symmetrization with respect any other hyperplane.

Step 2. Assume that f , g, h are in Cc(R
n,R+). Let R( f ) the radius of the

smallest centered ball that contains the support of f . As in (2.12) of §2.4, define
a class of functions S( f ) by

S( f ) = {F ∈ Cc(R
n,R+) : ω(·, F) ≤ ω(·, f ) on (0, ∞),

λF = λf on (0, ∞), and R(F) ≤ R( f )}.
Here ω denotes modulus of continuity defined in §1.7, and λF = λf says that
f and F have the same distribution on R

n. As in §2.5, define

S = S( f , g, h)

= {(F, G, H) ∈ S( f ) × S(g) × S(h) : J( f , g, h) ≤ J(F, G, H)}
and

d2 = inf
(F,G,H)∈S

(
‖F − f #‖2

2 + ‖G − g#‖2
2 + ‖H − h#‖2

2

)
,

where ‖·‖2 is the norm in L2(Rn,Ln) and # denotes symmetric decreasing
rearrangement on R

n.
By Theorem 6.10 and Corollary 6.13, the modulus of continuity and

the diameter of the support of functions in Cc(R
n) decrease under Steiner

symmetrization. Thus, F ∈ S( f ) implies Fs ∈ S( f ). Combined with (8.11),
we see that (F, G, H) ∈ S implies (Fs, Gs, Hs) ∈ S. Also, by applying
Eq. (6.21) of Theorem 6.8 with �(t) = t2,

‖f s − f #‖2 ≤ ‖f − f #‖2.
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We can now follow the argument in the proof of Theorem 2.15(a). Let
{( fk, gk, hk)} be a sequence in S such that

d2 = lim
k→∞

‖fk − f #‖2
2 + ‖gk − g#‖2

2 + ‖hk − h#‖2.

All of these functions are supported in the ball of radius R, where R is the
maximum of R( f ), R(g), R(h). We can apply the Arzelà–Ascoli theorem to get
functions (F0, G0, H0) ∈ S with

d2 = ‖F0 − f #‖2
2 + ‖G0 − g#‖2

2 + ‖H0 − h#‖2
2. (8.12)

If d2 = 0 then (f #, g#, h#) = (F0, G0, H0) ∈ S and we are done. Suppose
that at least one of the three equalities fails, say F0 �= f #. For simplicity, write
F instead of F0. Take a ∈ R

n such that F(a) �= f #(a). Say F(a) < f #(a).
Take t with F(a) < t < f #(a). Let E1 = (F > t), E2 = (f # > t). By
continuity of F and f #, there is a neighborhood U of a such that U ⊂ E2 \ E1.
Thus, Ln(E2 \ E1) > 0. Since Ln(E1) = Ln(E2), the set E1 \ E2 must have
positive measure. Now E2 is an open ball, so its boundary has measure zero.
We conclude that there is a point b ∈ R

n and an open neighborhood V of b
such that V ⊂ E1 \ E2. It follows that

F(x) < F(y) and f #(x) > f #(y) ∀ (x, y) ∈ U × V . (8.13)

If F(a) > f #(a) we repeat the argument above but interchange the roles of
E1 and E2. In any event, whenever F �= f #, we have shown there exist open
neighborhoods U and V of the points a and b respectively for which (8.13)
holds.

By construction, the points a and b are distinct. After a rotation, we may
assume that a and b have the form a = (a1, z0), b = (b1, z0) for some
z0 ∈ R

n−1.
For z ∈ R

n−1, define sets Az ⊂ R
2 by

Az = {(x1, y1) ∈ R
2 : F(x1, z) < F(y1, z) and f #(x1, z) > f #(y1, z)}.

Then, by (8.13),

Az ⊃ {(x1, y1) ∈ R
2 : (x1, z) ∈ U, (y1, z) ∈ V}.

For z sufficiently close to z0 in R
n−1 the set on the right contains a neigh-

borhood of (a1, b1) in R
2, thus has positive L2 measure. Thus L2(Az) > 0

on a neighborhood of z0 in R
n−1, and hence on a set of z with positive Ln−1

measure.
By the equality statement in Theorem 6.8, we have the strict inequality

‖Fs
0 − f #‖2 < ‖F0 − f #‖.
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It is also true that ‖Gs
0 − g#‖ ≤ ‖G0 − g#‖2 and likewise for H0 and h#. Thus,

the left-hand side of (8.12) strictly decreases when F0, G0, H0 are replaced by
Fs

0, Gs
0, Hs

0. Since (F0, G0, H0) ∈ S implies (Fs
0, Gs

0, Hs
0) ∈ S, we have reached

a contradiction to the definition of d. It must be true, then, that (F0, G0, H0) =
(f #, g#, h#). We have proved that

J( f , g, h) ≤ J(f #, g#, h#)

for all f , g, h ∈ Cc(R
n).

Step 3. The arguments in the proof of Parts 2 and 3 of Theorem 2.15(a) carry
over, and produce inequality (8.10) for s.d.r. on R

n, first for f , g, h nonnegative,
compactly supported and in L∞(Rn), then for all nonnegative measurable
f , g, h on R

n.

Step 4. Take 1 ≤ k < n and set m = n−k. Then, with self-explanatory notation

J( f , g, h) =
∫
Rm×Rm

du dv
∫
Rk×Rk

f (−x′, u)g(y′, v)h(x′ − y′, u − v) dx′ dy′,

where x = (x′, u) ∈ R
n, y = (y′, v) ∈ R

n. Let # denote (k, n)-Steiner
symmetrization. Then f # is obtained by changing each function f (·, u) to its
s.d.r. on R

k. By the first part of the proof, each of the dx′ dy′ integrals increases
when we change f , g and h to f #, g# and h#. Thus, (8.10) holds for (k, n)-Steiner
symmetrization and all nonnegative measurable f , g, h.

The proof of Theorem 8.4 is complete.

8.4 The Brunn–Minkowski Inequality

Let A and B be nonempty Lebesgue measurable subsets of Rn, n ≥ 1. Unless
otherwise stated, we will always assume in this section that A and B have finite
measure. Define sets A + B and C by

A + B = {x + y : x ∈ A, y ∈ B} = {x ∈ R
n : (x − A) ∩ B �= ∅},

C = {x ∈ R
n : Ln((x − A) ∩ B) > 0} = {x ∈ R

n : χA ∗ χB(x) > 0}.
The set A + B is called the Minkowski sum of A and B. It is not

Ln-measurable in general (Sierpiński, 1920), but if A and B are Borel, then
A + B is analytic and therefore Ln-measurable (Gardner, 2002). In Brascamp
and Lieb (1976), C is called the essential sum of A and B. It is clear that

C ⊂ A + B .
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Note also that C is open, since χA ∗ χB is continuous. The reader may show
that if A + B is open, then C = A + B.

Theorem 8.5 (Brunn-Minkowski Inequality) For Ln-measurable sets A, B ⊂
R

n of positive measure and C defined as above, we have

Ln(A)1/n + Ln(B)1/n ≤ Ln(C)1/n ≤ Ln(A + B)1/n, (8.14)

where the second inequality holds whenever A + B is Ln-measurable.

Note that the left inequality fails if A has measure zero and B has positive
measure, since then C is empty. If A and B are open balls of radii R1 and
R2, then C = A + B is an open ball of radius R1 + R2, and equality holds
in (8.14). By a theorem of Hadwiger and Ohmann (1956), the necessary and
sufficient condition for equality to hold in both inequalities of (8.14) is that
A = K1 \ L1, B = K2 \ L2, where L1 and L2 are Ln nullsets, K1 is convex, and
K2 = aK1 + b for some a ∈ R, b ∈ R

n.
When A is open and B = B

n(0, ε), the open ball of radius ε centered at
the origin, then C = A + B = A(ε), the ε-collar of A as defined in §4.4, and
inequality (8.14) coincides with Corollary 4.15(a).

Write RA for the volume radius of A, that is, Ln(A) = αnRn
A. Then inequality

(8.14) can be written as

RA + RB ≤ RC ≤ RA+B,

with equality when A and B are balls. Still another equivalent formulation is

A# + B# ⊂ C# ⊂ (A + B)#, (8.15)

where # denotes symmetric decreasing rearrangement on R
n. Indeed, each set

in (8.15) is an open ball centered at the origin, and by (8.14), we see that
A# + B# has volume radius at most that of C#. The same argument shows that
(8.15) implies (8.14).

Proof of Theorem 8.5 By definition of C,∫
C
χA ∗ χB dx =

∫
Rn

χA ∗ χB dx = Ln(A)Ln(B). (8.16)

Suppose that the first inclusion relation in (8.15) is false. Then the open ball
A# + B# contains the closure of the open ball C#. So∫

C
χA ∗ χB dx ≤

∫
C#

χA# ∗ χB# dx <

∫
A#+B#

χA# ∗ χB# dx

= Ln(A#)Ln(B#) = Ln(A)Ln(B).
(8.17)
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The first inequality is by the Riesz–Sobolev Theorem 8.4. The second inequal-
ity follows from the fact that the set where χA# ∗ χB# > 0 is precisely the
open ball A# + B#. Since (8.16) and (8.17) are contradictory, we conclude that
A# + B# ⊂ C#. Further, C ⊂ A + B implies that C# ⊂ (A + B)#, completing
the proof of (8.16) and Theorem 8.5.

We deduced the Brunn–Minkowski inequality (8.14) from the Riesz–
Sobolev convolution inequality. Conversely, the Brunn–Minkowski inequality
is used in Riesz’ original proof of the convolution inequality in 1 dimension.
The inequality in higher dimensions plays a key role in the proof of the
Brascamp–Lieb–Luttinger inequality: see Section 8.5.

Take λ ∈ [0, 1]. Applying Theorem 8.5 to the sets λA and (1 − λ)B, we find
the following concavity relation for the volume radius.

Corollary 8.6 Let λ ∈ [0, 1] and A, B ⊂ R
n be Ln measurable sets of finite

positive measure. Then

λLn(A)1/n + (1 − λ)Ln(B)1/n ≤ Ln(λA + (1 − λ)B)1/n.

It follows that the volume radius is a concave function on the class of convex
sets. Indeed, for convex sets A, B, positive numbers a0, b0, a1, b1 and λ ∈ [0, 1],
we have

((1−λ)a0 +λa1)A+((1−λ)b0 +λb1)B = (1−λ)(a0A+b0B)+λ(a1A+b1B) ,

so we can apply Corollary 8.6 on the right. In particular, the volume radius of
the ε-collar A(ε) of a convex set A is concave in ε. Note that the concavity does
not extend to the class of measurable sets.

Next, we derive another concavity property, which will be needed in the next
section. Let K be a convex subset of Rn+1. Define

K(t) = {x ∈ R
n : (x, t) ∈ K}, ψ(t) = Ln(K(t)), t ∈ R.

Thus, K(t) is the slice of K through the hyperplane {xn+1 = t}, and ψ(t) is
the measure of the slice. Define

U = {t ∈ R : ψ(t) > 0}.
Corollary 8.7 Let K, ψ , and U be as specified. Assume that U contains at
least two points. Then U is an interval, and ψ1/n is a concave function on U.

Example If K is the open unit ball Bn+1, then U = (−1, 1), and ψ(t) =
αn(1 − t2)n/2 on U.

Proof of Corollary 8.7 Each of the sets K(t) with t ∈ U is a convex set
with positive Ln measure. Thus, each such K(t) has interior points. From the
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convexity of K, we infer that if t1, t2 ∈ U then each t in between t1 and t2 also
belongs to U. Thus, U is an interval.

Take t1 < t2 < t3 in U. Write t2 = λt1 + (1 − λ)t3, where λ = t3−t2
t3−t1

. Take
z ∈ λK(t1) + (1 − λ)K(t3). Then z = λx + (1 − λ)y for some x ∈ K(t1),
y ∈ K(t3). So

(z, t2) = λ(x, t2) + (1 − λ)(y, t2) = λ(x, t1) + (1 − λ)(y, t3).

The last expression is a convex combination of points in K, hence belongs to
K. We conclude that z ∈ K(t2), and hence that

λK(t1) + (1 − λ)K(t3) ⊂ K(t2).

Thus,

λψ1/n(t1) + (1 − λ)ψ1/n(t3) ≤ Ln(λK(t1) + (1 − λ)K(t3))
1/n ≤ ψ1/n(t2),

where the first inequality is by Corollary 8.6. This shows that ψ1/n is concave
on U.

Corollary 8.7 appears in §11.48 of Bonnesen and Fenchel (1987).

8.5 The Brascamp–Lieb–Luttinger Inequality

Motivated by problems from mathematical physics, Brascamp, Lieb, and
Luttinger (1974) obtained a significant extension of the Riesz–Sobolev
inequality in which there can be more than three input functions. Here is
the setup:

• f1, . . . , fp are Ln measurable nonnegative functions on R
n.

• k ≥ 2 and 1 ≤ q ≤ p − 1 are integers.
• A = (aj ), 1 ≤ j ≤ p, 1 ≤  ≤ q, is a p × q matrix with real entries.
• x = (x1, . . . , xq) ∈ R

nq, where each xj ∈ R
n.

• Ljx = Lj(x) = ∑q
 =1 aj x , 1 ≤ j ≤ p.

• J( f1, . . . , fp) ≡ ∫
Rnq

∏p
j=1 fj(Ljx) dx1 . . . dxq.

Theorem 8.8 With the setup just specified,

J( f1, . . . , fp) ≤ J( f #
1 , . . . , f #

p ), (8.18)

where # denotes symmetric decreasing rearrangement on R
n or (k, n)-Steiner

symmetrization on R
n, 1 ≤ k ≤ n − 1.

For p = 3, q = 2 and L1x = −x1, L2x = x2, L3x = x1 − x2, we have

J( f1, f2, f3) =
∫
R2n

f1(−x1)f2(x2)f3(x1 − x2) dx1 dx2,

and thus recover the Riesz–Sobolev inequality in R
n.
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Why the restriction q < p? To find out, let us look at the case p = q = 2,
n = 1 and assume that the matrix A is nonsingular. Then

J( f1, f2) =
∫
R2

f1(a11x1 + a12x2)f2(a21x1 + a22x2) dx1 dx2

= det(A−1)

∫
R2

f1(y1)f2(y2) dy1 dy2

= det(A−1)

∫
R

f1 dx1

∫
R

f2 dx2,

where in the second equality we made an evident change of variable. For
general n and p, q with p = q the corresponding result is

J( f1, . . . , fp) = (det A)−n
p∏

j=1

∫
Rn

fj dxj.

In any event, we see that when p = q the value of J does not change when all
the fj are changed to f #

j . If p < q, then the same sort of argument shows that J

equals 0 or ∞, and if J( f1, . . . , fn) = ∞ then J( f #
1 , . . . , f #

p ) = ∞.

Proof of Theorem 8.8 Suppose we have proved (8.18) when n = 1, # is s.d.r.
on R and each fj is the characteristic function of a set that is the union of finitely
many closed disjoint intervals. Then, by the approximation argument in the
proof of Theorem 8.1, (8.18) holds when the fj are characteristic functions of
any measurable subsets of R.

Next, for arbitrary nonnegative measurable functions fj on R, the layer cake
representation (Proposition 1.32) gives

J( f1, . . . , fp) =
∫
(R+)p

J(E1(t1), . . .Ep(tp)) dt1 . . . , dtp,

where Ej(tj) is an abbreviation for the function χ( fj>tj). Each term in the
integrand increases under s.d.r., and so it follows that (8.18) holds for all
nonnegative fj on R. The extension of (8.18) from n = 1 to general n is
accomplished just like Theorem 8.4 was deduced from Theorem 8.3.

The proof of (8.18) when n = 1 and each fj = χEj with each Ej the disjoint
union of finitely many closed intervals is carried out in two steps.

Step 1. Let I1, . . . , Ip be nondegenerate closed intervals in R. Write Ij =
[bj − δj, bj + δj] = I#

j + bj, where # denotes s.d.r. on R. For t ∈ R, define

Ij(t) = I#
j + tbj = [tbj − δj, tbj + δj].

Then Ij(0) = I#
j and Ij(1) = Ij. All Ij(t) have the same length. As t increases,

the intervals Ij(t) move with speed equal to the absolute value of the midpoint
of Ij.
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Define a set K ⊂ R
q+1 by

K = {(x, t) : x ∈
p⋂

j=1

L−1
j (Ij(t))} ,

where the linear form Lj defined by Ljx = ∑q
 =1 aj x . This is a convex set,

since each strip L−1
j (Ij) is convex. Let

K(t) =
p⋂

j=1

L−1
j (Ij(t))

be the slice of K through the hyperplane {xq+1 = t}, as discussed just before
Corollary 8.7, and let ψ(t) = Lq(K(t)). Then

ψ(t) = J(χI1(t), . . . ,χIp(t)). (8.19)

Since Ij(−t) = −Ij(t) for each j and Lj(−x) = −Lj(x), it follows that

K(−t) = −K(t),

and hence ψ satisfies

ψ(t) = ψ(−t), t ∈ R. (8.20)

If ψ is not identically zero, then U = {t ∈ R : ψ(t) > 0} is an open interval
symmetric about 0. From Corollary 8.7, it follows that ψ1/q is concave on U.
Along with the symmetry relation (8.20), the concavity implies that ψ is
decreasing in |t|. With (8.19), we deduce that

J(χI1(t), . . . ,χIp(t)) ↘ as t ↗ on [0, 1]. (8.21)

Step 2. Suppose that

Ej =
Nj⋃

k=1

Ijk, 1 ≤ j ≤ p,

where the Ijk are nondegenerate closed intervals which for each fixed j are
disjoint, and the Nj are positive integers. We need to show that

J(χE1 , . . . ,χEp) ≤ J(χE#
1
, . . . ,χE#

p
). (8.22)

Let N = N(E1, . . . , Ep) = ∏p
j=1 Nj. We shall prove (8.22) by induction

on N. If N = 1 then each Ej is a single interval, call it Ij. Let Ij(t) be as in
Step 1. Then Ij(1) = Ej, Ij(0) = E#

j , and (8.22) follows from (8.21).
Suppose (8.22) has been proved for all p-tuples {Ej} such that the product

N(E1, . . . , Ep) is smaller than some N ≥ 4. Let {Ej} be a p-tuple with

N(E1, . . . , Ep) = N. Substituting χEj = ∑Nj

k=1 χIjk in the definition of J, we
obtain
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J(χE1 , . . . ,χEp) =
∑

J(χI1,k1
, . . . ,χIp,kp

), (8.23)

where the sum is over all multi-indices (k1, . . . , kp) with 1 ≤ ki ≤ Nj,
j = 1, . . . , p.

For each of the intervals Ijk let Ijk(t) be formed from Ijk as Ij(t) was formed
from Ij in Step 1. Let t0 be the largest value of t such that Ijk(t0) and Ijm share
an endpoint for some j, k, m with k �= m. Then 0 < t0 < 1, because Ijk(1) = Ijk

and Ijm(1) = Ijm are disjoint while Ijk(0) = I#
jk and Ijm(0) = I#

jm intersect at 0.

Set Ej(t) = ⋃Nj

k=1 Ijk(t). Then Ej(1) = Ej. By (8.21), each term in the sum
(8.23) increases when all the Ij,kj are replaced by Ij,kj(t0). Thus,

J(χE1 , . . . ,χEp) ≤ J(χE1(t0), . . . ,χEp(t0)). (8.24)

Since N(E1(t0), . . . , Ep(t0)) < N, the induction hypothesis implies that the
right-hand side of (8.24) increases when we change the Ej(t0) to Ej(t0)#. But
the choice of t0 insures that Ej(t0)# = E#

j . This completes the proof of (8.22),
and with it the proof of Theorem 8.8.

8.6 Symmetrization Increases the Trace of the Heat Kernel

Let f ∈ Lp(Rn) for some p ∈ [1, ∞]. Define

u(x, t) = (2π t)−n/2
∫
Rn

f (y)e− |x−y|2
2t dy, x ∈ R

n, t ∈ (0, ∞). (8.25)

Then u satisfies the p.d.e.

ut = 1

2
�u in R

n × (0, ∞), (8.26)

where the subscript t denotes differentiation and � is the Laplacian operator
considered in Chapter 5. Moreover, u satisfies

lim
t→0

u(x, t) = f (x), x ∈ R
n,

where the limit exists in Lp for p < ∞, and also at points of continuity of f . We
will abbreviate this statement to u(x, 0) = f (x). For more information about the
heat equation, we refer to Evans (1998).

Under appropriate physical conditions, u(x, t) is the temperature at time t at
the point x if at time zero the temperature is f (x) at every point x. Accordingly,
we say that u solves the heat equation in (8.26) Rn × (0, ∞) with initial values
f on R

n. The function K(x, y, t) = (2π t)−n/2 exp(−|x − y|2/(2t)) is called the
heat kernel on R

n. A useful fact is the semigroup property

K(x, y, t + s) =
∫
Rn

K(x, z, s)K(z, y, t) dz .
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The factor 1
2 in (8.26) is called the probabilists’ one-half, the reason being that

1
2� is the infinitesimal generator of standard Brownian motion in R

n. Even for
non-probabilists, an advantage to inserting the one-half is that formulas like
(8.25) turn out to be more symmetric when the one-half is present.

Next, let � be a bounded open set in R
n. As discussed in §5.1, the operator

− 1
2� with Dirichlet boundary conditions has eigenvalues λ1 < λ2 ≤ λ3 ≤ . . .

with λ1 > 0. There is a corresponding sequence of eigenfunctions wj defined
by the property that

1

2
�wj = −λjwj in �, wj = 0 on ∂�

for each j ≥ 1. The functions wj can be normalized to form an orthonormal
basis for L2(�). For each f ∈ L2(�) we have f = ∑∞

j=1( f , wj)wj, where the

parentheses denote inner product in L2(�) and the series converges in L2(�).
Set

u(x, t) =
∞∑

j=1

e−λjt( f , wj)wj(x). (8.27)

Then u ∈ C∞(� × (0, ∞)), and u satisfies

ut = 1

2
�u in � × (0, ∞).

If � has sufficiently smooth boundary, then u also satisfies the boundary and
initial conditions

u(x, t) = 0 on ∂� × (0, ∞), u(x, 0) = f (x) for x ∈ �.

If � is a region in space whose boundary is kept at zero temperature, and the
initial temperature is given by f (x), then the temperature at time t and point x
will be given by u(x, t). We say that u solves the heat equation in � × (0, ∞)

with Dirichlet boundary conditions and initial values f .

The operator that carries f to u(·, t) is the operator exponential e
1
2 t� in

the sense of spectral theory, where � here is the Laplacian with Dirichlet

boundary conditions on �. The family {e 1
2 t� | t ≥ 0} is a 1-parameter

contraction semigroup under composition whose infinitesimal generator is 1
2�.

For background on spectral theory and operator semigroups, see Evans (1998),
Davies (1989), or Reed and Simon (1972)–(1975).

Define the Dirichlet heat kernel of � by

K(x, y, t,�) =
∞∑

j=1

e−λjtwj(x)wj(y), (x, y, t) ∈ � × � × (0, ∞). (8.28)
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Then

u(x, t) =
∫
�

K(x, y, t,�)f (y) dy, (x, t) ∈ � × (0, ∞).

If we take f to be δy, a unit mass at y, then the corresponding solution u(x, t)
is K(x, y, t,�). Thus, we can view K(x, y, t,�) as the temperature at time t and
point x, if the boundary temperature is kept at zero and initially there is no heat
except for a heat source of unit strength at y.

The Dirichlet heat kernel is symmetric in the spatial variables, that is,
K(x, y, t,�) = K(y, x, t,�), and has the semigroup property that

K(x, y, t + s,�) =
∫
�

K(x, z, s,�)K(z, y, t,�) dz .

There is also a Neumann heat kernel, but we will rarely consider it, and
therefore will sometimes omit the adjective “Dirichlet.”

The trace of the heat kernel of � is defined as the sum of the eigenvalues of

the operator e
1
2 t�,

Tr(t,�) =
∞∑

j=1

e−tλj , 0 < t < ∞. (8.29)

By (8.28) and the orthonormality of the eigenfunctions,

Tr(t,�) =
∫
�

K(x, x, t,�) dx, 0 < t < ∞.

The following theorem is due to Luttinger (1973a; 1973b).

Theorem 8.9 If � ⊂ R
n is bounded and has sufficiently smooth boundary,

then

Tr(t,�) ≤ Tr(t,�#), 0 < t < ∞, (8.30)

where # may be either s.d.r. on R
n or (k, n)-Steiner symmetrization, 1 ≤ k ≤ n.

Letting t → ∞, we see from (8.29) and (8.30) that

λ1(�) ≥ λ1(�
#).

If ∂� is bounded and sufficiently smooth, there is an asymptotic expansion
(McKean and Singer, 1967; Davies, 1989)

(2π t)n/2 Tr(t,�) = Ln(�) − 1

4
(2π t)1/2Hn−1(∂�) + O(t), t → 0.

Thus, letting t → 0, we see from (8.30) that

Hn−1(∂�) ≥ Hn−1(∂�#).
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Thus, Luttinger’s Theorem implies both the Faber–Krahn Theorem and the
isoperimetric inequality, for sufficiently regular �.

For the proof of the theorem, we will write Tr(t,�) as a limit of multiple
integrals which satisfy the assumptions of the Brascamp–Lieb–Luttinger
inequality in Theorem 8.8.

Proof of Theorem 8.9 Fix t > 0. For a positive integer q ≥ 2, define

Kq(x, y, t,�) =
( q

2π t

)nq
2
∫
�q−1

exp

⎛⎝− q

2t

q∑
j=1

|xj−1 − xj|2
⎞⎠ dx1 . . . dxq−1,

where x0 = x and xq = y. By extending the domain of integration to (Rn)q−1

and using the semigroup property of the heat kernel on R
n, we see that the

functions Kq are uniformly bounded on � × � by

0 ≤ Kq(x, y, t,�) ≤ (2π t)−n/2e− |x−y|2
2t ≤ (2π t)−n/2.

By the same reasoning,

K2q(x, y, t,�) ≤ Kq(x, y, t,�)

for all x, y ∈ � × �. It follows that the subsequence K2j is monotonically
decreasing in j.

The Trotter product formula for semigroups, a version of which is stated
below, will yield the following representation for the trace of the heat kernel:

Tr(t,�) = lim
q→∞

∫
�

Kq(x, x, t,�) dx. (8.31)

The integrals on the right-hand side of (8.31) satisfy the hypotheses of
Theorem 8.8, with p = 2q, fj = χ� for 1 ≤ j ≤ q, fj(z) = e−|z|2/2 for
q + 1 ≤ j ≤ 2q. The fj with j > q are symmetric decreasing on R

n. By
Theorem 8.8, ∫

�

Kq(x, x, t,�) dx ≤
∫
�#

Kq(x, x, t,�#) dx,

and (8.30) follows by taking q → ∞. To complete the proof of the theorem,
it remains to establish (8.31) along the monotone subsequence indexed by
q = 2j.

Let {Pt} and {Pt
�} denote the heat semigroups on R

n and � respectively. For
t > 0 let Qt be the multiplication operator on L2(Rn) defined by Qtf = χ�f ,
and let Q0f = f . Since χ2

� = χ�, this defines a semigroup {Qt}, which is
obviously contractive. By Kato’s version (1978) of Trotter’s formula, the q-fold
composition (Qt/qPt/q)q converges in the strong L2-sense to a contraction
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semigroup as q → ∞. This means that (χ�Pt/q)qf converges in L2 for each
f ∈ L2. Using Herbst and Zhao (1988) or Kac (1949), one shows that

Pt
�f = lim

q→∞(χ�Pt/q)qf

in L2 for each f ∈ L2. (See also Simon (1979).) Since

(χ�Pt/q)qf (x) =
∫
�

Kq(x, y, t,�)f (y) dy,

we have proved that

u(x, t) = lim
q→∞

∫
�

Kq(x, y, t,�)f (y) dy (8.32)

in L2(�). This uniquely determines the function K(x, y, t,�) for every fixed t
almost everywhere on � × �. In particular, by monotonicity,

K(x, y, t,�) = lim
j→∞

K2j(x, y, t,�)

for almost every x, y ∈ �.
For every fixed t, the operators Pt

�, and (χ�Pt/q)qχ� are real self-adjoint
Hilbert–Schmidt operators. Using the semigroup property once more, we see
that the trace of the heat kernel is precisely the Hilbert–Schmidt norm of Pt/2

� ,

Tr(t,�) =
∫
�×�

(
K(x, y, t/2,�)

)2
dxdy.

By monotone convergence,∫
�×�

(
K(x, y, t/2,�)

)2
dxdy = lim

j→∞

∫
�×�

(
K2j(x, y, t/2,�)2 dxdy .

Since ∫
�×�

(
Kq(x, y, t/2,�)

)2
dxdy =

∫
�

K2q(x, x, t,�) dx

by the definition of Kq, it follows that

Tr(t,�) = lim
j→∞

K2j(x, x, t,�) dx.

This completes the proof of Theorem 8.9.

Burchard and Schmuckenschläger (2001) and independently Morpurgo
(2002) proved that Luttinger’s trace inequality (8.30) also holds for sufficiently
regular domains on spheres Sn and hyperbolic spaces Hn. The main ingredient
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of these proofs is a partial extension of the Brascamp–Lieb–Luttinger inequal-
ity to integrals of the form∫

Xq

q∏
i=1

fi(xi)
∏

1≤i<j≤q

kij(d(xi, xj)) dx1 . . . dxq,

where X denotes R
n, Sn or Hn, the kij are nonnegative decreasing functions

on R
+, and d(x, y), dxi are the canonical distance and canonical measure

on X. The key observation is that such integrals increase under polarization.
In particular, Theorem 8.9 is valid also when # is polarization.

Morpurgo’s integral inequality in fact applies to considerably more general
integrands, and leads to trace inequalities for a broad class of operators. Both
papers work with a definition of trace in terms of Wiener measure which permit
extension of the results to arbitrary domains and even to the case when �

is an arbitrary Borel set. Burchard and Schmuckenschläger use an argument
of Ledoux (1994) to give a formula for the perimeter of � in terms of exit
distributions

u�(x, t) =
∫
�

K(x, y, t,�) dy = Px(τ� > t).

As in §5.7, τ� is the first time a Brownian motion in R
n leaves �, and Px

denotes probability starting from x. The second equation is the special case
f = χ� of (8.35) below. They prove a comparison theorem for u�, which
leads to a version of the isoperimetric inequality in X.

The solution (8.32) of the heat equation in � ⊂ R
n via Trotter’s formula has

a probabilistic interpretation. We briefly discuss this interpretation in the more
general context of Schrödinger equations. Let V be a continuous nonnegative
function on R

n. The Schrödinger equation on R
n with potential V is

ut = 1

2
�u − Vu, (x, t) ∈ R

n × (0, ∞), (8.33)

where V acts on u by pointwise multiplication.
Suppose an initial function f is given. Let {Bt} denote standard Brownian

motion in R
n, as in §5.7. Then, under appropriate assumptions (see Karatzas

and Shreve, 1991, p. 270), we have:

Theorem 8.10 (Feynman–Kac formula) The function

u(x, t) = Ex

(
f (Bt) exp(−

∫ t

0
V(Bs) ds)

)
(8.34)

satisfies the p.d.e. (8.33) and the initial condition u(x, 0) = f (x), x ∈ R
n.
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In particular, taking V ≡ 0, we see that the function (8.25) has probabilistic
representation

u(x, t) = Ex( f (Bt)).

The choice V = 0 on �, V = ∞ on R
n \ �, results in e−V = χ�, which

suggests that (8.27) might have representation

u(x, t) = Ex( f (Bt), τ > t), (x, t) ∈ � × (0, ∞), (8.35)

where τ = τ� is the first exit time from �. Under appropriate assumptions on
� and f , (8.35) indeed does hold.

For general V in (8.34), take a positive integer q, fix 0 < t < ∞, and
approximate the integral by the Riemann sum t

q

∑q
j=1 V(Btj/q). Set Xj = Btj/q.

Then by (8.34),

u(x, t) ≈ Ex

(
f (Xq)

q∏
j=1

e− t
q V(Xj)

)
. (8.36)

For Brownian motion started at x ∈ R
n, the joint probability density of

Xj = Btj/q, j = 1, . . . , q is the Gaussian( q

2π t

)nq/2
exp

(
− q

2t

q∑
j=1

|xj−1 − xj|2
)

,

where x0 = x. Taking gj(xj) = e− t
q V(xj) for 1 ≤ j < q and gq(xq) =

f (xq)e
− t

q V(xq), we obtain

Ex

(
f (Xq)

q∏
j=1

e− t
q V(Xj)

)

=
( q

2π t

)nq/2
∫
Rnq

f (xq)e
−t/q

∑q
j=1 V(xj)e− q

2t

∑q
j=1 |xj−1−xj|2 dx1 . . . dxq.

If we are lucky, then it will follow from (8.36) that the solution of the
Schrödinger equation is

u(x, t) = lim
q→∞

( q

2π t

)nq/2

×
∫
Rnq

f (xq)e
−t/q

∑q
j=1 V(xj)e− q

2t

∑q
j=1 |xj−1−xj|2 dx1, . . . dxq.

(8.37)

But this is precisely the Trotter product (Pt/qQt/q)qf , where Pt is the heat
semigroup and Qt is the contraction semigroup which acts by pointwise
multiplication with e−tV(x).
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Returning to the heat equation on �, take a sequence of continuous nonnega-
tive potentials Vk in R

n which are zero on � and converge monotonically to ∞
in R

n\�. As k → ∞, we expect that the functions u(x, t) constructed in (8.37),
should converge to (8.35), which represents the solution of the heat equation
on � from (8.32). Proving this requires to interchange the limit q → ∞ with

lim
k→∞

e−t/q
∑q

j=1 V(xj) =
q∏

j=1

χ�(xj) .

Thus, the Feynman–Kac formula furnishes another plausibility argument for
the Trotter formula solution to the heat equation with Dirichlet boundary
condition.

8.7 The Sharp Hardy–Littlewood–Sobolev Inequality

Let p > 1, q > 1 and 0 < λ < n be related by

1

p
+ 1

q
+ λ

n
= 2 .

The Hardy–Littlewood–Sobolev inequality states the existence of a constant
C depending on p, q, and λ such that∫

R2n
f (x)g(y)|x − y|−λ dx dy ≤ C‖f ‖p‖g‖q (8.38)

for all f ∈ Lp(Rn,Ln) and g ∈ Lq(Rn,Ln). In this section, we prove a theorem
of Lieb that determines the sharp constants in (8.38) for certain special values
of the parameters.

For the rest of the section, we make the convention that all functions are non-
negative and Ln or σn measurable, and write ‖·‖p for the norm in Lp(Rn,Ln)

or Lp(Sn, σn). Also, # shall denote symmetric decreasing rearrangement on R
n.

Write

Kλ(x) = |x|−λ, x ∈ R
n.

The left side of (8.38) equals f̌ ∗g∗Kλ(0), where f̌ (x) = f (−x). Note that f and
f̌ have the same distribution, so that ‖f̌ ‖p = ‖f ‖p for every p > 0. The problem
of finding the best C in (8.38) is the same as that of maximizing f ∗ g ∗ Kλ(0)
over all nonnegative f and g with ‖f ‖p = ‖g‖q = 1. By duality, still another
way to state (8.38) is that

‖f ∗ Kλ‖q′ ≤ C‖f ‖p



278 Convolution and Beyond

for all f ∈ Lp, where 1
q + 1

q′ = 1, or that the linear map f → Kλ ∗ f , still

denoted by Kλ, maps Lp to Lq′
with operator norm ‖Kλ‖p,q′ ≤ C. The function

f ∗ Kλ is often called, for example in Stein (1970), the Riesz potential of f of
order n − λ.

We first explore the relation of (8.38) to another classical inequality for
convolutions. If p, q, r satisfy p, q, r ≥ 1 and 1

p + 1
q + 1

r = 2 then according to
Young’s inequality (Lieb and Loss, 1997, p. 90)∫

R2n
f (x)g(y)h(x − y) dx dy ≤ C‖f ‖p‖g‖q‖h‖r, (8.39)

where C is a constant depending on p, q, r, and n. Equivalently, the convolution,
as a function from Lp × Lr to Lq′

satisfies the bound

‖f ∗ h‖q′ ≤ C‖f ‖p‖h‖r .

Since Kλ just fails to belong to Ln/λ, the Hardy–Littlewood–Sobolev inequality
does not follow from (8.39).

Conversely, let p, q, r > 1 and suppose that h does not necessarily lie in Lr

but satisfies the weaker assumption that

sup
t>0

{
t−1/rLn(h > t)

}
< ∞.

One says in that case that h belongs to the space weak Lr. Note for 0 < λ < 1,
the kernel Kλ belongs to weak Ln/λ by definition. Since

h# ≤ sup
t>0

{
t−1/rLn(h > t)} Kn/r

}
,

the Riesz–Sobolev inequality implies that

‖f ∗ h‖q′ ≤ sup
t>0

{
t−1/rLn(h > t)

}
‖f # ∗ Kn/r‖q′ .

The weak Lr-spaces may be endowed with norms ‖·‖r,w that are bounded
above and below by constant multiples of supt t−1/rLn(h > t). It follows from
(8.38) that

‖f ∗ h‖q′ ≤ C sup
t>0

{
t−1/rLn(h > t)

}
‖f #‖p ≤ C̃ ‖h‖r,w ‖f ‖p .

Thus (8.39) holds with ‖h‖r,w in place of ‖h‖r. See Lieb and Loss (1997, p. 98).
For most nonnegative functions K, it is not known how to maximize

expressions of the form f ∗ g ∗ K(0) when f and g vary over various Lp and Lq

spaces, or even if extremals exist. But for (8.38), when K = Kλ, Lieb (1983)
proved that nontrivial extremal functions do exist for all allowable values of
p, q and λ. That is, if we take the supremum of the left side of (8.38) over f
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and g with ‖f ‖p = 1 and ‖g‖q = 1, then admissible functions f and g exist
for which the supremum is achieved. For two special parameter configurations
Lieb found explicit extremal functions and the best constants C(λ, p, n). One
such situation is when

p = q ∈ (1, 2), λ = 2n/p′

where 1
p + 1

p′ = 1. The second situation is when

p ∈ (1, 2), q = 2, λ = n

(
1

2
+ 1

p′

)
. (8.40)

In both cases, λ lies strictly between n/2 and n. We shall see at the end of this
section that the second situation can be treated as a by-product of the first.

To attack the extremal problem when p = q, λ = 2n/p′, let H( f , g) be
the left side of (8.38). The Fourier transform of |x|−λ is B|x|λ−n, where B =
B(λ, n) is a positive constant (Stein, 1970, §V.1). Therefore H defines a positive
definite quadratic form on Lp. By Parseval’s formula and Schwarz’s inequality,
for nonnegative f and g we have

0 ≤ H( f , g) = B
∫
Rn

f̂ (x)ĝ(x)|x|λ−n dx ≤ H( f , f )1/2H(g, g)1/2

≤ max{H( f , f ),H(g, g)}.
Write

H( f ) = H( f , f ) =
∫
R2n

f (x)f (y)|x − y|−λ dx dy.

Then sup{H( f , g) : ‖f ‖p = ‖g‖p = 1} = sup{H( f ) : ‖f ‖p = 1}, and the
maximizers for H( f , g) over ‖f ‖p = ‖g‖p = 1 are given by ( f , f ) where f
maximizes H( f ) over ‖f ‖p = 1.

For 1 < p < 2, define h on R
n by

h(x) = Cp,n(1 + |x|2)−n/p, (8.41)

where Cp,n is chosen so that ‖h‖p = 1. It will emerge below that Cp,n =
2n/pβ

−1/p
n , where βn is the surface measure of the unit sphere in R

n+1.
We can now state a version of Lieb’s Theorem. Another version will be

stated near the end of this section.

Theorem 8.11 (Lieb’s sharp HLS inequality) For 1 < p < 2, λ = 2n/p′, we
have

sup{H( f ) : f ∈ Lp(Rn), ‖f ‖p = 1} = H(h). (8.42)
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Moreover, if ‖f ‖p = 1 then H( f ) = H(h) if and only if

f (x) = δ−n/p h

(
x − a

δ

)
for some a ∈ R

n and δ > 0.

Thus, the maximum of (8.38) over ‖f ‖p = ‖g‖p = 1 is achieved when
f = g = h, and the only extremals have the form h◦S where S is a composition
of translations and dilations. The best constant C for (8.38) when p = q and
λ = 2n

p′ is (Lieb, 1983, p. 359; Lieb and Loss, 1997, p. 98)

C(λ, n) ≡ H(h) = πλ/2 �( n−λ
2 )

�(n − λ
2 )

{
�( n

2 )

�(n)

}−1+ λ
n

.

Another way to state the theorem is to say that the operator norm of the
convolution operator with kernel Kλ satisfies ‖Kλ‖p,p′ = C(λ, n).

By the Riesz–Sobolev inequality, H( f ) ≤ H(f #). Thus, if a maximizer
of H( f ) over ‖f ‖p = 1 exists then a symmetric decreasing maximizer also
exists. Lieb’s wonderful discovery was that there are additional operations that
leave the HLS integral (8.38) unchanged. Under these operations, the set of
functions obtained from h by composition with translations and dilations is
stable. The function h turns out to be the unique fixed point of one of the
operations followed by s.d.r. This insight suggests that Theorem 8.11 might be
true, and gives clues about how to prove it.

The new operations arise from the fact that the HLS integral turns out to be
conformally invariant. Let T : Rn → S

n be the stereographic projection. Thus,
if x = (x1, . . . , xn) ∈ R

n, T is defined by T(x) = s, where s = (s1, . . . , sn+1)

is given by

si = 2xi

1 + |x|2 , 1 ≤ i ≤ n, sn+1 = 1 − |x|2
1 + |x|2 .

This is augmented by T(∞) = en+1. The inverse map T−1(s) = x is
given by

xi = si

1 + sn+1
, 1 ≤ i ≤ n.

In §7.2 we saw how to transform integrals on S
n to integrals on a subset of

R
n by passing to spherical coordinates. The map T furnishes another way to

transform integrals from S
n to R

n. With gij the metric coefficients as in §7.2,
we have

gij = ∂T

∂xi
· ∂T

∂xj
=

(
2

1 + |x|2
)2

δij,
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and hence, writing dx for dLn,

dσn(s) = JT(x) dx, dx = JT−1(s) dσn(s),

where

JT(x) ≡
(

2

1 + |x|2
)n

, JT−1(s) = (1 + sn+1)
−n.

In particular, ∫
Rn

JT(x) dx =
∫
Sn

1 dσn = βn .

Since the matrix gij(x) is a multiple of the identity at every point x ∈ R
n, the

map T preserves angles, hence is called a conformal map.
Define a linear operator U = Up which transforms functions f on R

n to
functions Uf on S

n by

Uf (s) = J1/p
T−1(s)f (T

−1s) = (1 + sn+1)
−p/nf (T−1s).

Then U defines an isometry from Lp(Rn,Ln) to Lp(Sn, σn). Next observe that,
with h as in (8.41),

h(x) = β−1/p
n J1/p

T (x) ,

and JT−1(s)JT(x) = 1 when s = Tx. It follows that for g on R
n, the

corresponding function Ug on the sphere is constant if and only if g is a
constant multiple of h.

Here is the key ingredient in the proof of Theorem 8.11.

Proposition 8.12 (Conformal invariance of the HLS integral) For 1 < p < 2,
λ = 2n/p′, f , g ∈ Lp(Rn), and F = Uf , G = Ug, we have∫

Rn×Rn
f (x)g(y)|x − y|−λ dxdy =

∫
Sn×Sn

F(s)G(t)|s − t|−λ dσn(s) dσn(t).

(8.43)

On the right, |s − t| is the chordal distance from s to t, that is, the Euclidean
distance in R

n+1. The identity can be verified by changing variables.
There is another sense in which the HLS integral is conformally invariant.

Let γ ∈ G(Rn), the group of all Möbius transformations of Rn onto Rn

introduced in §7.6, also known as the conformal group. Define an action γ ∗

of γ on functions f by

γ ∗f (x) = |Jγ−1(x)|1/pf (γ−1x), (8.44)
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where J is the Jacobian. Then ‖γ ∗f ‖p = ‖f ‖p, and we have (Lieb and Loss,
1997, p. 106) the following companion to (8.43):∫

Rn×Rn
f (x)g(y)|x − y|−λ dxdy =

∫
Rn×Rn

(γ ∗f (x)(γ ∗g(y))|x − y|−λ dxdy.

The Jacobian of any Möbius transformation γ ∈ G(Rn) has the form

Jγ (x) = (2a)n(a2 + |x − v|2)−n,

where a > 0 and v ∈ R
n are constants. The Jacobians of conformal

transformations on S
n have the form

Jγ (s) = Cζ (1 − ζ · s)−n, (8.45)

where ζ ∈ B
n+1 and Cζ = 2n(1 − |ζ |2)n/2.

Next, assume that n ≥ 2. Let O ∈ O(n + 1) be the 90◦ rotation of Sn which
carries en+1 to en, en to −en+1, and fixes all the ei for 1 ≤ i ≤ n − 1. Define
the operator V which carries functions on S

n to functions on S
n by

VF(s) = F(O−1s).

Let W denote any of the maps U, V , U−1, or V−1. Then the linear map W
enjoys the following properties, which are easily checked:

Fact 8.13 (Isometric property) ‖Wf ‖p = ‖f ‖p.

Fact 8.14 (Order preserving property) If f ≤ g a.e., then Wf ≤ Wg a.e.

We can now prove Theorem 8.11 when n ≥ 2. For n = 1, the proof is an
exercise in Lieb and Loss (1997, chapter 4, Exercise 7).

Proof of Theorem 8.11 when n ≥ 2 Since H( f ) ≤ H(f #) by the Riesz–
Sobolev inequality, we may restrict the competition in (8.42) to symmetric
decreasing f . Also, it will suffice to prove that H( f ) ≤ H(h) for bounded f
with compact support.

Fix f ∈ Lp(Rn) with f bounded, compactly supported, symmetric decreasing
and with ‖f ‖p = 1. Let C be a constant such that f ≤ Ch a.e. on R

n, and define

S( f ) = {g ∈ Lp(Rn) : ‖g‖p = 1, 0 ≤ g ≤ Ch a.e. on R
n,

g = g#, H(g) ≥ H( f )}.
Set

d( f , g) = ‖f − g‖p and d0 = inf{d(g, h) : g ∈ S( f )}.
We want to show that d0 = 0.
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Take a sequence {gk} in S( f ) such that limk→∞ d(gk, h) = d(g, h). Since
the gk are symmetric decreasing, Lemma 1.44 provides us with a subsequence,
also denoted {gk}, and a symmetric decreasing function g0 on R

n such that
limk→∞ gk = g0 a.e. Since gk ≤ Ch and h ∈ Lp(Rn), the dominated conver-
gence theorem shows that gk → g0 in Lp. Moreover, gk(x)gk(y)|x − y|−λ ≤
C2h(x)h(y)|x−y|−λ, and, by the weak Young inequality (Lieb and Loss, 1997,
Section 4.3, Eq. (7)), the function on the right is in L1(R2n). The dominated
convergence theorem shows that limk→∞ H(gk) = H(g0). It follows that
g0 ∈ S( f ), and that

d(g0, h) = d0.

Define

g1 = U−1VUg0 and g2 = g#
1.

The isometric and order preserving properties of U, V and U−1 and the
conformal invariance of H imply that d(g1, h) = d(g0, h) = d0 and that
g2 ∈ S( f ).

Suppose that g1 is not symmetric decreasing. Let

A = {(x, y) ∈ R
2n : g1(x) < g1(y), h(x) > h(y)}.

Since h is strictly decreasing on rays from the origin, the set A equals the set
A1 in Lemma 1.38, with g1 in place of f . Lemma 1.38 gives L2n(A) > 0. For
1 < p < ∞, the function � on R

+×R
+ defined by �(x, y) = xp+yp−|x−y|p

belongs to the class SAL0 defined in Chapter 2. See Fact 2.6 in §2.1. From
Theorem 2.15(d) we deduce that d(g2, h) < d(g1, h). But d(g1, h) = d0 and
g2 ∈ S( f ). This contradicts the definition of d0.

We conclude that g1 = U−1VUg0 must be symmetric decreasing on R
n.

Since T maps balls centered at the origin in R
n to spherical caps centered at

en+1, it follows that Ug1 must be symmetric with respect to the en+1-axis.
Thus, there exists a function φ such that Ug1(s) = φ(sn+1). On the other hand,
Ug1 = VUg0 and Ug0 is en+1-symmetric, so VUg0 is en-symmetric, and thus
there exists a function ψ such that VUg0(s) = ψ(sn). For VUg0 to have both
symmetries, it must be constant. Then Ug0 is constant, which implies g0 = h.
Since g0 ∈ S( f ), we have h ∈ S( f ), so that H(h) ≥ H( f ). This proves that
d0 = 0 and h is a maximizer of H.

The “if” part of the uniqueness statement is clear. To prove the “only if” part,
suppose that ‖f ‖p = 1 and H( f ) = H(h). Then H( f ) = H(f #), and it follows
from Theorem 2.15(b), applied with K(t) = t−λ, that f (x) = f #(x+a) for some
a ∈ R

n. So to complete the description of extremal functions, we just have to



284 Convolution and Beyond

verify that if f is symmetric decreasing with ‖f ‖p = 1 and H( f ) = H(h), then
f (x) = δ−n/ph(δ−1x) for some δ > 0 .

Let f be symmetric decreasing, with ‖f ‖p = 1 and H( f ) = H(h). Consider
the distance

d0 = inf
γ∈G(Rn)

d(γ ∗f , h) = inf
γ∈G(Rn)

d( f , γ ∗h).

For every γ ∈ G(Rn), the function γ ∗h can be written as τ ∗(δ∗h), where τ

is a translation and δ a dilation (see Lieb and Loss, 1997, Lemma 4.8). Since
both f and δ∗h are symmetric decreasing, their distance cannot be reduced by
translation. Therefore, it suffices to minimize over dilations. Since h is strictly
positive, d( f , h) < 2. On the other hand, d( f , δ∗h) approaches 2 when the
dilation factor δ approaches zero or ∞. Therefore the minimum is assumed,
and f = δ∗h for some dilation δ. Replacing f with (δ−1)∗f , we may assume
that the infimum is assumed when δ is the identity, that is, d0 = d( f , h).

Let g = U−1VUf and f1 = g∗. Since f1 is a maximizer, we have H(g∗) =
H( f1) = H(g), and we deduce from Theorem 2.15(b) that g is a translate of f1.
If g is itself symmetric decreasing, then it follows as in the first part of the proof
that f = g = h, and we are done. Otherwise, we have d( f1, h) < d(g, h) by
Theorem 2.15(d). Since

d(g, h) = d(U−1VUf , U−1VUh) = d( f , h) = d0,

this contradicts the definition of d0. Thus, g must be symmetric decreasing,
and the proof is complete.

For ease of reference, we give here another statement of Lieb’s HLS
inequality. It is assumed that f and g are nonnegative functions on R

n, that
F = Uf , G = Ug where U is the operator introduced before (8.43), that
1 < p < 2, and that λ = 2n/p′. The Lp norms for f and g are taken with
respect to Ln, and for F and G with respect to σn.

Theorem 8.15∫
Rn×Rn

f (x)g(y)|x − y|−λ dx dy ≤ C(λ, n)‖f ‖p‖g‖p, (8.46)

∫
Sn×Sn

F(s)G(t)|s − t|−λ dσn(s) dσn(t) ≤ C(λ, n)‖F‖p‖G‖p, (8.47)

where

C(λ, n) = πλ/2 �( n−λ
2 )

�(n − λ
2 )

{
�( n

2 )

�(n)

}−1+ λ
n

. (8.48)
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Equality is achieved in (8.46) if and only if f (x) and g(x) are constant
multiples of a function (a2+|x−v|2)−n/p, where a > 0 and v ∈ R

n. Equality in
(8.47) is achieved if and only if F and G are constant multiples of (1−ζ ·s)−n/p

for some ζ ∈ B
n+1.

