
by Steve Holzner, PhD

Ajax
FOR

DUMmIES
‰

01_785970 ffirs.qxp 1/20/06 10:51 AM Page iii

File Attachment
C1.jpg

01_785970 ffirs.qxp 1/20/06 10:51 AM Page ii

Ajax
FOR

DUMmIES
‰

01_785970 ffirs.qxp 1/20/06 10:51 AM Page i

01_785970 ffirs.qxp 1/20/06 10:51 AM Page ii

by Steve Holzner, PhD

Ajax
FOR

DUMmIES
‰

01_785970 ffirs.qxp 1/20/06 10:51 AM Page iii

Ajax For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005937352

ISBN-13: 978-0-471-78597-2

ISBN-10: 0-471-78597-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QY/QS/QW/IN

01_785970 ffirs.qxp 1/20/06 10:51 AM Page iv

www.wiley.com

About the Author
Steve Holzner is the award-winning author of nearly 100 computer books. His
books have sold more than 2 million copies and have been translated into 18
languages around the world. He specializes in online topics, especially Ajax,
and he has long done commercial Ajax programming.

01_785970 ffirs.qxp 1/20/06 10:51 AM Page v

01_785970 ffirs.qxp 1/20/06 10:51 AM Page vi

Dedication
To Nancy, of course!

01_785970 ffirs.qxp 1/20/06 10:51 AM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial,
and Media Development

Senior Project Editor: Paul Levesque

Acquisitions Editor: Katie Feltman

Copy Editors: Virginia Sanders, Heidi Unger

Technical Editor: Vanessa Williams

Editorial Manager: Leah Cameron

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone,
Travis Silvers

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Maridee Ennis

Layout and Graphics: Carl Byers, Andrea Dahl,
Barbara Moore, Lynsey Osborn

Proofreaders: Leeann Harney, Jessica Kramer,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Special Help
Becky Huehls, Elizabeth Kuball

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_785970 ffirs.qxp 1/20/06 10:51 AM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Getting Started ..7
Chapter 1: Ajax 101 ..9
Chapter 2: It’s All About JavaScript ...21

Part II: Programming in Ajax.......................................73
Chapter 3: Getting to Know Ajax ..75
Chapter 4: Ajax in Depth..113

Part III: Ajax Frameworks ...151
Chapter 5: Introducing Ajax Frameworks..153
Chapter 6: More Powerful Ajax Frameworks ..181
Chapter 7: Server-Side Ajax Frameworks ..213

Part IV: In-Depth Ajax Power.....................................235
Chapter 8: Handling XML int Ajax Applications ...237
Chapter 9: Working with Cascading Style Sheets in Ajax Applications...................269
Chapter 10: Working with Ajax and PHP..297

Part V: The Part of Tens ..323
Chapter 11: Ten Ajax Design Issues You Should Know About325
Chapter 12: Ten Super-Useful Ajax Resources..331

Index ...337

02_785970 ftoc.qxp 1/20/06 12:28 PM Page ix

02_785970 ftoc.qxp 1/20/06 12:28 PM Page x

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...2
Foolish Assumptions ...2
How This Book Is Organized...3

Part I: Getting Started ..3
Part II: Programming in Ajax ...3
Part III: Ajax Frameworks ..3
Part IV: In-Depth Ajax Power...4
Part V: The Part of Tens...4

Icons Used in This Book..4
Where to Go from Here..5

Part I: Getting Started...7

Chapter 1: Ajax 101 .9
How Does Ajax Work? ..10

A user’s perspective...10
A developer’s perspective...11

What Can You Do with Ajax?...12
Searching in real time with live searches..12
Getting the answer with autocomplete ...13
Chatting with friends ...14
Dragging and dropping with Ajax...15
Gaming with Ajax..16
Getting instant login feedback..17
Ajax-enabled pop-up menus..18
Modifying Web pages on the fly..19
Google Maps and Ajax ...19

When Is Ajax a Good Choice? ...20

Chapter 2: It’s All About JavaScript .21
Taking a First Look at Ajax in Action ...21

Taking a look at the code...23
Delving deeper into JavaScript...24

Enter JavaScript ...24
Creating a script ...25
Accessing the Web page from JavaScript..26
Oh, those semicolons ..28
Adding comments to your JavaScript..28
Using separate script files...29

02_785970 ftoc.qxp 1/20/06 12:28 PM Page xi

Examining script errors ...30
Which browser are you using? ...32

Making Something Happen: Browser Events..33
Putting browser events to work ...35
Getting the quotation marks right..36

Dividing and Conquering: JavaScript Functions ..37
Understanding the problem..38
Putting together a function ...39
Calling the function ..40
Passing a single argument to a function..44
Using <div> versus ..45
Passing multiple arguments..47

You Must Remember This: Storing Data ...48
Simple data storage with the var statement49
Churning your data with operators ...50
Altering a variable’s data...55
Storing JavaScript objects in a variable ..56
Oh, those functions! ...57

Picking and Choosing with the if Statement ...59
Using the if statement ..59
Using the else statement ...61
Determining browser type and version...62

It Just Gets Better: The for Loop..64
Over and Over with the while Loop!..66
Pushing Some Buttons...69

Displaying a message with a button click ...69
Reading a text field with a button click ...71

Part II: Programming in Ajax73

Chapter 3: Getting to Know Ajax .75
Writing Some Ajax ..76

Creating the XMLHttpRequest object..79
Checking to make sure you have a

valid XMLHttpRequest object ...83
Opening the XMLHttpRequest object..84
When you’re ready: Handling asynchronous downloads................85
You got the data!...88
Deciding on relative versus absolute URLs90
Other ways of getting XMLHttpRequest objects91

Interactive Mouseovers Using Ajax ...93
Getting Interactive with Server-Side Scripting ...94

Choosing a server-side scripting language95
Connecting to a script on a server...95

Ajax For Dummies xii

02_785970 ftoc.qxp 1/20/06 12:28 PM Page xii

Time for Some XML..97
Getting XML from a PHP script...98
Setting up a Web page to read XML ...100
Handling the XML you read from the server101
Extracting data from XML ...102
Listing the colors in the drop-down control104

Passing Data to the Server with GET...106
Passing Data to the Server with POST...109

Chapter 4: Ajax in Depth .113
Returning JavaScript from the Server ...114

When do you send back JavaScript from the server?114
How does returning JavaScript work? ...114
Returning a JavaScript object...118

Connecting to Google for a Live Search ..120
Handling the data Google sends you ...121
Detecting keystrokes..122
Connecting to Google Suggest ..123
Showing Google’s response...125

Calling a Different Domain ..130
Reversing the Roles: Performing Validation on the Server.....................131
Getting Some Amazing Data with HEAD Requests...................................134

Returning all the header data you can get135
Finding the last-modified date ..136
Does a URL exist? ...139

Finding the Problem: Debugging Ajax ...140
Setting up your browser for debugging...140
Debugging with Greasemonkey ..142

Overload: Handling Multiple Concurrent Requests.................................143
Double the fun ..144
Packing it all into an array...146
Getting the inside scoop on inner functions...................................147

Part III: Ajax Frameworks ..151

Chapter 5: Introducing Ajax Frameworks .153
A Little More Ajax Power...154
Introducing the Ajax Gold Framework ..157

Using GET to get text ...158
Using GET to get XML ..162
Using POST to post data and get text ..166
Using POST to post data and get XML...170

Finding Ajax Frameworks in the Wild..173
Easy Ajax with AJAXLib ...174
Grabbing XML with libXmlRequest..176

xiiiTable of Contents

02_785970 ftoc.qxp 1/20/06 12:28 PM Page xiii

Chapter 6: More Powerful Ajax Frameworks .181
Dragging and Dropping with Shopping Carts ...182

Handling mouse events ...185
Handling mouse down events...187
Handling mouse-move events...189
Handling mouse up events..189
Updating the shopping cart ..191

Looking at Some Heavier-Weight Frameworks ...194
Getting XMLHttpRequest objects with XHConn.............................194
The Simple AJAX Code Kit: Sack ..196
Parsing XML with Interactive Website Framework198
Handling older browsers with HTMLHttpRequest.........................199
Decoding XML with Sarissa...201
Creating visual effects with Rico ..204
Overcoming caching with the Http framework211

Chapter 7: Server-Side Ajax Frameworks .213
Writing JavaScript by Using Ajax Frameworks...213

Sajax and PHP ...214
Xajax and PHP...218
LibAjax and PHP ...221
JPSpan and PHP..224

Accessing Java with Direct Web Remoting ...225
Setting up for Java on the Web ...225
Connecting to Java by using DWR..225

Building Web Applications with Echo2 ...228
Handling Ajax and JavaServer Pages with Ajax Tags229
Handling Java with SWATO ...231
Tracking Down the Many Other Frameworks Available..........................232

Developing amazing applications with WebORB............................232
Ruby on Rails ..233
Backbase..234
Dojo ..234
Atlas.NET...234

Part IV: In-Depth Ajax Power235

Chapter 8: Handling XML int Ajax Applications 237
Understanding Basic XML...238

What’s in a tag?...238
Keeping XML documents well-formed...239
Making an XML document valid ...240

Requesting XML Data in Ajax..240

Ajax For Dummies xiv

02_785970 ftoc.qxp 1/20/06 12:28 PM Page xiv

Extracting XML Data Using Properties ..243
Right on the node ...243
Introducing the JavaScript properties...243
Navigating an XML document using JavaScript properties245
Extracting with nodeValue ..249
Handling white space in Mozilla and Firefox250
Removing white space in Mozilla and Firefox254

Accessing XML Elements by Name..258
Accessing Attribute Values in XML Elements...260
Validating XML Documents in Ajax Applications.....................................263

Chapter 9: Working with Cascading Style Sheets in Ajax
Applications .269

An Ajax-Driven Menu System..271
Setting up the styles...272
Handling mouse events ...277
Displaying a menu ..278
Hiding a menu ...280
Getting a menu’s item from the server ..281
Handling the menu items ..282

Displaying Text That Gets Noticed ..285
Styling text...287
Handling colors and backgrounds ...289
Positioning using styles...292

Chapter 10: Working with Ajax and PHP .297
Starting with PHP ...298
Getting a Handle on Variables ..301
Handling Your Data with Operators...304
Making Choices with the if Statement ...306
Round and Round with Loops ..307
Handling HTML Controls...310

Getting data from text fields ...311
Checking out data from check boxes...312
Tuning in data from radio buttons ...314

Sending Data to the Server ...316
Reading Files...317
Writing Files ..319
Working with Databases..320

Part V: The Part of Tens ...323

Chapter 11: Ten Ajax Design Issues You Should Know About 325
Breaking the Back Button and Bookmarks ...325
Giving Visual Cues..326
Leaving the User in Control ..326

xvTable of Contents

02_785970 ftoc.qxp 1/20/06 12:28 PM Page xv

Remembering All the Different Browsers..327
Showing Users When Text Changes...327
Avoiding a Sluggish Browser ..328
Handling Sensitive Data...328
Creating a Backup Plan..328
Showing Up in Search Engines ...328
Sidestepping a Browser’s Cache ..329

Chapter 12: Ten Super-Useful Ajax Resources 331
The Original Ajax Page ..331
The Ajax Patterns Page ...332
The Wikipedia Ajax Page...332
Ajax Matters..332
XMLHttpRequest Object References ...333
Ajax Blogs..333
Ajax Examples...334
Ajax Tutorials ...334
Ajax Discussion Group ..334
More Depth on XMLHttpRequest...335

Index..337

Ajax For Dummies xvi

02_785970 ftoc.qxp 1/20/06 12:28 PM Page xvi

Introduction

Making Web applications look and feel like desktop applications is what
this book is all about — that’s what Ajax does. Although Web develop-

ment is getting more and more popular, users still experience the nasty part
of having to click a button, wait until a new page loads, click another button,
wait until a new page loads, and so on.

That’s where Ajax comes in. With Ajax, you communicate with the server
behind the scenes, grab the data you want and display it instantly in a Web
page — no page refreshes needed, no flickering in the browser, no waiting.
That’s a big deal, because at last it lets Web applications start to look like
desktop applications. With today’s faster connections, grabbing data from
the server is usually a snap, so Web software can have the same look and feel
of software on the user’s desktop.

And that, in a nutshell, is going to be the future of Web programming — now
the applications in your browser can look and work just like the applications
installed on your computer. No wonder Ajax is the hottest topic to come
along in years.

About This Book
This book gives you the whole Ajax story, from soup to nuts. It starts with a
tour of how Ajax is used today, taking a look at some cutting-edge applica-
tions (as well as some games). Then, because Ajax is based on using
JavaScript in the browser, there’s a chapter on how to use JavaScript (if you
already know JavaScript, feel free to skip that material).

Then the book plunges into Ajax itself, creating Ajax applications from
scratch, from the beginning level to the most advanced. And you’ll see how
to put many of the free Ajax frameworks, which do the programming for you,
to work. Because Ajax also often involves using XML, Cascading Style Sheets
(CSS), and server-side programming (using PHP in this book), there’s also a
chapter on each of these topics.

You can also leaf through this book as you like, rather than having to read it
from beginning to end. Like other For Dummies books, this one has been
designed to let you skip around as much as possible. You don’t have to read
the chapters in order if you don’t want to. This is your book, and Ajax is your
oyster.

03_785970 intro.qxp 1/20/06 12:12 PM Page 1

Conventions Used in This Book
Some books have a dozen dizzying conventions that you need to know before
you can even start. Not this one. All you need to know is that new terms are
given in italics, like this, the first time they’re discussed. And that when new
lines of code are introduced, they’re displayed in bold:

function getDataReturnText(url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}
.
.
.

}

Note also that code that’s been omitted has been indicated with three verti-
cal dots. That’s all there is to the notation in this book.

Foolish Assumptions
I don’t assume that you have knowledge of JavaScript when you start to read
this book, but you do have to know JavaScript to understand Ajax. Chapter 2
presents all the JavaScript you’ll need in this book.

Also, Ajax often involves some server-side programming, and this book, as
most books on Ajax do, uses PHP for that. You won’t need to know a lot of
PHP here, and what PHP there is is pretty self-explanatory, because it’s a lot
like JavaScript. However, there’s a whole chapter on PHP, Chapter 10, and you
can always dip into it at any time.

However, you should have some HTML prowess — enough to create and
upload to your server basic Web pages. If you feel shaky on that point, take a
look at a good book on HTML, such as HTML 4 For Dummies, 5th Edition, by
Ed Tittel and Mary Burmeister (published by Wiley).

2 Ajax For Dummies

03_785970 intro.qxp 1/20/06 12:12 PM Page 2

How This Book Is Organized
Here are the various parts that are coming up in this book.

Part I: Getting Started
Chapters 1 and 2 get you started on your tour of Ajax. Here, you get an
overview of how Ajax is used today, and what it has to offer. There are many
applications available that use Ajax, and you see a good sampling in this part.
Then you get a solid grounding in JavaScript, the programming language Ajax
is built on. (If you’re already a JavaScript Meister, feel free to skip this mater-
ial.) To use Ajax, you have to use JavaScript, and in this part, you build the
foundation that the rest of the book is based on.

Part II: Programming in Ajax
In Chapters 3 and 4, you delve into Ajax programming for real. Here, you see
how to grab data from the server — whether that data is plain text or XML —
and how to put that data to work. To illustrate how these techniques work,
you see plenty of examples using Ajax, Dynamic HTML to update Web pages
without needing a page refresh, and even advanced techniques like connect-
ing to Google behind the scenes for real-time same-page Web searches. At last
but not least, you find out how to support multiple Ajax requests to your
server at the same time.

Part III: Ajax Frameworks
Ajax can involve a lot of programming involved, and Part III takes a look at
some of the many shortcuts that are available. Rather than reinventing the
wheel yourself, you can use the Ajax frameworks. These frameworks are free
and do most of the programming for you, so you’ll definitely want to check
out this part. You can find all kinds of Ajax techniques, such as using Ajax for
drag-and-drop operations, pop-up menus, downloading images behind the
scenes, and more.

3Introduction

03_785970 intro.qxp 1/20/06 12:12 PM Page 3

Part IV: In-Depth Ajax Power
Chapters 8 to 10 give you even more of the Ajax story. Chapter 8 is all about
working with XML in JavaScript, and that’s what you often do in Ajax. In this
chapter, you discover how to deal with XML documents that can get pretty
complex, extracting the data you want, when you want it.

Chapter 9 gives you the story on Cascading Style Sheets (CSS), which offer all
kinds of options (such as creating pop-up menus) to display the data you
fetch from the server using Ajax techniques. Because using Ajax means dis-
playing data in a Web page without a page reload, using CSS is a big part of
Ajax programming.

Chapter 10 is about another big part of Ajax programming — writing code for
the server so that you can send data back from the server to the browser.
Like most Ajax books and Ajax samples you can find on the Internet, this
book uses PHP on the server. You won’t need to know PHP to read this book,
but it’ll help when you start using Ajax yourself, so Chapter 10 gives you a
foundation in writing and working with PHP.

Part V: The Part of Tens
No For Dummies is complete without a Part of Tens. Chapter 11 is all about
ten Ajax design issues you’re going to run into — and what to do about them.
For example, working with web pages interactively, as Ajax does, means that
the browser’s Back button isn’t going to work if the user wants to undo a
recent update. You’ll find some of the solutions that have been attempted dis-
cussed in Chapter 11.

Chapter 12 introduces you to ten essential Ajax resources. Knowing where to
find these resources, and the Google groups and Ajax discussions on the
Internet, will let you join the worldwide Ajax community.

Icons Used in This Book
You’ll find a handful of icons in this book, and here’s what they mean:

Tips point out a handy shortcut or help you understand something important
to Ajax programming.

4 Ajax For Dummies

03_785970 intro.qxp 1/20/06 12:12 PM Page 4

This icon marks something to remember, such as how you handle a particu-
larly tricky part of Ajax.

This icon means that what follows is technical, insider stuff. You don’t have
to read it if you don’t want to, but if you want to become an Ajax pro (and
who doesn’t?), take a look.

Although the Warning icon appears rarely, when you need to be wary of a
problem or common pitfall, this icon lets you know.

This icon lets you know that there are some pretty cool Web resources out
there just waiting for you to peruse. (In fact, one little corner of the Net,
www.dummies.com/go/ajax, has the code for this book available for free
download.)

Where to Go from Here
Alright, you’re all set and ready to jump into Chapter 1. You don’t have to
start there; you can jump in anywhere you like — the book was written to
allow you to do just that. But if you want to get the full story from the begin-
ning, jump into Chapter 1 first — that’s where all the action starts. (If you’re
familiar with what Ajax is and are already quick with JavaScript, you might
want to flip to Chapter 3 to start tinkering with the code that makes Ajax go.)

5Introduction

03_785970 intro.qxp 1/20/06 12:12 PM Page 5

6 Ajax For Dummies

03_785970 intro.qxp 1/20/06 12:12 PM Page 6

Part I
Getting Started

04_785970 pt01.qxp 1/20/06 12:16 PM Page 7

In this part . . .

This part introduces you to Ajax. You get a guided tour
of the Ajax world here, and you get a chance to see

how Ajax is used today. A good sampling of Ajax applica-
tions are on view in Chapter 1, just waiting for you to
check them out for yourself so you can see what Ajax
has to offer. From autocomplete and live searches to
Google Maps, I pack a lot of Ajax in here. Next comes
Chapter 2, which provides the JavaScript foundation
that the rest of the book relies on. If you already know
JavaScript, feel free to skip that material, but otherwise,
take a look. Ajax is built on JavaScript, so you want to
make sure you’ve got all the JavaScript you need under
your belt before going forward.

04_785970 pt01.qxp 1/20/06 12:16 PM Page 8

Chapter 1

Ajax 101
In This Chapter
� Introducing how Ajax works

� Seeing Ajax at work in live searches, chat, shopping carts, and more

We aren’t getting enough orders on our Web site,” storms the CEO.
“People just don’t like clicking all those buttons and waiting for a new

page all the time. It’s too distracting.”

“How about a simpler solution?” you ask. “What if people could stay on the
same page and just drag the items they want to buy to a shopping cart? No
page refreshes, no fuss, no muss.”

“You mean people wouldn’t have to navigate from page to page to add items
to a shopping cart and then check out? Customers could do everything on a
single Web page?”

“Yep,” you say. “And that page would automatically let our software on the
server know what items the customer had purchased — all without having to
reload the Web page.”

“I love it!” the CEO says. “What’s it called?”

“Ajax,” you say.

Welcome to the world of Ajax, the technology that lets Web software act like
desktop software. One of the biggest problems with traditional Web applica-
tions is that they have that “Web” feel — you have to keep clicking buttons to
move from page to page, and watch the screen flicker as your browser loads
a new Web page.

Ajax is here to take care of that issue, because it enables you grab data from
the server without reloading new pages into the browser.

05_785970 ch01.qxp 1/20/06 12:16 PM Page 9

How Does Ajax Work?
With Ajax, Web applications finally start feeling like desktop applications to
your users. That’s because Ajax enables your Web applications to work
behind the scenes, getting data as they need it, and displaying that data as
you want. And as more and more people get fast Internet connections, work-
ing behind the scenes to access data is going to become all the rage. Soon,
it’ll be impossible to distinguish dedicated desktop software from software
that’s actually on the Internet, far from the user’s machine. To help you
understand how Ajax works, the following sections look at Ajax from a user’s
and a programmer’s perspective.

A user’s perspective
To show you how Ajax makes Web applications more like desktop applica-
tions, I’ll use a simple Web search as an example. When you open a typical
search engine, you see a text box where you type a search term. So say you
type Ajax XML because you’re trying to figure out what XML has to do with
Ajax. Then, you click a Search the Web button to start the search. After that,
the browser flickers, and a new page is loaded with your search results.

That’s okay as far as it goes — but now take a look at an Ajax-enabled version
of Yahoo! search. To see for yourself, go to http://openrico.org/rico/
yahooSearch.page. When you enter your search term(s) and click Search
Yahoo!, the page doesn’t refresh; instead, the search results just appear in the
box, as shown in Figure 1-1.

Figure 1-1:
An Ajax-
enabled
Yahoo!
search.

10 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 10

That’s the Ajax difference. In the first case, you got a new page with search
results, but to see more than ten results, a user has to keep loading pages. In
the second case, everything happens on the same page. No page reloads, no
fuss, no muss.

You can find plenty of Ajax on the http://openrico.org Web site. If you’re
inclined to, browse around and discover all the good stuff there.

A developer’s perspective
In the article “Ajax: A New Approach to Web Applications” (www.adaptive
path.com/publications/essays/archives/000385.php), Jesse James
Garrett, who was the first to call this technology Ajax, made important
insights about how it could change the Web. He noted that although innova-
tive new projects are typically online, Web programmers still feel that the
rich capabilities of desktop software were out of their reach. But Ajax is clos-
ing the gap.

So how does Ajax do its stuff? The name Ajax is short for Asynchronous
JavaScript and XML, and it’s made up of several components:

� Browser-based presentation using HTML and Cascading Style Sheets
(CSS)

� Data stored in XML format and fetched from the server

� Behind-the-scenes data fetches using XMLHttpRequest objects in the
browser

� JavaScript to make everything happen

JavaScript is the scripting language that nearly all browsers support, which
will let you fetch data behind the scenes, and XML is the popular language
that lets you store data in an easy format. Here’s an overview of how Ajax
works:

1. In the browser, you write code in JavaScript that can fetch data from the
server as needed.

2. When more data is needed from the server, the JavaScript uses a special
item supported by browsers, the XMLHttpRequest object, to send a
request to the server behind the scenes — without causing a page
refresh.

The JavaScript in the browser doesn’t have to stop everything to wait
for that data to come back from the server. It can wait for the data in the
background and spring into action when the data does appear (that’s
called asynchronous data retrieval).

11Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 11

3. The data that comes back from the server can be XML (more on XML in
Chapters 2 and 8), or just plain text if you prefer. The JavaScript code in
the browser can read that data and put it to work immediately.

That’s how Ajax works — it uses JavaScript in the browser and the
XMLHttpRequest object to communicate with the server without page
refreshes, and handles the XML (or other text) data sent back from the
server. In Chapter 3, I explain how all these components work together in
more detail.

This also points out what you’ll need to develop Web pages with Ajax. You’ll
add JavaScript code to your Web page to fetch data from the server (I cover
JavaScript in Chapter 2), and you’ll need to store data and possibly write
server-side code to interact with the browser behind the scenes. In other
words, you’re going to need access to an online server where you can store
the data that you will fetch using Ajax. Besides just storing data on the
server, you might want to put code on the server that your JavaScript can
interact with. For example, a popular server-side language is PHP, and many
of the examples in this book show how you can connect to PHP scripts on
Web servers by using Ajax. (Chapter 10 is a PHP primer, getting you up to
speed on that language if you’re interested.) So you’re going to need a Web
server to store your data on, and if you want to run server-side programs as
well, your server has to support server-side coding for the language you want
to work with (such as PHP).

What Can You Do with Ajax?
The technology for Ajax has been around since 1998, and a handful of appli-
cations (such as Microsoft’s Outlook Web Access) have already put it to use.
But Ajax didn’t really catch on until early 2005, when a couple of high-profile
Web applications (such as Google Suggest and Google Maps, both reviewed
later in this chapter) put it to work, and Jesse James Garrett wrote his article
coining the term Ajax and so putting everything under one roof.

Since then, Ajax has exploded as people have realized that Web software can
finally start acting like desktop software. What can you do with Ajax? That’s
what the rest of this chapter is about.

Searching in real time with live searches
One of the truly cool things you can do with Ajax is live searching, where you
get search results instantly, as you enter the term you’re searching for. For
example, take a look at http://www.google.com/webhp?complete=1
&hl=en, the page which appears in Figure 1-2. As you enter a term to search

12 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 12

for, Ajax contacts Google behind the scenes, and you see a drop-down menu
that displays common search terms from Google that might match what
you’re typing. If you want to select one of those terms, just click it in the
menu. That’s all there is to it.

You can also write an Ajax application that connects to Google in this way
behind the scenes. Chapter 4 has all the details.

Getting the answer with autocomplete
Closely allied to live search applications are autocomplete applications,
which try to guess the word you’re entering by getting a list of similar words
from the server and displaying them. You can see an example at www.paper
mountain.org/demos/live, which appears in Figure 1-3.

As you enter a word, this example looks up words that might match in a dic-
tionary on the server and displays them, as you see in Figure 1-3. If you see
the right one, just click it to enter it in the text field, saving you some typing.

Figure 1-2:
A Google

live search.

13Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 13

Chatting with friends
Because Ajax excels at updating Web pages without refreshing the displayed
page, it’s a great choice for Web-based chat programs, where many users can
chat together at the same time. Take a look at www.plasticshore.com/
projects/chat, for example, which you can see in Figure 1-4. Here, you just
enter your text and click the Submit button to send that text to the server. All
the while, you can see everyone else currently chatting — no page refresh
needed.

Figure 1-3:
An

autocomplet
e example.

14 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 14

There are plenty of Ajax-based chat rooms around. Take a look at
http://treehouse.ofb.net/chat/?lang=en for another example.

Dragging and dropping with Ajax
At the beginning of this chapter, I mention a drag-and-drop shopping cart
example. As shown in Figure 1-5, when the user drags the television to the
shopping cart in the lower-right, the server is notified that the user bought a
television. Then the server sends back the text that appears in the upper left,
“You just bought a nice television.” You find out how to create this shopping
cart in Chapter 6.

Figure 1-4:
An Ajax-

based chat
application.

15Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 15

Gaming with Ajax
Here’s a cute one — a magic diary that answers you back using Ajax tech-
niques, as shown in Figure 1-6. You can find it at http://pandorabots.com/
pandora/talk?botid=c96f911b3e35f9e1. When you type something,
such as “Hello,” the server is notified and sends back an appropriate
response that then appears in the diary, such as “Hi there!”

Or how about a game of chess, via Ajax? Take a look at www.jesperolsen.
net/PChess, where you can move the pieces around (and the software on
the server can, too) thanks to Ajax.

Figure 1-5:
Drag-and-

drop
shopping.

16 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 16

Getting instant login feedback
Another Internet task that can involve many annoying page refreshes is log-
ging in to a site. If you type the wrong login name, for example, you get a new
page explaining the problem, have to log in on another page, and so on. How
about getting instant feedback on your login attempt, courtesy of Ajax?
That’s possible, too. Take a look at www.jamesdam.com/ajax_login/
login.html, which appears in Figure 1-7. I’ve entered an incorrect username
and password, and the application says so immediately. You’ll see how to
write a login application like this in Chapter 4.

Figure 1-6:
An

interactive
Ajax-

enabled
diary.

17Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 17

Ajax-enabled pop-up menus
You can grab data from the server as soon as the user needs it using Ajax. For
example, take a look at the application in Figure 1-8, which I explain how to
build in Chapter 9. The pop-up menus appear when you move the mouse and
display text retrieved from the server using Ajax techniques. By accessing
the server, Ajax allows you to set up an interactive menu system that
responds to the menu choices the user has already made.

Figure 1-8:
Ajax-

enabled
pop-up
menus.

Figure 1-7:
Ajax makes
correcting

login
mistakes

easier.

18 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 18

Modifying Web pages on the fly
Ajax excels at updating Web pages on the fly without page refreshes, and
you can find hundreds of Ajax applications doing exactly that. For example,
take a look at the Ajax rolodex at http://openrico.org/rico/demos.
page?demo=ricoAjaxInnerHTML.html, shown in Figure 1-9. When you
click someone’s name, a “card” appears with their full data.

You can see another example at http://digg.com/spy. This news Web site
uses Ajax techniques to update itself periodically by adding new article titles
to the list on the page.

Updating the HTML in a Web page by fetching data is a very popular Ajax
technique, and you see a lot of it in Chapters 3 and 4.

Google Maps and Ajax
One of the most famous Ajax application is Google Maps, at http://maps.
google.com, which you can see at work in Figure 1-10, zooming in on South
Market Street in Boston.

Figure 1-9:
An Ajax
rolodex.

19Chapter 1: Ajax 101

05_785970 ch01.qxp 1/20/06 12:16 PM Page 19

See that marker icon near the center of the map? The location for that marker
is passed to the browser from the server using Ajax techniques, and the Ajax
code in the browser positions the marker accordingly. Ajax at work again!

When Is Ajax a Good Choice?
The examples I show in the preceding section are just the beginning —
dozens more, including those you can write yourself, appear in later chap-
ters. Got a Web application that asks the user to move from page to page and
therefore needs to be improved? That’s a job for Ajax.

Figure 1-10:
Using

Google
maps.

20 Part I: Getting Started

05_785970 ch01.qxp 1/20/06 12:16 PM Page 20

Chapter 2

It’s All About JavaScript
In This Chapter
� Understanding the Ajax and JavaScript connection

� Writing JavaScript

� Handling browser events

� Writing JavaScript functions

� Storing data in variables

� Using JavaScript loops

� Connecting JavaScript to buttons

� Working with text fields from JavaScript

So what is this Ajax thing, anyway? You’ve heard that it’s a great way to
combine some of the Web languages you’re familiar with (such as HTML,

XML, CSS, and JavaScript) to create a Web application that looks and works
like a seamless desktop application. But you want to know much more, and
you’ve come to the right place.

As you might have heard, Ajax is based on JavaScript. And because you need
a good foundation in JavaScript to use Ajax (and to follow many chapters in
this book), this chapter is all about working with this scripting language. This
book might show you how to do things you’ve never done before — even if
you’ve been using JavaScript for a while. So get ready for a crash course in
JavaScript. If you think you already have a solid grounding in JavaScript, feel
free to jump right into working with Ajax in Chapter 3.

Taking a First Look at Ajax in Action
Here’s an sample Ajax application that demonstrates what kind of JavaScript
you’ll be seeing throughout the book. Take a look at Figure 2-1; that Web page
displays a message The fetched data will go here. That text is going
to change when you click the Display Message button, and no new page fetch
will be required.

06_785970 ch02.qxp 1/20/06 12:18 PM Page 21

To replace the text by using Ajax methods, just click the button now. The
browser won’t flicker. All you’ll see is the displayed text change to This
text was fetched using Ajax., as shown in Figure 2-2.

That kind of a change is nothing unusual in Web development — as long as
the text was stored locally in a script built into the Web page, for example.
But that text wasn’t stored locally; it came from a simple text file named
data.txt, stored on the server. And the browser fetched that text by using
Ajax methods.

When you download the example code for this book from the companion
Web site, you’ll find the examples stored in folders chapter by chapter. The
page you see in Figure 2-1 is index.html in the ch02 folder, and the data file
that holds the text fetched from the server is stored in the file data.txt,
which is also in the ch02 folder. To run this example, all you need to do is
upload the index.html and data.txt files to the same directory on your
Web server. Then navigate to index.html in your browser as you would any

Figure 2-2:
You can

fetch text
with Ajax.

Figure 2-1:
A simple

Ajax
example.

22 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 22

other Web page. The URL looks something like this: http://www.your
domain.com/yourname/index.html. If you already have an index.html
file, you might want to change the name of this one to something like ajax
example.html to avoid conflicts — the example will still run as before.

Taking a look at the code
So what does the JavaScript code for this example look like? Listing 2-1
shows you what’s in index.html. Notice that there’s a healthy amount of
JavaScript here. As you find out in Chapter 3, you have a number of different
ways of making JavaScript do what it has to do. So the code I show in Listing
2-1 is just one way to write it.

Listing 2-1: Getting Ajax to Work

<html>
<head>
<title>Ajax at work</title>

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHTTP”);

}

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}
XMLHttpRequestObject.send(null);

}
}

</script>
</head>

<body>

(continued)

23Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 23

Listing 2-1 (continued)

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘http://localhost/ch01/data.txt’,
‘targetDiv’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

The other file is data.txt, and here’s all the text it contains:

This text was fetched using Ajax.

That’s the code for your first Ajax example. If you want to be an ace number
one Ajax programmer (and who doesn’t?), you have to have a firm grasp on
the JavaScript. Many Web developers coming to Ajax for the first time don’t
know as much JavaScript as they’re going to need, so the rest of this chapter
is dedicated to helping you get that essential JavaScript foundation.

Delving deeper into JavaScript
This chapter doesn’t try to cover all there is to know about JavaScript, but it
does cover what you need to know before you turn to the following chapters
on Ajax programming. In this chapter, I explain all the JavaScript you need in
order to work your way through this book. For more information on
JavaScript, track down some of the tutorials on the Web, such as the one at
www.w3schools.com/js/js_intro.asp, or take a look at a good
JavaScript book, such as JavaScript For Dummies, 4th Edition, by Emily A.
Vander Veer (Wiley Publishing, Inc.).

Enter JavaScript
Despite its name, JavaScript has little to do with Java. It all began at Netscape
Communications Corporation in 1995 when a developer named Brendan Eich
was assigned to the task of making Navigator’s newly added Java support
more accessible to non-Java programmers. He called his creation LiveScript,
but ultimately renamed it JavaScript, even though it really didn’t resemble the
Java programming language at all.

24 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 24

JavaScript was fun and allowed all kinds of visual tricks, such as rollover
images and text, which change when the viewer rolls the mouse over them.
As JavaScript became more popular, Netscape’s chief competitor, Microsoft,
decided it could no longer ignore this new language. Microsoft decided to
create its own version of JavaScript, which it called JScript.

And so began the cross-browser wars that have made life for JavaScript pro-
grammers so interesting ever since. Programmers started to find that
although JScript looked just like JavaScript, some scripts would run in
Netscape and not in Internet Explorer, and vice versa.

Hoping to stave off some of the chaos, Netscape and Sun turned to the
European Computer Manufacturers Association (ECMA) to standardize
JavaScript, and the standardized version is called ECMAScript.

JavaScript is converging among browsers now, and at least the core part of
the language matches ECMAScript version 3.0. Some differences still exist, as
you see later in this book, but the situation is far better than it used to be.

Creating a script
It’s time to get started slinging JavaScript around. If you want to write
JavaScript, you put that JavaScript in a <script> element like this:

<html>
<head>
<title>A First Script</title>

25Chapter 2: It’s All About JavaScript

Examining the standards
So where are all these standards? You can find the JavaScript 1.5 user’s guide at
http://web.archive.org/web/20040211195031/devedge.netscape.com/
library/manuals/2000/javascript/1.5/guide. And you can find the documenta-
tion for JScript 5.6 online as well at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/script56/html/js56jsoriJScript.
asp. The ECMAScript specifications are also online:

� ECMAScript Language Specification, 3rd Edition:http://www.ecma-international.
org/publications/standards/Ecma-262.htm

� ECMAScript Components Specification: http://www.ecma-international.org/
publications/standards/Ecma-290.htm

� ECMAScript 3rd Edition Compact Profile Specification:http://www.ecma-international.
org/publications/standards/Ecma-327.htm

06_785970 ch02.qxp 1/20/06 12:18 PM Page 25

<script language=”javascript”>
.
.
.

</script>
</head>

<body>
<h1>A First Script</h1>

</body>
</html>

This <script> element uses the language attribute to indicate that the lan-
guage of the enclosed script is JavaScript, as you see here.

Accessing the Web page from JavaScript
Suppose you want to write the message You’re using JavaScript to a
Web page by using JavaScript. How do you access the Web page from your
script?

In JavaScript, you access the Web page and the browser itself with a variety
of built-in objects. The available objects include document (which refers to
a Web page), window (which refers to the browser window), and history
(which refers to a history list that lets the browser navigate forward and
backward).

Each of these objects includes methods and properties. You can call a method
to make something happen (like writing to a Web page) and set the value of a
property to configure those objects (like setting the background color of a
Web page). Here are examples of a few useful object methods and the tasks
they perform:

� document.write: Writes text to the current Web page.

� history.go: Navigates the Web browser to a location in the browser’s
history.

� window.open: Opens a new browser window.

Here are a few of the useful properties you can set for these methods:

� document.bgcolor: Background color of the current page.

� document.fgcolor: Foreground color of the current page.

� document.lastmodified: Date the page was last modified.

� document.title: Title of the current page.

26 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 26

� location.hostname: Name of the Internet service provider (ISP) host.

� navigator.appName: Name of the browser, which you can use to
determine what browser the visitor is using.

You now have the tools to write that welcome message. You use the document.
write method and embed your JavaScript in HTML. Here is a first example of
writing text to a Web page:

<html>
<head>
<title>A First Script</title>
<script language=”javascript”>
document.write(“You’re using JavaScript”);

</script>
</head>

<body>
<h1>A First Script</h1>

</body>
</html>

In this case, you are passing the text You’re using JavaScript to the
document object’s write method. The write method will display that text
on the Web page, no worries.

Type the preceding HTML into a new file and save it as firstscript.html
or download firstscript.html from the ch02 folder on the companion
Web site. Open the file in your browser. As shown in Figure 2-3, this page uses
JavaScript to write a message to the Web page when that page loads.

Excellent — firstscript.html is a complete success, and everything’s off
to a good start.

Figure 2-3:
A first
script.

27Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 27

Oh, those semicolons
Technically speaking, each line of JavaScript should end with a semicolon (;)
just like in Java if you’re at all familiar with that language. Notice the semi-
colon at the end of the bold line of JavaScript code shown in the following:

<html>
<head>
<title>A First Script</title>
<script language=”javascript”>
document.write(“You’re using JavaScript”);

</script>
</head>

<body>
<h1>A First Script</h1>

</body>
</html>

Including the semicolon is the correct way of doing things in JavaScript, and
that’s the way I do it in this book. However, browsers have become very for-
giving on this point. If you omit the semicolons at the end of lines, browsers
won’t have a problem with it.

Adding comments to your JavaScript
JavaScript supports a one-line comment with the double slash (//) marker,
which means that JavaScript doesn’t read anything on a line after //. So you
can add comments for people to read throughout your code, and they won’t
interrupt how your JavaScript runs. See the comment line added in bold in
the following code:

<html>
<head>
<title>A First Script</title>
<script language=”javascript”>
//Write the message to the Web page
document.write(“You’re using JavaScript”);

</script>
</head>

<body>
<h1>A First Script</h1>

</body>
</html>

28 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 28

In fact, JavaScript also supports a second type of comment, which you can
use for multiple lines. This comment starts with /* and ends with */. When
JavaScript sees /*, it ignores everything else until it sees */. Here’s an
example:

<html>
<head>
<title>A First Script</title>
<script language=”javascript”>
/* Write the message

to the Web page */
document.write(“You’re using JavaScript”);

</script>
</head>

<body>
<h1>A First Script</h1>

</body>
</html>

Using separate script files
Here’s a very common practice in Ajax applications: If you want to store your
JavaScript code in a file outside the Web page you’ll use it in, store it in a file
with the extension .js. This can be a good idea when you’re dealing with
cross-browser issues, for example, because you can load one .js file for one
browser and another .js file for another browser.

For example, say that you put this line of JavaScript code into a file named
script.js:

document.write(“You’re using JavaScript”);

Now you can refer to script.js in a new HTML file, usescript.html, by
using the <script> element’s src attribute, like this:

<html>
<head>
<title>A First Script</title>
<script language=”javascript” src=”script.js”>
</script>

</head>

<body>
<h1>A First Script</h1>

</body>
</html>

29Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 29

That’s all there is to it. Now when you load usescript.html, script.js is
loaded automatically as well, and the code from that file is run. Many of the
Ajax applications I show you use external scripts, so understanding this
aspect of JavaScript is important.

Examining script errors
Believe it or not, sometimes the JavaScript that people write has errors in it
(perhaps not your scripts, but errors have been known to crop up in mine).
You can view the errors and get a short description of them from various
browsers. These errors can help you debug the problem — except, that is,
when the error message is so terse that it’s no help at all.

The following script has an error in it — can you spot it?

<html>
<head>
<title>A First Script</title>
<script language=”javascript”>
docment.write(“You’re using JavaScript”);

</script>
</head>

<body>
<h1>A First Script</h1>

</body>
</html>

Yep, the object document is misspelled as docment, although that might not
be obvious at first reading. This JavaScript isn’t going to run. What happens
when you open this document, which I’ve named error.html, in a browser
such as Internet Explorer? You get the results you see in Figure 2-4. The
JavaScript didn’t do anything, and you see a small yellow triangle icon in the
lower-left corner. JavaScript programmers call this the yellow triangle of
death.

Double-clicking the yellow triangle of death opens the dialog box you see in
Figure 2-5, which explains the problem: Internet Explorer can’t understand
docment. Now that you know what the problem is, you can fix it.

How would Firefox handle the same problem? If you open error.html in
Firefox, the JavaScript won’t run, just as with Internet Explorer. But there’s
no yellow triangle of death here to click. Instead, you can choose Tools➪
JavaScript Console to open the Firefox JavaScript Console. This displays the
window shown in Figure 2-6.

30 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 30

Figure 2-6:
The Firefox
JavaScript

Console.

Figure 2-5:
You can get

the details
of the error

from
Internet

Explorer.

Figure 2-4:
The yellow
triangle of

death
signifies an

error in your
JavaScript.

31Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 31

You can read right away what the error is: docment isn’t defined. And now
that you know what the error is, you can fix it.

Which of these two popular browsers helps out the Ajax programmer the
best with the most complete explanation of each error? Firefox. As you
develop your own scripts, the Firefox JavaScript console can be an invaluable
aid to fixing any bugs that might crop up. The console will give you more
details on the errors than Internet Explorer would.

Which browser are you using?
Here’s a question that bears some examination: Which browser does the user
have? The JavaScript incompatibilities among browsers are small these days,
but some still exist — such as how you create the central object you need in
Ajax scripts, the XMLHttpRequest object. So sometimes you need to know
which browser you’re dealing with to be able to do the right JavaScript trick.

This is where the navigator browser object comes in. This object holds all
kinds of details about the browser. Here are the relevant properties of this
object:

� navigator.AppName: Provides the name of the browser application.

� navigator.AppVersion: Provides the version of the browser.

� navigator.UserAgent: Provides more details about the browser.

For example, here’s a script that displays these properties in a Web page,
browser.html — note the + sign, which you use to join text strings together
in JavaScript:

<html>
<head>

<title>
What’s Your Browser?

</title>
</head>

<body>
<script language=”javascript”>

document.write(“You’re using: “ + navigator.appName)
document.write(“

”)
document.write(“Version: “ + navigator.appVersion)
document.write(“

”)
document.write(“Browser details: “ + navigator.userAgent)

</script>

<h1>What’s Your Browser?</h1>
</body>

</html>

32 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 32

You can see what this HTML page looks like in Firefox in Figure 2-7, and in the
Internet Explorer in Figure 2-8. When you have this information, you can
make JavaScript do one thing for one browser and another thing for a differ-
ent browser. The detailed how-to is coming up in this chapter — watch for
the section, “Picking and Choosing with the if Statement.”

Making Something Happen:
Browser Events

Ajax applications often respond to user actions — button clicks, mouse
double clicks, page loads, and so on. How does the script know when to
respond to something that has happened? You can use browser events,

Figure 2-8:
Determining

browser
type in

Internet
Explorer.

Figure 2-7:
Determining
the browser

type in
Firefox.

33Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 33

something you’re going to see a lot of in this book. When the user performs
some action that you can respond to, an event occurs, such as a mouse click.

So what events are available? Table 2-1 lists some common ones that you
might see in Ajax applications.

Table 2-1 JavaScript Events Common in Ajax
Event Occurs When . . .

onabort Occurs when the user aborts an action

onblur Occurs when an element loses the input focus

onchange Occurs when data in a control, such as a text field,
changes

onclick Occurs when the user clicks an element

ondblclick Occurs when the user double-clicks an element

ondragdrop Occurs when the user drags and drops an element

onerror Occurs when there’s been a JavaScript error

onfocus Occurs when an element gets the focus

onkeydown Occurs when the user presses down on a key

onkeypress Occurs when the user presses a key

onkeyup Occurs when the user releases a key

onload Occurs when the page loads

onmousedown Occurs when the user presses down a mouse button

onmousemove Occurs when the user moves the mouse

onmouseout Occurs when the user moves the cursor away from an
element

onmouseover Occurs when the user moves the cursor over an element

onmouseup Occurs when the user releases a mouse button

onreset Occurs when the user clicks a Reset button

onresize Occurs when the user resizes an element or page

onsubmit Occurs when the user clicks a Submit button

onunload Occurs when the browser unloads a page and moves to
another page

34 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 34

Putting browser events to work
To make any of the browser events in Table 2-1 happen, you need to drop
them in a Web page’s HTML. For example, what if you want to change the
color of a Web page to pink when the user clicks that page? You can use the
events in Table 2-1 as attributes in various HTML elements; for example, the
Web page itself is represented with the <body> element, so you can use the
onmousedown attribute in the <body> tag with a little JavaScript to turn the
page pink.

What does all that mean? Here’s what that looks like in a page named
blusher.html — note that you can execute JavaScript simply by assigning
it to an event attribute such as the onmousedown attribute without having to
place that JavaScript in a <script> element; such scripts are called inline
scripts (the text of an inline script must be enclosed in quotes, as here):

<html>
<head>

<title>
JavaScript Event Example

</title>
</head>

<body onmousedown=”document.bgcolor=’pink’”>
<h1>

Click this page to turn it pink!
</h1>

</body>
</html>

To turn the page pink with JavaScript, you have to set the Web page’s
bgcolor property, just as you’d use the <body> element’s bgcolor
attribute to set the page color in HTML. In JavaScript, you access the page by
using the document object, which supports a bgcolor property that will let
you set the page color on the fly. (To see which browser objects support
which properties, take a look at JavaScript manuals I refer to at the beginning
of the chapter.)

In this case, here’s the JavaScript executed when the user clicks the Web
page:

body onmousedown=”document.bgcolor=’pink’”

This sets the document.bgcolor property to the text ‘pink’. (Note the
single quotation marks, which I elaborate on in the next section.) When you
click this page, it turns pink, as you can see in Figure 2-9 (where it appears in
glorious black and white). Not bad.

35Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 35

Will the browser understand the word pink? Sure will — all modern browsers
come with dozens of words standing for colors already built in. You can
assign all kinds of colors to document.bgcolor, not only pink but blue,
green, yellow, and even coral or cyan.

If you don’t want an event to trigger an inline script but instead want to call
JavaScript in a <script> element when something happened on the page,
such as a mouse click or a button press, you have to use JavaScript functions.
To find out how, see “Dividing and Conquering: JavaScript Functions,” later in
this chapter.

Getting the quotation marks right
You always have to enclose the values that you assign to a property in quota-
tion marks. Note the single quotation marks here! Because the whole inline
script is quoted with double quotation marks, you’d confuse JavaScript if you
entered

body onmousedown=”document.bgcolor=”pink””

When JavaScript comes to the second double quotation mark (at the begin-
ning of “pink”), it thinks the inline script is done and it doesn’t know how to
proceed. To avoid that, you can enclose the text you assign to a property in
single quotation marks.

Figure 2-9:
Clicking the

page
changes its

color.

36 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 36

If you want to change the color of the Web page in JavaScript in a <script>
element, not in an inline script, you wouldn’t have to enclose the whole line
of JavaScript in quotation marks, so you could use double quotation marks
around “pink”, like this:

document.bgcolor=”pink”;

Or you could use single quotation marks if you like them better:

document.bgcolor=’pink’;

Dividing and Conquering:
JavaScript Functions

When you use Ajax techniques, you often want to place text in a Web page
at a specific location after fetching that text from the server. Making that
happen correctly will address a couple of important JavaScript issues.

To make text appear is specific place, you need to make your JavaScript
run only when you want it to run. To do that, you can place that code into a
JavaScript function. In JavaScript, a function is a set of lines of code that are
run only when you specifically call that function — just what you want here.
(A function is just like the methods you’ve already seen — like the document
object’s write method — except that a function isn’t connected to an object.)

Functions are important for you as an Ajax programmer because unless you
pack your code into a function, it runs immediately when the HTML page
loads. And if you’ve put your <script> element into the <head> section of
the page, it’s even worse because your code won’t be able to access elements
in the <body> section because they haven’t even loaded yet. To be able to
fetch data interactively when you want without reloading the whole page,
you need to use functions, so make sure you know how they work. This sec-
tion breaks down how you put together functions and then how to pass argu-
ments to functions.

You also find more on functions a little later in this chapter — they’re very
handy when the user clicks a button to make something happen, for example,
because button clicks are just other events that you can connect to functions.

37Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 37

Understanding the problem
To know when functions are necessary, it helps to know how inline scripts
can create problems. This is the script that you developed earlier in this
chapter to display a message:

<html>
<head>
<title>Getting started with JavaScript</title>
<script language=”javascript”>
document.write(“You’re using JavaScript”);

</script>
</head>

<body>
<h1>Getting started with JavaScript</h1>

</body>
</html>

When this page loads in a browser, the JavaScript in the <script> element
in the <head> section is executed immediately. In this case, that means this
line is executed as soon as the browser reads it:

document.write(“You’re using JavaScript”);

And that, in turn, means that the text You’re using JavaScript appears
in the browser. After the <head> section is loaded, the <body> section of the
page is loaded, and the <h1> header text, “A First Script”, then appears
on the page (refer to Figure 2-3).

That looks okay, but it’s a little upside down. The header needs to appear on
top, and the normal text underneath it. How could you make that happen?
Wouldn’t it be nicer to execute the JavaScript after the header has already
appeared?

