
Doug McCune
Deepa Subramaniam

 Build RIAs,
 use Flex® Builder™,
 and customize your

applications

Adobe® Flex® 3.0
Flex your power to

create Rich Internet Applications!

Use the event model

Work with ActionScript®
and MXML

Create, run, and debug
a project

Build simple user
interface controls

Set up data binding

Explore styling and
skinning

Explanations in plain English

“Get in, get out” information

Icons and other navigational aids

Tear-out cheat sheet

Top ten lists

A dash of humor and fun

 Companion Web site

� Go to www.dummies.com/
go/adobeflexfd

� Find code listings used in
the book

� Use it to create your own
cool RIAs

 Get going with Flex,
 and create RIAs
 in a Flash!

$29.99 US

$32.99 CN

£15.99 UK

ISBN 978-0-470-27792-8

Internet/Web Page Design

Flex lets you leverage the power of Adobe’s ubiquitous Flash technology

to build large applications. If you’re eager to create Flex apps and you’ve

written code in any language, this book will get you started, introduce you

to Flex Builder and the Flex framework, and have you building some really

flashy stuff before you know it!

Doug McCune is a developer and Flex fanatic who has created several

popular applications and Flex add-ons. Deepa Subramaniam is a

computer scientist on the Flex Framework team.

Develop interactive applications
without worrying about

browser differences

A
dobe

® Flex
® 3.0

McCune
Subramaniam

spine=.864

Adobe® Flex® 3.0
FOR

DUMmIES
‰

by Doug McCune and Deepa Subramaniam

Adobe® Flex® 3.0 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Adobe and Flex are regis-
tered trademarks of Adobe Systems Incorporated. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008932381

ISBN: 978-0-470-27792-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

About the Authors
Doug McCune is a passionate Flex developer, consultant, and community

contributor. He has been developing Flex applications since 2004 and is cur-

rently a Principal Software Engineer at Universal Mind. Doug received a

Bachelor of Arts degree in Science, Technology, and Society from Stanford

University. Doug is active in the Flex open-source community and maintains a

blog of his thoughts, code samples, and tutorials at www.dougmccune.com.

He co-founded FlexLib, a leading resource for open-source Flex components

created by community developers. Doug also enjoys speaking at Flex and

Flash conferences — he has spoken at 360|Flex and Flash on the Beach.

Deepa Subramaniam is a Computer Scientist working on the Flex Framework

team at Adobe. She joined Macromedia/Adobe in 2003, straight out of

University of California, Berkeley where she received her Bachelor of Arts

degree in Computer Science (Go Bears!). Deepa joined the early efforts that

culminated in Flex 1.0 and has been working on Flex ever since. She might be

described as one of the most enthusiastic Flex team members and is thrilled

to be working with such bright engineers on such a cool product. Deepa is an

active member of the Flex community, often speaking at large Flex and RIA con-

ferences like Adobe MAX and 360|Flex. You can learn more about Deepa at her

Web site, which includes her popular Flex blog, at www.iamdeepa.com.

Dedication
We dedicate this book to Doc, for always keeping us on the clock and in good

spirits.

Authors’ Acknowledgments
We would like to thank Katie Feltman, Kim Darosett, and everyone else at

Wiley who made this book happen. Thank you for believing in us and pushing

us to the finish line. We also want to thank Darron Schall for his superb tech-

nical editing of the book. And finally, we would like to thank everyone at

Adobe, especially the Flex and Flex Builder teams, for encouraging us and

offering technical support whenever we needed it. You guys are just

awesome.

Doug’s Acknowledgments

I would like to thank the loving and beautiful Jocelyn Sze — your patience

and support during this process have been invaluable. You are my favorite. I

also want to thank my father. As I write this, he is in the middle of the ocean

sailing single-handedly across the Atlantic. Thank you, Dad, for never ceasing

to inspire.

Deepa’s Acknowledgments

This book would not have been possible without the love and encouragement

of my amazing parents, S.N.P (Sam) and Amirtham Subramaniam, as well as

my rocking sister, Suguna. They never waver with their loving support, and

for this, I am ever thankful. Much love Amma, Appa, and Goons! A big thank

you also goes to my extended group of friends who have listened to me chat-

ter away about this book, Flex, and my life in general. Your friendship means

so much to me.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial, and
Media Development

Project Editor: Kim Darosett

Senior Acquisitions Editor: Katie Feltman

Copy Editor: Becky Whitney

Technical Editor: Darron Schall

Editorial Manager: Leah Cameron

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project
Manager: Jenny Swisher

Media Development Assistant Producers:
Angela Denny, Josh Frank, Shawn Patrick,
and Kit Malone

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Ana Carrillo,
Nikki Gately, Laura Pence,
Christin Swinford, Christine Williams

Proofreaders: Melissa Bronnenberg,
Christine Sabooni

Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction .. 1

Part I: Introducing Flex .. 7
Chapter 1: Getting to Know Flex .. 9

Chapter 2: Building Your First Flex Application .. 17

Chapter 3: Flexing Your Muscle with MXML and ActionScript 27

Part II: Using Flex Builder (The Flex IDE) 51
Chapter 4: Flex Builder: The Best Flex Development Tool ... 53

Chapter 5: Introducing Flex Builder for Developers.. 75

Chapter 6: Visually Designing Applications in Flex Builder 101

Part III: The Flex Framework and
Charting Components ... 127
Chapter 7: Simple User Interface Controls ... 129

Chapter 8: Data-Aware User Interface Controls ... 157

Chapter 9: Forms, Format ters, and Validators .. 189

Chapter 10: Containers and Navigators .. 219

Chapter 11: Char ting Components .. 253

Part IV: Working with Data in Flex 283
Chapter 12: The Power of Data Binding .. 285

Chapter 13: Working with Data Collections.. 297

Chapter 14: Working with Remote Data .. 309

Part V: Exploring Advanced Flex Topics 321
Chapter 15: Working with Managers We Actually Love .. 323

Chapter 16: Custom Components and Component Architecture 333

Chapter 17: Understanding States and Effects ... 347

Chapter 18: Styling and Skinning Flex Components .. 363

Part VI: The Part of Tens .. 381
Chapter 19: Ten Open-Source Flex Libraries .. 383

Chapter 20: Ten Flex Resources... 391

Index .. 397

Table of Contents
Introduction ... 1

About This Book .. 1

Foolish Assumptions ... 2

Conventions Used in This Book ... 2

How This Book Is Organized .. 2

Part I: Introducing Flex .. 3

Part II: Using Flex Builder (The Flex IDE) .. 3

Part III: The Flex Framework and Charting Components 3

Part IV: Working with Data in Flex ... 3

Part V: Exploring Advanced Flex Topics ... 3

Part VI: The Part of Tens ... 4

Companion Web site ... 4

Icons Used in This Book ... 4

Where to Go from Here ... 5

Part I: Introducing Flex ... 7

Chapter 1: Getting to Know Flex .9
Using Flex to Develop Rich Internet Applications 9

Understanding what an RIA is .. 9

Taking a look at the rise of Flex ... 10

Defining Flex ... 10

What’s next? ... 12

Comparing Flex to Flash, AJAX, and Silverlight ... 12

Flex versus Flash .. 12

Flex versus AJAX .. 13

Flex versus Silverlight ... 14

Taking Flex to the Desktop with AIR ... 15

Chapter 2: Building Your First Flex Application17
Creating a Flex Project in Flex Builder .. 17

Writing Code for Your Project ... 20

Deciphering the default code ... 21

Creating the Hello World application .. 21

Viewing Your Application in Design Mode ... 23

Running the Application ... 25

Adobe Flex 3.0 For Dummies x
Chapter 3: Flexing Your Muscle with MXML and ActionScript 27

Introducing MXML ... 28

Comparing MXML and HTML ... 29

Nesting MXML containers ... 29

Introducing ActionScript .. 30

Making the shift to ActionScript’s object-oriented programming ... 31

Understanding objects and classes ... 31

Defining getters and setters ... 33

Learning to love the black box ... 34

Recognizing that packages are where classes live 35

Inheritance: Extending a class.. 36

Understanding interfaces.. 37

Exploring static methods and variables ... 38

Comparing ActionScript and JavaScript ... 40

Understanding the Relationship Between ActionScript and MXML 40

Working with the Event Model .. 42

Adding event listeners with MXML.. 43

Examining the structure of an event listener 44

Adding event listeners with ActionScript ... 45

Understanding event propagation ... 47

Listening for some common events .. 49

Part II: Using Flex Builder (The Flex IDE) 51

Chapter 4: Flex Builder: The Best Flex Development Tool53
What’s Flex Builder, and Why Should I Care? .. 53

Installing Flex Builder .. 54

Taking a look at the Flex Builder perspectives 56

Customizing perspective views ... 58

Creating Different Types of Projects in Flex Builder 59

Flex Projects ... 60

ActionScript Projects .. 63

Flex Library Projects ... 65

Organizing and Editing Your Projects ... 65

Editing existing project settings .. 67

Deleting projects .. 68

Targeting different versions of the Flex

Software Development Kit (SDK) ... 68

Importing and Exporting Existing Flex Builder Projects 69

Importing a project .. 69

Exporting a project as an archive .. 70

Running and Releasing Your Projects ... 71

Building and cleaning your projects ... 71

Running your projects ... 72

Releasing your projects .. 73

Accessing Flex Builder Help Materials .. 74

xi Table of Contents

Chapter 5: Introducing Flex Builder for Developers 75
Anatomy of an MXML File ... 75

Including ActionScript with the <mx:Script /> tag 77

Introducing the <mx:Style /> tag .. 78

Developer Tips and Tricks ... 79

Get the hint: Code hinting ... 79

Going straight to the source code ... 81

Using automatic builds ... 82

Organizing import statements ... 82

Squashing Bugs with the Visual Debugger ... 84

Launching the debugging perspective .. 84

Using breakpoints to step through code .. 84

Inspecting variables... 86

Profiling Your Application .. 87

Taking out the garbage: The Garbage Collector 87

Profiling memory use .. 88

Profiling CPU performance ... 95

Refactoring Your Code .. 97

Changing class names ... 97

Changing method and variable names .. 99

Living with limitations ... 100

Chapter 6: Visually Designing Applications in Flex Builder 101
Getting to Know Flex Builder Design Mode .. 101

Navigating Through the Design Area .. 104

Using Pan & Zoom .. 104

Showing surrounding containers ... 105

Selecting Controls in the Design Area ... 106

Controlling the Layout and Size of Controls in the Design Area 108

Positioning controls .. 108

Snapping controls relative to each other 110

Aligning controls .. 110

Sizing and resizing controls .. 112

Inserting Components with the Components View 113

Viewing the Contents of Your Application in Outline View 115

Working with States in States View ... 116

Configuring Controls with the Flex Builder Properties Inspector 118

Choosing a properties inspector view .. 119

Using the properties inspector .. 120

Setting constraints visually with the Constraints Control 121

Working with Style Sheets in CSS Design Mode 123

Adobe Flex 3.0 For Dummies xii
Part III: The Flex Framework and
Charting Components .. 127

Chapter 7: Simple User Interface Controls .129
Taking a Look at Simple Clickable Controls ... 130

Creating button-based controls ... 130

Popping open controls with ComboBox and ColorPicker 139

Making dates: Using calendar controls in Flex............................... 140

Scrolling around ... 143

Sliding around with Slider controls ... 144

Introducing Text Controls .. 145

Displaying text in Flex ... 145

Exploring text-input controls ... 146

Working with HTML text ... 149

Showing Off with the Flex Media Controls ... 149

Displaying images .. 149

Playing video .. 151

Playing audio .. 151

Showing progress with ProgressBar ... 153

Tying It Together: A Video Player Example ... 154

Chapter 8: Data-Aware User Interface Controls.157
Recognizing That Awareness Comes from the dataProvider 158

Creating Flash Data Objects in MXML and ActionScript 158

Array .. 158

XML .. 159

XMLList ... 160

Creating Flex Data Objects in MXML and ActionScript 160

ArrayCollection .. 161

XMLListCollection.. 161

Powering Your Data-Aware Control with Data .. 162

Scrolling List Controls ... 163

Exploring the scrolling List controls ... 164

Making List controls display text... 166

DataGrid Controls for Powerful Data Display .. 168

DataGrid .. 169

DataGridColumn... 170

AdvancedDataGrid ... 171

Hierarchical Data Controls ... 173

Growing a Flex Tree ... 173

Navigating Flex applications with Menus and MenuBars 174

Advanced Functionality in Data-Aware Controls 180

Scrolling in List, DataGrid, and hierarchical data controls 180

Dragging and dropping in List, DataGrid,

and hierarchical data controls ... 181

Setting variable list row heights .. 182

xiii Table of Contents

Data-Aware Controls for Customizing the Display of Items 183

Drop-in renderer .. 183

In-line item renderer .. 184

Tying It All Together: A DataGrid Control

with Multiple Inline Item Renderers .. 185

Chapter 9: Forms, Format ters, and Validators .189
Delving into Form Layouts ... 190

Form: Recognizing the top dog .. 191

FormHeading: Creating labels for different content areas 192

FormItem: Creating individual form elements 193

Default Button: Helping out the end user 195

Validate Me ... 196

Customizing visual cues for validation errors 196

Setting important properties on validators 197

Triggering validation ... 200

Listening for validation events ... 201

Checking out out-of-the-box Flex validators 203

Format Me ... 209

Formatting data .. 209

Handling formatting errors ... 211

Tying It All Together: Creating an E-Commerce Form 215

Chapter 10: Containers and Navigators .219
Introducing Basic Containers ... 219

Understanding common container behavior 220

Starting with a blank Canvas .. 223

Positioning items by using constraint-based layout 224

Managing your layout with box layout containers 225

Building a dynamically resizable layout with divided boxes 227

Creating a tiled layout with the Tile container 228

Using the Grid container ... 229

Discovering Panel Containers and Control Bars 231

Panel .. 231

TitleWindow ... 233

Alert ... 235

Control bars .. 237

Getting Up to Speed on Navigators ... 239

Switching between views with the ViewStack 239

Controlling a ViewStack with navigation bar controls 240

Improving navigation with an Accordion 242

Creating tabs with the TabNavigator .. 245

Optimizing performance with deferred instantiation 246

Tying It Together: Building a Form with Multiple Parts 248

Adobe Flex 3.0 For Dummies xiv
Chapter 11: Char ting Components .253

Filling Your Charts with Data ... 254

Using the right series .. 254

Specifying the right fields ... 254

Creating a ColumnChart and BarChart ... 256

Clustering .. 257

Stacking ... 257

Designing a LineChart and AreaChart ... 259

LineChart .. 260

AreaChart .. 261

Making a PieChart .. 262

Going the simple route .. 263

Doing a donut shape .. 264

Exploding wedges .. 265

Building a PlotChart and a BubbleChart .. 267

Introducing the CandleStickChart and HLOCChart 269

Working with Axes ... 269

Adding Legends to Your Charts ... 272

Adding Interactivity ... 273

Animating Your Charts ... 274

Tying It Together ... 276

Part IV: Working with Data in Flex 283

Chapter 12: The Power of Data Binding .285
Understanding the Data Binding Expression ... 285

Using Data Binding in MXML .. 286

Going curly: Creating data binding expressions

in-line in MXML tags ... 286

Creating data binding expressions with the

<mx:Binding/> MXML tag .. 287

Using ActionScript functions in the source of

a data binding expression ... 288

What Properties Support Data Binding? ... 289

Moving Forward: Advanced Data Binding .. 290

Binding to multiple destinations or sources 290

Constructing a bidirectional data binding expression.................. 292

Debugging Data Binding Expressions ... 292

Using Bindable Metadata .. 293

Tying It Together: Building an Interactive Form with Data Binding 294

Chapter 13: Working with Data Collections .297
Why Use Flex Data Collections? ... 297

Creating ArrayCollections .. 298

Using MXML to create an ArrayCollection 298

Using ActionScript to create an ArrayCollection 299

xv Table of Contents

Creating XMLListCollections .. 300

Using MXML to create an XMLListCollection 300

Using ActionScript to create an XMLListCollection 301

Common Collection Properties You Should Know 302

Sorting and Filtering Collections ... 303

Sorting Flex collections ... 303

Filtering Flex collections ... 305

Accessing Data Items ... 306

Chapter 14: Working with Remote Data. .309
Connecting with HTTP .. 309

Loading your own XML file ... 310

Asking for what you want ... 312

Loading someone else’s data ... 313

Understanding the Flash security restrictions 315

Connecting with Web Services .. 316

Losing Weight with AMF Remoting ... 320

Part V: Exploring Advanced Flex Topics 321

Chapter 15: Working with Managers We Actually Love.323
Dragging and Dropping with the DragManager 324

The FocusManager: Managing Which Controls Have Focus 325

Popping Up Dialog Boxes with the PopUpManager 327

Show Me the ToolTips: Using the ToolTipManager 330

SystemManager: The Engine Behind Your Application 332

Chapter 16: Custom Components and Component Architecture 333
Looking at the Flex Component Life Cycle ...333

Property invalidation: commitProperties 334

Size invalidation: measure() ... 336

Drawing and layout invalidation: updateDisplayList() 337

Creating Reusable Custom Components .. 337

Defining the interface .. 338

Choosing your base wisely ... 338

Adding child components ... 340

Choosing between MXML and ActionScript 341

Defining your properties ... 342

Discovering how to talk with events ... 342

Putting it all together: The complete

RatingSelector component .. 343

Using your shiny, new component .. 344

Chapter 17: Understanding States and Effects347
Working with View States ... 347

Creating view states with Design View ... 348

States under the hood ... 352

Adobe Flex 3.0 For Dummies xvi
Switching between states ... 352

Adding Effects to Your Application ... 354

Pulling the trigger .. 354

Starting with simple movement ... 355

Turning your world upside down .. 357

Zooming in and out .. 358

Wiping that look off your face .. 359

Running multiple effects ... 360

Combining States and Effects by Using Transitions 362

Chapter 18: Styling and Skinning Flex Components 363
Styling .. 364

Applying styles with MXML .. 364

Using the <mx:Style> block ... 365

Attaching an external style sheet .. 368

Changing styles with ActionScript ... 368

Working with fonts .. 370

Understanding the limitations of styling .. 372

Skinning ... 372

Using graphical skins... 373

Simple example: Skinning a Button control 373

Extended example: Skinning a Panel container 376

Part VI: The Part of Tens ... 381

Chapter 19: Ten Open-Source Flex Libraries .383

Chapter 20: Ten Flex Resources .391

Index ... 397

Introduction

There has never been a better time to be a software developer. Web-based

applications have come a long way since the early 1990s. You can now

create applications that provide amazingly rich experiences, all of which can

be delivered through a simple Web browser to any computer in the world.

Rich Internet Applications (RIAs) aren’t just a passing fad; they signal the

emergence of a new breed of powerful, immersive applications that will lead

the evolution of the Web.

Flex is on the forefront of this movement. And, the fact that you took the first

step by picking up this book means that you’re part of this exciting time. RIA

developers are making applications that people didn’t think were possible.

With Flex, you can create full enterprise-scale Web applications that have as

much interactivity as the best desktop applications. Flex enables some excit-

ing possibilities. We hope that this book exposes this powerful technology to

a much wider audience and lowers the barrier for new developers.

Flex lets you leverage the power of the Adobe Flash technology to make large

applications. And, because Flash is deployed on nearly all Internet-connected

computers, you’re developing for a near-ubiquitous platform without ever

having to worry about browser differences and incompatibilities. The move

to Flex from other Web technologies means that you can focus on creating

impressive applications rather than debug in three different browsers. And,

because Flex is based on Flash, you can instantly add video and other rich

media to your applications.

So, if you’re ready to step up your game and start making the next generation

of Web applications, crack open this book and get started. Welcome to Flex!

About This Book
Most books about Flex are massive and assume that the reader has been

programming since age 12. Adobe Flex 3.0 For Dummies, on the other hand,

has been written specifically for the beginning Flex developer. If you have

heard about Flex, but aren’t quite sure what all the buzz is about, this book is

for you. We hope that our enthusiasm is contagious because we truly believe

that Flex is the most exciting program a software developer can use.

2 Adobe Flex 3.0 For Dummies

Foolish Assumptions
Adobe Flex 3.0 For Dummies is an introductory book, so we don’t assume

that you already know how to use Flex, although we hope that you know

enough about it to realize that it’s something you want to use. Part I of this

book covers some general programming concepts that you need for develop-

ing Flex applications; however, we don’t cover the most basic programming

topics. If you have experience in writing code in another language, such

JavaScript, Java, or C++, you shouldn’t have any trouble because we intro-

duce ActionScript (which is the language you use for Flex). We do assume

that you’ve written code in another programming language. If you come from

a background in using Flash and ActionScript 2, be sure to brush up on the

first few chapters to make the transition to ActionScript 3. (After you do,

you’ll never go back.)

We also assume that you have a cursory understanding of HTML. Although

Flex doesn’t use HTML, some of the markup language used in Flex applica-

tions is similar to HTML, and we draw analogies between the two.

Conventions Used in This Book
When we mention new terms, we write them in italics, followed by explana-

tions of the terms. Also, we include a lot of sample code in this book because

we figure that one of the best ways to find out how to write code is to see it.

The code in this book appears in a special font, as shown here:

text=”Hello World”

How This Book Is Organized
Adobe Flex 3.0 For Dummies is organized into six main parts, which contain a

total of 20 chapters. Don’t feel that you need to read these parts in sequential

order; you can jump around as much as you like, and each part is meant to

stand on its own. The beginning of the book introduces Flex and some gen-

eral programming concepts that are useful if you haven’t done much object-

oriented programming. Depending on your background, you may want to

start by jumping straight to the meat of the Flex framework in Part III, or start

at the beginning with an overview of ActionScript and MXML in Part I. Part V

is the only part that covers more advanced topics and probably requires that

you read some of the earlier content before tackling it.

3 Introduction

Part I: Introducing Flex
In Part I, we introduce Flex and the technology that you use to create jaw-

dropping RIAs. Chapter 1 describes the evolution of Web technologies and

how Flex stacks up against some competing technologies. Without overload-

ing you with complex details, we help you jump right into building your

first Flex application in Chapter 2. Then, in Chapter 3, we back up a bit and

explain some important object-oriented programming principles.

Part II: Using Flex Builder (The Flex IDE)
Part II is all about the tool you use to create Flex applications: Flex Builder.

Chapter 4 gives you an overview of Flex Builder, and then we divide the

content to highlight developer-focused features (Chapter 5) and designer-

focused features (Chapter 6).

Part III: The Flex Framework
and Charting Components
Flex contains a large and powerful toolset of components that you use to

create applications. In Part III, we dive head first into the Flex framework and

show examples of using all the different components. The chapters in this

part are fairly self-contained, although later chapters might reference compo-

nents that we cover earlier. Each chapter covers a set of related components,

and at the end of each chapter, a larger example ties together all the compo-

nents covered in the chapter.

Part IV: Working with Data in Flex
Flex applications are only as good as the data that drives them. Chapter 12

covers data binding, which is one key piece that makes Flex development

so powerful. Chapter 13 dives into data collections, and Chapter 14 explains

how to pull data from other sources on the Web.

Part V: Exploring Advanced Flex Topics
The first four parts cover the bulk of Flex, but in this part we dive into a

few selected topics that are more complex than the other parts. In Chapter

15, we explore the inner workings of the Flex “manager” classes, such as

PopUpManager and SystemManager. Chapter 16 delves into component

4 Adobe Flex 3.0 For Dummies

architecture and touches on custom component development. Chapters 17

and 18 cover elements that give your applications a bit more kick, such as

transitions, skins, and styling.

Part VI: The Part of Tens
The Part of Tens consists of a few fun lists that let you continue finding out

about Flex after you finish this book. Chapter 19 has a list of ten open-source

projects that you can freely use in any of your Flex projects. (Haven’t you

been dying to play with a 3D engine?) Chapter 20 lists ten resources that are

essential bookmarks for all Flex developers.

Companion Web site
We write quite a bit of code in this book, but don’t worry: You don’t have to

retype it all by hand. Most of the code that you see here is provided on this

book’s companion Web site:

www.dummies.com/go/adobeflexfd

You can download the code and then copy and paste it directly into your Flex

projects.

Additionally, a bonus chapter titled “Optimizing Your Flex Applications” is

available for downloading from the companion Web site. This chapter gives

you some optimization tips to help streamline your Flex application’s

performance.

Icons Used in This Book
As you’re reading, you’ll notice a few funny-looking icons on the edge of the

page. Here’s what each of these icons means:

 The Tip icon points out some information that we think is especially impor-

tant or interesting. It’s often something that might not be obvious but that

saves you time and makes Flex development even easier.

 This icon marks certain nuggets of information that we think are extra impor-

tant to remember. This information is good to drill into your head because

we’re sure that it will come up repeatedly in your Flex development.

5 Introduction

 Sometimes we throw in some extra details that aren’t essential but can give

you a broader understanding of what’s going on behind the scenes. This infor-

mation often includes details about the inner workings of Flex.

 We all make mistakes, and we use this icon to warn you of potential mistakes

(ones we’ve already made!).

Where to Go from Here
If you’re brand-new to Flex, the first few chapters provide an overview of

the core concepts that become important building blocks. If you already

have experience in programming (with ActionScript or a language such as

JavaScript), you can probably jump past a chapter or two in Part I. Every

chapter in Adobe Flex 3.0 For Dummies is meant to stand on its own, so feel

free to jump around as you like and find information in the order that inter-

ests you the most.

6 Adobe Flex 3.0 For Dummies

Part I
Introducing Flex

In this part . . .

We agree with you: Flex can be overwhelming in the

beginning. Part I eases you into the world of Flex

by introducing the core concepts and providing a bit of

context so that you understand how Flex fits in with

other, related technologies. Chapter 1 talks about the

evolution of Flex and compares Flex with other software

products — and then explains why Flex comes out on top,

of course! After getting to know Flex a bit, you jump right

in with Chapter 2 and start building an application. Then

in Chapter 3, we back up and explain some of the key pro-

gramming concepts that you use in Flex development. If

you’re already familiar with Flex or object-oriented pro-

gramming (OOP), you can probably jump straight to Part

II. But if you haven’t been exposed to OOP principles, take

a little time to review these chapters.

Chapter 1

Getting to Know Flex
In This Chapter
� Understanding what Rich Internet Applications (RIAs) are

� Comparing Flex to other RIA technologies: Flash, AJAX, and Silverlight

� Taking Flex applications offline by using Adobe Integrated Runtime (AIR)

Adobe Flex is an application development platform that you can use to

build Rich Internet Applications (RIAs). Flex applications are Web-based,

but they provide immersive levels of interactivity and rich media experiences

that make them seem more like computer desktop programs than traditional

Web applications. Flex is the ideal technology to use when you want to create

complex data visualization, performance dashboards, multimedia experiences,

and countless other interactive applications. RIAs are raising the bar for Web

applications, and Flex is leading the way. In this chapter, we discuss what Flex

is, what it isn’t, and how it compares to other technologies.

Using Flex to Develop Rich
Internet Applications

The computer world has come a long way from static HyperText Markup

Language (HTML) Web pages. Over the past two decades, rich online experi-

ences have gradually evolved into RIAs. Flex is on the forefront of technology

that allows you to create such engaging Web-based applications, but it has

taken nearly 20 years since the first HTML page was created to get to where we

are now. (See the nearby sidebar for more on the journey from HTML to RIA.)

Understanding what an RIA is
The term Rich Internet Application (RIA) was coined in a Macromedia white-

paper written in 2002 to describe a new model for application development

that separated the back-end data services from a rich front-end client. One

of the cornerstones of RIA development is the ability to asynchronously

10 Part I: Introducing Flex

load data within the application. Simple HTML Web pages require a full page

refresh to load new data. RIAs, on the other hand, load data asynchronously,
which means they can load chunks of data without requiring page refreshes

and they keep track of the application state in memory. Flex applications are

stateful clients, which means they store data about the current state of the

application, such as the content of a shopping cart, in memory in the client.

RIAs usually load data by using eXtensible Markup Language (XML).

Asynchronously loading XML is an integral part of all RIA technologies (not

only Flex). Version 4 of Flash, which was released in 1999, was the first version

of Flash that let developers load external XML data into Flash applications.

Taking a look at the rise of Flex
Macromedia, which Adobe later acquired, introduced the first version of Flex

in March of 2004. Initially, the first two major releases, Flex 1 and 1.5, were

expensive server-based products. A license for Flex 1.5 cost about $15,000,

and you had to deploy a server application that would compile your Flex

applications and serve them to the user. These initial versions of Flex were

based on Flash Player 7 and ActionScript 2, and the code editor was based

on the Macromedia Dreamweaver editor.

The release of Flex 2 marked a dramatic shift in the product line. Flex 2 was

no longer a server technology at all; instead, Flex was a completely client-

side product. The cost dropped dramatically, and Adobe rewrote the entire

Flex framework and the Integrated Development Environment (IDE) from

the ground up. Flex 2 was based on Flash Player 9 and ActionScript 3, which

brought serious performance gains.

Flex 3 added additional functionality to Flex Builder, such as refactoring and

enhanced styling support, as well as new data visualization components in

the Flex framework. Flex 3 also marked the official open-source release of the

Flex SDK and Flex compiler. For more on the open-source aspect of Flex, visit

http://opensource.adobe.com.

Defining Flex
Defining exactly what Flex is can be confusing because Flex actually includes

a combination of different technologies. Flex is not a single software product,

but instead includes the following four main pieces:

 � Languages: ActionScript 3 and MXML

 You use a combination of ActionScript, a scripting language, and MXML,

a markup language, to create Flex applications. MXML is similar to

HTML, so if you have experience creating HTML Web pages, then you

should be able to figure out MXML pretty easily.

11 Chapter 1: Getting to Know Flex

 � Component framework: Flex SDK

 The Flex SDK (also known as the Flex framework) is a set of user inter-

face components, such as lists, buttons, and charts, that you use to

build Flex applications. The Flex SDK (with the exception of the charting

package) is free and open source.

 � Integrated Development Environment (IDE): Flex Builder

 You use Flex Builder to edit your code, compile your applications, debug

your code, and profile performance. Flex Builder is an integrated devel-

opment environment (IDE) sold by Adobe.

 � Cross-browser runtime: Flash Player

 You deploy Flex applications in a Web browser with the Flash Player

plug-in. You can also deploy Flex applications as standalone desktop

applications by using the Adobe Integrated Runtime (AIR).

From HTML to RIA
When programmers began tinkering with the
Web, they used HTML to create Web pages that
looked like actual pages of a book. These pages
contained a bunch of text that someone wrote
and published for the world to read. Those were
the good old days of choppy animated images and
heavy use of the <blink> tag, which was about
as “rich” as the Internet got in the early ’90s. Then,
Web servers became more sophisticated and
started serving up dynamic content, depending
on what users were looking for or how they inter-
acted with the Web site. For the first time, Web
pages started turning into Web applications.

Server-side languages, such as Java, PHP, and
ColdFusion, increased the capabilities of Web
applications on the back-end. An e-commerce site
could let you keep track of items in your shopping
cart while you browsed the retailer’s site, but each
time you added an item, the full Web page would
have to reload so that the number of items shown
in your cart would stay updated. The state of the
application was stored completely on the server,
either in memory or in a database. Whenever the
server wanted to show you something new, you
were sent to a new static HTML page.

But then those static Web pages became ani-
mated when a small company called FutureWave
Software released FutureSplash Animator,
which was purchased by Macromedia and
renamed to Flash in 1996. A whole new breed
of silly animated movies and impressive visual
effects appeared. The Flash platform brought
a greater level of interactivity to the Web than
ever before. Designers could create interactive
visual experiences that went far beyond what
was possible with simple HTML.

Flash 5 included the ActionScript program-
ming language, which turned Flash into much
more than a simple animation tool. Developers
started creating complex Flash interactive
experiences by combining the visual and pro-
gramming capabilities to produce full-blown
applications within a Web browser. The first
RIAs were being created before the term RIA
was widely used or understood. Then in 2004
Macromedia released the first version of Flex.
Finally developers had a tool that was specifi-
cally for creating RIAs.

12 Part I: Introducing Flex

What’s next?
Adobe is actively developing Flex 4, codenamed Gumbo. This version will

focus on an improved workflow between developers and designers, and will

likely include an improved component framework model to more gracefully

separate the visual design of your Flex applications from the underlying

code. Toward a similar goal, an additional product in the Flex product line

(code-named Thermo) will focus specifically on allowing designers to create

complex RIA user interfaces and interactions by using a visual editor, which

will create Flex application code that the designer and developer can share.

Flex has been largely in a class of its own when it comes to RIA development

platforms, but that reign is now being challenged because some serious

competitors are entering the RIA market. Microsoft’s Silverlight platform and

Sun’s JavaFX are two RIA development products aimed directly at taking on

Flex. Over the next few years, the competition will get serious, which can

only be a good thing for all the developers out there. RIA development is an

exciting field; you’ve chosen wisely!

Comparing Flex to Flash,
AJAX, and Silverlight

Because you bought this book, we assume you’ve decided that Flex is the

right choice for your project. But, if you need to sell the decision to your

boss, he or she will probably ask you how Flex compares to related technolo-

gies. The following sections summarize some of the key differences between

Flex and a few other RIA technologies.

Flex versus Flash
Whenever Doug tries to explain what he does for a living, someone always

asks whether Flex is Flash. This question quickly leads to a heated discussion

about Flash advertisements, and he has to calm everyone down and explain

that, fundamentally, Flex is a Flash-based technology, but no, he doesn’t

make those annoying ads — he makes applications. Flex is an application

development framework and toolset that you can use to create RIAs. These

applications are delivered over the Internet by using the Flash Player.

So, what’s the difference between Flex and Flash? The following list identifies

a few of the most important features that Flex offers that are not available in

Flash:

13 Chapter 1: Getting to Know Flex

 � The Flex framework: Flash has its own component set that has some of

the same functionality as the Flex SDK, but it does not provide as many

components and does not include charting components, layout contain-

ers, and other framework features that are very useful for developing

large applications.

 � MXML: You can use MXML markup to create your Flex applications, but

this markup language is not available in Flash. Flash does use the same

ActionScript 3 scripting language, however.

 � A powerful Integrated Development Environment (IDE): Flex Builder

was designed specifically to build applications, as opposed to the Flash

Authoring tool, which was originally designed to create animations.

You can use both tools to create RIAs, but Flex Builder has features like

code-hinting, a powerful debugger, and a profiler that make it a more

powerful development tool.

You can use Flash, rather than Flex, to create RIAs, but you have to work in

the Flash Authoring environment, which means you don’t get the benefits

of Flex Builder (such as code hinting), and you can’t use the MXML markup

language. You may find the Flash Authoring tool really helpful if you’re creat-

ing animated movies. It uses the timeline metaphor when you create anima-

tions and includes drawing tools. Flex Builder, on the other hand, is designed

for application development, not animation creation. Flex Builder doesn’t

include any drawing tools, and it has no timeline.

 If you have to decide between Flex and Flash for a specific project, think about

exactly what kind of project you’re working on. Flex excels when you’re creat-

ing large desktop-like applications, sharing work among a team of developers,

or visualizing data with charts and graphs. For other kinds of projects that

require complete control over the visual experience, such as games or adver-

tisements, Flash might be a more appropriate choice.

Flex versus AJAX
Asynchronous JavaScript and XML (AJAX) is a technique that you can use to

load data into HTML Web pages without refreshing the full page. Instead of

sending a new HTML page to the user’s Web browser for every change, AJAX

applications send XML asynchronously and update relevant portions of the

screen when needed. By using AJAX, you often end up with a much more

responsive user interface and a more desktop-like application experience.

Flex applications also asynchronously load XML data.

 JavaScript and ActionScript are very similar languages; both are based on

a language specification called ECMAScript, which is developed by Ecma

International, a collective group of representatives from various technology

companies (Adobe is a member). The ECMAScript specification has had few

revisions. ECMAScript Edition 3 is the latest published edition, and Ecma

14 Part I: Introducing Flex

is currently developing Edition 4. JavaScript is currently an implementa-

tion of ECMAScript Edition 3. The current version of JavaScript most closely

resembles ActionScript 2, which also implemented ECMAScript Edition 3.

Adobe released ActionScript 3 in 2006, which is based on the preliminary

draft of ECMAScript Edition 4. After Ecma officially releases a new version

of ECMAScript Edition 4 and Web browsers support an updated version of

JavaScript, the JavaScript programming language should become more like

ActionScript 3.

Because of the similarities between the ActionScript and JavaScript lan-

guages, and their similar approaches to asynchronously loading XML data,

the fundamental benefits of Flex have to do with its underlying Flash Player

technology. Here’s a rundown of some of those benefits:

 � Multimedia capabilities: Flash Player allows you to create a whole range

of rich multimedia experiences that you simply can’t achieve by using

HTML and JavaScript. Flash has powerful graphics capabilities that can

do complex drawing and image manipulation. In addition, Flash supports

audio and video streaming, so many leading online video sites use it to

play video on the Web.

 � Cross-browser support: You can be sure that any Flex application you

develop will look and behave the same way in all browsers on all plat-

forms. Web browsers all have their own quirks and idiosyncrasies when

it comes to how they render HTML and even how they run JavaScript.

When you develop AJAX applications, you need to test your application

in multiple Web browsers to make sure your application is compatible

with them all. However, because Flex applications rely on the Flash

Player, you can be assured that your application will look the same,

pixel for pixel, and behave the same across all browsers.

Flex versus Silverlight
Microsoft’s competitive RIA technology is Silverlight, a browser plug-in, like

Adobe’s Flash Player. Just like you have to install the Flash Player plug-in to

run Flex applications, you need the Silverlight plug-in to run Silverlight appli-

cations. Because Silverlight is fairly new, the Silverlight plug-in isn’t nearly

as common as Flash Player. Silverlight will likely become more widely used

in the future, but right now, the Flash Player plug-in has a strong advantage

because of the large number of computers on which it is installed.

The first release of Silverlight 1.0 included the browser plug-in and focused

on streaming video on the Web. This release certainly competed with Flash

Player because it focused on some of the media features of Flash, but it didn’t

really threaten Flex’s position because Silverlight 1.0 didn’t contain a set of

user interface controls that you could use to build RIAs. Silverlight 1.0 pro-

vided all the low-level graphics capabilities but none of the application frame-

work pieces.

15 Chapter 1: Getting to Know Flex

In early 2008, Microsoft released the first beta version of Silverlight 2.0 (origi-

nally named Silverlight 1.1), which included a set of UI controls, such as a

DataGrid, CheckBox, and Slider. These new controls make Silverlight a closer

competitor with Flex. The competition between Flex and Silverlight has just

begun, and it’s too early to draw any firm conclusions about how serious a

competitor Silverlight will become.

Taking Flex to the Desktop with AIR
Adobe developed Adobe Integrated Runtime (AIR), previously code-named

Apollo, to let you deploy Flex applications as computer desktop applications.

By using AIR, you can create your own desktop applications that can run

natively on Windows, Mac, and Linux operating systems. You can create AIR

applications as Flex applications or AJAX applications, so if you know how to

create Flex or AJAX applications, you can create desktop applications, too.

When deciding whether AIR is the right technology for your application, con-

sider these three main features that AIR provides:

 � Local file-system access: One of the main reasons for moving from a

Web-based Flex application to a desktop AIR application is the inte-

grated local file-system access that AIR offers. If you build a Flex-based

AIR application, you get a few extra tools that don’t come in the normal

Flex framework. These tools let you read and write to the user’s local file

system.

 � Integrated Web browser: The AIR runtime includes a built-in Web

browser: the open-source WebKit browser. This Web browser allows

you to load full HTML pages right into your application, something that

you can’t do in a Web-based Flex application. The AIR framework also

lets you display PDF files within your application.

 � Embedded SQLite database: AIR applications can access an embedded

database for offline database access. So, you can build applications that

can connect to a server database (like a typical Flex application can) or

to an offline database if your application is only occasionally connected

to the Internet.

Using the AIR-specific framework controls falls outside the scope of this

book. If you’re interested in finding out more about AIR, visit www.adobe.
com/products/air.

16 Part I: Introducing Flex

Chapter 2

Building Your First
Flex Application

In This Chapter
� Writing your first Flex application

� Running your application in a browser

� Editing your code in Source mode

� Viewing your application in Design mode

In an homage to software examples all over the world, in this chapter you use

Flex Builder to write your first Flex application, the classic Hello World, which

displays the words Hello World on the screen. While writing this application, you

find out how to choose Flex user interface controls, construct an application in

the Flex Builder tool, and launch and run the application so that it can be viewed

in a browser window.

 The focus of this chapter is to show you how to create a quick-and-dirty appli-

cation so that you can see how the development tool and framework elements

work together. The rest of this book describes Flex Builder (the Flex develop-

ment tool) and the Flex framework in more detail. In later chapters, you find

out more about how to construct and debug a Flex application, how to deter-

mine which elements are available when building your Flex applications, and

how to wire them together.

Creating a Flex Project in Flex Builder
To write your Hello World Flex application, you use the best tool for writing,

debugging, and running Flex applications: Flex Builder. You can use this inte-

grated development environment to do the following:

 � Write Flex applications with MXML and ActionScript code.

 � Visually assemble Flex applications by placing controls on a visual

design stage.

18 Par t I: Introducing Flex

 � Debug Flex code by using a visual debugger.

 � Build and run your Flex application in a browser window or as a desktop

application.

 If you don’t have Flex Builder already installed, you can download the free trial

version from www.adobe.com/go/flex/. The trial version lets you build full

Flex applications for 60 days before deciding if you want to purchase the prod-

uct. Refer to Chapter 4 for more detailed instructions on downloading Flex

Builder and a description of the different versions of Flex Builder.

To write the Hello World Flex application, you must first create a new project

in Flex Builder. Follow these steps:

 1. Open Flex Builder.

 The first time you launch Flex Builder, the Flex start page opens, as

shown in Figure 2-1. This page has all sorts of handy links and informa-

tion to help get you started building Flex applications. To get up to

speed quickly, check out the tutorials that are linked from the Flex start

page.

Figure 2-1:
The Flex
Builder

start page
provides

many handy
tutorials
and tips.

19 Chapter 2: Building Your First Flex Application

 2. Choose File➪New➪Flex Project.

 The New Project Wizard for creating Flex project types appears, as

shown in Figure 2-2. The wizard walks you through the steps of creating

the project.

 Flex Builder organizes its Flex content within projects. You can create

several different kinds of projects, depending on what kind of application

you want to build. (To find out more about the different kinds of projects

available and how to create them in Flex Builder, refer to Chapter 4.)

 The most common and basic project type is a Flex project. You create

this type of project to house your Hello World Flex application. After

you’ve created a project, the other Flex Builder features — such as the

code editor, visual debugger, and visual Design mode — are available for

you to use.

Figure 2-2:
The Flex

Builder New
Project
Wizard

walks you
through

creating a
Flex

project.

 3. Enter a project name (for the sample application, enter Hello World)

and click Finish.

 For this simple Hello World example, accept the default entries that Flex

Builder suggests. All you really want to do is name your Flex project.

This name appears in Navigator view, which traditionally lives on the

left side of Flex Builder in either Source mode or Design mode and lists

20 Par t I: Introducing Flex

all projects that exist in your workspace. A workspace is a location that

houses all your projects.

 A status bar appears at the bottom of the New Project Wizard, indicating that

Flex Builder is creating all the necessary files on the file system to house your

Hello World project. After the project is created, you see it in Navigator

view on the left. A set of folders is created, and the root Flex application

for that project opens in Source mode, as shown in Figure 2-3. By default,

Flex Builder names the root application for a project main.mxml.

Figure 2-3:
Your new

Flex project
appears in
Navigator

view, which
lists all proj-

ects in the
workspace.

Navigator View

Source mode

Design mode

Writing Code for Your Project
When you create your Flex project, you can start writing code. A simple

Flex application, main.mxml, is also created, and Flex Builder opens the MXML

application in Source mode (refer to Figure 2-3). This Flex Builder mode offers

all the developer-related tools, such as code editors, the debugger, and refac-

toring options.

21 Chapter 2: Building Your First Flex Application

Deciphering the default code
After you create a project, Flex Builder writes the following chunk of code

into main.mxml, by default:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”>

</mx:Application>

The code breaks down as follows:

 � XML declaration: An XML declaration tag appears at the top of the

application, identifying the document as an XML document.

 � Application MXML tag: Below the XML declaration is the Application

MXML tag, which is the root tag of any Flex application. The

Application tag has some important jobs, such as expressing

the namespace of the controls used in the application. By default,

Flex Builder autogenerates code that fills in the mx namespace

(xmlns:mx=”http://www.adobe.com/2006/mxml”), which is the

namespace where the Flex controls and containers live. You can see this

namespace declaration directly in the Application tag.

 � Attribute declaration: Following the namespace declaration on the

Application tag is an attribute declaration. The layout attribute

determines which type of visual layout the Application control invokes

when positioning its children. By default, Flex Builder sets the layout

property to the value absolute, which means that the child elements of

the Application control are all positioned at explicit x and y locations

within the document.

 � Closing Application tag: Because all XML tags must be closed, Flex

Builder adds the </mx:Application> closing tag to make the docu-

ment valid.

Creating the Hello World application
You know that you want to create a Flex application that simply displays Hello
World when it’s run. The Flex framework has a variety of user interface controls

that can be used to display information in a Flex application. (To find out more

about all the available Flex user interface controls, refer to Part III of this book.)

One simpler control that you can use is the Flex Label control. This display-only

text control writes text to the screen. You can create a Flex Label control by

using the <mx:Label /> MXML tag. The contents of the Label control (the

text that it chooses to display) is set in the text attribute to a value that is a

String object.

22 Par t I: Introducing Flex

Follow these steps to use the Label control to display Hello World in your

application:

 1. Write an <mx:Label /> tag directly in the MXML code editor, which

opens by default when you create a new Flex project.

 Flex Builder’s code hinting feature uses built-in intelligent heuristics to

suggest different tags and attributes based on the characters you’re

typing. As you start typing an opening tag, <, Flex Builder makes com-

ponent suggestions in a drop-down list. As you continue typing the mx:

namespace prefix and the first letter of Label, L, Flex Builder narrows

its suggestions to match the characters you type. After you type the L,

Flex Builder suggests the Label component, as shown in Figure 2-4. You

can press Enter to autofill the Flex Builder suggestion, or you can finish

typing <mx:Label /> on your own.

 Now that you have created a Label control in your Flex application, you

need to tell it to display the words Hello World. This task is simple — a

Label control uses the text attribute to specify the text it should display.

Figure 2-4:
The code

hinting
drop-down

list gives
you sugges-
tions as you
enter code
in the code

editor.

 2. Directly in the Label MXML tag, add the following code:

text=”Hello World!”

 You may have noticed, as you add the text attribute to the Label tag,

that Flex Builder suggests other attributes that can be set on a Flex

Label control. Flex Builder provides not only tag-level code hinting but

also attribute code hinting.

 So now you should have the following line of code within your Flex

Application tag:

<mx:Label text=”Hello World!” />

 Flex Builder created the default Application tag with the layout property

set to absolute, which means that all child components will be positioned

23 Chapter 2: Building Your First Flex Application

based on their x and y properties. Because the Label control hasn’t

specified an explicit x, y position, the Application container places

the Label control at its default position: 0,0. This position indicates that

the Label control lives at the upper-left corner of the screen.

 If you center the Label control within your application, you can create a

more visually pleasing effect. You can easily use the built-in layout con-

straints, where user interface controls are constrained to the edges of

their parent container. (To find out more about layout constraints, refer

to Chapter 10.)

 3. To center the Label control, add one center constraint to the Label tag

by using the horizontalCenter attribute and setting the value to 0.

Add this code to the Label MXML tag:

horizontalCenter=”0”

 The horizontalCenter constraint is set to a pixel value that determines

the distance between the center of the control and the center of its parent

container. Setting the Label’s horizontalCenter attribute to a value of

0 perfectly centers the control in the center of the application.

When you’re finished, your code should look like this (see Figure 2-5):

<mx:Label text=”Hello World!” horizontalCenter=”0” />

Voilà — you’ve written all the code for your simple Hello World Flex application.

Figure 2-5:
The finished

code for
your Hello

World Flex
application.

Viewing Your Application
in Design Mode

In addition to offering Source mode, where application-specific code is written,

Flex Builder offers Design mode. You can use Design mode to see how the

application will look when it’s run and to edit the application and its compo-

nents visually. You can easily switch to Design mode by clicking the Design

24 Par t I: Introducing Flex

tab in the upper-left toolbar in Source mode (refer to Figure 2-3). (To find out

more about Flex Builder Design mode and how to author and modify Flex

applications and components visually, refer to Chapter 6.)

When you click the Design tab, Flex Builder changes to Design mode, shown

in Figure 2-6. This view has a design stage that shows how the application’s

current state appears. Additionally, you can use the panels flanking the design

stage to drag new Flex components to add to the design and to edit existing

components. Whenever anything is done in Design mode that changes the state

of the application (for example, dragging out a new component or changing a

component property), the corresponding code is added or modified in Source

mode. Everything done in Design mode results in generating or modifying the

correct code in Source mode. Similarly, every change you make in Source

mode gets represented in Design mode.

In Figure 2-6, you can see that the design stage shows a Flex Label component

centered in the Application container. That’s how your Hello World appli-

cation will look in the browser when you run it.

Figure 2-6:
Design

mode ren-
ders an

application
to indicate
what it will

look like
when you

run it.

Run button Design stage

25 Chapter 2: Building Your First Flex Application

Running the Application
Flex Builder is a one-stop tool for all your Flex development needs. Within Flex

Builder, you can write, run, and debug applications. Before you can run a

Flex project, however, you need to build it. Building a project means that you

invoke a compiler — in this case, the Flex MXML compiler — to compile code

and check for errors. If errors exist, you need to fix them and then build the

project again. After the project is successfully built, you can run it and view

your Flex application in a browser window.

When you launch a Flex application, you’re building the application, check-

ing for errors, and then running the application in a browser window. Flex

Builder offers a variety of toolbars that have buttons for invoking different

actions, such as running, debugging, or profiling an application. To launch

your Hello World project, click the Run button on the main code toolbar

(refer to Figure 2-6), which is available in either Source mode or Design

mode. Flex then builds the application and launches it in a browser window.

By default, Flex Builder launches the application in your computer’s default

Web browser.

If problems exist in your application code, you see them written out to

Problems view, at the bottom of the code editor window. If no errors exist,

your application is launched in the default browser window, and you should

see your application running! The result of the Hello World program looks

like Figure 2-7.

There you go. In just a few, simple steps, you built a simple Flex applica-

tion in Source mode, viewed it in Design mode, and ran the application in a

browser window.

Figure 2-7:
Running the
application

launches
a browser

window
showing

the finished
product.

26 Par t I: Introducing Flex

Chapter 3

Flexing Your Muscle with
MXML and ActionScript

In This Chapter
� Understanding MXML and ActionScript

� Developing object-oriented applications

� Using inheritance and interfaces

� Working with the event model

F lex applications are created by using a combination of the declarative

markup language MXML and the scripting language ActionScript. You use

both MXML and ActionScript, often together, to create your projects. If you’re

familiar with developing AJAX Web applications, try drawing an analogy between

HTML and JavaScript. When you create AJAX applications, you use HTML as the

declarative markup language to lay out the user interface elements of your appli-

cation, and then you use JavaScript to add interactivity. MXML and ActionScript

work much the same way, with MXML often serving to create the visual layout of

your application and ActionScript adding powerful programming capabilities.

In this chapter, we provide an overview of MXML and ActionScript and explain

the power and unique capabilities of each technology. To become a successful

Flex developer, you should grasp some important general programming concepts,

so we cover some object-oriented programming principles and discuss the

event model that’s used for communication among the different pieces of your

application.

 In this chapter, we make some assumptions about your programming knowledge.

We assume that you have some experience in writing code in a programming

language such as JavaScript, Java, C, C++, or Basic and that you have at least a

cursory understanding of HTML or XML. Although you certainly don’t need to

be an expert programmer in any specific language, we don’t cover all the small

details of fundamental programming concepts. If tasks such as working with for

loops, declaring variables, and invoking functions are foreign to you, you may

need to spend some time reading about these fundamental concepts because a

discussion of that information is outside the scope of this book.

28 Par t I: Introducing Flex

Introducing MXML
MXML is a tag-based declarative markup language that you use to compose Flex

applications. When you start a new Flex project, you begin with a new MXML

file. As we explain in Chapter 2, every Flex application starts out as an MXML file

with an empty <mx:Application> tag. MXML is contained in files that use

the .mxml extension.

You create components by creating new MXML tags. The following tag creates

a new Button component and sets the label that’s displayed on the Button:

<mx:Button label=”My Button” />

By adding that single line to your main application MXML file you have added

an interactive Button. The Flex framework contains a number of different

user interface controls that you can use in your applications, with the Button

being one of the simplest ones. All the Flex framework controls can be added

with MXML. Listing 3-1 creates a simple login form, shown in Figure 3-1.

Listing 3-1: A Simple Login Form
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Form>
 <mx:FormItem label=”Username”>
 <mx:TextInput id=”username” />
 </mx:FormItem>
 <mx:FormItem label=”Password”>
 <mx:TextInput id=”password”

displayAsPassword=”true” />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label=”Submit” />
 </mx:FormItem>
 </mx:Form>
</mx:Application>

Figure 3-1:
The login
form pro-
duced by

MXML
markup.

29 Chapter 3: Flexing Your Muscle with MXML and ActionScript

For now, don’t worry about exactly what the Form or TextInput controls can

do; we cover all the controls in later chapters. (We discuss Forms in Chapter 9

and text controls, such as TextInput, in Chapter 7). Notice how the MXML

components are defined in Listing 3-1, however, because you use this general

syntax throughout your Flex development.

Comparing MXML and HTML
If you’re familiar with HTML, MXML probably doesn’t look much different.

But don’t let the similarity of the syntax fool you; MXML is completely dif-

ferent from HTML. None of the normal HTML user interface components are

present. There are some similar components, however, such as TextInput

(which can be created with the <mx:TextInput /> MXML tag). TextInput is

similar to the <input type=”text” /> HTML tag. But even though some

of the MXML tags might resemble HTML components, be aware that they are,

in fact, different controls.

Nesting MXML containers
The Flex containers are a subset of the components in the Flex framework

that are specifically designed to hold other controls. A few of the containers

that you use in your applications are Canvas, HBox, VBox, and Panel. You

can define these containers in MXML and add child components by nesting

MXML tags. The following example creates a horizontal box container that

holds two Button controls (shown at the top of Figure 3-2):

<mx:HBox>
 <mx:Button label=”Button 1” />
 <mx:Button label=”Button 2” />
</mx:HBox>

Because the two <mx:Button /> tags are placed between the opening HBox

tag (<mx:HBox>) and the closing HBox tag (</mx:HBox>), they are added to

the HBox, which lays them out horizontally. You can nest MXML tags within

each other multiple levels deep, to produce complex layouts. The following

code creates a Panel container that contains an HBox, which contains the

two Buttons (as shown at the bottom of Figure 3-2):

<mx:Panel width=”200” height=”200”>
 <mx:HBox>
 <mx:Button label=”Button 1” />
 <mx:Button label=”Button 2” />
 </mx:HBox>
</mx:Panel>

30 Par t I: Introducing Flex

Figure 3-2:
Using

nested
containers

to lay out
Flex

controls.

Notice how the opening and closing tags for the Panel and the HBox have to

completely surround their contents. Make sure that you always properly nest

your MXML tags, or else your code doesn’t compile. The following is an incorrect
example of nesting that generates an error:

<mx:Panel width=”200” height=”200”>
 <mx:HBox>
 <mx:Button label=”Button 1” />
 <mx:Button label=”Button 2” />
 </mx:Panel>
</mx:HBox>

If you tried to run the above code the compiler would tell you that you

haven’t properly closed the HBox tag.

Refer to Chapter 10 for detailed coverage of the Flex containers.

Introducing ActionScript
MXML can be great for creating layouts of user interface controls for your

applications, but when you need more programmatic control, you use

ActionScript. The syntax of ActionScript is close to that of JavaScript and

Java (although JavaScript is definitely closest), so if you have experience

with either of those languages, the syntax should be familiar.

31 Chapter 3: Flexing Your Muscle with MXML and ActionScript

Making the shift to ActionScript’s
object-oriented programming
ActionScript 3 is an object-oriented programming (OOP) language, which

means, in general terms, that the fundamental structural unit of your applica-

tion is an object. Objects expose specific functionality in the form of proper-
ties and methods, which you use to interact with the objects.

If you have programming experience in earlier versions of ActionScript (1 or

2), the shift to ActionScript 3 may feel daunting. ActionScript 3 forces you to

follow stricter OOP syntax when writing code, and you’ll notice throughout

this book there is never a reference to _root or global variables. If you have

a background in other object-oriented programming languages, such as Java

or C++, you already have experience in writing OOP applications, and the

shift to ActionScript 3 should be fairly painless.

Understanding objects and classes
At the heart of object-oriented programming is the object, which encapsu-

lates functionality. When an object is encapsulated, it has certain capabilities

that it exposes through properties and methods you can use, but it hides all

other details about how it does what it does. A class is the definition of an

object. An object is one particular instance of a class. Each ActionScript class

is defined in its own ActionScript file (with the .as file extension).

To illustrate the concept of a class, think about an employee within an orga-

nization. An Employee class might contain the following properties:

 � firstName

 � lastName

 � socialSecurityNumber

 � salary

And, an Employee might have the following actions (methods) that it can perform:

 � doTask

 � takeBreak

 � submitTimesheet

 � complainAboutBoss

32 Par t I: Introducing Flex

The preceding lists include four properties and four methods of the

Employee class. The basic Employee ActionScript class might look like the

code in Listing 3-2.

Listing 3-2: The Employee Class with Four Properties and Methods
package com.dummies
{

 public class Employee ➝3
 {

 public function Employee() ➝5
 {
 //in the constructor you can initialize the object
 }

 //define the public variables

 public var firstName:String; ➝11
 public var lastName:String;
 public var socialSecurityNumber:String;
 public var salary:Number;

 //define the public methods

 public function doTask(task:Task):void { ➝17
 //do something to accomplish the task
 }

 public function takeBreak(minutes:Number):void {

 }

 public function submitTimesheet(timesheet:Timesheet):void {

 }

 public function complainAboutBoss():void {

 }
 }
}

Listing 3-2 defines the outline structure of your Employee class:

 ➝ 3 You name the class on Line 3, public class Employee, which

defines the Employee class, and corresponds with the filename of

the ActionScript file in your project. Because this class is named

Employee, you have a file named Employee.as in your project.

 ➝ 5 The constructor is a special function that creates the object. When

a new Employee is created by calling new Employee(); this con-

structor (Lines 5–8) is called. In the constructor, you can do any

kind of initial setup that your class needs.

33 Chapter 3: Flexing Your Muscle with MXML and ActionScript

 ➝ 11 You define a few public properties in Lines 11–14. Other classes

can use these properties to interact with the Employee class.

 ➝ 17 You also create public methods that are used to interact with the

Employee class (Lines 17–31). These methods define all the things

an Employee can do.

Defining getters and setters
ActionScript has a special syntax to define getters and setters on a class,

which are unique ways to combine the functionality of both a variable and a

method. Although a getter or a setter looks like a normal variable to the out-

side world, when it’s accessed, it runs a function. The easiest way to explain

getters and setters is by describing the example in Listing 3-3.

Listing 3-3: Defining a Getting and Setter for hourlyRate
public class Employee
{
 public var salary:Number;

 public function get hourlyRate():Number {
 var hoursPerYear:Number = 40 * 50;
 return salary/hoursPerYear;
 }

 public function set hourlyRate(value:Number):void {
 this.salary = value * 40 * 50;
 }
}

Listing 3-3 defines a getter and setter for the hourlyRate property of the

Employee class. The hourlyRate getter isn’t a normal property, however,

and is instead determined by the salary property. (In this example, we

assume 40-hour workweeks and 50 workweeks in a year.)

You can access getters and setters just as you access normal properties of a

class. The following code creates a new Employee, sets the salary to $100,000

(we’re Flex developers, after all), and then uses the hourlyRate getter:

var employee:Employee = new Employee();
employee.salary = 100000;

var hourly:Number = employee.hourlyRate;
trace(hourlyRate);

34 Par t I: Introducing Flex

Because you defined hourlyRate as a getter, you can access it the same

way you access a normal property. But when you access the hourlyRate

getter, the function you defined runs and performs the calculation.

Because setters work the same way, you can have specific code that runs

whenever a certain property is set. In Listing 3-3, the setter for hourlyRate

calculates the yearly salary for that rate and sets the salary property.

Learning to love the black box
An important concept in object-oriented programming is that every object

is a black box, which exposes specific functionality but doesn’t let you peer

behind the curtain to see the details of the implementation. When you pro-

gram in an object-oriented language, you don’t need to worry about how a

certain class does what it does; all you need to know is which methods and

properties you can use. To illustrate this point, we apply the theoretical OOP

principle to a real-life example.

If you’re like most folks, you have no idea how a microwave oven heats food.

You know that seemingly magical invisible rays fly around, but that’s about

the extent of your understanding. But you know how you’re supposed to use

a microwave oven: You place food inside it, enter on a keypad the length of

time you want the food to cook, and then press the Start button — and the

food is then heated. To you, the microwave is a “black” box. Here’s a simple

OOP example that illustrates this concept:

var microwave:Microwave = new Microwave();
microwave.addFood(food);
microwave.time = 1.5;
microwave.warmUp();

Within the warmUp method, any number of behind-the-scenes events can

be happening. For all you know, a thousand gerbils running on treadmills

generate an electric current that heats your food. But all you care about are

the exposed properties and methods of the Microwave class. You know that

you can call the addFood() method and pass in something for it to warm

up. And, you know that you can set the time property, which determines

how hot the Microwave makes the food. Then you call warmUp(), and you

can assume that the Microwave will fulfill its side of the bargain and warm

your food. You don’t need to know anything about molecular physics to

get all those tasks to work. All these pieces, such as the time property and

the warmUp() method, define the interface that you use to interact with the

Microwave class. The interface is the collection of public properties and

methods that a class exposes to the developer.

35 Chapter 3: Flexing Your Muscle with MXML and ActionScript

 Object-oriented programming is all about using the exposed interfaces defined

by classes and not having to worry about how they do what they do. One out-

standing benefit of this approach is that you can completely change the under-

lying implementation without affecting the rest of your application. As long as

the exposed methods and variables stay the same, all the behind-the-scenes

implementation details can change.

Recognizing that packages
are where classes live
Classes are located in packages, which serve as a way to organize the

ActionScript files in your project and to locate the classes within your code.

The package of a class is the list of strings separated by periods that precede

the class names. All Flex framework classes exist within the mx package,

which means that the full package name of every class in the Flex framework

resembles mx.subPackage.Class. For example, the full package structure

of the Button class is mx.controls.Button. This example shows that the

Button class lives in the controls package within the mx package.

When you create your own, custom ActionScript classes, you should use

packages to organize your code. Picking a package structure involves orga-

nizing your ActionScript files into a series of folders that match the package

structure you want to use. You must also ensure that the package definition

at the top of your ActionScript class matches the folder structure. The first

line in any of your ActionScript classes defines the package for the class by

using the package keyword followed by the full package name.

 You can pick any package-naming structure you want, although a standard

that’s often used is the reverse domain name syntax. It uses domain names

to uniquely identify packages, but in reverse order. If you take a look at the

first line in Listing 3-2, you see the use of the com.dummies package for the

Employee class:

package com.dummies
{

In this line, the Employee.as source file is placed in the com/dummies/

directory within your project, as shown in Figure 3-3.You can use any

package-naming scheme that you like; however, it is a common practice to

group related classes together under the same package. As you work with

the different components within the Flex framework, notice how they are

grouped in logical packages, such as mx.controls and mx.containers.

36 Par t I: Introducing Flex

Figure 3-3:
Package
structure

corresponds
with folder
structure.

 The package-naming convention you use is arbitrary, and if you choose to use

the reverse domain style, it doesn’t mean that it needs to map to a real URL.

The com.dummies package was used in the example, but that doesn’t have

any true relationship to the dummies.com domain name.

Inheritance: Extending a class
An ActionScript class can extend another class, which means that it inherits

all the functionality of the class it’s extending. The class can then add func-

tionality in addition to what was contained in the base class. In the Employee

example in the previous section, you can split the Employee class into two

classes. First and foremost, an Employee is a Person, which has certain prop-

erties, such as firstName and lastName. The following listing contains a

simple Person class:

package com.dummies
{
 public class Person
 {
 public var firstName:String;
 public var lastName:String;
 }
}

Now that you have a Person class that contains the firstName and lastName

properties, you can make the Employee class extend Person, and you can

remove the firstName and lastName properties from Employee because

they’re contained in Person. Here’s a portion of the new Employee class:

package com.dummies
{
 public class Employee extends Person
 {
 public var socialSecurityNumber:String;
 public var salary:Number;
 ...

37 Chapter 3: Flexing Your Muscle with MXML and ActionScript

Now that you have the base Person class, you can make other classes that

also extend Person. For example, you can make a Boss class that defines the

specific functionality of a Boss. The Boss class is shown in Listing 3-4.

Listing 3-4: The Boss Class Extends Person
package com.dummies
{
 public class Boss extends Person
 {
 public var employees:Array;

 public function giveRaise(employee:Employee, percent:Number):void {
 employee.salary = employee.salary + (employee.salary * percent);
 }

 public function giveRaiseToAll(percent:Number):void {
 for(var i:int=0; i<employees.length; i++) {
 giveRaise(employee, percent);
 }
 }
 }

}

Because Boss also extends Person, you don’t have to create the firstName

or lastName properties; it inherits those properties just like the Employee

class does. But the Boss class contains all elements specific to a Boss. In this

example, a Boss has a list of employees and can give raises (which, in an

ideal world, the boss would do).

Understanding interfaces
An interface, which is a special kind of ActionScript file, is similar to a class

but doesn’t define any specific implementation details. An interface defines

a list of methods, but unlike a class, the interface doesn’t have any code to

define how the method works. Instead, classes are supposed to implement
the interface, which means that the class must include all methods defined

in the interface. The following code snippet defines a simple interface named

IPayee that has a single function named receiveMoney:

package com.dummies
{
 public interface IPayee
 {
 function receiveMoney(amount:Number):void;
 }
}

38 Par t I: Introducing Flex

The interface looks similar in structure to a class; however, notice in the third

line the use of the word interface rather than the word class. The interface

defines a function, although you can see the lack of a public, private, or

protected keyword. A class that implements an interface must implement

all functions defined in the interface as public functions. You can define only

public methods within an interface, not properties. However, because getters

and setters are methods, you can define those in an interface as well.

You can modify the Employee class to implement the IPayee interface. To

do so, you need to add the implements keyword to the class definition, and

you create a method named receiveMoney:

public class Employee extends Person implements IPayee
{
 public function receiveMoney(amount:Number):void {
 trace(“I’m rich!”);
 }
 ...

To understand the benefit of using interfaces, imagine which kinds of entities

the Boss class you created might have to pay. Obviously, all employees need

to get paid, but also, possibly, merchants, utility companies, and govern-

ment tax boards, for example. In this context, each of these entities could be

a completely different class, but they can all implement the IPayee interface,

which indicates that each class can receive money. The Boss doesn’t need

to know about each different class that needs to be paid; instead, the Boss

knows only about the IPayee interface, and can know how to interact with

any class that implements that interface.

Exploring static methods and variables
If a method or variable has the static keyword before the method or vari-

able name, it behaves differently from normal variables or methods of the

class. Static methods and variables belong to the class itself, not to any par-

ticular instance of the class. When you call a static method, you’re calling a

method on a class, as opposed to a method on an object.

The code in Listing 3-5 creates the CustomMath class, which has two static

functions: one for returning the sum of an array of numbers and another for

returning the average.

 After those static methods are defined in the CustomMath class, you can

invoke them by calling CustomMath.sum() and CustomMath.average() —

for example, var avg:Number = CustomMath.average(3, 4, 5). You

never create a new instance of the CustomMath class. This usage is wrong, for

example: var math:CustomMath = new CustomMath().

39 Chapter 3: Flexing Your Muscle with MXML and ActionScript

Listing 3-5: Creating a Class with Two Static Functions
package
{
 public class CustomMath
 {
 public static function sum(numbers:Array):Number {
 var sum:Number = 0;

 for(var i:int=0; i<numbers.length; i++) {
 sum += Number(numbers[i]);
 }

 return sum;
 }

 public static function average(numbers:Array):Number {
 return CustomMath.sum(numbers)/numbers.length;
 }
 }

}

 A few main static methods and variables are built into the Flex framework

that you will use. The following list describes a few of the most common ones

you see while building Flex applications:

 � Application.application: You can always access the main

Application object that is the root of your Flex application by using the

static variable Application.application.

 � Alert.show(): The Alert class lets you display pop-up dialog windows

by using the Alert.show static function. The following line pops up a

window with the title Error and the message Houston, we have a
problem.

Alert.show(“Houston, we have a problem.”, “Error”);

 � PopUpManager: The PopUpManager class contains a set of static meth-

ods that let you work with your own, custom pop-up windows. The main

methods you use are addPopUp, removePopUp, and centerPopUp.

 � Math: The Math class has a whole series of static math functions, such

as min, max, sin, and cos. For example, to compute the lesser of two

numbers (defined as variables x and y), you can call

var min:Number = Math.min(x, y);

 � System.setClipboard(): You can set the text that’s on the user’s

Clipboard by calling System.setClipboard(“text to set”). Note

that for security reasons, you cannot get text from the Clipboard; you

can only set it.

40 Par t I: Introducing Flex

Comparing ActionScript and JavaScript
ActionScript and JavaScript are similar languages, and both are based on

the same language specification, ECMAScript. The main difference is that

ActionScript is an implementation of a newer draft of the ECMAScript stan-

dard, Version 4. But because both JavaScript and ActionScript are based on

the same base specification, the syntax you use is similar.

One big difference between the two languages involves the strict-typing of

ActionScript 3, which supports compile-time type checking. When you

declare a variable, you specify which type of variable it is — a String or

Number or any custom class you might be using. The following line of code

declares a variable named myDate that is a Date:

var myDate:Date = new Date(1982, 1, 16);

Because the myDate variable is declared as a Date object, if you try to assign

any value that isn’t a Date, the compiler catches it and notifies you. So, the

following line generates a compile-time error:

myDate = 5; //won’t work because 5 is a Number, not a Date

Having this type of compile-time type checking might not seem like a big

deal, but it’s invaluable for writing bug-free code. Without compile-time type

checking, you can easily write code that makes mistakes that go uncaught.

These types of errors would crop up eventually, but only at runtime when

you’re debugging your application. Compile-time type checking forces you to

write clear, structured code that’s less prone to errors.

Understanding the Relationship
between ActionScript and MXML

Every MXML tag is actually ActionScript code behind the scenes. Each of

the components in the Flex framework is written in ActionScript. When you

compile a Flex application, the compiler translates all the MXML code into pure

ActionScript code, which is the code that is then compiled and run. MXML is

just a shortcut that makes certain tasks, such as laying out the pieces of the user

interface in your application, much easier than having to code the comparable

ActionScript by hand. But you should understand that anything you can do with

MXML markup, you can also do with ActionScript. Depending on the task, some

tasks are easier to do with MXML markup, and some are easier (or only possible)

with ActionScript.

41 Chapter 3: Flexing Your Muscle with MXML and ActionScript

MXML helps most in two areas:

 � Application design: MXML simplifies application design when you’re

composing the visual layout of your applications.

 � Data binding: MXML lets you use data binding with a simple tag-based

syntax. For more on data binding, see Chapter 12.

The following example illustrates how to simplify the layout of your application.

Listing 3-6 creates a simple Flex application with a Panel container that

contains an Image.

Listing 3-6: Using MXML to Create and Lay Out Your Application
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Panel title=”My Panel” roundedBottomCorners=”true” width=”300”

height=”300”>
 <mx:Image source=”myImage.jpg” width=”100%” height=”100%” />
 </mx:Panel>

</mx:Application>

The entire sample application in Listing 3-6 consists of six lines of MXML

code. You can create exactly the same application by using almost all

ActionScript code, and it would look like the code in Listing 3-7.

Listing 3-7: Using Pure ActionScript to Create and Lay Out Your Application
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”init()”>
 <mx:Script>
 <![CDATA[
 import mx.controls.Image;
 import mx.containers.Panel;

 private function init():void {
 var panel:Panel = new Panel();
 panel.title = “My Panel”;
 panel.width = 300;
 panel.height = 300;
 panel.setStyle(“roundedBottomCorners”, true);

 var image:Image = new Image();
 image.source = “myPicture.jpg”;
 image.percentWidth = 100;
 image.percentHeight = 100;

 panel.addChild(image);

(continued)

42 Par t I: Introducing Flex

Listing 3-7 (continued)
 this.addChild(panel);
 }
]]>
 </mx:Script>

</mx:Application>

This listing produces exactly the same application, but it needs four times as

many lines of code, which highlights what makes MXML so useful.

Working with the Event Model
The Flex framework relies heavily on events as the preferred method of commu-

nication between components. An event is an announcement that something has

happened. This “something” might be a mouse click or a notification that a file

has finished downloading or anything else that a component wants to tell other

components about. Events are a fundamental part of the Flex framework, and

you must properly understand how the event model is supposed to work in Flex

applications.

All components in the Flex framework define specific events that you can

listen for. When something happens within a component that it wants

to announce, such as a button click, the component dispatches an event.

Dispatching an event is a way to announce that something has happened to

all the other parts of your application.

The Button control is a good example for exploring the event model. The

Button control primarily displays a button with some text and lets the user

click it. An application that uses a Button control doesn’t know anything about

what happens when the user interacts with the Button. For instance, an appli-

cation doesn’t care how the Button draws itself when the mouse rolls over or

off. All you need to pay attention to are the events that the Button dispatches.

The most important event that a Button dispatches is probably the click

event. When the Button is clicked, it dispatches a new event to announce that

it was clicked. The Button is responsible only for making that announcement

and doesn’t care which other parts of your application, if any, are listening for

the announcement.

Dispatching events is one-half of the event model. But because the components

that dispatch events don’t know anything about what’s supposed to happen

when these events occur, in order to make something happen, you need to have

event listeners that listen for these events. In the case of the Button control, when

43 Chapter 3: Flexing Your Muscle with MXML and ActionScript

the user clicks the control, it dispatches the click event, but the dispatching

of that event doesn’t do anything on its own. In your application, you attach a

listener to the click event, which is a function that‘s run when the event fires.

After you add a listener, the code within your listener method runs every time

that particular event is dispatched.

 The words listener and handler are often used interchangeably when talking

about events. Adobe has a set of coding guidelines that define their best prac-

tices for writing ActionScript 3 code. These best practices recommend names

for your event listener methods, such as eventNameHandler, which is the

convention we use in this book. So, an event listener for a mouse-down event

would be named mouseDownHandler. To review the best practices guide-

lines, visit http://opensource.adobe.com/wiki/display/flexsdk/
Coding+Conventions.

Adding event listeners with MXML
The easiest way to add event listeners to Flex components is to add MXML

attribute listeners. You add event listeners in a similar way as you define

properties or styles in the MXML tag. But event listeners are different than

properties and styles, because they define ActionScript code that’s run when

the event fires. You can add a listener to the click event of a Button control,

like this:

<mx:Button label=”My Button”
click=”clickHandler(event);”/>

The click and label are both MXML tags, but the label tag defines a

property and the click tag defines an event listener. Event listeners defined

inline in this way consist of ActionScript code that’s executed when the event

fires.

 You don’t have to point only to a function to handle the event; you can write

ActionScript code directly in the MXML tag, if you want. For instance, the fol-

lowing example displays an Alert message by using ActionScript code directly

in the click MXML tag:

<mx:Button label=”My Button” click=”mx.controls.Alert.
show(‘You clicked!’)” />

However, as a general practice, code is often much more readable and man-

ageable if you always use functions defined outside the MXML tag as your

event listeners.

44 Par t I: Introducing Flex

Examining the structure
of an event listener
The event listener defined in your ActionScript code should be a function that

takes a single Event object parameter. Your functions generally look like this:

private function eventHandler(event:Event):void {
 //do your event handling stuff here
}

Notice that the event parameter is an Event object. Event handlers are

always passed an Event object that has a few important properties. Most

importantly, the Event object has a property named target that identi-

fies the component that dispatched the event. Be aware also of a different

property named currentTarget. The differences between target and

currentTarget are discussed later in this chapter, when we cover event

bubbling. For now, just know that you can use target to get a reference to

the component that dispatched the event.

The following example displays two buttons, both of which use the same

event listener for the click event. The event listener uses the target prop-

erty to get a reference to the particular Button control that was clicked, and

then displays an Alert pop-up message showing the label of the Button.

<mx:Script>
 <![CDATA[
 import mx.controls.Button;
 import mx.controls.Alert;

 private function clickHandler(event:Event):void {
 var button:Button = event.target as Button;
 Alert.show(“You clicked: “ + button.label);
 }
]]>
</mx:Script>

<mx:Button label=”Button 1” click=”clickHandler(event)” />
<mx:Button label=”Button 2” click=”clickHandler(event)” />

Notice that you have to cast the event.target property to the Button class,

which is accomplished by specifying event.target as Button. You use

the as operator to cast from one variable to another. When you cast a vari-

able, you are usually assigning a variable that is a higher-level generic type

to a more specific type. In this example, the target property of an Event is

defined only as a generic ActionScript Object, so in the listener function, you

cast it to the appropriate class, which is Button in this case. You know that

the target property is actually a Button because the event handler was added

45 Chapter 3: Flexing Your Muscle with MXML and ActionScript

on the <mx:Button /> component. Explicitly casting it to a Button lets you

access the Button-specific properties of the object, such as label.

