
by Andy Harris

Beginning Flash®

Game Programming
FOR

DUMmIES
‰

01_589628 ffirs.qxd 10/12/05 2:34 PM Page i

01_589628 ffirs.qxd 10/12/05 2:34 PM Page iv

by Andy Harris

Beginning Flash®

Game Programming
FOR

DUMmIES
‰

01_589628 ffirs.qxd 10/12/05 2:34 PM Page i

File Attachment
C1.jpg

Beginning Flash® Game Programming For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005927728

ISBN-13: 978-0-7645-8962-1

ISBN-10: 0-7645-8962-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/TR/RQ/QV/IN

01_589628 ffirs.qxd 10/12/05 2:34 PM Page ii

www.wiley.com

About the Author
Andy Harris earned a degree in Special Education from Indiana
University/Purdue University–Indianapolis (IUPUI). He taught young adults
with severe disabilities for several years. He also taught himself enough
computer programming to support his teaching habit with freelance pro-
gramming. Those were the exciting days when computers started to have
hard drives, and some computers connected to each other with arcane
protocols. He taught programming in those days because it was fun.

Eventually, Andy decided to teach computer science full time, and he still
teaches at IUPUI. He lectures in the applied computing program and runs
the streaming media lab. He also teaches classes in whatever programming
language is in demand at the time. He has developed a large number of
online video-based courses and international distance education projects.

Andy has written several books on various computing topics and languages
including Java, C#, mobile computing, JavaScript, and PHP/MySQL.

Andy welcomes comments and suggestions about his books. He can be
reached at aharris@cs.iupui.edu.

01_589628 ffirs.qxd 10/12/05 2:34 PM Page iii

01_589628 ffirs.qxd 10/12/05 2:34 PM Page iv

Dedication
This book is dedicated to Heather, Elizabeth, Matthew, Jacob, and now
Benjamin.

Author’s Acknowledgments
Although writing a book often seems like a lonely endeavor, it really takes a
lot of talented and dedicated people to make a book on a topic as complex
as this. Fortunately, I am blessed by my companions in this process.

First, I give thanks to Him from whom all flows.

Even nonfiction books have heroes. My hero is my wife, Heather. You are
the unending delight of my life. Thank you for who you are and for all you
do. Thanks also to all my kids. I know it’s rough when Daddy spends so
much time writing. I’m done for a little while. Let’s go play! I love you guys.

Thanks to my dear friend Melody Layne who helped me once again take my
writing career to a new place.

Thanks to acquisitions editor Katie Feltman. Even when I couldn’t find the
restaurant where we had our first meeting, you had faith in me and encouraged
me all through the process. Thanks also to project editor Pat O’Brien, the Drill
Sergeant For Dummies who can turn even me into an author worthy of the
incredible For Dummies series. I’m still learning, Pat. One day, I’ll really get it.
Seriously, thanks for all the guidance. I really appreciate learning from you and
working with you. Another big thank you goes to copy editor Teresa Artman:
I’m amazed how she can take my mush and turn it into something that actually
sounds good. And a big thanks to Scott Hofmann for technical editing.

The production process that goes behind a book is dizzying and impressive.
I’d like to thank everyone at Wiley for their professionalism. The folks in
layout, composition, graphics, proofing, cover work, marketing, and everyone
else who worked on this book all deserve three cheers for their terrific work.

Thanks to Macromedia for developing Flash in a way that is adaptable for
games and accessible to people who are not wealthy.

Thanks to John Gersting for looking over my code and giving me such good
advice and guidance.

A very special thanks to my students, especially those in Web Game
Development N451. You always teach me way more than I can ever teach you.
Thank you for letting me be your teacher.

01_589628 ffirs.qxd 10/12/05 2:34 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Senior Project Editor: Pat O’Brien

Acquisitions Editor: Katie Feltman

Senior Copy Editor: Teresa Artman

Technical Editor: Scott Hofmann

Editorial Manager: Kevin Kirschner

Media Development Specialist: Laura Moss

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Adrienne Martinez

Layout and Graphics: Carl Byers, Andrea Dahl,
Joyce Haughey, Stephanie D. Jumper,
Barbara Moore, Barry Offringa,
Lynsey Osborn

Proofreaders: Leeann Harney, Jessica Kramer,
Joe Niesen, Carl William Pierce,
Rob Springer, TECHBOOKS Production
Services

Indexer: TECHBOOKS Production Services

Special Help: Rebecca Senninger

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_589628 ffirs.qxd 10/12/05 2:34 PM Page vi

Contents at a Glance
Introduction ..1

Part I: Basic Flash ...7
Chapter 1: Why You Want to Write Games in Flash ..9
Chapter 2: Cruising and Using the Flash Environment ...19

Part II: The Next Steps ..43
Chapter 3: Altered States ..45
Chapter 4: Getting with the Program ..61
Chapter 5: Making an Interactive Game ...85

Part III: Sprites, or Movie Clips111
Chapter 6: Introducing Sprites and Movie Clips ..113
Chapter 7: Won’t Be Long ’Til You Write Pong ...141

Part IV: Getting Control of the Situation173
Chapter 8: Keyboard Input and Audio Output ...175
Chapter 9: It’s Alive! Animating Your Sprites ...193
Chapter 10: Building the Monster Traffic Game ..219

Part V: Phun with Phuzzy Physics245
Chapter 11: Vectors and Gravity ...247
Chapter 12: Vehicle Motion ..279
Chapter 13: The Life and Death of Sprites ...317

Part VI: The Part of Tens ..341
Chapter 14: Ten Math Concepts for Game Programmers ..343
Chapter 15: Ten Game Starters ..351

Index ...377

02_589628 ftoc.qxd 10/12/05 2:34 PM Page vii

02_589628 ftoc.qxd 10/12/05 2:34 PM Page viii

Table of Contents
Introduction ..1

What’s Really (Not) Required ..1
About This Book ..2
How This Book Is Organized ..3

Part I: Basic Flash ..3
Part II: The Next Steps ..3
Part III: Sprites, or Movie Clips ..3
Part IV: Getting Control of the Situation ...3
Part V: Phun with Phuzzy Physics ...4
Part VI: The Part of Tens ..4

Icons Used in This Book ...4
Where to Go from Here ...5
A Final Word ...6

Part I: Basic Flash ...7

Chapter 1: Why You Want to Write Games in Flash 9
Designing and Writing Games ..10

Making artificial worlds ..10
The importance of interactivity ..11
Games are about objects ..11
Players compete with the programmer ..11

Game Programming in Flash ..11
Comparing ActionScript with Animation ...12
How You Make a Game ...13

Making a playable game ...13
Starting with a plan ...14
Learning to code ..15

Game Programming 101 ...16
Selecting a language ..16
Planning tasks ..17

Chapter 2: Cruising and Using the Flash Environment 19
Creating a New Program Project ...19

Examining the layout of the Flash environment21
Writing on the Flash Stage ..24
Testing your program ...26
Making a Web page with your creation ..27

02_589628 ftoc.qxd 10/12/05 2:34 PM Page ix

Adding Buttons ..29
Building a button ...31
Introducing the Library ..32
Adding state to your button ...36
Finishing your button ...36
Adding code to the button ...37
Understanding the code ...38

Part II: The Next Steps ..43

Chapter 3: Altered States .45
State of Nonconfusion ..45
Adding Keyframes ...47

Building the Green Grass game ...48
Modifying the second frame ..50

Making a Great Adventure ...53
Planning your game ...54
Setting the stage ..55
Making the game your own ..59

Chapter 4: Getting with the Program .61
Different Text for Different Jobs ..61

Static text ..63
Dynamic text ..63
Input text ..63

Building the Greeting Program ..64
Adding text fields to the Stage ...64
Associating variables with text boxes ..66
Changing a text box through code ..67
Reading information from an input text box67

On a Roll: Making Random Numbers ..69
Introducing the Math object ..71
Random acts of randomness with Math.random()71
Getting a 0–5 value ..71
Making a six-sided die ...72

Making Decisions with Conditions ..73
Rolling the die ..75
Checking your 6 ...76
Building the condition ..76

Responding to False Conditions ..78
Seeing the flaw in gotSix ...78
Using the else clause ...79

Making Lots of Decisions ...81

Beginning Flash Game Programming For Dummies x

02_589628 ftoc.qxd 10/12/05 2:34 PM Page x

Chapter 5: Making an Interactive Game .85
Introducing the Math Game ...85
Making an Adder ...87
Building the Visual Design ...90

Designing the choose page ..91
Designing the solve page ..92
Designing the report page ..94

Coding the Pages ...95
Coding the choose page ...96
Coding the solve page ...99
Coding the report page ...103

Coping with Bugs and Crashes ..106
Syntax error ..106
Nothing happens at all ..107
Statement must appear within

onClip event handler ...108
The program moves to the score frame, but you don’t

see the plus sign ..109
Something else is wrong ...109

Part III: Sprites, or Movie Clips111

Chapter 6: Introducing Sprites and Movie Clips 113
Building a Sprite ..113

Making a movie clip ..114
It’s alive! Adding motion to your movie clip117

Don’t Object to Objects ..120
Properties ...120
Special functions ...121
Characteristics ...122

Making a Well-Behaved Object ..123
Adding dx and dy properties ...123
Building the onEnterFrame event ...125
Moving the ball OOP-style ..126

Overcoming Your Boundaries ...128
Boundary effects ...128
Combinations ...136

Making a Cursor ..137

Chapter 7: Won’t Be Long ’Til You Write Pong 141
Building the Game Plan ..142
Following the Mouse with the Player Paddle ..144
Adding the Bouncing Ball ...147

xiTable of Contents

02_589628 ftoc.qxd 10/12/05 2:34 PM Page xi

Building a Better Bounce ...150
Risk has its rewards ..151
Refining the bounce ..152
Getting a new dy value ..153

Adding a Computer Opponent ..156
Building Artificial Stupidity ..158
Adding a Scorekeeping Mechanism ..161

Adding scorekeeping text fields ..161
Add the scorekeeping code ..163
Add starting, winning, and losing states ..165
Making other states ...167
Adding code to handle states ..169

Part IV: Getting Control of the Situation173

Chapter 8: Keyboard Input and Audio Output 175
Introducing the Monster Traffic Game ...175
Responding to the Keyboard ...178

Trolling for key presses ..179
Examining keyboard input ...179
Working with the Key object ..180
Adding a keyboard handler ..183

Adding Sounds ...183
How Flash sound works ..184
Getting sound effects ..185
Considering audio compression ..186
Importing a sound into Flash ...187
Incorporating sound into your programs191
Getting the most from your sounds ..191

Chapter 9: It’s Alive! Animating Your Sprites 193
Creating Animated Sprites ...193

Building a shape ..193
Building an animated sprite ...198

Moving a Sprite under Computer Control ..201
General plan for moving sprites ..201
Setting up direction constants ...203
Determining sprite properties ...204
Turning a sprite ...206
Moving the sprite ..211
Animating the car ..211

Creating a User-Controlled Sprite ...212
Planning keyboard input ..213
Checking for motion keys ...214
Controlling the monster ...216

Beginning Flash Game Programming For Dummies xii

02_589628 ftoc.qxd 10/12/05 2:34 PM Page xii

Chapter 10: Building the Monster Traffic Game 219
Reviewing the Basic Design ...219
Adding More Opponents ..220

Cloning the movie clips ..221
Coding for multiple enemies ..221

Firing Missiles ..223
Testing for Collisions ..228

Planning your collisions ...229
Adding collision code to your game ...229
Building the checkCollisions() function ...231
Building the ResetFlame() function ..232

Adding the Sound Effects ...234
Completing the Program ..236

Adding an intro frame ...236
Create the other states ...239
Adding the scorekeeping functionality ...240
Adding the animations ..242

Part V: Phun with Phuzzy Physics245

Chapter 11: Vectors and Gravity .247
Tower, Give Me a Vector ...247

Working with vectors ..248
Examining the vector ..249
Making a triangle ...250
Seeing things the trig way ..250
Getting help from Chief SOHCATOA ..252
How do I get dx and dy? ...252
Going the other direction ...255

Doing Vector Conversion in Flash ...256
Introducing the vector projection demo ..257
Calculating the values ...258

Using Vector Projection in Motion ..259
Building a cannon ..260
Reading the keyboard ...262
Moving the bullet ..263
Turning the bullet ..264

Fun with Ballistics ...266
Understanding the gravity of the situation268
Drawing on a movie clip ...270
Drawing the path ...271

Calculating the Vector from dx and dy ...272
Determining the angle ...274
Determining the vector length ...275

xiiiTable of Contents

02_589628 ftoc.qxd 10/12/05 2:34 PM Page xiii

Following the Mouse ...275
Programming the EnterFrame event ...276
Building the followMouse routine ...276
Responding to the mouse click ...278

Chapter 12: Vehicle Motion .279
Newton without the Figs ..279

Newton’s First Law ..279
Newton’s Second Law ...280
Newton’s Third Law ..282

Newton and Vectors ..283
Empty balloons fall to Earth ..283
Adding helium to the balloon ..284
Bringing wind into the mix ...285
Don’t tie me down ...286

Baby, You Can Drive My Car ..287
Checking keys for vector input ..290
Turning the car ..291
Making an object-oriented car ...291
Making an even better car ..295
Coding the parameter car ..297

Getting Lost in Space ..301
Building a multi-state sprite ...302
Initializing the ship ..303
Checking for input ...303
Turning the ship ..304
Moving the ship ...306

Captain, We’re Caught in a Gravity Well ...306
Creating the universe ..307
I’m pulling for you308
If one planet is good310

Building a Better Boat ...312
The Secret of Traction ..313

Chapter 13: The Life and Death of Sprites .317
Here We Go Loop-de-Loop ...317
Making Many Things with Arrays ...320
Building Sprites Dynamically ...323

Dynamically generating a sprite ..324
Building a suicidal sprite ..326
Making many copies of a sprite ...328

Creating Custom Objects ...331
Making a really simple object ..332
Building custom sprite objects ..334
Using a custom movie clip class ...335
Building a custom movie clip ...336
One loop to control them all: Making many

custom movie clips ..340

Beginning Flash Game Programming For Dummies xiv

02_589628 ftoc.qxd 10/12/05 2:34 PM Page xiv

xvTable of Contents

Part VI: The Part of Tens ...341

Chapter 14: Ten Math Concepts for Game Programmers 343
Managing Velocity ...343
Accelerating an Object ...344
Calculating a Distance ..344
Projecting a Vector ..345
Generating a Vector ..346
Compensating for Gravity ..347
Newton’s Second Law ...347
Generating a Random Integer ..348
Combining Vectors ..348
Sophisticated Vehicle Motion ..349

Chapter 15: Ten Game Starters .351
Asteroids ..352

Building Asteroids ...352
Enhancements to Asteroids ...353

Lunar Lander ...353
Building Lunar Lander ..354
Enhancements to Lunar Lander ..355

Egg Cannon ..355
Building Egg Cannon ...356
Enhancements to Egg Cannon ...357

Zelda ...358
Building Zelda ..359
Enhancements to Zelda ..361

Platform Scroller Games ...362
Building a platform scroller game ...363
Enhancements to a platform scroller game364

Breakout ...365
Building Breakout ..365
Enhancements to Breakout ..366

Space Invaders ..367
Building Space Invaders ...367
Enhancements to Space Invaders ...368

Orbit Matcher ..369
Building Orbit Matcher ...369
Enhancements to Orbit Matcher ...370

Tile-Based World Games ..371
Building a tile-based world game ..372
Enhancements to a tile-based world game373

Whack-an-Author ...373
Building Whack-an-Author ...374
Enhancements to Whack-an-Author ...375

Index..377

02_589628 ftoc.qxd 10/12/05 2:34 PM Page xv

Beginning Flash Game Programming For Dummies xvi

02_589628 ftoc.qxd 10/12/05 2:34 PM Page xvi

Introduction

I’m sure you bought your computer to do all kinds of serious work.
Computers are good for homework, e-mail, work, and other perfectly

respectable endeavors. But face it: Computers are also all about games. I love
games, and I always have. As soon as I started to learn about computers, I
wanted to use them to play games. I soon found it even more fun to make
games than to play them. Even though I have a (somewhat) respectable
career as a computer science teacher, the gaming aspect of computing has
stayed with me.

If you’re like me — with a love of games and curious how to write them — this
book is for you. Most books on computer programming are pretty boring, but
not this one. For example, I show you how to blow up stuff (as in Kaboom!, not
as in enlarging a photograph). Most books on computer gaming are really
technical, with endless descriptions of graphics primitives and indecipherable
function calls. Not this one, though. I get things going as quickly as possible
and let Flash do all the dirty work.

Yup, you read right, Flash. The Flash environment has emerged as a terrific
tool for writing Web-based games. I dedicate this book to how games are
made using this terrific tool. Along the way, you can glean some skills that
might be useful in more ordinary programming contexts, too.

Okay, geek-speak disclaimer: Sometimes I have to use geeky words and even
a little (gasp) math. Don’t worry, though. Everything I show you has a pur-
pose, and there won’t be a quiz later. I speak English, too, so I promise to
explain everything in regular English, with lots of fun analogies. (My favorite
is the dog that does trigonometry.)

What’s Really (Not) Required
If you’re not sure you know everything you need to get started, don’t worry!
Here’s what I don’t assume you know upfront:

� I don’t expect you to be an ace computer user. You should, though, be
comfortable with all the ordinary computer operations, like saving/load-
ing files and getting around in your operating system.

� You don’t need a super-high-speed computer. Any system that can run
Flash MX 2004 will do. These games work on even more humble
machines.

03_589628 intro.qxd 10/12/05 2:35 PM Page 1

� You don’t have to be a Flash master, either. If you know how to make
really great Flash animations, that’s wonderful but not really necessary.
Game programming is different from animation.

� You don’t need the most expensive version of Flash (Flash MX 2004
Professional). This version of Flash does add some special features, but
you really don’t need any of those features to write wonderful games.

This book was written using Flash MX 2004 with the latest updates avail-
able. If you’re running an earlier version of Flash, some of the programs
will still run, but you won’t be able to open the FLA files from the Web
site.

� You definitely don’t need to be a pasty-faced, mega-caffeine-swilling
computer programmer. (However, if that describes you, you’re still
going to have a great time, you l33t haxor!) I start from the very begin-
ning, using game programming to teach the basic tenets of programming
in any language. Teaser: Stick around for more catapulting cows here
than in any COBOL book you’ve ever seen.

So what is required? Only a copy of Flash MX 2004, some determination, and
a lot of imagination.

About This Book
Each chapter in the book describes a particular facet of game development.
You can read the chapters in any order you wish, especially if you already
have some knowledge of Flash or programming. If you’re just starting, how-
ever, I recommend reading this book from front to back, simply because
programming is a cumulative skill.

If you want, you can just download files from the Web site and start playing
away. Most of the examples in the book are much more interesting in real life
than I can show in a screen shot. Keep in mind that most of the example
games on the Web site are left very simple to illustrate one particular idea.
Still, they are pretty fun, and after you play them, I bet you’ll want to read
how they were made so you can change them and make your own variant.

Another fun alternative is to start at the very last chapter, which shows how
to write ten different styles of games. Choose a game type that you want to
master and go back to those chapters you’ll need to pick up the necessary
skills. This approach allows you to get to the game you want quickly without
having to wade through anything that doesn’t relate directly to that game.