One way of getting the text under the header is to place the JavaScript in the
<body> section of the page instead of in the header. That might look like this,
for example:

<html>
<head>
<title>Getting started with JavaScript</title>

</head>

<body>
<h1>Getting started with JavaScript</h1>
<script language=”javascript”>
document.write(“You’re using JavaScript”);

</script>
</body>

</html>

38 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 38

This works — the text You’re using JavaScript appears underneath the
header A First Script when you open this page in a browser. In other
words, knowing what part of a page loads first can make a difference — for
example, if you have JavaScript in the <head> section that refers to elements
in the <body> section, and if that JavaScript executes as soon as the page
loads, the script will fail because the <body> section hasn’t been loaded yet.

Although you can put <script> elements into the <body> section of a page,
things aren’t usually done that way. The modern JavaScript convention is to
put <script> elements only in the <head> section of a page. Okay, so what
do you do now? In this case, you don’t want your JavaScript executed before
the rest of the page loads.

The problem here is that when the page loads, the <head> section gets
loaded first, so the code in the <script> section is run immediately. That
places the You’re using JavaScript text on the Web page first. Then the
<body> section is loaded, which puts the A First Script heading on the
Web page.

The bottom line is that you simply don’t get the control you need by using
the inline script. To make the JavaScript run only when you want, you need a
function.

Putting together a function
To illustrate how JavaScript functions typically work in Ajax applications, say
that you create a function named displayText, which works like this:

<html>
<head>
<title>Getting started with JavaScript</title>

<script language=”javascript”>
function displayText()
{
.
.
.

}
</script>

</head>

<body>

<h1>Getting started with JavaScript</h1>

</body>
</html>

39Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 39

Note that you use the function keyword, follow the name of the function with
parentheses (the parentheses indicate what, if any, data is passed to the func-
tion — there will be none here), and enclose the lines of JavaScript you want
to execute — called the body of the function — in curly braces, { and }.

Now the JavaScript inside the displayText function will only be run when
you want it to be run. But with this extra flexibility comes more work. You
need to call the function and place the code that writes the message.

Calling the function
To call this function and run that code, you can use browser events. There’s
an event that’s perfect here — the onload event, which occurs after the page
has been loaded.

There’s an onload attribute for the <body> element that you can use like
this:

<html>
<head>
<title>Getting started with JavaScript</title>

<script language=”javascript”>
function displayText()
{
.
.
.

}
</script>

</head>

<body onload=””>

<h1>Using a div</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

But what do you put into the quotation marks here? What inline script
can you use to call the displayText function? All you have to do to call

40 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 40

a function is to give its name, followed by a pair of parentheses (if you want
to pass data to the function, you put the data between the parentheses, as I
show you a little later):

<html>
<head>
<title>Getting started with JavaScript</title>

<script language=”javascript”>
function displayText()
{
.
.
.

}
</script>

</head>

<body onload=”displayText()”>

</body>
</html>

Great. If you’re familiar with using functions in code, you might intuitively
think you can place the code to write the message in the displayText()
function, like this:

function displayText()
{
document.write(“You’re using JavaScript”);

}

Unfortunately, you can’t. The displayText function will be called after
the page is loaded, which is fine. But here’s the catch — when you call the
document.write method, the document is opened for writing, which clears
any text that’s already in the document now — and that means all that will
appear in the browser will be the text You’re using JavaScript, because
the browser will have overwritten the header text, A First Script, as you
see in Figure 2-10.

Why doesn’t this happen when you place the <script> element inside the
<body> element? In that case, the document is still open for writing because
the <body> element is still loading when your JavaScript executes. But after
the page is loaded, the document is closed and has to be reopened if you
want to write to it again — and opening the document clears the text in it.

41Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 41

So what should you do? The solution is to do what a lot of Ajax scripts do —
write to a specific part of the page after the page has been loaded. In this
case, you might do that by adding a <div> element to the page.

This <div> element will display the text You’re using JavaScript after
the page has loaded (note that I give it the ID “targetDiv”):

<html>
<head>
<title>Using a div</title>
<script language=”javascript”>
function displayText()
{
.
.
.

}
</script>

</head>

<body onload=”displayText()”>

<h1>Using a div</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

Figure 2-10:
Overwriting

a page’s
text.

42 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 42

So far, so good. But how do you access the <div> element from JavaScript?
This <div> has the ID “targetDiv”, and you can use that ID to reach it. You
can reach this <div> by using the document object, which represents the
Web page, in JavaScript code. The document object has a very handy method
named getElementById, and if you pass the ID of the <div> to this method,
it will pass back to you a JavaScript object corresponding to the <div>.

That’s how it works in JavaScript — you can get a JavaScript object corre-
sponding to a Web page or any element in the page. After you get an object
corresponding to the <div>, you can use that object’s built-in methods and
properties to work with it. To paste text into the <div>, for example, you can
use the innerHTML property. If you want to write new text to the <div>
element, you can use the expression document.getElementById
(‘targetDiv’) to get an object that corresponds to the <div> element,
and then you can use the innerHTML property of that object (like this:
document.getElementById(‘targetDiv’).innerHTML) to be able to
access the text inside the <div>.

Whew.

Here’s what it looks like in code — after the page loads, the JavaScript here
writes the text “You’re using JavaScript” to the <div> element:

<html>
<head>
<title>Using a div</title>

<script language=”javascript”>
function displayText()
{
document.getElementById(‘targetDiv’).innerHTML =
“You’re using JavaScript”;

}
</script>

</head>

<body onload=”displayText()”>

<h1>Using a div</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

43Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 43

Is all this going to work? Sure. You can see this page, usediv.html, at work
in Figure 2-11. Perfect.

This is a technique that Ajax applications use frequently — after you’ve used
Ajax techniques to fetch data from the server, you can display that data in a
<div> element.

Passing a single argument to a function
When you use the document.write method, you pass the text to write to
that method like this: document.write(“You’re using JavaScript”).
You can also pass data to the functions you write.

Here’s how to do it: Say that you want to pass the text to write to the
displayText function. It’s easy; when you call the function, just pass the
text you want to write in the parentheses following the name of the function,
like this: displayText(‘You’re using JavaScript’). The data you
pass to a function this way — in this case, that’s just the text “You’re
using JavaScript” — is called an argument. So here, you’re passing a
single argument to the displayText function.

Then you set up the function itself by giving a name to the passed data in the
parentheses like this, where I name that text simply text:

function displayText(text)
{

.

.

.
}

Figure 2-11:
Writing to

a <div>
element.

44 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 44

Now you can refer to the text passed to your function by name like this,
where the function is displaying that text in the <div> element:

function displayText(text)
{
document.getElementById(“targetDiv”).innerHTML = text;

}

Here’s what it all looks like in place:

<html>
<head>
<title>Using a div</title>

<script language=”javascript”>
function displayText(text)
{
document.getElementById(“targetDiv”).innerHTML = text;

}
</script>

</head>

<body onload=”displayText(‘You’re using JavaScript’)”>

<h1>Using a div</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

This gives you the same results as before, where the text appears under the
heading (refer to Figure 2-11). When the page finishes loading, the display
Text function is called with the text of the message to write You’re using
JavaScript, which is promptly sent to the target <div> element.

Not bad.

Using <div> versus
Elements like <div> are block elements in HTML (and XHTML), which means
they’re automatically set off on their own lines (much like a header, such as
<h1>). Sometimes, you might not want the data you fetch by using Ajax tech-
niques to appear on its own line — you might want it to appear on the same
line as other text, such as text that explains what your data means (for exam-
ple, “Record number: “, or something similar). To place text inline in real-
time, you can use a element instead of a <div>. You can find an
example, usespan.html, in the code you can download for this book.

45Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 45

That example inserts text directly inline into the sentence: The new text
will appear here: . Here’s what it
looks like in the actual code.

<html>
<head>
<title>Using a span</title>

<script language=”javascript”>
function displayText()
{
document.getElementById(‘targetSpan’).innerHTML =
“You’re using JavaScript”;

}
</script>

</head>

<body onload=”displayText()”>

<h1>Using a span</h1>

The new text will appear here: “
”.

</body>
</html>

You can see this in action in Figure 2-12, where the is doing its thing.

Figure 2-12:
Writing to

a <div>
element by

using a
function.

46 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 46

Using Ajax is all about inserting fresh data into a page without having to
reload that page, and using the Dynamic HTML (DHTML) technique of insert-
ing text into a <div> or a is very popular. Want to display some new
data? Fetch it from the server, pop it into a <div>, and pow!, there you are.
The <div> element is the most popular, but don’t forget that it’s a block ele-
ment and so takes up its own line(s) in the browser. If you want to place new
text inline, consider .

Before you start sticking new text into a Web page left and right by using
<div>, and even more when you use , you have to consider how well
the user is going to realize you’ve changed things. That’s one of the Ajax
topics — and criticisms of Ajax — I discuss in Chapter 4: that the user might
not realize that anything’s changed. Because you have Dynamic HTML tech-
niques such as popping text into <div> and elements, the whole
page won’t change — just the element you’re working with. Did the users
notice? Should you bring the change to their attention? This is one of the ele-
ments of Ajax style coming up in Chapter 4.

So far, so good. But there’s more to this story of using JavaScript functions.
The usediv.html and usespan.html examples just passed a single argu-
ment to the displayText function, but you aren’t limited to that — you can
pass multiple arguments to a function just as easily.

Passing multiple arguments
To see how you pass multiple arguments, take a look at the usearguments.
html example in the code available for download from the Web site associ-
ated with this book. The inline Javascript code in this example passes not
only the text to display, but also the name of the <div> to insert text into:

<html>
<head>
<title>Passing multiple arguments to a function</title>

<script language=”javascript”>
function displayText(text, divName)
{
document.getElementById(divName).innerHTML = text;

}
</script>

</head>

<body onload=”displayText(‘You’re using JavaScript’, ‘targetDiv’)”>

<h1>Passing multiple arguments to a function</h1>

47Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 47

<div id=”targetDiv”>
</div>

</body>
</html>

As you can see, passing multiple arguments to a function is easy — just use
commas:

displayText(‘You’re using JavaScript’, ‘targetDiv’)

And when you set up the function, you give names to the data items you want
the function to be passed, separated by commas. And then you can refer to
those data items by using those names in the body of the function:

function displayText(text, divName)
{
document.getElementById(divName).innerHTML = text;

}

You can see this page in action in Figure 2-13, where both arguments — the
text to display and the name of the <div> element to write the text to —
were successfully passed to the function. Cool.

You Must Remember This: Storing Data
Ajax applications can use JavaScript pretty intensively, and among other
things, that means handling data like the current price of music CDs, the
number of LCD monitors in stock, the temperature in San Francisco, and so
on. And in JavaScript, you can store data using variables.

Figure 2-13:
Passing
both the

<div> name
and new
text to a

function.

48 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 48

For example, say that you wanted to store that “You’re using Java
Script” message in your script for easy handling. That way, you wouldn’t
have to pass that message to the displayText function each time you
want to display that text, as I explain earlier in this chapter. Instead, that
text would already be available to the displayText function.

Simple data storage with
the var statement
To store data like the “You’re using JavaScript” text by using Java
Script, you use the JavaScript var (short for variable) statement. For exam-
ple, to store the message’s text in a variable named text, you could use this
line of JavaScript in your <script> element:

var text = “You’re using JavaScript”;

Then you could refer to that text by name from then on in your JavaScript
code. For example, when you want to display that text, you could do this:

<html>
<head>
<title>Using variables</title>

<script language=”javascript”>

var text = “You’re using JavaScript”;

function displayText()
{
document.getElementById(‘targetDiv’).innerHTML = text;

}
</script>

</head>

<body onload=”displayText()”>

<h1>Using variables</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

49Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 49

That’s all it takes — you’ve created a variable named text and then made
use of that variable like this to display the text you’ve stored in it:

document.getElementById(‘targetDiv’).innerHTML = text;

Very nice.

Churning your data with operators
Many programming languages make big distinctions between the type of data
you can store in variables, and they give you a different types of variables to
store different types of text — for example, one type of variable is for text
strings, another is for integers, and so on. But JavaScript isn’t that uptight —
you can store all kinds of data with the same var statement. For example, say
that you wanted to store numbers in two variables named, say, operand1
and operand2. You could do that like this:

var operand1 = 2;
var operand2 = 3;

Then say you wanted to add these two values and store the result in a vari-
able named sum. JavaScript has a bunch of operators that will let you perform
operations like addition (the + operator) or subtraction (the - operator), and
you can see them in Table 2-2. (Don’t try to memorize what you see there —
come back to this table throughout the book as needed.) So here’s how you
might create a new variable named sum and store the sum of operand1 and
operand2 in it (note that this code doesn’t give the sum variable any initial
value when it’s first created):

var sum;
sum = operand1 + operand2;

Listing 2-2 shows what it would all look like on a Web page, usenumbers.
html in the code for this book, where JavaScript adds together the values in
operand1 and operand2, stores them in the variable named sum, and dis-
plays that result.

Listing 2-2: Putting JavaScript Operators to Work

<html>
<head>
<title>Using numeric variables</title>

<script language=”javascript”>

50 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 50

var operand1 = 2;
var operand2 = 3;
var sum = 0;
function displayText()
{
sum = operand1 + operand2;
document.getElementById(‘targetDiv’).innerHTML =

operand1 + “ + “ + operand2 + “ = “ + sum;
}

</script>

</head>

<body onload=”displayText()”>

<h1>Using numeric variables</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

You can see this page in action in Figure 2-14, where the users learns that
2 + 3 = 5. They might have already have known the math, but they can’t help
but be impressed by your use of variables.

Figure 2-14:
Working

with
numbers in

variables.

51Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 51

Table 2-2 JavaScript Operators
Operator Description

Arithmetic Operators

+ Addition — Adds two numbers.

++ Increment — Increments by one the value in a vari-
able.

- Subtraction, negation — Subtracts one number from
another. Can also change the sign of its operand
like this: -variableName.

-- Decrement — Decrements by one the value in a
variable.

* Multiplication — Multiplies two numbers.

/ Division — Divides two numbers.

% Modulus — Returns the remainder left after dividing
two numbers using integer division.

String Operators

+ String addition — Joins two strings.

+= Joins two strings and assigns the joined string to the
first operand.

Logical Operators

&& Logical AND — Returns a value of true if both
operands are true; otherwise, returns false.

|| Logical OR — Returns a value of true if either
operand is true. However, if both operands are false,
returns false.

! Logical NOT — Returns a value of false if its
operand is true; true if its operand is false.

Bitwise Operators

& Bitwise AND — Returns a 1 in each bit position if
both operands’ bits are 1s.

^ Bitwise XOR — Returns a 1 in a bit position if the bits
of one operand, but not both operands, are 1.

| Bitwise OR — Returns a 1 in a bit if either operand
has a 1 in that position.

52 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 52

Operator Description

Bitwise Operators

~ Bitwise NOT — Changes 1s to 0s and 0s to 1s in all
bit positions — that is, flips each bit.

<< Left shift — Shifts the bits of its first operand to the
left by the number of places given in the second
operand.

>> Sign-propagating right shift — Shifts the bits of the
first operand to the right by the number of places
given in the second operand.

>>> Zero-fill right shift — Shifts the bits of the first
operand to the right by the number of places given in
the second operand, and shifting in 0s from the left.

Assignment Operators

= Assigns the value of the second operand to the first
operand if the first operand is a variable.

+= Adds two operands and assigns the result to the first
operand if the first operand is a variable.

-= Subtracts two operands and assigns the result to the
first operand, if the first operand is a variable.

*= Multiplies two operands and assigns the result to the
first operand if the first operand is a variable.

/= Divides two operands and assigns the result to the
first operand if the first operand is a variable.

%= Calculates the modulus of two operands and assigns
the result to the first operand if the first operand is a
variable.

&= Executes a bitwise AND operation on two operands
and assigns the result to the first operand if the first
operand is a variable.

^= Executes a bitwise exclusive OR operation on two
operands and assigns the result to the first operand
if the first operand is a variable.

|= Executes a bitwise OR operation on two operands
and assigns the result to the first operand if the first
operand is a variable.

(continued)

53Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 53

Table 2-2 (continued)
Operator Description

Assignment Operators

<<= Executes a left-shift operation on two operands and
assigns the result to the first operand if the first
operand is a variable.

>>= Executes a sign-propagating right-shift operation on
two operands and assigns the result to the first
operand if the first operand is a variable.

>>>= Executes a zero-fill right-shift operation on two
operands and assigns the result to the first operand
if the first operand is a variable.

Comparison Operator

== Equality operator — Returns true if the two
operands are equal to each other.

!= Not-equal-to — Returns true if the two operands
are not equal to each other.

=== Strict equality — Returns true if the two operands
are both equal and of the same type.

!== Strict not-equal-to — Returns true if the two
operands are not equal and/or not of the same type.

> Greater-than — Returns true if the first operand’s
value is greater than the second operand’s value.

>= Greater-than-or-equal-to — Returns true if the first
operand’s value is greater than or equal to the
second operand’s value.

< Less-than — Returns true if the first operand’s
value is less than the second operand’s value.

<= Less-than-or-equal-to operator — Returns true if
the first operand’s value is less than or equal to the
second operand’s value.

?: Conditional operator — Executes an if...else
test.

54 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 54

Operator Description

, Comma operator — Evaluates two expressions and
returns the result of evaluating the second expres-
sion.

delete Deletion — Deletes an object and removes it from
memory, or deletes an object’s property, or deletes
an element in an array.

function Creates an anonymous function. (Used in Chapter 3.)

in Returns true if the property you’re testing is sup-
ported by a specific object.

instanceof Returns true if the given object is an instance of
the specified type.

new Object-instantiation — Creates an new object form
the specified object type.

typeof Returns the name of the type of the operand.

void Used to allow evaluation of an expression without
returning any value.

Altering a variable’s data
You can change the data in a variable simply by assigning a new value to that
variable. For example, if you did this:

var operand1 = 2;
var operand2 = 3;

.

.

.

But then changed the value in operand1 to 12 like this:

var operand1 = 2;
var operand2 = 3;
operand1 = 12;

.

.

.

55Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 55

Then operand1 would hold 12 and operand2 would hold 3. If you added
them together and placed the result in a variable named sum:

var operand1 = 2;
var operand2 = 3;
operand1 = 12;
var sum;
sum = operand1 + operand2;

then sum would hold 15. Note that you can use the var statement anywhere
in a script, but you should use it before you use the variable you’re creating
with that statement.

Storing JavaScript objects in a variable
Besides text and numbers, you can store JavaScript objects, which support
methods and properties, in variables, too. In this book, the most important
(and the most famous) object is the XMLHttpRequest object that Ajax uses
to communicate with a server behind the scenes.

A detailed explanation of how this works is coming up in the next chapter,
but here’s a preview. Creating an XMLHttpRequest object works differently
in different browsers; here’s how you do it in Firefox and Netscape Navigator
(note the use of the operator named new here, which is how you create
objects in JavaScript):

var XMLHttpRequestObject;
XMLHttpRequestObject = new XMLHttpRequest();

.

.

.

Now that you have an XMLHttpRequest object in the variable named
XMLHttpRequestObject, you can use the methods and properties of that
object (which I detail in the next chapter) just as you’d use the built-in
JavaScript document object’s write method. For example, to use the
XMLHttpRequest object’s open method to start fetching data from a server,
you’d just call that method as XMLHttpRequestObject.open:

var XMLHttpRequestObject;
XMLHttpRequestObject = new XMLHttpRequest();

.

.

.
XMLHttpRequestObject.open(“GET”, dataSource);

56 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 56

Oh, those functions!
When working with variables and functions in JavaScript, one of the most
important things to know is this: Variables created inside a function will be
reset to their original values each time the script calls the function. Not knowing
that fact has stymied many JavaScript programmers. If you want to avoid
confusion, place the var statement to create the variables you want to use
outside the function.

Here’s an example — a hit page counter that increments each time you click
it. There are two counter variables here, one stored outside a function
(counter1), and one stored inside a function (counter2). Because this page
uses the <body> element’s onclick attribute, each time the user clicks the
page, the displayText function is called and both counters are incre-
mented by one using the JavaScript ++ operator, which looks like this (see
Table 2-2 for the ++ operator):

counter1 = counter1++;
counter2 = counter2++;

57Chapter 2: It’s All About JavaScript

JavaScript’s data type guessing game
Because JavaScript doesn’t have different types of variables for different types of data, it has to
guess whether the data in a variable should be treated as, say, a number or as text. JavaScript
makes that guess based on the context in which you use the variable, and sometimes it guesses
wrong. For example, say that instead of storing the sum in a variable named sum, you simply did this
to display the result of adding operand1 + operand2 (note the last line of this code):

document.getElementById(‘targetDiv’).innerHTML =
operand1 + “ + “ + operand2 + “ = “
+ operand1 + operand2;

The problem here is that everything else in this JavaScript statement treats data like text strings,
so JavaScript treats the operand1 and operand2 as strings — which means the + operator
here will be used to join those strings (“2” and “3”) together instead of adding the values as num-
bers. So you’ll be surprised by the display “2 + 3 = 23” here, which doesn’t look too mathemat-
ically correct. You need a variable such as sum here to make it clear to JavaScript that you’re deal-
ing with numbers:

sum = operand1 + operand2;
document.getElementById(‘targetDiv’).innerHTML =
operand1 + “ + “ + operand2 + “ = “
+ sum;

And this gives you the correct result.

06_785970 ch02.qxp 1/20/06 12:18 PM Page 57

However, counter1 was created outside the displayText function, and
counter2 is inside that function:

var counter1 = 0;
function displayText()
{
var counter2 = 0;
counter1 = counter1++;
counter2 = counter2++;
.
.
.

This means that each time displayText is called, the counter2 variable is
created anew and reset to the value given in the preceding code, 0. Even
though it’s incremented each time the function is called, it’ll never get past a
value of 1. The other variable, counter1, created outside any function, how-
ever, will be able to preserve its value between page clicks, so it’ll act as a
true counter. You can see all this on the Web page itself, usevariablesand
functions.html (see Listing 2-3).

Listing 2-3: Using Variables and Functions Together

<html>
<head>
<title>Using variables</title>

<script language=”javascript”>
var counter1 = 0;
function displayText()
{
var counter2 = 0;
counter1 = counter1++;
counter2 = counter2++;
document.getElementById(‘targetDiv’).innerHTML =
“First counter equals “ + counter1 + “
” +
“But the second counter is still stuck at “ + counter2;

}
</script>

</head>

<body onclick = “displayText()”>

<h1>Using variables (Click Me!)</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

58 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:18 PM Page 58

What does it look like at work? You can see that in Figure 2-15, where I’ve
clicked the page six times. The counter variable that was created outside the
function holds the correct value — but the counter variable created inside
the function was reset to its original value each time the page was clicked, so
it always just displays a value of 1.

Picking and Choosing with
the if Statement

The JavaScript if statement lets you test whether a certain condition is
true (is the value in the temperature variable over 65 degrees?) and if so,
take appropriate action (picnic time!). The if statement also includes an
optional else clause that holds code to be executed if the test condition is
false. Here’s what the syntax of this statement looks like, formally speaking —
note that the code to execute is between curly braces, { and }, and that the
part in standard braces, [and], is optional:

if (condition) {
statements1

}
[else {

statements2
}]

Using the if statement
It’s time for an example. Is the value in the temperature variable over 65
degrees? If so, the example in Listing 2-4, temperature.html, displays the
message Picnic time!. To check the temperature, the code uses the >
(greater than) operator (see Table 2-2).

Figure 2-15:
Handling
variables

inside
functions.

59Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:18 PM Page 59

Listing 2-4: Working with the if Statement

<html>
<head>
<title>Using the if statement</title>

<script language=”javascript”>

function displayText()
{
var temperature = 70;
if(temperature > 65) {

document.getElementById(‘targetDiv’).innerHTML =
“Picnic time!”;

}
}

</script>

</head>

<body onload=”displayText()”>

<h1>Using the if statement</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

You can see the results in Figure 2-16, where, as you see, it’s picnic time.

Figure 2-16:
Using the if
statement.

60 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 60

Using the else statement
You can also execute code if a condition is not true by using the if state-
ment’s optional else statement. For example, if it isn’t picnic time, you might
want to say “Back to work!” in temperature.html, and Listing 2-5
shows what that might look like with an else statement — note that I’ve
changed the temperature so the else statement will be executed.

Listing 2-5: Working with the else Statement

<html>
<head>
<title>Using the if statement</title>

<script language=”javascript”>
function displayText()
{
var temperature = 62;
if(temperature > 65) {

document.getElementById(‘targetDiv’).innerHTML =
“Picnic time!”;

}
else {

document.getElementById(‘targetDiv’).innerHTML =
“Back to work!”;

}
}

</script>

</head>

<body onload=”displayText()”>

<h1>Using the if statement</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

And you can see the results in Figure 2-17, where, regrettably, the tempera-
ture is low enough so that it’s time to go back to work. Ah well.

61Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:19 PM Page 61

Determining browser type and version
Here’s another, more advanced, example that determines which browser the
user has and lets you execute code depending on browser type to display the
browser version. This example puts to use the if and else statements as
well as several built-in JavaScript functions that handle strings. In JavaScript,
text strings are considered objects, and they have some built-in properties
and methods that make life easier. Here’s what this example uses:

� The length property gives you the length of the string, in characters.

� The indexOf method searches for the occurrence of a substring and
gives you the location of the first match — or –1 if there was no match.
(The first character of a string is considered character 0.)

� The substring method lets you extract a substring from a larger string.
You can pass this method the start and end locations of the substring
that you want to extract.

This example searches the navigator.userAgent property, which, as I
introduce in “Which browser are you using?” earlier in this chapter, holds the
browser name and version, extracts that information, and displays it. (You
really don’t have to memorize the string functions here — I put together this
example because it’s often important in Ajax programming to know what
browser and version the user has.) Listing 2-6 shows what the code,
browserversion.html, looks like.

Figure 2-17:
Using the

else
statement.

62 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 62

Listing 2-6: Finding Out What Browser You’re Working With

<html>
<head>
<title>
Determining your browser

</title>

<script language=”javascript”>

var versionBegin, versionEnd

function checkBrowser()
{
if(navigator.appName == “Netscape”) {
if(navigator.userAgent.indexOf(“Firefox”) > 0) {
versionBegin = navigator.userAgent.indexOf(“Firefox”) +
“Firefox”.length + 1;
versionEnd = navigator.userAgent.length;
document.getElementById(“targetDiv”).innerHTML =
“You have Firefox “ +
navigator.userAgent.substring(versionBegin, versionEnd);

}
}

if (navigator.appName == “Microsoft Internet Explorer”) {
versionBegin = navigator.userAgent.indexOf(“MSIE “) +
“MSIE “.length;
if(navigator.userAgent.indexOf(“;”, versionBegin) > 0) {
versionEnd = navigator.userAgent.indexOf(“;”, versionBegin);

} else {
versionEnd = navigator.userAgent.indexOf(“)”, versionBegin)
+ 2;

}
document.getElementById(“targetDiv”).innerHTML =
“You have Internet Explorer “ +
navigator.userAgent.substring(versionBegin, versionEnd);

}
}
</script>

</head>

<body onload=”checkBrowser()”>
<h1>Determining your browser</h1>
<div ID=”targetDiv”></div>

</body>
</html>

63Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:19 PM Page 63

You can see the results in Figure 2-18, where the user is using Firefox 1.0.6.
Using code like this, you can figure out what browser the user has — and
whether the browser he has doesn’t do what you want, put in some kind of
workaround.

One thing computers are good at is doing the same kind of task over and
over, and JavaScript helps out here with loops. I take a look at them in the fol-
lowing section to set the stage for working with buttons in Web pages that
the user can click.

It Just Gets Better: The for Loop
Say you have the test scores of 600 students in a class you were teaching on
Ajax and you want to determine their average test score. How could you do
it? You can loop over their scores — that is, get the first one, then the next
one, then the next one, and so on — by using a for loop. This is the most
common loop in JavaScript, and it works like this:

for ([initial-expression]; [condition]; [increment-expression]) {
statements

}

Programmers usually use the for loop with a loop index (also called a loop
counter) which is just a variable that keeps track of the number of times the
loop has executed. Here’s how it works:

1. In the initial-expression part, you usually set the loop index to a starting
value.

Figure 2-18:
Determining

browser
type and
version.

64 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 64

2. In the condition part, you test that value to see if you still want to keep
on looping.

3. Then, the increment-expression lets you increment the loop counter.

How about an example to make all this clear? Say that you wanted to add the
numbers 1 to 100. Listing 2-7 shows how that might look in a an example,
for.html.

Listing 2-7: Putting the for Loop to Work

<html>
<head>
<title>Using the for statement</title>

<script language=”javascript”>

function displayText()
{
var loopIndex;
var sum = 0;

for(loopIndex = 1; loopIndex <= 100; loopIndex++) {
sum += loopIndex;

}

document.getElementById(‘targetDiv’).innerHTML =
“Adding 1 to 100 gives: “ + sum;

}
</script>

</head>

<body onload=”displayText()”>

<h1>Using the for statement</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

Note that this code uses two new operators (see Table 2-2 for both of them):
<= and +=. The <= operator is the less-than-or-equal operator. The += opera-
tor is a shortcut for the + and the = operator; in other words, these two lines
do the same thing:

sum = sum + loopIndex;
sum += loopIndex;

65Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:19 PM Page 65

JavaScript lets you combine operators like + (addition) and - (subtraction)
with the = operator in handy shortcut versions like this: += and -=. Very
neat.

The for loop in this example adds all the numbers from 1 to 100 by progres-
sively incrementing the variable loopIndex and stopping when that index
reaches a value of 100. What’s the answer? You can see that in Figure 2-19 —
summing 1 to 100 gives you 5050.

Over and Over with the while Loop!
Another way of looping involves using the while loop. This loop simply
keeps going while its condition is true. Here’s what it looks like, formally
speaking:

while (condition) {
statements

}

Here’s an example that uses the while loop and one other aspect of
JavaScript — arrays — to push the envelope. In JavaScript, you can use an
array to hold data that you can reference by an index number. For example,
say that you wanted to store a list of everyday items. You could do that by
creating an array of six elements (each element works just like a normal vari-
able, and you can store a string, a number, or an object in each element) like
this:

var items = new Array(6);

Figure 2-19:
Adding

numbers
with a for

loop.

66 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 66

That’s how you create an array with a particular number of elements (in this
case, six) in it. Now you can access each element by using a number inside
square braces, [and], like this:

items[0] = “Shoe”;
items[1] = “Sandwich”;
items[2] = “Sand”;
items[3] = “Rocks”;
items[4] = “Treasure”;
items[5] = “Pebbles”;

Note that the five elements in the items array start at index 0 and go to
index 4. Now, items[0] holds “Shoe”, items[1] holds “Sandwich”, and
so on. The reason that arrays are so perfect to use with loops is that an array
is just a set of variables that you can access by number — and the number
can just be a loop index, which means that a loop can loop over all the data
in an array for you.

In this case, say that you want to search for the “Treasure” item in the
array. You can do that by looping over the elements in the array until you
find “Treasure”. In other words, you want to keep looking and increment-
ing through the array as long as the current array element does not hold
“Treasure”. In this case, you have to check whether an element in the array
holds “Treasure”, and you can use the JavaScript == (equal to) or != (not
equal to) operators for that. If, for example, items[3] holds “Treasure”,
then the JavaScript expression items[3] == “Treasure” would be true,
and the expression items[3] != “Treasure” would be false. Because you
need to keep looping until you find “Treasure” here, you can do it this way:

var loopIndex = 0;

while(items[loopIndex] != “Treasure”){
loopIndex++;

}

At the end of this loop, the variable loopIndex will hold the index of the ele-
ment that holds “Treasure”. But there’s a problem here — what if no ele-
ment contains “Treasure”? You should put a cap on the possible number of
values to search, saying, for example, that the loop should keep going if the
current array element doesn’t hold “Treasure” and that the current loop
index is less than 6. JavaScript has an operator && that means and, so you
can check both these conditions like this:

while(items[loopIndex] != “Treasure” && loopIndex < 5){
loopIndex++;

}

67Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:19 PM Page 67

Whew, ready to go. You can see the code that searches for “Treasure” in
while.html, in Listing 2-8.

Listing 2-8: Putting the while Loop to Work

<html>
<head>
<title>Using the while statement</title>

<script language=”javascript”>

function findTreasure()
{
var loopIndex = 0, items = new Array(6);

items[0] = “Shoe”;
items[1] = “Sandwich”;
items[2] = “Sand”;
items[3] = “Rocks”;
items[4] = “Treasure”;
items[5] = “Pebbles”;

while(items[loopIndex] != “Treasure” && loopIndex < 6){
loopIndex++;

}

if(loopIndex < 6){
document.getElementById(‘targetDiv’).innerHTML =
“Found the treasure at index “ + loopIndex;

}
}

</script>

</head>

<body onload=”findTreasure()”>

<h1>Using the while statement</h1>

<div id=”targetDiv”>
</div>

</body>
</html>

Will JavaScript be able to find the treasure? Sure thing, as you can see in
Figure 2-20.

68 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 68

Pushing Some Buttons
Ajax applications usually wait for the user to do something before fetching
data from the server, and doing something means causing an event in the
browser, such as clicking a button. Many HTML controls can appear on a Web
page, such as list boxes, text fields, radio buttons, and so on, and you need to
know how to work with them in a general way. This next example shows how
to connect a button click to a JavaScript function.

To display an HTML control like a button, you need to use an HTML form.
And to connect that button to a JavaScript function, all you need to do is to
assign that button’s onclick attribute the name of that function to call that
function like this (the value HTML attribute sets the caption of the button):

<form>
<input type=”button” onclick=”showAlert()” value=”Click Me!”>

</form>

Displaying a message with a button click
When the user clicks this button, the JavaScript function showAlert is
called. In that function, you might display a message box called an alert box
to indicate that the user clicked the button. Listing 2-9 shows what it looks
like in JavaScript, in a button.html file.

Figure 2-20:
Using the

while loop
on an array.

69Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:19 PM Page 69

Listing 2-9: Handling Button Clicks

<html>
<head>

<title>Using buttons</title>

<script language=”javascript”>
function showAlert()
{

alert(“Thanks for clicking.”)
}

</script>

</head>

<body>
<h1>Using buttons</h1>
<form>

<input type=”button” onclick=”showAlert()” value=”Click Here”>
</form>

</body>
</html>

You can see this page in a browser in Figure 2-21. When the user clicks a
button, the showAlert function is called, and it displays an alert box, as you
see in Figure 2-22. So this button is indeed connected to the JavaScript. Very
cool.

Figure 2-21:
Handling

button
clicks.

70 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 70

Reading a text field with a button click
In this example, the JavaScript code that’s called when a button is clicked
reads the text in an HTML text field and then displays that text in a <div>
element. To do this, you need to add an HTML text field to the form like
this — note that the text field is given the ID “textField”:

<form>
Enter some text: <input type=”text” id=”textField”>

Then click the button: <input type=”button”
onclick=”handleText()” value=”Read the text”>

</form>

To get access to the text in the text field in your code, you can refer to that
text like this: document.getElementById(‘textField’).value. So you
can read the text from the text field when the user clicks the button, and then
display that text in a <div> element, as you see in Listing 2-10 in the file
textfield.html.

Listing 2-10: Reading Text from a Text Field

<html>
<head>

<title>Clicking buttons</title>

<script language=”javascript”>
function handleText()
{

document.getElementById(‘targetDiv’).innerHTML =
“You entered: “ +
document.getElementById(‘textField’).value;

}
</script>

</head>

<body>
<h1>Reading text</h1>

<form>

(continued)

Figure 2-22:
Displaying

an alert box.

71Chapter 2: It’s All About JavaScript

06_785970 ch02.qxp 1/20/06 12:19 PM Page 71

Listing 2-10: (continued)

Enter some text: <input type=”text” id=”textField”>

Then click the button: <input type=”button”
onclick=”handleText()” value=”Read the text”>

</form>

<div id=”targetDiv”>
</div>

</body>
</html>

That’s all there is to it. You can see what this page, textfield.html, looks
like in Figure 2-23, where the user has entered some text into the text field.

When the user clicks the button, the JavaScript reads that text and displays it
in a <div> element, as you see in Figure 2-24. Not bad.

Figure 2-24:
Reading text

from a text
field.

Figure 2-23:
Using a text

field.

72 Part I: Getting Started

06_785970 ch02.qxp 1/20/06 12:19 PM Page 72

Part II
Programming

in Ajax

07_785970 pt02.qxp 1/20/06 12:19 PM Page 73

In this part . . .

Here’s where you get to dive into true Ajax program-
ming. All through this part, you use Ajax to grab text

and XML data from a server behind the scenes in a
browser, and you put that data to work. Dozens of exam-
ples are coming up in this part. You use Ajax and Dynamic
HTML to update Web pages on the fly — no page refresh
from the server need apply! I also show you some
advanced techniques at work here, such as connecting to
Google behind the scenes for realtime same-page Web
searches, or supporting multiple Ajax requests to the
same server at the same time.

07_785970 pt02.qxp 1/20/06 12:19 PM Page 74

Chapter 3

Getting to Know Ajax
In This Chapter
� Developing an Ajax application

� Getting XML from the server

� Working with the XMLHttpRequest object

� Passing data to the server by using Ajax

� Getting data from the server with the GET method

� Getting data from the server with the POST method

“Look at that!” the CEO hollers. “No wonder users don’t like making
purchases on our site. The page is always flickering.”

“That’s because you’re refreshing the page each time you get more data,” you
say calmly, coming out of the shadows.

“Who are you?” the CEO cries.

“A master Ajax programmer,” you reply. “And my rates are quite reasonable.
For a major corporation, anyway.”

“Can you solve that perpetual flickering?” asks the CEO.

“Certainly,” you say, “for a hefty price.”

“Anything!” the design team says.

You sit down at the computer and calmly take over. This, you think, is going
to be good. And the money’s not half bad either. All it’s going to take is a little
Ajax in the right places, and the problem is as good as solved.

This chapter is where you start coding some Ajax. You’re going to start work-
ing with the XMLHttpRequest object in depth here and in the next chapter.
This chapter gives you a working knowledge of Ajax — from the very begin-
nings all the way up to sending and receiving data to and from the server.

08_785970 ch03.qxp 1/20/06 12:20 PM Page 75

Writing Some Ajax
To illustrate Ajax, the code in Listing 3-1 asks the user to click a button,
fetches data from the server using Ajax techniques, and displays that data in
the same Web page as the button — without refreshing the page. Check out
the code first, and then check out the explanation that follows it.

Listing 3-1: A First Ajax Application

<html>
<head>
<title>Ajax at work</title>

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHTTP”);

}

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send(null);
}

}
</script>

</head>

<body>

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘http://localhost/ch03/data.txt’,
‘targetDiv’)”>

76 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 76

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

This Ajax application appears in Figure 3-1. (In the code that you can down-
load from the Web site associated with this book, the application is the
index.html file in the ch03 folder).

When you click that button, the JavaScript in the page fetches some new text
and replaces the original text in the application with this new version, as you
see in Figure 3-2. No screen flicker, no page fetch, no fuss, no muss. Very nice
Of course, you can display data like this using simple JavaScript, but the dif-
ference here is that when you use Ajax, you’re able to fetch the data from a
Web server.

So how does this page, index.html, do what it does? How does it use Ajax
to get that new text? The body of the page starts by displaying the original
text in a <div> element. Here is the <div> element in bold:

<body>

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘http://localhost/ch03/data.txt’,
‘targetDiv’)”>

Figure 3-1:
A simple

Ajax
example.

77Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 77

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>

There’s also a button on this page, and when the user clicks that button, a
JavaScript method named getData is called, as you see here:

<body>

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘http://localhost/ch03/data.txt’,
‘targetDiv’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>

As you see here, the getData function is passed two text strings: the name
of a text file, data.txt, to fetch from the server; and the name of the <div>
element to display the fetched text in. The data.txt file contains just this
text:

This text was fetched using Ajax.

Figure 3-2:
Fetching

text by using
Ajax.

78 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 78

That’s the text you want the browser to download from the server in the
background, as the user is working with the rest of the Web page. So what
does the JavaScript that does all the work look like? You get to find that out
in the following sections.

Creating the XMLHttpRequest object
This example application is going to need an XMLHttpRequest object to
start, so it begins with the code that will create that object; this code is out-
side any function, so it runs immediately as the page loads. You start every-
thing by creating a variable for this object, XMLHttpRequestObject like
this:

<script language = “javascript”>
var XMLHttpRequestObject = false;
.
.
.

This variable is initialized to the value false so that the script can check
later whether the variable was indeed created. Besides the false value,
JavaScript also supports a value named true — these two are Boolean
values that you can assign to variables. The Netscape (version 7.0 and later),
Apple Safari (version 1.2 and later), and Firefox browsers let you create
XMLHttpRequest objects directly with code, like this:

XMLHttpRequestObject = new XMLHttpRequest();

How can you determine whether you’re dealing with a browser where this
code will work? The XMLHttpRequest object is usually part of the browser’s
window object, so to check whether XMLHttpRequest is ready to use, you
can use this if statement to check if XMLHttpRequest objects — which,
again, you can access as window.XMLHttpRequest — are available this
way:

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
.
.
.

If XMLHttpRequest is there and available, you can create the XMLHttp
Request object you’ll need this way:

79Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 79

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
.
.
.

On the other hand, if you’re dealing with the Internet Explorer, you have to
work with the different way that browser has of handling this object-creation
process. You use an ActiveX object in the Internet Explorer (version 5.0 and
later) to create an XMLHttpRequest object, so to check whether you’re deal-
ing with that browser, you can check whether ActiveX objects are available,
like so:

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
.
.
.

If you’re working with the Internet Explorer, you can create an
XMLHttpRequest object this way:

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHTTP”);

}
.
.
.

Now you have an XMLHttpRequest object in the variable named XMLHttp
RequestObject From this point on, the differences among the various
types of browsers disappear as far as the rest of this chapter goes. But a few
differences exist among browsers when it comes to this object, so what prop-
erties and methods are available in XMLHttpRequestObject objects in
different browsers? You can see the properties of the Internet Explorer
XMLHttpRequest object in Table 3-1, and its methods in Table 3-2. The
properties of this object for Mozilla, Netscape Navigator, and Firefox appear

80 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 80

in Table 3-3, and Table 3-4 shows the methods. Apple hasn’t published a full
version of the properties and methods for its XMLHttpRequest object yet,
but it has published a set of commonly used properties, which appear in
Table 3-5, and commonly used methods, which appear in Table 3-6.

Table 3-1 XMLHttpRequest Object Properties for Internet Explorer
Property Means Read/write

onreadystatechange Holds the name of the Read/write
event handler that should
be called when the value
of the readyState
property changes

readyState Holds the state of the request Read-only

responseBody Holds a response body, which is Read-only
one way HTTP responses can be
returned

responseStream Holds a response stream, a binary Read-only
stream to the server

responseText Holds the response body as a string Read-only

responseXML Holds the response body as XML Read-only

status Holds the HTTP status code Read-only
returned by a request

statusText Holds the HTTP response status Read-only
text

Table 3-2 XMLHttpRequest Object Methods for Internet Explorer
Method Means

abort Aborts the HTTP request

getAllResponseHeaders Gets all the HTTP headers

getResponseHeader Gets the value of an HTTP header

open Opens a request to the server

send Sends an HTTP request to the server

setRequestHeader Sets the name and value of an HTTP header

81Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 81

Table 3-3 XMLHttpRequest Object Properties for Mozilla,
Firefox, and Netscape Navigator

Property Means Read/write

channel Holds the channel used to perform Read-only
the request

readyState Holds the state of the request Read-only

responseText Holds the response body as a string Read-only

responseXML Holds the response body as XML Read-only

status Holds the HTTP status code Read-only
returned by a request

statusText Holds the HTTP response status text Read-only

Table 3-4 XMLHttpRequest Object Methods for Mozilla,
Firefox, and Netscape Navigator

Method Means

abort Aborts the HTTP request

getAllResponseHeaders Gets all the HTTP headers

getResponseHeader Gets the value of an HTTP header

openRequest Native (non-script) method to open a request

overrideMimeType Overrides the MIME type the server returns

Table 3-5 XMLHttpRequest Object Properties for Apple Safari
Property Means Read/write

onreadystatechange Holds the name of the event Read/write
handler that should be called when
the value of the readyState
property changes

readyState Holds the state of the request Read-only

responseText Holds the response body as a string Read-only

responseXML Holds the response body as XML Read-only

82 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 82

Property Means Read/write

status Holds the HTTP status code Read-only
returned by a request

statusText Holds the HTTP response Read-only
status text

Table 3-6 XMLHttpRequest Object Methods for Apple Safari
Method Means

abort Aborts the HTTP request

getAllResponseHeaders Gets all the HTTP headers

getResponseHeader Gets the value of an HTTP header

open Opens a request to the server

send Sends an HTTP request to the server

setRequestHeader Sets the name and value of an HTTP header

Checking to make sure you have
a valid XMLHttpRequest object
Now that you’ve got the needed XMLHttpRequest object stored in the vari-
able XMLHttpRequestObject, how do you actually fetch the text the appli-
cation wants when the user clicks the button? All that takes place in the
getData function in the <script> element, as shown here:

<script language = “javascript”>
.
.
.

function getData(dataSource, divID)
{
.
.
.

}
</script>

83Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 83

In this function, the code starts by checking to make sure that there really is
a valid object in the XMLHttpRequestObject variable with an if statement.
(Remember, if the object creation didn’t work, this variable will hold a value
of false — and because JavaScript treats anything that isn’t false as true,
if the variable contains a real object, the if statement’s condition will be
true.)

<script language = “javascript”>
.
.
.

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
.
.
.
.
}

}
</script>

Opening the XMLHttpRequest object
At this point, you have an XMLHttpRequest object in the
XMLHttpRequestObject variable. You can configure the object to use the
URL you want by using this object’s open method. Here’s how you use the
open method (keep in mind that items in square braces, [and], are
optional):

open(“method”, “URL”[, asyncFlag[, “userName”[, “password”]]])

Table 3-7 tells you what these various parameters mean.

Table 3-7 Parameters for the open Method
Parameter What It Means

method The HTTP method used to open the connection, such as
GET, POST, PUT, HEAD, or PROPFIND.

URL The requested URL.

asyncFlag A Boolean value indicating whether the call is asynchro-
nous. The default is true.

userName The user name.

password The password.

84 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 84

The URL you want to fetch data from is passed to the getData function as
the dataSource argument. To open a URL, you can use the standard HTML
techniques like GET, POST, or PUT. (When you create an HTML form, you use
these methods to indicate how to send data to the server.) When using Ajax,
you usually use GET primarily when you want to retrieve data, and POST
when you want to send a lot of data to the server, so this example uses GET
to open the data.txt file on the server this way:

<script language = “javascript”>
.
.
.

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {

XMLHttpRequestObject.open(“GET”, dataSource);
.
.
.
}

}
</script>

This configures the XMLHttpRequestObject to use the URL you’ve speci-
fied — http://localhost/ch03/data.txt in this example — but doesn’t
actually connect to that file yet. (If you want to try this example on your
own server, be sure to update that URL to point to wherever you’ve placed
data.txt.) Make sure that data.txt is in the same directory on your
server as index.html is.

By default, the connection to this URL is made asynchronously, which means
that this statement doesn’t wait until the connection is made and the data is
finished downloading. (You can use an optional third argument, asyncFlag,
in the call to the open method to make the call synchronous, which means
that everything would stop until the call to that method finishes, but things
aren’t done that way in Ajax — after all, Ajax stands for Asynchronous
JavaScript and XML.)

So how can you be notified when the data you’re downloading is ready? Glad
you asked; check out the following section.

When you’re ready: Handling
asynchronous downloads
The XMLHttpRequest object has a property named onreadystatechange
that lets you handle asynchronous loading operations. If you assign the name

85Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 85

of a JavaScript function in your script to this property, that function will be
called each time the XMLHttpRequest object’s status changes — as when
it’s downloading data.

You can use a shortcut to assign a Javascript function to the onreadystate
change property, a shortcut which you often see in Ajax scripts — you can
create a function on the fly (sometimes called an anonymous function
because it doesn’t have a name). To create a function on the fly, just use the
function statement and define the body of this new function in curly braces
this way:

<script language = “javascript”>
.
.
.

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
.
.
.

}

}
}

</script>

This new, anonymous function will be called when the XMLHttpRequest
Object undergoes some change, as when it downloads data. You need to
watch two properties of this object here — the readyState property and
the status property. The readyState property tells you how the data load-
ing is going. Here are the possible values the readyState property can take
(note that a value of 4 means your data is all downloaded):

� 0 uninitialized

� 1 loading

� 2 loaded

� 3 interactive

� 4 complete

86 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 86

The status property holds the status of the download itself. (This is the
standard HTTP status code that the browser got for the URL you supplied.)
Here are some of the possible values the status property can hold (note
that a value of 200 means everything is just fine):

� 200 OK

� 201 Created

� 204 No Content

� 205 Reset Content

� 206 Partial Content

� 400 Bad Request

� 401 Unauthorized

� 403 Forbidden

� 404 Not Found

� 405 Method Not Allowed

� 406 Not Acceptable

� 407 Proxy Authentication Required

� 408 Request Timeout

� 411 Length Required

� 413 Requested Entity Too Large

� 414 Requested URL Too Long

� 415 Unsupported Media Type

� 500 Internal Server Error

� 501Not Implemented

� 502 Bad Gateway

� 503 Service Unavailable

� 504 Gateway Timeout

� 505 HTTP Version Not Supported

To make sure the data you want has been downloaded completely and every-
thing went okay, check to make sure the XMLHttpRequestObject object’s
readyState property equals 4 and the status property equals 200. Here’s
how you can do that in JavaScript:

87Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 87

<script language = “javascript”>
.
.
.

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
.
.
.

}
}

}
}

</script>

Very cool — if all systems are go at this point, the browser got your data from
the server (that is, the text inside the data.txt file that you pointed to with
the URL you passed to the open method). Now how do you get that data
yourself? Find out in the following section.

You got the data!
To get the data with the XMLHttpRequest object, use one of the two usual
ways:

� If you retrieved data that you want to treat as standard text, you can
use the object’s responseText property.

� If your data has been formatted as XML, you can use the responseXML
property. In this example, data.txt simply contains text, so you use
the responseText property.

To make the downloaded text actually appear on your Web page which is
where you wanted it all along — you can assign that text to the <div> ele-
ment, whose ID is targetDiv in the Web page and whose name was passed
to the getData function. Here’s how it works:

<script language = “javascript”>
.
.
.

88 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 88

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {

var obj = document.getElementById(divID);

XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

}
}

</script>

Okay, you’ve set up your code to handle the response from the server when
that response is sent to you. But now how do you actually connect to the
server to get that response? You use the send method. When you’re using the
GET method, you send a value of null (null is a built-in value in JavaScript —
it’s a special value that holds zero in JavaScript) as in the following code to
connect to the server and request your data using the XMLHttpRequest
object that you’ve already configured:

<script language = “javascript”>
.
.
.

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send(null);
}

}
</script>

89Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 89

That call to send is what actually downloads the data so that the anonymous
function can handle that data. Excellent. You’ve just completed your first, full-
fledged, Ajax application. This application fetches data behind the scenes
from the server and displays it in the page without any full page refreshes.
You can see it at work in Figures 3-1 and 3-2, which are shown earlier in this
chapter.