Event is the base class for all events, but more specific classes also extend

Event to provide more detailed information about particular kinds of events.

For example, mouse interaction events use the MouseEvent class, which adds

the localX, localY, stageX, and stageY properties that define the coordi-

nates, relative to the component and the stage, of the mouse when the event

was dispatched.

The example in Listing 3-8 adds a listener to the change event of a horizontal

slider control. When the HSlider dispatches the change event, it dispatches

a SliderEvent event, which has a few specific properties that tell you more

about the interaction with the slider. In this example, you can access the

value property of the event to get the latest slider value.

Listing 3-8: Adding a Listener to the Change Event of a Slider Control
<mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.SliderEvent;

 private function changeHandler(event:SliderEvent):void {
 Alert.show(“New value: “ + event.value);
 }
]]>
</mx:Script>

<mx:HSlider change=”changeHandler(event)” snapInterval=”1” />

Many Flex components dispatch their own custom events, so they can indicate

this type of detailed information. The documentation for each of the components

in the Flex framework explains all the different events that each component

dispatches. Giving you a comprehensive list of all events and event types is

beyond the scope of this book, although in Part III, we touch on the common

events for many of the framework controls.

Adding event listeners with ActionScript
You can also add event listeners with ActionScript rather than with MXML

tags. All Flex components have a method named addEventListener that

you can use. When you call addEventListener, you have to specify which

event you’re listening for and the handler function that runs when the event

is dispatched. The example in Listing 3-9 creates ten Button controls when

the application first loads and adds a click event listener to each one.

46 Par t I: Introducing Flex

Listing 3-9: Adding an Event Listener with ActionScript
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”createButtons()”>
 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.controls.Button;

 private function createButtons():void {
 for(var i:int=0; i<10; i++) {
 var button:Button = new Button();
 button.label = “Button “ + (i+1);
 button.addEventListener(MouseEvent.CLICK, clickHandler);
 box.addChild(button);
 }
 }

 private function clickHandler(event:Event):void {
 var button:Button = event.currentTarget as Button;
 Alert.show(“You clicked: “ + button.label);
 }
]]>
 </mx:Script>

 <mx:HBox id=”box” width=”100%” />

</mx:Application>

 When you add the click event listener with ActionScript, you use MouseEvent.
CLICK as the event type. This static variable is defined by the MouseEvent class.

The MouseEvent.CLICK variable translates to the string click. You can add

the same listener by calling addEventListener(“click”, clickHandler).

However, when you add event listeners with ActionScript, you should always

use the static variables instead, such as MouseEvent.CLICK. Using the static

variables ensures that you don’t have any accidental typos in your code, and

your code benefits from proper compile-time checking. If you used a string to

represent the event type, the compiler can’t help look for potential problems.

For example, you might type the following line:

button.addEventListener(“rollover”, rollOverHandler)

The proper event name, however, is rollOver (notice the capitalization

difference). If you use MouseEvent.ROLL_OVER rather than the string, you

can always be sure that you’re using the correct event type. So, rather than

“rollOver”, the proper way to add the event listener is

button.addEventListener(MouseEvent.ROLL_OVER,
rollOverHandler)

47 Chapter 3: Flexing Your Muscle with MXML and ActionScript

One benefit of using ActionScript to add event listeners is that you can

remove them by using the removeEventListener method. Only listeners

that are added with the addEventListener method can be removed; you

cannot remove event listeners that are added with inline MXML tags. If you

later want to remove the click listener that you added on one of those but-

tons, you can add this line:

button.removeEventListener(MouseEvent.CLICK, clickHandler)

Understanding event propagation
When an event is dispatched by a component, it propagates up and down

the hierarchy of components in your application. During the propagation of

a single event, three phases make up the event life cycle: capture, target, and

bubble. Event listeners can register and receive notification at any of these

three phases:

 � Capture: This phase is the first phase, but is rarely used. In the capture

phase, the Event begins at the top-level parent component and works its

way down the display list until it reaches the target component that dis-

patched the event. In the hierarchy shown in Figure 3-4, the Event begins

in the capture phase at the Panel and then moves down to the Hbox and

then down to the Button.

 When you add an event listener, you have to specify whether the listener

should listen in the capture phase. The third parameter in the addEvent
Listener method is a Boolean value that determines whether the capture

phase is used (it defaults to false). To add a listener to the Button

control on the capture phase, you can use the following line of code:

button.addEventListener(MouseEvent.CLICK, clickHandler, true);.

 For most event handling in your applications, you never need to use cap-

ture phase listeners. Unless you need extremely aggressive event han-

dling for some reason, you can probably just stick to target and bubble

phase listeners.

 � Target: Because the Button control was the component that dispatched

the event, after the event propagates down to the Button, it reaches

the targeting phase. This phase is used only for event listeners that

were added to the component that dispatched the event (when event.
target and event.currentTarget are the same).

 � Bubble: After reaching the targeting phase, the event then propagates

back up the display list in the bubbling phase. In the example, the event

hits the HBox and then the Panel while bubbling. The order of the

bubble phase is the opposite of the capture phase.

48 Par t I: Introducing Flex

Figure 3-4 shows the propagation of an event through the three phases as it

travels down the display list and back up.

Figure 3-4:
The propa-
gation of a

single event
through the

capture,
target, and

bubble
phases.

1. Capture

<mx:Panel id=”panel”>
<mx:HBox id=”hbox”>

<mx:Button id=”button” />
</mx:HBox”>

</mx:Panel>

3. Bubble

2. Target

At any point in your event listeners, you can figure out which phase is active by

inspecting the eventPhase property of the Event. The example in Listing 3-10

demonstrates the complete propagation of a single click event. The example

adds click event listeners to the Panel, HBox, and Button. When the click

event fires. the event listener uses trace() to output debugging information

about the event.

Listing 3-10: An Example to Debug Event Propagation
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”setupListeners()” name=”app”>
 <mx:Script>
 <![CDATA[
 private function setupListeners():void {
 panel.addEventListener(MouseEvent.CLICK, clickHandler);
 panel.addEventListener(MouseEvent.CLICK, clickHandler, true);

 hbox.addEventListener(MouseEvent.CLICK, clickHandler);
 hbox.addEventListener(MouseEvent.CLICK, clickHandler, true);

 button.addEventListener(MouseEvent.CLICK, clickHandler);
 button.addEventListener(MouseEvent.CLICK, clickHandler, true);
 }

 private function clickHandler(event:MouseEvent):void {
 trace(“phase: “ + event.eventPhase + “ | target: “ + event.target +

“ | currentTarget: “ + event.currentTarget);
 }
]]>
 </mx:Script>

 <mx:Panel id=”panel”>

49 Chapter 3: Flexing Your Muscle with MXML and ActionScript

 <mx:HBox id=”hbox”>
 <mx:Button id=”button” />
 </mx:HBox>
 </mx:Panel>

</mx:Application>

When you run the code in Listing 3-10 and click the button, you see the

following debugging output:

phase: 1 | target: app.panel.hbox.button | currentTarget: app.panel
phase: 1 | target: app.panel.hbox.button | currentTarget: app.panel.hbox
phase: 2 | target: app.panel.hbox.button | currentTarget: app.panel.hbox.button
phase: 3 | target: app.panel.hbox.button | currentTarget: app.panel.hbox
phase: 3 | target: app.panel.hbox.button | currentTarget: app.panel

This chunk of code shows the complete propagation of a single click event. In

the sample output, the event phases are displayed as the numbers 1, 2, or 3,

which correspond with the capture, target, and bubble phases. The event

begins in the capture phase at the top-level Panel container and then travels

down the display list, still in the capture phase, to the HBox container. The

event then reaches the Button control, and because the Button is the compo-

nent that dispatched the event, the event is now in the target phase. (Notice

that the target and currentTarget properties of the event are the same.)

The event then travels back up the display list in the bubble phase, hitting

the HBox first and then the top-level Panel container.

At any point in the event propagation cycle, you can call stopPropagation()

or stopImmediatePropagation() on the event, which stops the event

in its tracks. The stopImmedaiteProgpagation() event stops the event

right away, and no other listeners that are registered for that event are

called. If you call stopPropagation() instead, any other event listeners for

that event on the same component are executed, but the event doesn’t move

any farther up or down the display list.

Listening for some common events
All components in the Flex framework dispatch a few useful events. The

following list describes a few of the common events you might use in your

applications:

 � show, hide: Whenever a component’s visible property is changed,

either the show or hide event fires.

 � move, resize: These events are dispatched when the component’s

location or dimensions are changed.

50 Par t I: Introducing Flex

 � initialize, creationComplete: These events indicate when a com-

ponent starts and finishes the creation process (including the creation

of child components). If you have some ActionScript code that needs to

run after all the child components have been created, be sure to use the

creationComplete event (see Listing 3-10).

 � change: Many Flex components let the user change a selected value,

such as the slider controls and the NumericStepper. Many of the con-

trols in the framework will dispatch a change event to notify you that a

change has occurred.

Part II
Using Flex Builder

(The Flex IDE)

In this part . . .

In this part, we explore Flex Builder, the development

tool you use to create Flex applications. Take a look

around and get comfortable because Flex Builder is your

new home. We begin by stepping you through the process

of setting up Flex projects, tweaking settings, and running

applications. Then we divide up Chapters 5 and 6 to cover

the designer-oriented and the developer-oriented aspects

of the tool. Regardless of whether you consider yourself a

designer, developer, or “devigner,” both chapters provide

valuable information for creating Flex applications.

Chapter 4

Flex Builder: The Best Flex
Development Tool

In This Chapter
� Installing Flex Builder

� Understanding the different Flex Builder perspectives

� Creating and configuring Flex projects in Flex Builder

� Importing and exporting Flex projects

� Using the Help options to access sample code and Flex documentation

This chapter gets you up to speed on installing and using Flex Builder, the

best development tool for working with Flex applications. Flex Builder is

based on the Eclipse IDE (Integrated Development Environment), and it has

different perspectives that allow you to develop, debug, and profile Flex

applications. In this chapter, you can find out how to install Flex Builder and

use Flex Builder for all of your Flex development needs. We cover how to

create different types of Flex projects based on the type of application you’re

building; organize your Flex projects; build, clean, and run your projects; and

edit project settings.

This chapter also explains how to access the help materials, such as sample

code and Flex documentation, that are included with your Flex Builder instal-

lation. After the details about how to set up and run a Flex project become

second nature, you can develop your Flex projects with ease!

What’s Flex Builder, and
Why Should I Care?

Flex Builder is the best and easiest-to-use development tool for building,

debugging, and profiling Flex applications and components. It offers features

for developers and designers:

54 Par t II: Using Flex Builder (The Flex IDE)

 � Developer-oriented features: Include a very robust ActionScript, MXML,

and CSS code editor; a visual debugger; a visual profiler that allows you

to profile performance and memory use; code refactoring so that code

name changes can percolate throughout your project and workspace;

and many other tool capabilities.

 � Designer-oriented features: Include a Design view that allows you to

visually assemble and edit Flex applications and components; and a CSS

Design view that lets you visually style Flex applications and components.

Chapter 5 of this book covers the developer-oriented features of Flex Builder,

and Chapter 6 focuses on the designer-oriented features. Look over both of

those chapters for more specific information.

Often, each release of Flex is accompanied with a new release of Flex Builder

so that the two technologies stay in sync. When a new feature is added into

the Flex framework, the corresponding tooling support is usually added to

Flex Builder so that developers can use the new feature when they author

their Flex applications.

 Flex Builder is an Eclipse-based IDE (Integrated Development Environment).

You may already be familiar with Eclipse if you use the Eclipse IDE to write

Java-based applications. Because Flex Builder is built atop Eclipse, you can

use all the special plug-ins built for Eclipse in your Flex Builder tool. For exam-

ple, many source-code management plug-ins allow you to check files in and

out of your source-code repository directly from your Eclipse environment.

You can easily install these plug-ins on top of your Flex Builder installation

because Flex Builder is based on Eclipse. If you want to find out more about

Eclipse, check out Eclipse For Dummies by Barry Burd (Wiley).

Installing Flex Builder
You can install Flex Builder from the Flex product page at www.adobe.com/
go/flex_trial. You can install a 60-day trial version of Flex Builder and

then at the end of the 60 days purchase the product for use permanently. To

purchase Flex Builder directly, or at the conclusion of your trial, go to the

online store at the Adobe Web site at www.adobe.com. Flex Builder is sup-

ported on the Windows and Macintosh platforms, and installers for both

supported platforms are included on the trial download page as well as the

Adobe online store.

From the trial download page, download the installer for the platform of your

choice. You will notice that Flex Builder 3 Professional is the only download

choice. This is one of the “flavors” of Flex Builder, and we discuss it in more

55 Chapter 4: Flex Builder: The Best Flex Development Tool

detail in a minute. After you’ve downloaded the installer, run through it to

install Flex Builder as well as all of the source code for the Flex framework

onto your computer.

 A Linux version of Flex Builder is in active development. At the time of pub-

lication, Flex Builder Linux is in a public alpha release, which you can find at

Adobe’s Labs site at http://labs.adobe.com/technologies/flex/
flexbuilder_linux/.

Flex Builder comes in two flavors for purchase (the trial download page lets

you try out only Flex Builder Professional):

 � Flex Builder Standard: This version includes the MXML, ActionScript,

and CSS editors and the visual debugger.

 � Flex Builder Professional: This version includes everything contained in

the Standard version, as well as the advanced data visualization librar-

ies, such as the Flex charting components, the memory and performance

profiler, and the Flex automated testing harness. Chapters 5 and 6 in this

book describe these features and capabilities in more detail.

 The trial version of Flex Builder is Flex Builder Professional, which includes

capabilities such as the advanced data visualization components and the

memory and performance profiler. Adobe offers the Professional version so

that you can use the trial version as a way to evaluate which version of Flex

Builder you want to actually purchase, Standard or Professional.

In addition to Flex Builder Standard and Flex Builder Professional, Flex

Builder has two configuration flavors:

 � Flex Builder Plug-In: Use this configuration version if you already use

the Eclipse tool and want to install Flex Builder as an Eclipse plug-in atop

your existing Eclipse setup. For example, if you already use Eclipse to

develop Java applications, you may want to install the Flex Builder plug-

in into your existing Eclipse environment.

 � Flex Builder Stand-Alone: This is a packaged installation of the Eclipse

environment and Flex Builder functionality. This configuration is specifi-

cally for building and deploying Flex and ActionScript applications. The

Stand-Alone configuration has a much easier to use interface than the Flex

Builder Plug-In version, because it’s targeted directly toward developing

Flex and ActionScript applications. Users new to ActionScript and Flex

development should work with this configuration. All the examples and

images in this book use the Stand-Alone configuration of Flex Builder.

 You have to make the configuration version choice when you install Flex Builder.

56 Par t II: Using Flex Builder (The Flex IDE)

Taking a look at the Flex
Builder perspectives
Flex Builder has a concept of perspectives in which a particular perspective

consolidates the Flex Builder user interface to target a particular task. Flex

Builder Standard has two perspectives — Debugging and Developing — and

Flex Builder Professional includes a third perspective, Profiling. By using these

perspectives, you can execute particular workflows or tasks more easily because

each view targets a particular task. Figures 4-1 through 4-3 show the default user

interface for the development, debugging, and profiling perspectives.

Flex Builder automatically changes the perspective when you do certain tasks.

For example, when you create a new Flex project, the perspective automati-

cally switches to the Flex Builder Development perspective. Similarly, when

you set a breakpoint with the visual debugger and that breakpoint is hit, Flex

Builder automatically switches to the Flex Builder Debugging perspective. To

find out more about what a breakpoint is and how to use the visual debugger,

jump over to Chapter 5, which discusses how to debug Flex applications.

Figure 4-1:
The default

view of
Flex

Builder’s
Development
perspective.

Navigator view Switch perspectives

Current perspective

Outline view Problems pane

57 Chapter 4: Flex Builder: The Best Flex Development Tool

Figure 4-2:
The default
view of Flex

Builder’s
Debugging

perspective.

Figure 4-3:
The default
view of Flex

Builder’s
Profiling

perspective.

58 Par t II: Using Flex Builder (The Flex IDE)

By default, Flex Builder prompts you about switching Flex Builder perspec-

tives when you start a task that requires a perspective change. For example,

hitting a breakpoint causes Flex Builder to open a dialog box, prompting you

that it would like to switch to the Debugging perspective. Normally, you want

to click Yes because the perspective change, which focuses the user interface

more toward the task at hand, makes executing your task easier. If you don’t

want this confirmation dialog box to appear each time, select the Remember

My Decision check box before you click Yes.

You can always see what perspective you’re currently in by looking at the

upper-right corner of your Flex Builder window. A button identifies the cur-

rent perspective (refer to Figure 4-1), and you can click that button to switch

to another perspective.

 You can also manually switch perspectives by using the top-level Flex Builder

menus: Choose Window➪Perspective➪Flex Debugging or Flex Development or
Flex Profiling to switch perspectives.

Customizing perspective views
When you change the view in a particular Flex Builder perspective, those

changes become associated with that perspective; then when you switch

back to that perspective later, those changes are reproduced. You can make

many changes to the views in Flex Builder’s user interface. You can resize

views several ways:

 � Minimize or maximize view by using the icons at the top of each view

(refer to Figure 4-1).

 � Use the double-headed arrow cursor that appears when you hover over

a view’s border. When the double-headed arrow appears, click and drag

to resize that particular view.

 When you modify and resize different perspectives, you may want to go back

to the default view for that perspective. You can reset the current perspective

back to its size and layout defaults by choosing Window➪Perspective➪Reset

Perspective. When you reset the perspective, you lose all the modifications

that you made to that perspective’s views.

Similarly, you can drag and drop views into different locations by hovering over

the view’s label and then dragging. The cursor changes into a folder icon to

indicate you’re moving the view. Flex Builder gives visual cues about where

that view will be relocated when you drop it. In the example in Figure 4-4, we

dragged and dropped the Outline view so that it’s now next to the Navigator

view.

59 Chapter 4: Flex Builder: The Best Flex Development Tool

Figure 4-4:
We dragged
and dropped

the Outline
view next

to the
Navigator

view.

Creating Different Types
of Projects in Flex Builder

Flex Builder groups all the MXML, ActionScript, and CSS code files, as well as

assets and other folders, into projects. A project is basically all the resources

that comprise your application or component. Flex Builder lets you create

different types of projects. The three main types of projects are

 � Flex Project: You create this type of project when writing Flex applications.

This is the most common type.

 � ActionScript Project: You create this type of project when you want to

write an application that does not use the Flex framework but is instead

an application written purely in ActionScript code.

 � Flex Library Project: Create this type of project when you want to write

custom code that you’ll distribute to other developers or link into other

Flex projects.

To create one of these types of projects, choose File➪New➪Flex Project or
ActionScript Project or Flex Library Project. In the following sections, we

discuss each type of project in more detail.

60 Par t II: Using Flex Builder (The Flex IDE)

Flex Projects
Most often, you’ll create Flex Projects, which is the type of project you create

when you build most types of Flex applications. When you create a new Flex

Project, you specify all the information that you need to configure and iden-

tify that project. Information such as the project name, what type of data

back-end the project uses, how the project should be built, and whether you

want to target the application you’re building for the Web or a computer

desktop. When you choose File➪New➪Flex Project, the New Flex Project

Wizard appears, ready to walk you through setting up the Flex Project (see

Figure 4-5). Just follow these steps:

 1. Specify the project name in the Project Name text field.

 This name shows up in the Flex Navigator, which keeps track of all your

projects.

 2. Choose the project location in the Project Location section.

 Decide where you want all the source files, asset files, and ancillary

information related to your project to live. Usually, you can just let Flex

Builder use the default location.

Figure 4-5:
The Flex

Builder New
Project
Wizard

walks you
through the

steps to
create a
new Flex

project.

61 Chapter 4: Flex Builder: The Best Flex Development Tool

 3. Select the application type in the Application Type section.

 The application type determines whether you want to target the applica-

tion that you’re building for the Web or for the computer desktop. New

in Flex 3 is the integration with Adobe AIR, a new technology that lets

you use Flex technologies to build desktop applications. In Flex Builder

3, you can configure your Flex application to run as a Web application

or as a desktop application. You can find out more about Adobe AIR at

www.adobe.com/products/air.

 You should make this choice based on which platform you are target-

ing. By default, Flex Builder creates Flex projects that are targeted for

the Web. If you change this option, Flex Builder uses the new option the

next time you create a Flex project.

 4. Choose the data back-end for your Flex application in the Server

technology section.

 By default, the None server option is selected. This setting often suffices

when you’re building Flex applications that use the Flex RPC libraries, such

as the WebService MXML tag or HTTPService MXML tag. By selecting

the appropriate option from the Application Server Type drop-down list,

you can also target an ASP.NET, J2EE, ColdFusion, or PHP back-end. You

select the J2EE option when you build a Flex application that targets

LiveCycle Data Services. LiveCycle Data Services is an Adobe technology

that includes many of the high-end, enterprise level data features large

projects desire. You can find out more about LiveCycle Data Services on

the Adobe Web site.

 5. Click Next.

 The next step in the wizard for creating a new Flex project appears.

 6. Specify the folder in which you want to place the output for your Flex

application. Then click Next.

 By default, the output is put in a folder called bin-debug at the root of your

Flex project. You can almost always use this default but may choose to

change the folder name to follow your own coding conventions.

 After you click Next, the next step appears, in which you specify the

build paths for your Flex application, as shown in Figure 4-6.

 7. If needed, add additional source files to the build path.

 Build paths specify the location of external source and library files. By

default, all the controls and components that comprise the Flex frame-

work are specified in the Library pane. So, right out of the box, a new

Flex project is set up to build Flex applications. Most of the time, when

you start building and creating Flex applications, you don’t need to add

any additional source files to the build path.

62 Par t II: Using Flex Builder (The Flex IDE)

Figure 4-6:
The Flex

Builder New
Project
Wizard

prompts you
for modifi-
cations to

the build
path.

 8. Click Finish to create a Flex project that has all the settings you’ve

specified in the New Project Wizard.

After you create the project, it appears in the Flex Builder Navigator view.

You use the Navigator view to delete projects or modify the properties of

existing Flex projects. The root MXML file for the new project opens auto-

matically in Flex Builder once the project has been created, and this file is

usually the entry point into your Flex application and where you begin your

application development. For example, if you create a new project called

HelloWorld, HelloWorld.mxml is the root MXML application for the project,

and a skeleton MXML file opens in the MXML editor. Voilà, you’re ready to go!

 If the Flex project name has a space or hyphen in it, the root MXML file that is

auto-created by Flex Builder is named main.mxml. If the project doesn’t have

a space or hyphen in it, Flex Builder names the root MXML file the same name

as the project.

63 Chapter 4: Flex Builder: The Best Flex Development Tool

ActionScript Projects
ActionScript Projects are applications that don’t use the Flex Framework (and

thus MXML) and, instead, are built purely with ActionScript code and the

libraries offered natively by the Flash Player. Because Flex Builder has a very

powerful ActionScript code editor and debugger, Flex Builder is the perfect

tool for building ActionScript-only applications.

To create a new ActionScript project, choose File➪New➪ActionScript. Then

follow these steps to use the New ActionScript Project Wizard (shown in

Figure 4-7) to create your project:

Figure 4-7:
The Flex

Builder New
Project
Wizard

walks you
through
creating

a new
ActionScript

project.

 1. Enter the name of your project in the Project Name text field.

 This name appears in the Flex Navigator view representing your project.

 2. Specify the location for the project’s code files, asset files, and all

other source material in the Project Contents section.

 Often, you can use the default location that Flex Builder chooses.

 3. Choose which version of the Flex framework the application should

target in the Flex SDK Version section.

 A new feature in Flex Builder 3 allows you to build a Flex or ActionScript

application that targets a particular version of the Flex framework. We

64 Par t II: Using Flex Builder (The Flex IDE)

discuss this feature in more detail in the “Targeting different versions of

the Flex Software Development Kit (SDK)” section, later in this chapter.

By default, Flex Builder always creates a new application that targets

the latest released version of the Flex framework. Certain prior versions

of the Flex framework source code are shipped with Flex Builder, and

your application can target these prior versions. Simply select the Use

a Specific SDK radio button and select the desired version of the Flex

framework in the version drop-down list.

 4. Click the Next button.

 Flex opens the Build Paths pane in the New ActionScript Project Wizard,

shown in Figure 4-8.

 5. If needed, add additional source files to the build path.

 In this window, you can specify where external source files or libraries

are located and include them into the source path of your application

so that your application can access that code. Often, you can use the

default settings because Flex Builder already adds the Flex Framework

source code into the build path so that you can access all the classes

and code in the various Flex Framework libraries.

Figure 4-8:
In this

wizard
pane, you

can edit the
build path
to include

other
source-

code
libraries.

65 Chapter 4: Flex Builder: The Best Flex Development Tool

 6. Click Finish.

 The new ActionScript project is created and appears in the Flex

Navigator view. You use this entry in the Flex Navigator to edit the proj-

ect’s settings or delete the project.

After you create the project, the root ActionScript file opens in the ActionScript

code editor automatically. This root ActionScript file is usually the entry

point into your application, and it’s the file that Flex Builder compiles when

creating your application’s output.

Flex Library Projects
The final type of project that you can create is a Flex Library Project. You use

a Flex Library Project to create custom code libraries that you link into other

Flex applications or distribute to other developers. A Flex Library Project

produces SWC files, which are compressed files containing ActionScript and

MXML code. Flex Library Projects are an advanced topic, and you can consult

the Flex Builder documentation included with your Flex Builder installation

for more information on configuring Flex Library projects. The “Accessing

Flex Builder Help Materials” section, later in this chapter, describes how you

can access Flex Builder documentation directly within Flex Builder.

Organizing and Editing Your Projects
You can organize the source files related to your project however you want,

but Flex Builder automatically uses some organizational methods to help

you maintain your project. By default, Flex Builder puts source files such as

MXML, AS, and CSS files into the src folder in the project directory. The out-

putted SWF and HTML files that represent your application are put in the bin-

debug folder that lives in the project directory.

You can create new folders for organizing your source files. Usually, you want

to create these new folders as subdirectories to the src folder. For example,

Flex application developers often create a folder called images or imgs to

hold their visual assets, such as .jpg, .gif or .png files.

To create a new folder, follow these steps:

 1. Locate the directory in the Flex Navigator view that you want the new

folder to live in and then right-click that directory.

 A context menu opens, containing options that let you modify the project

properties and source files.

66 Par t II: Using Flex Builder (The Flex IDE)

 2. Choose New➪Folder from the context menu.

 The New Folder dialog box opens, as shown in Figure 4-9.

 When you choose New from the context menu, you can create other ele-

ments, in addition to folders. For example, you can create a new MXML

application, MXML component, ActionScript class, or a plain file.

 3. Specify the name and location of the new folder

 In Figure 4-9, we’re creating a new folder to hold our application’s images.

 4. Click Finish.

Whenever you need to add any new document to your project, right-click

the project and select the New option in the context menu or select which

document you want to create from the top-level menu options (File➪New).

The Flex Builder wizards walk you through naming and setting properties on

these new documents.

Figure 4-9:
You can

right-click
projects

in the Flex
Navigator to
create new

files or
folders.

67 Chapter 4: Flex Builder: The Best Flex Development Tool

Editing existing project settings
You can edit project properties such as build path and output folders on an

existing project very easily by using the Flex Navigator. Simply right-click the

project name in the Flex Navigator and select Properties from the context

menu that appears. A Properties dialog box, similar to Figure 4-10, appears.

Select a listing from the left pane to edit that particular property or setting.

For example, if you want to create a Flex application that’s accessibility
enabled — meaning a Flex application that an assistive screen reader can

read — open the Properties dialog box (shown in Figure 4-10), select Flex

Compiler, and select the Generate Accessible SWF File check box.

 If you tweak your project properties too much and want to go back to Flex

Builder’s project defaults, simply click the Restore Defaults button at the

bottom of the project Properties dialog box. All the settings on that particular

project restore back to their defaults.

 In addition to the Flex Navigator, you can use the top-level Flex Builder menus

to open the project Properties dialog box. Simply select the project in the Flex

Navigator view and choose File➪Properties.

Figure 4-10:
The

Properties
dialog box

lets you edit
the existing

project’s
properties.

68 Par t II: Using Flex Builder (The Flex IDE)

Deleting projects
To delete a project, right-click the project in the Flex Navigator view and select

Delete from the context menu that appears. The Confirm Project Delete dialog

box opens. You can choose one of the following options to delete the project:

 � Delete the project from the Flex Navigator view and keep all the project’s

content. If you select this option, you can always import the project

back into Flex Builder. To find out more about importing Flex Builder

projects, check out the section “Importing and Exporting Existing Flex

Builder Projects,” later in this chapter.

 � Delete the project, as well as all its contents, meaning any source files

that comprise that project.

 Be careful when choosing to delete all of a project’s content because

you can’t restore it after deletion. By default, the Do Not Delete

Contents option is selected.

Targeting different versions of the Flex
Software Development Kit (SDK)
Flex Builder 3 includes a new feature that allows you to choose which version

of the Flex SDK (Software Development Kit) you want your Flex or ActionScript

project to target. The Flex SDK is basically all of the code libraries and the

MXML compiler that is needed to create and compile a Flex application.

When new versions of the Flex SDK are released, Flex Builder installs the

newest version as well as some prior versions of the Flex SDK during the

installation process. That way, Flex Builder lets you target prior versions of

the Flex SDK when you build your Flex application. By default, Flex Builder

creates projects that target the latest version of Flex. You may choose to

target an older Flex SDK, for example, when a new version of Flex Builder

comes out and you import one of your pre-existing projects. For example,

you may want to ensure that the old project targets the older version of the

Flex framework if you don’t want to update your project’s source code to

work with the newer version of the Flex SDK

You can set or edit the targeted SDK project property by following these steps:

 1. Right-click the project’s name in the Flex Navigator and select

Properties from the context menu that appears.

 The Properties dialog box appears.

 2. In the left pane of the Properties dialog box, select the Flex Compiler

option.

69 Chapter 4: Flex Builder: The Best Flex Development Tool

 In the Flex SDK Version section on the right side of the dialog box, the

Use Default SDK option is selected, as shown earlier in Figure 4-10. That

option also displays what the default SDK is (it’s often the latest version

of the Flex SDK like Flex 3).

 3. To choose which SDK version you want the project to target, select the

Use a Specific SDK radio button. Then from the SDK drop-down list,

select which Flex version you want to target.

 4. Click OK to close the dialog box.

Importing and Exporting Existing
Flex Builder Projects

Flex Builder lets you import an existing project or export a project as an

archive file. You may find this feature helpful in situations in which Flex proj-

ects are archived in a source control repository for sharing code among team

members.

A source control repository (also known as revision control software) is a piece

of software that allows for the management and organization of multiple ver-

sions of software between team members. CVS, Perforce, and SVN are all

common types of source control repository software.

You can simply import projects from a source control repository that already

have their project settings configured. This is because as you create a proj-

ect and edit its properties, Flex Builder creates a file representing that project

and its configuration and saves the file in the project directory. You can import

the project directory into Flex Builder, and the project can be created and

configured based on the information in that project file. If you’re working on a

team that has multiple developers working on the same projects, these project-

importing capabilities can be very handy for quickly setting up complex projects.

Similarly, you can use the export project options to export a project as a Zip file

and then easily share the project with other developers who use Flex Builder.

Importing a project
The steps to import an existing project are very straightforward:

 1. Choose File➪Import➪Flex Project.

 The Import Flex Project dialog box opens, as shown in Figure 4-11.

70 Par t II: Using Flex Builder (The Flex IDE)

 Decide whether you want to import the project from an existing archive

file — that is, a Zip file — or from a folder on your file system that con-

tains all the project source files and a file capturing the project

configurations

 2. Click the Browse buttons for whichever option describes the project

that you want to import and select the Zip file or folder that encom-

passes your project.

 3. (Optional) To change the location where you want the files to be

imported, un-check the Use Default Location option and, in the Folder

text field, specify the location in your file system.

 4. Click Finish to close the wizard.

Figure 4-11:
Flex

Builder’s
Import

Wizard lets
you import

existing
projects
from an

archive Zip
file or exist-

ing source
code on
your file
system.

Exporting a project as an archive
Flex Builder offers a simple wizard that you can use to export an existing

project into an archive (that is, a Zip) file. Just follow these steps:

 1. Select the project in the Flex Navigator view. Then, choose File➪
Export➪Flex Project Archive.

 The Export Wizard appears, as shown in Figure 4-12.

 2. Select the project that you want to export from the Project drop-down list.

 3. Use the Browse button to choose a location where you want to place

your project’s archive Zip file.

 This Zip file contains all the source code and assets that comprise the

Flex application.

71 Chapter 4: Flex Builder: The Best Flex Development Tool

Figure 4-12:
Flex

Builder’s
Export

Wizard lets
you export
your proj-

ect into an
archive
Zip file.

 4. Click the Finish button.

 Voilà, your project exports into a handy Zip file that you can send to

other developers on your team!

Running and Releasing Your Projects
Flex Builder allows you to build your project — that is, compile the project into

the appropriate end result — for use in a debugging session or for releasing

to your end users. The most common build task is for you to enable the Build

Automatically option, which means that the project is built continually, and

Flex Builder reports errors in the current state of your project in the Problems

view in real time. By default, the Build Automatically option is not set because

this capability can take a long time, depending on the size of your project.

Building and cleaning your projects
To enable the Build Automatically option, choose Project➪Build

Automatically from the menu bar. When you write code in your project with

Build Automatically enabled, Flex Builder alerts you of errors, such as compi-

lation errors, in the Flex Builder Problems view. For example, in Figure 4-13,

the Problems view points out an error in which a component id is inaccurate.

If you are working on a small to medium-size project, feel free to enable the

Build Automatically option. As you work, if you notice Flex Builder is taking

72 Par t II: Using Flex Builder (The Flex IDE)

too long to build and analyze the current state of your project, you can disable

Build Automatically to gain a performance boost.

If you don’t enable Build Automatically, you can build your applications by

selecting the appropriate build options in the top-level Project menu. You

can choose to build all your projects, a single project, or a set of projects.

Sometimes, you may want to clean your projects before building to ensure

that all the changes have been analyzed and the prior build output is cleared.

To clean your projects, choose Project➪Clean. The Clean dialog box opens,

in which you can choose to clean all the projects in your workspace or a

specific project. Get into the habit of cleaning your projects so that you can

ensure they stay in up-to-date shape.

Figure 4-13:
When you

enable
Build Auto-

matically,
compilation

and build
problems
appear in

the Flex
Builder

Problems
view.

Run

Running your projects
To run your project — that is, to output the project into its runable form,

such as loading a SWF application in a Web browser — click the Run icon,

shown in Figure 4-13. Flex then compiles the project and opens the applica-

tion in a browser window so that you can view it. If Flex encounters compila-

tion problems, those problems appear in the Problems view, and you need to

fix them before you can run the application.

73 Chapter 4: Flex Builder: The Best Flex Development Tool

To find out how to debug your application, refer to Chapter 5 for information

on using Flex Builder’s visual debugger.

Releasing your projects
After you develop your projects to satisfactory form, you need to get all the

files built in a way that is appropriate for the application to be released to its

end users. Flex Builder gives you the option to export a project into a release

version, in which the project does not include any bloat-inducing materials,

such as debug information.

To export a release version of your application by using the Export Release

Build Wizard, follow these steps:

 1. Choose File➪Export➪Release Build.

 The Export Release Build Wizard, shown in Figure 4-14, opens.

 2. From the Project drop-down list, select the project that you want to

export, and from the Application drop-down list, select the root MXML

or ActionScript file for that project.

Figure 4-14:
Use the

Export
Release

Build
Wizard to

create a
release ver-
sion of your

project.

74 Par t II: Using Flex Builder (The Flex IDE)

 3. (Optional) Check the Enable View Source check box if you want to

build a release version of your application that allows users to right-

click in your running application and view the source files and code

(including ActionScript, MXML, and CSS files) that comprise your

application.

 By default, this option is unchecked, but if it’s okay to introduce an ele-

ment of transparency in your application (that is, let users see the code

behind the running application), go ahead and select the Enable View

Source option.

 4. In the last section of the dialog box, browse to a location in the file

system where you want to write the release version files.

 5. Click Finish.

 You now have an export-worthy version of your project that you can

upload to your production servers and share with the world!

Accessing Flex Builder Help Materials
Flex and Flex Builder documentation that you can use to understand features

and quickly get help when you’re working on your projects are built into Flex

Builder. You can use most of these options through Flex Builder’s top-level

Help menu. Here are some of the options available on this menu:

 � Help Contents: View help materials in a separate window.

 � Search: Query the help documentation.

 � Report a Bug: Access the public, online Flex bug-base, in which you can

enter new bugs, and watch and vote on existing bugs in the Flex frame-

work and Flex Builder products. The online Flex bug base is located at

http://bugs.adobe.com/flex.

 � Flex Start Page: Return to Flex Builder’s start page, which has all sorts

of useful information and a tutorial to get you up and running building

simple Flex projects.

Chapter 5

Introducing Flex Builder
for Developers

In This Chapter
� Understanding the composition of an MXML file

� Improving productivity with a few Flex Builder tricks

� Debugging and profiling your application

� Refactoring your code

In this chapter, we cover the Flex Builder features that you will specifically

use for writing code, debugging, and optimizing your applications. This

chapter covers the nuts and bolts of how to build and run Flex applications;

if you’re interested in finding out how to make your applications look pretty,

page ahead to Chapter 6.

This chapter starts off by breaking down the different parts of an MXML file

and explaining how you can combine MXML code, ActionScript code, and

style blocks together and make them all play nice. Then you discover a few

Flex Builder tips that will make you glad you purchased Flex Builder. In the

last few sections of this chapter, you find out about debugging and profiling

with Flex Builder’s built-in tools.

Anatomy of an MXML File
All Flex applications start as a single MXML file that contains a base

<mx:Application> tag. As your project grows, you likely create multiple

MXML or ActionScript files to separate pieces of your projects into their own

files, but you always have a single MXML file that contains the Application

tag. All MXML files can contain three main parts:

 � MXML markup

 � ActionScript code blocks

 � CSS Script blocks

76 Part II: Using Flex Builder (The Flex IDE)

These three elements can be used interchangeably within a single file. The

example in Listing 5-1 is a small Flex application that contains all three indi-

vidual pieces.

Listing 5-1: A Typical MXML Application with
MXML Markup and Style and Script Blocks
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Style> ➝4
 .redButton {
 fill-colors: #ff0000, #330000;
 fill-alphas: 1, 1;
 color: #FFFFFF;
 text-roll-over-color: #FFFF00;
 }

 </mx:Style> ➝ 11

 <mx:Script> ➝ 13
 <![CDATA[
 import mx.controls.Alert;

 private function clickHandler(event:Event):void {
 Alert.show(“You clicked the Button”);
 }
]]>

 </mx:Script> ➝ 22

 <mx:Button click=”clickHandler(event)” ➝ 24

 styleName=”redButton” label=”Click Me” /> ➝ 25

</mx:Application> ➝ 27

The following list takes a closer look at Listing 5-1:

 ➝ 4 On Lines 4 through 11, you create an <mx:Style> block that

contains a CSS style. In this example, you create a style named

redButton that sets the fill-colors and fill-alphas styles,

which create an opaque red gradient background fill. You also set

the color and text-rollover-color styles, which affect the

color of the text on the Button that will apply this style. (See the

“Introducing the <mx:Style /> tag” section, later in this chapter, for

more on CSS.)

 ➝ 13 Lines 13–22 define a <mx:Script> block that contains an

ActionScript function. Anything within the <mx:Script>

block must be ActionScript code; you cannot mix and match

ActionScript and MXML within the <mx:Script> block. In this

example, you create a function that runs when the user clicks the

Button defined in this Application.

77 Chapter 5: Introducing Flex Builder for Developers

 ➝ 24 After the <mx:Script> block, you add the rest of the MXML

tags that create this Application. In this simple example, you

add a single <mx:Button> that will create a clickable button

with a label that says Click Me. You reference the ActionScript

clickHandler function that you defined previously in the

<mx:Script> block (Lines 13–22).

 ➝ 25 You set the styleName of this Button to redButton, which ref-

erences the CSS style that you created in the <mx:Style> block

(Lines 4–11). This gives the Button a red gradient background.

Including ActionScript with
the <mx:Script /> tag
You can create simple Flex applications with just MXML, but to make an

application do something, you need to write some ActionScript. The good

news is that MXML and ActionScript can coexist in the same file, so you can

use the full power of ActionScript with the declarative markup of MXML.

The <mx:Script> block in Listing 5-2 shows how to include ActionScript

within MXML. The <!CDATA[part of the <mx:Script> block is required,

but should get automatically inserted by Flex Builder when you type

<mx:Script>. You can declare variables and methods within the

<mx:Script> block, and then you can reference those variables and meth-

ods in your MXML component tags.

Listing 5-2: Combining ActionScript with MXML Markup

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 [Bindable]
 private var myCounter:int = 0;

 private function incrementCounter():void {
 myCounter++;
 }

 private function decrementCounter():void {
 myCounter--;
 }

]]>
 </mx:Script>

(continued)

78 Part II: Using Flex Builder (The Flex IDE)

Listing 5-2 (continued)

 <mx:Button label=”Increment”
 click=”incrementCounter()” />
 <mx:Button label=”Decrement”
 click=”decrementCounter()” />

 <mx:Label text=”Current value: {myCounter}” />

</mx:Application>

Listing 5-2 shows how to declare a variable — myCounter — in ActionScript

that then gets referenced in MXML. In this example, you use data binding

to populate the text property of the <mx:Label> component. Data bind-

ing is a powerful feature of MXML that allows you to reference ActionScript

variables within MXML markup. The curly braces that you see around the

myCounter variable in Listing 5-2 show data binding in action. At runtime,

the contents of the text property will always be updated to include the

latest value of myCounter whenever it changes. For an in-depth look at data

binding, head over to Chapter 12.

This listing also shows how to invoke ActionScript functions in response

to user interaction with components defined in MXML. You add a few

<mx:Button> tags to your application and use the click event on the but-

tons to call the functions you defined in the <mx:Script> block.

Introducing the <mx:Style /> tag
Flex supports styling using Cascading Style Sheets (CSS), similar to how CSS

is used in HTML pages. CSS lets you define sets of styles that will affect the

visual look and feel of your application. You can define styles for specific

components or use custom style names, and these styles will affect every-

thing from border color to font size. However, you should note that CSS styl-

ing in Flex applications isn’t the same as CSS styling in HTML. Flex supports

only a subset of the full functionality of CSS, and the style names you may be

familiar with in HTML CSS aren’t the same. For example, CSS in HTML allows

nested (cascading) styles, but nested styles aren’t allowed in Flex. This

means that Flex supports styling in a similar way as CSS, but without the cas-

cading part. Think of the styling approach in Flex as similar to CSS, but not

real CSS.

You can style your Flex applications in four ways:

 � Use the <mx:Style> block within your Application file to define the styles.

 � Use an external CSS file and point to that file by setting the source

property of a <mx:Style> tag.

79 Chapter 5: Introducing Flex Builder for Developers

 � Set styles on individual MXML tags for specific components.

 � Set styles through ActionScript by calling the setStyle(styleName,
value) method on a specific component.

Listing 5-1 uses the first method to create the red button style. For more

detailed information about styling, refer to Chapter 18.

Developer Tips and Tricks
You don’t technically need Flex Builder in order to create Flex applications. If

you’re inclined, you can download the free (and open source) Flex SDK, use a

text editor to write your code, and compile the code with the command-line

compiler. So why would you shell out the cash to purchase Flex Builder? A

number of its features dramatically improve your productivity while building

Flex applications. We cover two of the most important features, the Debugger

and the Profiler, later in this chapter. This section focuses on a few other

helpful features that Flex Builder provides.

Get the hint: Code hinting
Flex Builder provides code hinting while you type, and after you experience

code hinting, you’ll cry if you ever have to go back to an editor without it.

Code hinting, or content assistance, shows a drop-down list of possible options

to complete the line you’re typing. This feature works while you’re editing

both MXML and ActionScript.

To understand the power of code hinting, create a new Flex application and

add a simple button to your application by typing <mx:Button. After you type

the first space after <mx:Button, you see a list of all available properties,

styles, events, and effects that you use for the Button component. Figure 5-1

shows the code hinting overlay that appears. As you continue typing, the list is

filtered to show only the items that begin with the characters you typed.

Figure 5-1:
The code

hinting
overlay.

80 Part II: Using Flex Builder (The Flex IDE)

At any point while you’re typing, you can use the arrow keys to scroll

through the applicable options. After you get the hang of using code hinting,

you find that have to type only the first few letters of the properties you want

and then quickly select the appropriate property from the list.

 When you’re editing an MXML tag, code hinting is automatically invoked

when you type the space character. You can manually invoke code hinting at

any time by pressing the key combination Ctrl+spacebar. We have become

so dependent on code hinting that we inadvertently press Ctrl+spacebar on

normal Web page forms, in the hope that code hinting will automatically com-

plete the form for use. Learn to use the Ctrl+spacebar shortcut well, and it will

become your best friend.

 When you first use Flex, you may have difficulty keeping track of all the names

of the properties available for each component. You can use the online Flex

SDK documentation to look up a full list of properties, but often the fastest

way is to invoke code hinting on an MXML tag and browse through the list. In

fact, if you simply type the beginning of an MXML tag in your application by

typing <, the full list of all components you can use in your application pop

ups, which is useful before you memorize the names of the full Flex SDK com-

ponent set (see Figure 5-2).

Figure 5-2:
Using code

hinting to
browse all

available
compo-

nents.

Code hinting also works when you edit ActionScript code. While editing

ActionScript, you can use the same Ctrl+spacebar keyboard shortcut to

manually invoke code hinting where it’s available. As you type, you notice

that code hinting is automatically displayed at various points — for example,

whenever you type a period after a variable name to access properties of that

variable.

Figure 5-3 shows the code hinting that appears in ActionScript as you type

button.s, which lists all properties, styles, events, and effects available on

the button variable that begin with the letter s.

81 Chapter 5: Introducing Flex Builder for Developers

Figure 5-3:
Using code

hinting
while typing
ActionScript

code.

Going straight to the source code
Another powerful advantage of using Flex Builder is that you can jump into

the source code for any MXML tag or ActionScript class you see in your

application. If you move the mouse cursor over any MXML tag while holding

down the Ctrl key (or the Ô key, if you’re a Mac user), an underline appears

under the class name of the MXML tag, as shown in Figure 5-4. Clicking this

tag while holding down the Ctrl key opens the source file for that class, which

can be useful when your application is divided into multiple MXML compo-

nents and you reference one MXML file within another.

Figure 5-4:
Ctrl+Click to
jump to the
source file.

Exploring the Flex SDK source code
You can use the Ctrl+click approach to jump
to the source file of any class in the Flex SDK,
not just to the source files you have created.
If you Crl+click a class that’s part of the Flex
framework, Flex Builder loads the source for
that particular class. This action lets you dive
into the details of how the Adobe Flex team
built the Flex SDK. Try not to get overwhelmed
the first time: The source code for the Flex SDK

is large and full of useful information, but you
must have a fairly advanced knowledge of Flex
to properly understand this resource. After you
get a solid understanding of how Flex works,
you can start digging into the internal workings
of the framework by analyzing the source code
of the framework itself. For now, just know that
the code is available to you if you want to dig in
and figure out how Adobe did something.

82 Part II: Using Flex Builder (The Flex IDE)

Using automatic builds
To run your Flex application, you need to build a compiled SWF file from the

source MXML and ActionScript files. You have two build options:

 � Automatic: You can turn automatic builds on or off by toggling the

Project➪Build Automatically menu item, shown in Figure 5-5. If auto-

matic builds are turned on, each time you save changes to your source

files, the compiler rebuilds your application.

 � Manual: If you turn off automatic builds, you have to perform manual

builds. The primary reason for disabling automatic builds is to improve

the performance of Flex Builder. If you notice Flex Builder running slug-

gishly whenever you save a file, you might want to try turning off auto-

matic builds. For more on building your project, see Chapter 4.

Figure 5-5:
The Project
menu with

its build
options.

Organizing import statements
When you write ActionScript code, you need to have, at the top of your class,

a block of import statements that let the compiler know which external classes

you reference. Flex Builder is good at automatically adding the import state-

ments to the top of your class, although if you aren’t using the content assis-

tance features fully, you may have to write some import statements by hand.

At the top of your class, you see lines that look like this:

import mx.controls.Button;

import mx.managers.PopUpManager;
import mx.containers.Canvas;

import mx.collections.ArrayCollection;
import flash.events.Event;
import mx.controls.Alert;

83 Chapter 5: Introducing Flex Builder for Developers

These import statements tell the compiler where to find all the classes that

you use somewhere in your code. As you write more and more code, the

number of import statements grows. If you remove chunks of code and you

no longer reference certain classes, extraneous import statements are left in

your code. Luckily, Flex Builder can automatically organize your import state-

ments, which removes any unused imports and orders your imports by pack-

age name and in alphabetical order.

Flex Builder can be set to always keep your import statements organized, or

you can manually run the Organize Imports command whenever you like. The

default Flex Builder installation has automatic import organization turned on.

To modify the import organization properties, choose Window➪Preferences➪
Flex➪Editors➪ActionScript Code to open the Preferences panel, as shown in

Figure 5-6.

Figure 5-6:
Flex Builder

import
organization

options.

If Flex Builder is set to automatically organize your import statements, then

it will reorganize the code in the previous example to produce the following

lines:

import flash.events.Event;

import mx.collections.ArrayCollection;
import mx.containers.Canvas;
import mx.controls.Alert;
import mx.controls.Button;
import mx.managers.PopUpManager;

Notice that the import statements are now in alphabetical order based on

the full package name, and an extra white space line is inserted between

blocks of imports from different base packages. If you have Flex Builder set

to not automatically organize your import statements and they seem clut-

tered and unorganized, try running the Organize Imports command manu-

ally by choosing Source➪Organize Imports.

84 Part II: Using Flex Builder (The Flex IDE)

 Import organization is available only if you’re editing a pure ActionScript

file. If you’re editing an MXML file that contains an <mx:Script> block with

ActionScript code, you have to manually organize your own import statements.

Squashing Bugs with
the Visual Debugger

Debugging code is an integral part of writing software applications. Nobody

writes bug-free code, so having a solid debugging tool to help track down

those pesky bugs is a must. If you come from a Flash development back-

ground, you have probably had the unpleasant experience of writing

ActionScript code in the Flash IDE and using millions of trace() statements

throughout your code as the primary means of debugging. Thankfully, Flex

Builder provides a full-fledged debugger that’s essential for powerful applica-

tion development.

Launching the debugging perspective
To begin debugging your application, run the debug version of the compiled

SWF. To launch debugging, select your main application file, right-click, and

choose Debug As➪Flex Application. This command switches Flex Builder

from the Flex Development perspective to the Flex Debugging perspective,

shown in Figure 5-7.

Using breakpoints to step through code
An essential debugging technique involves adding breakpoints to your code.

Breakpoints are markers at specific lines in your source code that pause code

execution. After a breakpoint is reached, you can step into the code, inspect

variables, and step through the code line by line to understand exactly

what’s happening as the code executes.

You can add a breakpoint to your code in two ways:

 � Place the cursor at the line you want in your code and choose

Run➪Toggle Breakpoint from the Flex Builder menu.

 � Double-click the line number of the line you want.

After a breakpoint is added, you see a round dot icon next to the line number,

indicating that the breakpoint has been added (see Figure 5-8).

85 Chapter 5: Introducing Flex Builder for Developers

Figure 5-7:
The Flex

Debugging
perspective.

Figure 5-8:
A break-
point on

Line 9.

When you run the application in Debug mode, it pauses when it reaches a

breakpoint, and at that point you can use the debug controls to step through

the code. The debugging control bar is shown in Figure 5-9.

You can use the first few buttons on the toolbar shown in Figure 5-9 to con-

trol the debugging session by resuming code execution or terminating the

debugging session. If you press the play button to resume code execution,

the application continues to run until the next breakpoint is reached. The

fairly self-explanatory stop button ends your debugging session.

86 Part II: Using Flex Builder (The Flex IDE)

Figure 5-9:
The

debugging
control bar.

Play Stop Step Return

Step Over

Step Into

Use the three buttons with the arrow icons (refer to Figure 5-9) to step

through your code line by line:

 � Step Into: The first button in this set, the Step Into button, steps into

any functions in the current line of code. If the debugger is paused on a

line that contains calls to another function, which might be contained in

a separate class, clicking the Step Into button loads that function (even

if it is defined in a different class) and continues debugging.

 � Step Over: Alternatively, you may want to stay in the function you’re

debugging and not jump around into each of the functions that are refer-

enced. In this case, you can use the Step Over button to “step over” the

function and continue debugging on the next line.

 � Step Return: The third button, Step Return, jumps out of the current

function and pauses the debugger wherever that function returns. You

then jump to wherever that function was called and continue debugging

from there.

Debugging a Flex application consists of stepping through much of the code

line by line to identify the exact location of bugs. You will become quite famil-

iar with setting breakpoints and stepping into, out of, and over your source

code.

Inspecting variables
Stepping through lines of code on its own isn’t incredibly useful, but inspect-

ing the state of variables while debugging certainly is. During the debugging

process, the Variables panel (shown in Figure 5-10) contains a list of all popu-

lated variables and their values.

The example in Figure 5-10 sets a breakpoint in buttonClickHandler, after

the values for username and password have been assigned. You can then

view the values in the Variables panel and ensure that they are in fact valid

values before they get sent to the Web service later in the function.

87 Chapter 5: Introducing Flex Builder for Developers

Figure 5-10:
The

Variables
panel.

Profiling Your Application
Flex applications can produce stunning visual effects and load tremendous

amounts of data, but an inherent danger accompanies that power. Flex appli-

cations also have the potential to consume massive amounts of memory and

processing power on the user’s computer. Building a large and impressive

Flex application is a constant balancing act in which you have to always be

aware of the cost, in terms of RAM use and CPU performance, for these rich

experiences.

Of all the new features added to version 3 of Flex Builder, perhaps the most

useful is the Flex Profiler, which lets you monitor your application’s perfor-

mance and dig in to identify bottlenecks and memory leaks. Writing high-

performance, scalable Flex applications is no easy task, but the Flex Profiler

takes much of the guesswork out of application optimization.

In this section, we give you an overview of using the Flex Profiler, for both

memory management and performance profiling. For more detailed per-

formance tips and further discussion of using the Flex Profiler, refer to the

bonus chapter titled “Optimizing Your Flex Applications,” available for down-

loading at www.dummies.com/go/adobeflexfd.

 The Flex Profiler is available only if you purchased the Professional version

of Flex Builder 3. In this section, we assume that you have purchased Flex

Builder Pro. If you have the trial version of Flex Builder, you can test the fea-

tures of the Profiler that we discuss here during your trial period.

Taking out the garbage:
The Garbage Collector
Before we talk about profiling memory use, you must have a basic under-

standing of the Garbage Collector and the impact it has on the memory use

of your Flex application. As your application runs, it generates objects in

memory. Every time you create a new variable, you’re creating an object that

takes up an amount of space. If you create a new String or Number object, the

amount of space for that individual object is fairly small. But if you create a

new Image or BitmapData object, the size of that single object can be quite

88 Part II: Using Flex Builder (The Flex IDE)

large. As all these objects accumulate in memory, the amount of RAM needed

to run your application increases.

If the number of objects in memory continues rising, eventually your applica-

tion becomes sluggish and unresponsive and might even lock up the user’s

computer. As your application runs, the Garbage Collector continuously moni-

tors the memory use of your application and ensures that any objects you

need stay in memory and that all unneeded objects are dumped. By dumping

unneeded objects, the Garbage Collector frees up memory to keep your appli-

cation running smoothly.

To determine which objects should stay in memory and which ones can

be collected, the Garbage Collector checks all objects for references to the

object in other parts of the application. If a reference to the object is found,

the object cannot be garbage-collected because that would make it unavail-

able and the other part of your application that needs it would have a prob-

lem accessing it.

You can use a few tips and tricks to help ensure that you’re freeing up refer-

ences to objects that you want garbage-collected. See the bonus chapter

(“Optimizing Your Flex Applications”) for a discussion of some of these hints.

 You cannot predict when the Garbage Collector will sweep through and col-

lect the trash. How often it runs is determined by a variety of factors, includ-

ing the memory limitations placed on Flash Player by the browser in which

your application is running. The garbage-collection process might run more

often in one browser than in another, or more often on one user’s computer

than on another. Because the Garbage Collector tries to run only when neces-

sary, your Flex application eats up as much memory as it wants, to a certain

point — when Flash Player decides that it’s time for a little housecleaning.

Profiling memory use
When you’re optimizing your Flex application, you should focus on two

distinct areas: memory usage and CPU performance. Profiling memory use

involves keeping track of all objects held in memory and identifying memory

leaks. A memory leak occurs when an object that’s no longer needed contin-

ues to be held in memory. In this section, we cover profiling memory usage,

but for in-depth coverage of identifying and preventing memory leaks, refer

to the bonus chapter.

If you want to initialize the Profiler, you launch your application in a slightly

different way. You can either right-click a main application MXML file and

choose Profile As➪Flex Application or choose Run➪Profile from the main

Flex Builder menu, shown in Figure 5-11.

89 Chapter 5: Introducing Flex Builder for Developers

Figure 5-11:
Launching

the Flex
Profiler.

Before launching the profiling session, you can specify which profiling options

you want to enable. The properties dialog box shown in Figure 5-12 lets you

enable or disable different options for memory and performance profiling.

The Enable Memory Profiling check box controls whether the Profiler keeps

track of memory statistics. If you deselect this box, you can still profile the

performance of your application, but no memory details will be available.

Within memory profiling, you have two configuration options:

 � Watch Live Memory Data box: If you select this check box, a list of all

objects in memory is displayed in real time as your application runs.

Otherwise, you have to take a memory snapshot when you want to see

the objects that are in memory.

 � Generate Object Allocation Stack Traces: This check box controls

whether the Flex Profiler keeps track of where in your source code each

object in memory was created. If you select this check box, you can

inspect each individual object and see exactly where the object was cre-

ated, which can be helpful for tracking down memory leaks.

Figure 5-12:
Profiling

configura-
tion options.

90 Part II: Using Flex Builder (The Flex IDE)

 The Watch Live Memory Data and Generate Object Allocation Stack Traces

options both provide useful information while profiling your application but

require significant resources on your computer. If you have a powerful com-

puter, you can probably select both options; if you find the performance of the

Profiler to be an issue, however, try disabling them. You don’t create a complete

picture without them, but sometimes the Flex Profiler can be a resource hog.

After you begin profiling your application, Flex Builder switches into the

Profiling perspective, as shown in Figure 5-13. The Profiling perspective is

divided into three main parts: the profiling session controls in the upper-left

area, the Memory Usage chart in the upper-right area, and the Live Objects

list along the bottom.

Figure 5-13:
The Flex
Profiling

perspective.

Profiling session controls Memory Usage chart

Live Objects list

91 Chapter 5: Introducing Flex Builder for Developers

Inspecting live objects
If you leave the Watch Live Memory Data check box selected in the Profiler’s

option panel, the Profiling perspective shows a list of all objects in memory

as your application runs. This list can be sorted and filtered in real time and

can help you inspect object creation and collection as it happens.

Figure 5-14 shows some sample output in the Live Objects panel. The list

shows unique entries for each class and displays the number of instances

and the amount of memory that was allocated.

Figure 5-14:
Inspecting

live objects
in memory.

Take Memory Snapshot

Filters

Here’s a closer look at the individual columns in the Live Objects panel:

 � Class column and Package column: The first two columns, Class and

Package, identify the class so that you can track down exactly which

objects you’re looking at. By default, the Flex Profiler filters out the Flex

and Flash packages (all classes under the mx.* or flash.* package

structure). These default filters can be useful if you want to focus on

custom classes, but sometimes you want to include the classes from

the Flex framework to see how they’re affecting memory usage. You can

change the filters by clicking the Filters icon (refer to Figure 5-14).

 In Figure 5-14, we removed the mx.*.* filter so that we can see the Flex

classes that are taking up memory.

 � Cumulative Instances column and Instances column: The next two col-

umns, Cumulative Instances and Instances, tell you how many objects of

a given class have been created:

 • Cumulative Instances: Refers to the total number of objects that

have been created since the application started

 • Instances: Displays the number of instances that are live in memory

 If the count in the Cumulative Instances column is higher than the count

in the Instances column, you know that some of the objects that were

created were garbage-collected.

92 Part II: Using Flex Builder (The Flex IDE)

 If you compare the numbers in the Cumulative Instances column and

the Instances column shown in Figure 5-14, you can see that the applica-

tion created 92 total instances of the Image class and that only 5 remain

in memory. The other 87 instances of the Image class, therefore, were

garbage-collected.

 � Cumulative Memory column and Memory column: The next two col-

umns, Cumulative Memory and Memory, indicate how much total memory

has been allocated for each class and how much memory each class is

occupying. If you look at the corresponding numbers in Figure 5-14, you

can see that the 92 instances of the Image class occupied a combined

112,608 bytes. The more important number in this view, however, is in the

Memory column, which indicates that the 5 Image objects that remain in

memory are occupying a total of 6,120 bytes. This number contributes to

the total memory footprint of your application.

 If your application is correctly freeing objects for garbage collection, the

general trend you see is that the numbers in the Cumulative Instances and

Cumulative Memory columns keep increasing while the values in the Instances

and the Memory columns rise and fall, indicating that objects are being cre-

ated and garbage-collected correctly. A common sign of a memory leak is

if the numbers in the Incidents column and Memory column continue to

increase but never decrease.

Taking memory snapshots
Inspecting live memory allocation in your application can be incredibly

useful, but sometimes you want to compare the amount of memory used in

your application at different stages. At any point while the Flex Profiler is

running, you can take a memory snapshot, which captures the memory allo-

cation data at the time you take the snapshot and saves it so that you can

analyze it later. To take a snapshot, click the Take Memory Snapshot button,

as shown in Figure 5-14.

When you take a memory snapshot, a new snapshot entry is added to the

profiling session, as shown in Figure 5-15. You can select a snapshot by

double-clicking the entry, which loads the snapshot details into a new panel.

Figure 5-15:
Multiple
memory

snapshots.

Finding Loitering Objects

Capture Performance Snapshot

93 Chapter 5: Introducing Flex Builder for Developers

Each memory snapshot contains information that’s similar to the information

shown in the Live Objects panel, except that it contains only the information

about the in-memory objects at that particular moment.

No loitering!
If you have two memory snapshots, you can compare them to find loitering
objects, which have been left in memory and might indicate memory leaks. To

view a list of loitering objects, you can select two memory snapshots in the

list and compare them by clicking the Find Loitering Objects button (refer to

Figure 5-15).

If you compare two memory snapshots and find an unexpected list of loiter-

ing objects that are taking up memory, it might be an indication of a memory

leak in your application.

 Because the Garbage Collector runs intermittently, a certain number of loiter-

ing objects remain in memory between garbage-collection cycles. So, finding a

few loitering objects isn’t a concrete indication of a memory leak — you may

have just caught the Garbage Collector between cycles. While you are running

the Flex Profiler, you can force the Garbage Collector to run by clicking the

Run Garbage Collector button. (You cannot force the Garbage Collector to run

unless you are using the Flex Profiler.)

To track down why loitering object cannot be garbage-collected, you can

inspect the individual object instances and check the references to those

objects.

Inspecting object references
When you view a list of objects in memory, either while inspecting a memory

snapshot or a list of loitering objects, you can double-click a specific entry to

view the object references for that class. When you double-click an entry, a

new Object References panel loads, as shown in Figure 5-16.

Figure 5-16:
The Object

References
panel.

94 Part II: Using Flex Builder (The Flex IDE)

In Figure 5-16, you’re inspecting the references to Image objects. You can see

two instances of the Image class listed in the left pane. In this list, you see not

only the individual instances but also how many references to these objects

are in the application. The listing shown in Figure 5-16 indicates that the first

Image instance in the list has 13 references in the application. The second

Image object, however, has no references, which indicates that it will be

garbage-collected in the next pass of the Garbage Collector.

The right pane shows where in the code that particular object was created.

Note that this information is available only if you turned on the Generate

Object Allocation Stack Traces option when you launched the Flex Profiler.

You can use this information to trace the sequence of steps that created a

particular object.

 If external references to an object exist, the Garbage Collector cannot col-

lect that object. So, if you examine all references to loitering objects, you can

determine which references are keeping the object from being collected.

A picture is worth a thousand words
The upper-right panel in the Profiler perspective is a live memory chart

that shows the memory usage of your application during its lifetime (refer

to Figure 5-13). You can gain a great deal of insight into your application’s

memory usage by checking image snapshots, but viewing the graph of

memory allocation sometimes makes memory problems jump out at you.

Figure 5-17 shows a typical memory chart for an application. The application

that generated this chart is a slide show application that loaded a series of

images one after the other.

Figure 5-17:
A healthy
memory-

allocation
chart.

Looking at this chart, you can see the allocation of memory as new images

are created, which is indicated by the increases in the chart. But you can

also see the Garbage Collector doing its job and cleaning up the old images

that are no longer needed. Notice that memory usage rises and falls but stays

95 Chapter 5: Introducing Flex Builder for Developers

within an acceptable range. This application could run for hours on end, and

its memory usage would remain fairly constant, even though it’s continu-

ously creating new Image objects.

You can compare the healthy memory chart shown in Figure 5-17 with the

unhealthy one shown in Figure 5-18. This new chart reflects the same applica-

tion, but references to old Image objects aren’t removed from the main appli-

cation, so the old Image objects are never garbage-collected.

Figure 5-18:
An

unhealthy
memory-

allocation
chart.

 If you notice that certain interactions with your application cause the

memory-allocation chart to rise and never fall back to previous levels, you

may be noticing a memory leak in your application.

Profiling CPU performance
In addition to profiling the memory usage of your application, the Flex

Profiler can profile the performance of your application and tell you which

methods are taking the most time to execute. In terms of diagnosing a slow

Flex application, memory usage and performance are the two contributing

factors that can lead to a bad user experience. In earlier sections in this chap-

ter, you find out how to use the Profiler to diagnose memory issues; in this

section, we cover how to use the Profiler to find performance bottlenecks.

Taking a performance snapshot
When the Flex Profiler is running, you can take a performance snapshot by

pressing the Capture Performance Profile button (refer to Figure 5-15).

This saved performance snapshot entry is added to the profiling session,

just like the saved memory snapshots. You can double-click one of the per-

formance snapshot entries to load a new Performance Profile panel with the

details of that snapshot (see Figure 5-19).

96 Part II: Using Flex Builder (The Flex IDE)

Figure 5-19:
The Perfor-

mance
Profile
panel.

The Performance Profile panel shows you individual functions and how much

time, in milliseconds, each function took to complete. Just as cumulative and

individual measures indicate memory usage, cumulative and individual mea-

sures gauge the performance of a function. Cumulative measures indicate the

total length of time it took for the function, including any subfunctions within

that function, to execute. The self-time measurements Self Time and Average

Self Time report only the length of time that was spent executing within the

function itself.

If you examine the results in Figure 5-19, you can see the addNextImage

method took the longest cumulative time. But the processData function

took the longest self-time. The reason is that the processData function gets

called within the addNextImage function. So the cumulative time for

addNextImage also includes the time taken by processData.

Digging into a method
To further clarify which methods take the longest to process, you can

double-click a particular method to open the Method Statistics panel, shown

in Figure 5-20.

Figure 5-20:
Viewing
detailed
method

statistics.

97 Chapter 5: Introducing Flex Builder for Developers

Figure 5-20 shows the statistics for the custom method addImage. The top

pane indicates which methods called it. In this case, you can see that the

addImage method was called from the addNextImage method. You can

also see all other methods within addImage that were called and how much

time each one took. By viewing this breakdown, it becomes clear that the

processData method is the piece that takes the most time. You can then

identify exactly which pieces of code are taking the most time to process and

head in the right direction when you want to optimize your code.

Refactoring Your Code
Refactoring is the process of reorganizing your code while preserving the

functionality of that code. The term refactoring refers to the broad concept

of moving things around to achieve better structure and encapsulation:

changing the names of classes, moving methods from one class to another,

or breaking a large class into two or more smaller classes, for example.

For a crash course in object-oriented programming methodology, refer to

Chapter 3.

Changing class names
The simplest reason to refactor your code is if you want to change the name

of a class. The simple act of renaming a file, however, can be far more diffi-

cult than it appears. To manually change the name of a class, you rename the

file, and then you have to track down all references to the old class in your

code and update them with the new name. Luckily, Flex Builder has built-in

support for this kind of refactoring.

The following steps guide you through refactoring a class in your Flex project:

 1. In the Flex Builder, select the file in Flex Navigator view, right-click,

and choose Rename, as shown in Figure 5-21.

 Alternatively, you can choose File➪Rename. Either approach loads the

refactoring wizard to step you through the refactoring process.

 2. Enter the new name for the class in the Rename Class dialog box.

 When you rename a class, enter the name of the class, not the full name

of the file itself. If you’re renaming a file named CustomComponent.
mxml, for example, notice that the name that appears in the refac-

toring wizard reads CustomComponent, without the file extension.

It’s the name of the class. To rename it, you should enter a different

name and still omit the file extension. In Figure 5-22, the new name is

MyNewlyNamedComponent.

98 Part II: Using Flex Builder (The Flex IDE)

Figure 5-21:
Accessing

the Rename
menu item

to begin
refactoring.

Figure 5-22:
Entering a
new class

name in the
refactoring

wizard.

 If you deselect the Update References check box, Flex Builder doesn’t

refactor your code; it only renames the file. You then have to manually

look through your code and change any references to the class.

 If you select the Rename Textual Matches in Strings check box, Flex

Builder performs a deeper text search in your source code and replaces

any string references to the old filename. Be careful with this option, and

make sure that you follow the next step and click the Preview button to

double-check that Flex Builder is doing what you want.

 3. Click the Preview button to see Preview view, shown in Figure 5-23.

 Preview view shows you each change in your source code that Flex

Builder will perform. This way, you can double-check and verify that all

the changes are appropriate. In Figure 5-23, you can see that this refac-

toring results in an updated reference to the CustomComponent class

within the MyFlexProject application, as well as the moving (renaming)

of the CustomComponent MXML file.

 4. Click OK to complete the refactoring.

 Your code is now refactored and should still compile and run with the

new class name.

99 Chapter 5: Introducing Flex Builder for Developers

Figure 5-23:
Previewing

the
refactoring

changes.

 You can use the Rename refactoring method on both MXML and ActionScript

class files. The preceding steps show you how to rename a custom MXML

class, but the same process works for ActionScript classes as well.

Changing method and variable names
In addition to changing the names of classes, you can use the refactoring

capabilities of Flex Builder to rename individual methods and variables

within your classes. This process is similar to how you rename a class,

although to invoke method or variable renaming, you need to select the

method or variable name within your class, right-click, and choose the

Rename menu item. Figure 5-24 shows how to invoke the refactoring wizard

on the method named showStatusAlert in a custom class.

Figure 5-24:
Invoking
refactor-
ing on a
method.

100 Part II: Using Flex Builder (The Flex IDE)

The same method of right-clicking and choosing the Rename menu item

is used when renaming variables. After you invoke the refactoring wizard,

either for method renaming or variable renaming, the steps are the same as

they are for renaming a class.

Living with limitations
 The refactoring support in Flex Builder 3 is limited to simple class and method

renaming. However, when you refactor applications, you often change the

package structure of classes as well, which means moving source files from

one directory to another to better organize the class hierarchy. Flex Builder 3

doesn’t support this kind of package-level refactoring. If you need to refactor

your code more aggressively and move classes between packages, you have

to do most of it manually.

 As we discuss in Chapter 4, Flex Builder is based on the Eclipse IDE, a power-

ful editor that can be used to edit much more than Flex and ActionScript code.

If you’re familiar with using Eclipse for Java development, you will likely notice

that the refactoring options in Flex Builder fall very short of the refactoring

support for Java. You have to learn to live with this limitation until Adobe

beefs up the refactoring capabilities in future versions of Flex Builder.

Chapter 6

Visually Designing Applications
in Flex Builder

In This Chapter
� Visually assembling Flex applications in Design mode

� Selecting, positioning, and sizing controls

� Inserting components with Components view

� Working with states in States view

� Setting properties on controls with the Flex Builder properties inspector

� Styling Flex elements using the CSS Design mode feature

Flex Builder enables you to develop applications in either Source mode or

Design mode. In this chapter, we focus on Design mode, which enables

you to visually assemble Flex applications and components. In the other

mode, Source mode, you can write code that can be visually rendered when

switched into Design mode; see Chapter 5 for details about this mode.

This chapter gives you the lowdown on how to work in Design mode to create

and visually customize Flex components; set properties, styles, and events

on components in the design area; navigate the design area with fine control;

create states for your Flex applications; and style components in detail.

Getting to Know Flex
Builder Design Mode

Flex Builder has two modes for wiring up Flex components and applications:

 � Source mode refers to the robust ActionScript editor, debugger, pro-

filer, and other code-related features, such as code refactoring (where

name changes in the code propagate throughout your project), that Flex

Builder has to offer.

102 Part II: Using Flex Builder (The Flex IDE)

 � Design mode is the Flex Builder mode that allows developers and

designers to visually assemble applications and components. Design

mode is the visual representation of the code that’s created in Source

mode; similarly, Source mode is updated with code when you create

Flex content in Design mode.

To switch between Source mode and Design mode, you use the Source and

Design buttons, which are located in the upper-left corner of the main pane of

the Flex Builder window, as shown in Figure 6-1.

Figure 6-1:
Flex Builder

in Source
mode with
the Source

button
selected.

Design mode

Source mode

To see Design mode, shown in Figure 6-2, just click the Design button. This

list describes the various areas identified in the figure:

 � Design stage: Featured in the default layout of Design mode (it’s the area in

the center), where components and containers appear and are modified.

 � Design toolbar: Located above the design stage; used to pan and zoom

in the design stage and to adjust the design area dimensions.

 � Flex Navigator view: Lets you navigate your projects and their source

files.

103 Chapter 6: Visually Designing Applications in Flex Builder

 � Components view: Allows Flex components and custom components to

be dragged to the stage.

 � Outline view: Provides a visual outline of the hierarchy and contents of

your Flex application in its current state.

 � States view: Lets you partition your application into new states as well

as edit already configured states. Using this view to create and edit

states is often the preferred way to author states (preferred over hand-

coding states in Source mode).

 � Properties inspector: Contains a series of panels that allow the setting

of properties and styles of the selected Flex item or set of items on the

stage.

The rest of this chapter covers each of these elements of Design mode in

more detail.

Figure 6-2:
The default
view of Flex

Builder
Design
mode.

Outline View

Flex Navigator view

Design stage Design toolbar States view

Components view Problems view Properties inspector

104 Part II: Using Flex Builder (The Flex IDE)

Navigating Through the Design Area
The size of the Flex Builder design area can be customized for your conve-

nience. Some developers like to work in a fixed design area, whereas others

don’t mind scrolling around the design area to produce a more detailed view

of the design stage.

You control the design area size and navigation capabilities by using the

Design toolbar (shown in Figure 6-3). By default, the design editor size is

set to Fit to Window, which means that it doesn’t display scrollbars and

instead adjusts its layout, if possible, to fit the design window size. This size

is the most convenient one to work with. You can change the design editor

size by using the design area drop-down list. Other options include preset

fixed sizes, such as 1024 x 768 or 800 x 600, or you can enter your own sizing

dimensions by choosing the Custom Size option.

Figure 6-3:
You can
control

the dimen-
sions of

the design
stage.

Magnification

Pan mode

ZoomShow Surrounding Containers

If the size of your layout is larger than the design editor window, Flex creates

scrollbars to preserve the layout.

In addition to adjusting the dimensions of the design area, Flex Builder offers

a way to navigate the design area with great control, as discussed in the fol-

lowing sections.

Using Pan & Zoom
Flex Builder 3 added the useful and cool feature Pan & Zoom. You can use it to

 � Zoom into the design area: Observe the fine-grain visual details of com-

ponents on the design stage.

 � Zoom out of the design area: See a bird’s-eye view of the design stage.

 � Pan around the design stage: Navigate quickly and efficiently.

105 Chapter 6: Visually Designing Applications in Flex Builder

Panning
To enter Pan mode, you click the Pan Mode button, in the upper-right bank

of navigation buttons (refer to Figure 6-3). To enter Pan mode from the key-

board, press the H key after you have clicked on the design stage. In Pan

mode, the cursor turns into a hand icon. To navigate in Pan mode, hold down

the mouse button while moving in the application. You see that this type of

navigation is much easier and faster than using the design area scrollbars,

especially to navigate to hard-to-reach parts of the application when you

zoom into the design area.

Zooming
Whenever you zoom in or out, the magnification percentage is displayed in

the Magnification drop-down list. The list, which is the rightmost input field

on the Design toolbar, is located in the upper-right area of the design stage.

You can zoom in and out of the design area in a few different ways:

 � Open the magnification drop-down list and select a specific zoom percentage.

 � Choose Design➪Zoom In or Design➪Zoom Out.

 � Right-click in the design area to open the design context menu, which

has options to zoom in or out of the design stage or to set the magnifica-

tion of the stage to preset values.