2 Beginning Flash Game Programming For Dummies

03_589628 intro.qxd 10/12/05 2:35 PM Page 2

How This Book Is Organized
I organized this book by writing a sophisticated Bayesian filter, artificial
intelligence algorithm. Just kidding. Really, I sketched it on a napkin at the
breakfast table. Still, I think it makes sense to break the book into a series
of sections.

I lovingly named these parts as follows.

Part I: Basic Flash
This part gives you a programmer’s introduction to the Flash environment. You
see the various doohickeys and thingamabobs on the screen — and which
ones you can ignore. You read how to make text appear and change onscreen,
how to respond to button presses, and how to build a basic adventure game.

Part II: Getting with the Program
Time to experience some traditional programming skills (but nothing too
boring). In this part, you master text-based input and output, see how to
build random numbers, and make the computer perform the basic mathe-
matical operations you’ll use to build space muskrats in later games in the
book. I show you how to make a sophisticated math game that generates
random math problems. After that, I promise — no more educational games.

Part III: Sprites, or Movie Clips
Here you can use the most important element in Flash: the movie clip. Read
here to find out what a sprite is and how you can use movie clips to make
them easily in Flash. Then see how to build and control basic movie clips,
making them move around onscreen, bashing into walls and each other. For
a little ramble down Nostalgia Road, stick with me here to build the all-time
classic Pong game.

Part IV: Getting Control of the Situation
Games aren’t much fun if the user doesn’t do anything. This section shows
you how to respond to keyboard input and control sprites onscreen via player
input. You also see how to add sound effects to your games (so anybody
playing your game at work runs the risk of being fired). You discover more

3Introduction

03_589628 intro.qxd 10/12/05 2:35 PM Page 3

sophisticated ways of moving and animating your sprites to make them more
realistic. Follow along as I walk you through building a complete game —
Monster Traffic — complete with monsters, flames, car alarms, destruction,
and mayhem.

Part V: Phun with Phuzzy Physics
Don’t worry — this isn’t anything like Physics 101 with Professor Baldnoggin.
Oh, no. The stuff in this section is much more cool than that. Sure, I’ve got to
use words like mass and vector at some point, but it’s worth it because you
use these ideas to build vehicles that turn realistically, boats that skid around
on water, spacecraft that orbit planets realistically, and all kinds of other
geeky fun. You also become the true master of your universe as you see how
to create and destroy sprites at your slightest whim (Muhahahaha!).

Part VI: The Part of Tens
The famous Part of Tens is a staple of any book in the For Dummies series.
The two chapters in this part are pretty handy. The first one outlines the ten
most important math concepts for a game programmer. These are ideas that
you see throughout the book. Master these, and you master game develop-
ment in any language. The last chapter is my favorite in the whole book. I
wrote starter code for ten different games. I didn’t finish any of them —
that’s your job! I did get the basic framework down so you can add your own
flourishes. You’ll find several classics (such as Space Invaders, Zelda, and
Asteroids) and a couple of original ideas. You can think of this section as a
recipe book to get you started on your own games.

Icons Used in This Book
Certain concepts in any book ought to stand out on the page. With that in
mind, this For Dummies book includes a number of margin icons for certain
situations:

Tips are suggestions to make things easier.

Sometimes I have to talk about certain technical things in order to keep my
Self-Important Computer Science Instructor Certification. These things are inter-
esting but not crucial, so I mark them with this icon. You don’t need to read
them if you don’t want, but memorize some of these paragraphs before you
go to your next computer science party. The guests will love you.

4 Beginning Flash Game Programming For Dummies

03_589628 intro.qxd 10/12/05 2:35 PM Page 4

Be sure to read text marked with this icon! If you do not follow a warning,
bad things could happen: Puffs of black smoke might come out of your moni-
tor, your workspace could be deluged by a plague of frogs, or your program
simply won’t work right.

These tidbits denote info you ought to think about, but it’s not going to cause
a disaster if you don’t pay attention.

If you’re gonna be a programmer, you gotta have code. Of course, I give you
all the source code files for this book, located handily online at

www.dummies.com/go/flashgameprogrammingfd1e

Where to Go from Here
My recommendations on how to proceed? Mainly, have some fun and write
some games.

� Begin by simply downloading the software and playing the games I’ve
put there.

� If you’re really new to all this stuff, jump in and start writing games. I put
the easiest game programming tasks at the beginning, but you can start
wherever you want. If you start in the middle and get confused, just back
up until you’re comfortable.

� For all other concerns, use the index or jump straight to the chapter you
need. (You can always return later at your leisure.)

A Final Word
Thank you for buying this book, and I hope that you find Beginning Flash
Game Programming For Dummies fun and valuable. I had a great time writing
this book, and I think you’ll have a lot of fun using it to write really terrific
games. Have fun, learn a lot, and let me know what you’ve made!

5Introduction

03_589628 intro.qxd 10/12/05 2:35 PM Page 5

6 Beginning Flash Game Programming For Dummies

03_589628 intro.qxd 10/12/05 2:35 PM Page 6

Part I
Basic Flash

04_589628 pt01.qxd 10/12/05 2:35 PM Page 7

In this part . . .
You discover the basic toolset of the Flash environ-

ment as a programmer sees it. You give your pro-
grams various states and take a tour of all the beginning
tools. You finish the section with a complete adventure
game.

Chapter 1 shows you how to start thinking like a program-
mer. I explain how Flash and ActionScript are like other
programming languages and some key ways they are dif-
ferent. If you’ve never programmed before, I prepare you
with some wisdom about the programming process.

Chapter 2 is about creating Flash projects. You make a
button and have it respond when the user clicks it. You
find out how to embed your Flash games into Web pages.

04_589628 pt01.qxd 10/12/05 2:35 PM Page 8

Chapter 1

Why You Want to Write
Games in Flash

In This Chapter
� Seeing how to use Flash to write games

� How programming differs from animation

� Exploring basic game design concepts

Computer programming can be a whole lot of fun. That’s why I got into it
way back when, and it’s why I still do it. Truth be told, the main reason I

learned how to program was to write games. I couldn’t buy much software for
my first computer (a TRS-80 Model 1, still in the garage . . . sigh). I wanted to
play games, so I had to create them myself. Admittedly, I was pretty bad at it,
and I failed a lot, but I kept trying. As I grew up, my programming skills were
marketable in the “serious” world, but I never lost my fascination with com-
puter games.

Here are some very good reasons to write games:

� Computer games made more income in 2003 than the movie industry.

� Game programming is technically challenging.

� Making a game is fun!

Most other game development books can be divided into two camps:

� Some talk about the game design process, storyboarding, coming up
with game ideas, and the visual side of gaming. That’s pretty good stuff
to know, but it doesn’t help you actually make a game.

� Other books assume that you’re already good at C++ and advanced
math. That’s pretty good stuff, too, but you don’t need to start there.

05_589628 ch01.qxd 10/12/05 2:36 PM Page 9

I believe that newcomers to programming can master the essential ideas of
programming at the same time they’re learning to build games. I also feel that
those with some programming experience will truly enjoy the uniquely cre-
ative aspects of game development. You don’t have to know anything about
programming or Flash to use this book. (However, if you know these things,
you’ll still probably see something new.)

In this chapter, I give you an overview of the basics of game designing and
planning, writing, and programming in Flash (with ActionScript). Most of all,
you’re going to have a lot of fun.

Designing and Writing Games
If you’ve asked around about how to get started in game programming, people
have probably told you to learn C++ and take lots of math classes. That’s not
bad advice, but I have an easier way. The truth is that making games isn’t really
about any particular computer language. After you learn how to write games,
you can transfer those concepts to any environment you wish. There are sur-
prisingly few main concepts behind game development. If you truly understand
these ideas, you can translate them to any programming language you want.

In this book, I show you how to program games in Flash. I like Flash because
it simplifies the visual side of programming, works on almost every computer
made, and has a powerful and reasonably easy programming language. I talk
about this more in the upcoming sections, “Game Programming in Flash” and
“Game Programming 101.”

Too, game programming is different than other kinds of software development.
For one thing, games need to be fun. And games are all about communicating
with the player as well as providing some sort of immersive world in which the
player participates. As a game programmer, you get to be creative and think
outside the box.

Making artificial worlds
Typical business programming relies heavily on certain conventions and
metaphors. If you’re writing a database application, it’s de rigueur to make
your program much like all the other programs users have seen. In game
programming, though, you’re often trying to “hide” the computer from the
player. For example, if you’re making a spaceship game, you want the con-
trols to look and feel like spaceship controls. Imagination is a really impor-
tant part of playing and writing games.

10 Part I: Basic Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 10

The importance of interactivity
Games need to react to the player. The player should manipulate a virtual
presence, and the game should react accordingly. Some games are turn
based, and some are in real time, but all require more immediate feedback
than traditional types of programs.

Games are about objects
Many games involve objects bonking into each other, shooting each other
(with other objects), avoiding each other, and simply milling around. While
you’re writing a game, you usually think about objects, their characteristics,
and how they interact with the player as well as with each other.

Players compete with the programmer
When you play a really great game, you’re not really playing against the com-
puter. Rather, you’re really engaging in a stylized conversation with the pro-
grammers. As a game developer, you get the chance to set up worlds. The
players interact with a stored version of your thoughts and imagination.

Game Programming in Flash
Macromedia Flash is a very good environment for learning basic game pro-
gramming ideas. Here are a number of reasons for starting with Flash:

� Flash offers robust multimedia support. Flash, which was designed to
support animation on the Web, supports various kinds of images easily.
(Think JPEG images and custom drawings.) See how to use the drawing
features of Flash in Chapter 9. Flash also has great support for various
kinds of audio files, such as MP3 and WAV formats. You incorporate
audio into your games in Chapter 8.

� ActionScript is related to the influential C language. The ActionScript
programming language built into Flash is closely related to JavaScript
and ECMAScript, which are two extremely common programming lan-
guages. All these languages are based on the C programming language,
so the coding conventions you’ll master are much like those in other
languages.

11Chapter 1: Why You Want to Write Games in Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 11

� Flash is designed for the Web. By working in Flash, you have a ready
distribution network. Because Flash was designed for the Web, all your
games can be easily published on the Web, and anybody with a Web
browser and a Flash plug-in can enjoy your games. And you won’t have
to worry about what operating system your users use. (All the programs
in this book have been tested in Windows XP and Fedora Core Linux, but
they should work in any OS with a Flash plug-in.)

Comparing ActionScript with Animation
Maybe you’ve used Flash to build Web animations without ever going into its
programming features. Many books on Flash (as opposed to ActionScript)
focus on the powerful animation features of Flash. These books often men-
tion ActionScript but don’t dwell on it heavily. Animation is primarily about
creating moving images; user interaction in animations is minimal. When cre-
ating an animation, you generally create some sort of visual symbol onscreen
and then use a tool called a motion tween to indicate where this object should
be at a specified point in time. You can also use a tool called a shape tween to
change the shape of an object over time. You can do this with many objects
at the same time to make a complex animation. In order to track all these
objects, Flash animators often arrange them into separate layers. Thus, a typi-
cal 30-second Flash animation might have hundreds of frames of animation in
over a dozen layers.

Animation is cool because it allows you to build movies. However, to create
games, you must discover how to program.

If you treat Flash as a programming environment (as I do in this book), you
see things quite differently. You still use Flash to create objects, but instead
of relying on the Flash environment to control what those objects do (via ani-
mation), you control the objects directly by writing programming code. The
ActionScript programming language built into Flash lets you do anything that
can be done with animation — and many things that cannot be done by using
animation techniques alone.

In a nutshell, programming is what makes games interactive. You can

� Control what’s onscreen, what size it is, where it is, and how it’s rotated

� Detect whether two things touch each other

� Accept input from the user

12 Part I: Basic Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 12

How You Make a Game
The goal of game development can be summarized in one sentence:

Games are stories that use the player as a primary character.

Like any interesting story, a game needs these plot elements:

� A character (at least one)

� A conflict

� A goal

Game play must be compelling, but game elements don’t need to be complex.
Simple games like Tetris and Pac-Man have had phenomenal success.

Making a playable game
A good game has a good story, and it also has some form of user interaction.
In Flash, the player uses the mouse and keyboard as primary input devices.
Although these devices might seem limiting (compared with a more sophisti-
cated joystick or driving console), you can do many things with these basic
forms of input.

Although Flash doesn’t directly support joystick input, users can easily use
modern joysticks with the games you can write in Flash. Most joysticks now
come with programs that allow the user to map keystrokes to keyboard com-
mands. In effect, by allowing keyboard input, you also allow rudimentary joy-
stick input.

A game should also look good and sound good, but these things don’t matter
if the game isn’t fun.

Some of the best games ever have incredibly limited graphics and sound. If
you’ve never played NetHack (as shown in Figure 1-1), download a copy (free
for just about any computer ever made) and play it. At first, you might be
thrown by the complete lack of graphics and sounds. NetHack uses plain text
without any graphics or sound effects, but the game is amazingly absorbing.
I bet that you get caught up in the incredible game play and find yourself
actually scared of the capital D coming at you.

13Chapter 1: Why You Want to Write Games in Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 13

Most of all, games should be fun. I can’t really tell you how to make a game
fun. You need to test a lot for a game that’s fun to play.

Starting with a plan
Before you worry at all about the details of your game, come up with a theme.

Think about what you want your game to be about. Outline and define the fol-
lowing components:

� The main character: Don’t forget the kinds of obstacles this character
will encounter. You can read how to build a main character throughout
the book, but the topic is covered most deeply in Chapter 9.

� The overall look of the game: Consider the setting. What colors will you
use? What overall look and feel are you looking for? (Retro? Cartoon?
Gothic? Maybe a Gothic retro cartoon?) Chapter 7 describes how to set
up the visual feel of a game.

� The main screens: Most games have

• A main play screen (or two)

• An instruction screen

• Some sort of introduction

• A Game Over screen, or maybe two: one for when the player wins
and one for when the player loses

Chapter 7 describes how to build multiple screens for your games.

Draw these visual elements on paper.

� The objects on each screen: You have to build everything in your game.
The visual design part is important but relatively easy.

Figure 1-1:
A

captivating
game isn’t

always
about flashy

graphics
and sound.

14 Part I: Basic Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 14

� The role/behavior of each object: Decide these details upfront for each
object:

• How the object moves

• Whether it’s controlled by the user or the computer

• Whether it does something when it interacts with other objects

• Whether it makes sounds

• What happens when it leaves the screen

After you finish defining these objects, convert your sketches into reality.
This sounds like a pretty easy step, but it’s the one that might cause you a
lot of grief. You probably know exactly what you want all the screen objects
to do, but a computer is incredibly stupid.

You have to convert your clever ideas to statements so clear that even an
idiot computer can understand them.

Learning to code
Mountain climbers train before they scale the big mountains:

� Learn: They learn the tools of the trade, practicing on small hills and
isolated, safe areas before testing their skills on actual mountains.

� Pace: When they’re ready to climb Mt. Everest, climbers don’t go for the
top in one day. They build a solid base camp at the foot of the mountain.
Then they create another camp higher up, and another even higher.

� Progress: At each camp, the ultimate goal is still the summit, but the
intermediate goal of the next camp is the task at hand.

A mountain climber concentrates on the next step.

The same advice is really good for all programmers, beginning or advanced:

� Master the tools of the trade. There’s no getting past the fundamentals
(which this book shows).

You need to know both

• The basic ideas of programming

• The principles of game development

� Know the goal. That’s why you start with a written description of your
program.

15Chapter 1: Why You Want to Write Games in Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 15

� Use small steps. Concentrate on mastering one task at a time.

In this book, chapters show you specific skills and apply those skills in
simple games, so you can

• Learn the skills you need for complex games.

• Practice these skills in isolated programs.

� Enjoy the view. Game programming is supposed to be fun.

Celebrate your progress! When you succeed at a viable chunk of code,
do a little Hampsterdance. (If you don’t know what I’m talking about,
visit www.hampsterdance.com.)

� Pace yourself. Your first program won’t be the next version of Quake,
but there’s plenty of fun in writing games that are a little less ambitious.
Eventually, you’ll build your skills so you can write something way
better than Quake.

Game Programming 101
Game programming is a process. All the programs in this book use the Flash
environment, but the details of Flash programming aren’t the most important
factor. When you want to make a game, you need to choose an environment
that will work as well as decide a strategy for creating the game.

Selecting a language
If you’re reading this book, you’ve chosen Flash as your environment.
Excellent choice!

� Flash is an ideal environment for beginning game creation.

Flash makes a lot of the implementation easier, so you can concentrate
on the content of your games instead of all the details of memory man-
agement, image drawing, and reading the input devices. (Fancier envi-
ronments make you put a lot of work into such details instead of
mastering the craft of game development.)

� Most commercial games are written in 2-D, using C++ and graphics
engines like DirectX or OpenGL.

Those are really great environments, but they aren’t necessarily what
you need while you’re learning the process of game development.

16 Part I: Basic Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 16

If you want to be a racing champion, you don’t just show up in Indianapolis
with a helmet. Starting your driving career in a high-performance machine is
foolhardy and dangerous. You begin your career racing karts and then
advance through more challenging vehicles. That’s why you should start pro-
gramming with Flash and ActionScript:

� C++ is like a Formula 1 car — fast and difficult to handle.

� Flash and ActionScript are like a go-kart (albeit a souped-up, Internet-
enabled go-kart that outperforms any computing environment NASA had
during the moon program).

Planning tasks
Game programmers prepare by planning several parts of the game:

� Encapsulating objects onscreen: All the things that move around on the
computer screen are called sprites by game programmers.

Chapter 6 shows you what need to know:

• What a sprite is

• How to create a sprite with Flash tools

Flash has a great object called a movie clip that can easily be used as a
basis for sprites. Chapter 6 shows how to use it.

� Accepting input from the user: There are all kinds of user input devices,
but Flash games concentrate on the mouse and the keyboard.

Chapters 2 and 6 show how to get information from the mouse, and
Chapter 8 describes reading the keyboard in Flash.

� Moving things realistically: Game programmers must

• Understand the physics properties of position, velocity, and accel-
eration, and attach these characteristics to a sprite so that it
moves in a realistic fashion.

• Simulate such useful physical properties as gravity and friction.

Chapter 6 shows how to manage basic motion in Flash. Read about more
sophisticated motion in Chapter 9 and see how to create realistic vehi-
cles in Chapter 12.

� Dressing up the user’s experience: Graphics, sound, and animation
matter. Chapter 9 shows you how to use graphics, and Chapter 8 shows
you to use sound effects.

17Chapter 1: Why You Want to Write Games in Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 17

� Keeping the action fun: Every game must be able to adapt to the user’s
ability level.

Find places to adapt the computer’s ability so the computer always
gives users an interesting challenge. As I describe each game in the
book, I give hints how you can make the game easier or more difficult.

18 Part I: Basic Flash

05_589628 ch01.qxd 10/12/05 2:36 PM Page 18

Chapter 2

Cruising and Using the
Flash Environment

In This Chapter
� Picking a project to start with

� Checking out the work area

� Following the Hello World! tradition

� Adding buttons to your programs

� Creating various button states

� Responding to button events

� Publishing your work

The Flash development environment has a lot of powerful features that
can be intimidating to a beginner. For example, the default screen has

12 different panels with over a hundred buttons, icons, and menu choices.
Fortunately, there’s a lot of stuff you won’t have to worry about, and the fol-
lowing sections present the essential interface features — such as the Stage
and Timeline — so that they begin to make sense very quickly. The best way
to find out about the Flash MX environment is to use it to write some pro-
grams. This chapter helps you build a basic adventure game, and along the
way, you get chummy with the basics of the Flash interface.