You did all this by creating an XMLHttpRequest object and using its open
method to configure that object, and the send method to connect to the
server and get a response. And you recovered text from the server by using
the request object’s responseText property. Not bad for a first try.

Deciding on relative versus absolute URLs
This example fetched text from a file named data.txt, and that file is in the
same ch03 folder as index.html you’ll find available for download from the
Web site associated with this book. Here’s the URL that index.html uses to
point to that file, http://localhost/ch03/data.txt:

<body>

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘http://localhost/ch03/data.txt’,
‘targetDiv’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>

However, because data.txt is in the same directory as index.html, you
can refer to data.txt simply as data.txt, not http://localhost/ch03/
data.txt:

<body>

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘data.txt’, ‘targetDiv’)”>

</form>

<div id=”targetDiv”>

90 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 90

<p>The fetched data will go here.</p>
</div>

</body>

When you look at index.html in the browser, the directory index.html
where it is located on the server becomes the default directory as far as the
server is concerned. When index.html looks for data.txt, it isn’t neces-
sary to use the full URL, http://localhost/ch03/data.txt — instead,
you can say simply data.txt, and the server will search the same directory
where the page you’re already looking at (index.html) is in for data.txt.
http://localhost/ch03/data.txt is an absolute URL, but just the name
data.txt is a relative URL (relative to the location of index.html — rela-
tive URLs can also include pathnames if appropriate).

Because the examples in this and the next few chapters are made up of HTML
files, PHP scripts, and other files that are all supposed to go into the same
directory on the server, I use relative URLs from now on. That way, you can run
the examples no matter what the URL to your server is — you don’t have to
rewrite a URL such as http://localhost/ch03/data.txt to point to your
server instead (such as http://www.starpowder.com/frank/data.txt).

Make sure that, when you run the examples in this book, any PHP, text, or
other documents needed by a particular HTML file are in the same directory
on your server as that HTML file. The easiest way to do that is to keep all files
in the ch03 folder in the code for this book together in the same directory
on your server, all the files in the ch04 folder together in the same directory,
and so on.

Other ways of getting XMLHttpRequest
objects
The example spelled out in the preceding sections shows one way to get an
XMLHttpRequest object and work with it. Other ways exist as well, letting
you work with more recent XMLHttpRequest objects. It’s rare that you need
to use newer XMLHttpRequest objects with Ajax, but if you want to, it’s
worth knowing how to do it.

For example, Internet Explorer has various versions of its XMLHttpRequest
object available. You create the standard version of this object with the
Microsoft.XMLHTTP ActiveX object, but there’s a more recent version avail-
able: MSXML2.XMLHTTP. The Microsoft.XMLHTTP ActiveX object offers all
the functionality you need for anything in this book, but if you want to work
with MSXML2.XMLHTTP — or even newer versions, such as MSXML2.XML-
HTTP.3.0, MSXML2.XMLHTTP.4.0, or now MSXML2.XMLHTTP.5.0 — you
can do that.

91Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 91

Here’s an example showing how to work with a newer XMLHttpRequest
object, using the JavaScript try/catch construct. If you try some code that
might fail in a try statement, and it does fail, the code in the associated
catch statement will be executed, allowing you to recover from the problem.
So you might try to get an MSXML2.XMLHTTP ActiveX object first, and catch
any problems that might result this way:

var XMLHttpRequestObject = false;

try {
XMLHttpRequestObject = new ActiveXObject(“MSXML2.XMLHTTP”);

} catch (exception1) {
.
.
.

}

If the browser couldn’t create an MSXML2.XMLHTTP ActiveX object, you can
try for a standard Microsoft.XMLHTTP ActiveX object by using another
try/catch construct, as you see here:

var XMLHttpRequestObject = false;

try {
XMLHttpRequestObject = new ActiveXObject(“MSXML2.XMLHTTP”);

} catch (exception1) {
try {

XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (exception2) {

XMLHttpRequestObject = false;
}

}

And if neither of these work, you can use the Mozilla/Firefox/Netscape
Navigator/Safari way of doing things like this (note the use of the JavaScript !
operator here, which means “not,” as listed in Chapter 2 — in other words,
!XMLHttpRequestObject is true if the XMLHttpRequestObject doesn’t
exist):

var XMLHttpRequestObject = false;

try {
XMLHttpRequestObject = new ActiveXObject(“MSXML2.XMLHTTP”);

} catch (exception1) {
try {

XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (exception2) {

XMLHttpRequestObject = false;
}

92 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 92

}

if (!XMLHttpRequestObject && window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

}

Interactive Mouseovers Using Ajax
Here’s another Ajax example — one that’s a little more impressive visually.
This example, mouseover.html, appears in Figure 3-3. When you move the
mouse over one of the images on this page, the application fetches text for
that mouseover by using Ajax. Give it a try — just move the mouse around
and watch the text change to match.

This one isn’t hard to implement. All you really have to do is to connect the
getData function (which fetches text data and displays it in the <div> ele-
ment whose name you pass) to the onmouseover event of each of the
images you see in Figure 3-3.

The text data for each image is stored in a different file — sandwiches.txt,
pizzas.txt, and soups.txt — so here’s how everything works:

<body>

<H1>Interactive mouseovers</H1>

<img src=”Image1.jpg”
onmouseover=”getData(‘sandwiches.txt’,
‘targetDiv’)”>

<img src=”Image2.jpg”

Figure 3-3:
Fetching

mouseover
text with

Ajax.

93Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 93

onmouseover=”getData(‘pizzas.txt’,
‘targetDiv’)”>

<img src=”Image3.jpg”
onmouseover=”getData(‘soups.txt’,
‘targetDiv’)”>

<div id=”targetDiv”>
<p>Welcome to my restaurant!</p>

</div>

</body>

No problem at all. The rest is just the same as in the first example in this
chapter. Here’s the contents of sandwiches.txt:

We offer too many sandwiches to list!

And pizzas.txt:

Toppings: pepperoni, sausage, black olives.

And soups.txt:

Soups: chicken, beef, or vegetable.

So you can download text to match the image the mouse cursor is over. What
about downloading some pictures? Unfortunately, that’s no go. Can’t do it,
because you only have two choices with the XMLHttpRequest object — text
or XML (which is also just text, although formatted following the XML rules).

There might be a way to download images and other binary data by using the
Internet Explorer XMLHttpRequest object one day, because it has an interest-
ing property: responseStream. The responseStream property represents a
binary data stream from the server, and that will indeed let you send binary
data from server to the browser. The problem is that JavaScript doesn’t give
you any way to work with such a stream. Other Microsoft Web-enabled lan-
guages, such as Visual Basic, can work with this property, but not Internet
Explorer’s Jscript (yet).

Getting Interactive with
Server-Side Scripting

All the preceding examples in this chapter show you how to download static
text files behind the scenes by using Ajax methods, but you can also connect
to server-side applications. And doing that opens all kinds of possibilities

94 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 94

because you can send data to those server-side applications and get their
responses behind the scenes.

This is where the real power of Ajax comes in. You can create an application
that watches what the user is doing, and the application can get data from
the server as needed. Virtually all Ajax applications connect to some kind of
server program.

Choosing a server-side scripting language
I’m going to use two different server-side scripting languages in this book —
PHP and JavaServer Pages (JSP). The main issue here is Ajax, of course, so
you won’t have to know how to write PHP or JSP to follow along. However, if
you want to put your Ajax expertise to work in the real world, it’s useful to
have a working knowledge of these two languages because they’re probably
the easiest type of server-side programming around. Among the Ajax exam-
ples you’ll see on the Web that connect to server-side scripts, PHP is the
most popular choice. I start in this chapter by taking a look at connecting to
some PHP scripts using Ajax so that you can handle XML data and send data
to the server to configure the response you get back from the server.

Thousands of Web servers support PHP, so if you want to sign up for one,
they’re easy to find. Your current server might already support PHP, because
most do these days — just ask them. For testing purposes, you can also
install PHP on your own machine. You can get PHP for free at www.php.net,
complete with installation instructions (on Windows, installing can be as
easy as running .exe files).

Connecting to a script on a server
To start, how about converting the first example, index.html (Listing 3.1),
in this chapter to talk to a PHP script instead of just downloading a text file?
Instead of connecting to data.txt on the server, this next example, index2.
html, connects to a PHP script, data.php.

The text in data.txt is “This text was fetched using Ajax.”, so
data.php will return the same text for this first example. Here’s what that
PHP file looks like (remember, you don’t have to know PHP or JSP to read
this book):

<?php
echo ‘This text was fetched using Ajax.’;

?>

95Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 95

If you install data.php on your own computer for testing purposes in a
folder named ch03, its relative URL is sample.php. You can modify
index.html into index2.html by connecting to that URL, like this:

<html>
<head>
<title>Ajax and PHP at work</title>

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHTTP”);

}

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send(null);
}

}
</script>

</head>

<body>

<H1>Fetching data with Ajax and PHP</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(data.php’, ‘targetDiv’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

96 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 96

This time, the text the application fetches comes from a PHP script, not a text
file. You can see this application at work in Figure 3-4.When the user clicks
the button, JavaScript connects to data.php, and the returned text appears
on the Web page. Cool.

Time for Some XML
Ajax applications can transfer data back and forth by using simple text, but,
after all, Ajax stands for Asynchronous JavaScript and XML. How about get-
ting some XML into this equation? Take a look at the new example in Figure
3-5, options.html, which gives the users various options for resetting
the color of the text on this Web page (the “Color this text.” text).
Although you can’t see it in glorious black and white, the text is green here.

Figure 3-5:
Fetching

data with
XML.

Figure 3-4:
Fetching

data from a
PHP script
with Ajax.

97Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 97

The various colors in the drop-down list in this application are fetched by
using Ajax methods and data formatted as XML. This application has two dif-
ferent color schemes.

Color scheme 1:

� red

� green

� blue

And color scheme 2:

� black

� white

� orange

The user can select between these two (admittedly rather arbitrary) schemes
just by clicking the buttons you see in Figure 3-5; when he clicks a button, the
colors for that color scheme are loaded into the drop-down list at left. The
user can select a color, and when he does, the “Color this text.” text is
colored to match.

Getting XML from a PHP script
Now, how does the application in Figure 3-5 work again? Two PHP scripts
supply the colors in each color scheme, options1.php and options2.php.
These scripts send back their data by using XML from options1.php, like
this (this is the XML that options1.php ends up sending back to the
browser):

<?xml version=”1.0”?>
<options>
<option>
red

</option>
<option>
green

</option>
<option>
blue

</option>
</options>

98 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 98

This is valid XML; it starts with an XML declaration, <?xml version=
”1.0”?>, which all XML documents must have to be legal. All XML docu-
ments must also have a document element, which encloses all other elements.
You make up the names of your elements in XML, and here the document ele-
ment is the <options> element.

Don’t worry if you aren’t an XML pro. This is as much as you’re going to have
to know about XML for most of this book — XML documents start with an XML
declaration, have one document element that contains all other elements, you
make up the names of the elements, and each element can contain text or
other elements. There’s more to XML, of course, especially when it comes to
handling it with JavaScript. For the full details on XML and how to work with it
in JavaScript, take a look at Chapter 8.

The <options> element encloses three <option> elements, each of which
contain text corresponding to a color: red, green, and blue here. This first
XML document is a simple one, but it gets the job done — the idea is to list
three different colors, and it does that.

How do you send this XML back from the server by using a PHP script? The
first thing you have to do is to set the content-type header in the document
you’re creating to “text/xml”. This informs the browser that this data is
XML data, and should be treated as such. (This is a necessary step — other-
wise the browser will not consider your data as XML.) Here’s how you do it:

<?
header(“Content-type: text/xml”);

.

.

.
?>

Then you have to construct the rest of the XML document. Here’s how you
store the names of the colors in an array, and then loop over that array, send-
ing each color in an <option> element back to the browser:

<?
header(“Content-type: text/xml”);
$options = array(‘red’, ‘green’, ‘blue’);
echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{

echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
?>

99Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 99

100 Part II: Programming in Ajax

Perfect. And here’s what options2.php looks like, for the second color
scheme:

<?
header(“Content-type: text/xml”);
$options = array(‘black’, ‘white’, ‘orange’);
echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{

echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
?>

Setting up a Web page to read XML
Now what about the important part of this application, the Ajax part? That
takes place in options.html. Two buttons let the user select between color
schemes, and those buttons call two functions, getOptions1 for color
scheme 1 and getOptions2 for color scheme 2, like this:

<body>

<h1>Using Ajax and XML</h1>

<form>
<select size=”1” id=”optionList”
onchange=”setOption()”>
<option>Select a scheme</option>

</select>
<input type = “button” value = “Use color scheme 1”
onclick = “getOptions1()”>

<input type = “button” value = “Use color scheme 2”
onclick = “getOptions2()”>

</form>

<div id=”targetDiv” width =100 height=100>Color this text.</div>

</body>

The getOptions1 function connects to the options1.php script like this:

var options;

function getOptions1()
{
if(XMLHttpRequestObject) {

08_785970 ch03.qxp 1/20/06 12:20 PM Page 100

XMLHttpRequestObject.open(“GET”,
“options1.php”, true);
.
.
.

}
}

Handling the XML you
read from the server
When the response from the server comes back as XML, not just text,
you read that response by using the responseXML property of the XML
HttpRequest object, like so:

var options;

function getOptions1()
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”,
“options1.php”, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
.
.
.

}
}

XMLHttpRequestObject.send(null);
}

}

The bold line of JavaScript in the preceding code stores the XML that
options1.php sent back in a variable named xmlDocument. How can
you handle that XML in JavaScript?

That turns out not to be hard. Just as you can use the built-in getElement
ById function to get an element by its ID value, so you can use the built-in
getElementsByTagName function to get all the elements with a certain

101Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 101

name. In this case, the elements with the data you want are the <option>
elements, so you can get them and store them all in a variable named
options like this:

var options;

function getOptions1()
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”,
“options1.php”, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName(“option”);
.
.
.
}

}

XMLHttpRequestObject.send(null);
}

}

So far so good — you’ve stored the colors that were returned from the server
in the variable named options. Now how do you unpack the actual names of
those colors? Well, take a look at the following section.

Extracting data from XML
To extract information from XML, this example calls another function called
listOptions, which will unpack the colors and store them in the drop-
down list:

var options;

function getOptions1()
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”,
“options1.php”, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&

102 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 102

XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName(“option”);
listOptions();
}

}

XMLHttpRequestObject.send(null);
}

}

How does the listOptions function unpack the colors from the options vari-
able and store them in the drop-down HTML <select> control where the
user can select them? (The <select> controls display a drop-down list, such
as the one in this example.) Right now, the options variable contains this data:

<option>
red

</option>
<option>
green

</option>
<option>
blue

</option>

This data is actually stored as an array of <option> elements, which makes
things easier because you can loop over that array. (I introduce looping in
arrays in Chapter 2.) You can find the number of items in an array by using
the array’s length property, so here’s how to loop over all the <option> ele-
ments in the listOptions function:

function listOptions ()
{

var loopIndex;

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{
.
.
.
}

}

Good so far. As you loop, you can refer to each <option> element in the
options variable this way: options[loopIndex] — that picks out the cur-
rent <option> element each time through the loop. The first such element
looks like this:

<option>
red

</option>

103Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 103

How do you pick out the color from this XML element? JavaScript is set up to
handle elements like this by treating the text in this element as a child node of
the element — that is, as a node contained inside the element. To get that child
node, you can use the element’s firstChild property (Chapter 8 has all the
details on handling XML with JavaScript in depth), so here’s how you recover
the current <option> element’s text as an XML node: options[loopIndex].
firstChild. This gives you a text node — a node that contains only text,
believe it or not — that holds the text for the color red. How do you actually
extract the text corresponding to the color? You use the text node’s data prop-
erty, so (finally!) you can use this expression to extract the color from the cur-
rent <option> element: options[loopIndex].firstChild.data.

Whew. So now you can get the colors from each <option> element in the
options variable.

Listing the colors in the drop-down control
How do you store those colors in the drop-down <select> control the
one named optionList — so the user can select the color she wants? In
JavaScript, you can get an object that corresponds to the drop-down control
like this:

function listOptions ()
{

var loopIndex;
var selectControl = document.getElementById(‘optionList’);

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{
.
.
.
}

}

To add the colors to the <select> control, you use the control’s options
property, which holds the items listed in the control. Each item you want to
add to the list is an option object that corresponds to an HTML <option>
element, so you can add all the colors to the <select> control like this:

function listOptions ()
{

var loopIndex;
var selectControl = document.getElementById(‘optionList’);

for (loopIndex = 0; loopIndex < options.length; loopIndex++)

104 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 104

{
selectControl.options[loopIndex] = new

Option(options[loopIndex].firstChild.data);
}

}

And that’s it. Now the drop-down list displays the available colors for the
color scheme that the user chose.

You have to take one last step. When the user selects a color in the drop-
down list, the code has to color the displayed text to match. When the user
makes a selection in the drop-down list of colors, the list’s onchange event
occurs, which calls a function named setOption, as you see here:

<form>
<select size=”1” id=”optionList”
onchange=”setOption()”>
<option>Select a scheme</option>

</select>
<input type = “button” value = “Use color scheme 1”
onclick = “getOptions1()”>

<input type = “button” value = “Use color scheme 2”
onclick = “getOptions2()”>

</form>

The setOption function’s job is to color the “Color this text.” text,
stored in a <div> element named “targetDiv”, to match the color the user
selected. Which color did the user select? You can determine the number of
the item the user selected using the <select> control’s selectedIndex
property. If the user selected the first item, this property will hold 0; if he
selected the second item, this property will hold 1; and so on. You can use
this property together with the options variable (which holds all the
<option> elements you got from the server) to determine what the appro-
priate color is to use. So here’s how to get the color the user selected (who-
ever said JavaScript is a lightweight language never had to deal with
expressions like this one):

options[document.getElementById(‘optionList’).selectedIndex].firstChild.data

How do you color the text in the targetDiv <div> element to match this
color? You can use the <div> element’s style property to recover its style
setting. And to access to the <div> element’s text color, you can refer to it
with the style attribute color. So here’s how you refer to the color of the text
in the targetDiv <div> element from JavaScript:

document.getElementById(‘targetDiv’).style.color

105Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 105

That means that to set the color of the text in the targetDiv <div> element
to match the color the user selected in the setOption function, you can do
this:

function setOption()
{
document.getElementById(‘targetDiv’).style.color =
options[document.getElementById
(‘optionList’).selectedIndex].firstChild.data;

}

Yep, it looks complex, but as you get to know JavaScript, or if you’re a
JavaScript guru already, this kind of stuff will become second nature. It just
takes some time. And that’s it — this example is a success.

But if you take a step back and assess the situation as an Ajax programmer,
you might want to know why you need two PHP scripts to handle the two dif-
ferent color schemes. Why can’t you just pass some data to a single PHP
script to indicate which color scheme we want? That’s a very good question.
You can indeed pass data to server-side scripts from JavaScript, and that’s an
important skill because Ajax applications often need to send data to the
server to get the response they need.

Passing Data to the Server with GET
No good reason exists for having two server-side PHP scripts, options1.php
and options2.php, to pass back the colors in the two color schemes. All you
really need is one server-side script — options.php — but you have to tell it
which color scheme you’re interested in. And doing that means passing data
to the server.

Although these examples use PHP, the way Ajax passes data back to the
server is the same for just about any server-side programming language, from
PHP to Perl, from JSP to Python. So how do you pass data to a server-side
program in Ajax? One way of doing this is to use the GET method and URL
encoding. But one issue here is worth noting — if you use URL encoding and
the GET method, your data is pretty public. As it zings around the Internet, it
could conceivably be read by others. You can protect against that by using
the POST method instead of GET.

However, to use POST, you still need to understand GET. The following sec-
tions have all the details.

When you use the GET method of fetching data from the server, as all the
Ajax examples in this book have so far, data is sent from Web pages back to
the server by using URL encoding, which means that data is appended to the
actual URL that is read from the server.

106 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 106

For example, if you’re using the GET method and you have a text field named
a that contains the number 5, a text field named b that contains the number
6, and a text field named c that contains the text “Now is the time”, all
that data would be encoded and added to the URL you’re accessing. When
data is URL encoded, a question mark (?) is added to the end of the URL, and
the data, in name=data format, is added after that question mark. Spaces in
text are converted to a plus sign (+), and you separate pairs of name=data
items with ampersands (&). So to encode the data from the a, b, and c text
fields and send it to http://www.servername.com/user/scriptname,
you’d use this URL:

http://www.servername.com/user/scriptname?a=5&b=6&c=Now+is+the+time

Note that the data you send this way is always text — even if you’re sending
numbers, they’re treated as text.

The JavaScript escape function will encode data for appending to the end
of an URL, and it’ll handle things like converting spaces into + signs auto-
matically. For example, if you want to prepare the text from a text field for
appending to a URL, you would use code like this: var urlReadyText =
escape(textField.value);.

In this particular example, the goal is to tell a single online script, options.
php, which color scheme you want to use, scheme 1 or scheme 2. The idea
is to send the value “1” or “2” to options.php. How you recover those
values in your server-side script depends on what language you’re using. In
PHP, for example, you can recover those values by using an array named
$_GET (because you’re using the GET method — if you were using the POST
method, you’d use $_POST). So if you name the data you’re sending to the
script scheme in a URL something like this

http://localhost/ch03/options.php?scheme=1

you can then recover the setting of the scheme argument in your PHP as
$_GET[“scheme”]. For scheme = “1”, you want to send back the colors
‘red’, ‘green’, and ‘blue’; for scheme = “2”, you send back the values
‘black’, ‘white’, and ‘orange’. Here’s what options.php looks like —
note the part that checks what scheme is being requested:

<?
header(“Content-type: text/xml”);
if ($_GET[“scheme”] == “1”)
$options = array(‘red’, ‘green’, ‘blue’);

if ($_GET[“scheme”] == “2”)
$options = array(‘black’, ‘white’, ‘orange’);

echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{

107Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 107

echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
?>

Okay, this PHP script sends back two different XML documents, depending
on which color scheme you choose — 1 or 2. The next step is to design a new
HTML document, options2.html, that will call options2.php correctly. In
options2.html, the buttons the user can click to select the color scheme
will pass the number of the selected scheme, 1 or 2, to the getOptions func-
tion, like this:

<body>

<h1>Passing data using Ajax and XML</h1>

<form>
<select size=”1” id=”optionList”
onchange=”setOption()”>
<option>Select a scheme</option>

</select>
<input type = “button” value = “Use color scheme 1”
onclick = “getOptions(‘1’)”>

<input type = “button” value = “Use color scheme 2”
onclick = “getOptions(‘2’)”>

</form>

<div id=”targetDiv” width =100 height=100>Color this text.</div>

</body>

The getOptions function accepts that one argument, the scheme number:

function getOptions(scheme)
{
.
.
.

}

The first step is to URL encode the scheme number, setting the scheme argu-
ment to “1” or “2”, as the options.php script will expect:

function getOptions(scheme)
{
var url = “options2.php?scheme=” + scheme;
.
.
.

}

108 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 108

Excellent. Now all you’ve got to do is to open the URL by using the GET
method and then use the data from the server to fill the drop-down list:

function getOptions(scheme)
{
var url = “options2.php?scheme=” + scheme;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, url, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName(“option”);
listOptions();
}

}

XMLHttpRequestObject.send(null);
}

}

And that’s it — options2.html will call options.php on the server, pass-
ing the number of the color scheme the user selected. And options.php will
send back the data for the colors in that scheme. Very nice. This works as it
should. Now you’re sending data to the server.

Passing Data to the Server with POST
When you pass data to a URL by using the POST method, it’s encoded inter-
nally (in the HTTP request sent to the server), which makes sending data
more secure than with GET (although not as secure as using a secure HTTPS
connection to the server).

In the following sections, you see how using the POST method works.

Passing data by using the POST method in Ajax is a little different than using
GET. As far as the PHP goes, you can recover data sent to a PHP script by
using POST with the $_POST array, not $_GET. Here’s what that looks like
in a new PHP script, options3.php:

<?
header(“Content-type: text/xml”);
if ($_POST[“scheme”] == “1”)
$options = array(‘red’, ‘green’, ‘blue’);

if ($_POST[“scheme”] == “2”)
$options = array(‘black’, ‘white’, ‘orange’);

109Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 109

echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{
echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
?>

I’ve heard of rare PHP installations where $_POST wouldn’t work with Ajax
applications when you use the POST method, in which case you have to use
$HTTP_RAW_POST_DATA instead. This technique gives you the raw data
string sent to the PHP script (such as “a=5&b=6&c=Now+is+the+time”),
and it’s up to you to extract your data from it.

How do you use the POST method in your JavaScript? It isn’t as easy as just
changing “GET” to “POST” when you open the connection to the server:

XMLHttpRequestObject.open(“POST”, url); //Won’t work by itself!

It isn’t as easy as that, because you don’t URL-encode your data when you
use POST. Instead, you have to explicitly send that data by using the
XMLHttpRequest object’s send method.

Here’s what you do. You set up the URL to open without any URL encoding
this way in the getOptions function, which is the function that communi-
cates with the server:

function getOptions(scheme)
{
var url = “options3.php”;
.
.
.

}

Then you configure the XMLHttpRequest object to use this URL. You do this
by using the open method and by specifying that you want to use the POST
method:

function getOptions(scheme)
{
var url = “options3.php”;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);

110 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 110

.

.

.
}

To use the POST method, you should also set an HTTP header for the request
that indicates the data in the request will be set up in the standard POST way.
Here’s what that looks like:

function getOptions(scheme)
{
var url = “options3.php”;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);
XMLHttpRequestObject.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);
.
.
.

}

Then you can connect an anonymous function to the XMLHttpRequest
object’s onreadystatechange property as before to handle asynchronous
requests, as shown here:

function getOptions(scheme)
{
var url = “options3.php”;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);
XMLHttpRequestObject.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName(“option”);
listoptions();
}

}
.
.
.

}
}

111Chapter 3: Getting to Know Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 111

And now comes the crux. Instead of sending a null value as you would if you
were using the GET method, you now send the data you want the script to
get. In this case, that’s scheme = 1, like this:

function getOptions(scheme)
{
var url = “options3.php”;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);
XMLHttpRequestObject.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName(“option”);
listOptions();
}

}

XMLHttpRequestObject.send(“scheme=” + scheme);

}
}

There you go. Now this new version of the Ajax application, options3.
html, will use the POST method to send its data to options3.php, which
will return its data in XML format. Very neat.

If you want to use XML to send your data to the server-side program, the
POST method works, too. That’s because you don’t have to explicitly encode
the data you send to the server yourself, appending it to the end of an URL.
(Some servers have limits on how long URLs can be.)

To send your data as XML, you set a Request header so that the content type
of your request will be “text/xml” instead of “application/x-www-
form-urlencoded”:

XMLHttpRequestObject.setRequestHeader(“Content-Type”, “text/xml”)

Then you can send your XML directly to the server by using the send
method, which goes something like this:

XMLHttpRequestObject.send(“<doc><name>limit</name><data>5</data></doc>”);

112 Part II: Programming in Ajax

08_785970 ch03.qxp 1/20/06 12:20 PM Page 112

Chapter 4

Ajax in Depth
In This Chapter
� Returning JavaScript from the server

� Returning JavaScript objects

� Connecting to Google Suggest yourself

� Creating a live search

� Performing server-side validation

� Handling head requests

� Handling multiple XMLHttp requests at the same time

“Hey!” says the highly-paid master Ajax programmer, “what’s all this
about? I’m just doing my normal Ajax programming here, and some

darn security message keeps popping up.”

“The browser’s giving you a security warning,” the CEO says. “It says your
application is trying to access another Web site.”

“Well, that’s very helpful news,” the highly-paid master Ajax programmer
says, “I know that.”

“You shouldn’t try to connect to another Web domain like Google from your
JavaScript — didn’t you read Chapter 4 in Ajax For Dummies?” you say
calmly, emerging from the shadows.

“Huh?” asks the master Ajax programmer.

“It’s okay,” you say, sitting down and taking over, “I’ll show you how this
should work — for a substantial fee.”

You know Ajax adds power to your Web applications, but as this example
shows, unless you know the tricks, problems such as this one can drive your
users away. This chapter explains how you can best implement powerful
Ajax techniques, such as connecting to Google for instant searches, returning
JavaScript from the server, sending Http head requests to the server, debug-
ging Ajax, and handling multithreading issues. It’s all coming up in this chapter.

09_785970 ch04.qxp 1/20/06 12:21 PM Page 113

Returning JavaScript from the Server
In Chapter 3, I explain how to deal with text sent back to an Ajax application
from the server and how to work with simple XML sent back from the server
as well. But there’s another technique you sometimes see — the server can
send back JavaScript for you to execute. This isn’t as wacky as it sounds,
because you can use the built-in JavaScript function named eval to evaluate
text sent back to you from the server, and if that text is JavaScript, you’re in
business.

When do you send back JavaScript
from the server?
You can sometimes see this technique used when an Ajax application sends
multiple requests to a server, and you don’t know which one will return first.
In such a case, programmers sometimes have the server return the actual
JavaScript to be executed that will call the correct function — one function
for one asynchronous request, another function for another.

I don’t recommend this technique except in one case — where you don’t have
any control over the server-side code, and you have to deal with the Java-
Script it sends you (as when connecting to Google Suggest, which I explain
later in this chapter). Otherwise, it’s not the best programming form to have
the server return code to execute — the server-side program shouldn’t have
to know the details of your JavaScript code, and getting code from outside
sources makes your application that much harder to debug and maintain.
Instead, I recommend that your call to the server return a value that can be
tested, and the JavaScript code in the browser can then call the correct
function.

On the other hand, this is a common Ajax technique that’s sometimes
unavoidable when you have to deal with a server over which you have no
control that returns JavaScript code, so you should get to know how this
works.

How does returning JavaScript work?
To show you how this technique works, here’s an example — javascript.
html in the code for this book. This example displays a button with the cap-
tion Fetch JavaScript, as you can see in Figure 4-1.

114 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 114

Here’s how to create the button in HTML in javascript.html:

<body>

<H1>Returning JavaScript</H1>

<form>
<input type = “button” value = “Fetch JavaScript”
onclick = “getData(‘javascript.php’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>

Note that when the user clicks the button, a function named getData is
called with the relative URL to get the JavaScript from, javascript.php.
Here’s how the getData function calls that URL:

<html>
<head>
<title>Returning JavaScript</title>

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

Figure 4-1:
Fetching

JavaScript
by using

Ajax.

115Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 115

}

function getData(dataSource)
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
.
.
.

}
}

XMLHttpRequestObject.send(null);
}

}
.
.
.

The server-side script, javascript.php, is very simple. It sends back a line
of JavaScript that will call a function named alerter:

<?php
echo ‘alerter()’;

?>

So when javascript.html calls javascript.php behind the scenes, the
XMLHttpRequest object will end up with the text “alerter()” in its
responseText property. You can execute that JavaScript easily — just pass
it to the JavaScript eval function in the getData function this way:

function getData(dataSource)
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

eval(XMLHttpRequestObject.responseText);
}

}

XMLHttpRequestObject.send(null);
}

}

116 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 116

Excellent, all that’s left now is to add the alerter function to javascript.
html. That function just displays a friendly message, “Got the JavaScript
OK.”, on the page by writing that text to a <div> element:

function alerter()
{
var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = “Got the JavaScript OK.”;
}

This is the function that will be called when the server-side script sends back
the line of JavaScript to be executed, “alerter()”. The <div> element
where the message is displayed looks like this in the <body> section of the
page:

<body>

<H1>Returning JavaScript</H1>

<form>
<input type = “button” value = “Fetch JavaScript”
onclick = “getData(‘javascript.php’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>

And that’s all there is to it. Now when the user clicks the button, this Ajax
application fetches JavaScript to execute from the server, and it executes that
JavaScript, calling a function that displays a success message, as you see in
Figure 4-2.

Figure 4-2:
Successfully

fetching
JavaScript

by using
Ajax.

117Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 117

Returning a JavaScript object
You can do more than simply returning lines of JavaScript code to be exe-
cuted in an Ajax application — you can return JavaScript objects from the
server, as well.

But wait — can’t you only return text and text formatted as XML to an Ajax
application from the server? Yep, but you can format a JavaScript object as
text to be converted back into an object after you get your hands on it in
your JavaScript code.

Here’s an example, object.html in the code for this book, to show how that
works. (See this book’s Introduction for details about the code on this book’s
companion Web site.) Say you have function named adder, as in this example,
which adds two numbers and displays the sum in an alert box:

function adder(op1, op2)
{
var sum = op1 + op2;
alert(op1 + “ + “ + op2 + “ = “ + sum);

}

Then say you wanted to create an object that held the name of the function
to call, along with the two operands to pass to that function — this is the
kind of object a server-side program might pass back to you. In this case, the
object being passed back to your script might have these three properties:

� function: The function to call, such as “alerter”.

� operand1: The first operand to pass to the alerter function, 2 in this
example.

� operand2: The second operand to pass to the alerter function, 3 in
this example.

You can create an object with these three properties from text in JavaScript.
The variable named text holds the text to use, and the variable named
jSObject holds the object that will be created:

var text = “{function: ‘adder’, operand1: 2, operand2: 3};”;
var jSObject;

You can use the eval function to create the new object and assign it to the
jSObject variable this way:

eval(‘jSObject = ‘+ text);

118 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 118

Then you can call the adder function by using the properties of the newly
created object:

<html>
<head>
<title>
Converting text to a JavaScript object

</title>

<script>
var text = “{method: ‘adder’, operand1: 2, operand2: 3};”;
var jSObject;

eval(‘jSObject = ‘+ text);

eval(jSObject.method + ‘(‘ + jSObject.operand1 + ‘,’ +
jSObject.operand2 + ‘);’);

function adder(op1, op2)
{
var sum = op1 + op2;
alert(op1 + “ + “ + op2 + “ = “ + sum);

}
</script>

</head>

<body>
<h1>
Converting text to a JavaScript object

</h1>
</body>

</html>

You can see the results in Figure 4-3. Apparently, 2 + 3 = 5.

That’s how you can pass back a JavaScript object from the server to an Ajax
application — pass back the text that you can convert into an object by using
the JavaScript eval function.

Figure 4-3:
Creating a
JavaScript
object from

text.

119Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 119

Connecting to Google for a Live Search
I’m not really an advocate of using JavaScript sent to you from the server in
Ajax applications, except in one case — if the server you’re dealing with gives
you no choice. And that’s the case with the example I show you in this sec-
tion: connecting directly to Google to implement a live search.

One of the famous Ajax applications is Google Suggest, which you can see at
work in Figure 4-4. To use Google Suggest, just navigate to it (as of this writ-
ing, its URL is www.google.com/webhp?complete=1&hl=en), and start
entering a search term. As you see in the figure, Google gives you suggestions
as you type — if you click a suggestion, Google searches for that term.

This application is one of the flagships of Ajax because the drop-down menu
you see in the figure just appears — no page refreshes needed. This kind of
live search application is what wowed people about Ajax in the first place.

As it turns out, you can implement the same kind of live search yourself,
tying directly into Google Suggest, as you see in the next example, google.
html in the code for this book, which appears in Figure 4-5. Just as when you
enter a search term in the Google page, you see a menu of clickable items in
this local version, which updates as you type.

How can you connect to Google Suggest yourself? Say that you placed the
search term you wanted to search for in a variable named term. You could
then open this URL:

http://www.google.com/complete/search?hl=en&js=true&qu=” + term;

Figure 4-4:
Google

Suggest.

120 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 120

You get back a line of JavaScript from Google Suggest that calls a function
named sendRPCDone. Here are the parameters passed to that function:

sendRPCDone(unusedVariable, searchTerm, arrayTerm, arrayResults, unusedArray)

What does the actual JavaScript you get back from Google Suggest look like?
If you’re searching for “ajax”, this is the JavaScript you’ll get back from
Google as of this writing:

sendRPCDone(frameElement, “ajax”, new Array(“ajax”, “ajax amsterdam”,
“ajax fc”, “ajax ontario”, “ajax grips”, “ajax football club”, “ajax public
library”, “ajax football”, “ajax soccer”, “ajax pickering transit”), new
Array(“3,840,000 results”, “502,000 results”, “710,000 results”, “275,000
results”, “8,860 results”, “573,000 results”, “40,500 results”, “454,000
results”, “437,000 results”, “10,700 results”), new Array(“”));

You can handle this by putting together a function named sendRPCDone that
will display this data as you see in Figure 4-5 (shown earlier). Cool.

Handling the data Google sends you
What does the code look like in google.html? The text field where the user
enters text is tied to a function named getSuggest by using the onkeyup
event. As a result, getSuggest will be called every time the user types and
releases a key. (Note that the event object is passed to getSuggest by this

Figure 4-5:
A local

version of
Google

Suggest.

121Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 121

code, because that object holds information about which key was pressed,
and also note the <div> element where the suggestions will appear,
targetDiv.) Here’s what the code looks like:

<body>

<H1>Google live search</H1>

Search for <input id = “textField” type = “text”
name = “textField” onkeyup = “getSuggest(event)”>

<div id = “targetDiv”><div></div></div>

</body>

Detecting keystrokes
The getSuggest function is supposed to be passed an event object that it
will refer to as keyEvent, which holds data about the key event that just
took place:

function getSuggest(keyEvent)
{
.
.
.

}

However, this method of passing the event object doesn’t work in the Internet
Explorer, which means getSuggest won’t be passed anything in that browser.
You have to use the window.event object instead in the Internet Explorer.
So the first line of getSuggest is a typical line of JavaScript that uses the
JavaScript conditional operator (flip to Chapter 2 and check out Table 2-1)
to make sure you have an event object to work with. Here’s an example that
shows how to use this operator:

var temperature = condition ? 72 : 55;

If condition is true, the temperature variable will be assigned the value 72; if
condition is false, temperature will be assigned 55. In the getSuggest func-
tion, you can use the conditional operator to test whether keyEvent has a
non-zero value. If it doesn’t, you should use window.event instead:

function getSuggest(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
.
.
.

}

122 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 122

You can also determine which control the user was typing into, but that
depends on which browser the user has. In the Internet Explorer, you use the
srcElement property of the keyEvent object, but otherwise, you use the
target property to get the control the user was typing into:

function getSuggest(keyEvent)
{
function getSuggest(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement; .

.

.
}

Excellent. You have all the data you need about the key event. Now you can
use the following code to check whether the event was a key up event:

function getSuggest(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == “keyup”) {
.
.
.
}

}

If the event was a key up event, it’s time to read the struck key. If there is
some text in the text field, it’s time to connect to Google Suggest.

Connecting to Google Suggest
To connect to Google Suggest, you call a function named getData which
does exactly that — gets the live search data, like this:

function getSuggest(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == “keyup”) {
if (input.value) {
getData(“google.php?qu=” +

123Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 123

input.value);
}
.
.
.

}
}

If no text exists in the text field, the user deleted that text, so you can clear
the suggestions (which appear in a <div> element named targetDiv) as
follows:

function getSuggest(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == “keyup”) {
if (input.value) {
getData(“google.php?qu=” +
input.value);

}
else {
var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = “<div></div>”;
}

}
}

How does the getData function work? This function calls the PHP script that
actually interacts with Google Select, and passes on the current search term
on to that script. This function is called with the relative URL to call, which is
this (where term holds the search term):

google.php?qu=” + term;

That URL is opened in the getData function this way:

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

}

124 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 124

function getData(dataSource)
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);
.
.
.

}
}

Showing Google’s response
When you have the search data, you need to show the response from Google,
which will be JavaScript. The response is executed with the JavaScript eval
function:

function getData(dataSource)
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
eval(XMLHttpRequestObject.responseText);

}
}

XMLHttpRequestObject.send(null);
}

}

This calls the sendRPCDone function. All that’s left in google.html is to set
up that function in this way:

function sendRPCDone(unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

{
.
.
.

}

125Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 125

You fill the <div> element, targetDiv, with data you get from Google in the
sendRPCDone function, using an HTML table to align the columns. Here’s
how to create the table and start looping over the suggestions Google
returned:

function sendRPCDone(unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

{
var data = “<table>”;
var loopIndex;

if (arrayResults.length != 0) {
for (var loopIndex = 0; loopIndex < arrayResults.length;
loopIndex++) {
.
.
.

}
}

data += “</table>”;

var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = data;
}

Next, you give each suggestion its own hyperlink which — when clicked —
searches Google, redirecting the browser to the Google Web site like this:

function sendRPCDone(unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

{
var data = “<table>”;
var loopIndex;

if (arrayResults.length != 0) {
for (var loopIndex = 0; loopIndex < arrayResults.length;
loopIndex++) {
data += “<tr><td>” +
“<a href=’http://www.google.com/search?q=” +
arrayTerm[loopIndex] + “‘>” + arrayTerm[loopIndex] +
‘</td><td>’ + arrayResults[loopIndex] + “</td></tr>”;

}
}

data += “</table>”;

var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = data;
}

126 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 126

The last touch: the targetDiv <div> element is given a light yellow back-
ground in the <style> element in the <head> section (you can find out
more on how to use styles with Ajax in Chapter 9):

<html>
<head>

<title>Google live search</title>

<style>
#targetDiv {
background-color: #FFEEAA;
width: 30%;

}
</style>

.

.

.

And that’s all it takes.

Because this Google example is a complicated one, Listing 4-1 shows the
whole code to help you put things in place:

Listing 4-1: Connecting to Google Suggest

<html>
<head>

<title>Google live search</title>

<style>
#targetDiv {
background-color: #FFEEAA;
width: 30%;

}
</style>

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

}

function getData(dataSource)
{

(continued)

127Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 127

Listing 4-1 (continued)

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
eval(XMLHttpRequestObject.responseText);

}
}

XMLHttpRequestObject.send(null);
}

}

function getSuggest(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == “keyup”) {
if (input.value) {
getData(“google.php?qu=” +
input.value);

}
else {
var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = “<div></div>”;
}

}
}

function sendRPCDone(unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

{
var data = “<table>”;
var loopIndex;

if (arrayResults.length != 0) {
for (var loopIndex = 0; loopIndex < arrayResults.length;
loopIndex++) {
data += “<tr><td>” +
“<a href=’http://www.google.com/search?q=” +
arrayTerm[loopIndex] + “‘>” + arrayTerm[loopIndex] +
‘</td><td>’ + arrayResults[loopIndex] + “</td></tr>”;

}

128 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 128

}

data += “</table>”;

var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = data;
}

</script>

</head>

<body>

<H1>Google live search</H1>

Search for <input id = “textField” type = “text”
name = “textField” onkeyup = “getSuggest(event)”>

<div id = “targetDiv”><div></div></div>

</body>

</html>

Check out the PHP script, google.php, which is the script that actually does
the communicating with Google. This one takes a little PHP of the kind that
appears in detail in Chapter 10. This script is passed the term the user has
entered into the text field, and it should get some suggestions from Google,
which it does like this with the PHP fopen (file open) statement:

<?php
$handle = fopen(“http://www.google.com/complete/search?hl=en&js=true&qu=” .
$_GET[“qu”], “r”);
.
.
.

This gives you a PHP file handle, which you can use in PHP to read from the
Google URL. Here’s how that looks in PHP, where a while loop keeps reading
data from Google as long as the end of the data marker isn’t seen. You can
check if you’ve reached the end of the data with the feof function, which
returns true if the end of the data has been reached:

<?php
$handle = fopen(“http://www.google.com/complete/search?hl=en&js=true&qu=” .
$_GET[“qu”], “r”);

while (!feof($handle)){

129Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 129

.

.

.
}

?>

To get the data from Google, you can use the fgets (file get string) function,
and echo the fetched text, which sends that text back to the browser. Here’s
how you can make that happen:

<?php
$handle = fopen(“http://www.google.com/complete/search?hl=en&js=true&qu=” .
$_GET[“qu”], “r”);

while (!feof($handle)){
$text = fgets($handle);
echo $text;

}
fclose($handle);

?>

And that’s all you need. Now this script, google.php, will read the sugges-
tion data from Google and send it back to your script.

Everything works as expected. (Note, however, that this example can execute
slowly; Google Suggest is still in beta version as I write this book.) But why
was it necessary to use a PHP script at all? Why couldn’t the Ajax part have
called Google directly to get the suggestions from Google? The answer is
coming up in the next section.

Calling a Different Domain
When an Ajax script tries to access a Web domain that it isn’t part of (such as
http://www.google.com), browsers these days get suspicious. They’ve
surely been burned enough by malicious scripts. So if your Ajax application
is hosted on your own Web site and you try to access an entirely different
site in your code, you’ll probably see a security warning like the one that
appears in Figure 4-6.

If that kind of warning appears each time your Ajax application is going to
access data, you have a disaster. What user wants to keep clicking the Yes
button over and over?

So what’s the solution? You’ll see various solutions thrown around in the Ajax
community, such as changing the security settings of the user’s browser.
Clearly, that’s a poor suggestion — how are you going to convince the general

130 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 130

public to do that so they can use your script? Another suggestion you might
see is to mirror the site you’re trying to access locally. That’s another poor
suggestion when it comes to working with a site like Google. (Can you imag-
ine your ISP’s response when you say you need an additional 10,000GB of
hard drive space — and that’s just for starters?)

As far as Ajax goes, the fix to this problem isn’t really all that difficult, even
though browsers have become somewhat sticky in regards to security. The
fix is to let a server-side script, not your code executing in the browser,
access the different domain for you. That’s why it was necessary to have
google.html use google.php to access the Google URL. Here’s how it
does that:

<?php
$handle = fopen(“http://www.google.com/complete/search?hl=en&js=true&qu=” .
$_GET[“qu”], “r”);
.
.
.

Accessing a Web domain different from the one the browser got your Ajax
application from will cause the browser to display a security warning. To
avoid that, use sever-side code to access that different domain and send any
data back to you.

Reversing the Roles: Performing
Validation on the Server

As I explain in “Connecting to Google for a Live Search” earlier in this chapter,
you can literally check the user’s input character by character as they type.

Figure 4-6:
You get a
security
warning

when you
try to

access a
different

domain by
using Ajax.

131Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 131

This capability is important to Ajax. To save bandwidth, you might not want
to do that all the time, but it can come in handy. For example, you might want
to validate the user’s input as she’s typing.

Data validation is often done by JavaScript in the browser these days, but a
script in the browser can’t check certain things without contacting the
server, such as a database on the server or a list of usernames and pass-
words that you don’t want to download to the browser for obvious security
reasons. Instead, you can use Ajax for a little server-side validation.

The code for this book has an example for that — login.html and login.
php, which let a new user select a username. When you open login.html
and enter a tentative username, the code checks with login.php on the
server and makes sure the name the user entered isn’t already taken, as you
see in Figure 4-7.

The following code shows what login.php looks like. As you can see, only
one taboo name exists: “steve”. If you try to take that username, this PHP
script will return a value of “taken”.

<?php
if ($_GET[“qu”] == “steve”){
echo “taken”;

}
else {
echo “ok”;

}
?>

Figure 4-7:
Performing

validation
on the
server.

132 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 132

The login.html file asks the user to enter the possible new username in a
text field, and every time there’s a new keystroke, the checkUsername func-
tion is called, as you see here:

<body>

<H1>Choose a username</H1>

Enter your new username <input id = “textField” type = “text”
name = “textField” onkeyup = “checkUsername(event)”>

<div id = “targetDiv”><div></div></div>

</body>

The checkUsername function passes control onto the getData function to
check the username the user has entered so far, like so:

function checkUsername(keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == “keyup”) {
var targetDiv = document.getElementById(“targetDiv”);
targetDiv.innerHTML = “<div></div>”;

if (input.value) {
getData(“login.php?qu=” +
input.value);

}
}

}

And the getData function asks login.php if the user’s current suggested
username is taken. If it is, the code displays the message “That username
is taken.”. this way:

function getData(dataSource)
{
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
if(XMLHttpRequestObject.responseText == “taken”){

133Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 133

var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = “<div>That username is taken.</div>”;
}

}
}

XMLHttpRequestObject.send(null);
}

}

You can see this server-side validation at work in Figure 4-7, which appears
earlier in the chapter. Now you’re using Ajax to check user input character by
character. Very cool.

Checking every character the user types is okay only for limited, specific
uses like the one in this example. You don’t want to overwhelm the server
with endless requests for data.

Getting Some Amazing Data
with HEAD Requests

In Chapter 3, I explain how to use the GET method when you primarily need
to fetch some data from the server, and the POST method when the idea was
primarily to send data to the server. Another option is to use HEAD requests,
which gets data about a document, and about the server.

How do you make a HEAD request? You just use HEAD as the method to get
data with. You can see an example, head.html, at work in Figure 4-8.

As you see in the figure, this example displays data on the server, last-modified
date of the document, the current date, the type of the document being
accessed, and so on. Here’s what that data looks like:

Server: Microsoft-IIS/5.1 Date: Tue, 09 Aug 2005 16:17:03 GMT
Content-Type: text/plain Accept-Ranges: bytes Last-Modified: Thu, 28 Jul
2005 16:29:44 GMT Etag: “94125909193c51:911” Content-Length: 38

This data represents the values of the Http headers that an Ajax script gets
when it tries to read a text file on the server, data.txt. If you sent a GET
request, you’d get the text inside data.txt. But if you send a HEAD request,
you get data about data.txt and the server. For example, the “Last-
Modified” Http header holds the text “Thu, 28 Jul 2005”, which is the
date on which data.txt was last modified.

134 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 134

You can grab all this data or just the tidbits that you need. The following sec-
tions have the details.

Returning all the header data you can get
How do you get access to this kind of data? When the user clicks the button
you see in Figure 4-8 (shown earlier), the code calls the getData function
(responsible for interacting with the server) with the relative URL data.txt:

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘data.txt’, ‘targetDiv’)”>

</form>

The code in the getData function sends a HEAD request for that URL to the
server like this:

<html>
<head>
<title>Getting header information</title>

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

}

function getData(dataSource, divID)

Figure 4-8:
Getting

head data
from the

server.

135Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 135

{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“HEAD”, dataSource);
.
.
.

}
</script>

</head>
.
.
.

When the data comes back from the server, the data will be in the XMLHttp
RequestObject object, and you can use that object’s getAllResponse
Headers method to get the list of all headers and header data that appears
in Figure 4-7. Here’s how:

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“HEAD”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.getAllResponseHeaders();

}
}

XMLHttpRequestObject.send(null);
}

}

This example gets all the header data that’s available from the server, but
what if you wanted to extract only data from a specific header, such as the
“Last-Modified” header to determine when a file on the server was last
modified? It turns out there’s a method for that too.

Finding the last-modified date
How do you find the data for a specific header, such as the “Last-
Modified” header for a file on the server? Here’s how that works in a
new example, date.html, which you can see at work in Figure 4-9. This

136 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 136

example checks the date on which the target file on the server, date.txt,
was last modified, and displays that date, as you see in the figure.

As in the previous example, this example gets all Http headers for the
data.txt file:

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

}

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“HEAD”, dataSource);
.
.
.

}
</script>

But then, instead of using the getAllResponseHeaders method to get all
headers, you can use the getResponseHeader method to get only data for a
specific header, the “Last-Modified” header, like this:

XMLHttpRequestObject.getResponseHeader(“Last-Modified”)

Figure 4-9:
Getting the

date a file
was last

modified.

137Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 137

The code displays the text returned in that header on the Web page:

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“HEAD”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = “data.txt was last modified on “ +

XMLHttpRequestObject.getResponseHeader(
“Last-Modified”);

}
}

XMLHttpRequestObject.send(null);
}

}

As you see in the figure, that gives you a result like “data.txt was last
modified on Thu, 28 Jul 2005 16:29:44 GMT”. What if you wanted
to convert that text to numbers that you can check to make sure a file is after
a specific date? You can use the JavaScript Date object for that. Just use the
text you get from the Last-Modified header this way to create a new Date
object named date:

var date = new Date(XMLHttpRequestObject.getResponseHeader(“Last-Modified”));

Now you can compare date to other Date objects by using JavaScript opera-
tors such as > to determine which date is later than the other. You can also
use the built-in Date object methods like getMonth to get the month of the
date object. Here’s a sampling of Date object methods:

alert (“Day (1-31): “ + date.getDate());
alert (“Weekday (0-6, 0 = Sunday): “ + date.getDay());
alert (“Month (0-11): “ + date.getMonth());
alert (“Year (0-99-31): “ + date.getYear());
alert (“Full year (four digits): “ + date.getFullYear());
alert (“Day (1-31): “ + date.getDate());
alert (“Day (1-31): “ + date.getDate());
alert (“Hour (0-23): “ + date.getHours());
alert (“Minutes (0-59): “ + date.getMinutes());
alert (“Seconds (0-59): “ + date.getSeconds());

138 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 138

Does a URL exist?
Sometimes, you might want to check to make sure a Web resource exists
before trying to download it. If that Web resource is a long one, you might not
want to download the whole thing just to check whether it’s there. You can
use HEAD requests to check whether a Web resource exists, and use up a lot
less bandwidth doing so.

The example in the code for the book, exists.html, shows how this works
by checking whether or not the data.txt file exists. The following example
works by doing a HEAD request on that file, and checking the return Http
status code — 200 means everything’s fine and the file is there, ready for
use, but 404 means nope, file isn’t there:

<script language = “javascript”>
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

}

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“HEAD”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4) {
if (XMLHttpRequestObject.status == 200) {
obj.innerHTML = “URL exists”;

}
else if (XMLHttpRequestObject.status == 404) {
obj.innerHTML = “URL does not exist”;

}
}

}

XMLHttpRequestObject.send(null);
}

}
</script>

139Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 139

You might want to use a technique like the one in this example to check if
your server-side program is there and ready to use — and if it isn’t available
(which might mean your server is down), use a JavaScript alternative
instead, this way:

if (XMLHttpRequestObject.readyState == 4) {
if (XMLHttpRequestObject.status == 200) {
keepGoing();

}
else if {(XMLHttpRequestObject.status == 404) {
callAJavascriptFunctionInstead();

}
}

Finding the Problem: Debugging Ajax
When it comes to debugging JavaScript, Firefox is far superior to Internet
Explorer. Firefox has its entire JavaScript console (which you open by choos-
ing Tools➪JavaScript Console), and which actually tells you what the prob-
lems are (as opposed to the unenlightening “Object expected” error you
see for almost any problem in the Internet Explorer).

But what about debugging Ajax issues specifically? Is there any tool that lets
you watch what’s going on with requests to the server and responses from
the server? Such tools are starting to appear.

One example is Julien Couvreur’s XMLHttpRequest debugger, which is a
Greasemonkey script. Greasemonkey is an extension to Firefox that lets you
add dynamic HTML to change what a particular page does. In the sections
that follow, I explain how you set up and use this debugger to polish your
Ajax code.

This is not to say that Greasemonkey is worry-free — some security issues
have appeared. For example, such issues were discovered in Greasemonkey
version 0.3.4, which is no longer available. So be careful when using this
product.

Setting up your browser for debugging
You can get Greasemonkey from the Mozilla people and set up the debugging
script by following these steps:

1. Open up Firefox and go to http://greasemonkey.mozdev.org.

2. Click the Install Greasemonkey link.

140 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 140

After Greasemonkey is installed, you see a monkey icon in the lower-
right corner in Firefox (skip ahead to Figure 4.12 if you want to see that
icon). Clicking that icon toggles Greasemonkey on and off. You can get
more information on using Greasemonkey at http://greasemonkey.
mozdev.org/using.html.

3. Go to http://blog.monstuff.com/archives/000252.html to get
Julien Couvreur’s XMLHttpRequest debugger script.

4. To install a script like this in Greasemonkey, right-click the link to the
script and select the Install User Script menu item.

This opens the dialog box you see in Figure 4-10, which installs the script.

5. You can select which URLs the script should be valid for by entering
them in the Included Pages box.

When you access such pages, your XMLHttpRequest information will
appear in the debugger script.

6. Click OK when you’re done.

After the initial setup, you can also manage the XMLHttpRequest
Debugging script in Firefox by choosing Tools➪Manage User Scripts
to open the dialog box you see in Figure 4-11. In that dialog box, you
can add or remove pages you want to track, just as when you first
installed the script.

Figure 4-10:
Installing a

Greasemon
key script.

141Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 141

Debugging with Greasemonkey
The debugging part comes in when you navigate to one of the pages you
included in Step 5 of the preceding section. For example, if you’ve included
the Google Suggest page (http://www.google.com/webhp?complete=
1&hl=en), navigate to that page in Firefox and start entering a search term,
the XMLHttpRequestDebugging script displays what’s going on in Ajax
terms, as shown in Figure 4-12.

In this case, the user has typed s, then t, then e in the text field. Each time
the user types a character, an Ajax request is sent to the server, and you
can track those in the window that the script displays at right, as shown in
Figure 4-12.

The script lets you watch every GET request and where it was sent (for
example, “GET /complete/search?hl=en&js=true&qu=s”), as well
as the response that came back from the server (for example, “Status:
completed (200 OK)”). That kind of window into what’s happening in Ajax
terms can be very useful when debugging — you can watch, interactively,
what your code is sending to the server, and what the server is sending back.

Figure 4-11:
Managing a
Greasemon

key script.

142 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 142

Overload: Handling Multiple
Concurrent Requests

Looking over the user’s shoulder, you notice they’re clicking different buttons
awfully fast in your Ajax application. “Hey,” you say, “don’t do that.”

“Why not?” the user asks.

“Because if you do, you might confuse the application. You might make it
start a new request before the previous one has had time to come back from
the server.”

“I understand,” says the user, who doesn’t understand at all. As you watch,
the user goes back to clicking buttons just as fast as before.

So far, the Ajax applications you’ve seen here have all used a single XMLHttp
Request object, and that hasn’t been a big problem. But in the real world,
your Ajax applications might have many buttons to click, many images to roll
the mouse over, many text fields to check — and that means that your Ajax
application might have several requests in to the server at nearly the same
time.

Figure 4-12:
Debugging

XMLHttp
Request

object use.

143Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 143

That can be an issue if you’re using the same XMLHttpRequest object for all
your Ajax work. What if the XMLHttpRequest object is waiting for a response
from the server when the user clicks another button and forces the same
XMLHttpRequest object to start a new request? The XMLHttpRequest
object will no longer be waiting for the previous request’s response; now it’ll
be waiting for the current request’s response.

And that’s a problem. When your Ajax application has only one XMLHttp
Request object to work with, but multiple requests can occur at the same
time, a new request will destroy the object’s ability to handle responses to
the previous ones. Yipes.

What’s the solution? Well, you have a couple options, and they’re coming up.

Double the fun
One solution is to simply have multiple XMLHttpRequest objects that you
work with, one per request you send to the server. There’s an example of
that in the code for this book, double.html, which you can see at work in
Figure 4-13.

This example fetches text from data.txt (“This text was fetched
using Ajax.”) and data2.txt (“This text was also fetched
using Ajax.”), and uses two buttons and two separate XMLHttpRequest
objects to do it. Here’s what that looks like in the code:

Figure 4-13:
Using two

XMLHttp
Request
objects.

144 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 144

<html>
<head>
<title>Ajax at work</title>

<script language = “javascript”>
var XMLHttpRequestObject = false;
var XMLHttpRequestObject2 = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
XMLHttpRequestObject2 = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);
XMLHttpRequestObject2 = new ActiveXObject(“Microsoft.XMLHttp”);

}

function getData(dataSource)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(“targetDiv”);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send(null);
}

}

function getData2(dataSource, divID)
{
if(XMLHttpRequestObject2) {
var obj = document.getElementById(“targetDiv”);
XMLHttpRequestObject2.open(“GET”, dataSource);

XMLHttpRequestObject2.onreadystatechange = function()
{
if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {
obj.innerHTML = XMLHttpRequestObject2.responseText;

}
}

XMLHttpRequestObject2.send(null);
}

}

</script>

145Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 145

</head>

<body>

<H1>Fetching data with Ajax</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘data.txt’)”>

<input type = “button” value = “Display Message 2”
onclick = “getData2(‘data2.txt’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

This is a simple solution that handles multiple requests in many instances.
But even this isn’t really good enough on some occasions. What if the user
clicks the same button more than once? You might be stuck trying to send a
new request before the old one has returned from the server. And this only
handles two XMLHttpRequest objects. What if you needed dozens?

Packing it all into an array
The best way of handling multiple concurrent requests is with multiple
XMLHttpRequest objects, one per request. You can, for example, create an
array of such objects and add new objects to the array by using the built-in
JavaScript push function each time there’s a new request. You can see a way
of doing this in the example named objectarray.html in the code for this
book. This example declares an array of XMLHttpRequest objects:

var XMLHttpRequestObjects = new Array();

And then when the application needs a new XMLHttpRequest object, it just
uses the push function to add one to the array:

if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push(new XMLHttpRequest());

} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push(new
ActiveXObject(“Microsoft.XMLHttp”));

}

146 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 146

That’s how it works. There’s a lot more to it than this, of course; you can see
the full code in objectarray.html. Creating an array of XMLHttpRequest
objects like this works and lets you handle multiple XMLHttp requests with-
out getting them mixed up. But it turns out to be a pretty lengthy way of
doing things and, in fact, there’s an easier way — using JavaScript inner
functions.

Getting the inside scoop on inner functions
In JavaScript, an inner function is just a function defined inside another
function. Here’s an example, where the function named inner is an inner
function:

function outer(data)
{
var operand1 = data;

function inner(operand2)
{
alert(operand1 + operand2)

}
}

Here’s what happens: Say you call the outer function with a value of 3 like
this: outer(3). That sets the variable operand1 in this function to 3. The
inner function has access to the outer function’s data — even after the call to
the outer function has finished. So if you were now to call the inner function,
passing a value of 6, that would set operand2 in the inner function to 6 —
and operand1 is still set to 3. So the result of calling the inner function
would be 3 + 6 = 9, which is the value that would be displayed by the
JavaScript alert function here.

Now here’s the fun part. Every time you call the outer function, a new copy of
the function is created, which means a new value will be stored as operand1.
And the inner function will have access to that value. So if you make the shift
from thinking in terms of operand1 and start thinking in terms of the vari-
able XMLHttpRequestObject, you can see that each time a function like
this is called, JavaScript will create a new copy of the function with a new
XMLHttpRequest object, and that object will be available to any inner
functions.

That’s perfect here because the code you’ve been developing in this and the
previous chapter already uses an (anonymous) inner function to handle
onreadystatechange events in the getData function. Currently, the way it
works is that first, the XMLHttpRequest object is created, and then it’s used
inside the anonymous inner function this way:

147Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 147

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject(“Microsoft.XMLHttp”);

}

function getData(dataSource, divID)
{
if(XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}
}

XMLHttpRequestObject.send(null);
}

}

So to use a new XMLHttpRequest object for each request, all you have to do
is to use your mastery of inner functions to move the part of the code where
the XMLHttpRequest object is created inside the getData function, because
the getData function is the outer function that encloses the anonymous
inner function. That’ll create a new XMLHttpRequest object to be used by
the anonymous inner function each time getData is called — and each time
getData is called, a new copy of getData will be created. That’s what you
want — a new XMLHttpRequest object for each new request.

Here’s what that looks like in an example in the book’s code, multiobject.
html, where the XMLHttpRequest object creation part has been moved
inside the outer function, getData. (Note that this example also deletes each
XMLHttpRequest object as it finishes with it. That isn’t necessary, but it’s a
good idea to avoid cluttering up memory with extra XMLHttpRequest
objects.)

<html>
<head>
<title>Using multiple XMLHttpRequest objects</title>

<script language = “javascript”>

function getData(dataSource)
{

148 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 148

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHttp”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
document.getElementById(“targetDiv”).innerHTML =
XMLHttpRequestObject.responseText;

delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(null);
}

}
</script>

</head>

<body>

<H1>Using multiple XMLHttpRequest objects</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘data.txt’)”>

<input type = “button” value = “Display Message 2”
onclick = “getData(‘data2.txt’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

And there you go. This application can handle multiple concurrent XML Http
requests, such as when the user is clicking multiple Ajax-enabled buttons in

149Chapter 4: Ajax in Depth

09_785970 ch04.qxp 1/20/06 12:21 PM Page 149

rapid succession. Each time the getData function is called, a new copy of
that function is created — and a new XMLHttpRequest object is created,
which the anonymous inner function has access to, even after the call to
getData (the outer function) has finished. And because each request gets its
own XMLHttpRequest object, there won’t be any conflicts.

Very cool. You can see multiobject.html at work in Figure 4-14.

Figure 4-14:
Using two

XMLHttp
Request
objects.

150 Part II: Programming in Ajax

09_785970 ch04.qxp 1/20/06 12:21 PM Page 150

Part III
Ajax Frameworks

10_785970 pt03.qxp 1/20/06 12:21 PM Page 151

In this part . . .

The preceding part, Part II, makes it pretty clear that
considerable programming can be involved in writing

everything from the ground up. But instead of reinventing
the wheel every time, you can put some of the many Ajax
frameworks to work. An Ajax framework can do most
of the programming for you, from the JavaScript to the
server-side programming in languages such as PHP or
JavaServer pages. Part III puts many of the available Ajax
frameworks to work for you, giving you a shortcut when it
comes to writing your own code. I share all kinds of handy
tricks in this part, such as using Ajax for drag-and-drop
operations, pop-up menus, downloading images behind
the scenes, and more.

10_785970 pt03.qxp 1/20/06 12:21 PM Page 152

Chapter 5

Introducing Ajax Frameworks
In This Chapter
� Confronting Ajax design issues

� Downloading images by using Ajax and Dynamic HTML

� Working with the Ajax Gold framework

� Getting XML using the AJAXLib framework

� Using the libXmlRequest framework to grab XML

The Ajax programming team under your supervision isn’t getting much
done, and you decide to drop in to see what’s going on.

“Do we always have to develop all our Ajax code from scratch?” the program-
mers ask. “We keep forgetting how to spell onreadystatechange and other
stuff, and it’s slowing us down.”

“Hm,” you say. “No, you can use one of the many Ajax frameworks available
to make developing Ajax code a lot easier, because those frameworks have
done all the programming for you. You typically need to call only a few
functions.”

“Wow,” the programmers chorus. “How can we get a framework?”

“Just read this chapter,” you say. “Ajax frameworks are usually JavaScript
files that you simply include in your own scripts. That’s all you need.” And
you show the programming crew a list of available Ajax frameworks.

“Gee,” they say, “there sure are a lot of frameworks out there! It’s going to
take us a long time to figure out which one to use.”

You sigh.

This chapter starts the book’s look at the available Ajax frameworks, includ-
ing one I developed especially for this book (Ajax Gold). These frameworks
are mostly free, and they’re typically JavaScript libraries of functions you can
call to use Ajax techniques without having to remember how all the coding
goes.

11_785970 ch05.qxp 1/20/06 12:22 PM Page 153

Some of the examples in this chapter use Ajax frameworks that are available
for free online. Before you try to run a particular example, make sure that the
files you need for the associated framework are in the same folder on your
server as the example you’re trying to run. For copyright reasons, the code
for the Ajax frameworks that I discuss in this and the next chapter can’t be
included in the downloadable code for this book, so pick up that code at the
supplied URL for a framework before you try to run an example that uses that
framework. (The Ajax Gold framework, developed especially for this book,
does come in the book’s downloadable code.)

A Little More Ajax Power
Now that you’re about to start developing your own ready-to-distribute Ajax
applications, it’s important to bear in mind that Ajax is all about response
time. You can get pretty fancy with some of the Ajax frameworks, so be sure
you test your applications to make sure they have that Ajax feel as they do
everything from writing JavaScript on the fly on the server to downloading
dozens of images by using Ajax.

How’s that? Downloading images? Isn’t Ajax just about text and XML? Yes,
Ajax itself is all about downloading only text or XML, but the browser can
download images and display them without a page refresh by using Dynamic
HTML. And if you start downloading images or other binary objects, being
careful about response time is worthwhile.

How does downloading images by using Ajax with Dynamic HTML work? Your
Ajax script might, for example, download the name or URL of the image you
should display, and you can construct an HTML tag on the fly to make
the browser download the image.

The image.html example in the code for the book demonstrates how this
works. This example has two buttons, as you see in Figure 5-1. When the user
clicks the first button, the application displays Image1.jpg, as you see in
the figure, and when the user clicks the second button, the application dis-
plays Image2.jpg. (Both image files are in the ch05 folder of the code avail-
able for download from the Web site associated with this book.)

This application works by using Ajax to fetch the name of the image to load
from one of two image files — imageName.txt or imageName2.txt — and
which one is fetched from the server depends on which button the user
clicked. Here’s imageName.txt:

Image1.jpg

and here’s imageName2.txt:

Image2.jpg

154 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 154

When the user clicks a button, the text of the corresponding .txt file is
fetched from the server, and that text is used to create an element,
which is then inserted into the targetDiv <div> element, where the
browser will evaluate it and download the image without a page refresh.
Listing 5-1 shows what that looks like in image.html.

Listing 5-1: Using Ajax to Grab Images from Web Servers

<html>
<head>
<title>Downloading images with Ajax and Dynamic HTML</title>

<script language = “javascript”>

function getDataReturnText(dataSource, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseText);

(continued)

Figure 5-1:
Using Ajax

and
Dynamic
HTML to

download
images
without
a page

refresh.

155Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 155

Listing 5-1 (continued)

delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(null);
}

}

function callback(text)
{
document.getElementById(“targetDiv”).innerHTML =
“”;

}

</script>
</head>

<body>

<H1>Downloading images with Ajax and Dynamic HTML</H1>

<form>
<input type = “button” value = “Display Image 1”
onclick =
“getDataReturnText(‘imageName.txt’, callback)”>

<input type = “button” value = “Display Message 2”
onclick =
“getDataReturnText(‘imageName2.txt’, callback)”>

</form>

<div id=”targetDiv”>
<p>The fetched image will go here.</p>

</div>

</body>
</html>

The results appear in Figure 5-1, where, through a combination of Ajax and
Dynamic HTML, you’re downloading images without a page refresh. The
design issue here is to make sure that when you’re downloading data like this
by writing HTML tags dynamically, you don’t slow response time significantly.
You can use the technique not only for images but also other binary data
objects (such as PDF files, Microsoft Word documents, or Excel spread-
sheets) when you use the Internet Explorer <object> element. If you use
this technique, be careful about degrading performance.

156 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 156

Introducing the Ajax Gold Framework
Ajax frameworks let you use other people’s code to use Ajax. These frame-
works range from the very simple to the very complex.

But you’ve already been creating your own Ajax code in this book, so before
taking a look at other people’s efforts, how about putting that code to work in
an Ajax library written specifically for this book? That library is the Ajax Gold
library, and like other Ajax frameworks, it’s a JavaScript file — in this case,
ajaxgold.js (available in the ch05 folder in the code available for down-
load from the Web site associated with this book). You can use the prewritten
functions in this library to make Ajax calls simple as pie. All you have to do is
include ajaxgold.js in your Web page’s <head> section like this:

<script type = “text/javascript” src = “ajaxgold.js”></script>

Now you’ve got the full power of this library at your command — and it’ll
implement the Ajax techniques you want to use. For example, say that when
the user clicks a button, you want to fetch text by using the GET method from
the server. You can use the Ajax Gold function getDataReturnText to do
that — all you have to do is pass it the URL that will return the text you want
like this: http://localhost/ch05/data.txt or
http://localhost/ch05/data.php.

How do you handle the text when it comes back from the server? You pass
the getDataReturnText the name of a function that you’ve written that
you want to have called with that text — such a function is named a callback
function.

Here’s an example. Say that when the user clicks a button, you want the script
to fetch the text in the file data.txt, and when that text has been fetched,
you want that text to be sent to a function you’ve named callback1. Here’s
how you could set up the button to make all that happen:

<form>
<input type = “button” value = “Display Message”
onclick =
“getDataReturnText(‘data.txt’, callback1)”>

</form>

You don’t include quotation marks around the name of the function, because
you aren’t passing the name of the function here, but actually the function
itself.

157Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 157

Then all you have to do is add the function you’ve named callback1 to your
<script> element. That function will be passed the text that was fetched
from the URL you indicated. In this example, you might just display that text
in a <div> element this way in the callback1 function:

function callback1(text)
{
document.getElementById(“targetDiv”).innerHTML =
“Function 1 says “ + text;

}

So as you can see, easy as pie. If you want to use Ajax to get text from a URL,
just call the Ajax Gold function getDataReturnText, passing it the URL and
the function that should be called to handle the received text like this:

getDataReturnText(url, callbackFunction);

No problem. Now you’re using Ajax and you don’t even have to write any Ajax
code. That’s what Ajax frameworks are all about.

Four functions are built into ajaxgold.js, and they’re designed to let you
get either text or XML from a URL by using either the GET or POST method:

� getDataReturnText(url, callback): Uses the GET method to get
text from the server.

� getDataReturnXml(url, callback): Uses the GET method to get
XML from the server.

� postDataReturnText(url, data, callback): Uses the POST
method to send data to server, gets text back from the server.

� postDataReturnXml(url, data, callback): Uses the POST
method to send data to server, gets XML back from the server.

You can find more details on these functions and how to use them in the fol-
lowing sections.

Using GET to get text
The first function in the Ajax Gold library is getDataReturnText, which
uses the GET method to get text from the server. The getDataReturnText
function and the getDataReturnXml function, which gets XML from the
server, are the two most commonly used. You can find a description of each
function in ajaxgold.js, and here’s the description for
getDataReturnText:

Ajax Gold JavaScript Library supports these functions for using Ajax
(most commonly used: getDataReturnText and getDataReturnXml):

158 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 158

getDataReturnText(url, callback)
** Uses the GET method to get text from the server. **
Gets text from url, calls function named callback with that text.
Use when you just want to get data from an URL, or can easily
encode the data you want to pass to the server in an URL, such as
“http://localhost/script.php?a=1&b=2&c=hello+there”.
Example: getDataReturnText(“http://localhost/data.txt”, doWork);
Here, the URL is a string, and doWork is a function in your own
script.

How does this function work? You pass a URL to this function so that the
script can fetch text from the URL as well as a callback function which then
receives the text the browser fetched from the server. Here’s how it looks:

function getDataReturnText(url, callback)
{

.

.

.
}

This function starts by creating an XMLHttpRequest object:

function getDataReturnText(url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}
.
.
.

}

And if the browser created the XMLHttpRequest object successfully, the
code primes that object by passing the URL that the user wants to get data
from to the open method. Here’s what happens:

function getDataReturnText(url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

159Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 159

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, url);

.

.

.
}

}

Then the code sets up the anonymous inner function (discussed in Chapter 4)
to handle events from the XMLHttpRequest object, like this:

function getDataReturnText(url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, url);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseText);
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

.

.

.
}

}

Finally, the browser fetches the URL, and the code passes null as the data,
which is what usually happens with the GET method. Here’s how:

function getDataReturnText(url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

160 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 160

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, url);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseText);
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(null);
}

}

Okay, it’s time to put this new function, getDataReturnText, to work. If you
want to give it a try, open the HTML document testGetDataReturnText.
html in the code for this book ms as always, available for download from
the Web site associated with this book. You can see this example at work in
Figure 5-2. There are two buttons here, and they read text from two different
files on the server. After the browser has fetched that text, it’s displayed as
you see in the figure.

Everything starts by making sure the Ajax Gold library is loaded and available
to your JavaScript, using this line in the <head> section of your Web page:

<script type = “text/javascript” src = “ajaxgold.js”></script>

Figure 5-2:
Using Ajax

Gold to
fetch text.

161Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 161

Each of the two buttons calls its own URL, and has its own callback function
to handle the text fetched from its URL. Here’s how you can implement that
when creating the buttons, simply by using the getDataReturnText function:

<form>
<input type = “button” value = “Display Message”
onclick =
“getDataReturnText(‘data.txt’, callback1)”>

<input type = “button” value = “Display Message 2”
onclick =
“getDataReturnText(‘data2.txt’, callback2)”>

</form>

The two callback functions just handle the fetched text and display it in the
<div> element (named targetDiv), like so:

<script type = “text/javascript” src = “ajaxgold.js”></script>

<script language = “javascript”>
function callback1(text)
{
document.getElementById(“targetDiv”).innerHTML =
“Function 1 says “ + text;

}

function callback2(text)
{
document.getElementById(“targetDiv”).innerHTML =
“Function 2 says “ + text;

}
</script>

And that’s all there is to it.

Using GET to get XML
What if you didn’t want to fetch text, but wanted to get XML instead? In that
case, you can use the Ajax Gold getDataReturnXml function, which you can
find described this way in ajaxgold.js:

getDataReturnXml(url, callback)
** Uses the GET method to get XML from the server. **
Gets XML from URL, calls function named callback with that XML.
Use when you just want to get data from an URL, or can easily

162 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 162

encode the data you want to pass to the server in an URL, such as
“http://localhost/script.php?a=1&b=2&c=hello+there”.
Example: getDataReturnXml(“http://localhost/data.txt”, doWork);
Here, the URL is a string, and doWork is a function in your
own script.

This function is the same as the getDataReturnText function you just saw,
but fetches XML instead of text. In other words, this function uses the
XMLHttpRequestObject object’s responseXML property, not
responseText, as you see in Listing 5-2.

Listing 5-2: The getDataReturnXml Function

function getDataReturnXml(url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, url);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseXML);
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(null);
}

}

What about putting the getDataReturnXml function to work reading some
XML? For example, what about rewriting the Chapter 3 example that grabbed
XML for the two different color schemes from the scripts options1.php and
options2.php? No problem at all — you can see the Ajax Gold version,
testGetDataReturnXml.html, in Figure 5-3.

163Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 163

The PHP scripts in this example return XML like this:

<? xml version = “1.0” ?>
<options>
<option>
red

</option>
<option>
green

</option>
<option>
blue

</option>
</options>

Writing this example by using the Ajax Gold function getDataReturnXml is
simplicity itself. You want to fetch XML from options1.php or options2.
php when the user clicks a button, and call a function, say getOptions1 or
getOptions2, that will handle that XML when it’s fetched. Easy. Here’s how
that looks:

<input type = “button” value = “Use color scheme 1”
onclick =
“getDataReturnXml(‘options1.php’, getOptions1)”>

<input type = “button” value = “Use color scheme 2”
onclick =
“getDataReturnXml(‘options2.php’, getOptions2)”>

Figure 5-3:
A simple

Ajax
example.

164 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 164

The getOptions1 and getOptions2 functions are passed the XML that
the PHP scripts send back, and all they have to do is store the <option>
elements in an array and pass that array on to the listOptions function
developed in Chapter 3, which will list the available options in the applica-
tion’s drop-down list control. Check this out:

function getOptions1(xml)
{
options = xml.getElementsByTagName(“option”);
listOptions(options);

}

function getOptions2(xml)
{
options = xml.getElementsByTagName(“option”);
listOptions(options);

}

As in the original version of this example, the listOptions function lists the
color options in the drop-down list control:

function listOptions ()
{
var loopIndex;
var selectControl = document.getElementById(‘optionList’);

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{

selectControl.options[loopIndex] = new
Option(options[loopIndex].firstChild.data);

}
}

And there you have it — after the users make a selection from the color
scheme they’ve chosen, the text in the page is colored to match.

function setOption()
{
document.getElementById(‘targetDiv’).style.color =
options[document.getElementById
(‘optionList’).selectedIndex].firstChild.data;

}

So as you can see, using getDataReturnXml is very easy — just pass the
URL and the callback function that should be called with the XML you get. No
trouble at all. If you want to send data to the server while using the GET
method, just encode that data as part of the URL you’re accessing.

165Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 165

Using POST to post data and get text
In the Ajax Gold library, you can post data to the server and get text back
using the postDataReturnText function. Here’s how:

postDataReturnText(url, data, callback)

All you have to do is to pass the URL you want to reach on the server, the
data you want to post, and the callback function that will be passed the
text recovered from the server. Here’s the description for
postDataReturnText that appears in ajaxgold.js:

postDataReturnText(url, data, callback)
** Uses the POST method to send data to server, gets text back. **
Posts data to url, calls function callback with the returned text.
Uses the POST method, use this when you have more text data to send
to the server than can be easily encoded into an URL.
Example: postDataReturnText(“http://localhost/data.php”,
“parameter=5”, doWork);

Here, the URL is a string; the data sent to the server
(“parameter=5”) is a string;and doWork is a function in
your own script.

How does this function work? You pass it three arguments: the URL to fetch,
the data to post, and the callback function that you want called with the
returned text. Here’s what postDataReturnText looks like in action:

function postDataReturnText(url, data, callback)
{

.

.

.
}

You start by getting a local XMLHttpRequest object to handle the POST
operations:

function postDataReturnText(url, data, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

166 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 166

.

.

.
}

Then you open the XMLHttpRequest object for use with the POST method
and use the setRequestHeader method so the server will know that the
data you’re sending is encoded in the request in the standard way for the
POST method:

function postDataReturnText(url, data, callback)
{

.

.

.
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);
XMLHttpRequestObject.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);
.
.
.

}

To complete the preparations, you set up the anonymous inner function that
will handle the text that comes from the server. The inner function will also
call the callback function with that text:

function postDataReturnText(url, data, callback)
{

.

.

.
if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);
XMLHttpRequestObject.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseText);
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

.

.

.
}

167Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 167

And you’re set — all you have to do now is to send the request and wait con-
fidently for the returned text to show up. Here’s how you start off your
request:

function postDataReturnText(url, data, callback)
{

.

.

.
XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseText);
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(data);
}

}

How might you use postDataReturnText? Here’s an example,
testPostDataReturnText.html in the code available for download from
the Web site associated with this book. This example posts data to a small
PHP script named echo.php, which simply echoes back the data sent in a
parameter named message:

<?
echo ($_POST[“message”]);
?>

The testPostDataReturnText.html example posts the data
message=Good afternoon. to echo.php by using the Ajax Gold
postDataReturnText function when the user clicks a button. Here’s how it
does that:

<input type = “button” value = “Get the message”
onclick = “postDataReturnText(‘echo.php’, ‘message=Good afternoon.’,
display)”>

When the browser posts the data message=Good afternoon. to echo.
php, that script will send back the text Good afternoon., and the callback
function display will show that text in a <div> element. Listing 5-3 shows
how to post data using Ajax Gold.

168 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 168

Listing 5-3: Posting Data to a Web Server with Ajax Gold

<html>
<head>

<title>Posting data and returning text with Ajax Gold</title>

<script type = “text/javascript” src = “ajaxgold.js”></script>

<script language = “javascript”>

function display(text)
{
document.getElementById(‘targetDiv’).innerHTML = text;

}

</script>
</head>

<body>

<h1>Posting data and returning text with Ajax Gold</h1>

<form>
<input type = “button” value = “Get the message”
onclick = “postDataReturnText(‘echo.php’, ‘message=Good afternoon.’,

display)”>
</form>

<div id=”targetDiv”>The fetched text will go here.</div>

</body>

</html>

You can see the results in Figure 5-4. When the user clicks the button, the post
DataReturnText function posts the data “message=Good afternoon.”
to echo.php and calls the display function with the text returned from the
server (“Good afternoon.”), and that text appears in the <div> element
on the Web page, as you see in Figure 5-4.

Cool. Now you’re posting data to Web servers and handling the returned
text — all without any Ajax programming on your part when you put the
Ajax Gold library to work.

169Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 169

Using POST to post data and get XML
What if you want to post data and get XML back? The postDataReturnXml
function in the Ajax Gold library lets you post data to a server using Ajax
techniques. In return, you get XML. Here’s how you use it:

postDataReturnXml(url, data, callback)

To use this function, you pass it the URL you want to access, the data you
want to post, and the callback function that you want passed the XML
returned from the server. Here’s the description of postDataReturnXml
from ajaxgold.js:

postDataReturnXml(url, data, callback)
** Uses the POST method to send data to server, gets XML back. **
Posts data to url, calls function callback with the returned XML.
Uses the POST method, use this when you have more text data to send
to the server than can be easily encoded into an URL.
Example: postDataReturnXml(“http://localhost/data.php”,
“parameter=5”, doWork);

Here, the URL is a string; the data sent to the server
(“parameter=5”) is a string; and doWork is a function in
your own script.

As you’d expect, this function works very much like its counterpart,
postDataReturnText, except that it returns XML, not text. In other words,
where postDataReturnText uses the responseText property of the
XMLHttpRequest object, postDataReturnXml uses the responseXML
property:

function postDataReturnXml(url, data, callback)
{
var XMLHttpRequestObject = false;

Figure 5-4:
Posting

data and
handling the

returned
text.

170 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 170

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“POST”, url);
XMLHttpRequestObject.setRequestHeader(‘Content-Type’,
‘application/x-www-form-urlencoded’);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback(XMLHttpRequestObject.responseXML);
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(data);
}

}

How about putting postDataReturnXml to work? Take a look at textpost
DataReturnXml.html for an example that does that. This example modifies
the color scheme application to handle posted data, using options3.php.
Posting “scheme=1” will return color scheme one, and posting “scheme=2”
will return color scheme two:

<?
header(“Content-type: text/xml”);
if ($_POST[“scheme”] == “1”)
$options = array(‘red’, ‘green’, ‘blue’);

if ($_POST[“scheme”] == “2”)
$options = array(‘black’, ‘white’, ‘orange’);

echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{
echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
?>

171Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 171

The textpostDataReturnXml.html example posts the data “scheme=1”
or “scheme=2” to options3.php (depending on which color scheme the
user selects), using the Ajax Gold postDataReturnXml function:

<input type = “button” value = “Use color scheme 1”
onclick = “postDataReturnXml(‘options3.php’, ‘scheme=1’, getOptions)”>

<input type = “button” value = “Use color scheme 2”
onclick = “postDataReturnXml(‘options3.php’, ‘scheme=2’, getOptions)”>

And when options3.php returns its XML for the appropriate color scheme,
the postDataReturnXml calls the getOptions function to handle that XML:

<html>
<head>

<title>Posting data and returning XML with Ajax Gold</title>

<script type = “text/javascript” src = “ajaxgold.js”></script>

<script language = “javascript”>

var options;

function getOptions(xml)
{
options = xml.getElementsByTagName(“option”);
listOptions();

}

function listOptions ()
{
var loopIndex;
var selectControl = document.getElementById(‘optionList’);

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{

selectControl.options[loopIndex] = new
Option(options[loopIndex].firstChild.data);

}
}

function setOption()
{
document.getElementById(‘targetDiv’).style.color =
options[document.getElementById
(‘optionList’).selectedIndex].firstChild.data;

}

</script>
</head>

<body>

172 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 172

<h1>Posting data and returning XML with Ajax Gold</h1>

<form>
<select size=”1” id=”optionList”
onchange=”setOption()”>
<option>Select a scheme</option>

</select>
<input type = “button” value = “Use color scheme 1”
onclick = “postDataReturnXml(‘options3.php’, ‘scheme=1’, getOptions)”>

<input type = “button” value = “Use color scheme 2”
onclick = “postDataReturnXml(‘options3.php’, ‘scheme=2’, getOptions)”>

</form>

<div id=”targetDiv” width =100 height=100>Color this text.</div>

</body>

</html>

You can see this example at work in Figure 5-5. When the user clicks a button,
this application uses postDataReturnXml to post data to the server, which
returns a color scheme by using XML. And that color scheme appears in the
drop-down list box, as you can see in Figure 5-5.

Finding Ajax Frameworks in the Wild
The Ajax Gold JavaScript library written for this book (and covered in the
previous sections) is one example of an Ajax framework that lets you put Ajax
to work in Web pages without actually having to write any Ajax code yourself.
Many other Ajax frameworks are available as well, and I cover two of them in
the following sections.

Figure 5-5:
A simple

Ajax
example.

173Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 173

Easy Ajax with AJAXLib
AJAXLib is a very simple Ajax framework that you can pick up for free at
http://karaszewski.com/tools/ajaxlib. The actual framework is
named ajaxlib.js.

How do you use it? It’s easy — you just call its loadXMLDoc function, passing
that function the URL it should fetch XML from, as well as the callback
function you want called with that XML, and a true/false argument that
you set to true if you want extra white space removed from the fetched XML
automatically.

PHP scripts can return XML (such as options1.php from Chapter 3, which
returns three colors) in an XML document. Here’s an example:

<?
header(“Content-type: text/xml”);
$options = array(‘red’, ‘green’, ‘blue’);
echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{

echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
?>

How about trying to read the XML from options1.php by using AJAXLib? To
include ajaxlib.js in a new page — textAjaxlib.html, to be precise —
you use this line:

<html>
<head>
<title>Testing ajaxlib</title>

<script type = “text/javascript” src = “ajaxlib.js”></script>
.
.
.

Now you can use AJAXLib’s loadXMLDoc function to load the XML received
from options1.php and to call a function named decodeXML in your code
with the XML like this:

<html>
<head>
<title>Testing ajaxlib</title>

<script type = “text/javascript” src = “ajaxlib.js”></script>

174 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 174

.

.

.
</head>

<body>

<H1>Testing ajaxlib</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “loadXMLDoc(‘options1.php’, decodeXml, false)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

All that’s left is to decode the XML. For example, in this case, you might dis-
play the first color received from options1.php, which is “red”. I show
you how in Listing 5-4.

Listing 5-4: Putting AJAXLib to Work

<html>
<head>
<title>Testing AJAXLib</title>

<script type = “text/javascript” src = “ajaxlib.js”></script>

<script language = “javascript”>

function decodeXml()
{
var options = resultXML.getElementsByTagName(“option”);

var loopIndex;
var div = document.getElementById(‘targetDiv’);

div.innerHTML = “The first color is “ +
options[0].firstChild.data;

}
</script>

</head>

<body>

(continued)

175Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 175

Listing 5-4 (continued)

<H1>Testing AJAXLib</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “loadXMLDoc(‘options1.php’, decodeXml, false)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

You can see the results in Figure 5-6, where you see that the first color
retrieved in the XML from options1.php is indeed red.

Not bad, now you’ve put the AJAXLib framework to work. This framework is a
very simple one, offering only the loadXMLDoc function, but it gets things
started with Ajax frameworks.

Grabbing XML with libXmlRequest
You can get the Ajax libXmlRequest framework for free at www.white
frost.com/reference/2003/06/17/libXmlRequest.html. This frame-
work has two main methods, the getXML and postXML methods, which use
the GET and POST methods to retrieve XML from the server. This library fea-
tures pooling of XMLHttpRequest objects, so the browser doesn’t create too
many such objects — which can be a drain on memory — and also lets you
cache the response XML you get from the server.

Figure 5-6:
Using

AJAXLib to
get XML
from the

server.

176 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 176

Here are the main functions in this library, from the libXmlRequest
documentation:

� getXml(sPath): A synchronous GET request; returns null or an XML
document object.

� getXml(sPath, fHandler,1): An asynchronous GET request; returns
1 if the request was made and invokes handler fHandler when the XML
document is loaded.

� postXml(sPath, vData): A synchronous POST request; returns null
or an XML document object. Note that this function expects the server
will respond with well-formed XML. If the server doesn’t respond with
well-formed XML, the response XML object will be null.

� postXml(sPath, vData, fHandler, 1): An asynchronous POST
request. This returns 1 if the request was made, and invokes handler
‘fHandler’ when the XML document is loaded. Note that this function
expects the server to respond with well-formed XML. If the server doesn’t
respond with well-formed XML, the response XML object will be null. The
responseText isn’t queried.

You call the callback function, named fHandler here, with two parame-
ters, and the second parameter is a JavaScript object that holds the XML data
that you want. This object supports two properties:

� id: The request ID if you’ve supplied one.

� xdom: The XML object that holds your data.

You can also control caching (see Chapter 6 for more on avoiding browser
caching of data) and pooling with these functions, which the
libXmlRequest documentation explains in this way:

� setCacheEnabled([true | false]): Enables caching.

� getCacheEnabled(): Returns true if caching is enabled.

� setPoolEnabled([true | false]): Enables pooling.

� getPoolEnabled(): Returns true if pooling is enabled.

� getXmlHttpArray(): Returns an array of pool objects.

� clearCache(): Clears cached XML DOM references.

� testXmlHttpObject(): Tests whether an XmlHttpObject can be cre-
ated; returns true if so.

177Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 177

The libXmlRequest library also gives you some utility functions that help
you work with the XML you get from the server:

� newXmlDocument(sNodeName): Returns a new XML document object
with the specified root node name.

� serialize(oNode): Returns the string representation of a node.

� selectNodes(xmlDocument, sXpath, oNode): Returns an array of
results based on the specified XPath for a given XML document.

� selectSingleNode(xmlDocument, sXpath, oNode): Returns a
single XML node based on the specified XPath — the special XML lan-
guage that lets you specify the location of an exact node or set of nodes
in an XML document — for a given XML document. Note: The node refer-
ence is required for this implementation to work with Mozilla.

� removeChildren(node): Removes all children from an HTML or XML
DOM node.

� setInnerXHTML(target_node, source_node, preserve): Copies
the source_node (XML or HTML) structure into target_node (HTML).

� transformNode([xml_dom | xml_path], [xsl_dom | xsl_path]
{, node_reference, xml_request_id, xsl_request_id,
bool_cache_xsl}): Transforms nodes using XSL. (See Chapter 8 for
more on transforming XML.)

Note that in this library, you must preface the name of all these functions
with the text org.cote.js.xml. to call them; for example, if you want to
call the getXml function, you call org.cote.js.xml.getXml.

How about an example putting this library to work? Take a look at
libXmlRequest.html — available for download from the Web site associ-
ated with this book — which connects to the libXmlRequest library like
this:

<html>
<head>
<title>Testing libXmlRequest</title>

<script type = “text/javascript” src = “libXmlRequest.js”></script>
.
.
.

As in the previous example, you can retrieve XML from options1.php here
too. You can do that with the libXmlRequest org.cote.js.xml.getXml
function this way, passing the location from which to get the XML (that’s the
relative URL options1.php here), the callback function (decodeXML, as in

178 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 178

the previous example), and a 1 to indicate you want this to be an asynchro-
nous data fetch:

<html>
<head>
<title>Testing libXmlRequest</title>

<script type = “text/javascript” src = “libXmlRequest.js”></script>
.
.
.

</head>

<body>

<H1>Testing libXmlRequest</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “org.cote.js.xml.getXml(‘options1.php’, decodeXml, 1)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

The decodeXML function handles the XML, much as in the previous example —
but in this case, this callback function is passed two arguments. The second of
these arguments is a JavaScript object with a property named xmldom that
holds the XML data you want. Listing 5-5 shows how you can recover the
<option> elements from the XML data by using that property.

Listing 5-5: Putting libXmlRequest to Work

<html>
<head>
<title>Testing libXmlRequest</title>

<script type = “text/javascript” src = “libXmlRequest.js”></script>

<script language = “javascript”>

function decodeXml(a, b)
{
var options = b.xdom.getElementsByTagName(“option”);

var loopIndex;

(continued)

179Chapter 5: Introducing Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 179

Listing 5-5 (continued)

var div = document.getElementById(‘targetDiv’);

div.innerHTML = “The first color is “ +
options[0].firstChild.data;

}
</script>

</head>

<body>

<H1>Testing libXmlRequest</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “org.cote.js.xml.getXml(‘options1.php’, decodeXml, 1)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

What does this look like in action? You can see the answer in Figure 5-7, where
the getXml function did its thing and grabbed the XML. The libXmlRequest
framework gives you a way of getting XML from the server by using the GET
and POST methods, and also provides you with some added functions to
handle that XML when you get it.

Figure 5-7:
Using libXml

Request to
get XML
from the

server.

180 Part III: Ajax Frameworks

11_785970 ch05.qxp 1/20/06 12:22 PM Page 180

Chapter 6

More Powerful Ajax Frameworks
In This Chapter
� Dragging and dropping with online shopping carts

� Using the XHConn framework

� Using the Sack framework

� Handling older browsers with HTMLHttpRequest

� Handling XML with Sarissa

� Working with Rico

The CEO comes to you and says, “We need an easier way for customers to
purchase televisions from our Web site. Too many customers don’t like

the multistage process of moving from page to page with a shopping cart to
buy things. We’re losing money.”

“Okay,” you say, “how about using Ajax?”

“Great idea!” says the CEO. “How?”

“Well, you could let the users just drag and drop the articles they want to
purchase into a shopping cart visually. That way they could buy as many tele-
visions as they want without leaving the same page.”

“Great!” says the CEO. “Now we can finally get our $19,995 televisions
moving.”

“$19,995 for a television?” you ask. “Hmm. I think I know the reason you’re
not moving televisions, and it has nothing to do with shopping carts.”

Some of the examples in this chapter use Ajax frameworks that are available
for free online. Before you try to run a particular example, make sure that the
files needed for the associated framework is in the same folder on your
server as the example you’re trying to run. For copyright reasons, the code
for the Ajax frameworks that I discuss in this and the previous chapter can’t
be included in the downloadable code for this book, so pick up that code at
the supplied URL for a framework before you try to run an example that uses
that framework.

12_785970 ch06.qxp 1/20/06 12:23 PM Page 181

Dragging and Dropping
with Shopping Carts

One of the popular uses for Ajax is to let users drag and drop items, such as
when they want to put the items into a shopping cart, and to update the
server with those new items in the shopping cart.

You can build drag-and-drop applications with a number of the Ajax frame-
works in this chapter, and they’re good for that kind of purpose. However, for
the most part, you still have to write the drag-and-drop part of the code your-
self. For that reason, I start this chapter with a homegrown drag-and-drop
application to make life a little easier if you want to implement this for yourself.

You can see the Ajax application, drag.html, in Figure 6-1. The code for the
application is included in the code for this book. (See the Introduction for
details about downloading the code from this book’s companion Web site.)

In this case, the user sees a television (represented by a <div> element in
this case, but it could as easily be an image using an element), and a
shopping cart (also represented by a <div> element in this example). The
user can drag the television with the mouse, as you see in Figure 6-2.

Figure 6-1:
A drag-

and-drop
shopping
cart that

uses Ajax.

182 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 182

When the user drops the television in the shopping cart, the application uses
Ajax to communicate with the server, and it displays the text you see in
Figure 6-3 — You just bought a nice television.

That’s how this example works — the user can drop items into the shopping
cart, and the server will be notified immediately of the new shopping cart
contents, no need for the user to click buttons and go from page to page. (If
you’re going to use this kind of code for the front end of a real shopping cart
application, you’ve obviously got to spiff up the images and the appearance
of this application, but it shows how to get drag and drop working and how
to connect dragging and dropping to Ajax.) Handling mouse events like drag-
ging and dropping differs significantly from browser to browser, and knowing
how to handle the major browsers when creating Ajax applications like this
one is very useful.

Figure 6-2:
Dragging

the TV to the
shopping

cart.

183Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 183

This example starts by displaying the television and shopping cart, using
<div> elements. Note that the television <div> element also connects its
onmousedown event handler to a function named handleDown, which means
that when the mouse is over the television and the user is pressing down the
mouse button, the handleDown function is called, like this:

<body>
<h1>Buy a television by dragging it to the shopping cart</h1>
<div id=”targetDiv”></div>

<div id=”television”
style=”left:200px; top:100px; width:80px; height:80px;”
onmousedown=”handleDown(event);”>Television</div>

<div id=”target”
style=”left:300px; top:300px; width:200px; height:100px;”>
Shopping Cart</div>

</body>

To color the television and the shopping cart, you can apply CSS styles (see
Chapter 9 for the details on how to use CSS styles with Ajax elements). You
can connect a style to an HTML element by using a <style> element, and
prefacing the element’s ID with a # sign. The next bit of code shows how to
set up the television and shopping cart by using styles.

Figure 6-3:
Buying a

new
television.

184 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 184

<head>
<title>Ajax Drag and Drop</title>

<style type=”text/css”>
#television {
position:absolute;
z-index:200;
background: #FF0000;
color:#0000FF;

}

#target {
position:absolute;
background: #00FF00;
color:#000000;

}
</style>

.

.

.

Note the television <div> is given a z-index value of 200 in this <style> ele-
ment, which will makes sure it stays on top of other elements like the shop-
ping cart when the user drags it. That seem wacky to you? You can find the
details on how this kind of styling works in Chapter 9.

Handling mouse events
Now it’s time to start working with the mouse when the user drags the televi-
sion — and this is where the difference between browsers comes in. Handling
events like mouse presses and movements always takes a little work when
you want to target more than one browser.

In browsers like Firefox, this line in the television <div> element will cause
the handleDown function to be called with an object named event that will
contain the details of the mouse’s present position:

<div id=”television”
style=”left:200px; top:100px; width:80px; height:80px;”
onmousedown=”handleDown(event);”>
Television</div>

In Internet Explorer, on the other hand, the handleDown function will be
called without being passed an event object. You use the window object’s
event object instead. To find the X and Y location of the mouse in the tele-
vision <div>, you use the pageX and pageY properties of the event
object in Firefox, but clientX and clientY in Internet Explorer. And to find
which element the mouse clicked, you use the target property in Firefox,
but srcElement in Internet Explorer.

185Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 185

That’s all pretty crazy, so this example starts by supporting its own type of
event, named MouseEvent. That way, the rest of the code can work with this
type of event and not always have to keep checking which browser is being
used.

You pass the event object you got when the mouse event occurred (the
event object will be null in Internet Explorer, because event handler func-
tions aren’t passed an event object) to the MouseEvent function, and it’ll
create a new JavaScript object with these main properties:

� x: The x location of the mouse.

� y: The y location of the mouse.

� target: The HTML element that the mouse is in.

Here’s the code that creates the MouseEvent object that the rest of the
application can use without having to worry about what browser is involved.
Note the use of the keyword this here, which is how you refer to the current
object in JavaScript:

<script type=”text/javascript”>
.
.
.

function MouseEvent(e)
{
if(e) {
this.e = e;

} else {
this.e = window.event;

}

if(e.pageX) {
this.x = e.pageX;

} else {
this.x = e.clientX;

}

if(e.pageY) {
this.y = e.pageY;

} else {
this.y = e.clientY;

}

if(e.target) {
this.target = e.target;

} else {
this.target = e.srcElement;

}
}

186 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 186

Handling mouse down events
When the user presses the mouse to start the drag operation, the
handleDown function will be called:

<div id=”television”
style=”left:200px; top:100px; width:80px; height:80px;”
onmousedown=”handleDown(event);”>
Television</div>

The handleDown function is passed an event object in Firefox, but not in
Internet Explorer, and the first thing to do is to create a new MouseEvent
object this way:

function handleDown(e)
{
var e = new MouseEvent(e);
.
.
.

}

Now you can use the MouseEvent object’s properties, such as the target
property, which is the HTML element where the mouse was in. (That’s the
television <div> in this case, but in a general shopping cart application, it
could be any of the items you’re offering for sale.)