To conclude this section, let us see what happens when the parameters in the
HLS inequality are given by (8.40):

1 < p < 2, q = 2, λ = n

(
1

2
+ 1

p′

)
= n

(
3

2
− 1

p

)
. (8.49)

Then n
2 < λ < n. Write again

H( f , g) =
∫
Rn×Rn

f (x)g(y)|x − y|−λ dxdy (8.50)

where now f ∈ Lp, g ∈ L2. Then for fixed f ,

sup{H( f , g) : ‖g‖2 = 1} = ‖Kλ ∗ f ‖2,

where Kλ(x) = |x|−λ, so

sup{H( f , g) : ‖f ‖p = 1, ‖g‖2 = 1} = sup{‖f ∗ Kλ‖2 : ‖f ‖p = 1}.
Since Kλ is even, we have that

‖f ∗ Kλ‖2
2 =

∫
Rn

( f ∗ Kλ ∗ Kλ) f dx. (8.51)

But Kλ ∗ Kλ = CK2λ−n for a positive constant C (see Stein, 1970, pp. 73–117;
Lieb, 1983, p. 360). We conclude that maximizers f for H( f , g) over ‖f ‖p =
‖g‖2 = 1 are maximizers for the right-hand side of (8.51). By Theorem 8.11,
the function h in (8.41) is a maximizer. To achieve

∫
Rn(h∗Kλ) g dx = ‖h∗Kλ‖2

we should take g = Ah ∗ Kλ for a constant A. We have proved:

Corollary 8.16 With the situation of (8.49), and H given by (8.50),

sup{H( f , g) : ‖f ‖p = 1, |g‖2 = 1} = H(h, Ah ∗ |x|−λ), (8.52)

where h(x) = Cp,n(1 + |x|2)−n/p. The constant Cp,n is given in (8.41) and A is
chosen so that A‖h ∗ Kλ‖2 = 1.

A formula for the best constant, that is, the right side of (8.52), appears
as (3.4) on p. 359 of Lieb (1983). This best constant can also be described as
the operator norm ‖Kλ‖p,2. On p. 368, Lieb notes that when λ = n − 1 and
n ≥ 3 this result and duality produce the best constant in the Sobolev inequality
‖f ‖2∗ ≤ C‖∇f ‖2 (see Theorem 4.23), where 2∗ = 2n

n−2 .
Apart from the parameter configurations treated in Theorem 8.11 and

Corollary 8.16, the best constants for the HLS inequality (8.38) are not known.
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8.8 Logarithmic Sobolev Inequalities

Beckner (1991, 1992, 1993) discovered that interesting consequences ensue
when we let λ approach zero or n in Lieb’s inequality (8.47). We first
investigate what happens when p → 2, that is, λ → n. In this discussion,
limits and derivatives at p = 2 are understood to be one-sided and taken from
the left.

Spherical harmonics play a key role in Beckner’s results. We will strive to
convey the basic facts about spherical harmonics as they become relevant, and
will sometimes make statements unsupported by proof or documentation. For
more information see, for example, Stein and Weiss (1971) and Andrews et al.
(1999, chapter 9).

Spherical harmonics of degree k on S
n are restrictions to S

n of harmonic
functions u on R

n+1, which are homogeneous polynomials of degree k. Thus,
u has the form

u(rx) = rkY(x), 0 < r < ∞, x ∈ S
n,

and satisfies �u = 0 in R
n+1. The function Y is then a spherical harmonic of

degree k.
Let Hk,n denote the vector space of all spherical harmonics on S

n of degree k.
In §7.4, we saw that in polar coordinates on R

n+1, the Laplacian is given by

� = ∂rr + nr−1∂r + r−2�s,

where �s is the Laplace operator on S
n. If Y ∈ Hk,n it follows from �u = 0

that

�sY = −k(k + n − 1)Y , k ≥ 0,

so that λk ≡ k(k + n − 1) is an eigenvalue for �s and Y is an eigenfunction
for λk. It can be shown that {λk : k ≥ 0} comprises all eigenvalues of �s, and
that each eigenfunction of λk belongs to Hk,n. Note that λ0 = 0 and that the
eigenspace H0,n is the 1-dimensional space of constant functions. For n = 1
and k ≥ 1 all Hk,2 have dimension 2. The functions sin kθ and cos kθ furnish
a basis for Hk,2, as do eikθ , e−ikθ when we permit the functions to be complex
valued. In general,

dimHk,n =
(

n + k

k

)
−

(
n + k − 2

k − 2

)
, k ≥ 2,

while dim H1,n = n + 1 and dim H0,n = 1.
Up to now, we have used the standard surface measure σn on S

n, for which
σn(S

n) = βn. For the remaining part of the chapter, it will be more convenient
to use the normalized surface measure
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νn = 1

βn
σn.

Most of the time we will drop the subscript n. The measure ν is also called the
uniform probability measure on S

n. Often, we write L2 = L2(Sn, ν). Unless
otherwise specified, functions in L2 are taken to be real-valued.

The operator �s is self-adjoint on L2. Since eigenspaces of �s correspond-
ing to different eigenvalues are orthogonal, we have Hk,n ⊥ Hm,n when m �= k.
Finite linear combinations of spherical harmonics are dense in L2. Thus, there
exist orthonormal bases of L2 which contain exactly dimHk,n functions from
each Hk,n. For F ∈ L2, the spherical harmonic expansion of F is

F =
∞∑

k=0

Yk,

where Yk is the orthogonal projection of F onto the space Hk,n, and the series
converges in L2. In particular, Y0 is the constant function with value

∫
Sn F dν.

We are now ready to state Beckner’s result.

Theorem 8.17 (Beckner’s logarithmic Sobolev inequality) Let F : Sn → R
+

be bounded and have spherical harmonic expansion
∑∞

k=0 Yk. Then∫
Sn

F2 log F dν ≤ ‖F‖2
2 log ‖F‖2 +

∞∑
k=1

ak(n)
∫
Sn

Y2
k dν, (8.53)

where

ak(n) =
k−1∑
j=0

n

n + 2j
. (8.54)

For the proof, we need some more facts about spherical harmonics.

Proposition 8.18 (Funk–Hecke formula) Let K : [−1, 1] → R be a mea-
surable function such that K(x · e1) is in L1(Sn, ν). There exist numbers bk

depending on K and n such that∫
Sn

K(x · y)Yk(y) dν(y) = bkYk(x), Yk ∈ Hk,n, k ≥ 0.

See Andrews et al. (1999, Theorem 9.6.3). Once existence of the multipliers
bk is known, they can be computed by evaluating the formula on a convenient
choice of Yk.

For k ≥ 0, α > 0 and t ∈ [−1, 1], define functions Cα
k (t) by the generating

relation

(1 − 2rt + r2)−α =
∞∑

k=0

Cα
k (t)r

k, 0 ≤ r < 1.
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When α = 0, this relation may be replaced by

− log(1 − 2rt + r2) = 2
∞∑

k=1

k−1Tk(t)r
k, 0 ≤ r < 1,

where the Tk are the Chebyshev polynomials of the first kind. See Andrews
et al. (1999, pp. 302–303). We will write C0

k (t) = Tk(t) for k ≥ 1 and C0
0(t) =

T0(t) = 1. The Cα
k turn out to be polynomials of degree k. We will call Cα

k the
Gegenbauer polynomial of degree k and type α.

For fixed n, let Ck = C(n−1)/2
k denote the Gegenbauer polynomials of

type (n − 1)/2 on S
n. We note that when n = 2, Ck(t) is the kth Legendre

polynomial. By Andrews et al. (1999, Theorem 9.6.3), the function

Zk(x) = Ck(x · e1)

belongs to Hk,n. It is called the zonal harmonic of degree k with pole e1.
Evaluating the Funk–Hecke formula on the zonal harmonics with x = 1 yields
the integral representation

bk = Ck(1)
−1 βn−1

βn

∫ π

0
K(cos θ)Ck(cos θ) (sin θ)n−1 dθ , (8.55)

see Andrews et al. (1999, Eq. (9.7.4)). Keep in mind that our calculations are
for the uniform measure ν on S

n, rather than the standard surface measure σn−1

on S
n−1.

Lemma 8.19 Let F ∈ L2(Sn) with spherical harmonic expansion F =∑∞
k=0 Yk, and let 0 < λ < n. Then∫

Sn×Sn
F(x)F(y)|x − y|−λ dν(x)dν(y) =

∞∑
k=0

bk

∫
Sn

Y2
k (x) dν(x), (8.56)

where

bk = 2−λ
�(n)�( n−λ

2 )�(λ2 + k)

�( n
2 )�(

λ
2 )�(n + k − λ

2 )
, k ≥ 0. (8.57)

Proof For 0 < λ < n, let K(t) = (2 − 2t)−λ/2. K(x · y) = |x − y|−λ for
x, y ∈ S

n. By the Funk–Hecke formula, the identity∫
Sn

|x − y|−λF(y) dν(y) =
∞∑

k=0

bk(λ, n)Yk

holds with

bk = Ck(1)
−1 βn−1

βn

∫ π

0
(2 − 2 cos θ)−λ/2Ck(cos θ)(sin θ)n−1 dθ ,
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see (8.55), and (8.56) follows by taking the inner product with F. To evaluate
the bk, we first insert the constants Ck(1) = (n + k − 2)! /(n − 2)!, and then
change variables t = − cos θ in the integral. Since Ck(t) is even in t when k is
even, and odd when k is odd, we can apply formula (3) on p. 280 of Erdélyi
et al. (1954). Collecting terms, we obtain the claim.

Proof of Theorem 8.17 We start from Lieb’s inequality (8.47) on S
n, with

parameters 1 < p < 2 and λ = 2n/p′. Taking into account the change of
measure from σn to ν, the inequality becomes

C(λ, n)−1
∫
Sn×Sn

F(x)G(y)|x − y|−λ dν(x) dν(y) ≤ ‖F‖p‖G‖p, (8.58)

where the Lp norms are with respect to ν, and the sharp constant has the value

C(λ, n) = 2−λ
�(n)�( n−λ

2 )

�( n
2 )�(n − λ

2 )
.

In computing the constant, we have used the duplication formula

�(z)�(z + 1

2
) = 21−2zπ

1
2 �(2z)

with z = n/2 to write the last term in (8.48) as

�( n
2 )

�(n)
= βn

2nπ
n
2

.

Take F = G and use Lemma 8.19 to expand the left side of (8.58) in
spherical harmonics,

∞∑
k=0

ck(λ)

∫
Sn

Y2
k (x) dν(x) ≤ ‖F‖2

p . (8.59)

Suppressing the dependence on n in the notation, we compute for the constants
ck(λ) = bk(λ)/C(λ, n), where bk(λ) is given by (8.57), that is

ck(λ) = �(λ2 + k)�(n − λ
2 )

�(n + k − λ
2 )�(

λ
2 )

=
k−1∏
j=0

1
2λ + j

n − 1
2λ + j

(8.60)

for k ≥ 1, and c0(λ) = 1.
Let A(p) be the function on the left side of (8.59), and let B(p) be the function

on the right. Since λ → n as p → 2 and ck(n) = 1 for each k ≥ 0, we have
that A(2) = B(2) = 0. Therefore we can differentiate the inequality at p = 2
to obtain

B′(2) ≤ A′(2). (8.61)
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We easily compute B′(2) = ∫
Sn F2 log F dν − ‖F‖2

2 log ‖F‖2. By logarithmic
differentiation,

dck

dλ
(n)

dλ

dp
(2) = n

k−1∑
j=0

1

n + 2j
= ak,

where ak = ak(n) is given by (8.54). Thus

A′(2) =
∞∑

k=0

ak(n)
∫

sn
Y2

k dν,

and by (8.61) the theorem is proved.

Clearly, constant functions are extremals for Theorem 8.17. Furthermore,
the inequality inherits the conformal invariance of the Hardy–Littlewood–
Sobolev inequality from Proposition 8.12, that is, the transformations on the
sphere corresponding to (8.44) with p = 2 leave both sides of (8.60) invariant.
Therefore, the extremals include all functions of the form F(x) = cJγ (x)1/2,
where Jγ is the Jacobian of a conformal transformation γ on S

n, and c is a
constant. As shown by Carlen and Loss (1992), these are the only extremals.

Let now f be a bounded nonnegative function on R. For N ≥ 1, define FN on
the sphere {x ∈ R

N+1 : |x| = √
N} by FN(x1, . . . , xN) = f (x1). Apply the loga-

rithmic Sobolev inequality (8.53) to the function FN(
√

Nx). By the Mehler–
Poincaré formula in §7.8, as N → ∞, the left-hand integral approaches∫
R

f 2 log fdγ and the first term on the right approaches ‖f ‖2
2 log ‖f ‖2, where γ

is the 1-dimensional Gauss measure and the L2 norms are taken with respect to
γ . As explained by Beckner (1992, (6)), the terms

∫
Sn Y2

k on the right approach
the squares of the coefficients in the Hermite expansion of f , and the ak,N

approach k. This implies that the last term in (8.53) approaches
∫
R

| f ′|2dγ .
Thus, we have ∫

R

f 2 log f dγ ≤ ‖f ‖2
2 log‖f ‖2 +

∫
R

| f ′|2 dγ . (8.62)

This is the logarithmic Sobolev inequality of Gross (1975). The argument
above shows that Gross’s logarithmic Sobolev inequality is the infinite-
dimensional limit of Beckner’s logarithmic Sobolev inequality.

Using (8.62) along with the product structure of the n-dimensional Gauss
measure γn, Gross (1975, p. 1074) also established the n-dimensional logarith-
mic Sobolev inequality:∫

Rn
f 2 log f dγn ≤ ‖f ‖2

2 log‖f ‖2 +
∫
Rn

|∇f |2 dγn, (8.63)

for nonnegative bounded functions on R
n, where the L2 norms are taken with

respect to γn .
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8.9 Hypercontractivity

Let H be the Ornstein–Uhlenbeck operator 1
2�−x·∇ in R

n, and let {etH} denote
the semigroup generated by H. Then for 1 ≤ p ≤ ∞ and each t > 0, e−tH is
a contraction on Lp(Rn, γn), that is, has operator norm ≤ 1. Since etH takes
constants onto themselves, the norm is exactly 1.

If 1 ≤ p < q ≤ ∞ then for all small enough t, etH has norm > 1 from Lp

to Lq. Motivated by considerations from quantum field theory, Nelson (1973)
discovered a remarkable fact: If

e−2t ≤ p − 1

q − 1
,

then etH is a contraction from Lp(Rn, γn) into Lq(Rn, γn). Moreover, this result
is sharp, since Nelson showed that if e−2t >

p−1
q−1 , then etH is no longer a

contraction.
The phenomenon is now called hypercontractivity, the term having been

coined in a paper by Simon and Høegh-Krohn (1972). Nelson’s proof was
complicated and probabilistic. Gross showed that Nelson’s inequality follows
readily from Gross’s logarithmic Sobolev inequality. In fact, Gross’s inequality
and Nelson’s inequality are equivalent. See, for example Gross (1975) or
Ledoux (1994, p. 498).

Let us return now to the sphere S
n with its uniform probability measure ν.

Again following Beckner, we shall investigate an analogue of Nelson’s
theorem on S

n. Take F ∈ L1(Sn, ν), with spherical harmonic decomposition∑∞
k=0 Yk. Let Bn+1 be the open unit ball in R

n+1. Define u on the closed ball by

u(rx) =
∞∑

k=0

rkYk(x), r ∈ [0, 1], x ∈ S
n.

Since each rkYk(x) is harmonic on B
n+1, so is u. As r → 1, u(r·) → F in

appropriate senses. Thus, u solves the Dirichlet problem for F in B
n+1. There

is also a Poisson integral representation

u(rx) =
∫
Sn

F(y)
1 − r2

|rx − y|n+1
dν(y), r ∈ [0, 1), x ∈ S

n.

Let Pt denote the operator which carries F to u(e−t·). If s, t > 0 then
Ps+t = Pt ◦Ps. Thus, the family {Pt}, t ≥ 0 is a semigroup under composition,
called the Poisson semigroup on S

n. For p ≥ 1, Pt is a contraction from
Lp(Sn, ν) onto itself. That is, ‖Pt‖p,p = 1, where we use ‖T‖p,q to denote
the operator norm of a linear mapping T from Lp to Lq. The contractivity of
Pt on Lp follows from subharmonicity of |u|p, or from the Poisson integral
representation. By considering the action of Pt on constants, we see that
‖Pt‖p,q ≥ 1 for every p, q.
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Suppose now that 1 ≤ p < q < ∞. Then ‖Pt‖p,q > 1 if t is close to 0,
so that Pt is in general not a contraction from Lp(Sn, ν) to Lq(Sn, ν). There is,
however, a perfect analogue of Nelson’s inequality:

Theorem 8.20 (Hypercontractivity of the Poisson semigroup) For 1 ≤ p <

q ≤ ∞,

‖Pt‖p,q = 1 if and only if e−2t ≤ p − 1

q − 1
.

Proof (⇒) For ε > 0, consider the function F(x) = 1+εx·e1 and its harmonic
extension u(rx) = 1 + εrx · e1. By definition, PtF(x) = 1 + εe−tx · e1. Using
a Taylor expansion to second order in ε, and noting that all terms of odd order
integrate to zero, we see that

‖F‖p = 1 + ε2 p − 1

2

∫
Sn

|x · e1|2 dν(x) + O(ε)4 ,

while

‖PtF‖q = 1 + ε2e−2t q − 1

2

∫
Sn

|x · e1|2 dν(x) + O(ε)4 .

We see that Pt cannot be a contraction from Lp to Lq unless e−2t(q−1) ≤ p−1.
(⇐) The deduction of hypercontractivity on the sphere from Beckner’s

logarithmic Sobolev inequality is nearly the same as the derivation of Nelson’s
inequality from Gross’s inequality. The sphere case of the argument goes as
follows. First, the semigroup property and contractivity of Pt from Lq into itself
show that it suffices to prove ‖Pt‖p,q = 1 when e−2t(q − 1) = p − 1. Since
|PtF| ≤ Pt|F|, we need only consider nonnegative F on S

n. We may further
assume that F is bounded. Fix a nonnegative bounded F. Define functions
q(t, p) and A(t, p) = A(t, p, F) by

q(t, p) = 1 + e2t(p − 1), A(t, p) = ‖PtF‖q(t,p), t > 0, 1 ≤ p < ∞.

We need to prove that A(t, p) ≤ A(0, p), for all t and p. Take p ∈ (1, ∞)

and t0 > 0. Set p0 = q(t0, p) and F0 = Pt0 F. By the semigroup property,
we have for t ≥ t0 that PtF = Pt−t0 F0. Similarly, since q(t, p) satisfies the
differential equation ∂tq = 2(q − 1) with initial condition q(0) = p, we have
that q(t, p) = q(t − t0, p0). It follows that

d

dt
‖PtF‖q(t,p0)

∣∣∣
t=t0

= d

dt
‖Pt(Pt0 F)‖q(t,p0)

∣∣∣
t=0

,

that is, A′(t0, p0) = A′(0, q(t0, p0)). Therefore it suffices to prove that
A′(0, p) ≤ 0 for all p ≥ 1.
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To compute A′(0, p), write

B(t, p) =
∫
Sn

exp
{
q(t, p) log u(e−tx)

}
dν(x) ,

where u is the harmonic extension of F. Then log A(t, p) = 1
q(t,p) log B(t, p).

Calculation gives q(0, p) = p, q′(0, p) = 2(p − 1), and

B′(0, p) = 2(p − 1)
∫
Sn

Fp log F dν − p
∫
Sn

Fp−1ur dν,

where ur(x) is the radial derivative of u(rx) at r = 1. More calculation gives

A′(0, p) = 2(p − 1)

p

(∫
Sn

Fp log F dν − ‖F‖p
p log‖F‖p

)
−

∫
Sn

Fp−1urdν.

Thus, the inequality A′(0, p) ≤ 0 is equivalent to the inequality∫
Sn

Fp log F dν ≤ ‖F‖p
p log‖F‖p + p

2(p − 1)

∫
Sn

Fp−1urdν. (8.64)

For p = 2, the integral in the last term on the right-hand side has spherical
harmonic expansion ∫

Sn
Fur dν =

∞∑
k=1

∫
Sn

kY2
k dν.

From (8.54), we see that each ak(n) ≤ k, and conclude from inequality (8.53)
that (8.64) holds. Also, Green’s formula and the identity �(u2) = 2|∇u|2 for
harmonic functions gives∫

Sn
Fur dν = 1

2

∫
Sn

∂

∂r
(u2) dν = 1

βn

∫
Bn+1

|∇u|2 dx.

Thus, we can write (8.64) for p = 2 as∫
Sn

F2 log F dν ≤ ‖F‖2
2 log‖F‖2 + 1

βn

∫
Bn+1

|∇u|2 dx. (8.65)

For general p ∈ (1, ∞), set G = Fp/2, and let v be the harmonic extension
of G to B

n+1. By (8.65) applied to G,∫
Sn

G2 log G dν ≤ ‖G‖2
2 log‖G‖2 + 1

βn

∫
Bn+1

|∇v|2 dx,

which implies∫
Sn

Fp log F dν ≤ ‖F‖p
p log‖F‖p + 2

pβn

∫
Bn+1

|∇v|2 dx. (8.66)



294 Convolution and Beyond

Since ν is harmonic, Dirichlet’s principle yields that∫
Bn+1

|∇v|2 dx ≤
∫
Bn+1

|∇(up/2)|2 dx = p2

4

∫
Bn+1

up−2|∇u|2 dx.

The harmonic function u satisfies �up = p(p − 1)up−2|∇u|2, so we obtain for
the last term in (8.66) the bound

2

pβn

∫
Bn+1

|∇v|2 dx ≤ 1

2(p − 1)βn

∫
Bn+1

�up dx

= p

2(p − 1)

∫
Sn

Fp−1ur dν.

This shows that (8.64) holds for p. The proof of Theorem 8.20 is complete.

The proof of hypercontractivity just given did not require the full use
of Beckner’s inequality (8.53) but only of its consequence (8.65). That
inequality becomes sharp in the limit n → ∞, since then ak(n) approaches
k. Conversely, hypercontractivity implies that A(t, 2) ≤ A(0, 2) for every t, so
that A′(0, 2)≤ 0, which is equivalent to (8.65).

8.10 Sharp Inequalities for Exponential Integrals

We saw in Section 8.9 that by letting p → 2, that is, λ → n, in Lieb’s HLS
inequality (8.56) on S

n, one obtains Beckner’s logarithmic Sobolev inequality
(8.53). Beckner (1991, 1993) also studied the limit p → 1, that is, λ → 0.
Here is the result. We remind the reader that for fixed n ≥ 1, ν is the uniform
probability measure on S

n.

Theorem 8.21 (Beckner) For real-valued F ∈ L1(Sn, ν) with spherical
harmonic expansion

∑∞
k=0 Yk, we have

log
∫
Sn

eF dν ≤
∫
Sn

F dν + 1

2n

∞∑
k=1

dk(n)
∫
Sn

|Yk|2 dν, (8.67)

where

dk(n) = �(n + k)

�(n)�(k)
. (8.68)

The inequality is complementary to Jensen’s inequality∫
Sn

F dν ≤ log
∫
Sn

eF dν .
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For n = 1, it can be written as

log

{
1

2π

∫ π

−π

eF dθ

}
≤ 1

2π

∫ π

−π

F dθ + 1

4π

∫
B2

|∇u|2dx, (8.69)

where u is the harmonic extension of F to B
2, as in §8.8. Inequality (8.69)

is equivalent to the first Lebedev–Milin inequality (see Duren, 1983, p. 143),
which plays an important role in the theory of univalent functions.

For n = 2 the constants are dk(2) = k(k + 1) = λk, where λk is the
kth nonzero eigenvalue of the spherical Laplacian �s on S

2. Using Green’s
formula on S

2, (8.67) may be written as

log

{∫
S2

eF dν

}
≤

∫
S2

F dν + 1

4

∫
S2

|∇sF|2dν, (8.70)

an inequality proved by Onofri (1982), which gives the sharp form of an
inequality due to Moser and Trudinger.

Inequalities (8.69) and (8.70) play an important role in a study by Osgood,
Phillips and Sarnak (1988) of maximization problems for determinants of the
Laplacian on 2-manifolds. For n ≥ 4, inequality (8.67) may be restated in
terms of the conformal Laplacian on S

n, also known as the Paneitz operator.
Then one can obtain some higher dimensional versions of the Osgood–
Phillips–Sarnak results. See Beckner (1991, 1993).

Proof of Theorem 8.21 We start again by expanding the sharp Hardy–
Littlewood–Sobolev inequality in spherical harmonics, see (8.59). By
approximation, may assume that F = ∑∞

k=0 Yk with only finitely many
Yk nonzero. Replacing F by F + c, we may assume also that F ≥ 0.
Take 1 < p < 2 and nonnegative bounded G on S

n, which we write as
G = ∑∞

k=0 Zk. Let ck = ck(λ) be as in (8.60). Then∫
Sn

FG dν =
∞∑

k=0

∫
Sn

YkZk dν

≤
( ∞∑

k=0

∫
Sn

c−1
k Y2

k dν

)1/2 ( ∞∑
k=0

∫
Sn

ckZ2
k dν

)1/2

≤
( ∞∑

k=0

∫
Sn

c−1
k Y2

k dν

)1/2

‖G‖p,

where the first inequality uses two applications of Schwarz’s inequality and
the last inequality is by (8.59). Taking the supremum over all G ∈ Lp(Sn, ν)
and writing

q = p′ = 2n

λ
,
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we obtain a dual inequality to (8.59):

‖F‖2
q ≤

∞∑
k=0

c−1
k (λ)

∫
Sn

Y2
k dν, λ = 2n

q
, 2 < q < ∞.

Replace F by 1 + F
q . The result may be written as∫

Sn

(
1 + 1

q
F

)q

dν ≤
{(

1 + Y0

q

)2

+ q−2
∞∑

k=1

c−1
k (λ)

∫
Sn

Y2
k dν

}q/2

.

(8.71)
The left side of (8.71) approaches

∫
Sn eF dν as λ → 0. By (8.60), we have for

0 < λ < n and k ≥ 1,

ck(λ)
−1 =

k−1∏
j=0

n − 1
2λ + j

1
2λ + j

≤ 2

λ
dk

with dk given by (8.68); in fact limλ→0 λck(λ)
−1 = 2dk. Therefore, the right

side of (8.71) is bounded from above by{
1 + q−1

(
2Y0 + 1

n

∞∑
k=1

dk

∫
Sn

Y2
k

)
+ q−2Y2

0

}q/2

.

We insert this bound into (8.71), take logarithms, and send q = 2n/λ → ∞.
Using that log(1 + x) = x + O(x2) as x → 0, we obtain

log
∫

sn
eF dν ≤ Y0 + 1

2n

∞∑
k=1

dk

∫
Sn

Y2
k .

Now Y0 = ∫
Sn F dν, and the theorem is proved.

Equality clearly holds in (8.67) when F is constant. In the same way as for
Beckner’s logarithmic Sobolev inequality, there is a family of equality cases,
generated by a conformal symmetry inherited from the Hardy–Littlewood–
Sobolev inequality in the limit λ → 0, see (8.44). Here we define the action of
a conformal transformation γ on a function F : Sn → R by

γ ∗F(x) = F(γ−1x) + log |Jγ−1(x)| .

This leaves both sides of (8.67) invariant. By (8.45),

log |Jγ−1(x)| = −n log(1 − ζ · x) + log Cζ

for some ζ ∈ B
n+1 and a suitable constant Cζ . Thus the functions F(x) =

−n log(1 − ζ · x) + C are conformally equivalent to constants and achieve
equality in (8.67). Carlen and Loss (1992, Theorem 5) proved that there are no
other equality cases.
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8.11 Notes and Comments

In Theorem 8.1, equality holds whenever f (eiθ ) = f #(eimθ ), g(eiθ ) = g#(eimθ ),
and h(eiθ ) = h#(eimθ ), for some integer m. As far as I know, no conditions
sufficient for strict inequality have been identified in the S

1 case.
A proof of Theorem 8.3 appears also in Hardy et al. (1952), and a proof

of Theorem 8.4 in Lieb and Loss (1997). Burchard (1996) provides a history
of matters pertinent to the Riesz and Riesz–Sobolev theorems. Among other
things, she notes Sobolev’s proof was incomplete, because is uses a result of
Lusternik on approximations of the s.d.r. by Steiner symmetrizations that has
a gap. The first complete proof of Theorem 8.4 is apparently due to Brascamp,
Lieb and Luttinger in Brascamp et al. (1974). The 1-dimensional case of
Theorem 8.8, is due to Rogers (1957).

Concerning uniqueness for Theorems 8.3 and 8.4, if one of f , g, h is already
symmetric decreasing, then a theorem of Lieb (1976–1977) provides a strong
uniqueness assertion, as does our Corollary 2.19. For the general three-function
case of Theorems 8.3 and 8.4, the best results known are due to Burchard
(1996), where it is proved, for example that if f , g, and h are characteristic
functions of sets, then, roughly speaking, either one of the sets essentially
contains the vector sum of the other two, or else A, B, and C are essentially
affine transforms of a common ellipsoid whose centers satisfy a certain
constraint.

The history of the Brunn–Minkowski inequality and some of its extensions
is presented in the book by Schneider (1993, p. 314). For more about Brunn–
Minkowski, see Federer (1969) and Burago and Zalgaller (1988), and a more
recent survey by Gardner (2002). For related results in a somewhat different
direction, see the paper of Brascamp and Lieb (1976). It inspired several new
directions of research, some still actively pursued. See, for example Barthe
(2003) and Bennett et al. (2008).

Christ (1984, Thm. 4.2) gave an extension of the Brascamp–Lieb–Luttinger
theorem to more general integrands, and used them to prove some sharp
estimates for k-plane transforms. Pfiefer (1990) rediscovered a special case
of Christ’s inequality and used it to prove sharp “random simplex theorems”:
If k + 1 points are randomly chosen from a bounded measurable set E ⊂ R

n

with given measure, then the mean k-volume of the simplex spanned by the
k + 1 points is maximal when E is a ball. The case k = n is due to Blaschke
(1917, 1923). For discussion and some conjectures, see Baernstein and Loss
(1997); for recent developments, see Paouris and Pivovarov (2012, 2017).

When n ≥ 2, there is no known analogue of the general three-function
Riesz–Sobolev inequality for symmetric decreasing rearrangement on S

n.



298 Convolution and Beyond

The spherical version of Corollary 2.19 (Corollary 7.1) gives such a result
when one of the functions is of the form K(d(x, y)) with decreasing K.
Via polarization, extensions of this sphere theorem to integrands with many
input functions have been studied by Draghici (2005), Morpurgo (2002), and
Burchard and Schmuckenschläger (2001).

Inequalities for Dirichlet heat kernels and related Schrödinger operators,
as in Theorem 8.9 provided the original motivation for the Brascamp–Lieb–
Luttinger theorem. Lieb’s sharp Hardy–Littlewood–Sobolev inequality in
Theorem 8.11 is a rare instance when we can find the operator norm ‖T‖p,p′

of a convolution operator Tf = K ∗ f . The proof of Lieb’s sharp Hardy–
Littlewood–Sobolev inequality given here essentially follows Lieb and Loss
(1997). It is an open question whether polarization may lead to a simpler proof
of the inequality.

The extremal functions and best constants in Young’s inequality were
found independently by Beckner (1975) and Brascamp and Lieb (1976). For
uniqueness questions, see Lieb (1990) and Barthe (1998).

Revisions to the chapter The presentation in this chapter closely follows
Baernstein’s original manuscript, up to some reorganization of Sections 8.6–
8.10. Additions by Almut Burchard include the conclusion of the proof of
Theorem 8.9, discussion of the equality cases for Theorems 8.17 and 8.21,
and the proof of the “only if” part of Theorem 8.20.
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The �-Function

The “star function” associated to a function u is a new function u� obtained
by indefinite integration of the rearrangement u# of u, with respect to some
specific symmetrization process. This chapter is devoted to star functions
associated with s.d.r. on R

n and S
n, and with Steiner and cap symmetrization.

The star function first arose in complex analysis (n = 2) for circular or (1, 2)-
cap symmetrization. That connection will be the theme of Chapter 11.

Our chief goal is to prove that if u satisfies −�u = μ in a weak
(distributional) sense, where μ is a locally finite signed measure on the domain
of u, then −��u� ≤ μ� on the domain of u�. Here �� is a certain differential
operator associated to the Laplacian �, and μ� is a measure related to μ. Such
results are called “subharmonicity properties.” They will be used in Chapter
10 to prove comparison theorems for solutions of partial differential equations,
and in Chapter 11 to prove sharp inequalities in complex analysis.

After defining the star function on a general measure space, in §9.1, an
overview of the chapter is given at the end of §9.2. The theory is easiest
to grasp, I think, in the case of (n − 1, n)-cap symmetrization, under the
assumption that the domain of u is a spherical shell. Accordingly, we do that
case first.

The natural class of functions for which the subharmonicity results make
sense appears to be the set of u ∈ L1

loc(�) for which the distributional
Laplacian �u is a locally finite measure on the open set �. The collection
of such u will be denoted by W(�). This class too is discussed in §9.2.

9.1 The �-Function on General Measure Spaces

Let (X,M,μ) be a nonatomic measure space with A = μ(X) < ∞.
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Definition 9.1 For f ∈ L1(X), define f � : [0, A] → R by

f �(x) = sup

{∫
E

f dμ : E ∈ M, μ(E) = x

}
, 0 ≤ x ≤ A,

where the sup is taken over all measurable sets E ⊂ X with μ(E) = x.

Recall that f ∗ : [0, A] → R is the decreasing rearrangement of f . Our first
result tells us that the sup in Definition 9.1 is actually achieved, and explains
how the star function f � is related to f ∗.

Proposition 9.2 Let f ∈ L1(X). Then

(a) For each x ∈ [0, A] there exists E ∈ M with μ(E) = x such that

f �(x) =
∫

E
f dμ.

(b) f �(x) = ∫ x
0 f ∗(s) ds, 0 ≤ x ≤ A.

Proof By Proposition 1.26, we have f = f ∗ ◦ T , μ-a.e. on X, where
T : (X,M,μ) → ([0, A],B,L) is measure preserving. If x = 0 or x = A,
take E to be the empty set or X, respectively. Suppose that x ∈ (0, A). Let
t = f ∗(x). Define E = T−1([0, x]). Then f ≥ t a.e. on E and f ≤ t a.e. on X \E.
Let F ∈ M with μ(F) = x. Then∫

F
f dμ =

∫
F
{( f − t) + t} dμ ≤

∫
X
( f − t)+ dμ + tx,

while ∫
E

f dμ =
∫

X
( f − t)+ dμ + tx.

This proves (i). To get (ii), observe that since T is measure preserving,

f �(x) =
∫

E
f dμ =

∫
E

f ∗ ◦ T dμ =
∫ x

0
f ∗(s) ds.

9.2 Preliminaries, and What Happens Next

Locally Finite Measures
Let X be a locally compact Hausdorff space and Bc(X) the set of all Borel sets
B ⊂ X such that B ⊂ K for some compact K ⊂ X. We shall say that a set
function μ : Bc(X) → R is a locally finite real-valued (regular Borel) measure
if for each compact K ⊂ X the restriction of μ to B(K) belongs to the space
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M(K) of (finitely) real-valued (signed) regular Borel measures on K. The set
of all locally finite real-valued measures on X will be denoted by

Mloc(X).

For μ ∈ M(K), denote the total variation of μ on K by ‖μ‖K . Then ‖·‖K

is a norm, under which M(K) is a Banach space. By the Riesz Representation
Theorem, M(K) is the dual of the Banach space C(K) of all continuous real-
valued functions on K, equipped with the sup norm, with the natural pairing

( f ,μ) =
∫

K
f dμ.

(See Folland (1999, Cor. 7.18).) If f ∈ Cc(X) and μ ∈ Mloc(X) we define
( f ,μ) to be

∫
K f dμ where K is any compact K ⊂ X containing the support of

f . Under this pairing, Mloc(X) is the dual of Cc(X), when the two spaces are
endowed with their usual topologies. See Rudin (1966), Schaefer (1971), or
Köthe (1960).

If μ ∈ Mloc(X) is nonnegative, then μ is called a Radon measure on X.
The set of all Radon measures on X will be denoted by M+

loc(X). Clearly, if
μ1,μ2 ∈ M+

loc(X), then μ1 − μ2 ∈ Mloc(X). From the Jordan decomposition
theorem (Folland, 1999, Lemma 7.15), it follows that the converse holds: for
each μ ∈ Mloc(X), there exist μ1,μ2 ∈ M+

loc(X) such that μ = μ1 − μ2.

Weak Laplacians
Let � be an open set in R

n, not necessarily bounded, and assume that u belongs
to the Sobelev space W1,2

0 (�). In §5.1 we defined u to be a weak solution to
the p.d.e. �u = −f if f ∈ L2(�) and∫

�

∇u · ∇g dx =
∫
�

fg dx, ∀ g ∈ C1
c (�).

We define now another notion of weak solution. Let u ∈ L1
loc(�). If there exists

μ ∈ Mloc(�) such that∫
�

u�g dx = −
∫
�

g dμ, ∀ g ∈ C2
c (�),

then we say that u is a weak (or distributional) solution of

�u = −μ,

and that u has weak (or distributional) Laplacian −μ.
If u ∈ C2(�) with pointwise Laplacian �u = −f , then we call u a classical

solution to the equation, and the Gauss–Green theorem implies u is also a weak
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solution. (More precisely, �u = −μ where μ is the absolutely continuous
measure with density f .)

If n ≥ 3 then, as the reader is invited to show, the locally integrable function
u(x) = |x|2−n has weak Laplacian �u = −(n − 2)βn−1δ0 where βn−1 is the
surface area of the (n − 1)-dimensional unit sphere; for n = 2 and n = 1 the
corresponding results are � log |x| = 2πδ0 and �|x| = 2δ0.

Define W(�) to be the set of all u ∈ L1
loc(�) such that �u = −μ weakly

for some μ ∈ Mloc(�). Obviously C2(�) ⊂ W(�), since u ∈ C2(�) implies
�u ∈ L1

loc(�), but some functions in W(�) are not smooth, as we have seen
with the Green function.

Using the duality between Cc(�) and Mloc(�) described in the previous
subsection, one can show u ∈ L1

loc(�) belongs to W(�) if and only if for each
open set �1 ⊂⊂ � there is a constant C(�1) such that∣∣ ∫

�

u�g dx
∣∣ ≤ C(�1) sup

�

|g|,

for all g ∈ C2(�) with support in �1.

Subharmonic Functions
Let � be an open set. A function u : � → R∪{−∞} is said to be subharmonic
in � if it is upper semicontinuous, not identically −∞, and satisfies the sub-
mean value property:

u(x) ≤ 1

βn−1

∫
Sn−1

u(x + ry) dσn−1(y)

for every x ∈ � lying at distance greater than r to the boundary. Upper
semicontinuity insures that subharmonic functions are locally bounded above,
so that the mean value integral is well defined. It turns out always to be finite,
and u ∈ L1

loc(�). See Hayman and Kennedy (1976) for proofs of these and
results stated below.

If u ∈ C2(�) then u is subharmonic in � if and only if �u ≥ 0 at every
point of �. For general subharmonic u, one can show that

(u,�g) ≡
∫
�

u�g dx ≥ 0, (9.1)

for every nonnegative g ∈ C2
c (�), from which it follows that the distributional

Laplacian �u of u can be identified with a Radon measure in M+
loc(�). In

particular, u ∈ W(�). This nonnegative measure is called the Riesz measure
of u. If we write �u = −μ, then the Riesz measure of u is −μ, and μ ≤ 0 for
subharmonic u.
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For example, if f is holomorphic and nonconstant in a plane domain �, with
zero set {zj}, counting multiplicities, then log | f | is subharmonic in � with
�(log | f |) = 2π

∑
j δzj .

Returning to (9.1), we note that, conversely, if u is a function in L1
loc(�)

for which (9.1) holds for all nonnegative g ∈ C2
c (�), then there exists a

subharmonic function in � which agrees with u (Ln-a.e.).
A function u = u1 − u2 with u1, u2 subharmonic in � is said to be

δ-subharmonic in �. At points where u1 = u2 = −∞, their difference u
is not well defined. Thus δ-subharmonic functions are defined only Ln-a.e. If
u is δ-subharmonic then its distributional Laplacian �u may be represented as

�u = μ1 − μ2

with μ1,μ2 ∈ M+
loc(�), so that �u may be identified with an element of

Mloc(�), and hence u being δ-subharmonic in � implies u ∈ W(�).
The converse is true too: Given ν ∈ Mloc(�), there exists a δ-subharm-

onic function u in � such that �u = −ν. It follows that each u ∈ W(�) is
δ-subharmonic, and hence that the set of all δ-subharmonic functions in � is
exactly the set W(�). We use this fact later when proving Lemma 9.6.

Preview of what happens next For fixed n ≥ 2, let now

A = A(R1, R2) = {x ∈ R
n : R1 < |x| < R2},

where 0 ≤ R1 < R2 ≤ ∞. Then A is an open shell in R
n, possibly unbounded

and possibly with inner boundary the point {0}. Consider the rectangle

A� = {(r, θ) ∈ R
2 : R1 < r < R2, 0 < θ < π},

which can be viewed as the upper half of an open annulus in R
2 using polar

coordinates (r, θ). For u ∈ L1
loc(A,R), define

u� : A� → R

by

u�(r, θ) = sup
E

∫
E

u(rs) rn−1 dσn−1(s),

where σn−1 is the canonical measure on S
n−1 and the sup is taken over all

Borel measurable E ⊂ S
n−1 with σn−1(E) = σn−1(K(θ)). Here K(θ) denotes

the spherical cap on S
n−1 with center e1 and opening θ . After a change of

variable, the slice function u�(r, ·) is the star function in the sense of §9.1 of u
restricted to the sphere of radius r.

Baernstein (1973, 1974) proved that if n = 2 and u is subharmonic in
an annulus, then u�/r is subharmonic in the upper half annulus with polar
coordinates r and θ (see Corollary 9.10). Baernstein and Taylor (1976) proved
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that if n ≥ 3 and u is subharmonic in A, then u� is a subsolution of another
elliptic operator, to be called ��, which is closely related to �. When n ≥ 2,
one thus has a maximum principle and this leads to various applications, some
of which are presented in Chapters 10 and 11.

In the rest of Chapter 9 we will generalize these “subharmonicity” results.
They turn out to be consequences of inequalities involving u# and μ#, where
u ∈ W(�) with �u = −μ, and # denotes the appropriate symmetrization. The
u#, μ# results will be called “pre-subharmonicity” inequalities.

In §9.5 we prove pre-subharmonicity inequalities for functions u on shells
A, that is, for (n − 1, n)-cap symmetrization when n ≥ 2. Then in §9.6 we
present the corresponding subharmonicity inequalities. Section 9.7 deduces
pre-subharmonicity and subharmonicity results for the sphere S

n. Section 9.8
indicates the extension to (k, n)-cap symmetrization on shells when 1 ≤ k ≤
n − 2. In principle it would be possible to embed the (n − 1, n) proof on
shells into the (k, n) proof, but they will be separated for pedagogical reasons.
Sections 9.9 and 9.10 treat s.d.r. on R

n, and §9.11 extends to (k, n)-Steiner
symmetrization.

9.3 A Measurability Lemma

Let (X,M,μ) be a finite measure space, (Z,N ) a measurable space, and f and
g real-valued functions on X ×Z which are M×N measurable. Then the slice
functions f z and gz are M measurable on X. Define

F(t, t′, z) = μ( f z > t, gz > t′), (t, t′) ∈ R
2, z ∈ Z.

Lemma 9.3 F is B(R2) × N measurable.

Proof Assume first that f and g are simple. Write

f =
m∑

i=1

tiχAi , g =
n∑

i=1

uiχBi ,

where the ti and ui are real and the sets Ai, Bi are in M × N with A1 ⊃ · · · ⊃
Am, B1 ⊃ · · · ⊃ Bn. The possible values of f and g are sj ≡ ∑j

i=1 ti and

vk ≡ ∑k
i=1 ui respectively, for 0 ≤ j ≤ m, 0 ≤ k ≤ n, where s0 = v0 = 0.

Set Ii = [si−1, si), Jj = [vj−1, vj). If t ∈ Ii and t′ ∈ Jj then ( f > t, g > t′) =
Ai ∩ Bj. If t ≥ sm or t′ ≥ vn then ( f > t, g > t′) is empty. Passing to slices on
each side, it follows that

F(t, t′, z) =
n∑

j=1

m∑
i=1

μ(Az
i ∩ Bz

j )χIi×Jj(t, t′), (t, t′) ∈ R
2, z ∈ Z.
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The μ-terms in the sum are N measurable functions of z and the χ -terms
are Borel measurable functions on R

2. Thus, F is B(R2)×N measurable, and
so Lemma 9.3 is proved for simple functions.

An easy argument shows that if measurable functions f and g are pointwise
increasing limits of sequences { fn} and {gn} on X × Z then the corresponding
functions Fn converge pointwise to F on R

2 × Z. Thus, the validity of
Lemma 9.3 for simple functions implies its validity for nonnegative measur-
able functions. To pass to all pairs of measurable functions requires another
short argument, which is left to the reader.

With f and g as above, define

F1(t, z) = μ( f z > t) and F2(t, t′, z) = μ( f z = t, gz > t′).

Lemma 9.4 F1 is B(R) × N measurable on R × Z and F2 is B(R2) × N
measurable on R

2 × Z.

Proof The measurability of F1 follows as above from the formula

F1(t, z) =
m∑

i=1

μ(Az
i )χIi(t), t ∈ R, z ∈ Z.

The measurability of F2 follows from measurability of F and the relation

F2(t, t′, z) = lim
ε→0

[F(t − ε, t′, z) − F(t + ε, t′, z)], (t, t′, z) ∈ R
2 × Z.

9.4 Formulas for the Laplacian

A key step in the �-function method is to change a differential inequality
into an integral inequality. The next lemma lies at the heart of the matter:
it expresses the Laplacian of a function as the difference between an average
of the function over a small ball and the value of the function at the center of
the ball.

Let K : Rn → R
+ be a smooth nonnegative symmetric bump function on

R
n. That is, K ≥ 0, K ∈ C∞

c (Rn), K is symmetric decreasing on R
n, the

support of K is contained in the open unit ball Bn ⊂ R
n, and

∫
Rn K(x) dx = 1.

Set Kε(x) = ε−nK(ε−1x) and denote convolution in R
n by ∗. If � is an open

set in R
n and f ∈ L1

loc(�), then f ∗ Kε is defined on the set �ε = {x ∈
� : d(x, ∂�) > ε}.
Lemma 9.5 For u ∈ C2(�) and Kε as above,

lim
ε→0

ε−2[Kε ∗ u(x) − u(x)] = CK�u(x), x ∈ �, (9.2)
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where

CK = 1

2n

∫
Bn

|x|2K(x) dx. (9.3)

Moreover, the convergence in (9.2) is uniform on compact subsets of �.

Proof To verify (9.2), we may assume by translation that 0 ∈ � and that
x = 0. For r > 0, set K0(r) = K(re1). Then for small ε,

Kε ∗ u(0) = ε−n
∫ ε

0
rn−1K0(rε

−1) dr
∫
Sn−1

u(ry) dσn−1(y).

If u is harmonic in �, the mean value property and the fact that
∫
Rn K dx = 1

imply Kε ∗u(0) = u(0). If u(x) = |x|2, then (9.3) implies Kε ∗u(0) = 2CKnε2.
The functions Kε ∗ (x2

i ) have the same values at 0 for each i = 1, . . . , n, by
symmetry, and thus,

(Kε ∗ (x2
i ))(0) = 1

n
(Kε ∗ |x|2)(0) = 2CKε

2, i = 1, . . . , n.

Linear functions and products xixj with i �= j are harmonic. By Taylor’s
Theorem, a function u ∈ C2(�) has the representation

u(x) = h(x) + 1

2

n∑
i=1

∂xixiu(0)x
2
i + R(x), (9.4)

where h is harmonic with h(0) = u(0) and R(x) = o(|x|2) as x → 0. Thus
Kε ∗ R(0) = o(ε2), and so (9.2) follows from (9.4).

To prove the uniformity statement, take a compact set E ⊂ � and an open
set E1 with E ⊂ E1 ⊂⊂ �. Write

u(x) = P(x, a) + R(x, a)

with P the quadratic Taylor polynomial. The function |x−a|−2|u(x)−P(x, a)|,
extended to be zero on {(x, x) : x ∈ E}, is continuous on the compact set E×E1,
hence is uniformly continuous. It follows that

lim
x→a

|x − a|−2|u(x) − P(x, a)| = 0

uniformly for a ∈ E. The argument that gave (9.2) now yields the uniformity
of convergence.

For the next lemma, we continue to let K and � be as above, but this time
will allow u to belong to the set W(�) instead of being C2. The weak Laplacian
�u of u is a locally finite measure on �. We also require some additional
notation. Define G : Rn → [0, ∞] by
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G(x) =

⎧⎪⎪⎨⎪⎪⎩
bn(|x|2−n − 1)+, n ≥ 3,

b2 log+(1/|x|), n = 2,

b1(1 − |x|)+, n = 1,

where, with βn−1 = σn−1(S
n−1),

bn =

⎧⎪⎪⎨⎪⎪⎩
1/(n − 2)βn−1, n ≥ 3,

1/2π , n = 2,

1/2, n = 1.

Then G is the Green’s function of the unit ball in R
n with pole at 0, that is,

�G = −δ0 in B
n(0, 1) and G(x) = 0 for |x| ≥ 1 (see Evans, 1998, pp. 22, 39).

Define a function L, depending on the bump function K, by

L(x) = βn−1

∫ ∞

0
sK0(s)G(x/s) ds, x ∈ R

n. (9.5)

Note that G(x/s) = 0 when s < |x|. Clearly L is nonnegative, symmetric
decreasing, and is supported in Bn(0, 1). Also, if n ≥ 2 then x → 0, L(x)→ ∞
at the same rate as G. Furthermore,∫

Rn
L(x) dx = 1

2n

∫
Rn

|x|2K(x) dx = CK .

The second equality is from definition (9.3), and the first is left as an exercise
for the reader.

Lemma 9.6 Let u ∈ W(�) with �u = −μ and x ∈ � with d(x, ∂�) > ε.
Then

ε−2[Kε ∗ u(x) − u(x)] = −
∫
�

Lε(x − y) dμ(y). (9.6)

More precisely, if u is superharmonic in � then (9.6) holds for all the
indicated x, and has the value −∞ at points x with u(x) = ∞. Similarly if
u is subharmonic, (9.6) again holds with both sides equalling ∞ at points x
with u(x) = −∞. Since the set (u = ∞) has Ln-measure zero when u is
superharmonic, it follows that if u is the difference of superharmonic functions
then the two sides of (9.6) are well-defined and equal for almost every x with
d(x,�) > ε.

Also, recall that Lε(x) = ε−nL(x/ε).

Proof of Lemma 9.6 Every u ∈ W(�) is a difference of superharmonic
functions (or subharmonic functions) by the observations in §9.2. Thus it
suffices to prove (9.6) when u is superharmonic, and x = 0. Since ε <

d(0, ∂�), the closure of Bn(0, ε) is contained in �. By the Riesz decomposition
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theorem (Hayman and Kennedy, 1976, Thm 3.9), for 0 < t < d(0, ∂�)

we have

u(ζ ) = H(ζ ) + P(ζ ), ζ ∈ B
n(t), (9.7)

where H solves the Dirichlet problem in B
n(t) with boundary function u, and

P(ζ ) =
∫
Bn(t)

G(ζ , y,Bn(t)) dμ(y)

is the Green’s potential of μ over Bn(t). Note

G(ζ , y,Bn(t)) = t2−nG(ζ/t, y/t,Bn(1)) = t2−nG((ζ − y)/t).

In (9.7), take the mean value over |ζ | = t and use that P(ζ ) = 0 when |ζ | = t.
The result is

1

βn−1

∫
Sn−1

u(tz) dσn−1(z) = H(0)

= u(0) − P(0)

= u(0) − t2−n
∫
Bn(t)

G(y/t) dμ(y). (9.8)

Now

Kε ∗ u(0) =
∫
Rn

Kε(−y)u(y) dy = ε−n
∫
Rn

K0(|y|/ε)u(y) dy

= ε−n
∫ ∞

0
K0(t/ε)t

n−1 dt
∫
Sn−1

u(tz) dσn−1(z).

With (9.8), and the change of variable t = εs, this implies

Kε ∗ u(0) =
∫ ∞

0
K0(s)s

n−1[βn−1u(0) − βn−1ε
2−ns2−n

∫
�

G(y/εs) dμ(y)
]

ds.