Creating a New Program Project
The ideas in this chapter can be put together to build the classic first pro-
gram, one that declares your programming prowess to the world. Figure 2-1
illustrates my take on this masterwork.

06_589628 ch02.qxd 10/12/05 2:37 PM Page 19

When you first open Flash, you see a screen much like the one shown in
Figure 2-2, which displays a list of project templates that you can create. The
choice that you make here determines the starting characteristics of your
project, but you can change most of the settings after you learn to manipu-
late objects and their properties.

To begin a new game project, just click Flash Document in the Create New
column.

Figure 2-2:
Build a

new Flash
document to

get things
started.

Figure 2-1:
This is a

very friendly
program.

20 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 20

The basic Flash Document project provides the foundation for everything
you do to create your game program. From this base document, you can

� Add buttons, text boxes, and game objects to populate the game
interface.

� Draw and color basic shapes that are the foundation of your games.

� Move your game’s objects around in the game staging area.

� Control how your objects react over time.

� Respond to user input from the mouse and the keyboard.

� Play sounds.

� Create anything else you typically see in Web-based games.

The other templates simplify the creation of other kinds of programs, includ-
ing projects optimized for mobile devices and video applications. You can
build a game designed to fit on a Pocket PC, a Palm Pilot, or the new genera-
tion of cellphones! There’s nothing really that fancy about the templates.
Everything you can build with them can also be created with a normal Flash
document. The templates are simply preset for specific kinds of projects. For
example, the Mobile Device templates are designed to be the size of typical
PDA and mobile phone screens.

Examining the layout of
the Flash environment
As you begin your project, you see a screen like the one shown in Figure 2-3.
A Properties Inspector, (bare) Stage, Tools panel, Timeline, and panel stack
are at your disposal.

The following sections show how you use each section of the work area.

Stage
Most of the Flash work area is taken by a large rectangle near the center of
the screen. This area is the Stage, where the action of your game takes place.
After you create your games, the user sees only the Stage and the objects
that you create bouncing around and interacting on it.

The term Stage is from Macromedia’s earlier product Director, which took a
moviemaking analogy to somewhat ridiculous extremes.

21Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 21

Properties Inspector
The Properties Inspector box is directly below the Stage. The Properties
Inspector allows you to change characteristics of the things (such as the
buttons, enemy objects, and the player’s character) that populate your
game. The Properties Inspector also changes automatically to reflect what-
ever object you’re working with.

When the Stage is selected, the Properties Inspector box shows things that
you can change about the Stage, such as the size and background color.
When you create other objects (space monkeys or whatever) for your games,
you use the Properties Inspector to change certain characteristics of these
new objects.

Tools panel
The Tools panel, which goes along the left side of the screen, features tools
for drawing and manipulating basic graphics. You use these tools to create
the visual representations of the characters in your game.

Tools panel Panel stackStageTimeline

Properties Inspector

Figure 2-3:
The Flash

MX screen
is divided

into several
major

sections.

22 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 22

The tools are similar to common painting and drawing programs.

Timeline
The Timeline is a grid-like feature at the top of the Flash editor screen.
Here, you can work with keyframes and layers to help create and refine
your project.

Keyframes
In Flash animation, the Timeline indicates how various elements react over
time. As a game programmer, however, you use the Timeline a bit differently,
breaking your program into little slices of time called keyframes. You repeat
each keyframe indefinitely. The timeline for an animation is often thousands
of frames long, but most programs take only a few frames because each
frame repeats. Instead of relying on the Timeline to control how elements
move around on the screen, your code does all the work.

Layers
When you view a typical Flash document, many timelines are stacked on top
of each other. Each row of the Timeline represents a different layer, which is
used to separate parts of the game.

As a programmer, you don’t need layers as often as animators need layers.
Your code performs most of the features that animators usually generate
with layers.

23Chapter 2: Cruising and Using the Flash Environment

Hello, World!
Looking around the interface is nice, but you’re
here to do some programming! May I suggest
that your first program reflect one of the oldest
traditions in programming? (Programming has
all kinds of tradition and folklore, despite its rel-
atively short time on the scene.) When pro-
grammers encounter a new programming
environment, they often try it by writing a pro-
gram that simply says, “Hello, World!” It’s a fun
tradition, but it also has a practical side. The
Hello World! program has these benefits:

� It’s about as simple of a program as you can
write.

� It provides some kind of feedback (or visi-
ble output).

� It demonstrates a basic understanding
of the mechanics of your programming
environment.

There’s no point in writing a more complex pro-
gram until you get down the very essentials.
Make sure you can write a minimal program
that runs correctly and proves its existence by
displaying some output. All other programs will
be based on this foundation, so make sure you
understand it before you add more meat to the
program.

06_589628 ch02.qxd 10/12/05 2:37 PM Page 23

Panel stack
The right side of the screen is taken by a series of panels called the panel
stack, which houses the tools that help you build your games. Figure 2-2
(shown earlier) shows a few panels in the panel stack: specifically, you can
see the Color Mixer as well as collapsed forms of three other panels you
won’t need in this book.

When I show ActionScript programming steps throughout this book, I tell you
which elements in the panel stack to use and how to use them.

Writing on the Flash Stage
Writing a Hello World! program in Flash is ridiculously easy. In fact, there’s
no actual programming to it. You can create this simple program with the

24 Part I: Basic Flash

A program by any other name . . .
As a computer programmer, you often name
things such as program files, variables, and
functions. Keep these rules in mind when cre-
ating names for your files and the other ele-
ments that you name for your future projects:

� Use meaningful names. Don’t call your file
something like George.fla or X.fla.
because in a day or two, you won’t know
what those things mean.

The name should be long enough to be
descriptive but not so long that it’s tedious
to type (or lend itself to typing errors).

� Avoid spaces. Some operating systems let
you use spaces in filenames, but it’s a really
bad idea. Your Flash programs will eventu-
ally end up on the Internet, where it’s quite
likely they’ll be hosted on a Linux or Unix
machine. These environments are very
fussy about spaces in filenames.

� Carefully capitalize. Some operating sys-
tems care about the case (capitalization) of

a filename, and some don’t. You don’t know
what kind of computer will host or run your
program after it goes on the Internet. I rec-
ommend creating a convention and sticking
with it so you don’t confuse yourself later.

I prefer camel-case, like helloWorld.
fla. Use lowercase letters everywhere
except to separate words; use uppercase
letters to start new words.

� Avoid punctuation. When you’re naming
files in a programming environment, be very
careful about punctuation and other special
characters. These characters often have a
special meaning that could cause you prob-
lems. For example, the asterisk (*) charac-
ter is sometimes used as a wildcard
character, so don’t use it in a filename.

The underscore character — _ — is usu-
ally safe, but you should avoid most other
special characters, such as $ and #.

06_589628 ch02.qxd 10/12/05 2:37 PM Page 24

drawing tools that Flash provides. Follow these steps to say, “Hello” to the
world:

1. Start Flash and click the Flash Document icon in the Create New area.

Surprise! A new Flash document appears.

2. Click the upper-left frame on the Timeline (directly under the
number 1).

This selects Frame 1, Layer 1 as the starting point for your program.

3. Click the Text tool (which looks like a capital A) from the Tools panel
and then click and drag a rectangle on the Stage where you want your
message to go.

4. Type your greeting message to the world in the rectangle you created.

You can see my message in Figure 2-4.

5. Highlight your text message to select it.

6. Change the text characteristics by using the options you find in the
Properties Inspector (along the bottom of the screen).

The Properties Inspector panel allows you to modify the text much like
you do in a word processor. Play with the text’s font, size, and color
properties. You can even select and manipulate individual characters or
words in a text box. Go crazy and add a few more text boxes to the
stage, if you want, to get a feel for all the things you can do with text on
the Stage.

Figure 2-4:
With the
Text tool,
you can

easily write
text onto

the Stage.

25Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 25

7. Click the Move tool (the black arrow) from the Tools panel; use this
tool to select items on the Stage and move them around to your
heart’s content.

When the Move tool is selected, you can simply click objects on the
Stage to select them and view their properties, or click and drag them
to move them around the Stage.

8. When you’re finished creating, choose File➪Save to save your Hello
World! program.

The Save dialog box prompts you to choose a folder and name your
program.

The sidebar, “A program by any other name . . .” has naming
recommendations.

Save early, save often. You never know when your computer will be struck
by a typhoon or something.

All this text manipulation is fun, but seeing how this little program looks out-
side the Flash environment or in a Web page (so you can impress your
friends and family with your programming prowess, no doubt) is even more
fun. The following section puts your Flash program to work!

Testing your program
After you create and save your program, you’re ready to run it and see how it
works! To view a program, follow these steps:

1. Make sure the program that you want to test is the current (or only)
program in Flash.

2. Preview your program with one of these commands:

• Choose Control➪Test Movie from the menu bar.

• Press Ctrl+Enter.

If you have experience with Flash Animation, get in the habit of
using Ctrl+Enter to preview your Flash game program. (In Flash
Animation, pressing only Enter, without the Ctrl key, allows you to
preview your animations.) Pressing only Enter can allow you to
preview a very simple program (like your Hello World! program),
but it won’t execute code embedded in your programs.

When you preview your creation, you should see a new window pop up
with your program inside (something like you see in Figure 2-5). Bask for
a moment in the glory of your accomplishment!

26 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 26

Making a Web page with your creation
If you have access to a Web server, you can publish your work for anyone on
the planet to see.

Web page files
To publish your game, choose File➪Publish from the menu bar. Flash makes
a new version of the program for you. Choosing the Publish command gener-
ates three different files in the typical publication process. After you publish
a program, the folder containing your FLA file contains three related files with
these suffixes: .fla, .swf, and .html.

To locate your published game, look in the directory where you saved the
Flash file; you should see three other files as well.

.fla
The FLA file is the original Flash program file that was created and saved.

This file is larger than the other two related files. This file contains all the
materials necessary for working with the program in Flash. A program file
works only in the Flash editor, but you can change it as much as you want.

Think of the FLA file as a photographer’s negative. It contains information but
isn’t useful by itself to the viewer.

Figure 2-5:
The

completed
Hello
World!
program

declaring
its birth.

27Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 27

.swf
An SWF file is a squeezed version of the program file. Its size is squished
(compressed) so it can be delivered over the Web. It’s created when you pub-
lish the program.

Think of the SWF file as a photographic print. It’s the completed and com-
pressed version that’s useful for the viewer.

Anyone who has a copy of the Flash plug-in (that’s nearly everyone) can run
your SWF file by clicking it. Users don’t need a full-blown copy of Flash to see
your program, and they can’t change your SWF file.

Usually, you won’t make people click an SWF file to play your games.
Packaging an SWF onto a Web page is better and easier. This automatically
creates an HTML file that you can use.

.html
An HTML file carries the packaged SWF program to the Web. The HTML file is
created when you publish the program, along with the SWF file it carries.

Think of the HTML file as the picture frame for your other files. If you wish,
you can edit the HTML file with whatever tool you use for editing Web pages.

In this chapter’s example, the helloWorld.html file is a very simple Web
page that has the code necessary to incorporate the helloWorld.swf pro-
gram. If you load this file into your browser (and the appropriate plug-ins are
installed), the program runs without the user even knowing that Flash was
involved.

If you know HTML, you can modify the resulting page all you want or even
copy and paste the <OBJECT> and <EMBED> tags created by Flash into your
own Web pages.

Server requirements
You might also want to make your program visible on the Web.

� If you want your program to be visible over the Web, you need to

• Have access to a Web server.

• Make the program’s SWF and HTML files available on that server.

� If you’re writing programs just for fun, you don’t need to worry about
server stuff.

28 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 28

Adding Buttons
Admittedly, the Hello World! program really doesn’t do much. It’d be
much more interesting to have a program that does something useful. The
Don’t Click program shown in Figures 2-6 and 2-7 is more interesting
because the user can control the program, albeit in a very limited way.

Figure 2-7:
When the

player clicks
the button,

a little
window

pops up and
complains.

Figure 2-6:
I bet you’re

dying to
click that

button.

29Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 29

The Don’t Click program is really cool because it introduces interactivity.
In this example, the program has a button sitting in the middle of the screen:

� Nothing happens until the user clicks the button.

� When the user clicks the button, the user is treated to a lavish display of
multimedia extravagance (if you’ve lavished extravagant multimedia on
the program, anyway).

30 Part I: Basic Flash

3-D buttons
Lines with the right color, shade, and width can
make any screen element look three-dimen-
sional. (Computer programs often use this con-
vention to make your buttons look clickable.)

A few changes give your button the appearance
of a 3-D button with the light coming from the top-
left corner of the screen. For this effect, select
the border lines individually with the black arrow
Selection tool and change their shade:

1. Make the top and left borders a brighter
shade.

2. Make the bottom and right lines a darker
shade.

You can adjust the border width and color by
changing the properties in the Properties
Inspector (as shown in the figure here).

06_589628 ch02.qxd 10/12/05 2:37 PM Page 30

If you’re viewing this program at this book’s companion Web page, you prob-
ably won’t see the Ouch!! message. That message goes to a special secret
location visible only to programmers (that’s you!). I explain the output
window in the “Saying Ouch!!” section later in this chapter. Just run the pro-
gram from within Flash, and everything will work fine.

The Don’t Click program demonstrates two critical interactivity features
that are covered in the following sections: buttons and pop-up screens.

Building a button
Flash has some built-in button objects, but it’s very easy to build your own.
Building your own buttons lets you control how your button looks and acts.

Follow these steps to build a button:

1. Create a new Flash program (if you haven’t already created a new
program).

I show you how to do this earlier in the chapter.

2. Draw a rectangle on Layer 1 of Frame 1.

Make sure that the rectangle isn’t touching any text or other drawings
on the screen because Flash automatically combines any overlapping
objects.

Buttons don’t have to be rectangles, but this example is traditional.

3. Modify the rectangle’s visual characteristics.

Change size and color all you want via the Properties Inspector but
don’t put any text on the rectangle at this point.

4. Change the rectangle’s appearance.

Try the steps in the sidebar “3-D buttons.”

5. Select the rectangle.

When you’re happy with the look of the button, use the black arrow to
select it by selecting around the entire rectangle or double-clicking it.

6. Change your rectangle into a symbol by choosing Convert to Symbol
from the Modify menu or by pressing F8.

A symbol is a generic term for a custom object in Flash. Flash supports
three types of symbols. The button is one type of symbol. The other two
are movie clips (see Chapter 6) and graphic symbols, which are rarely
used in game programming.

When you create a symbol, you see a dialog box, like Figure 2-8.

31Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 31

Symbol objects are the foundation of all ActionScript programming. The
“Symbolically speaking” sidebar describes all three types.

7. Name your button by choosing the Button option in the Convert to
Symbol dialog box and then giving your button a name.

For this example, I call mine theButton.

Use these rules for button names: Don’t use spaces, be careful with capi-
talization, and don’t use any punctuation.

Introducing the Library
After you create your button object, note these two changes:

� The button looks slightly different onscreen.

� You can’t select the individual parts of the button. And, when you
select the newly created button, you see it surrounded by a new kind of
blue rectangle.

Some very interesting things happen behind the scenes when you create that
button. To see what’s changed, look in the Library. Choose Library from the
Window menu or press Ctrl+L (or F11) to make the Library appear.

Figure 2-8:
Use Convert

to Symbol
to create
buttons.

32 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 32

The Library is so important that I’m amazed it isn’t a default part of the
layout. One of the first things I do when I sit down to a new copy of Flash is
set up my own layout:

� I make the Library the most prominent element in the right-hand
panel.

� I minimize all the other panels in the panel stack.

Note the Save Panel option of the Window menu that you can use to save
a particular panel layout. You can then get back to that layout with the
Panel Sets option of the Window menu. As you get more comfortable with
Flash, you’ll probably have your own preferred layout. I suggest that you
make the Library easy to reach because you need it all the time for both
traditional animation and programming. You’ll see your button listed in
the Library. You can use the icons at the bottom of the Library to edit or
delete the button as well as to look at its properties. More interestingly,
you can drag a button from the Library and drop it on the Stage, as
shown in Figure 2-9.

This ability to create new buttons indicates a key feature of objects in the
Library: They are definitions of objects rather than instances. It’s a subtle but
very important difference. I have some students in Macedonia that I teach via
a remote connection. If I want to send them some cookies, I probably could,
but they’d be crumbled when they got there (the cookies, not the students).
Instead, I could send the cookie recipe and have my lab instructor who is
already there make the cookies to take into class. Rather than sending actual
cookies, I’m sending instructions. The instructions can be reused again and
again to make cookies, but instructions themselves aren’t cookies. (Chewing
on the index card won’t be nearly as satisfying as a real cookie.)

33Chapter 2: Cruising and Using the Flash Environment

Symbolically speaking
ActionScript programming uses three different
kinds of symbol objects:

� Button: Sits still until the user clicks it

Buttons often change their appearance
when the mouse is over them or when the
mouse clicks them, but they don’t move
around much.

� Movie clip: Moves around on the Stage

Chapter 6 shows you how to use movie clips
as objects that bounce and crash around
onscreen.

� Graphic: Simple graphic with very few
capabilities

Graphic symbols are rarely used in game
programming because they’re less power-
ful than buttons and movie clips.

06_589628 ch02.qxd 10/12/05 2:37 PM Page 33

An object in the Library is a definition or recipe for something on the Stage.
The object on the Stage is an instance of the Library element, just as a cookie
is an instance of the recipe definition. This is important in Flash programming
because you want all your buttons in a game to look similar. That way, you
can design a button one time and reuse it all over your program. If you want
to modify the look of your button, you then have to edit it but one time; all
the other buttons are immediately modified as well.

Adding state to your button
You can make your buttons even better by applying a mouseover effect to
them: That is, you can change a button so it looks depressed (pushed down,
not saddened) when the mouse is over it or clicks it. (How do you make a
button depressed? Don’t call, don’t write, don’t send flowers . . . rim shot,
please.) Seriously, Flash has an easy way to add different appearances to a
button:

1. Edit the button.

a. Right-click your button in the Library.

b. Choose Edit from the resulting menu.

You see a screen much like Figure 2-10. Notice the changes to the
Timeline.

Figure 2-9:
You can

make button
clones by

dragging the
button from
the Library.

34 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 34

2. Choose a state.

When you edit a button, you have all the normal tools at your disposal,
but you also have a slightly different Timeline. In fact, it’s more of an
event line now; it really isn’t a timeline at all anymore. The four boxes in
the button editor refer to four different states of a button.

To make your own event line, follow these steps:

a. Select the second frame in the Timeline (the frame labeled Over).

b. Insert a new keyframe by either pressing F6 or choosing
Insert➪Timeline➪Keyframe from the menu system.

This new frame indicates how the button looks when the mouse is
over it.

3. Modify your button.

Change the button’s size or color or any other characteristic of the
button by using the Properties Inspector.

If you want the button to look as if it’s been clicked, just change the bor-
ders so that the top and left borders are a darker color and the bottom
and right borders are lighter, as described in the “3-D buttons” sidebar,
earlier in this chapter.

4. Give your button another state.

Figure 2-10:
The screen

for editing a
button.

35Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 35

In the same way as creating a standard button, you can create another
frame to indicate what the button should look like when the user clicks
it: That is, the mouse is over the button, and one of the mouse buttons is
being held down. I created three different views for my button by manip-
ulating the border colors.

• No action: In the up state, the button looks like it’s sticking up when
it’s being left alone.

• Mouseover: In the over state, all the borders are the same color as
the button itself, making the button look as if it’s being pressed flat
onto the page.

• Clicked: In the down state, the border colors are set to make the
button look as if it has been pressed down into the page.

The fourth frame is special because it is never shown to the user.
Instead, you use it to indicate the size of the button’s hot spot (clickable
area) onscreen. By default, you can click the button’s visible appearance
to activate it. If your button is an odd shape (say, text without a rectan-
gle behind it), the user should be able to click near the text without hit-
ting the text exactly to activate the button. You can draw a rectangle in
the Hit frame to indicate what the clickable area will be. With ordinary
rectangular buttons, I usually skip this step.

5. Return to the main program.

When you’re done modifying the button states, look above the Timeline
to see an indicator reading Scene 1. You can click this link to finish edit-
ing the button and get back to your main program. If you had any other
button instances onscreen, you’ll see that they instantly change when
you return from the button editor.

6. Test.

Test your new button by running your program. Be sure to save your
program first and press Ctrl+Enter to run the program. (Note: Running
your program by pressing only Enter doesn’t activate the button fea-
tures. See the section, “Testing your program” earlier in the chapter for a
more thorough discussion.) Move your mouse over the button and click
it to see all the various button states in action.

Finishing your button
If you’ve followed this chapter to this point, your button is looking really
good now, and your users are going to want to click that puppy. After all, the
whole point of a button is to look like it can be clicked. Here are a couple
more little flourishes, though, that you can do to make the button act prop-
erly: namely, give the button a name and a label.

36 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 36

1. Return to the main program.

Make sure that you’re no longer editing the button. You shouldn’t see
the Up, Over, and Down states in the Timeline. To run this check

a. Click Scene 1 above the Timeline if you’re still in button-editing
mode.

b. Make sure that there’s only one instance of your button on the Stage.

2. Name the instance.

a. Select the button.

b. Set its name to theButton in the Properties Inspector by typing the
new name in the text box that reads <instance name>.

This is different than naming the button in the Library. In the Library,
you’re giving the recipe a name. On the Stage, you give each cookie its
own name.

3. Add text to your button.

Buttons often have labels (text for the user) associated with them, so
throw some text on top of your button. I’ve found the best way to guar-
antee that users will do something is to forbid it, so I placed a text field
telling the user not to press the button on top of the button. You can
use anything you want for a button’s label, including spaces and
punctuation.

Adding code to the button
For a button to be useful, you add some behavior to the program so the
button does something (besides automatically change its state) when it’s
clicked.

Follow these steps to breathe life into your button:

1. Display the Actions panel.

The key to code is the Actions panel, usually located near the bottom of
the layout. If it isn’t visible, press F9 to make it reappear.

Flash MX (as opposed to MX 2004 and later) had a beginner’s mode for
the Actions panel. Congratulations; you’re now an expert. The begin-
ner’s mode is extremely frustrating to work with, and there’s no real
need to use it. Use the menu at the extreme upper-right corner of the
Actions panel to use expert mode. Later versions of Flash don’t have the
beginner’s mode, so you won’t need to worry about this problem.

The Actions panel is where you write most of your code.

37Chapter 2: Cruising and Using the Flash Environment

06_589628 ch02.qxd 10/12/05 2:37 PM Page 37

2. Choose the correct frame and layer.

For this example, select Frame 1, Layer 1.

The Actions panel title bar should read Actions - Frame. If the Actions
panel title bar reads Actions - Button, select the frame in the
Timeline before you add any code.

There are many approaches to writing code in ActionScript. Other books
or tutorials show you a different technique, but my technique pays big
dividends when you want to build complex and extensible games easily.

Be absolutely sure you’re in the right place when you type this code. I
must stress this: The Actions window should read Actions - Frame. If
it reads Actions - Button or something else, your code won’t work.
To get to the right place, click Frame 1, Layer 1 right before you begin
typing the code.

3. Write some button-handling code.

To create a button that responds to mouse input, type the following
code exactly as it appears here, including spelling and capitalization:

// Don’t click Me Program
// Demonstrates button clicks

theButton.onRelease = function(){
trace (“Ouch!!”);
} // end enterframe

Understanding the code
The code adds some interesting behavior to your button. There’s a lot going
on here, but it isn’t too hard to understand.

Comments
The first two lines of the button code in the preceding steps

// Don’t click Me Program
// Demonstrates button clicks

begin with two forward slashes (//), which indicates a comment.

Comments are special text that aren’t run by the Flash environment. Even
though they are ignored by the computer, comments are important in pro-
gramming because they explain to other programmers (and you) what’s
going on. You’ll appreciate having comments describing such information as
what a program does and who wrote it. I use comments throughout my code.

38 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 38

Building pseudocode for the event
ActionScript is an event-driven language: That is, your program is designed to
sit around and wait for certain events to occur.

Most game programming involves describing

� Events that might occur

� What the computer should do when an event occurs

I recommend writing out the computer’s tasks in English before you translate
it into the actual programming language. Pseudocode is a good way to do this.

Computers are extremely stupid. To get a computer to do something as simple
as say, “Ouch!” when a button is clicked, you need to give very explicit
instructions in exactly the right form, with exactly the correct spelling and
syntax. Be sure that you understand what you want the computer to do.
Writing pseudocode shows you the tasks that you can translate as code in
the picky language that the computer requires.

In dontClick, you’re writing code to handle the button-click event. In
essence, your code says the following:

When the user clicks the button called theButton
say “Ouch!!”
Stop thinking about the button

The logic, written in English, is an example of pseudocode. And this logic
happens many times per second while the program is running.

39Chapter 2: Cruising and Using the Flash Environment

Why not incorporate text into the button?
You might wonder why I add text to the button
after creating it rather than incorporating text
into the button itself. The answer has to do with
the instance-description problem that I
describe earlier in this chapter (in “Introducing
the Library”). The text that’s associated with a
button is an instance-level element: That is,
each instance of the button has its own label. If

you’ve followed the chapter to this point, I’ve
shown you only how to modify the entire class
or definition for all labels in the program. If you
try to modify the text on one button, you also
change the text on all the buttons in the pro-
gram. By adding the text as a separate element
after you place the button, you get the same
effect without much effort.

06_589628 ch02.qxd 10/12/05 2:37 PM Page 39

Responding to the button click
The point of having buttons on the screen is to indicate to the user that
something will happen when he clicks that button. For that reason, every
button you create will have some sort of code attached that does something
when the button is clicked.

If you’ve followed this chapter to this point, you have an instance of the
button called theButton on your screen. The button has some built-in char-
acteristics, including the ability to recognize certain events. You are doing a
number of interesting things when you write this code:

theButton.onRelease = function(){

You are specifying that the code following this statement will happen when
the onRelease event of theButton occurs. Any button can respond to a
number of events, but onRelease is the most commonly coded.

Programmers usually make things happen when a button is released
(onRelease), not when it’s pressed. This lets users touch a button without
committing to it. The button behavior happens only if the user both presses
and releases the mouse over the button. Think of it this way: If you click the
Launch the nuclear missiles button and then you change your mind,
you can move the mouse off the launch button before you release the mouse
button, and World War III can be averted.

Saying “Ouch!!”
In the event-handler code, the middle line is the part that pops up this little
dialog box reading Ouch!!:

trace (“Ouch!!”);

Lots of very interesting things are happening in one little line of code:

� The trace statement sends text to an object called the output
window.

This little window pops up automatically when you use the trace state-
ment while testing your program within the Flash environment . If you
use your program in a Web page or run the SWF file directly, all the
trace statements are ignored.

The trace function is a programmer’s tool. It’s a very quick and easy
way to send messages to yourself as a programmer, but these messages
aren’t shown to the program’s users. Anything you type in the parenthe-
ses behind the word trace are copied to the output window, which is

40 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 40

visible only in the Flash editor. (Note: All the text you send to output
should be in double quotes.)

The trace line is indented in my code to indicate that it is part of
another structure. Flash doesn’t care how your code is indented, but it’s
a very good habit to indent carefully. In a typical program, you usually
have code with many layers of structure nested inside each other.
Proper indentation can help you keep track of your intentions and pre-
vent mistakes.

� The semicolon indicates the end of the line.

Almost all your code lines will end with a semicolon. The only common
exceptions are

• Lines that end with braces ({ })

• Comment lines (begin with //)

Ending the function
In the dontClick example program, the last line of code ends the function.
The right brace (}) is lined up under the line that begins the function to indi-
cate that this brace ends the function. (I usually use a comment character
after an ending brace to indicate exactly what I’m ending.)

41Chapter 2: Cruising and Using the Flash Environment

Stylin’
How you indent and how many spaces you use
in indentation are matters of style. Professional
software developers are often required to use a
particular style, and programming teachers also
often have specific style guidelines. There are
a number of style conventions (writing guide-
lines) in use.

� If you don’t have a programming style, I rec-
ommend that you use the style that I use in
this book. It’s straightforward, very typical

(can be used in many other programming
languages), and produces nice, neat code.

� You will sometimes see Flash code written
in other styles. For example, the braces in a
function might be on their own lines rather
than on the same line as the function iden-
tifier. The code will work in the same way,
regardless of this style nuance. The pro-
grammer simply subscribes to a different
style convention.

06_589628 ch02.qxd 10/12/05 2:37 PM Page 41

42 Part I: Basic Flash

06_589628 ch02.qxd 10/12/05 2:37 PM Page 42

Part II
The Next Steps

07_589628 pt02.qxd 10/12/05 2:38 PM Page 43

In this part . . .

Time to build some sophisticated games. Here you can
see how to move data in and out of your programs,

master some essential programming techniques, make
random numbers, and make text change dynamically
onscreen. Just in case anybody’s bugging you about how
much time you’re wasting on games, the big example in
this part is highly educational. So there.

Chapter 3 is all about the concept of state. You discover
how to give your programs multiple personalities, and
how to swap between the various states. You finish the
part by building an adventure game.

Chapter 4 describes the three moods of text in Flash. You
read how to make and use random numbers, how to use
conditions to change the way your code behaves, and
how to convert various types of data when necessary.

Chapter 5 describes how to make an educational game
in some detail. I don’t just show you the finished game,
but I take you through the process, going from sketches
to a finished game. You build a math game that generates
random math problems. It just doesn’t get any more fun
than that!

07_589628 pt02.qxd 10/12/05 2:38 PM Page 44

Chapter 3

Altered States
In This Chapter
� Making keyframes

� Designing an adventure game

� Traversing between states in your games

� Building an adventure game

Computer games often have several scenes. For example, your game
might have an introduction screen, a help page, the main game, and

pages for winning and losing conditions. Each of these scenes is a state
(another little tidbit that could be handy if you find yourself magically
transported into a computer science cocktail party).

If you follow the instructions in this chapter step by step, you build a simple
adventure game. In the process of building the game, I show you how to make
a game change according to players’ actions.

State of Nonconfusion
The states of an game are like the scenes of a movie. Each movie scene
describes a particular environment or situation but all the scenes work
together to form the movie.

The ghosts in Pac-Man are examples of different states. They look and act dif-
ferently under different circumstances:

� They’re tough most of the time.

� As soon as you eat the power pills, they run away like little wimps.

08_589628 ch03.qxd 10/12/05 2:39 PM Page 45

The instructions in this chapter demonstrate how to create the adventure
game featured in Figures 3-1 through 3-3.

Figure 3-2:
Cool! A

lifeboat!

Figure 3-1:
Bad

news . . .

46 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 46

Adding Keyframes
Think of an adventure game as a series of situations. In each situation, you
make a choice that can move you to a new situation (which programmers call
a state). In an adventure game, the user needs to have the sense of moving
around. The same techniques are used in almost all other games to provide
instruction screens and also winning/losing conditions.

The Green Grass program shown in Figures 3-4 and 3-5 shows how a very
simple game with two states could work.

Figure 3-4:
This is the

“here”
state. I can’t

wait to get
over there.

Figure 3-3:
Uh, oh . . .

47Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 47

In the Green Grass program, the entire game has two states: The gamer is
either in the HERE state or in the THERE state. Each state has a button that
allows the player to switch to the other state.

As you can read in Chapter 2, buttons use their own Timeline to handle vari-
ous states. Most Flash games use the Timeline in a similar way to handle the
notion of state. You can specify points on the timeline as keyframes (some-
thing special happens during that frame). You can read about keyframes in
Chapter 2, also.

Building the Green Grass game
The Green Grass game is the simplest example of state-changing that I can
think of. Because this technique is used in almost every Flash game, you need
to know how to build multi-state games (games that support more than one
state).

To build the Green Grass game, follow these steps:

1. Create a new program.

Start in Frame 1, Layer 1. (That’s where you normally start, anyway.) The
first frame is automatically the first keyframe, so you don’t need to
explicitly make it a keyframe.

Figure 3-5:
Now I’m in
the “there”
state. This

could keep
me busy for
quite some

time.

48 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 48

2. Build the HERE page.

Place text boxes to indicate the user is “here.” See Chapter 2 for details
on creating text boxes.

3. Build the button.

Create a rectangle, select it, open the Symbol dialog box (press F8),
and convert it to a button. If you wish, you can also modify the button
properties.

Chapter 2 shows you how to build buttons.

4. Add text to the button.

Put the text over the button instead of incorporating it into the button.

5. Make the second keyframe.

When you’re happy with the HERE frame, click Frame 10, Layer 1 in the
Timeline. Insert a new keyframe from the Insert menu or by pressing F6.

6. Add a third keyframe.

Insert another keyframe at Frame 20.

Your Timeline looks like Figure 3-6.

You won’t really do anything with the keyframe at Frame 20. It just gives
you some breathing room that proves useful when you name the frames.

Figure 3-6:
The Timeline

now
indicates

two
different

states.

49Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 49

Modifying the second frame
When you create a keyframe in Frame 10 (see the preceding steps), Flash
automatically duplicates everything in the first frame. Although they look the
same, the objects in Frame 10 are different instances than those in Frame 1,
and they can be modified independently.

1. Modify the text.

For this example, select Frame 10 in the Timeline and modify the text in
the text boxes.

Use the black arrow to move or select a text box. Use the Text tool
(described in Chapter 2) to modify the text inside the text box.

When you move between Frames 1 and 10, you see different text.

Don’t incorporate the text into the button. If you incorporate the text
directly into the button, you have a problem. Frame 1 and Frame 10 con-
tain different instances of the same button (like two cookies baked from
the same recipe). You can’t modify an instance. To this point in the
book, you’ve only seen how to change the entire class. If you change the
text in one button, you change it in both. My suggestion is to leave text
out of the buttons altogether and put a label on top of the button after
it’s been put onscreen. Your player will never know the difference, and
it’s a lot easier.

2. Name the keyframes.

Referring to the frames by number gets tedious, so name those frames.

To give a frame a name

a. Select the frame.

b. Look at the Properties window at the bottom of the screen.

Indicate a name for the label, as shown in Figure 3-7.

To create states in this program, name Frame 1 here and Frame 10
there.

Frame-name capitalization and spelling are very important. Follow
the same rules for naming frames as for naming files: Use no spaces,
no punctuation, and camel-case, all of which you can read about in
Chapter 2.

3. Name the buttons.

Each button instance can have its own name.

In the editor, I call the button that lives in the here frame btnGoThere
and the one in the there frame btnGoHere. It’s pretty obvious that
btnGoThere is the button that goes there.

50 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 50

It might confuse you that btnGoHere is in the there frame, but it really
makes sense when you think about it. The name of the button indicates
what the button does, not where it resides. If you’re here, you want to go
there. btnGoThere is in the here frame, and this is the button that takes
you there — but it can’t be there. The btnGoThere button goes there but
is located here. If you’re still puzzled, just look at the program in the
Flash editor, and it will probably make sense to you.

Follow these rules for button names:

• Begin buttons names with btn so you can easily see that the
symbol you just created is a button.

• Make buttons names indicate what they do.

I need it this easy because I get confused easily.

Creating the game animation loop
Games usually are built with an animation loop. Different programming lan-
guages have different ways to construct this loop, but the main idea is always
the same. The critical parts of the program repeat many times a second,
responding to input from the user, manipulating objects onscreen, and dis-
playing the results. Flash has an elegant technique for repeating the code on
a particular frame, and this technique is the foundation of ActionScript game
programming.

Insert text

Figure 3-7:
Name the

frame.

51Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 51

To keep a multi-state program looping on only one frame, follow these steps:

1. Select the frame.

2. Type the following script in the Actions panel:

stop();

This command stops the default progress of the Timeline. It doesn’t
actually stop Flash from running, but it continuously repeats the current
frame.

Swapping states
After you create a game with multiple states, you need code to switch
between the various states.

In this chapter’s example, the player switches states in the game by clicking
buttons. Each button has code that sends the program to a new keyframe.

Example: here frame
The Actions panel for the here frame contains the following code:

52 Part II: The Next Steps

Stopping the train
If you try to run this chapter’s example program
as soon as you finish building the two states, you
get some very strange behavior. The here frame
shows at first. In less than a second, the there
frame shows up. there is visible for about a
second, and here comes back. The buttons
won’t do anything, and the program seems to
have a mind of its own. The here/there cycle
repeats until you stop the program.

A little history lesson is in order. Flash was first
an animation tool, and animation is still its first
inclination. Animators normally use the Timeline
to specify when certain activities happen. In its
default setting, Flash shows 12 frames per
second (fps). So, before you put any code in the
program, Flash assumes that the program is a
normal animation. In the example program, it
shows Frame 1; then at Frame 10 (almost one
second later), it reaches a keyframe. Remember

that a keyframe is a hint that something has
changed on the Stage, so Flash now displays the
new (there, in this example) information on the
Stage. At Frame 20, there’s no more information,
so Flash goes back to the beginning and does it
all again. This works great for standard, nonin-
teractive animation, but the whole point of com-
puter games is to let the player have some
control. Game programmers subvert the Timeline
to their own purposes. Rather than letting the
Timeline run on its own, programmers prefer to
let the program perseverate over and over on
one frame until the user somehow indicates it is
time to go on. (I know, perseverate isn’t exactly
the most simple word I could have used here, but
I like it, and my editors let me get away with it. Go
make friends with a dictionary.)

Many games that can last for hours use only
two or three keyframes on the Timeline!

08_589628 ch03.qxd 10/12/05 2:39 PM Page 52

stop();

btnGoThere.onRelease = function(){
_root.gotoAndStop(“there”);
} //end event handler

This code first stops the program so that it continually loops through the
here frame. It then creates an event handler for the button on this frame. Be
sure that you have one button on this frame and that it’s named btnGoThere.
When that button is clicked, the program goes to a frame called there. The
_root keyword indicates that you want to control something (and for the
moment only) in the main Flash movie in your program.

The Flash program is a MovieClip object. Throughout this book, I point out a
lot more about objects in general, and especially the amazing MovieClip.
The MovieClip object has all kinds of built-in characteristics and abilities.
You can use code to tell the MovieClip what to do. In this case, when the
user clicks a button named btnGoThere, I want the main movie to move to a
frame called there and loop that frame indefinitely. The gotoAndStop()
command is a built-in feature of MovieClip. The program looks for a frame
with the specified name and moves control to that frame.