 � To enter Zoom mode without using the menu options, press the Z key or

click the Zoom button after you have clicked on the design stage, on the

Design toolbar (refer to Figure 6-3).

When you enter Zoom mode, the cursor turns into a magnifying glass next to a

+ or – sign, depending on whether you’re zooming in or out. To zoom in, press

Ctrl+= (or Ô+= on the Mac); to zoom out, press Ctrl+– (or Ô+– on the Mac).

 After you start using pan and zoom when working on the design stage, you can

achieve greater fidelity when skinning and styling components. The reason is

that you can zoom in to view more detail regarding the visual appearance of

components on the design stage.

Showing surrounding containers
The Flex Builder design area has a neat feature that allows you to visual-

ize the nesting and hierarchy of containers in your Flex applications. This

feature can be useful when determining the layering of containers in your

Flex application or when you want to quickly select a particular container

instance from many nested containers.

106 Part II: Using Flex Builder (The Flex IDE)

To enable this feature and show nested containers, click the Show

Surrounding Containers button on the Design toolbar (refer to Figure 6-3).

When you click this button, the top-level container in the design stage is

overlaid with a semitransparent film to differentiate it from other contain-

ers, as shown in Figure 6-4. As you click other containers in the application,

they too are overlaid with a transparent film; additionally, each container

is affixed with a label specifying its type and its id value if it’s set. To exit

this Nested Container mode, simply click the Show Surrounding Containers

button again. To trigger Show Surrounding Containers by using a keyboard

shortcut, simply press the F4 key on the keyboard after having clicked on the

design stage.

Figure 6-4:
Use the

Show
Surrounding

Containers
button to
show the

nesting of
multiple

containers.

Figure 6-4 shows a Canvas container with a Panel child container that has

an HBox child container. In Show Surrounding Containers mode, notice how

a transparent overlay is drawn over each container and each container is

labeled with its type and id value.

Selecting Controls in the Design Area
The features in Flex Builder’s Design mode are primarily driven by whichever

components and controls are selected on the design stage. For example, the

properties inspector shows the properties, styles, and events that can be set on

the components selected on the design stage. Thus, you must understand how

to select and deselect single and multiple components on the design stage:

107 Chapter 6: Visually Designing Applications in Flex Builder

 � Select a component: On the design stage, click the component’s visual

representation on the design stage or select the component in Outline

view. You can learn more about the Flex Builder Outline view in the

“Viewing the Contents of Your Application in Outline View” section.

 � Select multiple components: You can select multiple components on

the design stage in several ways:

 • Ctrl+click (or Ô+click on the Mac) on each component you want to

select.

 • Click into the design stage with the mouse and draw a box that

overlaps all components you want to select. Notice that an overlay

is drawn that visualizes which components are selected by this

action, as shown in Figure 6-5.

 • Ctrl+click (or Ô+click on the Mac) multiple components in the Flex

Builder Outline view.

 Selecting multiple components is useful when you want to reposi-

tion multiple controls simultaneously, delete a set of controls, or set

common properties on multiple controls.

 � Select all components on the design stage: Open the design menu by

right-clicking the design stage (or Ô+clicking it on the Mac) and choos-

ing the Select All menu option. Similarly, you can type Ctrl+A (or Ô+A

on the Mac) to select all components on the design stage by using a key-

board shortcut.

 � Deselect a single component or multiple components: Click in the back-

ground of any container in the design stage, click an unselected com-

ponent on the design stage, or click in the gray margin surrounding the

root component.

Figure 6-5:
Select

multiple
components

on the
design stage

by draw-
ing a box

around them
with the
mouse.

108 Part II: Using Flex Builder (The Flex IDE)

 To delete a component or many components on the design stage, you simply

select the components you want deleted and press the Delete key on the key-

board. Similarly, after having selected the components you want to delete,

you can right-click (Ctrl+click on the Mac) the design stage to open the Design

menu and then select Delete from the menu options, as shown in Figure 6-6.

Figure 6-6:
Right-click
the design

stage to
open the

Design
menu.

Controlling the Layout and Size
of Controls in the Design Area

Flex Builder offers a plethora of features that allow you to control the layout

and size of controls on the design stage. Knowing how to use these features

can greatly improve your efficiency and ability to construct complex, pixel-

perfect layouts.

Positioning controls
You can control the position of components on the design stage in quite a

few ways. Be sure to note that the behavior of the parent container affects

how child components are positioned on the design stage:

 � In absolute positioning containers, such as Canvas, or containers that

have the layout property that can be set to absolute (such as Panel,

TitleWindow, or Application), child controls can be positioned at any x

and y value.

 � In relative layout containers, such as HBox and VBox, child controls can

be positioned according to the layout rules of their parents.

109 Chapter 6: Visually Designing Applications in Flex Builder

See Chapter 10 for more on both types of containers.

You can drag and drop all controls on the design stage to reposition them on

the design stage. Remember that you can also set position and size-related

properties in the properties inspector and the controls on the design stage

(as well as the code generated in Source mode) are then visually updated

automatically. Often, when the visual designer gives you fixed positions for

controls, it’s easier to enter these values into the x and y input fields in the

properties inspector to achieve pixel-perfect accuracy. Flex Builder’s proper-

ties inspector is discussed in further detail in the “Configuring Controls with

the Flex Builder Properties Inspector” section, later in this chapter.

To reposition a control that’s already on the design stage, simply select the

control and drag it. The cursor changes into a four-arrow cursor. As you drag

the controls, you see only the outline of the controls being dragged, which

results in a clearer view.

After you have repositioned controls that reside in an absolute positioning

container, the properties inspector is updated to report the new x and y

values for the controls.

When you reposition controls that reside in relative layout managers, such as

HBox or VBox, you notice that as you drag around a control or a set of con-

trols, you see a blue line indicating the new position of the control relative

to the other child controls living in the container (see Figure 6-7). This visual

cue indicates where the newly dropped control will be positioned.

Figure 6-7:
A blue line

is used as a
visual cue

to show
where the

new compo-
nent will be

inserted.

Blue line

110 Part II: Using Flex Builder (The Flex IDE)

 You can also nudge a set of controls with the arrow keys. It’s an easy way to

move a bank of components by just a few pixels in any direction. Simply select

a set of components and use the arrow keys to move controls en masse to the

right, left, top, or bottom.

Snapping controls relative to each other
As you drag controls around, or drag out new controls from Components

view to the design stage in a container that has absolute positioning, blue

lines appear at certain positions. Using this Flex Builder snapping feature, you

can position controls relative to others in order to line them up vertically or

horizontally.

 The Flex Builder snapping feature is available only when you’re repositioning

controls that are in absolute positioning containers, such as Canvas, or Panel,

TitleWindow, or Application, with the layout property set to absolute.

As you reposition controls, Flex Builder hints where snapping will occur.

When the edges of repositioned controls line up with the edges of other sibling

controls, a blue line appears to show the snapping position. This behavior is

helpful for lining up components, especially text components, along a common

baseline. Using snapping ensures that the components are aligned so that their

text is in a single line. Figure 6-8 shows how three components — a Button,

TextInput, and CheckBox — have been aligned according to their text by using

snapping. Notice that when you drag a new component from Components

view, the blue snapping lines indicate where to drop the control so that its text

is aligned with the already aligned Button, TextInput, and CheckBox.

Snapping is turned on by default, but it can be turned off to clear the design

stage of visual hints. To turn off Flex Builder’s snapping behavior, choose

Design➪Enable Snapping. To enable or disable snapping as a global prefer-

ence in Flex Builder, choose Windows➪Preferences to open the preferences

dialog box, navigate to Flex➪Editors➪Design Mode, and select or deselect

the Enable Snapping check box.

Aligning controls
Flex Builder has built-in functionality to help manage the alignment of child

controls in layout containers that support absolute positioning (Canvas,

Application, Panel, and TitleWindow). One of the more robust ways to con-

trol alignment is to use a constraint-based layout by using the Constraints

control in the properties inspector. To find out how to use this control, check

out the section “Setting constraints visually with the Constraints Control,”

later in this chapter.

111 Chapter 6: Visually Designing Applications in Flex Builder

Figure 6-8:
The

snapping
feature
shows

where to
drop the

control for
good

alignment.

Blue snapping line

Additionally, Flex Builder allows the alignment of a set of controls alongside

their left edges, right edges, centers, top edges, lower edges, or baselines

by using Design menu options. First, select a set of controls that you want

to align relative to each other. Next, open the top-level Design menu. Notice

the options: Align Left, Align Vertical Centers, Align Right, Align Top, Align

Horizontal Centers, Align Bottom, and Align Baselines. When you choose

these Alignment menu options, the set of selected controls align accordingly.

Table 6-1 describes each alignment menu option.

Table 6-1 Flex Builder Alignment Options
Option Description

Align Left Aligns the left edges of all selected controls with the left
edge of the first component that was selected.

Align Vertical
Centers

Aligns the vertical centers of all selected controls with the
vertical centers of the first component that was selected.

Align Right Aligns the right edges of all selected controls with the right
edge of the first component that was selected.

Align Top Aligns the top edges of all selected controls with the top
edge of the first component that was selected.

Align Horizontal
Centers

Aligns the horizontal centers of all selected controls with the
horizontal center of the first component that was selected.

(continued)

112 Part II: Using Flex Builder (The Flex IDE)

Table 6-1 (continued)
Option Description

Align Bottom Aligns the bottom edges of all selected controls with the
bottom edge of the first component that was selected.

Align Top Aligns the top edges of all selected controls with the upper
edge of the first component that was selected.

Align Baselines Aligns the text of all selected controls with the text of the
first component that was selected. If any of the selected
controls doesn’t have text, the bottom edge of the control is
considered its text baseline.

Figures 6-9 and 6-10 demonstrate how alignment works. Figure 6-9 shows

components that we dragged from the Components view and placed haphaz-

ardly next to each other. We chose the Align Right option to align the right

edges of all the controls with the top Button, as shown in Figure 6-10. We

selected the top Button first to force the rest of the components to align their

right edges with its right edge.

Figure 6-9:
A set of

controls
that aren’t

aligned
respective

to each
other.

Sizing and resizing controls
Controls can be resized directly on the design stage or through the proper-

ties inspector, and this resizing is reflected visually as well as in the gener-

ated code in Source mode.

113 Chapter 6: Visually Designing Applications in Flex Builder

Figure 6-10:
A set of

controls that
have their

right edges
aligned with
each other.

To resize a control directly on the design stage, follow these steps:

 1. Select the control you want to resize.

 It becomes decorated with resize handles.

 2. Hover the cursor over one of the resize handles.

 Depending on the angle of resizing, you see a double-headed arrow.

 3. Click and drag the resize handle to resize the control.

 To help you in deciphering the new size of the control after the resize

action has completed, a ToolTip next to the resizing component displays

the new width and height values.

 You can also resize controls by modifying the width and height values in

the properties inspector. You can enter pixel or percentage sizes in the width

and height input fields.

Inserting Components with
the Components View

Flex Builder Components view, shown in Figure 6-11, is often docked to the

left of the stage area in Design mode. If it’s not there, you can open it by

choosing Window➪Components. You can drag Flex components and contain-

ers from the Components view and drop them on the stage.

114 Part II: Using Flex Builder (The Flex IDE)

Figure 6-11:
Components
view in Flex

Builder
Design
mode.

Flex Builder Components view is organized into four folders of components,

as described in the following list:

 � Custom: The Custom folder holds references to any custom components

written in either MXML or ActionScript files in the current project or the

source path of the current project. When you drag a custom component

to the stage, Flex adds the corresponding code to Source mode to indi-

cate that the component has been added to the application.

 � Controls: The Controls folder contains a list of all Flex user interface

controls, such as Button and TextInput. When you drag controls from

the Controls folder to the stage, the controls assume a default size and

appearance. For example, dragging a Button from the Controls folder

creates a button large enough to display the label ‘Button’.

 � Containers: The Containers folder contains a list of all Flex layout

containers, such as HBox and Panel. After you drag any of the relative

layout containers to the design stage, a sizing dialog box appears (simi-

lar to Figure 6-12). In this dialog box, you can specify how the container

should be sized.

 Here are your sizing options, based on the type of container:

 • For the Form, HBox, HDividedBox, VBox, and VDividedBox contain-
ers: The default sizing option is to give the container 100 percent of

its parent’s width and a default height. To change this behavior,

enter values into the dialog box to specify either a pixel or percent-

age size value for the container’s width and height.

 • When dragging a Tile container: The default sizing option is to size

the Tile container to its contents. You specify a pixel or percentage

size value for the container’s width and height.

 • When dragging a Grid container: The dialog box lets you determine

how many rows and columns the Grid container should contain.

115 Chapter 6: Visually Designing Applications in Flex Builder

 • For all other options in the Containers folder (such as Panel and
Canvas): Flex Builder chooses a default pixel size that can be

resized however you want.

 � Navigators: The Navigators folder contains a list of all navigator controls,

such as Accordion and TabNavigator. When you drag a Navigator to the

design stage, it’s decorated with a little toolbar displaying + and – buttons.

You use these buttons to add and remove child views. (For more on Flex

Navigators, see Chapter 10.) When adding new child views, you can use

the dialog box that opens after you click the + button to specify the child

view container and its label. Similarly, the – button can be used to delete

the selected child view.

Figure 6-12:
The siz-

ing dialog
box for the

HBox
container.

Viewing the Contents of Your
Application in Outline View

When you use Flex Builder Outline view, shown in Figure 6-13, you can

inspect the structure of your MXML application. Outline view is often the sib-

ling pane to Components view and is usually docked to the left of the design

stage. If the Outline View pane isn’t open, you can manually open it by choos-

ing Windows➪Outline.

Outline view lists all Flex components created in MXML that exist in your Flex

application. It gives you a neat way to view the hierarchy and organization

of your Flex application. You can select single components or multiple com-

ponents by Ctrl+clicking in Windows or Ô+clicking on the Mac; the controls

appear as selected in the design stage. This selection allows you to

 � Adjust the position of a single component or a set of components en

masse.

 � Delete controls en masse.

 � Edit properties in the Flex Builder properties inspector.

116 Part II: Using Flex Builder (The Flex IDE)

Figure 6-13:
Outline

view in Flex
Builder
Design
mode.

Working with States in States View
Flex uses the states concept, which you can use to create different views

of your application. The Flex Builder States view, shown in Figure 6-14, is a

handy interface for creating, deleting, and editing Flex states. (To find out

more about Flex states, refer to Chapter 17.)

Figure 6-14:
You can
create a

new state in
States view.

New State button

Edit State button

Delete State button

When creating Flex states, you first need to create a base state. Subsequent

states are created atop the base state — that is, the base state can always be

derived from other states. To create a new state, follow these steps:

117 Chapter 6: Visually Designing Applications in Flex Builder

 1. In the States View pane, click the New State button, shown in Figure 6-14.

 The base state of your Flex application consists of all Flex elements

defined in the Flex application up to the point where the new state is

created.

 2. In the States dialog box, name the state and choose which existing

state the new state should be based on. Then click OK.

 The new state appears in the States View pane.

As you create new states, the hierarchy is displayed visually in the States view.

For example, if State 1 is based on State 2 and State 2 is based on State 3, States

view lists the states in such a way that State 1 is the parent of State 2, which is

the parent of State 3.

Suppose that your application needs a login view that people use to log in

with a username and password. The base state of the login view is simply a

Panel container with a Login button. When users click the Login button, a dif-

ferent view appears, where they can enter their usernames and passwords. In

this case, the base state of the login view is simply the Panel container with

the Login button, as shown in Figure 6-15.

Figure 6-15:
The base

state of
the login
panel —
you build

subsequent
states

based on
this state.

Using the New State button, you create a second state: loginInputs. In this

view of the login panel, application users can enter their usernames and

passwords. After you create this new state, which is based on the base state,

notice that the States view shows the hierarchy of states — namely, that

loginInputs is based on the base state, as shown in Figure 6-16.

118 Part II: Using Flex Builder (The Flex IDE)

Figure 6-16:
Flex displays

a second
state for the
login panel

component,
loginInputs,

where appli-
cation users

can enter
their

information.

New state

The following list gives you the lowdown on how to delete or edit a state:

 � To delete a state: Select the state entry in States view and use the trash-

can icon (Delete State button) on the States toolbar to delete the state.

The state is then removed from States view, and the corresponding code

is removed from the application.

 � To edit a state: Click the pencil icon (Edit State Properties Button) on

the States toolbar. In the Edit dialog box that appears, edit the name of

the state and the existing state it’s derived from. Remember that what-

ever is on the design state and associated with a defined state encom-

passes the view of that state in the application.

Configuring Controls with the Flex
Builder Properties Inspector

Using the Flex Builder properties inspector, you can visually set properties,

styles, and event handlers for all components defined in your application.

The properties inspector is traditionally located to the right of the stage area

in Flex Builder Design mode, in the Flex Properties pane, as shown in Figure

6-17. If you don’t see the Flex Builder properties inspector, you can open it by

choosing Window➪Flex Properties.

119 Chapter 6: Visually Designing Applications in Flex Builder

Figure 6-17:
The

properties
inspector
shows all

properties,
styles, and
events that
you can set
for the con-

trol that’s
selected on

the design
stage.

Category view

Alphabetical view

Choosing a properties inspector view
The properties inspector has three different views for setting properties,

styles, and events on controls selected in the stage area:

 � Standard: This view is displayed by default, as shown in Figure 6-17.

The properties inspector’s Standard view splits the pane into proper-

ties, styles, and events that are commonly set on that control (in the

Common pane), those that are style related (set in the Style pane), or

those that are layout related (set in the Layout pane).

 Standard view is the easiest view of the properties inspector to use, so

we recommend it.

 � Category: In this view, elements that can be set on the selected compo-

nent in the design stage are grouped in common categories along with

their set values. That is, all events that are valid on the selected compo-

nent are located in the Events category; similarly, style-related proper-

ties are in the Styles category.

 You can switch to Category view by clicking the Category View icon at

the top of the properties inspector panel (refer to Figure 6-17).

120 Part II: Using Flex Builder (The Flex IDE)

 � Alphabetical: This view simply lists all properties, events, and styles

that can be set on the selected component on the design stage in alpha-

betical order along with their values. It’s the last button in the upper-

right corner of the properties inspector panel (refer to Figure 6-17).

Using the properties inspector
When a control is selected on the design stage, the properties inspector is

updated to display input items that correspond to the properties, styles, and

events that you can set for that component. For example, when you select

a DataGrid control, the Common panel in Standard view of the properties

inspector shows the properties and events commonly settable for a DataGrid

control (see Figure 6-18).

Figure 6-18:
When you

select a
DataGrid

control, the
properties
inspector

shows the
properties,

events, and
styles that

you can set
on that

control.

When multiple controls are selected on the design stage, the properties

inspector is updated to display only the properties, events, and styles that

are common among all selected components.

 As you enter values for properties in the input fields, the selected component

on stage is updated in real time to reflect the changes. For example, when you

enter a value in the Column Width field and then press Enter, the DataGrid

control on the stage is updated to display the new column widths.

121 Chapter 6: Visually Designing Applications in Flex Builder

Setting constraints visually with
the Constraints Control
When you select a control or multiple controls that reside in an absolute-

positioning container, the Layout pane in the properties inspector displays

the special control named Constraints, as shown in Figure 6-19. You can

use this control to create new layout constraints or edit existing layout con-

straints on the controls selected in the design stage. (To find out more about

constraint-based layout and how you can use it to build reflowing layouts,

check out Chapter 10.)

Figure 6-19:
Use the

Constraints
control to

visually
set layout

constraints
on child

controls rel-
ative to their

parenting
container.

The check boxes in the Constraint control correspond to the setting of the

left, right, top, bottom, horizontalCenter, and verticalCenter

layout constraints. When you select one of these check boxes, Flex calculates

a constraint value that anchors the selected control on the stage to the edge

of its parent.

For example, if you select the rightmost check box on top of the Constraint

control, Flex sets the right layout constraint so that the selected control

doesn’t move its position and is anchored to the right edge of its parent

container. The pixel value of the constraint — which is calculated when a

122 Part II: Using Flex Builder (The Flex IDE)

constraint check box is selected — appears in the text box in the constraint

control. You can also enter values into the text box, and Flex adjusts the posi-

tion of the selected control to match the new constraint value. When you

switch to Source mode, you see that the selected control, which had layout

constraints set on it by way of the Constraint control, has the appropriate code

set in the component tag corresponding to the newly created constraints.

For example, in Figure 6-20, the selected control has a left constraint set

to 50 pixels and a verticalCenter constraint set to 100 pixels. In Source

mode, the component tag looks like this:

<mx:Button left=”50” verticalCenter=”100” />

 One neat thing that Flex Builder Design mode does is track the changes you

make to your application, in either Design mode or Source mode. Whenever

a change is made to the state of your application, such as adding a new com-

ponent from Components view or setting a property on a component from

the properties inspector, this change is tracked. You can then easily undo

the action by either pressing Ctrl+Z (or Ô+Z on the Mac) on the keyboard or

choosing Edit➪Undo. To redo the action, simply press Ctrl+Y (or Ô+Y on the

Mac) on the keyboard or choose the Edit➪Redo menu option in the top-level

Flex Builder menu.

Figure 6-20:
A Button

with a left
and verti-
calCenter

constraint set.

123 Chapter 6: Visually Designing Applications in Flex Builder

Working with Style Sheets
in CSS Design Mode

New in Flex Builder 3 is the powerful feature: CSS Design mode. You can use

it to visually display and edit the contents of a CSS style sheet whose style

blocks are used to style your Flex components. To use CSS Design mode, you

need to open a CSS style sheet in Flex Builder. To switch to CSS Design mode,

simply click the Design button in Source mode in the upper-left corner of the

code editor.

CSS Design mode shows the different states that a component can enter and

allows you to visually customize what the control looks like in those states.

When you make edits in CSS Design mode, Flex updates the resulting style

blocks in the CSS style sheet with the corresponding code that results in the

visual appearance you chose. (To find out more about using CSS style sheets,

class selectors, and type selectors in your Flex applications, see Chapter 18.)

To create new style blocks in your CSS style sheet, follow these steps:

 1. Click the New Style button in the toolbar at the top of CSS Design

mode, as shown in Figure 6-21.

 The New Style dialog box appears, as shown in Figure 6-22.

Figure 6-21:
Click the

New Style
button to

start creat-
ing a new

style.

New Style

Delete Style

 2. Choose one of these selector types:

 • All Components (global): Create a style block that (if possible)

affects all components in the application. This is an easy way to

create a font style or size that’s percolated down to every compo-

nent in the Flex application.

 • All components with style name: Create a new type selector of a par-

ticular name.

 • Specific component: Create a new class selector for all components

of a specific type.

124 Part II: Using Flex Builder (The Flex IDE)

 • Specific component with style name: Create a style block for all

particular types of components that you chose to apply the style

name to.

 You can create a new style selector, either a class selector that can be

applied to all Flex components of a particular type (such as all Buttons)

or a type selector that can be a custom style block you define and apply

to components of your choice.

Figure 6-22:
Choose

which type
of style

block you
want to cre-

ate in your
CSS style

sheet.

 3. Depending on which selector type you chose in Step 2, choose which

component you want to use to visualize the style entries. (If you

selected All Components in Step 2, you can skip this step.)

 For example, if you want to create a class selector or a type selector for

Button-related controls, ensure that the Button control is selected as the

Component option.

 4. Click OK to close the dialog box.

After you click OK, the component that the style block is based on shows

up on the design stage in all the different states it can assume. For example,

when you’re creating a type selector for the Flex Button control, different

buttons representing the different various states the Button can enter (such

as up, down, over, and selected) are displayed on the design stage. You can

use the properties inspector (shown in Figure 6-23) to customize and edit all

styles that dictate how the Button looks when it enters that state.

As you create new style blocks, the Style drop-down list on the top toolbar

becomes populated with the names of the style blocks. You can use this

drop-down list to determine which style block is visualized on the design

stage. Also, if you open an existing CSS style sheet that already has style

blocks created, the style drop-down list is populated with the style names,

and you can select and further modify them with the properties inspector.

125 Chapter 6: Visually Designing Applications in Flex Builder

Figure 6-23:
You can use
CSS Design

mode to
change the

rollover
color of

a Button
control from

blue to red
in its differ-
ent states.

To delete a style block from your CSS style sheet, chose the style entry from

the Style drop-down list in the top toolbar and click the Delete Style button

(refer to Figure 6-21).

As you dive further into the topic of styling your Flex components, you find

that CSS Design mode is a powerful tool to visualize the specific look of com-

ponents and modify them in detail.

126 Part II: Using Flex Builder (The Flex IDE)

Part III
The Flex Framework

and Charting
Components

In this part . . .

Prepare to dive headfirst into the Flex framework and

power all the way through. This part covers every-

thing from a simple Button control to the data-driven

DataGrid and List and all the charting components.

There’s a reason that Part III is the longest part in this

book: It contains the meat of the Flex framework. At some

point in your Flex career, you will use every component

covered in Chapters 7 through 11.

We begin in Chapter 7 with some of the simplest compo-

nents, such as Label and TextInput, and then we move to

Chapter 8 to cover controls such as DataGrid and Tree,

which are driven by underlying data models. We then

cover Forms in Chapter 9 and Containers in Chapter 10.

We finish this part by describing the charting compo-

nents, which are sure to impress the executives in your

organization.

Chapter 7

Simple User Interface Controls
In This Chapter
� Creating clickable user interface controls, such as Button and ComboBox

� Working with text controls, such as Label and TextInput

� Using media display controls, such as Image and VideoDisplay

� Building a media controller, such as a video player

The Flex framework offers a wide set of user interface controls for you to

use while building your Flex application. User interface controls are the

visual elements that appear in a Flex application. A large number of Flex user

interface controls are available for you to use, and you can customize all of

them based on the functionality or visual appearance you want.

In this chapter, we discuss how to create, display, and make common cus-

tomizations to clickable controls, text display controls, and media display

controls. These controls are some of the most essential building blocks in the

Flex framework, and you use them repeatedly. The following list shows the

user interface controls discussed in this chapter:

Button CheckBox ColorPicker

ComboBox DateChooser DateField

HSlider Image Label

LinkButton PopUpButton PopUpMenuButton

ProgressBar RadioButton RadioButtonGroup

RichTextEditor Scrollbars SWFLoader

Text TextArea TextInput

Video Display VSlider

130 Part III: The Flex Framework and Charting Components

Taking a Look at Simple
Clickable Controls

Flex comes replete with a rich set of clickable user interface controls. These

controls range from a simple Button and CheckBox to controls that encapsu-

late advanced functionality, such as ComboBox. The ComboBox control pops

open a drop-down list prepopulated with options. You can easily define these

clickable user interface controls in your Flex application and subsequently

build a rich user interface. You can customize their functionality and visual

appearance by setting properties and styles. In the following sections, we

describe how to create and customize all the clickable user interface controls

available in Flex.

 The following sections discuss the various user interface controls that you

use to build Flex applications. But before jumping into reading about these

controls, you should understand the inheritance hierarchy of Flex controls.

The Flex framework was written with extensibility in mind, which means that

any Flex control can be extended to add new functionality or to create a whole

new control. Extension is possible because Flex controls already inherit from

each other. If you look at the Flex framework source code available in your

FlexBuilder installation directory, you see that the mx.controls.CheckBox

class extends the mx.controls.Button class. Because of this relationship,

a CheckBox control inherits all the properties, events, methods, and styles

declared in the Button class. This concept of inheritance is very powerful for

Flex developers to understand. For a more in-depth review of the Flex inheri-

tance hierarchy, check out Chapter 3.

For the most part, visual Flex components inherit from a single, basic class:

mx.core.UIComponent. A UIComponent control represents the most basic

Flex control. It provides properties, styles, and events that can be set to cus-

tomize the control’s visual appearance or functionality. All visual Flex con-

trols can eventually trace their inheritance hierarchy back to UIComponent,

thus making UIComponent the ancestor of all Flex controls! This inheritance

hierarchy is shown in Figure 7-1.

Creating button-based controls
The Flex framework offers a variety of button-based controls. Button-based

means that all controls in this section can trace their inheritance hierar-

chy back to the mx.controls.Button class. A user can click a button-

based control to perform a new action or make a selection. These types

of button-based controls include the Button, CheckBox, RadioButton,

RadioButtonGroup, LinkButton, PopUpButton, and PopUpMenuButton con-

trols. These controls are described in more detail in the following sections.

131 Chapter 7: Simple User Interface Controls

Figure 7-1:
Inheritance

hierarchy
for a subset

of Flex
components.

mx.controls.Button

mx.core.UIComponent

mx.controls.CheckBox mx.controls.RadioButton

mx.controls.Label mx.controls.TextInput

mx.controls.Text

Button
The Button control is what you would expect: a simple, rectangular button
that the user can click. You create a Button control in a Flex application by
using the <mx:Button> MXML tag. You can customize a Button control to
display a label, an icon, or both a label and an icon together. As with all other
Flex controls, you can customize a Button control’s visual appearance to its
fine-grain detail.

You can also add event listeners to the Button control to detect when the
button has been clicked and then perform an action in response to that click.
The most common event that’s listened to on a Button control is click. This
event is fired by the button every time the user presses and releases a Button
with the mouse or keyboard. To refresh your knowledge of events and event
listeners, refer to Chapter 3.

You can set properties and styles for the Button control as described in the
following list:

 � Add a text label: You can set the label property on the Button con-

trol to specify which text should be displayed on the button. Then, to

control the placement of the label, use the textAlign style. Its default

value is center: The label appears in the center of the button. You can

customize the button to display the label as left-aligned or right-aligned

by setting the textAlign style to left or right.

 � Display an icon: In addition to being able to add a label, you can have the

Button control display an icon. To specify an icon, you set the icon style.

The icon style expects an image that’s embedded in the Flex application

at compile time. (For more on the types of images you can embed in a Flex

application, and the correct syntax to do so, see Chapter 18.)

 � Position the label and icon: You can control the placement of the but-

ton’s label with respect to the icon with the labelPlacement property.

By default, the label is placed to the right of the icon. However, you can

set labelPlacement to left, right, top, or bottom to set the ori-

entation of the label with respect to the icon. Figure 7-2 shows buttons

with different labelPlacement values in use.

132 Part III: The Flex Framework and Charting Components

Figure 7-2:
Label-

placement
orientations.

The example shown in the following code snippet shows a Trash button that

you might use in a Flex application (see Figure 7-3).

<mx:Button id=”trashButton” label=”Trash”
labelPlacement=”bottom” icon=”@Embed(‘assets/
trash.jpg’)” click=”trash();” />

Figure 7-3:
A Button

control with
an icon and

a label.

An icon is displayed above the label, and this orientation is configured by

using the properties and styles just described. This example includes a

click event listener, which listens for the click event to be dispatched by

the Button and then invokes the trash method to handle the response.

The toggle property controls whether a button supports toggling, which

means that when someone clicks the button, it stays selected until someone

clicks it again. If the toggle property is set to false, the button doesn’t

stay pressed after the user finishes clicking it. If you choose to use the

toggle property, the selected property may also come in handy. The

selected property takes effect only when the toggle property is set to

true. The selected property, when set to true, visually renders the button

as selected.

This property makes more sense with some of the other Button-based con-

trols, such as CheckBox and RadioButton. When selected is set to true in

these controls, CheckBox appears with a check mark displayed in the box,

and RadioButton appears with the radio icon filled in. Figure 7-4 shows what

the Button, RadioButton, and CheckBox controls look like when the toggle

property and selected properties are set to true.

133 Chapter 7: Simple User Interface Controls

Figure 7-4:
Selected

and toggled
controls.

CheckBox
A CheckBox control displays a descriptive label and a box that can show a

check mark to indicate selection. The CheckBox control extends from the

Button control and thus inherits all properties, styles, methods, and events

declared on the Button control. You can create a CheckBox control in a Flex

application by using the <mx:CheckBox> MXML tag. Similar to how you

work with a Button control, you often add a click event listener to detect

when a user clicks the CheckBox control. The clicking of the check box

causes the selection to take place and the check mark to be drawn in the box.

The following example shows a CheckBox control that, when clicked, visu-

ally indicates that the user will receive a copy of his order in e-mail form (see

Figure 7-5).

Figure 7-5:
A selected
CheckBox

control.

We added a click event handler so that when the CheckBox control is

selected, the emailReceipt method is called. Notice that the CheckBox

MXML tag has its selected property set to true, which means that the check

box is initially displayed as selected, with the check mark drawn in the box:

<mx:CheckBox label=”Email me a copy of my
order”selected=”true” click=”emailReceipt();”
/>

RadioButton
The RadioButton control is another extension of the Button control, so it

inherits all properties, styles, methods, and events defined by the Button

control. You can create a RadioButton control in a Flex application by

using the <mx:RadioButton> MXML tag. A RadioButton control displays

a label and a circle that are filled in with a radio icon when selected. You

can use event listeners to determine when the RadioButton control has

been selected. Like all button-based controls, the click event is the most

common event that is listened for. The click event is dispatched when the

user clicks a radio button to select it.

134 Part III: The Flex Framework and Charting Components

Normally, you allow only one RadioButton control in a set of RadioButton

controls to be selected at a time. Application users can select a single radio

button from a set of mutually exclusive radio buttons. Selecting another

RadioButton control deselects the previously selected radio button. You can

make your radio buttons act like this by using the same groupName property

for all buttons you want to group.

The following example shows two RadioButton controls that let users report

their gender (see Figure 7-6). Because we used the same groupName prop-

erty for both controls, only one radio button can be selected at a time:

<mx:RadioButton label=”Female” groupName=”gender” />
<mx:RadioButton label=”Male” groupName=”gender” />

Figure 7-6:
Two

RadioButton
controls.

RadioButtonGroup
If you want to take the concept of grouped RadioButton controls a step fur-

ther than just RadioButton, you can create a RadioButtonGroup. It gives you

more control over how your set of RadioButton controls behaves. You can

define a RadioButtonGroup in MXML by using the <mx:RadioButtonGroup>

tag. However, the RadioButtonGroup control isn’t a visual control, so the

<mx:RadioButtonGroup> tag doesn’t render anything in your Flex applica-

tion. This makes the control faceless in Flex. The special RadioButtonGroup

control indicates that a set of RadioButton controls should be treated as a

group. You create a RadioButtonGroup when you want the same action to

occur when any of the RadioButton controls within the group is selected. In

this manner, RadioButtonGroup “governs” the selection of each individual

RadioButton control defined within the group.

When a radio button that’s part of a RadioButtonGroup is selected by using

the mouse or keyboard, the RadioButtonGroup receives a change event. By

adding an event listener for the change event, you can ensure that all radio

button selections are proxied through to the action specified by the change

event handler.

The following example shows a RadioButtonGroup that is governing the

behavior of a set of payment-option radio buttons. Whenever any of the

radio buttons is selected, the RadioButtonGroup’s change event handler

is invoked. You can then define a single change event handler on the

135 Chapter 7: Simple User Interface Controls

RadioButtonGroup control rather than have to define click event handlers

on each individual RadioButton control:

<mx:RadioButtonGroup id=”paymentType” change=
”handlePaymentOption(event);”/>

<mx:RadioButton groupName=”paymentType” id=”check”
value=”check” label=”Check”/>

<mx:RadioButton groupName=”paymentType” id=”creditCard”
value=”creditCard” label=”Credit Card”/>

<mx:RadioButton groupName=”paymentType” id=”moneyOrder”
value=”moneyOrder” label=”Money Order”/>

LinkButton
The simple button-based LinkButton control is used to show links in a Flex

application. As the user hovers over the LinkButton, its contents are high-

lighted. You can create a LinkButton control in your Flex application by using

the <mx:LinkButton> MXML tag. As with all other button-based controls,

you can detect when a user clicks the LinkButton by adding an event listener

for the click event.

You can control the visual appearance of the LinkButton as the application

user is interacting with it by setting a couple of styles in the LinkButton tag:

 � rollOverColor: Controls the color of the entire LinkButton as the

user hovers the mouse over it.

 � textRollOverColor: Controls the color of just the label as the user

hovers the mouse over it.

The following example shows a LinkButton control that, when clicked, navi-

gates the user’s browser to the Adobe Systems Incorporated home page:

<mx:LinkButton label=”Adobe Systems Inc”
click=”navigateToURL(new URLRequest(‘http://
www.adobe.com’));” textRollOverColor=”white”
rollOverColor=”red”/>

As the user hovers over the LinkButton, shown in Figure 7-7, the background

of the control becomes red and the text is white. You achieve this effect by

setting the textRollOverColor and rollOverColor styles.

Figure 7-7:
Navigating

to Adobe.
com.

136 Part III: The Flex Framework and Charting Components

 The navigateToURL method is useful for launching links to other Web sites

from within your Flex application. However, you cannot simply pass a URL

string to navigateToURL. Instead, you must pass a URLRequest object that

specifies the URL to navigate to. The previous example shows you how to do

this.

You often use LinkButton controls in conjunction with a LinkBar control to

provide a set of clickable links that can be used to navigate within a Flex

application. For more information on how to create a LinkBar control and to

find out more about navigation controls, see Chapter 9.

PopUpButton
You can use the PopUpButton control to pop up any Flex user interface con-

trol when a user clicks the PopUpButton control. A PopUpButton looks simi-

lar to a Button control, except that a second button with a downward arrow

is affixed to the side of the Button control. When the user clicks this arrow

button, a new Flex component pops up. You can create a PopUpButton con-

trol in your Flex application by using the <mx:PopUpButton> MXML tag.

You set the popUp property to specify which Flex control is used as the

pop-up when a user clicks the arrow button. The popUp property expects an

object that is of type mx.core.IUIComponent. mx.core.IUIComponent

is the interface that all Flex controls implement, which means that you can

set the popUp property to any visual control available in the Flex framework

library.

 Because all visual Flex controls in the Flex framework implement the

mx.core.IUIComponent interface, any Flex method that expects an object

of type mx.core.IUIComponent as a parameter, can accept any visual Flex

control.

 Every interface class in the Flex framework has an I prepended to its class

name; for example, mx.core.IContainer, mx.core.IFlexDisplayObject,

and mx.core.IUID. When you see the I in front of a class name, you know that

the class is an interface.

The following example shows how to create a PopUpButton control that pops

up a Flex button when a user clicks the arrow button (see Figure 7-8):

Figure 7-8:
A pop-up

Button
control.

137 Chapter 7: Simple User Interface Controls

<mx:PopUpButton label=”Select Item”>
 <mx:popUp>
 <mx:Button label=”item 1” />
 </mx:popUp>
</mx:PopUpButton>

Notice that the popUp attribute is set as a child MXML tag of the

PopUpButton MXML tag. A Button control is passed in as the value of the

popUp MXML tag. That Button is the Flex control that’s displayed when a

user clicks the PopUpButton control’s arrow.

Often, the pop-up control needs to be initialized in some way. For example,

you might need to populate the pop-up control with data or add event listen-

ers so that the pop-up responds to user interaction. Sometimes this means

that you create the pop-up control in ActionScript and then set that newly

created control as the value of the popUp property on the PopUpButton

control. For the most part, you can always create the pop-up control with

MXML tags, as the preceding example shows, but sometimes the pop-up con-

trol must be created in ActionScript for fine-grain control of the pop-up. The

following example shows how to create a PopUpButton control where the

pop-up is created in ActionScript:

<mx:PopUpButton id=”popUpBtn” label=”Select Animal”
creationComplete=”createPopUp();” />

<mx:Script>
 <![CDATA[
 import mx.controls.List;
 private var listPopUp:List;

 // Initialize the List control, and specify it as
 // the pop up object of the PopUpButton control.
 private function createPopUp ():void {
 listPopUp = new List();
 var dp:Object = [{label: “Cat”}, {label: “Dog”},

{label: “Mouse”}];
 listPopUp.dataProvider = dp;
 popUpBtn.popUp = listPopUp;
 }
]]>
</mx:Script>

Figure 7-9 shows a PopUpButton control that displays a prepopulated List

control.

First look at the createPopUp method. In this method, you first create the

List control in ActionScript by using the ActionScript new operator. After

you create the List control, you set its dataProvider property so that it’s

populated with data items. After the List control is created and populated

with data, you can safely set the PopUpButton’s popUp property to the newly

created List control.

138 Part III: The Flex Framework and Charting Components

Figure 7-9:
A prepopu-

lated List
control.

Now, how is the createPopUp method invoked? Notice that the PopUpButton

tag has an event listener for the creationComplete event. This event is dis-

patched when any Flex control has been completely created. In the preceding

example, after the creationComplete event has been dispatched, the

createPopUp method is called, which safely creates the pop-up and assigns

it to the PopUpButton’s popUp property.

For more information about creating and using the List control, see Chapter 8.

 Because a PopUpButton control extends the Flex Button control, it can follow

all the same customizations available to a Button control. You can therefore

customize the PopUpButton control to show just a label, an icon, or a label

and an icon together.

PopUpMenuButton
The PopUpMenuButton control is similar to the PopUpButton control, except

that the former always pops up a menu-like control. The PopUpMenuButton

control creates a PopUpButton control and pops up a single-level Flex Menu

control. You can create a PopUpMenuButton control in your Flex applica-

tion by using the <mx:PopUpMenuButton> MXML tag. You can populate the

pop-up menu with data directly in the PopUpMenuButton MXML tag. (For

more information on creating and customizing the Flex Menu control, see

Chapter 8.)

The following example shows how to create a PopUpMenuButton control

that displays a menu pop-up when a user clicks the arrow button. The menu

pop-up allows users to select a color from three color options, as shown in

Figure 7-10.

Figure 7-10:
A pop-up

with three
color

choices.

139 Chapter 7: Simple User Interface Controls

The menu pop-up is populated with data directly as a child tag of the

PopUpMenuButton tag. To populate the PopUpMenuButton with data, you

set the dataProvider property. In this example, the dataProvider prop-

erty is set to an array of data that’s declared with MXML tags. This data is

displayed by the menu pop-up:

<mx:PopUpMenuButton>
 <mx:dataProvider>
 <mx:Array>
 <mx:String>Red</mx:String>
 <mx:String>Blue</mx:String>
 <mx:String>Purple</mx:String>
 </mx:Array>
 </mx:dataProvider>
</mx:PopUpMenuButton>

To determine when an item on the pop-up menu has been selected, you

add an itemClick event listener. The event object that’s passed to the

itemClick event listener has information in it that can tell you which menu

item was selected. For more information on event objects and how to glean

useful information from them, refer to Chapter 3.

Popping open controls with
ComboBox and ColorPicker
In this section, we discuss ComboBox and ColorPicker, two controls that dis-

play their data in subcomponents that pop up as a result of user interaction

in order to allow users to make selections.

ComboBox
The simple Flex ComboBox control lets users click an arrow button to open

a drop-down list from which they can make choices. You create a ComboBox

control by using the <mx:ComboBox /> MXML tag. This control is similar to

the HTML <select> element. The key property to set on a ComboBox con-

trol is the dataProvider property, which tells the ComboBox which data

to display in its drop-down list. You can set the dataProvider property to

any Flex or Flash data object, and the ComboBox tries to display the data in

a clear fashion. After a user has selected an item from the drop-down list, the

properties that track user selection are updated to represent the value that

the user selected. To find the index of the item the user selected, you can

inspect the selectedIndex property. To decipher the actual data item that

the user selected from the list, you can inspect the selectedItem property.

After a user selects an item from the drop-down list, the ComboBox dis-

patches the change event to signal that a selection has been made.

140 Part III: The Flex Framework and Charting Components

To find out more about the dataProvider property, data display, and selec-

tion, see Chapter 8, where these topics are discussed in-depth in relation to

the Flex list controls (which the ComboBox control resembles).

The following code shows a ComboBox that can be used to make a credit-

card choice:

<mx:ComboBox dataProvider=”{[‘MasterCard’, ‘American
Express’, ‘Visa’]}” />

Data binding is used to set the dataProvider property. See Chapter 12 for

more information on data binding.

ColorPicker
The Flex ColorPicker control lets users select color information. By

default, the Flex ColorPicker opens a color swatch with many color entries

that the user can select. A ColorPicker control can be created with the

<mx:ColorPicker /> MXML tag. When the user makes a selection, the

change event is dispatched to signal that a color choice has been made. You

can query the selectionColor property, which is set to the chosen value

after the user chooses a color. To decipher the index of the color chosen in

the color swatch, the selectedIndex property can be queried. You can

use the showTextField property to determine whether a text box that

displays the current color choice appears. By default, showTextField is set

to true.

Making dates: Using calendar
controls in Flex
In many applications, users need to enter and display date-related informa-

tion. Maybe you’re building a hotel reservation application and you need a

calendar control to allow users to choose the length of their hotel stay. Or,

perhaps you’re building a scheduling application and need to display which

days are fully booked and which are open for scheduling. Flex has two native

user interface controls to deal with date-related information: DateChooser

and DateField. The following sections discuss how to create and customize

these calendar controls.

DateChooser
The powerful DateChooser control ties together the ability to display

and select individual dates, multiple dates, or a range of dates. You

can create a DateChooser control in your Flex application by using the

<mx:DateChooser> MXML tag. A DateChooser control displays year,

month, and day information. The DateChooser control provides a set of

properties that can be used to customize the date information it displays. For

example, DateChooser can show the current date, multiple dates, or a range

141 Chapter 7: Simple User Interface Controls

of dates as selected or as disabled. A DateChooser control has arrow buttons

that let users navigate to the next month or back to the previous month.

By default, DateChooser displays the current year and current month. You can

customize which month and year DateChooser initially displays by setting the

displayedMonth and displayedYear properties. The following example

shows a default DateChooser control, displaying the current month and year

for when this example was written and a DateChooser control that’s preinitial-

ized to show the calendar information for December 1999 (see Figure 7-11).

Figure 7-11:
Two Date

Chooser
controls
showing
calendar

information.

Notice that the number set to the displayedMonth property is zero-based,

which means that the month numbers go from January represented by the

number 0 all the way to December represented by the number 11:

<mx:DateChooser />
<mx:DateChooser displayedYear=”1999” displayedMonth=”11”

/>

You can control whether the current date is visually shown as selected when

the current month and year are in view: Set the showToday property to true

or false.

Sometimes you need to disable individual days or a range of dates so that

those dates cannot be selected and they appear as grayed out. Days in a

week or a range of dates can be disabled for selection by setting the

disabledDays or disabledRanges properties:

 � disabledDays: Set the disabledDays property to an array of num-

bers that are zero-based, such that Sunday corresponds to the number 0,

Monday to the number 1, and so on. The days matching the numbers speci-

fied in the disabledDays array cannot be selected and are grayed out.

 � disabledRanges: Similarly, you can disable a range of dates by setting

the disabledRanges property to an array of ActionScript Date objects.

The ActionScript Date objects defined in the array can correspond to a

single date or to a range of dates.

 When specifying a range of dates to disable, you need to specify the

rangeStart and rangeEnd properties.

142 Part III: The Flex Framework and Charting Components

The following example shows a DateChooser control displaying the date

information for the month of February, 2008. The dates from February 5,

2008, to February 28, 2008, are disabled. The second DateChooser control

shows date information for the month of February 2008, where Saturdays and

Sundays are disabled from user selection (see Figure 7-12):

<mx:DateChooser displayedMonth=”1”
disabledRanges=”{[{rangeStart: new Date(2008,
01, 05), rangeEnd: new Date(2008, 01, 28)}]}”/>

<mx:DateChooser displayedMonth=”1” disabledDays=”[0, 6]”
/>

Figure 7-12:
Individual
days and

date ranges
are

disabled.

When the user selects single dates, multiple dates, or a range of dates,

DateChooser updates some selections. You can query the selection proper-

ties to determine which selections the user has made. For example, when the

user clicks July 4, 2007, the selectedDate property immediately is set to an

ActionScript Date object representing July 4, 2007. Similarly, if the user holds

down the Shift key and selects a range of dates, the selectedRanges prop-

erty is set to an array of Date objects describing the ranges of dates that were

selected.

DateField
The simple DateField control displays date information and allows the user

to pop up a DateChooser control for more advanced calendar information.

For example, you might use a DateField control to conserve visual space in

your application because the DateField control takes up much less space

then a DateChooser control. You can create a DateField control in your Flex

application by using the <mx:DateField> MXML tag. When a DateField con-

trol is created, a text box displays date information and a calendar icon. The

user can click the calendar icon to pop up a DateChooser control. If the user

selects a date in the DateChooser control, the date displayed in the DateField

control’s text box updates to show that date.

All customizations available to a DateChooser control, such as the ability

to disable dates from user selection, can be set on the DateField control.

When these properties are set in the DateField MXML tag, they affect the

DateChooser pop-up control. As with the DateChooser control, you can use

the selectedDate and selectedRanges properties to determine which

143 Chapter 7: Simple User Interface Controls

dates the user selected. The following example shows a DateField control

where the user selected the date July 4, 2008 (see Figure 7-13):

<mx:DateField selectedDate=”{new Date(2008, 08, 04)}” />

Figure 7-13:
A DateField

control.

Scrolling around
Flex controls have an enormous amount of scrolling functionality built into

them natively. For example, when a List control contains more items than it

can display in its allotted space, it sprouts a vertical scrollbar by default. For

the most part, scrollbars are created by each individual control, and you can

set properties to control the scrolling policy. (For more information on con-

figuring the scrolling behavior of individual controls, refer to the Chapter 8

sections that talk about horizontalScrollPolicy and verticalScroll-
Policy.) However, in some cases, you may need to create individual scroll-

bar controls by using the <mx:HScrollBar> and <mx:VScrollBar> MXML

tags in your Flex application. The HScrollBar control creates a horizontal

scrollbar, and the VScrollBar control creates a vertical scrollbar.

A scrollbar consists of scroll arrows, a scroll thumb, and a scroll track. The

thumb sits in the track and displays the scrolling progress. Users can grab

and drag the thumb to scroll through larger “chunks” of information or click

the scroll arrows to move the thumb in smaller ”chunks.” You can set the

width property on a HScrollBar control to limit its width, and set the height

property on a VScrollBar control to limit its height.

When a user scrolls a scrollbar component, a scroll event is dispatched.

You can add an event listener for the scroll event in order to be notified

when the scrollbar has been scrolled by way of the scroll arrows, scroll

thumb, or scroll track. Certain scrolling properties can be set on the scroll-

bar controls in order to control where the scroll thumb appears and how

far one click of either scroll arrow moves the scroll thumb. The properties

minScrollPosition and maxScrollPosition are set to numbers

that represent the minimum and maximum scroll positions. The scroll
Position property is set to a number that represents the current scroll

position within the range defined by minScrollPosition and maxScroll
Position. Figure 7-14 shows a HScrollBar on the left and a VScrollBar on

the right. The scrollbars are created with a minimum and maximum scroll

position, and the scroll thumb is set to the halfway point. Notice the different

parts of the scrollbars, such as the scroll arrows, scroll thumb, and

scroll track.

144 Part III: The Flex Framework and Charting Components

<mx:HScrollBar width=”100” minScrollPosition=”0”
maxScrollPosition=”100” scrollPosition=”50”/>

<mx:VScrollBar height=”100” minScrollPosition=”0”
maxScrollPosition=”100” scrollPosition=”50”/>

Figure 7-14:
Horizontal

and vertical
standalone
scrollbars.

Sliding around with Slider controls
The Flex framework offers a pair of handy controls that allow users to make

choices by sliding a user interface control. Users can choose a value by drag-

ging the slider thumb between endpoints that sit on either a horizontal axis

or a vertical axis, as shown in Figure 7-15. For example, you may create a Flex

application that’s an MP3 player. You might use the Flex slider controls to

let users control the volume of the MP3 playback. You can create a vertical

slider by using the <mx:VSlider> MXML tag or a horizontal slider by using

the <mx:HSlider> MXML tag.

Figure 7-15:
Horizontal

and vertical
sliders with
limited slid-

ing range.

ToolTip Slider thumb

As a user drags the thumb, a ToolTip appears above it to indicate which

value would be chosen if the dragging were terminated at that point (refer to

Figure 7-15). You can control the range of values a user can select by setting

the maximum and minimum properties, which limit users to a particular range

of values to choose from. The values displayed in the ToolTip are calculated

based on the range of values specified by minimum and maximum. These

intervals can be visually displayed with tick marks. You can control the tick

mark increments by setting the tickInterval property.

145 Chapter 7: Simple User Interface Controls

The following example shows a horizontal slider control and a vertical slider

control (refer to Figure 7-15). You can move the horizontal slider’s thumb

anywhere between the values 0 through 10, and the slider shows a tick mark

at each whole number between 0 and 10. You can move the vertical slider’s

thumb anywhere between 0 and 100, and a tick mark is shown at intervals of

10 between 0 and 100.

<mx:HSlider minimum=”0” maximum=”10” tickInterval=”1” />
<mx:VSlider minimum=”0” maximum=”100” tickInterval=”10” />

The liveDragging property controls whether the sliding of the slider

thumb results in the real-time dispatching of value selection events and the

setting of value selection properties. Because liveDragging is set to false

by default, Flex sets value selection properties and dispatches value selection

events when the user stops sliding the slider thumb. If liveDragging is set

to true, Flex sets value selection properties and dispatches value selection

events continuously as the user drags the slider thumb. When value selection

has occurred, a change event is dispatched by the slider control. You can

add an event listener for the change event in order to be notified when the

user has selected a value.

Introducing Text Controls
Your Flex application needs to convey information to users, and even though

a picture is worth a thousand words, sometimes you can’t rely on icons and

images to get your point across. When you need to spell it out, you can use

a number of text controls. In this section, you find out how to use the Label

and Text controls to display text, and also how to use TextInput, TextArea,

and RichTextEditor controls to allow users to submit text to your application.

Displaying text in Flex
You have a few options for displaying text in your Flex applications. Many

controls in the Flex framework have text built into their interfaces. For exam-

ple, Panel has a title text field, and Button shows a label. But if you want to

simply show some text on your own, you use either the Label control or the

Text control.

Using Label
When you want to display a single line of text, use the Label control. It’s the

most basic text control in the Flex framework and does little more than dis-

play a single line of text. The main property you use is the text property,

which sets the text to be displayed. You can add a simple Label control to

your application by using the following MXML:

146 Part III: The Flex Framework and Charting Components

<mx:Label text=”My super label” />

Figure 7-16 shows the result of creating a Flex Label control to display text to

users.

Figure 7-16:
Displaying

text to
users.

Label supports the truncation of text, which means that if you set the

width of the label and the text can’t fit within that width, Label displays

an ellipsis (...) at the end of the text, indicating that the label has more text

than can be shown. You can control whether this truncation occurs by

setting the truncateToFit property, which is true by default. You can

style the font your label uses by setting the text styles, such as fontWeight,

fontSize, fontStyle. The fontWeight style controls whether the text

that’s displayed is boldface and can be set to normal or bold. By default,

fontWeight is set to normal in all Flex text controls. The fontSize style

controls the pixel height of the displayed text. By default, fontSize is set

to 10. The fontStyle style controls whether text is italicized. By default,

fontStyle is set to normal and can be set to italic to italicize the text.

Text versus Label
The Text control is nearly identical to the Label control, except that it can

span multiple lines. A Flex Text control can be created with the <mx:Text>

MXML tag. Label is limited to a single line, so if you need to show a block of

text, you have to use the Text control. Other than that, it’s pretty much the

same control as Label, and you can use all the same properties and styles.

The lone notable difference is that the Text control never truncates its text

by using the ellipsis (...) format, like Label does.

 Label and Text both have a selectable property that allows users to select

the text. By default, selectable is false for Label and true for Text.

Exploring text-input controls
Sometimes you can’t just talk at users — every once in a while, you need to

listen too. When it’s time to hear what application users have to say, you

can let them type into the Flex application by using the text-input controls:

147 Chapter 7: Simple User Interface Controls

TextInput, TextArea, and RichTextEditor. These controls are the easiest way

to receive input from a user, such as letting the user tell you his or her name,

or even submit a credit card number.

TextInput
Think of TextInput as an editable Label control. Or, if you’re from the HTML

world, TextInput is just like the <input type=”text” /> tag. A TextInput

control can be created with the <mx:TextInput> MXML tag. When you use

TextInput, you’re limited to a single line of text, so this text control should be

used for simple input fields that don’t require multiple lines of input.

You can get and set the text that’s displayed in the control by accessing the

aptly named text property. To create a basic text-input control, use the fol-

lowing MXML code:

<mx:TextInput id=”myTextField” text=”Hello World”/>

Then you can access the text that the user has typed by referencing myText-
Field.text. Here’s a complete MXML application to demonstrate accessing

the text of a TextInput control:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application
 xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;

 private function showAlertMessage():void {
 Alert.show(“Your name is: “ + myTextField.text);
 }
]]>
 </mx:Script>

 <mx:Label text=”Please enter your name:” />
 <mx:TextInput id=”myTextField” />
 <mx:Button click=”showAlertMessage()” label=”Submit” />

</mx:Application>

This Flex application lets an application user enter her name in the TextInput

control (see Figure 7-17). When the user clicks the Submit button, an alert

message pops up and displays the text the user entered in the myTextField

control.

148 Part III: The Flex Framework and Charting Components

Figure 7-17:
Using a

TextInput
control to

receive user
input.

 If the user is entering a password, you can set the displayAsPassword

property to true, which displays asterisks to hide what the user is typing.

This strategy also works on the TextArea control.

TextArea
If you need the user to enter more than a single line of text, use the TextArea

control rather than TextInput. This distinction is similar to the distinction

between Label and Text, discussed a little earlier in this chapter. If we con-

tinue our comparison to HTML controls, it should be apparent that TextArea

is similar to the HTML <textarea> tag. A Flex TextArea control can be cre-

ated with the <mx:TextArea> MXML tag. In a TextArea control, a user can

enter any amount of text, and if the text exceeds the width and height of the

control, scrollbars appear.

RichTextEditor
Flex has a built-in control designed to let users add rich formatting to the

text they enter. The RichTextEditor control consists of a TextArea control

and several buttons and options for formatting the text that’s entered, as

shown in Figure 7-18. This control can be useful if you want to let a user

enter text to be displayed later in your Flex application with the same for-

matting in place. A Flex RichTextEditor control can be created with the

<mx:RichTextEditor> MXML tag. Because RichTextEditor is used for

richly formatted text, you should always access the htmlText property of

this control as opposed to the text property, which accesses plain text.

Figure 7-18:
The

RichText
Editor con-

trol provides
HTML

formatting
tools for text

editing.

149 Chapter 7: Simple User Interface Controls

Working with HTML text
All Flex text controls have two properties you can use to set the text shown

in the control: text and htmlText. Any of the text controls can display

basic HTML text, which allows you to use HTML tags such as , <i>, and

<u> to format your text. If you want to use HTML formatting in your text, you

have to set the htmlText property rather than the text property.

 The number of HTML tags supported in the Flex text controls is determined

by the Flash Player’s ability to render HTML. There are some limitations to

what HTML tags the Flash Player can render. For a full list of supported HTML

tags, see Table 7-1.

Table 7-1 Supported HTML Tags
<a>

<i> <p> <textformat> <u>

Notice that complex HTML tags, like <table>, aren’t supported. This is a

limitation in Flash Player 9.

Showing Off with the
Flex Media Controls

Because Flex applications run on the Flash Player, you can take advantage of

some of the rich media capabilities that Flash provides. You can load static

images, animations, audio, and video into your applications by using media

controls. The image and video controls are visual components that can be

created with MXML or ActionScript to display the loaded media. Sound con-

trols, on the other hand, aren’t visual controls and must be created and con-

trolled with ActionScript.

Displaying images
Flex supports the following image formats: GIF, JPEG, PNG, SVG, and SWF.

Image assets with these extensions can easily be added to your Flex

application.

150 Part III: The Flex Framework and Charting Components

Image control
The easiest way to display images in your application is to use the Flex Image

control, which can be created with the <mx:Image> MXML tag. You use the

source property to tell the control where it can find the image file to load.

The location of the image file can be specified by a relative URL or an abso-

lute URL. A relative URL specifies the location of the image file relative to the

current location of the Flex MXML file.

The other notable properties of the Image control that you use are autoLoad

and scaleContent, described in the following list:

 � autoLoad: If autoLoad is set to true, which is the default setting,

the image control downloads the source image immediately after the

source property is set. Otherwise, you have to call the load() method

explicitly in ActionScript to load the image file.

 � scaleContent: You control the scaling of the source image by setting

the scaleContent property, which is true by default. If you specify

a width and height for the Image control, the image is either scaled

(scaleContent = true) or cropped (scaleContent = false) to

fit within the width and height you set.

 If you need to load a Scalable Vector Graphics (SVG) file, you must embed it

in your application. You cannot simply set the source property to the URL of

your SVG file. To embed the file inline in your MXML tag, you use the @Embed

syntax and embed an asset specified by a relative or absolute location:

<mx:Image source=”@Embed(‘graphic.svg’)” />

This line embeds the bytes of the SVG file in your main application SWF file.

Embedding assets adds to the file size of your SWF, so be aware when you

embed any multimedia.

SWFLoader versus Image
You should use the Image control when displaying noninteractive media. You

can also load interactive SWF files, which can even be other Flex or Flash

applications, by using the SWFLoader component. To create SWFLoader

Flex control, you can use the <mx:SWFLoader> MXML tag. SWFLoader

works just like Image but preserves interactivity in the SWF file you’re load-

ing. Generally, use the Image control to load all your images and use the

SWFLoader to load interactive SWFs. You can create a simple SWFLoader

control by using this bit of MXML code:

<mx:SWFLoader id=”loader” source=”@
Embed(source=’myLocalSWF.swf’)” height=”200”
width=”500”/>

151 Chapter 7: Simple User Interface Controls

 In terms of object-oriented component architecture, Image is an extension of

SWFLoader. Image adds a little extra functionality that lets it display well when

used in some of the Flex List controls, such as List and DataGrid. Other than

that, Image and SWFLoader are almost the same component.

Playing video
You can use the Flex VideoDisplay control to play back video files that have

been encoded as either Flash Video (FLV) videos or MPEG-4 videos with

H.264 encoding. The VideoDisplay control can display both progressive

download video and streaming video. A Flex VideoDisplay control can be cre-

ated with the <mx:VideoDisplay> MXML tag.

The Flex framework comes with only the most basic video controls, which

is the video playback control. It doesn’t include a prebuilt video player with

play and pause buttons or a volume control. You can easily build your own,

simple playback controls, but just be aware that the VideoDisplay control

displays only video.

 FLV files can be encoded with different compression algorithms for various

quality and size results. Typical encoding options for FLV files are Sorenson

Spark or On2 TrueMotion VP6.

Playing audio
You can play MP3 files in your Flex application by using the Sound class. But,

just as the Flex framework doesn’t contain an out-of-the-box video player

component, it also has no prebuilt user interface for an audio-playing compo-

nent. Instead, you get the essential elements that you need to play audio files,

and you can hook them up to your own interface controls you have created.

Flex has no user interface components for playing sounds, so you have to

get your hands dirty with ActionScript if you want to make audio work. You

create a new instance of the Sound class in ActionScript and call the load()

method to tell the Sound object which MP3 file to load. The load method

takes a URLRequest object, which is a utility class in ActionScript that you

use when working with URLs.

In the first line of the following code snippet, you create a new URLRequest

object that points to the sound file you want to load — in this case, a file

named audio.mp3. Notice that a relative URL is used to specify the location

of the audio.mp3 file, which means that the file lives in the same directory

as the Flex application. In the next line, you create a new Sound object, and in

the third line you load the audio file into the Sound object. After you load the

audio file, you can call the play method to start playback:

152 Part III: The Flex Framework and Charting Components

var urlRequest:URLRequest = new URLRequest(“audio.mp3”);
var sound:Sound = new Sound();
sound.load(urlRequest);

 The Sound class has a play() method, but it doesn’t have a stop()

method. Never fear: If you don’t want to force users to sit through the whole

audio clip, you can stop it whenever you like, although it involves using

the SoundChannel class. The play method of the Sound object returns a

SoundChannel object that you need to keep track of if you ever want to stop

the sound or adjust volume.

To expand on the previous code snippet, the following code listing creates

two buttons that allow users to start and stop playing an audio file:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”vertical”>
 <mx:Script>
 <![CDATA[
 private var soundChannel:SoundChannel;

 private function playSound():void {
 var urlRequest:URLRequest = new URLRequest(“audio.mp3”);
 var sound:Sound = new Sound();
 sound.load(urlRequest);

 if(soundChannel != null) {
 soundChannel.stop();
 }

 soundChannel = sound.play();
 }

 private function stopSound():void {
 soundChannel.stop();
 }
]]>
 </mx:Script>

 <mx:Button click=”playSound()” label=”Play” />
 <mx:Button click=”stopSound()” label=”Stop” />

</mx:Application>

In this example, you first define a variable to hold the SoundChannel object

that you will use to stop the sound after it has started playing. This variable,

named soundChannel, is referred to in the stopSound() method when

you want to stop the audio. The playSound() method creates a new Sound

object and begins playing it. When you call sound.play(), you save the

returned SoundChannel object in the soundChannel variable. If you didn’t

do this, you would never be able to stop the sound after you start playing it.

153 Chapter 7: Simple User Interface Controls

Next, we explain how to adjust the volume of sound that’s already playing.

To adjust the volume, you have to use another class: SoundTransform. Each

SoundChannel object has a soundTransform property that is an instance of

SoundTransform. You can change the volume property of a SoundTransform

object to adjust the volume of the playing clip. So, in the previous example,

you can adjust the volume to 50 percent by making the following call before

calling sound.play:

soundChannel.soundTransform.volume = .5;

Using this line of code, you access the current SoundTransform of the playing

clip and set the volume, which can range from 0 to 1.

 Your options for working with audio within a Flex application also include

streaming audio (or video) from a server. Streaming live audio or video

requires a streaming server and is thus outside the scope of this book.

Showing progress with ProgressBar
The ProgressBar control isn’t really a “media” control, but because the most

typical use for ProgressBar is to show the progress of a media file that’s

loading, it is included in this section. A Flex ProgressBar control can be cre-

ated with the <mx:ProgressBar> MXML tag. The ProgressBar control can

be used to show the progress of any operation, whether it’s loading an image

file from a server or indicating which percentage of a video has played (see

Figure 7-19).

Figure 7-19:
Using

ProgressBar
to show

processes
loading with

known and
unknown
(indeter-
minate)

durations.

A ProgressBar control with
indeterminate set to false

A ProgressBar control with
indeterminate set to true

154 Part III: The Flex Framework and Charting Components

You can get a ProgressBar to show progress in three ways, which you can

set by using the mode property of the control. The three possible values for

mode are event, polled, and manual. For both event and polled modes,

you have to specify a source control by setting the source parameter. Here’s

the lowdown on these three values:

 � event mode assumes that the control you set as the source property

will dispatch ProgressEvent events to let the ProgressBar know to

update itself. Controls such as Image and SWFLoader dispatch these

events when loading data.

 � polled mode assumes that the source control has properties named

bytesLoaded and bytesTotal. If a ProgressBar is in polled mode, it

checks these properties every 30 milliseconds and updates its progress.

 � manual mode doesn’t require a source control. Instead, you must manu-

ally call setProgress(bytesLoaded, bytesTotal) in ActionScript,

on the ProgressBar, to set the progress.

 The language used in the ProgressBar documentation often refers to

bytesLoaded and bytesTotal, which indicates that a common use of

ProgressBar is for loading files. But you can use the ProgressBar for any other

progress events, such as indicating the percentage of a processing task that

has completed: Just call ProgressBar.setProgress and pass in the cur-

rent amount completed and the total amount.

Tying It Together: A Video
Player Example

As we mention earlier in this chapter, the Flex framework doesn’t contain

a component with play and pause buttons to control a video. In Listing 7-1,

you create a simple application to control a video by combining the Label,

Button, VideoDisplay, and ProgressBar controls. The result is shown in

Figure 7-20.

Listing 7-1: Creating a Simple Video Player Application
<?xml version=”1.0” encoding=”utf-8”?>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”vertical” ➝ 2
 verticalGap=”0”>

 <mx:Script> ➝ 4
 <![CDATA[
 import mx.events.VideoEvent;

155 Chapter 7: Simple User Interface Controls

 private function playheadUpdated(event:VideoEvent):void {

 progress.setProgress(video.playheadTime, video.totalTime); ➝ 8
 }
]]>
 </mx:Script>

 <mx:Label text=”My Awesome Video” fontStyle=”italic” /> ➝ 12
 <mx:VideoDisplay width=”150” height=”150” id=”video” source=”video.flv”
 playheadUpdate=”playheadUpdated(event)”/>

 <mx:ProgressBar mode=”manual” id=”progress” label=”Playing: %3%%” ➝ 15
 labelPlacement=”center” width=”150” height=”18”/>
 <mx:HBox>

 <mx:Button label=”Play” enabled=”{video.playing == false}” ➝ 18
 click=”video.play()” />
 <mx:Button label=”Pause” enabled=”{video.playing == true}”

 click=”video.pause()” /> ➝ 21
 </mx:HBox>
</mx:Application>

Figure 7-20:
The output

from the
video-

display
example.

Here’s how the code in Listing 7-1 breaks down:

 ➝ 2 Stepping through Lines 2–3, you see that an Application is cre-

ated, and its layout is set to vertical. This layout places the

items vertically so that each control is one above the other.

 ➝ 4 When you include a Script block at the top of the file, you com-

bine MXML and ActionScript. We cover the ActionScript code con-

tained within the Script tags momentarily, but first look at the

MXML composition of this Application.

 ➝ 12 A Label control displays a title for the video — in this case, My

Awesome Video. Then the VideoDisplay control shows the video,

which has been set to play at 150-by-150 pixels (Line 13). The

source property points to the video file that will play, and an

event listener gets called every time the VideoDisplay control fires

a playheadUpdate event (Line 14).

156 Part III: The Flex Framework and Charting Components

 ➝ 15 A ProgressBar control shows the percentage of the video that has

played. Because you’re using the ProgressBar in manual mode,

you have to explicitly set the progress as the video plays.

 You can use the ProgressBar to show any kind of progress event,

not just bytes loading. In this case, you show the progress of the

video playing. You do this by calling setProgress(amount
Completed, totalAmount) whenever you want to update the

progress that’s shown. In this example, the current playhead time

and the total time of the video are passed in Line 8.

 ➝ 18 Near the end of the example are a few Button controls to start

and stop the video playback (Lines 18–21). You add your calls to

video.play() and video.stop() inline in the click event

handler for each Button control.

Notice that you’re using the HBox control to lay out the Button controls hori-

zontally. If you’re interested in finding out more about layout containers, see

Chapter 10.

We also use data binding to bind the enabled property of each Button to

the playing property on the VideoDisplay. If playing is false, the play

button is disabled, and the pause button is enabled. After playing becomes

true, the enabled properties are toggled, and the stop button becomes

enabled while the play button is disabled.

We cover data binding in more depth in Chapter 12, so feel free to jump there

for more information. Otherwise, just be aware that the curly braces in the

following line indicate that the enabled property of Button is being bound to

the playing property of VideoDisplay.

enabled=”{video.playing == true}”

This line ensures that whenever the playing property of the VideoDisplay

changes, the enabled properties of the Buttons are updated.

Chapter 8

Data-Aware User
Interface Controls

In This Chapter
� Creating simple controls to display flat data, like List and DataGrid

� Creating simple controls to display hierarchical data, like Tree and Menu

� Creating advanced controls like the AdvancedDataGrid

� Creating item renderers to customize the look of data-aware controls

With Flex, you can build rich applications that display data and enable

users to interact with data. Users of your application will interact

with data primarily through a set of data-aware controls. These controls have

a built-in mechanism that allows the user interface controls to be updated

whenever the underlying data powering the control is modified. Having this

mechanism built directly into the Flex controls saves you, the Flex developer,

a lot of work because managing updates to data can be tedious.

In this chapter, we first discuss the mechanism that the data-aware controls

use to interact with the data powering their display. Then we describe the

library of data-aware controls that the Flex framework offers. The following

table lists the controls that we cover in the chapter:

AdvancedDataGrid DataGrid

HorizontalList List

Menu MenuBar

TileList Tree

158 Part III: The Flex Framework and Charting Components

Recognizing That Awareness Comes
from the dataProvider

Data-aware Flex controls all specify a data object that provides the data

that the control displays. You associate this data object with the user inter-

face control by setting the dataProvider property. It’s defined in the

mx.controls.listClasses.ListBase class, and that ListBase class is

the parent class for all data-aware controls in Flex.

 Because of the Flex inheritance hierarchy, all data-aware controls have a

dataProvider property because they all extend the ListBase class. Because

the dataProvider property lets you use most types of data objects as data

sources for Flex controls, you can set the dataProvider object to any of the

native Flash data types, such as Array, XMLList, XML, or any of the Flex data

collections like ArrayCollection or XMLListCollection. (To find out more about

inheritance, check out Chapter 3, and to find out more about collections,

check out Chapter 13.)

We walk you through some examples of these different types of data objects

in this chapter. Similarly, you can set the dataProvider to any of the Flex

framework data objects, such as ArrayCollection or XMLListCollection. For a

more in-depth explanation of Flex collections, please check out Chapter 13.

Creating Flash Data Objects in
MXML and ActionScript

You can create all the different types of data objects available in Flash and

Flex in either MXML or ActionScript. First, take a look at some examples of

how to create Flash data objects, such as arrays, XML objects, and XMLList

objects in MXML and ActionScript.

Array
An array is a data structure that holds elements that can be accessed by an

index. Here is the code to create an array of strings describing a set of colors,

in MXML:

159 Chapter 8: Data-Aware User Interface Controls

<mx:Array id=”colors”>
 <mx:String>Red</mx:String>
 <mx:String>Blue</mx:String>
 <mx:String>Green</mx:String>
</mx:Array>

You can also use ActionScript to create the same data structure:

<mx:Script>
 <![CDATA[
 public var colors:Array = [“Red”, “Blue”,

“Green”];
]]>
</mx:Script>

These two examples are equivalent.

XML
XML is a common markup language, and XML objects can be created in Flash

to store XML data. You can create a Flash XML object describing a set of

colors in MXML:

<mx:XML id=”colors”>
 <node label=”Colors”>
 <node label=”Red” />
 <node label=”Blue” />
 <node label=”Green” />
 </node>
</mx:XML>

You can also create the object in ActionScript:

<mx:Script>
 <![CDATA[
 public var colors:XML = <node

label=’Colors’><node label=’Red’/><node
label=’Blue’/><node label=’Green’/></node>;

]]>
</mx:Script>

Again, these two examples are equivalent.

 An XML object is often used to describe hierarchical data, which is data that has

a parent-child relationship. In the colors XML object, the Colors node acts as

the parent node to the Red, Blue, and Green child nodes. Child nodes with no

descendants, such as the Red, Blue, and Green nodes, are also called leaf nodes.

An XML object must have a root node, which is a parent node that wraps up all

subsequently defined child nodes, for the object to be considered valid XML.

160 Part III: The Flex Framework and Charting Components

XMLList
You can express an XMLList object by using MXML tags or by using

ActionScript. An XMLList object is similar to a snapshot of part of an XML

object. Unlike an XML object, an XMLList object doesn’t need a root node to

wrap up all descendant nodes. To create an XMLList object that describes a

set of colors, you can do the following:

<mx:XMLList id=”colors”>
 <node label=”Red” />
 <node label=”Blue” />
 <node label=”Green” />
</mx:XMLList>

Or, you can use ActionScript:

<mx:Script>
 <![CDATA[
 public var colors:XMLList = <><node

label=’Red’/><node label=’Blue’/><node
label=’Green’/></>;

]]>
</mx:Script>

Creating Flex Data Objects
in MXML and ActionScript

Flex offers a rich set of data management classes, called collections, that

handle modifications, additions, and deletions to the data set. These collec-

tions wrap the Flash data objects we discussed above. These changes are

managed by the Flex collection classes, and user interface controls display-

ing collections update seamlessly to reflect any changes to data.

Using collections and data-aware controls together is powerful! You can

create Flex collections yourself, or you can let Flex wrap up noncollection data

objects that you create (such as Arrays, XML, and XMLList objects) into the

correct type of collection. Thankfully, this capability is built into all data-aware

controls, so you don’t have to do much to enable the updating mechanisms.

 Even if your user interface control displays data from an XML object, the con-

trol is updated when changes have been made to the underlying data object,

because the XML object gets wrapped into a collection by the control itself.

The following sections look at some examples of how you can create Flex col-

lections in MXML and ActionScript. (To find out more about collections, refer

to Chapter 13.)

161 Chapter 8: Data-Aware User Interface Controls

ArrayCollection
The following example shows an ArrayCollection created in MXML, and it

wraps an Array object as its data source:

<mx:ArrayCollection id=”colors”>
 <mx:source>
 <mx:Array id=”colors”>
 <mx:String>Red</mx:String>
 <mx:String>Blue</mx:String>
 <mx:String>Green</mx:String>
 </mx:Array>
 </mx:source>
</mx:ArrayCollection>

Here’s the same ArrayCollection object created in ActionScript:

<mx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;

 private var colorsArray:Array = [“Red”, “Blue”,
“Green”];

 public var colors:ArrayCollection;
 private function createArrayCollection():void
 {
 colors = new ArrayCollection();
 colors.source = colorsArray;
 }
]]>
</mx:Script>

XMLListCollection
The following example shows how you can create an XMLListCollection in

MXML or ActionScript by wrapping an XMLList object as its data source:

<mx:XMLListCollection id=”colors”>
 <mx:source>
 <mx:XMLList>
 <node label=”Red” />
 <node label=”Blue” />
 <node label=”Green” />
 </mx:XMLList>
 </mx:source>
</mx:XMLListCollection>

162 Part III: The Flex Framework and Charting Components

You can create the same XMLListCollection object in ActionScript:

<mx:Script>
 <![CDATA[
 import mx.collections.XMLListCollection;

 private var colorsXMLList:XMLList = new XMLList<node
label=’Red’/><node label=’Blue’/><node
label=’Green’/>”);

 private var colors:XMLListCollection;
 private function createXMLListCollection():void
 {
 colors = new XMLListCollection();
 colors.source = colorsXMLList;
 }
]]>
</mx:Script>

Of course, you don’t have to code the data objects from scratch in MXML

or ActionScript. In most real-world Web applications, a back-end database

exists, and your application queries it for data. Most data querying occurs

by using remote procedural calls or services to fetch data back to the Flex

application. In Flex, you do this by using the pre-existing data-management

libraries available like WebService and HTTPService. To find out more about

fetching data for your Flex application, check out Chapter 14.