Now that the mouse is down, the user might be starting to drag an item, so
the next step is to make the browser “listen” for moveMove events, which
happen when the user drags an item, and mouseUp events, which occur
when the user drops a dragged item. To make the browser listen for those
events, you have to use listener functions. How you connect such functions to
the current document depends on which browser you’re using, so this exam-
ple adds a new function, addListener, to connect the mouseMove event to
a function named handleMove, and the mouseUp event to a function named
handleUp:

function handleDown(e)
{
var e = new MouseEvent(e);
addListener(“mousemove”, handleMove);
addListener(“mouseup”, handleUp);
.
.
.

}

187Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 187

The addListener function connects events to functions you want called
when those events occur, and how you do that depends on which browser
the user has. Here’s what this function looks like:

function addListener(type, callback)
{
if (document.addEventListener) {
document.addEventListener(type, callback, false);

} else if (document.attachEvent) {
document.attachEvent(“on” + type, callback, false);

}
}

After calling the addListener function for the mouseMove and mouseUp
events, your code will be called when those events occur. So far, so good.

When the user moves the mouse, you have to move the HTML element
they’re dragging. To do that, you should record the location at which the
mouse was pressed inside that element. The reason for doing so is that when
the user moves an element, you want to make the element’s new location
match the new mouse location. To move an element by using styles, you can
position its top-left corner to match the new mouse location, but if the user
pressed the mouse somewhere inside the element, you have to keep in mind
that the upper-left corner doesn’t necessarily correspond to the mouse loca-
tion in the element. To account for that, you can store the X and Y offset of
the mouse with respect to the upper-left corner of the dragged element, like
this:

<script type=”text/javascript”>

var offsetX, offsetY;
.
.
.

function handleDown(e)
{
var e = new MouseEvent(e);
addListener(“mousemove”, handleMove);
addListener(“mouseup”, handleUp);
offsetX = e.x - parseInt(television.style.left);
offsetY = e.y - parseInt(television.style.top);
document.getElementById(“targetDiv”).innerHTML = “”;

}

Note also that the last line here clears the text in the <div> element that dis-
plays the message You just bought a nice television.

Congratulations, you’ve set up everything to handle the rest of the dragging
operations, starting with mouse-move events, which I cover in the following
section.

188 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 188

Handling mouse-move events
When the user drags the mouse, your handleMove function will be called. In
that function, you should move the television <div> to match the new
location of the mouse (after taking into account the offset of the mouse inside
the <div>). The handleMove function starts by creating a new MouseEvent
object so it can decode where the mouse is:

function handleMove(e)
{
var e = new MouseEvent(e);
.
.
.

}

Now you can move the dragged HTML element to its new location by using
dynamic styles this way:

function handleMove(e)
{
var e = new MouseEvent(e);
var x = e.x - offsetX;
e.target.style.left = x + “px”;
var y = e.y - offsetY;
e.target.style.top = y + “px”;

}

That’s fine. Now you’re dragging the item the user has selected. But what about
when he drops that item? Check out the next section for more information.

Handling mouse up events
When the user drops the item he’s dragging, the handleUp function will be
called, and the first order of business is to create a MouseEvent object to get
the location at which the user dropped the dragged HTML element. Here’s
how:

function handleUp(e)
{
var e = new MouseEvent(e);
.
.
.

}

189Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 189

Now that the user has released the mouse button, any dragging operation
that was going on is over, so you can stop responding to mouse events until
the next mouse down event. To stop responding to mouseMove and mouseUp
events, you can remove the listener functions you connected to those events
earlier by using a new function, removeListener, like so:

function handleUp(e)
{
var e = new MouseEvent(e);
removeListener(“mousemove”, handleMove);
removeListener(“mouseup”, handleUp);
.
.
.

}

Here’s what the removeListener function looks like in this example:

function removeListener (type, callback)
{
if (document.removeEventListener) {
document.removeEventListener(type, callback, false);

} else if (document.detachEvent) {
document.detachEvent(“on” + type, callback, false);

}
}

But did the user drop the television in the shopping cart? You need the loca-
tion and dimensions of the shopping cart to check. The ID of the shopping
cart <div> element is “target”, so you can get an object that corresponds
to the shopping cart on the screen this way:

function handleUp(e)
{
var e = new MouseEvent(e);
removeListener(“mousemove”, handleMove);
removeListener(“mouseup”, handleUp);

var target = document.getElementById(“target”);
.
.
.

You can get the X and Y location of the upper-left corner of the shopping cart
with the left and top styles of the shopping cart <div> element, and its width
and height with the width and height styles. Those styles are stored as
text, however, and you need them to be numbers to see whether the user
dropped the television in the shopping cart. The way to make JavaScript turn
a text string like “220” into the corresponding number, 220, is to use the
JavaScript parseInt (parse integer) function, so here’s how to get the loca-
tion and dimensions of the shopping cart:

190 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 190

function handleUp(e)
{
var e = new MouseEvent(e);
removeListener(“mousemove”, handleMove);
removeListener(“mouseup”, handleUp);

var target = document.getElementById(“target”);
var x = parseInt(target.style.left);
var y = parseInt(target.style.top);
var width = parseInt(target.style.width);
var height = parseInt(target.style.height);
.
.
.

Great . . . so did the user drop the television in the shopping cart? You can
check whether the final location of the mouse was inside the shopping cart in
this way:

function handleUp(e)
{
var e = new MouseEvent(e);
removeListener(“mousemove”, handleMove);
removeListener(“mouseup”, handleUp);

var target = document.getElementById(“target”);
var x = parseInt(target.style.left);
var y = parseInt(target.style.top);
var width = parseInt(target.style.width);
var height = parseInt(target.style.height);

if(e.x > x && e.x < x + width &&
e.y > y && e.y < y + height){
.
.
.

}
}

If this if statement is executed, the user dropped the TV in the shopping
cart, and it’s time to let the server know about it (see the next section).

Updating the shopping cart
Okay, a new item is in the shopping cart, and you should update the server-
side program with that information. You can do that in the normal Ajax way,
getting an XMLHttpRequest object this:

191Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 191

function handleUp(e)
{
var e = new MouseEvent(e);
removeListener(“mousemove”, handleMove);
removeListener(“mouseup”, handleUp);

var target = document.getElementById(“target”);
var x = parseInt(target.style.left);
var y = parseInt(target.style.top);
var width = parseInt(target.style.width);
var height = parseInt(target.style.height);

if(e.x > x && e.x < x + width &&
e.y > y && e.y < y + height){

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, “text.txt”);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
.
.
.
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(null);
}

}
}

The Ajax code just retrieves the text in the file text.txt, which is “You
just bought a nice television.”, and displays that text in a <div>
named targetDiv:

192 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 192

function handleUp(e)
{
var e = new MouseEvent(e);
removeListener(“mousemove”, handleMove);
removeListener(“mouseup”, handleUp);
.
.
.

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, “text.txt”);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
document.getElementById(“targetDiv”).innerHTML =
XMLHttpRequestObject.responseText;

delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}
}

XMLHttpRequestObject.send(null);
}

}
}

The text that this Ajax code fetches from the server appears on the Web page
(refer to Figure 6-3).

There it is — the wave of the future as far as shopping carts go. The users no
longer have to push a lot of buttons and move from page to page, and then
back to the shopping pages, just to add something to a shopping cart. All
they have to do now is to drag the item to the cart, and Ajax does the rest.
Very nice. When you’ve built your user interface by using drag-and-drop tech-
niques like this, the Ajax frameworks in this chapter will handle the Ajax
operations for you.

In this case, only one page was involved, which is going to be impractical if
you’re Amazon.com with millions of books to offer. But the principle still
holds: Each book’s page can include a shopping cart icon, in the upper-left
corner for example, and all you’d have to do is to drag the book’s picture
there to add it to the shopping cart, which would instantly update itself by
displaying the items in the cart.

193Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 193

Looking at Some Heavier-
Weight Frameworks

The available Ajax frameworks make developing your own applications a
snap, and plenty of them are out there. In Chapter 5, I introduce what Ajax
frameworks can do. In the sections that follow, I continue that survey by
pointing you to some of the more powerful frameworks, among the many that
are available. When it comes time to write your own Ajax applications, these
frameworks can save you a lot of time. The following sections are intended to
help you understand how they work so that you can decide which frame-
works you want to use.

Getting XMLHttpRequest
objects with XHConn
XHConn is an Ajax framework with a twist: It passes you the entire
XMLHttpRequest object instead of just the data from that object. You can
get the data yourself by using the XMLHttpRequest object’s responseText
and responseXML properties. You can pick up XHConn for free at
http://xkr.us/code/javascript/XHConn. You can use GET or POST
with XHConn.

How do you use XHConn? XHConn gives you a JavaScript object that will do
all the work for you. You start by creating that object:

var xhconn = new XHConn();

To use this new object, you call its connect method. Here are the arguments
you pass to the connect method:

URL The URL of the server-side resource you want to connect
to.

method The HTTP method you want to use to connect; “GET” or
“POST”

variables The URL-encoded variables you want to send to the server,
given as a string. For example,
“color=red&number=3....”.

function The function that is called after the data is downloaded.
This function is passed the XMLHttpRequest object.

So here’s how you might use the XHConn object:

xhconn.connect(“data.php”, “POST”, “color=red&number=3”, handlerFunction);

194 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 194

Listing 6-1 shows an example, testXHConn.html, which you can download
with the code for this book. This example puts XHConn to work by fetching
the text from a file named xhconn.txt (also in the code for this book),
which has these contents:

This data was fetched using XHConn.

This example creates an XHConn object, sets up a function to be called when
the data (xhconn.txt in this example) has been fetched, and displays the
fetched data.

Listing 6-1: Using the XHConn Ajax Framework

<html>
<head>

<script type = “text/javascript” src = “XHConn.js”></script>

<script language = “javascript”>

function testXHConn()
{
var myConn = new XHConn();

if (!myConn) {
alert(“XHConn creation failed.”);

}

var fnWhenDone = function (XMLHTTPRequestObject)
{
document.getElementById(“targetDiv”).innerHTML
= XMLHTTPRequestObject.responseText;

};

myConn.connect(“xhconn.txt”, “GET”,
“”, fnWhenDone);

}
</script>

</head>

<body>
<h1> Testing XHConn</h1>

<form>
<input type = “button” value = “Display Message”
onclick = “testXHConn()”>

</form>

<div id=”targetDiv”>

(continued)

195Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 195

Listing 6-1 (continued)

<p>The fetched data will go here.</p>
</div>

</body>
</html>

When you want to run this example, make sure that xhconn.js is located in
the same directory on your server as this example’s code. The results appear
in Figure 6-4, where XHConn was successful in grabbing some text for you.

The Simple AJAX Code Kit: Sack
Here’s another useful, and simple-to-use Ajax framework — Sack, which
stands for Simple AJAX Code Kit. You can get Sack for free at http://
twilightuniverse.com/projects/sack.

When you create a Sack object, you can configure it (setting the method to
“GET”, for example) by using the setVar method. Then you can fetch your
data with the runAJAX method.

The idea here is that you create a Sack object, set the parameters you want,
and call runAjax to perform the Ajax operation. Say, for example, that you
wanted to use Sack to fetch the following text, stored in a file named
sack.txt on the server:

This data was fetched using Sack.

Figure 6-4:
Using

XHConn to
fetch data.

196 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 196

Here’s how that would work in an example in the code for the book, named
testSack.html, which shows one way of working with Sack. After you create
a new Sack object, you configure various properties of that object to indicate
that the text file you want to read is sack.txt, the HTTP method you want to
use is the GET method, and the HTML element in your Web page you want to
display the fetched text in is the element with the ID “targetDiv”:

sackObject = new sack();
var vars = “”;
sackObject.requestFile = “sack.txt”;
sackObject.method = “GET”;
sackObject.element = “targetDiv”;
sackObject.runAJAX(vars);

You can see the entire code for this example in Listing 6-2.

Listing 6-2: Using the Sack Ajax Framework

<html>
<head>
<title>Testing Sack</title>

<script type = “text/javascript” src = “tw-sack.js”></script>

<script language = “javascript”>

function getData(dataSource, divID)
{
sackObject = new sack();
var vars = “”;
sackObject.requestFile = “sack.txt”;
sackObject.method = “GET”;
sackObject.element = “targetDiv”;
sackObject.runAJAX(vars);

}
</script>

</head>

<body>

<H1>Testing Sack</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘sack.txt’, ‘targetDiv’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

197Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 197

And the results appear in Figure 6-5, where Sack is fetching data for you by
using Ajax. Sack is a nice framework that’s easy to use.

Parsing XML with Interactive Website
Framework
The Interactive Website Framework (IWF) is a multipurpose Ajax framework
that includes a custom XML parser and other features. You can get IWF for
free at http://sourceforge.net/projects/iwf.

This framework allows multiple XMLHttp requests at the same time, and pre-
vents caching by sending unique URLs to the server. Its custom XML parser
can make it easier to handle XML, so that you can extract data from an XML
document using syntax like this in JavaScript:

var dressing = doc.food.sandwich[0].dressing;

instead of something like this (see Chapter 8 for the details on extracting
XML data from XML documents by using JavaScript like this):

var dressing = doc.documentElement.firstChild.getAttribute(“dressing”);

IWF gives you many built-in tools, such as functions that let you move ele-
ments around a Web page to support drag-and-drop operations or functions
that let you grab XML data and insert it into an HTML element on a Web page.

Figure 6-5:
Using Sack

to fetch
data.

198 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 198

You can also use IWF to perform other actions, such as moving elements
around a Web page with a function named iwfMoveTo. An example of that,
iwfajax.html, comes with IWF, and you can see it at work in Figure 6-6.
When you click the various hyperlinks, a small orange box moves around in
the page, as you see in Figure 6-6.

Handling older browsers with
HTMLHttpRequest
The HTMLHttpRequest Ajax framework, which you can pick up for free at
www.twinhelix.com/javascript/htmlhttprequest, supports not only
Ajax, but also uses hidden IFrame elements to mimic Ajax in older browsers
that don’t support XMLHttpRequest objects.

You can see a demo of HTMLHttpRequest at www.twinhelix.com/
javascript/htmlhttprequest/demo, as shown in Figure 6-7. There’s
some standard Ajax stuff here. When you click the tabs in this demo, text is
loaded into the area under the tabs, as you can see in Figure 6-7.

Figure 6-6:
Using IWF

to move
page

elements.

199Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 199

Another demo on the same page passes a math operation, such as multiplica-
tion, and two operands to the server, which performs the operation. You can
see that at the bottom of the page in Figure 6-8, where HTMLHttpRequest
tells you that 2 x 6 = 12.

If you’re working with older browsers that don’t support XMLHttpRequest
objects, take a look at this framework.

Figure 6-8:
Using

HTMLHttp
Request to

multiply
numbers.

Figure 6-7:
Using

HTMLHttp
Request to

load text.

200 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 200

Decoding XML with Sarissa
Sarissa is a JavaScript library (although it calls JavaScript by its formal name,
ECMAScript) that specializes in working with XML — and recently, that’s
included some Ajax power.

Sarissa lets you

� Create or load XML documents and manipulate them.

� Use XML’s XPath (see Chapter 8) to extract data from XML documents.

� Use XSLT to transform XML (also see Chapter 8) into other forms, such
as HTML.

� Use XMLHttpRequest objects to download XML using Ajax.

You can get Sarissa at http://sourceforge.net/projects/sarissa.

Sarissa is useful because it can help you easily deal with the XML you down-
load. Here’s an example, testSarissa.html in the code for this book. This
example reads in this XML file, sarissa.xml, and extracts the text from the
element named :

<?xml version=”1.0” ?>
<ajax>
<response>
Hello from Sarissa.

</response>
</ajax>

You can see this example at work in Figure 6-9. When the user clicks the
button, sarissa.xml is downloaded, and Sarissa extracts the text in the
 element, which is displayed. That’s great, because using JavaScript
to handle the XML you download can be an involved process (as I explain in
Chapter 8).

Figure 6-9:
Using

Sarissa to
extract data

from XML.

201Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 201

This example works by creating a Sarissa DomDocument object that will hold
the XML:

var domDocument = Sarissa.getDomDocument();
.
.
.

To indicate that you want to download data asynchronously, you set the
DomDocument object’s async property to true:

var domDocument = Sarissa.getDomDocument();
domDocument.async = true;
.
.
.

Next, you set up the callback function using the DomDocument object’s
onreadystatechange property:

var domDocument = Sarissa.getDomDocument();
domDocument.async = true;

domDocument.onreadystatechange = function myHandler()
{
.
.
.
}
.
.
.

When the XML has been fetched, you can use the Sarissa method select
SingleNode to extract the element. You do that by passing an XML
XPath expression (see Chapter 8) to selectSingleNode; in this case, that’s
“//span”, which will match the element anywhere in the document:

var domDocument = Sarissa.getDomDocument();
domDocument.async = true;

domDocument.onreadystatechange = function myHandler()
{
if (domDocument.readyState == 4) {
var element = domDocument.selectSingleNode(“//span”);
.
.
.

}
}
.
.
.

202 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 202

This variable, element, now contains an object holding the XML ele-
ment. To extract the text in that element, you can use Sarissa’s serialize
method, which converts XML objects into text. The text then gets displayed
in a <div> element named targetDiv:

var domDocument = Sarissa.getDomDocument();
domDocument.async = true;

domDocument.onreadystatechange = function myHandler()
{
if (domDocument.readyState == 4) {
var element = domDocument.selectSingleNode(“//span”);
document.getElementById(“targetDiv”).innerHTML =
“This XML fetched and decoded by Sarissa: “ +
Sarissa.serialize(element);

}
}
.
.
.

All that’s left is to load the XML file asynchronously, which you do with the
Sarissa load method, include the Sarissa JavaScript files, and set up the rest
of the Web page. Check out Listing 6-3.

Listing 6-3: Using the Sarissa Ajax Framework

<html>
<head>
<title>Testing Sarissa</title>

<script type = “text/javascript” src = “sarissa.js”></script>
<script type = “text/javascript” src = “sarissa_ieemu_xpath.js”>

</script>

<script language = “javascript”>

function getData(dataSource, divID)
{
var domDocument = Sarissa.getDomDocument();
domDocument.async = true;

domDocument.onreadystatechange = function myHandler()
{
if (domDocument.readyState == 4) {
var element = domDocument.selectSingleNode(“//span”);
document.getElementById(“targetDiv”).innerHTML =
“This XML fetched and decoded by Sarissa: “ +
Sarissa.serialize(element.firstChild);

}

(continued)

203Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 203

Listing 6-3 (continued)

}

domDocument.load(“sarissa.xml”);
}

</script>
</head>

<body>

<H1>Testing Sarissa</H1>

<form>
<input type = “button” value = “Display Message”
onclick = “getData(‘data.txt’, ‘targetDiv’)”>

</form>

<div id=”targetDiv”>
<p>The fetched data will go here.</p>

</div>

</body>
</html>

And the results appear in Figure 6-9 (shown earlier).

Creating visual effects with Rico
Rico is a popular JavaScript framework that offers a number of cool visual
effects, such as dragging and dropping. For example, check out the demo
page, shown in Figure 6-10, which you can find at

http://openrico.org/rico/demos.page?demo=ricoDragAndDropSimple.html

Rico also has a control it calls a LiveGrid, which can display and sort data in a
table that it fetches behind the scenes. You can see a Rico LiveGrid control at
work in Figure 6-11, which shows part of http://openrico.org/rico/
livegrid.page, displaying a table of movie titles. If you click a column
header, the table sort itself automatically, based on that header.

Figure 6-12 shows another LiveGrid example, http://openrico.org/rico/
yahooSearch.page, which uses Ajax methods to perform a Yahoo! search.
When you click the button, the search results appear in the table without a
page refresh.

204 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 204

Figure 6-11:
A Rico

LiveGrid.

Figure 6-10:
Dragging

and
dropping

with Rico.

205Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 205

Besides these techniques, Rico offers other visual effects, such as making ele-
ments fade in and out of view, and an “accordion” control that can display sev-
eral panes of text which you can slide open or closed with a draggable bar.

Displaying data in an HTML element
The Rico library files, prototype.js, rico.js, util.js, include support
for directly fetching text and XML data by using Ajax. For example, say that
you wanted to recover the text in an XML document named rico.xml, which
looks like this:

<?xml version = “1.0” ?>
<ajax-response>
<response type=”element” id=”targetDiv”>
This data fetched using RICO methods.

</response>
</ajax-response>

In this case, the XML <response> element indicates that its content should
be displayed in an HTML element named “targetDiv”. To make that
happen, you use the Rico library files. You can connect the name of a request
(“request1” in this example) to the XML document that’s using the Rico
ajaxEngine object’s registerRequest method, and indicate in which
HTML element to display the fetched data with the registerAjaxElement
method in an example named testRico.html. You can see how all this
works in the following code:

Figure 6-12:
A Rico live
search of

Yahoo!.

206 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 206

<script language=”javascript”>

function init()
{

ajaxEngine.registerRequest(“request1”, “rico.xml”);
ajaxEngine.registerAjaxElement(“targetDiv”);

}

</script>
.
.
.

<body onload=”init()”>
.
.
.

</body>

After you’ve set up the request, you can execute that request with
ajaxEngine object’s sendRequest method when the user clicks a button to
fetch the data this way:

<html>
<head>
<title>Testing Rico</title>

<script src=”prototype.js”></script>
<script src=”rico.js”></script>
<script src=”util.js”></script>

<script language=”javascript”>

function init()
{
ajaxEngine.registerRequest(“request1”, “rico.xml”);
ajaxEngine.registerAjaxElement(“targetDiv”);

}

function getData()
{
ajaxEngine.sendRequest(“request1”, “”);

}

</script>
</head>

<body onload=”init()”>

207Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 207

<h1>Testing RICO</h1>

<form>
<input type=”button” value=”Display Message” onclick=”getData()”>

</form>

<div id=”targetDiv”>The fetched data will go here.</div>
</body>

</html>

You can see the results of testRico.html in Figure 6-13, where the code
used Rico methods to fetch the text, “This data was fetched using
RICO methods.” from rico.xml on the server.

Letting JavaScript objects handle your data
Rico also lets you fetch XML data and handle that data by using JavaScript
objects, which is handy if you want to put that data to use rather than simply
display it. For example, say that you had an XML document, rico2.xml, and
you wanted to recover the text assigned to the day attribute of the
<response> element (which is “Friday”):

<?xml version = “1.0” ?>
<ajax-response>

<response type=”object” id=”displayHandler” day=”Friday”>
Here is some text.

</response>
</ajax-response>

Figure 6-13:
Using Rico
to write to
an HTML
element.

208 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 208

You can do this task by using a JavaScript object to handle the fetched data
by using Rico. The <response> element in the preceding code indicates you
want to use an object named displayHandler, which is what you’ll do here.

Rico is set up so that the JavaScript object you use to handle data should
have a method named ajaxUpdate, which is passed the XML data. This
example uses a JavaScript object of a type named DisplayHandler that
supports an ajaxUpdate method. The goal in this method is to recover the
text assigned to the <response> element’s day attribute and to display that
data, which works like this (see Chapter 8 for more on handling XML by using
JavaScript this way):

<script language=”javascript”>

function DisplayHandler () {}

DisplayHandler.prototype =
{
ajaxUpdate: function(ajaxResponse)
{
var attrs = ajaxResponse.attributes;
document.getElementById(“targetDiv”).innerHTML =
“Today is “ + attrs.getNamedItem(“day”).value;

}
}
.
.
.

Now you can create the displayHandler object and set up the request so
that it’ll fetch the data in rico2.xml. Next, you use a Rico method named
registerAjaxObject to register the JavaScript object whose ajaxUpdate
method should be called with the XML data:

<html>
<head>

.

.

.
<script language=”javascript”>

.

.

.
function init()
{
displayHandler = new DisplayHandler();
ajaxEngine.registerRequest(“request1”, “rico2.xml”);
ajaxEngine.registerAjaxObject(

209Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 209

“displayHandler”, displayHandler);
}

</script>
</head>

<body onload=”init()”>
.
.
.

Now when the user clicks a button, the ajaxEngine sendRequest method
is called to fetch the data, as you see here:

<html>
<head>
<title>Testing RICO with JavaScript objects</title>

.

.

.
function init()
{
displayHandler = new DisplayHandler();
ajaxEngine.registerRequest(“request1”, “rico2.xml”);
ajaxEngine.registerAjaxObject(
“displayHandler”, displayHandler);

}

function getData()
{
ajaxEngine.sendRequest(“request1”, “”);

}

</script>
</head>

<body onload=”init()”>
<h1>Testing RICO with JavaScript objects</h1>

<form>
<input type=”button” value=”Display message” onclick=”getData()”>

</form>

<div id=”targetDiv”>The fetched data will be displayed here.</div>

</body>
</html>

210 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 210

When the data is fetched, it’ll be passed to the displayHandler object’s
ajaxUpdate method, which will extract and display the text assigned to the
day attribute in rico2.xml, as shown in Figure 6-14.

This example is a success. Passing data to a JavaScript object like this can be
a useful technique when you want to process the data you fetch from the
server before displaying it.

Overcoming caching with
the Http framework
Got problems with caching? Internet Explorer caches the data it gets from the
server, so you’ll often see that same data over and over, even if you change
the actual data the server sends back. One solution is to use Firefox for devel-
opment, instead of Internet Explorer. But you’re going to have to deal with
Internet Explorer at some point, and if you still have caching issues when
development is done, you might take a look at the Http framework, which you
can get for free at http://adamv.com/dev/javascript/http_request.

This framework supports forced caching in Firefox as well as forced non-
caching in Internet Explorer.

You can see an example at http://adamv.com/dev/javascript/
files/time, which displays the current time (in milliseconds), as shown in
Figure 6-15. Internet Explorer caches the response from the server by default,
so clicking the top Get Time button always gives you the same time. But the
Http package can avoid caching (which it does by appending unique data to
the end of an URL each time you call the URL). For example, when you click
the second button from the top in the figure, the time is updated for each
button click, even in Internet Explorer.

Figure 6-14:
Using Rico

to handle
XML data by

using a
JavaScript

object.

211Chapter 6: More Powerful Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 211

This is a useful package when data caching becomes an issue, but you can
often handle this issue yourself just by appending unique data to the end of
an URL, as already discussed.

Figure 6-15:
Avoiding
caching
with the

Http
framework.

212 Part III: Ajax Frameworks

12_785970 ch06.qxp 1/20/06 12:23 PM Page 212

Chapter 7

Server-Side Ajax Frameworks
In This Chapter
� Writing JavaScript with PHP and Sajax or Xajax

� Accessing Java with Direct Web Remoting (DWR)

� Building Web applications with Echo2

� Finding out about even more frameworks

“Hm,” says the CEO, “all those JavaScript-oriented Ajax frameworks
are very nice — “

“Great,” you say. “So we’re in business?”

“Well, I have a question,” says the CEO. “As I was saying, those JavaScript–
oriented Ajax frameworks are very nice, but you still have to develop the
server-side code too.”

“Sure,” you say, “unless you just want to fetch data from a simple data file.”

“Aren’t there any Ajax packages that let you develop just the server-side code
and automatically create the JavaScript for you?”

“Glad you asked,” you say. “In fact, that’s what this whole chapter is all
about.”

Writing JavaScript by Using
Ajax Frameworks

Working with Ajax often means using JavaScript in the browser and a lan-
guage like PHP or JavaServer Pages on the server. In earlier chapters, I show
you Ajax packages that let you develop the browser-side part of the applica-
tion. But some Ajax packages are designed to be used on the server — and
they can write JavaScript for you. That’s what you see in this chapter.

13_785970 ch07.qxp 1/20/06 12:24 PM Page 213

Although some server-side frameworks are based on exotic server-side lan-
guages, most of the ones you see use the popular PHP (see Chapter 10 for
more on PHP) and Java languages, especially JavaServer Pages. Those are
the ones I stick to here, starting with Sajax. Note that many of the following
frameworks do much the same thing: let you work with Ajax by using server-
side programming. When you see how these packages work in this chapter,
you’ll know which one is right for you.

Sajax and PHP
Sajax is an Ajax framework (available for download from www.modern
method.com/sajax) that lets you create Ajax JavaScript on the server
by using various server-side languages.

How does Sajax work? You can use it on the server to create the JavaScript
that will support Ajax in your browser. Currently, Sajax lets you connect to
ASP, ColdFusion, Io, Lua, Perl, PHP, Python, and Ruby on the server.

For example, you can use it to create a JavaScript function in a Web page,
connecting that function to a PHP method on the server, which in turn han-
dles your data and then sends its data to another JavaScript function back
in the browser. So when the user opens the PHP page, Sajax generates all
the JavaScript to handle Ajax operations in the created Web page.

For example, take a look at the addition example, addem.php — available for
download from the Web site associated with this book — which appears in
Figure 7-1. When you enter two values and click the Calculate button, the
page uses Ajax to add the values on the server and display the result without
a page refresh.

Figure 7-1:
Using Sajax

to add
numbers.

214 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 214

How does it work? In this example, addem.php, you start by including
Sajax.php:

<?
require(“Sajax.php”);

.

.

.

Then you define a PHP function named addem to add two numbers (this is
the PHP function that will run on the server):

<?
require(“Sajax.php”);

function addem($op1, $op2)
{
return $op1 + $op2;

} .
.
.

?>

You’ll be able to call this function from the JavaScript in a Web page, except
that you refer to it as x_addem. In other words, if you define a PHP function
named addem, you can call it in JavaScript as x_addem by using Sajax.

Next, set up Sajax by calling sajax_init, and export the addem function:

<?
require(“Sajax.php”);

function addem($op1, $op2)
{
return $op1 + $op2;

}

sajax_init();
sajax_export(“addem”);

.

.

.
?>

Exporting the addem function means that you’ll be able to access the addem
function in JavaScript (as x_addem). Finally, the code calls the sajax_
handle_client_request method to connect the addem function to Sajax
and start setting up the JavaScript that will appear in the browser:

215Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 215

<?
require(“Sajax.php”);

function addem($op1, $op2)
{
return $op1 + $op2;

}

sajax_init();
sajax_export(“addem”);
sajax_handle_client_request();

?>

Sajax generates much of the JavaScript needed in this example, and it does
that with the PHP function sajax_show_javascript, which you execute by
using PHP inside an HTML <script> element so the generated JavaScript
will be inside that <script> element:

<script>
<?
sajax_show_javascript();
?>

.

.

.

This example also includes the HTML for the controls you see in Figure 7-1:
three text fields and a button. The text fields for the two operands to add are
named op1 and op2, and the text field where the answer will appear is named
result.

<body>
<center>
<h1>Using Sajax to add numbers</h1>
<input type=”text” name=”op1” id=”op1” value=”7” size=”3”>

+

<input type=”text” name=”op2” id=”op2” value=”8” size=”3”>

=

<input type=”text” name=”result” id=”result” value=”” size=”3”>

<input type=”button” name=”check” value=”Calculate”
onclick=”do_addem(); return false;”>

</center>
</body>

216 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 216

Note that the button here is tied to a JavaScript function named do_addem,
which calls x_addem, the generated JavaScript function that connects back
to the PHP function addem on the server. When the user clicks the button to
perform the multiplication, the operands are read from the first two text
fields, and the x_addem function is called, which passes the operands to the
PHP function named addem back on the server.

<script>
<?
sajax_show_javascript();
?>

function do_addem()
{
var op1, op2;

op1 = document.getElementById(“op1”).value;
op2 = document.getElementById(“op2”).value;
x_addem(op1, op2, show_results);

}
</script>

Note that the x_addem function not only passes the operands back to the
addem function on the server, but also takes the name of a JavaScript func-
tion that will be called with the results of the multiplication. In this example,
that callback function is named show_results, as you can see in the pre-
ceding code.

This callback function, show_results, is passed an argument from the PHP
addem function and displays it in the third text field, which is named result.
Here’s what the code looks like:

<script>
<?
sajax_show_javascript();

?>

function show_results(result)
{
document.getElementById(“result”).value = result;

}

function do_addem()
{
var op1, op2;

op1 = document.getElementById(“op1”).value;
op2 = document.getElementById(“op2”).value;
x_addem(op1, op2, show_results);

}
</script>

217Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 217

As you can see, Sajax lets you create JavaScript on the server and tie that
JavaScript to server-side functions by using Ajax. Very cool. You might also
take a look at http://cyberdummy.co.uk/test/dd.php, which uses
Sajax for drag-and-drop operations.

Xajax and PHP
Xajax, which you can get for free at http://xajax.sf.net, is an Ajax
framework that lets you use server-side methods to create Ajax JavaScript for
use in a browser. Xajax uses PHP on the server, and you can get an idea about
how it works by taking a look at my handy addem.php example — available
for download from the Web site associated with this book — which will add
two numbers. You can see this example at work in Figure 7-2.

Much like the Sajax example in the preceding section, this Xajax example
uses a PHP function named addem, which adds the values passed to it and
assigns the result a variable named “result”. Here’s what the PHP code
looks like:

function addem($op1, $op2)
{
$objResponse = new xajaxResponse();
$objResponse->addAssign(“result”, “value”, $op1 + $op2);
return $objResponse->getXML();

}

Figure 7-2:
Using Xajax

to add
numbers.

218 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 218

Then the code creates an new object named $xajax.

function addem($op1, $op2)
{
$objResponse = new xajaxResponse();
$objResponse->addAssign(“result”, “value”, $op1 + $op2);
return $objResponse->getXML();

}

$xajax = new xajax(“addem.server.php”);
.
.
.

And the code registers the addem function with the $xajax object.

function addem($op1, $op2)
{
$objResponse = new xajaxResponse();
$objResponse->addAssign(“result”, “value”, $op1 + $op2);
return $objResponse->getXML();

}

$xajax = new xajax(“addem.server.php”);
$xajax->registerFunction(“addem”);

.

.

.

Then the code calls the Xajax method processRequests, which is much
like the Sajax sajax_handle_client_request method, to prepare for the
JavaScript generation.

function addem($op1, $op2)
{
$objResponse = new xajaxResponse();
$objResponse->addAssign(“result”, “value”, $op1 + $op2);
return $objResponse->getXML();

}

$xajax = new xajax(“addem.server.php”);
$xajax->registerFunction(“addem”);
$xajax->processRequests();

.

.

.

219Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 219

In the HTML part of this example, the code uses an Xajax method named
printJavascript to create the JavaScript that Xajax will use.

<html>
<html>
<head>
<title>Adding numbers with Xajax</title>
<?php $xajax->printJavascript(); ?>

</head>
.
.
.

The HTML part also sets up the HTML controls shown in Figure 7-2 and calls
a generated function named xajax_addem that will call the PHP function
addem on the server:

<body>
<center>
<h1>Adding numbers with Xajax</h1>
<input type=”text” name=”op1” id=”op1” value=”7” size=”3” />

+

<input type=”text” name=”op2” id=”op2” value=”8” size=”3” />

=

<input type=”text” name=”result” id=”result” value=”” size=”3” />

<input type=”button” value=”Calculate”

onclick=”xajax_addem(document.getElementById(‘op1’).value,document
.getElementById(‘op2’).value);return false;” />

</center>
</body>

How is the result of the addition displayed in the third text field, named
“result”? The PHP addem function uses an Xajax method named
addAssign to assign the answer to the value property of the “result”
text field:

function addem($op1, $op2)
{
$objResponse = new xajaxResponse();
$objResponse->addAssign(“result”, “value”, $op1 + $op2);
return $objResponse->getXML();

}

And that’s it. The data the user enters is sent to the server by using Ajax
techniques, and the result is displayed without a page refresh, as you see in
Figure 7-2. If you’re interested in generating JavaScript on the server this way,
take a look at both Sajax and Xajax.

220 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 220

LibAjax and PHP
Here’s another PHP-based Ajax server-side framework: LibAjax, which you
can get for free from http://sourceforge.net/projects/libajax.
The documentation appears at http://libajax.sourceforge.net/
documentation.html. To demonstrate how LibAjax works, I show you
an addition example here as well, which you can see in Figure 7-3.

Keep in mind that the files for the script I highlight here extract to a php
folder by default. The code for this chapter (available for download from
the Web site associated with this book) assumes that addem.php and
libajax.php are in the same directory, so be sure that you do in fact
place these files in the same directory.

How does this example — addem.php, downloadable from the Web site asso-
ciated with this book — work? In the PHP, you start by creating a new
LibAjax object (named, in this case, $ajax) this way:

<?php
require_once(“libajax.php”);
$ajax = new ajax();

.

.

.

This example then uses a PHP function named addem that adds the operands
passed to it:

function addem($op1, $op2)
{

print $op1 + $op2;
}

Figure 7-3:
Using

LibAjax to
multiply

numbers.

221Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 221

Then you configure the $ajax object to select the HTML method, GET or
POST, to send data with, and you export the addem function to make that
function available in JavaScript.

$ajax->mode = “POST”;
$ajax->export = array(“addem”);

.

.

.

Now you can access the addem function from JavaScript. If you have other
PHP functions to export, you can list them with commas, like this:

array(“addem”, “subtractem”);

After exporting the addem function, you call the LibAjax client_request
method to set up the callback from JavaScript to the PHP code.

$ajax->mode = “POST”;
$ajax->export = array(“addem”);
$ajax->client_request();

.

.

.
?>

LibAjax automatically writes the JavaScript for you when you call the
$ajax->output() method:

<html>
<head>
<title>Adding numbers with LibAjax</title>
<script type=”text/javascript”>
<?php $ajax->output(); ?>

.

.

.

Okay so far. Now what about reading actual data from the user, as shown in
Figure 7-3? In this example, I use HTML text fields named op1, op2, and
result for that:

<body>
<center>
<h1>Adding numbers with LibAjax</h1>
<form>
<input type=”text” name=”op1” id=”op1” value=”7” size=”5”>

+

<input type=”text” name=”op2” id=”op2” value=”8” size=”5”>

222 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 222

=

<input type=”text” name=”result” id=”result” value=”” size=”5”>

<input type=”button” name=”check” value=”Calculate” onclick=”addem();

return false;”>
</form>

</center>
</body>

</html>

When the user clicks the button, a JavaScript function named addem is
called. That function is the interface to the server-side PHP function named
addem (which you call in JavaScript by calling the generated function
ajax_addem). In the JavaScript addem function, the code starts by getting
the two operands to multiply, like this:

function addem()
{
var op1 = document.getElementById(“op1”).value;
var op2 = document.getElementById(“op2”).value;

.

.

.
}

Then the code calls ajax_addem, which calls the PHP addem function on the
server. The two operands, op1 and op2, are passed to ajax_addem, along
with a callback function that will handle the answer sent back from the
server-side code.

function addem()
{
var op1 = document.getElementById(“op1”).value;
var op2 = document.getElementById(“op2”).value;
ajax_addem(op1, op2, addem_init);

}

The callback function is passed with the result and displays it in the result
text field.

That’s how LibAjax works — you export a PHP function and can call it by
prefacing the name of the function in your JavaScript code with “ajax_”.
The last argument passed to ajax_addem is the name of a callback function
that the PHP code on the server will call in the JavaScript in the browser, and
in this case, that’s a function named addem_init. The addem_init function

223Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 223

simply takes the value passed to it and displays it in the third text field,
which is named “result”. Here’s how the code appears in this example:

function addem_init(result)
{
document.getElementById(“result”).value = result;

}

And that’s all it takes. All you have to do is write a server-side PHP function
(such as phpFunction), export it, and call the client_request method;
then you can call that function from JavaScript as ajax_phpFunction.
When you call ajax_phpFunction, you pass the arguments you want to
pass to phpFunction, as well as a JavaScript function to call with the result.
In that JavaScript function, you can handle the result as you see fit, such as
displaying it in a text field, as in the preceding example.

JPSpan and PHP
Another Ajax framework based in PHP is JPSpan, which you can get from
http://sourceforge.net/projects/jpspan. The documentation is at
http://jpspan.sourceforge.net/api.

JPSpan is a relatively complicated framework and uses considerable code
to get things running, but it offers a great deal of Ajax support. You can see
an autocompletion example (available in the JPSpan download) at work in
Figure 7-4, where the application responds to the user’s keystrokes by giving
possible matches to a country name.

Figure 7-4:
Using

JPSpan for
auto-

completion.

224 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 224

Accessing Java with Direct
Web Remoting

Direct Web Remoting (DWR) uses Java on the server (as do the following
frameworks in this chapter) instead of PHP. You can pick up DWR at http://
getahead.ltd.uk/dwr for free and read the documentation at http://
getahead.ltd.uk/dwr/documentation. Also check out the introduction
at http://getahead.ltd.uk/dwr/intro.html.

Direct Web Remoting is an Ajax framework for calling Java methods directly
from JavaScript code. Because DWR uses Ajax, you can access the full power
of Java (not otherwise available to you in a browser) behind the scenes on
the server and display your results in the server. That’s great because Java is
a far more powerful language, with a lot more built into it, than JavaScript.

Setting up for Java on the Web
To work with DWR and other Java-based Ajax frameworks, you need a Web
server that supports Java. Many such servers exist on the Internet. In fact,
your ISP might already support Java, or you can find ISPs by searching for
“Java hosting” with Google. Java-based Web servers support applications that
use JavaServer Pages (JSP) and Java servlets (Java server-side programs),
and the server-side code you write to connect to your Ajax code will be made
up of JSP or servlets.

One popular Java-based server is Apache Tomcat, which you can get for free
at http://jakarta.apache.org/tomcat. You can install this server on
your own machine and test your applications instantly. Installation is easy; to
start the server on a Windows machine, simply open Apache Tomcat and
click the Start button.

Connecting to Java by using DWR
DWR is an open-source code library that does much of what the PHP pack-
ages do — it lets JavaScript code call Java functions back on the server.

DWR has two parts: code you use in the browser to connect to Java back on
the server and code you can use in the browser to make displaying the data
you fetched easier. The main part of the DWR code is the part that lets you
call Java functions on the server. Like the other frameworks you’ve seen in

225Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 225

this chapter, you can call server-side functions, and DWR will handle the
details of connecting your code to those functions. And when your data has
been fetched, DWR will call the callback function you’ve given it with that
data.

After you’ve fetched the data you want, you might also consider using the
DWR JavaScript libraries that let you use dynamic HTML to display that data
and create interactive Web pages.

You can see an example in Figure 7-5 from the DWR Web site at http://
getahead.ltd.uk/dwr/examples/text. This simple Ajax example checks
the server type and details, and uses Ajax to fetch that data and display it on
a Web page, as you see in Figure 7-5.

You can find other DWR examples on the DWR Web site as well. For example,
in Figure 7-6, you can see a DWR chat application, at http://getahead.
ltd.uk/dwr/examples/chat, that uses Ajax to fetch data and display it in
a text-area control. All you have to do is enter your text, which is sent to the
server, by clicking the Send button. Your text, along with the text others have
entered, appears in the text area.

You can see another DWR example in Figure 7-7, where a list box is filled with
values by using Ajax techniques to fetch data from the server. If you click the
check box in this example, the application fetches some numbers to fill the
list box with, as you can see in Figure 7-7.

Figure 7-5:
Getting text

with Ajax
and DWR.

226 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 226

Figure 7-7:
Populating a
list box with

Ajax and
DWR.

Figure 7-6:
An Ajax

chat session
using DWR.

227Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 227

Here’s another DWR example, which you can see at http://getahead.
ltd.uk/dwr/examples/table. This example lets you edit the contents of a
table (your edits of the table are stored by using cookies in your browser),
and the table is redisplayed by using Ajax techniques. You can see this exam-
ple at work in Figure 7-8 — just click Edit in a row of the table, edit the row’s
data in the HTML controls below the table, and click Save. Everything is
updated by using Ajax, so no page refreshes are required. Very handy.

If you want to connect Java to your Ajax applications, take a look at DWR.
It’s powerful and extensive. It does take some work to install it (see the
directions at http://getahead.ltd.uk/dwr/getstarted).

Here’s a shortcut: Download the dwr.war file (see http://getahead.ltd.
uk/dwr/download) and then put it in the main directory of your Java-based
Web server (in Apache Tomcat, that’s the webapps directory). The Web
server will expand dwr.war into a working DWR installation for you.

Building Web Applications with Echo2
Echo2 is a framework you can use to create applications, and it’s recently
been upgraded to support Ajax. Echo2 is a package for creating Web-based
applications that work much like the applications you’d find on a desktop
computer. In version 2, the creators of the Echo package have made dramatic

Figure 7-8:
Editing a

table with
Ajax and

DWR.

228 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 228

improvements in performance and capabilities. When you use Echo2, you
don’t even need to know anything about HTML, HTTP, or even JavaScript.

Building full applications with Echo2 is beyond the scope of this book, but
you can take a look at an online demo at http://demo.nextapp.com/
Email/app, a Web-based e-mail program that appears in Figure 7-9.

This application uses Ajax to download the text for various e-mail messages.
All you have to do is select an e-mail message in the top box at right, and the
text of that message appears in the box beneath it, as you see in the figure.

Handling Ajax and JavaServer Pages
with Ajax Tags

Here’s another interesting framework — the Ajax Tag Library, which you can
get at http://ajaxtags.sourceforge.net. This Ajax framework relies
on JSP tags on the server to create the JavaScript you’ll need. In JSP, you can
create your own custom tags to tell the server what you want to do, and you
tie those tags to Java code that the server runs before it sends the page back
to the browser.

Figure 7-9:
A Web mail
client using

Echo2.

229Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 229

This library comes with built-in JSP tags that you can use to implement stan-
dard Ajax applications. Here’s the list of the tags:

� Autocomplete: Gets a list of possible items that match the text the user
has entered in a field for autocompletion.

� Callout: Displays a pop-up balloon connected to a particular element in
a Web page.

� Select/dropdown: Sets the contents of a drop-down control based on
the user’s selection in another drop-down control.

� Toggle: Lets you switch images between two different sources.

� Update Field: Updates the text in a field based on the data the user
enters in another field.

For example, you can see an autocomplete demo at work at http://ajax
tags.no-ip.info. You can enter the first letter of a name of car in the text
field, and an autocomplete menu appears, as you see in Figure 7-10. A second
text field, which also supports autocomplete, lets you enter the make of a car.

Here’s how it works: You construct a JSP page that uses the Ajax Tag Library
to support various Ajax functionality, such as autocompletion, populating
a <select> control, or displaying text fetched by using Ajax in an HTML

Figure 7-10:
An auto-

complete
using Ajax

tags.

230 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 230

element. Then you write the Java support on the server to supply the XML
that holds the data you want to present. For in-depth details on the Ajax Tags
Library, take a look at the usage guide at http://ajaxtags.sourceforge.
net/usage.html.

Handling Java with SWATO
Another Java-based Ajax framework is SWATO, which you can get from
https://swato.dev.java.net. You can find an introduction to SWATO
at https://swato.dev.java.net/doc/html/quickstart.html.

SWATO comes with built-in components for common Ajax operations, such as
an autocomplete text field, a live form, live lists, and so on. In Figure 7-11, you
can see the autocompletion control in an example that comes with SWATO.

SWATO is an interesting framework. It relies on plain old Java objects (called
POJOs by Java programmers) on the server, so the server-side programming
can be a little less involved.

Figure 7-11:
Autocom-

plete using
SWATO.

231Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 231

Tracking Down the Many Other
Frameworks Available

Plenty of other Ajax frameworks are out there, in a variety of languages. I
briefly cover some of them in the following sections. More and more Ajax
power is coming online all the time — the future looks bright indeed!

Developing amazing applications
with WebORB
You can find WebORB at www.themidnightcoders.com/weborb/
aboutweborb.htm. WebORB specializes in creating rich Internet applica-
tions that are professional-level quality. Using WebORB, you can integrate
Ajax and other technologies such as Flash into your application seamlessly.

WebORB can connect to various languages on the server, from .NET to Java.
In Figure 7-12, you can see a shopping-cart example from www.themidnight
coders.com/examples/session-activation.htm.

Figure 7-12:
WebORB
at work.

232 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 232

All you have to do in this example is select an item in the <select> control
at left and click the Add button. Thanks to Ajax, the selected item appears in
the shopping cart at right without the need for a page refresh.

Ruby on Rails
Ruby on Rails (www.rubyonrails.org) is an Ajax-enabled framework
heavyweight. Instead of PHP or Java, it uses its own proprietary language
on the server. It has all kinds of built-in support for Ajax.

When it comes to acting like a server-side Ajax framework, Ruby on Rails
functions much like the other frameworks shown in this chapter, except that
it uses its own language on the server. As is normal for Ajax applications, you
can send data asynchronously to the server by using an XMLHttpRequest
object. After the data you’ve requested is sent back to you in the browser,
JavaScript generated by Rails will let you handle that data easily — for exam-
ple, you can display that data by using a <div> element.

You can see a Ruby on Rails demo that uses Ajax at www.papermountain.
org/demos/live, as shown in Figure 7-13. For example, take a look at the
autocomplete demo at left in the figure, where the user has typed he and the
application has suggested various words.

Figure 7-13:
A Ruby on
Rails auto-

complete
example.

233Chapter 7: Server-Side Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 233

Backbase
Another Ajax-enabled framework is Backbase, at www.backbase.com. Like
WebORB, Backbase specializes in developing rich Internet applications.

Dojo
Dojo is another useful framework, and you can get it at www.dojotool
kit.org. Dojo calls itself a user-interface toolkit, and it’s been updated to
include a great deal of Ajax support. It’s an open-source package, so you
can modify its code if you want to.

Atlas.NET
Frameworks such as Microsoft’s ASP.NET (the .NET version of Microsoft’s
Active Server Pages [ASP] package) are adding more support for Ajax.
Microsoft has announced work on the Atlas Client Script Framework, which
will integrate Ajax support into ASP.NET and which will work with all modern
browsers. Atlas looks like a significant Ajax package, but the details are just
starting to emerge. For now, one of the better places to keep tabs on Atlas is
http://beta.asp.net/default.aspx?tabindex=7&tabid=47, but
stay tuned — Atlas is sure to make a splash.

234 Part III: Ajax Frameworks

13_785970 ch07.qxp 1/20/06 12:24 PM Page 234

Part IV
In-Depth Ajax

Power

14_785970 pt04.qxp 1/20/06 12:25 PM Page 235

In this part . . .

This part gives you more Ajax power, starting with
Chapter 8, which is all about working with XML in

JavaScript. When you work with Ajax, the results from the
server often are in XML, and knowing how to navigate
through that XML and extract the data you want is — in
Ajax terms — an invaluable skill. Chapter 9 continues with
coverage of cascading style sheets (CSS), which ties in
with Ajax by letting you handle realtime displays, such as
pop-up menus or drag-and-drop. (Remember: Ajax is all
about working with the current Web page without reload-
ing that page, and CSS is a big part of that.) Ajax also
involves working with code on the server, and Chapter 10
gives you a PHP primer to let you write server-side code.
(You don’t need to know PHP to read this book, but know-
ing PHP will help when you start using Ajax yourself, so
Chapter 10 is there to give you a foundation for the topic.)

14_785970 pt04.qxp 1/20/06 12:25 PM Page 236

Chapter 8

Handling XML in Ajax
Applications

In This Chapter
� Understanding basic XML

� Navigating XML documents using JavaScript

� Grabbing XML elements en masse

� Extracting the values of XML attributes

� Validating the XML you get from the server

“Hm,” says the crack Ajax programmer. “I need some help.”

“Glad to be of service,” you say. “What can I help you with?”