Since
∫ ∞

0 K0(s)sn−1βn−1 ds = ∫
Rn K(y) dy = 1, the last identity yields

Kε ∗ u(0) − u(0) = −βn−1ε
2−n

∫ ∞

0
K0(s)s

∫
�

G(y/εs) dμ(y) ds

= −ε2−n
∫
�

βn−1

∫ ∞

0
K0(s)sG(y/εs) ds dμ(y)

= −ε2−n
∫
�

L(y/ε) dμ(y).

Fubini’s Theorem may be used above since μ, G and K0 are nonnegative.
Division by ε2 completes the proof of Lemma 9.6.
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9.5 Pre-Subharmonicity on Shells

In this section, # will always denote (n − 1, n)-cap symmetrization.
As in §9.2, let A = {x ∈ R

n : R1 < |x| < R2} be a shell in R
n, where n ≥ 2.

Let μ be a locally finite measure on A, that is, μ ∈ Mloc(A). The Jordan and
Lebesgue decompositions yield the representation

dμ = f dLn + dτ − dη, (9.9)

where f ∈ L1
loc(A), and τ and η are (nonnegative) Radon measures on A,

singular with respect to each other and to Ln.
For x ∈ A write x = ry, where y ∈ S

n−1 and r ∈ (R1, R2). Define a map
P : A → A by P(x) = re1. Then P(x) is the spherical projection of x onto the
positive x1-axis in R

n, and PA ≡ P(A) is the open line segment in R
n from

R1e1 to R2e1. Note that PA ⊂ A.
For the singular τ , define τ # ∈ Mloc(PA) to be the pushforward measure on

PA induced by P and τ :

τ #(E) = τ(P−1E)

for E ∈ Bc(PA). Extend τ # to be 0 on R
n\PA. Thus, τ # is the measure obtained

from τ by spherically sweeping the mass to the positive x1-axis. For example,
if δa denotes a unit point mass at a, and if τ = ∑N

i=1 cjδaj with aj ∈ A and

cj > 0, then τ # = ∑N
j=1 cjδ|aj|e1 .

For μ ∈ Mloc(�) having the decomposition (9.9), define the symmetrized
measure μ# ∈ Mloc(A) to be

dμ# = f #dLn + dτ # − dη#,

where η# is defined by η#(E) = η#(−E). Thus, η# is supported on the negative
x1-axis.

Let u ∈ W(A), so that as discussed in §9.2, the weak Laplacian �u can be
identified with a locally finite measure on A. We say that −�u = μ in the
weak (or distributional) sense if

−
∫

A
u�g dLn =

∫
A

g dμ

for every g ∈ C2
c (A). More generally, given a continuous real-valued function

φ(·, ·) of two real variables such that the composition φ(r, u) is locally
integrable, we say

−�u = φ(r, u) + μ
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in the weak sense if

−
∫

A
u�g dLn =

∫
A
φ(r, u)g dLn +

∫
A

g dμ

for every g ∈ C2
c (A).

We can now state the pre-subharmonicity theorem for (n − 1, n)-cap
symmetrization. It says −�(u#) ≤ φ(r, u#) + μ# weakly when restricted to
cap-symmetric, nonnegative test functions.

Theorem 9.7 (Pre-subharmonicity for (n−1, n)-cap symmetrization) Assume
u ∈ W(A) satisfies

− �u = φ(r, u) + μ (9.10)

in the weak sense in A, where φ : (R1, R2)×R → R is continuous with φ(r, u)
locally integrable on A and μ ∈ Mloc(A).

If g ∈ C2
c (A) is nonnegative with g = g# then

−
∫

A
u#�g dLn ≤

∫
A
φ(r, u#)g dLn +

∫
A

g dμ#.

Proof The proof is broken into steps.

Step 1: Construction of a measure preserving T .
Since functions in W(A) are locally integrable, we have u ∈ L1

loc(A).
Changing u on a set of Ln-measure zero, if necessary, we may assume that
u is Borel measurable on A. We write A in spherical coordinates as A =
S

n−1 × (R1, R2).
Define ψ by

ψ(x) = x1, x ∈ S
n−1,

and write

σ = σn−1.

Then ψ has no flat spots with respect to σ , that is, σ(ψ = t) = 0 for all t ∈ R.
Recall that the slice functions ur are defined by ur(x) = u(x, r). For (x, r) ∈ A,
define

T(x, r) = σ
(
ur > ur(x)

) + σ
(
ur = ur(x), ψ > ψ(x)

)
,

where sets of the form (ur > t) are understood to be subsets of S
n−1, and

extend ψ to A by setting ψ(x, r) = ψ(x). Then

T = F1 ◦ P1 + F2 ◦ P2

where

F1(t, r) = σ(ur > t), F2(t, t′, r) = σ(ur = t,ψ r > t′),
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and

P1(x, r) = (ur(x), r), P2(x, r) = (ur(x),ψ r(x), r).

The functions (x, r) → (ur(x), r) and (x, r) → (ur(x),ψ r(x), r) are Borel
measurable mappings from A into R × (R1, R2) and R × R × (R1, R2),
respectively. From Lemma 9.4 it follows that T is a Borel measurable function
from A into [0,βn−1].

By Proposition 1.26, for each fixed r ∈ (R1, R2) the slice function Tr is a
measure preserving map from (Sn−1, σ) onto [0,βn−1]. Moreover

u(x, r) = u∗(T(x, r), r), (x, r) ∈ A, (9.11)

where u∗(·, r) is the decreasing rearrangement of u(·, r). This completes the
proof of Step 1.

Step 2: Construction of h with h# = g.
Let g ∈ C2

c (A) be nonnegative, and let g∗(·, r) denote the decreasing
rearrangement of g(·, r). Let

T1(x) = σ(K(θ)),

where cos θ = x1. Then T1 is the measure preserving map from S
n−1 onto

[0,βn−1] introduced in §7.1, for which F∗ ◦ T1 equals F# for functions F
on S

n−1. Since the slice functions gr are symmetric decreasing on S
n−1 by

hypothesis, we have

g(x, r) = g#(x, r) = g∗(T1(x), r), (x, r) ∈ A.

Using Chapter 7, we see that the continuity of g on A implies the continuity of
g∗ on [0,βn−1] × (R1, R2).

Define h on A by

h(x, r) = g∗(T(x, r), r). (9.12)

The Borel measurability of T and g∗ imply the Borel measurability of h on A.
Moreover, since T(·, r) is measure preserving from (Sn−1, σ) onto [0,βn−1],
(9.12) implies that h# = g on A. This equation also shows that h is bounded
and has compact support in A, since g has these properties.

For fixed r ∈ (R1, R2), it follows from (9.11), (9.12) and g = g# that∫
Sn−1

u(x, r)h(x, r) dσ(x) =
∫

[0,βn−1]
u∗(t, r)g∗(t, r) dt

=
∫
Sn−1

u∗(T1(x), r)g∗(T1(x), r) dσ(x)

=
∫
Sn−1

u#(x, r)g(x, r) dσ(x),
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and integration with respect to rn−1 dr gives∫
A

uh dLn =
∫

A
u#g dLn. (9.13)

Similarly, ∫
A
φ(r, u)h dLn =

∫
A
φ(r, u#)g dLn. (9.14)

This completes Step 2.

Step 3: Convolution inequalities.
In the remainder of the proof, x is a point in R

n (earlier in the proof it
was a point in S

n−1). For functions ξ and ψ on A, write (ξ ,ψ) = ∫
A ξψ dLn

whenever the integral exists. Then (9.13) shows that

(u, h) = (u#, g).

Let K be a smooth nonnegative symmetric bump function on R
n, and let

ε0 = d(supp g, ∂A). For 0 < ε < ε0, we may write

(u, Kε ∗ h) =
∫

A×A
ε−nK0(ε

−1|y − x|)u(x)h(y) dx dy, (9.15)

where K0(r) = K(re1) is decreasing and ∗ denotes convolution on R
n. The

integral in (9.15) satisfies the hypotheses of Theorem 7.6 in the ring-type set
A. (Note the remarks after that theorem relax the nonnegativity requirement
on u and h to just integrability.) Therefore the cap analogue of the Riesz-type
inequality Corollary 2.20 is applicable, and we obtain from Step 2 that

(u, Kε ∗ h) ≤ (u#, Kε ∗ h#) = (u#, Kε ∗ g). (9.16)

This application of Riesz rearrangement is the key step in the proof, because,
as we proceed to show, it leads to an integral inequality relating �(u#) and �u,
in the weak sense.

The truncation argument at the end of the proof of Theorem 8.1 shows that
(9.16) still holds even if u is not nonnegative. Thus, when 0 < ε < ε0 we have

(u#, Kε ∗ g) ≥ (u, Kε ∗ h),

and hence

(u#, Kε ∗ g − g) = (u#, Kε ∗ g) − (u#, g)

≥ (u, Kε ∗ h) − (u, h)

= (u ∗ Kε , h) − (u, h) = (Kε ∗ u − u, h). (9.17)
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(Concerning the second equality, for general functions f1, f2, f3, the correct
relation is ( f1, f2 ∗ f3) = ( f1 ∗ f̃2, f3), where f̃2(x) = f2(−x). In the case at
hand, f2 = Kε satisfies Kε = K̃ε and so equation (9.17) holds as stated.)

Suppose, for a moment, that u ∈ C2(A), and write the equation (9.10) as
−�u = φ(r, u)+ f (meaning f dLn = dμ). Divide (9.17) by ε2 and let ε → 0.
Then it follows from Lemma 9.5, (9.14), and the Hardy–Littlewood inequality
(the cap analogue of Corollary 2.16) that

(u#,�g) ≥ (�u, h)

= −(φ(r, u), h) − ( f , h)

≥ −(φ(r, u#), g) − ( f #, h#) = −
∫

A
φ(r, u#)g dLn −

∫
A

g dμ#.

This completes the proof of Theorem 9.7 when u ∈ C2(A).

Step 4: General case: bounds for the L-integrals.
When u is a general function in W(A) we must work harder. Lemma 9.6 and

the equation �u = −φ(r, u) − μ show that if 0 < ε < ε0 then

ε−2[Kε ∗ u(x) − u(x)] = −
∫

A
Lε(x − y)φ(r, u(y)) dy −

∫
A

Lε(x − y) dμ(y)

whenever d(x, ∂A) > ε0; recall the kernel L was defined in (9.5). Combined
with (9.17), this gives for 0 < ε < ε0 that

−
∫

A×A
Lε(x − y) h(x)φ(r, u(y)) dy dx −

∫
A×A

Lε(x − y) h(x) dμ(y) dx

(9.18)

≤ ε−2(u#, Kε ∗ g − g).

Recall μ decomposes into three parts: dμ = f dLn + dτ − dη. Thus the
second integral in (9.18) decomposes into three additional integrals, which we
estimate in turn.

First integral. Since L has the same relevant properties as K, and since f ∈
L1

loc(A), the Riesz inequality is valid:∫
A×A

Lε(x − y)h(x)f (y) dx dy ≤
∫

A×A
Lε(x − y)g(x)f #(y) dx dy. (9.19)

Second integral. For R1 < r < R2 set g0(r) = g(re1). We claim that∫
A×A

Lε(x − y)h(x) dx dτ(y) ≤
∫

A×A
Lε(x − y)g0(|x|) dx dτ #(y). (9.20)



314 The �-Function

To see this, note that since h# = g# = g, we have 0 ≤ h(x) ≤ g0(|x|) for all
x ∈ A. Hence,∫

A×A
Lε(x − y)h(x) dx dτ(y) ≤

∫
A×A

Lε(x − y)g0(|x|) dx dτ(y)

=
∫

A×A
Lε(x − |y|e1)g0(|x|) dx dτ(y)

=
∫

A×A
Lε(x − |y|e1)g0(|x|) dx dτ #(y),

where in the second line we used rotational symmetry of L and a change of
variable, and in the third line we used that τ and τ # give the same integral for
any radial function. After once more invoking rotational symmetry of L, we
arrive at (9.20).

Third integral. Let g1(r) = g(−re1). Then we have 0 ≤ g1(|x|) ≤ h(x) for
all x ∈ A. With simple modifications, the argument just given for τ works also
for η, and produces the inequality∫

A×A
Lε(x − y)h(x) dx dη(y) ≥

∫
A×A

Lε(x − y)g1(|x|) dx dη#(y), (9.21)

and (9.18), (9.19), (9.20), and (9.21) yield

−
∫

A

∫
A

Lε(x − y) h(x) dxφ(r, u(y)) dy −
∫

A

∫
A

Lε(x − y)g(x) dx f #(y) dy

−
∫

A

∫
A

Lε(x − y)g0(|x|) dx dτ #(y) +
∫

A

∫
A

Lε(x − y)g1(|x|) dx dη#(y)

≤ ε−2
∫

A
u#(x)[Kε ∗ g(x) − g(x)] dx.

(9.22)

In §9.4, L is a smooth symmetric decreasing nonnegative bump function in
R

n with support in the unit ball and
∫
Rn L dx = CK . From boundedness of h

and g, we have the following four limits:

lim
ε→0

∫
A

Lε(x − y)h(x) dx = CKh(y),

lim
ε→0

∫
A

Lε(x − y)g(x) dx = CKg(y),

lim
ε→0

∫
A

Lε(x − y)g0(|x|) dx = CKg0(|y|),

lim
ε→0

∫
A

Lε(x − y)g1(|x|) dx = CKg1(|y|).
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The first holds for almost every y, and further each term is bounded because∣∣ ∫
A Lε(x−y)h(x) dx

∣∣ is dominated by CK times the maximum value of h. Since
g is continuous, the second, third, and fourth limits behave even better: they
hold uniformly with respect to y on compact subsets of A, and hence uniformly
on A (because g has compact support). Also, by Lemma 9.5,

lim
ε→0

ε−2[Kε ∗ g(x) − g(x)] = CK�g(x)

uniformly for x ∈ A. Since g and h have compact support and φ(r, u), u, and
f are all locally integrable and η and τ are in Mloc(A), we may pass to limits
under the integral signs in (9.22), and obtain

−
∫

A
h(y)φ(r, u(y)) dy −

∫
A

g(y)f #(y) dy

−
∫

A
g0(|y|) dτ #(y) +

∫
A

g1(|y|) dη#(y) ≤
∫

A
u#(x)�g(x) dx. (9.23)

The first integral on the left equals
∫

A gφ(r, u#) dLn by (9.14). Since τ #

is supported on the positive x1-axis and g0(|y|) = g(|y|e1) for y ∈ A,
we have

∫
A g0(|y|) dτ #(y) = ∫

A g(y) dτ #(y). Similarly,
∫

A g1(|y|) dη#(y) =∫
A g(y) dη#(y). Thus, the left side of (9.23) equals − ∫

A gφ(r, u#) dLn −∫
A g dμ#, and the proof of Theorem 9.7 is complete.

9.6 The �-Function on Shells

As in §9.5, let A = {x ∈ R
n : R1 < |x| < R2} be a shell in R

n, where 0 ≤ R1 <

R2 ≤ ∞ and n ≥ 2, and continue to write # for (n − 1, n)-cap symmetrization.
As in §9.2, define the new domain A� ⊂ R

2 to be the rectangle

A� = {(r, θ) ∈ R
2 : R1 < r < R2, 0 < θ < π}.

For u ∈ L1
loc(A), define a new function u� : A� → R by

u�(r, θ) = sup
E

∫
E

u(rx) rn−1 dσn−1(x), (9.24)

with the sup taken over Borel measurable E ⊂ S
n−1 having σn−1(E) =

σn−1(K(θ)). Here K(θ) is the spherical cap on S
n−1 with center e1 and

opening θ . Notice definition (9.24) includes a factor of rn−1, whereas earlier
work on the �-function in complex analysis and for cap symmetrization in
higher dimensions did not include such a factor. This change is explained in
the notes at the end of the chapter. Corollary 9.10 will present the original
�-function subharmonicity result in the plane.
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After a change of variable, the functions u�(r, ·) defined in (9.24) become
the �-functions as defined in §9.1 for the slice functions u(r, ·), as we now
show. If

ũ(r, t) = sup
E

∫
E

u(rs) dσn−1(s),

where the sup is over Borel sets E ⊂ S
n−1 having σ(E) = t, then

u�(r, θ) = rn−1̃u
(
r, σn−1(K(θ))

)
, (r, θ) ∈ A�.

For x ∈ S
n−1 let T(x) = σn−1(K(θ)), where x·e1 = cos θ . Then (see §7.1) T

is a measure preserving map of Sn−1 onto [0,βn−1], and u#(rx) = u∗(r, T(x)),
where the ∗ denotes decreasing rearrangement. Proposition 9.2(b) then yields

ũ(r, σn−1(K(θ))) =
∫ σn−1(K(θ))

0
u∗(r, s) ds =

∫
K(θ)

u#(rs) dσn−1(s),

which, with the previous identity, gives

u�(r, θ) =
∫
K(θ)

u#(rs) rn−1 dσn−1(s), (r, θ) ∈ A�.

J-Operator
Define the operator J : L1

loc(A) → L1
loc(A

�) by

Ju(r, θ) =
∫
K(θ)

u(rx) rn−1 dσn−1(x),

and note that

u� = Ju# on A�.

If h : Sn → R is nonnegative and measurable or integrable on S
n, then the

spherical coordinate formula (7.6) implies∫
Sn

h dσn =
∫ π

0
sinn−1 ϕ dϕ

∫
Sn−1

h(cosϕ, y sinϕ) dσn−1(y),

where, to avoid some parentheses, we write y sinϕ instead of (sinϕ)y.
Assuming n ≥ 3, replacing n by n − 1, and replacing h by χK(θ)h, we obtain∫

K(θ)

h dσn−1 =
∫ θ

0
sinn−2 ϕ dϕ

∫
Sn−2

h(cosϕ, y sinϕ) dσn−2(y). (9.25)

For brevity we often express integrals as inner products. If f and g are
functions on A for which fg ∈ L1(A), we shall write

( f , g) =
∫

A
fg dLn.
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If F and G are functions on A� for which FG ∈ L1(A�), we shall write

(F, G) =
∫

A�
FG drdθ ≡

∫ R2

R1

∫ π

0
F(r, θ)G(r, θ) dθdr

where the measure on A� is simply drdθ . It will be clear from the context
whether (·, ·) refers to integration over A or over A�.

Jt-Operator
Define the operator Jt from L1

loc(A
�) → L1

loc(A) by

JtF(rx) =
∫ π

θ

F(r,ϕ) dϕ, r ∈ (R1, R2), x ∈ S
n−1,

where θ ∈ (0,π) and x ∈ S
n−1 are related by x · e1 = cos θ . Then the adjoint

relation

(Ju, G) = (u, JtG) (9.26)

holds if, for example u ∈ L1
loc(A) and G ∈ L∞

c (A�); this adjoint relation follows
from (9.25) and Fubini’s Theorem, when n ≥ 3, since each side of (9.26)
becomes∫ R2

R1

∫ π

0

∫ θ

0

∫
Sn−2

G(r, θ) u(r cosϕ, ry sinϕ) rn−1 sinn−2ϕ dσn−2(y)dϕdθdr.

The proof when n = 2 is even simpler, since the integrals in (9.26) each equal∫ R2

R1

∫ π

0

∫ θ

−θ

G(r, θ) u(r cosϕ, r sinϕ) r dϕdθdr.

Thus, Jt is indeed the adjoint operator of J, for all n ≥ 2.

��-Operator
Let n ≥ 2. By (7.10), if a function u on A depends only on r and θ , then its
n-dimensional Laplacian is given in spherical coordinates by

�u = r1−n∂r(r
n−1∂ru) + r−2 sin2−n θ ∂θ (sinn−2 θ ∂θu)

= ∂rru + n − 1

r
∂ru + r−2[∂θθu + (n − 2) cot θ ∂θu].

For n = 2 the formula simplifies to

�u = r−1∂r(r∂ru) + r−2∂θθu = ∂rru + r−1∂ru + r−2∂θθu.
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Define operators �� and ��t acting on C2(A�) by

��F = ∂r
(
rn−1∂r(r

1−nF)
) + r−2 sinn−2 θ ∂θ (sin2−n θ ∂θF)

= ∂rrF − n − 1

r
∂rF + n − 1

r2
F + r−2[∂θθF − (n − 2) cot θ ∂θF],

(9.27)

��tF = r1−n∂r(r
n−1∂rF) + r−2∂θ [sin2−n θ ∂θ (sinn−2 θ F)]

= ∂rrF + n − 1

r
∂rF + r−2[∂θθF +(n − 2) cot θ ∂θF − (n − 2) csc2 θ F].

For n = 2, this means

��F = ∂r
(
r∂r(r

−1F)
) + r−2∂θθF = ∂rrF − r−1∂rF + r−2F + r−2∂θθF,

��tF = r−1∂r(r∂rF) + r−2∂θθF = ∂rrF + r−1∂rF + r−2∂θθF. (9.28)

In 2 dimensions ��t agrees with the polar coordinate form of �. The operator
�� does not equal �, essentially because we chose the measure on A� to be
drdθ and not r drdθ . The correct relation in 2 dimensions is

��(rF) = r�F, (9.29)

when the Laplacian is expressed in polar coordinates.

Adjoint Relation and Main Identity
In all dimensions, integration by parts shows that if F ∈ C2(A�), G ∈ C2

c (A
�)

then

(��F, G) = (F,��tG) (9.30)

so that ��t is the adjoint of �� on A�, with respect to the measure drdθ .

The theory of �-functions is motivated by the following identity.

Theorem 9.8 (Main identity for the �-function) For u ∈ C2(A), we have

��Ju = J�u on A�. (9.31)

Proof of Main Identity when n = 2 We use complex notation:

Ju(reiθ ) =
∫ θ

−θ

u(reiϕ) r dϕ,

∂θJu(reiθ ) = (
u(reiθ ) + u(re−iθ )

)
r,

∂θθJu(reiθ ) = (
∂θu(reiθ ) − ∂θu(re−iθ )

)
r,

��Ju(reiθ ) = (r∂rr + ∂r)

∫ θ

−θ

u(reiϕ) dϕ + (
∂θu(reiθ ) − ∂θu(re−iθ )

)
r−1,

J�u(reiθ ) =
∫ θ

−θ

(∂rru + r−1∂ru + r−2∂ϕϕu(reiϕ)) r dϕ.

The right-hand sides of the third and fourth lines are equal.
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Proof of Main Identity when n ≥ 3 Following (7.8), write � = �r + r−2�s,
where �r and the �s are the terms in � involving ∂r and ∂θj , respectively.
Then, see (7.11), �s is indeed the spherical Laplacian on S

n−1. Similarly, write
�� = ��

r + r−2��
s. To prove (9.31), it suffices to verify it when � and �� are

replaced by �r and ��
r, and by �s and ��

s. For �r and ��
r, the verification is

easy: form Ju, then put the r-derivatives inside the integral.
To obtain (9.31) for �s and ��

s, we shall prove that J(�su)(r, θ) and
��

s(Ju)(r, θ) each equal

rn−1 sinn−2 θ

∫
Sn−2

∂θ [u(r cos θ , ry sin θ)] dσn−2(y) (9.32)

when 0 < θ < π , R1 < r < R2. It will suffice to verify these identities
when r = 1. Note that ∂K(θ) is a Euclidean (n − 2)-sphere in R

n with radius
sin θ , and the Hausdorff measure Hn−2 on ∂K(θ) is uniform, with total mass
βn−2 sinn−2 θ .

The definition of J and the integration formula (9.25) imply that

Ju(1, θ) =
∫
K(θ)

u(x) dσn−1(x)

=
∫ θ

0
sinn−2 ϕ dϕ

∫
Sn−2

u(cosϕ, y sinϕ) dσn−2(y),

from which follows

��
sJu(1, θ) = (sinn−2 θ)∂θ

∫
Sn−2

u(cos θ , y sin θ) dσn−2(y)

= sinn−2 θ

∫
Sn−2

∂θ [u(cos θ , y sin θ)] dσn−2(y).

Thus, ��
sJu(1, θ) equals the expression in (9.32) when r = 1.

On the other hand, the Gauss–Green Theorem for domains on S
n−1, implies

J�su(1, θ) =
∫
K(θ)

�su dσn−1 =
∫
∂K(θ)

∇su · ν dHn−2, (9.33)

where ν is the outward pointing unit normal vector on ∂K(θ). For x ∈ ∂K(θ),
write x = (cos θ , y sin θ) with y ∈ S

n−2. This provides a parametrization of
∂K(θ), and the reader may show that

(∇su · ν)(x) = ∂θ [u(cos θ , y sin θ)].

The reader may also verify the change of variable formula

dHn−2(x) = sinn−2 θ dσn−2(y).

Substitution of these last two identities into (9.33) shows that J�su(1, θ) also
equals (9.32) when r = 1. Thus, the Main Identity is proved.
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We shall need an adjoint version of the Main Identity. Assume u ∈ C2(A)
and G ∈ C2

c (A
�). Then

(u, Jt��tG) = (Ju,��tG)

= (��Ju, G) = (J�u, G) = (�u, JtG) = (u,�JtG).

(The last equality follows from Green’s formula, using the compact support
of G.) Hence

Jt��tG = �JtG (9.34)

for every G ∈ C2
c (A

�).
A weak version of the Main Identity will also be needed. Take v ∈ L1

loc(A)
and G ∈ C2

c (A
�). Set g = JtG. Then with the help of (9.34),

(Jv,��tG) = (v, Jt��tG) = (v,�JtG) = (v,�g).

That is, ∫
A�

Jv ��tG drdθ =
∫

A
v�g dLn (9.35)

for all v ∈ L1
loc(A) and G ∈ C2

c (A
�). Applying this formula to v = u# with

u ∈ L1
loc(A) gives ∫

A�
u���tG drdθ =

∫
A

u#�g dLn. (9.36)

Locally Finite Measures
Our next aim is to define a �-operation for locally finite measures. As in §9.5,
let μ ∈ Mloc(A). Then we have the decomposition dμ = f dLn + dτ − dη.
We defined μ# ∈ Mloc(A) by the formula dμ# = f # dLn + dτ # − dη#, where
# is (n − 1, n) cap symmetrization, τ # is a certain measure supported on the
positive x1-axis, and η# is a certain measure supported on the negative x1-axis.

Define now μ� ∈ Mloc(A�) by the formula

dμ� = f � drdθ + dτ� (9.37)

where f � is the star function of f as defined in (9.24). To obtain τ�, we view τ #

as a measure on the line segment PA (see §9.5), or equivalently on the interval
(R1, R2). Then define τ� to be the product measure τ # × L|(0,π), where the
subscript denotes restriction. Then τ� ∈ Mloc(A#) and Fubini’s Theorem gives

τ�(E) =
∫
(R1,R2)

L(Er) dτ #(r), E ∈ Bc(A
�).
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For example, if E = (a, b) × (θ1, θ2) is a rectangle in A�, then

τ�(E) = (θ2 − θ1)τ
#((a, b)

)
.

In the formation of μ� the mass η# on the negative axis has been ignored,
for reasons that will become clear below.

Take G ∈ Cc(A�). Define g = JtG. The definition of Jt implies that g = 0
on the negative x1 axis. Write (G,μ�) = ∫

A� G dμ�. Then (G,μ�) = (G, f �)+
(G, τ�). Now,

(G, f �) = (G, Jf #) = (JtG, f #) = (g, f #).

Also, if G(r, θ) is the characteristic function of a rectangle (a, b) × (θ1, θ2) in
A� then g(re1) = (θ2 − θ1)χ(a,b)(r) and we have

(G, τ�) = (θ2 − θ1)τ
#((a, b)

) = (g, τ #).

By the theory of product measures, it follows that (G, τ�) = (g, τ #) for all
G ∈ Cc(A�), where g = JtG. From the last several identities, we conclude
that (G,μ�) = (g, f #) + (g, τ #). Furthermore, since g vanishes on the part of
A along the negative x1 axis, we have (g, η#) = 0. Subtracting this from the
previous identity, we conclude that∫

A�
G dμ� =

∫
A

g dμ# (9.38)

holds for all G ∈ Cc(A�) and g = JtG.
Let now F ∈ L1

loc(A
�) and ν ∈ Mloc(A�). We say that the differential

inequality

−��F ≤ ν

holds in the weak sense, or in the sense of distributions, if

−
∫

A�
F��tG drdθ ≤

∫
A�

G dν

for all nonnegative G ∈ C2
c (A

�). For example, if F ∈ C2(A�), H ∈ L1
loc(A

�),
and −��F ≤ H holds at every point of A�, so that the inequality holds in the
strong or classical sense, then the inequality also holds in the weak sense due
to the adjoint property (9.30) for the differential operator.

Here, finally, is our “subharmonicity result.”

Theorem 9.9 (Subharmonicity property of the �-function on shells) If u ∈
W(A) satisfies

−�u = φ(r, u) + μ
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in the weak sense in A, where φ : (R1, R2)×R → R is continuous with φ(r, u)
locally integrable on A and μ ∈ Mloc(A), then

−��u� ≤ Jφ(r, u#) + μ�

in the weak sense in the rectangle A�.

When we write Jφ(r, u#) in the theorem, we mean the J-operator applied to
the function φ(r, u#) ∈ L1

loc(A).

Proof Let g = JtG and combine (9.36), (9.26) and (9.38) with Theorem 9.7
(pre-subharmonicity). To apply Theorem 9.7, note that g = g#, and also G ≥ 0
implies g ≥ 0 in A. Also, the compact support of G in A� insures that g is
compactly supported in A, that g is independent of θ when θ is near 0, and
that g equals zero when θ is close to π . These last facts and the hypothesis
G ∈ C2

c (A
�) make it easy to show g ∈ C2

c (A).

The next corollaries remind us of the origins of the star function in the
complex plane, and provide a foundation for Chapter 11.

Corollary 9.10 (Subharmonicity of the �-function in the plane) If n = 2 and
u ∈ L1

loc(A) satisfies

�u ≥ 0

in the weak sense in an annulus A ⊂ C, then

�(u�/r) ≥ 0

in the weak sense in the upper half annulus. In other words, if u is subharmonic
then so is u�/r.

Remember that in the plane, the definition (9.24) of the �-function gives
u�(r, θ)/r = sup|E|=2θ

∫
E u(reiψ) dψ .

Proof Let φ ≡ 0. Define μ = −�u, so that μ ≤ 0 is a measure as explained
in §9.2. Clearly f ≤ 0 and τ = 0 in the decomposition (9.9) of μ, and so the
definition (9.37) gives μ� ≤ 0. Now the corollary follows immediately from
Theorem 9.9 and the relation (9.29) between �� and �.

Corollary 9.11 (Log of a meromorphic function) If f (z) is meromorphic in a
punctured disk D(R)\{0}, and has poles {bk} there listed with multiplicity, then

�
(
(log | f |)�/r

) ≥ −2π
∑

k

sk

|bk|

in the upper half disk, where sk is arclength measure on the circle of radius |bk|.
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The conclusion of the corollary means that if η is a nonnegative test function
supported in the upper half disk D

+(R) then∫
D+(R)

(
(log | f |)�/r

)
(�η) r drdθ ≥ −2π

∑
k

∫ π

0
η(|bk|eiθ ) dθ . (9.39)

Proof Let

μ = −�(log | f |) = 2π
∑

k

δbk − 2π
∑

j

δaj

where the {aj} are the zeros of f . The construction of μ� in (9.37) gives

μ� = 2π
∑

k

(δbk)
� = 2π

∑
k

μk

where μk is Lebesgue measure along the vertical line r = |bk| in the rθ -plane.
Hence Theorem 9.9 with φ ≡ 0 says

��(log | f |)� ≥ −2π
∑

k

μk

in the weak sense in the rectangle (0, R) × (0,π). Applying this differential
inequality to the test function η(reiθ ), where η(z) is nonnegative, smooth, and
supported in the upper half disk, gives that∫ π

0

∫ R

0
(log | f |)���t(η(reiθ )

)
drdθ ≥ −2π

∑
k

∫ π

0
η(|bk|eiθ ) dθ .

In 2 dimensions ��t = �, by definition (9.28), and so multiplying and
dividing by r to get r drdθ in the last formula gives the conclusion (9.39) that
we wanted.

9.7 The �-Function on the Sphere

In this section, unless otherwise indicated, # will denote symmetric decreasing
rearrangement on S

n, with n ≥ 1. Our aim is to introduce the star function in
this setting, and to deduce analogues of Theorems 9.7 and 9.9 by extending the
functions from a sphere to a shell. We shall write L1(Sn) = L1(Sn, σn), and

( f , g) =
∫
Sn

fg dσn,

whenever the integral exists. We shall also write

( f ,μ) =
∫
Sn

f dμ
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when μ ∈ M(Sn), the set of real-valued (signed finite) regular Borel measures
on S

n, and f is such that the integral exists. Recall �s is the spherical Laplacian,
defined in §7.2.

Denote by W(Sn) the set of u ∈ L1(Sn) for which the distributional spherical
Laplacian �su can be represented by a (signed) measure. We say −�su = μ

in the weak sense on S
n (for given μ ∈ M(Sn)) if

−(u,�sg) = (g,μ), ∀ g ∈ C2(Sn).

More generally, if φ is continuous and φ(u) is integrable then we say

−�su = φ(u) + μ

in the weak sense if

−(u,�sg) = (φ(u), g) + (g,μ), ∀ g ∈ C2(Sn).

Construct the measure μ# as follows. Let dμ = f dσn + dτ − dη be the
Jordan–Lebesgue decomposition of μ, where f ∈ L1(Sn), and τ and η are
nonnegative Borel measures on S

n singular with respect to σn and each other.
Define μ# ∈ M(Sn) by

dμ# = f # dσn + dτ # − dη#

where τ # = τ(Sn)δe1 and η# = η(Sn)δ−e1 .
The following pre-subharmonicity theorem says −�s(u#) ≤ φ(u#) + μ#

weakly when restricted to symmetric decreasing, nonnegative test functions
on the sphere.

Theorem 9.12 (Pre-subharmonicity theorem for s.d.r. on S
n) Assume u ∈

W(Sn) satisfies −�su = φ(u)+μ in the weak sense on S
n, where φ : R → R

is continuous with φ(u) integrable on S
n and μ ∈ M(Sn).

If g ∈ C2(Sn) is nonnegative with g = g# then

−
∫
Sn

u#�sg dσn ≤
∫
Sn

φ(u#)g dσn +
∫
Sn

g dμ#.

Proof We shall deduce Theorem 9.12 from the shell theorem, Theorem 9.7.
Fix R1, R2 with 0 < R1 < 1 < R2 < ∞. Write A = {x ∈ R

n+1 : R1 < |x| <
R2}. We extend the functions and measures to A as follows: for x ∈ S

n, r ∈
(R1, R2), let

ũ(rx) = u(x), φ̃(r, z) = r−2φ(z),

f̃ (rx) = r−2f (x), dτ̃ = rn−2 dr dτ(x), dη̃ = rn−2 dr dη(x),

dμ̃ = f̃ dLn+1 + dτ̃ − dη̃.
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We claim that the extended function satisfies

− �̃u = φ̃(r, ũ) + μ̃ (9.40)

in A, in the weak sense. Indeed, multiplying each term on the right by a test
function g̃ ∈ C2

c (A) and integrating in spherical coordinates shows that∫
A
φ̃(r, ũ)̃g dLn+1 =

∫ R2

R1

∫
Sn

φ(u)̃g(rx) dσn(x) rn−2 dr,∫
A

g̃ dμ̃ =
∫ R2

R1

∫
Sn

g̃(rx) dμ(x) rn−2 dr.

For the left side, we observe in spherical coordinates that∫
A

ũ�̃g dLn+1 =
∫ R2

R1

∫
Sn

u(x)
[ ∂
∂r

(
rn ∂ g̃

∂r

)
+ rn−2�s̃g(rx)

]
dσn(x) dr,

=
∫ R2

R1

∫
Sn

u(x)�s̃g(rx) dσn(x) rn−2 dr,

where we eliminated the first part of the integrand by integrating with respect
to r and using the compact support of g̃. Since for each r the function x →
g̃(rx) is a C2-smooth test function on the sphere, we may add the last three
displayed equations and use the assumption −�su = φ(u)+μ on S

n to arrive
at (9.40).

The shell pre-subharmonicity result, Theorem 9.7, now implies that if g̃ ≥ 0
and g̃ = g̃# then

−
∫

A
ũ#�̃g dLn+1 ≤

∫
A
φ̃(r, ũ#)̃g dLn+1 +

∫
A

g̃ dμ̃#,

where the #′s for all objects defined on A denote (n, n+1)-cap symmetrization.
Consider a test function in separated form, g̃(rx) = ψ(r)g(x), where

ψ ∈ C2
c (R1, R2) is a nonnegative function satisfying

∫ R2
R1

ψ(r)rn−2 dr = 1 and

g ∈ C2(Sn) is nonnegative with g = g# on S
n. Then g̃ ≥ 0 and g̃ = g̃# on

A. Substituting g̃ into the preceding displayed formula gives (after calculations
similar to those done already) that

−
∫
Sn

u#�sg dσn ≤
∫
Sn

φ(u#)g dσn +
∫
Sn

g dμ#,

which proves the theorem.

Next come the definitions of the �-function and associated objects on the
sphere:
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Ju(θ) =
∫
K(θ)

u dσn, θ ∈ [0,π ], u ∈ L1(Sn),

JtF(x) =
∫ π

θ

F(ϕ) dϕ, x ∈ S
n, x · e1 = cos θ , F ∈ L1[0,π ],

u�(θ) = Ju#(θ) = sup
E

∫
E

u dσn,

where the sup is taken over all Borel E ⊂ S
n with σn(E) = σn(K(θ)). The

adjoint relation on the sphere (proved like (9.26) for shells) says

(Ju, G) = (u, JtG) (9.41)

for u ∈ L1(Sn) and G ∈ L∞
c (0,π).

Define differential operators

��
sF(θ) = F′′(θ) − (n − 1) (cot θ)F′(θ),

��t
s F(θ) = F′′(θ) + (n − 1) (cot θ)F′(θ) − (n − 1)(csc2 θ)F(θ),

for F ∈ C2(0,π). The operator ��t
s is the adjoint of ��

s with respect to dθ on
(0,π). The Weak Main Identity on S

n says∫ π

0
Jv ��t

s G dθ =
∫
Sn

v�sg dσn (9.42)

for all v ∈ L1(Sn) and G ∈ C2
c (0,π), and choosing v = u# with u ∈ L1(Sn)

implies ∫ π

0
u� ��t

s G dθ =
∫
Sn

u#�sg dσn. (9.43)

Note that (9.42) is the S
n version of identity (9.35), and can be proved

analogously or else deduced from that identity by homogeneous extension
as used earlier in this section (the appropriate extension of G is G̃(r,ϕ) =
ψ(r)G(ϕ)).

For μ ∈ M(Sn) with Jordan–Lebesgue decomposition dμ = f dσn+dτ−dη,
define μ� ∈ M

(
(0,π)

)
by

dμ� = f � dθ + τ(Sn) dθ .

Remember that all “starred” objects live on the interval (Sn)� = (0,π).

Theorem 9.13 (Subharmonicity property of the �-function on S
n) If u ∈

W(Sn) satisfies

−�su = φ(u) + μ

in the weak sense on S
n, where φ : R → R is continuous with φ(u) integrable

on S
n and μ ∈ M(Sn), then
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−��
su

� ≤ Jφ(u#) + μ�

in the weak sense on (0,π).

Spelled out, the conclusion of the theorem says that

−
∫ π

0
u���t

s G dθ ≤
∫ π

0
Jφ(u#)G dθ +

∫ π

0
G dμ� (9.44)

for every nonnegative G ∈ C2
c (0,π).

Proof Given a nonnegative G ∈ C2
c (0,π), set g = JtG. Then g = g# and g

is nonnegative, with g ∈ C2(Sn) by construction (since the compact support
of G insures g is constant on a small neighborhood of e1, and on a small
neighborhood of −e1). Moreover, we have the identities∫ π

0
u���t

s G dθ =
∫
Sn

u#�sg dσn,∫ π

0
Jφ(u#)G dθ =

∫
Sn

φ(u#)g dσn,∫ π

0
G dμ� =

∫
Sn

g dμ#,

by (9.43), (9.41), and an S
n version of (9.38) (which can be deduced from

(9.38) by extension, as above). The desired inequality (9.44) now follows from
the pre-subharmonicity result in Theorem 9.12.

Alternatively, one may deduce (9.44) by directly applying the shell subhar-
monicity result Theorem 9.9 to the homogeneous extension of u.

9.8 The �-Function for Cap Symmetrization
on Ring-Type Domains

The setting here is that of Chapter 7. Thus, we fix n ≥ 3 and 1 ≤ k ≤ n−2. For
x ∈ R

n, write x = (w, z), where w ∈ R
k+1, z ∈ R

m−1, and k + m = n. Let X
be an open subset of Rn, and let Z be the set of all z ∈ R

m−1 such that the slice
X(z) ⊂ R

k+1 is nonempty. Recall X is ring-type if, for each z ∈ Z, X(z) equals
a union of open shells in R

k+1. That is, for each z ∈ Z there is a nonempty
open set B(z) ⊂ R

+ such that

X = {(ry, z) ∈ R
n : r ∈ B(z), y ∈ S

k, z ∈ Z}.
Example 9.14 In 3 dimensions, an open set that is rotationally symmetric
about the z-axis is ring-type.

In this section, X will always be ring-type.
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If u : X → R is Ln-measurable, then for z ∈ Z we can consider the slice
function uz : X(z) → R. The (k, n)-cap symmetrization u# of u is defined to
be the function on X obtained by performing a (k, k + 1) symmetrization of
uz for each z ∈ Z. In this section, # denotes (k, n)-cap symmetrization, unless
otherwise indicated.

Next, take μ ∈ Mloc(X), with Jordan–Lebesgue decomposition

dμ = f dLn + dτ − dη, (9.45)

where f ∈ L1
loc(X), and τ and η are (nonnegative) Radon measures on X

singular with respect to each other and to Ln.
For x = (w, z) ∈ R

n, write x = (ry, z), where y ∈ S
k, r ≥ 0. Define a map

P : X → X by P(x) = (re1, z), where e1 denotes the first coordinate vector
in R

k+1. For each fixed z, P is the spherical projection map of Rk+1 onto the
positive x1-axis of Rk+1. The image set PX of X by P is

PX = {(r, 0, . . . , 0, z) ∈ R
n : r ∈ B(z), z ∈ Z},

where there are k zeros following the r. Note that PX ⊂ X.
Define the Radon measure τ # ∈ Mloc(PX) to be the measure induced by P

and τ . That is,

τ #(E) = τ(P−1E)

for E ∈ Bc(PX). Extend the measure to R
n \ PX by defining τ #(E) = 0

whenever E ∩ PX is empty. Thus, τ # is the measure obtained from τ by
sweeping all the mass to the positive x1-axis within each z-slice.

If μ ∈ Mloc(X) has the decomposition (9.45), define the symmetrized
measure μ# ∈ Mloc(X) to be

dμ# = f #dLn + dτ # − dη#, (9.46)

with η#(E) ≡ η#(E′), where E′ = {(−w, z) ∈ X : (w, z) ∈ E}.
Write � for the Euclidean Laplacian on R

n. Let u ∈ W(X). Given a
continuous real-valued function φ of three variables such that φ(r, z, u) is
locally integrable, we say

−�u = φ(r, z, u) + μ

in the weak sense if

−
∫

X
u�g dLn =

∫
X
φ(r, z, u)g dLn +

∫
X

g dμ

for every g ∈ C2
c (X).
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Theorem 9.15 (Pre-subharmonicity theorem for (k, n)-cap symmetrization)
Assume u ∈ W(X) satisfies −�u = φ(r, z, u) + μ in the weak sense in X,
where φ : R+ × Z ×R → R is continuous with φ(r, z, u) locally integrable on
X and μ ∈ Mloc(X).

If g ∈ C2
c (X) is nonnegative with g = g# then

−
∫

X
u#�g dLn ≤

∫
X
φ(r, z, u#)g dLn +

∫
X

g dμ#.

Proof The proof of the (n−1, n) case in Theorem 9.7 works here too. We just
have to throw in some z-integrals. The main ingredient in the proof of Theorem
9.7 is a Riesz-type convolution inequality, and the reference given there for the
(n − 1, n)-inequality covers the (k, n) case as well.

Here is the resulting subharmonicity theorem, generalizing the (n − 1, n)
case in Theorem 9.9:

Theorem 9.16 (Subharmonicity property of the �-function for (k, n)-cap
symmetrization) Let u,φ and μ be as in Theorem 9.15. Then −��u� ≤
Jφ(r, z, u#) + μ� in the weak sense on X�.

Proof We shall define X�, u�, etc., in the remainder of the section, and will
leave it to the reader to verify that the proof of Theorem 9.9 carries over to the
(k, n) case when 1 ≤ k ≤ n − 2.

Recall that X can be written as X = {(ry, z) ∈ R
n : r ∈ B(z), y ∈ S

k, z ∈ Z},
where B(z) is a nonempty open subset of R+. Define

X� ≡ {(r, θ , z) : r ∈ B(z), θ ∈ (0,π), z ∈ Z} ⊂ R
m+1.

Define the operator J : L1
loc(X) → L1

loc(X
�) by

Ju(r, θ , z) ≡
∫
K(θ)

u(ry, z) rk dσk(y),

where K(θ) is the spherical cap on S
k with center e1, opening θ . The term

Jφ(r, z, u#) in the theorem means we apply the J-operator to the function
φ(r, z, u#) ∈ L1

loc(X).
If f and g are functions on X for which fg ∈ L1(X,Ln), write

( f , g) =
∫

X
fg dLn.

If F and G are functions on X� for which FG ∈ L1(X�, drdθdLm−1), write

(F, G) =
∫

X�
F(r, θ , z)G(r, θ , z) drdθdLm−1(z).
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It will be clear from context whether (·, ·) refers to integration over X or
over X�.

Define a “transpose” operator

Jt : L1
loc(X

�, drdθdLm−1) → L1
loc(X,Ln)

by

JtF(ry, z) =
∫ π

θ

F(r,ϕ, z) dϕ, r ∈ B(z), y ∈ S
k,

where θ ∈ (0,π) and y are related by y · e1 = cos θ . Then

(Jf , G) = ( f , JtG),

if, for example f ∈ L1
loc(X) and G ∈ L∞

c (X�).
If a function u on X depends only on r, θ and z, then its n-dimensional

(Euclidean) Laplacian is given by

�u = r−k∂r(r
k∂ru) + r−2(sin1−k θ) ∂θ (sink−1 θ ∂θu) + �zu

= ∂rru + k

r
∂ru + r−2[∂θθu + (k − 1) cot θ ∂θu] + �zu,

where �zu = ∑m−1
i=1 ∂zizi u is the Laplacian on R

m−1. For k = 1 the formula
simplifies to

�u = r−1∂r(r∂ru) + r−2∂θθu + �zu

= ∂rru + r−1∂ru + r−2∂θθu + �zf .

Define operators �� and ��t acting on C2(X�) by

��F = ∂r
(
rk∂r(r

−kF)
) + r−2 sink−1 θ ∂θ (sin1−k θ ∂θF) + �zF

= ∂rrF − k

r
∂rF + k

r2
F + r−2[∂θθF − (k − 1) cot θ ∂θF] + �zF,

��tF = r−k∂r(r
k∂rF) + r−2∂θ [sin1−k θ ∂θ (sink−1 θ F)] + �zF

= ∂rrF + k

r
∂rF + r−2[∂θθF + (k − 1) cot θ ∂θF − (k − 1) csc2 θ F]

+ �zF.

For k = 1, the expressions above reduce to

��F = ∂r
(
r∂r(r

−1F)
) + r−2∂θθF + �zF

= ∂rrF − 1

r
∂rF + 1

r2
F + r−2∂θθF + �zF,

��tF = r−1∂r(r∂rF) + r−2∂θθF + �zF

= ∂rrF + 1

r
∂rF + r−2∂θθF + �zF.
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In all dimensions, integration by parts and Fubini’s Theorem show that if
F ∈ C2(X�), G ∈ C2

c (X
�) then

(��F, G) = (F,��tG),

so that ��t is the adjoint of �� on X�, with respect to the measure drdθdLm−1.
The Main Identity ��Ju = J�u and its adjoint form Jt��tG = �JtG and

weak form (Jv,��tG) = (v,�g) (where g = JtG) all follow easily from the
corresponding formulas in §9.6 for cap symmetrization on shells.

For u ∈ L1
loc(X), define the function u� on X� by

u�(r, θ , z) = Ju#(r, θ , z) = sup
∫

E
u(ry, z) rk dσk(y),

where the sup is taken over all Borel measurable E ⊂ S
k with σk(E) =

σk(K(θ)).
Suppose that μ ∈ Mloc(X) has Jordan–Lebesgue decomposition

dμ = f dLn + dτ − dη,

where f ∈ L1
loc(X), and τ and η are (nonnegative) Radon measures on X

singular with respect to each other and to Ln. The symmetrized measure
dμ# = f # dLn + dτ # − dη# was defined in (9.46).

We can view τ # as a measure on PX and can view the set X� as PX × (0,π).
Define τ� to be the product measure τ # × L|(0,π), where the subscript denotes
restriction. Then τ� ∈ Mloc(X�), and Fubini’s Theorem gives

τ�(E) =
∫

PX
L(Er,z) dτ #(r, z), E ∈ Bc(X

�),

with Er,z = {θ ∈ (0,π) : (r, θ , z) ∈ E}. For example, if E = (a, b) × (θ1, θ2) ×
E1 is a rectangular box in X�, where E1 ∈ B(Rm−1), then

τ�(E) = (θ2 − θ1)

∫
E1

∫
(a,b)

dτ #(r, z).

Define

dμ� = f � drdθdLm−1 + dτ�.

All objects relevant to the �-function for (k, n)-cap symmetrization have now
been defined, and we take Theorems 9.15 and 9.16 to be proved.

9.9 Pre-Subharmonicity Theorem for s.d.r.
on Euclidean Domains

In this section # will denote symmetric decreasing rearrangement on a
nonempty open set � ⊂ R

n. Thus �# equals Bn(0, R), the open ball centered
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at 0 having radius R ∈ (0, ∞] determined by the requirement that �# and �

have the same volume: αnRn = Ln(�#) = Ln(�).
A function u : � → R is said to satisfy Condition B if∫

�

(u − t)+ dLn < ∞ ∀ t > ess inf� u.

If u satisfies Condition B then u < ∞ Ln-a.e. and u satisfies the finiteness
condition Ln(u > t) < ∞ for all t > ess inf� u, so that u# is well-defined and
finite everywhere on �#, except perhaps at x = 0. Furthermore,∫

�#
(u# − t)+ dLn < ∞ ∀ t > ess inf�# u#.

Hence (u# − t)+ is integrable over each compact set in �#, and so u# ∈
L1

loc(�
#). The converse holds too: if u# ∈ L1

loc(�
#) then u satisfies Condition B.

Condition B holds in particular if u is integrable and � has finite measure,
since (u − t)+ ≤ |u| + |t|.

Our aim in this section is to obtain “pre-subharmonicity inequalities” for u#

which, for appropriate u, run parallel to the cap results in Theorems 9.7 and
9.15. These inequalities will require more assumptions on u and φ than were
necessary for cap symmetrization on shells and ring-type domains, because the
Dirichlet boundary condition on ∂� will necessitate a certain perturbation step
in the proof.

Consider μ ∈ Mloc(�), with Jordan–Lebesgue decomposition

dμ = f dLn + dτ − dη, (9.47)

where f ∈ L1
loc(�), and τ and η are nonnegative locally finite measures on �

which are singular with respect to Ln and to each other.

Definition 9.17 Supposing in (9.47) that f satisfies Condition B and
τ(�) < ∞, we define μ# ∈ Mloc(�

#) by

dμ# = f # dLn + dτ #, (9.48)

where τ # = τ(�)δ0.

To verify that μ# belongs to Mloc(�
#), recall f satisfies Condition B if and

only if f # ∈ L1
loc(�

#), while the point mass τ # belongs to Mloc(�
#) since

τ(�) < ∞.
The mass η has been discarded in Definition (9.48). There exist alternative

definitions of μ# that would take η into account, but we will not pursue them.
If τ(�) = ∞ or if f # does not satisfy Condition B then μ# is left undefined.
Recall from §9.2 that W(�) is the set of all u ∈ L1

loc(�) for which the
distributional Laplacian �u is a locally finite measure. Given a continuous
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real-valued function φ on R such that φ(u) is locally integrable, and given a
measure μ ∈ Mloc(�), we say

−�u = φ(u) + μ

in the weak (or distributional) sense if

−
∫
�

u�g dLn =
∫
�

φ(u)g dLn +
∫
�

g dμ

for every g ∈ C2
c (X).