Powering Your Data-Aware
Control with Data

Regardless of how you create your data object, you associate the data

object with the data-aware user interface control by setting the control’s

dataProvider property. You can do this in MXML by using data binding

or in ActionScript. (For a more in-depth explanation of data binding, refer

to Chapter 12.)

In the following example, data binding is used to set the dataProvider

property on the first List control, and the second List control sets data
Provider in a Script block. Both examples are valid, though the more

common scenario is the first example, using data binding to associate a data

object with a user-interface control:

163 Chapter 8: Data-Aware User Interface Controls

<mx:Array id=”names”>
 <mx:String>Sam</mx:String>
 <mx:String>Ammu</mx:String>
 <mx:String>Suguna</mx:String>
</mx:Array>

<mx:List id=”nameList1” width=”100”
dataProvider=”{names}”/>

<mx:List id=”nameList2” width=”100” creationComplete=
”setDataProvider();” />

<mx:Script>
 <![CDATA[
 private function setDataProvider():void
 {
 nameList2.dataProvider = names;
 }
]]>
</mx:Script>

Voilà! The List controls have been created and display the name data. Both

Lists look identical because they are bound to the same data object. Figure

8-1 shows what one of those Lists looks like.

Figure 8-1:
A List

control
displaying

names as its
data.

Scrolling List Controls
The Flex framework offers a set of simple List controls that do the following:

 � Display items either vertically or horizontally

 � Demonstrate built-in scrolling behavior

 � Provide single-selection and multiselection capabilities

 � Offer additional customizations for fine-grain control of the display and

interaction with data

List controls are often used to show numerous items in an organized fashion.

Applications often use List controls to display a number of items, such as in a

product catalog.

164 Part III: The Flex Framework and Charting Components

Exploring the scrolling List controls
Flex’s three scrolling List controls are described in the following list:

 � mx.controls.List: The simplest List control; displays a list of vertical

items

 � mx.controls.HorizontalList: Displays a list of horizontal items

 � mx.controls.TileList: Displays any number of items in a tile-like

fashion

The following sections describe how to create List controls, hook them up to

data, manage their selection, and customize their visual appearance.

mx.controls.List
The mx.controls.List control is the simplest data-aware control that the

Flex framework offers. You use this control in a Flex application by using the

<mx:List /> MXML tag. A Flex List displays items vertically and sprouts

a vertical scrollbar when the number of data items exceeds the number of

visible rows. Horizontal scrollbars can also be created, and scrollbars have

scroll policies that control that behavior.

As described earlier in this chapter, the dataProvider property binds a list

to the data it should display. Here’s an example of a List control bound to a

data object storing some U.S. state names:

<mx:List width=”150” height=”200” dataProvider=”{states}”
/>

In Figure 8-2, notice that the List control has a vertical scrollbar that enables

users to access state names that are off-screen. This scrolling support, which

is built into all List controls by default, is discussed in further detail in the

“Scrolling in List, DataGrid, and hierarchical data controls” section, later in

this chapter.

Figure 8-2:
A List

control
displaying

states as its
data.

165 Chapter 8: Data-Aware User Interface Controls

mx.controls.HorizontalList
The mx.controls.HorizontalList control is the same as the List control

except that it displays items horizontally. When the number of data items

exceeds the number of visible columns, the HorizontalList control sprouts a

horizontal scrollbar, as shown in Figure 8-3. The following example shows a

HorizontalList control displaying some states in the United States of America:

<mx:HorizontalList dataProvider=”{states}” />

Figure 8-3:
A Horizontal
List control.

mx.controls.TileList
The mx.controls.TileList control is similar to the List and

HorizontalList controls, except in the following ways:

 � It displays items in a tile-like fashion.

 � You can control the layout direction by using the direction property.

 � You can control the height and width of individual tiles by setting the

width of the TileList columns or the height of the TileList rows.

The following two examples show a horizontal TileList component (see

Figure 8-4) and a vertical TileList component (see Figure 8-5). The vertical

TileList is limited to two rows, and the horizontal TileList is limited to four

rows; the column and row dimensions are controlled by the rowHeight and

columnWidth properties.

<mx:TileList direction=”vertical” dataProvider=”{states}”
rowCount=”2” rowHeight=”100”/>

Figure 8-4:
A TileList

control with
specific row

heights.

166 Part III: The Flex Framework and Charting Components

<mx:TileList direction=”horizontal”
dataProvider=”{states}” columnCount=”3”
columnWidth=”100”/>

Figure 8-5:
A TileList

control with
specific col-
umn widths.

Making List controls display text
By default, the List controls try to display the data bound to them as accu-

rately as possible. They look on the data item for a property named label

(if the data is an array entry) or an attribute named @label (if the data is an

XML entry).

Often, your data doesn’t follow this format. Suppose that your data back-end

is configured to send employee data information to your application, where

the employee’s name lives in a field named name. You can use the label-
Field property, available on all List controls, to dictate which data field in

every data item should be used to display as the label. Remember that if the

data is XML, the labelField property expects an attribute name, which

must be qualified with the @ sign.

Let’s take a look at some examples to see exactly how to use the label
Field property to display the correct label. In the first example, an object-

based data set is bound to a List control. You want the list to display the data

contained in the name field:

<mx:ArrayCollection id=”employeeData”>
 <mx:Object employee=”John Jeffries” phone=”510 555 3419”

sex=”Male”/>
 <mx:Object employee=”Mary Smith” phone=”415 555 2309”

sex=”Female”/>
 <mx:Object employee=”Ned Martin” phone=”408 555 4309”

sex=”Male”/>
</mx:ArrayCollection>
 <mx:List dataProvider=”{employeeData}”

labelField=”employee” />

The second list has an XML-based data set, so you have to use the @ quali-

fier to indicate that the labels should be read from the employee attribute on

each XML node:

167 Chapter 8: Data-Aware User Interface Controls

<mx:XMLListCollection id=”employeeData”>
 <mx:XMLList>
 <node employee=”John Jeffries” phone=”510 555 3419”

sex=”Male”/>
 <node employee=”Mary Smith” phone=”415 555 2309”

sex=”Female”/>
 <node employee=”Ned Martin” phone=”408 555 4309”

sex=”Male”/>
 </mx:XMLList>
</mx:XMLListCollection>
<mx:List dataProvider=”{employeeData}” labelField=”@

employee” />

Both examples produce the List control shown in Figure 8-6. This control

configures its display with a labelField property.

Figure 8-6:
Configuring
the display
with label

Field.

Sometimes you want finer grain control over how to configure the label dis-

played by the List control for each data item. For example, you might want

to add Ms. or Mr. to each employee name, depending on whether the name

is male or female. You can access the employee sex field to determine if an

employee is male or female. You need a way to inspect this sex field and

then determine the resulting label for that data item. Luckily, the handy

labelFunction property, available on all Flex List controls, does that.

You can specify a function as the value to the labelFunction property, and

this function is called on every data item that the list displays. The label
Function property is often used to perform runtime label modification, format-

ting, and localization. labelFunction takes a data item that is of type Object

and returns the String that is the label to be displayed for that data item.

The following example shows how you add the Ms. or Mr. label to the

employee name displayed by the List control. The handleEmployee
NameDisplay method takes an Object as a parameter, and you cast it to

XML and then query the sex field to determine whether the employee is

male or female. Depending on the result, you build up a String that is used

as the label for that data item in the List control:

168 Part III: The Flex Framework and Charting Components

<mx:XMLListCollection id=”employeeData”>
 <mx:XMLList>
 <node employee=”John Jeffries” phone=”510 555 3419”

sex=”Male”/>
 <node employee=”Mary Smith” phone=”415 555 2309”

sex=”Female”/>
 <node employee=”Ned Martin” phone=”408 555 4309”

sex=”Male”/>
 </mx:XMLList>
</mx:XMLListCollection>
<mx:List dataProvider=”{employeeData}” labelFunction=

”handleEmployeeNameDisplay” />
<mx:Script>
 private function handleEmployeeNameDisplay(item:Object):

String
 {
 if (XML(item).@sex == “Female”)
 return “Ms. “ + XML(item).@employee;
 else if (XML(item).@sex == “Male”)
 return “Mr. “ + XML(item).@employee;
 else return XML(item).@employee;
 }
</mx:Script>

Figure 8-7 shows the result of this example.

Figure 8-7:
Configuring

the label
display

with label
Function.

DataGrid Controls for Powerful
Data Display

DataGrid controls are often used to display large sets of information, such

as flight information or employee data. They’re similar to List controls

(described in the “Scrolling List Controls” section), except that they can

show data in multiple columns. DataGrid controls enable application users

to sort data numerically or alphabetically by clicking column headers. Users

can also resize and drag DataGrid columns into different orderings.

169 Chapter 8: Data-Aware User Interface Controls

The DataGrid controls are perfectly suited to show data with different prop-

erties. For example, you can use a DataGrid control to display employee

information where one column shows the employee’s name, the next column

shows the employee’s phone number, and the final column displays the

employee’s title. Application users can then easily see a large set of related

data in a simple and clear user interface control.

DataGrid
The simplest DataGrid control is mx.controls.DataGrid, which you

can create by using the <mx:DataGrid /> MXML tag in your application.

Because the DataGrid control is an extension of the List control, it needs

to have its dataProvider property set in order to display user data.

Because a DataGrid control displays multiple properties defined on a single

data item, the data bound to a DataGrid control needs to be complex (where

a single data item has multiple fields).

For example, the following code snippet shows a complex data object bound

to a DataGrid control. Each Object defines a row on the DataGrid, and prop-

erties of the Object define the column entries for that row. The DataGrid

control displays three columns: one apiece for the employee’s name, phone

number, and title, as shown in Figure 8-8:

<mx:ArrayCollection id=”employeeData”>
 <mx:Object employee=”John Jeffries” phone=”510 555 3419”

title=”Engineering Manager” />
 <mx:Object employee=”Mary Smith” phone=”415 555 2309”

title=”Director of Sales” />
 <mx:Object employee=”Ned Martin” phone=”408 555 4309”

title=”Marketing Manager” />
</mx:ArrayCollection>
<mx:DataGrid dataProvider=”{employeeData}” />

Figure 8-8:
A DataGrid

control
displaying
employee

data in
multiple

columns.

170 Part III: The Flex Framework and Charting Components

DataGridColumn
If you want to increase your control over the display or naming of col-

umns, you can specify the order of the DataGrid columns: Use the

<mx:DataGridColumn /> tag in MXML. DataGridColumns live in the

columns property of the DataGrid control. If the DataGrid columns aren’t

specified, the DataGrid tries to display the data as well as possible, and the

property names on each individual data item correspond to a column. When

creating a DataGridColumn, you can decide how the header text appears and

give the column sizing information.

For example, in the DataGrid displayed in Figure 8-8, say you want the

employee column to say Adobe Systems Employee and the column to always

be 200 pixels wide. To accomplish this task, create a DataGridColumn and do

the following:

 1. Set the dataField property to the property on the data object that the

column is supposed to display.

 2. Use the headerText property on the DataGridColumn to customize

the text that’s displayed in that column’s header.

 3. Set the width property on the DataGridColumn to ensure that the

column width is what you want (in this case, you want the column dis-

playing the employee name to be 200 pixels).

The resulting code is shown here:

<mx:DataGrid dataProvider=”{employeeData}”>
 <mx:columns>
 <mx:DataGridColumn dataField=”employee”

headerText=”Adobe Systems Employee” width=”200”
/>

 <mx:DataGridColumn dataField=”title” />
 </mx:columns>
</mx:DataGrid>

The result is shown in Figure 8-9.

Figure 8-9:
A DataGrid

Column
control

displaying
employee

data.

171 Chapter 8: Data-Aware User Interface Controls

AdvancedDataGrid
A new feature in Flex 3 is the AdvancedDataGrid control, which is an exten-

sion of the DataGrid control. AdvancedDataGrid is offered only with Flex

Builder Professional (which includes, in addition to the AdvancedDataGrid

component, such advanced visualization components as charts). To learn

more about Flex Builder Professional, check out Chapter 4.

The AdvancedDataGrid control has extra features that support better data

visualization, aggregation, and formatting. Its main use is to show a hybrid

control in which data is contained in rows (similar to a DataGrid) but that

can display a hierarchy like a Tree component. The AdvancedDataGrid

can also be used to create summary rows, which are extra rows that dis-

play summary information about the preceding rows. Additionally, the

AdvancedDataGrid offers multicolumn sorting, which you can use to sort

entries in your DataGrid with different columns as sorting parameters.

You can create an AdvancedDataGrid control in your Flex application by

using the <mx:AdvancedDataGrid /> MXML tag. An AdvancedDataGrid

control takes a special type of data object as its dataProvider: a

GroupingCollection. A GroupingCollection transforms flat data (data with no

parent/child relationship) into hierarchical data that can be grouped based

on common data fields. When you create an AdvancedDataGrid control, you

must specify how you want your data to be grouped, by setting the group-
ing property on a GroupingCollection and passing in a Grouping object. This

Grouping object expects data fields to be specified, by setting the name prop-

erty, and AdvancedDataGrid groups data based on these fields. Like a regular

DataGrid control, the AdvancedDataGrid control lets you specify columns

(called AdvancedDataGridColumn) where you can customize the header label

by setting the headerText property, and specify the field in each data item

that should be displayed by setting the dataField property.

Listing 8-1 shows an application in which employee data is grouped in an

AdvancedDataGrid according to which offices the employees work in and

their genders. Figure 8-10 shows what this AdvancedDataGrid looks like.

Listing 8-1: An AdvancedDataGrid Control Group’s Employee Information
<?xml version=”1.0”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:ArrayCollection id=”employeeData”>
 <mx:Object employee=”John Jeffries” phone=”510 555 3419”

title=”Engineering Manager” sex=”Male” office=”Townsend”/>
 <mx:Object employee=”Mary Smith” phone=”415 555 2309” title=”Director of

Sales” sex=”Female” office=”Townsend”/>

(continued)

172 Part III: The Flex Framework and Charting Components

Listing 8-2 (continued)

 <mx:Object employee=”Ned Martin” phone=”408 555 4309” title=”Marketing
Manager” sex=”Male” office=”Townsend”/>

 <mx:Object employee=”Michelle Camp” phone=”415 555 9876” title=”Quality
Assurance” sex=”Female” office=”Townsend”/>

 </mx:ArrayCollection>

 <mx:AdvancedDataGrid id=”adg” width=”100%” height=”200” initialize=”gc.
refresh();”>

 <mx:dataProvider>
 <mx:GroupingCollection id=”gc” source=”{employeeData}”>
 <mx:grouping>
 <mx:Grouping>
 <mx:GroupingField name=”office”/>
 <mx:GroupingField name=”sex”/>
 </mx:Grouping>
 </mx:grouping>
 </mx:GroupingCollection>
 </mx:dataProvider>

 <mx:columns>
 <mx:AdvancedDataGridColumn dataField=”employee”

headerText=”Employee”/>
 <mx:AdvancedDataGridColumn dataField=”office” headerText=”Office”/>
 <mx:AdvancedDataGridColumn dataField=”sex” headerText=”Gender”/>
 <mx:AdvancedDataGridColumn dataField=”title” headerText=”Title”/>
 </mx:columns>
 </mx:AdvancedDataGrid>

</mx:Application>

Figure 8-10:
An

Advanced
DataGrid

control
displays
grouped

data.

Given that the AdvancedDataGrid control is a complex component, the online

Flex documentation is a helpful resource for finding out how to customize the

data display of an AdvancedDataGrid control.

173 Chapter 8: Data-Aware User Interface Controls

Hierarchical Data Controls
Sometimes the data you want to display in a data-aware control isn’t

flat in nature, but is in fact hierarchical, which means that each data

item has a parent/child relationship. For example, menu options in most

applications are hierarchical in order to show relationships like this:

File➪New➪Document.

The Flex framework has a set of controls perfectly suited to displaying

this kind of hierarchical data, including the Flex Tree, Menu, and MenuBar

controls, all of which extend from List. Like all other List controls, the

hierarchical data controls require a dataProvider to bind data to the user

interface control for display.

Growing a Flex Tree
To create a Flex Tree control, use the <mx:Tree /> MXML tag in your Flex

application. The Tree control displays hierarchical data as well as it can. As

with all other List controls, you can use the labelField and labelFunc-
tion properties to customize the display of labels for each item in the tree.

 The tree creates expandable nodes for those data items that act as parent
nodes — data items that have one or more child data items to display. These

parent nodes, or branch nodes, appear by default with a folder icon that the

user can click to either open and display child nodes or to close and hide child

nodes. Child nodes that have no data items as children are considered leaf
nodes and are endpoints of the tree. Leaf nodes appear as little file icons. The

child nodes that are displayed when a branch node is opened, or hidden when

a branch node is closed, can be either another branch node, or a leaf node.

All icons that the tree uses to display parent and leaf nodes can be customized:

 � Parent node icons: You can set the folderOpenIcon and folder-
ClosedIcon styles to customize the icon displayed when a branch node

is opened or closed. Because these styles are on the Tree control, you can

set them in-line in the MXML tag by embedding an asset. (See Chapter 18

for more on embedding graphical assets in a Flex application.)

 � Leaf node icons: The defaultLeafIcon style can be used to custom-

ize the icon displayed next to leaf nodes.

Figure 8-11 shows a Tree control with the default folder and leaf icons (left)

and with customized folder and leaf icons (right).

Often, the data bound to a Tree control is wrapped up in a root node, one that

encompasses all data that the Tree control displays. Whether this root node

is displayed is determined by the showRoot property on the Tree control.

174 Part III: The Flex Framework and Charting Components

Setting the property to true shows the root node of the dataProvider; set-

ting it to false doesn’t show the root node, and only the children of the root

node are displayed. By default, showRoot is set to false. Figure 8-12 shows a

Tree control with showRoot set to true (on the left) and false (on the right).

Figure 8-11:
Tree con-
trols with

default
icons and

customized
icons.

Figure 8-12:
Setting

showRoot
to true (left)
and to false

(right).

Navigating Flex applications
with Menus and MenuBars
Often, you want to create a pop-up Menu control or MenuBar control to assist

users in navigating your Flex application. As menu options are chosen, you can

trigger code to run that can change the state or view of your application.

Another set of useful hierarchical data-aware controls, similar to the Tree

control, are described here:

 � Flex Menu: Creates a pop-up menu that displays data with a parent/

child relationship.

 � Flex MenuBar: Creates a standalone menu bar that can be affixed to a

part of your application layout to display pop-up menus as users navi-

gate the menu items.

Menu
The Flex Menu control is one of the only user-interface elements that isn’t cre-

ated by using an MXML tag. Instead, the Flex Menu control must be created in

175 Chapter 8: Data-Aware User Interface Controls

ActionScript, with a few lines of code. The format is similar to what you write in

an MXML tag when creating any other data-aware control. You create the con-

trol, specify its dataProvider property, and optionally customize the display

of the label by applying the label and labelFunction properties.

Listing 8-2 shows how to create a Flex Menu control and customize its behav-

ior and appearance. The result is shown in Figure 8-13.

Listing 8-2: Creating a Pop-Up Menu Control in ActionScript
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”vertical”>

<mx:Script>
<![CDATA[

 import mx.controls.Menu; ➝ 5
 import mx.events.MenuEvent; ➝ 6

 private function createMyMenu():void ➝ 8
 {

 var m:Menu = Menu.createMenu(this, fileData, false); ➝ 10
 m.labelField=”@label”; ➝ 11
 m.addEventListener(MenuEvent.CHANGE, handleChange); ➝ 12
 m.show(100, 100); ➝ 13
 }

 private function handleChange(event:MenuEvent):void ➝ 16
 {
 selection.text = event.item.@label;
 }

]]>
</mx:Script>
<mx:XML xmlns=”” id=”fileData”>
 <node label=”root”>
 <node label=”File”>
 <node label=”New” />
 <node label=”Open”>
 <node label=”New Flex Project” />
 <node label=”New ActionScript Project” />
 </node>
 <node label=”Exit” />
 </node>
 </node>
 </mx:XML>

 <mx:Button label=”Pop Up a Menu” click=”createMyMenu();” /> ➝ 37
 <mx:Label id=”selection” />

</mx:Application>

176 Part III: The Flex Framework and Charting Components

Figure 8-13:
A popped-

up Menu
control.

In the following list, we walk you through the steps to create the Menu control,

assign it to a data source, pop it up, and use the change event to discern when

a menu item has been chosen and determine what the menu item is:

 ➝ 5 On Lines 5–6, import the Menu and MenuEvent classes into the

Script block.

 ➝ 8 The createMyMenu method, which creates the Menu control, is

assigned to the click handler of the Button declared on Line 37.

 ➝ 10 Using the Menu class’s createMenu method, you create a Menu

control and assign it to the local variable m. The first parameter to

the createMenu method is the parent, which in this case you set

to this. The Flex Application then acts as the parent of the Menu

control. The second parameter is the data you want to set as the

dataProvider for the Menu control, which you set to the XML

object declared on Line 24. The last parameter indicates whether

you want to show the root node of the data set bound to the Menu

control, which you set to false.

 ➝ 11 Set the labelField of the Menu control so that the labels for

each data item are read from the label attribute.

 ➝ 12 Add an event listener for the change event, which is dispatched

when the user makes a selection from the menu. When the

change event is fired, the handleChange event handler is

invoked.

 ➝ 13 After you create the Menu control and add the necessary event lis-

teners, you show the pop-up menu. Invoke the show method and

pass in the x and y parameters to indicate where the menu should

pop up.

 ➝ 16 On Lines 16–19, the handleChange event handler is invoked in

response to a change event being fired. This method checks the

event object for the label of the menu item that has been selected

and displays that label as the text property of the Label control

declared on Line 28.

177 Chapter 8: Data-Aware User Interface Controls

MenuBar
Unlike a Flex Menu control, you can create the Flex MenuBar control in

MXML by using the <mx:MenuBar /> MXML tag in your application. Like all

other List controls, the MenuBar control displays, as adequately as it can, a

dataProvider that encompasses hierarchical data. You can use the label-
Field and labelFunction properties to customize the display of labels for

individual data items.

The following example shows a MenuBar control that can be used to navigate

a Flex application:

<mx:MenuBar dataProvider=”{fileData}” labelField=”@label”
showRoot=”false”/>

The result is shown in Figure 8-14.

Figure 8-14:
A MenuBar

control.

As with a Flex Menu control, when an application user selects a menu item,

the change event is fired. The event object can be inspected to determine

which menu item has been selected. Using that information, you can invoke

code to change the state or view of your application.

Selection in List, DataGrid, and hierarchical data controls
Because data-aware controls have selection mechanisms built into them, the

List controls use a selection highlight to indicate selection visually and to let you

easily determine which items a user selects by using the keyboard or the mouse.

The visual appearance of selected items is built into the List controls. When a

user selects an item in a List control, the selection highlight is, by default, a blue

rectangle drawn over the selected item or items. You can control this color with

the selectionColor style, which can be set to any color value.

 List controls support the single or multiple selection of items. By default,

multiple selection is turned off, but it can be turned on by setting the

allowMultipleSelection property to true.

To figure out which items in the List control were selected, you can query a

variety of selection properties that are set when the user makes a selection

by using the keyboard or the mouse:

178 Part III: The Flex Framework and Charting Components

 � selectedIndex: A useful property that returns the index of the

selected item within the list of data items. For example, if you select the

third item in a list of five items, selectedIndex is set to 2.

 � selectedIndices: The property that returns the set of indices

within the list of data items when multiple items in the List control

are selected. The property holds an array of values that represent the

selected items, where the first item in the array is the first selected

item’s index and the last item in the array is the last selected item’s

index.

If you need the data items that were selected rather than just the index of

the selected items, you can query the selectedItem or selectedItems

properties:

 � selectedItem: Keeps a reference to the data item that was selected.

 � selectedItems: Keeps a reference to an array of items that were

selected. The ordering matches the same order as the selected
Indices property.

In the following example, we show you what each of the selection properties

would hold based on the selections made in Figures 8-15 and 8-16.

Figure 8-15:
A List con-

trol with
a single

selection.

selectedIndex: 1
selectedItem.employee: Mary Smith

Figure 8-16:
A List con-

trol with
multiple

selections.

179 Chapter 8: Data-Aware User Interface Controls

selectedIndices: [1, 3]
selectedItems: [{employee:’Mary Smith’, phone:‘415

673 2309’, title:‘Director of Sales’},
{employee:’Felicia Styles’, phone: ‘408 786
7645’, title:Director of Marketing’}]

Editable List, DataGrid, and hierarchical data controls
List controls can be put into an editable state, which allows application users

to edit directly within the user interface control the data that’s displayed.

This editing of the data is then committed to the data object that the List con-

trol is displaying so that the user’s changes are saved. By default, Flex List

controls aren’t editable but can be put into the editable state by setting the

editable property to true.

If a List control has editable set to true and a user presses Tab or clicks

to select a list entry, the item in the cell is selected, and a blinking cursor

appears. If the user starts typing, the data that’s entered appears in the list

cell; when the user clicks out of that entry into another entry, that informa-

tion is saved in the data object that is displayed by the List control.

When an editing session begins, the following events are dispatched:

 � itemEditBegin: Dispatched when the editing session begins — when

the user has selected an item or pressed the Tab key to select an item,

and the list entry starts accepting edits.

 � itemEditEnd: Dispatched when the editing session has ended.

In Figures 8-17 and 8-18, we show what a List and DataGrid look like during an

editing session.

Figure 8-17:
A List con-
trol with an
active edit-
ing session.

Figure 8-18:
A DataGrid

control with
an active

editing
session.

180 Part III: The Flex Framework and Charting Components

Advanced Functionality
in Data-Aware Controls

The following sections describe some of the advanced functionality that’s

available in the data-aware controls.

Scrolling in List, DataGrid, and
hierarchical data controls
List controls have scrolling behavior built into them and automatically

sprout horizontal scrollbars when the number of data items exceeds the

number of visible items. The number of visible items is usually determined

by the height of the List control, although if the rowCount property is set,

it determines the number of visible rows. The appearance of the horizontal

scrollbar indicates the number of items that are off-screen. For example, if

several items are off-screen, the scroll thumb is small, to indicate that there

are many pages of data to scroll.

For the most part, you don’t need to do much to control the scrolling behav-

ior of your application’s List controls. Scrollbars appear and disappear as

needed. If you need control over the appearance of scroll bars, though, you

can use the horizontalScrollPolicy and verticalScrollPolicy

properties. These two properties can be set to On, Off, or Auto on any List

control:

 � On: The corresponding scrollbar always appears on the List control.

 � Off: The scrollbar never appears on the List control.

 � Auto: The scrollbar appears when needed — when off-list data items can

be accessed only with a scrollbar.

 Often, you want to programmatically set the selection of the List control and

have that selected item scroll into view. This task is easy to do if you use the

verticalScrollPosition property, which sets the scrolling position of

the vertical scrollbar. In the following example, the verticalScroll
Position is set to 20: When a user clicks the button, the List selects the

20th item in the data set and scrolls the scrollbar to that item.

<mx:List dataProvider=”{states}” id=”stateList”
width=”150” height=”100”/>

<mx:Button click=”stateList.selectedIndex = 20; stateList.
verticalScrollPosition = 20;” />

181 Chapter 8: Data-Aware User Interface Controls

Dragging and dropping in List, DataGrid,
and hierarchical data controls
Because the Flex data-aware controls all have built-in drag-and-drop functional-

ity, users can drag single or multiple data items within the same List control

or from one List control to another. For the most part, dragging between the

same type of List controls is recommended because you have to do some extra

custom coding to support dragging between different types of List controls.

You can control the drag-and-drop behavior by using a set of drag-related

properties:

 � To turn on dragging functionality in a List control, set dragEnabled to

true. By default, this property is false.

 � To enable a List control as a drop target that accepts dropped items, set

dropEnabled to true. By default, this property is false. As items are

dragged and dropped, copies of the data are made, and the underlying

data object is updated with these copies.

 � If you simply want users to be able to move an item in a data-aware con-

trol, rather than copy the item, make sure that dragMoveEnabled is set

to true.

When participating in a dragging or dropping operation, the List controls

have some built-in identifiers to help in visualizing the drag operation. When

you drag an item, a drag proxy is drawn. This ghosted replication of the item

being dragged helps to visually identify the data item that’s part of the drag

operation.

If a List control is open to accepting drop inputs (that is, if its dropEnabled

property is set to true), the drag proxy has a little green plus sign in a circle

affixed to it, as shown in Figure 8-19. If a List control isn’t open to accepting

drop inputs (if its dropEnabled property is false), the drag proxy has a

red x in a circle affixed to it (see Figure 8-20); and, when the item is dropped,

the item zooms back into the originating List control because the drop action

was rejected.

Figure 8-19:
Accepting

a valid drop
item.

182 Part III: The Flex Framework and Charting Components

Figure 8-20:
Not accept-

ing a drop
item.

The List control dispatches a variety of drag events that indicate when a

drag operation has begun, has been terminated, or the item was success-

fully dropped. The event objects associated with these drag events tell you

exactly which item was dragged, from which List control the drag operation

originated, and where the data item was eventually dropped. This informa-

tion can be handy when trying to augment the built-in drag functionality,

although for the most part, the built in drag-and-drop behavior is sufficient.

For a list of these drag events, refer to Chapter 15.

 Multiple items can be dragged and dropped in the List controls. When a user

multiselects noncontiguous items (by holding the Ctrl key) or multiselects

contiguous items (by holding the Shift key), all selected items move as part of

the drag operation.

Setting variable list row heights
You may have noticed that all the rows in Flex List controls are standard in

size. In fact, the Flex List controls support creating rows of variable height

where the contents of each individual row can wrap. You control this behav-

ior by setting a couple of key properties to true:

 � variableRowHeight: Individual rows in the List, DataGrid, Tree, and

AdvancedDataGrid controls can have differing heights. By default, this

property is set to false.

 � wordWrap: The text in the row is wrapped. Note that wordWrap works

only when set to true and when variableRowHeight is also set to

true.

The following example shows a List control with variable row height and text

wrapping turned on (see Figure 8-21).

<mx:List dataProvider=”{loremIpsum}”
variableRowHeight=”true” wordWrap=”true”
width=”200” />

183 Chapter 8: Data-Aware User Interface Controls

Figure 8-21:
Rows of
variable

height
with text

wrapping
turned on.

Data-Aware Controls for Customizing
the Display of Items

The powerful Flex concept of item rendering allows you to customize List

control entries. All earlier examples in this chapter simply show text entries

for the List controls. You can jazz up the display of list entries with non-text

entries, such as Images and Buttons and CheckBoxes. In fact, any data-aware

control can show any Flex user interface controls within its row! Imagine dis-

playing a product catalog in a TileList control where each tile has an image

of the product, a label describing the product, and a link to a review of the

product. This kind of enhanced customization is made possible by taking

advantage of item renderers, which requires simply setting the item
Renderer property on a List control.

A few different types of item renderers are available to use, from simple to

complex. They are covered in the following sections.

Drop-in renderer
The basic kind of item renderer is the drop-in model, where you use one of

the built-in Flex user interface controls to augment the display of individual

list entries in a List control. You can set the itemRenderer property on any

of your List controls to the class name of one of the out-of-the-box Flex user

interface controls.

The following code example shows how to use an mx.controls.Image

control to display an image as the item renderer for one of the columns in

a DataGrid. Notice that the DataGridColumn’s dataField property is asso-

ciated with the image field in the data set — the column that displays the

image field uses an Image control to load in the image described by the image

field (in this case, JPG files of the employee):

184 Part III: The Flex Framework and Charting Components

<mx:DataGrid variableRowHeight=”true”
 dataProvider=”{dataProvider}”
 >
 <mx:columns>
 <mx:DataGridColumn
 dataField=”image” headerText=”Image”
 itemRenderer=”mx.controls.Image” />
 <mx:DataGridColumn headerText=”Name”

dataField=”name”/>
 </mx:columns>
 </mx:DataGrid>
<mx:XML id=”data”>
<employees>
 <employee>
 <name>John Jeffries</name>
 
 </ employee >
 < employee >
 <name>Martha Martin</name>
 
 </ employee >
</ employees >
</mx:XML>

In-line item renderer
Using a standard Flex control out of the box as the renderer for your row may

not customize the display enough for your needs. You may need to interact

with the data more or composite a number of Flex controls to create the

layout for the row you want. In this case, you can use an in-line item renderer

to build a special component that’s used as the renderer for a row. You use

the special <mx:Component /> tag, which defines an MXML component that

dictates the layout of each row.

The following code example shows how to use the <mx:Component />

tag to create an in-line item renderer for a List control that lays out a Label

control specifying the employee’s name and an Image control specifying the

employee’s image in a vertical layout container:

<mx:List variableRowHeight=”true”
 dataProvider=”{dataProvider}”>
 <mx:itemRenderer>
 <mx:Component>
 <mx:VBox width=”100%” height=”150”

horizontalAlign=”center”
verticalAlign=”middle”>

 <mx:Label text=”{data.name}” />
 <mx:Image text=”{data.image}” />

185 Chapter 8: Data-Aware User Interface Controls

 </mx:VBox>
 </mx:Component>
 </mx:itemRenderer>
</mx:List>

Notice that the data object is used to specify the source for the Image control

or the text of the Label control. The data object represents the data model

sourcing the List control. By specifying the source of the Image control as

data.image, you instruct the control to introspect the data item’s image

field for the source of the asset that the Image control should render.

Tying It All Together: A DataGrid Control
with Multiple Inline Item Renderers

Listing 8-3 creates a DataGrid control and uses three different inline item

renderers to customize the display of the cells. Two of the most common

questions that beginning Flex developers ask involve using editable item

renderers in a DataGrid and conditional formatting of DataGrid items. The

following example touches on both issues by using an editable ComboBox

control as an item renderer and displaying one cell in bold, depending on the

underlying data. The result is shown in Figure 8-22.

Listing 8-3: An Example of a Multiple Item Renderer
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:ArrayCollection id=”employeeData4”> ➝ 4
 <mx:Object employee=”John Jeffries” phone=”5105553419”
 title=”Engineering Manager” director=”false” sex=”Male”/>
 <mx:Object employee=”Mary Smith” phone=”4155552309”
 title=”Director of Sales” director=”true” sex=”Female”/>
 <mx:Object employee=”Ned Martin” phone=”4085554309”
 title=”Marketing Manager” director=”false” sex=”Male”/>
 <mx:Object employee=”Felicia Styles” phone=”4085557645”
 title=”Director of Marketing” director=”true” sex=”Female” />
 </mx:ArrayCollection>

 <mx:DataGrid dataProvider=”{employeeData4}” width=”400”> ➝ 16
 <mx:columns>

 <mx:DataGridColumn headerText=”Employee”> ➝ 19
 <mx:itemRenderer>
 <mx:Component>

 <mx:VBox verticalGap=”0”> ➝ 22

(continued)

186 Part III: The Flex Framework and Charting Components

Listing 8-3 (continued)

 <mx:Label text=”{data.employee}” fontSize=”12”
 fontWeight=”{data.director == true ? ‘bold’ :
 ‘normal’}” />

 <mx:Label text=”{data.title}” textIndent=”10”
 fontStyle=”italic” width=”100%” />

 </mx:VBox>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>

 <mx:DataGridColumn headerText=”Phone #”>

 <mx:itemRenderer> ➝ 31
 <mx:Component>
 <mx:Label text=”{formatter.format(data.phone.toString())}”>
 <mx:PhoneFormatter id=”formatter” formatString=”(###)

 ###-####” />
 </mx:Label>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>

 <mx:DataGridColumn headerText=”Gender”>
 <mx:itemRenderer>
 <mx:Component>
 <mx:Canvas>

 <mx:ComboBox id=”combo” ➝ 44
 selectedIndex=”{data.sex == ‘Male’ ? 0 : 1}”
 change=”data.sex = combo.selectedItem”>
 <mx:dataProvider>
 <mx:Array>
 <mx:String>Male</mx:String>
 <mx:String>Female</mx:String>
 </mx:Array>
 </mx:dataProvider>
 </mx:ComboBox>
 </mx:Canvas>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>

 </mx:columns>
 </mx:DataGrid>

</mx:Application>

Here’s an explanation of the sample application in Listing 8-3:

 ➝ 4 You define the data that will be displayed in the DataGrid. In this

example, you create an ArrayCollection of Objects that holds the

details about a few employees.

187 Chapter 8: Data-Aware User Interface Controls

 ➝ 16 You create a DataGrid control and bind the ArrayCollection you

created (employeeData4) to the dataProvider property of the

DataGrid.

 ➝ 19 Lines 19–28 define the first column in the DataGrid, which displays

the employee’s name and job title. You create a DataGridColumn

and assign a custom item renderer, which is defined on Lines

22–25. The custom item renderer you use is a VBox container that

contains two Label controls. The first Label control displays the

employee’s name. The second Label control displays the job title

in italics.

 ➝ 23 Notice on Line 23 that you set the fontWeight of the Label con-

trol based on the value of the director property of the data. If

director is set to true, the Label control is rendered in bold; oth-

erwise, it uses the normal font weight. This single item renderer

displays three data fields: employee, title, and director (by

way of the bold formatting).

 ➝ 31 You use a custom item renderer to format the phone number by

using the PhoneNumberFormatter. For more information about

using formatters, see Chapter 9.

 ➝ 44 In the third column, you use a ComboBox control to display

the employee’s gender. You bind the selectedIndex of the

ComboBox to the value of the sex property of the data item.

Notice that, in the change handler for the ComboBox, you modify

the underlying data. Whenever you’re working with editable item

renderers, you always want to edit the underlying data when the

user changes something.

Figure 8-22:
A DataGrid
with three

different
item

renderers.

188 Part III: The Flex Framework and Charting Components

Chapter 9

Forms, Formatters, and Validators
In This Chapter
� Creating simple form layouts

� Applying a validator control to a user interface control to validate user input

� Applying formatting controls to format data into customizable strings

In this chapter, we discuss how to build form layouts and how to use valida-

tor and formatter controls. Form layouts are often used to collect information

such as billing and shipping addresses, credit card information, and names and

birthdates from application users. You can use form layout containers to arrange

user interface controls in a form-like manner to make it easier to collect informa-

tion from users.

Additionally, you can use validator controls to make a form field required in such

a way that a user must enter input in a correct format or else validation of that

form field fails. For example, a form text field expecting a valid e-mail address

would use an EmailValidator to ensure that the user enters a valid e-mail

address.

You can use formatter controls to perform one-way conversions of raw data into

customized strings for display. For example, a label that needs to display today’s

date can use a DateFormatter to customize the display of the date.

The following table shows the form layout elements and the validator and

formatter controls available in Flex that we discuss in this chapter:

CreditCardValidator CurrencyFormatter CurrencyValidator

DateFormatter DateValidator EmailValidator

Form Formatter FormHeading

FormItem NumberFormatter NumberValidator

PhoneFormatter PhoneNumberValidator RegExpValidator

SocialSecurityValidator StringValidator ValidationResult

Validator ZipCodeFormatter ZipCodeValidator

190 Par t III: The Flex Framework and Charting Components

Delving into Form Layouts
A common use of Flex forms is to collect information from users. For exam-

ple, you can create a checkout page asking users to enter their names, billing

information, and shipping addresses. The Flex form containers have built-in

functionality that enables you to mark certain form fields as required or

optional. Additionally, you can use validator controls (described later in this

chapter) to validate the information entered by users.

Figure 9-1 shows a simple Flex form used to gather general information about

an application user. The First Name text field and Last Name text field are

required, as denoted by the asterisks. An EmailValidator control validates the

e-mail address that the user enters.

Figure 9-1:
A simple

checkout
form

created by
using the
Flex form

container.

Listing 9-1 shows how, in just 20 lines of MXML, this simple yet powerful form

can be culled together.

Listing 9-1: A Simple Flex Form Created in MXML

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

 <mx:EmailValidator source=”{email}” property=”text”/>
 <mx:Form width=”100%” height=”100%”

defaultButton=”{submitButton}”>
 <mx:FormHeading label=”General Information” />
 <mx:FormItem label=”First Name” required=”true”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Last Name” required=”true”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Email Address”>
 <mx:TextInput id=”email” />
 </mx:FormItem>

191 Chapter 9: Forms, Formatters, and Validators

 <mx:FormItem label=”Gender”>
 <mx:RadioButton label=”Female” />
 <mx:RadioButton label=”Male” />
 </mx:FormItem>
 <mx:FormItem label=”Country”>
 <mx:ComboBox dataProvider=”{[‘United

 States’]}” />
 </mx:FormItem>
 <mx:Button label=”Submit” id=”submitButton”/>
 </mx:Form>
</mx:Application>

In Figure 9-1, the user entered an invalid e-mail address, so the Email Address

text field places a red highlight around the control and displays the following

validation failure message:

An at sign (@) is missing in your e-mail address.

Creating and arranging a form layout are discussed in the following sections.

Form: Recognizing the top dog
The top-level MXML tag for creating a Flex form is <mx:Form />. The Form

tag creates a Form container, which means that the Form follows all rules

expressed by any Flex container. (To find out more about Flex containers

and their layout rules, check out Chapter 10.) The form elements, such as

FormHeading and FormItem, and any Flex user interface control, such as

Button, TextInput, and CheckBox, can be added as children of the <mx:Form
/> tag. (The FormHeading and FormItem form elements are discussed in the

following two sections.)

You can set the dimensions of the Form container to an explicit pixel dimen-

sion or to a percentage of its parent container; or, the Form container can

measure its contents and decide its dimensions accordingly. To set explicit

pixel dimensions, set the width and height properties to numerical values:

<mx:Form width=”300” height=”300” />

To set percentage-based dimensions, set the width and height properties

to percentage values, like this:

<!--The Form container will grow to fit the full size of
its parenting container -->

<mx:Form width=”100%” height=”100%” />

192 Par t III: The Flex Framework and Charting Components

To allow the Form container to measure its contents and determine the cor-

rect size on its own, simply omit the width and height properties, and the

Form container takes care of measurement on its own:

<!—Let the Form container determine its own size -->
<mx:Form />

If a Form container has the width and height properties set to either a pixel

or percentage value and the contents of the Form container exceed those

dimensions, Flex takes care of “sprouting” scrollbars automatically so that

users can scroll to the content that’s beyond the boundaries of the Form con-

tainer. Two properties control this behavior: horizontalScrollPolicy

and verticalScrollPolicy. You can set these two properties to values of

auto, on, or off, as described in this list:

 � auto: The scrollbar appears as determined by the Form container; it’s

the default scroll policy in both directions.

 � on: The scrollbar is always on in either direction.

 � off: The scroll bar is never displayed in either direction.

FormHeading: Creating labels
for different content areas
A FormHeading form element is used to create an optional label for items in

the Form container. Often, a Flex form is divided into different content areas.

For example, a form may have one section for a user’s personal informa-

tion (such as first name, last name, and phone number), another section for

payment information, and a third section for shipping information. These

different sections correspond to different content areas and can be labeled

as such by using FormHeading controls. You create a FormHeading control

by using the <mx:FormHeading /> MXML tag. The following FormHeading

depicts the form we just described:

<mx:Form>
 <mx:FormHeading label=”General Information” />

 <!-- FormItems corresponding to the general
information content area -->

 <mx:FormHeading label=”Payment Information” />

 <!-- FormItems corresponding to the payment
information content area -->

 <mx:FormHeading label=”Shipping Information” />

193 Chapter 9: Forms, Formatters, and Validators

 <!-- FormItems corresponding to the shipping
information content area -->

</mx:Form>

The left side of the FormHeading labels is aligned with the left side of the

user interface controls in the form. Additionally, by default, the FormHeading

labels are bolded. In Figure 9-1 you can see that a FormHeading control is

used to display the General Information label.

You can control the look of the FormHeading labels by using these styles:

 � color: To draw the FormHeading labels in a different color, set

the color style to a string or hexadecimal color value, such as

color=”red” or color=”0xFF0000”.

 � fontSize: To modify the size of the FormHeading labels, set the

fontSize style to a different numerical value. By default, the font size

of a FormHeading control is 12.

 � fontWeight: Use this style to determine whether the FormHeading

label is bolded. By default, the fontWeight of a FormHeading control is

bold, and setting it to normal removes the boldface.

FormItem: Creating individual
form elements
The FormItem form element comprises the guts of a Flex form container. The

FormItem container controls the identification and layout of individual form

elements. A single FormItem container draws a label describing the purpose

of that form entry and containing the control (or multiple controls) making

up that form entry. Additionally, a FormItem container can designate a form

entry as required or optional. To create a FormItem container in a Flex Form,

you use the <mx:FormItem /> MXML tag.

To specify the label for a FormItem, you set the label property on the

FormItem tag to any string. This label primarily describes the purpose of that

particular form entry. The following code snippet defines several FormItem

controls. Notice that the FormItem labels are vertically aligned with the first

child item of the FormItem container. Figure 9-2 shows the resulting form.

<mx:Form width=”100%” height=”100%”>
 <mx:FormHeading label=”Shipping Information” />
 <mx:FormItem label=”Street Address”>
 <mx:TextInput width=”100%”/>
 <mx:TextInput width=”100%”/>
 </mx:FormItem>
 <mx:FormItem label=”State”>

194 Par t III: The Flex Framework and Charting Components

 <mx:ComboBox dataProvider=”{[‘United States’]}” />
 </mx:FormItem>
 <mx:FormItem label=”Zip Code”>
 <mx:TextInput />
 </mx:FormItem>
</mx:Form>

Figure 9-2:
Several

FormItem
containers

in a Flex
form.

You can mark required input fields in a Flex form. To designate a field as

required, set the required property on a FormItem container to true. If

this property is true, all the child user interface controls of the FormItem

container are drawn with a red asterisk between the FormItem label and the

user interface control. By default, the required property is set to false. As

shown in Figure 9-3, the upper FormItem container designates its child fields

as required, and the lower designates its child fields as optional.

<mx:FormItem label=”Quantity” required=”true”>
 <mx:NumericStepper />
</mx:FormItem>
<mx:FormItem label=” Quantity “>
 <mx:NumericStepper />
</mx:FormItem>

Figure 9-3:
Two types

of child
fields.

 By default, Flex doesn’t enforce the filling of required fields with information.

Instead, you can use validator controls to auto-enforce requirements on form

fields. Validators are described in detail later in this chapter, in the section

“Validate Me.”

195 Chapter 9: Forms, Formatters, and Validators

Default Button: Helping out the end user
Often you want to create a Flex form where, after the user finishes filling

in information, pressing the Enter key causes a default action to occur. For

example, take a look at the General Information form section, shown earlier

in this chapter (refer to Figure 9-1). Typically, users press the Tab key to

move into the first FormItem container and then enter their first name, press

the Tab key again to move into the next FormItem container and enter their

last name, and so on. After they tab into the Country FormItem container and

select their country, they press Enter. Flex offers a way for that keystroke to

be the equivalent of clicking the Submit button.

You determine this type of interaction by setting the defaultButton prop-

erty on the Form container to the id of a button control that is a child of the

Form container. Then when the user presses Enter after entering information,

that action triggers the clicking of that particular button. The id property

can be set on any Flex control to a unique string, and that id can be used

anywhere in MXML or ActionScript code to refer to that particular control.

The following code snippet shows how the Submit button in the General

Information form is wired to be the form default button:

<mx:Form width=”100%” height=”100%”
defaultButton=”{submitButton}”>

 <mx:FormHeading label=”General Information” />
 <mx:FormItem label=”First Name” required=”true”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Last Name” required=”true”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Email Address”>
 <mx:TextInput id=”email” />
 </mx:FormItem>
 <mx:FormItem label=”Gender”>
 <mx:RadioButton label=”female” />
 <mx:RadioButton label=”male” />
 </mx:FormItem>
 <mx:FormItem label=”Country”>
 <mx:ComboBox dataProvider=”{[‘United States’]}” />
 </mx:FormItem>
 <mx:Button label=”Submit” id=”submitButton”/>
</mx:Form>

196 Par t III: The Flex Framework and Charting Components

Validate Me
Flex provides a rich variety of validator controls that can be used to validate

user entry data, such as e-mail addresses, dates, Social Security numbers, zip

codes, currency, numbers, and strings. These powerful controls ensure that

the data users enter into a Flex form is valid.

Customizing visual cues
for validation errors
When validation of a form field fails, the visual appearance of the user inter-

face control changes. By default, Flex draws a red border highlight around

the perimeter of the control. Additionally, when the user hovers the mouse

cursor over the control, a red ToolTip appears and displays a validation fail-

ure message. These visual cues indicate that the control failed validation.

You can customize these visual cues. For example, Figure 9-4 shows a

TextInput control failing validation by a ZipCodeValidator control. The vali-

dation-failure message tells the user which type of input was expected — in

this case, a valid zip code.

Figure 9-4:
A validation

failure.

Changing the validation failure border highlight
To customize the border highlight that appears around a Flex control that

fails validation, you can set the errorColor style, which can be set on any

Flex user interface control that extends from mx.core.UIComponent. That

includes all controls contained in the mx.controls package, such as Button,

TextInput, CheckBox, and List.

If you want a black border highlight to appear around a TextInput control

that failed validation, set the errorColor style to the string black or to the

hexadecimal color value for black, like so:

<mx:TextInput id=”ti” errorColor=”black” />
<mx:TextInput id=”ti” errorColor=”0x000000” />

197 Chapter 9: Forms, Formatters, and Validators

Customizing the validation failure message
Additionally, you can customize the failure message in the ToolTip that

appears when the user hovers the mouse cursor over the control that failed

validation. By default, Flex displays an error message that indicates which

type of input was expected.

To display your own validation failure message, you can set the error
Message property, which can be set on any Flex control that extends

from mx.core.UIComponent. The following example shows a custom

validation failure message when a TextInput control fails validation by an

EmailValidator:

<mx:TextInput id=”ti” errorMessage=”You have entered an
incorrect email address. Please try again.” />

Clearing the validation error
Sometimes you want to clear the validation error and all the accompanying

validation failure visual cues. It’s simple: You clear out the source object’s

value that’s being validated and set the errorString property on the user

interface control that failed validation to the empty string, “”.

The following code snippet shows, after an incorrect zip code has been

entered in the zipCode TextInput, how pressing the Reset button clears the

value entered in the zipCode TextInput and removes all validation failure cues:

<mx:Script>
 <![CDATA[
 private function resetZipCode():void
 {
 zipCode.text = “”;
 zipCode.errorString = “”;
 }
]]>
</mx:Script>
<mx:ZipCodeValidator source=”{zipCode}” property=”text” />
<mx:Form width=”300” height=”200”>
 <mx:FormItem label=”Zip Code”>
 <mx:TextInput id=”zipCode” />
 </mx:FormItem>
 <mx:Button label=”Reset” click=”resetZipCode();” />
</mx:Form>

Setting important properties on validators
Validators have a few key properties that need to be set in order for valida-

tion to be successfully triggered:

198 Par t III: The Flex Framework and Charting Components

 � source: The most important property that’s set on every validator. The

source property indicates which object is the source of the validation. It

must be set to an object reference, so the curly-brace data binding syntax

is used to bind in the object reference as the value of the source property.

To refresh your knowledge of data binding, refer to Chapter 12.

 � property: The second-most-important property that needs to be set on

any validator. It defines which property field on the source object

contains the value that needs to be validated.

The following code snippet shows a ZipCodeValidator where the source

object is set to the TextInput control whose id is zipCode. The property

property specifies that the text property on the zipCode TextInput con-

tains the value that needs to be validated by the ZipCodeValidator:

<mx:ZipCodeValidator source=”{zipCode}” property=”text” />
<mx:Form>
 <mx:FormItem label=”Zip Code”>
 <mx:TextInput id=”zipCode” />
 </mx:FormItem>
</mx:Form>

Flex validators enable you to specify that a missing or empty value in a user

interface control causes a validation failure. This behavior is dictated by the

required property, which can be either true or false, and can be set on

any validator control. Suppose that you have a form with three elements:

name, date of birth, and e-mail. You can create a validator with required set

to true to indicate that the user must enter a date of birth, and not doing so

causes a validation failure.

In Figure 9-5, the user left the Date of Birth field empty, triggering a valida-

tion error. To customize the error message that’s displayed when a field has

a missing or empty value, set the requiredFieldError property to the

string you want displayed. The following code snippet displays the custom

error message shown in Figure 9-5:

Figure 9-5:
An empty
form field

fails
validation.

199 Chapter 9: Forms, Formatters, and Validators

<mx:DateValidator source=”{dob}” property=”text”
required=”true” requiredFieldError=”You must
enter your date of birth.”/>

<mx:Form width=”300” height=”300”>
 <mx:FormItem label=”Full Name”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Date of Birth”>
 <mx:TextInput id=”dob”/>
 </mx:FormItem>
 <mx:FormItem label=”Email”>
 <mx:TextInput />
 </mx:FormItem>
</mx:Form>

Another useful property available on all validator controls is listener.

Sometimes you may want to validate one control but have the validation

visual cues applied to another control. In that case, you employ the

listener property to indicate which component should have the validation

results applied to it. Figure 9-6 shows a ZipCodeValidator validating one text

field and drawing the validation error around another text field.

Figure 9-6:
Applying

validation to
a different

control.

The following code snippet shows how the entry in the zipCode TextInput

contains the user information that’s validated, but the zipError TextArea con-

trol shows the validation-failure message:

<mx:ZipCodeValidator source=”{zipCode}” property=”text”
listener=”{zipError}” />

<mx:Form width=”300” height=”300”>
 <mx:FormItem label=”Zip Code”>
 <mx:TextInput id=”zipCode” />
 <mx:TextArea id=”zipError” />
 </mx:FormItem>
</mx:Form>

200 Par t III: The Flex Framework and Charting Components

Triggering validation
Validation of a Flex control is event driven and occurs by way of triggering.
Triggering is basically a way of invoking the validator to validate a value

expressed by the source object. Validators can be triggered by associating

them with a particular event or programmatically. The following sections

discuss triggering validation in response to a particular event and invoking

validation programmatically.

Event-based validation
With event-based validation, you can set up validation so that it occurs in

response to an event dispatched because of some user action. When this

event is dispatched, validation of the validator’s source object occurs.

Two properties are necessary to set up an event-based validation trigger:

 � trigger: Defines the control that generates an event that triggers the

validator. It must be set to an object reference, so the curly-brace syntax

must be used to bind in an object reference.

 � triggerEvent: Specifies the event dispatched by the trigger control

that should trigger the validation.

By default, Flex takes care of invoking validation when the user enters a value

in a user interface control that’s associated with a validator:

 � If the trigger property isn’t set on the validator control: The trigger

is the value of the source object.

 � If the triggerEvent property is omitted: Flex uses the valueCommit

event, which is dispatched by all Flex user interface controls when the

user selects or enters a value.

For example, the TextInput control dispatches the valueCommit event after

the user has entered text and the control no longer has mouse or keyboard

focus. Or, the DateChooser control dispatches the valueCommit event

after the user has selected a date. For the most part, this default pairing of

trigger and triggerEvent is sufficient, but sometimes you may want

to invoke validation upon particular user action, and that’s when these

properties should be set to something other than their default values.

The following code snippet shows how validation occurs based on the user’s

clicking a button. The trigger property on the ZipCodeValidator is set to the

id string of the Submit button, and the triggerEvent is set to the click

event. After the Submit button is clicked, therefore, and its click event is

dispatched, the ZipCodeValidator validates the Social Security number

TextField:

201 Chapter 9: Forms, Formatters, and Validators

<mx:SocialSecurityValidator source=”{social}”
property=”text” trigger=”{submit}”
triggerEvent=”click” />

<mx:Form width=”250” height=”300”>
 <mx:FormHeading label=”Personal Information” />
 <mx:FormItem label=”Name” required=”true”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Phone Number”>
 <mx:TextInput id=”phone” />
 </mx:FormItem>
 <mx:FormItem label=”Social Security Number”>
 <mx:TextInput id=”social” />
 </mx:FormItem>
 <mx:Button id=”submit” label=”Submit” />
</mx:Form>

Programmatic validation
In addition to event-based validation, validator controls can be triggered pro-

grammatically. This is necessary in cases where you may have to perform con-

ditional validation based on the information the user enters. Programmatically

triggering a validator control is easy — you simply invoke the validate

method, available on all validators. The following example shows how clicking

the Submit button triggers EmailValidator programmatically:

<mx:EmailValidator id=”emailValidator” source=”{email}”
property=”text” />

<mx:Form width=”200” height=”200”>
 <mx:FormItem label=”Email”>
 <mx:TextInput id=”email” />
 <mx:Button label=”Submit” click=”emailValidator.

validate()”/>
 </mx:FormItem>
</mx:Form>

Listening for validation events
A few important validation events are dispatched when any Flex user inter-

face control has been validated. Listening for these events may come in

handy if you need to do additional processing based on a validation result.

When a Flex user interface control is validated, the validator dispatches one

of these events:

 � valid: If the validation was successful

 � invalid: If the validation failed

202 Par t III: The Flex Framework and Charting Components

To capture these events, you can add an event listener directly to the valida-

tor tag. These events are ValidationResultEvent objects, which have

properties related to the validation.

The following example shows how you can listen for, and catch, validation

events. Depending on the type of validation event, the example pops up an

alert window that describes whether the validation failed or succeeded:

<mx:EmailValidator id=”emailValidator” source=”{email}”
property=”text” valid=”handleValidationResult(e
vent)” invalid=”handleValidationResult(event)”/>

<mx:Form width=”200” height=”200”>
 <mx:FormItem label=”Email” id=”emailField”>
 <mx:TextInput id=”email” />
 </mx:FormItem>
</mx:Form>
<mx:Script>
<![CDATA[
 import mx.controls.Alert;
 import mx.events.ValidationResultEvent;

 private function handleValidationResult(event:
ValidationResultEvent):void

 {
 var message:String = “”;
 if (event.type == ValidationResultEvent.VALID)
 message = “Validation succeeded”;
 else if (event.type == ValidationResultEvent.

INVALID)
 message = “Validation failed”;
 Alert.show(message);
 }
]]>
</mx:Script>

Furthermore, individual validators have specific properties that hold the

error message string when a particular parameter is invalid; for example:

 � ZipCodeValidator: Has a wrongLengthError property. You can set

this property to a string representing the custom validation error mes-

sage to display when a user enters a zip code that is not the expected

length.

 � CreditCardValidator: Has the invalidNumberError that can be

set to a custom error string that’s displayed when the user enters an

invalid credit card number.

For more information about the individual error string properties for each

validator, see the online Flex documentation.

203 Chapter 9: Forms, Formatters, and Validators

Checking out out-of-the-box
Flex validators
Now that you understand how validators work and which properties are nec-

essary to set to get the type of validation you want, take a brief look at the set

of standard validators that Flex offers. These validators are used to validate

all sorts of common data that come up frequently in Web applications.

CreditCardValidator
The CreditCardValidator allows you to validate a credit card number by

ensuring that it is the correct length, has the proper prefix, and passes the

Luhn mod10 algorithm for the specified card type. The Luhn mod10 algorithm

is a simple formula used to validate credit card number authenticity.

These important properties need to be set when using a CreditCardValidator:

 � cardNumberSource, cardNumberProperty: Specifies which Flex

object and which property on that object represent the credit card

number

 � cardTypeSource, cardTypePropery: Indicates which Flex object and

which property on that object represent the type of credit card

Run the following code and validate one of your own credit cards. If the

credit card number doesn’t match the credit card type, or it fails the Luhn

mod10 algorithm, validation fails:

<mx:CreditCardValidator id=”cv” cardTypeSource=”{card}”
cardTypeProperty=”selectedItem”
cardNumberSource=”{number}”
cardNumberProperty=”text” trigger=”{btn}”
triggerEvent=”click”

/>

<mx:Form>
 <mx:FormItem label=”Credit Card Type”>
 <mx:ComboBox id=”card” dataProvider=”{[‘American

Express’, ‘Diners Club’, ‘Mastercard’,
‘Discover’, ‘Visa’]}” />

 </mx:FormItem>
 <mx:FormItem label=”Credit Card Number”>
 <mx:TextInput id=”number”/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id=”btn” label=”Submit”/>
 </mx:FormItem>
</mx:Form>

204 Par t III: The Flex Framework and Charting Components

NumberValidator
The NumberValidator validates a string representing a valid number based

on the properties you set. The properties available dictate whether a number

is valid based on the appearance of a decimal point, the appearance of the

thousands separator, whether the number falls within a given range, whether

it’s an integer, whether it’s negative, and whether it has the correct decimal

precision.

Table 9-1 describes a subset of the properties available to set on

NumberFormatter to control the validation of a string representing a number.

For the full set of properties, see the online Flex documentation.

Table 9-1 Properties That Can Be Set on a NumberValidator
Property Allowable Values What It Determines

allowNegative Boolean: true, false Whether negative numbers are valid;
defaults to true

maxValue Any number The maximum value allowed; defaults
to NaN

minValue Any number The minimum value allowed; defaults
to NaN

Precision Any number The maximum number of digits
allowed after the decimal point

The following example shows validation of a user’s birth year. The expected

value is a four-digit number corresponding to the user’s year of birth:

<mx:NumberValidator minValue=”1900” maxValue=”2008”
source=”{birthYearText}” property=”text”/>

<mx:TextInput id=”birthYearText” />

CurrencyValidator
The CurrencyValidator validates a string as an authentic currency expres-

sion. Several properties can be used to govern the validation, such as

 � The format of the currency value

 � Whether negative values are allowed

 � Which precision is used to validate currency values

Properties necessary to customize the simple validation of a currency value

are described in this list:

 � alignSymbol: Specifies whether the currency symbol appears to the

right or left of the currency expression (set to left by default)

205 Chapter 9: Forms, Formatters, and Validators

 � currencySymbol: Displays the currency symbol (set to $ by default)

 � decimalSeparator: Used as the decimal point character (. by default)

 � thousandsSeparator: Used as the thousands separator character

(, by default)

In addition to these properties, the CurrencyValidator contains the same

properties specified in Table 9-1 for NumberValidator.

The following example shows a CurrencyValidator that validates text based

on whether it has two decimal places after the decimal point and is between

0 and 10:

<mx:CurrencyValidator id=”cv” source=”{currency}”
property=”text” minValue=”0” maxValue=”10”
precision=”2”/>

<mx:TextInput id=”currency” />

DateValidator
The Flex DateValidator enables you to validate a date string as a correct date-

and-date format. The DateValidator validates whether the month that’s

entered is between 1 and 12 (January and December), whether the day is

between 1 and 31, and whether the year is a number. The following proper-

ties are important when creating a DateValidator control:

 � daySource, dayProperty: Specifies on which property the source Flex

object displays the day information that’s validated

 � monthSource, monthProperty: Specifies on which property the

source Flex object displays the month information that’s validated

 � yearSource, yearProperty: Specifies on which property the source

Flex object displays the year information that’s validated

The allowedFormatChars property is set to a string that represents all the

formatting characters that are valid for the date expression being validated.

The string /\-.. is the default.

The following code example shows how to validate a user entering a birth

month and birth year. The month must be a number between 1 and 12, and

the year must be a valid value:

<mx:DateValidator id=”dv” monthSource=”{month}”
monthProperty=”text” yearSource=”{year}”
yearProperty=”text” trigger=”{btn}”
triggerEvent=”click”/>

<mx:Form width=”200” height=”200”>
 <mx:FormItem label=”Birth Month”>
 <mx:TextInput id=”month” />
 </mx:FormItem>

206 Par t III: The Flex Framework and Charting Components

 <mx:FormItem label=”Birth Year”>
 <mx:TextInput id=”year” />
 </mx:FormItem>
 <mx:Button id=”btn” label=”Submit” />
</mx:Form>

EmailValidator
The Flex EmailValidator makes the validation of e-mail strings quite simple.

The e-mail string is validated based on the appearance of a single @ sign, a

period in the domain name, and an e-mail suffix that has two, three, four, or

six characters. The EmailValidator doesn’t authenticate whether the e-mail

address exists.

The EmailValidator has several properties that you can use to customize the

error string that appears when the validation criteria isn’t met. The tooMany
AtSignsError can be set to a custom error string that’s displayed when

more than one @ sign is encountered. Similarly, the invalidDomainError,

invalidIPDomainError, invalidPeriodsInDomainError, missing
AtSignError, missingPeriodInDomainError, and missingUsername
Error can be set to strings that are displayed when the attribute case isn’t met.

The following example shows an EmailValidator validating an e-mail address

entered by the user:

<mx:EmailValidator id=”ev” source=”{email}”
property=”text” />

<mx:Form width=”250” height=”200”>
 <mx:FormItem label=”Email”>
 <mx:TextInput id=”email” />
 </mx:FormItem>
</mx:Form>

PhoneNumberValidator
The Flex PhoneNumberValidator validates a string representing a valid

phone number. The validation parameters ensure that the phone number

is at least ten digits long and potentially has formatting strings. The

PhoneNumberValidator doesn’t ensure that the phone number is a real,

active phone number. The allowedFormatChars property, which defaults

to the string ()- .+, can be augmented to include more formatting charac-

ters. Additionally, if the string being validated is the wrong length, you can

set the wrongLengthError to a custom string that’s displayed as the valida-

tion error.

The following example shows how to create a PhoneNumberValidator to vali-

date a string representing a user’s phone number:

<mx:PhoneNumberValidator id=”pv” source=”{phoneNumber}”
property=”text” />

207 Chapter 9: Forms, Formatters, and Validators

<mx:Form width=”250” height=”200”>
 <mx:FormItem label=”Phone Number”>
 <mx:TextInput id=”phoneNumber” />
 </mx:FormItem>
</mx:Form>

RegExpValidator
The RegExpValidator validates a string based on a regular expression you

specify. Here are the important properties for using RegExpValidator:

 � expression: When set to a valid regular expression of your choice, the

associated string is validated against that regular expression. The valida-

tion is successful if the RegExpValidator can find a match for the regular

expression in the string. A validator failure occurs if no match is found.

 � flags: This property lets you specify regular expression flags when the

expression matching is taking place.

 � noMatchError: To customize the error message that’s displayed when

no match is found, set this property to a string value that is the error

message of your choice.

The following example lets the user enter a regular expression of their choice

in the first TextInput, and the text entered in the second TextInput is vali-

dated against the regular expression entered by the user:

<mx:RegExpValidator id=”rev” expression=”{regExp.text}”
source=”{regExpEntry}” property=”text” />

<mx:Form width=”250” height=”200”>
 <mx:FormItem label=”Regular Expression”>
 <mx:TextInput id=”regExp” />
 </mx:FormItem>
 <mx:FormItem label=”Text to Match”>
 <mx:TextInput id=”regExpEntry” />
 </mx:FormItem>
</mx:Form>

SocialSecurityValidator
The SocialSecurityValidator is a handy control that validates a string repre-

senting a U.S. Social Security number. The SocialSecurityValidator doesn’t

check whether the Social Security number is valid, just that it follows the pattern

expected of a valid Social Security number. The Social Security number must be a

nine-digit number. It can use the minus sign (–) to split up the number, often like

so: ###-##-####. Whether other characters are allowed to be used to split up

the Social Security number is controlled by the allowedFormatChars prop-

erty, which defaults to the ()- .+. string.

208 Par t III: The Flex Framework and Charting Components

The following example validates a nine-digit U.S. Social Security number:

<mx:SocialSecurityValidator id=”sv” source=”{social}”
property=”text” />

<mx:Form width=”400” height=”200”>
 <mx:FormItem label=”Social Security Number”>
 <mx:TextInput id=”social” />
 </mx:FormItem>
</mx:Form>

StringValidator
The Flex StringValidator validates a string based on length. You can set the

minLength and maxLength properties to bound the length of the string

being validated. The following example shows how to validate a string based

on whether it’s greater than zero characters long and less than five charac-

ters long. A string with six characters fails validation:

<mx:StringValidator id=”sv” minLength=”0” maxLength=”5”
source=”{entry}” property=”text” />

<mx:Form width=”200” height=”200”>
 <mx:FormItem label=”String Entry”>
 <mx:TextInput id=”entry” />
 </mx:FormItem>
</mx:Form>

ZipCodeValidator
The Flex ZipCodeValidator allows for the validation of U.S. and Canadian zip

codes. One key property needed to customize your ZipCodeValidator is the

domain property. You can set it to either the string US Only (only a U.S. zip

code is being validated) or US or Canada (the zip code could be a U.S. or

Canadian zip code).

Additionally, you can set the following two properties to a custom string

that’s displayed in certain circumstances:

 � wrongCAFormatError: When an invalid Canadian zip code is

encountered

 � wrongUSFormatError: When an invalid U.S. zip code is encountered

By default, these two properties have descriptive validation error messages

that are displayed.

The following example shows the validation of a six-digit Canadian postal

code or a five- or nine-digit U.S. postal code. Entering, for example, a three- or

seven-digit value causes a validation failure:

209 Chapter 9: Forms, Formatters, and Validators

<mx:ZipCodeValidator id=”zv” source=”{zip}”
property=”text” domain=”US or Canada” />

<mx:Form width=”400” height=”200”>
 <mx:FormItem label=”Canadian or US Zip Code”>
 <mx:TextInput id=”zip” />
 </mx:FormItem>
</mx:Form>

Format Me
Flex offers a diverse set of formatting controls that allow one-way, automatic

conversions of raw data — which is either entered by an application user or

returned from a back-end data source — into a formatting string. The format-

ting controls are useful in displaying data in a meaningful way to the applica-

tion user because data returned from a data source often isn’t formatted in a

way that’s human readable. Flex offers a wide array of formatters to format

common data values such as dates, currencies, and zip codes as well as a

general number formatter that can be customized to your exact specification

by setting formatting properties.

The formatter controls are triggered to format data. That is, you can decide

when the formatting should take place and trigger the formatting to occur.

Often, you use data binding to trigger a formatter to format its input and display

the formatted data in any of the Flex text controls, such as Label, TextInput, or

TextArea. (To find out more about data binding, refer to Chapter 12.)

Formatting data
To format raw data with a Flex formatter, two important steps are necessary.

First, a formatter MXML tag must be written in order to create a Flex formatter.

The following Flex formatters are available out of the box for easy uses:

 � <mx:CurrencyFormatter />

 � <mx:DateFormatter />

 � <mx:NumberFormatter />

 � <mx:PhoneFormatter />

 � <mx:ZipCodeFormatter />

210 Par t III: The Flex Framework and Charting Components

The examples in this section show how formatters are used in general, and

the following sections describe how to use each individual formatter in more

detail.

Then, after a formatter has been written in MXML, you set an id on it. It’s by

this id that the formatter is invoked to format data. As is the general rule when

setting the id property, you can often increase the readability of your applica-

tion code by making the id on Flex controls meaningful and human readable.

Setting formatter properties
The next step is to set the formatter-specific properties that customize how

the data should be formatted. We discuss these formatter properties in the

individual descriptions of each Flex formatter in the later section “Handling

formatting errors.”

Now, how does a Flex formatter know what to convert the raw data to? Well,

some Flex formatters use a formatString property to describe the pattern

that that the formatter formats against. The DateFormatter, PhoneFormatter,

and ZipCodeFormatter use the formatString property. For example, the

formatString for a DateFormatter is a set of letters that describes the

way the date and time can be described. By default, formatString for a

DateFormatter is MM/DD/YYYY, meaning that the date February 28, 1981, is

formatted as 02/28/1981. You can set the format string to produce the output

you want. The formatString possibilities for each formatter are described

in the next section.

Applying the formatter to raw data
After all the properties that govern the formatting of data have been set

on your Flex control, the formatter is ready to be applied to raw data. This

application usually occurs by way of data binding. It is often the case that the

formatter is used to format text, and this text is often contained in the text

property available on all Flex text controls, such as Label, TextInput, and

TextArea.

To associate the text contained in the text property as the raw data that

your formatter must format, you write a data binding expression that

expresses this and set that data binding expression as the text of another

Flex text control. That way, one Flex text control is displaying the format-

ted data entered by another Flex text control. This data binding expression

instructs the Flex control to display, as its text, the original, raw data that is

run through the formatter’s format method.

The following code snippet illuminates this concept. First, you define a Zip

CodeFormatter, whose id is zipCodeFormatter. You also a have a Text

Input control whose id is zipCode. You want the zipCode TextInput to dis-

211 Chapter 9: Forms, Formatters, and Validators

play, as its text, zip code data that has been formatted by the zipCode

Formatter. The zip code data is coming from, in this case, a string that is

defined above the ZipCodeFormatter. This zip code data could come

from anywhere: It could be data entered by the user somewhere in the

application or from fetching data from an external data source:

<mx:String id=”zipText”>337014</mx:String>
<mx:ZipCodeFormatter id=”zipCodeFormatter”

formatString=”### ###” />
<mx:TextInput id=”zipCode” text=”{zipCodeFormatter.

format(zipText)}”/>

Sometimes you want to trigger the formatting of raw data not through a data

binding expression that would result in automatic formatting, but rather from

a button click or some other user gesture. It’s simple: You programmatically

invoke the formatter’s format method when the user gesture of your choice

occurs. The following example shows how to do it. The text contained in the

zipCode TextInput gets formatted from the format Button’s click event:

<mx:ZipCodeFormatter id=”zipCodeFormatter”
formatString=”### ###” />

<mx:TextInput id=”zipCode” text=”337014”/>
<mx:Button label=”format” click=”zipCode.text =

zipCodeFormatter.format(zipCode.text);” />

Handling formatting errors
If a formatting error occurs, Flex returns an empty string as well as a descrip-

tive string, which describes the error, as the value of the error property on

the formatter. A Flex formatter’s error property is either the string “Invalid

value,” which means that an invalid value was passed to the formatter’s format

method, or “Invalid format,” which means that the formatString is invalid

in some way. This section describes the individual formatters available in the

Flex framework.

NumberFormatter
The Flex NumberFormatter lets you format a number by setting properties

that adjust the decimal point, thousands separator, and negative sign as you

see fit. Here’s a rundown of the properties you can set:

 � rounding: This property determines the behavior when rounding to the

nearest number. You can set the rounding property to none, up, down,

or nearest. By default, rounding is set to none so that no rounding

occurs.

212 Par t III: The Flex Framework and Charting Components

 � precision: Often used with rounding, this property can be set to a

number that denotes how many decimal places to include in the format-

ted string. By default, precision is set to –1, meaning that no precision

occurs.

 � userNegativeSign: This property defaults to true and can be set to

true or false to designate whether a negative sign is displayed when

a negative number is formatted. If useNegativeSign is set to false,

formatting a negative number such as –12 is outputted with parentheses

around it, as in (12). The useThousandsSeparator property, which

defaults to true, determines whether the number is split into thousands

increments with a separator character (that is, by default, ‘,’).

 � decimalSeparatorFrom, thousandsSeparatorFrom: decimal
SeparatorFrom defaults to ‘.’, and thousandsSeparatorFrom

defaults to ‘,’. These properties can be set to determine which character

is interpreted as a decimal point or thousands separator marker when

parsing an input string by the formatter.

 � decimalSeparatorTo, thousandsSeparatorTo: decimalSepara-
torTo defaults to ‘.’, and thousandsSeparatorTo defaults to ‘,’. These

properties can be set to determine what the outputted text should use

as a decimal point and thousands separator.

The following example shows how to round a decimal number to the tenth place:

<mx:NumberFormatter id=”nf” rounding=”up” precision=”2” />
<mx:TextInput text=”{nf.format(‘1.234567’)}” />

CurrencyFormatter
The Flex CurrencyFormatter allows you to format currency values. You can

regulate the decimal rounding and precision, set the thousands separator,

set a negative sign, and add a currency symbol. The CurrencyFormatter uses

all properties specified on NumberFormatter to control the decimal and thou-

sands place behavior, so refer to the earlier section “NumberFormatter.”

To specify the currency symbol, you can set the currencySymbol property

to a string, usually a single character, that’s used when formatting the cur-

rency value. By default, currencySymbol is set to ‘$’. The placement of

the currency symbol is determined by the alignSymbol property, which

can either be set to left or right. By default, alignSymbol is left so that

the currency symbol appears like American currency values rather than

European currency values. The following example shows a conversion of a

number to a European currency value:

<mx:CurrencyFormatter id=”cf” currencySymbol=”EURO”
alignSymbol=”right” rounding=”up”
precision=”2”/>

<mx:TextInput text=”{cf.format(‘2.3’)}” />

213 Chapter 9: Forms, Formatters, and Validators

DateFormatter
The DateFormatter enables you to format date values — represented as

either strings or ActionScript Date objects — into customized date strings.

You can set the formatString to determine how the raw data should be

formatted. The formatString needs to be set to a pattern string composed

of letters that control the date parsing behavior.

Table 9-2 captures some of the different formatting patterns and specifies

what they mean when parsing a Date. The DateFormatter can also be used to

format and display time information. For descriptions of the pattern letters

governing time formatting, refer to the online Flex documentation.