Example: there frame
The there frame has very similar code:

btnGoHere.onRelease = function(){
_root.gotoAndStop(“here”);
} // end release

The code in the there frame doesn’t need the stop() keyword because the
only way to get there now is via the button in here, which already tells Flash
to stop and repeat the there frame. The button in this frame is btnGoHere,
and its job is to send control back to the here frame.

Making a Great Adventure
With text boxes, buttons, and the notion of state, you have all the tools you
need to build a great adventure game. To illustrate, I’ve written a silly little
shipwreck adventure that I introduced at the beginning of the chapter (refer
to Figures 3-1 through 3-3).

Before you read on, try the shipwreck game yourself. It’s at the companion
Web site as adventure.html. It isn’t any masterpiece of interactive fiction,
but it’s kind of fun, and I’m going to spoil the game by describing it in the
next few pages. You’ve been warned! Check it out at

www.dummies.com/go/flashgameprogrammingfd1e

53Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 53

Planning your game
It doesn’t take long for games to get complicated. You must, therefore, take
some time to organize your thoughts before turning on the computer.

Most adventure games begin life as diagrams. Figure 3-8 shows you my dia-
gram for the shipwreck adventure game.

Sink

lose

Too crowded

lose

Rested

build fire
explore

Supplies

build shelter
go hunting

Ship

make signal
swim out

Drown

lose

On Burning Ship

Put out fire
Jump

In water

life boat
debris

Building fire

keep trying

Supplies Gone

lose

On shore

rest
build fire

Wild Pig

tackle
run away

Miss

Rescued!

win

Figure 3-8:
An

adventure
game is a
series of

decisions.

54 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 54

You can see by looking at the diagram that I’ve got a devious mind. Building a
fire is an endless trap (as you know if you watch those reality shows featuring
people on deserted islands). It doesn’t matter whether you try to tackle the
pig — you lose. There’s but one path to the winning situation — and several
losing paths.

As small and simple as this game is, thinking it out still took quite some time.
The process of planning all the decisions and figuring out how they fit
together is a challenge in its own right. You need to have the basic design of
the game figured out before you worry too much about exactly how you’re
going to code it. I did try to keep it organized:

� Each decision has a title as well as one or two possible actions.

� All the decisions look pretty much the same. Each decision has
descriptive text and a button or two at the bottom to indicate actions.
All use the same font and button styles.

� No graphics are needed. To let the text speak for itself, I decided not to
incorporate graphics or sound into this program.

Setting the stage
After you have a plan for your epic game, plan the general layout of your pro-
gram. The first keyframe is simply an introduction to the game, but it sets the
stage (pun intended) for everything that follows. Every page will have a large
text box describing the current scene as well as one or two buttons on the
bottom.

Make your life easier: Get these big-picture ideas right the first time rather
than change them after you write the entire program:

� Design the first screen well because you duplicate it to make all the others.

� Choose your fonts so that text boxes and buttons are easy to read and
reflect the style of your game.

Building the main text box
When you have your plan in place, you’re ready to build the main text box.
Follow these steps:

1. Set up a large text box in the middle of the screen.

2. Type some sample text in the text box so you can see how it looks.

Choose a font size and color that go well with the theme of your game.
Make sure that

• The font contrasts well with the background color of your game.

• The type is large enough to be readable.

55Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 55

Building the button
Because buttons are very important in this game, design your buttons so that
they contribute to the game’s theme.

I wanted my buttons to look nautical, so I created a special ribbon shape.

You can make buttons look like anything you want, but if you want to make
buttons like mine, follow these steps:

1. Build a normal rectangle.

Start by drawing a normal rectangle onscreen.

2. Modify your button shape.

Use the black arrow Selection tool (on the Tools palette) to modify your
rectangle. When you move the black arrow near one of the sides of the
rectangle, note how the cursor changes: This indicates that you can
bend that side. You can use a similar trick to move the corners.

3. Make your shape into a button object.

After the button’s general shape is right, you can turn it into a button
object by pressing F8. You can then add other states as described in
Chapter 2.

I used the Gradient tool in the Color Mixer to get a nice blend of colors.
The color mixer is available in the panel stack.

4. Add other button states if you wish, such as over or down.

The visual look of your buttons isn’t important to the function of your
game. You can change it later.

After you create the button, place a text box over the button so you can
add text.

Creating the diagram nodes
After you have the first frame done, give it a name and then add a keyframe.
I like to put my keyframes ten frames apart so I can read the labels on the
Timeline. Name each keyframe when you build it. Use your diagram for hints,
but remember that frame names shouldn’t have spaces. To keep things con-
sistent, I recommend copying the frame name onto your diagram as well.

Editing the nodes
Your game state diagram is the key for building the entire game.

Do these steps on each keyframe to make the nodes described in your
diagram:

1. Change the text boxes.

56 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 56

Change the text for each frame to contain a description of the scene and
a the new dilemma facing the player.

2. Make the needed buttons.

If the node has two or more choices, drag more button instances from
the Library. (Read about the Library in Chapter 1.) Add a text box on top
of the new button to give it some text.

3. Name the buttons.

Name each button carefully. I like to use a mnemonic name for what the
button should do. For example, if the button should go to the buildFire
frame, call the button something like btnBuildFire. This practice
makes it easy for you to determine what code should be written for
the button..

If you want to line up your buttons with those on other frames, you can use
the Onionskin feature of Flash to show lighter versions of other frames
behind the frame you’re editing. The Onionskin buttons are small icons
underneath the Timeline. The most useful icon looks like an outlined square
behind a blue square. You can drag selectors on the Timeline to indicate
which other frames are visible. This makes it easy to get a consistent look
between frames.

Coding the buttons
You could test your program now, but it would run in a straight line under
the strict control of the Timeline. Coding gives the player the ability to
control his own experience. There is a lot of code in this program, but it’s
all extremely predictable and repetitive, so it’s not terribly difficult. Every
button in the program needs code to tell Flash what to do when the user
clicks it. All the buttons do the same basic task: Go to a frame and stop there.
As an example, Figure 3-9 illustrates the code for my jump frame.

The frame occurs when the player jumps into the water near the beginning of
the adventure. At this point, he can choose to swim either toward a lifeboat
or some debris floating in the water. I created a button for each option,
named btnLifeboat and btnDebris. (Gotta love the logic of mnenomics.)
Here’s the code for the frame:

btnLifeboat.onRelease = function(){
_root.gotoAndStop(“lifeboat”);
} // end release

btnDebris.onRelease = function(){
_root.gotoAndStop(“shore”);
} // end release

57Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 57

This code is very much like the code from the Green Grass program earlier in
the chapter. Each button has code telling Flash what to do when that button
is clicked. In each case, the program’s focus shifts to the appropriate state.
Every keyframe has code much like this but adjusted to reflect the buttons in
that frame as well as the new frames that the buttons indicate.

The very first frame should also have the following line to indicate that pro-
gram control shouldn’t flow along the Timeline but should be controlled by
the buttons:

stop();

You might know about Flash’s behavior mechanism, which greatly simplifies
this type of coding. Resist the temptation to use this shortcut. You will out-
grow the capabilities of the behavior mechanism very quickly. It’s very good
practice to write the code yourself as well as write it by hand (rather than
copying and pasting) so you can get used to the syntax and the flow of pro-
gramming. If you don’t know what Flash behaviors are, that’s fine. You won’t
need them because as you progress through this book, you can do things
they can’t dream of.

Figure 3-9:
The Flash

editor after
I write the

jump frame.

58 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 58

Making the game your own
This book’s companion Web site show every line of code for my shipwreck
adventure. But the real point is to make your own game. Use mine as a guide-
line and look at it for ideas or help when you get stuck, but make your own
game.

I slightly modified the HTML files containing all the programs in this book: I
added a source code listing. You can see every line of code in the program
without having to open the file in Flash. Usually, you won’t need this for your
own games, but because my main purpose is to show you how these pro-
grams work, seeing the code on the same page as the program is handy. You
can check the code at

www.dummies.com/go/flashgameprogrammingfd1e

Time to make your own adventure game! To get started, follow these steps:

1. Start with a diagram.

You’ll be lost if you don’t. Break your story into nodes. Give each node a
name, a description, and a list of choices. Each choice should point to
another node. (See the earlier section, “Creating the diagram nodes.”)

You can create the diagram on a whiteboard (my all-time favorite pro-
gramming aid), paper, index cards, crayon on a tablecloth, lipstick on a
mirror, or whatever. You can even use a software tool such as Microsoft
Visio or open source tools like dia. (I include a copy of this software on
the Web site that accompanies this book.) Don’t open Flash and start
writing without a plan. I tried. I got hopelessly confused. Don’t let it
happen to you.

2. Build the first couple of frames, complete with buttons and code, and
test them.

If your logic is flawed on the first frame, there’s no point in writing 15 or
20 more until you figure out what was wrong on the first one.

3. Extend and modify.

After you have things working on the first few frames, you can go crazy.
It’s pretty easy when you keep your diagram taped to the wall while you
work. That’s what I did. (You did make a diagram, right?)

4. Embellish the program.

You can add graphics to your program. I show you how to do more elab-
orate graphics, animation, and sound effects in later chapters. You can
always come back and embellish your program when you know some
other tricks.

5. Have fun and write a masterpiece!

59Chapter 3: Altered States

08_589628 ch03.qxd 10/12/05 2:39 PM Page 59

60 Part II: The Next Steps

08_589628 ch03.qxd 10/12/05 2:39 PM Page 60

Chapter 4

Getting with the Program
In This Chapter
� Working with text

� Getting information from the user

� Working with numbers

� Making decisions with conditions

� Using if and switch structures

G ames are really about information. The computer gets information from
the user in some form, manipulates that information, and sends infor-

mation back to the user. In this way, games are just like any other kind of
computer programming. (Most “serious” programs, such as databases and
spreadsheets, don’t feature explosions and sound effects. Hmmm, I wonder
whether they’d be more fun if they did.) This chapter shows you a little about
how computers work with information and how they make basic decisions
based on that information. Along the way, you build programs that roll dice
and make decisions.

Different Text for Different Jobs
The first task is to understand how Flash works with information. Games
are a lot more fun when they’re interactive. Somehow, you need Flash to
read text that the user types onto the screen and then change text onscreen
while the program runs.

The greeting program featured in Figures 4-1 and 4-2 illustrates a basic form
of communication between the computer and a human player.

09_589628 ch04.qxd 10/12/05 2:41 PM Page 61

Figure 4-2:
The

computer
greets the
player in a

burst of
familiarity.

Figure 4-1:
The player
enters his

name into a
text box and

is about to
click the

button.

62 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 62

The greeting program is interesting because you can use it to greet some-
one you’ve never met. The user types text into a specially designated text
area, and the button outputs a greeting based on that text. The secret ingredi-
ent of this program is the various subspecies of text areas. Flash supports
three different types of text areas — static, dynamic, and output — each with
different capabilities.

Static text
Static text (such as the ordinary text box that asks, “What’s your name?”)
doesn’t change when the program is running. You set up the text when
designing the game:

� The program can’t change the value of the text.

� The user can’t change the value of the text.

Static text boxes aren’t given names. They usually contain information that’s
meant to stay onscreen, such as text for labels and button captions. The
mouse pointer doesn’t change when it hovers over static text, and the user
can’t copy static text from the screen.

In the greeting game, the text area that reads What’s your name? as well
as the button label (Click here) are examples of static text.

Dynamic text
In comparison with static text, dynamic text can be changed by the program.
Although the user can’t change a dynamic text field, code inside the program
can change its value. Dynamic text boxes can be named, just like buttons.
Users can select text in a dynamic text box and also copy values from
dynamic text, but users can neither write directly into these boxes nor paste
values into them.

Dynamic text is usually used to send changeable information to the user. It’s
often used in games for scorekeeping. In the greeting program, the out-
put text box (the one that contains the final greeting) is the only dynamic
text box.

Input text
Input text lets the user type a value into the computer. When the user clicks a
text field that’s indicated as input text, the cursor changes to an I-beam, and
the user can type text into the text box. The program can read this text and
manipulate it.

63Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 63

Input text is almost always either named or associated with a variable. This
chapter shows you how to associate a variable to a text field — a really easy
and useful technique. In the greeting program, the field where the user
types a name is an input text box.

Building the Greeting Program
The greeting program is relatively simple to build. The following sections
show you how to start by setting up your form with several kinds of text
boxes.

Adding text fields to the Stage
The Text tool is used to place text elements on the screen. Use some variants
of the Text tool to make the three different types of text fields:

1. Begin with a new Flash document and make a button.

Chapter 2 shows how to start a document as well as how to make a
button.

Your button doesn’t have to be as fancy as mine. For a simple program,
you don’t have to worry about changing button states. Keep it simple at
first; then you can add the cosmetic touches later.

2. Place your first text field on the stage.

For the game’s label, the top text field should simply read What’s your
name? This field is an ordinary text field, built by simply describing a
rectangle on the Stage with the Text tool.

Static text elements don’t need to be named. While the text area is
selected, the upper-left corner of the properties tab indicates Static
Text, and there is no place to indicate the name of the text field.

Figure 4-3 illustrates the properties available for static text elements.

3. Create a static text field for input.

The user puts text in an input text field. To make one, follow these steps:

a. Draw another text element onscreen.

b. In the Properties window, change from Static Text to Input Text
(lower left).

Figure 4-4 shows some new properties for a text field designated as input
text.

64 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 64

Figure 4-4:
Input text
has some
additional

properties.

Figure 4-3:
A static text

field has
a limited

number of
properties.

65Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 65

The first detail to notice is that input text can have an instance name (like
buttons do). Input text can be set to use one or more lines or even to show
asterisks for passwords. You can also set a border around input text.

Flash lets you format input text any way you want, but you should provide
some hints to the user that the text can be edited. Traditionally, program-
mers give editable text a white background and a black border. This provides
a clue for your users.

The Var field lets you keep track of the contents of the text box in your pro-
grams. You’ll see more about that in the following section.

Associating variables with text boxes
The interesting characteristic of dynamic and input text boxes is how their
values can change. Somehow, the computer needs to keep track of the value
inside the text box. That’s important because the greeting program trans-
fers information from one text box (the input text field) to another text box
(the dynamic text field).

The information is transferred with a special entity called a variable, which
is a special place in the computer’s memory designed to hold information.
Flash lets you create a variable and associate it with a dynamic or input
text box.

To illustrate how variables and text fields are related, follow these steps:

1. Select the input text field in the greeting program.

2. Assign the input behavior to the field using the Properties Inspector.

If the text field isn’t already set to Input Text, change it now.

3. Attach a variable to the field. In the Var field (which lets you associate
a variable with the text box), type nameInput.

nameInput is the name of a variable (a place in the computer’s memory
that keeps track of the value of this text box).

Use the normal naming conventions (case-sensitive, no spaces, no punc-
tuation, camel-case) when creating a variable name.

4. Create a dynamic text field to contain the output.

Use the same Text tool used to build other text boxes but set this field to
Dynamic Text with the Properties Inspector.

5. Assign nameOutput to the dynamic text field.

Select the dynamic text field and assign the variable nameOutput to it,
again using the Var field of the Properties Inspector.

66 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 66

Changing a text box through code
Variables aren’t very interesting until you write code. Write code to transfer
data between text boxes like this:

1. Create a button.

Build a button and call it btnGreet. Make the button as simple or elabo-
rate as you wish, but make sure you turn your symbol into a button, not
a movie clip or graphic symbol.

2. Add the code.

Add the following code to the Timeline frame that contains the button:

btnGreet.onRelease = function(){
nameOutput = “Hi, User!”;

} // end greet

3. Test the program.

Click the button. If all goes well, Hi, User! displays in the dynamic
text box.

Here’s what’s happening: In ActionScript, the equal sign (=) refers to
assignment. In this case, you’re assigning the value Hi, User! to the
variable nameOutput. The variable nameOutput is associated with the
dynamic text box. Whenever a program changes the value of nameOutput,
the associated display onscreen is automatically changed as well.

I read the equal sign as “gets” in ActionScript, so the key line in this code
would be read ‘nameOutput gets “Hi, User!”’. This is important because
you aren’t using the equal sign as it’s used in mathematics: that is, to describe
equality. I show you how computers say “equal” later in this chapter.

Reading information from
an input text box
Variables are useful for storing information. Use a variable to extract informa-
tion from input fields and also to send information to the user via dynamic
text fields.

The greeting program should be a little more personable than it is so far.
Right now, it always reads Hi, User!, but it ignores whatever name the user
types into the text field. Modify the code in the frame so that it looks like this:

btnGreet.onRelease = function(){
trace(nameInput)

} // end greet

67Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 67

For the preceding code fragment, when the user clicks the button, Flash
sends the value of nameInput to the output window. (Remember, only the
programmer can see things in the output window, but it’s very handy for
simple tests like this one.) The output window doesn’t show the actual text
nameInput but rather recognizes that nameInput is a variable and displays
the value associated with that variable (which is whatever was typed into
the text box).

Copying data from one text box to another
You can combine input and output to copy the value from one text box to
another.

For a better kind of output than the trace window (which the user cannot
see), change the button code so it looks like this:

btnGreet.onRelease = function(){
nameOutput = nameInput;

} // end greet

Now the program copies whatever value is found in nameInput to
nameOutput. Because both variables are associated with text boxes, the
value typed into the input text is copied to the output text.

Combining text with string concatenation
Computer programmers are a fun-loving bunch. One of their favorite tricks is
to take a really simple idea and give it a really complicated name. String con-
catenation — one of my favorite examples of this phenomenon — simply
means to take two string values and attach them to make a longer string.

The following modification of the greeting code shows an example of string
concatenation:

btnGreet.onRelease = function(){
nameOutput = “Hello, “ + nameInput + “!”;

} // end greet

Here’s how to break down the preceding code block:

� If the user types George into the input text box, the output box reads
Hello, George!

� The term Hello, is a literal value (something I want to print exactly
as I enter it).

� The term nameInput is a variable name.

I don’t want Flash to print the variable name (nameInput) but rather its
value (George).

� The exclamation point (!) is another literal value.

The quotes designate whether text is literal or a variable name.

68 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 68

Remember these two important rules:

� Literal values always go inside quotes, and variable names don’t.

� Use plus signs to combine the literal and variable values.

Programmers almost always refer to text as strings. Now that you’re a pro-
grammer, you should call text strings, too. People will be impressed with you.
The plus signs (+) are used to combine string values. Of course, the term text
combining would be easily understood by nonprogrammers, so programmers
invented a more esoteric term for smunching text together, and the term they
came up with is a doozie: string concatenation, which is the ridiculously com-
plicated term for a simple notion: You combine literal strings with variables
using the plus sign.

If anybody asks whether you’re gleaning anything from this book, just feign
modesty and inconspicuously pepper your conversation with the term string
concatenation. They’ll think you’re really smart.

On a Roll: Making Random Numbers
Random numbers are a key part of computer game development. Whenever
you want a game to be unpredictable, you need to add an element of random-
ness. This is done with a random number generator. ActionScript has the ability
to create random real numbers between 0 and 1. (Real numbers are numbers
with decimal points, so there are a lot of real number values between 0 and 1.)
Often, you need to modify this value to get random values within a another
specific range.

The roll program featured in Figure 4-5 illustrates a program that rolls a
standard six-sided die.

69Chapter 4: Getting with the Program

Stringing me along
Text in programs is called strings because the
internal structure used to store text reminded

the early programmers of beads on a string.
Oddly poetic, and the term has stuck.