“I’ve got my XML from the server okay, but now I can’t deal with it. How the
heck do I navigate from element to element? How do I get the data I need out
of this XML?”

“No problem,” you say. “Just read this chapter.” And you present the sur-
prised Ajax programmer with your bill.

Ajax is all about getting data — often XML data — from the server. How do
you handle that XML back in the browser? JavaScript has some strong XML-
handling capabilities, as you discover in this chapter. Knowing how to work
with XML in JavaScript is essential for any Ajax programmer because the
server sends you XML, and you need to know how to extract data from
that XML.

15_785970 ch08.qxp 1/20/06 12:26 PM Page 237

Understanding Basic XML
To work with XML in Ajax, you need to understand a few basics about the lan-
guage and how it works. One key feature of XML is that you’re not restricted
to a pre-determined set of tags, as in languages like HTML. You can create
your own. In addition to tags, you also need to understand what makes an
XML document well-formed and valid. I explain what you need to know in the
sections that follow.

What’s in a tag?
You create your own tags, such as a <people> tag, that hold a series of
names. Although you make up the tag names yourself, a handful of rules
govern what names are legal. Tag names can’t start with a number, can’t
contain spaces, and can’t contain a few other illegal characters, such as
quotation marks. Here are some illegal tags:

<5fish>
<wow that was a big lunch>
<”no way!”>

Each XML element starts with an opening tag and ends with a closing tag,
unless the element is an empty element, in which case there’s only one tag —
no closing tag, and no content of any kind, as you’d usually see between an
opening and closing tag. Here’s an example of an empty element — note the
XML way of closing an empty element, with the markup />:

<supervisor />

Starting tags can also contain attributes, and the values you assign to those
attributes must be quoted text. Also, you must assign a value to each
attribute you use. Here are some examples (in the first example, <witness>
is the tag, name = is the attribute, and “Karen Jones” is the value):

<witness name = “Karen Jones”>
<movie title = “Mr. Blandings Builds His Dream House”>
<sandwich type = “ham” dressing = “mayo>

Even empty elements can contain attributes, as in this example:

<language english=”yes” />

For the full story on XML, take a look at XML for Dummies, 4th Edition, by
Lucinda Dykes and Ed Tittel. If you want to see the formal XML specification,
as published by the World Wide Web Consortium (the people responsible for
the XML specs) take a look at www.w3.org/tr/rec-xml.

238 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 238

Keeping XML documents well-formed
One criteria for XML documents is that they are well-formed. The main rules
for a well-formed XML document are that an XML document must

� Start with an XML declaration.

� Have a document element that contains all the other elements.

� Have no nesting errors (that is, elements can’t overlap, such as
<a>This is not good.).

The XML parsers, which read XML in the browsers, won’t be able to read
XML if it isn’t well-formed.

The XML declaration that starts every XML document gives the version
of XML you’re using. (Currently, only 1.0 and 1.1 are legal values for the
version.)

<?xml version=”1.0”?>
.
.
.

Elements can contain other elements in XML, and the document element in
an XML document contains all the other elements in the XML document, if
there are any. Here’s an example of a document element:

<?xml version=”1.0”?>
<events>

.

.

.
</events>

For elements in an XML document to be nested properly, you must nest
each child element within its parent. In the following example XML docu-
ment, guests.xml, notice how the guests at a gala ceremony are nested
within the <people> tag:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

<person attendance=”present”>
<first_name>Sam</first_name>

239Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 239

<last_name>Edwards</last_name>
</person>
<person attendance=”absent”>

<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>
<person attendance=”present”>

<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>
</people>

</event>
</events>

Making an XML document valid
To make an XML document valid, you have to supply rules for its syntax. For
example, should a <person> element always be inside a <people> element?
What attributes can an <event> element have?

All the syntax rules can be specified using an XML document type definition
(DTD, see www.w3.org/tr/rec-xml) or an XML schema (see www.w3.
org/XML/Schema). How you create DTDs and schema is beyond the scope
of this book. But some browsers, such as Internet Explorer, let you validate
XML if you supply a DTD or a schema, and you’ll see how that works later in
this chapter.

Checking to make sure an XML document was created correctly by the
server-side software is a useful thing to do in Ajax applications.

Requesting XML Data in Ajax
In this section, you take a look at how Ajax works with XML to pass data. Say
that you’ve stored details about a gala event in an XML document named
guests.xml. You want to recover the name of Cary Grant, who was the third
guest at the affair, in an Ajax application named guests.html, as you see in
Figure 8-1. (Both guests.html and guests.xml are available in the code
for this book, which you’ll just happen to find available for download at the
Web site associated with this book.) When the user clicks the Get the Main
Guest button in your Ajax application, the page reads in guests.xml,
extracts the third guest’s name, and displays it.

240 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 240

When the user clicks the Get the Main Guest button, what actually happens is
that a function named getGuest is called:

<body>

<h1>Using Ajax and XML</h1>

<form>
<input type = “button” value = “Get the main guest”
onclick = “getGuest()”>

</form>

<div id=”targetDiv” width=”100” height=”100”>
Who was the main guest?

</div>

</body>

The getGuest function gets guests.xml from the server. The guests.xml
file looks like this:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

<person attendance=”present”>
<first_name>Sam</first_name>
<last_name>Edwards</last_name>

</person>
<person attendance=”absent”>

<first_name>Sally</first_name>

Figure 8-1:
Fetching

data using
XML.

241Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 241

<last_name>Jackson</last_name>
</person>
<person attendance=”present”>

<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>
</people>

</event>
</events>

The getGuest function then passes the XML document in the XMLHttp
Request objects’ responseXML property to another function, display
Guest. (You’ll use the displayGuest function later to extract the guest’s
name.)

<script language = “javascript”>

function getGuest()
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
XMLHttpRequestObject.overrideMimeType(“text/xml”);

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, “guests.xml”, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
displayGuest(xmlDocument);
}

}

XMLHttpRequestObject.send(null);
}

}
.
.
.

Okay, you’ve got the XML data. Now you need to extract the third guest’s
name in the displayGuest function in order to display it. There are a
couple ways to do this, all useful; I’ll take a look at using the node properties
like firstChild and lastSibling here first, followed by accessing ele-
ments using methods — instead of properties — next.

242 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 242

Extracting XML Data Using Properties
When you extract data using properties, you use the properties to navigate
through the nested tags and locate the data you want to extract. At least
that’s the simple explanation. In practice, differences in the browsers make
the process a bit more complicated. In the following sections, I explain all
the details.

Right on the node
To extract Cary Grant’s first and last names from your XML file with the help
of a little JavaScript, keep in mind that — in JavaScript — XML is treated as a
collection of nodes. For example, take a look at this simple XML document:

<?xml version=”1.0” ?>
<document>

<greeting>
Hello From XML

</greeting>
<message>

Welcome to the wild and woolly world of XML.
</message>

</document>

Here, the <document> node has two subnodes: the <greeting> and
<message> nodes. These subnodes are child nodes of the <document> node
and sibling nodes of each other. Both the <greeting> and <message> ele-
ments themselves have one subnode — a text node that holds character data.
Figure 8-2 shows what this document looks like when you look at it as a tree
of nodes.

Introducing the JavaScript properties
JavaScript has built-in properties you can use to work with the nodes in XML
documents, like the one that’s returned in the XMLHttpRequest object’s
responseXML property. Table 8-1 lists these properties.

<greeting> <message>

<document>

Hello From XML Welcome to the wild and woolly world of XML.

Figure 8-2:
JavaScript
sees XML
as nodes.

243Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 243

Table 8-1 JavaScript Properties for Working in XML
Property What It Finds

attributes Attributes by this node

childNodes Array of child nodes

documentElement The document element

firstChild First child node

lastChild Last child node

localName Local name of the node

name Name of the node

nextSibling Next sibling node

nodeName Name of the node

nodeType Node type

nodeValue Value of the node

previousSibling Previous sibling node

You find out how to use these properties in JavaScript in the next section.
Note in particular that the nodeType property holds the type of a node —
knowing a node’s type is important when you want to extract and work with
specific nodes:

� 1 Element

� 2 Attribute

� 3 Text node

� 4 CDATA (XML character data) section

� 5 XML entity reference

� 6 XML entity node

� 7 XML processing instruction

� 8 XML comment

� 9 XML document node

� 10 XML Document Type Definition (DTD)

� 11 XML document fragment

� 12 XML Notation

So how does this work in practice? It’s time to start slinging some code.

244 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 244

Navigating an XML document
using JavaScript properties
Using the example I introduced in “Requesting XML Data in Ajax,” earlier in
this chapter, this section explains how you put XML and JavaScript together
to extract the third guest, Cary Grant, from guests.xml.

To start, the displayGuest function is passed to the XML document,
xmldoc. (This is just the XML from the XMLHttpRequest object’s
responseXML property.)

function displayGuest (xmldoc)
{
.
.
.

}

This XML document has a document element named <events>:

<?xml version=”1.0”?>
<events>

.

.

.
</events>

You can get an object corresponding to the document element with the
JavaScript documentElement property:

function displayGuest (xmldoc)
{
var eventsNode;

eventsNode = xmldoc.documentElement;
.
.
.

}

The eventsNode now holds an object corresponding to the <events> ele-
ment — and that document element contains all the other elements. For exam-
ple, the child element of the <events> element is the <event> element:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
.

245Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 245

.

.
</event>

</events>

You can get an object corresponding to the <event> element with the
eventsNode object’s firstChild property this way:

function displayGuest (xmldoc)
{
var eventsNode, eventNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
.
.
.

}

Now you have an object corresponding to the <event> element. The next
step is to get closer to the name of the third guest, which is enclosed in the
<people> element:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
.
.
.
</people>

</event>
</events>

The lastChild property comes to the rescue again, as you use the event
Node object’s lastChild property to get an object corresponding to the
<people> element:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;

246 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 246

peopleNode = eventNode.lastChild;
.
.
.

}

Now you need to get the third, and last, <person> element inside the
<people> node:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

<person attendance=”present”>
<first_name>Sam</first_name>
<last_name>Edwards</last_name>

</person>
<person attendance=”absent”>

<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>
<person attendance=”present”>
.
.
.
</person>

</people>
</event>

</events>

The lastChild property comes in handy once again to get an object corre-
sponding to the correct <person> element:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
.
.
.

}

247Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 247

All that’s left is to recover the first name and last name of the third guest:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

<person attendance=”present”>
<first_name>Sam</first_name>
<last_name>Edwards</last_name>

</person>
<person attendance=”absent”>

<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>
<person attendance=”present”>

<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>
</people>

</event>
</events>

You can get an object corresponding to the <first_name> and <last_name>
elements with the firstChild and nextSibling properties:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;
.
.
.

}

That’s great. Now you have JavaScript objects corresponding to the
<first_name> and <last_name> elements. All you have to do now
is extract the text in those elements:

<first_name>Cary</first_name>
<last_name>Grant</last_name>

248 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 248

That text is considered a text node, and the text node is the first child of the
<first_name> and <last_name> elements. That means that in JavaScript,
you can recover the text node with the expressions firstNameNode.
firstChild and lastNameNode.firstChild.

How do you get the text out of those text nodes once you’ve gotten them?
You can use the text node’s nodeValue property.

Extracting with nodeValue
So here’s how to get the third guest’s first and last names, and display them
in a <div> element named targetDiv:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = “The main guest was “ +
firstNameNode.firstChild.nodeValue + ‘ ‘
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById(“targetDiv”);
target.innerHTML=displayText;

}

And that’s it — you can see the results in Figure 8-3 in Internet Explorer.

Figure 8-3:
Displaying

the third
guest’s

name in
Internet

Explorer.

249Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 249

That looks great, but there’s only one problem — this brilliant solution doesn’t
work in Mozilla-based browsers such as Firefox. The problem is white space,
and the sections that follow explain how to create code that works in any
browser.

At a total loss as to what specific XML is inside an XMLHttpRequest object’s
responseXML property? Use the responseXML property’s xml property to
get the XML as text, which you can take a look at directly. For example, to dis-
play the XML in an XMLHttpRequest object in an alert box, you could do
this in the Internet Explorer:

alert(XMLHttpRequestObject.responseXML.xml);

Handling white space
in Mozilla and Firefox
Mozilla-based browsers treat all the white space in an XML document (includ-
ing the spaces used to indent the elements, as you see in our example,
guests.xml) as text nodes. Take a look at the guests.xml XML document
for this example:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
.
.
.

In Internet Explorer, this document is made up of a document element named
<events> whose first child is the <event> element. The first child of the
<event> element is the <event_title> element, its second child is
<event_number>, and so on.

But the story is different in Firefox (and other Mozilla-based browsers).
There, the document element is <events> alright, but the <events> ele-
ment’s first child node is the text node that includes the return character
after the <events> tag, as well as the indentation space right before the
<event> tag. In other words, any white space — tabs, returns, spaces, and
so on — between tags is considered a legal text node and as such is not
ignored. So in Mozilla terms, this XML looks like:

<?xml version=”1.0”?>
<events>
[text node]<event type=”informal”>

250 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 250

[text node]<event_title>15th award ceremony</event_title>
[text node]<event_number>1207</event_number>
[text node]<subject>gala event</subject>
[text node]<date>7/4/2006</date>

.

.

.

So when you access the firstChild property of the <events> element,
you don’t get the <event> element — you get the white space text node that
follows the <events> tag. All this means that in Mozilla-based browsers, you
have to take the white space into account when navigating XML documents.

So how does that work in code? Here’s an example — guestsmozilla.
html — that shows you how to navigate white space text nodes. For exam-
ple, to find the name of the third guest, you start at the document element
<events> in Firefox:

<?xml version=”1.0”?>
<events>

.

.

.
</events>

To get that document element, you use the XML document’s document
Element property, just as you do in Internet Explorer:

function displayGuest(xmldoc)
{
var eventsnode;

eventsnode = xmldoc.documentElement;
.
.
.

}

The next element to get is the <event> element:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
.
.
.

</event>
</events>

251Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 251

Although it would be nice to grab that <event> element this way:

eventnode = eventsnode.firstChild;

That code really just grabs the first child of the <events> element, which
in Firefox is the white space text node between the <events> tag and the
<event> tag. So you have to skip over the text node and get to the <event>
element using the nextSibling property because the <event> element is
a sibling of that white space text node to skip over.

eventnode = eventsnode.firstChild.nextSibling;

The next step is to get an object corresponding to the <people> element:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
.
.
.
</people>

</event>
</events>

It might look like the <people> element is the last child of the <event> ele-
ment, but that’s not true in Firefox. The last child is the text node after the
</people> tag and before the </event> tag:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
.
.
.
</people>

[text node]</event>
</events>

252 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 252

So instead of using this to get an object corresponding to the <people>
element:

peoplenode = eventnode.lastChild;

you have to move backwards one level to skip over the true last child — the
white space text node — to get an object corresponding to the <people> ele-
ment. You can do that with the previousSibling property:

peoplenode = eventnode.lastChild.previousSibling;

As you can see, taking into account all those white space text nodes means
you have to navigate around them using the nextSibling and previous
Sibling properties. Here’s how that works out in code in the example
guestsmozilla.html:

function displayGuest(xmldoc)
{
var eventsnode, eventnode, peoplenode;
var firstnamenode, lastnamenode, displaytext;

eventsnode = xmldoc.documentElement;
eventnode = eventsnode.firstChild.nextSibling;
peoplenode = eventnode.lastChild.previousSibling;
personnode = peoplenode.firstChild.nextSibling
.nextSibling.nextSibling.nextSibling.nextSibling;

firstnamenode = personnode.firstChild.nextSibling;
lastnamenode = firstnamenode.nextSibling.nextSibling;

displaytext = “The main guest was: “ +
firstnamenode.firstChild.nodeValue + ‘ ‘
+ lastnamenode.firstChild.nodeValue;

var target = document.getElementById(“targetDiv”);
target.innerHTML=displaytext;

}

This certainly works, but it’s annoying. Not only do you have to navigate the
XML document while skipping over white space nodes, but you have to use
different JavaScript code for Internet Explorer and Firefox. Isn’t there some
kind of fix that will repair this two-browser problem? There sure is.

253Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 253

Removing white space
in Mozilla and Firefox
You can preprocess an XML document in Mozilla-based browsers like Firefox
by simply removing all the white space text nodes. After you’ve done that,
you can navigate through XML in Firefox and other Mozilla browsers using
the exact same code as you would in Internet Explorer.

For example, you might put together a function named, say, removeWhite
space, for use in Mozilla-based browsers and pass XML objects such as the
one returned in an XMLHttpRequest object to this function to remove white
space.

Here’s a function that strips white space for you. You pass it an XML object
and it starts by looping over all the child nodes (which are found with the
childNodes property, which holds an array of child nodes):

function removeWhitespace(xml)
{
var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];
.
.
.
}

}

At this point in the loop, the current child node is stored in the variable
named currentNode. What kind of a node is the current node? If it’s an ele-
ment node (which means that currentNode.nodeType equals 1), perhaps
it has its own child nodes that need to have white space stripped out as well.
In that case, you can pass the current node to the removeWhitespace func-
tion again. (Calling the same function from inside the function is called recur-
sion, in case you’ve never heard of it, and it’s a handy technique.)

function removeWhitespace(xml)
{
var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];

if (currentNode.nodeType == 1) {

254 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 254

removeWhitespace(currentNode);
}
.
.
.

}
}

On the other hand, if the current node is a text node (which means that
currentNode.nodeType equals 3), perhaps it’s a white space node, in
which case it should be removed.

How do you check if the current node only contains white space? You can
check the text in the current node, which is currentNode.nodeValue,
using a regular expression that matches only white space. Regular expres-
sions let you test the content of a text string, and they’re supported in
JavaScript. (A full discussion on regular expressions is beyond the scope
of this book; if you want all the details, take a look at http://perldoc.
perl.org/perlre.html.)

Here’s how you can test for white space text nodes and remove them. (Note
in particular the loopIndex-- expression, which uses the JavaScript --
operator to decrement loopIndex after the statement containing that
expression is executed, to take into account the removed node.)

function removeWhitespace(xml)
{
var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];

if (currentNode.nodeType == 1) {
removeWhitespace(currentNode);

}

if (((/^\s+$/.test(currentNode.nodeValue))) &&
(currentNode.nodeType == 3)) {
xml.removeChild(xml.childNodes[loopIndex--]);

}
}

}

Now you can call this function to strip white space out of XML documents if
you’re working in Mozilla-based browsers like Firefox.

After you strip the white space from documents in Mozilla-based browsers,
you can use the same navigational code as you’d use in Internet Explorer. For
example, Listing 8-1 shows what the final version of guests.html (the Web

255Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 255

page that finds the third guest, Cary Grant) looks like, updated to work in
both Internet Explorer and Firefox — note how it strips white space out of
the XML document in Firefox.

Listing 8-1: Extracting a Guest’s Name from an XML Document

<html>
<head>

<title>Using Ajax and XML</title>

<script language = “javascript”>

function getGuest()
{
var mozillaFlag = false;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
XMLHttpRequestObject.overrideMimeType(“text/xml”);
mozillaFlag = true;

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, “guests.xml”, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
if(mozillaFlag){
removeWhitespace(xmlDocument);

}
displayGuest(xmlDocument);
}

}

XMLHttpRequestObject.send(null);
}

}

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;

var firstNameNode, lastNameNode, displayText;

256 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 256

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = “The main guest was “ +
firstNameNode.firstChild.nodeValue + ‘ ‘
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById(“targetDiv”);
target.innerHTML=displayText;

}

function removeWhitespace(xml)
{
var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];

if (currentNode.nodeType == 1) {
removeWhitespace(currentNode);

}

if (((/^\s+$/.test(currentNode.nodeValue))) &&
(currentNode.nodeType == 3)) {
xml.removeChild(xml.childNodes[loopIndex--]);

}
}

}
</script>

</head>

<body>

<h1>Using Ajax and XML</h1>

<form>
<input type = “button” value = “Get the main guest”
onclick = “getGuest()”>

</form>

<div id=”targetDiv” width =100 height=100>
Who was the main guest?

</div>

</body>

</html>

257Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 257

You can see this page at work in Figure 8-4 in Firefox.

So now you can use the same navigational code to extract data in Internet
Explorer and Firefox.

That’s fine, but isn’t there an easier way? I mean, you have to know all the
details about the exact structure of the XML document you’re dealing with —
which element is a child of what parent element and so on — and it’s some-
what awkward to have to navigate step by step throughout a document. Can’t
you just fetch the data you want?

Accessing XML Elements by Name
You can fetch just the data you want. So far, the code has used properties like
nextSibling and nextChild to navigate XML documents. But you can also
get individual elements by searching for them by name using the JavaScript
getElementsByTagName method. (Note that it’s still important to know
how to use properties like firstChild and nextSibling and so on in
order to extract the data you want from the elements you retrieve.)

If you’re just interested in extracting specific elements from an XML docu-
ment, getElementsByTagName could be your ticket. In the guests.xml
document, the name of the third guest is enclosed in <first_name> and
<last_name> elements:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>

Figure 8-4:
Displaying

the third
guest’s

name in
Firefox.

258 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 258

<date>7/4/2006</date>
<people>

<person attendance=”present”>
<first_name>Sam</first_name>
<last_name>Edwards</last_name>

</person>
<person attendance=”absent”>

<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>
<person attendance=”present”>

<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>
</people>

</event>
</events>

How can you pick the <first_name> and <last_name> elements out and
extract the text from them? All you need to do is to pass the names of these
elements, “first_name” and “last_name” to the getElementsByTag
Name method, which will return an array of elements with those names:

function displayGuest (xmldoc)
{
firstnamenodes = xmldoc.getElementsByTagName(“first_name”);
lastnamenodes = xmldoc.getElementsByTagName(“last_name”);
.
.
.

}

This example is interested in getting the third guest’s first and last name.
The first guest’s first name would be firstnamenodes[0], the second’s
firstnamenodes[1], and so on. That means you can extract the first and
last names of the third guest this way in a new application, guests2.html in
the code available for download from the Web site associated with this book.

function displayGuest (xmldoc)
{
firstnamenodes = xmldoc.getElementsByTagName(“first_name”);
lastnamenodes = xmldoc.getElementsByTagName(“last_name”);

var displayText = “The main guest was: “ +
firstnamenodes[2].firstChild.nodeValue + ‘ ‘
+ lastnamenodes[2].firstChild.nodeValue;

var target = document.getElementById(“targetDiv”);
target.innerHTML=displayText;

}

259Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 259

You can see this new example, guests2.html, in Figure 8-5 in Internet
Explorer. Very cool.

That gives you a good handle on working with the XML elements you fetch
using JavaScript and Ajax techniques from a server. That’s fine for recovering
data from XML elements — but what about recovering the values of XML
attributes?

Accessing Attribute Values
in XML Elements

XML elements can have attributes, of course, and reading the value of XML
attributes can be important in Ajax applications because attribute values
hold data. The guests.xml document contains some attributes, including
an attribute named attendance:

<?xml version=”1.0”?>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

<person attendance=”present”>
<first_name>Sam</first_name>
<last_name>Edwards</last_name>

</person>
<person attendance=”absent”>

Figure 8-5:
Extracting
data from

XML
elements in

Internet
Explorer.

260 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 260

<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>
<person attendance=”present”>

<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>
</people>

</event>
</events>

How would you read the value of the attendance attribute — specifically,
Cary Grant’s attendance attribute?

Here’s how it works in a new example named attributes.html in the code
for this book. You first navigate through the document to get a JavaScript
object corresponding to the elements you’re interested in. (You can use
getElementsByTagName here instead, of course.)

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;
.
.
.

}

The element that contains the attribute of interest is the <person> element.
To get the attendance attribute from that element, you can use the element
node’s attributes property, which contains a named node map of attrib-
utes. What the heck is a named node map? It’s an object that lets you access
items by name, such as when you want to access the attendance attribute.
How’s that work? First, you get the attributes’ named node map, which I’ll call
attributes.

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;

261Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 261

eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;
attributes = personNode.attributes
.
.
.

}

Then you can get an attribute node corresponding to the attendance
attribute using the named node map method, getNamedItem, this way:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;
attributes = personNode.attributes
attendancePerson = attributes.getNamedItem(“attendance”);
.
.
.

}

Almost there. You’ve gotten a node object corresponding to the attendance
attribute. To get the value that was assigned to Cary Grant’s attendance
attribute (which is “present”), you just need to use that node object’s
nodeValue attribute. So here’s how this example recovers Cary Grant’s
name and attendance and displays that data:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

262 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 262

attributes = personNode.attributes
attendancePerson = attributes.getNamedItem(“attendance”);

var displayText = firstNameNode.firstChild.nodeValue
+ ‘ ‘ + lastNameNode.firstChild.nodeValue
+ “ was “ + attendancePerson.nodeValue;

var target = document.getElementById(“targetDiv”);
target.innerHTML=displayText;

}

You can see the results in Figure 8-6, where this example shows how to
extract the value that’s been assigned to an attribute in the XML sent back to
an Ajax application.

Validating XML Documents
in Ajax Applications

In major Ajax applications, where you want to make sure you get things right,
you may want to check the validity of the XML you receive. As discussed at
the beginning of this chapter, XML documents can be both well-formed and
valid. Well-formed means that the XML document can be read by an XML
parser of the type that the major browsers, like Internet Explorer and Firefox,
support. If an XML document isn’t well-formed, the parser can’t read it, and
the situation is hopeless. Valid is up to you — you can specify the syntax of
an XML document and then check if the document adheres to your syntax
rules.

Figure 8-6:
Extracting

an XML
attribute’s

value in
Ajax.

263Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 263

What kind of syntax rules can you specify? You can specify which elements
are legal in your document and which attributes are legal. You can say which
element is a child of which other element. You can say which attributes are
legal in which elements. And so on. If your Ajax application is working on
important data, it’s a good idea to make sure the XML you’re working with
is valid and that whatever created that data didn’t mess it up somehow.

There are two ways to validate XML documents, as already mentioned in this
chapter: DTDs and XML schema. DTDs are simpler, but schema give you a lot
more power. (You can set, for example, the range of possible numeric values
assigned to an attribute when you’re using a schema, but not a DTD.) You
might want to validate your XML on the server before sending it back to an
Ajax application, and many languages (such as Java 1.4 and now 1.5) provide
complete support for both DTD and XML schema validation.

Sometimes, however, it’s not up to you to generate and then check the XML
sent to you — you have to deal with what you get. In these cases, you can val-
idate XML in a browser using JavaScript — if the browser is Internet Explorer.

Here’s an example, validator.html, that validates XML in Internet
Explorer only. (Firefox’s XML parser doesn’t perform XML validation.) This
example adds a DTD to guests.xml. (Internet Explorer also validates using
XML schema.) Here’s what the DTD that specifies the syntax of guests.xml
looks like in a new document, guestsdtd.xml. (For all the details on how
DTDs work, see www.w3.org/tr/rec-xml.)

<?xml version=”1.0”?>
<!DOCTYPE events [
<!ELEMENT events (event*)>
<!ELEMENT event (event_title, event_number, subject, date, people*)>
<!ELEMENT event_title (#PCDATA)>
<!ELEMENT event_number (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT people (person*)>
<!ELEMENT person (first_name,last_name)>
<!ATTLIST event

type CDATA #IMPLIED>
<!ATTLIST person

attendance CDATA #IMPLIED>
]>
<events>

<event type=”informal”>
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date1>7/4/2006</date1>
<people>

264 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 264

<person attendance=”present”>
<first_name>sam</first_name>
<last_name>edwards</last_name>

</person>
<person attendance=”absent”>

<first_name>sally</first_name>
<last_name>jackson</last_name>

</person>
<person attendance=”present”>

<first_name>cary</first_name>
<last_name>grant</last_name>

</person>
</people>

</event>
</events>

This document now comes with a DTD, which specifies the syntax for the
XML in the document. How can you use this document to test its validity? If
you look closely, you’ll see that there’s an error here: The opening <date>
tag actually has been replaced by a <date1> tag.

<date1>7/4/2006</date1>

To get Internet Explorer to catch this error, you can parse the XML you get
from the server to check it. Here’s how it works: Create a new Internet
Explorer XML parser object, configure it to validate XML, and load in the
XML you’ve received from the server this way in Internet Explorer:

function getGuest()
{
var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, “guestsdtd.xml”, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject(“MSXML2.DOMDocument”);
parser.validateOnParse = true;
parser.load(XMLHttpRequestObject.responseXML);
.
.
.

}

265Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 265

If the parser object’s parseError property is zero after it loads the XML,
there is no problem. Otherwise, you’ve got an error, which you can check
this way:

function getGuest()
{

.

.

.
XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject(“MSXML2.DOMDocument”);
parser.validateOnParse = true;
parser.load(XMLHttpRequestObject.responseXML);

if (parser.parseError.errorCode != 0) {
.
.
.
}
else {

displayGuest(xmlDocument);
}

}
}

XMLHttpRequestObject.send(null);
}

}

If there was an error, this example will use the error object in the parse
Error property to display the details of the error. The error object supports
these properties: url (the name of the file that caused the problem), line
(the line on which the problem occurred), linepos (the position in the line of
the problem), srcText (text explaining the error), reason (the reason for the
error), and errorCode (the error’s numeric code). This example, validator.
html, uses those properties to display the details of the problem:

function getGuest()
{
var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, “guestsdtd6.xml”, true);

266 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 266

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject(“MSXML2.DOMDocument”);
parser.validateOnParse = true;
parser.load(XMLHttpRequestObject.responseXML);
var target = document.getElementById(“targetDiv”);

if (parser.parseError.errorCode != 0) {
target.innerText = “Error in “ +
parser.parseError.url +
“ line “ + parser.parseError.line +
“ position “ + parser.parseError.linepos +
“.\nError source: “ + parser.parseError.srcText +
“\n” + parser.parseError.reason +
“\n” + “Error: “ +
parser.parseError.errorCode;

}
else {

displayGuest(xmlDocument);
}

}
}

XMLHttpRequestObject.send(null);
}

}

And that’s all it takes. You can see the results in Figure 8-7, where Internet
Explorer did indeed locate the error, and the application displays the full
error details. Not bad.

Figure 8-7:
Handling

an XML
validation

error in
Internet

Explorer.

267Chapter 8: Handling XML in Ajax Applications

15_785970 ch08.qxp 1/20/06 12:26 PM Page 267

268 Part IV: In-Depth Ajax Power

15_785970 ch08.qxp 1/20/06 12:26 PM Page 268

Chapter 9

Working with Cascading Style
Sheets in Ajax Applications

In This Chapter
� Creating an Ajax-driven drop-down menu system

� Getting newly displayed text noticed

� Working with text styles

� Setting colors and backgrounds

� Positioning elements using styles

“Uh oh,” says the crack Ajax programmer. “This isn’t working.”

“What’s the problem?” you — the highly-paid Ajax consultant — ask.

“I can’t get this menu application to work. I can get the data for the menu
items from the server using Ajax alright, but I can’t make the menus appear
and disappear. What gives?”

“What style property are you using to make them appear and disappear?”
you ask.

“Style property?” the crack Ajax programmer asks.

“Hoo boy,” you say, “better let me take over for a while.”

Because Ajax does its thing without page refreshes, Ajax applications are
very fond of changing the current page dynamically. That is, Ajax applications
can’t rely on restructuring the page when it next appears — it’s already in
front of the user. That means that you’ve got to work your magic right there
while the user watches. For this reason, Ajax programmers are very fond of
dynamic HTML (DHTML) and cascading style sheets (CSS).

16_785970 ch09.qxp 1/20/06 12:26 PM Page 269

DHTML lets you rewrite the HTML in a page on the fly. You’ve already seen
plenty of examples of using DHTML in this book, as in this line of JavaScript,
which rewrites the contents of a <div> element to display some text:

targetDiv.innerHTML = “You just won a new car.”;

You can also work with the existing elements in a Web page by working with
their styles. Using CSS, you can move elements around a page, color them,
configure their fonts and borders, make them visible or invisible, set their
background images, and more.

That’s what this chapter is about — using CSS and Ajax together for maxi-
mum effect.

CSS and Ajax are perfect together. You can see them working in unison
throughout this book. For example, the drag-and-drop example in Chapter 6
uses CSS to let the user move around the television he’s buying. It does that
by setting up a <div> with the ID television:

<body>
<h1>Buy a television by dragging it to the shopping cart</h1>
<div id=”targetDiv”></div>

<div id=”television”
style=”left:200px; top:100px; width:80px; height:80px;”
onmousedown=”handleDown(event);”>Television</div>

<div id=”target”
style=”left:300px; top:300px; width:200px; height:100px;”>
Shopping Cart</div>

</body>

In a <style> element in the Web page’s <head> section, the <div> ele-
ment’s position style property is set to absolute and its z-index property is
set to a high number to make sure it will move over all other elements in the
page, not under them:

<html>
<head>
<title>Ajax Drag and Drop</title>

<style type=”text/css”>
#television {
position:absolute;
z-index:200;
background: #FF0000;
color:#0000FF;

270 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 270

}
.
.
.

</style>

Style properties such as position and z-index are what you see in this
chapter. Because you set the television <div> element’s style to absolute,
you can move it in JavaScript using the <div> element’s left and top style
properties, which let you set the top left position of the <div> element.
Here’s what it looks like in code when the user drags the television:

function handleMove(e)
{
var e = new MouseEvent(e);
var x = e.x - offsetX;
e.target.style.left = x + “px”;
var y = e.y - offsetY;
e.target.style.top = y + “px”;

}
.
.
.

Being able to work with the elements in a Web page in real time is great for
Ajax, especially because you don’t get the chance to rearrange things with a
page refresh.

For the full, formal details on CSS, see the CSS specification at www.w3.org/
tr/css21 and check out CSS Web Design For Dummies, by Richard Mansfield
(Wiley Publishing, Inc.).

An Ajax-Driven Menu System
One of the most common types of style-intensive Ajax applications around
displays a menu system to the user as the user moves the mouse around the
page. Take a look at Figure 9-1, which shows an example, menus.html, at
work. When the user moves the mouse over one of the images on the page
the (such as the Sandwiches or Pizza image in this example), the application
displays a menu with text fetched using Ajax from the server. After the user
selects an item, that item is displayed in the Web page, as shown in Figure 9-2.

In the following sections, I show you how to write this application.

271Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 271

Setting up the styles
The menus.html application gives you a good handle on how styles are used
in Ajax applications. Here’s how you create the controls in the Web page in this
application. (Note the style attribute, which sets the style of each element.)

<body onclick = “hide()” onmousemove = “check(event)”>

<H1>Ajax-driven menus</H1>

<img id = “image1” src=”image1.jpg”
style=”left:30; top:50; width:200; height:40;”>

<div id = “menuDiv1” style=”left:30; top:100; width:100;
height: 70; visibility:hidden;”><div></div></div>

<img id = “image2” style=”left:270; top:50; width:200;

Figure 9-2:
Making a

menu
selection.

Figure 9-1:
An Ajax-

driven menu
system.

272 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 272

height:40;” src=”image2.jpg”>
<div id = “menuDiv2” style=”left:270; top:100; width:100;
height: 70; visibility:hidden;”><div></div></div>

<div id = “targetDiv”></div>
</body>

Each style pair, such as visibility:hidden, makes up a style rule. The
first part of the pair is the style property you’re setting, and the second
part of the pair is the value you’re assigning the property. In this case, you’re
doing the following:

� Giving the visibility property the value hidden to make the <div>
elements, which will display the menus hidden to start like this:
visibility:hidden.

� Using the left property (left-edge position of the element) like this:
left:270.

� Using the top property (top position of the element) like this: top:100.

� Using the width property (width of the element) like this: width:100.

� Using the height property (height of the element) like this:
height:70.

When you use the HTML style attribute as this code does, you’re using
inline styles. You assign a style property a value in each rule, and separate
each rule from the others with a semicolon:

<img id = “image1” src=”image1.jpg”
style=”left:30; top:50; width:200; height:40;”>

Besides using inline styles with the style attribute, you can also assign
styles using a <style> element, which is usually placed in the <head> sec-
tion of a page. Such styles are called embedded styles. Here, you specify the
element you want to set up styles for, and enclose the style rules you want to
use — separated by semicolons — inside curly braces. Here’s an example
that sets the styles for the <body> element, setting the foreground (text)
color, the background color, and the font to use. (Note that the colors are
specified the same way that you specify colors in HTML.)

<style>
body {
color: #000000;
background-color: #FFFFFF;
font-family: times;

}

273Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 273

You can also specify the type of the styles you’re using, with the type attribute,
which you set to “text/css” for CSS styles. That’s the default, however, so
you can omit the type attribute:

<style type=”text/css”>
body {
color: #000000;
background-color: #FFFFFF;
font-family: times;

}

Some elements, such as the <a> anchor element, let you style specific aspects
of the element. For example, the <a> element lets you style the color of links
(you refer to a link as a:link), the color of links already visited (a:visited),
and the color of links when clicked (a:active) like this:

<style>
body {background: white; color: black}
a:link {color: red}
a:visited {color: blue}
a:active {color: green}

</style>

What if you want to set the styles for multiple <div> elements? How can you
tell them apart in the <style> element? The example here, menus.html,
contains a number of <div> elements that you can supply styles for in a
<style> element:

<body onclick = “hide()” onmousemove = “check(event)”>

<H1>Ajax-driven menus</H1>

<img id = “image1” src=”image1.jpg”
style=”left:30; top:50; width:200; height:40;”>

<div id = “menuDiv1” style=”left:30; top:100; width:100;
height: 70; visibility:hidden;”><div></div></div>

<img id = “image2” style=”left:270; top:50; width:200;
height:40;” src=”image2.jpg”>

<div id = “menuDiv2” style=”left:270; top:100; width:100;
height: 70; visibility:hidden;”><div></div></div>

<div id = “targetDiv”></div>
</body>

Note that each such <div> element has a different ID value. To assign a style
to a tag with a particular ID, you give that ID preceded by a sharp sign (#) like
this in the <style> element:

<html>
<head>

<title>Ajax-driven menus</title>

274 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 274

<style>
#menuDiv1 {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

}

#menuDiv2 {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

}

#targetDiv {
color: #990000;
font-size: 36pt;
font-weight: bold;
font-family: arial;
font-style: italic;

}

</style>

This styles the two <div> elements that will display the menus, menuDiv1
and menuDiv2, this way:

� Sets a particular text color (the color property) this way: color:
#222222

� Sets a particular background color (the background-color property)
this way: background-color: #77CCFF

� Sets bold text (with the font-weight property) this way: font-
weight: bold

� Sets a specific font type (with the font-family property) this way:
font-family: arial

� Sets these <div> elements at a particular location (by setting the
position property to absolute) this way: position: absolute

� Makes these <div> elements hidden by default (with the visibility
property) this way: visibility: hidden

� Uses a hand icon for the mouse cursor when the mouse is over these
menus (this style works in Internet Explorer only) this way: cursor:
hand

275Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 275

This <style> element also styles the target <div> element where the result
text will be displayed targetDiv.

276 Part IV: In-Depth Ajax Power

External style sheets
Another way of handling styles (which menus.html doesn’t use) is to use an external style sheet.
For example, you could put the style rules from the <style> element into an external file named,
say, style.css, which would have these contents:

#menuDiv1 {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

}

#menuDiv2 {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

}
.
.
.

You connect an external style sheet to a Web page with the <link> element, setting the rel
attribute to “stylesheet” and the href attribute to the URL of the style sheet like this:

<html>
<head>

<title>
Using An External Style Sheet

</title>

<link rel=”stylesheet” href=”style.css”>

</head>

<body>

<center>
<h1>

Using An External Style Sheet
</h1>

16_785970 ch09.qxp 1/20/06 12:26 PM Page 276

Handling mouse events
After you’ve set up the embedded styles that this example will use, how do
you actually use those styles to make this example work? Everything starts
with the mouse in this case because when the user moves the mouse over
an image, the code is supposed to display a menu of clickable items.

This example works by watching where the mouse is; if it’s over an image,
the code should display a menu (if that menu isn’t already displayed). To
track the mouse, the <body> tag’s onmousemove event is connected to a
JavaScript function named check:

<body onclick = “hide()” onmousemove = “check(event)”>

The check function checks to see where the mouse is and starts by creating
a browser-independent mouse object (e).

function check(evt)
{
var e = new MouseEvent(evt);
.
.
.

That object is created using a JavaScript function named MouseEvent, which
creates a cross-browser mouse event object (similar to the handling of drag
and drop operations in Chapter 6):

function MouseEvent(e)
{
if(e) {
this.e = e;

} else {

277Chapter 9: Working with Cascading Style Sheets in Ajax Applications

<P>
This page uses an external style sheet.

</center>

</body>
</html>

This code includes the new style sheet, style.css, in the page and applies the styles defined
in it as appropriate. That’s how to set up an external style sheet. (Remember: The example
menus.html sets up its styles using a <style> element and inline styles, not an external style
sheet.)

16_785970 ch09.qxp 1/20/06 12:26 PM Page 277

this.e = window.event;
}

if(e.pageX) {
this.x = e.pageX;

} else {
this.x = e.clientX;

}

if(e.pageY) {
this.y = e.pageY;

} else {
this.y = e.clientY;

}

if(e.target) {
this.target = e.target;

} else {
this.target = e.srcElement;

}
}

You can use the new mouse event object to determine where the mouse is
currently.

Displaying a menu
If the mouse is inside an image, the code should display a menu. Here’s how
the code checks to see if the mouse is inside the first image, whose ID equals
image1:

function check(evt)
{
var e = new MouseEvent(evt);
var img;

img = document.getElementById(“image1”);
if(e.x > parseInt(img.style.left) && e.y >
parseInt(img.style.top) &&
e.x < (parseInt(img.style.left) +
parseInt(img.style.width))
&& e.y < (parseInt(img.style.top) +
parseInt (img.style.height))){
.
.
.

}
.
.
.

278 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 278

If the mouse is inside this image, image1, the application gets the data for
the first menu from the server, which it does by calling a new JavaScript func-
tion named getData and passing a value of 1 (indicating that it wants the
data for the first menu):

function check(evt)
{
var e = new MouseEvent(evt);
var target = null;
var img;

img = document.getElementById(“image1”);
if(e.x > parseInt(img.style.left) && e.y >
parseInt(img.style.top) &&
e.x < (parseInt(img.style.left) +
parseInt(img.style.width))
&& e.y < (parseInt(img.style.top) +
parseInt (img.style.height))){
getData(1);

}
.
.
.

Similarly, if the mouse is inside the second image, the application should get
the data for the second menu:

function check(evt)
{
var e = new MouseEvent(evt);
var img;
.
.
.
img = document.getElementById(“image2”);
if(e.x > parseInt(img.style.left) && e.y >
parseInt(img.style.top) &&
e.x < (parseInt(img.style.left) +
parseInt(img.style.width))
&& e.y < (parseInt(img.style.top) +
parseInt(img.style.height))){
getData(2);

}
.
.
.

279Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 279

Hiding a menu
At this point, the code has checked to see if it should display a menu. But
what if the mouse is outside any image and also outside either menu <div>
element? In that case, you can hide the menus using a JavaScript function
named hide:

function check(evt)
{
var e = new MouseEvent(evt);
var target = null;
var img;
.
.
.
target = document.getElementById(“menuDiv1”);
img = document.getElementById(“image1”);

if (target.style.visibility == “visible”){
if(e.x < parseInt(target.style.left) || e.y <
parseInt(img.style.top) ||
e.x > (parseInt(img.style.left) +
parseInt(img.style.width))
|| e.y > (parseInt(target.style.top) +
parseInt(target.style.height))){
hide();

}
}

target = document.getElementById(“menuDiv2”);
img = document.getElementById(“image2”);

if (target.style.visibility == “visible”){
if(e.x < parseInt(target.style.left) || e.y <
parseInt(img.style.top) ||
e.x > (parseInt(img.style.left) +
parseInt(img.style.width))
|| e.y > (parseInt(target.style.top) +
parseInt(target.style.height))){
hide();

}
}

}

The hide function hides the menus if they’re currently visible using the
menu <div> element’s visibility style property this way:

function hide()
{
var menuDiv1 = document.getElementById(“menuDiv1”);

if(menuDiv1.style.visibility == “visible”){

280 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 280

menuDiv1.innerHTML = “<div></div>”;
menuDiv1.style.visibility = “hidden”;

}

var menuDiv2 = document.getElementById(“menuDiv2”);
if(menuDiv2.style.visibility == “visible”){
menuDiv2.innerHTML = “<div></div>”;
menuDiv2.style.visibility = “hidden”;

}
}

Getting a menu’s item from the server
The preceding sections handle the mouse and show and hide the menu
<div> elements. Now how about stocking them with some data? In this
example, when the check function calls the getData function, it passes the
number of the menu it wants to get the data for — menu 1 or menu 2. The
menu items for menu 1 are stored in a file named items1.txt:

Tuna, Roast beef, Chicken

and the items for menu 2 are stored in a file named items2.txt:

Pepperoni, Sausage, Olive

Here’s how the correct menu’s text is downloaded in the getData function in
this example:

function getData(menu)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

var dataSource = (menu == 1) ? “items1.txt” : “items2.txt”;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
.

281Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 281

.

.
}

}

XMLHttpRequestObject.send(null);
}

}

When a menu’s text is downloaded and ready to go, this code calls another
function (show) to show the actual menu items.

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
show(menu, XMLHttpRequestObject.responseText);

}
}

Handling the menu items
The show function is passed the menu number to show and the items that
should appear in that menu. This is where the menu items in each menu are
constructed. Those items will be placed in an HTML table for easy display in
the menu <div> elements.

The show function is passed the number of the menu to work with, and
the items appear in that menu in a format like this: “Tuna, Roast beef,
Chicken”. How can you turn that text into an array that you can use to
build the menu itself? Very easily, as it turns out — you can use the built-in
JavaScript function, split, which splits a string on the text you pass to this
function. So, if you pass a quoted comma to this function, it splits a comma-
separated string into substrings automatically:

<script language = “javascript”>
var arrayItems;
.
.
.

function show(menu, items)
{
arrayItems = items.split(“, “);
.
.
.

282 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 282

If you pass this function the string “Tuna, Roast beef, Chicken”, after
the split function is done, the arrayItems[0] will contain “Tuna”,
arrayItems[1] will contain “Roast beef”, and arrayItems[2] will con-
tain “Chicken”. Very handy.

The next step is displaying those items in a menu <div> element, which is
done by constructing an HTML table. The code starts constructing that table
by looping over the menu items and storing the text for the table in a variable
named data:

function show(menu, items)
{
var data = “<table width = ‘100%’>”;
var loopIndex;
arrayItems = items.split(“,”);

if (arrayItems.length != 0) {
for (var loopIndex = 0; loopIndex < arrayItems.length;
loopIndex++) {
.
.
.

}
}

data += “</table>”;
.
.
.

}

When the user clicks a menu item, the code needs to respond, so it ties the
onclick event attribute of each table cell to a function named display,
passing that function the index of the item that was clicked:

function show(menu, items)
{
var data = “<table width = ‘100%’>”;
var loopIndex;
arrayItems = items.split(“,”);

if (arrayItems.length != 0) {
for (var loopIndex = 0; loopIndex < arrayItems.length;
loopIndex++) {
var text = “display(“ + loopIndex + “)”;
data += “<tr><td “
+ “onclick=’” + text + “‘>” +
arrayItems[loopIndex] +
“</td></tr>”;

}
}

283Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 283

data += “</table>”;
.
.
.

}

Now that the menu items have all been assembled into the HTML table and
are ready to go, all that’s left is to actually display the menu by setting its
visibility style to “visible” if it’s currently hidden. (The code doesn’t
change the visibility style if the menu is already visible — this prevents
flickering on the screen.)

function show(menu, items)
{
var data = “<table width = ‘100%’>”;
var loopIndex;
arrayItems = items.split(“,”);
var target;
.
.
.
data += “</table>”;

if(menu == “1”){
target = document.getElementById(“menuDiv1”);

}

if(menu == “2”){
target = document.getElementById(“menuDiv2”);

}

if(target.style.visibility == “hidden”){
target.innerHTML = data;
target.style.visibility = “visible”;

}
}

And there you have it. All that’s left is to add the display function, which is
called when the user makes a menu selection. This function is passed the index
of the item selected, and displays that item in a styled <div> element named
targetDiv (refer to Figure 9-2). The text for the current menu items is stored
in the arrayItems array, and the display function only needs to fetch the
text for the clicked menu item from that array. Here’s how it does that:

function display(index)
{
var targetDiv = document.getElementById(“targetDiv”);

targetDiv.innerHTML = “You selected “
+ arrayItems[index] + “.”;

}

284 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 284

And that finishes this application, menus.html. This application uses CSS
styles to display and hide clickable menus as needed, loading those menus
with items fetched from the server using Ajax. When the user moves the
mouse over an image, a menu pops up and the user can select menu items;
when the user moves the mouse away from the image or menu, the menu
closes. Very cool.

Displaying Text That Gets Noticed
Ajax critics sometimes say that a problem with Ajax is that things can change
in a Web page without the user noticing. One way to address that is to use CSS
styles to make the changes stand out. For example, take a look at Figure 9-3.
The fetched text in that figure appears in red for half a second, then changes
to black (as it appears in the figure). And when that happens, it’s hard not to
notice it.

You can use styles, along with a little JavaScript, to make this effect happen.
JavaScript has a built-in function named setTimer that can call your code
after a certain amount of time has passed. In this example, the text fetched
from the server is displayed in red at first, and then changes back to black.
That color change is done using styles, as you might expect. How does this
example work? The setTimer function is instructed to call another function,
dimmer, which will change the color of the text to black after half a second:

<script language = “javascript”>
function getData(dataSource, divID)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

Figure 9-3:
Displaying

red text
to get

attention.

285Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 285

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject(“Microsoft.XMLHTTP”);

}

if(XMLHttpRequestObject) {
var obj = document.getElementById(“targetDiv”);
XMLHttpRequestObject.open(“GET”, dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.style.color = “#FF0000”;
obj.innerHTML = XMLHttpRequestObject.responseText;
setTimeout(dimmer, 500);

}
}

XMLHttpRequestObject.send(null);
}

}

function dimmer()
{

var obj = document.getElementById(“targetDiv”);
obj.style.color = “#000000”;

}
</script>

Give this one a try — the fetched text stands out nicely when it first appears
in red.

In fact, the setTimer function is a handy one for many uses. For example,
here’s how you can scroll text in the status bar at the bottom of the browser
to catch the user’s attention (this won’t work in Firefox):

<script language=”JavaScript”>
var text = “Hello from Ajax! Hello from Ajax! “
function scroller()
{

window.status = text
text = text.substring(1, text.length) + text.substring(0, 1)
setTimeout(“scroller()”, 150)

}
</script>

As you can see, being a master of CSS styles can be very important to Ajax
programmers. But there are so many styles available that it’s hard to wade
through all the CSS documentation. For that reason, in the following sections,
I show you some of the most popular style properties for Ajax programmers.

286 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 286

Styling text
Here are some of the popular style properties you can use with text:

� font-family: Specifies the actual font, such as Arial or Helvetica. If
you want to list alternative fonts in case the target computer is missing
your first choice, specify the fonts as a comma-separated list, like this:
font-family: Arial, Helvetica.

� font-style: Specifies how the text is to be rendered. Set to normal,
italic, or oblique.

� font-weight: Refers to the boldness or lightness of the glyphs used to
render the text, relative to other fonts in the same font family. Set to
normal, bold, bolder, lighter, 100, 200, 300, 400, 500, 600, 700,
800, or 900.