Table 9-2 Date and Time Format Patterns
Pattern Letter What It Does

Y Determines display of Year

YY = 98

YYYY = 1998

YYYYY = 01998

M Determines display of Month

M = 1

MM = 01

MMM = Jan

MMMM = January

D Determines display of Day

D = 1

DD = 01

DD = 12

E Determines display of the day of week

E = 5

EE = 05

EEE = Fri

EEEE = Friday

214 Par t III: The Flex Framework and Charting Components

The following example shows how to use a DateFormatter to format an

ActionScript Date object into a human-readable string:

<mx:DateFormatter id=”df” formatString=”MMMM DD, YYYY” />
<!-- Displays as February 28, 1981 -->
<mx:TextInput text=”{df.format(new Date(1981, 01, 28))}”

/>

PhoneFormatter
The PhoneFormatter enables you to format strings into a valid seven-digit

United States phone number. The formatString property, by default, is

‘(###) ###-####’. You can change the order as desired. When parsing the

formatString, you can indicate which characters are valid for the pattern

by setting the validPatternChars to a string with all the characters you

want included in the pattern. By default, validPatternChars is ‘+()#- .’.

The areaCodeFormat property can be set to format the appearance of the

area code in a phone number. By default, areaCodeFormat is set to ‘(###)’.

The following example shows how a phone number is formatted to have no

miscellaneous characters or spaces:

<mx:PhoneFormatter id=”pf” formatString=”###-###-####” />
<!-- Displays as 408-123-4567 -->
<mx:TextInput text=”{pf.format(‘4081234567’)}” />

ZipCodeFormatter
The ZipCodeFormatter allows the formatting of strings into a five-digit, six-

digit, or nine-digit zip code. The formatString can be set to the values shown

in Table 9-3.

Table 9-3 Format Patterns for Formatting Zip Codes
Pattern Length of Zip Code

#####-#### Nine digits with hyphen

Nine digits with space

Five digits

Six digits with space

The following code example shows how to format a number into a six-digit

Canadian zip code:

<mx:ZipCodeFormatter id=”zf” formatString=”### ###” />
<!-- Displays as 123 456 -->
<mx:TextInput text=”{zf.format(‘123456’)}” />

215 Chapter 9: Forms, Formatters, and Validators

Tying It All Together: Creating
an E-Commerce Form

Listing 9-2 ties together forms, validators, and formatters. The sample appli-

cation is a classic e-commerce checkout form that validates the information

as the user enters it (see Figure 9-7). Formatters are used to format the date

displayed at the top of the form as well as the label at the bottom, which is

tracking the number of visitors to the page.

Figure 9-7:
A Flex form
using vali-
dators and
formatters

to verify and
customize

data.

Listing 9-2: Checkout Form Highlighting Validators, Formatters, and Forms
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”vertical”>
<mx:Script>
 <![CDATA[

 private var currentDate:Date = new Date(2008, 01, 10); ➝ 5
 private var currentVisitor:int = 1234; ➝ 6
]]>
</mx:Script>

<mx:ZipCodeValidator source=”{zipCode}” property=”text” /> ➝ 10
<mx:EmailValidator source=”{emailTxt}” property=”text” /> ➝ 11
<mx:DateFormatter id=”df” formatString=”MM/DD/YY” /> ➝ 12
<mx:NumberFormatter id=”nf” useThousandsSeparator=”true” /> ➝ 13

<mx:VBox>

 <mx:Label text=”Today is {df.format(currentDate)}” fontSize=”12” /> ➝ 16
 <mx:Form width=”100%” height=”100%”>

 <mx:FormHeading label=”General Information” /> ➝ 18
 <mx:FormItem label=”First Name” required=”true”> ➝ 19
 <mx:TextInput width=”250”/>

(continued)

216 Par t III: The Flex Framework and Charting Components

Listing 9-2 (continued)
 </mx:FormItem>

 <mx:FormItem label=”Last Name” required=”true”> ➝ 22
 <mx:TextInput width=”250” />
 </mx:FormItem>

 <mx:FormItem label=”City” required=”true”> ➝ 25
 <mx:TextInput width=”250”/>
 </mx:FormItem>

 <mx:FormItem label=”State” required=”true”> ➝ 28
 <mx:ComboBox dataProvider=”{[‘California’, ‘Washington’,
 ‘Arizona’]}” />
 </mx:FormItem>

 <mx:FormItem label=”Zip Code” required=”true”> ➝ 32
 <mx:TextInput id=”zipCode” width=”150”/> ➝ 33
 </mx:FormItem>

 <mx:FormItem label=”Email” required=”true”> ➝ 35
 <mx:TextInput id=”emailTxt” width=”250” /> ➝ 36
 </mx:FormItem>
 </mx:Form>
 <mx:Label text=”You are visitor #{nf.format(currentVisitor)}!”

 fontSize=”12”/> ➝ 40
</mx:VBox>
</mx:Application>

Here’s an explanation of the sample application in Listing 9-2:

 ➝ 5 The Date object capturing today’s date. You format this date

object with a DateFormatter for display in the form.

 ➝ 6 The private variable capturing the current visitor value. This is

displayed with a NumberFormatter at the bottom of the form.

 ➝ 10 The ZipCodeValidator MXML tag. This tag validates the zip code

the user enters in the zipCode TextInput on Line 33.

 ➝ 11 The EmailValidator MXML tag. This tag validates the e-mail

address that the user enters in the e-mail TextInput on Line 36.

 ➝ 12 The DateFormatter MXML tag. This tag formats the current date

that’s displayed at the top of the form.

 ➝ 13 The NumberFormatter MXML tag. This tag formats the current

visitor number displayed at the bottom of the form.

 ➝ 16 Where the current date is formatted. The formatting occurs

because data binding is used to trigger the formatter and invoke

the format method converts the date object into a human-

readable, formatted date string.

217 Chapter 9: Forms, Formatters, and Validators

 ➝ 18 A FormHeading control is used to denote general information sec-

tion on the form. The FormHeading label shows up bolded and in

larger text than the FormItem labels.

 ➝ 19 In Lines 19, 22, 25, 28, 32, and 35, the required attribute is set to

true on each FormItem tag so that a red asterisk appears between

the FormItem label and the FormItem children. It’s a visual cue to

the user that the field is requires an entry.

 ➝ 40 Where the current visitor number is formatted. The formatting

occurs because data binding is used to trigger the formatter and

invoke the format method that converts the number into a string

with a comma delimiting the thousands place.

In this example alone, you can see the use of the Form and FormItem

container, FormHeading control, NumberFormatter, DateFormatter,

EmailValidator, and ZipCodeValidator.

218 Par t III: The Flex Framework and Charting Components

Chapter 10

Containers and Navigators
In This Chapter
� Laying out an application with canvases and boxes

� Getting complex with the Tile, Panel, and TitleWindow containers

� Navigating with Accordion, TabNavigator, and ViewStack

� Using the ButtonBar, LinkButtonBar, and TabBar navigation bars

Containers are components designed specifically to hold other components.

You use containers to control the layout of your Flex application. All the

controls you use in the application are in some form of a container; even the

base <mx:Application> MXML tag is a container. In this chapter, we cover all

the container controls in the Flex framework. We also cover navigators, which

are special kinds of containers that let users switch back and forth between dif-

ferent child components. We also touch on the navigation bar controls, which

aren’t containers themselves but have been specifically designed to work with

some of the navigator controls.

In this chapter, we cover the following containers and controls:

Accordion Alert ApplicationControlBar

ButtonBar Canvas ControlBar

Grid HBox HDividedBox

LinkBar Panel TabBar

TabNavigator Tile TitleWindow

Introducing Basic Containers
The basic container you use is Canvas, which at its fundamental level lets

you place components by setting x and y coordinates. A few more contain-

ers, such as HBox and VBox, handle the task of laying out child components

in more useful ways. In this section, we discuss these containers and how to

control the layout of your application.

220 Par t III: The Flex Framework and Charting Components

All containers discussed in this chapter extend mx.core.Container, which

is the base container class in the framework that handles most of the core func-

tionality of the container classes. The inheritance of many of the Flex containers

is shown in Figure 10-1. Container is responsible for such fundamental tasks as

adding and removing children and clipping and scrolling content. Typically, you

don’t ever use the mx.core.Container class itself; instead, you use one of the

containers we cover in this chapter.

Figure 10-1:
The

inheritance
structure of

basic
containers.

Box

Container

Canvas Tile

HBox VBox DividedBox Grid

HDividedBox VDividedBox

Understanding common container behavior
Because all container classes extend mx.core.Container, they all have

some of the same functionality. All containers discussed in this chapter sup-

port adding and removing children in the same ways and have common CSS

styles and skins to control the container display.

Adding and removing children
You can add children to, and remove them from, any container by using either

MXML or ActionScript. By nesting components within the MXML tag of a con-

tainer, you automatically add the components as children of the container.

In this example, you create a new Canvas that contains two children — a Text

Input control and a Button control with Submit as the label (see Figure 10-2):

<mx:Canvas width=”400” height=”400”>
 <mx:TextInput x=”0” y=”0” />
 <mx:Button x=”0” y=”30” label=”Submit” />
</mx:Canvas>

221 Chapter 10: Containers and Navigators

Figure 10-2:
Two con-

trols within
a Canvas

container.

The TextInput control and Button control are nested within the opening tag

(<mx:Canvas>) and closing tag of the Canvas (</mx:Canvas>), so they’re

added as children. Containers can also contain additional containers, so you

can create fairly complex layouts by nesting MXML tags.

You can add and remove children in ActionScript by using the addChild

and removeChild methods. The following application adds check boxes to a

VBox container (we cover the VBox container in the later section “Managing

your layout with box layout containers”; for now, just note the use of the

addChild method in the Script block):

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”vertical”>
 <mx:Script>
 <![CDATA[
 import mx.controls.CheckBox;
 private function addCheckBox():void {
 var checkBox:CheckBox = new CheckBox();
 checkBox.label = “Checkbox “ + (myVBox.numChildren + 1);
 myVBox.addChild(checkBox);
 }
]]>
 </mx:Script>
 <mx:Button label=”Add Checkbox” click=”addCheckBox()” />
 <mx:VBox id=”myVBox” />
</mx:Application>

Getting to know common styles
All containers support border and background styles, the most common of

which are

 � borderStyle

 � borderThickness

 � borderColor

 � backgroundColor

 � backgroundAlpha

 � cornerRadius

222 Par t III: The Flex Framework and Charting Components

These styles let you change the look of any of the container classes.

By default, the basic containers in this section draw no borders or back-

grounds. You can enable borders on containers by setting the borderStyle

property, which can be set to none, solid, inset, or outset. Setting the

borderStyle property to solid draws a solid line as the border. Using

inset or outset gives your border the effect of being raised or depressed.

Figure 10-3 illustrates these four settings.

 If you don’t set the borderStyle style and try to set the borderThickness or

borderColor styles, you will be disappointed. You must explicitly set border
Style to solid, inset, or outset if you want the border to be drawn.

Figure 10-3:
Various
border

styles for
the basic

containers.

borderStyle=”solid”
cornerRadius=”15”

borderStyle=”none”
cornerRadius=”5”

borderStyle=”inset”

borderStyle=”outset”

Using percentage widths and heights
When you nest children within a container, you can set the size of the chil-

dren in two ways:

 � Set the width and height properties in pixels.

 � Set width and height to percentage values. By using percentages

rather than exact pixel values, the container sizes the child components

to a percentage of its own width and height.

223 Chapter 10: Containers and Navigators

 If you’re using ActionScript to set the width or height of a component to a

percentage value, you must use different properties: percentWidth and

percentHeight. These properties are used only when you’re setting them in

ActionScript. You cannot set percentWidth or percentHeight in MXML,

but if you’re using MXML, you can simply type width=”100%” to use a per-

centage width.

Starting with a blank Canvas
The Canvas container is the simplest container in the Flex framework. You

can use a Canvas to hold collections of components. Children within a Canvas

are positioned by setting the x and y properties, which are relative to the

upper-left corner of the Canvas.

Because of the relative positioning of children within a Canvas container,

you can reposition entire groups of controls without repositioning each

individual control. In Listing 10-1, you see a nested set of Canvas containers.

Each of the two inner Canvas containers contains different controls that are

positioned relative to the Canvas that holds them. The result is shown in

Figure 10-4.

Listing 10-1: Canvas Layout Example
<mx:Canvas>

 <mx:Label text=”Short Survey” />

 <mx:Canvas x=”0” y=”20”> ➝ 4
 <mx:Label text=”How old are you?” x=”0” />
 <mx:RadioButton x=”10” y=”20” groupName=”ageGroup” label=”Under 30”/>
 <mx:RadioButton x=”10” y=”40” groupName=”ageGroup” label=”30-59”/>
 <mx:RadioButton x=”10” y=”60” groupName=”ageGroup” label=”60-89”/>
 <mx:RadioButton x=”10” y=”80” groupName=”ageGroup” label=”Over 90”/>
 </mx:Canvas>

 <mx:Canvas x=”110” y=”20”> ➝ 12
 <mx:Label text=”Which technologies have you used?” />
 <mx:CheckBox x=”10” y=”20” label=”HTML” />
 <mx:CheckBox x=”10” y=”40” label=”JavaScript” />
 <mx:CheckBox x=”10” y=”60” label=”Java” />
 <mx:CheckBox x=”10” y=”80” label=”.NET” />
 </mx:Canvas>

</mx:Canvas>

224 Par t III: The Flex Framework and Charting Components

Figure 10-4:
The output

of the exam-
ple shown in
Listing 10-1.

Take a closer look at the listing:

 ➝ 4 On this line, the first inner Canvas container is created and placed

at (0, 20). The container contains a group of four radio buttons.

 ➝ 12 The second inner Canvas container is located at (110, 20) and con-

tains four check boxes.

By changing the x and y properties of the inner Canvas containers, you can

move the sets of controls as a group, without worrying about the layout of all

controls within the containers. The x and y coordinates of the radio buttons

and check boxes remain the same even as the Canvas container that holds

the controls changes position.

Positioning items by using
constraint-based layout
You have two options for controlling the placement of children in a Canvas

container: Use the x, y, width, and height properties or use constraint-

based layout.

Constraint-based layout uses the left, right, top, and bottom styles:

 � left, right: The values for left and top are similar to setting x and

y because the values you specify position the component a certain

number of pixels from the upper-left corner of the Canvas.

 � right, bottom: The right and bottom styles are slightly different;

these styles determine the width and height of the component, relative

to the parent Canvas:

 • Setting right to a value of 0 makes the component stretch all the

way to the right edge of the Canvas. Setting right to 5 sizes the

component to reach 5 pixels from the right edge.

 • The bottom style is used the same way to determine the height of

the child component.

225 Chapter 10: Containers and Navigators

 The left, right, top, and bottom constraints are styles, not properties, like

x and y. If you try to modify them in ActionScript, you cannot simply write

component.left = 10, as you would for a normal property. Instead you

have to call component.setStyle(“left”, 10).

The following code shows two Canvas components, each with an HSlider and

a Button control. The HSlider is positioned 10 pixels from the top and 10 pixels

from the left of the Canvas and stretches to reach 10 pixels from the right. The

Button is positioned 10 pixels from the lower-right corner of the Canvas.

<mx:Canvas width=”200” height=”100” borderStyle=”solid”>
 <mx:HSlider x=”10” y=”10” width=”180” />
 <mx:Button width=”60” height=”20” x=”130” y=”70”/>
</mx:Canvas>

<mx:Canvas width=”200” height=”100” borderStyle=”solid”>
 <mx:HSlider left=”10” right=”10” top=”10” />
 <mx:Button width=”60” height=”20” right=”10” bottom=”10”/>
</mx:Canvas>

Both Canvas containers in this example lay out their children in exactly the

same way:

 � Example 1: Uses absolute x, y, width, and height values to position

child components. Because the Canvas container is 200 pixels wide, you

can determine the appropriate absolute values to set for x, y, width,

and height.

 � Example 2: Uses top, bottom, left, and right styles to position the

children. In this example, both Canvases look exactly the same because

they both have the same 200-pixel width.

What happens if you want the Canvas to be 300 pixels wide? In the first

example, you have to manually adjust the positioning and dimensions of the

HSlider and Button if you want them to still be positioned in the corners of

the Canvas. In the second example, which uses constraint-based layout, you

don’t need to change anything to keep the controls positioned in the corners.

Managing your layout with
box layout containers
Rather than manage positions within a container manually, as you have to do

with Canvas, you can use one of the box controls to manage child positions

automatically. Two simple box containers, HBox and VBox, lay out the child

controls horizontally or vertically.

226 Par t III: The Flex Framework and Charting Components

If you rewrite Listing 10-1, the example created with Canvas containers, and

simplify it by using HBox and VBox containers, the resulting code is shown in

Listing 10-2.

Listing 10-2: Combining the HBox and VBox Containers
<mx:VBox>
 <mx:Label text=”Short Survey” />
 <mx:HBox>
 <mx:VBox verticalGap=”0”>
 <mx:Label text=”How old are you?” />
 <mx:RadioButton groupName=”ageGroup” label=”Under 30”/>
 <mx:RadioButton groupName=”ageGroup” label=”30-59”/>
 <mx:RadioButton groupName=”ageGroup” label=”60-89”/>
 <mx:RadioButton groupName=”ageGroup” label=”Over 90”/>
 </mx:VBox>
 <mx:VBox verticalGap=”0”>
 <mx:Label text=”Which technologies have you used?” />
 <mx:CheckBox label=”HTML” />
 <mx:CheckBox label=”JavaScript” />
 <mx:CheckBox label=”Java” />
 <mx:CheckBox label=”.NET” />
 </mx:VBox>
 </mx:HBox>
</mx:VBox>

Notice that all references to x and y properties are removed from the new

example. The box containers lay out the components, so you don’t need to

worry about positioning. If you want to reorder the check boxes, therefore, you

can simply move one above the other in MXML and recompile the application.

Both the HBox and VBox containers have properties that control the spacing

placed between the children. This property is verticalGap for a VBox and

horizontalGap for an HBox. The default value for both verticalGap and

horizontalGap is 4 pixels. In the example, the verticalGap property is

set to 0 for VBox containers, which removes the extra spacing between the

radio buttons and check boxes.

VBox and HBox extend the same base class: mx.containers.Box. You can

even use the Box container itself, if you’re so inclined. The direction in which

the contents of a Box container are positioned depends on the direction

property of the container, which can be either vertical (the default) or

horizontal. The only benefit to using Box rather than HBox or VBox is that

you can change the direction property in ActionScript while your applica-

tion is running if you want to switch layout directions on the fly. In most cases,

though, you can just stick to either HBox or VBox.

227 Chapter 10: Containers and Navigators

Building a dynamically resizable
layout with divided boxes
The divided box containers, which are similar to the box containers, come as

a pair of containers, HDividedBox and VDividedBox, which allow you to specify

either a horizontal or vertical layout. The difference between the divided box

containers is that users can drag the divider bar, which appears between the

children, to resize the child components (see Figure 10-5).

Figure 10-5:
Using a

container
to let users

adjust the
heights

of the
container’s

children.

Divider bar

For the most part, divided box containers are used just like the normal HBox

and VBox containers. You can nest the child components in MXML to add

them to the container, or you can add children by using ActionScript. A divider

bar placed between each child in the container can be dragged to resize the

children. When the user drags the divider between two children, the child on

the top and the child on the bottom of the bar are resized.

The liveDragging property of the divided box containers can be set to true

to perform the resizing of the children in real time as the user drags the divider

bar. The default setting for liveDragging is false, which means that as the

user drags the divider, an indicator helps visualize how the children will be

resized after the user releases the divider bar.

Just as the HBox and VBox properties use the horizontalGap and vertical-

Gap properties to determine the spacing of child elements, the divided boxes

use the same properties. However, the divided boxes require slightly more

space to display the divider bar — 6 pixels, by default. If you set the vertical
Gap or horizontalGap properties to fewer than 6 pixels, not enough space

remains to draw the divider bars, and they aren’t shown.

228 Par t III: The Flex Framework and Charting Components

You can use percentage widths and heights in addition to exact dimensions,

which can often come in handy when using the divided boxes. The follow-

ing example creates an Application with a Tools pane on the left and a main

content area on the right, which occupies the bulk of the Application’s width.

The resulting application is shown in Figure 10-6. Because you’re using

HDividedBox, the user can customize the interface by adjusting the width of

the left pane:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:HDividedBox width=”100%” height=”100%”>
 <mx:Panel width=”200” height=”100%” title=”Tools” />
 <mx:Panel width=”100%” height=”100%” title=”Main Content” />
 </mx:HDividedBox>
</mx:Application>

Figure 10-6:
Using the
HDivided
Box for a

dynamically
resizable

layout.

Creating a tiled layout
with the Tile container
The Tile container, which is a bit like a combination of HBox and VBox,

lays out child components in rows and columns. Figure 10-7 shows the Tile

container used to lay out a series of CheckBox controls. You can specify the

direction in which the container should start laying out child components by

setting the direction property, which can be either horizontal or vertical.

The default value is horizontal, which lays out the components by placing

them horizontally until Flex runs out of space, at which point it creates a new

row below the last one. If you set an explicit width for the Tile container, it

automatically calculates how many columns and rows it must create, based

on the dimensions of the child components. If you don’t specify the width

229 Chapter 10: Containers and Navigators

or height of a Tile container, it attempts to lay out the children by using an

equal number of rows and columns.

Figure 10-7:
CheckBox
controls in

a Tile
container.

You can override the automatic calculation of the row and column dimensions

by setting the tileWidth and tileHeight properties. If you set these two

properties, the Tile container is forced to use these measurements to lay out

the children, even if the children don’t fully fit within these dimensions. You

can also set only one of the tileWidth or tileHeight properties and let

the Tile container compute the other one automatically.

The Tile container isn’t the same as the TileList control. The Tile container is

a simple container that holds a collection of child user interface components.

TileList, on the other hand, is a data-driven list control. For more information

on the TileList control, see Chapter 8.

Using the Grid container
The Grid container is similar to the Tile container, but Grid gives you more

control over the sizes of grid rows and columns. A Grid container is the

closest container in the Flex framework to the HTML <table> tag. A Grid

contains one or more GridRow containers, each of which can contain one or

more GridItem containers. The basic nested structure of a Grid looks some-

thing like this:

<mx:Grid>
 <mx:GridRow>
 <mx:GridItem />
 <mx:GridItem />
 </mx:GridRow>
 <mx:GridRow>
 <mx:GridItem />
 <mx:GridItem />
 </mx:GridRow>
</mx:Grid>

This example shows the nested hierarchy of a Grid control. Notice that you

don’t specify grid columns. They’re determined by the placement of GridItem

containers within the rows. In this example, the Grid is a 4-by-4 grid with two

230 Par t III: The Flex Framework and Charting Components

rows and two columns. In a real-world example, you add the contents of the

Grid into the individual GridItem objects. The GridItem container itself acts

just like the HBox container, so if you add multiple controls to a GridItem, the

default behavior lays them out horizontally within that grid square.

If you don’t set explicit dimensions of the Grid or the nested GridRow or

GridItem containers, the Grid automatically sizes itself to fit the contents.

Each row of the grid is as high as the highest child in that row, and each

column is as wide as the widest child in that particular column. You can

override this default measurement by specifying widths or heights on the

GridRow containers or the GridItem containers. You then gain slightly more

control than when you’re using the Tile container, which allows you to set

only tileWidth and tileHeight for the entire Tile container, not on an

individual, row-by-row basis.

The following example illustrates this difference:

<mx:Grid>
 <mx:GridRow>
 <mx:GridItem>
 <mx:Button width=”55” label=”One” />
 </mx:GridItem>
 <mx:GridItem>
 <mx:Button width=”55” label=”Two” />
 </mx:GridItem>
 <mx:GridItem>
 <mx:Button width=”100” label=”Three” />
 </mx:GridItem>
 </mx:GridRow>
 <mx:GridRow>
 <mx:GridItem>
 <mx:Button width=”55” label=”Four” />
 </mx:GridItem>
 <mx:GridItem>
 <mx:Button width=”55” label=”Five” />
 </mx:GridItem>
 <mx:GridItem>
 <mx:Button width=”100” label=”Six” />
 </mx:GridItem>
 </mx:GridRow>
</mx:Grid>

This chunk of code produces a Grid container with two rows and three columns,

as shown in Figure 10-8. The columns size themselves to fit the content, which

makes the first two columns 50 pixels wide and the third column 100 pixels

wide. If you try to mimic this same layout using a Tile container, you end up

with three columns, all of which are 100 pixels wide because the Tile container

forces all rows and columns to be the same width and height.

231 Chapter 10: Containers and Navigators

Figure 10-8:
A grid with

two rows
and three
columns.

Discovering Panel Containers
and Control Bars

In this section, we discuss two closely related containers, Panel and TitleWindow,

which add a title bar above their contents and some additional border styles

to wrap around the content.

Panel
All the containers discussed earlier in this chapter are almost invisible. The

divided box containers have minimal visual components (the divider bar

between children), and Canvas and the normal box containers are invisible

unless border and background properties are set. The Panel container, on the

other hand, is a visual container that displays the child contents within a skinned

window and the title bar at the top, as shown in Figure 10-9.

Figure 10-9:
Child con-

trols in a
Panel.

A Panel can automatically lay out its children by using three layout methods:

absolute, vertical, or horizontal. You can set the layout property to deter-

mine which layout algorithm is used. By default, a Panel lays out its children

vertically. Because Panel supports absolute, vertical, and horizontal layouts,

you can avoid unnecessarily putting a Canvas, VBox, or HBox in a Panel just

to get this functionality.

232 Par t III: The Flex Framework and Charting Components

The title bar at the top of a Panel can contain three elements: title text, status

text, and an icon. You can set the title property of the Panel to change the text

that’s shown on the title bar. By default, this text is left-aligned and bold, but

you can style it however you like. The following example sets the title-
StyleName style of the Panel to customTitleStyle, which is a CSS style

defined in the <mx:Style> block. The result is shown in Figure 10-10.

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Style>
 .customTitleStyle {
 font-size: 16;
 font-weight: normal;
 text-align: center;
 font-style: italic;
 }
 </mx:Style>

 <mx:Panel title=”Panel Title” titleStyleName=”
customTitleStyle” width=”200” height=”200”>

 <mx:Label text=”Panel content goes here” />
 </mx:Panel>
</mx:Application>

Figure 10-10:
Using a

custom style
for a Panel’s

title text.

You use a few other styles and properties to customize a Panel:

 � status: In addition to supporting the title property, Panel supports a

status property, which displays status text in the title bar. The status

text is, by default, right-aligned and in a lighter, unbolded font. You can

change the look of the status text just like you change the title text by

setting the statusStyleName style to a custom CSS style.

 � titleIcon: To set the icon in the title bar of a Panel, you have to use

the titleIcon property, not the icon property. All containers have the

icon property, which is used when the container is shown in a parent

233 Chapter 10: Containers and Navigators

navigator, such as TabNavigator or Accordion (discussed later in this

chapter). But setting the icon property of a Panel doesn’t place an icon in

the title bar, even though it would intuitively seem like the right property.

 � headerHeight: You can change the height of the title bar by setting

the headerHeight style to a pixel value.

 � headerColors: You can further adjust the header by setting the header
Colors style, which should be set to an Array of two colors, used to

draw the gradient in the header.

For example, to create a Panel with a 40-pixel-high header that fades from

white to black, you can use the following MXML code:

<mx:Panel title=”Panel Title” headerHeight=”40”
 headerColors=”[0xffffff, 0x000000]”
 width=”200” height=”200” />

By default, a Panel draws the upper-left and upper-right corners as rounded

corners, and the bottom corners are square. You can make the Panel round

the bottom corners as well by setting roundedBottomCorners to true. A

few other fairly self-explanatory styles you can use to customize the look of

the Panel container are dropShadowEnabled, dropShadowColor, shadow-
Direction, and shadowDistance.

TitleWindow
The Flex framework contains an additional TitleWindow container, which is

almost identical to Panel except for one feature: It can have a Close button in

the upper-right of the Panel. When you use the TitleWindow container, you

have to tell it to show the Close button by setting the showCloseButton

property to true. After you do that, you notice a little X button in the upper-

right corner. But clicking the Close button doesn’t automatically do anything.

When the user clicks the Close button, the TitleWindow dispatches a close

event. You perform an action after the close event is dispatched.

The most common use of the TitleWindow and the Close button is to launch

a popup window, such as a Preferences pane, that the user can interact with

and then close. The example in Listing 10-3 launches a TitleWindow as a

popup and then removes it when the user clicks the Close button. We haven’t

discussed the PopUpManager yet, so feel free to jump to Chapter 15 to find

out more; for now, just know that the PopUpManager is used to launch pop-

ups in your Flex application.

234 Par t III: The Flex Framework and Charting Components

Listing 10-3: Launching and Closing a TitleWindow Pop-up
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import mx.events.CloseEvent;
 import mx.containers.TitleWindow;
 import mx.managers.PopUpManager;

 private function launchPopUp():void { ➝ 9
 var titleWindow:TitleWindow = new TitleWindow(); ➝ 10
 titleWindow.width = titleWindow.height = 200;

 titleWindow.title = “This is my TitleWindow”; ➝ 12
 titleWindow.showCloseButton = true; ➝ 13

 titleWindow.addEventListener(CloseEvent.CLOSE, closeClicked); ➝ 15

 PopUpManager.addPopUp(titleWindow, this); ➝ 16
 PopUpManager.centerPopUp(titleWindow);
 }

 private function closeClicked(event:CloseEvent):void { ➝ 20
 var titleWindow:TitleWindow = event.currentTarget as TitleWindow;

 PopUpManager.removePopUp(titleWindow); ➝ 22
 }
]]>
 </mx:Script>

 <mx:Button label=”Launch TitleWindow PopUp” click=”launchPopUp()” /> ➝ 27

</mx:Application>

Here’s a closer look at Listing 10-3:

 ➝ 9 The launchPopUp method is called when the user clicks the

Button defined in MXML on Line 27.

 ➝ 10 On Lines 10–11, you create a new TitleWindow container and set

a few properties, such as width and height and the title that

should be displayed in the title bar.

 ➝ 13 You explicitly set the showCloseButton property to true so

that the Close button is displayed.

 ➝ 15 You add an event handler that’s called whenever the Close button

is clicked. To find out about the event model, see Chapter 3.

 ➝ 16 Using the PopUpManager, you open the TitleWindow as a pop-up

in your application and center it on-screen.

 ➝ 20 After the Close button is clicked in the TitleWindow, a Close event

occurs, which triggers the closeClicked method.

235 Chapter 10: Containers and Navigators

 ➝ 22 You use the PopUpManager again to remove the TitleWindow

from the application.

Alert
The Alert control is a specialized version of the Panel container, which you

use to easily display dialog box notification messages to users. You use the

Alert control for warning messages or simple notifications when you want

the user to click OK or Cancel. You can also use the Panel container to create

an element similar to the default Alert component — Alert just gives you an

easier method of displaying messages to users without having to write much

custom code.

The default Alert behavior shows a window that displays a title, a message,

and an OK button. When the user clicks the OK button, the Alert dialog box

disappears. The Alert control is different from most normal Flex controls

because you create it by calling a static method rather than creating a new

instance of the control. The Alert class has the static method show, which

you use to pop up new Alert controls. When you call Alert.show(), you

pass in the message that the Alert will display in the Alert window. Listing

10-4 creates an Alert dialog box when the user clicks the Button

control.

Listing 10-4: Displaying an Alert

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;

 private function showAlert():void {
 Alert.show(“You did something really, really

bad!”, “Warning”);
 }
]]>
 </mx:Script>

 <mx:Button label=”Show Alert” click=”showAlert()” />

</mx:Application>

You can also customize the buttons shown in the Alert dialog box. By default,

an Alert contains a single OK button, but you can make the Alert show OK,

Cancel, Yes, and No buttons. To do so, you pass in the combination of buttons

that you want displayed as the third parameter when you call Alert.show().

236 Par t III: The Flex Framework and Charting Components

 The Alert class has a few static variables that define each of the valid buttons

that can be shown: Alert.OK, Alert.CANCEL, Alert.YES, and Alert.NO.

When you create an Alert with a customized set of buttons, you use the pipe

operator (|) and pass in each of the static variables you want to use. Listing 10-5

creates an Alert with Yes and No buttons.

Listing 10-5: Customizing the Alert Buttons

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import mx.events.CloseEvent;
 import mx.controls.Alert;

 private function showAlert():void {
 Alert.show(“Are you sure you want to do

 that?”, “Really?”, Alert.YES | Alert.NO,
 this, alertCloseHandler);

 }

 private function alertCloseHandler(event:Close
Event):void {

 if(event.detail == Alert.YES) {
 //do something for the Yes response
 }
 else if(event.detail == Alert.NO) {
 //do something for the No response
 }
 }
]]>
 </mx:Script>

 <mx:Button label=”Show Alert” click=”showAlert()” />

</mx:Application>

Notice that you pass Alert.YES | Alert.NO as the third parameter in

the call to Alert.show(). Also notice the fifth parameter, which is alert-
CloseHandler. This function is executed when the user clicks one of the

buttons to close the Alert control. You can query the detail property of the

CloseEvent to determine which button the user clicked.

Control bars
A control bar is a container that typically contains various button controls,

similar to the toolbars you’re familiar with in your software programs, such

as a word processor or an image editor. A word processor might have a

237 Chapter 10: Containers and Navigators

toolbar that contains formatting controls to let you change the font size and

color and other properties. The Flex framework contains two containers to

serve this purpose:

 � ControlBar: Can be used on its own, but is specifically designed to

work with the Panel container by docking to the bottom of the Panel

 � ApplicationControlBar: A container designed to dock to the top or

bottom of your main Flex application

These two containers are discussed in detail in the following sections.

Adding a ControlBar to a Panel
To add a ControlBar container to a Panel, you can simply include a

ControlBar as a child of a Panel in MXML. The Panel container treats the

ControlBar slightly differently from the way it treats other children and docks

it to the bottom of the Panel, below the content area that holds other chil-

dren. The following example adds to a Panel a ControlBar that contains two

Button controls:

<mx:Panel width=”200” height=”200” title=”Example Panel”>

 <mx:Text text=”The content of your panel goes here.”
width=”100%” />

 <mx:ControlBar horizontalAlign=”center”>
 <mx:Button label=”Cancel” />
 <mx:Button label=”Save” />
 </mx:ControlBar>

</mx:Panel>

The result is shown in Figure 10-11.

Figure 10-11:
A Panel

container
with a

ControlBar
docked to

the bottom.

238 Par t III: The Flex Framework and Charting Components

 The ControlBar must be the last child defined in MXML within a Panel tag. If the

ControlBar isn’t the last child, it’s added to the content area of the Panel rather

than docked to the bottom.

 The ControlBar container is just a slightly modified Box container. The only

real difference is that the Panel container is specifically designed to deter-

mine whether a ControlBar has been added as the last child of the Panel; if

the ControlBar has been added, it’s placed correctly along the bottom of the

Panel. But the ControlBar container itself is basically just a Box and doesn’t

have any visual appearance of its own.

Using the ApplicationControlBar
The ApplicationControlBar container is designed to dock to the top of your

main application (as shown in Figure 10-12); however, you can also use it in

other contexts. You can dock the ApplicationControlBar to the top of the

main application by setting the dock property to true. If dock is true, the

ApplicationControlBar is placed at the top of the application and covers the

entire width. You can also use the ApplicationControlBar without docking it

to the top of your application, just as you would use any other container.

Figure 10-12:
Docking an
Application
ControlBar

to the
top of the

application.

The following code snippet adds an ApplicationControlBar to a Flex applica-

tion and docks it along the top:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:ApplicationControlBar dock=”true”>
 <mx:Button label=”Save” />
 <mx:Button label=”Load” />
 <mx:Button label=”New” />
 </mx:ApplicationControlBar>
</mx:Application>

239 Chapter 10: Containers and Navigators

Getting Up to Speed on Navigators
All containers discussed earlier in this chapter display, all at one time, all

the child components that they hold. The containers might lay out those

child components differently, but all children are visible at the same time.

Sometimes, though, you need to navigate through a series of components

and display one at a time in a certain order. The Flex framework contains a

set of navigator controls for this specific purpose.

Switching between views
with the ViewStack
The ViewStack is the simplest available navigator control. You can think of it

as a stack of papers on a desk, with the uppermost sheet showing on top and

all other sheets hidden underneath the top sheet. A ViewStack has a collec-

tion of child containers, but only one container is visible at any given time.

You use the selectedIndex and selectedChild properties to specify

which child container to show.

All Flex containers store references to their children by using zero-based

indexing, which means that the first child in a container can be accessed in

ActionScript by using container.getChildAt(0). For navigators, to set

the selected index to the first child, you set selectedIndex = 0. A value of

1 for selectedIndex refers to the second child.

 Because all navigator controls must have only containers as children, you

cannot add a control, such as Button, directly to a navigator. Instead, you add

a container, such as Canvas or VBox (both of which are discussed earlier in

this chapter).

You add children to a ViewStack just like you add them to a Canvas or any

other container: by nesting MXML containers or by using ActionScript. The

following example creates a ViewStack with four Panel containers. When the

ViewStack initially loads, only the first Panel is visible in the application, and

it’s sized to fit the ViewStack size, which in this case is 200-by-200 pixels.

<mx:ViewStack id=”vstack” width=”200” height=”200”>
 <mx:Panel id=”panel1” title=”Panel 1” />
 <mx:Panel id=”panel2” title=”Panel 2” />
 <mx:Panel id=”panel3” title=”Panel 3” />
 <mx:Panel id=”Panel4” title=”Panel 4” />
</mx:ViewStack>

240 Par t III: The Flex Framework and Charting Components

The other three Panel containers remain hidden until the selectedIndex

or selectedChild properties of the ViewStack change. For example, you

can select the second Panel by using ActionScript and calling either vstack.
selectedIndex = 1 or vStack.selectedChild = panel2.

Controlling a ViewStack with
navigation bar controls
A ViewStack on its own doesn’t have any user interface controls for switching

between the children it contains. You can switch between children by using

ActionScript to change the selectedIndex or selectedChild properties

manually; however, for an easier way to let the user move between the chil-

dren of a ViewStack, use the ButtonBar, ToggleButtonBar, LinkBar, or TabBar

controls. All these controls are specifically designed to be hooked up to a

ViewStack and to create buttons that let the user switch between children.

The control you use determines which button is created (see Figure 10-13):

 � ButtonBar: Creates simples buttons, one next to the other

 � ToggleButtonBar: Just like a ButtonBar, but allows one button to be in a

toggled state to show selection

 � TabBar: Creates a series of tabs

 � LinkBar: Uses LinkButtons

Figure 10-13:
Comparing
button bar

controls,
all with the

first child
selected.

ButtonBar

ToggleButtonBar

TabBar LinkBar

The choice of which button bar control to use depends on the visual look

you’re hoping to achieve.

241 Chapter 10: Containers and Navigators

To use a navigation bar control with a ViewStack, you create the control

that you want to use and assign the ViewStack that it controls as the data
Provider of the navigation bar. After the navigation bar is wired up to the

ViewStack, the navigation bar automatically displays one button for each

child in the ViewStack, using the label and icon properties of the child con-

tainer to draw the button. When the user clicks one of the buttons, the appro-

priate child in the ViewStack is shown.

The following chunk of code creates a ViewStack that holds four Panel

children and adds a ToggleButtonBar to control the navigation:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:ToggleButtonBar dataProvider=”{vStack}” />

 <mx:ViewStack id=”vStack” width=”200” height=”200”>

 <mx:Panel title=”Panel 1” label=”Child 1” />
 <mx:Panel title=”Panel 2” label=”Child 2”/>
 <mx:Panel title=”Panel 3” label=”Child 3”/>
 <mx:Panel title=”Panel 4” label=”Child 4”/>
 </mx:ViewStack>
</mx:Application>

The output is shown in Figure 10-14.

Figure 10-14:
Controlling

a ViewStack
container.

In this example, the Panel containers have both the title and label prop-

erties set. The ToggleButtonBar control uses the label property to create

the navigation buttons. This property is different from the one that Panel

uses for the title bar text.

242 Par t III: The Flex Framework and Charting Components

Improving navigation with an Accordion
The Accordion navigator displays its children as a set of expanding panels,

stacked one above the other. Each child has a header button created for it

that can be clicked to expand the child to make it visible. Only one child can

be visible at any time, so expanding a new child minimizes the child that was

previously selected. The following example illustrates the basic use of the

Accordion navigator (see Figure 10-15):

Using navigation bars on their own
The navigation bar controls don’t necessarily have to be used in conjunction with ViewStacks. You
can create any of these controls separately and set the dataProvider property to control the
buttons that are displayed. The dataProvider property can be an Array or ArrayCollection that‘s
used to draw the buttons. If you aren’t using the navigation bar in conjunction with a ViewStack,
listen for the itemClick event that‘s dispatched when the user clicks one of the buttons. You
can then perform a custom action when the user changes the selection. The following example
creates a ButtonBar control and assigns an array of strings as the dataProvider, which is
used to label the buttons. When a button is clicked, an Alert indicates which button was clicked.

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.ItemClickEvent;

 private function handleItemClick(event:ItemClickEvent):void {
 Alert.show(“You selected button: “ + (event.index + 1), “Button

 Clicked”);
 }
]]>
 </mx:Script>

 <mx:ButtonBar itemClick=”handleItemClick(event)”>
 <mx:dataProvider>
 <mx:String>Button 1</mx:String>
 <mx:String>Button 2</mx:String>
 <mx:String>Button 3</mx:String>
 <mx:String>Button 4</mx:String>
 </mx:dataProvider>
 </mx:ButtonBar>

</mx:Application>

243 Chapter 10: Containers and Navigators

<mx:Accordion width=”300” height=”200”>
 <mx:Canvas label=”Child 1”>
 <mx:Label text=”Contents of Child 1” />
 </mx:Canvas>
 <mx:Canvas label=”Child 2”>
 <mx:Label text=”Contents of Child 2” />
 </mx:Canvas>
 <mx:Canvas label=”Child 3”>
 <mx:Label text=”Contents of Child 3” />
 </mx:Canvas>
 <mx:Canvas label=”Child 4”>
 <mx:Label text=”Contents of Child 4” />
 </mx:Canvas>
</mx:Accordion>

Figure 10-15:
 An

Accordion
with the

first of four
children

selected.

In this example, four header buttons are created and stacked vertically, one

for each child of the Accordion. Each header button displays a label that

identifies the child container, which is determined by setting the label

property on the child itself. In addition to showing the label for each child, a

header button can display an icon, which you can enable by setting the icon

property of each child. Each child can have its own unique label and icon.

The user can click any of the header buttons to select the corresponding

child, which expands that child and minimizes the previously selected child.

You can change the selected child yourself, just like you change the child in

a ViewStack, by modifying either the selectedIndex or selectedChild

property. The children open and close with an animation, and you can adjust

the speed of this animation by changing the openDuration style, which is

250 milliseconds by default.

You can change the look of the Accordion by setting these styles:

 � headerStyleName: To style the header buttons, set this style and spec-

ify a CSS style to use for the header button. Remember that the header

244 Par t III: The Flex Framework and Charting Components

button is just a Button control, so any of the CSS styles for Button

should be applicable.

 � headerHeight: Set this style on the Accordion to explicitly control the

height of the header buttons. If the style isn’t set, the headers are sized

appropriately, depending on the size of the font used for the labels.

Listing 10-6 creates header buttons that are 35 pixels high, with custom font,

border, and background styles to alter the default appearance.

Listing 10-6: Custom Styling for an Accordion Container
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Style>
 .customHeaderStyle {
 font-style: italic;
 text-decoration: underline;
 font-family: Arial;
 font-size: 16;
 text-align: right;

 color: #FFFFFF;
 text-roll-over-color: #EFEFEF;
 text-selected-color: #FFFFFF;

 border-color: #000000;
 fill-colors: #333333, #000000, #ff0000, #000000;
 fill-alphas: 1,1;
 selected-fill-colors: #666666, #333333;
 theme-color: #ff0000;
 }
 </mx:Style>
 <mx:Accordion headerStyleName=”customHeaderStyle” headerHeight=”35”>
 <mx:Canvas label=”Child 1”>
 <mx:Label text=”Contents of Child 1” />
 </mx:Canvas>
 <mx:Canvas label=”Child 2”>
 <mx:Label text=”Contents of Child 2” />
 </mx:Canvas>
 <mx:Canvas label=”Child 3”>
 <mx:Label text=”Contents of Child 3” />
 </mx:Canvas>
 <mx:Canvas label=”Child 4”>
 <mx:Label text=”Contents of Child 4” />
 </mx:Canvas>
 </mx:Accordion>
</mx:Application>

This custom CSS style produces the Accordion shown in Figure 10-16.

245 Chapter 10: Containers and Navigators

Figure 10-16:
An

Accordion
with custom
CSS header

styles.

Creating tabs with the TabNavigator
The TabNavigator container is essentially just a ViewStack wired up with a Tab

Bar that sits on top. For each child that’s added to the TabNavigator, a

tab is created in the TabBar that the user can click to select the child. The

TabNavigator is shown in Figure 10-17.

Figure 10-17:
Displaying
child com-
ponents as

tabs.

You use a few properties and styles to customize the TabNavigator:

 � tabHeight, tab Width: Control the sizing of the tabs.

 � horizontalAlign: Control whether tabs are docked to the left or right

or in the center of the TabNavigator.

246 Par t III: The Flex Framework and Charting Components

 � horizontalGap: Determine the gap between tabs in the TabBar.

 � selectedIndex, selectedChild: Change which tab is selected, just

like changing the same properties on a ViewStack or Accordion.

Optimizing performance with
deferred instantiation
All navigator containers support deferred instantiation. This concept means,

fundamentally, that a navigator creates its children only as it needs them.

When the navigator is created, one child is selected — usually, the first child

in the list of children. The first child is created instantly because it needs to

be shown immediately, and the other children are initially hidden from view,

so they don’t get created. Then, after a different child is selected, that child is

created and displayed.

 Performance is the primary reason that navigators use this method of

deferred instantiation. When your Flex application is loading, it has to create

all components that are visible on-screen. This process of creating and laying

out components takes time, and anything you can do to minimize the number

of components that must be created speeds up the load time and responsive-

ness of your application. If you were to create every child of a navigator all at

once, your application would hang until all children were created. Deferred

instantiation lets you break up that process into smaller chunks, each of

which happens as needed.

Avoiding common pitfalls

Although deferred instantiation can significantly improve the performance of

your application, you might run into some common pitfalls. If the children of

a navigator haven’t been created because they haven’t yet been shown, you

cannot access any properties or methods of those children. Only after those

children are created can you access them directly. The following example

shows a common error that illustrates this point:

<mx:ViewStack id=”vstack” width=”200” height=”200”>
 <mx:Panel label=”Page 1”>
 <mx:Label text=”Enter your name:” />
 <mx:TextInput id=”nameField” />
 <mx:Button label=”Next”
 click=”nameText.text = nameField.text; vstack.selectedIndex = 1;” />
 </mx:Panel>
 <mx:Panel label=”Page 2”>
 <mx:Label text=”You entered:” />
 <mx:Label id=”nameText” />
 </mx:Panel>
</mx:ViewStack>

247 Chapter 10: Containers and Navigators

Although this example is oversimplified, it illustrates the potential problem

caused by deferred instantiation. In the example, two Panel containers are

within a ViewStack, the first of which contains a TextInput control that lets

the user type her name. The second Panel simply contains a label that dis-

plays whatever the user entered on the first Panel. When the user clicks the

button on the first Panel, it sets the text property of the Label component

on the second panel and shows the second Panel. But if you run this chunk

of code, it produces an error when the button is clicked. The error occurs

because the call to nameText.text = nameField.text happens before

the nameText Label component on the second panel has been created. So,

when you try to set the text property of nameField, nameField is still

null, resulting in a runtime error.

One solution to this problem is to use data binding to bind the text property

of the nameText Label on the second panel to the value entered on the first

panel. (Data binding is covered in depth in Chapter 12.) The following bit of

code binds the text property of Label on the second panel to the text prop-

erty of the TextInput control on the first panel:

<mx:ViewStack id=”vstack” width=”200” height=”200”>
 <mx:Panel label=”Page 1”>
 <mx:Label text=”Enter your name:” />
 <mx:TextInput id=”nameField” />
 <mx:Button label=”Next”
 click=”vstack.selectedIndex = 1;” />
 </mx:Panel>

 <mx:Panel label=”Page 2”>
 <mx:Label text=”You entered:” />
 <mx:Label id=”nameText” text=”{nameField.text}” />
 </mx:Panel>
</mx:ViewStack>

Using data binding is one solution to the problem, but you can accomplish the

same goals by using one of a variety of other methods. The point of the example,

however, is that you cannot access a property or method of a child component

that hasn’t yet been created. And, when you use the navigator components, only

the initially selected child is created. The rest of the children are created

only as they’re individually shown.

Choosing between enabling and bypassing deferred instantiation
In general, your Flex applications should work with deferred instantiation.

If it’s absolutely necessary, however, you can force navigators to create all

their children immediately and bypass deferred instantiation. You can use the

creationPolicy property to change how the children of navigators are created.

All possible values for creationPolicy are auto, all, queued, and none. We

248 Par t III: The Flex Framework and Charting Components

don’t cover the queued or none settings because they’re fairly advanced topics.

You primarily need to set creationPolicy to only auto or all:

 � auto: The default setting; enables deferred instantiation.

 � all: Forces the creation of all children at the same time. This setting

creates all children at the same time that the navigator is created, allow-

ing you to access any children or properties on those children without

worrying about whether the child has been shown yet.

Tying It Together: Building a
Form with Multiple Parts

Listing 10-7 ties together forms, validators, containers, and navigators. The

sample application is a multipart form for users to complete. Users are asked

for information such as name and e-mail address. The form is divided into

three distinct groupings, which divide the information logically and present

it in a more consolidated space. You use an Accordion navigator to hold the

three separate forms. Figure 10-18 shows the output of this code listing.

Listing 10-7: A Multipart Form Application
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>
 <![CDATA[
 import mx.events.ValidationResultEvent;
 import mx.controls.Alert;
 import mx.validators.Validator;

 private function validateAllFields():void { ➝ 10
 //loop over each validator and check to make sure it’s valid
 for each(var validator:Validator in validators) {
 var validationResult:ValidationResultEvent = validator.validate();

 //if we get an invalid result we show an error
 if(validationResult.type == ValidationResultEvent.INVALID) {
 Alert.show(“There’s an error in this form:\n” +
 validationResult.message, “Error”);
 return;
 }
 }

249 Chapter 10: Containers and Navigators

 Alert.show(“Your form was submitted successfully.”, “Success”); ➝ 23
 }
]]>
 </mx:Script>

 <!-- Our data model that stores all the information we are collecting -->

 <mx:Model id=”model”> ➝ 29
 <information>
 <name>{nameInput.text}</name>
 <email>{emailInput.text}</email>
 <gender>{genderInput.selectedItem}</gender>
 <ssn>{ssnInput.text}</ssn>
 <pinCode>{pinInput.text}</pinCode>
 </information>
 </mx:Model>

 <!-- An Array of all the validators we will use to validate the data. -->

 <mx:Array id=”validators”> ➝ 41
 <mx:StringValidator source=”{model}” property=”name”
 listener=”{nameInput}” requiredFieldError=”Name is required.” />
 <mx:EmailValidator source=”{model}” property=”email”

listener=”{emailInput}” requiredFieldError=”Email is required.”
/>

 <mx:SocialSecurityValidator source=”{model}” property=”ssn”
 listener=”{ssnInput}” required=”false” />
 <mx:NumberValidator source=”{model}” property=”pin”
 listener=”{pinInput}” allowNegative=”false”
 precision=”0” required=”false” />

 </mx:Array> ➝ 52

 <!-- The actual form views. We have 3 panes of forms. -->
 <mx:Panel width=”400” title=”Tell us about yourself”>

 <mx:Accordion width=”100%”> ➝ 57

 <mx:Form id=”personalForm” label=”Personal Information”>
 <mx:FormItem label=”Name” required=”true”>
 <mx:TextInput id=”nameInput” />
 </mx:FormItem>
 <mx:FormItem label=”Email” required=”true”>
 <mx:TextInput id=”emailInput” />
 </mx:FormItem>
 </mx:Form>

 <mx:Form label=”Optional Information”>
 <mx:FormItem label=”Gender”>
 <mx:ComboBox id=”genderInput” prompt=”Select your gender”>
 <mx:dataProvider>
 <mx:String>Male</mx:String>

(continued)

250 Par t III: The Flex Framework and Charting Components

Listing 10-7 (continued)
 <mx:String>Female</mx:String>
 </mx:dataProvider>
 </mx:ComboBox>
 </mx:FormItem>
 </mx:Form>

 <mx:Form label=”Secret Information”>
 <mx:FormItem label=”SSN”>
 <mx:TextInput id=”ssnInput” />
 </mx:FormItem>
 <mx:FormItem label=”ATM PIN Code”>
 <mx:TextInput id=”pinInput” width=”60” />
 </mx:FormItem>
 </mx:Form>

 </mx:Accordion>

 <mx:ControlBar horizontalAlign=”right”> ➝ 90
 <mx:Button label=”Submit” click=”validateAllFields()” id=”submit” />
 </mx:ControlBar>
 </mx:Panel>

</mx:Application>

Figure 10-18:
Using an

Accordion
to break a
Form into

multiple
parts.

This list describes the sample application in Listing 10-7:

 ➝ 29 You define a Model to hold the data that will be submitted in the

form. To find out more about using a Model to hold data, refer to

Chapter 13.

 ➝ 41 Lines 41–52 define a collection of Validators that will be used to

validate the user-submitted data in this application.

 ➝ 57 You create an Accordion to hold the forms. In this application

are three pieces of the total form broken up into separate Form

containers. Each of these forms is a child of the Accordion, so a

separate header button is created for each one, allowing the user

to move between the different parts.

251 Chapter 10: Containers and Navigators

 ➝ 90 The submit button for this form is docked to the bottom of the

Panel by using a ControlBar. Remember that this ControlBar must

be the last child in the Panel.

 ➝ 91 When the user clicks the Submit button, the validateAll-
Fields() method is called, which is defined on Line 10. This

method loops over all the validators that we have defined in Lines

41–52. If any of those validators don’t validate correctly, then an

error message is shown using the Alert component. If all the vali-

dators validate correctly the Alert component displays a success

message.

In this example, you can see the use of the Panel container, ControlBar con-

tainer, and Accordion navigator. The example also makes heavy use of forms

and validators, which are covered in Chapter 9.

252 Par t III: The Flex Framework and Charting Components

Chapter 11

Char ting Components
In This Chapter
� Getting your data into charts

� Working with different chart types

� Adding interactivity and animation

� Adding legends to your charts

There’s no better way to impress the executives in your corporation than

by showing them slick charts and graphs. Rather than simply display a

list of data in a grid, you can make the data “come alive” by visualizing it in a

column chart or pie chart or in any of the other charting options available in

the Flex framework. Flex comes stocked with a full charting package that can

make CEOs drool over the impressive data visualizations. If you’re trying to

impress one of the executives in your company, add a few animated charts to

the application you’re working on to showcase sales performance. In no time,

you’ll have everyone wondering how you created such amazing software —

just don’t tell anyone how easy it was.

In this chapter, we cover the following charting components:

AreaChart BarChart

BubbleChart CandleStickChart

ColumnChart HLOCChart

Legend LineChart

PieChart PlotChart

 The Flex charting components are available only if you purchased Flex

Builder 3 Professional. In this chapter, we assume that you purchased

the professional license.

254 Par t III: The Flex Framework and Charting Components

Filling Your Charts with Data
Just like the other data-aware controls, such as List and DataGrid, described

in Chapter 8, the charting controls use data providers that you use to load

data into the charts. In addition to setting the data provider of a chart, how-

ever, you also need to tell the chart some specific information about how

that data should be rendered.

Using the right series
Each type of chart you create requires the correct type of data series so that

the chart knows how to draw the data. A charting series isn’t the same as the

underlying collection or model that you use to populate the series. For each

chart you create, you use a combination of these two items:

 � A data provider

 � A specific chart series, such as ColumnSeries or PieSeries

You can set the dataProvider property of the individual series, or you can

use the dataProvider of the chart itself.

Specifying the right fields
Each chart series has a few properties that you need to set to tell the series a

bit more information about the data in the data provider. For the charts that

use an x and y axis, which includes all charts except for the PieChart, you use

the xField property or the yField property, or both, to tell the series how

the data is supposed to be charted. The details about which field properties

are required depend primarily on which kind of series you’re charting and

which kind of axes you’re using.

We cover each chart series in the following sections as we discuss the dif-

ferent chart types. Later in this chapter, we also discuss the particular uses

of different chart axes. For now, take a look at Listing 11-1, a simple example

that displays a pie chart to show sales figures per employee. You use a

PieSeries and specify the field property so that the chart knows which

value to use to create pie wedges of the appropriate size. The resulting pie

chart is shown in Figure 11-1.

In this example, you use a Model to hold the XML data that gets displayed in

the chart. You create a PieChart that has a PieSeries set as the series prop-

erty. Then you bind the dataProvider of the PieSeries to your data model.

This populates the PieChart with the sales data in the model, and the chart

255 Chapter 11: Char ting Components

handles the rest by figuring out how to draw wedges of the appropriate size

based on the data.

 The <mx:series> block of the example shows adding a PieSeries to the

chart. The series property of the chart is an Array, and you can specify any

number of series. Using multiple series is more useful with chart types other

than the pie chart and is covered in more detail later in this chapter.

 Always use the correct series for each chart you create. For a ColumnChart,

you use a ColumnSeries and for a BarChart, you use a BarSeries, for example.

Listing 11-1: Creating a PieChart to Show Sales Data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Model id=”salesByEmployee”>
 <employees>
 <employee name=”Doug” sales=”150000” />
 <employee name=”Deepa” sales=”75000” />
 <employee name=”Darron” sales=”30000” />
 <employee name=”Ben” sales=”60000” />
 </employees>
 </mx:Model>

 <mx:PieChart width=”300” height=”300” >
 <mx:series>
 <mx:PieSeries
 dataProvider=”{salesByEmployee.employee}”
 field=”sales” labelField=”name”
 labelPosition=”callout” />
 </mx:series>
 </mx:PieChart>

</mx:Application>

Figure 11-1:
Using a
simple

PieChart to
show sales

break-
down by

employee.

256 Par t III: The Flex Framework and Charting Components

In this chapter, we use the <mx:Model /> tag with XML data to populate the

sample charts. The <mx:Model> tag is a simple way to hold XML data and is

an excellent way to quickly put some test data into your Flex applications. All

you need to do is add the <mx:Model> tag to your application and place an

XML representation of your data within the tag. In more complex scenarios,

you might load data from a Web service, as XML or in some other format.

You can use the Flex framework collection classes, such as ArrayCollection

or XMLListCollection, to populate your charts with data. To find out more

about working with the collection classes, see Chapter 13.

Creating a ColumnChart and BarChart
You can create the typical column or bar charts, which display your data in

either vertical columns or horizontal bars (see Figure 11-2). The BarChart and

ColumnChart are closely related, and the only major distinction is the verti-

cal or horizontal orientation. But even though the charts are similar, they are

in fact two distinct controls, and each one needs to use the appropriate chart

series, which is either ColumnSeries or BarSeries.

Both the ColumnChart and BarChart support clustering and stacking of the

columns or bars. (See the following two sections.) You can control which

type of rendering is used for the chart by specifying the type property,

which can be set to clustered, stacked, 100%, or overlaid. To customize

the chart type, you have to use multiple data series in the same chart, such

as a comparison of sales figures from different quarters.

Figure 11-2:
The same

data
displayed

vertically in
a Column
Chart and

horizon-
tally in a

BarChart.

ColumnChart BarChart

257 Chapter 11: Char ting Components

Clustering
Clustering, the default chart behavior, is the grouping of multiple data series

along the x axis, in the case of the ColumnChart, or along the y axis, in the

case of the BarChart. Clustering is useful for a side-by-side comparison of

related numbers when you need to easily be able to see the values of each indi-

vidual column. Listing 11-2 creates an example that adds two different series

to a ColumnChart and uses the default clustering behavior. The resulting Flex

application is shown in Figure 11-3.

Listing 11-2: Creating a ColumnChart with Clustered Series
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Model id=”salesByEmployee”>
 <employees>
 <employee name=”Doug” salesQ1=”150000” salesQ2=”45000” />
 <employee name=”Deepa” salesQ1=”75000” salesQ2=”120000” />
 <employee name=”Darron” salesQ1=”30000” salesQ2=”85000” />
 <employee name=”Ben” salesQ1=”60000” salesQ2=”70000” />
 </employees>
 </mx:Model>

 <mx:ColumnChart dataProvider=”{salesByEmployee.employee}”>

 <mx:series>
 <mx:ColumnSeries yField=”salesQ1” />
 <mx:ColumnSeries yField=”salesQ2” />
 </mx:series>

 <mx:horizontalAxis>
 <mx:CategoryAxis id=”xAxis” categoryField=”name” />
 </mx:horizontalAxis>

 </mx:ColumnChart>

</mx:Application>

Stacking
Stacking involves creating a combined bar or column for all the series you’re

comparing in your chart. Stacked charts can be useful for visualizing the

combined aggregate value of each series and the breakdown within a group

of values. You have the following two options when working with stacked

series in column or bar charts, which you can use by setting the type prop-

erty of the chart to either stacked or 100%:

258 Par t III: The Flex Framework and Charting Components

Figure 11-3:
Using a

clustered
Column
Chart to

compare
two data

series.

 � stacked: Setting type to stacked places each column in the set on top

of another to create a single column that indicates the total sum value.

The length of each piece of a stacked column indicates that individual

piece’s numeric value, which can be determined by checking the axis

along the side of the chart.

 You can change Listing 11-2 to use stacked columns by simply changing

the chart type in MXML:

<mx:ColumnChart type=”stacked”dataProvider=”{salesByEm
ployee.employee}”>

 This change in the type property produces the stacked columns shown

in Figure 11-4.

Figure 11-4:
Using a
stacked
Column
Chart to

compare
data.

259 Chapter 11: Char ting Components

 � 100%: Setting type to 100% creates a stacked column that breaks down

the individual pieces based on the percentage that each piece con-

tributes to the total of the set. In a percentage-based stacked chart, all

stacked columns in the chart are the same length because they all add

up to 100 percent. This type of chart doesn’t indicate the actual value of

each piece of the stacked column, but allows you to easily visualize the

relative breakdown.

 In Figure 11-5, which uses the same sales data as the previous chart

example, the percentage-based stacked columns show the relationship

between first and second quarter sales for each employee. You can see

that Doug had far more sales in the first quarter than in the second quar-

ter, whereas Deepa had more sales in the second quarter than in the

first. This type of chart doesn’t indicate actual sales numbers, however.

Understanding how employees contrast with each other is difficult by

using this type of chart.

 The appropriateness of the stacked and 100 percent chart types depends on

the type of information you’re trying to convey.

Figure 11-5:
Comparing

percentage
differences

in data
series using

the 100
percent
stacked
Column

Chart.

Designing a LineChart and AreaChart
Rather than display your data as bars or columns, you can use the LineChart

or AreaChart to display your data series as a solid line or filled area,

respectively.

260 Par t III: The Flex Framework and Charting Components

 You can control the rendering of both the line and area charts by changing the

form style of a LineSeries or AreaSeries. Possible values for form are

 � segment

 � tep

 � reverseStep

 � vertical

 � horizontal

 � curve

Each form renders the data differently, so experiment with the options to

figure out which form is best for your chart’s purpose.

LineChart
LineChart draws a solid line for each data series, which should be defined as

a LineSeries, in the chart. LineCharts are useful for analyzing trends and can

be used effectively to compare multiple series because you can easily see

where the individual lines cross one another.

The example in Listing 11-3 displays two data series in a LineChart (see

Figure 11-6). Each LineSeries has form set to curve, which makes the line

a smooth curve (rather than a straight line) between data points, giving the

chart a more fluid feel.

Listing 11-3: Adding Two Series to a LineChart
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Model id=”salesByQuarter”>
 <quarters>
 <quarter name=”Quarter 1” dougSales=”150000” deepaSales=”75000” />
 <quarter name=”Quarter 2” dougSales=”45000” deepaSales=”120000” />
 <quarter name=”Quarter 3” dougSales=”73500” deepaSales=”67500” />
 <quarter name=”Quarter 4” dougSales=”68000” deepaSales=”50000” />
 </quarters>
 </mx:Model>

 <mx:Legend dataProvider=”{chart}” direction=”horizontal” />

 <mx:LineChart id=”chart” dataProvider=”{salesByQuarter.quarter}”
 width=”300” height=”250”>
 <mx:series>
 <mx:LineSeries form=”curve”

261 Chapter 11: Char ting Components

 yField=”dougSales” displayName=”Doug” />
 <mx:LineSeries form=”curve”
 yField=”deepaSales” displayName=”Deepa” />
 </mx:series>

 <mx:horizontalAxis>
 <mx:CategoryAxis categoryField=”name” />
 </mx:horizontalAxis>
 </mx:LineChart>

</mx:Application>

Figure 11-6:
Displaying

two series in
a LineChart

using the
curve form.

 The default LineChart adds a drop shadow to each series in the chart. You

can remove this shadow by setting the seriesFilters property of the

LineChart. The following code sets the seriesFilters to an empty Array,

which removes the shadow:

<mx:LineChart>
 <mx:seriesFilters>
 <mx:Array />
 </mx:seriesFilters>
 <mx:series>
 <mx:LineSeries xField=”x” yField=”y” />
 </mx:series>
</mx:LineChart>

AreaChart
An AreaChart is similar to a LineChart, except that each series is typically

rendered as a solid area rather than as a line. One important difference,

however, is that area charts support stacking, just as column and bar charts

do (see the earlier section “Stacking”). By setting the type property of the

262 Par t III: The Flex Framework and Charting Components

AreaChart to either stacked or 100%, you can stack multiple-area series.

You can use the following code to modify Listing 11-3 to use an AreaChart

with an AreaSeries:

<mx:AreaChart id=”chart” dataProvider=”{salesByQuarter.quarter}”
 type=”stacked”
 width=”300” height=”250”>
 <mx:series>
 <mx:AreaSeries form=”curve”
 yField=”dougSales” displayName=”Doug” />
 <mx:AreaSeries form=”curve”
 yField=”deepaSales” displayName=”Deepa” />
 </mx:series>

 <mx:horizontalAxis>
 <mx:CategoryAxis categoryField=”name” />
 </mx:horizontalAxis>
</mx:AreaChart>

The resulting chart is shown in Figure 11-7.

Figure 11-7:
A stacked
AreaChart
displaying

two curved
series.

Making a PieChart
PieChart is the only chart type that doesn’t use an x and y axis to plot data.

Instead, the data of a pie chart is drawn as wedges in a pie. The PieChart

uses a PieSeries data series to populate its data. The only major difference

between using a data provider with a pie chart versus the other chart types

is that a pie chart uses only a single field of your data items to draw the

wedge sizes. When you use the other types of charts that have an x axis and

y axis, you need to specify which fields should be used for each axis. Because

PieChart uses only a single field, this task is simplified by using a single field

property on each PieSeries you create.

263 Chapter 11: Char ting Components

Going the simple route
To create a simple pie chart with a single series, you set the series of the

PieChart to a PieSeries object pointing to the proper data provider for the

chart, as in Listing 11-4. The resulting PieChart is shown in Figure 11-8.

Listing 11-4: Creating a Basic PieChart

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Model id=”demographicData”>
 <demographics>
 <gender name=”Male” count=”25” />
 <gender name=”Female” count=”34” />
 </demographics>
 </mx:Model>

 <mx:PieChart dataProvider=”{demographicData.gender}”>
 <mx:series>
 <mx:PieSeries field=”count” labelField=”name”

labelPosition=”inside” />
 </mx:series>
 </mx:PieChart>

</mx:Application>

Figure 11-8:
Using a

PieChart to
show break-

down by
gender.

Notice these important points about Listing 11-4:

 � field: The PieSeries you create has the field property set to count,

which uses the count of each gender entry in the Model to size the pie

wedges.

 � labelField: You set the labelField property to name, which in this

case is either “Male” or “Female.” The labelField is used when labels

are displayed for the wedges.

264 Par t III: The Flex Framework and Charting Components

 � labelPosition: You specify a labelPosition of inside, which

draws the labels within the pie wedges. For a PieChart, you can spec-

ify various label positions by setting labelPosition to callout,

inside, insideWithCallout, none, or outside. Some labelPosition

options are shown in Figure 11-9.

Figure 11-9:
Using the

various
label posi-

tions of the
PieChart.

Doing a donut shape
You can create donut-shaped pie charts by using the innerRadius style of

the PieChart. If you specify a value for innerRadius, the chart is rendered

as a ring around a hole in the center. The value you specify for inner
Radius represents a percentage of the entire circle, ranging from 0 to 1

(which equates to 100 percent). The example in Listing 11-5 creates a pie

chart showing the breakdown of donut sales, with an innerRadius of 30

percent of the total pie chart radius. The chart that’s created is shown in

Figure 11-10.

Listing 11-5: Using the innerRadius Property

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Model id=”donutSales”>
 <donuts>
 <donut type=”Jelly Donut” numberSold=”12” />
 <donut type=”Bear Claw” numberSold=”7” />
 <donut type=”Chocolate Donut” numberSold=”9” />
 </donuts>
 </mx:Model>

 <mx:PieChart innerRadius=”.3”
dataProvider=”{donutSales.donut}” >

265 Chapter 11: Char ting Components

 <mx:series>
 <mx:PieSeries field=”numberSold”

labelField=”type” labelPosition=”outside” />
 </mx:series>
 </mx:PieChart>

</mx:Application>

Figure 11-10:
Using the

inner
Radius

style of a
PieChart

to create a
donut chart.

Exploding wedges
You can customize the look of your pie charts by “exploding” wedges. An

exploded wedge doesn’t self-destruct; it simply sets itself apart a bit by slid-

ing out from the whole pie chart. To customize the exploded wedges in a

PieChart, you can set one of these properties on the PieSeries:

 � explodeRadius: Explodes all wedges by an equal amount, which creates

some spacing around each wedge. The values can range from 0 to 1,

which indicates a percentage of the total pie chart radius that will be

used to offset the wedge.

 � perWedgeExplodeRadius: Gives you finer control over wedge place-

ment by letting you specify different values for individual pie wedges.

When you specify a value for the perWedgeExplodeRadius property,

you use an Array of values, each ranging from 0 to 1, that corresponds

with the data in your data provider. Ensure that the order of the explode

radii in your Array matches the order of the data in the data provider.

By specifying the Array [0, 0, .3, 0] for perWedgeExplodeRadius in

Listing 11-6, you tell the chart that the third wedge, which corresponds with

Darron’s sales, should be exploded out 30 percent of the pie chart’s total

radius. The resulting pie chart is shown in Figure 11-11.

266 Par t III: The Flex Framework and Charting Components

Listing 11-6: Using the perWedgeExplodeRadius Property

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Model id=”salesByEmployee”>
 <employees>
 <employee name=”Doug” sales=”150000” />
 <employee name=”Deepa” sales=”75000” />
 <employee name=”Darron” sales=”30000” />
 <employee name=”Ben” sales=”60000” />
 </employees>
 </mx:Model>

 <mx:PieChart width=”300” height=”300” >
 <mx:series>
 <mx:PieSeries

perWedgeExplodeRadius=”{[0,0,.3,0]}”
dataProvider=”{salesByEmployee.
employee}” field=”sales” labelField=”name”
labelPosition=”callout” />

 </mx:series>
 </mx:PieChart>

</mx:Application>

Figure 11-11:
Exploding

an individual
wedge of a

PieChart.

 The values in the perWedgeExplodeRadius property are independent of the

data in the data provider. If you set perWedgeExplodeRadius to explode

out a particular wedge and you then update the underlying data in the data

provider, perWedgeExplodeRadius is still set to its original setting. To illus-

trate this issue, imagine that a data provider originally has six items, you explode

the fourth item, and then you remove the third item. After the removal of the

third item, the perWedgeExplodeRadius still indicates that the fourth item

is supposed to be exploded, so a different wedge than you originally intended

267 Chapter 11: Char ting Components

is exploded. Keep this concept in mind so that the data in your chart and the

explode settings for the data stay synchronized.

Building a PlotChart and a BubbleChart
The PlotChart is similar to the LineChart and AreaChart (both described

earlier in this chapter) in that it plots one or more data series as a collection

of points along the x and y axes. The PlotChart, however, renders the data

points as individual, unconnected markers and uses different marker shapes

to represent the unique data series. The PlotChart renders your first data

series as diamond markers, the second series as circle markers, and the third

series as square markers, as shown in Figure 11-12. If you have more than

three series in a chart, the markers start over with the diamond marker, and

the color of each series continues to change.

Figure 11-12:
Using the

PlotChart to
plot multiple
data series.

The PlotChart uses both the xField and the yField of a PlotSeries to deter-

mine the position of each data point. Therefore, you should specify both xField

and yField and ensure that your data provider has the appropriate fields

for plotting the data.

The BubbleChart is similar to the other charts, except that it adds another

visualized data field to each data series. You can think of the BubbleChart

as a PlotChart that draws circles of different sizes for each data point. In

a BubbleChart, your data should have x and y coordinates, just like in the

PlotChart, but it should also have an additional field that is used to deter-

mine the size of the bubble marker. So, you define not only the xField and

yField properties but also radiusField. The BubbleChart ensures that

268 Par t III: The Flex Framework and Charting Components

all bubble markers are sized correctly relative to each another based on the

value of radiusField for each data point.

The example in Listing 11-7 defines a Model that contains quarterly sales

data. However, unlike any of the previous examples, you now have an addi-

tional field for profit. In the resulting chart, shown in Figure 11-13, the x axis

represents the financial quarter, the y axis represents the sales for that quar-

ter, and the size of the bubble marker represents that quarter’s profit.

Listing 11-7: Creating a BubbleChart

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Model id=”salesByQuarter”>
 <quarters>
 <quarter name=”Q1” sales=”80000” profit=”5000” />
 <quarter name=”Q2” sales=”45000” profit=”4500” />
 <quarter name=”Q3” sales=”73500” profit=”6700” />
 <quarter name=”Q4” sales=”68000” profit=”4000” />
 </quarters>
 </mx:Model>

 <mx:BubbleChart id=”chart” width=”400” height=”250”
 dataProvider=”{salesByQuarter.quarter}”
 maxRadius=”20”>
 <mx:series>
 <mx:BubbleSeries xField=”name” yField=”sales”
 radiusField=”profit”/>
 </mx:series>
 <mx:horizontalAxis>
 <mx:CategoryAxis categoryField=”name” />
 </mx:horizontalAxis>
 </mx:BubbleChart>
</mx:Application>

Figure 11-13:
Using a

BubbleChart
to render a

third data
field.

269 Chapter 11: Char ting Components

Introducing the CandleStickChart
and HLOCChart

Two charts in the Flex charting package are used for complex representa-

tions of financial data: CandleStickChart and HLOCChart. HLOC, which stands

for High Low Open Close, refers to the high, low, opening, and closing values

of financial stocks; you can see an example of this chart type in Figure 11-14.

Because of the complex nature of these types of charts, we don’t discuss

them here. Just remember that if you need to present stock market data in

your Flex application, these two chart types are the ones to explore. For

more information about them, refer to the Flex documentation.

Figure 11-14:
Using a

HLOCChart
to display

stock per-
formance.

Working with Axes
Most chart types, with the exception of the PieChart, use x and y axes to plot

data. You can control the layout of the axes and the chart itself by using dif-

ferent kinds of axes: CategoryAxis, LinearAxis, LogAxis, and DateTimeAxis.

Listing 11-2, earlier in this chapter, shows how you can use the CategoryAxis,

which is typically used when values along an axis are nonnumeric values.

In this chart of sales per employee, the x axis displays the name of the

employee because you use a CategoryAxis and set the categoryField to

the proper field on the data provider, which is name:

<mx:horizontalAxis>
 <mx:CategoryAxis id=”xAxis” categoryField=”name” />
</mx:horizontalAxis>

270 Par t III: The Flex Framework and Charting Components

When the field you’re displaying in the axis is a numeric field, however, you

use one of the numeric axes:

 � LinearAxis, LogAxis: Designed to work with ordered numbers and auto-

matically plot your data on the chart in the correct order. (Both axes are

shown in Figure 11-15.) LinearAxis creates an axis that ranges from the

minimum value to the maximum value in equally spaced increments. For

some data sets, however, plotting data on a logarithmic scale is more

useful, which you can do with LogAxis. It makes the distance between

tick marks on the low end of the scale greater than on the high end.

 � DateTimeAxis: Appropriately named and should be used when work-

ing with data that occurs through time. The DateTimeAxis handles the

details, such as formatting labels for the axis based on the total time

range. If the data provider of your chart has a field that’s an actual

ActionScript Date object, the DateTimeAxis easily understands the data.

If not, it attempts to parse the field you specify and determine the Date

value itself.

Figure 11-15:
Comparing

the same
data set

by using a
LinearAxis

and a
LogAxis.

LinearAxis LogAxis

Listing 11-8 provides a Model that contains a date field that will be used for

the x axis. The data in the model, however, is simply a text representation of

a Date. The DateTimeAxis automatically parses it and converts it to a proper

Date object for use in the axis. The resulting chart is shown in Figure 11-16.