09_589628 ch04.qxd 10/12/05 2:41 PM Page 69

For this discussion, just pay attention to the value labeled die. Click the button
a few times to ensure that the values are what you expect (a random number
between 1 and 6 with no decimal values). Unfortunately, ActionScript doesn’t
have built-in die-rolling capability, so I adjust the 0 to a value (created in the
first step) until it’s more like a die roll. Here’s the full code for the button:

// roll
// demonstrates random number, ceil function
// algorithm for rolling a six-sided die
// Andy Harris, 12/04

stop();

btnRoll.onRelease = function(){
raw = Math.random();
times6 = raw * 6;
die = Math.ceil(times6);

} // end roll

In the preceding code, the three dynamic text boxes are labeled with the vari-
ables they are associated with:

� The top text box is associated with the variable raw.

� The middle text box is associated with times6.

� The bottom text box is associated with die.

Figure 4-5:
This

program
uses the
random
number

generator to
make a six-

sided die.

70 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 70

Introducing the Math object
Even if you don’t love math, it comes in handy time after time when you’re
writing games. Fortunately, ActionScript has a bunch of great tools that do
most of the math for you. They’re all collected in something called the Math
object.

Random acts of randomness
with Math.random()
In the roll game button code, the first line of the code creates a random
number and assigns it to the variable raw.

Random numbers are generated by the Math.random() function. This is a
built-in technique for creating random values between 0 and 1 with a long
string of decimals.

Numbers containing a decimal point are real numbers. Programming lan-
guages sometimes have more than one type of real numbers. Math.random()
returns one of the most common type of numbers, called floating point real
numbers. Floating point real numbers are often abbreviated as floats. (Isn’t all
this funky vocabulary great? You can concatenate a string but not a float. Try
to work that into your lunch conversation this week.) Math.random() returns
a float between 0 and 1.

Click the roll button a few times and watch the raw text box. The range of
values shows that the results are evenly distributed random values.

Computers can’t produce truly random values. The values created by the
computer are always calculated by a formula, which is by its very nature
predictable. However, the pseudo-random values given by Math.random()
are perfectly suitable for game development.

Getting a 0–5 value
The Math.random() function produces a very nice float for the raw value,
but there aren’t any dice with that many decimal points. The goal is to make
this thing act more like a die. The trick is to multiply.

The next line of code creates a value in a slightly better range:

times6 = raw * 6;

71Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 71

The variable times6 (which is associated with the middle text box) gets the
value of raw (the top text box) times six. In programming, the asterisk char-
acter (*) is usually used to represent multiplication.

Keep clicking the roll button and look at the times6 textbox:

� The values are now in the 0–5 range, but they’re never exactly 0 or 5.

� The times6 value is related to the raw value, but times6 reflects a
wider range of possible values:

• When raw is very small, times6 is near 0.

• When raw is larger, times6 is nearer to 5.

Making a six-sided die
In the roll program, the times6 value is a little better than the raw value,
but it has two problems:

� It has all those pesky decimal values.

� It goes from 0–5, not 1–6.

The ceiling function is a simple math trick that solves both problems:

die = Math.ceil(times6);

In the roll game, the times6 variable is a real number, and most dice dis-
play integers, which are those numbers that don’t have a decimal value. (And
you told your math teacher you’d never need to know that.) You need a way
to convert a floating point value into an integer.

ActionScript has handy tools to do exactly that:

� Math.round() rounds a number using the technique you learned in
middle school.

� Math.floor() goes to the nearest integer lower than the floating
point number. In other words, it always rounds down. It lops off any
decimal values and turns the float into an integer.

� Math.ceil() rounds to the next higher integer. When you think about
it, that’s exactly the behavior you want here. If Math.random() pro-
duces a 0, the die should be the lowest possible value, which is 1. If raw
is .99999, die should be 6. Math.ceil always rounds up.

72 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 72

Keep clicking that roll button and watch the relationship between times6
and die until it makes sense.

Making Decisions with Conditions
Computer games usually need to have some sort of decision-making ability:
that is, the computer ought to do different things in different situations.

Figures 4-6 and 4-7 illustrate a completely simplistic form of this behavior in a
program called gotSix.

If you run this program yourself (and you should), it has really odd behavior
after it finds its first 6. I show you how to fix that in this chapter.

73Chapter 4: Getting with the Program

Gain from the pain
The hardest part of programming to learn isn’t all
the esoteric code and syntax. Instead, it’s the
process of thinking through a problem and apply-
ing specific coding concepts to the solution of that
problem. Most real programming doesn’t happen
in a programming language at all! Programmers
look for patterns that can be reused and then
write these patterns in plain English. After you see
a pattern, you can translate it to computer code.
Here’s the pattern for creating a six-sided die:

1. Get a random 0–1 float.

2. Multiply that number by 6.

3. Go to the next largest integer.

This kind of step-by-step description of a problem
is an algorithm, which is the key to effective pro-
gramming. Computer scientists spend their entire
careers developing and analyzing algorithms.
(Seems dull, but I’ve been to their holiday parties.)

The next step of algorithm development is to see
how an algorithm can be improved. For exam-
ple, what if you want a 20-sided die or a random
number between 65 and 91? (Believe it or not,
that last one comes up pretty often.) The algo-
rithm could be improved like this:

1. If you want a random integer between
bottom and top, generate a random float
between 0 and 1.

2. Multiply that value by (top to bottom).

3. Use a floormethod to lop off any decimal
values.

4. Add bottom to the result.

After you know what you’re going to do, you can
look up the programming techniques you need
in order to get there.

09_589628 ch04.qxd 10/12/05 2:41 PM Page 73

Figure 4-7:
. . . but if you

roll a 6, it
gets very

happy.

Figure 4-6:
Most of the

time, the
program just
rolls a die . . .

74 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 74

The gotSix program has these behaviors:

1. Roll a virtual die.

2. Check the value of that die.

3. If the value is 6, treat the player to a lavish multimedia display. (I’ll add
the fireworks and dancing pigs later, I promise.)

Although not very exciting, this program lays the groundwork for the behav-
ior of all your computerized opponents.

The following code illustrates a key new programming gem called the if
statement:

// gotSix
// demonstrates if, conditions
// Andy Harris, 12/04

btnRoll.onRelease = function(){
//roll a die
die = Math.ceil(Math.random() * 6);

//check to see if it’s a 6
if (die == 6){
output = “You got a six!”;

} // end if
} // end roll

Rolling the die
To create a program with the magical discernment of my gotSix program,
begin by using the algorithm developed in the roll program.

The following code uses programming tricks to shorten the longer “make a
1–6 die” algorithm into one line:

die = Math.ceil(Math.random() * 6);

Shortcuts like this can shorten your code. The parentheses are used to indi-
cate what’s done first, just like in math.

The code begins at the innermost parenthesis and moves outward to run in
this order.

1. Generate a number with Math.random().

2. Multiply that number by six.

75Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 75

3. Perform a Math.ceil() function on the resulting value.

All the work of the roll program is condensed on one single line. Nifty,
huh?

Checking your 6
The interesting thing about the gotSix program is that it differentiates based
on the roll. The if statement is a great tool specifically designed to let your
programs make decisions.

In the gotSix button code, you can probably guess what the rest of the code
does. It’s almost written in English:

if (die == 6){
output = “You got a six!”;

} // end if

If die (that’s the variable that contains the randomly rolled die) is equal to
the value 6, copy the value You got a six! to the output variable. This
variable is tied to a dynamic text box, so it displays the phrase to the user.

The key to an if statement is a condition, which is an expression that can be
evaluated as true or false. The action happens only when the condition is
true.

You see how the if statement works if you’ve ever driven in a car with chil-
dren. Think of this statement: “If you tease your sister one more time, I’m
going to pull this car over.”

� If I look in the rearview mirror and see sister getting pegged again, the
condition is true, so I stop the car to play Dad.

� If the condition is false, we go driving happily along. No loving parental
correction is needed.

Building the condition
if statements are great, but they use another important programming idea
called a condition. Conditions are a pretty important part of programming, so
you should know how to build them well.

In the gotSix program, the condition is (die == 6). Conditions in Action-
Script are usually encased in parentheses. Notice also the double equal
sign (==).

76 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 76

In many languages (including ActionScript), a double equal sign means equal-
ity. Remember that you should read a single equal sign as gets and a double
equal sign as is equal to:

� If the variable die is equal to the value 6, the program runs any code
between the braces ({ }). You can put as much code as you want inside
the braces, but you should indent each line inside the braces so that you
can easily see that the code is part of a special group (that is, code that
is executed conditionally).

� If the condition is false, code execution falls to the next line outside the
braces. In this particular program, the next line is the end of the pro-
gram, so nothing else happens.

Conditions are usually comparisons. Usually, you’ll either compare

� A variable with a value

� A variable with another variable

The gotSix example uses the equality operator, (==) but ActionScript fea-
tures some other comparison operators, featured in Table 4-1:

Table 4-1 Comparison Operators
Comparison Operator

Equal ==

Not equal !=

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

To build an if statement, follow these steps:

1. Begin with a condition.

Decide how you can specify the decision you want by comparing either

• A variable and a value

• Two variables

77Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 77

2. Create an if statement around the condition.

Building the if statement is easy if you’ve already thought through the
condition.

3. Write the code that should occur when the condition is true.

Indent all this code. (I usually indent two spaces.)

4. End the if structure.

Use the right brace (}) to end the if structure.

I align this symbol with the if clause to make it clear that this is the end
of the structure. I also highly recommend putting a comment indicating
what structure you are ending. Remember to use two slashes (//) to
indicate that the rest of the line can be ignored by the computer.

In many places, the right brace is used to indicate the end of a structure.
If you get into the habit of explaining what you’re ending and use proper
indentation, you’re much less likely to get confused when your pro-
grams get more complicated.

Responding to False Conditions
The if statement lets you do something if a condition is true, but sometimes
you want one set of actions to happen if the condition is true and something
else to happen if the condition is false.

Seeing the flaw in gotSix
Even well-designed programs sometimes have flaws. If you run the gotSix
program a few times, you’ll probably encounter an odd quirk.

Everything is fine until after you roll your first 6. The program dutifully tells
you that a 6 has been rolled. The funny thing happens on the following roll,
as shown in Figure 4-8: After rolling a 6, the program appears to report every
single roll as a 6.

The program is working perfectly well. Here’s the problem: Before you roll
the first 6, the output variable and its corresponding text field are both
blank. The first time you roll a 6, the value of output changes to You got a
six!. If the next roll is a 4, the value of output doesn’t change, so the text
field still reads You got a six!.

78 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 78

Using the else clause
A proper form of the gotSix program reports one thing if the player rolls a 6
and something else if the player rolls anything other than a 6.

The sixOrNot program featured in Figure 4-9 shows one way to solve this
problem.

The code for the sixOrNot program in Listing 4-1 is only a little different
from the rollSix program.

Listing 4-1: Six or Not

// sixOrNot
// demonstrates if-else
// Andy Harris, 12/04

btnRoll.onRelease = function(){
//roll a die
die = Math.ceil(Math.random() * 6);

//check to see if it’s a 6
if (die == 6){
output = “You got a six!”;

(continued)

Figure 4-8:
Not a 6!

79Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 79

Listing 4-1: (continued)

} else {
output = “That’s not a six.”;

} // end if
} // end roll

Listing 4-1 features an important new wrinkle. The if statement begins just
like the one in gotSix, but this improved program has an else clause. This
second batch of program lines executes if the condition is evaluated to
false. The condition is like a railroad switch, sending the program down one
path or the other but never both. Note the indentation: This format helps you
see that the various code segments are all part of the if...else structure.

This version of the program always reports something back to the user:

� If the computer rolls a 6, the program says so.

� If computer rolls a different value, the program sends a different message.

To incorporate an else clause, follow these steps:

1. Begin with a condition.

Just like an ordinary if statement, the condition is the key to a well-
behaved structure. This time, your code does something if the condition
is true and something else if the condition is false.

Figure 4-9:
This version

tells you
whether you

got a 6.

80 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 80

2. Create an if statement around the condition.

3. Write the code that should occur when the condition is true.

You often start with an ordinary if statement and add the else clause
later.

4. Create the else clause.

The else clause contains a right brace, the keyword else, and a left
brace, like this:

} else {

I usually put all the elements of the else clause on the same line,
aligned with the if statement. Other programmers sometimes use other
styles.

5. Add the code that should happen when the condition is false.

Create another set of indented code lines after the else clause. This
code is enacted when the condition has been evaluated as false.

6. End the if structure.

I usually align the if, } else {, and } //end if lines vertically, so it’s
easy to see that they are related.

Making Lots of Decisions
Often, your programs have to make more complicated decisions. For exam-
ple, maybe you want a different output for every possible die roll. In that
case, you need a more sophisticated decision-making mechanism than the
basic if structure.

The if structure is handy because computer programs constantly make deci-
sions based on conditions. The program featured in Figure 4-10 shows
another common kind of decision making.

The binaryDice program shows a die roll in binary (base 2) notation.
Although this is a format that only a computer scientist could love, the pro-
gram illustrates an important kind of branching situation: Every potential
roll has a corresponding value.

The values shown in Figure 4-10 are an example of the binary mathematical
system embedded deep into computer hardware. Don’t worry if you don’t
understand how I got these values. If you want to know more, read up on
how binary numbers work, including some online tutorials I’ve written:

www.cs.iupui.edu/~aharris/n241

81Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 81

This kind of situation comes up pretty often — that is, when you want to
check one variable for a number of possible values. Most programming lan-
guages provide a special technique called the switch to simplify coding this
kind of scenario.

The switch structure is used in a multiple-branching situation, in which you
have one variable with many possible values, as shown in Listing 4-2.

Listing 4-2: Binary Dice

// binaryDice
// demonstrates switch structure
// Andy Harris, 12/04

btnRoll.onRelease = function(){
//roll a die
die = Math.ceil(Math.random() * 6);

switch(die){
case 1:
output = “001”;
break;

Figure 4-10:
This

program
reports a die

roll in base
2 notation.

82 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 82

case 2:
output = “010”;
break;

case 3:
output = “011”;
break;

case 4:
output = “100”;
break;

case 5:
output = “101”;
break;

case 6:
output = “110”;
break;

default:
output = “problem...”;
break;

} // end switch
} // end roll

The switch statement begins with an expression (usually a variable name)
inside parentheses. The switch statement is followed by a series of case
statements:

� case: The case line ends with a colon (:) and not the typical semicolon
(;) character. Each case in the structure indicates a possible value for
the variable.

You can place as many lines of code as you need in each case.

� break: The break statement indicates the end of a case.

You can indicate as many cases as you need.

� default: The default case is used if no other case is true.

Place a default clause even when you don’t think it will ever be needed.
This lets you still do something useful even if the unexpected occurs. (I
included a default case in this situation. If all goes well, die should
always have an integer value between 1 and 6, so the default clause
should never occur. There is a big difference between what should
happen and what does happen.)

To create a switch structure, follow these steps:

1. Begin with an expression you want to evaluate.

This is usually a variable, but it could be the results of an expression or
function call.

83Chapter 4: Getting with the Program

09_589628 ch04.qxd 10/12/05 2:41 PM Page 83

2. Create the switch structure.

Use a switch statement to begin the structure. The structure uses
braces to indicate code is part of the switch evaluation.

3. Follow these steps for each case you want to define:

a. Create a case.

Each case is a specific value that the expression might be equal to.
You need to think of all the possible values of the expression and
then make a case to handle each value you want to test.

End each case line with a colon (not a semicolon, which you use
to end most code lines).

b. Add code to execute if the case is triggered.

All code between the colon and the break statement happens if
the case is true. Indent the code between the case and the next
case to make this clear.

c. Finish the case with a break statement.

Unlike the if...else structure, you have to explicitly tell the
switch structure that you’re done and want to exit the structure.
The break statement does this for you. End each case with a
break statement.

Sometimes you combine cases and don’t need the break between
them, but those circumstances are relatively unusual. At this stage
in your programming career, you can safely assume that all cases
end with a break.

4. Create a default clause.

The default clause is used if none of the cases are triggered.

Even if you think you’ve covered every possible situation, put a default
clause in place to handle the unexpected or at least to tell you that
something very strange is occurring.

84 Part II: The Next Steps

09_589628 ch04.qxd 10/12/05 2:41 PM Page 84

Chapter 5

Making an Interactive Game
In This Chapter
� Converting text to numbers

� Building a complex program

� Designing your program screens

� Writing efficient code

� Making a math game

� Coping with broken code

Text input/output and random numbers are very useful in games. This
chapter shows how you put these ideas together to make an educational

game to help children learn basic arithmetic.

This chapter really doesn’t introduce a lot of new code. Earlier chapters
describe everything you need to build interesting games. Still, the process of
building games requires some practice. The focus of this chapter is designing
and building a project as well as seeing what to do when the code doesn’t
work right.

Introducing the Math Game
In Math.fla, my math quiz ties together ideas from some of the earlier chap-
ters in the book. You can easily modify it to suit your own needs. (Maybe you
can customize it for the problems your kids are working on in school.)

The math quiz follows these steps:

1. Begin with the menu displayed in Figure 5-1.

2. Choose a problem type.

The program presents five problems of the specified type. For each
problem, the user

a. Receives a randomly generated problem like the one shown in
Figure 5-2

10_589628 ch05.qxd 10/12/05 2:42 PM Page 85

Figure 5-2:
Some

problems
are

randomly
generated.

Figure 5-1:
Pick a type

of math
problem.

86 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 86

b. Types an answer and clicks the Check button to proceed

Figure 5-3 shows the resulting evaluation.

3. After five problems of the requested type, the math program returns
to the main menu.

Making an Adder
With the skills in this chapter, you have enough knowledge to build a simple
calculator, like the one displayed in Figure 5-4.

The user interface for this program is very straightforward. It includes
two input text boxes, which are tied to the variables X and Y. (I really don’t
mean anything more specific than X and Y, so they’re okay names for this
situation.)

The button named btnAdd should perform these tasks:

1. Takes the input from the two boxes and puts them in variables.

2. Adds the variables.

3. Outputs the result of the addition in a text box tied to the sum variable.

Figure 5-3:
So far, I’m

doing okay.

87Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 87

The correct code looks like this:

// addBetter
// converts variables to integers
// Andy Harris, 12/04

btnAdd.onRelease = function(){
sum = parseInt(X) + parseInt(Y);

} // end add

Figure 5-4:
The user

enters two
numbers,

and the
program

adds them.

88 Part II: The Next Steps

What’s with the parseInt stuff?
You might be wondering why I didn’t simply write the function code like this:

btnAdd.onRelease = function(){

sum = X + Y;

} // end add

You would expect this simple form to work, but when you run the program, you get surprising
results, like the figure here.

The program doesn’t work correctly. Fortunately, if you run it a few times, you can find a pattern. Hint:
If you can identify a problem, it’s usually easy to fix. In this case, Flash is confused about what kind
of data it’s using. Text boxes are designed to handle either text or string data. When you associate a

10_589628 ch05.qxd 10/12/05 2:42 PM Page 88

89Chapter 5: Making an Interactive Game

variable with a text box, Flash assumes that you mean a string and thus sets up the memory in the
special way associated with text. X and Y are both seen by ActionScript as string variables because
they come from text boxes.