Now we can state the pre-subharmonicity theorem for symmetric decreasing
rearrangement on �, which says −�(u#) ≤ φ(u#) + μ# weakly with respect
to symmetric decreasing test functions. One of the hypotheses involves the
maximum of |φ| over nearby points, which is defined for κ > 0 by

Mκφ(ω) = max
|ω̃−ω|≤κ

|φ(ω̃)|, ω ∈ R.

Theorem 9.18 (Pre-subharmonicity theorem for s.d.r.) Let u ∈ W(�) satisfy

u ≥ 0 in �

and the Dirichlet boundary condition

lim
x→x0, x∈�

u(x) = 0, ∀x0 ∈ ∂�. (9.49)

Suppose

−�u = φ(u) + μ

in the weak sense in �, where φ : R → R is continuous, φ(u) is locally
integrable, f in decomposition (9.47) satisfies Condition B, and τ(�) < ∞.
If either

(i) u > 0 in �, or
(ii) Mκφ

(
u(x)

)
is locally integrable on �, for some κ > 0,

then u satisfies Condition B on � and

−
∫
�#

u#�g dLn ≤
∫
�#

φ(u#)g dLn +
∫
�#

g dμ# (9.50)

whenever g ∈ C2
c (�

#) is nonnegative and symmetric decreasing in �#.

When � is unbounded, ∞ is regarded as a boundary point of � for the
purposes of (9.49). For the conclusion (9.50), the measure μ# was defined
in (9.48).
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Condition (ii) in the theorem is satisfied if |φ(ω)| is bounded or grows
polynomially or exponentially as ω → ∞ (using here that φ(u) is assumed
already to be locally integrable). Condition (ii) also holds if φ(ω) is convex
decreasing, since in that case |φ(ω)| = O(ω) as ω → ∞.

Proof of Theorem 9.18 The Dirichlet boundary condition u(x)→ 0 as
x → ∂� implies that the set (u > γ ) has compact closure in �, for each
γ > 0. Since u ∈ L1

loc(�) by the definition of W , and since ess inf u = 0, it
follows that u satisfies Condition B on �. Hence u# is locally integrable. Write

a = Ln(g > 0), b = Ln(�) = Ln(�#).

Then 0 ≤ a < b ≤ ∞.
The theorem will be proved in six steps. First assume Condition (i), meaning

u is positive and so the set (u > γ ) expands to fill � as γ ↘ 0.

Step 1: (Rearranging u) Let ψ : � → R
+ be a function with no flat spots.

Define T : � → [0, b] by

T(x) = Ln({y ∈ � : u(y) > u(x)})
+ Ln({y ∈ � : u(y) = u(x) and ψ(y) > ψ(x)}).

Notice T(x) < b for all x ∈ �, since the set {y ∈ � : u(y) ≥ u(x) > 0} has
compact closure in � (using here the positivity assumption on u(x)). A short
argument using Proposition 1.26 implies that T is a measure preserving map
of � onto [0, b), and that

u = u∗ ◦ T

holds Ln-a.e. in �. Here ∗ denotes decreasing rearrangement.

Step 2: (Rearranging g to define a compactly supported h in �) Define h : � →
R

+ by

h = g∗ ◦ T .

Then h and g are equidistributed, so that h# = g# = g. Moreover, h is bounded
and nonnegative, since g is.

Since E = (u > γ ) expands to fill � as γ ↘ 0, we may choose γ > 0 small
enough that

Ln(E) > a.

Take x ∈ � \ E, so that u(x) ≤ γ and hence (u > u(x)) ⊃ E and so

T(x) ≥ Ln(u > u(x)) ≥ Ln(E) > a.
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Since g is symmetric decreasing, g∗(t) = 0 for all t > a. Thus,

h(x) = g∗(T(x)) = 0 ∀ x ∈ � \ E,

and because E ⊂⊂ � we deduce that h has compact support.
Since u is locally integrable and h is bounded with compact support,∫
�

uh dLn =
∫
�

(u∗ ◦ T)(g∗ ◦ T) dLn =
∫ b

0
u∗g∗ dL =

∫
�#

u#g dLn (9.51)

(using g = g# in the last step), and all these integrals are finite. Similarly,∫
�

φ(u)h dLn =
∫
�#

φ(u#)g dLn. (9.52)

Step 3: (Convolution inequalities) Let K be a nonnegative symmetric decreas-
ing smooth bump function supported in the unit ball of R

n with
∫
Rn K(x)

dx = 1. Write

K0(t) = K(te1), t ≥ 0.

Then

βn−1

∫ ∞

0
tn−1K0(t) dt = 1.

Set u and h equal to zero outside �, and u# and g equal to zero outside �#.
For functions f1, f2 on R

n, write

( f1, f2) =
∫
Rn

f1(x)f2(x) dLn.

Then (u, h) = (u#, g), by (9.51). We will show that

(u#, Kε ∗ g − g) = (u#, Kε ∗ g) − (u#, g)

≥ (u, Kε ∗ h) − (u, h)

= (u ∗ Kε , h) − (u, h) = (Kε ∗ u − u, h). (9.53)

The first and last equalities are obvious. The middle inequality follows from
the Riesz rearrangement inequality on R

n (Theorem 8.4 or Corollary 2.19),
since g = h#. As for the first equality in (9.53), for general functions f1, f2, f3,
the correct relation is ( f1, f2 ∗ f3) = ( f1 ∗ f̃2, f3), where f̃2(x) = f2(−x). In the
case at hand we may take f2 = Kε , so that the second equality holds as stated,
since Kε = K̃ε .

This application of Riesz rearrangement is the central step of the proof,
because inequality (9.53) and Lemma 9.6 will imply a suitable integral
inequality between �(u#) and �u, as we proceed to show.
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If g ≡ 0 then the conclusion of Theorem 9.18 is true. Assume from now on
that g �≡ 0. Assume ε > 0 is so small that

ε <
1

2
dist(supp g, ∂�#) and ε <

1

2
dist(supp h, ∂�). (9.54)

From (9.53) we have

(u#, Kε ∗ g − g) ≥ (h, Kε ∗ u − u). (9.55)

Next we find formulas for each side of (9.55).
By (9.54), if x ∈ supp h then dist(x, ∂�) > ε. For such x, the formula

− �u = φ(u) + μ (9.56)

(which holds weakly in �) and Lemma 9.6 together tell us that

ε−2[Kε∗u(x)−u(x)] = −
∫
�

Lε(x−y)φ(u(y)) dy−
∫
�

Lε(x−y) dμ(y), (9.57)

where L is a certain smooth nonnegative symmetric decreasing function on
R

n, supported in the unit ball and determined by K. Multiplying by h(x) and
integrating over � gives

ε−2(h, Kε ∗ u − u) = −
∫
�

(h ∗ Lε)(y)φ(u) dy −
∫
�

(h ∗ Lε)(y) dμ(y). (9.58)

If x ∈ supp(Kε ∗ g − g) then dist(x, ∂�#) > ε, by (9.54). For such x, Lemma
9.6 tells us

ε−2[Kε ∗ g(x) − g(x)] =
∫
�#

Lε(x − y)�g(y) dy.

Multiplying by u#(x) and integrating over �#, we obtain

ε−2(u#, Kε ∗ g − g) =
∫
�#

u#(x)(Lε ∗ �g)(x) dx. (9.59)

Substituting (9.58) and (9.59) into (9.55), we find∫
�#

u#(x)(Lε ∗ �g)(x) dx ≥ −
∫
�

(h ∗ Lε)(y)φ(u) dy −
∫
�

(h ∗ Lε)(y) dμ(y).

(9.60)
The remainder of the proof will evaluate the limit of these expressions as
ε → 0.

Step 4: (Handling the L-integrals) Recall μ ∈ Mloc(�) has Jordan–Lebesgue
decomposition

dμ = f dLn + dτ − dη.



9.9 Pre-Subharmonicity for s.d.r. on Euclidean Domains 337

Since h, Lε and η are nonnegative, it follows that∫
�

(h ∗ Lε)(y) dμ(y) ≤
∫
�

(h ∗ Lε)(y)f (y) dy +
∫
�

(h ∗ Lε)(y) dτ(y). (9.61)

The first term on the right side of (9.61) is estimated in the next step of the
proof, where we obtain that∫

�

(h ∗ Lε)(y)f (y) dy ≤
∫
�#

(g ∗ Lε)(y)f
#(y) dy. (9.62)

Let us assume (9.62) for now.
Recall the constant CK = ∫

Rn L(x) dLn(x), as defined before the statement
of Lemma 9.6 in §9.4. For the second term on the right of (9.61), one finds∫

�

(h ∗ Lε)(y) dτ(y) ≤ CK(max g)τ (�) = CK

∫
�#

g dτ #,

where the last step uses that g = g# attains its maximum at the origin and the
measure τ # is concentrated at the origin.

Then, from the estimates starting with (9.60), we have∫
�#

u#(x)(Lε ∗ �g)(x) dx (9.63)

≥ −
∫
�

(h ∗ Lε)(y)φ(u) dy −
∫
�#

(g ∗ Lε)(y)f
#(y) dy − CK

∫
�#

g dτ #

when ε satisfies (9.54). From the uniform continuity and compact support of
�g, it easily follows that limε→0 Lε ∗ �g = CK�g pointwise, and in fact
uniformly. Thus,

lim
ε→0

∫
�#

u#(x)(Lε ∗ �g)(x) dx = CK

∫
�#

u#�g dLn. (9.64)

By hypothesis, f satisfies Condition B in �. Thus, f # ∈ L1
loc(�

#). By the same
argument as in (9.64), we have

lim
ε→0

∫
�#

(g ∗ Lε)(y)f
#(y) dy = CK

∫
�#

gf # dLn.

Meanwhile, φ(u) ∈ L1
loc(�) and h is bounded with compact support, and so

by dominated convergence and (9.52),

lim
ε→0

∫
�

(h∗Lε)(y)φ(u) dy = CK

∫
�

hφ(u) dLn = CK

∫
�#

gφ(u#) dLn. (9.65)
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Combining (9.63)–(9.65), it follows that∫
�#

u#�g dLn ≥ −
∫
�#

gφ(u#) dLn −
∫
�#

gf # dLn −
∫
�#

g dτ #

= −
∫
�#

gφ(u#) dLn −
∫
�#

g dμ#,
(9.66)

as claimed in the theorem. It remains to prove (9.62).

Step 5: (Proof of (9.62)) We prove that if ε satisfies (9.54) then∫
�×�

h(x)Lε(x − y) f (y) dy dx ≤
∫
�#×�#

g(x)Lε(x − y) f #(y) dy dx.

Earlier, we extended h to R
n by setting h = 0 outside �. If also f ≥ 0, then

extend f to R
n by setting f = 0 outside �. Then the s.d.r. f # on �#, viewing

f as a function on �, coincides with the restriction of f # to �#, viewing f as a
function on R

n. The same holds for h, and we recall that h# = g.
Now we use again the Riesz rearrangement inequality for R

n, in
Theorem 8.4 or Corollary 2.19, which gives∫

�×�

h(x)Lε(x − y) f (y) dy dx =
∫
Rn×Rn

h(x)Lε(x − y) f (y) dy dx

≤
∫
Rn×Rn

h#(x)Lε(x − y) f #(y) dy dx

=
∫
�#×�#

g(x)Lε(x − y) f #(y) dy dx.

This confirms (9.62) when f ≥ 0.
Next we extend to general f , by a standard approximation process. For

integers k ≥ 1, define fk on � by fk = max{ f , −k}. Then fk + k ≥ 0 on �, so
by the case just proved,∫
�×�

h(x)Lε(x − y) [fk(y) +k] dy dx ≤
∫
�#×�#

g(x)Lε(x − y) [f #
k (y) +k] dy dx.

(9.67)

Here f #
k is the s.d.r. of fk viewed as a function on �.

Since ε satisfies (9.54), we have∫
�×�

h(x)Lε(x − y) dy dx = CK

∫
�

h(x) dx,∫
�#×�#

g(x)Lε(x − y) dy dx = CK

∫
�#

g(x) dx.

The integrals of h and g agree since h# = g, and so we conclude that∫
�×�

h(x)Lε(x − y) dy dx =
∫
�#×�#

g(x)Lε(x − y) dy dx,
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which, with (9.67), implies∫
�×�

h(x)Lε(x − y) fk(y) dy dx ≤
∫
�#×�#

g(x)Lε(x − y) f #
k (y) dy dx. (9.68)

It remains to let k → ∞. Let

A(ε) = {(x, y) ∈ � × � : x ∈ supp h, |x − y| ≤ ε}.
Then A(ε) is a compact subset of � × �, and∫

�×�

h(x)Lε(x − y)fk(y) dy dx =
∫

A(ε)
h(x)Lε(x − y)fk(y) dy dx. (9.69)

The functions h and Lε are nonnegative and bounded, and h has compact
support in � by Step 2, while f is locally integrable. It easily follows that
h(x)Lε(x − y)f ±(y) is in L1(A(ε), dL2n). As k → ∞ the sequence { fk}
decreases to f pointwise in �, so the sequence h(x)Lε(x − y)fk(y) decreases
pointwise to h(x)Lε(x−y)f (y) on A(ε). By the monotone convergence theorem
applied to the sequence

{h(x)Lε(x − y)( f +(y) − fk(y))}k≥1,

on A(ε), and using (9.69), we obtain

lim
k→∞

∫
�×�

h(x)Lε(x − y) fk(y) dy dx =
∫
�×�

h(x)Lε(x − y) f (y) dy dx.

A similar argument, using the fact that f #
k ↘ f #, shows that, when ε satisfies

(9.54), we have

lim
k→∞

∫
�#×�#

g(x)Lε(x − y) f #
k (y) dy dx

=
∫
�#×�#

g(x)Lε(x − y) f #(y) dy dx.

Recall that f #
k is the s.d.r. of fk viewed as a function on �.

Passing to the limit k → ∞ in (9.68), we deduce that∫
�×�

h(x)Lε(x − y) f (y) dy dx ≤
∫
�#×�#

g(x)Lε(x − y) f #(y) dy dx.

Inequality (9.62) is proved and with it Theorem 9.18, assuming Condition (i)
holds (that u is positive).

Step 6: Now assume Condition (ii) instead of Condition (i), so that u ≥ 0 and
M2κφ(u) is locally integrable for some κ > 0, and thus also locally integrable
for each smaller value of κ . We explain the changes needed to Steps 1–5 of
the proof above.
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The set (u > γ ) need not expand to the whole domain as γ ↘ 0, since u is
no longer assumed positive and could even vanish on a set of positive measure.
To get around this problem, we perturb u as follows.

Fix a function v ∈ C2
c (�) with 0 ≤ v ≤ 1 such that v has larger support

than g, in the sense that

Ln(v = 1) > Ln(g > 0) = a.

This v is chosen independently of κ .
Define the perturbation of u to be

w = u + κv,

so that w ≥ κv ≥ 0. Choose γ = κ/2. Then

b0 ≡ Ln(w > γ ) ≥ Ln(v = 1) > a.

Clearly b0 < ∞, because the set (w > γ ) has compact closure in � due to the
Dirichlet boundary condition.

Notice

−�w = φ(u) + μ̃

where μ̃ = μ − κ�v. The preceding formula involves φ(u) rather than φ(w).
To get a formula in terms of w, we observe φ(u) = φ(w−κv) ≤ φκ(w), where
the continuous function φκ is defined by

φκ(ω) = max
|ω̃−ω|≤κ

φ(ω̃), ω ∈ R.

(The difference between φκ and Mκφ is that Mκφ maximizes the absolute
value |φ|.) Thus

− �w ≤ φκ(w) + μ̃ (9.70)

weakly in �. Notice φκ(w) ∈ L1
loc(�) since |φκ(w)| ≤ M2κφ(u), which is

locally integrable by Condition (ii).
Changes to Step 1. Now repeat Step 1 except with u replaced by w and

� replaced by the set �0 = (w > γ ) (which we do not claim is open,
just measurable and with compact closure) and b replaced by b0 = Ln(�0).
Proposition 1.26 gives that T is a measure preserving map from �0 onto
[0, b0]. The result of Step 1 is that w = w∗ ◦ T almost everywhere in �0.

Changes to Step 2. In Step 2, replace � with �0 and replace u with w. Argue
as previously and define h = g∗◦T on �0 (noting that T(�0) = [0, b0] contains
the interval [0, a) on which g∗ is nonvanishing, since b0 > a by construction).
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Extend h to equal 0 on the complement of �0, so that h is bounded and nonneg-
ative with compact support in �. The formulas at the end of Step 2 change to:∫

�

wh dLn =
∫
�0

(w∗ ◦ T)(g∗ ◦ T) dLn =
∫ b0

0
w∗g∗ dL =

∫
�#

w#g dLn

and similarly ∫
�

φκ(w)h dLn =
∫
�#

φκ(w
#)g dLn,

where we recall that h = 0 off �0.
Changes to Step 3. Replace u with w, and μ with μ̃. Instead of using (9.56)

we call on (9.70), and so φ(u) is replaced by φκ(w).
Changes to Step 4. Replace u with w, and φ(u) with φκ(w). The right side

of (9.61) gains an additional term
∫
�
(h ∗ Lε)(y)

( − κ�v(y)
)

dy coming from
the term −κ�v in μ̃. Hence the conclusion (9.66) of Step 4 becomes∫

�#
w#�g dLn (9.71)

≥ −
∫
�#

gφκ(w
#) dLn −

∫
�#

g dμ# − κ(max g)
∫
�

|�v| dLn.

Changes to Step 5. No change.
To complete the proof, we will let κ → 0 in (9.71) and show w converges

suitably to u, and φκ(w#) converges to φ(u#), so that one obtains in the limit
the desired conclusion (9.50) of the theorem. To justify the convergence, first
observe

u ≤ w ≤ u + κ �⇒ u# ≤ w# ≤ u# + κ ,

so that |w# − u#| ≤ κ → 0 at every point. Hence the term on the left of (9.71)
converges as wanted, with

∫
�# w#�g dLn → ∫

�# u#�g dLn as κ → 0. The
third term on the right of (9.71) clearly tends to 0 as κ → 0. The second
term does not depend on κ . For the first term on the right of (9.71) we apply
dominated convergence:

φκ

(
w#(x)

) = φκ

(
u#(x) + O(κ)

) → φ
(
u#(x)

)
as κ → 0

by continuity of φ, for each fixed x ∈ �#, and the dominating function∣∣φκ

(
w#)∣∣ ≤ M2κφ

(
u#)

is integrable on the support of g by Condition (ii). (This dominating
function depends on the parameter κ , which is acceptable here since the
value of M2κφ goes down as κ gets smaller.) Thus the proof of Theorem 9.18
is complete.
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9.10 The �-Function for s.d.r. on Euclidean Domains

In this section, # will continue to denote symmetric decreasing rearrangement
of functions on �, where � is an open set in R

n. For r ∈ (0, ∞], write

B(r) = B
n(0, r),

and define R by

B(R) = �#.

Define also an interval �� ⊂ (0, ∞) by

�� = (0, R).

Suppose that a function u : � → R satisfies Condition B. Define a new
function u� : �� → [−∞, ∞] by

u�(r) = sup
∫

E
u dLn =

∫
B(r)

u# dLn, r ∈ ��, (9.72)

where the sup is taken over all Lebesgue measurable sets E ⊂ � with Ln(E) =
Ln(B(r)). As explained in §9.9, Condition B insures that u�(r) exists and is
finite for each r, and that the second and third expressions are equal.

Next, define an operator J which takes functions v ∈ L1
loc(�

#) to functions
Jv on �� by

Jv(r) =
∫

B(r)
v dLn, r ∈ ��.

The function Jv is defined everywhere in ��, and is bounded on [0, r] for each
r < R.

If u satisfies Condition B on �, then we can take v = u# in (9.72), and obtain

u� = Ju#, on ��.

Define now an operator called Jt which takes functions G ∈ L1(��) to
functions JtG on �# by

JtG(x) =
∫ R

|x|
G(s) ds, x ∈ �#.

If G ∈ L∞
c (��), so that G has compact support in ��, and if v ∈ L1

loc(�
#),

then∫
��

Jv(r)G(r) dr =
∫
��

G(r) dr
∫

B(r)
v(x) dx =

∫
�#

v(x) dx
∫ R

|x|
G(r) dr

=
∫
�#

v(x)JtG(x) dx,
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and hence ∫
��

Jv G dL =
∫
�#

vJtG dLn. (9.73)

Thus, Jt indeed is an adjoint operator, with respect to the appropriate measures.
Define differential operators �� and ��t operating on functions G ∈

C2(��) by

��G(r) = G′′(r) − n − 1

r
G′(r), (9.74)

��tG(r) = G′′(r) + (n − 1

r
G
)′
(r). (9.75)

If F, G ∈ C2(��) and at least one of these functions has compact support
in ��, then, using (9.74), (9.75) and integration by parts, we have an adjoint
property for �� and ��t:∫

��
[��F]G dL =

∫
��

[F′′(r) − n − 1

r
F′(r)]G(r) dr

=
∫
��

F(r)[G′′(r) + (n − 1

r
G
)′
(r)] dr

=
∫
��

F[��tG] dL.

(9.76)

We shall need some identities involving �� and ��t. Firstly, take v ∈
C2(�#). Define

I(r) = I(r, v) =
∫
Sn−1

v(ry) dσ(y), r ∈ ��,

where we write σ = σn−1. From the definition of J and Green’s formula,
we get

J�v(r) = rn−1
∫
Sn−1

∂v

∂ r
(ry) dσ(y) = rn−1I′(r).

Also, Jv(r) = ∫ r
0 sn−1I(s) ds, so (Jv)′(r) = rn−1I(r), and

(�� Jv)(r) = (rn−1I(r))′ − n − 1

r
rn−1I(r) = rn−1I′(r).

From these identities, we obtain the following Main Identity:

J�v = �� Jv on ��. (9.77)

We shall need also an adjoint version of the Main Identity. For G ∈ C2
c (�

�),
we have

Jt(��tG)(x) =
∫ R

|x|
[G′′(r) + (n − 1

r
G
)′](r) dr = −G′(|x|) − n − 1

|x| G(|x|).
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Also,

�(JtG)(x) = �

(∫ R

|x|
G(s) ds

)
=

(
d2

dr2
+ n − 1

r

d

dr

)∫ R

r
G(s) ds

= −G′(r) − n − 1

r
G(r) = −G′(|x|) − n − 1

|x| G(|x|),

where x ∈ �# and we have written r = |x|. From the last two formulas, it
follows that

Jt(��tG) = �(JtG) in �#. (9.78)

A weak version of the Main Identity will be helpful too. Take v ∈ L1
loc(�

#)

and G ∈ C2
c (�

�). Set g = JtG. Then by the adjoint relation and (9.78),

(Jv,��tG) = (v, Jt��tG) = (v,�JtG) = (v,�g).

That is, ∫
��

Jv ��tG dL =
∫
�#

v�g dLn. (9.79)

Applying this formula to v = u# where u ∈ L1
loc(�) satisfies Condition B

gives that ∫
��

u���tG dL =
∫
�#

u#�g dLn (9.80)

for g = JtG.
Let us return now to the setting of the pre-subharmonicity result, Theorem

9.18, where dμ = f dLn + dτ − dη, with f satisfying Condition B in � and
τ(�) < ∞. We defined μ# ∈ Mloc(�

#) by the formula

dμ# = f # dLn + dτ #.

Now we define another measure, called μ�, which belongs to Mloc(�
�) :

Definition 9.19

dμ� = f � dL + dτ�, where dτ� = τ(�) dL.

If G and Gf � both belong to L1(��) then we have∫
��

G dμ� =
∫
��

Gf � dL +
∫
��

G dτ�

=
∫
��

G(Jf #) dL + τ(�)

∫ R

0
G(r) dr
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where in the second equality we used f � = Jf #. Hence∫
��

G dμ� =
∫
�#

(JtG)f # dLn + τ(�)JtG(0)

=
∫
�#

(JtG)f # dLn +
∫
�#

JtG dτ #

=
∫
�#

JtG dμ#,

(9.81)

where the first equality relies on (9.73) and the others follow from definitions.
Let now F ∈ L1

loc(�
�) and ν ∈ Mloc(�

�). We say that the differential
inequality

−��F ≤ ν

holds in the weak sense, or in the sense of distributions, if

−
∫
��

F��tG dr ≤
∫
��

G dν

holds for all nonnegative G ∈ C2
c (�

�). If F ∈ C2(��), H ∈ L1
loc(�

�), and
−��F ≤ H holds at every point of ��, then we say that −��F ≤ H holds in
the strong or the classical sense, in which case (9.76) implies that the inequality
also holds in the weak sense.

Theorem 9.20 (Subharmonicity property of the s.d.r. on � ⊂ R
n) Let u ∈

W(�) satisfy

u ≥ 0 in �

and the Dirichlet boundary condition

lim
x→x0, x∈�

u(x) = 0, ∀x0 ∈ ∂�.

Suppose

−�u = φ(u) + μ

in the weak sense in �, where φ : R → R is continuous, φ(u) is locally
integrable, f in decomposition (9.47) satisfies Condition B in �, and τ(�) <

∞. If either

(i) u > 0 in �, or
(ii) Mκφ

(
u(x)

)
is locally integrable for some κ > 0,

then

−��u� ≤ Jφ(u#) + μ�

in the weak sense in �� = (0, R).
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When � is unbounded, ∞ is regarded as belonging to ∂�.
Recall from after Theorem 9.18 that Condition (ii) in the theorem is satisfied

if |φ(ω)| is bounded or grows polynomially or exponentially as ω → ∞, and
in particular it holds if φ(ω) is convex decreasing.

Proof Take nonnegative G ∈ C2
c (0, R). Take 0 < R1 < R2 < R such that

G = 0 on (0, R1] ∪ [R2, R). Define g on �# = B(R) by

g(x) = JtG(x) =
∫ R

|x|
G(s) ds.

Then obviously g ≥ 0, g = g#, and g has compact support in �#. Also, g ∈
C3(�#) since G ∈ C2 and g(x) is constant for |x| < R1. By (9.80), Theorem
9.18, (9.73), and (9.81) we have∫

��
u���tG dL =

∫
�#

u#�g dLn

≥ −
∫
�#

gφ(u#) dLn −
∫
�#

g dμ#

= −
∫
��

G Jφ(u#) dL −
∫
��

G dμ�.

When using (9.81), recall that Condition B gives local integrability of f # and
hence local boundedness of f �, so that Gf � ∈ L1(��).

9.11 The �-Function for Steiner Symmetrization
on Euclidean Domains

Throughout this section, # denotes (k, n)-Steiner symmetrization. Fix n ≥ 2
and 1 ≤ k ≤ n − 1. For x ∈ R

n, write x = (y, z), where y ∈ R
k, z ∈ R

m,
and k + m = n. Let � be an open subset of Rn, and let Z be the open set of all
z ∈ R

m such that the slice �(z) ⊂ R
k is nonempty. Then � can be expressed

in terms of its slices as

� = {(y, z) ∈ R
n : y ∈ �(z), z ∈ Z}.

The (k, n)-Steiner symmetrization of � is obtained by replacing each slice with
the ball in R

k of the same volume centered at the origin, and the (k, n)-Steiner
symmetrization of a nonnegative function on � is obtained by performing the
s.d.r. on each slice. These constructions are explained in detail at the beginning
of Chapter 6.
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The Presubharmonicity Result
Suppose u : � → R is Ln-measurable and nonnegative. We say u satisfies
Condition BS if ∫

�(Z0)

(u − t)+ dLn < ∞

for all t > 0 and every compact set Z0 ⊂ Z, where

�(Z0) = {(y, z) ∈ � : z ∈ Z0}.
If u satisfies Condition BS, then on almost every slice the function (uz − t)+
is integrable for each t > 0 (recall uz ≡ u(·, z)). Hence the slice function uz

satisfies finiteness condition (6.2); that is,

Lk(uz > t) < ∞ for every t > 0,

for Lm-almost every z ∈ Z. Thus u# is well-defined and Ln-measurable by
Chapter 6. Further, u# ∈ L1

loc(�
#) because for each compact set E ⊂ �#,

Condition BS guarantees

0 ≤
∫

E
u# dLn ≤

∫
E
(u# − t)+ dLn + tLn(E) < ∞.

Now we develop the Steiner symmetrization of a measure.

Definition 9.21 Consider μ ∈ Mloc(�), with Jordan–Lebesgue decomposi-
tion

dμ = f dLn + dτ − dη. (9.82)

Assume for some c ∈ R that f + c is nonnegative and satisfies Condition BS,
and define the Steiner symmetrization of f to be

f # = ( f + c)# − c on �#.

Assume τ(�) < ∞, write P(y, z) = (0, z) for the projection of � onto R
m,

and define a Radon measure τ # ∈ Mloc(�
#) by

τ #(E) = τ(P−1E)

for E ∈ B(�#). (In other words, τ # is the measure obtained from τ by sweeping
the mass to the origin on each z-slice.) Note τ #(�#) = τ(�). The symmetrized
measure μ# ∈ Mloc(�

#) is defined by

dμ# = f #dLn + dτ #.

(As in the s.d.r. case, the mass η is discarded when passing to μ#.)
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Next we state the pre-subharmonicity theorem for (k, n)-Steiner sym-
metrization, which says −�(u#) ≤ φ(z, u#) + μ# weakly with respect to
nonnegative, Steiner symmetric test functions. The statement of the theorem
uses the maximum of |φ| over nearby points, defined by

(Mκφ)(z,ω) = max
|ω̃−ω|≤κ

|φ(z, ω̃)|, z ∈ Z, ω ∈ R, κ > 0.

Theorem 9.22 (Pre-subharmonicity theorem for (k, n)-Steiner symmetriza-
tion) Let u ∈ W(�) satisfy

u ≥ 0 in �

and the Dirichlet boundary condition

lim
x→x0, x∈�

u(x) = 0 (9.83)

for all x0 = (y0, z0) ∈ ∂� with z0 ∈ Z. Suppose

− �u ≤ φ(z, u) + μ (9.84)

in the weak sense in �, where φ : Z × R → R is continuous with φ
(
z, u(y, z)

)
locally integrable on �. Suppose in decomposition (9.82) that f + c is
nonnegative and satisfies Condition BS, for some c ∈ R, and that τ(�) < ∞.
If either

(i) u is lower semicontinuous and u > 0 in �, or
(ii) Mκφ

(
z, u(y, z)

)
is locally integrable on � for some κ > 0,

then u satisfies Condition BS on � and

−
∫
�#

u#�g dLn ≤
∫
�#

φ(z, u#)g dLn +
∫
�#

g dμ#

whenever g ∈ C2
c (�

#) is nonnegative and Steiner symmetric (g = g#).

Note the point at infinity (y0 = ∞) is allowed in the Dirichlet boundary
condition, when � is unbounded.

This theorem assumes the differential inequality −�u ≤ φ(z, u)+μ, instead
of a differential equation as assumed by other presubharmonicity theorems in
this chapter. In the other theorems, one would gain no generality by using
a differential inequality since any discrepancy in the inequality could be
absorbed into the measure μ to arrive at an equality. In Theorem 9.22, though,
the measure faces the additional constraint that its absolutely continuous part
f must be bounded below, so that f + c is nonnegative for some constant c.
Here the added generality of a differential inequality is useful, because if f is
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not bounded below then we may replace μ in inequality (9.84) with the larger
measure obtained by truncating f from below at height −c.

Proof The set (u > γ )∩�(Z0) has compact closure in � for each γ > 0 and
each compact set Z0 ⊂ Z, thanks to the Dirichlet boundary condition (9.83),
which says u(x) → 0 as x → (y0, z0) ∈ ∂� with z0 ∈ Z. Since u ∈ L1

loc(�) by
assumption, it follows that u satisfies Condition BS on �.

Fix the test function g in the theorem, write A = (g > 0), and let

a(z) = Lk(A(z)), b(z) = Lk(�(z)
)
,

for z ∈ Z. The functions a(z) and b(z) satisfy 0 ≤ a(z) < b(z) ≤ ∞. Define a
compact set

Z0 = {z ∈ Z : the slice of � at height z intersects supp g}.
First assume Condition (i), saying u is positive and lower semicontinuous.

We adapt the s.d.r. case from Theorem 9.18. That proof had six steps, and we
indicate below only the changes needed in each step. As we will see, some
parts of the proof should be carried out slice-by-slice.

Step 1: The measure preserving map Tz takes the slice �(z) onto [0, b(z)),
for almost every z, with

uz = (uz)
∗ ◦ Tz.

Step 2: Define h : � → R
+ by

hz = (gz)
∗ ◦ Tz

when z ∈ Z0, and hz = 0 otherwise. For joint measurability of h(y, z), argue as
in the proof of Theorem 9.7.

We claim γ > 0 can be chosen small enough that E = (u > γ ) satisfies

Lk(E(z)) > a(z)

for all z ∈ Z0. Indeed, one can construct a compact subset C of � that has
larger slices than the support of g, in the sense that Lk

(
C(z)

)
> a(z) for all

z ∈ Z0. This compact set must lie inside the set E for some γ , since E is open
(by lower semicontinuity of u) and expands to fill � as γ → 0 (by positivity
of u).

The rest of Step 2 proceeds as before, with obvious adaptations. One sees h
has compact support, since it vanishes outside (u > γ ). The integrals in (9.51)
and (9.52) should be taken over each slice.

Step 3: The differential inequality (9.84) replaces the equality (9.56), and
so equalities (9.57) and (9.58) become inequalities “≥”. Also, φ(u) changes to
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φ(z, u), and for Riesz rearrangement one uses the appropriate result for Steiner
symmetrization, from Theorem 6.8.

Step 4: One must treat differently the second term on the right of (9.61), as
follows. On each slice, h is bounded by the largest value of g:

h(y, z) ≤ g(0, z) = (g ◦ P)(y, z),

where P is the projection defined earlier. Hence h ≤ g ◦ P, and so after
extending the measure τ to be zero outside � we have∫

�

(h ∗ Lε)(y) dτ(y) ≤
∫
Rn

(g ◦ P) ∗ Lε dτ

→ CK

∫
Rn

(g ◦ P) dτ

as ε → 0, using here that (g ◦ P) ∗ Lε → CK(g ◦ P) uniformly on R
n because

g is continuous with compact support. Thus

lim sup
ε→0

∫
�

(h ∗ Lε)(y) dτ(y) ≤ CK

∫
�#

g dτ #,

as needed for handling the second term on the right of (9.61).

Step 5: Recall the hypothesis that f + c ≥ 0 satisfies Condition BS in �, for
some c ∈ R. We write f = ( f + c) − c and apply the first part of the proof of
Step 5 to f + c (except using the Steiner version of Riesz rearrangement from
Theorem 6.8). To handle the “−c” term, observe∫

�×�

h(x)Lε(x − y) dy dx =
∫
�#×�#

g(x)Lε(x − y) dy dx

by integrating out the y-variable and recalling h and g are equidistributed. Note
the approximation part of the proof of Step 5 is no longer needed.

Step 6: Now assume Condition (ii) holds in the theorem. One follows the
proof under Condition (i), in Steps 1–5 above, with a perturbation like in Step 6
of the proof of Theorem 9.18. The perturbing function v ∈ C2

c (�) with 0 ≤
v ≤ 1 is chosen to have larger support than g at each height, in the sense that
Lk(V(z)) > a(z) for each z ∈ Z0, where V = (v = 1).

The Subharmonicity Result
Next we develop a subharmonicity theorem for Steiner symmetrization,
generalizing the s.d.r. case in Theorem 9.20. Denote by R(z) ∈ (0, ∞] the
radius of the ball �#(z) ⊂ R

k, and for each z ∈ Z define an interval

��(z) = (0, R(z)).
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Let

�� = {(r, z) : r ∈ ��(z), z ∈ Z} ⊂ R
m+1.

Suppose that a nonnegative function u : � → R satisfies Condition BS.
Define a new function u� : �� → [0, ∞] by

u�(r, z) = sup
∫

E
u(y, z) dLk(y) =

∫
Bk(r)

u#(y, z) dLk(y), (9.85)

for r ∈ ��(z), z ∈ Z, where the sup is taken over all Lebesgue measurable
sets E ⊂ �(z) with Lk(E) = Lk(Bk(r)). (In other words, apply the �-operator
for the s.d.r. on each slice of the function.) By adapting the argument near the
beginning of Section 9.9, Condition BS insures that u# is locally integrable on
slices and so u�(r, z) exists and is finite for each r, for almost every z.

When f + c is nonnegative and satisfies Condition BS for some c ∈ R, the
Steiner symmetrization of f is defined by f # = ( f + c)# − c on �# and so f �

can be defined exactly as in (9.85), writing f instead of u.
The operator J : L1

loc(�
#) → L1

loc(�
�) acts on each slice, with

(Jv)(r, z) =
∫
Bk(r)

v(y, z) dLk(y), r ∈ ��(z),

where the definition makes sense for Lm-almost every z ∈ Z. By (9.85),

u� = Ju# on ��.

Next, given G ∈ L1(��) define

(JtG)(y, z) =
∫ R(z)

|y|
G(r, z) dr, y ∈ �#(z).

If G(·, z) ∈ L∞
c (��(z)) for each z, meaning G is bounded with compact support

on each slice of ��, and if v ∈ L1
loc(�

#), then∫
��(z)

Jv(r, z)G(r, z) dL(r) =
∫
�#(z)

v(y, z)JtG(y, z) dLk(y) (9.86)

for almost every z, by arguing as for (9.73). Thus Jt is an adjoint operator of J,
with respect to the appropriate measures.

Define now differential operators �� and ��t operating on functions
G(r, z) ∈ C2(��) by

��G = ∂rrG − k − 1

r
∂rG + �zG, (9.87)

��tG = ∂rrG + ∂r
(k − 1

r
G
) + �zG. (9.88)
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If F, G ∈ C2(��) and at least one of these functions has compact support in
��, then using (9.87), (9.88) and integration by parts yields an adjoint property
for �� and ��t: ∫

��
(��F)G dLm+1 =

∫
��

F(��tG) dLm+1.

Further, for v ∈ C2(�#) the Main Identity

J�v = �� Jv on ��

follows by the s.d.r. case in (9.77) except with an additional term involving
J�zv, which equals �zJv. Similarly one obtains an adjoint version of the Main
Identity:

Jt(��tG) = �(JtG) in �# (9.89)

for G ∈ C2
c (�

�).
The weak version of the Main Identity says∫

��
Jv ��tG dLm+1 =

∫
�#

v�g dLn (9.90)

where v ∈ L1
loc(�

#), G ∈ C2
c (�

�) and g = JtG, as one proves by using the
adjoint relation (9.86) and the adjoint main identity (9.89). If u ≥ 0 satisfies
Condition BS then putting v = u# into (9.90) gives that∫

��
u���tG dLm+1 =

∫
�#

u#�g dLn. (9.91)

Lastly, we define

dμ� = f � dLm+1 + dτ�

where dτ� = dL(r)dτ #(z), recalling here that τ # can be regarded as a measure
on z ∈ Z because it concentrates where y = 0. If G ∈ Cc(�

�) and Gf � ∈
L1(��) then ∫

��
G dμ� =

∫
�#

JtG dμ#, (9.92)

by adapting the proof of (9.81).

Theorem 9.23 (Subharmonicity property of the �-function for (k, n)-Steiner
symmetrization) Let u ∈ W(�) satisfy

u ≥ 0 in �

and the Dirichlet boundary condition

lim
x→x0, x∈�

u(x) = 0
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for all x0 = (y0, z0) ∈ ∂� with z0 ∈ Z. Suppose

−�u ≤ φ(z, u) + μ

in the weak sense in �, where φ : Z × R → R is continuous with φ
(
z, u(y, z)

)
locally integrable on �. Suppose in decomposition (9.82) that f + c is
nonnegative and satisfies Condition BS, for some c ∈ R, and that τ(�) < ∞.
If either

(i) u is lower semicontinuous and u > 0 in �, or
(ii) Mκφ

(
z, u(y, z)

)
is locally integrable on � for some κ > 0,

then

−��u� ≤ Jφ(z, u#) + μ�

in the weak sense in ��.

Remember in the boundary condition that (∞, z0) is regarded as belonging
to ∂� if the slice �(z0) is unbounded.

When we write Jφ(z, u#) in the theorem, we mean the J-operator applied to
the function φ

(
z, u#(y, z)

) ∈ L1
loc(�

#).
Condition (ii) in the theorem holds if φ(ω) is convex decreasing. This and

other examples are explained after Theorem 9.18.

Proof Take a nonnegative G ∈ C2
c (�

�) and extend G to equal 0 outside ��.
Choose R1 > 0 such that G(r, z) = 0 whenever r ∈ (0, R1], z ∈ Z. Define g on
�# by

g(y, z) = (JtG)(y, z) =
∫ ∞

|y|
G(s, z) ds, y ∈ �#(z).

Then g ≥ 0, g = g#, and g has compact support in �#. Also g ∈ C2(�#), since
G ∈ C2 and g(y, z) is independent of y when |y| ≤ R1.

By (9.91), Theorem 9.22, (9.86), and (9.92) we have∫
��

u���tG dLm+1 =
∫
�#

u#�g dLn

≥ −
∫
�#

gφ(z, u#) dLn −
∫
�#

g dμ#

= −
∫
��

GJφ(z, u#) dLn −
∫
��

G dμ�,

which proves Theorem 9.23. (For the application of (9.92), note that Condi-
tion BS for f + c implies local integrability of f # and hence local integrability
of f �, so that Gf � ∈ L1(��).)
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9.12 Notes and Comments

Some history of the �-function can be found in Baernstein (1980, 1994, 2002)
and in the references below. The subharmonicity property of the �-function
is due to Baernstein in 2 dimensions. The higher dimensional theory was
developed by Baernstein and Taylor (1976).

The definition of the �-function for cap-symmetrization in this chapter
differs by a power of r from the definition used in earlier works. More
precisely, our definition of u� for the (n − 1, n)-cap case in §9.6 includes a
factor of rn−1, and in §9.8 for the (k, n)-cap case we include a factor of rk.
In other words, u� involves integration with respect to surface area measure
on the sphere of radius r, rather than surface measure on the unit sphere. This
break with tradition is desirable for two reasons. First, it brings the definition
into line with the Steiner case, where the �-function is defined via integration
with respect to surface area measure on lower dimensional slices. Second, and
more significantly, the change permits a more natural definition of the measure
τ� and of the J-operator acting on measures (as needed in §10.6), which would
otherwise require artificial factors of r1−n.

The �-function is treated on shells and spheres in §9.5–9.7, but not on
subdomains of those spaces. Subharmonicity theorems do hold on subdomains
of spheres and shells, analogous to the results in §9.9–9.11 for subdomains
of Euclidean space under s.d.r. and Steiner symmetrization. Such results
are omitted here in the interests of simplicity. Chapter 11 applies circular
symmetrization and the �-function to subdomains of the complex plane. The
references in that chapter provide more information.

For subharmonicity results under symmetrization on hyperbolic space, see
the passing remark in (Baernstein, 1994, p. 63).

Material added to the chapter. Baernstein left no Notes or Comments for
Chapter 9. This section was added by Richard Laugesen during revision of the
manuscript. Corollaries 9.10 and 9.11 were added also, as was §9.11 on Steiner
symmetrization, along with the change mentioned above to the definition of the
�-function.

Baernstein’s manuscript proved the pre-subharmonicity Theorem 9.18 for
s.d.r. with the help of a Green function perturbation on a certain intermediate
domain. That perturbation has been changed to a bump function, in order to
simplify the argument.

The semilinear term φ(u) in pre- and sub-harmonicity theorems throughout
the chapter was added in revision, drawing on statements and proof sketches in
(Baernstein, 1994, §5 and §6). The maximal function Mκφ does not appear in
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that earlier work. We introduced it here in the s.d.r. and Steiner cases to handle
the perturbation step of the pre-subharmonicity proof when u is nonnegative
but not necessarily positive everywhere (Condition (ii)). Perhaps other ways
could be found around that technical difficulty.

Subharmonicity results first appeared in Baernstein (1973, 1974) as tools to
solve extremal problems in complex analysis (see Chapter 11). In those early
papers, the needed subharmonicity results appeared in the simpler setting of
2 dimensions, and were derived using various technical lemmas. Baernstein
(1994) later developed a modern approach to subharmonicity properties.
This new approach splits into two parts: first a pre-subharmonicity result
whose proof makes clear use of symmetrization methods, specifically Riesz-
type rearrangement inequalities, and second a straightforward deduction of
subharmonicity from pre-subharmonicity, with the help of the main identity
and adjoint relations that rely on integration by parts. The modern approach
is followed consistently in this chapter – the details vary depending on the
geometry at hand (cap symmetrization, s.d.r., Steiner, and so on), but the
underlying method remains the same in each case.



10

Comparison Principles for Semilinear
Poisson PDEs

This chapter proves comparison principles of the following type: if u solves the
Poisson equation −�u = f on an open set � and v solves the “symmetrized”
equation −�v = f # on �#, with u and v nonnegative and satisfying Dirichlet
boundary conditions, then the Lp norm of u is smaller than that of v for each
p ≥ 1. That is, the solution of Poisson’s equation increases in the integral sense
when the data in the equation is rearranged.

This comparison result is central to Nadirashvili’s proof of Rayleigh’s
conjecture that the principal eigenvalue of a vibrating plate decreases under
s.d.r. of the domain; see references in Section 5.3. Comparison theorems also
provide practical bounds: under s.d.r. on a Euclidean domain, the solution v

depends only on the radial variable and thus can be written in terms of integrals
of f . Hence the comparison theorem implies explicit a priori bounds on u in
terms of f (see Talenti (1976b)).

The comparison principles are quite robust, and hold with the function f
replaced by a measure. For example, by using delta measures one may compare
the Lp norms of the Green functions solving the equations −�u = δP and
−�v = δQ, where P is a point and Q is its symmetrized point. Under s.d.r.
on a Euclidean domain the symmetrized point is at the origin, whereas under
(n − 1, n)-cap symmetrization on a shell the symmetrized point lies on the
e1-axis at the same radius as P.

The results hold also when a nonlinearity φ(u) is added to the right side
of Poisson’s equation, with φ convex decreasing. Further, the nonnegativity
assumption on u can be dropped when working on shells and on the sphere. On
shells, the Dirichlet boundary condition can be replaced in some circumstances
by a Neumann condition.

This chapter restricts attention to the s.d.r., Steiner, and (n − 1, n)-cap
symmetrizations. The general (k, n)-cap symmetrization is not covered. Also,
we consider only the Laplace operator. Comparison principles for more general
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elliptic operators and for the heat equation and parabolic operators have been
treated in the literature. References to such results are provided in the end-of-
chapter notes.

10.1 Majorization

We commence the chapter by connecting �-functions to Lp norms, through the
concept of majorization. The �-function on a finite measure space (X,M,μ)
was defined in Section 9.1, where we found

f �(x) =
∫ x

0
f ∗(s) ds, 0 ≤ x ≤ μ(X),

with f ∗ denoting the decreasing rearrangement of f .

Proposition 10.1 (Majorization) Assume μ(X) < ∞ and let f , g ∈ L1(X).
Then the following are equivalent.

(a)
∫

X �( f ) dμ ≤ ∫
X �(g) dμ for all increasing convex � : R → R.

(b)
∫

X( f − t)+ dμ ≤ ∫
X (g − t)+ dμ for all t ∈ R.

(c) f �(x) ≤ g�(x) for all x ∈ [0, A], where A = μ(X).

When f and g obey the conditions of the Proposition, g is said to majorize f ,
in the sense of Hardy–Littlewood–Pólya.

Corollary 10.2 Suppose f , g ≥ 0 are integrable on a finite measure space.
If f � ≤ g� then the Lp-norm of f is less than or equal to the norm of g:

‖f ‖p ≤ ‖g‖p, 1 ≤ p ≤ ∞. (10.1)

The corollary follows from Proposition 10.1 by taking

�(s) =
{

sp when s ≥ 0,

0 when s < 0,

when 1 ≤ p < ∞. For p = ∞, one simply passes to the limit in (10.1).

Proof of Proposition 10.1 (a) �⇒ (b) is trivial since �(x) = (x − t)+ is
increasing and convex. For (b) �⇒ (c), take x ∈ [0, A] and set t = g∗(x).
Since (b) holds for f and g on X, it also holds for f ∗ and g∗ on [0, A] (by
equidistribution of f and f ∗ and of g and g∗). Hence

f �(x) =
∫ x

0
[(f ∗(s) − t) + t] ds ≤

∫ x

0
(f ∗(s) − t)+ ds + tx

≤
∫ x

0
(g∗(s) − t)+ ds + tx = g�(x).
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Suppose that (c) holds. Take t ∈ R. If t ≥ ess sup f , then of course
( f − t)+ = 0 and (b) holds. If t ≤ ess inf f , then taking x = A in (c), we get∫

X
( f − t)+dμ =

∫
X
( f − t) dμ

= f �(A) − tA

≤ g�(A) − tA =
∫

X
(g − t) dμ ≤

∫
X
(g − t)+ dμ,

and (b) holds. If ess inf f < t < ess sup f , take x ∈ (0, A) such that f ∗(x) ≤ t ≤
f ∗(x−). Then∫ A

0
(f ∗ − t)+ds =

∫ x

0
( f ∗ − t) ds

= f �(x) − tx

≤ g�(x) − tx =
∫ x

0
(g∗ − t) ds ≤

∫ A

0
(g∗ − t)+ ds,

so (b) holds in all cases.
It remains to prove that (b) �⇒ (a). Let � be increasing and convex

on R. We may assume that � is nonconstant. Then there is a linear function
L(x) = ax + b with a > 0 such that L ≤ � everywhere. Since f ∈ L1(X)

and �( f ) ≥ L( f ), it follows that
∫

X[�( f )]− dμ < ∞, so that the integral∫
X �( f ) dμ is well defined, possibly as ∞. Moreover, since (b) �⇒ (c) and∫
X f dμ = f �(A), it follows that∫

X
L( f ) dμ = af �(A) + b ≤

∫
X

L(g) dμ (10.2)

for every linear L on R with nonnegative slope.
By Zygmund (1968, p. 24), � is locally absolutely continuous on R, hence

is differentiable L a.e. At such points we denote its derivative by �′(x). The
convexity of � implies that �′ is increasing on its domain. The one-sided
limits of �′ exist at every x ∈ R, and coincide with the corresponding one-
sided derivatives of �. We denote these values by �′(x−) and �′(x+).

Let us assume for the moment that � = 0 on (−∞, 0]. There is a positive
Borel measure ν on R such that

�′(x+) = ν(−∞, x], x ∈ R.

For x > 0, we have

�(x) =
∫ x

−∞
�′(t) dt = −

∫ x

0
�′(t)

d

dt
(x − t) dt

=
∫
(0,x]

(x − t) dν(t) + x�′(0+)

=
∫
(0,∞)

(x − t)+dν(t) + (x − 0)+�′(0+).
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(For the integration by parts, see Folland (1999, Theorem 3.36).) The same
formula holds trivially when x ≤ 0.

Replacing x by f and integrating with respect to μ, we see that the desired
inequality ∫

X
�( f ) dμ ≤

∫
X
�(g) dμ (10.3)

holds when � = 0 on (−∞, 0].
Next, assume that � equals a linear function L on (−∞, a] for some a ≥ 0.

Set �1(x) = �(x + a) − L(x + a). Then �1 = 0 on (−∞, 0] and �(x) =
L(x)+�1(x − a). If f and g satisfy the assumptions of (b) then so do f − a and
g − a. From (10.2), and (10.3) applied to �1, we see that (10.3) holds when �

is linear on some (−∞, a].
Finally, let � be an arbitrary convex increasing function on R. Take a

decreasing sequence {an} with an → −∞. Let �n be the function which equals
� on [an, ∞), and on (−∞, an] is the linear function Ln with Ln(an) = �(an)

and L′
n(an) = �′(an−). Then �n is convex, and (10.3) holds for each �n.