Listing 11-8: Using the DateTimeAxis
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Model id=”salesByMonth”>
 <data>
 <month date=”01/01/2008” sales=”30400” />
 <month date=”02/01/2008” sales=”28000” />
 <month date=”03/01/2008” sales=”75000” />
 <month date=”04/01/2008” sales=”120000” />

271 Chapter 11: Char ting Components

 <month date=”05/01/2008” sales=”110000” />
 <month date=”06/01/2008” sales=”80500” />
 <month date=”07/01/2008” sales=”65000” />
 <month date=”08/01/2008” sales=”100000” />
 <month date=”09/01/2008” sales=”125000” />
 <month date=”10/01/2008” sales=”105400” />
 <month date=”11/01/2008” sales=”95000” />
 <month date=”12/01/2008” sales=”70000” />
 </data>
 </mx:Model>

 <mx:AreaChart dataProvider=”{salesByMonth.month}” width=”400” height=”250”>
 <mx:series>
 <mx:AreaSeries xField=”date” yField=”sales” />
 </mx:series>
 <mx:horizontalAxis>
 <mx:DateTimeAxis id=”xAxis” displayLocalTime=”true” />
 </mx:horizontalAxis>
 <mx:horizontalAxisRenderers>
 <mx:AxisRenderer axis=”{xAxis}” canStagger=”true” canDropLabels=”false”

/>
 </mx:horizontalAxisRenderers>
 </mx:AreaChart>

</mx:Application>

 If you have more complex date strings in your model that the DateTimeAxis

can’t automatically parse, you can use the parseFunction property, which

should be set to a custom function you define. Your function should take

the data field from your model and return a proper Date representation of

that value. You can then do whatever complex parsing you need in order to

convert your data for use in the DateTimeAxis.

Figure 11-16:
Displaying

data
through time
by using the

DateTime
Axis.

272 Par t III: The Flex Framework and Charting Components

Adding Legends to Your Charts
Each chart in the Flex framework supports adding a legend to display the

name and color of each series in the chart. You can add the Legend control

to your application by using the <mx:Legend /> MXML tag. Each legend

you create should be linked to a specific chart by setting the dataProvider

property of the Legend control to a chart instance. The chart and legend

handle the rest, and each series you include in your chart shows up with a

marker indicating the color and a label in the Legend control.

You can control the direction in which the Legend control places the labels

by setting the direction property, which can be either vertical or hori-
zontal. Previous examples in this chapter use a horizontal Legend control

to indicate which colors in the chart corresponded with which quarter’s

sales figures. You do so by adding the following line of MXML code to the

application:

<mx:Legend dataProvider=”{chart}”
 direction=”horizontal” />

 The Legend control uses the label specified as the displayName property of

each series in the chart. Note that this property is different from the label
Field or name properties of the series, so if you’re having trouble making

your legend show the correct names, ensure that you’re setting the display-
Name property of the series in your chart. In the examples in this section, you

define the displayName of each series with the following MXML code lines:

<mx:ColumnSeries yField=”salesQ1” displayName=”Quarter 1” />
<mx:ColumnSeries yField=”salesQ2” displayName=”Quarter 2” />

Refer to Listing 11-3 to see how a Legend control is used to visually identify

two data series.

Using a Legend control is more appropriate for some chart types than for

others. If you’re using a single series in a chart, the legend information is

often unnecessary, such as in a ColumnChart or LineChart, because the chart

is self-explanatory, assuming that some kind of title is provided. But after you

add multiple series in a chart, each series is rendered in a different color, and

the only way to distinguish between series is to use either rollover data tips

or a Legend control.

 The PieChart has added functionality to draw labels either within the

wedges or by using callouts. By using the labelPosition property of the

PieChart, you might be able to label your chart without needing to explicitly

add a Legend control.

273 Chapter 11: Char ting Components

Adding Interactivity
You can use all charts in the Flex charting package to create complex inter-

actions between the chart data. Fundamentally, each data item dispatches

mouse events, whether the item is rendered as a bar in a BarChart or as

a wedge in a PieChart. The events that are dispatched are slightly differ-

ent from normal MouseEvents. When a user rolls over or clicks the data

displayed in a chart, or has any other mouse interaction with the data, a

ChartItemEvent is dispatched that contains details about the underlying

chart and chart data.

When your mouse handler receives notification of a ChartItemEvent, you can

access the hitData property of the event, which is a HitData object that

contains details about the item with which the user interacted. If the multiple

items were affected, the hitSet property of the ChartItemEvent contains an

Array of HitData objects. After you have a reference to a HitData object, you

can use the item property to access the underlying data item from the data

provider.

 Mouse events and chart item events aren’t the same events. Because charts

are normal Flex components, they have their own mouse events, and you

can add typical mouse listeners on charts, such as click, mouseDown, and

mouseUp. But these events aren’t the item click events that tell you about

specific mouse interactions on chart items. For chart item interactions, make

sure to use ChartItemEvent events, such as itemClick, itemMouseDown,

and itemMouseUp. If you’re wondering why you aren’t notified of chart data

in your event handler, double-check that you’re listening for the right events.

In addition to dispatching mouse events for each item in the chart, the Flex

chart controls also have built-in functionality to let users select specific chart

items. The charts all have a selectionMode property that can be set to

none, single, or multiple. If you set selectionMode to either single or

multiple, you enable item selection in that chart. After the user selects an

item in the chart, the chart dispatches a change event to notify you. You can

then access selected items by using the selectedItem or selectedItems

properties of the chart.

The example in Listing 11-9 sets the selectionMode of the chart to single

and displays an Alert notification when an item is selected.

Listing 11-9: Creating Interactive Charts
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>

(continued)

274 Par t III: The Flex Framework and Charting Components

Listing 11-9 (continued)
 <![CDATA[
 import mx.controls.Alert;
 import mx.charts.events.ChartItemEvent;

 private function itemClickHandler(event:ChartItemEvent):void {
 var item:Object = chart.selectedChartItem.item;

 Alert.show(“You selected: “ + item.name, “Employee Selected”);
 }
]]>
 </mx:Script>

 <mx:Model id=”salesByEmployee”>
 <employees>
 <employee name=”Doug” salesQ1=”150000” />
 <employee name=”Deepa” salesQ1=”75000” />
 </employees>
 </mx:Model>

 <mx:ColumnChart id=”chart” dataProvider=”{salesByEmployee.employee}”
 change=”itemClickHandler(event)” selectionMode=”single”
 width=”300” height=”300”>
 <mx:series>
 <mx:ColumnSeries yField=”salesQ1” />
 </mx:series>
 <mx:horizontalAxis>
 <mx:CategoryAxis categoryField=”name” />
 </mx:horizontalAxis>
 </mx:ColumnChart>
</mx:Application>

Animating Your Charts
After you discover how to create attractive-looking charts, you can make

them “move,” to add extra punch to your application. The Flex charting com-

ponents support animation through the use of these three effects:

 � SeriesSlide: Slides new data in and out of the chart as it is added or

removed

 � SeriesZoom: Zooms each data renderer in or out, depending on whether

you’re showing or hiding the data in the chart

 � SeriesInterpolate: Animates the data from one location to another as

the data is updated

You apply these effects individually to each series you want to animate by

setting either the showDataEffect or the hideDataEffect on the series.

275 Chapter 11: Char ting Components

The first two effects, SeriesSlide and SeriesZoom, can be applied when the

data is either shown or hidden. When data is shown, it means that the data

in the data provider for the series gets set. The data is hidden every time

the data provider is changed for that series. If you swap data providers or

update values within the data provider, the old data is first hidden, and then

the new data is shown. The SeriesInterpolate effect, unlike SeriesSlide and

SeriesZoom, can be applied only when the data is shown.

The example in Listing 11-10 allows the user to select a quarter’s sales data

to show. The ColumnSeries has a SeriesSlide effect applied to the hide
DataEffect so that the columns slide down when hiding the data. A second

SeriesSlide effect slides the data up when it’s being shown.

Listing 11-10: Sliding Data In and Out
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>
 <![CDATA[
 import mx.events.ItemClickEvent;

 private function toggleButtonSelected(event:ItemClickEvent):void {
 if(event.index == 0) {
 series.yField = “salesQ1”;
 }
 else {
 series.yField = “salesQ2”;
 }
 }
]]>
 </mx:Script>

 <mx:Model id=”salesByEmployee”>
 <employees>
 <employee name=”Doug” salesQ1=”150000” salesQ2=”45000” />
 <employee name=”Deepa” salesQ1=”75000” salesQ2=”120000” />
 <employee name=”Darron” salesQ1=”30000” salesQ2=”85000” />
 <employee name=”Ben” salesQ1=”60000” salesQ2=”70000” />
 </employees>
 </mx:Model>

 <mx:ToggleButtonBar dataProvider=”{[‘Quarter 1’, ‘Quarter 2’]}”
 itemClick=”toggleButtonSelected(event)” />

 <mx:ColumnChart dataProvider=”{salesByEmployee.employee}”
 width=”300” height=”250”>

 <mx:series>

(continued)

276 Par t III: The Flex Framework and Charting Components

Listing 11-10 (continued)
 <mx:ColumnSeries id=”series” yField=”salesQ1” >
 <mx:hideDataEffect>
 <mx:SeriesSlide direction=”down” />
 </mx:hideDataEffect>
 <mx:showDataEffect>
 <mx:SeriesSlide direction=”up” />
 </mx:showDataEffect>
 </mx:ColumnSeries>
 </mx:series>

 <mx:horizontalAxis>
 <mx:CategoryAxis id=”xAxis” categoryField=”name” />
 </mx:horizontalAxis>

 </mx:ColumnChart>

</mx:Application>

By using two SeriesSlide effects, you can achieve a fluid transition that clears

the chart and animates your new data as it moves into place. The previous

example makes the first data set slide down and out of view before sliding

the new data set into view. You can also simply animate the data directly

from the first data set to the second data set by using the SeriesInterpolate

effect. This effect is helpful when you apply it as the showDataEffect of

any of the chart types for an easy way to create smooth data transitions. You

would have to modify the previous example only slightly in order to use the

SeriesInterpolate effect:

<mx:ColumnSeries id=”series” yField=”salesQ1” >
 <mx:showDataEffect>
 <mx:SeriesInterpolate />
 </mx:showDataEffect>
</mx:ColumnSeries>

Tying It Together
The example in Listing 11-11 uses the concepts discussed in this chapter to

create an interactive, animated charting dashboard. The example first pres-

ents a pie chart with total yearly sales per employee. The user can select an

individual pie wedge in the chart, which explodes that wedge to highlight

the data and to load a second chart with the quarterly breakdown for the

selected employee, as shown in Figure 11-17.

277 Chapter 11: Char ting Components

Listing 11-11: An Interactive, Animated Charting Dashboard Application
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 verticalAlign=”middle” horizontalAlign=”center”>

 <mx:Script>
 <![CDATA[
 import mx.charts.chartClasses.IAxis;
 import mx.charts.HitData;
 import mx.formatters.CurrencyFormatter;
 import mx.charts.events.ChartItemEvent;
 import mx.charts.chartClasses.Series;

 private function calculateTotalSales(series:Series, ➝ 13
 item:Object, fieldName:String):Object {
 return item.salesQ1 + item.salesQ2 + item.salesQ3 + item.salesQ4;
 }

 private function calculateTotalLabel(data:Object, field:String, ➝ 18
 index:Number, percentValue:Number):String {
 var totalSales:Number = data.salesQ1 + data.salesQ2
 + data.salesQ3 + data.salesQ4;

 var label:String = data.name + “\n”;
 label += “Total sales: “ + formatter.format(totalSales);

 return label;
 }

 private function pieChartClickHandler(event:ChartItemEvent):void { ➝ 29
 var item:Object = event.hitData.item;
 var index:int = event.hitData.chartItem.index;

 var explodeRadii:Array = new Array();
 for(var i:int=0; i<pieChart.dataProvider.length; i++) {
 if(i==index) {
 explodeRadii.push(.3);
 }
 else {
 explodeRadii.push(0);
 }
 }

 pieSeries.perWedgeExplodeRadius = explodeRadii; ➝ 43

 var individualSales:Array = new Array(); ➝ 45
 individualSales.push({quarter:”Q1”, sales:item.salesQ1});
 individualSales.push({quarter:”Q2”, sales:item.salesQ2});
 individualSales.push({quarter:”Q3”, sales:item.salesQ3});
 individualSales.push({quarter:”Q4”, sales:item.salesQ4});

(continued)

278 Par t III: The Flex Framework and Charting Components

Listing 11-11 (continued)
 selectedEmployeeSales = individualSales;

 selectedName = item.name;
 }

 private function getWedgeDataTip(hitData:HitData):String { ➝ 56
 var item:Object = hitData.item;

 var tip:String = item.name + “\n”;
 tip += “Q1: “ + formatter.format(item.salesQ1) + “\n”;
 tip += “Q2: “ + formatter.format(item.salesQ2) + “\n”;
 tip += “Q3: “ + formatter.format(item.salesQ3) + “\n”;
 tip += “Q4: “ + formatter.format(item.salesQ4) + “\n”;

 return tip;
 }

 private function getAxisLabel(labelValue:Object, previousValue:Object,
 axis:IAxis):String {

 return formatter.format(labelValue); ➝ 70
 }

 [Bindable]

 private var selectedName:String; ➝ 74

 [Bindable]

 private var selectedEmployeeSales:Object; ➝ 77
]]>
 </mx:Script>

 <mx:Model id=”salesByEmployee”> ➝ 81
 <employees>
 <employee name=”Doug” salesQ1=”150000” salesQ2=”45000”
 salesQ3=”23500” salesQ4=”6800” />
 <employee name=”Deepa” salesQ1=”75000” salesQ2=”120000”
 salesQ3=”67500” salesQ4=”5000” />
 <employee name=”Darron” salesQ1=”30000” salesQ2=”85000”
 salesQ3=”12000” salesQ4=”7000” />
 <employee name=”Ben” salesQ1=”60000” salesQ2=”70000”
 salesQ3=”90500” salesQ4=”100000” />
 </employees>
 </mx:Model>

 <mx:CurrencyFormatter id=”formatter” /> ➝ 94

 <mx:HBox width=”100%” height=”100%”
 verticalAlign=”middle” horizontalAlign=”center”>

 <mx:Panel title=”Yearly sales per employee” moveEffect=”Move”
 width=”100%” maxWidth=”450” height=”100%” maxHeight=”450”>

(continued)

279 Chapter 11: Char ting Components

Listing 11-11 (continued)
 <mx:PieChart id=”pieChart” width=”100%”

 dataProvider=”{salesByEmployee.employee}” ➝ 103
 showDataTips=”true” dataTipFunction=”getWedgeDataTip” ➝ 104
 itemClick=”pieChartClickHandler(event)” > ➝ 105

 <mx:series>
 <mx:PieSeries id=”pieSeries” dataFunction=”calculateTotalSales”
 labelPosition=”callout” labelFunction=”calculateTotalLabel”>
 <mx:showDataEffect>

 <mx:SeriesInterpolate /> ➝ 111
 </mx:showDataEffect>
 </mx:PieSeries>
 </mx:series>

 </mx:PieChart>

 </mx:Panel>

 <mx:Panel title=”Quarterly sales: {selectedName}”
 width=”100%” height=”100%” maxHeight=”450” showEffect=”Fade”
 includeInLayout=”{selectedEmployeeSales != null}”

 visible=”{selectedEmployeeSales != null}”> ➝ 123

 <mx:ColumnChart id=”columnChart” width=”100%” height=”100%”
 dataProvider=”{selectedEmployeeSales}”>

 <mx:series>

 <mx:ColumnSeries yField=”sales”> ➝ 129
 <mx:showDataEffect>

 <mx:SeriesInterpolate /> ➝ 131
 </mx:showDataEffect>
 </mx:ColumnSeries>
 </mx:series>

 <mx:horizontalAxis>

 <mx:CategoryAxis id=”xAxis” categoryField=”quarter” /> ➝ 137
 </mx:horizontalAxis>

 <mx:verticalAxis>

 <mx:LinearAxis labelFunction=”getAxisLabel” /> ➝ 141
 </mx:verticalAxis>

 </mx:ColumnChart>
 </mx:Panel>
 </mx:HBox>

</mx:Application>

280 Par t III: The Flex Framework and Charting Components

Figure 11-17:
 The

interactive
chart

example
after an

employee
has been
selected.

This example is lengthy, but it highlights, all at one time, how to tie together

multiple chart types, interactivity, and animation. Here’s a breakdown of

Listing 11-11:

 ➝ 81 You define a Model in MXML that drives both the PieChart and the

ColumnChart in this application. This Model contains quarterly

sales data for four employees.

 ➝ 103 You create a PieChart and set the dataProvider of the PieSeries

to bind to the Model that’s created on Line 81.

 ➝ 108 The PieChart displays the total sales per employee for the entire

year, but the Model contains only individual quarterly sales fig-

ures. You define a dataFunction that returns the value that will

be used to size the pie wedge. This function is defined on Line

13. Notice how the calculateTotalSales function adds each

quarterly sales amount and returns the total. This is an alternative

way, rather than specify a field property, of defining the size of

the pie wedges.

 ➝ 105 You add a listener to listen for itemClick events. When the user

clicks on a pie wedge, the pieChartClickHandler function on

Line 29 is executed.

 In the pieChartClickHandler function, you set the per
WedgeExplodeRadius on Line 43, which tells the PieChart to

explode the wedge that was selected, offsetting it from the rest

of the pie wedges. You also create a new Array that acts as the

data provider for the second chart that is shown after a pie wedge

has been selected. Lines 45–51 create the new data provider and

assign it to the selectedEmployeeSales variable.

281 Chapter 11: Char ting Components

 ➝ 123 You bind the visibility of the Panel that contains the ColumnChart

to the conditional statement selectedEmployeeSales = null,

so after selectedEmployeeSales is set to anything other than

null, this Panel is shown.

 ➝ 131 When a new employee is selected, the ColumnChart ani-

mates the data because showDataEffect has been set to a

SeriesInterpolate effect.

 ➝ 141 Because the data in this chart shows sales in dollars, we use a

custom function to return the labels that should be shown on the

vertical axis. A custom labelFunction is defined to point to the

getAxisLabel function, which is defined on Line 70. This func-

tion uses the CurrencyFormatter defined on Line 94, which pro-

duces labels such as $1,000 rather than 1000.

282 Par t III: The Flex Framework and Charting Components

Part IV
Working with
Data in Flex

In this part . . .

One of the most powerful features of Flex is its ability

to create user interface controls that are driven by

underlying data models. Data binding, covered in Chapter

12, makes it easy to link your UI components to the under-

lying data that your application is displaying. After you

get used to using data binding to automatically populate

MXML components, you won’t be able to live without it.

Then, in Chapter 13, we dive into the collection classes

that you use to store and manipulate data in your applica-

tions. And, in Chapter 14, we show you how to pull in data

from external sources using XML and Web services.

Chapter 12

The Power of Data Binding
In This Chapter
� Understanding how data binding works

� Working with data binding expressions

� Getting more advanced with complex bindings

� Debugging a data binding expression

� Using data binding to build an interactive form

Flex provides a very smart and robust mechanism for associating data

contained in one object with another object. This association is called

data binding. By using data binding, you can very simply pass data between

different elements of your application without writing a lot of code. Because

the data binding infrastructure is easy to use, requires little code, and is

baked into all the Flex controls at a very low level, you can use data binding

to invoke some powerful control over connecting the data in your application

to the user interface controls.

Here are some examples of ways you might use data binding:

 � To bind data from one Flex user interface control to another

 � To bind data returned from a data service request, such as an HTTPService

result, to user interface controls, such as a DataGrid control

This chapter explains how to add data binding into your applications. Data

binding is one of the most powerful features of Flex, and you will surely use

it often.

Understanding the Data
Binding Expression

In data binding, you associate a certain property of a source object with a prop-

erty of a destination object by creating a data binding expression. Key elements

of this data binding expression include the source and destination properties:

286 Part IV: Working with Data in Flex

 � Source property: The property of the source object that contains the

data that should be copied to the destination object

 � Destination property: The property of the destination object that

receives the copied data

When data binding copies data from the source property to the destination

property, the data binding expression is said to fire. If the data from the

source object gets successfully set on the destination object, the firing was

successful; otherwise, your application encounters an error, and the data

was not properly set.

You can create a data binding expression several different ways. Most often,

you write a data binding expression in-line within an MXML tag. When data

binding is expressed in MXML, you can easily recognize the data bind-

ing expression because it uses a special curly-brace syntax ({}) to create

the binding. Most often, data binding occurs in MXML via the curly-brace

syntax, but you can also create data binding expressions by using a special

<mx:Binding/> MXML tag. We discuss all these mechanisms in this chapter.

Using Data Binding in MXML
You can create a data binding expressions within an MXML document very

easily. The most common (and easiest) way to construct a data binding

expression is by using the special data binding–specific curly-brace syntax:

{}. You can also create data binding expressions in MXML by using the spe-

cial <mx:Binding /> MXML tag. In the following sections, we discuss these

two approaches.

Going curly: Creating data binding
expressions in-line in MXML tags
You can use the special curly-brace syntax to create a data binding expres-

sion in-line within an MXML tag. By in-line, we mean that the curly-brace

expression is used within the value of an attribute expressed in an MXML tag.

The special curly-brace syntax tells the MXML compiler that a data binding

expression has been created, and the MXML compiler generates some special

ActionScript code behind the scenes so that the data binding expression can

fire (pass data between a source and destination object) correctly.

To write a curly-brace-based data binding expression, you need to identify

the source property and destination property. Take a look at the following

example of a data binding expression:

287 Chapter 12: The Power of Data Binding

<mx:TextInput id=”userText” />
<mx:Label text=”{userText.text}” />

This expression says that the Label control’s text value should be whatever

the user has typed into the userText TextInput control. The userText con-

trol acts as the source object, and the text property is the source property

that will be automatically copied into the Label control’s text property. The

destination object is the Label control because that control gets its text from

another object. The Label control’s text property is the destination prop-

erty because that property is getting its value from another control.

When you run this example in Flex Builder, whatever text you enter into the

TextInput control appears, in real time, as the text in the Label control (see

Figure 12-1). This text appears because the data binding expression suc-

cessfully fires. Whenever the value of the source property changes (when

userText.text changes), data binding copies the data from the source

(userText.text) to the destination (the Label’s text property).

Figure 12-1:
The text
entered

appears as
the Label
control’s

text.

Creating data binding expressions with
the <mx:Binding/> MXML tag
In addition to the curly-brace syntax (which we talk about in the preceding

section), you can create data binding expressions within an MXML document

by using the <mx:Binding/> tag. When you use the <mx:Binding /> tag,

you explicitly define the source and destination properties as attributes

in the tag, which are the only attributes that you need to set.

For both the source and destination of the Binding tag, you reference

specific properties or variables that you are binding. You can use any prop-

erty on any Flex control whose value can be read as the Binding tag’s source

property, and you can use any property on any Flex control whose value can

be set as the Binding tag’s destination property.

288 Part IV: Working with Data in Flex

Take a look at the following example:

<mx:Binding source=”userText.text” destination=”labelText.
text” />

<mx:TextInput id=”userText” />
<mx:Label id=”labelText” />

In this example, you create a data binding expression in which you bind

the labelText Label control’s text property to the text entered into the

userText TextInput control. Whenever the value of the source property

changes (userText.text), the data binding copies that value to the

destination property (labelText.text).

If you run this example, while you type text into the TextInput control, the

Flex Label control displays that text in real time.

Using ActionScript functions in the source
of a data binding expression
The source and destination of a data binding expression can contain more than

just properties. You can also invoke ActionScript methods on the data being

passed into the destination object. For example, you may want to reformat the

text of a label that is set with data binding. The following example shows how

you can modify the text that the user enters into a TextInput control so that

when the Label control displays that text, it’s converted into uppercase letters.

You simply call a method within your curly-brace expression:

<mx:TextInput id=”userText” />
<mx:Label text=”{userText.text.toUpperCase()}” />

Invoking ActionScript methods on the data being passed from the source to

the destination lets you easily format the data, concatenate multiple pieces

of text, or perform other calculations on the data without needing a separate

block of ActionScript code. Because you can use ActionScript within the data

binding curly braces, you can invoke any type of ActionScript method when

you construct your binding.

You can also reference the return value from an ActionScript function in a

data binding expression. For example, you can have a text user interface con-

trol display the return value of an ActionScript method that does some con-

ditional evaluation. Just include the ActionScript method in the data binding

expression. The following example shows this approach in action. Depending

on the day of the week, the Label control displays Happy Weekday or Happy
Weekend:

289 Chapter 12: The Power of Data Binding

<mx:Script>
 <![CDATA[

 private function dayOfWeek():String
 {
 var date:Date = new Date();
 if ((date.day >= 1) && (date.day <= 5))
 return “Weekday”
 else return “Weekend”;
 }
]]>
</mx:Script>

<mx:Label text=”Today’s date is Wednesday, May 28” />

<mx:Label text=”{‘Happy ‘ + dayOfWeek()}” />

The data binding expression in the preceding example (which configures

the Label’s text to display) concatenates Happy with the results of the

dayOfWeek ActionScript method. Figure 12-2 shows the result.

Figure 12-2:
Using an

ActionScript
function

within data
binding.

What Properties Support Data Binding?
For data binding to work in Flex, the source property needs to emit a prop-

erty change event when its value changes. This event triggers the Flex data

binding infrastructure to copy the new value from the source to the destina-

tion. If a property emits a change event (which means you can use it for data

binding), the Flex documentation refers to it as a bindable property.

 Most properties on Flex user interface controls are bindable properties. If a

property is bindable, the ActionScript Flex Language Reference documenta-

tion that comes with Flex includes the statement “This property can be used

as the source for data binding.”

One of the most common uses for data binding is populating the data of a

Flex list-based user interface control. (To find out more about the list-based

controls available in Flex, check out Chapter 8.) Flex list-based controls have

a dataProvider property that controls what data is displayed, and you

290 Part IV: Working with Data in Flex

can often most easily set this property by using a data binding expression

because the dataProvider property is bindable. The following example

shows how an ArrayCollection of state names is bound into the List control

(see Figure 12-3):

<mx:ArrayCollection id=”stateList”>
 <mx:Array>
 <mx:String>California</mx:String>
 <mx:String>Arizona</mx:String>
 <mx:String>Nevada</mx:String>
 <mx:String>Washington</mx:String>
 </mx:Array>
</mx:ArrayCollection>

<mx:List width=”200” dataProvider=”{stateList}” />

Figure 12-3:
Populate a
List control

with an
Array

Collection.

Moving Forward: Advanced Data Binding
After you understand the basics of Flex data binding (which we cover in the

section “Using Data Binding in MXML,” earlier in this chapter), you can move

on to more advanced uses of data binding, such as binding a single source

property to multiple destinations or multiple source properties to a single

destination. Also, Flex developers often use two-way data binding expres-

sions in which two expressions are used to keep two user interface controls

synchronized. The following sections show how to construct these more

advanced data binding expressions.

Binding to multiple destinations or sources
Often, certain data models drive the data that is displayed in several different

user interface controls. In those cases, you may need to have data binding

expressions in which a single source property is associated with multiple

destinations. The following example shows how you can bind a source prop-

erty to multiple destinations in a data binding expression that you create by

using both the curly-brace syntax and the <mx:Binding/> MXML tag:

291 Chapter 12: The Power of Data Binding

<mx:Model id=”empModel”>
 <employees>
 <name>Ellen O’Malley</name>
 </employees>
</mx:Model>

<mx:Label text=”{empModel.name}” />
<mx:Label text=”{empModel.name}” />

In this example, you have a data model that contains employee information.

You have multiple destination objects — the different Label controls — that

reference the employee data model in the data binding expression that drives

what they display.

Now, rather than using the curly-brace syntax, create the same data binding

expression by using the <mx:Binding/> MXML tag:

<mx:Model id=”empModel”>
 <employees>
 <name>Ellen O’Malley</name>
 </employees>
</mx:Model>

<mx:Binding source=”empModel.name” destination=”text1.
text” />

<mx:Binding source=”empModel.name” destination=”text2.
text” />

<mx:Label id=”text1” />
<mx:Label id=”text2” />

Both the preceding examples show how a single source property can drive

the association of data in multiple destinations.

So, now that you understand how to bind a single source property into

multiple destination properties, do the reverse. Setting up this type of data

binding relationship is a little trickier. You can set up one of the data binding

expressions by using the curly-brace syntax, but you must set up the subse-

quent binding expressions by using the <mx:Binding /> tag.

In the following example, two data binding expressions bind the values of two

different TextInput controls into a single Label control:

<mx:Binding source=”text1.text” destination=”myLabel.
text”/>

<mx:TextInput id=”text1” />
<mx:TextInput id=”text2” />

<mx:Label id=”myLabel” text=”{text2.text}”/>

292 Part IV: Working with Data in Flex

The two TextInput controls — text1 and text2 — act as the source objects,

and the Label control’s text property is the destination property for the

binding expression. If the user enters text into text1, the data binding

expression created by the <mx:Binding /> tag fires, and the Label control

updates. If the user enters text into text2, the data binding expression cre-

ated with the curly braces fires, and the Label control updates.

And voilà — by using this simple code, you create a data binding relationship

in which multiple sources are bound to a single destination control.

Constructing a bidirectional
data binding expression
In the data binding examples we’ve shown thus far in the chapter, the bind-

ing has all been one way. This means that you bind a source property to a

destination property, and changes to the source property affect the destina-

tion property, but changes to the destination property don’t affect the source

property. Sometimes, you may want to construct a two-way data binding

expression, in which the data binding goes both ways. The following example

shows how to construct this type of expression:

<mx:TextInput id=”text1” text=”{text2.text}” />
<mx:TextInput id=”text2” text=”{text1.text}” />

In this example, you have two TextInput controls: text1 and text2. If the

value of text1.text changes, that new value gets copied into the text

property of text2. Similarly, if the value of text2.text changes, that new

value gets copied into the text property of text1.

 Bidirectional data binding expressions can sometimes get tricky and cause

a circular loop, in which one event triggers a binding firing, which then emits

its own event and triggers another binding firing, and so on and so forth. This

infinite loop could freeze your Flex application and cause it to hang. But never

fear, the Flex framework takes care of this for you. The Flex data binding infra-

structure ensures that two-way data binding expressions don’t create infinite

loops by making sure the data binding expression is triggered only once when

the source property is modified.

Debugging Data Binding Expressions
You may need to debug your data binding expression if, for example, the des-

tination property didn’t properly update. In the following list, we offer a few

simple tips to ensure you set up your data binding expression correctly:

293 Chapter 12: The Power of Data Binding

 � Pay attention to warnings that the MXML compiler in Flex Builder’s

code editor provides. These warnings often appear in Flex Builder’s

Problems view. These warnings may indicate that the data binding

expression will initially display correctly, but subsequent changes to

the source property won’t cause the destination property to update.

You can resolve these warnings by adding the appropriate Bindable

metadata, which is discussed in the “Using Bindable Metadata” section.

 � If your data binding expression isn’t firing, make sure that the source

property is actually changing. If the source property doesn’t change,

the binding expression doesn’t get triggered.

 � Use the Flex Builder debugger to test whether the event that triggers

the binding fires. Because data binding is an event-based mechanism,

the event that triggers the source property to copy its data into the des-

tination property needs to actually fire. Use the Flex Builder debugger

to debug whether a call to dispatchEvent() actually gets invoked.

dispatchEvent() is the code that gets run when an event is fired, so

you can use the debugger to see whether the right event gets dispatched

to trigger the binding.

Using Bindable Metadata
A certain bit of “magic” must happen to signal to Flex that a source property

has changed and the new value needs to be copied to the destination. This

magic happens by way of a piece of Flex metadata called Bindable.

Metadata is extra information added to ActionScript or MXML code to signal

to the Flex compiler that some special processing needs to occur. Many

types of metadata exist in Flex, and the Flex documentation lists these. In

Flex, the Bindable metadata registers a property as being able to be a source

property in a data binding expression to the Flex compiler. The Bindable

metadata has the following form: [Bindable]. And you must add it in the

following cases:

 � Before a public, protected, or private property defined as a variable in

order to signal to Flex that that property supports binding

 � Before a public class definition

 � Before a public, protected, or private property defined with a get or set

method

294 Part IV: Working with Data in Flex

For example, the following code produces a warning by the MXML compiler:

<mx:Script>
 <![CDATA[
 private var temp:String = “bindable”;
]]>
</mx:Script>

<mx:Label text=”{temp}”/>

The temp variable does not have the Bindable metadata so the Flex compiler

does not know it can be used as a source property in the Label text’s data

binding expression. If you run this code in Flex Builder, the Problems pane

shows the following warning:

Data binding will not be able to detect assignments to
“temp”

To rectify this problem, simply add the Bindable metadata above the temp

variable declaration like so:

<mx:Script>
 <![CDATA[
 [Bindable]
 private var temp:String = “bindable”;
]]>
</mx:Script>

By doing this, the compilation warning and the warning in Flex Builder’s

Problems view will disappear.

Tying It Together: Building an
Interactive Form with
Data Binding

Listing 12-1 ties together the different ways that you can create data binding

expressions so that data is customized for display. This simple example takes

user-entered input and displays a friendly greeting. You create a data binding

expression by using the curly-brace syntax to bind in property values and to

invoke an ActionScript method for conditional display. The interactive form

that this code creates is shown in Figure 12-4.

295 Chapter 12: The Power of Data Binding

Listing 12-1: Multi-Part Data Binding Example
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Form>
 <mx:FormHeading label=”User Information” />
 <mx:FormItem label=”First Name”>

 <mx:TextInput id=”firstName” text=”Lucy”/> ➝ 7
 </mx:FormItem>
 <mx:FormItem label=”Last Name”>

 <mx:TextInput id=”lastName” text=”Pearson”/> ➝ 10
 </mx:FormItem>
 <mx:FormItem label=”Gender”>
 <mx:RadioButton id=”femaleBtn” label=”Female” selected=

”true”/> ➝ 13
 <mx:RadioButton id=”maleBtn” label=”Male” /> ➝ 14
 </mx:FormItem>
 </mx:Form>

 <mx:Label text=”Welcome to San Francisco {getGenderString(femaleBtn.

 selected)} {firstName.text} {lastName.text}” /> ➝ 18

 <mx:Script>
 <![CDATA[

 private function getGenderString(isFemale:Boolean):String ➝ 22
 {
 if (femaleBtn.selected)
 return “Ms.”;
 else
 return “Mr.”;
 }
]]>
 </mx:Script>
 </mx:Application>

Figure 12-4:
Use data

binding to
customize

data for
display.

296 Part IV: Working with Data in Flex

Here’s an explanation of the example application in Listing 12-1:

 ➝ 7 You create a TextInput control for the user to enter his or her first

name.

 ➝ 10 You create a second TextInput control for the user to enter his or her

last name.

 ➝ 13 You create RadioButton controls for the user to select his or her gender.

You query the RadioButtons to see which button is selected so you can

customize the text that is displayed.

 ➝ 18 This is the meat of the example. On Line 18, you have a Label control

that uses data binding to determine whether to show Ms. or Mr. in

the greeting, based on the return value of the getGenderString

function. Because you pass the value of femaleButton.selected

to getGenderString, the binding will update and call the method

whenever the RadioButton is changed. The next data binding expres-

sion binds to the text held in the firstName TextInput control, and

the last data binding expression binds in the text held in the lastName

TextInput control.

 ➝ 22 The ActionScript function that is used in the data binding expression on

Line 18 checks which gender was selected and returns the correct string

to display (Mr. or Ms.).

In this example, you can see how you can use data binding by binding

directly to property values as well as to the return value of an ActionScript

function. This example also makes heavy use of forms, which we cover in

Chapter 9.

Chapter 13

Working with Data Collections
In This Chapter
� Understanding how data collections empower your Flex application

� Creating Flex data collections

� Getting to know the common collection properties

� Sorting and filtering Flex data collections

� Accessing items in your Flex data collection

No matter how well you skin and style your Flex application, it needs

data. Data is the engine behind every Flex application, and without

data and data management techniques, a Flex application will most likely fail.

In this chapter, we cover functionality provided by Flex data collections,

which you can use to manage your data. You can find out how to create Flex

data collections, use them for uniform and easy access of data items, allow

data collections to manage the updating of data items, and add sorting and

filtering capabilities to modify the view of your data. All the Flex List controls

are built to accept Flex data collections as a data source, which makes it a

cinch to visualize data in Flex. If you’re writing real-world, data-heavy Flex

applications, you can find out some useful data management techniques in

this chapter.

Why Use Flex Data Collections?
Flex uses data collections to manage sets of data so that user interface controls

and your ActionScript code can access that data easily. Flex data collections

offer a consistent and straightforward way to access, add, delete, or modify

individual data items. All Flex List controls can accept Flex data collections

as a data source, and those List controls can display the data collections and

respond to changes to items in the data collection appropriately. If you use

Flex data collections as the data provider for any of your Flex List controls, the

List control always updates automatically if the underlying data changes.

298 Par t IV: Working with Data in Flex

Flex data collections wrap themselves around a data source. This data source

contains the items that the Flex data collection exposes to the application so

that the data collection can sort, filter, access, and modify those items. You

can use two types of Flex data collections in the Flex framework:

 � mx.collections.ArrayCollection: Use ActionScript Arrays as the

data source

 � mx.collections.XMLListCollection: Use ActionScript XML and

XMLList objects as the data source

Usually, depending on what kind of data back-end you set up and what kind

of objects that back-end returns, you can choose the type of Flex collec-

tion you would create pretty easily. If your data back-end request, such as a

WebService or HTTPService call, returns an Array or Array-based data struc-

ture, you would create an ArrayCollection to manage that data because an

ArrayCollection handles Array data well. Similarly, if your service call returns

XML, you would create an XMLListCollection to manage that data set.

The rest of this chapter explains how to create Flex data collections, access

individual data items, modify data items, and apply sorting and filtering capa-

bilities to those data collections.

Creating ArrayCollections
You use ArrayCollections to represent and manipulate an ActionScript Array,

which you can use as the data source for any Flex List control. You create an

ArrayCollection from an ActionScript Array object, and the ArrayCollection

wraps around the Array so that it can access, add to, delete, or modify the

individual data items in the Array. The ArrayCollection can also sort or filter

the individual data items in the Array. (Though the actual Array does not get

sorted or filtered, the ArrayCollection presents a separate view of the sorted

or filtered data items.)

You can create a Flex ArrayCollection in MXML by using the

<mx:ArrayCollection/> tag or in ActionScript. You must set the source

property on an ArrayCollection to an Array, and that Array is what the

ArrayCollection wraps itself around.

Using MXML to create an ArrayCollection
The code in Listings 13-1 and 13-2 shows how to create an ArrayCollection

that wraps an Array of data items representing different foods. Listing 13-1

299 Chapter 13: Working with Data Collections

shows how to create an ArrayCollection in MXML. In this example, the

source property is bound to the foods Array.

Listing 13-1: An ArrayCollection in MXML

<mx:Array id=”foods”>
 <mx:Object name=”Broccoli” type=”Vegetable” />
 <mx:Object name=”Apple” type=”Fruit” />
 <mx:Object name=”Orange” type=”Fruit” />
 <mx:Object name=”Beets” type=”Vegetable” />
 <mx:Object name=”Brussels Sprouts” type=”Vegetable” />
</mx:Array>

<mx:ArrayCollection id=”foodCollection” source=”{foods}”
/>

Listing 13-2 shows how to create the same ArrayCollection without setting

the source property explicitly. Instead, because the source property is the

default property of an ArrayCollection, you can just create the foods Array

as the first child of the ArrayCollection MXML tag, and the ArrayCollection

uses that Array as the source data object. Listings 13-1 and 13-2 create iden-

tical ArrayCollections.

Listing 13-2: An ArrayCollection in MXML without the Source
 Property Explicitly Set

<mx:ArrayCollection id=”foodCollection”>
 <mx:Array id=”foods”>
 <mx:Object name=”Broccoli” type=”Vegetable” />
 <mx:Object name=”Apple” type=”Fruit” />
 <mx:Object name=”Orange” type=”Fruit” />
 <mx:Object name=”Beets” type=”Vegetable” />
 <mx:Object name=”Brussels Sprouts”

type=”Vegetable” />
 </mx:Array>
</mx:ArrayCollection>

Using ActionScript to create
an ArrayCollection
In addition to creating ArrayCollections in MXML, you can create Array

Collections in ActionScript. Listing 13-3 shows how to create an ArrayCollection

in ActionScript by using the ArrayCollection constructor and passing in an

ActionScript Array as the source data object for the collection. In this example,

you first import the mx.collections.ArrayCollection class because it’s not

linked into the Flex application by default.

300 Par t IV: Working with Data in Flex

Listing 13-3: An ArrayCollection in ActionScript

import mx.collections.ArrayCollection;

private var foodCollection:ArrayCollection;
private var foods:Array =
 [{name:”Broccoli”, type:”Vegetable”},
 {name:”Apple”, type:”Fruit”},

 {name:”Orange”, type:”Fruit”},
 {name:”Beets”, type:”Vegetable”},
 {name:”Brussels Sprouts”, type:”Vegetable”}];

private function createFoodCollection():void
{
 foodCollection = new ArrayCollection(foods);
}

You can create ArrayCollections in both MXML and ActionScript that you can

use to display and interact with Array data.

Creating XMLListCollections
You use XMLListCollections to represent and manipulate an ActionScript

XML or XMLList object, which you can use as the data provider for any

Flex List control. (For more on XML and XMLList objects, refer to Chapter

8.) You can create an XMLListCollection from an ActionScript XMLList

object, and the XMLListCollection wraps around the XMLList so that it can

access, add to, delete, and modify data items from the XMLList. Additionally,

an XMLListCollection can sort or filter the individual data items in the

XMLList. (Although the XMLList itself is not sorted or filtered, instead the

XMLListCollection provides a separate view of the sorted or filtered data.)

You can create a Flex XMLListCollection in MXML by using the

<mx:XMLListCollection/> tag or in ActionScript. The key property to set

is the source property, which identifies the XMLList that the newly created

XMLListCollection should wrap.

Using MXML to create an
XMLListCollection
The code in Listings 13-4 and 13-5 shows how to create an XMLListCollection

that wraps an XMLList data object representing different foods. Listing 13-4

shows how to create an XMLListCollection in MXML. In this example, the

source property is bound to the foods XMLList object.

301 Chapter 13: Working with Data Collections

Listing 13-4: An XML ListCollection in MXML

<mx:XMLList id=”foods” xmlns=””>
 <food name=”Broccoli” type=”Vegetable” />
 <food name=”Apple” type=”Fruit” />
 <food name=”Orange” type=”Fruit” />
 <food name=”Beets” type=”Vegetable” />
 <food name=”Brussels Sprouts” type=”Vegetable” />
</mx:XMLList>

<mx:XMLListCollection id=”foodCollection” source=”{foods}”
/>

Listing 13-5 shows how to create the XMLListCollection in Listing 13-4 with-

out setting the source property explicitly. Instead, because the source

property is the default property of an XMLListCollection, you can just create

the foods XMLList object as the first child of the XMLListCollection MXML

tag, and the XMLListCollection uses that XMLList object as the source data

object. Listings 13-4 and 13-5 create identical XMLListCollections.

Listing 13-5: An XMLListCollection in MXML without the Source
 Property Explicitly Set

<mx:XMLListCollection id=”foodCollection”>
 <mx:XMLList id=”foods” xmlns=””>
 <food name=”Broccoli” type=”Vegetable” />
 <food name=”Apple” type=”Fruit” />
 <food name=”Orange” type=”Fruit” />
 <food name=”Beets” type=”Vegetable” />
 <food name=”Brussels Sprouts” type=”Vegetable” />
 </mx:XMLList>
</mx:XMLListCollection>

Using ActionScript to create
an XMLListCollection
In addition to creating XMLListCollections in MXML, you can create them

in ActionScript. Listing 13-6 shows how to create an XMLListCollection in

ActionScript by using the XMLListCollection constructor and passing in an

ActionScript XMLList as the source data object for the collection. In this

example, you import the mx.collections.XMLListCollection class because that

class isn’t linked into the Flex application by default.

Additionally, when you create the foodCollection object with the new opera-

tor, you pass in an XMLList object that’s represented by foods.children().

An XMLListCollection takes an XMLList object as its source data object. When

302 Par t IV: Working with Data in Flex

you create an XMLListCollection from an XML ActionScript object, you must

access the child elements of that XML object (which creates a new XMLList

object) and pass that XMLList object as the source data object for the

XMLListCollection.

Listing 13-6: An XMLListCollection in ActionScript

import mx.collections.XMLListCollection;

private var foodCollection:XMLListCollection;
private var foods:XML =
 <foods>
 <food name=”Broccoli” type=”Vegetable”/>
 <food name=”Apple” type=”Fruit”/>
 <food name=”Orange” type=”Fruit”/>
 <food name=”Beets” type=”Vegetable”/>
 <food name=”Brussels Sprouts” type=”Vegetable”/>
 </foods>;

private function createFoodCollection():void
{
 foodCollection = new XMLListCollection(foods.

children());
}

You can create XMLListCollections in both MXML and ActionScript that you

can use to display and modify XML data.

Common Collection Properties
You Should Know

After you know how to create different Flex data collections, you need to get

familiar with some of the common properties that can help you out when

you need more information about your collection. Every Flex collection has

a length property, which you can query for the number of data items con-

tained in the collection. In the foodCollection examples in the preceding

sections of this chapter, all the collections have a length value of 5 because

each collection contains five food items.

Similarly, every Flex collection has a sort property, which lets you apply a

native Flex Sort object to sort your collection numerically or alphabetically,

and a filterFunction property, which lets you apply a function that filters

your collection at runtime. The following section discusses both the sorting

and filtering capabilities built into Flex data collections.

303 Chapter 13: Working with Data Collections

Sorting and Filtering Collections
Flex data collections allow you to sort and filter data items so that they can

display a reordered subset of the main collection. When you sort or filter a

Flex collection, you don’t change the underlying data. Instead, the collection

creates a view of that data which matches the sort or filter criterion. The fol-

lowing sections discuss how to sort and filter Flex collections in MXML and

ActionScript.

Sorting Flex collections
A main Sort object, which defines what fields in the data items to sort and by

what criterion, drives every Flex collection’s sorting functionality. You need to

understand how to create this Sort object, specify the fields, and customize

the properties so that your data collection’s sorting works correctly.

You set the Sort object needed to sort a data collection as the value of the

collection’s sort property. Every Flex collection has a sort property that

takes a Sort object. After you specify the Sort object, you must set the

Sort object’s fields property to any number of SortField objects. A

SortField object specifies which field in the individual data items the sort-

ing functionality must be applied to. The name property on a SortField

object governs this behavior. You must set the name property to the name of

the field on each data item you want sorted.

In Listing 13-7, you create a Sort object with SortField objects, in which

you specify the name field as the field in each data item that’s actually sorted.

You refer to the name field as @ name because name is an XML attribute (not

a child node). The example binds the foodCollection data collection to a

Flex List control so that you can see how the sorted collection looks. Because

of the Sort object, the foodCollection sorts all the vegetable names alpha-

betically. Figure 13-1 shows how the sorted collection looks when it appears

in a Flex List control.

Listing 13-7: Sorting a Collection by Name

<mx:XMLListCollection id=”foodCollection”>
 <mx:XMLList id=”foods” xmlns=””>
 <food name=”Broccoli” type=”Vegetable” />
 <food name=”Apple” type=”Fruit” />
 <food name=”Orange” type=”Fruit” />
 <food name=”Beets” type=”Vegetable” />
 <food name=”Brussels Sprouts” type=”Vegetable” />
 </mx:XMLList>

(continued)

304 Par t IV: Working with Data in Flex

Listing 13-7 (continued)
 <mx:sort>
 <mx:Sort>
 <mx:fields>
 <mx:SortField name=”@name” />
 </mx:fields>
 </mx:Sort>
 </mx:sort>
</mx:XMLListCollection>

<mx:List dataProvider=”{foodCollection}” labelField=
”@name” />

Figure 13-1:
The food

collection
is sorted

alphabeti-
cally.

The SortField object has properties that you can set to customize the sort-

ing functionality further. Here are a few examples:

 � caseInsensitive: You can set the caseInsensitive property to

true or false, depending on whether you want the Sort object to take

case into account when it sorts data items. By default, the SortField.
caseInsensitive property is set to false, meaning the Sort object

doesn’t take the case of the sorted data item into consideration.

 � numeric: You can set the numeric property to control whether the

field being sorted contains numeric values or string representations

of numeric values. By default, the numeric property is set to false,

meaning the Sort object sorts the field as if it’s a string representation of

numeric values. In this case, the Sort object evaluates the number 11 as

a string as less than the number 9 as a string because 11 is a lower string

value then 9. If the numeric property is set to true, the Sort object

evaluates the field being sorted as a number. And, if the numeric prop-

erty is set to a value of null, the Sort object evaluates the sort based on

whether the first item is a number or string.

 � descending: You can set the descending property to true or false

to control whether the Sort object sorts the field in descending or

ascending order. By default, descending is set to false, meaning the

sorting occurs in an ascending order.

305 Chapter 13: Working with Data Collections

Filtering Flex collections
To filter Flex collections, you apply a function that determines whether each

individual data item in the collection should be allowed into the filtered view.

If the item is allowed, it appears in the resulting view after the data collection

applies the filter function.

To apply a filter function to a Flex collection, simply set the property

filterFunction to the name of an ActionScript function that you write

to manage the filtering functionality. The ActionScript filterFunction

method you write must follow a particular signature:

private function filter(item:Object):Boolean

So, the function you write, whatever you call it, must take an Object as its

parameter and return a Boolean value. It returns true if the specified item

should remain in the resulting collection or false if it should be filtered out

of the resulting collection. This is the function you set as the value of the

data collection’s filterFunction property.

Listing 13-8 shows a filter applied to an ArrayCollection that represents a list

of fruits and vegetables. The filterFunction method — veggieFilter —

filters out all data items that have a Fruit type and allows the Vegetable-type

foods to stay. Figure 13-2 shows what a List control displays when bound to

the filtered data collection.

Listing 13-8: Applying a filterFunction Method That Filters Data
 in an ArrayCollection

<mx:Script>
 <![CDATA[

 private function veggieFilter(item:Object):Boolean
 {
 return String(item.type) == “Vegetable”;
 }

]]>
</mx:Script>

<mx:ArrayCollection id=”foodCollection”
filterFunction=”veggieFilter”>

 <mx:Array id=”foods”>
 <mx:Object name=”Broccoli” type=”Vegetable” />
 <mx:Object name=”Apple” type=”Fruit” />
 <mx:Object name=”Orange” type=”Fruit” />
 <mx:Object name=”Beets” type=”Vegetable” />

(continued)

306 Par t IV: Working with Data in Flex

Listing 13-8 (continued)

 <mx:Object name=”Brussels Sprouts” type=”Vegetable”
/>

 </mx:Array>
</mx:ArrayCollection>

<mx:List dataProvider=”{foodCollection}” labelField=”name”
/>

Figure 13-2:
The food

collection
is filtered to

show only
vegetables.

Accessing Data Items
You will often need to access data items in your collections. Both of the

collections classes, ArrayCollection and XMLListCollection, have a set of

methods that you can use to get, add, and remove a data item. When you use

these methods to modify the collection, the underlying source data object

also gets affected. The following list covers some of the common ActionScript

methods you will use to modify data in your data collections.

 When you modify your data collection with the following methods, the

underlying source object gets modified as well. So, if any other user interface

controls are dependent on that source object for their data, be careful when

adding, removing, and updating items in any data collection wrapping that

source object.

 � addItem(item:Object):void: Takes as its only parameter the object

you want added to the data collection. This method adds the object to

the end of the data collection, thus increasing the length of the collec-

tion by 1.

 � addItemAt(item:Object, index:int):void: Takes as its param-

eters the object you want added to the data collection as well as the

zero-based index of where that item should be added. For example,

to add a new item into the third position of a collection with five data

items, the index value would be 2.

 � getItemAt(index:int):Object: Returns the object found at the

zero-based index parameter passed in. In a collection with five data

307 Chapter 13: Working with Data Collections

items, passing an index value of 2 to a getItemAt call will return the

data item in the third position.

 � getItemIndex(item:Object):int: Returns the zero-based index of

the item that is passed in as a parameter to the method.

 � removeAll():void: Removes all the data items from a data collection. It

essentially empties the data collection, and the collection length is set to 0.

 � removeItemAt(index:int):Object: Removes an item from the data

collection at the specified index. All data items after the removed item

have their index decreased by 1 to account for the removal.

 � setItemAt(item:Object, index:int):Object: Places the item

passed in as the first parameter at the index specified by the second

parameter. If a data item already lives at that index, the new item

replaces it.

You can use the code in Listing 13-9 to add and remove an item in the data

collection. If you run this code, you can see how as the data collection is

modified by these methods, the List control that is displaying the contents of

the data collection updates automatically.

Listing 13-9: Modifying a Data Collection with Collection Methods

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:ArrayCollection id=”foodCollection”>
 <mx:Array id=”foods”>
 <mx:Object name=”Broccoli” type=”Vegetable” />
 <mx:Object name=”Apple” type=”Fruit” />
 <mx:Object name=”Orange” type=”Fruit” />
 <mx:Object name=”Beets” type=”Vegetable” />
 <mx:Object name=”Brussels Sprouts”

type=”Vegetable” />
 </mx:Array>
</mx:ArrayCollection>

<mx:Object id=”banana” name=”Banana” type=”Fruit” />

<mx:Button label=”Add a Banana” click=”foodCollection.
addItemAt(banana, 2);” />

<mx:Button label=”Remove a Banana” click=”foodCollection.
removeItemAt(2);” />

<mx:List dataProvider=”{foodCollection}” labelField=”name”
/>

</mx:Application>

308 Par t IV: Working with Data in Flex

Chapter 14

Working with Remote Data
In This Chapter
� Loading XML data into your application

� Using external APIs to load data

� Using Web services

� Understanding AMF remoting

Choosing Flex for your front-end user interface doesn’t lock you into any

particular back-end application server technology. Flex applications can

talk to any back-end technology that can produce XML, JSON, plain text, or

pretty much anything else a Web server can output, which means that you

can connect your Flex applications to almost any server technology you run

across, such as PHP, .NET, ColdFusion, Java, or Ruby on Rails.

Because you can choose any server technology to power your Flex appli-

cation, you can also use any database you want, such as MySQL, Oracle,

Microsoft SQL Server, or PostgreSQL. Your Flex application doesn’t commu-

nicate directly with these database products, but instead always talks to the

application server.

This chapter explains how to consume data from a Web server, regardless of

which back-end technology you might be using. A discussion of specific back-

end server languages is outside the scope of this book, so we don’t provide

server-side code examples.

Connecting with HTTP
The simplest, and often most appropriate, method for loading data into your

application is to use HTTPService class in the Flex framework to load XML

data using HTTP, which is the standard transfer protocol for Web pages. You

use the HTTPService class to load text data from a Web server. This data

can be a simple text string, a JSON-encoded string, XML, or any other type of

formatted text. Because XML is probably the most common method for trans-

mitting data, the examples in this section focus on loading XML data.

310 Par t IV: Working with Data in Flex

Loading your own XML file
Say that you’ve been tracking how much money various people owe you so

that you can remember to bug the friends who owe you money (and so that

you can avoid those whom you owe). You use an XML file to keep tabs on all

the debts, and the XML file looks similar to Listing 14-1.

Listing 14-1: An XML File
<?xml version=”1.0” encoding=”utf-8”?>
<debts>
 <person name=”Eliah” amount=”1200” />
 <person name=”Russ” amount=”500” />
 <person name=”Jocelyn” amount=”-300” />
 <person name=”David” amount=”100” />
 <person name=”Jonas” amount=”50” />
 <person name=”IRS” amount=”-50000” />
</debts>

The data is stored in a file named debts.xml. You load the XML file by creat-

ing the HTTPService tag in your application and setting the url property, as

shown in Listing 14-2.

Listing 14-2: Loading the XML File
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”service.send()”>

 <mx:HTTPService id=”service” url=”debts.xml”/>

</mx:Application>

In Listing 14-2, you create HTTPService and point it to the debts.xml file. It

uses a relative URL, so the debts.xml file needs to be deployed in the same

directory as the SWF file when you put it on a server. You can use either a

relative or absolute URL when you specify the url property.

The sample application in Listing 14-2 creates a new HTTPService by using

MXML and calls the send() method on that service when the application has

completed loading by using the creationComplete event of the application.

 HTTPService can return results in a variety of formats, which changes how

you access the data in the returned result. You can set the resultFormat

property of the HTTPService to any of the following values: object, array,

xml, flashvars, text, or e4x. Changing resultFormat changes the format

and structure of the data that’s returned. The default value is object, which

311 Chapter 14: Working with Remote Data

converts XML to a hierarchical list of ActionScript objects. If you change the

resultFormat property, the underlying data is still the same, but the way

you access that data in your application is slightly different. In this chapter,

we stick with the default object format.

Listing 14-2 creates a new HTTPService object and calls the send() method

to load the XML file, but it doesn’t do anything with that data after it loads.

Listing 14-3 adds a DataGrid to that simple example to display the data, show-

ing the name of the person who owes you money in one column and the

amount of the debt in another (see Figure 14-1).

Listing 14-3: Adding a DataGrid to Display the Data
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”service.send()”>

 <mx:HTTPService id=”service” url=”debts.xml” />

 <mx:DataGrid dataProvider=”{service.lastResult.debts.person}” >
 <mx:columns>
 <mx:DataGridColumn dataField=”name” headerText=”Name” />
 <mx:DataGridColumn headerText=”Debt”>
 <mx:itemRenderer>
 <mx:Component>
 <mx:Canvas backgroundColor=”0xff0000”
 backgroundAlpha=”{data.amount > 0 ? 0 : .5}”>

 <mx:Label text=”{formatter.format(data.amount)}” />

 <mx:CurrencyFormatter id=”formatter” />
 </mx:Canvas>
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>

</mx:Application>

Figure 14-1:
The results
of an HTTP

Service
call in a

DataGrid.

312 Par t IV: Working with Data in Flex

Listing 14-3 shows how you can use data binding to bind to the last returned

result from the HTTPService call. You can access the lastResult property,

which always contains the last set of data that was loaded by that particular

HTTPService. You set the dataProvider of the DataGrid to {service.last
Result.debts.person}, which is the array of person entries in the XML file.

 Listing 14-3 also uses a custom item renderer for the second column in the

DataGrid to draw a red background on the cells that have negative values

(indicating that you owe somebody money). For more information on using

item renderers with the DataGrid and other list controls, see Chapter 8.

 You can access the data in two ways after you load it with an HTTPService:

 � Use the lastResult property, as in Listing 14-3.

 � Add an event handler using the result event.

If you add a handler to the result event, your event handler receives a

ResultEvent event, which has a result property that contains the loaded

data. Listing 14-4 adds an event handler to the result event to call an

ActionScript function after the data is loaded.

Listing 14-4: Adding an Event Handler to the result Event
<mx:Script>
<![CDATA[
 import mx.rpc.events.ResultEvent;

 private function handleResult(event:ResultEvent):void {
 var result:Object = event.result;

 //do something with the result data
 }
]]>
</mx:Script>

<mx:HTTPService result=”handleResult(event)” url=”debts.
xml” />

Asking for what you want
When you send a request for remote data, you often need to specify certain

parameters to tell the server what data it should return. This process might

involve sending the ID of a specific user to retrieve that user’s records or a

zip code to retrieve weather data for a specific city. To send custom param-

eters with HTTPService, you set the parameters property of the request

before calling the send() method. The code is shown in Listing 14-5.

313 Chapter 14: Working with Remote Data

Listing 14-5: Sending Custom Parameters
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”sendRequest()”>
 <mx:Script>
 <![CDATA[
 private function sendRequest():void {
 var parameters:Object = new Object();
 parameters.parameter1 = “value1”;
 parameters.parameter2 = “value2”;
 parameters.parameter3 = “value3”;

 service.send(parameters);
 }
]]>
 </mx:Script>

 <mx:HTTPService id=”service” url=”myServiceURL.php” />

</mx:Application>

Loading someone else’s data
Often, you load your own data from a database or files on your Web server,

but you’re not limited to loading data from only your server. Numerous Web

services have APIs (application programming interfaces) that you can use to

load data from different online services. You can create mash-ups in Flex by

pulling in data from any number of different sources.

Listing 14-6 creates a simple Flex application that performs a keyword search

of YouTube videos and displays thumbnails for the results in a tiled list. The

result is shown in Figure 14-2.

Listing 14-6: Using a Web Service (YouTube) to Return a List of Data
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import flash.net.navigateToURL;

 private function searchYouTube():void { ➝ 7
 var searchTerm:String = searchInput.text;

 var parameters:Object = new Object(); ➝ 10
 parameters.vq = searchTerm;
 parameters.orderby = “rating”;

(continued)

314 Par t IV: Working with Data in Flex

Listing 14-6 (continued)
 youtubeService.send(parameters);
 }
]]>
 </mx:Script>

 <mx:HTTPService id=”youtubeService” resultFormat=”object” ➝ 19
 url=”http://gdata.youtube.com/feeds/api/videos” />

 <mx:VBox>
 <mx:HBox width=”100%”>
 <mx:TextInput id=”searchInput” width=”100%” />
 <mx:Button label=”Search” click=”searchYouTube()” />
 </mx:HBox>

 <mx:TileList id=”videoList” width=”100%”

 dataProvider=”{youtubeService.lastResult.feed.entry}”> ➝ 29

 <mx:itemRenderer>
 <mx:Component>
 <mx:Image source=”{data.group.thumbnail[0].url}”
 toolTip=”{data.title.value}”
 click=”navigateToURL(new URLRequest(data.group.player.url))”
 />
 </mx:Component>
 </mx:itemRenderer>

 </mx:TileList>
 </mx:VBox>

</mx:Application>

Figure 14-2:
Loading

thumbnails
from

YouTube by
using the
XML API.

315 Chapter 14: Working with Remote Data

Here’s a breakdown of the code in Listing 14-6:

 ➝ 19 You create an HTTPService object that points to the YouTube

API URL, which is http://gdata.youtube.com/feeds/api/
videos. This is the base URL, but you need to pass some search

parameters with the request.

 ➝ 7 When the user clicks the Search button, the searchYouTube

function runs, which grabs the text that the user entered in the

searchInput text box.

 ➝ 10 You create an object, named parameters, to hold all search

parameters that you send to the YouTube API. You add two

parameters, vq and orderby, which are defined by the YouTube

API and are required. The vq parameter holds the search term,

and the orderby parameter specifies that you want the results

ordered by the rating of the videos.

 ➝ 29 You bind the last returned result from the HTTPService to the

dataProvider of the TileList component, which uses the Image

component to render the first thumbnail (the API returns various

sizes) of each result.

Listing 14-6 is a simple example that uses a single service to return a list of

data. But imagine integrating more than just a single data source into your

application. You could return a list of videos based on the tags found in the

user’s Flickr photos. The data mash-up possibilities are limited only by how

many public APIs you can find and figure out how to use.

Understanding the Flash
security restrictions

Flash Player imposes some security restrictions that limit what data sources

your Flex applications can access online. All Flex applications live in the Flash
security sandbox, which controls which Web site domains your application can

access to load data. If you’re loading an XML file from the same domain in

which the SWF file resides, you don’t have to worry about security restrictions

because the data is in the same “sandbox.” But if you try to load data from a

different server, the other server needs to have a cross-domain policy file in

place, which allows your application to access the data.

For example, if your SWF file is located at http://domain1.com/My
Application.swf and you’re trying to load an XML file located at http://
domain2.com/data.xml, you will encounter a security error unless

http://domain2.com/crossdomain.xml has a cross-domain policy file

in place. The cross-domain policy file must be called crossdomain.xml and

316 Par t IV: Working with Data in Flex

must be located at the Web server base directory. This file specifies which

domains can access data that the domain containing the cross-domain policy

file hosts. The following snippet is an example of a completely open cross-

domain policy file that allows access from any external domain:

<cross-domain-policy>
 <allow-access-from domain=”*”/>
</cross-domain-policy>

Some Web services have lenient cross-domain policy files, and some don’t.

For example, the Flickr API has an open cross-domain policy file (just like

the one in the preceding example) located at http://api.flickr.com/
crossdomain.xml, which means you can load data from Flickr into your

Flex application, regardless of which server hosts your SWF file. If you’re

trying to load data across different domains, check to see whether the

domain that you are trying to access has the appropriate cross-domain

policy file.

Connecting with Web Services
In addition to supporting simple XML APIs, Flex supports Web services, which

are defined by a Web Services Definition Language document (WSDL). This

document is an XML definition that tells you which API methods you can call

and which parameters you should send. Communicating with Web services

involves sending Simple Object Access Protocol, or SOAP, messages (specially

defined XML documents) back and forth. Luckily, Flex takes care of the hard

work for you, so you don’t have to write complicated SOAP requests by hand.

To use a WSDL service to load data into your application, you can use the

<mx:WebService /> tag and specify the wsdl property to point to the

WSDL URL. You can then manually call each method on the WSDL and handle

the result. However, an easier way to work with Web services is to use the

Flex Builder built-in wizard. The WSDL Import Wizard is the feature we focus

on in this section. When you use the WSDL Import Wizard, Flex Builder

examines the WSDL and generates a series of ActionScript classes to let

you invoke each of the methods on the WSDL, without your having to worry

about any of the behind-the-scenes work.

To start using the WSDL Import Wizard, create a new Flex project in Flex

Builder and then follow these steps:

 1. Choose Data➪Import Web Service (WSDL), as shown in Figure 14-3.

 This step loads the Import Web Service Wizard, which walks you

through the next three steps to automatically generate ActionScript

code for working with the WSDL.

317 Chapter 14: Working with Remote Data

Figure 14-3
Launching
the WSDL

Import
Wizard.

 2. Select your current Flex project and then click Next.

 You select a source directory, which contains the generated

ActionScript classes that the Import Web Service Wizard will create.

 3. Enter the URL of the WSDL and then click Next.

 Figure 14-4 shows how to specify the WSDL URL that the Import Wizard

inspects. For this example, enter the URL http://www.webservicex.net/

WeatherForecast.asmx?WSDL, which is a Web service that lets you

retrieve weather forecast data for any zip code in the United States.

Figure 14-4:
Pointing

the WSDL
Import

Wizard to a
WSDL URL.

 4. Select which operations to use.

 The Import Web Service Wizard examines the WSDL and presents you

with a list of all operations that are available for the sample WSDL.

Figure 14-5 shows you this list. You can select or deselect any operation.

ActionScript code is generated for all selected operations.

 5. Click Finish to complete the wizard and generate the code.

After you click Finish, the WSDL Import Wizard generates a bunch of ActionScript

classes in your project. These classes are meant to wrap the WSDL and create

classes that are easier to use than the generic WebService class in the Flex frame-

work. Figure 14-6 lists the ten classes generated for this weather forecast Web

service. The WeatherForecast class is the main class you use for loading data.

318 Par t IV: Working with Data in Flex

Figure 14-5:
Selecting

WSDL
operations.

Figure 14-6:
Auto-

matically
generated

ActionScript
classes.

After these classes are generated, you can use them to make your Web service

calls. The WeatherForecast class, shown in Figure 14-6, is used in Listing 14-7 to

make the getWeatherByZipCode call. Note that the code for the getWeather
ByZipCode function was generated by the WSDL Import Wizard; the only code

other than the automatically generated code is contained completely in

Listing 14-7.

319 Chapter 14: Working with Remote Data

Listing 14-7 creates an application that queries the weather forecast Web ser-

vice provided by WebserviceX.NET. This code uses the classes generated by

using the WSDL Import Wizard and displays the forecast data for any given

zip code in a DataGrid, as shown in Figure 14-7.

Listing 14-7: Loading Weather Forecast Data Using a Web Service
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 xmlns:webservicex=”net.webservicex.*”>

 <mx:Script>
 <![CDATA[
 private function getForecast():void {
 service.getWeatherByZipCode(zipCodeInput.text);
 }
]]>
 </mx:Script>

 <webservicex:WeatherForecast id=”service” />

 <mx:VBox>
 <mx:HBox width=”100%”>
 <mx:TextInput id=”zipCodeInput” width=”100%” />
 <mx:Button id=”submitButton” label=”Search” click=”getForecast()” />
 </mx:HBox>

 <mx:DataGrid dataProvider=”{service.getWeatherByZipCode_lastResult.
Details}”

 rowHeight=”58” width=”100%” height=”300”>
 <mx:columns>
 <mx:DataGridColumn dataField=”Day” >
 <mx:itemRenderer>
 <mx:Component>
 <mx:Text />
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 <mx:DataGridColumn dataField=”MinTemperatureF” headerText=”Low”

width=”40” />
 <mx:DataGridColumn dataField=”MaxTemperatureF” headerText=”High”

width=”40” />
 <mx:DataGridColumn dataField=”WeatherImage” headerText=”” width=”50”>
 <mx:itemRenderer>
 <mx:Component>
 <mx:Image />
 </mx:Component>
 </mx:itemRenderer>
 </mx:DataGridColumn>
 </mx:columns>
 </mx:DataGrid>
 </mx:VBox>

</mx:Application>

320 Par t IV: Working with Data in Flex

Figure 14-7:
Loading
weather
forecast
data by

using a Web
service.

Losing Weight with AMF Remoting
XML is a helpful way to exchange data because it provides a standard,

human-readable way to format data. The major downside, however, is that

the XML markup takes up space, and text can often be uncompressed when

it’s sent over the wire. You pay a price for the attractive formatting of XML by

sacrificing bandwidth, which means slower transfer speeds.

The alternative is to not send data as text, but instead to efficiently compress

it as binary data and then send it from the server to your application. Adobe

created the binary transfer specification AMF (Action Message Format), which

can be used to send compressed binary data to Flex applications. Data that’s

compressed using AMF is automatically uncompressed after it reaches your

Flex application and is converted automatically into ActionScript classes. The

result is a much smaller bandwidth footprint to transfer the same amount of

data. You also have the added benefit of automatically receiving strongly typed

ActionScript classes, as opposed to generic XML.

 Adobe has created the open-source AMF server product Blaze DataSet, which

can be used to send compressed AMF data from your server application to

your client-side Flex application. A number of alternative implementations of

the AMF protocol also exist in a number of server languages. A description of

how to set up AMF on a server is a bit outside of the scope of this book, but you

can read more about Blaze DataSet at http://opensource.adobe.com.

Part V
Exploring

Advanced Flex
Topics

In this part . . .

I|t’s time to roll up your sleeves and dig a little deeper

into what Flex has to offer. This part steps things up a

notch and explores the inner workings of some of the

more advanced Flex topics. This part is the only one that

requires an understanding of the Flex framework before

you begin, so wait to read this part until after you read

Parts I through IV. We cover quite a few topics in Part V,

including working with the Flex manager classes, using

states and effects, and applying custom skinning.

Chapter 15

Working with Managers
We Actually Love

In This Chapter
� Taking a look at the DragManager

� Understanding how the FocusManager manages the focus of components

� Using the PopUpManager to pop up components on top of your application

� Displaying ToolTips with the ToolTipManager

� Finding out more about the SystemManager — the engine behind your Flex application

Flex has a number of managers that oversee some useful built-in function-

ality in the Flex framework. These managers allow you to

 � Drag and drop controls

 � Manage focus on controls

 � Create views that appear as modal or non-modal dialog boxes

 � Create ToolTips that appear and disappear based on user action

 � Create and prioritize cursors

 � Update your application URL while the user navigates the application

 � Add browser Back and Forward button support

Typically, the Flex managers — the DragManager, FocusManager,

PopUpManager, ToolTipManager, and SystemManager — automatically take

care of the management of these mechanisms, so you don’t need to do any-

thing special or write any code. When you tab through a set of components in

an application and the blue focus highlight appears around each component

when it gains focus, the FocusManager governs that behavior; you don’t have

to write any special code. Similarly, the DragManager governs dragging and

dropping items in any of the List controls, such as List, DataGrid, and Tree.

You only have to set the drag-and-drop properties on the List controls to true

to enable that functionality.

324 Par t V: Exploring Advanced Flex Topics

Sometimes, however, you may want more control over these mechanisms or

to use them in parts of your application in which the behavior isn’t built in

automatically. This chapter explains how to invoke the managers by using

code to get the behavior that you want, such as programmatically setting

focus on a component, reordering focus on a group of components, or pop-

ping up a custom component.

Dragging and Dropping
with the DragManager

The Flex DragManager manages all the drag-and-drop interactions built into

components or drag-and-drop interactions that you manually add to your

Flex application. The DragManager governs the drag operation, such as

making a Flex component dragable and dropable, creating the drag proxy

(a ghost image) when you drag a component, and dispatching all the drag-

related events.

You can drag and drop all Flex components by writing a little bit of code.

There is some built-in drag and drop behaviors in certain Flex controls. The

most robust drag-and-drop behavior is built into the Flex List controls. The

List controls enable users to drag and drop data items within a single control

or between multiple controls. The DragManager governs all this drag-and-

drop behavior.

Figures 15-1, 15-2, and 15-3 show a drag-and-drop action. Figure 15-1 shows

a drag proxy, a ghosted replica of the item the user is dragging. This drag

proxy is created automatically by the DragManager when dragging and drop-

ping in any list-based control. In Figure 15-2, the user is dragging a data item

from one List control into another List control. The green plus sign indicates

that the List control can receive a dragged data item. If the List control can’t

receive a dragged data item, a red X sign appears, as shown in Figure 15-3.

Figure 15-1:
This drag
proxy is a

ghosted
replica of

the item
being

dragged.

325 Chapter 15: Working with Managers We Actually Love

Figure 15-2:
The List

control can
receive the

dragged
data item.

Figure 15-3:
The List

control can’t
receive the

dragged
item.

As users drag and drop items within a Flex application, drag events are dis-

patched to signal what is going on. The following list describes these drag

events and when they are dispatched:

 � dragStart: This event is dispatched by the component where the drag

operation is originating. This event signals the beginning of the drag-

and-drop operation.

 � dragEnter: This event is dispatched by any component that has the

mouse hover over it during a drag operation (which means dragStart

has already been dispatched).

 � dragDrop: This event is dispatched by the component that has accepted

the dragged item after the mouse has been released on top of it.

 � dragComplete: This event is dispatched by the component that dis-

patched the dragStart event when the item has been dropped. This

signals the end of the drag-and-drop operation.

The FocusManager: Managing
Which Controls Have Focus

The FocusManager, for the most part, stays behind the scenes in a Flex appli-

cation. Most Flex user interface controls — such as button-based controls

and list-based controls — are focus-aware. A focus-aware control is notified

by the FocusManager when users click it or navigate to it by pressing the

326 Par t V: Exploring Advanced Flex Topics

Tab key on their keyboard. For example, when the user presses the Tab key

to move between different TextInput components, the component that cur-

rently has focus displays a highlighted border to notify the user. By default,

this border highlight is blue.

Only one user interface control can have focus at a time. Focus-aware Flex

user interface controls respond visually when they gain focus by drawing a

focus highlight around their perimeters. Figure 15-4 shows two Flex buttons

in which one has focus and one doesn’t. By default, Flex draws a blue high-

light around the Button control on the left that has focus.

Figure 15-4:
One control

has focus;
the other
doesn’t.

The FocusManager’s main responsibility is to govern a tab loop. When you

initially press Tab in a Flex application, focus shifts to a component, and

then if you keep pressing Tab, focus eventually comes back to that first

component. The sequence in which components gain focus before the first

component regains focus is called a tab loop. In Figure 15-5, each control is

labeled with a number that indicates the focus order for the tab loop.

Figure 15-5:
This set of

components
constitutes
a tab loop.

1 2

3 4

You can control the order of a tab loop by setting the tabIndex property on

the set of components constituting that tab loop. The tabIndex property must

be set to a number, where a lower number means that component gets focus

prior to a component with a higher tabIndex value. You can reverse the tab

327 Chapter 15: Working with Managers We Actually Love

loop displayed in Figure 15-5 by adding the following code, which sets the tab
Index on each component in reverse order:

<mx:Tile width=”342” height=”83” horizontalGap=”20”
verticalGap=”20” horizontalAlign=”center”>

 <mx:Button label=”Submit” tabIndex=”4”/>
 <mx:CheckBox label=”Email Receipt” selected=”true”

tabIndex=”3”/>
 <mx:ComboBox dataProvider=”{[‘United States’]}”

tabIndex=”2”/>
 <mx:NumericStepper value=”10” tabIndex=”1”/>
</mx:Tile>

A couple of focus-related events are dispatched when a Flex control has focus

or focus moves to another control. When a Flex component gains focus — that

is, the user has clicked into the component or pressed the Tab key to move

to that component — the focusIn event is dispatched. Similarly when a

component that has focus loses focus (that is, the user hits the Tab key to

move to another component or clicks into another component), the focusOut

event is dispatched. By listening to these two events, you can decipher

whether a Flex control has gained or lost focus.

Popping Up Dialog Boxes
with the PopUpManager

The Flex PopUpManager governs pop-ups in your application. Pop-ups are

Flex components that you load and position as overlays over the rest of your

Flex application. These pop-ups can be one of two types:

 � With modal pop-ups, users cannot use the rest of your Flex application

sitting behind the pop-up until they close the pop-up.

 � Non-modal pop-ups are placed over the application, but users can still

interact with the normal application behind the pop-up.