The following line is surprisingly ambiguous:

sum = X + Y;

Because ActionScript assumes that X and Y are string variables, it dutifully concatenates the two
strings. According to this (flawed) logic, 3 + 5 = 35! Somehow, you need to tell ActionScript to inter-
pret X and Y as numbers so that the plus sign indicates addition. My addBetter program (see
results in the figure here) shows how I correct this defect.

// addBetter

// converts variables to
integers

// Andy Harris, 12/04

btnAdd.onRelease = function(){

sum = parseInt(X) + parseInt(Y);

} // end add

The change in this program is the addition of parseInt(). This statement stands for parse to
integer: that is, convert the string to an integer number.

By converting X and Y to integers, this program eliminates confusion. As integers, the plus sign
adds the two values (3 + 5 = 8) instead of concatenating them (3 + 5 = 35).

10_589628 ch05.qxd 10/12/05 2:42 PM Page 89

If variables don’t work correctly, try explicitly converting variables into
exactly the type you want:

� Force the variable myVar to be seen as an integer with this code:

myInt = parseInt(myVar);

� Force the variable myVar to be seen as a floating point number with this
code:

myFloat = parseFloat(myVar);

Building the Visual Design
Creating a game like the Math game doesn’t have to be intimidating. Break
your design task into smaller segments so you have a clear path through the
project. Follow these steps to build your game:

1. Determine the states your program will have.

For example, the preceding Math game example gives the user three
major activities. Each of these activities has its own distinctive look:

a. Choose a type of problem.

b. Solve a given problem.

c. See the results of the solution attempt.

I built the Math game with three keyframes: choose, solve, and report.
Each of these frames can be considered a separate page because each
does different things.

2. Sketch the visual layout of each state.

Placing the design elements in this program first is important because
the various text elements are related to the variables that the game
manipulates. Also, the visual design gives you an easy visual template.
When you see an input text box, you know you’re going to get informa-
tion from it. When you see a button, you know that it needs to respond
to clicking with some code.

Before you can write any meaningful code for your Math game, you
need to

• Name your frames.

• Associate variables with all dynamic and input text fields.

• Name your buttons.

In the Math game, the text boxes provide all the action. If you don’t map
out the variable names to the appropriate text fields, you can’t write an
interesting program.

90 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 90

3. Identify where elements go.

Start your program on paper. Follow these steps:

a. Diagram the elements you want onscreen.

b. Indicate which variables are associated with each text box.

c. Indicate how the flow moves from one frame to the next.

Throughout the following section, I show you my sketches for the Math
game.

4. Write code for each frame.

After the design is done, the code becomes easier to manage because
exactly what you need to do becomes more obvious. Each button needs
some code attached to it (or it isn’t a very interesting button). The
button code manipulates the variables designated by the text boxes.

Designing the choose page
Figure 5-5 illustrates my original drawing for the choose screen in the Math
game.

To get started, begin with the choose frame. This frame contains one static
text field and four buttons.

Figure 5-5:
My original

sketch for
the choose

screen.

91Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 91

Building the program first and then designing it later is tempting. Resist the
temptation! Design the entire program on paper or a whiteboard (lipstick on
a mirror, spaghetti sauce on the wall, whatever). The point of a sketched
design is to see the main ideas while you aren’t tied to the details of creating
detailed code on the computer. If you use Flash to design your pages before
you have a good plan, you will get mired down in details. After you create the
design, you can execute the plan in Flash.

To create the choose page, follow these steps:

1. Begin with a generic button design.

You reuse the button for the entire program, so begin by designing one
button. You can either

• Add several button states (as I did in the math example).

• Create your button now and add the various visual states later.

2. Make three more copies of the button.

After you create your first button, drag three other buttons from the
Library onto the Stage.

3. Make captions for your buttons.

Add captions to your buttons as static text boxes.

Make sure your button labels are static text boxes. If you use dynamic or
input labels, the mouse pointer turns into a text-editing I-beam, and the
user can’t click the button in the expected manner.

4. Name the frame.

When you write code that moves between frames, you refer to each
frame by its frame name. (You name a frame by entering the name in the
Properties window when the frame is selected.)

This frame lets the user choose a type of problem, so I call the frame
choose.

Designing the solve page
On the solve page, there are two activities:

1. The problem is presented to the user.

2. The user enters a guess.

Figure 5-6 shows my diagram for the page.

92 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 92

If you account for all the necessary tasks in the diagram, building the page is
pretty easy because all the decisions have already been made. Follow these
steps for converting the diagram to a working frame:

1. Create the solve page by adding a new keyframe to the main
Timeline.

Name the frame!

2. Create dynamic text boxes.

For user input, you need a text box for each of these values: X, Y, and op.
To create text boxes for the X, Y, and op variables

a. Set all these text fields to be dynamic.

b. Associate each text field with the appropriate variable.

3. Create the input text box for the user’s guess.

The user’s guess goes in an input text box. Follow these steps to create
that text box:

a. Create a text field.

b. Set the text field type to Input.

c. Associate the text field with the guess variable.

If you’re using a custom font, associate that font with the text box.
Chapter 7 shows you how to use a custom font and ensure that it works
properly.

Figure 5-6:
Indicate

the type of
each text

box and any
associated

variables
in your

drawing.

93Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 93

4. Build labels so the user sees what each text box should contain.

Each label is simply a static text box.

Flash has a really great feature that make it easy to set up clean user
interfaces. The Guides feature shows you little lines around objects that
have already been placed on the screen. Turn on the Snap to Guides
option in the Modify menu to enable this feature.

5. Build the button.

For the Math game, you don’t have to make a new button from scratch.
Follow these steps:

a. Drag another instance of the button from the Library onto the Stage.

b. Name this new button btnCheck.

c. Add a label to btnCheck that reads check.

Designing the report page
This page tallies the results of the last problem and shows the player’s cur-
rent score. Three dynamic text fields are linked to the variables numRight,
numTries, and percRight. My diagram for this page is illustrated in
Figure 5-7.

Figure 5-7:
The

report
page is full

of static and
dynamic

text boxes.

94 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 94

The report page is created as a keyframe, much like the two preceding
pages:

1. Add a keyframe called report.

If you want to easily read the last frame name, add a fourth keyframe.
(The name is hard to read on the last frame unless you add another
frame later.)

2. Add dynamic text fields linked to the variables report, numRight,
numTries, and percRight.

3. Add static text labels explaining what’s going on.

For the report page, I arrange the static and dynamic fields so they
look like one complete sentence. You can easily create this effect if all
fields

• Use the same font

• Are aligned neatly

If they all seem to be on one line, the user cannot tell that it’s more
than one text field.

4. Add a button to go back.

As usual for creating buttons, follow these steps:

a. Drag the button (from the Library) you already created.

b. Give the button a new instance name.

c. Place a static text element on top of the button to make the button’s
label.

Coding the Pages
After you set up all the pages of the Math game, you have a strong framework
in which to build your code:

� You know all the main variables (because they were created in the
process of building the forms).

� You know all the main code events that need to happen.

Design programs based on the forms for this type of very basic information-
based programming.

After the skeleton is in place, flesh it out with some code.

95Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 95

Coding the choose page
The job of the choose page is to let the user decide which type of problem he
wants to attempt.

In the Math game, this choose page has four buttons. The primary job of
the choose screen code is to determine which operation the user wants to
perform.

The purpose of Listing 5-1 is to send a message to the next screen indicating
what type of problem the user wants.

Listing 5-1: Code in the Math Game, choose Frame

// Math Game
// Generates Random Math Problems
// Illustrates text fields, conditions
// basic math
// Andy Harris, 12/04
// code in choose frame

stop();

btnAdd.onRelease = function(){
_root.op = “+”;
_root.gotoAndStop(“solve”);

} // end add

btnSub.onRelease = function(){
_root.op = “-”;
_root.gotoAndStop(“solve”);

} // end sub

btnMult.onRelease = function(){
_root.op = “*”;
_root.gotoAndStop(“solve”);

} // end mult

btnDiv.onRelease = function(){
_root.op = “/”;
_root.gotoAndStop(“solve”);

} // end div

The following sections show how to build and test the code.

Coding the buttons
All the buttons on this screen work in pretty much the same way, but they all
indicate different operations.

96 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 96

For each button (btnAdd, btnSub, btnMult, and btnDiv on the choose
page), follow these steps:

1. Begin your button code with explanatory comments.

The more complex your program, the more important comments are.
For any program, provide at least

• The basic purpose of the program

• Your name

• The date you wrote the code

2. Stop the Timeline.

Any time your program spans from one frame to another, you should
begin Frame 1 with the stop() command.

This directive has two effects:

• Override Flash’s tendency to run through the Timeline

• Keep code cycling through the current frame until your code
moves the program to another frame

3. Build the btnAdd code.

When the user clicks the Add button, two events must happen in
sequence:

a. The program stores the user’s choice to work on an addition problem.

b. Flow continues to the solve frame.

For the Math game, I create a variable called op that holds an operation.
This button indicates the user wants to do an addition problem, so I
store the plus sign character into a special variable called _root.op.

97Chapter 5: Making an Interactive Game

Writing efficient code
The Math game is an example of avoiding
unnecessary duplication of effort. All four but-
tons move control to the same frame. It’s tempt-
ing to have a separate page for each type of
problem, but the code on each of these frames

would be nearly identical. For efficiency, you
should avoid unnecessary duplication when-
ever possible. My solve page can work with
any of the problem types: Regardless of the
choice, code flows on to the source frame.

10_589628 ch05.qxd 10/12/05 2:42 PM Page 97

Sometimes you can skip the _root indicator, and your variables will still
work correctly. I use _root only when I think it clarifies things. When it
isn’t necessary, I don’t use it because it can make the code harder to
read.

Before you add code to the other buttons, use the following section
to check whether the Add button (which is labeled Addition) works
correctly.

Testing your button code
Test your button code to see whether it’s working correctly:

� When you run the program, you should be able to click the Add
button.

� When you click the button, program control should progress to the
solve screen.

If all is well, the solve screen displays a plus sign (which indicates that
the user chose an addition problem).

If something went wrong, take a look at the hints you’re given:

� Did an error screen pop up?

� Did the program move to the next screen?

� Did the program move to the correct screen but not display the correct
character?

Because you’ve written only a few lines of code so far, figuring out why the
code isn’t working will be relatively easy. When the code for this button is
working correctly, you can use it as a template for the other buttons.

98 Part II: The Next Steps

Sharing variables across frames
When you break your Flash program into sepa-
rate frames, note this important side effect:
Each frame is actually considered an entirely
different program. Any variables created in one
frame are destroyed as soon as that frame exits.
This is good because it means that you don’t
have to worry about variables from other parts
of the program. Sometimes you want a variable
to be shared.

For example, when I create a variable called
_root.op in the Math game, I’m building a
variable that belongs to the entire program, not
just the current piece of it. (_root stands for the
entire program.) With this device, I can tran-
scend the limitations of locally defined variables.

10_589628 ch05.qxd 10/12/05 2:42 PM Page 98

Coding the solve page
The solve page of the Math game performs a number of tasks:

1. Generates the problem

2. Presents the problem to the user

3. Accepts the user’s guess for the problem

4. Passes control to the report page

Listing 5-2 describes the solve frame code.

Listing 5-2: Code in the Math Game, solve Frame

//Code in solve frame
//From Math.fla

btnCheck.onRelease = function(){
_root.gotoAndStop(“report”);

} // end check release

//check operation
switch(op){
case “+”:
X = Math.ceil(Math.random() * 10);
Y = Math.ceil(Math.random() * 10);
_root.correct = X + Y;
trace(correct);

break;
case “-”:
Y = Math.ceil(Math.random() * 10);
_root.correct = Math.ceil(Math.random() * 10);
X = _root.correct + Y;
trace(correct);

break;
case “*”:
X = Math.ceil(Math.random() * 10);
Y = Math.ceil(Math.random() * 10);
_root.correct = X * Y;
trace(correct);

break;
case “/”:
Y = Math.ceil(Math.random() * 10);
_root.correct = Math.ceil(Math.random() * 10);
X = _root.correct * Y;
trace(correct);

break;
default:
trace(“There’s a problem here”);

break;
} // end switch

99Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 99

To add code to the solve frame, follow these steps:

1. Code the button.

This particular button doesn’t do anything but pass control to the next
segment, report.

Code that you attach to a button doesn’t execute immediately. The code
is stored so that it can run whenever the button is pressed.

2. Create code that executes immediately.

Most of the code for this frame should happen as soon as the frame is
encountered.

If you write code directly in the frame (without enclosing it in a function
definition), it happens immediately.

3. Determine the operation type.

This code acts differently for each type of operation. The operation that
the user wants to perform is stored in the op variable. I need to check
for four possible values of that variable, so the switch structure is the
natural tool for the job:

• The cases I’m concerned with are the four possible values of op.

• I also add a default case even though it shouldn’t ever happen.

Only four operations are available, and my switch statement
accounts for them all. You don’t expect a fifth option to appear, but
be ready for it because crazy things can happen when you write
real code.

4. Set up the addition problem.

The addition problem is the most basic case, so I set it up first.

The following is the code fragment pertaining to addition:

case “+”:
X = Math.ceil(Math.random() * 10);
Y = Math.ceil(Math.random() * 10);
correct = X + Y;
trace(correct);

break;

I want to create two variables here, X and Y:

• Both variables are tied to dynamic text areas, so when I assign
values to them, the corresponding text area on the screen changes
as well.

100 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 100

• Because I’m designing my program for young children, I want to
use single-digit numbers. I use a variant of the die-rolling scheme
(see Chapter 4) to build random integers between 1 and 10 for X
and for Y.

• I have the computer solve the problem and then place the result in
a variable called correct. This is useful in the report screen so
that the computer can determine whether the user’s guess is the
correct answer.

• I use the trace statement to output the correct answer so that I
can more easily debug without having to do all the mental math.

5. Write the multiplication code.

Subtraction comes next in the written code, but I recommend perform-
ing multiplication here because subtraction requires a minor trick.

The code for multiplication is very similar to the addition code except
that the two values are multiplied, not added. The random values are
created in exactly the same way as in the addition code:

case “*”:
X = Math.ceil(Math.random() * 10);
Y = Math.ceil(Math.random() * 10);
correct = X * Y;
trace(correct);

break;

6. Write the sneaky subtraction code.

Because I want to use this game with small children, I must think care-
fully about the subtraction problems that the program generates.
Addition and multiplication are easy because I simply generate two
random numbers between 1 and 10. However, if I do that for subtraction,
I’ll frequently have problems that result in negative numbers. For exam-
ple, if the computer randomly generates 3 for X and 8 for Y, the differ-
ence is –5 (3 – 8). If you’re writing a game for an older child, that’s fine,
but my kids aren’t ready for negative numbers.

There are a couple of solutions to this problem, but I came up with an
elegant solution. The following code fragment shows my trick for creat-
ing problems with only positive answers:

case “-”:
Y = Math.ceil(Math.random() * 10);
correct = Math.ceil(Math.random() * 10);
X = correct + Y;
trace(correct);

break;

101Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 101

Instead of generating X and Y as my two random values, I generate X and
correct (the correct answer!). Then I reverse-engineer X by adding
correct to Y:

• The correct answer is guaranteed to be a positive number in the
1–10 range.

• Subtraction problems are in the same range as addition problems.

Sneaky, huh?

7. Do the dastardly division problem.

For young kids, you probably want to limit your division problems to
avoid remainders. The easy way to do that is to

a. Randomly generate X and the correct answer.

b. Derive Y by multiplying X by correct.

102 Part II: The Next Steps

The secret of Easter eggs
Programs (especially games) frequently have
little tricks — Easter eggs — hidden in them,
just like that correct answer trace statement.
Programmers often use these little tricks to help
them debug and test their programs. Many of
the Easter eggs in software started as debug-
ging features that programmers put in place,
never intending end users to know about them.

Flash has a cool Easter egg. Choose About
Flash from the Help menu and then click the tiny
trademark symbol right after 2004. I won’t tell
you what you’ll find, but it’s worth looking for —
and relevant in a book on computer gaming.

More than one way to add
Adding values to variables is very common, so
many languages have built-in shortcuts for this
kind of situation. In your own code, you can per-
form the same addition with a line like this:

numRight += 1;

That line means exactly the same: Add 1 to
numRight. Because you frequently find your-
self incrementing a variable by 1, there’s another
shortcut. You can also write the line like this:

numRight++;

10_589628 ch05.qxd 10/12/05 2:42 PM Page 102

Coding the report page
The report page of the Math game has three jobs:

1. Checks the current problem and sees whether the user was correct

2. Reports some statistical information about how many questions the
user has answered correctly so far

3. Evaluates the current situation and sends the user to the corresponding
frame

The program’s button is a little unusual because it won’t always go to
the same spot. Most of the time, the button returns the user to the
solve page to get a new problem. If the user has already solved five
problems, the button instead directs the user to the choose frame to
select a new type of problem.

Listing 5-3 is the code from the report frame.

Listing 5-3: Code in Math.fla report Frame

//code in report frame
//from Math.fla
//check to see if user is right
if (_root.guess == _root.correct){
result = “Great Job!”;
numRight++;

} else {
result = X + “ + “ + Y + “ = “ + correct;

} // end if

//update score
numTries++;
percRight = numRight/numTries * 100;

//back up button goes different places in different
situations!

btnBack.onRelease = function(){
if (numTries < 5){
//create another problem in the same set
_root.gotoAndStop(“solve”);

} else {
//let user start over
numRight = 0;
numTries = 0;
_root.gotoAndStop(“choose”);

} // end if
} // end back release

103Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 103

Here are the steps for coding the report page:

1. Check the player’s math.

The first order of business is to see whether the user answered the prob-
lem correctly. By the time this frame has been called, the program is
aware of two important variables:

• correct: Generated by code in the solve frame

• guess: Associated with the text box in which the user typed an
answer

The report page checks whether guess is equal to correct and pro-
vides appropriate feedback.

The condition (guess == correct) is a triumph of variable naming. I’m
proud of that condition because it’s really easy to understand:

• If guess is equal to correct, the user answered the problem
correctly.

• If guess isn’t equal to correct, the user answered the problem
incorrectly.

As you get more experienced at naming variables, you can anticipate the
conditions in which you use your variables and thus design variable
names so that your conditions are easy to understand.

Code that is written clearly is easier to read and easier to fix.

2. Inform the user.

• If the user answered correctly, the program assigns a message to
result, which is mapped to a dynamic text area.

• If the user didn’t answer correctly, the program creates a more
helpful message that indicates the correct answer to the assigned
problem.

3. Track the user’s progress.

The program increments the numRight variable with the following code:

numRight = numRight + 1;

104 Part II: The Next Steps

How to make a better language
When computer scientists improved the C lan-
guage, they called their new language C++.
Geddit? It’s one better than C! ActionScript is a

simplification of C++, so maybe it should be
called C++––. (Maybe that’s why I’m never
asked to name new programming languages.)

10_589628 ch05.qxd 10/12/05 2:42 PM Page 104

The preceding line performs these tasks:

a. Retrieves the current value of numRight

b. Adds 1 to the current value

c. Stores the new total in numRight (replacing the original value)

The sidebar “More than one way to add” shows other ways to increment
variables.

When you follow a variable name with two plus signs (++), you tell the
computer to add 1 to the variable. Many languages also support the ––
and –= operators for quicker subtraction.