Also, �n(x) ↗ �(x) as n ↗ ∞ for each x ∈ R. If
∫

X �1(g) dμ = ∞ then∫
X �(g) dμ = ∞, so (10.3) holds for �. If

∫
X �1(g) dμ is finite, then so is∫

X �1( f ) dμ. The monotone convergence theorem applied to �n( f ) − �1( f )
shows that (10.3) holds in this case too.

We will need a variant of Proposition 10.1 that does not require the convex
function � to be increasing. We keep the hypothesis A = μ(X) < ∞, and add
a new hypothesis that the integrals of f and g agree.

Proposition 10.3 (Majorization with equal integrals) Let f , g ∈ L1(X), with∫
X f dμ = ∫

X g dμ. Then the following are equivalent:

(a)
∫

X �( f ) dμ ≤ ∫
X �(g) dμ for all convex � : R → R.

(b)
∫

X( f − t)+ dμ ≤ ∫
X (g − t)+ dμ for all t ∈ R.

(c) f �(x) ≤ g�(x) for all x ∈ [0, A].

Under these conditions, we have

‖f ‖p ≤ ‖g‖p, 1 ≤ p ≤ ∞,

ess sup f ≤ ess sup g,

ess inf g ≤ ess inf f ,

osc f ≤ osc g.

Proof The proof of Proposition 10.1 carries over without change, except for
the implication (b) �⇒ (a), which requires the additional observation that
(10.2) now holds with equality for every a ∈ R.
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For the statement about Lp-norms, simply take �(s)= |s|p when 1 ≤ p < ∞,
and then let p → ∞ to obtain the corresponding inequality for L∞-norms. For
the inequalities on the essential supremum and infimum, use that

ess sup f = lim
x→0

f �(x)

x
, ess inf f = lim

x→A

f �(A) − f �(x)

x
,

and similarly for g, and note f �(A) = ∫
X f dμ = ∫

X g dμ = g�(A). Then
the oscillation of f is clearly less than the oscillation of g, since f has larger
infimum and smaller supremum than g.

So far in this section, we have assumed f ∈ L1(X) and μ(X) < ∞. These
hypotheses can be relaxed. Let f : X → R be a M-measurable function on
X, where A = μ(X) can be either finite or not. We shall say that f satisfies
Condition B if: ∫

X
( f − t)+ dμ < ∞, ∀ t > ess infX f .

(Condition B appeared already in Euclidean space, in Sections 9.9 and 9.10.)
The integral on the left equals

∫ ∞
t λ(s) ds, where λ is the distribution func-

tion of f . It follows that Condition B implies λ(t) < ∞ for all t > ess infX f .
This is the finiteness condition needed to insure existence and finiteness of the
decreasing rearrangement f ∗ on (0, A). The integral in Condition B does not
change if f is replaced by f ∗, or by any other rearrangement of f . As the reader
may easily show, f satisfies Condition B if and only if f ∗ ∈ L1

loc[0, A).
From now on we shall write infX f instead of ess infX f . If infX f < 0 then

Condition B implies f + ∈ L1(X), while if infX f ≥ 0 then f − = 0. Thus,∫
X f dμ is well-defined, possibly as ±∞, and so is

∫
E f dμ for E ⊂ X. Thus,

when f satisfies Condition B, we may again define the star function of f by

f �(x) = sup
∫

E
f dμ, x ∈ [0, A],

where the sup is taken over all M-measurable sets E ⊂ X with μ(X) = x.
If the sup is attained by a set E, we shall call E a maximal set.

Claim 10.4 If (X,M,μ) is a nonatomic measure space and f satisfies
Condition B on X, then f �(x) is finite for all 0 ≤ x < A and Proposition
10.1 is still true.

Proof From the definition, f �(0) = 0, and every set of measure zero is a
maximal set, so Claim 10.4 is true when x = 0. Take x ∈ (0, A). Write t =
f ∗(x). Let x1 be the smallest value of s such that f ∗(s) = t. Then 0 ≤ x1 ≤ x.
Let E1 = ( f > t). Then μ(E1) = x1. Also, μ( f = t) ≥ x − x1. Since
the space is nonatomic, Proposition 1.25 provides a subset E2 of ( f = t) with
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μ(E2) = x − x1. Let E = E1 ∪ E2. Then μ(E) = x, and the argument in
the proof of Proposition 10.1 shows that E is a maximal set. Take some t1 > t.
Then t1 > infX f . On E, we have t ≤ f ≤ ( f −t1)++|t1|. Thus, by Condition B,
f ∈ L1(E). In particular, f �(x) = ∫

E f dμ is finite.
To obtain part (b) of Proposition 10.1, again take x ∈ (0, A). Let E be a

maximal set, and let f0 be the restriction of f to E. Then f �(x) = f �0 (x), since
each equals

∫
E f dμ. Also, f ∗(s) = f ∗

0 (s) for all s ∈ [0, x]. Since μ(E) < ∞,
we can apply Proposition 10.1(b) with X = E and f = f0, thereby obtaining
f �(x) = f �0 (x) = ∫ x

0 f ∗
0 (s) ds = ∫ x

0 f ∗(s) ds.

Claim 10.5 Suppose that X is as in Claim 10.4 and that f and g satisfy
Condition B on X. Then Proposition 10.1 is still true, provided that in part (a)
we require

∫
X �( f ) dμ ≤ ∫

X �(g) dμ hold only for all nonnegative increasing
convex �.

Proof (a) �⇒ (b) is again trivial. We noted above that if f satisfies
Condition B then f ∗ ∈ L1[0, x] for every x < A. Using this local integrability,
one sees that the proof of (b) �⇒ (c) still works with our new hypotheses.

To show that (c) �⇒ (a), let {xk}, k ≥ 1, be an increasing sequence in
(0, A) with limit A. Let fk and gk be the restrictions of f ∗ and g∗ to [0, xk].
For each k, the hypotheses of the original Proposition 10.1 are satisfied by
fk and gk. Moreover, if f and g satisfy (c) for all x ∈ [0, A), then f �k ≤ g�k
for all s ∈ [0, xk]. From (c) �⇒ (a) in the original Proposition 10.1, and
f ∗ = fk, g∗ = gk on [0, xk], it follows that∫

[0,xk]
�( f ∗(s)) ds ≤

∫
[0,xk]

�(g∗(s)) ds.

for all increasing convex � on R. If also � ≥ 0, then we can apply the
monotone convergence theorem when k → ∞ to obtain∫

[0,A]
�( f ∗(s)) ds ≤

∫
[0,A]

�(g∗(s)) ds,

which is the same as
∫

X �( f ) dμ ≤ ∫
X �(g) dμ.

As an exercise, we invite the reader to create a decreasing function f on
X = [0, ∞) which satisfies Condition B, and an increasing convex function �

on R for which
∫

X �( f (s))+ ds = ∫
X �( f (s))− ds = ∞. Thus,

∫
X �( f ) dμ

need not be well-defined in our current setting. This is why we had to tighten
condition (a) of Proposition 10.1. For similar reasons, we have refrained from
formulating a Condition B version of Proposition 10.3. Of course, versions do
exist, and one can devise them according to the special features of the functions
� under study.
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10.2 Weakly Convex and Weakly Subharmonic Functions

A continuous function w : (a, b) → R is called convex in the weak (or
distributional) sense if w′′ ≥ 0 in the weak sense, which means∫ b

a
v′′w dL ≥ 0

for each nonnegative function v ∈ C2
c (a, b). Strict convexity in the weak

sense means the last inequality is strict for each v (except when v is the zero
function).

Convexity in the weak sense implies convexity in the classical sense, as the
next lemma shows. We rely on this fact later in the chapter.

Lemma 10.6 If a continuous function on an open interval is (strictly) convex
in the weak sense, then it is (strictly) convex in the classical sense.

Proof Suppose w : (a, b) → R is continuous and convex in the weak sense.
Let K be a nonnegative, even, smooth function supported in (−1, 1) with
integral 1. Then the mollification wε = w ∗ Kε is smooth and has second
derivative

w′′
ε (x) =

∫ b

a
w(y)(Kε)

′′(x − y) dy ≥ 0,

by applying the weak convexity condition with test function v = Kε . Hence
wε is classically convex and so satisfies the convexity condition

wε

(
tx + (1 − t)y

) ≤ twε(x) + (1 − t)wε(y)

whenever a + ε < x < y < b − ε and 0 < t < 1. Letting ε → 0 shows

w
(
tx + (1 − t)y

) ≤ tw(x) + (1 − t)w(y) (10.4)

whenever a < x < y < b and 0 < t < 1, noting wε → w pointwise by
continuity of w. Thus w is convex in the classical sense.

For the strictness statement in the lemma, we will prove the contrapositive.
Suppose w is convex in the weak sense (and so is classically convex as shown
above) but that w is not strictly convex. Then equality holds in the convexity
condition (10.4) for some x, y, t. Hence the convex function

f (τ ) = w(τ ) − w(x)
y − τ

y − x
− w(y)

τ − x

y − x
, τ ∈ [x, y],

satisfies f (x) = f (y) = 0 and also f
(
tx + (1 − t)y

) = 0. Therefore f is constant
by Fact 2.1, which means w is linear on [x, y], and so∫ b

a
u′′w dL = 0
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by integration by parts whenever u ∈ C2
c (x, y). Choosing a test function u that

is nonnegative and not the zero function, we conclude w is not strictly convex
in the weak sense.

A strictly convex function cannot have an interior maximum point. A
corresponding maximum principle holds in higher dimensions for functions
that are strictly subharmonic in the weak (or distributional) sense, as the next
lemma shows.

Proposition 10.7 (Maximum principle) Assume w is continuous on an open
set �, the vector field b is smooth, and the constant c is positive. If

�w + b · ∇w ≥ 2c

in the weak (distributional) sense then w has no interior maximum point.

Proof Suppose to the contrary that w does have an interior maximum, which
after a translation we may take to occur at the origin. Define

v = w − c

4n
|x|2

so that v has a strict maximum at the origin and

�v + b · ∇v ≥ c (10.5)

on some sufficiently small ball Bn(0, r) centered at the origin.
Then

max
|x|=r

v(x) < v(0)

since v has a strict maximum at the origin. Fix a bump function K (nonnegative,
smooth, supported in the unit ball, with integral 1), and recall Kε(x) =
ε−nK(x/ε) for ε > 0. Note v ∗ Kε → v locally uniformly as ε → 0, due
to the continuity of v, and so the preceding inequality continues to hold for the
ε-mollification of v, with

max
|x|=r

(v ∗ Kε)(x) < (v ∗ Kε)(0)

whenever ε is sufficiently small. Hence the smooth function v ∗ Kε achieves a
local maximum at some point xε ∈ B

n(0, r). The first derivatives must vanish
and the second derivatives must be nonpositive at this maximum point, and so

∇(v ∗ Kε)(xε) = 0, �(v ∗ Kε)(xε) ≤ 0.
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To make use of these facts, we apply the weak differential equality (10.5) to
the test function x → Kε(xε − x), obtaining that∫

�

v(x)(�Kε)(xε − x) dx +
∫
�

v(x)∇ · [−b(x)Kε(xε − x)] dx ≥ c.

The first integral equals �(v ∗ Kε)(xε) ≤ 0. The second integral equals∫
�

v(x)∇ · [(b(xε) − b(x)
)
Kε(xε − x)

]
dx −

∫
�

v(x)b(xε) · ∇[
Kε(xε − x)

]
dx.

That last integral is −b(xε) · ∇(v ∗ Kε)(xε) = 0 and so can be discarded.
Combining the above facts, one has∫

�

v(x)∇ · [(b(xε) − b(x)
)
Kε(xε − x)

]
dx ≥ c > 0. (10.6)

We will show the left side of (10.6) approaches 0 as ε → 0, giving a
contradiction and hence completing the proof.

Let ε → 0 through some sequence of values. After passing to a subsequence
we may further assume xε → x0 ∈ Bn(0, r). Changing variable with x →
xε − εx on the left side of (10.6) gives

−
∫
Bn(0,1)

v(xε − εx)∇ ·
[b(xε) − b(xε − εx)

ε
K(x)

]
dx

→ −v(x0)

∫
Bn(0,1)

∇ · [Db(x0)xK(x)
]

dx as ε → 0

= 0

by the divergence theorem, since the vector field Db(x0)xK(x) is supported
in the unit ball. Thus the left side of (10.6) approaches 0, as we wanted to
show.

To deal with the �-function in spherical shells later in this chapter, we need
a weighted version of the maximum principle.

Proposition 10.8 (Weighted maximum principle) Assume w(r, θ) is contin-
uous on an open subset of {(r, θ) : r > 0, 0 < θ < π}, and n, c1 > 0 are
constant. If

r1−n∂r
(
rn−1∂rw

) + r−2 sinn−2 θ ∂θ (sin2−n θ ∂θw) ≥ c1

in the weak (distributional) sense then w has no interior maximum point.

Proof Suppose w does have an interior maximum point. We will deduce a
contradiction. Multiplying by r2 shows that

r3−n∂r
(
rn−1∂rw

) + sinn−2 θ ∂θ (sin2−n θ ∂θw) ≥ c2
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in the weak sense on a neighborhood of the maximum, where c2 > 0 is a new
constant. Changing variable with r = es implies

(∂ss + ∂θθ )w + (n − 2)
(
∂s − cot θ∂θ )w ≥ c2

around the maximum point, which is impossible by Proposition 10.7.

Next we present an elementary lemma, unrelated to convexity or subhar-
monicity, that is needed later in the chapter.

Lemma 10.9 Suppose η : (0, 1) → R is C2-smooth with compact support
and g : (0, 1) → R is integrable.

(a) If g(t) = o(1) as t → 0 then∫ ε

0

(
η(t/ε)

)′
g(t) dt → 0 as ε → 0.

(b) If g(t) = o(t) as t → 0 then∫ ε

0

(
η(t/ε)

)′′
g(t) dt → 0 as ε → 0.

(c) If lim supt→0 g(t) ≤ 0 and η′ ≥ 0 then

lim sup
ε→0

∫ ε

0

(
η(t/ε)

)′
g(t) dt ≤ 0.

Proof The first integral equals
∫ 1

0 η′(t)g(εt) dt, which approaches 0 as ε → 0

since g(εt) → 0. The second integral equals
∫ 1

0 η′′(t)tg(εt)/(εt) dt, which
approaches 0 as ε → 0 since g(εt) = o(εt). The third integral is less than
or equal to the corresponding integral with g+ instead of g, since η′ ≥ 0, and
so applying part (a) to g+ gives the desired result.

10.3 Comparison Principles for s.d.r. on Euclidean Domains

The first comparison principles will be on Euclidean domains for the s.d.r.
Before stating them, we need to extend the definition of the J-operator from
functions to measures.

Write # for symmetric decreasing rearrangement on an open set � ⊂
R

n, n ≥ 1, as treated in Section 9.10. Take R ∈ (0, ∞] to be the radius of
the ball �# = B

n(R), and recall that

�� = (0, R)
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is an open interval, and the indefinite integral operator J maps functions on �#

to functions on �� by

(Ju)(r) =
∫

B(r)
u dLn, r ∈ ��.

Given a measure μ ∈ Mloc(�
#), define the measure Jμ ∈ Mloc(�

�) by

d(Jμ) = μ
(
B(r)

)
dr.

In particular, one has μ� = J(μ#) because

dμ� = (
f �(r) + τ(�)

)
dr

= μ#(B(r)) dr

= d(J(μ#))

by the definitions of μ# and μ� in Sections 9.9 and 9.10. Hence the hypothesis
μ� ≤ Jν in the next theorem holds with equality if ν = μ#.

The adjoint relation for measures says

(G, Jμ) = (JtG,μ) (10.7)

for μ ∈ Mloc(�
#) and G ∈ Cc(�

�), which is easy to verify since each side
equals ∫

�#

∫ R

0
χB(r)(x)G(r) dr dμ(x).

As a consequence, we see that the identity
∫
�� G dμ� = ∫

�# JtG dμ# in (9.81),
which we used in proving Theorem 9.20, is just the adjoint relation (10.7)
applied to μ# and combined with the formula μ� = J(μ#).

10.3.1 Linear Equations

Our first comparison theorem treats linear Poisson equations. The conclusion
is that the s.d.r. of u is bounded by the average of v over a sphere centered at
the origin, written

v(rx) = 1

βn−1

∫
Sn−1

v(ry) dσn−1(y), |x| = 1, 0 ≤ r < R.

If v is radial, then v = v. Recall that λ1 denotes the first eigenvalue of the
Dirichlet Laplacian, which for the ball Bn(R) was computed in terms of Bessel
zeros in Proposition 5.7.
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Theorem 10.10 (Linear Poisson) Assume u ∈ W(�), v ∈ W(�#) are weak
solutions of the linear Poisson equations

−�u + cu = μ, −�v + cv = ν,

where μ ∈ Mloc(�), ν ∈ Mloc(�
#), and c ∈ R satisfies c > −λ1

(
B

n(R)
)

(if
R < ∞) or c ≥ 0 (if R = ∞). Further assume μ decomposes as in (9.47) with
f satisfying Condition B and with τ(�) < ∞. Suppose μ� ≤ Jν.

If u is nonnegative and satisfies the Dirichlet boundary condition

lim
x→x0, x∈�

u(x) = 0

for all x0 ∈ ∂�, and v satisfies the boundary condition lim infr→R v(rx) ≥ 0,
then u� ≤ Jv ≤ v� on ��. Hence the convex increasing integral means of u
are dominated by those of v:∫

�

�(u) dLn ≤
∫
�#

�(v) dLn

for every convex increasing � : R → R
+.

Furthermore, when c = 0 one has the stronger pointwise conclusion
u# ≤ v on �#, and hence

∫
�
�(u) dLn ≤ ∫

�# �(v) dLn for every increasing
� : R → R

+.

The notion of weak (distributional) solutions was defined in Chapter 9, the
point being that all derivatives are moved onto the test function. The theorem is
most often applied with ν = μ#, in which case the hypothesis μ� ≤ Jν holds
with equality.

Remember that when an open set is unbounded, the point at infinity is
regarded as a boundary point for the purposes of the Dirichlet boundary
condition.

A comparison result on the gradient norm (rather than the norm of the
function) is due to Talenti (1976b, Theorem 1(v)): if −�u = f and −�v = f #

and u and v satisfy the Dirichlet boundary condition, then∫
�

|∇u|q dLn ≤
∫
�#

|∇v|q dLn, q ∈ (0, 2]. (10.8)

His proof uses level set methods and differential inequalities.

Proof of Theorem 10.10 The reader should concentrate on the case c = 0, in
what follows. The proof when c > 0 has a similar “pointwise” flavor. When
c < 0, integral arguments will be used and the proof is considerably more
complicated.
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The nonnegativity assumption on u together with the Dirichlet boundary
condition u → 0 at ∂� implies u# → 0 at ∂�#. That is, u# satisfies a Dirichlet
boundary condition as r → R. Also lim infr→R v(rx) ≥ 0 by hypothesis. Hence

lim sup
r→R

(u# − v) ≤ 0. (10.9)

We will use this inequality later in the proof.
We may apply the Subharmonicity Theorem 9.20 for u, since u satisfies the

Dirichlet boundary condition and φ(z) = −cz satisfies Condition (ii) in that
theorem. Combining that result with the Weak Main Identity (9.79) for v and
with the adjoint relation (10.7), we have

−��u� + cu� ≤ μ�,

−��Jv + cJv = Jν,

in the weak sense, where the operator �� was defined in (9.74) as

��F(r) = rn−1(r1−nF′(r)
)′. (10.10)

Since μ� ≤ Jν by hypothesis, we conclude that the absolutely continuous
function

w = u� − Jv = J(u# − v)

satisfies

− ��w + cw ≤ 0 (10.11)

weakly on the interval (0, R). Changing variable with ρ = rn gives

n2ρ2−2/n d2w

dρ2
≥ cw (10.12)

in the weak sense.

Step (i): Suppose first that c = 0, so that (10.12) implies d2w/dρ2 ≥ 0
in the weak sense. Then w is classically convex as a function of ρ, by Lemma
10.6. Convexity insures that the derivative dw/dρ is increasing. This derivative
is defined a.e., and equals

dw

dρ
= 1

nrn−1

d

dr

∫
B(r)

(u# − v) dLn

= 1

n
βn−1(u

# − v)(rx),

as one sees by expressing the integral in spherical coordinates (noting x can
be any unit vector, since u# and v are radial functions). Therefore u# − v is
an increasing radial function. Its limiting value is less than or equal to zero by
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(10.9), and so u# − v ≤ 0 everywhere. Integrating over the ball Bn(r) implies
u� − Jv ≤ 0, from which the desired inequality on integral means follows by
Section 10.1.

Step (ii): Suppose now that c > 0. Our goal is to show w ≤ 0. Suppose
instead that w is positive somewhere. Then the open set {ρ : w > 0} is
nonempty, and so we may write (ρ1, ρ2) ⊂ (0, Rn) for a maximal interval
(component) on which w is positive. By (10.12) and positivity of c, we see w
is classically convex as a function of ρ ∈ (ρ1, ρ2).

Observe that w = 0 at the left endpoint ρ1, since either ρ1 = 0, at which
point u� and Jv and hence w equal zero by definition, or else ρ1 > 0, where w
must equal zero because otherwise the component (ρ1, ρ2) could be extended
to the left.

Convexity then implies w is increasing as a function of ρ ∈ (ρ1, ρ2).
In particular, w increases to a positive limiting value as ρ ↗ ρ2. Hence
ρ2 = Rn, because otherwise the component (ρ1, ρ2) could be extended
further to the right. Convexity also implies that the derivative of w has a
positive limiting value as ρ ↗ Rn, which contradicts the fact in (10.9) that
lim supr→R(u

# − v)≤ 0. This contradiction implies w cannot be positive
anywhere, and so w ≤ 0 as desired.

Step (iii): Suppose lastly that −∞ < c < ∞ and R < ∞. We will prove
the contrapositive of the theorem, by showing that if w > 0 somewhere then
c ≤ −λ1

(
B

n(R)
)
. (Thus if c > −λ1

(
B

n(R)
)
, then w ≤ 0 and so u� ≤ Jv.) So

we suppose (r1, r2) ⊂ (0, R) is a maximal interval on which w(r) is positive.
Write F(x) for the first eigenfunction of the Laplacian on the ball Bn(R),

so that

−�F = λ1
(
B

n(R)
)
F

with F being positive and radially decreasing on the ball and F = 0 on the
boundary. Explicitly,

F(x) = (jp,1r/R)−pJp(jp,1r/R), x ∈ R
n,

and λ1
(
B

n(R)
) = (jp,1/R)2, where r = |x|, p = n

2 − 1, and jp,1 is the first
positive root of the Bessel function Jp (see Proposition 5.7). In dimension 1
these formulas remain valid and yield the usual trigonometric eigenfunction
F(x) = √

2/π cos(πr/2R) (coming from n = 1, p = −1/2, J−1/2(r) =√
2/π r−1/2 cos r, and jp,1 = π/2).
We proceed in two cases.
Case 1: r2 = R. In this case w(r2) ≥ 0, and lim supr→r2

w′(r) ≤ 0 by (10.9).
Define

f (x) = χ[r1,r2](r)F(x),
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so that f ≥ 0. Then r1−nJf (r) is smooth for r ∈ [r1, r2] and equals zero at
r = r1; the only potential issue arises when r1 = 0, and in that situation
smoothness can be established by expanding F in a power series to find
JF(r) = F(0)αnrn + O(rn+1) and so on.

The weak form of the differential inequality (10.11) says that

−
∫ R

0

(
G(r)rn−1)′r1−n)′w(r) dr +

∫ R

0
G(r)cw(r) dr ≤ 0

for all nonnegative functions G ∈ C2
c (0, R). We choose

G(r) = ψε(r)r
1−nJf (r),

where ε > 0 is small and ψε(r) is a smooth cut-off function compactly
supported in (r1, r2) that increases from 0 to 1 for r ∈ [r1, r1 + ε], equals 1 for
r ∈ [r1 + ε, r2 − ε], and decreases from 1 to 0 for r ∈ [r2 − ε, r2]. Specifically,
we take ψε(r) = η

(
(r − r1)/ε

)
η
(
(r2 − r)/ε

)
where η(t) is a smooth function

that equals zero for t ≤ 1/2, increases from 0 to 1 for 1/2 ≤ t ≤ 1, and equals
1 for t ≥ 1.

After substituting our choice of G into the weak form of the differential
inequality, we arrive at:∫ r2

r1

ψε

[ − βn−1f ′ + cr1−nJf
]
w dr (10.13)

≤
∫ r1+ε

r1

ψ ′
ε

[
(r1−nJf )′ + βn−1f

]
w dr +

∫ r1+ε

r1

ψ ′′
ε r1−nJf w dr (10.14)

+
∫ r2

r2−ε

ψ ′
ε βn−1fw dr −

∫ r2

r2−ε

ψ ′
εr1−nJf w′ dr, (10.15)

where in the final line we carried out an integration by parts to eliminate ψ ′′
ε .

We consider each line separately. The divergence theorem implies

βn−1rn−1f ′(r) = βn−1rn−1
1 f ′(r1) +

∫
{r1<|x|<r}

�f dx ≤ −λ1Jf (r)

since f ′(r1) ≤ 0 and �F = −λ1F. Hence the expression in (10.13) is greater
than or equal to (λ1 + c)

∫ r2
r1

ψεr1−nJf w dr, which converges as ε → 0 to

(λ1 + c)
∫ r2

r1
r1−nJf w dr. As ε → 0 the first term in (10.14) tends to 0 by

Lemma 10.9(a) since w(r1) = 0, while the second term in (10.14) tends to 0
by Lemma 10.9(b) since

r1−nJf (r)w(r) = O(r − r1)o(1) = o(r − r1)

as r ↘ r1. The first term in (10.15) is ≤ 0 since ψ ′
ε ≤ 0 on that interval and

f and w are positive. The second term in (10.15) has lim sup less than or equal
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to 0 as ε → 0 by Lemma 10.9(c), since lim supr→r2
r1−nJf (r)w′(r) ≤ 0 by

(10.9). Combining the preceding observations, we see that letting ε → 0 in
(10.13)–(10.15) implies

(λ1 + c)
∫ r2

r1

r1−nJf w dr ≤ 0.

Since f and w are positive on the interval (r1, r2) we conclude c ≤ −λ1, which
completes the proof in Case 1.

Case 2: r2 < R. In this case w(r2) = 0. Define

f (x) = χ[r1,r2](r)F(Lx)

where the constant L > 1 is chosen so that Jf (r) > 0 for r ∈ (r1, r2) and
Jf (r2) = 0, as we now justify. If L = R/r2 > 1, then F(Lx) > 0 whenever
|x| < r2, and so Jf (r2) > 0. On the other hand, if L = R′/r2 where R′ > R
is the first positive root of ∂F/∂r = 0 (that is, R′ = Rj′p,1/jp,1 where j′p,1 is the
first positive root of (r−pJp(r))′ = 0), then

Jf (r2) =
∫

{r1<|x|<r2}
F(Lx) dx

= (r2/R′)n
∫

{R′r1/r2<|x|<R′}
F(x) dx

= −(const.)
∫

{R′r1/r2<|x|<R′}
�F(x) dx since −�F = λ1F,

≤ 0

by the divergence theorem, since ∂F/∂r < 0 when 0 < r < R′ and ∂F/∂r = 0
when r = R′. Thus by the intermediate value theorem, for some choice of
L ∈ (R/r2, R′/r2] one has Jf (r2) = 0. Notice the value of Jf (r) decreases
strictly when L increases (with r ∈ (r1, r2) fixed), because F is strictly
decreasing on (0, R′). It follows that L is unique, and Jf (r) > 0 for r ∈ (r1, r2).

Clearly r1−nJf (r) is smooth for r ∈ [r1, r2] and equals zero at r = r1, just
as in Case 1.

Substituting our choice of G into the weak form of the differential inequality
again gives (10.13)–(10.15). We handle (10.13) as in Case 1, using that
f ′(r1) ≤ 0, Jf ≥ 0 and �f = −L2λ1f to arrive after letting ε → 0 at the
expression (L2λ1 + c)

∫ r2
r1

r1−nJf w dr. The terms in (10.14) are shown to
vanish in the limit as ε → 0, by arguing exactly as in Case 1. After integration
by parts, the terms in (10.15) are equal to∫ r2

r2−ε

ψ ′
ε

[
(r1−nJf )′ + βn−1f

]
w dr +

∫ r2

r2−ε

ψ ′′
ε r1−nJf w dr. (10.16)
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As ε → 0, the first term in (10.16) tends to 0 by Lemma 10.9(a) since
w(r2) = 0, while the second term in (10.16) tends to 0 by Lemma 10.9(b) since

r1−nJf (r)w(r) = O(r − r2)o(1) = o(r − r2)

as r ↗ r2. Thus by letting ε → 0 in (10.13), (10.14) and (10.16), we find

(L2λ1 + c)
∫ r2

r1

r1−nJf w dr ≤ 0.

Since Jf and w are positive on the interval (r1, r2) we conclude c ≤ −L2λ1

< −λ1, finishing the proof of the contrapositive for Case 2.

Example 10.11 (Alternate proof of Rayleigh–Faber–Krahn theorem) The
first eigenvalue of the Laplacian under Dirichlet boundary conditions was
shown in Theorem 5.6 to decrease under symmetric decreasing rearrangement
of the domain � ⊂ R

n. The proof involved rearranging the first eigenfunction
to obtain a trial function on the ball �#, using that the Dirichlet integral
decreases under s.d.r. We develop now an alternate proof, in which a trial
function on the ball is obtained by solving a rearranged eigenfunction equation.
The Faber–Krahn theorem will follow because this trial function has larger L2

norm than the original function, by the comparison theorem.
Let u be the first eigenfunction of the Laplacian on a bounded open set

� ⊂ R
n that has smooth boundary, so that the eigenfunction equation

−�u = λ1(�)u

holds and u is continuous on � and satisfies the Dirichlet boundary condition
u = 0 on ∂�. We may suppose u ≥ 0, since the first eigenfunction does not
change sign.

Construct a function v satisfying the rearranged Poisson equation

−�v = λ1(�)u#

on the ball �#, with v continuous on the closure of �# and v = 0 on ∂�#. (The
solution v exists by the classical Theorem 4.3 in Gilbarg and Trudinger (1983),
noting the data u# is Lipschitz continuous by Theorem 3.6, because u is too.)
Then v ≥ 0 by the minimum principle for superharmonic functions. Using v

as a trial function for the first eigenvalue on the ball, we see from Rayleigh’s
formula (5.9) that

λ1(�
#) ≤

∫
�# |∇v|2 dx∫
�# v2 dx

= − ∫
�# v�v dx∫
�# v2 dx
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by Green’s formula. Substituting −�v = λ1(�)u# and applying Cauchy–
Schwarz gives

λ1(�
#) ≤ λ1(�)

∫
�# vu# dx∫
�# v2 dx

≤ λ1(�)

(∫
�#(u#)2 dx∫
�# v2 dx

)1/2

.

Further, ∫
�#

(u#)2 dx =
∫
�

u2 dx ≤
∫
�#

v2 dx

by the comparison principle in Theorem 10.10 applied with c = 0,μ =
λ1(�)u, ν = λ1(�)u#, so that μ� = Jν, and taking the convex increasing
function to be �(t) = t2 when t ≥ 0 and �(t) = 0 when t < 0.

Combining the inequalities implies λ1(�
#) ≤ λ1(�), and so the first

eigenvalue of � is greater than or equal to that of the ball �#, which is the
Faber–Krahn Theorem 5.6.

A similar but simpler argument proves Pólya’s Theorem 5.17 that the
torsional rigidity increases under s.d.r. of the domain: if −�u = 2 in � and
−�v = 2 in �#, with zero Dirichlet boundary conditions on each function,
then u and v are nonnegative by the maximum principle, and so Theorem 10.10
guarantees that

T(�) = 2
∫
�

u dx ≤ 2
∫
�#

v dx = T(�#).

10.3.2 Semilinear Equations

Next we state a comparison theorem for semilinear equations. The mean value
v of v over the sphere of radius r was defined before Theorem 10.10.

Theorem 10.12 (Semilinear Poisson) Assume u ∈ W(�) and v ∈ W(�#)

are weak solutions of

−�u = φ(u) + μ, −�v = φ(v) + ν,

where φ is a decreasing convex function such that φ(u) and φ(v) are locally
integrable on � and �# respectively, and where μ ∈ Mloc(�), ν ∈ Mloc(�

#).
Further assume μ decomposes as in (9.47) with f satisfying Condition B and
with τ(�) < ∞. Suppose μ� ≤ Jν.

If u is nonnegative and satisfies the Dirichlet boundary condition

lim
x→x0, x∈�

u(x) = 0
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for x0 ∈ ∂�, and v satisfies the boundary condition lim infr→R v(rx) ≥ 0, then
u� ≤ Jv ≤ v� on ��. Hence the convex increasing integral means of u are
dominated by those of v, with∫

�

�(u) dLn ≤
∫
�#

�(v) dLn

for every convex increasing � : R → R
+.

The interesting case is when φ is nonlinear. When φ is linear, Theorem
10.10 gives a stronger conclusion because not only can linearly decreasing
φ be handled (c ≥ 0 in that theorem) but also certain linearly increasing φ

(namely −λ1 < c < 0).

Example 10.13 Suppose α and β are positive, bounded functions satisfying

� logα = α2 and � logβ = β2

on � and �#, respectively. Let C > 0 be an upper bound on u and v. Then
u = log C/α and v = log C/β satisfy

−�u = C2e−2u and − �v = C2e−2v .

Note φ(z) = C2e−2z is convex decreasing. Hence Theorem 10.12 can be
applied, provided the Dirichlet boundary condition holds for u and v, which
is true if α = C on ∂� and β ≤ C on ∂�#. This example hints at applications
to the hyperbolic metric in complex analysis; see §11.9.

Proof of Theorem 10.12 Letting w0 = u� − Jv, the goal is to prove w0 ≤ 0.
Clearly w0 = J(u# −v) is absolutely continuous, with w0(0) = 0 by definition.
Arguing for a contradiction, we suppose instead that w0 > 0 somewhere.

We will perturb w0 to ensure strict inequalities later in the proof. Let

H(r) = rn + rn−1/2,

and compute that

H > 0, H′ > 0, ��H = 0 − 1

2
(n − 1/2)rn−5/2 < 0

for all r > 0, where the operator �� is given in (10.10). Define

w = w0 − εH = J(u# − v) − εH,

where ε > 0 is chosen so small that w > 0 at some point. Notice w(0) = 0
by definition. Further, w is decreasing when r is close to R, as we now show.
We have for almost every r that

w′(r) = βn−1rn−1(u# − v)(rx) − ε
(
nrn−1 + (n − 1/2)rn−3/2),
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by expressing J(u# −v) in spherical coordinates; note x can be any unit vector,
since u# and v are radial functions. The Dirichlet boundary condition on u
implies u#(rx) → 0 as r → R, while the boundary condition on v says
lim infr→R v(rx) ≥ 0. Hence

lim sup
r→R

r1−nw′(r) ≤ −ε
(
n + (n − 1/2)R−1/2) < 0

(which remains valid even if R = ∞), and so w′(r) < 0 for all r close to R.
Therefore w attains its maximum at some point s ∈ (0, R). We will show no

such maximum can occur.
The Subharmonicity Theorem 9.20 applies to u, since u satisfies the

Dirichlet boundary condition and the convex decreasing function φ satisfies
Condition (ii) in that result. (The absolute value |φ(z)| is bounded by a linear
function when z is large, and so Mκφ(z) = max|z̃−z|≤κ |φ(z̃)| is also bounded
by a linear function. Hence Mκφ(u) is locally integrable because u is locally
integrable, and so Condition (ii) holds.) Combining that Subharmonicity
Theorem with the Weak Main Identity (9.79) for v and with the adjoint
relations (9.73) and (10.7), we have

−��u� ≤ Jφ(u#) + μ�,

−��Jv = Jφ(v) + Jν.

Subtracting and using the hypothesis μ� ≤ Jν, we deduce

− ��w ≤ Jφ(u#) − Jφ(v) − ε(n − 1)rn−3. (10.17)

We must analyze the nonlinear terms on the right side of the differential
inequality. Write φ′ for the right-derivative of φ, which exists at every point in
R

+ by convexity, and write φ′(u#(r)) to mean φ′(u#(ry)) with |y| = 1. We have

[Jφ(u#) − Jφ(v)](s) =
∫

B(s)

(
φ(u#) − φ(v)

)
dLn

≤
∫

B(s)
φ′(u#)(u# − v) dLn

by convexity of φ. Using spherical coordinates on the ball B(s),

[Jφ(u#) − Jφ(v)](s) ≤
∫ s

0
φ′(u#(r))

d

dr

[
u�(r) − Jv(r)

]
dr

≤
∫ s

0
φ′(u#(r))w′(r) dr,

since φ′ ≤ 0 and H′ > 0. Write

ψ(r) = φ′(u#(r)) ≤ 0,
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and observe ψ is decreasing by convexity of φ. The measure dψ is therefore
nonpositive. Integration by parts yields

∫ s

0
φ′(u#(r))w′(r) dr = −

∫ s

0
ψ(r)

d

dr
[w(s) − w(r)] dr

= ψ(0)w(s) +
∫
(0,s)

(w(s) − w(r)) dψ(r)

≤ 0

since ψ(0) ≤ 0 and w(r) ≤ w(s) for all r ≤ s. Therefore, by above,

[Jφ(u#) − Jφ(v)](s) ≤ 0. (10.18)

From (10.18) we see the right side of (10.17) is a continuous function that
is negative at r = s, and hence is negative on a neighborhood of s. Thus

−��w < 0

on a neighborhood of the maximum point s. On that neighborhood, we change
variable with ρ = rn so that −��w < 0 becomes d2w/dρ2 > 0 in the weak
sense. Hence w is strictly convex in the classical sense as a function of ρ, by
Lemma 10.6, and so w cannot attain its maximum at the interior point s of the
neighborhood. This contradiction completes the proof.

We deduce a symmetry result from Theorem 10.12.

Corollary 10.14 Assume v ∈ W(�#) is a nonnegative weak solution of the
semilinear Poisson equation −�v = φ(v)+ν, where φ is a decreasing convex
function with φ(v) locally integrable on �# and the measure ν ∈ Mloc(�

#)

decomposes as in (9.47) with f satisfying Condition B and with τ(�#) < ∞.
If the measure is symmetric decreasing (ν = ν#) and v satisfies the Dirichlet

boundary condition on ∂�#, then v is symmetric decreasing: v = v# a.e.
on �#.

Proof Since ν� = J(ν#) = Jν, and v satisfies the hypotheses imposed on u
in Theorem 10.12, we conclude from the theorem that v� ≤ Jv ≤ v�, and so
Jv = Jv#. It follows that v = v# a.e.

The statement of the corollary is particularly simple if the measure vanishes
(ν ≡ 0), since in that case it automatically has the desired decomposition and
is symmetric decreasing.
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10.4 Comparison Principle for Steiner Symmetrization
on Euclidean Domains

Steiner comparison theorems follow as for s.d.r. in the previous section, with
the additional complication of “outer” boundary points, meaning, boundary
points that are (roughly speaking) parallel to the direction in which the Steiner
symmetrization is performed.

Throughout this section, # denotes (k, n)-Steiner symmetrization, where
n ≥ 2 and 1 ≤ k ≤ n − 1. We continue to take � to be an open subset of
R

n. As in Section 9.11, we write y ∈ R
k, z ∈ R

m, k + m = n, and let Z be the
open set of all z ∈ R

m such that the slice �(z) ⊂ R
k is nonempty.

The open set �� ⊂ R
m+1 was defined in Section 9.11 by replacing each

slice �(z) with an interval ��(z) with length equal to the radius of the ball
�#(z). The J-operator acts on functions slice-by-slice, and acts on measures as
follows. Given a measure μ ∈ Mloc(�

#), construct a measure Jμ ∈ Mloc(�
�)

by letting

(Jμ)(E) =
∫ ∞

0
μ
(
B(r) × E(r)

)
dr for E ∈ Bc(�

�),

where E(r) = {z ∈ R
m : (r, z) ∈ E} is the r-slice of E. This definition is

consistent with how the J operator acts on functions, because if the measure is
represented by a locally integrable function, say dμ = u(y, z) dydz, then one
can check Jμ(E) = ∫

E Ju(r, z) drdz. Lastly, notice J(μ#) = μ� because

μ#(B(r) × E(r)
) =

∫
E(r)

f �(r, z) dz +
∫

E(r)
dτ #(z)

by the definitions of μ# and μ� in Section 9.11.
The adjoint relation for measures says

(G, Jμ) = (JtG,μ) (10.19)

for μ ∈ Mloc(�
#) and G ∈ Cc(�

�). The proof is straightforward: each side
equals ∫

�#

∫
��(z)

χB(r)(y)G(r, z) dr dμ(x)

where x = (y, z) and |y| = r. For example, if we apply the adjoint relation
(10.19) to μ#, and remember that μ� = J(μ#), then we obtain the identity
(9.92) used in proving Theorem 9.23.

The average of v over a sphere centered at the origin in a slice is

v(ry, z) = 1

βk−1

∫
Sk−1

v(ry′, z) dσk−1(y
′), |y| = 1, 0 ≤ r < R(z).

Write Jφ(v) for J
(
φ(v(y, z))

)
, and so on.



378 Comparison Principles for Semilinear Poisson PDEs

The next theorem gives a Steiner comparison principle for nonnegative
subsolutions.

Theorem 10.15 Assume u ∈ W(�) and v ∈ W(�#) are weak solutions of

−�u ≤ φ(u) + μ, −�v = φ(v) + ν,

where φ is a decreasing convex function on R such that φ(u) and φ(v) are
locally integrable on � and �# respectively, and J(u#), Jφ(u#), Jv, Jφ(v) are
continuous on ��, and μ ∈ Mloc(�), ν ∈ Mloc(�

#). Assume μ decomposes as
in (9.82) with f + c nonnegative and satisfying Condition BS, for some c ∈ R,
and that τ(�) < ∞ and μ� ≤ Jν.

Suppose further that

lim sup
(r,z)→(r0,z0)

∫
B(r)

[u#(y, z) − v(y, z)] dLk(y) ≤ 0 (10.20)

for all (r0, z0) ∈ ∂(��) with z0 ∈ ∂Z, where the lim sup is taken over points
(r, z) ∈ ��; and if Z is unbounded then also assume (10.20) holds when the
lim sup is taken over all points (r, z) ∈ �� with |z| → ∞.

If u ≥ 0 and u and v satisfy the Dirichlet boundary conditions

lim
x→x0, x∈�

u(x) = 0, lim inf
x→x1, x∈�#

v(x) ≥ 0,

for all x0 = (y0, z0) ∈ ∂� with z0 ∈ Z and all x1 = (y1, z1) ∈ ∂�# with z1 ∈ Z,
then u� ≤ Jv ≤ v� on ��. Hence the convex increasing integral means of u
are dominated by those of v on each slice, with∫

�(z)
�

(
u(y, z)

)
dLk(y) ≤

∫
�#(z)

�
(
v(y, z)

)
dLk(y)

for every convex increasing � : R → R
+ and every z ∈ Z.

The theorem implicitly assumes that the functions u,φ(u), v,φ(v) are
locally integrable on every slice, not just on almost every slice.

Assumption (10.20) can be regarded as an “outer boundary condition” since
it is assumed to hold for z0 ∈ ∂Z (and for |z| → ∞ if applicable). We assume
z0 is a finite point and r0 ∈ [0, ∞], in (10.20).

Proof Once again the task is to prove u� ≤ Jv, because Jv ≤ v� by definition
of v� and the conclusion on convex integral means follows from Section 10.1.

Put w0 = u�−Jv = J(u#−v), so that w0 is continuous on �� by hypothesis.
We want to show w0 ≤ 0. Suppose for the sake of deducing a contradiction
that w0 > 0 somewhere in ��. Define a perturbing function

H(r) = rk + rk−1/2,
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so that H(0) = 0 and

H > 0, H′ > 0, ��H = 0 − 1

2
(k − 1/2)rk−5/2 < 0

for all r > 0, where the operator �� was defined in (9.87) by

��F = rk−1∂r
(
r1−k∂rF

) + �zF. (10.21)

Now let

w = w0 − εH = u� − Jv − εH

where we fix ε > 0 so small that w is positive somewhere in ��.
Take a supremizing sequence (rl, zl) ∈ �� for w, so that

0 < w(rl, zl) ↗ sup
��

w as l → ∞.

For each l, note w(r, zl) is a continuous function of r that tends to 0 as r → 0.
Hence we may suppose

w(r, zl) ≤ w(rl, zl) for all r ∈ (0, rl), (10.22)

simply by replacing rl (if necessary) with a smaller value at which w(· , zl)

achieves its maximum over [0, rl].
After passing to a subsequence, one of the following must hold:

(i) zl → z0 ∈ ∂Z or |zl| → ∞,
(ii) zl → z0 ∈ Z and rl → 0,

(iii) zl → z0 ∈ Z and rl → r0 ∈ (
0, R(z0)

)
,

(iv) zl → z0 ∈ Z and rl → r0 ∈ [
R(z0), ∞

]
.

We will rule out each of these possibilities, in order to arrive at the desired
contradiction.

Case (i) is impossible by the outer boundary condition (10.20), which
implies lim sup w(rl, zl) ≤ 0.

Case (ii) is impossible since w = 0 when r = 0, by definition.
Case (iii) will be ruled out using a maximum principle argument. Since φ

is convex and decreasing, the absolute value |φ(ζ )| is bounded by a linear
function for ζ ≥ 0. Hence Mκφ(ζ ) = max|̃ζ−ζ |≤κ |φ(̃ζ )| is also bounded by
a linear function for ζ ≥ 0, and so Mκφ(u) is locally integrable on � because
u ≥ 0 is locally integrable. Thus Condition (ii) holds in the hypotheses of
Subharmonicity Theorem 9.23. That theorem implies

−��u� ≤ Jφ(u#) + μ�
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in the weak sense on ��. Also

−��Jv = Jφ(v) + Jν

in the weak sense, as one verifies by combining the Weak Main Identity (9.90)
for v, the weak form of the equation −�v = φ(v) + ν, the adjoint relation
(9.86) applied with φ(v) instead of v, and the adjoint relation (10.19) for
measures.

Subtracting the preceding formulas and using the hypothesis μ� ≤ Jν
implies that

− ��w ≤ J[φ(u#) − φ(v)] + ε��H (10.23)

in the weak sense on ��. In Case (iii) the positive maximum of w is attained
at a point (r0, z0) with 0 < r0 < R(z0), z0 ∈ Z. By arguing exactly as in the
proof of Theorem 10.12 (which uses that φ is convex decreasing and H′ > 0),
we find

J[φ(u#) − φ(v)] ≤ 0

at (r0, z0), so that the right side of (10.23) is negative at that point, since
��H < 0. The right side remains negative on some neighborhood N0 of the
point, by continuity, and so

��w > c0

weakly on N0, for some constant c0 > 0. The maximum principle (Proposition
10.7) for the operator �� in (10.21) implies w cannot have an interior maximum
at the point (r0, z0) ∈ N0. This contradiction eliminates Case (iii).

Lastly, suppose as in Case (iv) that r0 ∈ [
R(z0), ∞

]
. We will show

for all large indices l that w(r, zl) is strictly decreasing as a function of
r ∈ (rl − 2−l, rl), which contradicts (10.22) and thus completes the proof.
Indeed, for such r-values we compute (with y ∈ R

k, |y| = 1) that

r1−k ∂w

∂r
(r, zl) = βk−1

(
u#(ry, zl) − v(ry, zl)

) − ε
(
k + (k − 1/2)r−1/2),

and this last expression is negative for all large l in view of the Dirichlet
boundary conditions on u and v (noting that (ry, zl) → (r0y, z0) ∈ ∂�# as
l → ∞).

The stronger conclusion u# ≤ v obtained in Theorem 10.10 for the s.d.r.
when c = 0 need no longer hold under (k, n)-Steiner symmetrization, as one
may show by an explicit example (Baernstein, 1994, p. 52).

A symmetry statement analogous to Corollary 10.14 can be proved. We
leave it to the reader.
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10.5 Comparison Principle on the Sphere

In this section, # will denote symmetric decreasing rearrangement on S
n, with

n ≥ 1. The sphere has no boundary, and so there are no boundary conditions.
Instead we will normalize the solutions by requiring the integral of u over the
sphere to be less than that of v.

Recall from Section 9.7 that

(Ju)(θ) =
∫
K(θ)

u(x) dσn(x),

where K(θ) denotes the open spherical cap on S
n with center e1 and opening

θ ∈ (0,π). Then u� = Ju# on the interval A� = (0,π). To extend the J operator
to measures μ ∈ M(Sn), define Jμ ∈ M(A�) by

d(Jμ) = μ
(
K(θ)

)
dθ .

This definition is consistent with the previous one for functions, since if
the measure is represented by a locally integrable function, say dμ(x) =
u(x) dσn(x), then the preceding definitions give d(Jμ) = Ju(θ) dθ . In addition,

μ� = J(μ#)

because

dμ� = (
f �(θ) + τ(Sn)

)
dθ

= μ#(K(θ)
)

dθ

= d(J(μ#))

by the definitions of μ� and μ# in Section 9.7. Note there that the open
cap K(θ) never contains the antipodal point −e1 on the sphere at which the
measure η# is concentrated.

The adjoint relation for measures says

(G, Jμ) = (JtG,μ) (10.24)

for μ ∈ M(Sn) and G ∈ Cc(0,π), which is easily shown because each side
equals ∫

Sn

∫ π

0
χK(θ)(x)G(θ) dθ dμ(x).

By the way, the identity
∫ π

0 G dμ� = ∫
Sn g dμ# used in proving Theorem

9.13 can now be understood as just the adjoint relation (10.24) applied to μ#

together with the formula μ� = J(μ#).
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We compare now the solution of a semilinear Poisson equation on the sphere
with a solution to the symmetrized version of the same equation. Recall �s is
the spherical Laplacian, defined in Section 7.2.

Theorem 10.16 Assume u, v ∈ W(Sn) are weak solutions of

−�su = φ(u) + μ, −�sv = φ(v) + ν,

where φ : R → R is a decreasing convex function with φ(u) and φ(v)

integrable on S
n, and where μ, ν ∈ M(Sn). Suppose μ� ≤ Jν.

If ∫
Sn

u dσn ≤
∫
Sn

v dσn (10.25)

then u� ≤ Jv ≤ v� on the interval (0,π). Hence the convex increasing integral
means of u are dominated by those of v, with∫

Sn
�(u) dσn ≤

∫
Sn

�(v) dσn (10.26)

for every convex increasing � : R → R. Further, if equality holds in (10.25)
then (10.26) holds for all convex �, and hence one obtains comparisons
between Lp-norms and the oscillations of f and g as in Proposition 10.3.

The hypothesis μ� ≤ Jν in the theorem holds with equality if the measure
ν equals the s.d.r. of μ, meaning μ# = ν.

Some normalizing condition such as (10.25) is needed in the theorem, since
in the linear case (φ ≡ 0) one can add arbitrary constants to u and v and they
still solve their respective Poisson equations.

Proof Put w0 = u� − Jv = J(u# − v), so that w0 is absolutely continuous on
[0,π ] with w0(0) = 0 by definition and w0(π) ≤ 0 by (10.25). The task is to
prove w0 ≤ 0, so that u� ≤ Jv. Suppose to the contrary that w0(γ0) > 0 for
some γ0 ∈ (0,π). We will obtain a contradiction.

Let

H(θ) =
∫ θ

0
(π − ϕ) sinn−1 ϕ dϕ (10.27)

so that H is smooth. When θ ∈ (0,π), one has

H′ > 0, ��
sH = − sinn−1 θ < 0,

where the operator ��
s was defined in Section 9.7 by

��
sF(θ) = sinn−1 θ

(
sin1−n θF′(θ)

)′.



10.5 Comparison Principle on the Sphere 383

Define a perturbation of w0 by

w = u� − Jv − εH,

where ε > 0 is chosen so small that

w(γ0) > max
(
0, w(0), w(π)

)
.

Then the maximum of w on the interval [0,π ] is positive, and is attained at
some point in the interior of the interval, not at an endpoint. Write γ ∈ (0,π)
for such a maximum point.