� line-height: Indicates the height given to each line.

� font-size: Refers to the size of the font.

� text-decoration: Underlines text. Set to none, underline,
overline, line-through, or blink.

� text-align: Centers text. Set to left, right, or center.

Here’s an example, font.html, putting font properties to work:

<html>
<head>

<title>
Setting Font Styles

</title>
<style type=”text/css”>

body {font-style: italic; font-variant: normal; font-weight: bold;
font-size: 12pt; line-height: 10pt; font-family: arial, helvetica;
text-align: center;}

</style>
</head>

<body>
<h1>Setting Font Styles</h1>

This text has been styled with CSS styles.

</body>
</html>

You can see what font.html looks like in a browser in Figure 9-4.

287Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 287

Styling text is one of the most common things to use CSS styles for, but know-
ing which style property does what isn’t always easy. This next example
clears some of the fog by using these text properties:

� font-style to make text italic

� font-weight to make text bold

� font-size to set the font size

� font-family to set the font face

� text-decoration to underline the text

� text-align to center the text

Here’s what the example, text.html, looks like:

<html>
<head>

<title>
Styling Text

</title>

<style>
p {font-size: 18pt; font-style: italic; font-family:

Arial, Helvetica; text-align: center;}
</style>

</head>

<body>
<center>

<h1>
Styling Text

</h1>
</center>
<p>

Figure 9-4:
Styling text

with font
properties.

288 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 288

This text is in italics. Some of it is
bold,
and some is

underlined.

</body>
</html>

You can see text.html in a browser in Figure 9-5, which displays the text
using italics, bold, and underlining. Not bad.

Handling colors and backgrounds
Here are some of the popular style properties that you use to set color and
backgrounds:

� color: Sets the foreground color. Set to a color, such as #FFFFFF.

� background-color: Sets the background color. Set to a color, such as
#FFFFFF.

� background-image: Sets the background image. Set to a URL.

� background-repeat: Specifies whether the background image should
be tiled. Set to repeat, repeat-x, repeat-y, or no-repeat.

� background-attachment: Specifies whether the background scrolls
with the rest of the document. Set to scroll or fixed.

� background-position: Sets the initial position of the background. Set
to top, center, bottom, left, or right.

Figure 9-5:
Styling text

with font
properties.

289Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 289

Here’s an example, colors.html. In this case, I’m styling both the back-
ground and foreground of a document to make some text stand out:

<html>
<head>

<title>
Styling foregrounds and backgrounds

</title>
</head>

<body style=”background-color: #AADDDD”>

<div align=”left”>
CEO

HTML Styles, Inc.

Oz, North Carolina

</div>

<p>
Dear Leo:
<div align=”center” style=”color: #FF0000; background-color:

#FFFFFF; font-style: italic;”>
Like my new text?

</div>

<div align=”right”>
<p>
President

CSS Styles, Inc.

Emerald City, Pennsylvania

</div>

</body>
</html>

You can see what colors.html looks like (in glorious black and white) in
Figure 9-6. As you can see in that figure, the text in the middle does indeed
stand out (and in real life it stands out even more because it’s red).

Want an easy way to set colors? Besides setting colors the usual HTML way
(for example, #AAFFAA), you can also use a special function, rgb, when setting
colors in CSS style sheets. You pass the red, green, and blue values (0–255)
you want in your new color to this function — for example, rgb(255, 0, 0)
would be pure red. Here’s an example showing how to set foreground and
background colors using rgb:

290 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 290

<table border=”2” width=”400” height=”200” style=”text-align:center”>
<tr>

<th style=”background-color: rgb(255, 0, 0)”>Tic</th>
<th style=”background-color: rgb(255, 0, 0)”>Tac</th>
<th style=”background-color: rgb(255, 0, 0)”>Toe</th>

</tr>
<tr>

<td style=”background-color: rgb(0, 0, 255)”>X</td>
<td style=”background-color: rgb(0, 0, 0); color:

rgb(255, 255, 255)”>
O

</td>
<td style=”background-color: rgb(0, 255, 0)”>X</td>

</tr>
<tr>

<td style=”background-color: rgb(0, 0, 0); color:
rgb(255, 255, 255)”>
O

</td>
<td style=”background-color: rgb(255, 255, 255)”>X</td>
<td style=”background-color: rgb(0, 0, 0); color:

rgb(255, 255, 255)”>
O

</td>
</tr>
<tr>

<td style=”background-color: rgb(255, 255, 0)”>X</td>
<td style=”background-color: rgb(0, 0, 0); color:

rgb(255, 255, 255)”>
O

</td>
<td style=”background-color: rgb(0, 255, 255)”>X</td>

</tr>
</table>

Figure 9-6:
Styling

foregrounds
and back-

grounds.

291Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 291

This example, colortable.html, appears in Figure 9-7 — also in glorious
black and white. To see what it really looks like, open it up in your browser —
there are plenty of colors here.

You can also assign standard colors by name to the color and background-
color properties. For example, you can assign values like red, green,
and even coral, magenta, and cyan to the color properties color and
background-color.

Positioning using styles
Among the favorite CSS styles used by Ajax developers are those that deal
with positioning elements in a Web page — good for pop-up menus, drag-and-
drop, auto-complete boxes, Google-search boxes, and more. You can find
numerous examples of positioning elements throughout this book.

Positioning is commonly used by Ajax programmers when updating a page.
Using styles, you can position items in absolute or relative terms. I cover
both in the following sections.

Absolute positioning
In absolute positioning, you position elements so that the browser measures x
and y distances from the upper-left corner of its client area (the content dis-
play part of the browser, excluding menu bars, status bars, scroll bars, and so
on). In other words, the elements are fixed in place in the browser window.
Measurements are in pixels by default. Positive x increases to the right, and
positive y increases downward. Here are the CSS style properties you use
when positioning elements in an absolute way:

Figure 9-7:
Styling

foregrounds
and back-

grounds.

292 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 292

� position: Set to absolute for absolute positioning.

� top: Offset of the top of the element on the screen. By default, this mea-
surement is taken to be in pixels. You can append “px” to the end of
this value to make sure the browser interprets the measurement as
pixels, as in “50px”.

� bottom: Offset of the bottom of the element in the browser’s client area.
By default, this measurement is taken to be in pixels. You can append
“px” to the end of this value to make sure the browser interprets the
measurement as pixels, as in “50px”.

� left: Offset of the left edge of the element in the browser’s client area.
By default, this measurement is taken to be in pixels. You can append
“px” to the end of this value to make sure the browser interprets the
measurement as pixels, as in “50px”.

� right: Offset of the right edge of the element in the browser’s client
area. By default, this measurement is taken to be in pixels. You can
append “px” to the end of this value to make sure the browser inter-
prets the measurement as pixels, as in “50px”.

� z-order: Sets the stacking order of the item with respect to other
elements.

Here’s an example, absolute.html. In this case, I set position to absolute,
and then specified the top and left properties for three <div> elements, each
of which holds both an image and text:

<html>

<head>
<title>

Absolute Positioning
</title>

</head>

<body>

<h1 align=”center”>
Absolute Positioning

</h1>

<div style=”position:absolute; left:50; top:60;”>

Image 1

</div>

<div style=”position:absolute; left:200; top:90;”>

Image 2

293Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 293

</div>

<div style=”position:absolute; left:350; top:120;”>

Image 3

</div>

</body>

</html>

You can see the results in Figure 9-8, where the three images are positioned
as they should be.

You can also specify how elements in a Web page stack on top of each other
using the z-order property. Elements with a higher z-order setting appear
on top of elements with a lower z-order setting. For example, say that you
set the z-index of the second image to 200, a high value:

<div style=”position:absolute; left:200; top:90; z-index:200”>

Image 2

</div>

Now Image 2 is on top of the other images in the page, as you can see in
Figure 9-9. If you drag that image around, it always rides on top of the other
images in the page.

Figure 9-8:
Using

absolute
positioning.

294 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 294

Relative positioning
You can also position elements in a Web page with respect to others,
called relative positioning. Here are the properties you set to use relative
positioning:

� position: Set to relative for relative positioning.

� top: Offset of the top of the element from where it would otherwise be
placed. By default, this measurement is taken to be in pixels. You can
append “px” to the end of this value to make sure the browser inter-
prets the measurement as pixels, as in “50px”.

� bottom: Offset of the bottom of the element from where it would other-
wise be placed. By default, this measurement is taken to be in pixels.
You can append “px” to the end of this value to make sure the browser
interprets the measurement as pixels, as in “50px”.

� left: Offset of the left edge of the element from where it would other-
wise be placed. By default, this measurement is taken to be in pixels.
You can append “px” to the end of this value to make sure the browser
interprets the measurement as pixels, as in “50px”.

� right: Offset of the right edge of the element from where it would other-
wise be placed. By default, this measurement is taken to be in pixels.
You can append “px” to the end of this value to make sure the browser
interprets the measurement as pixels, as in “50px”.

� z-order: Sets the stacking order of the item with respect to other
elements.

Figure 9-9:
Setting z-

index to
customize

overlapping.

295Chapter 9: Working with Cascading Style Sheets in Ajax Applications

16_785970 ch09.qxp 1/20/06 12:26 PM Page 295

You use relative positioning in a browser to change the position of an ele-
ment from where the browser would otherwise normally place it. In other
words, relative positioning changes the position of elements with respect to
the normal “flow.”

Here’s an example, relative.html. In this case, I’m moving some text up 5
pixels and other text down 5 pixels from the normal position at which the
browser would place that text:

<html>

<head>
<title>

Relative Positioning
</title>

</head>

<body>

<h1 align=”center”>
Relative Positioning

</h1>
Do you like
roller
coasters as much as I

do?

</body>

</html>

You can see the results in Figure 9-10. As you see, some of the text is higher
by 5 pixels than it would be if placed in the normal flow, and some of the text
is lower by 5 pixels.

Figure 9-10:
Using

relative
positioning

with text.

296 Part IV: In-Depth Ajax Power

16_785970 ch09.qxp 1/20/06 12:26 PM Page 296

Chapter 10

Working with Ajax and PHP
In This Chapter
� Understanding the basic PHP syntax

� Extracting data from HTML controls

� Sending data to the server

� Reading and writing files on the server

� Handling databases with PHP

The CEO says, “No, we can’t just have static data returned from the server.
We need to send data to the server from our Ajax code and have cus-

tomized data returned from the server. How can we do it?”

You, the highly-paid Ajax consultant, step up and say, “No problem. How
about using PHP on the server to handle your data interactively?”

“Sounds great,” says the CEO. “I hope your rates are reasonable?”

“Nope,” you say.

“Darn,” says the CEO.

Ajax applications often interact with programming code on the server, and
these days, the most frequent choice is PHP. Ajax programmers typically
don’t need a great deal of in-depth coding on the server, but if you want to
write your own PHP scripts, knowing the basics is important — and that’s
what this chapter gives you: the PHP basics.

Because Ajax involves server-side programming, this chapter focuses on work-
ing with PHP on the server. If you can handle JavaScript, you can handle PHP. In
fact, much of the syntax is very similar, so you’ve already got a big leg up.

Note that this chapter is just a PHP primer — I couldn’t possibly fit all of PHP
in these pages. If you need more than what you see here, check out PHP 5 For
Dummies, by Janet Valade (Wiley Publishing, Inc.).

17_785970 ch10.qxp 1/20/06 12:27 PM Page 297

Starting with PHP
Technically speaking, you should enclose your PHP scripts, which are stored
in files with the extension .php (like checkprice.php) inside <? and ?> like
this:

<?
.
. Your PHP goes here....
.

?>

One of the attractive things about PHP is that you can intersperse HTML and
PHP at will. A PHP-enabled server will execute the PHP code inside the
<?...?> sections, and just send the HTML on as usual.

Here’s an example that runs the built-in PHP function phpinfo, which cre-
ates an HTML table that tells you about your PHP installation.

Note that both HTML and PHP are interspersed in this example, phpinfo.
php, and note that as in the JavaScript you see throughout this book, you end
each PHP statement with a semicolon (;).

<html>
<head>

<title>
A first PHP page

</title>
</head>

<body>
<h1>

A first PHP page
</h1>
<?

phpinfo();
?>

</body>
</html>

What does this look like at work? You can see the results in Figure 10-1. The
details will vary according to your PHP installation, but the idea is the same:
The phpinfo function displays the table you see in the figure, and the
header, A first PHP page, comes from the HTML you’ve placed in
phpinfo.php.

298 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 298

What about sending some of your own text back to the browser using PHP?
For that, you can use the PHP echo statement. All you do is pass the text you
want to send back to the browser to the echo statement as in this example,
echo.php:

<html>
<head>

<title>
Using the echo statement

</title>
</head>

<body>
<h1>

Using the echo statement
</h1>
<?

echo “Hello from PHP.”;
?>

</body>
</html>

You can see the results in Figure 10-2, where the echo statement is doing its
thing and sending text back to the browser, just as planned.

The echo statement sends text back to the browser, but sometimes in Ajax you
don’t want to send just text — you want to send XML. To make sure that the
text sent back to the browser is treated as XML by the browser, use the PHP
header statement and set the HTTP Content-Type header to text/xml.

Figure 10-1:
Getting the

details of
a PHP

installation.

299Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 299

Here’s an example, xml.php, that I show you later in this chapter, in the
“Round and round with loops” section, where I cover looping over arrays.
This example sends XML back to the browser:

<?
header(‘Content-Type: text/xml’);
$data = array(‘This’, ‘is’, ‘XML.’);
echo ‘<?xml version=”1.0” ?>’;
echo ‘<document>’;
foreach ($data as $value)
{
echo ‘<data>’;
echo $value;
echo ‘</data>’;

}
echo ‘</document>’;
?>

The preceding example sends this XML back to the browser:

<?xml version=”1.0” ?>
<document>
<data>This</data>
<data>is</data>
<data>XML.</data>

</document>

Browsers like Internet Explorer display XML in a special way, as you can see
in Figure 10-3, where Internet Explorer is indeed convinced that the text in
this example, xml.php, is bona fide XML.

Figure 10-2:
Using the
PHP echo

statement.

300 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 300

You can also comment your PHP code. There are three types of comments in
PHP. The first kind of comment lets you write multi-line comments, beginning
with /* and ending with */ like this:

<?
/* Start by displaying a

message to the user */

echo “Hello from PHP.”;
?>

The other two types of comments are one-line comments, just as you see in
JavaScript, designed to hold text that fits on a single line (the comment ends
automatically at the end of the line). To start these comments, you can use
either // or #:

<?
// Start by displaying a
message to the user

echo “Hello from PHP.”;
?>

Getting a Handle on Variables
How about storing some data in variables? As in JavaScript, variables in PHP
can hold numbers, strings, or objects. In PHP, variable names start with a

Figure 10-3:
Sending

XML to the
browser

from PHP.

301Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 301

dollar sign ($) character, and you don’t have to declare them. For example,
to set the variable named $peaches to 1, all you have to do is this:

$peaches = 1;

You can display the value in this variable this way with the echo statement:

echo “Number of peaches: “, $peaches, “
”;

There are two things to note here:

� You can pass multiple items to the echo statement if you separate the
items with commas.

� You’re sending HTML back to the browser, so to skip to the next line,
you use HTML like
.

Using variables in PHP is much like using them in JavaScript. So here’s a PHP
example, variables.php, that assigns a value to $peaches and then changes
the value in that variable by adding 5 to it:

<html>
<head>

<title>
Assigning values to variables

</title>
</head>
<body>

<h1>
Assigning values to variables

</h1>
<?

echo “Setting number of peaches to 1.
”;

$peaches = 1;

echo “Number of peaches: “, $peaches, “
”;

echo “Adding 5 more peaches.
”;

$peaches = $peaches + 5;

echo “Number of peaches now: “, $peaches, “
”;
?>

</body>
</html>

The results are in Figure 10-4. As you can see, working with variables in PHP
is very similar to working with variables in JavaScript.

302 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 302

Besides assigning numbers to variables, you can also assign text strings, as
here:

$string = “Hello from PHP.”;

In JavaScript, you join strings with the + operator, but in PHP, you use the dot
(.) operator instead:

$string = “Hello “ . “from “ . “PHP.”;

PHP also comes with many string functions built in. Here’s a sampling:

� trim: Trims spaces from the beginning and end of a string

� substr: Extracts substrings from a string

� strpos: Finds the location of a substring in a string

� ucfirst: Capitalizes the first character of a string

� substr_replace: Replaces text in a string

� strtoupper: Converts a whole string to uppercase

Here’s an example that puts these string functions to work:

<?
echo trim(“ No problem.”), “
”;
echo substr(“No problem.”, 3, 7), “
”;
echo “‘problem’ starts at position “, strpos(“No problem.”, “problem”),

“
”;
echo ucfirst(“no problem.”), “
”;
echo “‘No problem.’ is “, strlen(“No problem.”), “ characters long.
”;
echo substr_replace(“No problem.”, “problems.”, 3, 8), “
”;
echo strtoupper(“No problem.”), “
”;

?>

Figure 10-4:
Working

with
variables

in PHP.

303Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 303

Here are the results of this script, line by line (with the “
” at the end of
each line stripped away):

No problem.
problem
‘problem’ starts at position 3
No problem.
‘No problem.’ is 11 characters long.
No problems.
ABC
NO PROBLEM.

Want to work with arrays? No problem at all. Just use the PHP array state-
ment. Here’s an example:

$data = array(15, 18, 22);

And you access any item in an array like this:

echo $data[0]; //displays 15
echo $data[1]; //displays 18
echo $data[2]; //displays 22

In PHP, you can also refer to items in an array with a text index if you prefer,
like this:

$data[“temperature”] = 81;
echo $data[“temperature”]; //displays 81

Handling Your Data with Operators
PHP has plenty of operators to handle your data, and most of them are the
same as the operators in JavaScript. Here’s a sampling of PHP operators:

� new

� [

� ! ~ ++ --

� * / %

� + - .

� == !=

� &

� |

� &&

304 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 304

� ||

� ? :

� = += -= *= /= .= %= &= |= ^= <<= >>=

These operators work as you’d expect. Here’s an example, operators.html,
which puts a few of these operators to work:

<html>
<head>

<title>
Assigning values to variables

</title>
</head>
<body>

<h1>
Assigning values to variables

</h1>
<?

echo “2 + 3 = “, 2 + 3, “
”;

echo “2 - 3 = “, 2 - 3, “
”;

echo “2 * 3 = “, 2 * 3, “
”;

echo “2 / 3 = “, 2 / 3, “
”;

?>
</body>

</html>

The results of this example appear in Figure 10-5, where as you can see, the
PHP operators have done their thing.

Figure 10-5:
Working

with
operators

in PHP.

305Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 305

The list of PHP operators earlier in this section is given in terms of operator
precedence in PHP, with higher-precedence operators first. Operator prece-
dence indicates which operator will be executed first if there’s a conflict. For
example, what will the following statement display?

echo 2 + 3 * 4;

Will the 2 be added to the 3 and then multiplied by 4 to give you 20? Or will
the 3 be multiplied by 4 and then added to 2 to give you 14? In PHP, the multi-
plication operator, *, has higher precedence than the addition operator, +, so
the * is executed first. So, 2 + 3 * 4 becomes 2 + 12, which gives you 14.

Making Choices with the if Statement
Just about all high-level programming languages, including PHP, have an if
statement. You use if statements to make choices at runtime. Here’s an
example, if.php, which tests whether the value in a variable named
$temperature is less than 80 degrees:

<html>
<head>

<title>
Using the if statement

</title>
</head>
<body>

<h1>
Using the if statement

</h1>
<?
$temperature = 75;

if ($temperature < 80) {
echo “Pleasant weather.”;
}
?>

</body>
</html>

In this case, $temperature holds a value of 75, so the statement echo
“Pleasant weather.”; is executed. The result is shown in Figure 10-6.

306 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 306

PHP also has an else statement, which works just as it does in JavaScript:

<body>
<h1>

Using the if statement
</h1>
<?
$temperature = 95;

if ($temperature < 80) {
echo “Pleasant weather.”;
}
else {
echo “Too hot.”;
}
?>

</body>

Because the temperature variable here contains a value of 95, you’re going
to see “Too hot.” from this code.

Round and Round with Loops
PHP also supports several loop statements. The for loop works just as it
does in JavaScript; in fact, the only real difference is that you have to give the
loop index variable an initial $, following the PHP way of naming variables.
(For more on the for loop in JavaScript, see Chapter 2.) Here’s an example,
for.php:

Figure 10-6:
Using the if

statement in
PHP.

307Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 307

<html>
<head>

<title>
Using the for loop

</title>
</head>

<body>
<h1>

Using the for loop
</h1>
<?

for ($loopCounter = 0; $loopCounter < 4; $loopCounter++){
echo “You’re going to see this four times.
”;

}
?>

</body>
</html>

You can see this example do its thing in Figure 10-7.

PHP also has a while loop that keeps looping while its condition is true.
Here’s an example that displays the message You’re going to see this
four times, just as the previous for loop example did:

<html>
<head>

<title>
Using the while loop

</title>
</head>

<body>
<h1>

Figure 10-7:
Using

the for
statement

in PHP.

308 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 308

Using the while loop
</h1>
<?

$loopIndex = 1;

while ($loopIndex <= 4){
echo “You’re going to see this four times.
”;
$loopIndex++;

}
?>

</body>
</html>

PHP also has a do...while loop that checks its condition at the end of the
loop, not the beginning, which is useful if the condition you want to test isn’t
even set until the body of the loop is executed. This loop also displays the
message four times:

<?
$loopIndex = 1;

do {
echo “You’re going to see this four times.
”;
$loopIndex++;

} while ($loopIndex <= 4)
?>

PHP also has a foreach loop, which lets you automatically loop over arrays
and other multiple-item objects. This loop is handy because you don’t have
to explicitly know how many items there are in an array to loop over it — all
you have to do is give a name of a variable that will be filled with the current
array item each time through the loop. This example, xml.php, sends XML
back to the server, using a foreach loop to create the XML document:

<?
header(‘Content-Type: text/xml’);
$data = array(‘This’, ‘is’, ‘XML.’);
echo ‘<?xml version=”1.0” ?>’;
echo ‘<document>’;
foreach ($data as $value)
{
echo ‘<data>’;
echo $value;
echo ‘</data>’;

}
echo ‘</document>’;
?>

Very cool.

309Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 309

Handling HTML Controls
When a Web page is sent to the server, you can extract the data from HTML
controls yourself in a PHP script. To send data to the server when a Submit
button is clicked, you’ll need to set the following attributes of the HTML form
containing the text field:

� action: This attribute is assigned the URL to which the form data will
be sent. You can omit this attribute, in which case its default is the URL
of the current PHP document.

� method: Specifies the method for sending data to the server. If you set it
to GET (the default) this method sends all form name/value pair infor-
mation in a URL that looks like: URL?name=value&name=value&name=
value. If you use the POST method, the contents of the form are encoded
as with the GET method, but they are sent in hidden environment
variables.

For example, this Web page, text.html, asks the user to enter his nickname
in a text field named “nickname”, and then it posts that data to a PHP script
named phptext.php.

<html>
<head>

<title>
Sending data in text fields

</title>
</head>

<body>
<center>

<h1>
Sending data in text fields

</h1>

<form method=”post” action=”phptext.php”>
Enter your nickname:

<input name=”nickname” type=”text”>

<input type=”submit” value=”Submit”>
</form>

</center>
</body>

</html>

310 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 310

You can see this page at work in Figure 10-8, where it’s asking for the user’s
nickname.

Getting data from text fields
How do you read the data in an HTML control like you read the nickname
text field in the preceding PHP example?

� If you sent data to the server by using the GET method, you can
recover that data from the PHP $_GET array like this: $_GET[“nick
name”], where nickname is the name you gave to the text field (with
the HTML name attribute).

� If you sent the data by using the POST method, you can access the data
in the text field as $_POST[“nickname”].

There’s another PHP array named $_REQUEST that lets you get that data
regardless of whether you used the GET method or the POST method.
Continuing with the example, here’s how to use $_REQUEST to recover
the text the user entered into the nickname text field:

<html>
<head>

<title>
Reading data from text fields using PHP

</title>
</head>

<body>
<center>

<h1>
Reading data from text fields using PHP

</h1>

Figure 10-8:
A Web page

with a text
field asking

for the
user’s

nickname.

311Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 311

Your nickname is
<?

echo $_REQUEST[“nickname”];
?>

</center>
</body>

</html>

That’s all you need. Now this page, phptext.php, can read the text that was
entered into the text field, as shown in Figure 10-9.

Checking out data from check boxes
The technique in the preceding section works for text fields and text areas,
but what about check boxes? Here’s an example, checkboxes.html, which
asks the user what toppings she wants on her pizza:

<html>
<head>

<title>Sending data in checkboxes</title>
</head>

<body>
<center>
<h1>Sending data in checkboxes</h1>
<form method=”POST” action=”checkboxes.php”>

What do you want on your pizza?
<input name=”pepperoni” type=”checkbox” value=”Pepperoni”>
Pepperoni
<input name=”olives” type=”checkbox” value=”Olives”>
Olives

Figure 10-9:
Reading

data from a
text field in

PHP.

312 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 312

<input type=”submit” value=”Submit”>
</form>
</center>

</body>
</html>

You can see the two check boxes in a browser in Figure 10-10. The user just
selects one or both and then clicks Submit to send her selection to the
server.

You can determine whether a check box has been checked with the PHP
isset function, which returns true if the parameter corresponding to an
HTML control has been set, and false otherwise.

If a check box has been checked, you can get the text that has been assigned
to the check box’s value attribute (that’s “pepperoni” or “olives” in this
example) using the $_GET, $_POST, or $_REQUEST arrays. Here’s what it
looks like in PHP code, phpcheckboxes.php, where you can recover the
names of the toppings the user requested:

<html>
<head>

<title>
Reading data from checkboxes using PHP

</title>
</head>

<body>
<center>

<h1>Reading data from checkboxes using PHP</h1>
You want:

Figure 10-10:
Using check
boxes to ask

the user
what she
wants on
her pizza.

313Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 313

<?
if (isset($_REQUEST[“pepperoni”]))

echo $_REQUEST[“pepperoni”], “
”;
if (isset($_REQUEST[“olives”]))

echo $_REQUEST[“olives”], “
”;
?>

</center>
</body>

</html>

And as shown in Figure 10-11, this PHP script has indeed been able to deter-
mine what the user wants on her pizza. Not bad.

Tuning in data from radio buttons
How do you recover data from radio buttons? Here, you group radio buttons
together, so they act as a set, by giving two or more buttons the same name,
as you see in radios.html. Here, the name given to the radio buttons is
“radios”:

<html>
<head>

<title>Sending data in radio buttons</title>
</head>
<body>

<center>
<h1>Sending data in radio buttons</h1>
<form method=”POST” action=”phpradios.php”>

Do you want fries with that?
<input name=”radios” type=”RADIO” value=”Yes”>

Figure 10-11:
Determining

what the
user wants

on her pizza.

314 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 314

Yes
<input name=”radios” type=”RADIO” value=”No”>
No

<input type=”SUBMIT” value=”Submit”>

</form>
</center>

</body>
</html>

You can see radios.html at work in Figure 10-12.

To recover the radio button that was selected in the radio button group, you
use the name of the group with $_REQUEST, instead of having to work with
each individual control as with check boxes. You can see how this works in
phpradios.php:

<html>
<head>

<title>Reading data from radio buttons using PHP</title>
</head>
<body>

<center>
<h1>Reading data from radio buttons using PHP</h1>
<?

echo “You selected: “, $_REQUEST[“radios”];
?>

</center>
</body>

</html>

The results appear in Figure 10-13, where the PHP was able to get the user’s
selection from the radio buttons.

Figure 10-12:
Using radio

buttons.

315Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 315

Sending Data to the Server
In Ajax, you don’t usually rely on form submission to send data to the server.
How do you send data to the server yourself? The usual way is to add your
data to the end of the URL and use the GET method (as shown in Chapter 3).
In that example, the code encodes the data to send to the server using a
parameter named scheme:

function getOptions(scheme)
{
var url = “options2.php?scheme=” + scheme;

if(XMLHttpRequestObject) {
XMLHttpRequestObject.open(“GET”, url, true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName(“option”);
listOptions();
}

}

XMLHttpRequestObject.send(null);
}

}

In PHP on the server, you can recover the data in the scheme parameter as
$_GET[“scheme”]. Here’s how options2.php put the recovered value to
work in Chapter 3:

Figure 10-13:
Recovering
the setting

of radio
buttons.

316 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 316

<?
if(isset($_GET[“scheme”])){
header(“Content-type: text/xml”);
if ($_GET[“scheme”] == “1”)
$options = array(‘red’, ‘green’, ‘blue’);

if ($_GET[“scheme”] == “2”)
$options = array(‘black’, ‘white’, ‘orange’);

echo ‘<?xml version=”1.0”?>’;
echo ‘<options>’;
foreach ($options as $value)
{
echo ‘<option>’;
echo $value;
echo ‘</option>’;

}
echo ‘</options>’;
}
?>

Using the GET method this way makes sending data to the server easy.

Reading Files
PHP lets you work with files on the server, and that’s a big help to save data —
everything from guest books to current lawn mower prices. To read from a
file, you can use the PHP fopen function to open that file on the server. Here’s
how you typically use this function:

fopen (filename, mode)

Here, filename is the name of the file you’re opening, and mode indicates
how you want to open the file:

� ‘r’: Open the file for reading only.

� ‘r+’: Open the file for reading and writing.

� ‘w’: Open the file for writing only and truncate the file to zero length. If
the file does not exist, PHP will attempt to create it.

� ‘w+’: Open the file for reading and writing and truncate the file to zero
length. If the file does not exist, PHP will attempt to create it.

� ‘a’: Open the file for appending only. If the file does not exist, PHP will
attempt to create it.

� ‘a+’: Open the file for reading and writing, starting at the end of the file.
If the file does not exist, PHP will attempt to create it.

317Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 317

� ‘x’: Create and open the file for writing only. If the file already exists,
the fopen call will not create the file and will return FALSE.

� ‘x+’: Create and open the file for reading and writing. If the file already
exists, the fopen call will not create the file and will return FALSE.

The fopen function returns a file handle, which stands for the file from then
on in your code. You pass this file handle to various functions to read from
the file, or write to it, and so on. For example, there are a variety of ways to
read data from a file using PHP functions such as fgets, which reads a line of
text from a file. To read a line of text, you pass it a file’s handle. Say you have
a file, file.txt, on the server that has these contents:

This
text
comes
from
the
server.

How would you read this text? You can open file.txt with fopen and read
successive lines with fgets in a loop. You can determine when you’ve
reached the end of the file with the feof function, which returns true when
you’re at the end of the file. Here’s how the text in file.txt can be read and
displayed by PHP in phpreadfile.php.

<html>
<head>

<title>
Reading text from a file using PHP

</title>
</head>
<body>
<h1>
Reading text from a file using PHP

</h1>
<?
$handle = fopen(“file.txt”, “r”);
while (!feof($handle)){
$text = fgets($handle);
echo $text, “
”;

}
fclose($handle);

?>
</body>

</html>

Note the expression !feof($handle). This expression uses the PHP “not”
operator, !, which reverses true to false and false to true. So !feof($handle)
is true while you haven’t reached the end of the file yet.

318 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 318

Note also the use of fclose at the end of the code to close the file. When
you’re done with a file, you should close it with fclose. (Closing a file is the
complementary operation to opening it.) You can see phpreadfile.php at
work in Figure 10-14.

This example uses fgets to read strings of text from a file on the server. PHP
offers other ways to do that as well, such as fgetc (which reads individual
characters) and fread (which reads data byte by byte).

Writing Files
You can also write to a file on the server using PHP and the fwrite function.
For example, say that you wanted to create the file file.txt on the server,
with the same content I use in the previous sections. You can start by putting
the text that you want in this file in a variable named $text.

$text = “This\ntext\ncomes\nfrom\nthe\server.”;

Note the \n codes here: Each such code stands for a newline character that
breaks the text up into separate lines, just as the original text for this file.

To be able to write files on the server, you first have to make sure you have
permission to do so. If you aren’t authorized to write to files, you can’t use
examples like this one.

Figure 10-14:
Reading a
file on the

server.

319Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 319

To write to file.txt, you just have to open that file for writing (passing a
mode of “w” to fopen), and then use fwrite to write to the file the text you
want. The fwrite function returns true if it is successful and FALSE other-
wise. Here’s what creating the file looks like in phpfilewrite.php:

<html>
<head>

<title>
Writing a file using PHP

</title>
</head>
<body>

<center>
<h1>

Writing a file using PHP
</h1>

<?
$handle = fopen(“file.txt”, “w”);

$text = “This\ntext\ncomes\nfrom\nthe\server.”;

if (fwrite($handle, $text) == FALSE) {
echo “Could not create file.txt.”;

}
else {

echo “Created file.txt OK.”;
}
fclose($handle);

?>
</center>

</body>
</html>

Opening a file with “w” truncates it to zero length first (before you start writ-
ing) so the current contents are lost. In addition to creating files this way, you
can also open them for appending, using fopen mode “a”, which means any-
thing you add to the file will be added to the end of the file.

Working with Databases
PHP excels at connections to various database systems, which can be good
for Ajax programmers who want to retrieve data from the server.

PHP has many built-in functions to work with various database systems; one
popular choice is MySQL (www.mysql.com). PHP comes with built-in func-
tions like mysql_connect (to connect to a MySQL database server),

320 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 320

mysql_select_db (to select a database to work with), mysql_query (to
send an SQL query to the database), mysql_fetch_array (to convert the
results of a query to an array), and so on.

Although a full treatment of working with PHP and databases is beyond the
scope of this book, here’s an example to get you started. Say you have a data-
base named products, and a table inside that database named pencils,
which lists the type and number of pencils you have in stock.

Here’s how you can fetch the products database and the pencils table
inside it, displaying the values in the type and number fields in the table’s
rows in an HTML table:

<?
$connection = mysql_connect(“localhost”,”root”,””);
$db = mysql_select_db(“products”, $connection);

$query = “SELECT * FROM pencils”;
$result = mysql_query($query);

echo “<table border=’1’>”;
echo “<tr>”;
echo “<th>Type</th><th>Number</th>”;
echo “</tr>”;

while ($row = mysql_fetch_array($result))
{

echo “<tr>”;
echo “<td>”, $row[‘name’], “</td><td>”, $row[‘number’],

“</td>”;
echo “</tr>”;

}

echo “</table>”;

mysql_close($connection);
?>

If you’re interested in finding out more about working with databases in PHP,
check out PHP 5 For Dummies, by Janet Valade (Wiley Publishing, Inc.).

321Chapter 10: Working with Ajax and PHP

17_785970 ch10.qxp 1/20/06 12:27 PM Page 321

322 Part IV: In-Depth Ajax Power

17_785970 ch10.qxp 1/20/06 12:27 PM Page 322

Part V
The Part of Tens

18_785970 pt05.qxp 1/20/06 12:27 PM Page 323

In this part . . .

No For Dummies book would be a For Dummies
book without a few Part of Tens chapters. Here,

Chapters 11 and 12 give you useful Ajax info in a handy
top-ten-list format. Chapter 11 lists Ajax design issues that
you’ll encounter sooner or later, and what to do about
them. Chapter 12 takes another route by providing you
with a list of ten essential Ajax resources online, from the
seminal Ajax sites to Google Ajax groups to Ajax blogs. If
you’ve got a problem with your Ajax coding, these are the
sites to go to. Take a look — I think you’ll discover that
the Ajax online community is a pretty friendly place.

18_785970 pt05.qxp 1/20/06 12:27 PM Page 324

Chapter 11

Ten Ajax Design Issues You
Should Know About

In This Chapter
� Handling the Back button

� Thinking about security

� Storing search terms in Ajax pages

� Watching out for caching

Ajax is a new ball of wax when it comes to Web applications, and as
such, new rules about how the interface should and shouldn’t work

are emerging. Those rules have not been formalized yet, but the Ajax commu-
nity is discussing them. Before launching into creating your own Ajax applica-
tions, thinking about the design issues I explain in this chapter is a good idea.

You can also find more information on the best practices for Ajax program-
ming (also called Ajax patterns) at http://ajaxpatterns.org. Chapter 12
introduces the Ajax patterns site in more detail, along with several other
helpful Ajax resources.

Breaking the Back Button
and Bookmarks

When you have control over what’s going on in a Web page and you’re using
JavaScript to make things turn on and off in a page — or even to alter the
page’s entire appearance — the browser’s Back button won’t work anymore.
The Back button works from the browser’s history object, which stores the
successive pages that have been loaded into the browser. But if you aren’t
loading new pages — which is what Ajax is all about — the history object
doesn’t know about them.

19_785970 ch11.qxp 1/20/06 12:27 PM Page 325

This is one to keep in mind as you design your Ajax applications. If necessary,
provide your own local Back button using JavaScript. If you want to let the
user move backwards to previous window states, you have to keep track of
what’s been going on and let the user navigate as they want to.

There have been attempts at fixing this problem, although they’re usually
pretty complex to implement. One of the best is Mike Stenhouse’s effort at
www.contentwithstyle.co.uk/articles/38, which works by playing
around with URLs to make the browser store pages in its history object.

Giving Visual Cues
Ajax works mostly behind the scenes, and that can be hard on the user. If
you’re loading a lot of data, for example, or waiting for the server, a visual
cue, such as a rotating hourglass image, is a good idea because a cue helps
users understand they need to be patient and their connections are in fact
working. You can display animated images using small .gif files and use
dynamic styles to make those images appear or disappear in JavaScript:

document.getElementById(“image1”).style.visibility= “visible”;
document.getElementById(“image1”).style.visibility= “hidden”;

The user might expect some visual cues in the normal way of browsers, such
as a control that shows a blue line slowly creeping from left to right, or any-
thing you can come up with that will help the user match expectations.

Leaving the User in Control
Ajax applications can seem to take on a life of their own because they oper-
ate behind the scenes. And they can communicate with the server even when
the user doesn’t want them to — as when the user makes a typing error. You
can imagine how you’d feel if you’d just entered a typo and it was immedi-
ately stored in a database by an application that didn’t ask you if you wanted
to store anything.

So, to give your applications a good feel, here are a few tips for putting users
in control:

� Don’t whisk data away for storage until the user really wants to store it.

� Remember that, ideally, your application is supposed to respond to
events caused only by the user. Users can find too much server-side vali-
dation disconcerting because it creates the impression that you’re cor-
recting them at every keystroke. Don’t forget that one of the design

326 Part V: The Part of Tens

19_785970 ch11.qxp 1/20/06 12:27 PM Page 326

principles of graphical user interfaces (GUIs) is that the user should be
in control, that they should direct the action.

� And don’t forget to offer the user a way of undoing errors.

Remembering All the Different Browsers
As with any Web application, it’s worthwhile to keep in mind that there are
many different browsers around, and your Ajax application should be tested
in the ones you want to support.

As of this writing, Internet Explorer and Firefox make up about 96 percent of
browser use, and the rest (Opera, Safari, and so on) are each in the 1 percent
or less category.

And don’t forget that not all browser will support JavaScript, or will have
JavaScript turned on — and for those users, you should have a backup plan.

Showing Users When Text Changes
A powerful Ajax technique is to change the data displayed in a page using
<div>, , or other HTML elements or by using HTML controls like text
fields. Ajax applications can change the data in a page after consulting with
the server — but without consulting with the user. For example, you may have
altered the data in a table of data when the data on the server has changed.

That means that the user might not notice that the data has changed. So be
careful about how much you change in a Web page and where because the
user might miss it.

Once again, visual cues can help here — if you’ve changed some text, you
might give it, or the control it appears in, a different background color. For
example, here’s how to turn the text in a <div> element red using the color
style property:

document.getElementById(“targetDiv”).style.color = “red”;

Want to change the background color instead? Use the background-color
style property instead:

document.getElementById(“targetDiv”).style.background-color = “red”;

327Chapter 11: 10 Ajax Design Issues You Should Know About

19_785970 ch11.qxp 1/20/06 12:27 PM Page 327

Avoiding a Sluggish Browser
Ajax applications can be large, and when they start using up resources like
memory and CPU speed, you’ve got to be careful. A large application can use
up a huge amount of memory, especially if you’re not careful about getting rid
of large objects that have been created.

Sometimes, developers use Ajax just because it’s a new thing. Be careful
about that tendency, too. Ajax solves many problems, but if you don’t have to
use it, there’s no reason to. And also, don’t forget that your Ajax applications
might not work in all browsers — such as those where JavaScript has been
turned off. You should provide some kind of backup plan in that case.

Handling Sensitive Data
With Ajax, it’s easy to send data without the user knowing what’s going on. In
fact, that’s part of the whole client/server connection thing that makes Ajax
so popular. But it’s also true that the user may not want to send the data
you’re sending.

It’s best to be careful about sensitive data. The Internet is not necessarily a
secure place for sensitive data, after all, and if you start sending social secu-
rity numbers or credit card numbers without the user’s permission, you
could wind up in trouble. So give the users the benefit of the doubt — ask
before you send sensitive data.

Creating a Backup Plan
Ajax relies on being connected to a server but don’t forget that not everyone
is online all the time. And your own server may go down, so your users may
be working from cached pages. If you can’t connect to a page online, you
should have some kind of backup. And that goes for users who have
browsers that don’t support JavaScript, too.

Showing Up in Search Engines
Google searches billions of Web pages for the text that its users search for —
but if the text you display is loaded into a page based on user actions, not on
browser refreshes, Google isn’t able to see that text. So bear in mind that if
you want to make your page searchable on search engines like Google, you’ve

328 Part V: The Part of Tens

19_785970 ch11.qxp 1/20/06 12:27 PM Page 328

got to give your page the search terms they need. (You can store your key-
words in a <meta> tag in the browser’s <head> section, for example, which is
where search engines expect to find them. See www.searchenginewatch.
com/webmasters/meta.html for more information on that.)

Sidestepping a Browser’s Cache
Okay, enough with the things to be careful about. How about getting some
programming going on here?

Browsers such as Internet Explorer cache Web pages. That means that if
someone accesses a URL using Ajax more than once, the browser may give
them a copy of the page from its cache, as opposed to actually going back to
the server and getting a new copy of the page. And that can be a problem if
the data on the server has changed.

If you change the data on the server but still see the same data as before in
your Ajax application, you may be a victim of caching.

If you want your Ajax applications to avoid caching, you can try setting vari-
ous headers when you send data back from the server; that would look like
this in PHP:

header(“Cache-Control”, “no-cache”);
header(“Pragma”, “no-cache”);
header(“Expires”, “-1”);

However, this method turns out to be unreliable with Internet Explorer. One
practical way to help your applications avoid caching is to alter the URL the
application is requesting from the server. For example, you might append a
meaningless value named t — which your server-side program ignores — to
the end of the URL like this:

var myUrl = “data.php?name=steve” + “&t=” + new Date().getTime();

This appends the current time, measured in milliseconds, to the end of the
URL. Because this URL has never been accessed before, it hasn’t been
cached, and you can be sure that your application is getting the latest data
from the server.

One of the Ajax frameworks that lets you turn caching on and off like this
is request.js, which you can pick up at http://adamv.com/dev/
javascript/http_request. See Part III for more on Ajax frameworks.

329Chapter 11: 10 Ajax Design Issues You Should Know About

19_785970 ch11.qxp 1/20/06 12:27 PM Page 329

330 Part V: The Part of Tens

19_785970 ch11.qxp 1/20/06 12:27 PM Page 330

Chapter 12

Ten Super-Useful Ajax Resources
In This Chapter
� The original Ajax article that started it all

� Some super Ajax sites

� Ajax tutorials

� Ajax discussion groups

� XMLHttpRequest object reference pages

There’s plenty of Ajax help on the Internet, ready to give you all sorts of
information and advice. You can find a good list of Ajax resources in this

chapter, including the Web address for the original article by Jesse James
Garrett of Adaptive Path that started the whole Ajax juggernaut going. You
can also get wrapped up in any of the Ajax blogs and discussion groups that I
introduce here.

Don’t forget, this being the Internet, that URLs can change without notice.
And also keep in mind that the Ajax phenomenon is still exploding — more
sites, frameworks, and discussions are appearing all the time. Keep in touch
with the Ajax community online — there are great days ahead.

The Original Ajax Page
www.adaptivepath.com/publications/essays/archives/000385.php

Yep, this is the big one, the original Ajax page where Jesse James Garrett
coined the term Ajax. This article, named “Ajax: A New Approach to Web
Applications,” even includes a nice picture of Jesse. Although some people
have noted that all the technologies involved in Ajax were in use before this
article came out, the article, nevertheless, focused vast amounts of attention
on Ajax and what it could do.

20_785970 ch12.qxp 1/20/06 12:28 PM Page 331

Adaptive Path says, “Since we first published Jesse’s essay, we’ve received an
enormous amount of correspondence from readers with questions about
Ajax.” You can find a question and answer section at the end of the page
where Jesse answers some of those questions.

The Ajax Patterns Page
http://ajaxpatterns.org

The Ajax Patterns page is a great Ajax resource. Patterns refers to best pro-
gramming practices, and there’s a lot of discussion on this site about the
topic.

In addition, this site has a great page of links to Ajax examples (http://
ajaxpatterns.org/Ajax_Examples) and to the various Ajax frameworks
available (http://ajaxpatterns.org/Ajax_Frameworks). In Part III, I
explain many ways in which you put these frameworks to use.

In my view, the interactive discussion and huge number of resources help
make this the best Ajax site available anywhere, bar none. Take a look!

The Wikipedia Ajax Page
http://en.wikipedia.org/wiki/AJAX

Wikipedia’s Ajax page is also a great resource. Wikipedia is a free, online
encyclopedia, and this page has an in-depth discussion with many links on
what Ajax is (and isn’t).

This page has one of the best all-around Ajax overviews you’re going to find
anywhere, including not only a discussion of what Ajax is good for, but a dis-
cussion of problems — in other words, both the pros and cons.

And you can also find many links to Ajax resources of all kinds, from Ajax
examples to Ajax frameworks.

Ajax Matters
www.ajaxmatters.com/r/welcome

332 Part V: The Part of Tens

20_785970 ch12.qxp 1/20/06 12:28 PM Page 332

Ajax Matters is another power-packed Ajax site, currently updated all the
time, on all things about Ajax. It’s great for all-around Ajax topics of any kind.
Here’s a quick list of what you can find:

� Headlines on new product releases

� Links to books, example sites that use Ajax, and resources that Ajax
developers need, such as JavaScript references

� Frameworks

� Articles

� Discussions

XMLHttpRequest Object References
Where are the official references showing how to use XMLHttpRequest
objects in the various browsers? You can find the official references for each
browser, listing object methods and properties at the following sites:

� Internet Explorer: http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/xmlsdk/html/
7924f6be-c035-411f-acd2-79de7a711b38.asp

� Mozilla (including Firefox) and Apple Safari: http://developer.
apple.com/internet/webcontent/xmlhttpreq.html

Ajax Blogs
A handful of Ajax blogs out there have a lot of great Ajax commentary. Here’s
a list of some of the better ones:

� http://ajaxblog.com

� www.ajaxian.com

� http://weblogs.asp.net/mschwarz/archive/2005/11.aspx

� www.robsanheim.com/category/software/ajax

333Chapter 12: Ten Super-Useful Ajax Resources

20_785970 ch12.qxp 1/20/06 12:28 PM Page 333

Ajax Examples
Sometimes, nothing helps more than seeing what you want to do already
done in an example. And there are plenty of examples available for you. For
instance, a very simple example showing how to get started with Ajax is
available at

www.openajax.net/wordpress/simple-ajax

You can find two of the best lists of Ajax examples at these URLs:

� The fiftyfoureleven.com list of Ajax examples is at

www.fiftyfoureleven.com/resources/programming/xmlhttprequest/examples

� Ajax Pattern’s list of examples is at

http://ajaxpatterns.org/Ajax_Examples

Ajax Tutorials
There are a number of Ajax tutorials available on the Internet, but most of
them deal with using specific Ajax-enabled frameworks, such as Ruby on
Rails. Here are some good general-purpose Ajax tutorials not tied to a specific
framework:

� A “30-second” Ajax tutorial

http://marc.theaimsgroup.com/?l=php-general&m=112198633625636&w=2

� This tutorial uses PHP:

www.phpbuilder.com/columns/kassemi20050606.php3

� This tutorial builds a tree of nodes, whose text is downloaded as
needed:

http://www.codeproject.com/aspnet/ajax_treeview.asp

Ajax Discussion Group
http://groups.google.com/group/ajax-world

If you’re looking for interactive Ajax help, check out the active Google group
discussion on Ajax.

334 Part V: The Part of Tens

20_785970 ch12.qxp 1/20/06 12:28 PM Page 334

This group is a good place to go to ask questions and receive answers about
Ajax. No matter how complex the question, there’s probably someone on this
group that can offer a few suggestions.

More Depth on XMLHttpRequest
http://jibbering.com/2002/4/httprequest.html

Here’s a site that has more information on how to use XMLHttpRequest
objects and goes into more depth than the usual Ajax page.

You can find many sites that give you the Ajax basics, but sites like this one,
which go deeper into the topic, are very useful when you’re ready to move
on from the preliminary discussions. This site includes how to use Head
requests and much more.