Pop-ups are also used for Flex controls that have built-in pop-up behavior

(such as ToolTips, drop-down lists in components [such as ComboBox and

ColorPicker], alerts, and Flex Menu controls). Pop-ups are similar in concept to

HTML pop-up windows, but Flex pop-ups are different because they are overlays

that sit on a special layer of your Flex application. Flex pop-ups do not open new

browser windows. Figure 15-6 shows a custom MXML component that pops up

on top of a Flex application and asks the user to log in.

328 Par t V: Exploring Advanced Flex Topics

Figure 15-6:
The PopUp

Manager
pops up a

Login dialog
box.

To pop up a component, whether it’s an individual Flex component,

an ActionScript component, or an MXML component, you use the

PopUpManager’s createPopUp method. You pass three parameters to the

createPopUp method (the last one is optional):

 � parent: This parameter specifies the parent component over which the

pop-up will be placed.

 � className: You pass the name of a class, and the PopUpManager cre-

ates an instance of this class and adds it as a pop-up.

 � modal: This optional parameter is a Boolean that indicates whether the

pop-up should be modal (blocking other interaction with the application)

or non-modal.

Typically, you use the TitleWindow container as the top-level tag of an MXML

component when you pop up a dialog box. The TitleWindow container has

the visual appearance that users expect from a dialog box, as well as a close

button, which you can make appear by setting the TitleWindow’s show-
CloseButton property to true.

The following code shows how a button click can trigger the appearance of

a modal MXML component, registrationForm.mxml. (See Chapter 16 for

more on MXML components.)

<mx:Button label=”Fill Out Registration Form”
click=”PopUpManager.createPopUp(Application.
application as DisplayObject, registrationForm,
true);” />

Now, suppose that you want an MXML component to pop up in a Flex appli-

cation when the user clicks a button. The Button’s click event triggers the

code that pops up the component by calling the PopUpManager’s create-
PopUp method.

Listing 15-1 creates Login.mxml, the MXML component that represents the

Login window. You use the PopUpManager to pop up this component.

329 Chapter 15: Working with Managers We Actually Love

Listing 15-1: The Login Window Pop-Up Component
<?xml version=”1.0” encoding=”utf-8”?>
<mx:TitleWindow xmlns:mx=”http://www.adobe.com/2006/mxml”

showCloseButton=”true”>
 <mx:Form>
 <mx:FormHeading label=”Login” />
 <mx:FormItem label=”Username”>
 <mx:TextInput width=”100%” />
 </mx:FormItem>
 <mx:FormItem label=”Password”>
 <mx:TextInput width=”100%”

displayAsPassword=”true” />
 </mx:FormItem>
 </mx:Form>
</mx:TitleWindow>

To pop up the Login component in your main application, enter the code in

Listing 15-2.

Listing 15-2: Popping Up the Login Window
<mx:Button label=”Pop Up Login Component”

click=”popUpLoginComp();” />

<mx:Script>
 <![CDATA[
 import mx.core.IFlexDisplayObject;
 import mx.managers.PopUpManager;

 private var popUp:IFlexDisplayObject;

 private function popUpLoginComp():void
 {
 popUp = PopUpManager.createPopUp(this, Login);
 }
]]>
</mx:Script>

Listing 15-2 uses the popUp variable to keep track of a reference to the pop-up

that the PopUpManager creates. You keep track of this reference to the

pop-up if you want to remove the pop-up at a later time.

To remove a pop-up, just invoke the PopUpManager’s removePopUp method,

which takes a reference to the pop-up as its only parameter. So, if you want

to remove the Login component when the user clicks a button, you simply

write the following code:

<mx:Button label=”Remove PopUp” click=”PopUpManager.
removePopUp(popUp);”/>

330 Par t V: Exploring Advanced Flex Topics

Note that when you call the removePopUp method, you pass the reference to

the pop-up that you stored with the popUp variable.

And, finally, if you want to center your pop-up, use the PopUpManager’s

centerPopUp method. As with the removePopUp method, you need to pass

a reference to the pop-up when you call the centerPopUp method. The fol-

lowing code shows how the PopUpManager centers the Login window rela-

tive to the parent after it pops up that window:

private function popUpLoginComp():void
{
 popUp = PopUpManager.createPopUp(this, Login);
 PopUpManager.centerPopUp(popUp);
}

Show Me the ToolTips: Using
the ToolTipManager

You can invoke the Flex ToolTipManager to show and hide custom ToolTips.

For the most part, ToolTip behavior is built into the Flex framework. For

example, when you slide a Flex Slider control’s arrow, a ToolTip calls out

the value that’ll be set if you drop the slider arrow at that point. Similarly, if

a Flex Button control is too small to display its full label, hovering over the

button displays the label in its full length as a ToolTip. These callouts use the

ToolTipManager to create and destroy ToolTips.

You may want to create and show your own ToolTips in situations that the

Flex framework doesn’t manage by default. To do so, use the ToolTipManager

to call the following methods:

 � createToolTip: To create a custom ToolTip, use the createToolTip

method. This method takes the following parameters:

 • text: A String representing the text that you want to display in the

ToolTip

 • x: The horizontal location of the ToolTip

 • y: The vertical location of the ToolTip

 The createToolTip method returns a reference to the ToolTip cre-

ated, and you need to save that reference to a variable so that you can

use it later when you use the ToolTipManager to destroy the ToolTip.

 � destroyToolTip: To remove the ToolTip, you call the destroyTool
Tip method and pass in the reference to the ToolTip that you want to

remove.

331 Chapter 15: Working with Managers We Actually Love

Listing 15-3 shows how to create a ToolTip when the user hovers over the

Image control.

Listing 15-3: Manually Creating a ToolTip
<mx:Image source=”my_image.jpg” id=”img”

mouseOver=”showToolTip()”
mouseOut=”hideToolTip();”/>

<mx:Script>
 <![CDATA[
 import mx.core.IToolTip;
 import mx.managers.ToolTipManager;

 private var tooltip:IToolTip;

 private function showToolTip():void
 {
 tooltip = ToolTipManager.createToolTip(‘This

 is my image’, img.x, img.y);
 }

 private function hideToolTip():void
 {
 ToolTipManager.destroyToolTip(tooltip);
 }
]]>
</mx:Script>

The createToolTip method is invoked when the Flex Image control dis-

patches the mouseOver event, and you save a reference to the ToolTip in the

tooltip private variable.

When the user moves off the image, you hide the ToolTip by invoking the

destroyToolTip method when the mouseOut event is dispatched.

You can set properties by using the ToolTipManager to control and custom-

ize the behavior of the ToolTip. For example, you can set the showDelay

property to the number of milliseconds that you want the Flex control to wait

before it shows the ToolTip. By default, the showDelay property is 500 mil-

liseconds. Similarly, you can set the hideDelay property to the amount of

time, in milliseconds, that you want Flex to wait before it hides the ToolTip.

This code example shows how to set these properties:

 private function showToolTip():void
 {
 ToolTipManager.showDelay = 200;
 ToolTipManager.hideDelay = 500;
 tooltip = ToolTipManager.createToolTip(‘This is my

image’, img.x, img.y);
 }

332 Par t V: Exploring Advanced Flex Topics

When a Flex component is about to show (or hide) a ToolTip, several events

are dispatched by the component displaying (or hiding) the ToolTip. When a

ToolTip is about to be shown, the toolTipShow event is dispatched. Similarly,

when the ToolTip is about to be hidden, the toolTipHide event is dispatched.

SystemManager: The Engine
Behind Your Application

The Flex SystemManager is a very powerful and vital manager in the Flex

framework. Though you’ll most likely never need to interact with it, you may

want to find out what it does. The SystemManager is really the engine behind

getting your Flex application up and running. Here are some of the tasks it

performs:

 � Its most important job is creating the Application instance based on

your <mx:Application /> tag.

 � It manages the display and removal of the preloader that appears when

your Flex application is downloading and initializing.

 � It manages all the top-level items in your application, such as pop-ups,

ToolTips, and cursors, and it also handles the focus between top-level

items.

Chapter 16

Custom Components and
Component Architecture

In This Chapter
� Understanding the basic life cycle of a Flex component

� Creating reusable custom Flex components in MXML

In this chapter, we look at the Flex component architecture and help you

understand the different life cycle events of a Flex component, from initial

creation to when it’s rendered to the screen. Understanding this component

life cycle architecture is an advanced concept that helps you immensely as

you proceed with your Flex development.

You also find out in this chapter how to create reusable custom components

for use in your Flex applications. Knowing how to create reusable compo-

nents is an important design principle that’s common in software because

code sharing produces efficiency, maintainability, and good performance.

Looking at the Flex Component
Life Cycle

All Flex components follow a life cycle recipe that dictates how the compo-

nent is created, handles property changes, sizes and positions itself, and,

finally, draws itself on the screen. Three ActionScript methods, defined in the

mx.core.UIComponent class in the Flex framework, drive this component

life cycle. Associated with these methods are life cycle events that are emit-

ted to notify anyone listening that the component is progressing through its

life cycle stages.

The three component life cycle methods are implemented by all visual com-

ponents in the Flex framework, and it’s customary to do the same if you write

your own, custom ActionScript Flex component. These methods encapsulate

334 Par t V: Exploring Advanced Flex Topics

a common pattern that exists in the Flex component architecture: an invali-

dation pattern. This invalidation pattern allows for property changes that

affect the size, position, or visual display of a component to be batched up so

that it’s speedier. In the following sections, we briefly touch on these three

methods and the purposes they serve.

 To find out more about the component life cycle, apart from the following sec-

tions, step through the Flex component source code that’s provided when you

install Flex Builder. Using the Flex source code as a model when writing your

own ActionScript components is always a good idea. To quickly jump to any of

the source code for the Flex framework classes, hold the Ctrl key and click the

MXML tag of the class, which will load the source code for that particular class.

Property invalidation: commitProperties
The goal of the commitProperties method is to process properties set

on the component so that the new property values affect the current state

of the component. If you look at the source code for any visual component

in the Flex framework, a common pattern that’s invoked is to use a Boolean

property as a dirty flag to indicate that a property has changed, and then call

an invalidation method that forces the component to call commitProperties

down the line. In the method body for commitProperties, the dirty flags are

checked to see whether they have been marked as dirty — that is, a new prop-

erty value has been set and needs to be processed. If a dirty flag has been set

and a property needs to be processed, the processing occurs in the method

body of commitProperties.

The main goal of using dirty flags in the invalidation method is to allow mul-

tiple properties to all be changed at the same time, but only do the necessary

layout changes once, after all the properties have been set. Changing various

properties on a component often affects the visual appearance of the com-

ponent, but you don’t want to make the component redraw itself more than

necessary. So instead of redrawing or remeasuring the component every time

a property changes, you keep track of all the changed properties (by using

dirty flags) and then process all of them at the same time in a batch.

This property invalidation pattern may be a little easier to understand when

you look at an example. Let’s look at how the enabled property is processed

on a Flex Label component by using commitProperties.

 You can access the source code of the Label control by holding the Ctrl key

and clicking on any <mx:Label /> MXML tag.

Listing 16-1 shows some of the code that is part of the Label class in the Flex

framework. When the enabled property is set, it triggers an invalidation

call that invokes the commitProperties method. Notice a set enabled

335 Chapter 16: Custom Components and Component Architecture

method for setting the enabled property on the Label control. This property

controls whether the component is enabled or disabled. In Listing 16-1, after

the new value for enabled has been set, a Boolean flag named enabled-
Changed is set to true, and the invalidateProperties method is invoked

to force the Label component to make a new validation pass and execute the

commitProperties code.

Listing 16-1: Triggering a Call to commitProperties()

override public function set enabled(value:Boolean):void
{
 if (value == enabled)
 return;

 super.enabled = value;
 enabledChanged = true;

 invalidateProperties();
}

The call to invalidateProperties tells the Flex framework that a prop-

erty has changed and queues up a call to commitProperties that will

happen before the component is re-rendered to the screen. But notice

that the Label control does no processing other than setting the dirty flag

(enabledChanged) and calling invalidateProperties. When the

commitProperties code is executed during the component’s next valida-

tion pass, the enabledChanged flag value is checked to see whether the

enabled property needs further processing. In Listing 16-2, take a look at the

code that handles that checking and processing.

Listing 16-2: Executing commitProperties()

override protected function commitProperties():void
{
 super.commitProperties();
 ...

 if (enabledChanged)
 {
 textField.enabled = enabled;
 enabledChanged = false;
 }
 ...
}

You can see that the pattern is straightforward. In commitProperties, the

various Boolean dirty flags are checked to see whether they’re true, which

indicates the property is dirty and needs processing. In this case, when the

enabledChanged flag is true, the enabled property is set on the underlying

ActionScript TextField object, which is a child component that the Flex Label

336 Par t V: Exploring Advanced Flex Topics

control uses to actually display the text. The final step is to toggle the prop-

erty flag — in this case, the enabledChanged Boolean value — back to its

original value to avoid reprocessing the property value during the next vali-

dation pass.

You must change the property Boolean flags back to their original values to

avoid reprocessing property changes during subsequent validation passes.

Also, remember to call super.commitProperties() whenever you override

the commitProperties method.

Size invalidation: measure()
The goal of the measure method in mx.core.UIComponent — a method

that all visual Flex components implement — is to dictate the size of the Flex

component. When overriding the measure method, it’s your job to set the

measuredWidth and measuredHeight properties to the width and height

you want for the component. The component uses these two properties to

report its proper dimensions when it’s sized and positioned by its parent

component.

Like all the core component life cycle methods, the measure method is never

directly invoked. Instead, a pattern of invalidation is used to trigger the method

invocation. For the measurement part of the life cycle, the invalidateSize

method is called to force the component to make a new measurement pass.

Take a look at some sample code from the Button class in the Flex framework

to see this process in action. When a Button control’s label property is set,

the new text may require the Button control to be wider or narrower, which

means the Button control needs to go through a new measurement pass. In

Listing 16-3, take a look at the set label method in the mx.controls.
Button class.

Listing 16-3: Triggering a Call to measure()

public function set label(value:String):void
{
 ...

 if (_label != value)
 {
 _label = value;
 labelChanged = true;

 invalidateSize();
 ...
 }
}

337 Chapter 16: Custom Components and Component Architecture

You can see, after the new value has been set, that the invalidateSize

method is invoked to force the Button to go through a new measurement

pass. Then, in the Button’s measure method, the Button calculates its new

measuredWidth and measuredHeight based on the new text width and

other related factors (such as the icon and padding styles).

Drawing and layout invalidation:
updateDisplayList()
The goal of the updateDisplayList method is to handle the layout

and drawing of the visual component in response to changes in its state.

Whenever any property that affects the visual appearance of a control is

modified, the updateDisplayList method is invoked. The updateDisplay
List method positions the child elements of the control by setting their x

and y properties. If the component has no children, the only work that hap-

pens in updateDisplayList is the programmatic drawing of the compo-

nent’s visual appearance.

The updateDisplayList method is the only one of the three component life

cycle methods that takes parameters. When updateDisplayList is called, it

is passed unscaledWidth and unscaledHeight, which specify the unscaled

width and height of the control. The component uses these parameters to draw

the visual appearance of the component and to move and position child elements.

Creating Reusable Custom Components
The Flex framework is a collection of components developed by the engi-

neers at Adobe. All these components fit together and work with each other

to create complex applications. Every Flex application that you create is a

collection of the various Flex framework controls. Your applications contain

Buttons, DataGrids, and Sliders, for example. What makes each application

different is the unique way in which you combine the components.

Some Flex components, such as the Label control, are extremely simple.

Other components are a bit more complex and are composed of subcompo-

nents. For example, the tab bar in the TabNavigator control is a collection of

Buttons. But the TabNavigator doesn’t have to re-create the code that defines

a Button control — it simply reuses the same Button control. The Button con-

trol pops up in many other controls in the framework, such as the Sliders, the

scrollbars for all the containers, and the header buttons for the Accordion. All

framework controls are built with the concept of reuse in mind to try to mini-

mize the amount of code that’s needed and to simplify the design.

338 Par t V: Exploring Advanced Flex Topics

 You can develop your own custom components along these same lines to create

controls that you can reuse throughout your Flex applications. As you develop

your applications, should always think about which parts you might be able to

reuse, in both your current project and future projects. If you need to re-create

some pieces repeatedly in multiple places in your application, you should prob-

ably create a custom component that you can use over and over again to solve

the same problem. And, if you ever find that you’re copying and pasting large

chunks of code multiple times, you might want to consider breaking out those

pieces into custom components.

In the following sections, you create a rating component that lets users rate

items on a five-star scale. This rating is similar to the star rating widget you’ve

probably seen on movie rental Web sites or video-sharing portals. The goal is to

create the component shown in Figure 16-1. In the next few sections, you create

the code for this custom component piece by piece. The entire code for the

component is presented in Listing 16-5.

Figure 16-1:
A custom

rating
component
used three

times.

Defining the interface
Before you start writing code, you should map out the basic structure of

the component and how it will be used. In this case, your rating component

will have a property to keep track of the rating that the user has selected (a

number between 0 and 5). In terms of communicating from the rating com-

ponent back to your application, the component must notify the application

whenever the user changes the rating. To accomplish this task, the compo-

nent dispatches an event to let the other parts of the application know that

the value has been changed.

For every component you create, you define a list of all properties, methods,

and events that the component exposes. The rating component doesn’t have

any public methods that will be used, but it has a rating property and it dis-

patches a change event.

Choosing your base wisely
When you create a custom component, you extend a base class from the

Flex framework. You choose a class as the starting point, therefore, and

339 Chapter 16: Custom Components and Component Architecture

add functionality from there. Think about exactly what kind of functionality

your component needs, and figure out whether an existing class already pro-

vides some of the required functionality. All custom Flex components extend

the UIComponent class, which is the lowest-level component that you use.

UIComponent is essentially a blank component that’s invisible on its own, but

it provides all the important behind-the-scenes invalidation functionality that’s

required for all components to work with the rest of the Flex framework. Simple

components in the Flex framework, such as Button, Label, and TextInput, all

extend UIComponent.

For the rating component, you need a series of stars in a horizontal line. These

stars are fundamentally Button controls (although they will be skinned to look

like stars). You have a few options for deciding which class to use as a base

class, but because the component contains multiple Buttons, you should start

with one of the Container classes to hold the buttons. You can use Canvas as

the base, but then you have to control the positioning of the stars manually.

Instead, start with the HBox control because it handles the positioning of

child elements horizontally, which is exactly what you need.

You also need to choose a package structure to organize your custom com-

ponents. In this example, the star rating component is named RatingSelector,

and it’s located in the com.dummies.controls package. We chose this

package structure for this example because it mimics the structure of the

Flex components (which use the mx.controls package). You can use any

package structure that you want in your own applications.

To start creating your component, follow these steps:

 1. Choose File➪New➪MXML Component.

 Alternatively, you can right-click the folder in your project and choose

New➪MXML Component.

 The New MXML Component dialog box appears, as shown in Figure 6-2.

 2. In the Filename text box, enter the name of your new component, and

in the Based On text box, specify the base class that you want to extend.

 In Figure 16-2, you can see that the RatingSelector component is extending

the HBox container.

 3. Click Finish.

 For the example, Flex Builder creates a file named RatingSelector.
mxml in your project, and the MXML file initially is an empty HBox con-

tainer, as shown here:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:HBox xmlns:mx=”http://www.adobe.com/2006/mxml”

width=”400” height=”300”>

</mx:HBox>

340 Par t V: Exploring Advanced Flex Topics

Figure 16-2:
Specify a

base class
to extend.

Notice that Flex Builder sets default width and height properties for

custom MXML components. You can remove these tags because you will use

the component’s built-in measurement capabilities rather than explicit values

for width and height.

Adding child components
The empty HBox MXML file is the start of the RatingSelector component, and

you add the child components between the <mx:HBox> and </mx:HBox>

tags. To begin with, the RatingSelector needs to have five Button controls.

You can add these components by using the MXML Button tag. These buttons

also need to be specially skinned to make them look like stars. Listing 16-4 adds

five Button controls and applies a custom CSS style that uses two image

assets to set the selected and unselected button states.

Also, remember to call super.commitProperties() whenever you over-

ride the commitProperties method.

This listing creates five Buttons that look like stars in a horizontal row. The

image assets referenced in the <mx:Style> block (star_unselected.png

341 Chapter 16: Custom Components and Component Architecture

and star_selected.png) are the unfilled and filled star images that make

the buttons look like rating stars rather than the default Flex buttons. The

images that you use for the button skins are located in the assets folder at

the root folder of your project.

Listing 16-4: Adding Five Button Children with MXML
<?xml version=”1.0” encoding=”utf-8”?>
<mx:HBox xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Style>
 .ratingStar {
 up-skin: Embed(‘/assets/star_unselected.png’);
 down-skin: Embed(‘/assets/star_unselected.png’);
 over-skin: Embed(‘/assets/star_unselected.png’);
 selected-up-skin: Embed(‘/assets/star_selected.png’);
 selected-down-skin: Embed(‘/assets/star_selected.png’);
 selected-over-skin: Embed(‘/assets/star_selected.png’);
 }
 </mx:Style>

 <mx:Button styleName=”ratingStar” />
 <mx:Button styleName=”ratingStar” />
 <mx:Button styleName=”ratingStar” />
 <mx:Button styleName=”ratingStar” />
 <mx:Button styleName=”ratingStar” />

</mx:HBox>

Choosing between MXML and ActionScript
 In this chapter, we cover creating a custom MXML component; however, you

can create both custom MXML and custom ActionScript components. All

components in the Flex framework (such as Button and TabNavigator) are

ActionScript components. Because MXML is compiled down to ActionScript

code by the compiler, if you can create a component by using MXML you can

also create the same component by using ActionScript.

Creating ActionScript components is a more complicated process that

involves a deeper understanding of the inner workings of the Flex framework.

Advanced ActionScript components use the component validation life cycle

that we discuss in the first half of this chapter, which handles such items as

child creation, component measurement, and child layout. Creating MXML

components is often easier than creating ActionScript components, but

you have much finer and advanced control over components if you use pure

ActionScript. Because creating ActionScript components is an advanced topic

(we could write a book on it!), we cover only MXML components in this chapter.

342 Par t V: Exploring Advanced Flex Topics

Defining your properties
The RatingSelector allows the user to select a rating number between 0 and

5. You can access this public property from other parts of your application.

To define custom properties on your MXML components, you need to add a

<mx:Script> block to your MXML file that contains the properties that you

want to expose.

To define the rating property, add a Script block that contains a public vari-

able named rating:

<mx:Script>
 <![CDATA[
 [Bindable]
 public var rating:int;
]]>
</mx:Script>

Discovering how to talk with events
When a user changes a rating, you need to tell other parts of your application

that the change has occurred. A rating change can trigger any number of dif-

ferent actions, such as saving that information to a database or adding the

item to a list of user favorites. The rating component doesn’t need to know

what’s supposed to happen after a change occurs; that information is com-

pletely outside of the scope of the component. All the component needs to

do is announce the change event.

To announce the change, you use the dispatchEvent function from within

your component. First, you need to pick exactly which kind of event you’re

dispatching. You can name your event anything you want, although in this

case there’s already a framework event for changes that some of the other

components, such as TextInput, use to indicate that a change has occurred.

You can dispatch a change event by adding the following ActionScript lines

within a <mx:Script /> block in your component:

var changeEvent:Event = new Event(Event.CHANGE);
dispatchEvent(changeEvent);

This code snippet creates a new event, which is of the type Event.CHANGE,

and then dispatches the event you created. Anything outside the rating com-

ponent that is listening for a change event is notified.

When you determine which events your custom component will dispatch,

you also need to add some special metadata to your component so that Flex

knows about these events. If you’re creating an MXML component, you add a

343 Chapter 16: Custom Components and Component Architecture

section to your MXML file that defines all the different events that your com-

ponent can dispatch:

<mx:Metadata>
 [Event(name=”change”, type=”flash.events.Event”)]
</mx:Metadata>

By adding this <mx:Metadata> portion to your MXML file, you’re telling the

Flex compiler that your component dispatches the change event. This meta-

data lets you add an event listener to the RatingSelector component when

you declare it with an MXML tag (see the example in Listing 16-5).

Putting it all together: The complete
RatingSelector component
Your completed MXML component now defines a custom property (rating)

and dispatches a change event when the user clicks one of the stars to set

the rating. The full MXML component is shown in Listing 16-5.

Listing 16-5: Your Complete Custom Component
<?xml version=”1.0” encoding=”utf-8”?>
<mx:HBox xmlns:mx=”http://www.adobe.com/2006/mxml” horizontalGap=”0”>
 <mx:Metadata>
 [Event(name=”change”, type=”flash.events.Event”)]
 </mx:Metadata>

 <mx:Script>
 <![CDATA[
 [Bindable]
 public var rating:int;

 private function setRating(newRating:int):void {
 this.rating = newRating;

 var changeEvent:Event = new Event(Event.CHANGE);
 dispatchEvent(changeEvent);
 }
]]>
 </mx:Script>

 <mx:Style>
 .ratingStar {
 up-skin: Embed(‘/assets/star_unselected.png’);
 down-skin: Embed(‘/assets/star_unselected.png’);
 over-skin: Embed(‘/assets/star_unselected.png’);
 selected-up-skin: Embed(‘/assets/star_selected.png’);

(continued)

344 Par t V: Exploring Advanced Flex Topics

Listing 16-5 (continued)
 selected-down-skin: Embed(‘/assets/star_selected.png’);
 selected-over-skin: Embed(‘/assets/star_selected.png’);
 }
 </mx:Style>

 <mx:Button styleName=”ratingStar” selected=”{rating >= 1}”
click=”setRating(1)” />

 <mx:Button styleName=”ratingStar” selected=”{rating >= 2}”
click=”setRating(2)” />

 <mx:Button styleName=”ratingStar” selected=”{rating >= 3}”
click=”setRating(3)” />

 <mx:Button styleName=”ratingStar” selected=”{rating >= 4}”
click=”setRating(4)” />

 <mx:Button styleName=”ratingStar” selected=”{rating >= 5}”
click=”setRating(5)” />

</mx:HBox>

Each <mx:Button /> tag uses data binding to bind the selected property

of the Button to a certain rating threshold. It’s an easy way to make sure that

when the rating property is set, the buttons reflect the current rating. You

use the click event on each button to trigger the setRating function, which

sets the rating property to the appropriate value and also dispatches the

change event. So now when a user clicks one of the buttons, the rating is set, and

a change event fires to notify any other parts of the application that are listening.

Using your shiny, new component
After you create the custom RatingSelector component, you can use it in

your Flex application (and you can use it repeatedly). To use the compo-

nent in your application, you can add it by using an MXML tag just as you

do for all other components in the Flex framework. Listing 16-6 adds a single

RatingSelector component to an application.

Listing 16-6: Using the Custom Component

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 xmlns:controls=”com.dummies.controls.*”>

 <controls:RatingSelector />

</mx:Application>

When you run this application, you see one RatingSelector component that

displays five stars, as shown in Figure 16-3.

345 Chapter 16: Custom Components and Component Architecture

Figure 16-3:
A single

instance of
the Rating

Selector
component.

Notice that the component tag uses the <controls: prefix for the

namespace. This namespace is defined in the <mx:Application> tag by the

xmlns:controls=”com.dummies.controls.*” part of the tag. It’s the

default way that Flex Builder adds custom components. You probably don’t

need to add the xmlns line to the Application tag manually. If you simply

start typing <Rating in your Application file, Flex Builder automatically sug-

gests the rest of the MXML tag and automatically adds the xmlns line. You

can then use the <controls:RatingStar /> tag as many times as you

want in your application.

After you add the RatingSelector component to your application, you can

use the rating property and change event to interact with the component.

Listing 16-7 is a more complete application that uses three instances of the

RatingSelector to gather user feedback. You add an event listener to the

change event of each component to recalculate the average rating whenever

the user changes one of the ratings.

Listing 16-7: Creating an Application That Uses Your Custom Component
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” xmlns:controls=”com.

dummies.controls.*”>

 <mx:Script>
 <![CDATA[
 [Bindable]
 private var average:Number = 0;

 private function computeAverage():void {
 average = (rating1.rating + rating2.rating + rating3.rating) / 3;
 }
]]>
 </mx:Script>

 <mx:NumberFormatter id=”formatter” precision=”1” />

 <mx:Panel title=”Session survey” fontSize=”18”>
 <mx:Form>
 <mx:FormItem label=”Speaker was knowledgable”>

(continued)

346 Par t V: Exploring Advanced Flex Topics

Listing 16-7 (continued)
 <controls:RatingSelector id=”rating1” change=”computeAverage()” />
 </mx:FormItem>
 <mx:FormItem label=”Slides were helpful”>
 <controls:RatingSelector id=”rating2” change=”computeAverage()” />
 </mx:FormItem>
 <mx:FormItem label=”Speaker was engaging”>
 <controls:RatingSelector id=”rating3” change=”computeAverage()” />
 </mx:FormItem>
 </mx:Form>
 <mx:ControlBar>
 <mx:Label text=”Average rating: {formatter.format(average)}” />
 <mx:Spacer width=”100%” />
 <mx:Button label=”Submit” />
 </mx:ControlBar>
 </mx:Panel>

</mx:Application>

This sample application produces a form with three instances of the

RatingSelector component, as shown in Figure 16-4.

Figure 16-4:
Using the

Rating
Selector

component
in an

application.

 Now, whenever you want to display a five-star rating component in your appli-

cation, you can add the RatingSelector MXML tag. Always keep in mind this

approach to thinking about your Flex application as individual reusable com-

ponents. If you design your applications with reusable components, you can

avoid duplicating code in your project. And, you never know: Later on down

the line, you may find another use for a component that you created in an ear-

lier project.

Chapter 17

Understanding States and Effects
In This Chapter
� Creating and editing view states

� Adding animations by using the effect classes

� Using transitions to animate between states

When you build real-world Flex applications that are more advanced

than your typical “Hello World” example, you’re likely to have a few

different screens, or views, that you present to the user. When we describe

how the user moves through an application, we often use words like views,
pages, panels, and screens. These words are often used interchangeably and

refer to different sets of user interface controls that are presented to the user

at a time. Flex has a few special features that make creating these different

views easier. In this chapter, we introduce view states and explain how you

create them with Flex Builder.

But we’re not content with simply showing you how to move from one view

state to another; we want to make things exciting! So we also cover using

visual effects to animate your applications. You find out how to add some

simple animated effects to your applications to spice things up a bit. Then

you try combining view states with effects and add some slick animated

effects as you transition from one view state to another.

Working with View States
States define different views of your application, such as different visual

screens or pages that the user might move between. You can have differ-

ent view states on your main application and on custom MXML components

that you create. When you use view states, you can switch back and forth

between related screens without necessarily creating completely separate

MXML components for each screen.

Often, views are related; for example, a login form and a registration form

might share a lot of similarities. The registration form probably has a few

more fields than the login form, but they have much of the same structure.

348 Part V: Exploring Advanced Flex Topics

By using view states, you can create a single multipurpose component that

can switch between the login and registration states.

Creating a new view state is sort of like taking a snapshot of your application

or MXML component. You can use that snapshot as the starting point and

make changes to it for the specific view that you want to create. This snap-

shot-like view state is a base state, and you make modifications to this base

state by doing any of the following:

 � Adding and removing children

 � Changing the layout

 � Adjusting properties

You can create a new view that’s slightly (or dramatically) different from the

original base state. You can save this new view state without changing the

original base state, so you can switch back and forth between the two.

Each state gets an identifying name, and your application can switch between

states by setting the currentState property. Behind the scenes, the Flex

framework takes care of doing all the necessary behind-the-scenes work, like

creating and destroying the appropriate controls and changing labels and

other properties. You can focus on designing the different views, hopefully

without having to fiddle with the complex code required to move seamlessly

from one state to another.

Creating view states with Design View
To start understanding view states, you can create a simple example that

shows a login form. This example starts off with the code in Listing 17-1. This

code listing doesn’t define any states; you add those shortly.

Listing 17-1: A Login Form
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” verticalAlign=”middle”>

 <mx:Panel id=”loginPanel” title=”Login”
 horizontalAlign=”center” verticalAlign=”middle”>

 <mx:Form id=”loginForm”>
 <mx:FormItem label=”Email”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Password”>
 <mx:TextInput displayAsPassword=”true” />
 </mx:FormItem>

349 Chapter 17: Understanding States and Effects

 <mx:FormItem>
 <mx:Button label=”Login” />
 </mx:FormItem>
 </mx:Form>

 </mx:Panel>

</mx:Application>

When you switch to Design View in the Flex Development perspective, the

code in Listing 17-1 creates the login form shown in Figure 17-1. In Design

View, a States panel appears in the top-right corner of Flex Builder.

 When you work with states, you can most easily start by using the States

panel, which lets you use a WSYWIG editor to create and edit your view states.

However, these states are really just defined in MXML code within your appli-

cation (as you can see in the following section), so if you want to skip Design

View altogether, you can manually code all the MXML.

Figure 17-1:
Design

View shows
the States

panel.

States panel

In the example application, you want to create a view that shows a progress

bar to let users know that you are performing the login action while they

wait. This intermediate state helps provide visual feedback so users don’t

think the application isn’t responding, and it also prevents users from trying

to log in again while they’re waiting for a response. Follow these steps to

create this state:

350 Part V: Exploring Advanced Flex Topics

 1. Right-click the <Base state> entry in the list of states and select New

State from the menu that appears.

 The New States dialog box, shown in Figure 17-2, opens. In this dialog box,

you can name the new state you’re creating and set a few properties.

Figure 17-2:
Specify a

name for the
new state.

 2. Enter loggingIn as the name for the new state and then click OK.

 The new state appears in the States panel. After you define a new state,

you can select it from the list in the States panel and switch back and

forth between all available states. In the Design panel of Flex Builder, the

look of whichever state you select appears. Any changes you make in

the Design panel affect only the selected state.

 3. With the loggingIn state selected, delete the Form container in

the Panel container (but leave the Panel container itself) and add a

ProgressBar control instead.

 The ProgressBar control shows a loading animation while the login pro-

cesses. You can complete the tasks in this step by using the WSYWIG

editing of Design View.

 4. After you finish editing the loggingIn state, switch back to the base

state.

 The Form container that you deleted in the loggingIn state is still in the

base state. When you edited the loggingIn state, you didn’t change

the base state at all. You can switch back and forth between states to

compare the differences.

 In addition to removing and adding children, you can also edit proper-

ties of existing children to make certain properties change from one

state to another.

 5. Switch back to the loggingIn state.

 In the base state, the main login panel has a title of Login, so the

loggingIn state also has that title.

 6. Change the title property of the Panel in the loggingIn state to

Logging In to indicate the application’s current status.

351 Chapter 17: Understanding States and Effects

 After you make the modifications to the loggingIn state, it looks like

Figure 17-3.

Figure 17-3:
The

loggingIn
state.

After you create the loggingIn state (as we outline in the preceding step

list), follow these steps to create an error state that provides a notification

when the user enters invalid login details:

 1. Right-click the <Base state> entry in the list of states and select New

State from the menu that appears.

 The New State dialog box appears (refer to Figure 17-2).

 2. Enter error as the name and click OK.

 You now have an error state that looks the same as the original login

form. Next, you need to add an error message to let users know they

entered invalid credentials.

 3. To add an error message to the login form, drag a Label control

from the Components panel onto the login Panel control and drop it

directly above the Form container.

 4. Edit the text property of the Label by setting it to Invalid Login! and

setting the color to a scary red.

 The new error state is shown in Figure 17-4.

Figure 17-4:
The error

state.

For this example, we keep it simple and stick with the base state, the logging

in state, and the error state.

352 Part V: Exploring Advanced Flex Topics

States under the hood
Behind the scenes, Flex Builder is generating a slew of MXML markup that

defines the exact changes from one state to another. These changes consist

of various MXML tags, such as <mx:AddChild /> and <mx:RemoveChild
/>, which add and remove children from containers, <mx:SetProperty />,

which changes a property of a component, such as the title of a Panel con-

trol, and <mx:SetStyle />, which modifies a style (such as font color).

The full MXML code that defines your loggingIn and error states (which

you created in the preceding section) is shown in Listing 17-2.

Listing 17-2: Two States Defined in MXML
<mx:states>

 <mx:State name=”loggingIn”>
 <mx:RemoveChild target=”{loginForm}”/>
 <mx:AddChild relativeTo=”{loginPanel}” position=”lastChild”>
 <mx:ProgressBar label=”Authenticating” indeterminate=”true”
 labelPlacement=”center” color=”#000000” height=”30”
 width=”100%”/>
 </mx:AddChild>
 <mx:SetProperty target=”{loginPanel}” name=”title” value=”Logging in...”/>
 </mx:State>

 <mx:State name=”error”>
 <mx:AddChild relativeTo=”{loginForm}” position=”before”>
 <mx:Label text=”Incorrect Login!” color=”#FF0000” fontSize=”13”/>
 </mx:AddChild>
 <mx:SetProperty target=”{loginPanel}” name=”title” value=”Try again”/>
 </mx:State>

</mx:states>

Switching between states
After you define all your states in MXML, you can switch back and forth

between them by using ActionScript to set the currentState property

of your application. You set the currentState property to a string that

matches the name of one of the available states. To return to the original

base state, you can set the currentState property to “”.

Listing 17-3 completes the basic login example by adding a click handler to

the login button that will simulate a fake login attempt. This listing is a com-

bination of the form created in Listing 17-1 (Lines 46 to 61), the states created

in Listing 17-2 (Lines 25 to 43), and an additional <mx:Script /> block that

contains the ActionScript code that switches between states (Lines 4 to 23).

353 Chapter 17: Understanding States and Effects

Listing 17-3: A Complete MXML Application with Three States
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 verticalAlign=”middle”>

 <mx:Script> ➝ 4
 <![CDATA[
 private function login():void {
 //switch to the loggingIn state to show the ProgressBar control

 this.currentState = “loggingIn”; ➝ 8

 //Create a fake timer to simulate logging in. In a real
 //application you might send a login request to a server
 //and wait for a response with success or failure
 var timer:Timer = new Timer(3000, 1);
 timer.addEventListener(TimerEvent.TIMER, fakeLoginHandler);
 timer.start();
 }

 private function fakeLoginHandler(event:TimerEvent):void {
 //For our example purposes we’ll always switch to the error state

 this.currentState = “error”; ➝ 20
 }
]]>

 </mx:Script> ➝ 23

 <mx:states> ➝ 25
 <mx:State name=”loggingIn”>
 <mx:RemoveChild target=”{loginForm}”/>
 <mx:AddChild relativeTo=”{loginPanel}” position=”lastChild”>
 <mx:ProgressBar label=”Authenticating” indeterminate=”true”
 labelPlacement=”center” color=”#000000” height=”30”
 width=”100%”/>
 </mx:AddChild>
 <mx:SetProperty target=”{loginPanel}” name=”title”
 value=”Logging in...”/>
 </mx:State>

 <mx:State name=”error”>
 <mx:AddChild relativeTo=”{loginForm}” position=”before”>
 <mx:Label text=”Incorrect Login!” color=”#FF0000” fontSize=”13”/>
 </mx:AddChild>
 <mx:SetProperty target=”{loginPanel}” name=”title” value=”Try again”/>
 </mx:State>

 </mx:states> ➝ 43

 <mx:Panel id=”loginPanel” title=”Login” ➝ 46
 horizontalAlign=”center” verticalAlign=”middle”>

 <mx:Form id=”loginForm”>
 <mx:FormItem label=”Email”>
 <mx:TextInput />

(continued)

354 Part V: Exploring Advanced Flex Topics

Listing 17-3 (continued)
 </mx:FormItem>

 <mx:FormItem label=”Password”>
 <mx:TextInput displayAsPassword=”true” />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label=”Login” click=”login()” />
 </mx:FormItem>
 </mx:Form>

 </mx:Panel> ➝ 61
</mx:Application>

When the user clicks the login button, the login() function sets the cur-
rentState property of the application to loggingIn on Line 8 of Listing 17-3.

This state change switches the view state to show the ProgressBar control

that’s defined in the loggingIn state. In this example, you simply fake a login

attempt by waiting for three seconds, then setting the currentState prop-

erty to error on Line 20, which displays the invalid login message and allows

the user to try again. You can set the currentState property at any time in

your application to jump from view state to view state.

This example demonstrates using states to move back and forth between three

related views: the initial login form, the login progress indicator, and the error

notification. When you have multiple views that are related but have minor dif-

ferences, you can use states to more easily manage these views.

Adding Effects to Your Application
You can use effects to animate containers and controls in your Flex applica-

tions. You might want to fly a Panel control in from the edge of your appli-

cation, add a pulsating glow to a Button control when the user rolls over it

with the mouse, or smoothly fade images in and out in a slide show. You can

create all these animations by using the effect classes. In the following sec-

tions, we cover some of the main effect classes that you can use to add ani-

mated effects to your applications, such as the Move, Resize, Rotate, Zoom,

and Wipe effects.

Pulling the trigger
You can trigger effects in two ways:

 � By using an event trigger defined in MXML

 � By manually calling the play() method of the effect in ActionScript

355 Chapter 17: Understanding States and Effects

All the components in the Flex framework have effect triggers that use the

naming convention triggerEventEffect, such as moveEffect or resize-
Effect. When you combine a trigger with a particular effect class, the com-

bination is called a behavior. The available triggers include addedEffect,

creationCompleteEffect, focusInEffect, focusOutEffect, hideEf-
fect, mouseDownEffect, mouseUpEffect, moveEffect, removedEffect,

resizeEffect, rollOutEffect, rollOverEffect, and showEffect.

 Don’t confuse triggers and events, such as the moveEffect trigger and the

move event. To use an effect for movement, you set the moveEffect trigger;

you use the move event to be notified when the component moves. If you try

to assign an effect by setting the move event in MXML, you get a compiler

error. This error appears if you use the other possible effect triggers, as well,

such as using the resizeEffect trigger rather than the resize event.

Starting with simple movement
You can animate the movement of components in your application by using

the Move effect. If you use the Move effect on a component, anytime the x or y

properties are set or the move(x,y) method is called, the component smoothly

animates from its location to the new position. If you use the Move effect, you

can help guide the user and create a more fluid experience. Listing 17-4 uses the

default behavior of the Move effect to smoothly animate each button when it’s

toggled on and off.

Listing 17-4: Using the Move Effect to Animate Buttons
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import mx.controls.Button;

 private function buttonClickHandler(event:MouseEvent):void {
 var button:Button = event.currentTarget as Button;

 if(button.selected)
 button.y = 30;
 else
 button.y = 0;
 }
]]>
 </mx:Script>
 <mx:HBox clipContent=”false”>
 <mx:Button label=”Option 1” toggle=”true”
 moveEffect=”Move” click=”buttonClickHandler(event)” />

(continued)

356 Part V: Exploring Advanced Flex Topics

Listing 17-4 (continued)
 <mx:Button label=”Option 2” toggle=”true”
 moveEffect=”Move” click=”buttonClickHandler(event)” />
 <mx:Button label=”Option 3” toggle=”true”
 moveEffect=”Move” click=”buttonClickHandler(event)” />
 </mx:HBox>
</mx:Application>

Listing 17-4 places three Button controls in a horizontal box container. When

a button is toggled on, the y property of the button is set to 30, which drops

it down 30 pixels. When a button is toggled off, it returns to the normal posi-

tion because y is set back to 0. If you didn’t use the Move effect, the but-

tons would simply jump from one location to another. But by simply adding

moveEffect=”Move” to the Button controls, you can make each button

smoothly animate whenever you change its position.

Figure 17-5 shows the application in Listing 17-4, with the first and third but-

tons selected. Unfortunately, this figure (and the figures in the rest of this

chapter) can’t capture the animated aspect of the effect, so run these exam-

ples yourself to watch the movement.

Listing 17-4 sets the moveEffect trigger of each Button control to the string

Move. You don’t actually define a <mx:Move /> tag anywhere in your applica-

tion, but behind the scenes, Flex takes the “Move” string and figures out that

it needs to create a Move effect. In this case, the default Move effect is cre-

ated for each Button control. Using the “Move” string instead of creating a full

<mx:Move /> tag is a sort of shorthand way to add the default effect behavior.

Sometimes, however, you need more control over the specific Move effect

that you use. For example, you might want to change the duration property

of the effect to make it run faster than it does by default. So, instead of setting

moveEffect to the string “Move,” you can define a <mx:Move /> tag within

your application.

The following code defines a <mx:Move /> tag, sets the duration property

(which is defined in milliseconds), and uses data binding to bind that particu-

lar effect to the moveEffect trigger for each Button control:

<mx:Move id=”effect” duration=”200” />

<mx:HBox clipContent=”false”>
 <mx:Button label=”Option 1” toggle=”true” moveEffect=”{effect}” />
 <mx:Button label=”Option 2” toggle=”true” moveEffect=”{effect}” />
 <mx:Button label=”Option 3” toggle=”true” moveEffect=”{effect}” />
</mx:HBox>

Now the movement of your Buttons will take 200 milliseconds, as opposed to

the default duration of 500 milliseconds.

357 Chapter 17: Understanding States and Effects

Figure 17-5:
Animate

buttons in a
menu.

 Whether you use the simple default behavior or create an instance of the

effect class depends on how much control you want to have over how the

effect plays. For simple animations, the default behavior might be all you need.

But when you need to fine-tune that behavior, you have to create the MXML

tags for the effects you want, like in the preceding block of code.

Turning your world upside down
Instead of just making things move from one spot to another, you can also

spin them by using the <mx:Rotate /> effect. You use the Rotate effect to

smoothly animate the rotation property of any Flex control. Listing 17-5

creates a horizontal list of buttons just like Listing 17-4, but in this example,

when a button is toggled on, it rotates 45 degrees. To achieve this effect, you

create an instance of the <mx:Rotate /> effect in MXML and then call the

play() method in ActionScript.

The primary properties of the Rotate effect that you use to configure the

rotation are angleTo and angleFrom. Listing 17-5 sets the angleTo prop-

erty, but it doesn’t set the angleFrom property, which means the Rotate

effect starts with the current rotation of each button.

Listing 17-5: Applying the Rotate Effect
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import mx.controls.Button;

 private function clickHandler(event:MouseEvent):void {
 var button:Button = event.currentTarget as Button;
 rotate.target = button;
 rotate.angleFrom = button.rotation;

 if(button.selected)
 rotate.angleTo = 45;
 else
 rotate.angleTo = 0;

 rotate.play();

(continued)

358 Part V: Exploring Advanced Flex Topics

Listing 17-5 (continued)
 }
]]>
 </mx:Script>

 <mx:Style>
 @font-face
 {
 font-family: boldVerdana;
 fontWeight: bold;
 src: local(“Verdana”);
 }

 Button {
 font-family: boldVerdana;
 }
 </mx:Style>

 <mx:Rotate id=”rotate” />

 <mx:HBox clipContent=”false”>
 <mx:Button label=”Option 1” toggle=”true” click=”clickHandler(event)” />
 <mx:Button label=”Option 2” toggle=”true” click=”clickHandler(event)” />
 <mx:Button label=”Option 3” toggle=”true” click=”clickHandler(event)” />
 </mx:HBox>
</mx:Application>

In the clickHandler function that executes when a button is clicked, you

set the target property of the Rotate effect to the Button control that was

clicked. Then, you set the angleTo property of the effect to either 45 or

0, depending on the selected state of the button. Finally, you call play(),

which runs the effect and rotates the appropriate button.

You can see the result of Listing 17-5 in Figure 17-6, which shows the first and

third buttons selected.

Figure 17-6:
Use the
Rotate
effect.

 The <mx:Style /> block used in Listing 17-5 contains the @font-face

section. This section embeds the Verdana font, which is used for the Button

controls in the application. If you try to rotate any Flex component that has

text labels, the text disappears when you rotate that component. This also

applies when you want to fade any component in or out as well. If you run the

example in Listing 17-5 after you remove the <mx:Style /> block, the label

359 Chapter 17: Understanding States and Effects

disappears when a button rotates. Always embed the fonts used by any con-

trols that you rotate. For more on embedding fonts, see Chapter 18.

Zooming in and out
You can use the Zoom effect to magnify or shrink controls. Using the Zoom

effect is like setting the scaleX or scaleY properties of a component. The

primary properties of the Zoom effect that you use are zoomWidthTo, zoom-
WidthFrom, zoomHeightTo, and zoomHeightFrom. Each of these proper-

ties is specified as a percentage, in which 1 is equal to 100 percent scale.

Listing 17-6 uses the Zoom effect with the rollOverEffect and rollOut-
Effect triggers to create a fisheye menu effect, as shown in Figure 17-7.

When the user hovers over a button, that button zooms to 150 percent of its

original size. When the user moves off the button, that button zooms back to

100 percent.

Listing 17-6: Zooming Button with the Zoom Effect
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Zoom id=”zoomIn” zoomHeightTo=”1.5” zoomWidthTo=”1.5” />
 <mx:Zoom id=”zoomOut” zoomHeightTo=”1” zoomWidthTo=”1” />

 <mx:HBox clipContent=”false”>
 <mx:Button label=”Option 1”
 rollOverEffect=”{zoomIn}” rollOutEffect=”{zoomOut}” />
 <mx:Button label=”Option 2”
 rollOverEffect=”{zoomIn}” rollOutEffect=”{zoomOut}” />
 <mx:Button label=”Option 3”
 rollOverEffect=”{zoomIn}” rollOutEffect=”{zoomOut}” />
 </mx:HBox>

</mx:Application>

Figure 17-7:
Use the

Zoom effect.

Wiping that look off your face
The Wipe effects come in four varieties: WipeUp, WipeDown, WipeLeft, and

WipeRight. These Wipe effects are masking effects, meaning they mask the area

360 Part V: Exploring Advanced Flex Topics

of the component by making portions invisible. You can use these effects to

make content appear or disappear by wiping across either vertically or hori-

zontally, like a window washer wiping a squeegee across a window.

Listing 17-7 uses the WipeUp and WipeDown effects to transition between

images contained in a ViewStack. These effects produce an animated slide-

show transition.

Listing 17-7: Using Wipe Effects with a ViewStack
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>
 <![CDATA[
 private function nextImage():void {
 // if there are more children in the ViewStack just add 1
 // to the selectedIndex to move to the next child
 if(viewStack.selectedIndex < viewStack.numChildren - 1) {
 viewStack.selectedIndex++;
 }
 // if we have reached the end we start over by
 // moving to the first child again
 else {
 viewStack.selectedIndex = 0;
 }
 }
]]>
 </mx:Script>

 <mx:ViewStack id=”viewStack” click=”nextImage()”>
 <mx:Canvas showEffect=”WipeDown” hideEffect=”WipeUp”>
 <mx:Image source=”assets/image1.jpg” />
 </mx:Canvas>
 <mx:Canvas showEffect=”WipeDown” hideEffect=”WipeUp”>
 <mx:Image source=”assets/image2.jpg” />
 </mx:Canvas>
 <mx:Canvas showEffect=”WipeDown” hideEffect=”WipeUp”>
 <mx:Image source=”assets/image3.jpg” />
 </mx:Canvas>
 </mx:ViewStack>

</mx:Application>

Running multiple effects
Two special effect classes aren’t actual effects themselves — they let you

run multiple effects, either one after the other or at the same time. You can

wrap a few effects within the <mx:Sequence /> tag, which runs each effect

after the preceding effect in the list finishes, so that you can string together

361 Chapter 17: Understanding States and Effects

any number of different effects. Or you can use the <mx:Parallel /> tag,

which lets you run effects simultaneously. You can even nest <mx:Sequence
/> and <mx:Parallel /> tags within one another to create fairly complex

effects.

Listing 17-8 uses the <mx:Sequence /> tag to wrap three separate Move

effects. The resulting effect moves the target to the left, then to the right,

then back to the original position. This movement produces a shaking effect.

In this example, when the user clicks the login button, the entire form shakes

back and forth.

Listing 17-8: Using the Sequence Effect to Make Things Shake
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Sequence id=”shake” target=”{loginPanel}”>
 <mx:Move xBy=”-10” duration=”200” />
 <mx:Move xBy=”20” duration=”200” />
 <mx:Move xBy=”-10” duration=”200” />
 </mx:Sequence>

 <mx:Panel id=”loginPanel” title=”Login”>
 <mx:Form>
 <mx:FormItem label=”Email”>
 <mx:TextInput />
 </mx:FormItem>
 <mx:FormItem label=”Password”>
 <mx:TextInput displayAsPassword=”true” />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label=”Login” click=”shake.play()” />
 </mx:FormItem>
 </mx:Form>
 </mx:Panel>

</mx:Application>

One additional effect becomes useful only when placed within a sequence —

the Pause effect. The Pause effect does absolutely nothing except pause

the sequence of effects for a certain amount of time. You can insert pauses

between each Move effect in Listing 17-8, which produces the following code:

<mx:Sequence id=”shake” target=”{loginPanel}”>
 <mx:Move xBy=”-10” duration=”200” />
 <mx:Pause duration=”200” />
 <mx:Move xBy=”20” duration=”200” />
 <mx:Pause duration=”200” />
 <mx:Move xBy=”-10” duration=”200” />
</mx:Sequence>

362 Part V: Exploring Advanced Flex Topics

Combining States and Effects
by Using Transitions

After you figure out how to create states in your application and how to

create fluid animations by using the effect classes, you can combine both

concepts by using transitions. The Transition class lets you add specific

effects that control how your application moves from one view state

to another. You can add a <mx:transitions> block to your applica-

tion, just like you define your states in a <mx:states> block. Within the

<mx:transition> MXML block, you can use the <mx:Transition /> tag

to define which effects should play when moving from one state to another.

Each <mx:Transition /> tag has a fromState property and a toState

property, which tell Flex when to play the effects. If you specify a state name

for the fromState property and a second state name for the toState prop-

erty, then the effect contained in that transition plays only when the state

changes from the first to the second state. You can also use a wildcard (*)

for the fromState or toState property, or for both properties.

Take the example login application in Listing 17-3 and add the transition in

Listing 17-9. After you add the transition, when the login form changes from

any state (because Listing 17-9 uses the wildcard) into the error state, the

form first resizes smoothly to the new dimensions and then shakes to let the

user know about the error.

Listing 17-9: Adding Transitions to Move from State to State

<mx:transitions>
 <mx:Transition fromState=”*” toState=”error”>
 <mx:Sequence target=”{loginPanel}”>
 <mx:Resize duration=”100” />
 <mx:Move xBy=”-10” duration=”200” />
 <mx:Move xBy=”20” duration=”200” />
 <mx:Move xBy=”-10” duration=”200” />
 </mx:Sequence>
 </mx:Transition>

 <mx:Transition fromState=”*” toState=”loggingIn”>
 <mx:Resize target=”{loginPanel}” />
 </mx:Transition>
</mx:transitions>

Simply adding the 14 lines in Listing 17-9 produces a much more fluid, rich

experience. States, effects, and transitions can produce extremely expressive

applications when you use them correctly.

Chapter 18

Styling and Skinning
Flex Components

In This Chapter
� Using MXML styles to customize your applications

� Styling with external style sheets

� Embedding fonts

� Creating graphical skins

When you start becoming more familiar with Flex, and create and

deploy Flex applications of your own, the standard look and feel of a

Flex application becomes easy to recognize. One of the benefits of Flex devel-

opment is that you get great-looking components straight out of the box;

wiring up a slick-looking application takes almost no time at all. Some would

argue, however, that Adobe made the default Flex look and feel too sleek and

polished, which leads to developers leaving the default visual appearance

unchanged when they deploy their applications. You can end up with more

and more Flex applications that look the same. But you can change all that.

Flex lets you control almost every aspect of the visual appearance of your

applications, from the background colors and borders of your Panels all the

way down to the color of the arrow that appears in a ComboBox. You can

end up producing complete Flex applications that look and feel nothing at all

like the default. You can change the visual appearance of Flex applications by

using styling and skinning:

 � Styling: Setting Cascading Style Sheets (CSS) styles on a component

to change the way the component is drawn. For example, you can set

the border-color style of a Button control to change the color that

the border is rendered in. Styling gives you control over very specific

aspects of the components, but it often doesn’t let you drastically

alter the complete look of the component. For example, styling lets

you change the font color, background color, and rounded corners of

a Button control, but it doesn’t let you change the shape of the Button

control to a five-pointed star.

364 Part V: Exploring Advanced Flex Topics

 � Skinning: A more complete modification of the component’s look than

styling allows. Skins can be either graphical or programmatic. Graphical

skins use image assets (PNG, GIF, JPG, SWF, or SVG files) to completely

replace the look and feel of the component. Programmatic skins use

ActionScript code and the graphics capabilities of the Flash Player to

draw all the parts of the component’s visual appearance at runtime.

 Nearly all the default skinning of the Flex component framework is done with

programmatic skinning. So, when you see a Button control in your Flex appli-

cation, ActionScript code drew all the elements of that Button control (such as

the border, the background gradient, and the highlight) when the Button was

created and added to your application at runtime. Programmatic skinning can

be very powerful because you can use the graphics drawing methods of Flash

for very finely detailed control; however, it is also very difficult to master.

In this chapter, we cover how to use CSS styling to customize the look and

feel of your application, as well as how to apply image assets as graphical

skins. Programmatic skinning can be tedious and fairly complicated, and

it’s outside of the scope of this book. If you’re feeling adventurous, you can

check out the source code of the Flex framework to see how Adobe created

the default skins for all the controls.

Styling
To customize Flex components, you can use both properties and styles,

which you set by using MXML markup or through ActionScript. In general,

you use properties to change the functionality of a component, and you use

styles to change the visual appearance. For instance, toggle is a property

of the Button control that determines whether the Button control remains

in the selected state after it’s clicked. This property affects the functionality

of the Button control. On the other hand, the background color or font

size of the Button control’s text affects the visual appearance but doesn’t

change the functionality. You control these changes by using styles — in

the Button control example, the fillColors and fontSize styles.

Applying styles with MXML
You can apply styles by using MXML markup in the same way that you set

properties with MXML. To change a Button control so that it no longer has

rounded corners, you can use the following MXML code:

<mx:Button cornerRadius=”0” label=”My Button” />

365 Chapter 18: Styling and Skinning Flex Components

You use the same syntax for setting both the cornerRadius style and the

label property. But in this example, cornerRadius is a style, not a property.

We explain this distinction in the section “Changing Styles with ActionScript,”

later in this chapter, when you need to change styles at runtime.

You can create fairly complex styling by using MXML. For example, Listing 18-1

produces an orange button that has a white border, as shown in Figure 18-1.

Listing 18-1: Applying MXML Styles to a Button

<mx:Button label=”My Button”
 fontSize=”14” fontWeight=”normal” fontFamily=”Georgia”
 fontStyle=”italic” fillAlphas=”[1.0, 1.0]”
 fillColors=”[#FF9000, #BF5100]” cornerRadius=”10”
 borderColor=”#FFFFFF” textDecoration=”underline” />

Figure 18-1:
A styled

Button
control.

All the styles that you define in MXML apply only to that single control.

Listing 18-1 creates an orange button with a label in italic Georgia font, but all

the other buttons in your application look like the default Flex buttons. You

can copy all those styles and paste them into the MXML tag for each button

that you want to apply the styles to. But that’s tedious, and making even a

slight change requires going back and finding each place you used those

styles. Thankfully, you have an alternative way to define your styles that

centralizes the style definitions and makes styles reusable across multiple

controls; read on for details.

Using the <mx:Style> block
Instead of defining all your styles by using MXML tags, you can use a

block of CSS styles in your application that apply to all the controls. Add

the <mx:Style> block to your main MXML application file. Within the

<mx:Style> block, you define all the CSS styles that will be used in your

application. You can change Listing 18-1 to produce the modified example in

Listing 18-2.

366 Part V: Exploring Advanced Flex Topics

Listing 18-2: Using a Block of CSS Styles

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Style>
 Button {
 fontSize: 14;
 fontWeight: normal;
 fontFamily: Georgia;
 fontStyle: italic;
 fillAlphas: 1.0, 1.0;
 fillColors: #FF9000, #BF5100;
 cornerRadius: 10;
 borderColor: #FFFFFF;
 textDecoration: underline;
 }
 </mx:Style>

 <mx:Button label=”My Button” />
</mx:Application>

Listing 18-2 defines a style for the Button control on Line 4. This style applies

to all Button controls throughout your entire application. If you’re trying to

define a common style for a certain control, then using this approach lets you

define the style in one place and have it apply everywhere.

 Styles that you define in CSS can follow two naming conventions: styleName

or style-name. For example, to set the corner radius of a Button control to 10

pixels, you can use either cornerRadius: 10; or corner-radius: 10;.

But styles that you define in MXML must use the styleName syntax (like in

Listing 18-1). Also, when you access styles via ActionScript, you must use the

styleName syntax to reference those styles. The styles in Listing 18-2 follow

the styleName syntax because we wanted the example to match the example

in Listing 18-1 as closely as possible; but because we define these styles in a CSS

block, we could have used either naming convention.

In addition to defining styles that apply to all controls of a certain type, such

as Button or Panel, you can also define specific sets of styles and use style

names to apply those styles to individual controls. By enclosing all the styles

within the Button { } block in Listing 18-2, you’re applying those styles to

all buttons. But, instead of using the class name of a control, you can define

a custom style name by adding a period character (.) before a custom name

you choose. For example, Listing 18-3 defines two different styles, one named

blueButton and one named redButton, which use different values for the

fill-colors style.

367 Chapter 18: Styling and Skinning Flex Components

Listing 18-3: Defining Two Named Styles with CSS

<mx:Style>
 .blueButton {
 fill-colors: #0000ff, #000033;
 fill-alphas: 1,1;
 color: #ffffff;
 border-color: #ff0000;
 }

 .redButton {
 fill-colors: #ff0000, 330000;
 fill-alphas: 1,1;
 color: #ffffff;
 border-color: #0000ff;
 }
</mx:Style>

By adding the period character before the name of the style, you create a

custom style that you can reference in your application. After you add these

two styles, you can assign them to a Flex control by setting the styleName

property of any control in your application. In the following example, you

apply the redButton style to the first Button control and the blueButton

style to the second:

<mx:Button label=”Red” styleName=”redButton” />
<mx:Button label=”Blue” styleName=”blueButton” />

 When you define the style names in the <mx:Style> block, you have to add

the period character before the style name. However, when you assign the

name by using the styleName property of a specific component, you don’t

use the period character.

You can also use a combination of styles that apply to a class name (such

as Button), named styles (such as redButton), and MXML styles. The

styles are all inherited and can override each other. So, you can have a

<mx:Script> block that defines certain styles for Button (Listing 18-2) and

also certain styles for redButton (Listing 18-3), and then you define a Button

control in MXML like this:

<mx:Button styleName=”redButton” fillColors=”[0xFFFFFF,
0xFFFFFF]” />

This button first inherits all the styles defined in the Button CSS block

(Georgia font, orange fill colors, and so on); then the styles in the redButton

CSS block, which override the fill and border colors; and finally, the MXML

styles, which override the fill colors defined in CSS by defining a separate set

of fillColors with MXML. The resulting button has a white background

because MXML styles take priority, but it still has all the other inherited

styles from the Button and redButton styles. With MXML styles, you can

always override individual styles on specific controls, if needed.

368 Part V: Exploring Advanced Flex Topics

Attaching an external style sheet
You can separate the visual styling of your application from your MXML

source code even further by using external CSS files. Instead of including

all your style blocks within your main application MXML file by using the

<mx:Style> tag, you can put them all in a separate CSS file. This file con-

tains all your CSS styles (no need for the <mx:Style> part, just add the

styles themselves). Then, instead of using a long <mx:Style> tag, you can

simplify it to point to the location of your external CSS file. You can change

the code in Listing 18-2 by creating a separate file called styles.css and

then referencing that file with a <mx:Script /> tag in MXML and setting the

source property to point to your external file, which reduces the amount of

code in your main application file:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Style source=”style.css” />
 <mx:Button label=”My Button” />
</mx:Application>

 When you start using a lot of CSS styling and your main application MXML

file gets bloated with CSS, you may want to separate out the CSS to make the

MXML code more readable. Creating a separate CSS file also lets you create

variations on the external style sheet and simply change the source property

of the <mx:Style> tag to point to a new CSS style sheet file when you want to

change the look and feel of your application.

Changing styles with ActionScript
In addition to setting styles with CSS style blocks and with MXML, you

can also use ActionScript and set the styles at runtime. Two ActionScript

functions let you work with styles: getStyle(styleName:String) and

setStyle(styleName:String, value:*). These two methods let you

access individual styles and make changes. For example, you can adjust the

corner radius of a Button control on the fly or change the Button control’s

font size when the mouse rolls over it.

The example in Listing 18-4 has a horizontal slider and a button. When the

user drags the horizontal slider, the application calls the setStyle method

of the Button control (myButton) and sets the value of the cornerRadius

style to the current value of the slider.

Listing 18-4: Calling setStyle() to Set Styles at Runtime
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[

369 Chapter 18: Styling and Skinning Flex Components

 import mx.events.SliderEvent;

 private function sliderChangeHandler(event:SliderEvent):void {
 myButton.setStyle(“cornerRadius”, event.value);
 }
]]>
 </mx:Script>

 <mx:HSlider minimum=”0” maximum=”20” value=”4”
 liveDragging=”true” change=”sliderChangeHandler(event)” />

 <mx:Button id=”myButton” label=”MyButton” />
</mx:Application>

If you need to get the current value of any of the styles in your ActionScript

code, you can use the getStyle method. So, to find out the current corner

radius of the Button control in Listing 18-4, you can do something like this:

var radius:Number = myButton.getStyle(“cornerRadius”);

In addition to the getStyle and setStyle methods, you can also set the

styleName property of any component at runtime by using ActionScript,

which enables you to change the style name of a certain control at any time.

When the styleName property of a control changes, its visual appearance

changes to match the new set of styles defined in CSS.

Listing 18-5 changes the styleName property of the Button control from

smallButton to bigButton when the mouse rolls over that control, which

makes the font size of the label increase from 12 pixels to 20 pixels. When

the mouse rolls off the control, the styleName property changes back to

smallButton.

Listing 18-5: Setting the styleName property at Runtime

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
 <mx:Style>
 .smallButton {
 font-size: 12;
 }

 .bigButton {
 font-size: 20;
 }
 </mx:Style>

 <mx:Button id=”myButton”
 label=”My Button” styleName=”smallButton”
 rollOver=”myButton.styleName = ‘bigButton’”
 rollOut=”myButton.styleName=’smallButton’” />

</mx:Application>

370 Part V: Exploring Advanced Flex Topics

Working with fonts
If you’re styling Flex components that display text, then you can set various

styles that affect the font in which the text appears. You can set the font-
family style to control which font the text appears in. The Flex framework

uses the default font Verdana.

 You can set the font-family style of a component to something other than

Verdana, such as Arial or Courier, but the font must be installed on the user’s

computer for it to display correctly in your application. So, even though your

custom-styled application might look great when you test it on your own

computer, it might not look great when a user launches your application on

a computer that doesn’t have the required fonts installed. You can pretty

safely assume nearly all computers have a few standard fonts (such as Times,

Arial, and Courier), but after you start getting into other special fonts, you

have to embed those fonts in your application to ensure that they look the

way you want them to.

 You also need to embed fonts if you’re displaying rotated text anywhere in

your application. If you set the rotation property of a Button control or use

rotated labels on a charting control, you must embed the font. If you don’t

embed the font, then any rotated text disappears.

You embed fonts in your Flex application by using the @font-face CSS

selector. You can tell Flex where to find the font that you’re embedding in

one of two ways:

 � Reference a TrueType Font file (.ttf). Here’s an example of how to

embed the Impact font by referencing a TrueType Font file:

<mx:Style>
 @font-face
 {
 font-family: myImpact;
 font-weight: normal;
 src: url(“impact.ttf”);
 }
</mx:Style>

 � Reference a local system font by name. Here’s an example of embed-

ding the Verdana local system font in bold typeface:

<mx:Style>
 @font-face
 {
 font-family: myBoldVerdana;
 font-weight: bold;
 src: local(“Verdana”);
 }
</mx:Style>

371 Chapter 18: Styling and Skinning Flex Components

You can specify the src of the embedded font in two different ways. The first

example in the preceding list uses src: url(“fontFile.ttf”), and the

second example uses src: local(“FontName”). You can use any name

that you like following font-family:. You use this name in other CSS styles

to reference the embedded font. For example, after you embed those fonts,

you can use the custom font names (myBoldVerdana and myImpact) in

your CSS style definitions, like this:

Button {
 font-family: myBoldVerdana;
}

Label {
 font-family: myImpact;
}

The preceding code uses the myBoldVerdana font for all Button controls in

your application and the myImpact font for all Label controls.

 When you embed the fonts, you must specify the font-weight. In the pre-

ceding example, you embed the bold typeface for the myBoldVerdana font

and the normal typeface for the myImpact font. When you embed a font, only

a certain subset of the complete font is included. If you specify the bold type-

face when you embed a font, then the normal typeface isn’t embedded. This

selective embedding also applies to the font-style, which can be italic,

normal, or oblique. Make sure you embed the right combination of font-
weight and font-style that your application uses.

Also, some of the Flex framework controls have default settings for font-
weight or font-style. For example, the default Flex Button style uses a

bold font, so if you embed a font that you plan to use on a Button control,

you want to embed the bold typeface.

 Before you go crazy with custom fonts and embed a ton of them, you should

be aware of the downsides to font embedding:

 � Embedded fonts are huge. Each font that you embed bloats the size of

your compiled SWF file. Make sure you keep an eye on the size of your

SWF file and the effect of embedded fonts.

 � You might not be allowed. The fonts that you want to use might have

licensing restrictions that prohibit you from embedding them in your

application. Be sure you understand the licensing implications of any

custom fonts that you embed.

372 Part V: Exploring Advanced Flex Topics

Understanding the limitations of styling
You can do a lot to give your Flex application a unique look and feel by using

some simple CSS styling. But even if you change every possible style of a

component, such as a Panel container, you’re still confined to working with

the underlying skin. In the case of the Panel container, the skin defines the

general layout of the title bar, background, and borders around the content.

You can change all sorts of styles that change the colors, padding, and so on

that the skin uses when it draws itself, but you’re limited in what’s possible.

As long as you’re using the default skin, you have to work within the bound-

aries of what the skin lets you do; and different skins support different styles.

For example, the default Canvas skin supports custom values for border-
thickness, border-alpha, and border-color. But the default Button

skin supports only border-color; if you want to change the thickness or

alpha of a Button control’s border, you’re out of luck.

The only way to break out of the constraints of the default Flex skins is to

create your own skins. The following section explains how to use custom

graphics assets as skins to give you more complete control over the look and

feel of your components.

Skinning
If you reach the limits of customizing the Flex components’ appearance by

using CSS styling, then you might want to take full control and start skinning

the components. The following sections cover how you can use graphical

assets to completely change the visual display of your Flex components.

Using the Adobe CS3 skin extensions
In this chapter, we cover the basics of skinning
Flex components with graphical skins. For more
advanced skinning, Adobe has released a set of
extensions for the different products in the CS3
product line that help with Flex skinning. These
extensions work with the other CS3 products
and make it much easier to export complete
skins for various Flex components. For simple
examples like the ones we present in this chap-
ter, you don’t need the extensions; however, if

you start doing more advanced skinning, they
can be very useful. Extensions are available
for Fireworks, Flash, Illustrator, and Photoshop.
You can download these extensions for free
by visiting www.adobe.com/go/flex3_
skinning. You can also find a number of
tutorials about using these extensions at the
Flex Developer Center at www.adobe.com/
devnet/flex/workflow.html.

373 Chapter 18: Styling and Skinning Flex Components

Using graphical skins
Graphical skinning involves creating images for each skin-able part of a

Flex component. These image assets are embedded in your application,

and Flex uses them rather than the default skins. Skinning a Button control,

for instance, might involve creating different images for each state of the

button, such as up, over, down, and so on. Skinning a TitleWindow compo-

nent involves creating assets for the background and border, as well as the

close button. You can create these image assets in whatever image editing or

illustration software you like, as long as you can export one of the following

image formats: SWF, PNG, GIF, JPEG, or SVG.

Simple example: Skinning a Button control
To understand how to apply a graphical skin, this section gives you a simple

example that involves using image assets to re-skin a Button control. Instead

of using the normal look of a Button control, you create a button that dis-

plays a selectable star icon. For the unselected state, the Button control dis-

plays an unfilled star; when the button’s selected, it displays an orange-filled

star. You apply these images to a toggle button, which switches between the

different images.

To start creating graphical skins, you have to create graphical assets in an

image editor. Figure 18-2 shows the individual images that you can use for this

example. You use each of these images for a specific Button control’s state.

Figure 18-2:
Use these
individual

image
assets for

your custom
Button skin.

After you have your graphical assets ready, you can start bringing them into

Flex Builder to skin the Flex Button control. The following steps guide you

through this process:

 1. Create a new CSS file.

 Choose File➪New➪CSS File. Name the CSS file style.css. This new file is

created in your Flex project and opens in Flex Builder.

374 Part V: Exploring Advanced Flex Topics

 2. Create an empty style selector.

 Start with a CSS file that creates a Button style called starButton. Your

CSS file should start out like this:

Button.starButton {

}

 This code creates a set of CSS styles that apply to any Button compo-

nent that has styleName set to starButton.

 3. Switch to CSS Design view.

 CSS Design view loads the default styles for the Button control. Figure 18-3

shows a few of these default styles as they appear in Flex Builder. For an

overview of CSS Design view, refer to Chapter 6.

Figure 18-3:
The default

Button
skin in CSS

Design
view.

 4. Select Skin in the Flex Properties Panel.

 CSS Design view presents two views for working with the visual CSS

editor: Style or Skin. In this example, you want to skin the Button control

with graphical assets, so switch to the Skin view.

 5. Select Image Files from the Skin drop-down list.

 The drop-down list, shown in Figure 18-4, lets you assign graphical

assets from either images or Flash SWF files. In this example, you’re

using individual image files for your skin assets.

Figure 18-4:
Select the
graphical

assets type
for skinning.

375 Chapter 18: Styling and Skinning Flex Components

 6. Specify each image asset for each button state.

 In this example, you’re using five different images for the different

button states. You can see these different images in Figure 18-5.

 After you add all the images, Design view refreshes, and the buttons

states appear with the images you specified, shown in Figure 18-6.

Figure 18-5:
Specify

the image
assets.

Figure 18-6:
CSS Design
view shows
your custom

skin.

376 Part V: Exploring Advanced Flex Topics

 You can switch back to the Source view of the CSS file and see the code

that was generated:

Button.starButton {
 upSkin: Embed(source=”star_button_up.png”);
 overSkin: Embed(source=”star_button_over.png”);
 downSkin: Embed(source=”star_button_down.png”);
 disabledSkin: Embed(source=”star_button_disabled.png”);
 selectedUpSkin: Embed(source=”star_button_selected.png”);
 selectedOverSkin: Embed(source=”star_button_selected.png”);
 selectedDownSkin: Embed(source=”star_button_selected.png”);
 selectedDisabledSkin: Embed(source=”star_button_selected.png”);
}

 7. Apply the skin.

 In your Flex application MXML file, create a <mx:Button> component

tag and set the styleName property to starButton so that it matches

the CSS declaration. Make sure to include a reference to the external CSS

file that you created. Here’s the code to use:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/

mxml”>
 <mx:Style source=”style.css” />
 <mx:Button styleName=”starButton” toggle=”true” />
</mx:Application>

Extended example: Skinning
a Panel container
The example in the preceding section uses multiple image assets to skin the

different states of a Button control. In the example in this section, you skin

a Panel container by creating a single image that you use as the background

(including the title bar and border) of the Panel container. The default Panel

skin, shown in Figure 18-7, shows the different elements of a Panel container:

a title bar that has a title field, a border around the Panel contents, and a

background behind the contents.

The custom Panel skin created in this example includes the same elements,

but you create them outside of Flex, using a graphic editing program just like

for the Button skinning example in the preceding section. The image asset

that you’ll use is shown in Figure 18-8.

The skin shown in Figure 18-8 has some elements that you can easily create

by styling the default Panel skin. For example, you can set the border-
color, header-colors, header-height, and other CSS styles to create a

Panel container that has the same general color scheme, as shown in Figure

18-8. But you simply can’t create the clouds in the title bar and the leaves in

the bottom-left corner with styling alone.

377 Chapter 18: Styling and Skinning Flex Components

Figure 18-7:
The default
Panel skin.

Figure 18-8:
A custom
graphical

Panel skin.

To take the image shown in Figure 18-8 and turn it into a Panel skin, you

follow the same process that we outline in the preceding section: Create a

new CSS file, start with a CSS style for the Panel class, and then switch over

to CSS Design view to visually edit the CSS skin. You can apply an image asset

to the skin of a Panel container just like you can for the various skin states of

a Button control.

When you specify an image asset as the skin for a Flex component like a

Panel container, the default behavior stretches the image to fit the compo-

nent’s width and height, which often distorts the image. For example, imagine

if you tried to take the image created in Figure 18-8 and apply it to a Panel

container that was 400 pixels wide by 100 pixels high. The resulting Panel

container would look like Figure 18-9, which probably isn’t what you want.

You can overcome these distortion problems by using a scale-nine grid (also

referred to as scale-9 or 9-slice scaling). A scale-nine grid defines four grid lines,

which divide the image up into nine distinct parts, as shown in Figure 18-10.

378 Part V: Exploring Advanced Flex Topics

Figure 18-9:
This graphi-

cal skin is
incorrectly

scaled.

Figure 18-10:
A scale-nine

grid.

Not scaledScaled vertically

Scaled horizontally

These nine different parts of the image are scaled differently. The four

corners aren’t scaled at all; they always remain the same dimensions. The

middle areas along the top and bottom edges scale horizontally, but not

vertically. The two areas on the left and right edges scale vertically, but not

horizontally. You may find scale-nine scaling especially useful when you work

with rounded corners, as shown in Figure 18-11.