By the Subharmonicity Theorem 9.13 for u and the Weak Main Identity
(9.42) for v (together with the adjoint relations (9.41) and (10.24)), we have

−��
su

� ≤ Jφ(u#) + μ�,

−��
sJv = Jφ(v) + Jν,

in the weak sense. Subtracting the preceding formulas yields that

−��
sw ≤ Jφ(u#) + μ� − Jφ(v) − Jν − ε sinn−1 θ .

Since μ� ≤ Jν, we deduce that in the weak sense,

− ��
sw ≤ J[φ(u#) − φ(v)] − ε sinn−1 θ . (10.28)

Notice the right side of this inequality is a continuous function.
In the special case where φ ≡ 0 we conclude

−��
sw < 0 in (0,π),

and so by the maximum principle, w cannot achieve a strict interior maximum,
giving the desired contradiction. (For full details, see the change of variables
argument at the end of the proof below.)

In the general case of convex decreasing φ, one must work a little harder.
Write φ′ for the right-derivative of φ, which exists by convexity, and write
u#(θ) to mean u#(x) where x · e1 = cos θ . We have

J[φ(u#) − φ(v)](γ ) =
∫
K(γ )

(
φ(u#) − φ(v)

)
dσn

≤
∫
K(γ )

φ′(u#)(u# − v) dσn

=
∫ γ

0
φ′(u#(θ))

d

dθ

[
u�(θ) − Jv(θ)

]
dθ

≤
∫ γ

0
φ′(u#(θ))w′(θ) dθ ,
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where the first inequality follows from convexity of φ, the next line follows
by using “spherical coordinates” on K(γ ), and the last inequality follows by
definition of w since φ′ ≤ 0 and H′ > 0 on the interval (0,π).

Write

ψ(θ) = φ′(u#(θ)) ≤ 0,

and observe ψ is decreasing by convexity of φ. The measure dψ is therefore
nonpositive. Integration by parts yields∫ γ

0
φ′(u#(θ))w′(θ) dθ = −

∫ γ

0
ψ(θ)

d

dθ

[
w(γ ) − w(θ)

]
dθ

= ψ(0)w(γ ) +
∫
(0,γ )

(w(γ ) − w(θ)) dψ(θ)

≤ 0

since ψ(0) ≤ 0 and w(θ) ≤ w(γ ) (by definition of γ as the maximum point).
Therefore, by above,

J[φ(u#) − φ(v)](γ ) ≤ 0.

Hence the right side of (10.28) is negative when θ = γ . It remains negative
on some open neighborhood N containing γ , by continuity. Thus

−��
sw < 0

weakly on N. Change variable on the neighborhood N containing γ by letting

ρ =
∫ θ

0
sinn−1 ϕ dϕ,

so that dρ = sinn−1 θ dθ . The inequality −��
sw< 0 transforms to d2w/dρ2 > 0,

still in the weak sense, and so w is strictly convex in the classical sense as a
function of ρ by Lemma 10.6. Hence w cannot attain its maximum at an
interior point of the neighborhood. But w attains its maximum at the interior
point θ = γ , and so we have found a contradiction, as desired.

When the function v satisfies the hypotheses imposed on u in Theorem
10.16, and the measure ν is symmetric decreasing (ν = ν#), we conclude from
the theorem that v� ≤ Jv ≤ v�. Hence Jv = Jv#, from which it is easy to
deduce that v = v# a.e. Thus we immediately obtain the next symmetry result.

Corollary 10.17 Assume v ∈ W(Sn) is a weak solution of the semilinear
Poisson equation −�sv = φ(v)+ ν, where φ : R → R is a decreasing convex
function with φ(v) integrable on S

n, and the measure ν ∈ M(Sn) satisfies
ν = ν#. Then the function v is symmetric decreasing, with v = v# a.e. on S

n.
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10.6 Comparison Principles on Shells

Annular shells yield interesting comparison results. Shells benefit from com-
pactness of their cross-sections (spheres) while allowing either Dirichlet or
Neumann conditions at the inner and outer boundaries. Suppose

A = {x ∈ R
n : R1 < |x| < R2}

is an open shell in R
n, n ≥ 2, with 0 ≤ R1 < R2 ≤ ∞. Write # for (n − 1, n)-

cap symmetrization, and recall from Section 9.6 the operator J that acts by

(Ju)(r, θ) =
∫
K(θ)

u(rx) rn−1 dσn−1(x),

where K(θ) denotes the open spherical cap on S
n−1 with center e1 and opening

θ . Then u� = Ju# on the rectangle

A� = {(r, θ) ∈ R
2 : R1 < r < R2, 0 < θ < π}.

To define J : Mloc(A) → Mloc(A�) on measures, we let

(Jμ)(E) =
∫ π

0
μ
(
E(θ) × K(θ)

)
dθ for E ∈ Bc(A

�)

where E(θ) = {r ∈ (R1, R2) : (r, θ) ∈ E} is the θ -slice of E and we write

E(θ) × K(θ) = {rx : r ∈ E(θ), x ∈ K(θ)}.
This definition of J on measures is consistent with how J acts on func-
tions, because if the measure is represented by a locally integrable func-
tion, say dμ = u(rx) rn−1dσn−1(x)dr, then the definitions imply Jμ(E) =∫

E Ju(r, θ) drdθ . Lastly, J(μ#) = μ� because

μ#(E(θ) × K(θ)
) =

∫
E(θ)

f �(r, θ) dr + τ #(E(θ))
and integrating over θ ∈ (0,π) yields μ�(E), by the definition of μ� in
Section 9.6.

Once again we need an adjoint relation for measures. It says

(G, Jμ) = (JtG,μ) (10.29)

for μ ∈ M(A) and G ∈ Cc(A�). To prove the relation, simply notice each side
equals ∫

A

∫ π

0
χK(θ)(x)G(r, θ) dθ dμ(y)

where y = rx. (Then since μ� = J(μ#), we see the identity (9.38) used for
Theorem 9.9 is simply the adjoint relation (10.29) applied to μ#.)
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10.6.1 Dirichlet Boundary Conditions

We start with a comparison theorem under (n−1, n)-cap symmetrization, with
Dirichlet type boundary conditions at the inner and outer boundaries.

Theorem 10.18 Assume u, v ∈ W(A) are weak solutions of the semilinear
Poisson equations

−�u = φ(u) + μ, −�v = φ(v) + ν,

where φ : R → R is a decreasing convex function with φ(u) and φ(v)

locally integrable on A, and where μ, ν ∈ Mloc(A). Suppose J(u#), Jφ(u#)

and Jv, Jφ(v) are continuous on (R1, R2) × [0,π ], and that μ� ≤ Jν on
(R1, R2) × (0,π).

If u� ≤ Jv at r = R1 and R2, meaning

lim sup
0<θ<π , r→Ri

∫
K(θ)

[u#(rx) − v(rx)] dσn−1(x) ≤ 0, i = 1, 2, (10.30)

then u� ≤ Jv ≤ v� on A�. Hence the convex increasing integral means of u
are dominated by those of v, at each radius, with∫

Sn−1
�(u(rx)) dσn−1(x) ≤

∫
Sn−1

�(v(rx)) dσn−1(x), R1 < r < R2,

for every convex increasing � : R → R.

The continuity assumptions on J(u#), Jφ(u#), Jv, Jφ(v) in the theorem are
valid if u and v are themselves continuous, but the assumptions cover more
general situations too, such as where u or v has a mild singularity at some point
in the shell. The continuity assumptions implicitly include the requirement that
u,φ(u), v,φ(v) are integrable on every sphere of radius r ∈ (R1, R2) – not
merely on almost every such sphere.

The boundary condition (10.30) holds if, for example, u and v are continu-
ous and u ≤ v on the inner and outer boundaries of the shell. Thus it should be
regarded as a Dirichlet condition at the shell boundary.

Balls can be handled in Theorem 10.18 by taking R1 = 0, since a weak
solution on the ball is automatically a weak solution on the shell with inner
radius 0. The boundary condition (10.30) must still be verified at the inner
boundary as r → 0. (It does not hold automatically there, because (10.30)
does not include a factor of rn−1.) Of course, that boundary condition certainly
holds if u and v are continuous at the origin and u(0) ≤ v(0).

Weak solutions on all of Rn can be handled similarly, by choosing R1 = 0
and R2 = ∞ in the theorem.
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Proof of Theorem 10.18 The task is to prove u� ≤ Jv, since the other
inequality Jv ≤ v� in the conclusion is trivial by definition of v�, and the
conclusion on convex integral means follows from Section 10.1.

Put w0 = u� − Jv = J(u# − v), so that w0 is continuous on (R1, R2) ×
[0,π ] by hypothesis. We want to show w0 ≤ 0 in this rectangle. We will show
(equivalently) that r1−nw0 ≤ 0. The factor of r1−n will be important when
applying the maximum principle, later in the proof.

Suppose for the sake of deducing a contradiction that r1−nw0 > 0
somewhere in the rectangle. On the lower side of the rectangle, where θ = 0,
we already have w0 = 0 by definition of the J-operator. And at the left and right
sides of the rectangle, lim sup r1−nw0 ≤ 0 as r → R1, R2, by the boundary
condition (10.30).

Thus, by continuity, r1−nw0 has a positive maximum point somewhere in
(R1, R2) × (0,π ]. The same is true on the smaller rectangle (R′

1, R′
2) × (0,π ],

provided we choose radii satisfying R1 < R′
1 < R′

2 < R2, with R′
1 close to R1

and R′
2 close to R2.

Define a perturbed function

w = w0 − εQ = u� − Jv − εQ

where ε > 0 and

Q(r, θ) = rn−1H(θ) − r1/2

and H is as defined in (10.27) except with n replaced by n − 1:

H(θ) =
∫ θ

0
(π − ϕ) sinn−2 ϕ dϕ.

(The term −r1/2 in the definition of Q is useful in Case 2 of the proof below.)
We may choose the perturbation parameter ε > 0 small enough that r1−nw

has a positive maximum point in (R′
1, R′

2) × (0,π ], since r1−nw0 has such a
maximum point and r1−nQ is bounded on [R′

1, R′
2]×[0,π ] (using that R′

1 > 0).
Denote such a maximum point for r1−nw by (s, γ ), so that s ∈ (R′

1, R′
2) and

γ ∈ (0,π ].
The operator �� was defined in (9.27) by

��F = ∂r
(
rn−1∂r(r

1−nF)
) + r−2 sinn−2 θ ∂θ (sin2−n θ ∂θF). (10.31)

Note for use below that

��Q = −rn−3 sinn−2 θ − 1

2

(
n − 3

2

)
r−3/2

< 0

and ∂θQ = rn−1H′(θ) > 0 for θ ∈ (0,π).
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We will use a maximum principle argument to arrive at a contradiction.
By the Subharmonicity Theorem 9.9 for u and the Weak Main Identity (9.35)
for v (together with the adjoint relations (9.26) and (10.29)), we have

−��u� ≤ Jφ(u#) + μ�,

−��Jv = Jφ(v) + Jν,

in the weak sense. Subtracting the preceding formulas and using the hypothesis
μ� ≤ Jν implies that

− ��w ≤ J[φ(u#) − φ(v)] + ε��Q (10.32)

in the weak sense on (R1, R2)× (0,π). Observe the right side of this inequality
is a continuous function on (R1, R2) × [0,π ], by the continuity hypothesis in
the theorem. To complete the proof we consider two cases.

Case 1. Suppose γ < π , so that inequality (10.32) is valid in the weak sense
on each neighborhood of (s, γ ). By arguing exactly as in the proof of Theorem
10.16 (which uses that φ is convex decreasing and ∂θQ > 0), we find

J[φ(u#) − φ(v)] ≤ 0

at (s, γ ), so that the right side of (10.32) is negative at that point. The right side
remains negative on some neighborhood N of the point, by continuity, and so

��w > c

weakly on N, for some constant c > 0. Shrink N if necessary, so that it lies in
(R′

1, R′
2) × (0,π).

Then

�✫(r1−nw) > c1

weakly on N for some new constant c1 > 0, where we have defined a new
operator by �✫ = r1−n��rn−1; that is,

�✫F = r1−n∂r
(
rn−1∂rF

) + r−2 sinn−2 θ ∂θ (sin2−n θ ∂θF).

The operator �✫ satisfies the maximum principle Proposition 10.8, and so
r1−nw cannot have an interior maximum at the point (s, γ ) ∈ N. This
contradiction completes the proof in Case 1, where γ < π .

Incidentally, �✫ = � when n = 2 and the Laplacian is expressed in polar
coordinates.

Case 2. Suppose γ = π . The idea is similar to the first case except we work
only along the top side of the rectangle, with just the r-variable, as follows.
Notice
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w(r,π) = u�(r,π) − Jv(r,π) − εQ(r,π)

=
∫
Sn−1

[u(rx) − v(rx)] rn−1 dσn−1(x) − εQ(r,π).

We will show that

−��
rw(r,π) < 0

weakly on a neighborhood of r = s, where ��
r is the purely radial part of the

operator:

��
rF = ∂r

(
rn−1∂r(r

1−nF)
)
.

Indeed, for any test function G ∈ C2
c (R1, R2), we have

−
∫ R2

R1

w(r,π)��t
r G dr

= −
∫ R2

R1

(
u� − Jv

)
(r,π) r1−n∂r

(
rn−1∂rG

)
dr + ε

∫ R2

R1

Q(r,π)��t
r G dr

= −
∫

A
(u − v)r1−n∂r

(
rn−1∂rG

)
dLn + ε

∫ R2

R1

��
rQ(r,π)G(r) dr

= −
∫

A
(u − v)�G dLn + ε

∫ R2

R1

��
rQ(r,π)G(r) dr

=
∫

A

(
φ(u) − φ(v)

)
G dLn +

∫
A

G (dμ − dν) + ε

∫ R2

R1

��
rQ(r,π)G(r) dr,

by the partial differential equations for u and v. The first term equals∫ R2
R1

J[φ(u#) − φ(v)](r,π)G(r) dr, by expressing the integral in spherical

coordinates. The second term equals limδ→0
1
δ

∫
(R1,R2)×(π−δ,π) G dJ(μ# − ν),

by definition of the J-functional on measures at the beginning of this section;
then because J(μ#) = μ� ≤ Jν by hypothesis, we conclude the second term is
≤ 0 if G is nonnegative. So we have shown

−��
rw(r,π) ≤ J[φ(u#) − φ(v)](r,π) + ε��

rQ(r,π).

Again arguing as in the proof of Theorem 10.16, we find J[φ(u#)−φ(v)] ≤
0 at (s,π). Since ��

rQ(r,π) = −(n − 3/2)/2r1/2 < 0 by direct computation,
we conclude from continuity that −��

rw(r,π) < 0 on a neighborhood
N ⊂ (R′

1, R′
2) of the point r = s, as we wanted to show.

Multiplying by rn−1, we conclude that the continuous function w̃(r) =
r1−nw(r,π) satisfies

rn−1∂r
(
rn−1∂rw̃

)
> 0
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weakly on N, which means w̃ is strictly convex in the weak sense as a function
of r2−n (or log r, when n = 2). Thus w̃ is classically strictly convex by Lemma
10.6, and so it is impossible for w̃ to have an interior maximum point at s ∈ N.
This contradiction completes the proof in Case 2.

As in previous sections, we deduce a symmetry result.

Corollary 10.19 Assume v ∈ W(A) is a weak solution of the semilinear
Poisson equation −�v = φ(v) + ν, where φ : R → R is a decreas-
ing convex function with φ(v) locally integrable on A, and the measure
ν ∈ Mloc(A) is symmetric decreasing (ν = ν#). Suppose the functions
Jv, Jφ(v), J(v#), Jφ(v#) are continuous on (R1, R2) × [0,π ].

If the function v is symmetric decreasing at r = R1 and R2, meaning

lim
∫
K(θ)

[v#(rx) − v(rx)] dσn−1(x) = 0

when the limit is taken over points (r, θ) ∈ A� with r → R1 or r → R2, then v

is symmetric decreasing on the whole shell: v = v# a.e. on A.

The statement of the corollary simplifies considerably if v is continuous on
the closure of the shell and v = v# on the inner and outer spheres.

Remark The continuity assumption on J(u#) and related functions in
Theorem 10.18 can be weakened in certain circumstances by an approximation
procedure. Suppose the theorem holds as stated for functions uk and vk, under
the continuity assumption. If uk → u and vk → v in a suitable sense as
k → ∞, then the �-function and integral mean conclusions of the theorem
would continue to hold for u and v, for almost every r ∈ (R1, R2).

The same observation applies to the earlier Theorem 10.15 about Steiner
symmetrization, and Theorem 10.20 below for (n − 1, 1)-cap symmetrization
on the shell with Neumann boundary conditions.

10.6.2 Neumann Boundary Conditions

Next we develop a comparison theorem for the linear Poisson equation under
a Neumann type boundary condition at the inner and outer shell boundaries.
Suppose a locally integrable function h has radial weak derivative ∂h/∂r.
We say h satisfies radial differentiation through the integral if h and ∂h/∂r
are integrable on each sphere of radius r and satisfy

∂

∂r

∫
E

h(rx) dσn−1(x) =
∫

E

∂h

∂r
(rx) dσn−1(x), r ∈ (R1, R2), (10.33)

for every measurable set E ⊂ S
n−1.
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Theorem 10.20 Assume u, v ∈ W(A) are weak solutions of the linear
Poisson equations

−�u + cu = μ, −�v + cv = ν,

where μ, ν ∈ Mloc(A) and c ≥ 0 is constant. Suppose the outer radius R2

is finite, that J(u#) and Jv are continuous on (R1, R2) × [0,π ], that u and v

satisfy radial differentiation through the integral in the sense of (10.33), and
that μ� ≤ Jν on (R1, R2) × (0,π). If c = 0 then further suppose for some
r ∈ (R1, R2) that∫

Sn−1
u(rx) dσn−1(x) ≤

∫
Sn−1

v(rx) dσn−1(x). (10.34)

If (∂u/∂n)� ≤ J(∂v/∂n) at r = R1 and r = R2, by which we mean

lim sup
0≤θ≤π
r→Ri

∫
K(θ)

[(∂u

∂n

)#
(rx) − ∂v

∂n
(rx)

]
dσn−1(x) ≤ 0, i = 1, 2, (10.35)

where ∂/∂n = (−1)i∂/∂r is the outward normal derivative, then u� ≤ Jv ≤ v�

on A� and hence the convex increasing integral means of u are dominated by
those of v:∫

Sn−1
�(u(rx)) dσn−1(x) ≤

∫
Sn−1

�(v(rx)) dσn−1(x), R1 < r < R2,

for every convex increasing � : R → R.

The boundary condition (10.35) holds in particular if u and v are smooth
and their normal derivatives vanish on the boundary of the shell.

The continuity assumptions on J(u#) and Jv implicitly assume that u and v

are integrable on each sphere of radius r ∈ (R1, R2), and hence that μ� and Jv
are well defined on each sphere.

The conclusion of the theorem can be strengthened (via Proposition 10.3)
to handle all convex � if u and v have the same integral over every
concentric sphere; then one obtains also comparisons between Lp-norms and
the oscillations of u and v on each sphere. The integrals of u and v will indeed
agree on every concentric sphere in the case where −�u = f , −�v = f # and u
and v satisfy homogeneous Neumann boundary conditions and are normalized
to have the same integral over the shell A; see Step 2 in the proof of (Langford,
2015b, Theorem 3.1).

Proof of Theorem 10.20 We start by relating the boundary condition (10.35)
to the radial derivative of the continuous function w0 = u� − Jv = J(u# − v).
We will prove that



392 Comparison Principles for Semilinear Poisson PDEs

lim inf
r→R1

inf
0≤θ≤π

∂(r1−nw0)

∂r
(r+, θ) ≥ 0, (10.36)

lim sup
r→R2

sup
0≤θ≤π

∂(r1−nw0)

∂r
(r−, θ) ≤ 0, (10.37)

where since we do not know these derivatives exist, in the first formula the
derivative means the lim inf of difference quotients from the right and in the
second formula the derivative means the lim sup of difference quotients from
the left.

To prove the second formula (10.37), consider R ∈ (R1, R2) and θ ∈ [0,π ].
Let E ⊂ S

n−1 be a maximizing set for u�(R, θ), meaning that u�(R, θ) =∫
E u(Rx)Rn−1dσn−1(x) and E has the same measure as K(θ). By definition of

u� we have r1−nu�(r, θ) ≥ ∫
E u(rx) dσn−1(x) for all r, with equality at r = R

by our choice of E. Taking the left derivative at r = R gives:

∂(r1−nw0)

∂r

∣∣∣∣∣
r=R−

≤ ∂

∂r

( ∫
E

u(rx) dσn−1(x) −
∫
K(θ)

v(rx) dσn−1(x)
)∣∣∣∣

r=R−

=
∫

E

∂u

∂r
(Rx) dσn−1(x) −

∫
K(θ)

∂v

∂r
(Rx) dσn−1(x)

≤
∫
K(θ)

[(∂u

∂r

)# − ∂v

∂r

]
(Rx) dσn−1(x).

The lim sup of this last expression as R → R2 (with θ allowed to vary) is ≤ 0
by (10.35) with i = 2, which proves (10.37). The proof is similar for (10.36).

Next we define a perturbing function. Fix a number R3 ∈ (R1, R2), and take
a constant C > 0 such that

C ≥ nr2 − (n − 1)R3r + 1

for all r ∈ [R1, R2] (here we need finiteness of R2). Let

Q(r, θ) = rn−1[(r − R3)
2 + Cθ(π − θ)

]
.

For later reference, note Q ≥ 0 and ∂(r1−nQ)/∂r = 2(r − R3). Define

w = w0 − εQ = u� − Jv − εQ,

where ε > 0. Subtracting εQ from w0 in (10.36) and (10.37) implies that

lim inf
r→R1

inf
0≤θ≤π

∂(r1−nw)

∂r
(r+, θ) ≥ −2ε(R1 − R3) > 0, (10.38)

lim sup
r→R2

sup
0≤θ≤π

∂(r1−nw)

∂r
(r−, θ) ≤ −2ε(R2 − R3) < 0. (10.39)
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The goal of the theorem is to prove w0 ≤ 0, that is, u� ≤ Jv. Then the
conclusion on convex integral means follows from Section 10.1, since Jv ≤ v�

by definition. Note w0 is continuous on (R1, R2) × [0,π ] by hypothesis.
Suppose for the sake of obtaining a contradiction that w0 > 0 somewhere

in the rectangle A� = (R1, R2) × (0,π). We will proceed in three steps: first
show r1−nw attains its maximum on the top side T = (R1, R2) × {π} of the
rectangle, then deduce the corresponding property for w0, and finally obtain a
contradiction.

Step 1: Show r1−nw attains its maximum on the top side T . Clearly w > 0
somewhere in the rectangle, whenever ε is sufficiently small, since we assume
w0 > 0 at some point in the rectangle. The boundary conditions (10.38) and
(10.39) insure that r1−nw does not attain a maximum at the left or right sides
of A�. It also does not attain its maximum on the bottom side where θ = 0,
because Q ≥ 0 while both u� and Jv vanish at θ = 0 by definition. Hence
r1−nw attains its positive maximum value either in the interior of the rectangle
A� or else on the top side T . We proceed now to rule out the interior case.

One computes from the definition of �� in (10.31) that

��Q = 2rn−3[nr2 − (n − 1)R3r − C
] − C(n − 2)rn−3(π − 2θ) cot θ

≤ 2rn−3[nr2 − (n − 1)R3r − C
]

≤ −2rn−3 < 0

on A�, by our earlier choice of C. The Subharmonicity Theorem 9.9 for u and
Weak Main Identity (9.35) for v (using also the adjoint relations (9.26) and
(10.29)) imply that

−��u� + cJ(u#) ≤ μ�,

−��Jv + cJv = Jν,

in the weak sense. Subtracting these two formulas and using the hypothesis
μ� ≤ Jν gives

− ��w + cw ≤ ε(��Q − cQ) ≤ −2εrn−3 (10.40)

in the weak sense on A�, where we used in the last inequality that c ≥ 0 and
Q ≥ 0.

Suppose r1−nw attains its maximum at a point in the interior of the rectangle
A�. Inequality (10.40) implies ��w > c1 on a neighborhood N of the
maximum point, for some constant c1 > 0, since w > 0 at the maximum
point and c ≥ 0. Now we obtain a contradiction from the maximum principle
Proposition 10.8 for the operator �✫, exactly as in the proof of Theorem 10.18.
Hence r1−nw must attain its maximum on the top side T , which completes the
proof of Step 1.
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Step 2: Show w0 is positive somewhere on the top side T . We have

sup
A�

r1−nw0

≤ sup
A�

r1−nw + ε sup
A�

r1−nQ by definition of w = w0 − εQ

= sup
T

r1−nw + ε sup
A�

r1−nQ by Step 1

≤ sup
T

r1−nw0 + ε sup
A�

r1−nQ since w ≤ w0 (recalling Q ≥ 0).

Letting ε → 0 shows supA� r1−nw0 ≤ supT r1−nw0, and since w0 is positive
somewhere in A� we deduce w0 is positive at some point of T .

Step 3: Deduce a contradiction. The idea is similar to Step 1 except we work
only along the top side of the rectangle, with only the r-variable, as follows.
Notice

w0(r,π) = u�(r,π) − Jv(r,π)

=
∫
Sn−1

[u(rx) − v(rx)] rn−1 dσn−1(x).

We will show ��
rw0(r,π) ≥ cw0(r,π) in the weak sense, where ��

r is the
purely radial part of the operator:

��
rF = ∂r

(
rn−1∂r(r

1−nF)
)
.

Indeed, for any test function G ∈ C2
c (R1, R2), we have∫ R2

R1

w0(r,π)��t
r G dr =

∫ R2

R1

(
u� − Jv

)
(r,π) r1−n∂r

(
rn−1∂rG

)
dr

=
∫

A
(u − v)�G dLn

= c
∫

A
(u − v)G dLn −

∫
A

G (dμ − dν),

by the partial differential equations for u and v. Hence∫ R2

R1

w0(r,π)��t
r G dr

=
∫ R2

R1

w0(r,π)G(r) dr − lim
δ→0

1

δ

∫
(R1,R2)×(π−δ,π)

G dJ(μ# − ν)

by spherical coordinates and using the definition of the J-functional on
measures from the beginning of this section. Recalling the hypothesis
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J(μ#) = μ� ≤ Jν, we see the third integral is ≤ 0 if G is nonnegative, and so
we have shown

��
rw0(r,π) ≥ cw0(r,π)

in the weak sense.
Now consider the open set P ⊂ T on which w0(r,π) is positive; this set is

nonempty by Step 2. On P we have ��
rw0(r,π) ≥ 0 if c = 0 or ��

rw0(r,π) > 0
if c > 0. Thus

rn−1∂r
(
rn−1∂r(r

1−nw0)
) {≥ 0 if c = 0

> 0 if c > 0
on P,

so that r1−nw0(r,π) is convex in the weak sense as a function of r2−n (or log r,
when n = 2), and indeed is strictly convex if c > 0. This convexity holds in
the classical sense by Lemma 10.6.

Suppose c > 0. Then by strict convexity, P extends either leftwards all the
way to r = R1 or rightwards all the way to r = R2. In the leftwards case, the
slope of r1−nw0 tends to a negative constant or −∞ at R1, which contradicts
the boundary condition (10.36); in the rightwards case, the slope of r1−nw0

tends to a positive constant or ∞ at R2, which contradicts (10.37). Either way
we have a contradiction.

Suppose c = 0. Then w0(r,π) ≤ 0 for some r ∈ (R1, R2) by hypothesis
(10.34), and so r1−nw0 is not constant on P. Convexity of r1−nw0(r,π) on P
then leads to a contradiction just like in the preceding paragraph. The proof of
the theorem is complete.

10.7 Notes and Comments

This chapter draws on material in Baernstein (1994) and elsewhere. The
material on majorization in Section 10.1 was prepared by Albert Baernstein
II. The rest of the chapter was written by Richard Laugesen, working in
collaboration with Jeffrey Langford on the following sections: Section 10.3.1
for linear Poisson equations, Section 10.6 for shells, and these Notes and
Comments.

Section 10.1: Majorization results for sums and integrals such as in
Propositions 10.1 and 10.3 go back to Hardy, Littlewood and Pólya (1952).
For more on majorization and its applications, see Marshall et al. (2011). An
equality statement for infinite sums is due to Laugesen and Morpurgo (1998,
Proposition 10).
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Section 10.2: The maximum principles for weak subsolutions in Proposi-
tions 10.7 and 10.8 are special cases of a general elliptic result due to Littman
(1959).

Sections 10.3–10.6: The history of comparison results for elliptic boundary
value problems goes back to work of Szegö (1950, 1958) on the clamped and
buckling plate problems. The best-known comparison result is due to Talenti
(1976b). His methods are quite different from this chapter, being based ulti-
mately on level set decompositions. Surveys of ensuing work in the field can be
found in the papers of Baernstein (1994) and Talenti (2016). See also (Kesavan,
2006, chapter 3) and the remarks on the literature at the end of that chapter. We
make no effort to produce a comprehensive history here. Instead, we mention
below only a few works most relevant to the material in Chapter 10.

The comparison theorems for the Laplacian in this chapter extend to general
second-order elliptic and parabolic operators. Such extensions go back to
Talenti (1976b) in the elliptic case, and Alvino et al. (1991) for parabolic
equations. See the remarks in (Baernstein, 1994, Sections 7 and 8) for the
�-function approach to extending Laplacian comparison results to these more
general elliptic and parabolic operators.

The strong conclusion u# ≤ v in Theorem 10.10 for s.d.r. when c = 0 is
due to Talenti (1976b). The proof of the theorem when c < 0 is adapted from
(Alvino et al., 2002, Theorem 1.1). These authors assumed the right side of the
equation to be a function, meaning dμ = f dLn.

Talenti’s gradient comparison in (10.8) seems to be special to s.d.r. It is
not known to hold for other forms of symmetrization. Open problems for the
gradient under symmetrization are mentioned by Baernstein (1994, §9).

The alternate proof of the Faber–Krahn Theorem in Example 10.11 is
based on Kesavan’s idea of comparing with the equation −�v = λ1(�)u#

(see Kesavan 2006, Theorem 4.1.2). Due to the inclusion here of a
Cauchy–Schwarz step, we require only the comparison of L2 norms from
Theorem 10.10, rather than Talenti’s stronger pointwise comparison u# ≤ v.
Thus the alternate proof could be extended from s.d.r. to other kinds of
rearrangement, such as Steiner symmetrization.

The linear case of Theorem 10.16 for comparison on the sphere appeared in
work of Langford (2015a), assuming the right side is a function, dμ = f dσn.
Theorem 10.20 for cap symmetrization on a shell under Neumann boundary
conditions builds on work of Langford (2015b).

The nonlinear term φ(u) in comparison theorems for partial differential
equations was treated first (as far as we know) by Bandle (1980 §IV.2.4)
for s.d.r. and by Weitsman (1986) for circular and cap symmetrization.
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Interestingly, Bandle’s method does not require convexity of φ. Weitsman’s
technique for handling convex decreasing φ is used throughout this chapter.

Talenti (1979, §4.1) earlier stated a comparison result for quasilinear equa-
tions under s.d.r., but his symmetrized partial differential equation (satisfied
by v) does not have the same form as the equation for u.

Drift term comparison theorems, such as for the Ornstein–Uhlenbeck
operator −� + x · ∇, have been developed by Borell (1985). See also
González (2000); Hamel et al. (2011), and for applications to biLaplacian
(plate) problems in Gauss space, see Chasman and Langford (2016).

Comparison theorems are proved on spheres and shells in Sections 10.5
and 10.6, but not on subdomains of those spaces. Comparison theorems do
hold on subdomains of spheres and shells, analogous to the results in Sections
10.3 and 10.4 for subdomains of Euclidean space under s.d.r. and Steiner
symmetrization. See for example the circular symmetrization comparison
results in the next chapter: Theorems 11.22, 11.25–11.27, 11.33 and 11.34.

The �-function method in this chapter makes it possible (and natural) to use
a measure μ as data on the right side of the partial differential equation. The
only result we know in the literature that gives a comparison theorem involving
measures is a brief remark by Alvino et al. (1991, §II.4) for linear equations.

Applications Comparison results for s.d.r. are used in Nadirashvili’s proof
of Lord Rayleigh’s conjecture for the vibrating clamped plate; see Chapter 5.
This result and further applications are described in elegant detail in Kesavan
(2006). A semilinear comparison result for circular symmetrization was used
by Weitsman (1986) to obtain sharp estimates on the hyperbolic metric; see
§11.9. Applications of the �-function and circular symmetrization in complex
analysis, in particular to Nevanlinna theory and geometric function theory, are
presented in Chapter 11.
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The �-Function in Complex Analysis

11.1 Introduction and Background

The �-function already has been used in Chapters 9 and 10, with emphasis
on applications to partial differential equations. However, it was originally
developed in the 1970s to resolve several well-established problems in classical
one-variable complex analysis. That context camouflaged its links to the
general theory of symmetrization, with the relation first being made explicit
in Baernstein (1974).

This chapter returns to �-function’s original focus, analytic and meromor-
phic functions defined in the plane or the unit disk. It may be read independent
of the earlier chapters. Notation is as follows: D is the open unit disk, S is
the unit circle, D(r) is the disk {|z| < r} of radius r and S(r) is its boundary
{|z| = r}. (Other authors write T for the unit circle.) The upper half plane is
H = {z : 0 < arg z < π}. If E is a set in R or S, then E is its closure and |E| its
Lebesgue measure.

The star function used in this chapter,

u✫(reiθ ) = sup
|E|=2θ

∫
E

u(reit) dt,

is the original one introduced by Baernstein (1973, 1974). This u✫ differs by
the factor r from the star function u�(r, θ) = ru✫(reiθ ) used in Chapter 9
for circular or (1, 2)-cap symmetrization; see the discussion in the Notes
at the end of Chapter 9. The essential fact that the operator u → u✫

preserves subharmonicity appeared as Corollary 9.10, and the history and other
references are discussed in Note 2 to this chapter.

The theory of the ✫-function in the plane is also covered in the complex
analysis monograph (Duren, 1983, chapter 7), which emphasizes applications
to univalent functions, and in Hayman (1989 §9.1).
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In this chapter, # refers to circular symmetrization, defined as (1, 2)-
cap symmetrization, §7.5, in which a function or domain is rearranged on
concentric circular arcs symmetric about the positive real axis in the complex
plane. To avoid ambiguity we employ the symbol ✫ when our conventions
conflict with those of the previous chapters. As an example, if A is the annular
region

A = {reiθ : R1 < r < R2}
considered in §9.6, then

A# = {reiθ ∈ C : R1 < r < R2},
A� = {(r, θ) ∈ R

2 : R1 < r < R2, 0 < θ < π},
A✫ = {reiθ ∈ C : R1 < r < R2, 0 < θ < π}.

Thus a subrectangle of A� corresponds to the polar coordinate representation
of an annular subset in A✫.

The general pattern of much of this chapter is to study extremal problems
in disks in which the competing functions u are either subharmonic or δ-
subharmonic. It had been noticed that in many important cases, the presumed
extremal function v is harmonic with v(reiθ ) symmetric decreasing on each
circle S(r) (perhaps after a rotation). The ✫-function was created to exploit
this observation. Suppose u is defined in D and u#(reit) is its circular
symmetrization. Let

u✫(reiθ ) =
∫ θ

−θ

u#(reit) dt, V(reiθ ) =
∫ θ

−θ

v(reit) dt, (11.1)

for 0 ≤ θ ≤ π and r < 1. The theory asserts that

u✫ − V

is subharmonic in D
✫, so that u✫ ≤ V on D

✫ if this is true on the boundary.
The ✫-function and this type of maximum principle argument were devel-

oped in 1971, building on an insight of Edrei and Fuchs (1960) concerning
meromorphic functions f of order ρ ≤ 1. (The order of a meromorphic function
will be defined in §11.2.) It may be helpful to recall their insight here. If f has
order ρ less than 1, then it has the elementary factorization

f (z) = Czq
∏

j

(1 − z/aj)
/∏

k

(1 − z/bk) (11.2)

in terms of its zeros and poles; these simple products in general do not
converge when ρ ≥ 1, and the necessary additional factors introduced to ensure
convergence make the associated factorization far more difficult to analyze. It



400 The �-Function in Complex Analysis

may be shown directly when the factorization (11.2) is possible that functions
with zeros on one ray and poles on the opposite ray have extremal behavior.

Edrei and Fuchs associated to a function F with the representation (11.2)
and having zeros/poles on the negative/positive axes the function

U(reiθ ) =
∫ θ

−θ

log |F(reit)| dt + 2πN(r, F),

which is harmonic in the upper half plane. Note that the θ -dependence of U
is made by integrating on a set of measure 2θ chosen to make U as large as
possible. (Here N(r, F) is the (integrated) counting function of the number of
poles in D(r), as defined in the next section, so that N(r, F) = 0 when F is
entire.) The ✫-function adapts this process to all functions f of order at most
one, by replacing, for each r and θ , integration over a single arc of measure
2θ by integration over a set E(θ) ⊂ S of total measure 2θ , chosen so that the
function

T✫(reiθ ) =
∫

E(θ)
log | f (reit)| dt + 2πN(r, f )

is as large as possible. The remarkable discovery is that T✫ is subharmonic
and dominated by U.

This chapter considers the theory’s successes in one complex variable,
including classical Nevanlinna theory (§11.2), univalent functions (§11.6), the
harmonic conjugate function (§11.8), and properties of the hyperbolic metric
(§11.9).

11.2 The Nevanlinna Characteristic T and
Its Extension T✫

Nevanlinna Theory
This section recalls the basics of classical Nevanlinna theory, ignoring most
proofs and with no mention of the ✫-function. It may be omitted by readers
familiar with Nevanlinna’s work.

There are many fine expositions of the subject (also known as value-
distribution theory), named after its creator Rolf Nevanlinna (1970), and
the main definitions require little advance preparation. The traditional texts
are Hayman (1964) and Goldberg and Ostrovskii (2008) (a translation and
updating of the 1970 Russian original). The latter reference also discusses
extensions of the theory for functions defined in more general regions, in
particular half planes.
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If f is meromorphic in a region �, its Laplacian has a simple form. Of
course, when f is analytic at z0 with f (z0) �= 0, log | f | is harmonic in a
neighborhood of z0, and so �(log | f |) = 0. In general, if f has a zero of order
k at z0, then

�(log | f |)(z) = 2πkδ(z − z0)

in a neighborhood of z0, with δ the Dirac delta measure. If z0 is a pole of order
k, the only change is that k on the right side is negative. (The converse is also
true: a discrete measure μ which is a (signed) sum of masses of this type is
the Laplacian of log | f | for some meromorphic function f , although f is not
unique.) By convention, a meromorphic function is nonconstant. Here we only
consider functions meromorphic in disks D(R), R > 0, or in C.

Nevanlinna defines his characteristic function T(r) as the sum

T(r) = T(r, f ) = m(r, f ) + N(r, f ),

with

m(r, f ) = 1

2π

∫ π

−π

log+ | f (reiθ )| dθ ,

n(r, f ) = number of poles of f in the closed disk (|z| ≤ r),

counted with multiplicity,

N(r, f ) =
∫ r

0

n(t, f ) − n(0, f )

t
dt + n(0, f ) log r,

where log+ x ≥ 0, log x = log+ x − log− x. Note that one of the summands
defining T is controlled by the moduli of poles of f inside D(r) and the other
by large values of | f | on S(r). The function T is always increasing, which is
not obvious since m(r, f ) is not monotone.

Nevanlinna’s first fundamental theorem shows that as far as the characteris-
tic T is concerned, each complex value enjoys equal standing with the poles:
for every a ∈ C,

T(r, f ) = T
(
r, 1/( f − a)

) + O(1) as r → ∞. (11.3)

When a = 0 this becomes a perceptive reinterpretation of Jensen’s theorem,
presented below in (11.8). Nevanlinna’s insight was to rewrite Jensen’s identity
by apportioning the positive and negative contributions in the integral of
log | f (reiθ )| to m(r, f ) and m(r, 1/f ). This approach will be sketched after the
Poisson–Jensen Lemma 11.1.

Since f is nonconstant, T is unbounded when f is meromorphic in the plane,
and so the O(1) is an error term that can normally be ignored. It is common to
use the abbreviated notations
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T(r, a), m(r, a), N(r, a), n(r, a)

in place of

T(r, 1/( f − a)), m(r, 1/( f − a)), N(r, 1/( f − a)), n(r, 1/( f − a)).

By N(r, ∞) we mean N(r, f ), the usual integrated pole-counting function, and
similarly for the other quantities when a = ∞.

That m(r, a) ≥ 0 yields the universal upper bound

N(r, a) ≤ T(r, f ) + O(1)

for all a, showing that T controls the number of solutions to f (z) = a in D(r).
A remarkably useful identity was discovered early in the development by

Henri Cartan, suggesting that in the previous inequality N(r, a) is usually the
dominant term. Concretely stated, Cartan showed that

T(r, f ) = 1

2π

∫ π

−π

N(r, eiθ ) dθ + log+ | f (0)|, (0 < r < R), (11.4)

which is valid regardless of the value of f (0). An immediate and non-obvious
consequence is that T(r, f ) is an increasing function of r, and is convex as a
function of log r. The charming proof of (11.4) warrants being reproduced at
the end of this section; it will be used later, for example in Lemma 11.23 and
§11.8.3.

Nevanlinna theory traditionally studies how properties of f influence m and
N under various hypotheses, especially how they depend on a. Most notably,
Nevanlinna defines his defect (deficiency)

δ(a) = δ(a, f ) = lim inf
r→∞

m(r, a)

T(r)
= 1 − lim sup

r→∞
N(r, a)

T(r)
, (11.5)

the last equations a consequence of the first fundamental theorem. The most
famous consequence of his calculus was his second fundamental theorem,
which has as a simple corollary that∑

a∈Ĉ
δ(a) ≤ 2 (defect relation); (11.6)

thus for most a and most large r, m(r, a) is negligible in comparison to N(r, a).
Inequality (11.6) provided a new interpretation of E. Picard’s famous

theorem of 1876 that an entire function f can omit at most one finite value
(notice f being entire already guarantees that δ(∞) = 1). For example,
f (z) = ez also omits w = 0, which means that δ(0) = δ(∞) = 1, showing that
(11.6) is best possible. Much of the appeal of Nevanlinna theory arose from
recognizing that Picard’s theorem, rather than closing a subject, opens a new



11.2 Nevanlinna Characteristic T and Its Extension T✫ 403

one. It also provided a purely analytic proof of Picard’s theorem, which seemed
more direct than relying on the deep universal covering function (Proposition
11.31).

Nevanlinna’s primary tool was his analysis of the Poisson–Jensen formula,
which we present below in a slightly simpler formulation (Ahlfors 1978) using
the functionals of Nevanlinna theory. Jensen’s theorem is the special situation
where z0 = 0. Recall that the Poisson kernel for the disk D(R) is

PR(r, θ) = 1

2π

R2 − r2

R2 − 2Rr cos θ + r2
(r < R, |θ | ≤ π),

and the Poisson integral of an integrable function g defined on S(R) is the
harmonic function

G(z) =
∫ π

−π

PR(r, θ − t)g(t) dt (z = reiθ ∈ D(r)).

Lemma 11.1 (see Ahlfors 1978, p. 208) Let f be meromorphic in D(R) and
continuous on S(R), with zeros {am} and poles {bn}. Let z = reiθ ∈ D(R). If
f (z) �= 0, ∞ then

log | f (z)| =
∫ π

−π

PR(r, θ − t) log | f (Reit)| dt

+
∑

j

log

∣∣∣∣R(z − aj)

R2 − ajz

∣∣∣∣ −
∑

k

log

∣∣∣∣R(z − bk)

R2 − bkz

∣∣∣∣ .
(11.7)

Proof If f has no zeros or poles the formula is immediate, since log | f | is then
harmonic. In general, when there are zeros and poles, apply this argument to
the function

ψ(z) = f (z)
∏

k

R(z − bk)

R2 − bkz

/∏
j

R(z − aj)

R2 − ajz
,

which has no zeros or poles. Note that the products, known as Blaschke factors,
have absolute value 1 on S(R) and hence do not affect the Poisson integral in
the formula.

Jensen’s formula is the special case z = 0 of the Poisson–Jensen formula
(11.7): assuming f (0) �= 0, ∞, the formula says

log | f (0)| = 1

2π

∫ π

−π

log | f (Reit)| dt − N(R, 0) + N(r, ∞)

= m(R, f ) + N(R, f ) − m(R, 1/f ) − N(R, 1/f )

= T(R, f ) − T(R, 1/f ),

(11.8)



404 The �-Function in Complex Analysis

since

m(R, f ) = 1

2π

∫ 2π

0
log+ | f (Reit)| dt,

m(R, 1/f ) = 1

2π

∫ 2π

0
log− | f (Reit)| dt.

This is Nevanlinna’s rewriting of Jensen’s formula, to which we referred
earlier.

Since T is defined only on R, its rate of increase is its most evident property.
The standard measure of growth assigned to an increasing, unbounded function
is its order ρ, defined in the case of T(r) as

ρ = lim sup
r→∞

log T(r)

log r
. (11.9)

Originally the order ρ was used only when f is entire, with log+ M(r) in place
of T(r), where

M(r) = M(r, f ) = max
|z|=r

| f (z)|;

ρ is the same in either case, since an elementary consequence of the Poisson–
Jensen formula is that

T(r) ≤ log+ M(r) ≤ r′ + r

r′ − r
T(r′) (r < r′ < R).

The left inequality is obvious since | f (reiθ )| ≤ M(r), and to obtain the right
inequality, take R > r′ = 2r when estimating the Poisson kernel in the
Poisson–Jensen formula.

The most well-studied functions in classical Nevanlinna theory, which are
also those most encountered in science, have 0 < ρ < ∞ (and, in particular,
have finite order). It was noticed later that the lower order μ is a more flexible
notion, where

μ = lim inf
r→∞

log T(r)

log r
(11.10)

(also defined with log+ M(r) in place of T(r) for entire functions). The most
familiar functions of applied mathematics and physics have μ = ρ, but in
general there are no restrictions other than 0 ≤ μ ≤ ρ ≤ ∞. By bringing the
(lower) order into play, it is also possible to discover a rich theory that is not
present for the full class of meromorphic functions. For example, if μ < ∞,
then equality can hold in (11.6) only when μ ≥ 1 and 2μ(= 2ρ) ∈ N, see
Drasin (1976). (For entire functions with μ < ∞, equality is only possible
when μ ∈ N, with exp zk showing the result sharp, see Pfluger (1946).)
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The order of f is the order of 1/( f − a), for each complex number a,
since Nevanlinna’s first theorem (11.3) ensures that their T functions differ
by only a bounded amount. Similarly, the lower orders of f and 1/( f − a) are
the same.

To conclude this section, we prove the Cartan identity (11.4). The Jensen
formula (Lemma 11.1 with z = 0) when applied to the function a − z with
R = 1 gives

1

2π

∫ π

−π

log |a − eiθ | dθ = log+ |a|, (11.11)

as can be checked by considering a = 0, 0 < |a| < 1 and 1 < |a| < ∞.
Another appeal to Jensen’s formula, using the meromorphic function f (z)−eiθ

and afterwards replacing R with r, gives

log | f (0) − eiθ | = 1

2π

∫ π

−π

log |f (reit) − eiθ | dt + N(r, ∞) − N(r, eiθ )

provided f (0) �= eiθ , ∞. We may integrate the last equality with respect to θ

and apply (11.11). Then the definition of T yields that

log+ | f (0)| = 1

2π

∫ π

−π

log+ | f (reit)| dt + N(r, ∞) − 1

2π

∫ π

−π

N(r, eiθ ) dθ

= T(r, f ) − 1

2π

∫ π

−π

N(r, eiθ ) dθ ,

which is Cartan’s formula (11.4).

The Function T✫

If f is meromorphic in D(R), we define (for z = reiθ ∈ D
✫(R))

T✫(reiθ , f ) = T✫(z) = m✫(z, f ) + 2πN(r, f ),

where N(r, f ) = N(|z|, f ) was already defined in §11.2 and

m✫(z, f ) = m✫(z) = m✫(reiθ )

= sup
E

∫
E

log | f (reit)| dt,

the supremum taken over all measurable sets E ⊂ [0, 2π) of measure 2θ .
The reader should be aware that the definition given here for T✫ equals 2/π

times the author’s original definition in Baernstein (1973). The definition here
agrees with Baernstein (1974) and later works where the ✫-function does not
involve a factor of 1/2π . See Notes 1 and 2 at the end of this chapter.
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The key property in the next proposition is the subharmonicity of T✫. The
circular symmetrization operator g → g# in part (iii) is the same as in §9.6
with n = 2.

Proposition 11.2 If f is meromorphic in D(R) then

(i) T✫ is continuous on the closure except possibly at the origin and
subharmonic in D

✫(R) = {reiθ : 0 < r < R, 0 < θ < π};
(ii) T(r) = (1/2π) sup0<θ<π T✫(reiθ ) and

T✫(r) = 2πN(r, ∞), T✫(−r) = 2πN(r, 0) + 2π log |c|

where c is the leading coefficient in the series for f at the origin,
meaning f (z) = cz (1 + O(z)) for some integer  ;

(iii) T✫(reiθ ) = ∫ θ

−θ
(log | f |)#(reit) dt + 2πN(r, ∞).

Proof Corollary 9.11 says

�(m✫) ≥ −2π
∑

k

sk

|bk|

in the half disk D
✫(R), where the {bk} are the poles of f in the punctured disk

D \ {0}, and sk is arclength measure on the circle of radius |bk|. Meanwhile

�N(r, ∞) =
∑

k

� log+ r

|bk| =
∑

k

sk

|bk| ,

where the distributional Laplacian of log+ r/|bk| was found as follows.
Suppose b �= 0 and η(z) is smooth with compact support in D

✫(R), or indeed in
the plane with the origin removed. By applying Green’s formula on the region
(|z| > |b|),∫

(�η)

(
log+ r

|b|
)

r drdθ =
∫
(|z|=|b|)

η(z)
∂

∂r

(
log

r

|b|
)

ds(z) =
∫

η
ds

|b| .

Combining the above formulas gives �
(
m✫ + 2πN(r, ∞)

) ≥ 0 in the half
disk, which is subharmonicity of T✫.

Parts (ii) and (iii) of the proposition follow readily from the definitions. The
last claim in part (ii) is the special case z = 0 of the Poisson–Jensen Lemma
11.1, applied to g(z) = r f (z)/z on the circle {|z| = r}, with  chosen so that
g(0) �= 0, ∞, ensuring |g| = | f | on {|z| = r}. This shows that the definition of
N(r, f ) in §11.2 properly incorporates the case that f (0) = ∞.
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11.3 Pólya Peaks and the Local Indicator of T✫

The definitions of the order and lower order in (11.9) and (11.10) refer to
a meromorphic function f defined in the entire plane. We need a concrete
reformulation for computations. An effective approach has been to focus on
f in annuli centered at the sequence {rn} of Pólya peaks (of order λ) of T(r, f ).
Such peaks may be associated to any increasing real function S(r).

Definition 11.3 Let S(r) be an increasing function for r > 0. The function
S has Pólya peaks of order λ (0 < λ < ∞) if there is a sequence of intervals
I(n) = {r : | log(r/rn)| ≤ kn} on which

S(r) ≤ (1 + εn)

(
r

rn

)λ
S(rn),

where rn, kn → ∞ and εn → 0.

This definition was originally introduced only for λ = ρ and S(r) = T(r),
but systematically exploited later primarily by Edrei. The notion of Pólya peaks
makes sense for any λ > 0, although it should be clear from the definition that
for a given λ, the function S need not have Pólya peaks of that order, and when
it does none of the sequences (rn), (kn), (εn) are unique. The expression on the
right side is a scaled copy of the simple function rλ, with r in a sequence of
intervals I(n) whose (logarithmic) lengths are unbounded as n → ∞.

Theorem 11.4 below ensures that if the meromorphic function f has order
ρ or lower order μ, then there are peaks for S(r) = T(r, f ) of order λ or μ

whenever either of these lies in (0, ∞).

Theorem 11.4 (Existence theorem for Pólya peaks; Edrei, 1965) Let S(r)
be an increasing function for which either the lower order μ or order ρ are
finite and nonzero. Then S has Pólya peaks of order λ on an interval I with
[μ, ρ] ⊂ I, and I is closed relative to (0, ∞).