335Chapter 12: Ten Super-Useful Ajax Resources

20_785970 ch12.qxp 1/20/06 12:28 PM Page 335

336 Part V: The Part of Tens

20_785970 ch12.qxp 1/20/06 12:28 PM Page 336

• Symbols •
+ (addition) operator, function of, 52
+= (addition sign, equal sign) operator,

function of, 53
&= (ampersand, equal sign) operator,

function of, 53
*= (asterisk, equal sign) operator,

function of, 53
*/ (asterisk, slash), writing PHP script

comments and, 301
/= (backslash, equal sign) operator,

function of, 53
& (bitwise AND) operator, function of, 52
~ (bitwise NOT) operator, function of, 53
| (bitwise OR) operator, function of, 52
^ (bitwise XOR) operator, function of, 52
^= (caret, equal sign) operator,

function of, 53
, (comma) operator, function of, 55
, (comma), passing multiple arguments

to JavaScript functions, 47–48
?: (conditional) operator, function of, 55
-- (decrement) operator, function of, 52
/ (division) operator, function of, 52
$ (dollar sign), indicating PHP script

variables, 301–302
// (double slash) marker, adding

comments to JavaScript with, 28–29
= (equal sign) operator, function of, 53
== (equality) operator, function of, 54
> (greater-than) operator, function of, 54
>>= (greater-than sign, greater-than sign,

equal sign) operator, function of, 54
>>>= (greater-than sign, greater-than

sign, greater-than sign, equal sign)
operator, function of, 54

<? (greater-than sign, question mark),
enclosing PHP script in, 298

>= (greater-than-or-equal-to) operator,
function of, 54

++ (increment) operator, function of, 52
+= (joining strings) operator,

function of, 52
<< (left shift) operator, function of, 53
< (less-than) operator, function of, 54
<<= (less-than sign, less-than sign, equal

sign) operator, function of, 54
>? (less-than sign, question mark),

enclosing PHP script in, 298
<= (less-than-or-equal-to) operator,

function of, 54
&& (logical AND) operator, function

of, 52
! (logical NOT) operator, function of, 52
| | (logical OR) operator, function of, 52
* (multiplication) operator, function

of, 52
\n (newline character), in PHP

script, 319
!= (not-equal-to) operator, function of, 54
() (parentheses), passing single argu-

ment to JavaScript function and,
44–45

%= (percent sign, equal sign) operator,
function of, 53

“” (quotation marks)
passing JavaScript functions and, 157
using in JavaScript, 36–37

; (semicolon)
ending JavaScript lines with, 28
ending PHP script lines with, 28

(sharp sign), assigning styles and, 274
>> (sign-propagating right shift)

operator, function of, 53
/* (slash, asterisk), writing PHP script

comments and, 301
=== (strict equality) operator,

function of, 54

Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 337

+ (string addition) operator, function
of, 52

- (subtraction) operator, function of, 52
-= (subtraction sign, equal sign)

operator, function of, 53
|= (vertical line, equal sign) operator,

function of, 54
>>> (zero-fill right shift) operator,

function of, 53

• A •
abort method

Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83

absolute positioning, of Web page
elements, 292–295

absolute URLs, versus relative, 90–91
action attribute, setting in PHP

script, 310
actions, responding to, 33
Adaptive Path Web site, 331–332
addem function

creating JavaScript for use in browsers
with Xajax and, 218–220

in Sajax, 215–217
in Xajax, 218–220

addition (+) operator, function of, 52
addition sign, equal sign (+=) operator,

function of, 53
“Ajax: A New Approach to Web

Applications” (Garrett), 11, 331–332
Ajax blogs, 333
Ajax discussion group, 334–335
Ajax Gold Framework

overview, 157–158
posting data to and retrieving text from

server with POST method, 166–170
posting data to and retrieving XML

from server with POST method,
170–173

using GET method to retrieve text,
158–162

using GET method to retrieve XML,
162–165

Ajax Gold library
describing getDataReturnText

function, 158–159
describing getDataReturnXml

function, 162–163
describing postDataReturnText

function, 166–170
describing postDataReturnXML

function, 170
overview, 157
verifying loading and availability of,

161–162
Ajax Matters Web site, 332–333
Ajax Patterns Web site, 332
Ajax Tags Library, handling JavaServer

Pages with, 229–231
AJAXLib framework, using, 174–176
alert box, overview, 69–71
ampersand, equal sign (&=) operator,

function of, 53
anonymous functions

creating, 55
handling asynchronous downloads and,

86, 111
Apache Tomcat (Java-based server), 225
Apple Safari

alternate ways of retrieving XMLHttp
Request object in, 92–93

Web sites for XMLHttpRequest
objects references, 333

XMLHttpRequest object methods
for, 83

XMLHttpRequest object properties
for, 82–83

applications, autocomplete, 13–14
arguments

passing multiple to JavaScript function,
47–48

passing single to JavaScript functions,
44–45

arithmetic operators, functions of, 52
arrays

overview, 66–67
retrieving data from text fields in PHP

script and, 311–312
storing extracted XML data, 103

338 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 338

turning text into, 282–283
while loop and, 67–69
working with multiple XMLHttp
Request objects and, 146–147

ASP.NET, 234
assignment operators, functions of,

53–54
asterisk, equal sign (*=) operator,

function of, 53
asterisk, slash (*/), writing PHP script

comments and, 301
asyncFlag parameter, for open

method, 84
asynchronous downloads, handling,

85–88
Atlas Client Script Framework, 234
attributes property, function of, 244
autocomplete

capabilities, 13–14
with JPSpan framework, 224
with Ruby on Rails framework, 233
using Ajax Tags Library, 230

Autocomplete JSP tag, 230

• B •
back button, Ajax disabling browser,

325–326
Backbase framework, 234
background-attachment property,

function of, 289
background-color property,

function of, 289
background-image property,

function of, 289
background-position property,

function of, 289
backgrounds, setting with cascading

style sheets, 289–292
backslash, equal sign (/=) operator,

function of, 53
backup plans, for working offline, 328
bgcolor property, setting, 35–36
binary data objects, downloading with

Ajax and Dynamic HTML, 156

bitwise AND (&) operator, function of, 52
bitwise NOT (~) operator, function of, 53
bitwise operators, functions of, 52–53
bitwise OR (|) operator, function of, 52
bitwise XOR (^) operator, function of, 52
block elements, overview, 45
blogs, Ajax, 333
bookmarks, Ajax disabling browser,

325–326
bottom property

absolute positioning function of, 293
relative positioning function of, 295

boxes
alert, 69–71
populating list with Direct Web

Remoting, 227
positioning for, 292
using PHP script with check, 312–314

browser events
calling JavaScript functions and, 40–44
common JavaScript in Ajax

applications, 34
working with, 35–36

browsers. See also specific browsers
accessing from JavaScript, 26–27
Ajax disabling back button in, 325–326
Ajax disabling bookmarks in, 325–326
avoiding cache in, 329
avoiding sluggish, 328
awareness of various, 327
calling different Web domains and,

130–131
creating Ajax JavaScript for use in with

Xajax, 218–220
data validation in, 132
determining if code will work with, 79
determining type with conditions,

62–64
downloading images with Ajax and

Dynamic HTML, 154–156
handling drag-and-drop events, 183
handling mouse events, 185
handling older with HTMLHttpRequest

framework, 199–200
identifying JavaScript errors and, 30–32

339Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 339

browsers. See also specific browsers
(continued)

JavaScript working with various, 32–33
listening for mouse move events, 187
retrieving text with Ajax, 21–22
sending text to with PHP script, 299
sending XML to with PHP script,

299–300
setting up for debugging, 140–142

buttons. See also HTML controls
displaying messages by clicking, 69–71
reading text fields by clicking, 71–72
retrieving data from server and

displaying by clicking, 76–78

• C •
caching

avoiding, 329
controlling with libXmlRequest

framework library, 177
Http framework handling, 211–212
Interactive Website Framework

preventing, 198
callback functions

defined, 157
in libXmlRequest framework

library, 177
posting data to and retrieving text from

server with, 166–167
retrieving text from URLs, 162
working with Sajax and, 217

Callout JSP tag, 230
caret, equal sign (^=) operator,

function of, 53
cascading style sheets (CSS)

absolute positioning, 292–295
Ajax programmers’ fondness of, 269
coloring shopping cart and items with

styles, 184–185
making Web page changes stand out,

285–286
overview, 270–271
relative positioning, 295–296

setting colors and backgrounds with,
289–292

styling text with, 287–288
channel property, Firefox and

Navigator, 82
chatting

Ajax-based, 14–15
with Direct Web Remoting, 227

check boxes, using with PHP script,
312–314

checkUsername function, data
validation and, 133

childNodes property, function of, 244
clearCache () function, in libXml

Request framework library, 177
color property, function of, 289
colors

browsers understanding, 36
setting with cascading style sheets,

289–292
comma (,) operator, function of, 55
comma (,), passing multiple arguments

to JavaScript functions, 47–48
comments

adding to JavaScript, 28–29
in PHP script, 301

companion Web site, downloading
examples from, 22–23

comparison operators, functions of, 54
conditional (?:) operator, function of, 55
conditions

determining browser type in JavaScript
with, 62–64

testing in JavaScript, 59
using JavaScript if statement and,

59–60
using PHP script else statement and,

307
using PHP script if statement and,

306–307
Couvreur, Julien (XMLHttpRequest

debugger developer), 140
CSS (cascading style sheets)

absolute positioning, 292–295
Ajax programmers’ fondness of, 269

340 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 340

coloring shopping cart and items with
styles, 184–185

making Web page changes stand out,
285–286

overview, 270–271
relative positioning, 295–296
setting colors and backgrounds with,

289–292
styling text with, 287–288

CSS Web Design For Dummies
(Mansfield), 271

• D •
data

accessing complete Http header,
135–136

accessing with HEAD requests, 134–135
altering variable, 55–56
changing without new page fetch, 21–22
displaying extracted XML in Internet

Explorer, 249–250
displaying in HTML element using Rico

framework, 206–208
extracting XML, 102–104
extracting XML using properties,

243–250
handling Google-sent, 121–122
handling sensitive, 328
handling with JavaScript objects using

Rico framework, 208–211
hiding menu, 280–281
JavaScript guessing treatment of, 56
listing in drop-down control, 104–106
passing to server with GET method,

106–109
passing to server with POST method,

109–112
posting to server and retrieving text,

166–170
posting to server and retrieving XML,

170–173
requesting XML in Ajax, 240–242
retrieving from check boxes with PHP

script, 312–314

retrieving from radio buttons with PHP
script, 314–316

retrieving from server, 9
retrieving from server and displaying,

76–78
retrieving from text fields in PHP script,

311–312
retrieving menu, 278–279
retrieving with XMLHttpRequest

object, 88–90
showing response from Google search,

125–130
data storage

of extracted XML data, 103
in PHP script variables, 301–304
using JavaScript variables, 48–49
var statement, 49–50

data validation, on servers, 131–134
databases, working with PHP script with,

320–321
data.txt file

accessing complete, 135–136
accessing last modified date from Http

headers, 136–138
accessing with HEAD requests, 134–135
verifying existence of, 139–140
date object, sampling of methods

for, 138
dates, accessing last modified from Http

headers, 136–138
debugging

with Greasemonkey, 142–143
overview, 140
setting up browsers for, 140–142
decodeXML function, retrieving XML

and, 178–179
decrement (--) operator, function of, 52
delete operator, function of, 55
developers, Ajax advantages to, 11–12
DHTML (Dynamic HTML)

Ajax programmers’ fondness of, 269
downloading images with, 154–156
inserting text with, 47
usefulness of, 270

341Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 341

Direct Web Remoting (DWR) framework,
accessing Java with, 225–228

directories, downloading LibAjax
example and, 221

display function, displaying user menu
selection, 284–285

<div> element
displaying text after page has loaded

and, 42–43
versus element, 45–47

division (/) operator, function of, 52
document object, accessing <div>

element with, 43
documentElement property

function of, 244
handling white space in Mozilla-based

browsers and, 251
navigating XML documents with in

Internet Explorer, 245
documents, XML

handling white space in with Mozilla
Firefox, 250–253

making valid, 240
navigating with JavaScript properties,

245–249
overview, 99
removing white space from in Mozilla-

based browsers, 254–258
requesting data from in Ajax, 240–242
validating in Ajax applications, 263–267
well-formed, 239–240, 263
document.write method, passing

arguments to JavaScript functions,
44–45

Dojo framework, 234
dollar sign ($), indicating PHP script

variables, 301–302
double slash (//) marker, adding

comments to JavaScript with, 28–29
do...while loop, in PHP script, 309
drag-and-drop operations, using Sajax

for, 218
drag-and-drop shopping

capabilities, 15–16
enabling, 9

handling mouse down events for,
187–188

handling mouse events for, 185–186
handling mouse up events for, 189
handling mouse-move events for, 189
overview, 182–185

drop-down control
listing data in, 104–106
storing data in, 103–104

DTD (XML document type definition)
overview, 240
validating XML documents and,

264–267
DWR (Direct Web Remoting) framework,

accessing Java with, 225–228
Dykes, Lucinda (XML For Dummies, 4th

Edition), 238
Dynamic HTML (DHTML)

Ajax programmers’ fondness of, 269
downloading images with, 154–156
inserting text with, 47
usefulness of, 270

• E •
Echo2 framework, building Web

applications with, 228–229
ECMA (European Computer

Manufacturers Association),
standardizing JavaScript, 25

ECMAScript Components
Specification, 25

ECMAScript, creating, 25
ECMAScript Language Specification,

3rd Edition, 25
ECMAScript 3rd Edition Compact Profile

Specification, 25
Eich, Brendan (JavaScript creator), 24
elements

absolute positioning of Web page,
292–295

accessing XML by name, 258–260
cascading style sheets and, 270–271
displaying data in HTML using Rico

framework, 206–208

342 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 342

relative positioning of Web page,
295–296

setting styles for, 272–277
XML document, 239–240
else statement

determining browser type with
JavaScript, 62–64

JavaScript, 59
PHP script, 59
using JavaScript, 61–62

embedded styles, using, 273
equal sign (=) operator, function of, 53
equality (==) operator, function of, 54
errors, examining JavaScript, 30–32
escape function, appending text to URL

and, 107
European Computer Manufacturers

Association (ECMA), standardizing
JavaScript, 25

eval function
executing Google search response, 125
executing server-side JavaScript

and, 116–117
returning objects from server with, 118

events
calling JavaScript functions and

browser, 40–44
common JavaScript browser, in Ajax

applications, 34
handling mouse, 185–186
handling mouse down, 187–188
handling mouse up, 189–191
handling mouse-move, 189
working with browser, 35–36

examples, downloading from companion
Web site, 22–23

exporting
PHP functions in LibAjax

framework, 222
PHP functions in Sajax framework, 215

external style sheets, using, 276–277

• F •
fclose function, closing files with, 319

file extensions, storing JavaScript code
outside Web pages and, 29–30

file handle, PHP script
reading from Google URL with, 129
reading server files with, 318

files
reading server with PHP script, 317–319
storing code outside Web pages in,

29–30
writing to server with PHP script,

319–320
Firefox

advantages of with JavaScript, 32
alternate ways of retrieving XMLHttp
Request object in, 92–93

caching in, 211–212
debugging JavaScript and, 140
handling mouse events, 185
handling XML document white space

in, 250–253
identifying JavaScript errors in, 30–31
removing XML document white space

in, 254–258
Web sites for XMLHttpRequest

objects references, 333
XML validation and, 264
XMLHttpRequest object methods

for, 82
XMLHttpRequest object properties

for, 82
firstChild property

function of, 244
handling white space in Mozilla-based

browsers and, 251
navigating XML documents with in

Internet Explorer, 246, 248
font-family property, function of, 287
font-size property, function of, 287
font-style property, function of, 287
font-weight property, function of, 287
fopen function, reading files with,

317–319
for loop

in JavaScript, 64–66
in PHP script, 307–308

343Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 343

foreach loop, in PHP script, 309
frameworks

accessing Java with Direct Web
Remoting, 225–228

Ajax Gold, 157–158
availability/usefulness of, 153–154
avoiding caching with, 329
Backbase, 234
building Web applications with Echo2

framework, 228–229
creating Ajax JavaScript for use in

browsers with Xajax, 218–220
creating JavaScript for use in browsers

with LibAjax, 221–224
creating JavaScript functions in Web

pages with Sajax, 214–218
decoding XML with Sarissa, 201–204
developing Web applications with

WebORB, 232–233
displaying data in HTML element with

Rico, 206–208
Dojo, 234
finding, 173
handling caching with Http, 211–212
handling data with JavaScript objects

using Rico, 208–211
handling Java with SWATO, 231
handling JavaServer Pages with Ajax

Tags Library, 229–231
HTMLHttpRequest, 199–200
libXmlRequest, 176–180
Microsoft Atlas Client Script, 234
parsing XML with Interactive Website

Framework, 198–199
posting data to and retrieving text from

server with Ajax Gold, 166–170
posting data to and retrieving XML

from server with Ajax Gold, 170–173
retrieving code for, 181
retrieving text with Ajax Gold, 158–162
retrieving XML with Ajax Gold, 162–165
Rico, 204–206
Sack, 196–198
server-side, 213–214

using AJAXLib, 174–176
using JPSpan, 224
using Ruby on Rails, 233
XHConn, 194–196
function operator, function of, 55
functions. See also specific functions

accessing JavaScript with PHP in
Sajax, 215

calling JavaScript, 40–44
calling JavaScript in a <script>

element, 36
calling JavaScript itself from inside

itself, 254
creating JavaScript, 39–40
creating JavaScript in Web pages using

Sajax, 214–218
creating JavaScript on the fly, 86
JavaScript, 37
JavaScript in libXmlRequest

framework library, 177
JavaScript listener, 187–188
passing multiple arguments to

JavaScript, 47–48
passing single arguments to

JavaScript, 44–45
PHP, creating JavaScript for use in

browsers with LibAjax and, 221–224
PHP, creating JavaScript for use in

browsers with Xajax and, 218–220
quotation marks and JavaScript, 157
returning objects from server and

JavaScript, 118–119
variables created inside JavaScript,

57–59
working with inner JavaScript, 147–150
fwrite function, writing to server files

with, 319–320

• G •
gaming, capabilities, 16–17
Garrett, Jesse James (“Ajax: A New

Approach to Web Applications”),
11, 331–332

344 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 344

GET method
passing data to server with, 106–109
retrieving data from text fields with

PHP script and, 311
sending data to servers with PHP script

and, 316–317
using to retrieve text, 158–162
using to retrieve XML, 162–165
getAllResponseHeaders method

accessing complete Http header data
with, 136

Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83
getCacheEnabled () function, in

libXmlRequest framework
library, 177

getData function
accessing complete Http header data

with, 135–136
calling URL, 115–116
checking for validity of
XMLHttpRequest object, 83–84

connecting to Google Suggest
with, 123–125

creating interactive mouseovers
with, 93–94

data validation and, 133–134
retrieving menu data with, 279
retrieving menu item with, 281–282
getDataReturnText function

described, 158–159
using to retrieve text, 159–162
getDataReturnXml function

described, 162–163
using to retrieve XML, 163–165
getElementsByTagName function,

reading XML from server and,
101–102

getElementsByTagName method,
accessing XML elements by name
with, 258–260

getResponseHeader method
accessing last modified date from Http

headers with, 137–138

Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83
getSuggest function

handling Google-sent data and, 121–122
in Internet Explorer, 122
getXML method, in libXmlRequest

framework library, 176
getXMLHttpArray () function, in

libXmlRequest framework
library, 177

getXML(sPath, fHandler, 1)
function, in libXmlRequest
framework library, 177

getXML(sPath) function, in libXml
Request framework library, 177

Google
Ajax discussion group on, 334–335
connecting to for live searches, 12–13
finding servers supporting Java

with, 225
handling data sent by, 121–122
live searching and, 12–13
showing response data from, 125–130

Google Maps, Ajax enabling, 19–20
Google Suggest

connecting to, 123–125
overview, 120–121

Greasemonkey
overview, 140
setting up, 140–142
using, 142–143

greater-than (>) operator, function of, 54
greater-than sign, greater-than sign,

equal sign (>>=) operator, function
of, 54

greater-than sign, greater-than sign,
greater-than sign, equal sign (>>>=)
operator, function of, 54

greater-than sign, question mark (>?),
enclosing PHP script in, 298

greater-than-or-equal-to (>=) operator,
function of, 54

345Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 345

• H •
HEAD requests

accessing complete Http header data
with, 135–136

accessing last modified date from Http
headers with, 136–138

checking existence of URLs with,
139–140

overview, 134–135
headers

accessing complete data about Http,
135–136

accessing last modified date from Http,
136–138

getting text to appear under, 38–39
Http, 134–135
hide function, hiding menu data with,

280–281
HTML controls

displaying messages with button clicks,
69–71

handling in PHP script, 310–311
overview, 69
reading text fields with button clicks,

71–72
retrieving data from text fields in PHP

script, 311–312
setting up with Xajax, 220
using check boxes in PHP script,

312–314
using radio buttons in PHP script,

314–316
working with Sajax and, 216–217

HTML elements, displaying data in using
Rico framework, 206–208

HTML (HyperText Markup Language),
interspersing with PHP script, 298

HTMLHttpRequest framework, handling
older browsers with, 199–200

Http framework, handling caching with,
211–212

Http headers
accessing complete data about,

135–136
accessing last modified date from,

136–138
overview, 134–135

hyperlink, giving to Google
suggestions, 126

HyperText Markup Language (HTML),
interspersing with PHP script, 298

• I •
if statement

determining browser type with
JavaScript, 62–64

JavaScript, 59
PHP script, 306–307
using JavaScript, 59–60
IFrame elements, handling older

browsers and, 199
images

downloadability with mouseovers, 94
downloading with Ajax and Dynamic

HTML, 154–156
downloading, XMLHttpRequest object

and, 94
dragging to shopping carts, 193
positioning, 293–295
in operator, function of, 55
increment (++) operator, function of, 52
inline scripts

calling JavaScript functions and, 40–41
events triggering, 35–36
understanding problems with, 38–39

inline styles, using, 273
inner functions

posting data to and retrieving text from
server with, 167

working with, 147–150
instanceof operator, function of, 55
interactive mouseovers, creating, 93–94

346 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 346

Interactive Website Framework (IWF),
parsing XML with, 198–199

Internet Explorer
alternate ways of retrieving
XMLHttpRequest object in, 91–92

caching in, 211–212
creating XMLHttpRequest object and,

80–81
debugging JavaScript and, 140
displaying extracted XML data in,

249–250
getSuggest function and, 122
handling Google-sent data through,

122–123
handling mouse events, 185
identifying JavaScript errors in, 30
Web sites for XMLHttpRequest

objects references, 333
XML validation in, 264–267
XMLHttpRequest object methods

for, 81
XMLHttpRequest object

properties for, 81
IWF (Interactive Website Framework),

parsing XML with, 198–199

• J •
Java

accessing with Direct Web Remoting,
225–228

SWATO framework and, 231
using JSP tags with, 229–231

Java servlets, finding, 225
Java-based Web servers, finding, 225
JavaScript

accessing Web page from, 26–27
adding comments to, 28–29
background of, 24–25
for changing data without new page

fetch, 21–22
common browser events in Ajax

applications, 34

connecting to other Web domains
from, 113

creating for use in browsers with
LibAjax, 221–224

creating for use in browsers with Xajax,
218–220

creating <script> element, 25–26
enabling retrieving data from server, 12
functioning of returning, 114–117
identifying errors in, 30–32
response from Google in, 125
Sajax generating, 216
seeing XML as nodes, 243
sending back from server to

execute, 114
server-side frameworks and, 213–214
standards, 25
storing code outside Web pages, 29–30
using quotation marks in, 36–37
using semicolons in, 28
working with browser events, 35–36
working with various browsers, 32–33

JavaScript For Dummies, 4th Edition
(Vander Veer), 24

JavaScript functions. See also specific
functions

calling, 40–44
calling in a <script> element, 36
calling itself from inside itself, 254
creating, 39–40
creating in Web pages using Sajax,

214–218
creating on the fly, 86
in libXmlRequest framework

library, 177
listener, 187–188
overview, 37
passing multiple arguments to, 47–48
passing single arguments to, 44–45
quotation marks and, 157
returning objects from server and,

118–119
variables created inside, 57–59
working with inner, 147–150

347Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 347

JavaScript 1.5 user’s guide, 25
JavaServer Pages (JSP)

finding servers to support, 225
handling with Ajax Tags, 229–231

joining strings (+=) operator,
function of, 52

JPSpan framework, using, 224
JScript 5.6 documentation, 25
JSP tags, Ajax Tags library and, 229–231

• K •
keystrokes

Google reading, 121–123
JPSpan application responding to

user’s, 224
keywords, creating JavaScript functions

and, 40

• L •
languages, selecting server-side

scripting, 95
lastChild property

function of, 244
navigating XML documents with

Internet Explorer, 246–247
left property

absolute positioning function of, 293
relative positioning function of, 295

left shift (<<) operator, function of, 53
less-than (<) operator, function of, 54
less-than sign, less-than sign, equal sign

(<<=) operator, function of, 54
less-than sign, question mark (<?),

enclosing PHP script in, 298
less-than-or-equal-to (<=) operator,

function of, 54
LibAjax framework, creating JavaScript

for use in browsers with, 221–224
libraries

accessing Java with Direct Web
Remoting, 225–228

Ajax Gold, 157–158
availability/usefulness of, 153–154

avoiding caching with, 329
Backbase, 234
building Web applications with Echo2

framework, 228–229
creating Ajax JavaScript for use in

browsers with Xajax, 218–220
creating JavaScript for use in browsers

with LibAjax, 221–224
creating JavaScript functions in Web

pages with Sajax, 214–218
decoding XML with Sarissa, 201–204
describing getDataReturnText

function in Ajax gold, 158–159
describing getDataReturnXml

function in Ajax Gold, 162–163
describing postDataReturnText

function in Ajax Gold, 166–170
describing postDataReturnXML

function in Ajax Gold, 170
developing Web applications with

WebORB, 232–233
displaying data in HTML element with

Rico, 206–208
Dojo, 234
finding, 173
functions in libXmlRequest, 177–178
handling caching with Http, 211–212
handling data with JavaScript objects

using Rico, 208–211
handling Java with SWATO, 231
handling JavaServer Pages with Ajax

Tags Library, 229–231
HTMLHttpRequest, 199–200
libXmlRequest, 176–180
Microsoft Atlas Client Script, 234
parsing XML with Interactive Website

Framework (IWF), 198–199
posting data to and retrieving text from

server with Ajax Gold, 166–170
posting data to and retrieving XML

from server with Ajax Gold, 170–173
retrieving code for, 181
retrieving text with Ajax Gold, 158–162
retrieving XML with Ajax Gold, 162–165
Rico, 204–206

348 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 348

Sack, 196–198
server-side, 213–214
using AJAXLib, 174–176
using JPSpan, 224
using Ruby on Rails, 233
verifying loading and availability of in

Ajax Gold, 161–162
XHConn, 194–196
libXmlRequest framework, using,

176–180
line-height property, function of, 287
list boxes, populating with Direct Web

Remoting, 227
listener functions, mouse move events

and, 187–188
listOptions function, extracting data

from XML and, 102–104
live searching

capabilities, 12–13
connecting to Google for, 120–121
executing, 123–125
Google reading keystrokes for, 121–123
Rico framework performing Yahoo!,

204, 206
showing Google’s response, 125–130

LiveGrid (Rico), 204
loadXMLDoc function, retrieving XML

with, 174–176
logical AND (&&) operator,

function of, 52
logical NOT (!) operator, function of, 52
logical OR (| |) operator, function of, 52
login, instant feedback from, 17–18
loop counter

using for loop with, 64–66
while loop and, 66–69

loop index
using for loop with, 64–66
while loop and, 66–69

loops
do...while in PHP script, 309
extracting data from XML and, 103
for in JavaScript, 64–66
for in PHP script, 307–308
foreach in PHP script, 309

Google returned suggestions and,
126, 129

handling menu items with, 283–284
removing white space from Mozilla-

based browsers and, 254–255
while in JavaScript, 66–69
while in PHP script, 308–309

• M •
Mansfield, Richard (CSS Web Design For

Dummies), 271
menu systems

displaying menus, 278–279
handling menu items, 282–285
handling mouse events for, 277–278
hiding menu data, 280–281
overview, 271
retrieving menu’s item from server,

281–282
setting up styles for, 272–277

messages, displaying with button clicks,
69–71

method attribute, setting in PHP
script, 310

method parameter, for open method, 84
methods. See also specific methods

overview, 26
sampling of for date object, 138
XMLHttpRequest object, for Firefox

and Navigator, 82
XMLHttpRequest object, for Internet

Explorer, 81
XMLHttpRequest object, for Safari, 83

Microsoft ASP.NET, 234
Microsoft Atlas Client Script

Framework, 234
Microsoft Internet Explorer

alternate ways of retrieving
XMLHttpRequest object in, 91–92

caching in, 211–212
creating XMLHttpRequest object and,

80–81
debugging JavaScript and, 140

349Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 349

Microsoft Internet Explorer (continued)
displaying extracted XML data in,

249–250
getSuggest function and, 122
handling Google-sent data through,

122–123
handling mouse events, 185
identifying JavaScript errors in, 30
Web sites for XMLHttpRequest

objects references, 333
XML validation in, 264–267
XMLHttpRequest object methods

for, 81
XMLHttpRequest object properties

for, 81
mirroring, Web sites, 131
mouse events

down, 187–188
drag-and-drop shopping and, 185–186
move, 189
retrieving menu data and, 278–279
setting styles for menu systems and,

277–278
up, 189–191

mouseovers, creating interactive, 93–94
Mozilla Firefox

alternate ways of retrieving
XMLHttpRequest object in, 92–93

caching in, 211–212
debugging JavaScript and, 140
handling mouse events, 185
handling XML document white space

in, 250–253
removing XML document white space

in, 254–258
Web sites for XMLHttpRequest

objects references, 333
XML validation and, 264
XMLHttpRequest object methods

for, 82
XMLHttpRequest object properties

for, 82
Mozilla Greasemonkey

overview, 140
setting up, 140–142
using, 142–143

Mozilla-based browsers
alternate ways of retrieving XMLHttp
Request object in, 92–93

caching in, 211–212
debugging JavaScript and, 140
handling mouse events, 185
handling XML document white space

in, 250–253
removing XML document white space

in, 254–258
Web sites for XMLHttpRequest

objects references, 333
XML validation and, 264
XMLHttpRequest object methods

for, 82
XMLHttpRequest object properties

for, 82
multiplication (*) operator,

function of, 52
MySQL database, working with PHP

script with, 320–321

• N •
name, accessing XML elements by,

258–260
name property, function of, 244
named node map, of XML attributes,

261–262
navigator browser object, working

with various browsers and, 32–33
nesting errors, in XML documents, 239
Netscape Communications Corporation,

creating JavaScript and, 24–25
Netscape Navigator

alternate ways of retrieving
XMLHttpRequest object in, 92–93

XMLHttpRequest object methods
for, 82

XMLHttpRequest object properties
for, 82

new operator, function of, 55
newline character (\n), in PHP

script, 319

350 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 350

newXMLDocument (sNodeName)
function, in libXmlRequest
framework library, 178

nextSibling property
function of, 244
navigating XML documents with

Internet Explorer, 248
nodeName property, function of, 244
nodes

JavaScript properties for working with,
243–244

navigating XML documents and,
248–249

removing white space, 254–258
white space as, 250–251
XML treated as collection of, 243
nodeType property, function of, 244
not-equal-to (!=) operator, function of, 54

• O •
objects. See also XMLHttpRequest

objects
accessing Web page and browser with,

26–27
binary data, 156
date, 138
document, 43
handling data with using Rico

framework, 208–211
handling Google-sent data and, 121–123
navigator browser, 32–33
plain old Java, 231
returning from server, 118–119
Sack, 196–198
storing in variables, 56
XHConn, 194–196
XMLHttpRequestObject, 136
onabort event, occurrence of, 34
onblur event, occurrence of, 34
onchange event, occurrence of, 34
onclick event, occurrence of, 34
ondblclick event, occurrence of, 34
ondragdrop event, occurrence of, 34
onerror event, occurrence of, 34

onfocus event, occurrence of, 34
onkeydown event, occurrence of, 34
onkeypress event, occurrence of, 34
onkeyup event, occurrence of, 34
onload event, occurrence of, 34
onmousedown event, occurrence of, 34
onmousemove event, occurrence of, 34
onmouseout event, occurrence of, 34
onmouseover event, occurrence of, 34
onmouseup event, occurrence of, 34
onreadystatechange property

handling asynchronous downloads
with, 85–88

Internet Explorer, 81
passing data to server with POST

method and, 111
Safari, 82
onreset event, occurrence of, 34
onresize event, occurrence of, 34
onsubmit event, occurrence of, 34
onunload event, occurrence of, 34
open method

Internet Explorer, 81
parameters for, 84–85
Safari, 83
openRequest method, Firefox and

Navigator, 82
operator precedence, PHP script, 306
operators. See also specific operators

arithmetic, 52
assignment, 53–54
bitwise, 52–53
comparison, 54–55
logical, 52
PHP script, 304–306
string, 52
variables and, 50–51
overrideMimeType method, Firefox

and Navigator, 82

• P •
page fetch, changing data without new,

21–22
parameters, for open method, 84–85

351Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 351

parentheses (()), passing single argu-
ment to JavaScript function and,
44–45

password parameter, for open
method, 84

percent sign, equal sign (%=) operator,
function of, 53

permission, writing to server files
and, 319

PHP file handle
reading from Google URL with, 129
reading server files with, 318

PHP 5 For Dummies (Valade), 297, 321
PHP functions. See also specific functions

accessing JavaScript functions with in
Sajax, 215

creating JavaScript for use in browsers
with LibAjax and, 221–224

creating JavaScript for use in browsers
with Xajax and, 218–220

PHP script
communicating with Google, 129–130
connecting to on server, 95–97
getting XML from, 98–100
handling HTML controls in, 310–311
LibAjax framework and, 221–224
operators, 304–306
overview, 298–300
passing data to server with GET

method and, 106–109
passing data to server with POST

method and, 109–112
reading files on servers with, 317–319
retrieving data from text fields in,

311–312
Sajax framework and, 214–218
sending data to servers with, 316–317
using check boxes with, 312–314
using radio buttons with, 314–316
variables in, 301–304
working with databases with, 320–321
writing comments in, 301
writing to server files with, 319–320
Xajax framework and, 218–220

pictures
downloadability with mouseovers, 94
downloading, XMLHttpRequest object

and, 94
dragging to shopping carts, 193

plain old Java objects (POJO), SWATO
and, 231

pop-up menus, capabilities, 18
position property

absolute positioning function of, 293
relative positioning function of, 295

positioning
absolute, 292–295
relative, 295–296
POST method

passing data to server with, 109–112
posting data to and retrieving text from

server with, 166–170
posting data to and retrieving XML

from server with, 170–173
retrieving data from text fields with

PHP script and, 311
postDataReturnText function

described, 166–170
posting data to and retrieving text from

server with, 166–170
postDataReturnXML function

described, 170
posting data to and retrieving XML

from server with, 170–173
postXML method, in libXmlRequest

framework library, 176
postXML(sPath, vData, fHandler,

1) function, in libXmlRequest
framework library, 177

postXML(sPath, vData) function,
in libXmlRequest framework
library, 177

previousSibling property, function
of, 244

properties. See also specific properties
absolute positioning, 293
common color and background, 289
navigating XML documents with,

245–249

352 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 352

overview, 26–27
popular text style, 287
relative positioning, 295
setting bgcolor, 35–36
style, 273
for working with XML, 243–244
XMLHttpRequest object, for Firefox

and Navigator, 82
XMLHttpRequest object, for Internet

Explorer, 81
XMLHttpRequest object, for Safari,

82–83

• Q •
quotation marks (“”)

passing JavaScript functions and, 157
using in JavaScript, 36–37

• R •
radio buttons, using with PHP script,

314–316
readyState property

Firefox and Navigator, 82
handling asynchronous downloads

and, 86
Internet Explorer, 81
Safari, 82

recursion, defined, 254
relative positioning, of Web page

elements, 295–296
relative URLs, versus absolute, 90–91
removeChildren (node) function,

in libXmlRequest framework
library, 178

removeWhitespace function, 254
requests

Interactive Website Framework and
multiple, 198–199

server handling multiple concurrent,
143–144

working with arrays for multiple,
146–147

working with inner functions for
multiple, 147–150

responseBody property, Internet
Explorer, 81

responseStream property, Internet
Explorer, 81

responseText property
Firefox and Navigator, 82
Internet Explorer, 81
retrieving data with XMLHttpRequest

object and, 88–90
Safari, 82
responseXML property

Firefox and Navigator, 82
Internet Explorer, 81
reading XML from server and, 101–102
Safari, 82

Rico framework
displaying data in HTML element,

206–208
handling data with JavaScript objects

using, 208–211
overview, 204–206

Rico LiveGrid, 204
right property

absolute positioning function of, 293
relative positioning function of, 295

Ruby on Rails framework, using, 233
runAJAX method, retrieving data with,

196–197

• S •
Sack framework, using, 196–198
Safari

alternate ways of retrieving
XMLHttpRequest object in, 92–93

Web sites for XMLHttpRequest
objects references, 333

XMLHttpRequest object methods
for, 83

XMLHttpRequest object properties
for, 82–83

Sajax framework, creating JavaScript
functions in Web pages with, 214–218

Sarissa framework, decoding XML with,
201–204

script, connecting to on server, 95–97

353Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 353

<script> element
in <body> versus <header> section of

Web page, 38–39
creating, 25–26
JavaScript functions calling JavaScript

in, 36
search engines, text retrievable by,

328–329
searching

Ajax versus standards, 10–11
connecting to Google for live, 10–11
executing live, 123–125
Google reading keystrokes for live,

121–123
live, 12–13
Rico framework performing Yahoo! live,

204, 206
showing live response, 125–130

security, Greasemonkey and, 140
security warnings, calling different Web

domains and, 113, 130
Select/dropdown JSP tag, 230
selectNodes (XMLDocument,

sXpath, oNode) function,
in libXmlRequest framework
library, 178

selectSingleNode (XMLDocument,
sXpath, oNode) function, in
libXmlRequest framework
library, 178

semicolon (;)
ending JavaScript lines with, 28
ending PHP script lines with, 28
send method

Internet Explorer, 81
passing data to server with POST

method and, 110–112
Safari, 83
sendRPCDone function, Google search

response and, 125–126
serialize (oNode) function, in

libXmlRequest framework
library, 178

servers
accessing Java with Direct Web

Remoting and, 225
connecting to script on, 95–97

multiple concurrent requests to,
143–144

passing data to with GET method,
106–109

passing data to with POST method,
109–112

performing data validation on, 131–134
posting data to and retrieving text

from, 166–170
posting data to and retrieving XML

from, 170–173
reading files on with PHP script,

317–319
reading XML from, 101–102
retrieving data from, 9
retrieving data from for display, 76–78
retrieving data from with Ajax, 21–22
retrieving images from, 154–156
retrieving menu’s item from, 281–282
returning objects from, 118–119
sending back JavaScript to execute, 114
sending data to with PHP script,

316–317
working with arrays for multiple

requests, 144–146
working with inner functions for

multiple requests, 147–150
working with multiple
XMLHttpRequest objects, 144–146

writing to files on with PHP script,
319–320

server-side frameworks
accessing Java with Direct Web

Remoting, 225–228
Backbase, 234
building Web applications with Echo2

framework, 228–229
creating Ajax JavaScript for use in

browsers with Xajax, 218–220
creating JavaScript for use in browsers

with LibAjax, 221–224
creating JavaScript functions in Web

pages with Sajax, 214–218
developing Web applications with

WebORB, 232–233
Dojo, 234
handling Java with SWATO, 231

354 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 354

handling JavaServer Pages with Ajax
Tags Library, 229–231

Microsoft Atlas Client Script, 234
overview, 213–214
using JPSpan, 224
using Ruby on Rails, 233

server-side script
accessing different Web domains

with, 131
functioning of returning, 114–117
from Google Suggest, 120–121
lack of control over, 114
overview, 94–95

server-side scripting languages,
selecting, 95

setCacheEnabled (<true | false>)
function, in libXmlRequest
framework library, 177

setInnerXHTML (target_node,
source_node, preserve)
function, in libXmlRequest
framework library, 178

setOption function, listing data in
drop-down control, 104–106

setPoolEnabled () function, in
libXmlRequest framework
library, 177

setPoolEnabled (<true | false>)
function, in libXmlRequest
framework library, 177

setRequestHeader method
Internet Explorer, 81
Safari, 83

setTimer function, making Web page
changes stand out with, 285–286

sharp sign (#), assigning styles and, 274
shopping carts

dragging items to, 189
dropping items in, 183, 189–191
selecting items for, 187–188
updating, 191–193

show function, handling menu items
with, 282–285

sign-propagating right shift (>>)
operator, function of, 53

slash, asterisk (/*), writing PHP script
comments and, 301

 element, versus <div> element,
45–47

specifications, JavaScript and
ECMAScript, 25

split function, turning text into arrays
with, 282–283

standards, JavaScript and
ECMAScript, 25

status property
Firefox and Navigator, 82
handling asynchronous downloads and,

86–87
Internet Explorer, 81
Safari, 83
statusText property

Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83

storing
code outside Web pages, 29–30
data in PHP variables, 301–304
data using variables, 48–49
data with var statement, 49–50
extracted XML data, 103
objects in variables, 56

strict equality (===) operator,
function of, 54

string addition (+) operator,
function of, 52

string functions, PHP script, 303–304
string operators, JavaScript, 52
strpos function, function of, 303
strtoupper function, function of, 303
style rule, making up, 273
style sheets, using external, 276–277. See

also cascading style sheets (CSS)
style types, specifying, 274
styles

making Web page changes stand out,
285–286

setting up for menu system, 272–277
working with element, 270–271
substr function, function of, 303

355Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 355

substr_replace function,
function of, 303

subtraction (-) operator, function of, 52
subtraction sign, equal sign (-=)

operator, function of, 53
SWATO framework, handling Java

with, 231
syntax rules, specifying XML document,

263–264

• T •
tables, editing contents with Direct Web

Remoting, 228
tags

JSP in Ajax Tags Library, 229–231
XML, 238

test scores, determining average, 64–66
testXmlHttpObject () function,

in libXmlRequest framework
library, 177

text
displaying after page has loaded, 42–43
displaying changes in to users, 327
formatting objects as, 118–119
making Web page changes in stand out,

285–286
placing inline in real time, 45–47
retrievable by search engines, 328–329
retrieving after posting data to server,

166–170
retrieving with Direct Web

Remoting, 226
retrieving with mouseovers, 93–94
sending to browser with PHP

script, 299
styling options, 287–288
turning into arrays, 282–283
using GET method to retrieve, 158–162

text appearing in specific locations, 37
text fields, reading with buttons clicks,

71–72
text node, navigating XML documents

and, 249
text-align property, function of, 287

text-decoration property, function
of, 287

Tittel, Ed (XML For Dummies, 4th
Edition), 238

Toggle JSP tag, 230
top property

absolute positioning function of, 293
relative positioning function of, 295

transformNode ([xml_dom |
xml_path], [xsl_dom |
xsl_path] {, node_reference,
xml_request_id,
xsl_request_id,
bool_cache_xsl}), in
libXmlRequest framework
library, 178

trim function, function of, 303
try/catch construct, alternate ways of

retrieving XMLHttpRequest object
and, 92

tutorials, Web sites for, 334
typeof operator, function of, 55

• U •
ucfirst function, function of, 303
Update Field JSP tag, 230
updating

shopping carts, 191–193
Web pages on-the-fly, 19

URL encoding, passing data to server
with GET method and, 106–109

URL parameter, for open method, 84
URLs

checking existence of, 139–140
passing text from, 159–162
using relative versus absolute, 90–91
userName parameter, for open

method, 84
users

Ajax advantages to, 10–11
dropping items into shopping carts, 183
giving control to, 326–327
showing text changes to, 327
validating input of, 131–134

356 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 356

• V •
Valade, Janet (PHP 5 For Dummies),

297, 321
validating

users input, 131–134
XML documents in Ajax applications,

263–267
Vander Veer, Emily (JavaScript For

Dummies, 4th Edition), 24
var statement, storing data with, 49–50
variables

altering data of JavaScript, 55–56
created inside JavaScript functions,

57–59
creating for XMLHttpRequest

object, 79
JavaScript guessing treatment of data

in, 56
JavaScript operators and, 50–51
storing data with JavaScript, 48–49
storing objects in JavaScript, 56
using PHP script, 301–304

vertical line, equal sign (|=) operator,
function of, 54

visibility style property
displaying menu data, 284
hiding menu data, 280–281

visual cues
displaying text changes to users

with, 327
using, 326

visual effects, creating with Rico
framework, 204–206

void operator, function of, 55

• W •
Web applications

Ajax improving, 9
building with Echo2 framework,

228–229
developing with WebORB framework,

232–233

Web domains
calling different, 130–131
connecting to other from

JavaScript, 113
Web pages

absolute positioning of elements in,
292–295

accessing JavaScript from, 26–27
caching, 329
connecting external style sheets to,

276–277
creating JavaScript functions in using

Sajax, 214–218
displaying data fetched from server on,

76–78
inserting XML data into HTML elements

on, 198
making changes stand out in, 285–286
making text appear in specific locations

on, 37
moving elements around with

Interactive Website Framework, 199
problems with sections loading

priority, 38–39
relative positioning of elements in,

295–296
setting up to read XML, 100–101
updating on-the-fly, 19

Web sites
Adaptive Path, 331–332
for Ajax blogs, 333
for Ajax examples, 334
Ajax Matters, 332–333
Ajax Patterns, 332
for Ajax Tags Library, 229
for AJAXLib framework, 174
for Apache Tomcat (Java-based

server), 225
for Backbase framework, 234
for Dojo framework, 234
downloading examples from

companion, 22–23
for HTMLHttpRequest framework, 199
for Http framework, 211
for Interactive Website Framework, 198

357Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 357

Web sites (continued)
for JavaScript and ECMAScript

specifications, 25
for JPSpan framework, 224
for LibAjax server-side framework, 221
for libXmlRequest framework, 176
for Microsoft Atlas Client Script

Framework, 234
for Rico framework, 204
for Ruby on Rails framework, 233
for Sack framework, 196
for Sajax server-side framework, 214
for Sarissa framework, 201
for tutorials, 334
for WebORB framework, 232
Wikipedia Ajax Page, 332
for Xajax server-side framework, 218
for XHConn framework, 194
for XMLHttpRequest objects, 335
for XMLHttpRequest objects

references, 333
WebORB framework, developing Web

applications with, 232–233
while loop

using JavaScript, 66–69
using PHP script, 308–309

white space
handling in Mozilla and Firefox, 250–253
removing from XML documents in

Mozilla-based browsers, 254–258
Wikipedia Ajax Page, 332

• X •
Xajax framework, creating Ajax JavaScript

for use in browsers with, 218–220
XHConn framework, using, 194–196
XML

data, requesting in Ajax, 240–242
decoding with Sarissa framework,

201–204
displaying extracted data in Internet

Explorer, 249–250
extracting data from, 102–104

getting from PHP script, 98–100
JavaScript and, 11–12
JavaScript properties for working with,

243–244
listing data in drop-down control,

104–106
overview, 97–98
parsing with Interactive Website

Framework, 198–199
passing data to server with POST

method, 109–112
posting data to servers and retrieving,

170–173
reading from server, 101–102
retrieving with libXmlRequest

framework, 176–180
retrieving with loadXMLDoc function,

174–176
sending to browser with PHP script,

299–300
setting up Web pages to read, 100–101
tags, 238
treated as nodes, 243
using GET method to retrieve, 162–165

XML attributes, accessing in XML
elements, 260–263

XML declarations, starting XML
documents, 239

XML document type definition (DTD)
overview, 240
validating XML documents and,

264–267
XML documents

handling white space in with Mozilla
Firefox, 250–253

making valid, 240
navigating with JavaScript properties,

245–249
overview, 99
removing white space from in Mozilla-

based browsers, 254–258
requesting data from in Ajax, 240–242
validating in Ajax applications, 263–267
well-formed, 239–240, 263

358 Ajax For Dummies

21_785970 bindex.qxp 1/20/06 12:28 PM Page 358

XML elements
accessing attribute values in, 260–263
accessing by name, 258–260
in XML documents, 239–240

XML For Dummies, 4th Edition (Dykes,
Tittel), 238

XML parsers
Interactive Website Framework

custom, 198
reading well-formed XML documents,

239, 263
validating XML documents and,

264–266
XML schema

overview, 240
validating XML documents and, 264
XMLHttpRequest debugger

(Couvreur), 140
XMLHttpRequest objects

alternate ways of retrieving, 91–93
checking for validity of, 83–84
creating, 79–81
handling older browsers that don’t

support, 199–200
in libXmlRequest framework

library, 176
methods for Firefox and Navigator, 82
methods for Internet Explorer, 81
methods for Safari, 83
opening, 84–85
passing data to server with POST

method and, 110–112
passing URL with, 159–160

properties for Firefox and Navigator, 82
properties for Internet Explorer, 81
properties for Safari, 82–83
references, 333
retrieving data with, 88–90
Web site resource for, 335
working with arrays for multiple

requests, 146–147
working with inner functions for

multiple requests, 147–150
working with multiple, 144–146
XHConn framework treating, 194
XMLHttpRequestObject object, access-

ing complete Http header data
with, 136

• Y •
Yahoo! live search, Rico framework and,

204, 206
yellow triangle of death, JavaScript

errors and, 30

• Z •
zero-fill right shift (>>>) operator,

function of, 53
z-order property

absolute positioning function of, 293
relative positioning function of, 295
using with absolute positioning,

294–295

359Index

21_785970 bindex.qxp 1/20/06 12:28 PM Page 359

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

22_785970 bob.qxp 1/20/06 11:08 AM Page 365

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

22_785970 bob.qxp 1/20/06 11:08 AM Page 366

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT For Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

22_785970 bob.qxp 1/20/06 11:08 AM Page 367

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

22_785970 bob.qxp 1/20/06 11:08 AM Page 368

	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Chapter 1: Ajax 101
	How Does Ajax Work?
	What Can You Do with Ajax?
	When Is Ajax a Good Choice?

	Chapter 2: It’s All About JavaScript
	Taking a First Look at Ajax in Action
	Enter JavaScript
	Making Something Happen: Browser Events
	Dividing and Conquering: JavaScript Functions
	You Must Remember This: Storing Data
	Picking and Choosing with the if Statement
	It Just Gets Better: The for Loop
	Over and Over with the while Loop!
	Pushing Some Buttons

	Chapter 3: Getting to Know Ajax
	Writing Some Ajax
	Interactive Mouseovers Using Ajax
	Getting Interactive with Server-Side Scripting
	Time for Some XML
	Passing Data to the Server with GET
	Passing Data to the Server with POST

	Chapter 4: Ajax in Depth
	Returning JavaScript from the Server
	Connecting to Google for a Live Search
	Calling a Different Domain
	Reversing the Roles: Performing Validation on the Server
	Getting Some Amazing Data with HEAD Requests
	Finding the Problem: Debugging Ajax
	Overload: Handling Multiple Concurrent Requests

	Chapter 5: Introducing Ajax Frameworks
	A Little More Ajax Power
	Introducing the Ajax Gold Framework
	Finding Ajax Frameworks in the Wild

	Chapter 6: More Powerful Ajax Frameworks
	Dragging and Dropping with Shopping Carts
	Looking at Some Heavier-Weight Frameworks

	Chapter 7: Server-Side Ajax Frameworks
	Writing JavaScript by Using Ajax Frameworks
	Accessing Java with Direct Web Remoting
	Building Web Applications with Echo2
	Handling Ajax and JavaServer Pages with Ajax Tags
	Handling Java with SWATO
	Tracking Down the Many Other Frameworks Available

	Chapter 8: Handling XML in Ajax Applications
	Understanding Basic XML
	Requesting XML Data in Ajax
	Extracting XML Data Using Properties
	Accessing XML Elements by Name
	Accessing Attribute Values in XML Elements
	Validating XML Documents in Ajax Applications

	Chapter 9: Working with Cascading Style Sheets in Ajax Applications
	An Ajax-Driven Menu System
	Displaying Text That Gets Noticed

	Chapter 10: Working with Ajax and PHP
	Starting with PHP
	Getting a Handle on Variables
	Handling Your Data with Operators
	Making Choices with the if Statement
	Round and Round with Loops
	Handling HTML Controls
	Sending Data to the Server
	Reading Files
	Writing Files
	Working with Databases

	Chapter 11: Ten Ajax Design Issues You Should Know About
	Breaking the Back Button and Bookmarks
	Giving Visual Cues
	Leaving the User in Control
	Remembering All the Different Browsers
	Showing Users When Text Changes
	Avoiding a Sluggish Browser
	Handling Sensitive Data
	Creating a Backup Plan
	Showing Up in Search Engines
	Sidestepping a Browser’s Cache

	Chapter 12: Ten Super-Useful Ajax Resources
	The Original Ajax Page
	The Ajax Patterns Page
	The Wikipedia Ajax Page
	Ajax Matters
	XMLHttpRequest Object References
	Ajax Blogs
	Ajax Examples
	Ajax Tutorials
	Ajax Discussion Group
	More Depth on XMLHttpRequest

	Index