For this example, you don’t want the clouds that appear in the top-left of the

skin to scale at all, either vertically or horizontally. Similarly, you also don’t

want to scale the leaves in the bottom-left corner. The portions of the border

on the left and the right of the skin should scale vertically, but not horizon-

tally. The top portion (the title bar) and the bottom border should scale hori-

zontally, but not vertically.

CSS Design view has a built-in scale-nine grid editor that you can access by

clicking the Edit Scale Grid button, shown in Figure 18-12.The scale-nine

editor lets you drag the four grid lines to create your custom scale-nine grid.

By defining a custom scale-nine grid for this skin, as shown in Figure 18-13,

you can control exactly how this image will scale, so you can make sure that

the various elements aren’t distorted.

This scale-nine grid lets you scale the Panel container to any dimensions

while still retaining the correct proportions.

379 Chapter 18: Styling and Skinning Flex Components

Figure 18-11:
Applying a
scale-nine

grid to a
rounded

rectangle.

Figure 18-12:
Accessing
the scale-

nine editor.

Figure 18-13:
The scale-

nine grid for
the custom
Panel skin.

In addition to using the image asset as the skin for this Panel container, you

also need to use additional CSS styles to complete the visual customization.

Using a custom image skin doesn’t change the font size or color of the title

text, so for that, you still use the font-size and color CSS styles. In the

end, your Panel CSS style includes the image skin that has the scale-nine grid

defined, as well as all the other CSS styles that properly size and place the

title text field and the Panel’s contents. The full CSS listing for this skinned

Panel is shown in Listing 18-6.

380 Part V: Exploring Advanced Flex Topics

Listing 18-6: Defining a Custom Panel Skin in CSS
Panel {
 borderSkin: Embed(source=”nature_panel.png”,scaleGridLeft=”130”,scaleGridTop=

”74”,scaleGridRight=”189”,scaleGridBottom=”205”);
 titleStyleName: panelTitle;
 padding-top:85;
 header-height: 110;
 padding-left: 80;
 padding-right:20;
 padding-bottom:80;
 font-size:14;
 color: #282828;
 font-weight: bold;
}
.panelTitle
{
 color: #000000;
 font-weight: bold;
 font-family: Verdana;
 text-align: left;
 font-size: 24;
 font-style: italic;
 vertical-align:bottom;
 text-indent: 50;
}

Listing 18-6 produces a Panel that has a completely custom appearance, as

shown in Figure 18-14.

Figure 18-14:
This Panel

has custom
graphical

skinning and
CSS styling.

 You can do this level of customization only through a combination of both

styling and skinning. Styling alone can produce some great-looking results, but

it can only get you so far when you want to radically alter the look of the Flex

components. By utilizing both the CSS and graphical skinning capabilities of

Flex, you can have full control over the visual appearance of your application.

Part VI
The Part of Tens

In this part . . .

We share ten open-source projects that you can

download to enhance your Flex applications. The

Flex open-source community is thriving, and new compo-

nents and libraries are released every day. In Chapter 19,

we pick ten projects that we think are especially worth

checking out. You can also use many other resources to

keep your Flex knowledge up-to-date after finishing this

book. Chapter 20 lists ten helpful resources that you

should bookmark as you continue using Flex.

Chapter 19

Ten Open-Source Flex Libraries
In This Chapter
� Tapping into a collection of Flex user interface components

� Creating complex data diagrams

� Drawing complex graphics with simple MXML markup

� Building unit tests for your ActionScript code

� Visually debugging your application at runtime

� Using 3D engines and physics libraries in your Flex applications

There’s nothing better than getting something for free. A strong open-

source Flex community produces some fantastic code that you can freely

use in your own applications. So why not grab a few open-source projects

and drop them into your Flex application? If someone else has already done

the work, there’s no reason to reinvent the wheel.

In this chapter, we cover ten open-source projects that you can try using in

your Flex applications. This list only scratches the surface of what’s available

in the Flex community. Use this list as a starting point, but keep in mind that

new open-source projects are starting up all the time. (See Chapter 20 for

some resources you can use to find more projects.)

FlexLib
http://code.google.com/p/flexlib

FlexLib is a popular collection of Flex user interface components that you can

use in your own Flex applications. Many of the components in FlexLib extend

the original controls in the Flex framework and add additional functionality.

Here are a couple of examples:

384 Part VI: The Part of Tens

 � The PromptingTextInput control: A simple extension of the normal

TextInput control in the Flex framework that adds a prompt message if

the text area is empty, as shown in Figure 19-1

 � The SuperTabNavigator: Adds closeable, re-orderable, scrollable tabs to

the normal TabNavigator container, which you can see in Figure 19-2

FlexLib also contains a few subprojects, including the Flex Scheduling

Framework (which we cover in the following section) and a Multiple

Document Interface (MDI) framework. The MDI framework builds on the func-

tionality of TitleWindow, adding features such as minimizing and resizing of

windows and cascading and tiled window layouts to help you manage appli-

cations that work with multiple windows.

Figure 19-1:
The

Prompting
TextInput

control.

Figure 19-2:
Drag tabs
to reorder

them.

The Flex Scheduling Framework
http://code.google.com/p/flexlib

The Flex Scheduling Framework is a set of components that you can use to

create calendar-like scheduling applications. For example, you can use the

Scheduling Framework to create a reservation application that displays the

available time slots for dinner at a restaurant. Figure 19-3 shows an example

schedule created by using the framework.

Adobe Consulting created the Flex Scheduling framework and initially hosted

it on the Adobe Labs Web site, but the Flex Scheduling framework has since

merged with the FlexLib project, which community developers maintain.

385 Chapter 19: Ten Open-Source Flex Libraries

Figure 19-3:
A sample
schedule

created
with the

Scheduling
Framework.

Flex Visual Graph Library
http://code.google.com/p/flexvizgraphlib

The Flex Visual Graph Library is a data visualization framework that you can

use to create complex data diagrams. Fundamentally, you use the Visual

Graph Library to draw connections (edges) between items (nodes). You can

visualize the connections of a social networking Web site, a diagram of your

office’s network, or even an organization chart to show hierarchical data. The

Library includes multiple layout algorithms that can produce various graph

visualizations. Figure 19-4 shows a graph created by using the hierarchical

renderer.

Figure 19-4:
A sample
hierarchi-
cal graph
from the

Flex Visual
Graph

Library.

386 Part VI: The Part of Tens

Degrafa
http://degrafa.com

You can draw all kinds of complex graphics by using the low-level graphics

API built into Flash Player. In fact, almost all the default skinning of the Flex

SDK controls is drawn with ActionScript code that uses the graphics API

(instead of using embedded image assets). But programmatically drawing

complex compositions can be very complicated and burdensome. Degrafa,

which stands for Declarative Graphics Framework, solves this problem

by letting you use MXML markup to draw graphics, instead of using the

ActionScript APIs directly. For example, you can create complex shapes with

layered gradient fills with a few lines of MXML code instead of the complex

ActionScript code that you would need without the Degrafa library.

OpenFlux
http://code.google.com/p/openflux

OpenFlux is a Model View Controller (MVC) component framework for Flex

UI components that applies the MVC design pattern on a component level

(rather than on the application level, like Cairngorm does, which we cover in

the section “Cairngorm,” later in this chapter). The goal of the OpenFlux proj-

ect is to define a new core set of Flex components that you can more easily

extend and customize than the default Flex components in the Flex SDK.

Each component follows the MVC pattern, which means that the view repre-

sentation of a component is completely separate from the underlying data

structure. You can swap out different views for the same component without

changing the model or controller of the component.

FlexUnit
http://code.google.com/p/as3flexunitlib

FlexUnit is a unit-testing framework that helps you build unit tests for your

ActionScript code. FlexUnit is modeled after JUnit, a unit-testing framework

for Java. So, if you know how to unit test Java code, then you should be able

to pick up the FlexUnit syntax fairly easily. If you’re not familiar with the term

unit testing, it is a fundamental principle of Test-Driven Development (TDD)

that focuses on developing reliable test cases that ensure your code is work-

ing correctly while you develop your application.

387 Chapter 19: Ten Open-Source Flex Libraries

Cairngorm
http://labs.adobe.com/wiki/index.php/Cairngorm

Cairngorm is a lightweight Model View Controller (MVC) micro-architecture

framework that you can use for Flex application development. The MVC

approach to development defines a set of design patterns that clearly sepa-

rate your application into three main parts:

 � The model: Holds all the underlying data in your application

 � The view: The user interface that displays the data in the model

 � The controller: The business logic that’s used behind the scenes to

populate the data in the model

Cairngorm provides a framework that specifically applies the MVC pattern

to Flex application development. When you start designing larger and more

complex Flex applications, you should look into Cairngorm or another MVC

framework.

 Cairngorm was originally developed by a company called iteration::two, which

Adobe bought, creating Adobe Consulting. In case you’re ever playing Flex

trivia, you should know that Cairngorm is named after a mountain in Scotland

(iteration::two was based in Scotland).

Flex-Spy
http://code.google.com/p/fxspy

Flex-Spy is a visual debugging tool that lets you inspect the properties and

styles of any component in your application at runtime. When you include

the Flex-Spy library in your application, you can launch the inspector with

a keystroke. After the property inspector loads, select any UI component in

your application, and a list of all the properties and styles of the component

and the current values appears. You can see what the property inspector

looks like in Figure 19-5. You can use this valuable tool to understand exactly

what’s happening while your application is running, without having to jump

into the full-fledged Flex Debugger.

388 Part VI: The Part of Tens

Figure 19-5:
The

Flex-Spy
property

inspector.

PaperVision 3D, Away 3D, and Sandy 3D
http://code.google.com/p/papervision3d
www.away3d.com
www.flashsandy.org

 This section and the following section cover 3D and physics engines written

in ActionScript 3; however, none of the projects covered here are actually Flex

projects. ActionScript-only projects don’t use the Flex SDK framework. You

can still use any ActionScript 3 project in your Flex applications, although you

need a bit more technical ActionScript knowledge to figure out how to use

these projects within your Flex applications. Even though the 3D and physics

packages aren’t Flex-specific projects, we include them in this chapter simply

because they’re amazingly cool and let you create experiences that push the

boundaries of Web-based applications.

Some of the most cutting-edge Flex development has started to integrate 3D

interfaces and effects, which produces some amazing visual results. Flash

Player itself doesn’t have any built-in 3D support (although some of that

is coming in Flash Player 10), but developers in the Flash community have

created a number of 3D engines. PaperVision 3D and Away 3D are related

but separate projects. Both started from the same code-base and have

since diverged into two distinct 3D engines. Sandy 3D has a longer history

and started as an ActionScript 2 3D engine, which has since been ported to

ActionScript 3 for continued development. All three of the main ActionScript

3 3D engines have similar capabilities and allow you to develop full 3D inter-

active scenes.

An example of combining a 3D engine (in this case, PaperVision) and normal

Flex components is shown in Figure 19-6.

389 Chapter 19: Ten Open-Source Flex Libraries

Figure 19-6:
 A 3D Flex

inter-
face that
uses the

PaperVision
3D engine.

APE and Box 2D
www.cove.org/ape
http://box2dflash.sourceforge.net

The other set of ActionScript 3 (not Flex-specific) libraries that we talk about

in this chapter are physics engines. You can use these physics engines to add

realistic physics simulations to your Flex applications. Game programmers

often use these engines when they create games, but you don’t have to limit

the physics to gaming.

One of the earliest physics libraries was the ActionScript Physics Engine

(APE), which lets you create a simulation of circular physics particles that

can bounce off each other in a realistic manner. A few more recent physics

engines add rigid bodies to the mix, so you can use polygons of any shape in

the simulation. Box2D is a port of a physics engine of the same name origi-

nally written in C++.

 We mention both physics and 3D libraries in this chapter to try to show that

you can use all the fancy, cutting-edge ActionScript 3 libraries in your Flex

applications, even if the original developers wrote the libraries primarily for

Flash developers. You can use anything written in ActionScript 3 when you

develop Flex applications, so if you think creatively, you can make some jaw-

dropping applications.

390 Part VI: The Part of Tens

Chapter 20

Ten Flex Resources
In This Chapter
� Exploring online Flex resources

� Discovering real-world Flex communities

Now that you’ve begun your Flex development, you’re part of the rich,

robust, and active Flex community. As a Flex developer, you can take

advantage of many Flex resources, both online and in the real world, that can

sharpen your Flex skills and offer great tips and tricks for your application

development. This chapter discusses those resources and how you can take

advantage of them to better your Flex development experience.

flexcoders Yahoo! Group
When Flex 1.0 shipped, Adobe started a Yahoo! Groups mailing list dedicated

to answering questions posed by the Flex community. At the time, the Flex

community was small. Adobe engineers on the Flex team answered most of

the posts themselves. This Yahoo! Group, called flexcoders, is still active, fea-

turing hundreds of useful postings every day.

Anyone can submit a posting on flexcoders. Usually, you submit a question,

and in time, other Flex developers reply to the message thread to answer the

question. Flex domain experts, as well as engineers directly working on the

Adobe Flex team, often answer questions posted on flexcoders. You usually

get the highest-quality answers from this group of individuals. (We should

know — we’re both common posters to flexcoders, answering community

questions!) Of course, anyone can answer a question on flexcoders, so dedi-

cated Flex developers of any caliber answer questions. In addition to posting

technical questions to flexcoders, people often post random Flex polls, com-

mentary on the Flex community or the status of Flex, and calls to conferences

and Flex community events.

392 Part VI: The Part of Tens

 Please be courteous when posting questions and answers to the flexcoders

mailing list. Everyone who answers questions on the list is doing so volun-

tarily. Even the Adobe engineers who are active on the list are acting out

of their own personal interest — it is not part of their job. If your question

isn’t answered right away, you might need to provide further clarification to

explain your problem, or it might simply be that nobody knows the answer.

Also, try searching the archives of the list before you post because many

common questions have already been answered.

To subscribe to flexcoders visit http://tech.groups.yahoo.com/
group/flexcoders/. After you have subscribed, you can post a question to

the list by sending an e-mail to flexcoders@yahoogroups.com. To answer

questions from other Flex developers posted to flexcoders, join the mailing

list and reply to the e-mail threads to answer away!

Flex Developer Center
You can find a wealth of Flex knowledge at the Flex Developer Center (www.
adobe.com/devnet/flex/). The Flex Developer Center is part of the

Adobe Developer Connection and contains many technical articles and white

papers about the Flex technology that you, as a Flex developer, may find

very useful. Additionally, the Flex Developer Center hosts the Flex Cookbook,

which contains easy-to-digest code snippets and tutorials that describe

common Flex workflows, such as creating item renderers and custom

ToolTips, and sorting a DataGrid in ActionScript. You can find the Flex

Cookbook at www.adobe.com/go/flex_cookbook.

The Adobe Developer Connection has so much information that you might

want to use the search utilities provided on the home page so that you can

search the site for the information you need. You can use the keyword search

to pull up information ranging from small code snippets all the way to large

scale, multi-page whitepapers on various Flex topics. Adobe engineers, as

well as non-Adobe third-party engineers and leading thinkers, write the

Adobe Developer Connection content.

Flex User Groups
User Groups (UGs) allow like-minded developers working on common

technologies to meet in person weekly or monthly to share ideas, tips, and

tutorials; put faces to names; and, in general, empower and strengthen their

respective development community. Flex User Groups exist in most metro-

politan areas and meet, usually monthly, to share Flex development tips, con-

duct basic Flex training, and invite speakers from Flex or related technologies

to speak to the group.

393 Chapter 20: Ten Flex Resources

 You can use two lists to find out if a Flex User Group exists in your vicinity and

get the details on when and where it meets. First, try visiting http://flex.
org/community/ to view a map of the user groups specifically devoted to

Flex. Adobe also keeps an additional list of all user groups for all Adobe tech-

nology at www.adobe.com/cfusion/usergroups. Both of these resources

provide the contact details and User Group home page, which should have

more details about past meetings, dates for future meetings, and agendas.

We’re both regulars at the Silicon Valley Flex User Group meeting and can

attest to the breadth of knowledge and the feeling of community that perme-

ate all Flex User Groups. We both encourage you to see if a user group meets

in your area and try to attend a meeting so that you can become part of the

Flex community. And if you’re ever in San Francisco, see if our local user

group is meeting (check www.silvafug.org) and come and say hello.

Flex Interface Guidelines
As most developers can attest, having a visual designer to help with the

overall visual aesthetics of your Flex application can really improve the over-

all quality of the application. Many projects don’t have designers, and Flex

developers often have to wear both the developer hat and the designer hat.

Adobe took a step toward helping developers in these situations by publish-

ing a document titled The Flex Interface Guidelines (FIG), which highlights

very common and useful design patterns that you can use in your application

to improve the usability and general experience of navigating through the

application. You can find the FIG document, as well as Flex components and

code that highlight these design patterns, at the Flex Developer Center by

visiting www.adobe.com/devnet/flex/ and clicking Flex Interface Guide.

The FIG highlights some common design patterns, such as how to add anima-

tion and movement to your application in a useful and not “busy” way. FIG

also details similar patterns related to application navigation, ToolTip and

callout management, and cursor management. It explains what Flex controls

to use and how to configure them so that you can achieve the desired design

pattern. Check out the FIG documents and code examples if you want to add

some usable and clean visual design patterns to your Flex development.

Flex Blogs
With the number of Flex developers growing and the wealth of their knowl-

edge increasing dramatically, many Flex developers (both internal and exter-

nal to Adobe) have taken to sharing Flex information on their blogs. These

blogs often contain critical information about workarounds on existing bugs

in the Flex framework, workflow improvement tips, performance and memory

394 Part VI: The Part of Tens

management tips, and general thought-provoking questions about Flex, the

future of Flex, and the Flex community.

A handy resource for finding valuable Flex blogs is Adobe’s blog aggrega-

tor service (originally referred to as MXNA for Macromedia XML News

Aggregator, but now known as AXNA after the Adobe acquisition). This ser-

vice collects blogs related to any Adobe technology, such as Flex, and posts

them to a central Web site. To query Adobe’s blog aggregator service, go to

http://feeds.adobe.com. On the aggregator site, you can browse and

search blog entries on various Adobe topics, such as Flex, Air, or Photoshop,

as well as use the keyword search on the right sidebar of the site to search

for blog entries related to a particular topic. You can find a wealth of informa-

tion stored in personal and professional Flex blogs, and this aggregator gives

you a handy resource for accessing and viewing these blog entries.

While exploring the Adobe blog aggregator, you may notice that we both

have our own Flex blogs in which we post tips and tricks, code snippets, Flex

components, and general Flex commentary. The Flex community reads and

respects both blogs, and you may want to check them out. Here are our blog

site URLs:

 � Deepa Subramaniam: www.iamdeepa.com/blog

 � Doug McCune: www.dougmccune.com/blog

Open-Source Adobe Site
When Flex 3 shipped, Adobe Flex officially went open source. As part of this

effort, Adobe created a Web site that held all the open-source information

related to Flex, including nightly development builds of Flex, timelines and

documents related to future releases of Flex, links to the Flex source code,

and instructions on how to download and build Flex from the source code.

When you advance in your Flex development, you may want to visit this

site to find more information about Flex or submit your own code patches

to the open-source Flex effort. You can find all the information you need

about open-source Flex, as well as other open-source Adobe technologies, at

http://opensource.adobe.com.

Flex Conferences
You can find many high-quality Flex conferences around the world where

you can meet other Flex community members and find out more about the

advanced technical aspects of Flex. Many of these conferences focus solely on

Flex, but others incorporate information about Flash and other related Adobe

395 Chapter 20: Ten Flex Resources

(and non-Adobe) technologies. You may find Adobe’s MAX conference and

360|Flex conferences worth checking out because of their breadth and quality.

MAX
The yearly MAX conference is Adobe’s user conference. This conference usu-

ally takes place in the fall in North America, Japan, and Europe. It’s the larg-

est conference that Adobe officially organizes. It involves talks and seminars

about all Adobe technologies and often focuses heavily on Flex, as well as

the Flash and AIR technologies. Speakers include many Adobe product-

engineering team members (like Deepa!), as well as industry speakers who’ve

proven their breadth of knowledge in their particular field. To find out more

about MAX, when and where it’s occurring, planned agendas, speaker lists,

and details about past Adobe conferences, you can visit Adobe’s MAX

homepage at http://max.adobe.com/.

360|Flex
360|Flex was the world’s first conference to focus solely on Flex. These con-

ferences happen all over the world, from San Jose to Milan. Speakers at the

360|Flex conferences usually include some Adobe engineers and technical

evangelists, as well as many leading Flex developers from the industry. The

360|Flex conferences provide a great venue for Flex developers to meet face

to face, exchange ideas and knowledge, and even get hired! Both of us have

spoken extensively at 360|Flex conferences, and we think they’re some of

the best Flex conferences out there. 360|Flex conferences have abnormally

low attendance fees when compared to other conferences because the event

organizers strive to keep costs low and maintainable. To find out more about

past and upcoming 360|Flex conferences, visit www.360flex.com.

Flex.org
When Flex 2.0 released, Adobe decided to sponsor a Web site that consoli-

dated various Flex-related information, such as technical articles, conference

information, forum mailing lists, and third-party open-source works. This

Web site became Flex.org (www.flex.org). The site has links to other Flex-

related resources by both Adobe and community developers. Flex.org also

serves as a great starting point for people new to the Flex technology family

because it offers many small articles that describe what Flex is and how it

relates to other technologies in the Rich Internet Application (RIA) develop-

ment space, and it also includes a terminology guide. If you’re new to Flex or

helping someone on your team get up to speed, Flex.org is a great starting

point to begin your exploration.

396 Part VI: The Part of Tens

Public Flex Bugbase
Prior to the Flex 3 release, Adobe announced that the Flex SDK was going to

be open-sourced (at this point, the Flex SDK was already free software). As

part of this open-source movement, Adobe released an open bugbase for Flex

in which anyone can file new bugs, check on the status of existing bugs, and

vote on bugs as a way to indicate their priority when Adobe fixes bugs for

the next release. You can access the public Flex bugbase at http://bugs.
adobe.com/flex.

This bugbase is based on JIRA. (JIRA is a common technology used to host

and serve bugbases.) Anyone can search the bugbase for all the filed bugs,

although you get more functionality (such as being able to file new bugs

or edit existing bugs to add comments) if you have a bugbase account. To

create a bugbase account, follow the New User instructions at the site.

When you go forward with your Flex development, you’ll probably want

to report a bug or file an enhancement request for the technology at some

point, and the public bugbase allows you to do this in an open and transpar-

ent manner that helps the entire Flex community.

flexjobs Yahoo! Group
Similar to the Group discussed in the section “flexcoders Yahoo! Group,” ear-

lier in this chapter, Adobe created a Yahoo! Group for job postings related to

Flex and Flash. People looking for Flex contract work subscribe to this Group

(http://tech.groups.yahoo.com/group/flexjobs/), as do people

looking to hire Flex developers. If you’re a Flex developer interested in find-

ing contract or full-time work, or you want to hire Flex developers for a proj-

ect, flexjobs is one of your best bets. Many talented Flex developers monitor

the list looking for exciting and interesting possibilities, and you can get your

work and talents in the public Flex eye.

Index
• Symbols and
Numerics •
@ (at) sign

EmailValidator, 206

XML data, 166

@Embed syntax, 150

@font-face, 358, 370

{} (curly braces) in MXML data binding

expression, 286–287, 291

3D engines for ActionScript, 388

100% setting for chart, 259, 261–262

360|Flex conference (Web site), 395

• A •
absolute compared to relative layout

containers, 108–110

accessibility enabled application, 67

Accordion navigator control, 242–245

Action Message Format (AMF) binary

transfer, 320

ActionScript

3D libraries, 388

Array data structure, 159

ArrayCollection, 161, 298–300

audio controls, 151–153

black box aspect of, 34–35

classes in, 31–33, 35–36

code blocks in MXML fi le structure,

75–78

code hinting, 80, 81

component creation decisions, 341

container elements, 221

in data binding expression, 78, 288–289

defi nition, 2

effect triggers, 354

event listeners, adding, 45–47

getters and setters, 33–34

historical development, 10–11

import statements, 82–84

inheritance concept, 36–37

interface overview and defi nition, 37–38

introduction, 27

JavaScript, compared to, 13–14, 30, 40

Menu controls, 175–176

MXML, relationship to, 40–42, 75–78

objects in, 31–33

overview, 10

packages in, 35–36

physics engines, 388

pop-up control, 137

renaming classes, 99

sizing properties for container

components, 223

skinning with, 364

static methods and variables, 38–40, 235

styles, 79, 368–369

XML objects, 159

XMList objects, 160

XMLListCollection, 162, 301–302

ActionScript Physics Engine (APE), 389

ActionScript Project type, 59, 63–65

addChild method, 221

addEventListener method, 45

addItem method, 306

addItemAt method, 306–307

addPopUp method, 39

Adobe CS3 skin extensions (Web site), 372

Adobe Developer Connection, 392

Adobe Flash

Flex, relationship to, 1, 10, 12–13

historical development, 11

loading of external XML data, 10

programmatic skinning, 364

XML objects, 159

Adobe Flash Player

advantages of, 14

HTML support, 149

lack of 3D support, 388

overview, 11

remote data access restrictions, 315–316

Silverlight, compared to, 14–15

398 Adobe Flex 3.0 For Dummies

Adobe Flex

advantages of, 9

AJAX, relationship to, 13–14

application-building process, 17–25

benefi ts of, 14

components of, 10–11

CSS support, 78

data binding. See data binding

data collections. See data collections

defi nition, 10–11

development tool. See Flex Builder

Flash, relationship to, 1, 10, 12–13

framework for. See framework, Flex

history, 10–11

introduction, 1–5

manager tools, 323–332

new developments, 12

open-source materials, 10–11,

383–389, 396

remote data. See remote data

resources, 391–396

as RIA, 9–10

Silverlight, relationship to, 14–15

version differences, 55

Web site, 54

Adobe Integrated Runtime (AIR)

(Web site), 11, 15, 61

Adobe Labs (Web site), 55

Adobe Web site, 54

AdvancedDataGrid control, 171

AIR (Adobe Integrated Runtime) (Web

site), 11, 15, 61

AJAX (Asynchronous JavaScript and XML),

13–14, 27

Alert control, 235–236

Alert.show function, 39, 235

alignment controls, Design mode, 110–112

alignSymbol property, 204, 212

allowedFormatChars property, 205–206

allowMultipleSelection property, 177

Alphabetical properties inspector view, 120

AMF (Action Message Format) binary

transfer, 320

animation

in charts, 274–276

effect classes, 354–361

transitions, 362

APE (ActionScript Physics Engine), 389

API (application programming interface),

313, 316

Apollo (AIR), 11, 15, 61

application programming interface (API),

313, 316

application server, accessing data through.

See remote data

Application tag

default, 22–23

as default start for MXML fi le, 28, 75

introduction, 21

SystemManager, relationship to, 332

Application.application variable, 39

ApplicationControlBar container, 237–238

applications (projects), Flex Builder

build phase, 25, 71

deleting, 68

editing settings, 67

Flex SDK version targeting, 68–69

importing and exporting, 69–71

organizing and editing, 65–71

overview, 18–19

running and releasing, 10, 25, 71–74

types, 59–65

AreaChart, 259, 261–262

areaCodeFormat property, 214

AreaSeries, 260

Array data structure

in charts, 255

as source for collections, 298–300

user interface controls, 158–159, 178

ArrayCollection, 161, 298–300, 306–307

AS fi le format, 31

as operator, 44

asynchronous data loading, 9–10, 13

Asynchronous JavaScript and XML (AJAX),

13–14, 27

@ (at) sign

EmailValidator, 206

XML data, 166

@Embed syntax, 150

@font-face, 358, 370

attributes (properties)

attribute declaration, 21

attribute listener, 43

bindable, 289–290

399399 Index

casting to classes, 44

commitProperties method, 334–336

data binding, 285–292

data collection, 298–303

defi ning, 342

defi nition and function, 31

of fi elds in charts, 254

formatter, 210

getters and setters, relationship to, 33–34

NumberFormatter, 211–212

Rotate effect, 357–358

styles, compared to, 364

TabNavigator, 245–246

text, 21–22, 147, 149, 210

ToolTip, 331–332

transition, 362

validator controls, 197–199

Zoom effect, 359

audio controls, 149, 151–153

autoLoad property, 150

automatic builds, 82

Average Self Time CPU performance

measure, 96

Away 3D (Web site), 388

axes options in charts, 269–271

AXNA (Adobe XML News Aggregator)

(Web site), 394

• B •
background, skin as, 376

BarChart, 256–259

base class, choosing, 338–340

base state, defi nition, 348

behavior, defi nition, 355

best practices guidelines, Adobe

(Web site), 43

bidirectional data binding expression, 292

binary compression for data transfer, 320

Bindable metadata, 293–294

binding, data

in ActionScript, 78, 288–289

bidirectional expression, 292

bindable property, 289–290

ComboBox control, 140

complexity of DataGrid controls, 169

debugging expressions, 292–293

deferred instantiation, relationship to, 247

defi nition, 285

destination property, 285–288, 290–292

expression structure, 285–286

formatter controls, 209–211

interactive form example, 294–296

introduction, 285

List controls, 164

metadata, 293–294

multiple destinations or sources,

290–292

in MXML, 41, 286–289, 291

source property, 285–292

in video display example, 156

Blaze DataSet (Web site), 320

blogs, Flex-related (Web site), 393–394

borderStyle property, 222

Box 2D, 389

Box container, 226

box layout containers, 225–228

branch nodes in Tree control, 173

breakpoints, adding to code, 84–85

browsers

cross-browser support, 14

WebKit, 15

bubble phase of event propagation, 47

BubbleChart, 267

bugbase, Adobe Flex, 396

Build Automatically option, Flex Builder,

71–72

build path, 61–62, 64

build phase, project, 25, 71

Burd, Barry (author)

Eclipse For Dummies, 54

button-based user interface controls,

130–139

Button control

in Canvas container, 225

event handling, 42–46

measure method, 336

nesting of containers, 29

skinning, 373–376

workings of, 131–133

ButtonBar control, 240, 242

400 Adobe Flex 3.0 For Dummies

• C •
Cairngorm (Web site), 387

calendar controls, 140–142

CandleStickChart, 269

Canvas container, 219, 223–224

capture phase of event propagation, 47

cardNumberProperty property, 203

cardNumberSource property, 203

cardTypeProperty property, 203

cardTypeSource property, 203

Cascading Style Sheets (CSS)

Accordian control, 244

external style sheet, 78, 368

Flex’s support for, 78

font styles, 370

graphical skins, 373–377, 379–380

opening, 123

style block, 75–77, 123–125, 365–368

styles introduction, 363

caseInsensitive property, 304

casting of properties to classes, 44

Category properties inspector view, 119

CategoryAxis, 269

categoryField property, 269

<![CDATA[portion of Script block, 77

centerPopUp method, 39, 330

change event

ComboBox control, 139

MenuBar control, 177

overview, 50

RadioButtonGroup control, 134–135

slider control, 145

charting components

animation, 274–276

AreaChart, 259, 261–262

axes, 269–271

BarChart, 256–259

BubbleChart, 267

CandleStickChart, 269

ColumnChart, 256–259

data rendering, 253–256

example listing, 276–281

HLOCChart, 269

interactivity, 273–274

introduction, 253

legends, 272

LineChart, 259–261

PieChart, 262–266

PlotChart, 267

ChartItemEvent, 273

CheckBox control, 133, 228–229

child components

Accordian container, 241–242

adding, 220–221, 340–341

child nodes in Tree control, 173

control bars in Panel containers, 237

deferred instantiation of, 246

navigator controls, 239–240, 243

Panel container, 231–232

positioning, 223–225

removing from containers, 220–221

sizing within container, 222–223, 227–228

tiling of container, 229

circular loop from complex data binding

expressions, 292

Class column in Live Objects panel, 91

classes

Alert, 236

choosing base for component, 338–340

collection-related, 160–163, 298

container-related, 220, 226

controls-related, 158

effect, 354–361

HTTPService, 309–316

inheritance concept, 36–37, 130–131,

158, 220

mx.core.UIComponent, 130–131, 196,

333, 339

naming, 97–99

overview and defi nition, 31–35

packages, relationship to, 35–36, 100

PopUpManager, 39

sound-related, 151–153

Transition, 362

WeatherForecast, 317–320

Clean dialog box, 72

cleaning projects, 72

clearing validation errors, 197

click event

Button control, 131–132

CheckBox control, 133

LinkButton control, 135

overview, 42–46

RadioButton control, 133

401401 Index

clickable user interface controls. See also

Button control

button-based, 130–139

ColorPicker, 140

ComboBox, 139–140

date-based, 140–143

introduction, 130

scrolling, 143–144

slider controls, 144–145

Close button for TitleWindow container, 233

closing tag, 21

clustering in charts, 257

code blocks in MXML fi le structure, 75–78

code hinting, 22, 79–81

collection classes, 160–163, 298

collections, data

accessing data items in, 306–307

ArrayCollection, 161, 298–300, 306–307

fi ltering, 305–306

introduction, 297–298

methods, 302, 305–307

properties, 298–303

sorting, 303–304

XMLListCollection, 300–302

color style, 193

ColorPicker control, 140

ColumnChart, 256–259

ComboBox control, 130, 139–140

compile-time type checking feature, 40

compiling (running) projects, 10, 25, 72–73

component life cycle architecture

commitProperties method, 334–336

introduction, 333–334

measure method, 336–337

updateDisplayList method, 337

Components view, Design mode,

103, 113–115

conferences, Flex, 394–395

constraint-based layout, 110, 121, 224–225

Constraints control, 121

constructor, defi nition, 32

containers

Alert control, 235–236

box type, 225–228

Canvas, 219, 223–224

constraint-based layout, 224–225

control bar types, 236–238

defi nition, 219

form layout

default action, 195

e-commerce example, 215–217

FormHeading element, 192–193

FormItem element, 193–194

introduction, 189

MXML hierarchy of elements, 191–192

overview, 190–191

Grid, 229–231

introduction, 29–30

layout, 108–110

multipart form example, 248–251

nesting of, 29, 105–106

overview, 219–223

Panel, 231–233, 235–237, 376

Tile, 228–229

TitleWindow, 233–235, 328

Containers components folder, 114

content assistance (code hinting),

22, 79–81

control bar types, 236–238

ControlBar container, 237

controls, user interface. See also data-

aware user interface controls

clickable category. See clickable user

interface controls

focus management, 326

formatter controls, 189, 209–214

inheritance hierarchy, 130–131

introduction, 129

media display, 149–156

MVC framework, 386

navigation bar, 240–241

overview, 21–22

text-related, 140, 145–149, 166–168,

170–171

Controls components folder, 114

CPU performance, profi ling in Flex Builder,

95–97

createMyMenu method, 176

createPopUp method, 137–138, 328

createToolTip method, 330–331

creationComplete event, 50, 138, 310

creationPolicy property, 247–248

CreditCardValidator, 202–203

cross-browser runtime. See Flash Player

cross-browser support capabilities, 14

cross-domain policy fi le, defi nition,

315–316

CSS (Cascading Style Sheets)

402 Adobe Flex 3.0 For Dummies

Accordian control, 244

external style sheet, 78, 368

Flex’s support for, 78

font styles, 370

graphical skins, 373–377, 379–380

opening, 123

style block, 75–77, 123–125, 365–368

styles introduction, 363

CSS Design mode, 123–125, 373–377,

379–380

CSS Script blocks (style blocks), 75–78,

123–125, 365–366

Cumulative Instances column in Live

Objects panel, 91–92

Cumulative Memory column in Live

Objects panel, 91

{} (curly braces) in MXML data binding

expression, 286–287, 291

CurrencyFormatter, 212

currencySymbol property, 205, 212

CurrencyValidator, 204

currentState property, 348, 352, 354

currentTarget property, 44

custom code libraries, 59, 65

custom component, creating, 337–346

Custom components folder, 114

• D •
data, remote access

AMF binary transfer, 320

HTTP connection, 309–316

introduction, 309

Web services connection, 316–320

data-aware user interface controls

Array, 158–159, 178

charts as, 254–256

creating data objects, 160–162

DataGrid controls, 168–172, 183–187, 311

dataProvider property’s role,

158, 162–163

display customization, 183–185

drag-and-drop functionality, 181–182, 324

example use of, 185–187

hierarchical controls, 173–179

introduction, 157

List controls

data collections, use of, 297

dataProvider property, 162–163

drag-and-drop functionality, 181–182, 324

editable, 179

introduction, 163

item renderers, 183–187

row height controls, 182–183

scrolling behavior, 164–166, 180

selection methods, 177–179

text display, 166–168

row height adjustment variables, 182–183

scrolling behavior, 180

XML, 159–160, 166–168

XMLList, 160

data binding

in ActionScript, 78, 288–289

bidirectional expression, 292

bindable property, 289–290

ComboBox control, 140

complexity of DataGrid controls, 169

debugging expressions, 292–293

deferred instantiation, relationship to, 247

defi nition, 285

destination property, 285–292

expression structure, 285–286

formatter controls, 209–211

interactive form example, 294–296

introduction, 285

List controls, 164

metadata, 293–294

multiple destinations or sources, 290–292

in MXML, 41, 286–289, 291

source property, 285–292

in video display example, 156

data collections

accessing data items in, 306–307

ArrayCollection, 161, 298–300, 306–307

fi ltering, 305–306

introduction, 297–298

methods, 302, 305–307

properties, 298–299, 301–303

sorting, 303–304

XMLListCollection, 300–302

403403 Index

data diagrams, 385

data source in data collections, 298, 306

databases

accessing remote, 309

AIR access to, 15

fetching data from, 162

dataField property, 170–171, 183–184

DataGrid controls, 168–172, 183–187, 311

DataGridColumn control, 170

dataProvider property

in charts, 254–256, 272

in data binding, 289–290

DataGrid controls, 169

in hierarchical data controls, 173

List controls, 162–163

in navigation bars, 242

pop-up controls, 137, 139–140

user interface control role, 158

date-based user interface controls,

140–143

DateFormatter, 213–214

DateTimeAxis, 270–271

DateValidator, 205

dayProperty property, 205

daySource property, 205

debugging

breakpoints, adding, 84–85

bugbase from Adobe Flex, 396

data binding expressions, 292–293

event, 48–49

Flex Builder process, 84–87

Flex-Spy, 387–388

Problems view, 71–72, 293

variable inspection, 86–87

debugging control bar, 85–86

Debugging perspective, 56–57, 84–85

decimalSeparator property, 205

Declarative Graphics Framework (Degrafa)

(Web site), 386

default action, form layouts, 195

default code, deciphering, 21

defaultButton property, 195

defaultLeafIcon style, 173

deferred instantiation, 246–248

Degrafa (Declarative Graphics Framework)

(Web site), 386

descending property, 304

Design mode, Flex Builder

aligning controls, 110–112

in application introduction, 23–24

Components view, 103, 113–115

coordination with Source mode, 24

CSS Design mode, 123–125

deleting components, 108

inserting components, 113–115

introduction, 101–103

navigating in, 104–106

positioning controls, 108–110

properties inspector, 118–122

selecting controls, 106–108

sizing/resizing controls, 104, 112–115

snapping controls, 110

States view, 103, 116–118

tracking application changes in, 122

viewing application contents, 115–116, 349

Design stage area, 102, 107–110, 113

Design toolbar, 102, 104

desktop application, Flex as, 11, 15, 61

destination property in data binding,

285–288, 290–292

destroyToolTip method, 330–331

Development perspective, 56, 349

development tool. See Flex Builder

dimensions, form container settings,

191–192

direction property, 165, 226, 228, 272

dirty fl ags, 334

disabledDays property, 141

disabledRanges property, 141

dispatchEvent function, 342

dispatching of events, defi nition, 42

display controls

customizing, 183–185

date-related, 141

media, 149–156

scrolling, 164–168

text, 145–149

displayedMonth property, 141

displayedYear property, 141

displayName property, 272

distortion of skins, 377–379

divided box containers, 227–228

404 Adobe Flex 3.0 For Dummies

dock property, 237–238

domain property, 208

donut-shaped pie charts, 264–265

drag-and-drop functionality, 181–182,

324–325

drag proxy, 181, 324–325

dragComplete event, 325

dragDrop event, 325

dragEnabled property, 181

dragEnter event, 325

DragManager, 324–325

dragMoveEnabled property, 181

dragStart event, 325

Dreamweaver, Adobe, 10

drop-in item renderer, 183

dropEnabled property, 181

dynamically resizable layout, 227

• E •
Eclipse For Dummies (Burd), 54

Eclipse IDE, 53–55

ECMA International, 13–14

ECMAScript, 13–14

editable property, 179

effect classes, 354–361

EmailValidator, 206

embedded SQLite database, AIR, 15

embedding fonts, 370–371

employment for Flex coders, 396

Enable Memory Profi ling check box, 89

enabled property, 334–335

encapsulation of objects, defi nition, 31

error alerts, Flex Builder, 71

error handling

formatter controls, 211–214

validation process, 196–198, 202, 207

error property, 211

errorColor style, 196

errorString property, 197

Event class, 44–45

event listeners

adding, 43–47

in Button controls, 131, 139

defi nition, 42–43

in propagation process, 47–48

validator controls, 199, 201–202

event mode, 154

event parameter, 44

eventPhase property, 48

events. See also individual events
in component creation, 342–343

debugging, 48–49

defi nition, 42

drag, 325

Menu controls, 176

overview, 42–50

propagation of, 47–48

triggers, compared to, 355

validation, 200–202

exploded wedges in pie charts, 265

explodeRadius property, 265

Export Release Build Wizard, 73–74

Export Wizard, 70–71

exporting Flex Builder projects, 69–71

expression property, 207

extending classes, 36–37, 130–131, 158, 220

external style sheet, 78, 368. See also CSS

(Cascading Style Sheets)

• F •
faceless property of controls in Flex, 134

fi eld properties in charts, 254

fi eld property, charts, 263

fi elds property, Sort object, 303

FIG (Flex Interface Guidelines)

(Web site), 393

fi lter method, 305

fi lterFunction property, 302, 305

fi ltering data collections, 302, 305–306

fi ring of data binding expression,

defi nition, 286

fl ags property, 207

Flash, Adobe

Flex, relationship to, 1, 10, 12–13

historical development, 11

loading of external XML data, 10

programmatic skinning, 364

XML objects, 159

Flash Authoring Tool, 13

Flash Player

advantages of, 14

HTML support, 149

405405 Index

lack of 3D support, 388

overview, 11

remote data access restrictions, 315–316

Silverlight, compared to, 14–15

Flash security sandbox, 315

Flash Video (FLV), 151

Flex, Adobe

advantages of, 9

AJAX, relationship to, 13–14

application-building process, 17–25

benefi ts of, 14

components of, 10–11

CSS support, 78

data binding. See data binding

data collections. See data collections

defi nition, 10–11

development tool. See Flex Builder

Flash, relationship to, 1, 10, 12–13

framework for. See framework, Flex

history, 10–11

introduction, 1–5

manager tools, 323–332

new developments, 12

open-source materials, 10–11,

383–389, 396

remote data. See remote data

resources, 391–396

as RIA, 9–10

Silverlight, relationship to, 14–15

version differences, 55

Web site, 54

Flex Builder

application-building process, 17–25

Design mode. See Design mode, Flex

Builder

Eclipse, relationship to, 54

features, 53–54

Flash Authoring Tool, compared to, 13

in Flex development history, 10

help resources, 74

importing and exporting projects, 69–71

installing, 54–55

opening, 18

organizing and editing projects, 65–68

overview, 11, 53–54

perspectives overview, 56–59

project types, 59–65

running and releasing projects, 71–74

Source mode. See Source mode, Flex

Builder

targeting versions of Flex SDK, 68–69

Web site, 18

Flex Builder Plug-In, 55

Flex Builder Professional, 55, 87, 171, 253

Flex Builder Stand-Alone, 55

Flex Builder Standard, 55

Flex Cookbook, 392

Flex Developer Center (Web site), 392

Flex Interface Guidelines (FIG)

(Web site), 393

Flex Library Project type, 59, 65

Flex Profi ling feature

CPU performance, 95–97

Garbage Collector, 87–88

launching session, 88–89

memory use, 88–95

Web site, 87

Flex Project type, 59–62. See also projects,

Flex Builder

Flex SDK, 10, 68–69, 81. See also framework,

Flex

Flex-Spy (Web site), 387

Flex Start Page option, 74

Flex User Groups (UGs) (Web site),

392–393

fl excoders Yahoo! group (Web site),

391–392

fl exjobs Yahoo! group (Web site), 396

FlexLib (Web site), 383–384

Flex.org Web site, 395

FlexUnit (Web site), 386

FLV (Flash Video), 151

focus-aware controls, 325–327

focusIn event, 327

FocusManager, 325–327

focusOut event, 327

folder structure

component, 114–115

creating new folder, 65–66

for new projects, 61

package structure, 36

project organization, 65

styles, 173

folderClosedIcon style, 173

406 Adobe Flex 3.0 For Dummies

folderOpenIcon style, 173

font-family style, 370

font-style style, 371

font-weight style, 371

fonts, 146, 193, 370–371

fontSize style, 146, 193

fontStyle style, 146

fontWeight style, 146, 193

form style, 260

format method, 210–211

formatString property, 210, 213–214

formatter controls, 189, 209–214

FormHeading element, 192–193

FormItem element, 193–194

forms

form layout containers

default action, 195

e-commerce example, 215–217

FormHeading element, 192–193

FormItem element, 193–194

introduction, 189

MXML hierarchy of elements, 191–192

overview, 190–191

interactive data binding example, 294–296

multipart form example, 248–251

Tab key navigation through, 326

framework, Flex

charts. See charting components

containers. See containers

DragManager, 324–325

event model overview, 42–50

Flex, compared to, 13

FocusManager, 325–327

formatter controls, 189, 209–214

forms. See forms

navigator controls. See navigator controls

overview, 11

PopUpManager, 327–330

SystemManager, 332

ToolTipManager, 330–332

user interface controls. See user interface

controls

validator controls. See validator controls

functions (methods). See also event

listeners

Button controls, 136

chart item selection, 273

component life cycle, 333–337

container-related, 221

CPU performance, effect on, 96–97

data collection, 302, 305–307

defi nition and function, 31

event-related, 48–49, 342

formatter controls, 210–211

interface, relationship to, 37–38

List item selection, 177–179

media player, 151–152, 354

Menu controls, 176

pop-up, 39, 137–138, 328–330

renaming, 99–100

static, 38–40, 235

style, 368–369

ToolTip, 330–331

triggering, 200–201, 354–357, 359

FutureSplash Animator, 11

FutureWave Software, 11

• G •
Garbage Collector, 87–88, 92–93

Generate Object Allocation Stack Traces

option, 89–90, 94

getItemIndex method, 307

getStyle function, 368–369

getters, 33–34, 38

graphic images, 149–151, 183–184, 373

graphical skins, 364, 372–380

Grid container, 229–231

GridItem container, 229–231

GridRow container, 229–231

grouping property, 171

GroupingCollection, 171

groupName property, 134

groups, radio button control, 134

Gumbo (Flex 4) development, 12

• H •
handleChange event handler, 176

handler, defi nition, 43. See also event

listeners

HBox container, 29, 225–226

HDividedBox container, 227–228

headerColors property, 233

headerHeight property, 233

407407 Index

headerHeight style, 244

headerStyleName style, 244

headerText property, 170–171

height property, 192

help resources, 74

hide event, 49

hideDataEffect property, 274–276

hierarchical data

form elements in MXML, 191–192

user interface controls, 130–131, 171,

173–179

XML objects, 159

HitData objects, 273

hitData property, 273

hitSet property, 273

HLOCChart, 269

horizontalGap property, 226–227

horizontalScrollPolicy property,

180, 192

HSlider control, 225

HTML (HyperText Markup Language)

CSS in compared to Flex, 78

Flash Player-supported, 149

Flex, relationship to, 2

MXML, compared to, 29

transition to RIA, 11

htmlText property, 148–149

HTTP connection for remote data access,

309–316

HTTPService class, 309–316

• I •
icon style, 131–132

id property, 195, 210

IDE (Integrated Development

Environment), 10. See also Flex Builder

Image control, 149–151, 183–184

image formats for skins, 373

import statements in Flex Builder, 82–84

Import Wizard, 69–70

importing

Flex Builder projects, 69–70

WSDL, 316–320

in-line data binding expression, 287

in-line item renderer, 184–187

inheritance from classes, 36–37, 130–131,

158, 220

initialize event, 50

innerRadius property, 264–265

installation, Flex Builder, 54–55

Instances column in Live Objects panel, 91

Integrated Development Environment

(IDE), 10. See also Flex Builder

interactive charts, 273–274

interactive imagery, working with, 150

interface, 34, 37–38. See also user interface

controls

invalid event, 201

invalidateProperties method, 335

invalidateSize method, 336

invalidation pattern, 333–337

invalidNumberError property, 202

item rendering, 183–187

itemClick event listener, 139

itemEditBegin event, 179

itemEditEnd event, 179

itemRenderer property, 183

IUIComponent interface, 136

• J •
J2EE server, 61

Java, Sun Microsystems, refactoring

support for, 100

JavaFX, Sun Microsystems, 12

JavaScript, Sun Microsystems, compared

to ActionScript, 13–14, 27, 30, 40

JIRA technology, 396

jobs for Flex coders, 396

• K •
keyboard shortcuts

code hinting, 80

multiple item selection, 182

source code access, 81

undoing application changes, 122

zooming in Design mode, 105

408 Adobe Flex 3.0 For Dummies

• L •
Label control, 21–23, 145–146, 334–336

label property, 131–132

labelField property, 166–167, 173, 263

labelFunction property, 167–168, 173

labelPlacement property, 131–132

labelPosition property, 264

labels

chart, 272

form, 193

languages, 10. See also ActionScript; MXML

lastResult property, 312

layout

absolute compared to relative,

108–110

basic container, 108–110

box containers, 225–228

constraint-based, 110, 121, 224–225

form layout containers

default action, 195

e-commerce example, 215–217

FormHeading element, 192–193

FormItem element, 193–194

introduction, 189

MXML hierarchy of elements, 191–192

overview, 190–191

layout property, 108, 110

leaf node

in Tree control, 173

in XML objects, 159

Legend control, 272

length property, 302

LinearAxis, 270

LineChart, 259–261

LineSeries, 260

LinkBar control, 136, 240

LinkButton control, 135–136

Linux compatibility, 55

List controls

data collections, use of, 297

dataProvider property, 162–163

drag-and-drop functionality, 181–182, 324

editable, 179

introduction, 163

item renderers, 183–187

row height controls, 182–183

scrolling behavior, 164–166, 180

selection methods, 177–179

text display, 166–168

listener property, 199

Live Memory chart, 94–95

Live Objects list, 90–91

LiveCycle Data Services, 61

liveDragging property, 145, 227

load method, 151

local fi le-system access, AIR, 15

LogAxis, 270

loitering objects, fi nding, 92–93

Luhn mod10 algorithm, 203

• M •
Macintosh compatibility, 54

Magnifi cation drop-down list, 105

main.mxml fi le, 20–21

manual builds, 82

manual mode, 154

masking effects, defi nition, 359–360

Math class, 39

MAX conference (Web site), 395

maximum property, 144

maxlength property, 208

maxScrollPosition property, 143

McCune, Doug (blog for), 394

media display user interface controls,

149–156

memory

Garbage Collector, relationship to, 87–88

snapshots, taking, 92–93

tracking down leaks, 88–89, 93

usage profi ling in Flex Builder, 88–95

Memory column in Live Objects panel, 91

Memory Usage chart, 90

Menu control, 174–176

MenuBar control, 174, 177

MenuEvent class, 176

menus

PopUpMenuButton control, 138–139

project editing, 67

Rename, 98–100

metadata, bindable, 293–294

409409 Index

Method Statistic panel, 96–97

methods (functions). See also event

listeners

Button controls, 136

chart item selection, 273

component life cycle, 333–337

container-related, 221

CPU performance, effect on, 96–97

data collection, 302, 305–307

defi nition and function, 31

event-related, 48–49, 342

formatter controls, 210–211

interface, relationship to, 37–38

List item selection, 177–179

media player, 151–152, 354

Menu controls, 176

pop-up, 39, 137–138, 328–330

renaming, 99–100

static, 38–40, 235

style, 368–369

ToolTip, 330–331

triggering, 200–201, 354–357, 359

micro-architecture framework, 387

minimum property, 144

minlength property, 208

modal pop-up, 327

mode property, 154

Model tag, 256

Model View Controller (MVC) framework,

386–387

monthProperty property, 205

monthSource property, 205

mouse handlers, 273

MouseEvent class, 46

MouseEvent.CLICK variable, 46

MouseEvents, 273

Move effect, 355–357

move event, 49

moveEffect trigger, 356

MPEG-4 videos, 151

multimedia capabilities of Flex, 14

multiple components, selecting in Design

mode, 107

MVC (Model View Controller) framework,

386–387

mx package, 35

<mx:AdvancedDataGrid /> tag, 171

<mx:Application> tag

default, 22–23

as default start for MXML fi le, 28, 75

introduction, 21

SystemManager, relationship to, 332

<mx:ArrayCollection /> tag, 298

<mx:Binding /> tag, 286–288, 291–292

<mx:Button> tag, 131

<mx:CheckBox> tag, 133

mx.collections class, 298

<mx:ColorPicker /> tag, 140

<mx:ComboBox /> tag, 138–139

<mx:Component /> tag, 184

mx.containers.Box class, 226

mx.controls.DataGrid control, 169

mx.controls.HorizontalList control,

164–165

mx.controls.Image control, 183–184

mx.controls.List control, 164

mx.controls.listClasses.ListBase

class, 158

mx.controls.TileList control,

164–166

mx.core.Container class, 220

mx.core.IUIComponent interface, 136

mx.core.UIComponent class, 130–131,

196, 333, 339

<mx:DataGrid /> tag, 169

<mx:DataGridColumn /> tag, 169

<mx:DateChooser> tag, 140–142

<mx:Form /> tag, 191

<mx:FormHeading /> tag, 192–193

<mx:FormItem /> tag, 193–194

<mx:HBox /> tag, 29

<mx:HScrollBar> tag, 143–144

<mx:HSlider> tag, 144–145
<mx:Image> tag, 150

<mx:Label /> tag, 21–22, 146

<mx:Legend /> tag, 272

<mx:LinkButton> tag, 135

<mx:List /> tag, 164

<mx:MenuBar /> tag, 177

<mx:Metadata> tag, 177

410 Adobe Flex 3.0 For Dummies

MXML

ActionScript, relationship to, 40–42,

75–78

Array data structure, 158–159

ArrayCollection, 161, 298–299

code hinting, 80

component creation decisions, 341

container elements, 220–221

data binding, 41, 286–289, 291

event listeners, adding, 43–45

fi le anatomy, 75–79

Flex, compared to, 13

form element hierarchy, 191–192

form layout with, 190–191

formatter tags, 209

introduction, 27–30

new project defaults, 62

overview, 10

renaming classes, 99

source code access through tags, 81

styles in, 364–367

triggering methods, 354–357

view states, 349, 352

XML objects, 159

XMList objects, 160

XMLListCollection in, 161, 300–301

<mx:Model /> tag, 256

<mx:Move /> effect, 355–357

<mx:Parallel /> tag, 361

<mx:PopUpButton> tag, 136–137

<mx:PopUpMenuButton> tag, 138–139

<mx:ProgressBar> tag, 153

<mx:RadioButton> tag, 133–134

<mx:RadioButtonGroup> tag, 134–135

<mx:RichTextEditor> tag, 148

<mx:Rotate /> effect, 357–358

<mx:Script> block, 77–78

<mx:Sequence /> tag, 360–361

<mx:series> tag, 255

<mx:Style /> tag, 78, 358, 368

<mx:Style> block, 365–368

<mx:SWFLoader> tag, 150

<mx:Text> tag, 146

<mx:TextArea> tag, 148

<mx:TextInput> tag, 147

<mx:Transition /> tag, 362

<mx:transitions> block, 362

<mx:Tree /> tag, 173

<mx:VideoDisplay> tag, 151

<mx:VScrollBar> tag, 143, 144

<mx:VSlider> tag, 144–145

<mx:WebService /> tag, 316–317

<mx:XMLList /> tag, 301

• N•
naming

classes, 97–99

effect triggers, 355

root MXML fi le, 62

styles, 244, 366–367

view states, 348

navigateToURL method, 136

navigation bar controls, 240–242

navigator controls

Accordion, 242–245

deferred instantiation, 246–248

defi nition, 219

multipart form example, 248–251

navigation bar controls, 240–242

TabNavigator, 245–246

ViewStack, 239–242

Navigator view, Flex Builder, 20, 62,

66–67, 102

Navigators components folder, 115

nesting of containers, 29, 105–106

New ActionScript Project Wizard, 63–65

New Flex Project Wizard, 60–62

New Project Wizard, 19

New State button, 117

New Style dialog box, 123

noMatchError property, 207

non-modal pop-up, 327

notifi cations to users (Alert control),

235–236

NumberFormatter, 211–212

NumberValidator, 204

numeric property, 304

• O •
Object References panel, 93–94

objects. See also properties; individual
objects

creating data objects, 160–162

Live Objects panel, 91–92

loitering, 92–93

overview, 31–33

411411 Index

OOP (object-oriented programming), 31–35

open-source Adobe Web site, 394

open-source material, Flex, 10–11,

383–389, 396

OpenFlux (Web site), 386

operating systems, AIR-supported, 15

Outline view, Design mode, 103, 115–116

• P •
Package column in Live Objects panel, 91

packages, 35–36, 100, 339

Pan & Zoom in Design mode, 104–105

Panel container, 231–233, 235–236, 376

Panel tag, 29

PaperVision 3D (Web site), 388–389

Parallel tag, 361

parameters property, 312–313

parent/child relationship of controls in

design, 108. See also child components

parent nodes in Tree control, 173

parseFunction property, 271

Pause effect, 361

PDF (Portable Document File) format in

WebKit browser, 15

percentage-based stacked column chart, 259

Performance Profi le panel, 95–96

perspectives, Flex Builder, 56–59, 84–85, 90

perWedgeExplodeRadius property,

265–266

PhoneFormatter, 214

PhoneNumberValidator, 206

PieChart, 254–255, 262–266, 272

PieSeries, 254, 262–263

play method, 151–152, 354

PlotChart, 267

PlotSeries, 267

polled mode, 154

pop-ups

ColorPicker control, 140

ComboBox control, 130, 139–140

methods, 39, 137–138, 328–330

modal compared to non-modal, 327

TitleWindow, 234–235

popUp property, 136–138

popUp variable, 329–330

PopUpButton control, 136–138

PopUpManager, 327–330

PopUpManager class, 39

PopUpMenuButton control, 138–139

positioning

controls in Design Mode, 108–110

items in containers, 223–225

labels, 264

Problems view, Flex Builder, 71–72, 293

Profi ling perspective, 56–57, 90

profi ling projects

CPU performance, 95–97

Garbage Collector, 87–88

launching session, 88–89

memory use, 88–95

Web site, 87

programmatic skins, 364

programmatic validation, 201

programming concepts, 27

ProgressBar control, 153–154

projects, Flex Builder

build phase, 25, 71

deleting, 68

editing settings, 67

Flex SDK version targeting, 68–69

importing and exporting, 69–71

organizing and editing, 65–71

overview, 18–19

running and releasing, 10, 25, 71–74

types, 59–65

PromptingTextInput control, 384

propagation, event, 47–49

properties. See also individual properties
attribute declaration, 21

attribute listener, 43

bindable, 289–290

casting to classes, 44

commitProperties method, 334–336

data binding, 285–292

data collection, 298–299, 301–303

defi ning, 342

defi nition and function, 31

of fi elds in charts, 254

formatter, 210

getters and setters, relationship to, 33–34

NumberFormatter, 211–212

Rotate effect, 357–358

styles, compared to, 364

TabNavigator, 245–246

text, 21–22, 147, 149, 210

ToolTip, 331–332

transition, 362

412 Adobe Flex 3.0 For Dummies

properties (continued)
validator controls, 197–199

Zoom effect, 359

properties inspector

confi guring controls with, 118–122

Flex-Spy, 387–388

overview, 103

positioning options for items in, 109–110

resizing controls with, 113

viewing options, 118–120

property property, 198

• R •
RadioButton control, 133–134

RadioButtonGroup control, 134–135

radiusField property, 267

rangeEnd property, 141

rangeStart property, 141

refactoring of code, 97–100

references, inspecting object, 93–94

RegExpValidator, 207

relative compared to absolute layout

containers, 108–110

release version of project, setting up, 73–74

remote data, accessing

AMF binary transfer, 320

HTTP connection, 309–316

introduction, 309

Web services connection, 316–320

removeAll method, 307

removeChild method, 221

removeEventListener method, 47

removeItemAt method, 307

removePopUp method, 39, 329–330

Rename menu, 98–100

Rename Textual Matches in Strings check

box, 98

Report a Bug feature, 74

required property, 194, 198

requiredFieldError property, 198

resize event, 49

resizing/sizing

Canvas container, 225

child container elements, 222–223,

227–228

controls in Design mode, 104, 112–113,

114–115

Grid container elements, 230–231

perspective views, 58

result event, 312

resultFormat property, 310–311

reverse domain name syntax, 35

revision control software, defi nition, 69

Rich Internet Applications (RIAs), 1, 9–11

RichTextEditor control, 148

ROLL_OVER event, 46

rollOverColor style, 135

root application, 20, 62

root node

Tree control, 174

XML objects, 159

Rotate effect, 357–358

rotation property, text, 370

row height adjustment variables, 182–183

RPC libraries, 61

Run icon, 72

running (compiling) projects, 10, 25, 72–73

• S •
Sandy 3D (Web site), 388

Scalable Vector Graphics (SVG) fi le

format, 150

scale-nine grid, defi nition, 377–379

scaleContent property, 150

Scheduling framework (Web site), 384–385

Script blocks in MXML fi le structure,

75–78

scroll event, 143

scroll thumb, 143

scrolling behavior, 143–144, 164–168,

180, 192

Search feature, Flex Builder, 74

security restrictions on remote data

access, 315–316

selectable property, 146

selected property, 132–134

selectedChild property, 239–240, 243

selectedDate property, 142–143

selectedIndex property, 139–140, 178,

239–240, 243

selectedIndices property, 178

selectedItem property, 139, 178

selectedItems property, 178

selectedRanges property, 142–143

413413 Index

selecting objects

chart items, 273

controls in Design mode, 106–108

List controls, 177–179

style types, 123–124

selectionColor property, 140

Self Time CPU performance measure, 96

Sequence tag, 360–361

series, data, in charting, 254

series property, 255

seriesFilters property, 261

SeriesInterpolate animation effect, 274, 276

SeriesSlide animation effect, 274–276

SeriesZoom animation effect, 274–276

server-side languages, 11

setItemAt method, 307

setStyle function, 368–369

setters, 33–34, 38

show event, 49

show method, 235

Show Surrounding Containers button, 106

showDataEffect property, 274–276

showRoot property, 174

showTextField property, 140

Silverlight, Microsoft, 14–15

Simple Object Access Protocol (SOAP), 316

sizing/resizing

Canvas container, 225

child container elements, 222–223,

227–228

controls in Design mode, 104, 112–115

Grid container elements, 230–231

perspective views, 58

skins, graphical, 364, 372–380

sliding

SeriesSlide animation effect, 274–276

user interface controls, 144–145

snapping controls in Design mode, 110

snapshots

CPU performance, 95–96

memory, 92–93

SOAP (Simple Object Access Protocol), 316

SocialSecurityValidator, 207–208

Sort object, 303

sort property, 302–303

SortField object, 303–304

sorting data collections, 302–304

Sound class, 151

sound controls, 149, 151–153

SoundChannel class, 152

SoundTransform class, 153

soundTransform property, 153

source code, accessing, 74, 81

source control repository, defi nition, 69

Source mode, Flex Builder

in application introduction, 20–23

automatic builds, 82

code hinting, 22, 79–81

coordination with Design mode, 24

debugging, 84–87

import statements, 82–84

introduction, 20, 101

MXML fi le anatomy, 75–79

profi ling projects, 87–97

refactoring of code, 97–100

source code, accessing, 81

source property, 198, 298–299, 301

source property in data binding,

285–292

SQLite database, AIR, 15

stacked setting for chart, 258–259,

261–262

stacking in charts, 257–259, 261–262

Standard properties inspector view, 119

stateful client, defi nition, 10

states

creating new, 116–117

deleting, 118

editing, 118

view, 347–354, 362

States panel, 349

States view, 103, 116–118

static methods and variables, 38–40, 235

status property, 232

Step Into button, 86

Step Over button, 86

Step Return button, 86

stopImmediatePropagation function, 49

stopPropagation function, 49

strict-typing property of ActionScript 3, 40

StringValidator, 208

style blocks (CSS Script), 75–78, 123–125,

365–368

styleName property, 369

414 Adobe Flex 3.0 For Dummies

styles

with ActionScript, 79, 368–369

container, 221–222, 224–225

CSS

Accordian control, 244

external style sheet, 78, 368

Flex’s support for, 78

font styles, 370

graphical skins, 373–377, 379–380

opening, 123

style block, 75–77, 123–125, 365–368

styles introduction, 363

folder structure, 173

font, 146, 193, 370–371

form, 193, 260

icon, 131–132

introduction, 363–364

limitations of, 372

line and area charts, 260

LinkButton control, 135

with MXML, 364–367

naming, 244, 366–367

properties, compared to, 364

selector types, 123–124

TabNavigator, 245–246

text, 131, 135, 146

title bar in Panel container, 232

Subramaniam, Deepa (blog for), 394

summary rows in DataGrid controls, 171

SuperTabNavigator, 384

SVG (Scalable Vector Graphics) fi le

format, 150

SWF fi le format, 82, 150

SWFLoader component, 150–151

SystemManager, 332

System.setClipboard function, 39

• T •
Tab key navigation through forms, 326

tab loop, management of, 326

TabBar control, 240, 245

tabIndex property, 326–327

TabNavigator, 245–246

Take Memory Snapshot button, 92–93

target phase of event propagation, 47

target property, 44

targeting versions of Flex SDK, 68–69

Test-Driven Development (TDD), 386

Text control, 146

text property, 21–22, 147, 149, 210

text-related user interface controls, 140,

145–149, 166–168, 170–171

textAlign style, 131

TextArea control, 148

TextInput control, 147–148, 384

textRollOverColor style, 135

Thermo (Flex development product), 12

thousandsSeparator property, 205

360|Flex conference (Web site), 395

3D engines for ActionScript, 388

tickInterval property, 144

Tile container, 228–229

tileHeight property, 229

TileList control, 164–166, 229

tileWidth property, 229

title bar, Panel container, 232

title property, 232

titleIcon property, 232–233

TitleWindow container, 233–235, 328

toggle property, 132–133

ToggleButtonBar control, 240–241

ToolTipManager, 330–332

ToolTips, 144, 196–197

trace function, 48–49, 84

Transition class, 362

transitions for effects, 362

Tree control, 173–174

trigger property, 200

triggerEvent property, 200

triggering methods, 200–201, 354–357, 359

troubleshooting (debugging)

breakpoints, adding, 84–85

bugbase from Adobe Flex, 396

data binding expressions, 292–293

event, 48–49

Flex Builder process, 84–87

Flex-Spy, 387–388

Problems view, 71–72, 293

variable inspection, 86–87

TrueType Font (TTF) fi le, 370

truncateToFit property, 146

415415 Index

• U •
UIComponent control class, 130–131, 196,

333, 339

unit-testing framework, 386

url property, 310

URL (Uniform Resource Locator), absolute

compared to relative, 150

URLRequest object, 136

user groups, Flex (Web site), 392–393

user interface controls. See also data-

aware user interface controls

clickable category. See clickable user

interface controls

focus management, 326

formatter controls, 189, 209–214

inheritance hierarchy, 130–131

introduction, 129

media display, 149–156

MVC framework, 386

navigation bar, 240–241

overview, 21–22

text-related, 140, 145–149, 166–168,

170–171

• V •
valid event, 201

validate method, 201

ValidationResultEvent objects, 202

validator controls

event listeners, 199, 201–202

introduction, 189

properties settings, 197–199

triggering methods, 200–201

types, 203–209

visual cues for errors, customizing,

196–197

validPatternChars property, 214

valueCommit event, 200

variableRowHeight property, 182

variables

Alert class, 236

declaring, 77–78

inspecting, 86–87

MouseEvent.CLICK, 46

popUp, 329, 330

renaming, 99–100

row height adjustment variables, 182–183

static, 38–40, 235

Variables panel, 86–87

VBox container, 225–226

VBox tag, 29

VDividedBox container, 227–228

vertical list controls, 164

verticalGap property, 226–227

verticalScrollPolicy property,

180, 192

verticalScrollPostition property, 180

VideoDisplay control, 151

view states, 347–354, 362

views

Components, 103, 113–115

Navigator, 20, 62, 66–67, 102

Outline, 103, 115–116

perspective views, customizing, 58–59

Problems, 71–72, 293

properties inspector, 118–120

States, 103, 116–118

ViewStack navigator control, 239–242

visible property, 49

visual compared to sound controls, 149.

See also skins; styles

visual cues for validation errors,

customizing, 196–197

Visual Graph Library (Web site), 385

volume property, 153

VScrollBar tag, 143–144

• W •
Watch Live Memory Data box, 89–90

WeatherForecast class, 317–320

Web applications. See Flex, Adobe

Web server, accessing data from

AMF binary transfer, 320

HTTP connection, 309–316

introduction, 309

Web services connection, 316–320

Web services, connecting to, 316–320

416 Adobe Flex 3.0 For Dummies

Web Services Defi nition Language (WSDL)

document, 316–320

Web sites, book’s companion, 4. See also

individual Web sites
WebKit browser, 15

width property, 170, 192

Windows compatibility, 54

Wipe effects, 359–360

wordWrap property, 182

workspace, defi nition, 20

wrongLengthError property, 202

WSDL Import Wizard, 316–320

wsdl property, 316

WSDL (Web Services Defi nition Language)

document, 316–320

• X •
xField property, 254, 267

XML control, 159–160, 166–168

XML declaration, 21

XML (eXtensible Markup Language)

as format for remote data transfer, 309

RIAs, relationship to, 10

SOAP, 316

uploading fi les, 310

XMLList control, 160

XMLListCollection, 161–162, 298, 300–302

• Y •
Yahoo! groups (Web site), 391–392, 396

yearProperty property, 205

yearSource property, 205

yField property, 254, 267

• Z •
zero-based indexing, defi nition, 239

ZipCodeFormatter, 214

ZipCodeValidator, 198, 202, 208–209

Zoom effect, 358–359

zooming

in Design mode screen, 105

SeriesZoom animation effect, 274–276

Doug McCune
Deepa Subramaniam

 Build RIAs,
 use Flex® Builder™,
 and customize your

applications

Adobe® Flex® 3.0
Flex your power to

create Rich Internet Applications!

Use the event model

Work with ActionScript®
and MXML

Create, run, and debug
a project

Build simple user
interface controls

Set up data binding

Explore styling and
skinning

Explanations in plain English

“Get in, get out” information

Icons and other navigational aids

Tear-out cheat sheet

Top ten lists

A dash of humor and fun

 Companion Web site

� Go to www.dummies.com/
go/adobeflexfd

� Find code listings used in
the book

� Use it to create your own
cool RIAs

 Get going with Flex,
 and create RIAs
 in a Flash!

$29.99 US

$32.99 CN

£15.99 UK

ISBN 978-0-470-27792-8

Internet/Web Page Design

Flex lets you leverage the power of Adobe’s ubiquitous Flash technology

to build large applications. If you’re eager to create Flex apps and you’ve

written code in any language, this book will get you started, introduce you

to Flex Builder and the Flex framework, and have you building some really

flashy stuff before you know it!

Doug McCune is a developer and Flex fanatic who has created several

popular applications and Flex add-ons. Deepa Subramaniam is a

computer scientist on the Flex Framework team.

Develop interactive applications
without worrying about

browser differences

A
dobe

® Flex
® 3.0

McCune
Subramaniam

spine=.864

	Adobe Flex 3.0 for Dummies
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Conventions Used in This Book
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Introducing Flex
	Chapter 1: Getting to Know Flex
	Using Flex to Develop Rich Internet Applications
	Comparing Flex to Flash, AJAX, and Silverlight
	Taking Flex to the Desktop with AIR

	Chapter 2: Building Your First Flex Application
	Creating a Flex Project in Flex Builder
	Writing Code for Your Project
	Viewing Your Application in Design Mode
	Running the Application

	Chapter 3: Flexing Your Muscle with MXML and ActionScript
	Introducing MXML
	Introducing ActionScript
	Understanding the Relationship between ActionScript and MXML
	Working with the Event Model

	Part II: Using Flex Builder (The Flex IDE)
	Chapter 4: Flex Builder: The Best Flex Development Tool
	What’s Flex Builder, and Why Should I Care?
	Creating Different Types of Projects in Flex Builder
	Organizing and Editing Your Projects
	Importing and Exporting Existing Flex Builder Projects
	Running and Releasing Your Projects
	Accessing Flex Builder Help Materials

	Chapter 5: Introducing Flex Builder for Developers
	Anatomy of an MXML File
	Developer Tips and Tricks
	Squashing Bugs with the Visual Debugger
	Profiling Your Application
	Refactoring Your Code

	Chapter 6: Visually Designing Applications in Flex Builder
	Getting to Know Flex Builder Design Mode
	Navigating Through the Design Area
	Selecting Controls in the Design Area
	Controlling the Layout and Size of Controls in the Design Area
	Inserting Components with the Components View
	Viewing the Contents of Your Application in Outline View
	Working with States in States View
	Configuring Controls with the Flex Builder Properties Inspector
	Working with Style Sheets in CSS Design Mode

	Part III: The Flex Framework and Charting Components
	Chapter 7: Simple User Interface Controls
	Taking a Look at Simple Clickable Controls
	Introducing Text Controls
	Showing Off with the Flex Media Controls
	Tying It Together: A Video Player Example

	Chapter 8: Data-Aware User Interface Controls
	Recognizing That Awareness Comes from the dataProvider
	Creating Flash Data Objects in MXML and ActionScript
	Creating Flex Data Objects in MXML and ActionScript
	Powering Your Data-Aware Control with Data
	Scrolling List Controls
	DataGrid Controls for Powerful Data Display
	Hierarchical Data Controls
	Advanced Functionality in Data-Aware Controls
	Data-Aware Controls for Customizing the Display of Items
	Tying It All Together: A DataGrid Control with Multiple Inline Item Renderers

	Chapter 9: Forms, Formatters, and Validators
	Delving into Form Layouts
	Validate Me
	Format Me
	Tying It All Together: Creating an E-Commerce Form

	Chapter 10: Containers and Navigators
	Introducing Basic Containers
	Discovering Panel Containers and Control Bars
	Getting Up to Speed on Navigators
	Tying It Together: Building a Form with Multiple Parts

	Chapter 11: Charting Components
	Filling Your Charts with Data
	Creating a ColumnChart and BarChart
	Designing a LineChart and AreaChart
	Making a PieChart
	Building a PlotChart and a BubbleChart
	Introducing the CandleStickChart and HLOCChart
	Working with Axes
	Adding Legends to Your Charts
	Adding Interactivity
	Animating Your Charts
	Tying It Together

	Part IV: Working with Data in Flex
	Chapter 12: The Power of Data Binding
	Understanding the Data Binding Expression
	Using Data Binding in MXML
	What Properties Support Data Binding?
	Moving Forward: Advanced Data Binding
	Debugging Data Binding Expressions
	Using Bindable Metadata
	Tying It Together: Building an Interactive Form with Data Binding

	Chapter 13: Working with Data Collections
	Why Use Flex Data Collections?
	Creating ArrayCollections
	Creating XMLListCollections
	Common Collection Properties You Should Know
	Sorting and Filtering Collections
	Accessing Data Items

	Chapter 14: Working with Remote Data
	Connecting with HTTP
	Connecting with Web Services
	Losing Weight with AMF Remoting

	Part V: Exploring Advanced Flex Topics
	Chapter 15: Working with Managers We Actually Love
	Dragging and Dropping with the DragManager
	The FocusManager: Managing Which Controls Have Focus
	Popping Up Dialog Boxes with the PopUpManager
	Show Me the ToolTips: Using the ToolTipManager
	SystemManager: The Engine Behind Your Application

	Chapter 16: Custom Components and Component Architecture
	Looking at the Flex Component Life Cycle
	Creating Reusable Custom Components

	Chapter 17: Understanding States and Effects
	Working with View States
	Adding Effects to Your Application
	Combining States and Effects by Using Transitions

	Chapter 18: Styling and Skinning Flex Components
	Styling
	Skinning

	Part VI: The Part of Tens
	Chapter 19: Ten Open-Source Flex Libraries
	FlexLib
	The Flex Scheduling Framework
	Flex Visual Graph Library
	Degrafa
	OpenFlux
	FlexUnit
	Cairngorm
	Flex-Spy
	PaperVision 3D, Away 3D, and Sandy 3D
	APE and Box 2D

	Chapter 20: Ten Flex Resources
	flexcoders Yahoo! Group
	Flex Developer Center
	Flex User Groups
	Flex Interface Guidelines
	Flex Blogs
	Open-Source Adobe Site
	Flex Conferences
	Flex.org
	Public Flex Bugbase
	flexjobs Yahoo! Group

	Index