Theorem 11.4 has been especially useful when considering properties of
extremal functions, but we do not consider this here. Note that functions such
as S(r) = er or S(r) = log r do not have peaks of any order.

Pólya peaks also have a natural connection to T✫, using the indicator
function h(θ), which we develop here. The (Phragmén–Lindelöf) indicator was
originally developed to study entire functions of finite order, with Cartwright
(1956) and Levin (1980) among the excellent classical sources. The analytic
property on which it is based is that if f is entire, then the function

u(z) = log | f (z)|
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is subharmonic. This will reduce many properties of entire functions to
elementary real analysis. The notion of “localizing” the indicator to Pólya peak
intervals is due to Edrei (1970). The subharmonicity of T✫ (in Proposition
11.2) enables the theory of the indicator to be extended to meromorphic f . This
allows many applications to be obtained by a systematic procedure, a principle
advanced by Rossi and Weitsman (1983).

Introducing the indicator may appear as a detour from traditional com-
plex analysis, and does require some preparation. However, it makes many
arguments more transparent and allows simpler formulations of many results.
For example, contrast the statement of the spread relation in Proposition 11.7
below with the more cumbersome formulation in Theorem II in the Foreword.
The procedure that produces the indicator is described shortly, and may be
applied in more general situations to any subharmonic function defined in a
sector. We consider only the indicator associated to T✫ at a subsequence of
Pólya peaks of T(r).

As motivation, observe that the simplest functions in the (r, θ)-plane have
variables separate, and Pólya peaks already isolate the first variable. Thus, if
we consider the test function

G(z) = rλg(θ)

and assume G is C2, the Laplace operator has the simple form

�(g) = rλ−2s(θ),

where s depends purely on the factor g:

s(θ) = g′′(θ) + λ2g(θ). (11.12)

In terms of the elliptic (non-homogeneous) equation

H′′(θ) + λ2H(θ) = 0, (11.13)

the indicator h(θ) is a subsolution to (11.13), and since the general solution of
(11.13) is H(θ) = A cos λθ , we call h subtrigonometric (λ-subtrigonometric).
The geometric interpretation of this notion is discussed after Lemma 11.6.

The function h arises using the following procedure. (Here only the indicator
associated to the subharmonic function T✫(z) is considered, but the process
may be applied to entire functions, since log | f (z)| is subharmonic, or to
functions analytic in an angle.) Let (rn) be a sequence of Pólya peaks (of
order λ) associated to T(r). This yields an obvious family of comparison
functions {Vn(r)}, by

Vn(r) = 2πT(rn)

(
r

rn

)λ
(| log(r/rn)| ≤ kn)
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(note that in general the union of the domains of the {Vn} is not an interval).
For each k > 1 let I(n, k) be the interval | log(r/rn)| ≤ k. We then define

hk(θ) = lim sup
r→∞, r∈∪nI(n,k)

T✫(reiθ )

Vn(r)
, h(θ) = lim

k→∞
hk(θ),

for 0 ≤ θ ≤ π . This yields h as the indicator of T✫ (relative to the sequence
{Vn(r)}). Note that the factor 2π was introduced in the definition of Vn(r) to
ensure that (iv) hold in the next lemma.

The main properties of the indicator are listed in the next lemma.

Lemma 11.5 The indicator h of T✫ relative to a sequence (rn) of Pólya peaks
(of order λ) of T✫ satisfies the following properties:

(i) h(θ) is continuous on 0 ≤ θ ≤ π ;
(ii) given ε > 0 and k > 1, there exists n0 = n0(k, ε) with

T✫(reiθ ) ≤ (h(θ) + ε)Vn(r) (θ ∈ [0,π ], r ∈ I(n, k), n ≥ n0);

(iii) as a distribution,

s(θ) = h′′(θ) + λ2h(θ)

is a positive measure (and thus these derivatives of h may be integrated);
(iv) ‖h‖∞ = 1;
(v) h(0) ≤ 1 − δ(∞), h(π) ≤ 1 − δ(0);

(vi) the (left or right) derivative of h satisfies

h′(θ) ≤ 2 lim sup
r→∞,r∈∪I(n)

(log | f |)#(reiθ )

Vn(r)
;

in addition, if f is entire, then we have at the Pólya peaks

h′(0) ≥ 2 lim sup
n→∞

log M(rn)

Vn(rn)
. (11.14)

Proof Much of this lemma follows from the general theory of the indicator,
supplemented by (ii) from Proposition 11.2; detailed arguments (which rely
on the Pólya peaks inequalities) are in the references already cited. The first
two statements of the lemma are immediate from general properties of the
indicator, and while (iii) may be recovered from Levin (1980, p. 57), it also
follows directly from the connection between � and s in (11.12). It follows
from (iii) that there is a representative with h ∈ W1,∞ of period π ; in
fact, h is C1 aside from h′ having at most countably many (positive) jump
discontinuities.
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Assertion (iv) follows at once from (ii) of Proposition 11.2, while (v) is also
a consequence of (ii); there is only inequality because the lim inf which defines
the Nevanlinna deficiency requires data for all large r, not just those r ∈ ∪I(n).

We sketch the proof of the first inequality in (vi), postponing until §11.4.1
the verification of (11.14), since it uses notions which are extraneous at this
point.

By definition, h = lim hk and h′ is a limit of difference quotients, which we
take to be the right derivative. Thus, given ε > 0 we may choose ψ > θ so
that

h′(θ) ≤ h(ψ) − h(θ)

ψ − θ
+ ε.

We chase definitions of the terms in the numerator. First if K is so large that
h(ψ) ≤ hk(ψ) + ε(ψ − θ) when k > K, we may choose a subsequence rm of
the peaks and sm ∈ [e−krm, ekrm] with

hk(ψ) ≤ T✫(smeiψ)

Vm(sm)
+ εm,

and εm → 0 (m → ∞). Also, for any k and all m,

h(θ) ≥ hk(θ) ≥ T✫(smeiθ )

Vm(sm)
− ηm (ηm → 0, n → ∞),

and (iii) of Proposition 11.2 gives for φ ∈ (−π ,π) that

∂T✫

∂φ
(reiφ) = 2(log | f |)#(reiφ).

We combine these with the mean value theorem (with suitable φ ∈ (θ ,ψ)) to
write the initial inequality for h′ as

h′(θ) ≤ 2(log | f |)#(smeiφ)

V(sm)
+ εm + ηm

ψ − θ
+ ε

≤ 2(log | f |)#(smeiθ )

V(sm)
+ εm + ηm

ψ − θ
+ ε,

where we could replace φ with the smaller value θ in the last inequality since
(log | f (sei)|)# decreases in t. Take lim sup as m → ∞ and then let ε → 0.

That h is subtrigonometric is the main conclusion of the next lemma,
and provides the key ingredient for the proofs which follow: the graph of a
subtrigonometric function possesses an elegant geometric interpretation which
parallels the characteristic property of real convex functions. That the process
is being applied to T✫ explains why its domain is the interval 0 ≤ θ ≤ π .



11.3 Pólya Peaks and the Local Indicator of T✫ 411

Lemma 11.6 Suppose T✫ has Pólya peaks of order λ > 0, and the indicator
h is produced by the procedure described in the preamble to Lemma 11.5.

If 0 ≤ θ1 < θ2 < θ3 ≤ π with θ3 − θ1 < π/λ, then∣∣∣∣∣∣
h(θ1) cos λθ1 sin λθ1

h(θ2) cos λθ2 sin λθ2

h(θ3) cos λθ3 sin λθ3

∣∣∣∣∣∣ ≥ 0,

where equality holds if h is a trigonometric function:

H(θ) = a cos λθ + b sin λθ .

This relation has a limiting form if we take, for example, θ2 = θ1 + δ and let
δ → 0:

h(θ1)λ cos λ(θ − θ1) + h′(θ1) sin λ(θ − θ1) ≤ h(θ)

provided θ < θ1 + π/λ.

The determinant inequality is an attractive way to display a complicated
relation that may be exploited in several ways. For example, think of θ2 = θ

as a variable, and solve for h(θ2) The other side is the trigonometric function
of order λ with h(θ1) and h(θ3) given, and so controls h(θ2). The restriction
that the intervals considered have length at most π/λ arises from the Sturm–
Liouville theory applied to (11.13). The inequality is often rephrased as stating
that h is trigonometrically convex, or subtrigonometric.

In practice, the lemma may be summarized by a comparison principle: if
α < β,α < θ with max(β −α, θ −α) < π/λ, and H is a sinusoid (of order λ)
having

h(α) ≤ H(α), h(β) ≤ H(β),

then

h(θ) ≤ H(θ) if θ ∈ (α,β);

h(θ) ≥ H(θ) if θ ∈ (β,α + π/λ).
(11.15)

An obvious corollary of this is that if h and H agree at α or β, then

h′(α) ≤ H′(α) or h′(β) ≥ H′(β)

as appropriate.
The limiting case of (11.15), β → α, is: if H is sinusoidal (of order λ) and

H(α) = h(α), H′(α) = h′(α), (11.16)

then

H(θ) ≤ h(θ) (|θ − α| < π/λ). (11.17)
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The proof of Lemma 11.6 uses the Pólya peak inequalities and the maximum
principle. For example, if

" : = θ3 − θ1 < π/λ,

let H(θ) = A cos λ(θ − τ), with A, τ chosen so H(θ1) = h(θ1), H(θ3) = h(θ3).
For fixed ε > 0 and θ̂ = (θ1 + θ2)/2, let

V(z) = V(reiθ ) = rλ
[
h(θ) − (H(θ) + 2ε cos λ(θ − θ̂ ))

]
in each region

� = �n = {z : rn/M ≤ |z| ≤ Mrn, θ1 ≤ θ ≤ θ3},
where the rn are the Pólya peaks of T✫ and M is fixed but, according to
Definition 11.3, may be taken arbitrarily large.

Note that V is subharmonic because rλh(θ) is subharmonic (using
Proposition 11.5(iii)) while rλH(θ) and rλ cos λ(θ − θ̂ ) are harmonic. Hence
by the maximum principle, V is bounded on each � by the harmonic extension
(Poisson integral) of its values on ∂�. Each � is a wedge-like region, whose
boundary consists of two long radial segments and arcs of two circles. The
Pólya peak property ensure that when n is large, relative to points on {|z| = rn},
� will appear to be a near-angular sector.

First, since h = H at θ1, θ2 the definition of θ̂ ensures that on the radial
segments, if M is fixed (but large)

V(reiθ ) ≤ −2εrλ cos λ"/2 (rn/M ≤ r ≤ Mrn, θ = θ1, θ2)

for some fixed ε which depends only on θ . On the portion of ∂� composed of
the two circular arcs, there is less precise information; however, since H and h
are bounded,

V(reiθ ) ≤ Krλ, (r = rn/M, Mrn; θ1 ≤ θ ≤ θ2),

for some constant K.
To deduce from these data that

V(rneiθ ) ≤ 0 (θ1 ≤ θ ≤ θ2)

(thus pointwise on the “central arc” of �) is where the key condition " < π/λ

is essential. According to Lemma 9.12 of Hayman (1989)

V(rneiθ ) ≤ rλn(ε(M) − 2ε cos λ"/2) (θ1 ≤ θ ≤ θ2), (11.18)

where ε(M) incorporates the boundary values on the two circular arcs and
ε(M) → 0 as M → ∞. Since (11.18) is valid for any ε > 0, we deduce that

h(θ) ≤ H(θ) (θ1 ≤ θ ≤ θ2),
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and if equality holds for any θ ∈ (θ1, θ2), the maximum principles yields that
h = H on the entire interval.

Note that a sinusoid (of order λ) has the general form

H(θ) = A cos λ(θ − θ0),

but the additional properties (iv) and (vi) usually ensure that A = 1, as we will
see below, for example in one case of Proposition 11.10. This ambiguity is not
present in the limiting situation (11.16).

11.4 Applications of T✫ to Nevanlinna Theory

We follow the analysis of Rossi and Weitsman (1983) to obtain several key
results as consequences of a general method. The definitions in §11.2 of
the deficiency δ(a) = δ(a, f ) and of m(r, a) ensure that when δ(a) > 0,
the quantity | f (reiθ ) − a| is small on a significant θ -set for large r (with
an analogous interpretation when a = ∞). The first application of the
✫-function makes these heuristics precise (for sharpness, see Baernstein,
1973).

Proposition 11.7 (Spread relation; Baernstein, 1973) Let f be meromorphic
in the plane with δ = δ(∞) > 0, and suppose that S(r) = T(r, f ) has Pólya
peaks of order λ, 0 < λ < ∞. Then

lim inf
n→∞

∣∣∣{θ : log | f (rneiθ )| > 0}
∣∣∣ ≥ min

{
2π ,

4

λ
sin−1

√
δ

2

}
. (11.19)

Proof Choose {βn} with (1/2π)T✫(rneiβn) = T(rn). According to the
definition of T✫, ∣∣{θ : log | f (rneiθ )| > 0

∣∣ = 2βn,

so that (taking a subsequence which we relabel as {βn}) we need only show

β = lim infβn ≥ min{π , (2/λ) sin−1
√
δ/2}. (11.20)

If β = π , there is nothing to prove, so we suppose β < π and also that
δ > 0. We then claim that the indicator h attains its maximum at the interior
point θ = β. Since δ > 0, assertion (v) yields that h(0) ≤ 1 − δ. On the other
hand, since h is continuous, |h| ≤ 1, and βn → β, we have from conclusion
(ii) that

T(rn) = 1

2π
T✫(rneiβn) ≤ (T(rn) + ε)h(β),
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so letting n → ∞ and then ε → 0 gives that h(β) = 1. Properties (iii) and (iv)
then show that h′(β) must exist, and hence h′(β) = 0.

The sinusoid H(θ) = cos λ(θ − β) has the same value and derivative as
h at β. The comparison principle (11.17) now implies that

cosβλ = H(0) ≤ h(0) ≤ 1 − δ.

Thus, from the half-angle formula,

sin2 βλ

2
= 1 − cosβλ

2
≥ δ

2
, (11.21)

which finishes the proof.

The spread relation was anticipated much earlier by Teichmüller (1939), but
proposed independently by Edrei, incorporating the additional feature that it is
realized at the Pólya peaks.

Recall that the definition of deficiency (11.5) involves division by T(r) when
computing the lim inf. Thus the significance of the hypothesis δ(∞) > 0
is greater than might appear at first glance; see for example the phrasing of
Theorem II in the Foreword. Baernstein (1973) defines δ(∞) by considering a
function �(r) → ∞ with �(r) = o(T(r)) and the lim inf of measures of sets

{θ : | f (reiθ )| > e�(r)} (r → ∞).

This means that if a �= ∞, and we replace f by 1/( f − a) and obtain an
analogous relation for w = a, these θ -sets associate to distinct a will be
asymptotically disjoint.

Inequality (11.19) gives a lower bound for the spread of the value w = ∞
(or w = a) in terms of λ and the value δ(∞). (δ(a)) The spread is the number
β defined by the left side of inequality (11.20).

For completeness, we sketch Edrei’s striking application of the spread
relation, which in turn sharpens (11.6) when we are given that f has (lower)
order μ < 1:

Corollary 11.8 (Edrei, 1973) If f has lower order μ ∈ (0, 1) then∑
a∈Ĉ

δ(a, f ) ≤
{

1 0 < μ ≤ 1/2,

2 − sinπμ 1/2 ≤ μ < 1.

Proof We may assume f has more than one deficient value, since otherwise
the corollary follows immediately from δ(a)≤ 1. List the deficiencies as
δ1, δ2, δ3, . . . > 0. Each δj corresponds to a value w = aj with δ(aj, f ) = δj, and
we associate to each aj its spread βj. Recall from Section 11.2 that 1/( f − a)
has the same lower order μ as f , for each complex value a.
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Applying the spread relation from Proposition 11.7 to 1/( f − aj) (with
λ = μ the lower order) ensures that βj > 0 for each j. Informally, the spread
means that when n is large, | f − aj| is exponentially small on a set of angular
measure about 2βj on the circle S(rn). We have mentioned that these sets are
(asymptotically ) disjoint, and so∑

j

βj ≤ π .

Since βj > 0 and the sum has at least two terms (f has at least two deficient
values), we conclude βj < π for each j. Thus by (11.21),

sin−1
√
δj/2 ≤ βjμ/2.

Upon summing over j, the right side is at most πμ/2. Corollary 11.8 now
follows from an elementary extremal problem, in the next lemma.

Lemma 11.9 Let μ ∈ (0, 1] and m ≥ 1. If 0 ≤ δ1, . . . , δm ≤ 1 with

m∑
j=1

sin−1
√
δj/2 ≤ πμ/2

then
m∑

j=1

δj ≤
{

1 0 < μ ≤ 1/2,

2 − sinπμ 1/2 ≤ μ ≤ 1.

Proof First, let f (s) = sin2 s+sin2(C−s) where 0 ≤ C ≤ π/2. Trigonometric
identities show that f (s) = 1−cos C cos(2s−C), and so f (s) is increasing when
C/2 ≤ s ≤ C. Letting t = C − s, we deduce that if 0 ≤ t ≤ s ≤ π/4 then

sin2 s + sin2 t ≤
{

sin2(s + t) s + t ≤ π/4,

sin2(π/4) + sin2(s + t − π/4) s + t ≥ π/4.
(11.22)

This inequality will be used repeatedly in the proof.
Write τj = sin−1 √

δj/2. Then τj ≤ π/4 for each j, and
∑

j τj ≤ πμ/2.
When m = 1 the lemma follows directly from δ1 ≤ 1. When m = 2,

δ1+δ2 = 2 sin2 τ1+2 sin2 τ2 ≤
{

2 sin2(τ1 + τ2) τ1 + τ2 ≤ π/4,

1 + 2 sin2(τ1 + τ2 − π/4) τ1 + τ2 ≥ π/4,

by inequality (11.22). Hence

δ1 + δ2 ≤
{

1 τ1 + τ2 ≤ π/4,

2 − sin(πμ) τ1 + τ2 ≥ π/4,
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by using τ1 + τ2 ≤ πμ/2 and 1 + 2 sin2(θ − π/4) = 2 − sin(2θ). Note if
0 < μ ≤ 1/2 then τ1 + τ2 ≤ π/4, while for any μ one has 1 ≤ 2 − sin(πμ).
Thus the lemma is proved when m = 2.

For m ≥ 3 we proceed by induction. From inequality (11.22) we see
(depending on whether τ1 + τ2 is smaller or larger than π/4) that the sum
δ1 + δ2 increases when we replace the pair (τ1, τ2) with (τ1 + τ2, 0) or with
(π/4, τ1 +τ2 −π/4). In the first case, one τ -value has become 0, meaning only
m − 1 values of δ need be summed, so that the desired inequality follows from
the induction hypothesis.

The point of the second case is that we may assume τ1 = π/4. Then τ2 +
τ3 ≤ π/4 (recalling

∑
j τj ≤ πμ/2 ≤ π/2), and so inequality (11.22) implies

that the sum δ2+δ3 increases when the pair (τ2, τ3) is replaced with (τ2+τ3, 0).
Having reduced the number of δ-values to be summed, we again call on the
induction hypothesis to complete the proof of Lemma 11.9.

When Nevanlinna introduced his theory, he made several conjectures which
turned out to be overly optimistic (Fuchs, 1967, §4). Our next result gives a
short proof of what appears to be the first of these conjectures to be confirmed,
albeit decades later.

Proposition 11.10 (Paley conjecture, Govorov theorem; Govorov, 1969;
Petrenko, 1969) Let f be entire with Pólya peaks rn for T(r) of order
λ, 0 < λ < ∞. Then

lim inf
n→∞

T(rn)

log M(rn)
≥

{
(sinπλ)/πλ, 0 < λ ≤ 1

2 ,

1/πλ, λ > 1
2 .

Proof Since f is entire, h(0) = 0, and ‖h‖∞ = 1. First, take μ ≥ 1/2.
The sinusoid function H(θ) = sin λθ agrees with h at 0 and dominates h at
θ = π/(2λ). Thus H ≥ h and so h′(0) ≤ H′(0) ≤ λ.

When λ < 1/2, we consider H(θ) = sin λθ · cscπλ, which agrees with
h at 0 and dominates h at θ = π . Thus, (11.14) of Lemma 11.5 yields

lim sup
n

log M(rn)

πV(rn)
= lim sup

n

log M(rn)

πT(rn)
≤ h′(0) ≤ H′(0) = λ cscπλ,

which completes the proof.

The next result is from Edrei and Fuchs (1960):

Proposition 11.11 (Ellipse theorem) Let f be meromorphic with peaks of
order λ ∈ (0, 1) and set

u = 1 − δ(0), v = 1 − δ(∞).
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Then in addition to the obvious restrictions 0 ≤ u, v ≤ 1, we have

sin2 πλ ≤ u2 + v2 − 2uv cosπλ.

The region of possible values (u, v) is illustrated in chapter 5 of Goldberg
and Ostrovskii (2008). It is the portion of the first quadrant inside the square
Q : − 1 ≤ u, v ≤ 1 which lies outside the ellipse

E : u2 + v2 − 2uv cosπλ = sin2 πλ.

This ellipse is symmetric about the lines u = ±v, and meets ∂Q at the points
(1, cosπλ), (cosπλ, 1). Thus when λ < 1/2, the major axis of E is a subset
of the line u = v, while when λ > 1/2 the major axis is contained in the line
u = −v.

Proof Let 2β be the spread for f (i.e., for w = ∞). We only consider the
possibility 0 < β < π here. Since h is subtrigonometric and attains its
maximum at β, we know that h(β) = 1, h′(β) = 0.

Property (ii) of T✫ (in Proposition 11.2) gives h(π) ≤ 1−δ(0) = u, h(0) ≤
1 − δ(∞) = v. The subtrigonometric property of h will complement these to

h(π) ≥ cos λ(π − β) h(0) ≥ cos λβ. (11.23)

Certainly, h is dominated by H(θ) = cos λ(θ − β) when θ = β. Thus, by
(11.17), H also dominates h at θ = 0,π , and (11.23) follows.

Trigonometry thus yields that

sin λπ ≤ u sin λβ + v sin λ(π − β)

= (u − v cos λβ) sin λβ + v sin λπ cos λβ.

When this inequality is squared, the proposition follows from Schwarz’s
inequality.

Let us now return to the situation of the spread theorem, where (11.19)
provides precise information on the size of the set

{θ : log | f (reiθ )| > 0}
where | f | > 1, at least when r = rn, a Pólya peak of order λ of T(r). This
raises the possibility of replacing 0 in the definition of the set by αT(r); here
it is necessary to include the factor T(r), which is gratuitous when α = 0. The
situation α > 0 is covered by the next result, but, as discussed in the preamble
to Proposition 11.13, the case α < 0 is less likely to have a simple answer.

Proposition 11.12 (Anderson and Baernstein, 1978) Suppose f is meromor-
phic and has Pólya peaks of order λ∈ (0, ∞) with deficiency δ(∞)= δ ∈ (0, 1],
and let α ∈ (0, δ). Let σ0 > 0 be the least positive solution to the equation

cos λσ0 = 1 − δ,
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and for x ∈ [0, σ0] define ϕ(x) by

ϕ(x) = πλ(cos λx − (1 − δ))

sin λx + λ(π − x) cos λx
.

Then

lim sup
r→∞

∣∣{θ : log | f (reiθ )| > αT(r, f )}∣∣ ≥ min(2β, 2π), (11.24)

where r ∈ I(n) and β is the smallest positive solution to α = ϕ(β).

The left side of (11.24) can be thought of as (twice) the “α-spread” of f . When
α = 0, this becomes Proposition 11.7.

Proof We only consider the case β < π . Let J(r,α) be the interval where
(log | f |)#(reiθ ) > αV(r), and define β by

β = 1

2
lim supr→∞, r∈I(n)|J(r,α)|,

where, as in the construction of the indicator h, I(n) is an interval about rn

whose logarithmic length suitably tends to ∞. Since we are using decreasing
rearrangements, this means that for β ′ > β, |β ′ − β| small,

(log | f |)#(reiθ ) ≤ αV(r)

when θ is outside [0,β ′] and r > r0, r ∈ ∪I(n).
Again, we rely on properties of the indicator h. Here, the (indeterminate)

point β ′ provides first-order data, which with care will allow use of (11.17).
Since T✫ uses the decreasing rearrangement of log | f (reiθ )|, we also have that
h′(θ) ≤ α/π for β ′ ≤ θ ≤ π . But since α > 0, ‖h‖∞ = 1 = h(γ ) for some
β ′ ≤ γ ≤ π . Thus

1 − h(β ′) ≤ (γ − β ′)
α

π
≤ (π − β ′)

α

π
.

We want to apply the string of inequalities below at θ = 0, i.e., for θ − β ′ >
−π/λ:

h(θ) ≥ h(β ′) cos λ(θ − β ′) + h′(β ′)
sin λ(θ − β ′)

λ

≥
[
1 − (π − β ′)

α

π

]
cos λ(θ − β ′) + α

π

sin λ(θ − β ′)
λ

.

According to (11.17), the first inequality is valid since the right side is the
λ-trigonometric function which agrees with h to first order at β ′. The second
line is a λ-trigonometric function H with

H(β ′) ≥ h(β ′), H′(β ′) ≥ h′(β ′).
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Since h(0) ≤ 1 − δ (via (v) of Lemma 11.5),

α ≥ πλ(cos λβ ′ − (1 − δ))

sin λβ ′ + λ(π − β ′) cos λβ ′ ,

and the proposition follows on letting β ′ → β.

We close with three results. The first is not sharp and it applies under only
restricted conditions; unlike the situation in Proposition 11.12, when α < 0
one cannot extend h outside an interval of length 2β in any natural way other
than in very special situations.

Proposition 11.13 (Essén et al. (1993)) Let σ0 be as in Proposition 11.12,
but now consider the function

ψ(x) = πλ sin λ(σ0 − x) (x ∈ [σ0, σ0 + π/2λ], x ≤ π).

With f , λ, and δ as in the previous proposition, let α ∈ [−πλ, 0). Then (11.24)
holds with β the smallest positive solution to α = ψ(β).

(Note that ψ(σ0) = 0 and that ψ strictly decreases in the relevant range. Also,
this proposition together with Propositions 11.7 and 11.12 consider the spreads
for all α, with this being the least satisfactory.)

Proof Recall that h(0) ≤ 1 − δ = cos λσ0. Since β < σ0 + π/2λ < π/λ,
(11.17) may be used to link h(0) with h(β). Thus

h(β) cos λβ − h′(β)
sin λβ

λ
≤ h(0) ≤ cos λσ0.

Choose σ to be the least solution to h(θ) = 1. If σ = π the left side
of (11.24) is 2π for any α < 0, in which case the proposition is obvious.
According to the spread theorem, σ0 ≤ σ < π . Thus, the scheme for (11.17)
controls h at β and σ , and so

cos λ(β − σ0) < cos λ(β − σ) ≤ h(β),

which we interpolate in the first estimate:

h′(β) ≥ λ
h(β) cos λβ − cos λσ0

sin λβ

≥ λ
cos λ(β − σ0) cos λβ − cos λσ0

sin λβ

≥ λ
cos λσ0(cos2 λβ − 1) + sin λβ sin λσ0 cos λβ

sin λβ

= λ(− cos λσ0 sin λβ + sin λσ0 cos λβ) = λ sin λ(σ0 − β).

(11.25)

The result follows from the first assertion of (vi) of Lemma 11.5.
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The next result was conjectured by Anderson and Baernstein (1978), and
proved in Essén et al. (1993); the derivation here relies on the indicator.

Corollary 11.14 In the previous proposition, suppose in addition that λ <

1/2 and δ < 1 − cosπλ. Then

lim sup
r→∞

[
inf
θ

log | f (reiθ )|
T(r)

]
≥ −πλ

(
(1 − δ) sinπλ −

√
δ(2 − δ) cosπλ

)
.

In the previous proposition, take π in place of β in (11.25); this is permitted
since λ < 1/2. Since cos λσ0 = 1 − δ, the analysis then yields that

h′(π) ≥ λ
cosπλ cos λ(π − σ0) − (1 − δ)

sinπλ

= −λ((1 − δ) sinπλ − cosπλ sin λσ0)

= −λ
(
(1 − δ) sinπλ − cosπλ

√
1 − (1 − δ)2

)
= −πλ

(
(1 − δ) sinπλ −

√
δ(2 − δ) cosπλ

)
.

An appeal to (vi) in Lemma 11.5 again completes the argument.
The final result of this section is from Fuchs (1974).

Corollary 11.15 In the previous proposition suppose in addition that 1/2 <

λ < 1 and 1 − sinπλ < δ. Then

lim sup
r→∞

[
inf
θ

log | f (reiθ )|
T(r)

]
≥ πλ sin λ(σ0 − π).

Replace β by π in (11.25) and once more use (vi) from Lemma 11.5.

11.4.1 Proof of (11.14) in Lemma 11.5

Here is the promised proof of the final claim (11.14) of Lemma 11.5. Note
that this inequality is realized precisely at the peaks of T✫. The argument has
two steps. The first is the more formal, choosing k > 1 and manipulating
definitions. The second, Lemma 11.16, is a reformulation of Fuchs’ ingenious
application of the Poisson–Jensen formula, which relies also on an elegant
argument of Cartan.

The definition of derivative will yield a function �(r), 0 < �(r) → 0, such
that for each fixed k,

h′(0) ≥ 2 lim sup
r→∞

(log | f |)#(rei�(r))

Vn(r)
− o(1) (r ∈ ∪I(n, k)), (11.26)
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where Jn is the interval | log(r/rn)| ≤ k. The Lemma sharpens (11.26) to
hold at r = rn with �(r) = 0. This precision depends on an estimate from
Fuchs (1963), which we reformulate and prove as (11.27). It is important
in many other situations, and we include the elegant and general counting
argument of Cartan in Lemma 11.17, which is a key component.

In order to obtain (11.26), given ε > 0, the definition of derivative produces
θ0 > 0 with

h′(0) ≥ h(θ)

θ
− ε (0 < θ < θ0)

(recall that h(0) = 0). Item (ii) of Lemma 11.5 shows that

h(θ) ≥ T✫(reiθ )/Vn(r) − εn

uniformly in θ as r → ∞, r ∈ I(n, k) for any fixed k. Thus if θn → 0 so that
εn/θn ≡ ε′

n → 0, we have from (iii) of Proposition 11.2 and the mean-value
theorem a function �(r), �(r) ≤ θn, with

h′(0) ≥ 2
(log | f |)#(rei�(r))

Vn(r)
− ε′

n − εn = 2
(log | f |)#(rei�(r))

Vn(r)
− o(1),

for r ∈ I(n, k) and large enough n. This yields (11.26).
The advance of (11.14) over (11.26) is to replace (log | f |)#(rei�(r)) by

log M(rn, f )= (log | f |)#(rn), with error of the same nature. Although (log | f |)#

is a decreasing rearrangement in θ , we need to find a thick set of r ∈ ∪I(n, k)
where its decrease is controlled.

Lemma 11.16 Let h be meromorphic in the plane with characteristic
T(r) = T(r, h), and (rn) a sequence of its peaks of order 0 < λ < ∞. Given
1 < σ ≤ 2, there is K = K(λ, σ) such that if J is a θ -interval of length
δ < 1/2, then

r
∫

J

|h′(reiθ )|
|h(reiθ )| dθ ≤

(
Kδ log

1

δ

)
T(r, h) (11.27)

for large n and

r ∈ [rn, σ rn] \ En,

where the exceptional set En has Lebesgue measure |En| ≤ (σ − 1)rn/2.

Let us accept this Lemma for the moment and use it to complete the proof
of (11.14); the lemma itself is verified in the next subsection.

Given η > 0, choose 0 < δ < 1/2 with Kδ log(1/δ) < η. Let 1 < σ ≤ 2.
For each r choose α = α(r) with | f (reiα)| = M(r). If |�(r)| < δ then
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there is an angle φ = φ(r) with |φ| < δ such that (log | f |)#(rei�(r)) =
log | f (rei(α+φ)|. So

log M(r) = log | f (reiα)| − log | f (rei(α+φ))| + (log | f |)#(rei�(r))

≤ r
∫ α+φ

α

∣∣∣∣ f ′

f

∣∣∣∣ dθ + (log | f |)#(rei�(r))

≤ ηT(r) + (log | f |)#(rei�(r)), r ∈ [rn, σ rn] \ En,

by Lemma 11.16 with f in place of h. If this is incorporated in (11.26), we
obtain that

h′(0) ≥ 2
log M(r)

Vn(r)
− o(1) − 2η

T(r)

Vn(r)
(r /∈ En). (11.28)

Now take s = sn ∈ [rn, σ rn], s /∈ En. Then the last estimate also holds
at r = s, so that since M(r) increases and rn is a Pólya peak of T , (11.28)
becomes

h′(0) ≥ 2
log M(s) − ηT(s)

Vn(s)
− o(1)

≥ 2
log M(rn) − η(s/rn)

λT(rn)

Vn(s)
− o(1).

The ratio s/rn may be taken arbitrarily close to 1 by choosing σ − 1
appropriately small, and since η > 0 is arbitrary, this completes the proof
of (11.14).

Proof of the Fuchs Lemma 11.16
The starting point is differentiation of the Poisson–Jensen formula, Lemma
11.1. Thus for R > 1 and |z| < R,

h′

h
(z) = 1

2π

∫ π

−π

2Reit

(Reit − z)2
log |h(Reit)| dt +

∑
|αμ|<R

R2 − |αμ|2
(R2 − αμz)(z − αμ)

−
∑

|βν |<R

R2 − |βν |2
(R2 − βνz)(z − βν)

(|z| < R)

with the α,β being the zeros and poles of h. Note that

1

2π

∫ π

−π

∣∣log |h(Reit)|∣∣ dt = m(R, 0) + m(R, ∞)

≤ T(R, 0) + T(R, ∞) ≤ 2T(R) + O(1).
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Thus if |z| < r < R and the {ck} are the zeros and poles of h in B(R), routine
estimates and the fact that T(R) → ∞ yield for all large r that

r

∣∣∣∣h′

h

∣∣∣∣ ≤ 5T(R)
Rr

(R − r)2
+ r

∑
c

R2 − |c|2
R(R − |c|)

1

|z − c|

≤ 5T(R)
Rr

(R − r)2
+ 2r

∑
c

1

|z − c| .

Hence if r < R, and J is any interval on S(r) of θ -length δ < 1/2, then the
quantity to be estimated in Lemma 11.16 is

r
∫

J

∣∣∣∣h′

h

∣∣∣∣ dθ ≤ 5δT(R)
Rr

(R − r)2
+ 2R

∑
k

∫
J

1

|reiθ − ck| dθ . (11.29)

The choice(s) of r will depend on an elegant geometric insight which
lies behind a famous lemma of H. Cartan on the minimum modulus of a
polynomial. The connection is shown in Remark 11.18 at the end of this
section. The disks in Cartan’s proof correspond to intervals on [0, ∞) in our
presentation – the points ck in the next lemma are complex numbers, but the
conclusion is about the nonnegative numbers |ck|.
Lemma 11.17 Let c1, . . . , cm be complex numbers, and ε > 0. Then there is
an exceptional set F of intervals having total measure |F| ≤ 4ε such that when
r /∈ F and j = 1, . . . , m, at most (j − 1) of the numbers |ck| lie at distance
≤ jε/m from r.

Proof The argument is amazingly simple, yet subtle.
Choose λ′ and x′ so that the closed interval

I = {x : |x − x′| ≤ λ′ε/m}
contains exactly λ′ of the points |ck| and λ′ is the largest integer with this
property; here is why this can be done. Begin with a given ck and consider
intervals |x − |ck|| ≤ ε/m, |x − |ck|| ≤ 2ε/m, . . . , terminating the process at
λ0ε/m when there are exactly λ0 of the points |ck| in the associated interval
and no larger multiple will have this property. Note that the first interval
|x − |ck|| ≤ ε/m contains at least 1 point, and if it contains more than 1 point
then the interval |x − |ck|| ≤ 2ε/m contains at least 2 points, and so on, until
the process terminates. Thus pairs (x′, λ′) do exist, and we may take λ1 and a
closed interval I1 about x1 with λ1 maximal. Note that λ1 ≤ m.

Now repeat the process with the remaining m−λ1 of the |ck|, and determine
the largest λ2 and closed interval I2, with I2 having length 2λ2ε/m, such that
exactly λ2 of the remaining |ck| lie in the interval I2. We have λ2 ≤ λ1 by



424 The �-Function in Complex Analysis

maximality of λ1. Continuing in this manner we obtain intervals I1, . . . , Ip that
exhaust the full collection of |ck|.

The intervals must be disjoint. For if I1 intersected I for some  ≥ 2 then
the union I1 ∪ I would lie in an interval of length 2(λ1 + λ )ε/m containing
at least λ1 + λ points, which would contradict the maximality of λ1. Thus I1

cannot intersect any intervals I chosen later in the construction. Similarly I2

intersects no later interval, and so on.
Consider the system of intervals � : I′

1, . . . , I′
p with the same midpoints

but twice the lengths. The I′
1, . . . , I′

p have lengths 4λ1ε/m, . . . , 4λpε/m, and so
cover a set of measure at most

4(λ1 + · · · + λp)
ε

m
= 4ε.

This condition defines the exceptional set F = ∪ I′
 , with |F| ≤ 4ε.

Suppose r lies outside �, that is, r /∈ F, and let I(r) be the interval centered
at r of length 2λε/m, where λ is an arbitrary positive integer. This interval
cannot intersect any of the intervals I having length greater than or equal to
2λε/m, because the intervals in � have twice the length of the original {I }.
The remaining I (if any) all have length smaller than 2λε/m, and so each one
contains at most λ − 1 of the points |ck|. Hence I(r) can contain at most λ − 1
of the points |ck|, or else we would have chosen a larger interval at some stage
of the construction. Thus the lemma is proved.

With Lemma 11.17 established, we return to the complex plane and next
estimate the number m of zeros and poles of the function h of Lemma 11.16,
in the disk of radius R. The definitions in §11.2 and Nevanlinna’s first theorem
show that

N(r, a) ≤ T(r) + O(1),

for each a, and so

m = n(R, 0) + n(R, ∞)

≤ 1

log 2

∫ 2R

R

n(t, 0) + n(t, ∞)

t
dt

≤ 1

log 2
(N(2R, 0) + N(2R, ∞))

≤ 2

log 2
(T(2R) + C),

(11.30)

with C a generic constant.
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Now we can confront the sum in (11.29). Given r, partition the collection of
zeros and poles c into two classes: (I) those with

∣∣r − |c|∣∣ < δr/2 and (II) the
others.

First consider the sum corresponding to (I). It is clear that

r
∫

J

dθ

|reiθ − c|
is maximized when J has its midpoint at θ = arg c. Let γ = ∣∣r − |c|∣∣/r < δ/2.
Then

r
∫

J

dθ

|reiθ − c| ≤ 2r

[∫ γ

0
+

∫ δ/2

γ

]
dθ∣∣reiθ − |c|∣∣

≤ 2γ r

|r − |c|| + 2r
∫ δ/2

γ

dθ∣∣#m(reiθ − |c|)∣∣
≤ 2 + 2r

∫ δ/2

γ

dθ

r sin θ
≤ 2 + π

∫ δ/2

γ

dθ

θ

≤ 2 + π log
δr

2 |r − |c|| (c ∈ (I)).

Let κ = (σ − 1)/12 and ε = κR/4. If r is outside the exceptional set F in
Lemma 11.17 , then after arranging the points c in terms of increasing distance
from r, the jth element has ∣∣r − |c|∣∣ > jκR

4m
. (11.31)

Hence class (I) contains at most M elements, where M is the largest integer
with

MκR

4m
≤ δr

2
, that is, M ≤ 2δrm

κR
= M0. (11.32)

Thus for r /∈ F, we have∑
c∈(I)

(
2 + π log

δr

2
∣∣r − |c|∣∣

)
≤ 2M0 + π

M∑
1

log
2δrm

κRj

= 2M0 + π

M∑
j=1

log
M0

j
< 2M0 + π

M∑
j=1

∫ j

j−1
log

M0

x
dx

< 2M0 + π

∫ M0

0
log

M0

x
dx = (2 + π)M0 < 6M0.

(11.33)

Next we treat group (II). For the first M elements of group (II) we bound∣∣r − |c|∣∣ from below by δr/2, and for the remaining elements (if any) we use
the lower bound in (11.31). Hence when (11.33) is included,
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r
∑

c

∫
J

dθ

|reiθ − c| < 6M0 + rδ

⎛⎝M
2

δr
+

m∑
j=M+1

4m

jκR

⎞⎠
≤ 8M0 + 4rδm

κR

m∑
j=M+1

1

j

≤ 8M0 + 2M0

(
1 +

∫ m

M0

dx

x

)
≤ 10M0 + 2M0 log+ m

M0
.

By this estimate and (11.29),

r
∫

J

∣∣∣∣h′

h

∣∣∣∣ dθ ≤ 5δT(R)
Rr

(R − r)2
+ 2

(
10M0 + 2M0 log+ m

M0

)
.

We can now wrap up the proof of Lemma 11.16. With R = 6rn, where rn is
a peak of T , consider r ∈ [rn, 2rn]. Write L = L(λ) for a constant depending
only on λ. Then (11.30) and (11.32) show that

m ≤ LT(rn), M0 ≤ L
δ

κ
m � L

δ

κ
T(rn),

which simplifies our estimate to

r
∫

J

∣∣∣∣h′

h

∣∣∣∣ dθ ≤ LδT(rn) + L
δ

κ

(
1 + log+ κ

δ

)
T(rn).

Noting that T(rn) ≤ T(r) because T is increasing, we obtain Lemma 11.16
with K = K(λ, σ). The exceptional set has size |En ∩ [rn, σ rn]| ≤ 4ε = κR =
(σ − 1)rn/2.

Remark 11.18 Our proof of Lemma 11.17 is based on the account in Levin
(1980, p. 19), but phrased in terms of intervals on the real line rather than
circles (disks) in the plane. Cartan’s approach immediately yields his estimate
on the minimum modulus of a (monic) polynomial: given H > 0 and complex
numbers c1, c2, . . . , cm, there is a system of finitely many closed disks in the
plane whose sum of radii is 2H and

|z − c1| · |z − c2| · · · |z − cm| >
(

H

e

)m

when z is outside the system. Indeed, take z disjoint from the disks C′
1, . . . , C′

p
that are analogous to the doubled intervals I′

1, . . . , I′
p in the proof of Lemma

11.17 (with ε = H), and arrange the points ck in order of increasing distance
from z. Then for each k the argument gives
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|z − ck| > k
H

m
,

so that

|z − c1| |z − c2| · · · |z − cm| > m!

(
H

m

)m

>

(
H

e

)m

where the final step relies on the Stirling-type estimate m!> (m/e)m, proved by

log m! =
m∑

j=2

log j >
∫ m

1
log x dx = log(m/e)m + 1.

A remarkable special case is that given any monic polynomial, we may find
a collection of disks containing its zeros and with radii summing to 2e such that
outside the disks, the polynomial has magnitude greater than 1, independent of
the degree of the polynomial.

11.5 Interlude: Subordination and Lehto’s Theorem

This section introduces two important tools from geometric complex analysis.
The simplicity with which they may be formulated and proved conceals their
remarkably sophisticated consequences, which have been mined for decades.
The first, subordination, is a standard method to produce extrema in classes
of mappings, by identifying extremal mappings as those whose range is
“maximal” in the comparison class. It is used below in our proof of Theorem
11.26, and a comparison with the elaborate argument in §11.8.2 shows the ✫-
function may be interpreted as an extension of subordination. Lehto’s theorem,
our second tool, reveals a relation between the counting function N and
subharmonicity and is also relevant to the proof of Corollary 11.24.

(a) Subordination. In principle, subordination is an immediate consequence
of the Schwarz lemma, which in turn is the maximum principle applied to
ω(z)/z.

Lemma 11.19 (Schwarz) If ω is an analytic map of D to itself with ω(0) = 0,
then

|ω′(0)| ≤ 1, |ω(z)| ≤ |z| (z ∈ D).

Equality is possible if and only if ω(z) = cz for some c with |c| = 1.

The principle of subordination (Littlewood 1944) is nearly a century old,
and reveals one reason that conformal mappings (univalent functions) play
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an extremal role in geometrical complex analysis. We suppose that f , g are
meromorphic in D. If

f (z) = g(ω(z))

where ω satisfies the Schwarz lemma, then we write f ≺ g and say f is
subordinate to g. In most situations, f and g are analytic, but the definition
allows that the ranges be a Riemann surface. In the most common situations,
g(D) ⊂ C and g is univalent, in which case ω = g−1 ◦ f .

Lemma 11.20 (Subordination) Let f , g be analytic in D with f (D) ⊂ g(D),
f (0) = g(0), and suppose g is univalent. Then f ≺ g,

| f ′(0)| ≤ |g′(0)|
and

M(r, f ) ≤ M(r, g) (0 < r < 1).

Proof Apply the Schwarz lemma to the analytic function ω = g−1 ◦ f : f ≺ g.
Thus |(g−1 ◦ f )′(0)| ≤ 1 and |(g−1 ◦ f )(z)| ≤ |z|. The first inequality with the
chain rule shows that | f ′(0)| ≤ |g′(0)|, and the second shows the f -image of
B(0, r) is contained in g(B(0, r)) if 0 < r < 1. In particular,

M(r, f ) = max
|z|=r

| f (z)| ≤ max
|z|≤r

|g(z)| = max
|z|=r

|g(z)| = M(r, g).

(b) Lehto’s theorem on N(r, ζ ). Lehto (1953) observed an important property
of Nevanlinna’s function N(r, ζ ), which uses an insight similar to Cartan’s (as
shown in the proof given in Hayman (1989)). It is valid only for holomorphic
functions.

Theorem 11.21 Let r < R and f be holomorphic in B(R). Then N(r, ζ ) is
subharmonic in the ζ -plane except at ζ = f (0). Near ζ = f (0) the function

N(r, ζ ) + log | f (0) − ζ |
is subharmonic.

Proof This is immediate from Jensen’s theorem applied to f (z) − ζ :

N(r, ζ ) + log | f (0) − ζ | = 1

2π

∫ π

−π

log | f (reiθ ) − ζ | dθ ,

and the expression on the right side is obviously subharmonic. That expression
will also be relevant later, and so merits a definition:
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I(r, ζ , f ) = 1

2π

∫ π

−π

log | f (reiθ ) − ζ | dθ . (11.34)

Remark. The function N(r, ζ ) alone is not subharmonic. One can view the
term log | f (0) − ζ | as a correction to make N subharmonic, and that is what
will be important in §11.7.

11.6 The ✫-Function and Univalent Functions

Recall that a region is an open, connected set. An analytic function f : X → Y ,
where X and Y are regions in C, is univalent if f is 1–1; thus X and Y are
conformally equivalent. The situation most analyzed is when f belongs to the
class S of “schlicht” functions, which means X is the unit disk D and f (0) = 0,
f ′(0) = 1. Two members of S which are extremal for many problems are the
identity function f (z) = z and the Koebe function

k(z) =
∑
n≥1

nzn = z

(1 − z)2
.

Intuitively, the identity function has the smallest possible image among
functions in S, while k has the largest image: it maps D conformally to the
whole plane with the interval (−∞, −1/4] removed.

De Branges (1985) solved the most famous problem about S by proving
Bieberbach’s conjecture on the coefficients of schlicht functions:

if f ∈ S then |an| ≤ n, equality only for k and its rotations. (11.35)

Earlier, the ✫-function was used by Baernstein (1974) to show the Koebe
function is maximal for a different collection of extremal problems. Namely, k
maximizes Lp-means of univalent functions.

Theorem 11.22 (Baernstein 1974, Theorems 1 and 2) Let � : R → R be
convex. If f ∈ S then∫ π

−π

�(log | f (reiθ )|) dθ ≤
∫ π

−π

�(log |k(reiθ )|) dθ .

If equality holds for some strictly convex � and some r, 0 < r < 1, then
f (z) = eiαk(e−iαz) for some real α.

Recall that a convex function � : R → R is strictly convex if it is convex
and not linear on any subinterval.
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The special cases �(x) = epx (p ∈ R) and �(x) = x+ in the theorem imply
that ∫ π

−π

| f (reiθ )|p dθ ≤
∫ π

−π

|k(reiθ )|p dθ ,∫ π

−π

log+ | f (reiθ )| dθ ≤
∫ π

−π

log+ |k(reiθ )| dθ ,

M(r, f ) ≤ M(r, k).

(11.36)

The Lp result for the special case p = 1 along with Cauchy’s theorem gives
the coefficient estimate |an| ≤ (e/2)n, which is weaker than proved in de
Branges’ result (11.35).

Although Theorem 11.22 seems unable to yield sharp coefficient estimates
for the full class S, it has been applied with p < 0 in Baernstein and Schober
(1980) to give a short proof of Loewner’s sharp estimates for the coefficients
of the inverses to functions in S; note that if f ∈ S, then

g(w) = f −1(w) = w + b2w2 + · · ·
is also univalent in a neighborhood of the origin.

Moreover, Theorem 11.22 also holds for a class of functions more general
than S, the normalized weakly univalent functions (Hayman 1989, 1994): f is
weakly univalent if f (D) contains {|z| = r} for all r < R0 ∈ (0, ∞) but not any
larger circle. Whether the refined estimate (11.35) is valid for weakly univalent
functions remains open.

Recently, Ronen Peretz Peretz (2017) showed that estimates for individual
coefficients do not follow in general from Theorem 11.22.

The estimates in Theorem 11.22 are related to the geometry of the range
of f through the next lemma, which relies on the Cartan identity (11.4) with
simplifications due to univalence, since

N(r, ∞) ≡ 0, N(r, ρa) = log+ |r/f −1(ρa)|.
The proof also uses Green function G(z, a,�); this function was introduced
in §5.6, but has a special role in the 2-dimensional theory, see for example
Hayman and Kennedy (1976), Tsuji (1975); it is the value at z of the properly
normalized (positive) harmonic function in � \ {a} having boundary values
zero on ∂� and a logarithmic pole at a.

Lemma 11.23 Let f ∈ S and write � for the range of f . If u is the Green
function of � with pole at 0, then for 0 < r < 1 and 0 < ρ < ∞,∫ π

−π

log+ | f (reiθ )|
ρ

dθ =
∫ π

−π

(2πu(ρeit) + log r)+ dt.
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Proof Cartan’s identity (11.4) applied to f /ρ allows expressing the left side as∫ π

−π

N(r, ρeit, f ) dt + 2π log+ | f (0)|/ρ, (11.37)

but here f (0) = 0 because f ∈ S. Since f is univalent, the counting function N
becomes

N(r, ζ ) = log+(r/| f −1(ζ )|)
and so the lemma follows upon substituting into (11.37), since the Green
function for � is

u(ζ ) = 1

2π
log

1

| f −1(ζ )| .

Proof of Theorem 11.22. Both log | f | and log |k| are harmonic away from the
origin, and they have the same mean value on each circle S(r):

1

2π

∫ π

−π

log | f (reiθ )| dθ = 1

2π

∫ π

−π

log |k(reiθ )| dθ = log r

due to the normalizations f (z)/z = 1 + O(z) and k(z)/z = 1 + O(z). Thus the
equivalences in Proposition 10.3 will yield Theorem 11.22 as a consequence
of the inequality (log | f |)✫ ≤ (log |k|)✫ on the upper half of D or, with ρ = et

in the proposition,∫ π

−π

log+ | f (reiθ )|
ρ

dθ ≤
∫ π

−π

log+ |k(reiθ )|
ρ

dθ ;

here 0 < r < 1, 0 < ρ < ∞.
Let

� = f (D), �1 = k(D), u(ζ ) = G(ζ , 0,�), v(ζ ) = G(ζ , 0,�1),

where G is the appropriate Green function extended to be zero outside � or �1.
In view of Lemma 11.23 we want to show for each 0 < ρ < ∞ and t = − 1

2π
log r > 0 that ∫ π

−π

(u(ρeiθ ) − t)+ dθ ≤
∫ π

−π

(v(ρeiθ ) − t)+ dθ .

(Since u and v are nonnegative, this last inequality certainly holds for t ≤ 0
once it is proved for t = 0.) With H the upper half plane, the inequality in
Theorem 11.22 thus reduces to an inequality for the ✫-function applied to
Green functions: we want

u✫ ≤ v✫ in H. (11.38)



432 The �-Function in Complex Analysis

The essential, and by now familiar, guiding principle is that u✫ is subhar-
monic in the upper half plane while v✫ is harmonic there. To obtain (11.38)
we employ the maximum principle. For ε > 0 set

Q(ρeiθ ) = u✫(ρeiθ ) − v✫(ρeiθ ) − εθ (ρ > 0, 0 < θ < π). (11.39)

Then Q is subharmonic in H and continuous on H \ {0}. We investigate its
boundary values.

If d is the radius of the largest disk contained in � = f (D), then d ≥ 1/4
(Koebe’s theorem), and so

u(ζ ) = − 1

2π
log |ζ | + u1(ζ ), (11.40)

with u1 harmonic in |ζ | < d, and the normalization f (z) = z + O(z2) ensures
that u1(0) = 0. This gives that

u✫(ρeiθ ) = − θ

π
log ρ + o(1),

uniformly in θ as ρ → 0, and the same reasoning applies to v. Hence

lim sup
ζ→0

Q(ζ ) ≤ 0 (ζ → 0).

Since u and v tend to 0 at ∞, the same is true of their star functions, and so
(11.39) now yields

lim sup
ζ→∞

Q(ζ ) ≤ 0.

It is immediate from the definition of the ✫-function that on the positive real
axis,

Q(ρ) = 0 (ρ > 0).

Thus we are left to consider Q on the negative axis. With u1 from (11.40), we
have u1 harmonic near 0 with u1(0) = 0, and so

u✫(ρeiπ ) =
∫ π

−π

u(ρeiθ ) dθ = − log ρ +
∫ π

−π

u1(ρeiθ ) dθ

= − log ρ (0 < ρ < d).

The relation analogous to (11.40) for v is

v1(ζ ) = v(ζ ) + 1

2π
log |ζ |,
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but now v1 is subharmonic in the entire plane and harmonic in a neighborhood
of 0 (specifically, for |ζ | < 1/4), with v1(0) = 0. Hence

v✫(ρeiπ ) =
∫ π

−π

v(ρeiθ ) dθ = − log ρ +
∫ π

−π

v1(ρeiθ ) dθ

≥ − log ρ (0 < ρ < ∞).

When this is reconciled with the behavior of u✫ near the negative axis, we find
that

Q(ρeiπ ) ≤ 0 (0 < ρ < d).

To complete the analysis of Q on ∂H, we show the maximum of Q cannot
occur in the interval (∞, −d] on the negative real axis. Let ζ = ρ0eiπ with ρ0 ∈
[d, ∞). The symmetric decreasing rearrangement of the function θ → u(ρ0eiθ )

is continuous, since u is continuous on the circle. Hence by differentiating
(11.1),

∂u✫

∂θ
(ρ0eiθ ) = 2u#(ρ0eiθ ) (0 ≤ θ ≤ π),

where at θ = π the derivative is taken from below. Since ρ0 ≥ d, we have
u#(ρ0eiπ ) = infϕ u(ρ0eiϕ) = 0, which gives (∂u✫)/(∂θ) = 0 at θ = π , and
similarly (∂v✫)/(∂θ) = 0 at θ = π . An appeal to the definition of Q in (11.39)
now yields

∂Q

∂θ
(ρ0eiπ ) = −ε < 0.

Therefore the maximum of Q does not occur at ρ0eiπ .
Since the maximum occurs somewhere on the boundary, and we have shown

Q ≤ 0 at all other boundary points, we conclude Q ≤ 0 in H. Since ε is
arbitrary positive, on letting ε → 0 we find that u✫ ≤ v✫, and the theorem is
proved.

For the equality case, an argument that does not use the ✫-function, see
Baernstein (1974).

11.7 Complements to the Univalent Integral Means Theorem

Theorem 11.22 on integral means has several applications: many are covered
by Baernstein (1974) and Hayman (1989), while applications to moments of
equilibrium measures in potential theory are developed by Laugesen (1993)
and Baernstein et al. (2011). In this section we concentrate on applications to
Green functions, holomorphic functions, and harmonic measures.



434 The �-Function in Complex Analysis

A weaker form of Lemma 11.23 holds when f is not univalent:

Corollary 11.24 Let f : D → � be holomorphic, and suppose � has a Green
function. If u is the Green function for � with pole at f (0), then∫ π

−π

log+ | f (reiθ )|
ρ

dθ ≤
∫ π

−π

(2πu(ρeit) + log r)+ dt + 2π log+ | f (0)|
ρ

whenever 0 < r < 1 and 0 < ρ < ∞.

Proof We adapt the proof of Lemma 11.23. The function

2πu( f (z)) + log |z|
is superharmonic in D (including at z = 0) and its boundary values are
nonnegative on ∂D. Thus if r ∈ (0, 1) the set �r = {ζ : 2πu(ζ ) > − log r}
contains the image of B(0, r), and hence N(r, ζ ) = 0 for ζ /∈ �r. But Theorem
11.21 implies that

N(r, ζ ) − log r − 2πu(ζ )

is subharmonic in �r with non-positive boundary values, so that

N(r, ζ ) ≤ 2πu(ζ ) + log r (ζ ∈ �r).

This last inequality holds for all ζ ∈ C when we apply the operation [·]+ to
the expression on the right. We use this to estimate N(ρeit) in the term (11.37).

The next result will be used later in our discussion of corollaries to Theorem
11.34 in §11.9.

Theorem 11.25 (Baernstein 1974, Theorem 5) Suppose that � and �# have
Green functions. If � : R → R is convex increasing then∫ π

−π

�(G(reiθ , a,�)) dθ ≤
∫ π

−π

�(G(reiθ , |a|,�#) dθ

for each a ∈ �, r ∈ (0, ∞).

A by-product of the proof is worth stating explicitly:

the Green function of the circularly symmetric domain �# with pole at a > 0
is symmetric decreasing on each circle |z| = r.

The case in which �# is simply connected and a = 0 was settled in Jenkins
(1955) using a different formulation. That (11.38) might be improved to

u# ≤ v in �#
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was raised in Hayman (1967, Problem 5.17), but shown to be false by Pruss
(1996).

Theorem 11.25 implies in particular that the maximum of the Green function
is attained on the symmetrized domain:

sup
|z|=r

G(z, a,�) ≤ sup
|z|=r

G(z, |a|,�#) = G(r, |a|,�#)

(recalling that the inequality between L∞ norms in Corollary 10.2 follows
from the inequality between integral means). As shown in Hayman (1989,
Theorem 9.4), this implies the classical result of Pólya and Szegö that
symmetrization increases mapping radius. For simply connected � and a = 0,
the Green function inequality was first obtained in Krzyż (1959).

Similar procedures yield other comparison theorems. For example, there is
a sharpening of Theorem 11.25:

Theorem 11.26 (Baernstein 1974, Theorem 6) Let � be a domain in C with
�# simply connected and not the full plane. Suppose f is holomorphic in D

with f (D) ⊂ �. Let F be the conformal map of D onto �# normalized by
F(0) = | f (0)|. If � : R → R is increasing and convex then∫ π

−π

�(log | f (reiθ )|) dθ ≤
∫ π

−π

�(log |F(reiθ )|) dθ .

Note that nothing is asserted when �# is not simply connected.

Proof Here is a sketch of a proof. First we suppose that � is simply-
connected. If f is the conformal map of D to �, the argument in Theorem
11.22 shows that Theorem 11.26 is equivalent to Theorem 11.25. When f is not
univalent, it is subordinate to the conformal g mapping � to D with g(0) = f (0)
(subordination was discussed in §11.5). The integral means in Theorem 11.26
increase when f is replaced by g (see for example, Hayman 1989, p. 76). Thus
the theorem holds when � is simply connected.

For general �, recall that we have assumed that �# is simply connected.
Lehto’s Theorem 11.21 shows that w → N(r, w, f ) is subharmonic other than
having a logarithmic pole at w = f (0), and so an analysis similar to that of
Theorem 11.25 yields that

N✫(r, w, f ) ≤ (
2πG(w, F(0),�#) + log r

)✫
, (w ∈ H

✫, 0 < r < 1).

Theorem 11.26 follows from this and Lemma 11.23 along with the argument
from the proof of Theorem 11.22; now let r → 1 using

u(w) = N(r, w, f ), v(w) = G(w, F(0),�#) (0 < r < 1).
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Other integral means comparisons involve meromorphic univalent func-
tions, functions in annuli, or functions satisfying various constraints. In
addition to Baernstein (1974), a partial list of papers includes Godula and
Nowak (1987); Kirwan and Schober (1976); Laugesen (1993); Solynin (1996);
Yang (1994). Leung (1979) used ✫-functions to solve extremal problems for
integral means of derivatives of starlike and other special classes of univalent
functions.

There are also applications to harmonic measure (see also §5.6). Here is a
model case. Let � be a region in C for which the Dirichlet problem is solvable,
and E a Borel set in C \ �. Then ω(z, E,�), the harmonic measure of E at z
(with respect to �) may be thought of as the value of the value at z of the
harmonic function in � with boundary values 1 on E ∩ ∂� and 0 on ∂� \ E;
ω may always be extended to the complement of � by taking ω(z, E,�) = 0
outside �; standard references are Tsuji (1975) and Hayman (1989). Theorem
11.22 in this setting gives the following application, where for specificity we
suppose that � ⊂ D, not necessarily simply connected, and E = ∂D (thus
ω ≡ 0 when � ⊂⊂ D).

Theorem 11.27 (Baernstein 1974, Theorem 6) Let � ⊂ D, � : R → R an
increasing convex function and 0 < r < 1. Then∫ π

−π

�(ω(eiθ , ∂D,�)) dθ ≤
∫ π

−π

�(ω(reiθ , ∂D,�#)) dθ .

Proof We give only an outline. Let u and v be the harmonic measure of �

and �# respectively. The argument for Theorem 11.22 adapts to show that
u✫ ≤ v✫ in D

+, which is then equivalent to Theorem 11.27.

It can be shown also that the extremal function v is symmetric decreasing
on each circle {|z| = r}. Thus u✫ ≤ v✫ gives a result of Haliste (1965):

sup
|z|=r

ω(z, ∂D,�) ≤ sup
|z|=r

ω(z, ∂D,�#) = ω(r, ∂D,�#). (11.41)

In turn, (11.41) and the maximum principle yield what is known as
Beurling’s projection theorem, a fundamental result in 2-dimensional potential
theory. Let A be the set of r ∈ (0, 1] such that � does not contain the full circle
|z| = r, and let �## = D \ {−r : r ∈ A}. Of course �# ⊂ �## and this leads to

sup
|z|=r

ω(z,D,�) ≤ sup
|z|=r

ω(z,D,�##) (0 < r < 1).

Although the discussions in this chapter have been using circular sym-
metrization, one can derive parallel results using Steiner symmetrization
(Sections 9.11 and 10.4). Steiner symmetrization of domains increases integral
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means of Green functions and harmonic measures. For an informal discussion
with references, see Baernstein (2002, §7.2).

11.8 The Conjugate Function

If u is harmonic and real in the disk D, there is a harmonic function v, the
function conjugate to u, so that f = u + iv is analytic in D; a normalization
such as v(0) = 0 makes v unique. In this section we discuss a relation between
v and u in terms of their boundary values.

Because of its connections to Fourier analysis (Zygmund 1968), there is a
rich history relating how a function u harmonic in D may be recovered from
its boundary values on S, where the boundary value u(reiθ ) always is defined
as the radial limit:

u(eiθ ) = lim
r→1

u(reiθ );

this theory has been successfully developed to have major influence in PDEs,
geometric measure theory, and other disciplines in 2 and more dimensions.

There are subtleties, since there exist non-zero harmonic functions with
radial boundary values 0 everywhere – for example the function

∂P(r, θ)/∂θ = −
∑
n≥1

nrn sin nθ = −#m

(
1 + z

1 − z

)2

where P(r, θ) is the Poisson kernel with r = 1; see §11.2. For this reason,
pairing u to its values on S requires additional information. For example, if
u ∈ Lp(S) with p > 1 then for z ∈ D, u(z) is the Poisson integral of its
boundary values (cf. Hoffman 1962, chapters 3 and 4). However, it is possible
that the means ∫ π

−π

|u(reiθ )| dθ (0 < r < 1) (11.42)

are uniformly bounded without u(eiθ ) being an integrable function, the most
compelling example being when u is the Poisson kernel.

In its place, when (11.42) is uniformly bounded, there is (see Tsuji 1975,
chapter IV) a signed real-valued measure μ on S with ‖μ‖ < ∞ (‖μ‖ is its
total variation) with

f (z) = u + iv =
∫ π

−π

eiϕ + z

eiϕ − z
dμ(ϕ), (11.43)
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and f has nontangential limits a.e. on S. Moreover

‖μ‖ = lim
r→1

1

2π

∫ π

−π

|%e f (reiθ )| dθ

v(eiθ ) = #m f (eiθ ) (a.e. θ).
(11.44)

Thus in this section we consider harmonic functions u which are real parts of
functions f represented as (11.43), and remark that when f is in a Hardy space
Hp for some p > 1, we may take dμ = (1/2π)u(eiθ ) dθ ; this is thoroughly
discussed in Ahlfors (1978, pp. 167–168).

If u ∈ Lp(S) with 1 < p < ∞, a theorem of Marcel Riesz (1928) asserts
that v ∈ Lp(S) and there is a constant Cp with

‖v‖p ≤ Cp‖u‖p, 1 < p < ∞. (11.45)

Riesz’s theorem fails when p = 1, since there are integrable functions whose
conjugates are not integrable. The replacement for (11.45) was discovered
(in fact a few years earlier) by Kolmogorov, a “weak” 1–1 inequality on the
distribution function:

∣∣{|v| ≥ t}∣∣ ≤ C

t
‖u‖1, t > 0, (11.46)

and from this directly follows that

‖v‖p ≤ Cp‖u‖1, 0 < p < 1, (11.47)

complementing (11.45)
The best constants for (11.45), (11.46), and (11.47) were discovered decades

later; the first in Pichorides (1972) and the other two in Davis (1974), Davis
(1976) respectively. Davis’s results attracted additional attention since they
relied on probability (Brownian motion).

Inequalities (11.46) and (11.47) were rederived in Baernstein (1978), the
proofs also yielding the best constants. We will prove Theorem 11.28, which
is from that paper, after which (11.47) (with the best constant Cp displayed
in (11.50)) will follow at once from assertion (i) of that theorem. Theorem
11.29 breaks new ground since it involves means of real and imaginary
parts of analytic functions, and Proposition 11.30 shows the relevance of
Nevanlinna’s integrated counting function N to the subject. We do not include
the proof of (11.46), since the arguments in Baernstein (1978) do not use the
✫-function.
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11.8.1 A Relation to Conformal Mappings

Davis identifies the best constant C in (11.46) as "1, with

"−1
1 = 2

π2

∫ π

0

∣∣∣∣log cot
θ

2

∣∣∣∣ dθ .

That this is sharp in (11.46) when t = 1 is clear since

g1(z) = 2

π
log

1 + z

1 − z
, (11.48)

maps D conformally to the strip {|#m g1(z)| < 1}.
When p < 1 the sharp constant "p in (11.47) is associated with the

conformal map

g0(z) = 2z

1 − z2
, (11.49)

which maps D to the doubly-split plane

Q0 = C \ {it : t ∈ (−∞, −1] ∪ [1, ∞)}
(note that these domains do not depend on p ∈ (0, 1)). Now we have

"p
p = 1

2π

∫ 2π

0
|g0(e

it)|p = 1

2π

∫ π

−π

| csc t|p dt, (11.50)

which is finite when p < 1, but not when p = 1. The function g0 has the
representation (11.43), where the support of its associated measure ν0 is two
points: ν0({1}) = 1/2 = −ν0({−1}). In general, when using (11.43), ν is used
for the extremal measure, and the corresponding mappings and domains are
decorated with subscripts.

The identification of "p in (11.50) as the sharp constant for Cp in (11.47) is
a limiting case of the next theorem, which in turn is a consequence of our main
result, which is stated as Theorem 11.29 in the next section. We also discuss
there why it is a more natural vehicle.

Here we present our intermediate result and then show how "1 follows.

Theorem 11.28 Let μ be a real (signed, Borel) measure on S, let f be defined
by (11.43), and assume that ‖μ‖ ≤ 1, |μ(S)| = b, 0 < b < 1. Let g = gb be
associated to the specific measure μ = νb of (11.51) below.

Then for 0 < r < 1:

(i)
∫ π

−π
| f (reiθ )|p dθ ≤ ∫ π

−π
|g(reiθ )|p dθ (0 < p ≤ 2),

(ii)
∫ π

−π
|#m f (reiθ )|p dθ ≤ ∫ π

−π
|#m g(reiθ )|p dθ (1 ≤ p ≤ 2),

(iii)
∫ π

−π
|%e f (reiθ )|p dθ ≤ ∫ π

−π
|%e g(reiθ )|p dθ (1 ≤ p < ∞).
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Remark. The limiting case ‖μ‖ = 1 = |μ(S)| is not covered by this theorem,
but follows directly. For that case, μ must be of one sign, say positive. The
extremal measure has unit charge at z = 1, and corresponds to g1 of (11.48),
so that f is subordinate to g1. (Subordination was discussed in §11.5.)

11.8.2 The Constant �1; Preparation for Theorem 11.29

Theorem 11.28 will be obtained in §11.8.5 as a consequence of Theorem 11.29.
Assuming Theorem 11.29 proved, we show that "p being the best constant in
(11.47) follows from (i) in Theorem 11.28. Normalize so in (11.43) ‖μ‖ = 1.
According to (11.44), |v(eiθ )| ≤ | f (eiθ )|, so if r → 1 in (i),∫ π

−π

|gb(e
iθ )|p dθ ≤

∫ π

−π

|g0(e
iθ )|p dθ (0 < p < 1, 0 < b < 1)

where the {gb} were introduced in §11.8.1, and g0 is from (11.49).
To compute the right integral, we consider intervals on S on which cos θ is

positive or negative, and find that∫ π

0
|gb(e

iθ )|p dθ =
∫ π

−π

∣∣∣∣1 + b cos θ

sin θ

∣∣∣∣p dθ

=
∫ π

0

(1 + b cos θ)p + (1 − b cos θ)p

| sin θ |p dθ .

But when p < 1, xp is a concave function of x, and so the integral is largest
when b = 0. Thus "p is the sharp bound when p < 1.

Theorem 11.29, which is stated below in this section, implies Theorem 11.28
but is awkward to formulate. It is a continuum of results, each requiring a
bounded simply connected (Steiner symmetric) domain Q and scalar b, 0 ≤
b< 1; collectively, these are the domains S(Q, b), with f : D → Q conformally
and f (0) = b. Note that the hypothesis depends only on the real parts.

Theorem 11.28, in particular identifying the constants in (11.47), uses
domains Qb which are limiting cases of the domains S(Q, b). The “universal”
domain Q0 has already been introduced when discussing the function g0 from
(11.49); it is C with the slits {it : t ∈ (−∞, −1] ∪ [1, ∞)} deleted. When
0 < b < 1, the extremal gb has the representation (11.43) with measure
ν = νb, where

νb({1}) = (1 + b)/2, νb({−1}) = −(1 − b)/2, (11.51)

and zero otherwise. In particular, gb(0) = b and gb maps D conformally to

Qb = C \ {it : t ∈ (−∞, −(1 − b2)1/2] ∪ [(1 − b2)1/2, ∞)}.
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The more elaborate Theorem 11.29, as well as Theorem 11.28 when b �= 0,
thus will provide information not in Davis (1976). It is based on Baernstein
(1978, Theorem 4). The theorem has the flavor of symmetrization, but, as
we have remarked, Theorem 11.29 maximizes integral means over families
of mappings into Q. Associated to Q is B > 0 (in nontrivial cases) with

Q ∩ {%e w = 0} = {i[−B, B] : t ∈ R}.
Next, for 0 < β ≤ B, let Qβ be the domain obtained from Q by deleting the
two intervals [−iB, −iβ] and [iβ, iB]. Then, for each b ∈ Q ∩ R, we have a
unique conformal mapping hβ,B : D → Qβ subject to

hβ,B(0) = b, h′
β,B > 0,

and this defines the collection of mappings

S(Q, b) = {hβ,b : 0 < β ≤ B}.
Our main result shows that for each choice of b = f (0) ∈ R, the p-norms of

mappings f : D → Q are extremal for the associated conformal h ∈ S(Q, b).

Theorem 11.29 Let f be analytic in D with f (0) real and f (D) ⊂ Q, where
Q is as above. Suppose, in addition, that h ∈ S(Q, f (0)) and∫ π

−π

|%e f (eiθ )| dθ ≤
∫ π

−π

|%e h(eiθ )| dθ . (11.52)

Then for 0 < r < 1:

(i)
∫ π

−π
| f (reiθ )|p dθ ≤ ∫ π

−π
|h(reiθ )|p dθ (0 < p ≤ 2),

(ii)
∫ π

−π
|#m f (reiθ )|p dθ ≤ ∫ π

−π
|#m h(reiθ )|p dθ (1 ≤ p ≤ 2),

(iii)
∫ π

−π
|%e f (reiθ )|p dθ ≤ ∫ π

−π
|%e h(reiθ )|p dθ (1 ≤ p < ∞).

By subordination (see (Baernstein 1989, p. 841) this holds, for example, for
h = hβ,b). In §11.8.5 we note that it is also valid for certain functions gb in the
class discussed in 11.51.
Remarks If h ∈ S(Q, f (0)) then h(0) = f (0), so that the functionals N and I
(I being from (11.34)) may be used interchangeably. Inequalities (11.52) for
all p ≥ 2 are also valid when h is the conformal map hB,b, but it is not known
whether they hold for all h ∈ S(Q, f (0)).

11.8.3 Proof of Theorem 11.29

Since the assertions of the theorem are quantitative inequalities for all r, we
may assume f is analytic on S = ∂D. The formulation relies on image domains
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and real parts of functions, so we translate the picture to the w-plane, using an
exponential change of variables and the counting function N.

The versatility of the function [·]+ as a building block for convex functions
is important here; recall its essential role in Nevanlinna theory (§11.2). In
particular, if x is real and p > 0 then

epx = p2
∫ ∞

−∞
(x − t)+ept dt,

|x|p = p(p − 1)
∫ ∞

0
(|x| − t)+tp−2 dt (t ≥ 0),

(|x| − t)+ = (x − t)+ + (x + t)+ − (x + t) (t ≥ 0).

(11.53)

With s > 0 , Cartan’s identity (11.4) when applied to s−1f (z) yields∫ π

−π

[
log | f (reiθ )| − log s

]+
dθ =

∫ π

−π

N(r, seiϕ) dϕ + 2π log+
∣∣∣∣ f (0)

s

∣∣∣∣ ,

so, if x = log | f (reiθ )|, t = log s, the first identity of (11.53) gives that∫ π

−π

| f (reiθ )|p dθ

= p2
∫ ∞

−∞

∫ ∞

−∞
N(r, w)|w|p−2 dudv + 2π | f (0)|p (p > 0).

(11.54)

The corresponding formulas for |%e f | and |#m f | in place of | f | rely on the
second and third identities of (11.53). We start with

N(r, et+iϕ , ef ) =
∞∑

−∞
N(t + i(ϕ + 2πk), f ).

On integrating with respect to ϕ and applying Cartan’s formula to ef , we obtain∫ 2π

0
[%e f (reiθ ) − t]+dθ =

∫ ∞

−∞
N(r, t + iv)dv + 2π [%e f (0) − t]+.

Thus the third identity in (11.53) gives that∫ 2π

0
|%e f (reiθ )| − t)+

=
∫ ∞

−∞
[N(r, t + iv) + N(r, −t + iv)] dv + 2π(|%e f (0)| − t)+.

(11.55)
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The second identity leads to an analogue of (11.54):

∫ 2π

0
|%e f (reiθ )|p dθ

= p(p − 1)
∫ ∞

−∞

∫ ∞

−∞
N(r, w)|u|p−2 dudv + 2π |%e f (0)|p

(11.56)

when p > 1, and the same analysis applies to |#m F|. Note that the case t = 0
in (11.55) gives that

∫ 2π

0
|%e f (reiθ )|dθ = 2

∫ ∞

−∞
N(r, iv)dv + 2π |%e f (0)|. (11.57)

We next convert the hypotheses of Theorem 11.29 to ones amenable to our
methods. We prove:

Proposition 11.30 Let f and h be as in Theorem 11.29. Then if w = u + iv
with v > 0 we have∫ v

−v

N(r, u + is, f ) ds ≤
∫ v

−v

N(r, u + is, h) ds. (0 < r < 1).

Before proving Proposition 11.30 in the next section, let us assume it is
established and obtain Theorem 11.29. For assertion (i), note that if p ∈ (0, 2)
then

|w|p−2 = |u + iv|p−2

is a decreasing function of v for each fixed u. The proposition with integration
by parts then yields

∫ ∞

−∞
N(r, u + iv, f )|w|p−2 dv ≤

∫ ∞

−∞
N(r, u + iv, h)|w|p−2 dv (0 < p ≤ 2)

for every u. Since f (0) = h(0), (i) then is immediate from (11.54). Assertion
(iii) follows from (11.56) with v = ∞ in Proposition 11.30. Next, let
1 < p ≤ 2 and note that (11.56) is valid using the argument for (iii) if %e f is
replaced by #m f and u by v. Finally, to obtain (ii) when p = 1, if v → 0 in
Proposition 11.30 we have that N(r, u, f ) ≤ N(r, u, h), and using (11.57) apply
parallel arguments to #m f .
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11.8.4 Key Steps Toward Proposition 11.30

As suggested by the formulation of Proposition 11.30, the function N (and so
Lehto’s theorem) is relevant here. We observe that

N(1, w, h) =
{

log |h−1(w)|−1 (w ∈ D)

0 (w /∈ D)

is 2π times the Green function of h(D) with pole at w = h(0) and that when
r < 1

N(r, w, h) = [N(1, w, h) + log r]+ (0 < r < 1).

The main issue in obtaining Proposition 11.30 is for r = 1; the case r < 1
needs only few extra lines in Baernstein (1978, p. 848). The novel issue in the
formulation of Theorem 11.29 is the appearance of the real and imaginary parts
of f and h. For example, if r ∈ (0, 1], then N(r, u + iv, h) is an even function of
v which decreases as v increases, and its analysis calls for a Steiner �-function,
based on vertical segments rather than circular arcs. The machinery to do this
has been developed earlier, in §9.11. However, complex analysis offers another
method, which was the approach used in Baernstein (1978), and which will be
followed here.

The exponential mapping reduces Steiner �-function issues to the standard
situation of symmetrization on circular arcs. Thus, w = ez will transform
� = h(D) to a circularly symmetric region which, in general, will be neither
simply connected nor a homeomorphic image in C, but if a is sufficiently
small, the image of h(D) by eaz avoids these issues. Further, Steiner sym-
metrization of N(1, u + iv, h) (N(1, r, u + iv, f )) with respect to v corresponds
to circular symmetrization on arcs centered on the real axis. Details of this
procedure are outlined in Baernstein (1978, §5). Here we simplify notation by
taking a = 1 and suppose that these issues have been resolved.

The conditions in §11.8.2 assert that the dominant region Q is bounded and
Steiner symmetric as is each domain h(D).

Associated to a function f analytic in {|z| ≤ r} is another function in the
upper half plane:

N�(r, w, f ) = N�(r, u + iv, f ) = sup
E

∫
E

N(r, u + is, f )ds, (v > 0),

with the sup now over all subsets of R with |E| = 2v. Since N is nonnegative
with compact support, N� is well defined.

Proposition 11.30 thus becomes an immediate consequence of the stronger
inequality (again manifesting the centrality of the �-function )

N�(r, u + iv, f ) ≤ N�(r, u + iv, h),
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and the proof will follow from arguments already encountered in the proof of
Theorem 11.22, now with no need to consider behavior at ∞.

This procedure depends on the remark following Theorem 11.21 that
although N(r, w, f ) is not subharmonic, it differs from being subharmonic by
a fixed addend which depends only on f (0), while N(r, w, h) differs from
a harmonic factor by the same addend. Thus we need only show that the
subharmonic function

N�(r, w, f ) − N�(r, w, h)

is nonpositive.
This calls for the maximum principle. Whenever ε > 0, the function

P(w) = N�(1, w, f ) − N�(1, w, h) − εv

is subharmonic in the upper half of the bounded region h(D)+ and continuous
on its closure. Let M(= M(ε)) be the maximum of P; Proposition 11.30 will
follow once we show that M = 0 independent of ε.

Since � = h(D)+ ⊂ Q, only points w0 = u0 + iv0 ∈ ∂� (so that v0 ≥ 0)
are locations of possible extrema (maximum principle), and the hypotheses
f (0) = h(0) and (11.52) will be important. When v0 = 0, all three constituent
terms in P are zero, so P ≡ 0, and the strategy becomes to show that v0 > 0 is
not possible.

If the vertical line {u = u0} does not intersect �, both terms N� vanish, and
since v0 > 0 we see P < 0. Otherwise, � ∩ {%w = u0} is a segment [−v0, v0]
with v0 = v0(u0). Details for the case v0 > 0, u0 �= 0 are in Baernstein (1978,
p. 847), and depend on the fact that

N�(1, u0 + iv, f ) =
∫ v

−v

A(t) dt (0 < v < ∞),

and A(t) is continuous except when u0 = b and v = 0; however, we have
already disposed of the possibility v = 0 as location of a maximum.

We present the special case u0 = 0, so that w0 = iv0 with v0 > 0; this
shows the importance of our hypothesis (11.52). Let the intersection of h(D)

with the imaginary axis be the segment [−v0, v0]. An appeal to (11.57) (and
remembering f (0) and h(0) are real) shows that

N�(1, iv0, h) =
∫ ∞

−∞
N(1, iv, h) dv = 1

2

∫ π

−π

|%e h(eiθ )| dθ − π |h(0)|,

and since N ≥ 0,

N�(1, iv0, f ) ≤
∫ ∞

−∞
N(1, iv, f ) dv = 1

2

∫ π

−π

|%e f (eiθ )| dθ − π | f (0)|;
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we recall (11.52) and see that P(w0) ≤ −εv0 < 0: there is no maximum at w0.
This means that P(w) ≤ 0 on h(D)+, and hence on its closure.

This settles the proposition when r = 1, and the reader is referred to p. 848
of Baernstein (1978) for the reduction when r < 1.

11.8.5 Proof of Theorem 11.28

After this preparation, Theorem 11.28 is not difficult to prove. Let f be a
possible extremal. Assume that f (0) = μ(S) = b where 0 ≤ b < 1 (the
limiting case b = 1 was considered after the statement of Theorem 11.28). For
the moment, assume that when R < 1,

1

2π

∫ π

−π

|%e f (Reiθ )| dθ < 1; (11.58)

this issue will be resolved at the end of this section.
Assuming (11.58), we recall (11.44) and take ρ ∈ (0, 1) with

1

2π

∫ π

−π

|%e f (Reiθ )| dθ ≤ 1

2π

∫ π

−π

|%e gb(ρeiθ )| dθ .

Choose σ sufficiently large that M(R, f ) < σ , M(ρ, gb) < σ . Recall from
§11.8.1 that the range of gb is the plane slit from iλ to i∞ and −i∞ to −iλ, with
λ = λ(b), and since by hypothesis h(0) = b, we have h ∈ S(|w| < σ , f (0)),
using the notation introduced before the statement of Theorem 11.29. This
means that gb is subordinate to h, and so the right side of the last inequality
does not decrease when gb is replaced by h. Thus if r ∈ (0, 1) and 0 < p ≤ 2,∫ π

−π

| f (Reiθ )|p dθ ≤
∫ π

−π

|h(reiθ )|p dθ ≤
∫ π

−π

|gb(re
iθ )|p dθ ;

the left inequality is a consequence of Theorem 11.29, and the right inequality
follows from subordination. Assertion (i) follows on letting R → 1, and the
other assertions are obtained in the same manner.

To conclude the proof, we note that f is not constant, and we need only
justify (11.58). In the case that ‖μ‖ < 1, this is immediate, so suppose
‖μ‖ = 1. In that case, the integral in (11.58) would be identically 1 for all
z in the annulus A = A(R, 1), and so |%e f | would be harmonic in A. However,
a harmonic function cannot have an interior minimum and so %e f would have
constant sign. This negates the assumption b < 1 since in this case we would
have

1 = lim
r→1

∣∣∣∣ 1

2π

∫ π

−π

%e f (reiθ ) dθ

∣∣∣∣ = b.

Hence (11.58) is valid.
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11.9 Symmetrization and the Hyperbolic Metric

This section relies upon parts of Chapter 10 and is in many ways comple-
mentary to Sections 11.6 and 11.8. We no longer restrict ourselves to simply
connected domains, although simply connected domains appear in an extremal
role (not necessarily as domains in C). Our treatment has overlap with Hayman
(1989, chapter 9), but Hayman’s approach is somewhat idiosyncratic, since it
avoids Riemann surfaces. A good source for the preliminary material is Ahlfors
(1973), and only the barest outline is given here. The key fact is there is metric,
the hyperbolic metric, associated to any plane domain whose complement
contains at least two points (alternatively, a domain whose complement with
respect to the Riemann sphere has at least three points) and this metric has
many monotonicity properties. While one can define the metric directly, much
as in Hayman, it is best motivated by recalling its background.

These insights have been influential in algebraic topology, and play an
important role in the original proof of Picard’s theorem (recall §11.2). Picard’s
original proof was astonishingly short, and relied on Proposition 11.31. The
fundamental group and covering transformations are considered basic tools of
topology.

The Universal Cover and Hyperbolic Metric
Let � ⊂ C be an arbitrary domain whose complement contains at least
two points. Fix z0 ∈ �. A standard topological construction associates a
fundamental group � to � with base point z0. We consider all closed curves
γ : [0, 1] → �, normalized by γ (0) = γ (1) = z0. Reparametrization
identifies γ with its image in �. Then � may be endowed with a group
structure, with −γ (t) = γ (1 − t) and the addition γ1 + γ2 being defined as

(γ1 + γ2)(t) =
{
γ1(2t) 0 ≤ t ≤ 1/2,

γ2(2t − 1) 1/2 ≤ t ≤ 1.

The identity (neutral) element is the curve e(t) ≡ z0, 0 ≤ t ≤ 1. The standard
notation for the fundamental group is � = π1(�).

Although in principle the definition depends on the choice of z0, replacing
z0 by a point z1 �= z0 converts � to an isomorphic group.

Being a (non-commutative) group, � has a family of subgroups, which range
from � itself down to the trivial group {e}. A topological construction based on
liftings of curves in γ associates to any subgroup �1 of � a covering surface
�1 which is locally homeomorphic to � (in fact this local homeomorphism
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endows �1 with a complex structure so that �1 is a Riemann surface). Thus,
the projection

#1 : �1 → � (11.59)

is open, conformal, and made unique by the choices

#1(z1) = z0, #′
1(z1) = eiα ,α ∈ [0, 2π),

where z1 ∈ �1 and α may be freely chosen. The derivative in the second
equation is with respect to the induced conformal structure of �1 (and so is not
canonical). If z1 is replaced by z∗

1, with induced map #∗
1, there is a conformal

self map ϕ1 of �1 with ϕ1(z∗
1) = z1 and

#∗
1 = #1 ◦ ϕ1.

The map ϕ1 thus is a cover transformation of �1.
In particular, when �1 = {e} is the subgroup consisting of the identity

element, �1 is simply connected, and is known as the universal cover of �,
denoted �̃. The universal cover is a purely topological phenomenon, but when
the complement of � has at least two points, �̃ has the following remarkable
analytic property, a consequence of the uniformization theorem:

Proposition 11.31 (Ahlfors 1973, chapter 10) Let � ⊂ C be a domain whose
complement contains at least two points and let �̃ be its universal cover. Then
there is a complex-analytic homeomorphism

F : �̃ → D,

which is unique under the normalizations

F(z̃0) = w0 arg(F′(z̃0)) = α ∈ [0, 2π),

where z̃0, w0 may be chosen arbitrarily.

A corollary to this proposition endows these domains � with a remarkable
metric. Let F be the map produced by the proposition and #∗ : �̃ → � the
specific projection in (11.59) with �1 = �̃. Since these are open mappings
and D is simply connected, the composite

φ = #∗ ◦ F−1 : D → �, φ(w0) = z0, argφ′(w0) = α ∈ [0, 2π), (11.60)

is (single valued and) holomorphic (monodromy theorem). If we change z0 and
α in (11.60), the resulting map φ∗ may be factored

φ∗ = φ ◦ h,

with h a conformal self-map of D (hence a Möbius transformation).
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Remark In the study of Riemann surfaces, a surface conformally equivalent to
D is called hyperbolic. This justifies calling a plane domain � having at least
two points in its complement hyperbolic.

The mapping φ of (11.60) allows the hyperbolic metric (Poincaré metric) ρ
for � to be defined. Let z0 ∈ � and φ : D → � with φ(w0) = z0, and set

ρ(z0) = ρ(z0,�) = 2

(1 − |w0|2)|φ′(w0)| ,

which is uniquely determined (the choice of argφ′(w0) is irrelevant; the factor
2 gives ρ curvature −1). Also ρ is C∞ in �,

� log ρ(z) = ρ2 (z ∈ �), (11.61)

and ρ is complete:

lim
z→ζ

ρ(z) = ∞ (ζ ∈ ∂� ∩ C). (11.62)

The book of Hayman (1989) is worth consulting for a more detailed picture.
In particular, ρ is the maximal solution of (11.61) in �.

This metric plays an important role in metric geometry. For example,

Proposition 11.32 (Principle of the hyperbolic metric; Nevanlinna 1970,
§III.3; Hayman 1989, §9.4.1) Let z0 ∈ �1, ζ0 ∈ �2 and f be holomorphic in
a neighborhood of z0 with f (z0) = ζ0 and f (�1) ⊂ �2. Then

ρ(ζ0,�2)| f ′(z0)| ≤ ρ(z0,�1),

and equality holds only when �1 = �2 and f is a conformal homeomorphism.

Hyperbolic distance in � has an intrinsic definition,

d(z, z′) = inf
γ

∫
γ

ρ(ζ ) |dζ |,

the infimum taken over all rectifiable curves γ : [0, 1] → � with γ (0) =
z, γ (1) = z′. The integral is the hyperbolic length of γ . When � = D this
specifies to

d(z, z′) = inf
γ

∫
γ

2

1 − |z|2 |dz|.

Proposition 11.32 yields a monotonicity property of the metric. For example,
if �1 ⊂ �2, we take f the identity map and see that

ρ(z0,�1) ≥ ρ(z0,�2),

with equality possible only when the domains coincide.
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Symmetrization and the Universal Covering Map
The next theorem, from Weitsman (1986), extends part of Theorem 11.22 in
§11.6 to comparisons involving the Poincaré metric:

Theorem 11.33 Let � ⊂ C be a hyperbolic domain and �# its circular
symmetrization. Let

u� = − log ρ�, �(r) = {θ ∈ [−π ,π) : reiθ ∈ �}.
If � : R → R is an increasing convex function and �(r) is nonempty, it follows
that ∫

�(r)
�(u�(re

iθ )) dθ ≤
∫
�#(r)

�(u�#(reiθ )) dθ .

In other words,

(u�)
✫(z) ≤ (u�#)✫(z) (z ∈ �✫ ≡ �# ∩ H).

Theorem 11.33 is a consequence of a more general result about circular
symmetrization in partial differential equations, due to Weitsman (1986). The
result is close to Theorem 10.18 in this book for cap symmetrization (see
also Theorem 10.12 and Example 10.13 for s.d.r.). For completeness, we state
Weitsman’s theorem. Notice that the functions u and v need not be ∞ at the
boundary; compare with (11.62).

Theorem 11.34 (Weitsman 1986, Theorem 1) Let B, C be real constants
(B ≤ ∞, C < ∞, C ≤ B),� be a bounded region in C, and 0 < g ∈ C2(R) be
strictly increasing and convex. If u ∈ C2(�), v ∈ C2(�#) satisfy{

�u = g(u)
limz→ζ u(z) = B (∀ζ ∈ ∂�);{

�v ≥ g(v)
lim supz→ζ v(z) ≤ C (∀ζ ∈ ∂�#),

then

v(r) ≤ u(z) (∀z ∈ �, |z| = r).

The next corollary reveals the power of this theorem, including a remarkable
extremal behavior of universal covering mappings.

Corollary 11.35 Let � and �# be as in Theorem 11.34.

(i) If r ∈ (0, ∞) and �(r) is nonempty then

min
θ∈�(r)

ρ�(re
iθ ) ≥ min

θ∈�#(r)
ρ�#(reiθ ) = ρ�#(r).
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(ii) Let f be holomorphic in D with f (D) ⊂ �, and let ψ be the universal
cover map of D to �# normalized so that ψ(0) = | f (0)|. Then

| f ′(0)| ≤ |ψ ′(0)| and M(r, f ) ≤ M(r,ψ), 0 < r < 1.

Remark. There is a natural supplement to (i) whose verification requires a
separate argument (also based on the ✫-function), which is given in Weitsman
(1979), but omitted here: If � is a symmetric region about the positive real
axis, then the hyperbolic metric is monotone about the axis. In particular

θ → ρ�#(reiθ ) (11.63)

is symmetric increasing for θ ∈ �#(r).
Note that when �# is simply connected, so that the universal cover map

ψ is univalent, assertion (ii) coincides with the final assertion in (11.36), and
thus one part of Theorem 11.22 extends to a far more general situation. The
complications in establishing generalizations of the other parts arise from the
difficulty of handling regions of arbitrary connectivity, as well as the issue
of boundary behavior. The analogues of the other assertions in (11.36) thus
remain open. The chapter concludes with proofs of the two assertions in the
corollary.

Proof of claim (i) We exhaust � by an increasing union of bounded regions
�n. With ρn the hyperbolic metric of �n, again ρn → ρ normally. Thus in
a fixed �n, ρn ≡ ∞ on ∂�n (ρn is complete) while ρ� is finite there. This
means we may apply Weitsman’s Theorem 11.34 for each n and let n → ∞
with u = log ρn, v = log ρ�# , and B = ∞, C = sup∂�#

n
v.

Proof of claim (ii) Normalize so that f (0) = ψ(0) = R > 0. From the classical
subordination principle (according to §11.5 (a)), we may suppose that f is the
universal cover map onto �.

An elementary reduction reduces to the situation that ψ is real when z is
real, as we now explain. Both ψ(z) and ψ(z̄) are universal covers of �#, so
h(z) = ψ−1(ψ(z̄)) is a Möbius self map of D which fixes 0. In other words,

h(z) = eiαz, hence ψ(eiαz) = ψ(z̄).

Write  (z) = ψ(eiα/2z), so that

 (z̄) = ψ(e−iα/2z) = ψ(eiαe−iα/2z) = ψ(eiα/2z) =  (z),

so we relabel with M(r,ψ) unchanged and h preserving the real axis. Thus ψ

preserves the real axis.
This reduction ensures that if 0 < r0 < 1, ψ(r0) = σ and γ is the branch

of ψ−1 taking [R0, σ ] to [0, r0], then
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R0

ρ�#(t) dt =
∫ r0

0

2

(1 − r2)
dr = log

1 + r0

1 − r0
. (11.64)

To estimate f , let r1 be the modulus with M(r1, f ) = σ , and by rotation of
independent variable assume that | f (r1)| = σ . If � is the f -image of [0, r1], f
being a universal cover map ensures that

log
1 + r1

1 − r1
=

∫ r1

0

2

1 − |z|2 |dz| =
∫
�

2|η′(ζ )|
1 − |η(ζ )|2 |dζ | =

∫
�

ρ�(ζ ) |dζ |,

where η is the inverse branch of f . If ζ = f (t) = R(t)eis(t), then

|dζ | = |R′(t) + is′(t)R(t)| dt ≥ |R′(t)| dt.

We recall (11.63) and (11.64) and find that

log
1 + r1

1 − r1
≥

∫ σ

R0

min
|ζ |=r

ρ�(ζ )(t) dt ≥
∫ σ

R0

ρ�#(t) dt = log
1 + r0

1 − r0
.

Thus r1 ≥ r0, which implies (ii).

11.10 Notes and Comments

1. The original definition of T✫ in Baernstein (1973) had a multiplicative
factor (1/2π), but beginning with Baernstein (1974) the expression used here
became standard. This choice does have one unfortunate consequence, namely
the unusual-looking first relation of Proposition 11.2(ii).

2. That the ✫-function preserves subharmonicity was shown in Corollary
9.10, and the account in Baernstein (2002) is in this spirit. The original proof
in Baernstein (1973), augmented in Baernstein (1974) with contributions from
Sjögren and Essén, has independent interest and explicitly relies on Jensen’s
formula, itself the linchpin of Nevanlinna’s theory. An account centered on the
2-dimensional theory is in §9.1 of Hayman (1989).

3. One of the main remaining open problems in classical Nevanlinna theory
is, given λ > 1, find the best bound for the deficiency sum

∑
δj taken over

all entire/meromorphic functions of (lower) order λ. This problem is settled
for λ ≤ 1 in Corollary 11.8; in this situation, entire functions are extremals
among the class of meromorphic functions of order λ. This pattern is likely
not true for general λ > 1, although examples suggest entire functions remain
extremal over all functions of that order λ when λ is nearly an integer Drasin
and Weitsman, 1975. When λ > 1 and this sum cannot reach 2, finding
the precise upper bound is totally open. Further comments appear above in
the discussion following (11.10). The ✫-function no longer seem useful for
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these investigations, since the presumed extremal functions v do not have
v(reiθ ) symmetric decreasing; compare with the discussion of §11.1.

A similar issue is encountered when considering variants of Proposition
11.12. In that proposition α > 0, but very little is known when α < 0 other
than Proposition 11.13 (the case α = 0 is the spread relation, Proposition 11.7);
the problem is that there is no natural way of continuing a trigonometrically
convex function h beyond an interval I when h < 0 on ∂I.

4. Definition 11.3 in fact now refers to what are known as Pólya peaks of
the first kind; if the inequality is reversed, we have peaks of the second kind.
These were introduced in Shea (1966).

5. The definition of local indicator in §11.3 is due to Edrei, but the theory
is far older, with Cartwright (1956) and Levin (1980) standard references. The
subtrigonometric properties enumerated in Lemma 11.6 are always the main
weapon, and they adapt naturally to the localization in Pólya peak intervals.

6. Our §11.8 was based on Baernstein (1978). However, §3 of that paper con-
siders analytic functions f which are Stieltjes integrals (11.43) of measures μ,
rather than only Poisson integrals of L1 functions. A conjugate measure μ̃ can
be formally associated to μ using radial boundary values, and Theorem 11.47
has a formulation and proof in that setting. Note that the extremal function for
p = 1 has boundary values which are in L1. We have seen in the discussion
surrounding (11.51) that when p < 1 that extremals are analytic functions g
which are Stieltjes integrals of measures, and this formulation was also used
by Davis. By taking g(reiθ ) with r arbitrarily close to 1, "p is thus the best
possible constant for functions with absolutely continuous boundary values,
but the bound is not achieved in this reduced class.

The precise range for which Theorem 11.28 is valid is not yet known.
7. The title of this chapter makes clear that only part of the well-developed

theory of symmetrization in 2 dimensions is considered, specifically that part
that depends on the ✫-function. The subject is far more vast than this, with
monographs dating back to at least the famous text of Pólya and Szegő (1951),
with the treatise by Dubinin (2014) updating several areas. Several of the
author’s own contributions to symmetrization, some of which rely in part on
the ✫-function, are not discussed here; among them are Baernstein (1977,
1987a,b, 1989b, 1993, 1997), Baernstein and Brown (1982).
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und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsber.
Bayer. Akad. Wiss. Mnchen, Math.-Phys. Kl., 169–172.

Federer, H. 1959. Curvature measures. Trans. Amer. Math. Soc., 93, 418–491.
Federer, H. 1969. Geometric Measure Theory. Die Grundlehren der mathematischen

Wissenschaften, Band 153. New York: Springer-Verlag New York Inc.
Federer, H., and Fleming, W.H. 1960. Normal and integral currents. Ann. of Math. (2),

72, 458–520.
Folland, G.B. 1999. Real Analysis: Modern Techniques and Their Applications. Second

edition. Pure and Applied Mathematics (New York). New York: John Wiley &
Sons Inc. A Wiley-Interscience Publication.

Folland, G.B. 2002. Advanced Calculus. Upper Saddle River, NJ: Prentice Hall.
Frostman, O. 1935. Potentiel d’équilibre et capacité de ensembles avec quelques
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Lumiste, Ü., and Peetre, J. (eds.). 1994. Edgar Krahn, 1894–1961. Amsterdam: IOS
Press.

Luttinger, J.M. 1973a. Generalized isoperimetric inequalities. J. Math. Phys., 14,
586–593.

Luttinger, J.M. 1973b. Generalized isoperimetric inequalities. II, III. J. Math. Phys., 14,
1444–1447, 1448–1450.

Marshall, A.W., Olkin, I., and Arnold, B.C. 2011. Inequalities: Theory of Majorization
and Its Applications. Second edition. Springer Series in Statistics. New York:
Springer.

Marshall, D.E. 1989. A new proof of a sharp inequality concerning the Dirichlet
integral. Ark. Mat., 27(1), 131–137.

Mattila, P. 1995. Geometry of Sets and Measures in Euclidean Spaces. Cambridge
Studies in Advanced Mathematics, vol. 44. Cambridge: Cambridge University
Press.

Maz’ja, V.G. 1985. Sobolev Spaces. Springer Series in Soviet Mathematics. Translated
from the Russian by T. O. Shaposhnikova. Berlin: Springer-Verlag.

McCann, R.J. 1995. Existence and uniqueness of monotone measure-preserving maps.
Duke Math. J., 80(2), 309–323.

McCann, R.J. 2001. Polar factorizat3ion of maps on Riemannian manifolds. Geom.
Funct. Anal., 11(3), 589–608.

McKean, H.P. 1973. Geometry of differential space. Ann. Prob., 1, 197–206.
McKean, Jr., H.P., and Singer, I.M. 1967. Curvature and the eigenvalues of the

Laplacian. J. Differential Geometry, 1(1), 43–69.
Méndez-Hernández, P. J. 2006. An isoperimetric inequality for Riesz capacities. Rocky

Mountain J. Math., 36(2), 675–682.



464 References

Mori, A. 1956. On an absolute constant in the theory of quasi-conformal mappings.
J. Math. Soc. Japan, 8, 156–166.

Morpurgo, C. 2002. Sharp inequalities for functional integrals and traces of conformally
invariant operators. Duke Math. J., 114(3), 477–553.

Morrey, Jr., C.B. 1938. On the solutions of quasi-linear elliptic partial differential
equations. Trans. Amer. Math. Soc., 43(1), 126–166.

Morrey, Jr., C.B. 1940. Existence and differentiability theorems for the solutions of
variational problems for multiple integrals. Bull. Amer. Math. Soc., 46, 439–458.

Moser, J. 1970/71. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math.
J., 20, 1077–1092.

Mostow, G.D. 1968. Quasi-conformal mappings in n-space and the rigidity of hyper-
bolic space forms. Inst. Hautes Études Sci. Publ. Math., 53–104.

Nadirashvili, N.S. 1993. An isoperimetric inequality for the main frequency of a
clamped plate. Dokl. Akad. Nauk, 332(4), 436–439.

Nelson, E. 1973. The free Markoff field. J. Funct. Anal., 12, 211–227.
Nevanlinna, R. 1970. Analytic Functions. Translated from the second German edition

by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162.
Springer-Verlag: New York-Berlin.

Onofri, E. 1982. On the positivity of the effective action in a theory of random surfaces.
Comm. Math. Phys., 86(3), 321–326.

Osgood, B., Phillips, R., and Sarnak, P. 1988. Extremals of determinants of Laplacians.
J. Funct. Anal., 80(1), 148–211.

Osserman, R. 1978. The isoperimetric inequality. Bull. Amer. Math. Soc., 84(6),
1182–1238.

Paouris, G., and Pivovarov, P. 2012. A probabilistic take on isoperimetric-type inequal-
ities. Adv. Math., 230(3), 1402–1422.

Paouris, G., and Pivovarov, P. 2017. Random ball-polyhedra and inequalities for
intrinsic volumes. Monatsh. Math., 182(3), 709–729.

Payne, L.E. 1967. Isoperimetric inequalities and their applications. SIAM Rev., 9,
453–488.
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