4. Keep some stats.

The user receives five questions of a given type before being allowed to
choose a new question type. The numTries variable keeps track of how
many questions the user has answered in the current set. Every time the
user responds to a question, numTries should increase.

numRight and numTries have these differences:

• The numRight variable is incremented only when the user gets a
problem correct.

• The value of numTries is incremented whenever the code is exe-
cuted, which is once per problem.

numRight divided by numTries gives you the player’s percent correct as
a complicated decimal value. I multiply the percentage by 100 to convert
the decimal percentage to a more familiar 0–100 value.

In the report code, all three variables (numRight, numTries, and
percRight) are mapped to onscreen dynamic text boxes, so the user
can see how he or she is doing.

5. Move on to another part of the program.

When the user clicks the button, he goes one of two places:

• If the user hasn’t answered five questions of the current set, he’s
given another question in the solve frame.

• If the user has answered at least five questions in the current category,
he’s returned to the choose frame to pick another type of problem
(or more problems of the same type).

The button’s multiple personality behavior is determined by a condition
inside the button’s event handler:

//back up button goes different places in different situations!
btnBack.onRelease = function(){
if (numTries < 5){
//create another problem in the same set

105Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 105

_root.gotoAndStop(“solve”);
} else {
//let user start over
numRight = 0;
numTries = 0;
_root.gotoAndStop(“choose”);

} // end if
} // end back release

The number of tries determines the behavior of the btnBack button:

� If the number of tries is less than 5, program control reverts to the
solve frame.

� If the number of tries is 5 or higher (numTries is more than or equal
to 5)

a. Reset the numRight and numTries to 0 (zero).

b. Move program control to the choose frame.

This gives the player five fresh tries on another problem set.

Coping with Bugs and Crashes
Don’t be discouraged when your program dies an inglorious death.

I’m a pretty experienced programmer, but 90 percent of my programs don’t
work the first time I test them.

If your program doesn’t work correctly, you can fix it. How you make things
work depends on what went wrong. Begin by figuring out what kind of prob-
lem you’re having.

The rest of this chapter shows you some typical types of problems and useful
strategies for solving them.

Syntax error
Sometimes when you run your program, the output screen pops up a mes-
sage (or maybe many messages) that starts with the text **Error**. Figure
5-8 shows such a situation.

This indicates that Flash is confused about your code and doesn’t know
how to follow your directions. Such an error is a syntax error. Your program
doesn’t run at all under these conditions.

106 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 106

Syntax errors sound pretty bad, but this type of error usually isn’t hard to
fix: The first thing to do is scroll to the beginning of the error message. Also,
make sure the entire error message is visible. Sometimes, the error screen
shows up small, and you have to expand it to see the entire error. One mis-
take often causes others, so only the first error is meaningful. Read the error
message, looking for specific clues. Some error messages are worthless, but
quite a few actually tell you what is wrong. Pay careful attention to the line
number Flash reports. This is the line where Flash noticed the error. That
isn’t always where the problem is, but it’s a good indicator.

Syntax errors are usually caused by typing errors, capitalization errors, mis-
spelling, or incorrect punctuation.

Check the indicated line to find the mistake. In normal reading, you often skip
very quickly through text. A syntax error means that some little detail is
wrong, and the detail can be very small. For example, if you misplace a period
for a comma, a numeral one (1) with a lowercase L (l), or one of many similar
problems, your code won’t work correctly.

Nothing happens at all
Sometimes, you don’t have any syntax errors, but your program still doesn’t
work correctly. In Flash programming, that often indicates that you don’t

Figure 5-8:
When you

type illegal
code in the

editor, Flash
doesn’t

like it.

107Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 107

have something named correctly. Check whether your button is responding
at all.

In the Math game, you can do that by modifying the btnAdd code so it looks
like this:

btnAdd.onRelease = function(){
trace(“I got here”);
_root.op = “+”;
_root.gotoAndStop(“solve”);

} // end add

Run the preceding code and watch what happens:

� If the trace statement works, your button code is working. You have
to look at the other code to find the problem.

� If the trace statement never happens, you have a problem with the
button or the button code.

If your button doesn’t work, make sure that

� Your button instance (on the Stage, not the one in the Library) is
named btnAdd.

� Your code and the instance name are exactly the same, including
capitalization.

For example, if you have a button named btnadd and code for
btnAdd.onRelease, the code doesn’t execute because Flash thinks
you’re talking about two totally different buttons.

Statement must appear within
onClip event handler
This error is very common among beginning game developers. Check to see
that your code is written in the frame context, and not in the button or movie
clip context. If you get this error (or some other error you don’t understand),
look at the title bar of your code window. It should read Actions - Frame. If
it reads Actions - Button or Actions - Movie Clip, the code I give you
won’t work correctly.

You can write code in the button and movie clip contexts, but I find it harder
to track down the code when it’s in lots of different places. You also have to
write code a little bit differently in these other contexts, and certain kinds of
code must be written in the frame context. For these reasons, I put all the
code for the entire book at the frame level. You never need to write code in
button or movie clip objects.

108 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 108

The program moves to the score frame,
but you don’t see the plus sign
Your code assigns the value + to a variable named op. The score frame
should have a dynamic text box linked to the variable op. If you don’t have
such a variable linked to the text box, you won’t see any value in it.

Something else is wrong
If the error you encounter doesn’t match one of my scenarios, don’t panic.
You can figure it out. Look for a pattern:

� When does it go wrong?

Is there a pattern? Does it always blow up, or does it break only part of
the time? Can you find a pattern?

� What else is happening?

What happens immediately before the program breaks? Did it ever work
right? Did you make some sort of change to another part of the code
that caused this to break? Are you referring to some variable that has
somehow changed?

� Can you ever make it work correctly?

Again, you’re looking for a pattern. Can you get back to a version of the
program that works correctly?

� Can you isolate the problem?

Try to determine what section of code made things go wrong. Use com-
ment statements to take out code until you have something working
again. Slowly return one line at a time, checking to see whether this line
is the one causing problems. Eventually, you can usually track the issue
to one or two lines of code, which you can scrutinize or rewrite.

� What’s happening with the variables?

Check to see that your variables contain the values you think they con-
tain. Use trace statements to output the variables and see what they
really contain.

� Get help.

If you can, show your code to somebody else who knows how to pro-
gram. Even if your friend doesn’t know any Flash code, he or she might
see something you missed.

109Chapter 5: Making an Interactive Game

10_589628 ch05.qxd 10/12/05 2:42 PM Page 109

110 Part II: The Next Steps

10_589628 ch05.qxd 10/12/05 2:42 PM Page 110

Part III
Sprites, or Movie

Clips

11_589628 pt03.qxd 10/12/05 2:43 PM Page 111

In this part . . .

Game programmers have long used a theoretical con-
cept called a sprite as the foundation of action

games. Flash doesn’t have a built-in sprite object, but it
does have an object called the movie clip that makes a
dandy foundation for sprites. In this part, you see the
basics of building sprite-based games. You can build
pretty much any 2-D game after you know how to build
and use sprites.

Chapter 6 shows you how to make a very basic sprite as
well as how to move it around onscreen. After an object
can move, it can go places it shouldn’t, so I show you sev-
eral strategies for dealing with screen boundaries. You
also discover how to replace the mouse cursor with any
symbol you want.

Chapter 7 helps you build the mother of all arcade games:
Pong. Once again, I take you through the process and
describe how to build the game rather than simply dis-
secting the completed game.

11_589628 pt03.qxd 10/12/05 2:43 PM Page 112

Chapter 6

Introducing Sprites
and Movie Clips

In This Chapter
� Using movie clips to make sprites

� Moving things onscreen

� Dealing with boundaries

� Following the mouse

Most games have certain things in common. Games usually involve vari-
ous objects moving around onscreen crashing into each other. Game

programmers usually call these objects sprites. In this chapter, I tell you all
about sprites, how they relate to the MovieClip object built into Flash, and
how to make sprites move around onscreen.

Building a Sprite
As a programmer, patterns are your friend. When you can spot a pattern, you
can usually take advantage of it to make programming easier.

Early game programmers noticed that games often involved little things
moving around onscreen and crashing into each other. They named these
little elements sprites.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 113

Even today, most 2-D game designs use sprites:

� Pac-Man: The ghosts and the yellow Pac-Man are sprites.

� Civilization III: Each unit (settlers, soldiers, elephants) is a sprite.

� Diablo II: The player and the monsters are sprites.

� Asteroids: The ship and the space rocks are sprites.

In general, anything in a computer game that moves is a sprite.

Making a movie clip
A sprite is a conceptual framework that programmers use to think about
game objects.

Few programming languages actually have sprites built into them. Usually,
game programmers begin by creating sprites that they can manipulate.

In Flash, a built-in object called the MovieClip is a dandy foundation for
sprites.

To begin making a sprite, build a ball and turn it into a movie clip object.
Later, you can add code to the movie clip to make your sprite move around
and bounce into stuff.

To make your first movie clip sprite, follow these steps:

1. Create a new project in Flash.

Try new ideas on a clean palette.

2. Draw a circle in the center of the Stage, using the Oval tool.

The sidebar, “Making a ball that looks 3-D” shows you how to make your
circle look like a ball.

3. Convert your circle to a movie clip object.

To convert the drawing to a movie clip, select the circle and then either

• Choose Modify➪Convert to Symbol.

• Press F8.

This part of creating movie clips is like building buttons, but the follow-
ing step is different.

The dialog box for creating a movie clip is shown in Figure 6-1.

114 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 114

115Chapter 6: Introducing Sprites and Movie Clips

Making a ball that looks 3-D
A radial gradient gives a circle a 3-D appear-
ance. Follow these steps:

1. Choose Radial from the Color Mixer panel.

2. Choose two colors for the gradient.

Radial gradients place the first color in the
center of a selection. The second color is
used on the edges of the selection. Use a
radial gradient to simulate the highlights of a
ball. If you want your circle to look like a blue
sphere, for example, choose white as the first
color and a dark blue as the second color.

3. Apply the gradient you just created to the
circle.

Use the Paint Bucket tool to apply your gra-
dient to the circle. If you choose white and
dark blue, your circle has a white highlight in
the center and dark blue borders. The white
area in the center makes the 2-D ball look
like a 3-D sphere with a highlight. Experiment
by placing the gradient in various parts of the
circle.

The black border on the circle defeats the
illusion of a 3-D object. To delete the border,
select it and press Delete. See the result in
the figure.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 115

4. Name your ball.

In the Convert to Symbol dialog box, give your object a name. I call mine
ball — not inspiring, but easy to remember.

Choose the Movie Clip selection, not Button or Graphic.

See the result in Figure 6-2.

Figure 6-2:
When you

select a
movie clip,
you see a
rectangle
around it,

not shading.

Figure 6-1:
Name your
new movie

clip. Be sure
to create a
movie clip,

not a button.

116 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 116

The movie clip is the most common type of symbol you create for games.

If it doesn’t appear by default, open the Advanced options and select
Export for ActionScript (from the Linkage section; refer to Figure 6-1).
(Chapter 8 explains why exporting for ActionScript is necessary.)

After you convert your drawing to a movie clip, the object looks like the
one in Figure 6-2, with a rectangle around it. The ball is now a movie clip
object, and you can treat it like a sprite.

When you create a sprite, the center of the screen becomes a special
point called the registration point. When sprites move and rotate, they
rotate around the registration point. Be sure that the registration point
is near the center of your sprite. If this point isn’t near your object’s
center of gravity, the rotation doesn’t look natural.

It’s alive! Adding motion
to your movie clip
The following steps breathe some life into a movie clip sprite:

1. Move your sprite to a suitable starting position.

In this first example, the sprite moves to the right. Drag your ball to the
left-hand edge of the Stage so it has plenty of room to move.

2. Name the sprite.

In the Properties box, you see a text box that reads something like
<instance name>. Type ball into that box to name this particular
instance ball.

You might think you already named this thing ball, and in a sense you
did. The object in the Library is a plan for making ball objects, and the
one on the screen is an instance of the ball object. (See the recipe and
cookie analogy from Chapter 2 for more on the relationship between
Library objects and instances on the Stage.) When you have only one
instance of a particular object, it’s typical (at least in ActionScript) to
give the Library object and the instance the same name.

3. Select the appropriate frame.

To select a code context, click Frame 1, Layer 1 in the Timeline.

4. Open the Actions panel.

If the Actions panel isn’t already open, bring it up by pressing F9.

5. Get in the Actions - Frame mode.

Be sure the title bar above the Actions panel reads Actions - Frame. If
it reads Actions - Movie Clip (or something else), the code in the
following step doesn’t work correctly.

117Chapter 6: Introducing Sprites and Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 117

6. Write code to move your sprite.

For the ball example, type the following code into the Actions panel:

//from ballMove.fla
ball.onEnterFrame = function(){
ball._x += 5;

} // end function

7. Test your code by pressing Ctrl+Enter and seeing what happens.

With this example, your ball slowly moves across the screen to the right.
With the current code, it leaves the screen altogether and keeps on
going forever. Figure 6-3 shows the ball’s behavior. I added the arrow so
you can see what the ball does.

Figure 6-3:
The ball

moves
slowly to the

right and
eventually
leaves the

screen.

118 Part III: Sprites, or Movie Clips

If your code doesn’t work, read this!
How you write code depends on whether that
code is attached to a frame or a movie clip. I find
the distinction to be confusing and unneces-
sary, so I write all my code in frames. If code
from this book doesn’t work correctly, make

sure that you typed it into a frame context, not a
movie clip or button. Determine the context by
looking at the Actions panel. It should always
read Actions - Frame, never Actions -
Movie Clip.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 118

119Chapter 6: Introducing Sprites and Movie Clips

Understanding the code
The code in the Actions window is really the secret to the power of ActionScript. Each little piece
adds something. When you can decipher this little segment of code, you can add a few more things
to it and animate anything. (Insert mad scientist laughter here — “Muhahahah!”)

ball.onEnterFrame is a special element called an event handler. (In Chapters 2 and 3, the
onClick event of the button object is another event handler.) Movie clip objects have a special
set of events.

In movie clip objects, the EnterFrame event is especially powerful because you can indicate
instructions that are meant to happen many times. By placing code in the EnterFrame event, you
ensure that code happens several times per second. If that code modifies an object that’s visible
onscreen (as the ballMove code described here does), the movie clip looks animated:

� Only one frame is in the moveBall program, so that frame repeats indefinitely at the indicated
frame rate. (By default, this rate is 12 frames per second [fps].)

� Any code you place in the EnterFrame event happens each time the program enters the
frame. (Oooooh, I get it!)

ball._x is really sneaky and powerful. The ball is a movie clip object. This type of object already
has a bunch of characteristics built in. These characteristics of an object are its properties.

Most of the movie clip object’s built-in properties begin with an underscore. ball._x and
ball._y indicate the position of an object called ball on the screen:

� y measures vertical position (height).

� x measures horizontal position (width).

ball._x += 5 When you change the value of an object’s properties, those changes are often
reflected onscreen. In the Flash coordinate system, changing the _x property of the ball object
moves it in the left–right axis. The += operator means add 5 to this property. If the ball begins all
the way to the left of the stage, its original _x value can be 0 (zero). The first time the program
reaches this code, it increments ball._x by 5, giving it a new value of 5. This moves the ball five
pixels (screen dots) to the right. The next frame increases x by another five pixels. Because the
code is repeated 12 times per second, the ball appears to move smoothly and slowly from left to
right. To make the ball move faster, add a larger number. To make the ball move right to left, add a
negative number to ball._x.

} // end function indicates the end of the function. (Braces usually indicate code that is
grouped together).

12_589628 ch06.qxd 10/12/05 2:48 PM Page 119

Don’t Object to Objects
Game programming is a lot easier if you use a modern programming scheme
called object-oriented programming (OOP). ActionScript lets you look at movie
clip elements as objects.

The sidebar “Basic objects” covers the background of object-oriented program-
ming. You can also read in Chapter 13 how to create your own custom objects.

I use a variation of object-oriented programming throughout this book. It’s a
gentle introduction to the principles of object-oriented programming but not
quite as strict or powerful as the more complete implementations of the tech-
nique. I cover object-oriented programming more in Chapter 13 as you see
there how to build your own custom movie clip objects.

Properties
Properties are an object’s characteristics, such as its size, color, and position.
(In the ballMove example, _x is a property of the ball object.)

Properties are like adjectives in human languages.

Properties have the following characteristics:

� You can modify an object by assigning new values to its properties.

� You can read an object’s properties as if they were variables.

� An object can have built-in properties.

120 Part III: Sprites, or Movie Clips

Basic objects
Object has a special meaning in the program-
ming world. In general, an object is a self-con-
tained combination of code and data. Objects
are designed to interact with the user, the envi-
ronment, and each other.

If you’re really technical, you can say that
ActionScript isn’t truly an object-oriented

language. Programming geeks might describe
ActionScript as an object-based language
because it doesn’t meet all the formal require-
ments of an object-oriented language. But
ActionScript’s support for objects is good
enough to do some interesting things.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 120

Special functions
Methods and events are special functions attached to an object. They both are
used to describe actions associated with an object.

Methods are like verbs in human languages: Methods describe actions.
Events are triggers that automatically happen. Here’s a true real-life example:
My kids’ guinea pig has a built-in squeak event that triggers every time the
refrigerator opens.

The big difference between methods and events in Flash is how they’re
started. After they start, methods and events behave the same way.

Methods
Methods are functions that must be called explicitly in your code.

Methods don’t happen automatically. If you want something to happen auto-
matically, the function must be an event. You can’t make new events. There
are just a few, and they’re already built into Flash. The only two event han-
dlers you need in this book are onEnterFrame() and onRelease().

I show examples of methods later in this chapter. For almost every remaining
program in this book, your sprites will have methods named move() and
checkBoundaries(). These are behaviors that a well-trained sprite object
should know how to perform.

Events
Events are functions that happen automatically when another specific activity
occurs. After an event starts, it behaves like a method.

Most events begin with the keyword on. The most common events in
ActionScript are

� The onRelease() event of the button object

� The onEnterFrame() event of the movie clip object

121Chapter 6: Introducing Sprites and Movie Clips

Flash treats events and methods strangely
Flash combines events and methods in a way
that is reasonably easy to program but not
typical of all object-oriented languages. The
“events and methods are basically the same

thing” concept works fine for Flash, but if you
move on to another object-oriented language,
you’ll see that other techniques are more
common.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 121

Characteristics
A well-organized object-oriented system has the following characteristics.

Inheritance
Inheritance lets objects be made from other objects.

For example, if you make a mammal object, you could give it characteristics
common to all mammals (fur, live-bearing, warm-blooded). If you make a new
animal object based on mammal, the new object already has the characteris-
tics of the parent object type. You have to worry about only those character-
istics that differentiate a type of mammal: For example, some mammals have
hooves, and some have paws.

ActionScript supports a limited form of inheritance.

Inheritance is important in ActionScript because you base all kinds of objects
in the MovieClip class, such as the ball object in the ballOOP program.

In ballOOP, as soon as ball becomes a movie clip, you instantly inherit all
the characteristics of a movie clip, including

� _x and _y properties

� The ability to recognize an onEnterFrame() event

Encapsulation
Encapsulation lets programs and data break into chunks to hide detail.
ActionScript encourages encapsulation with function and object entities.

Encapsulation makes your programs easier to write and easier to follow.
Remember song sheets from camp? They feature the chorus the first time
you sing it. After that, the sheet reads Chorus instead of repeating the lyrics.

Polymorphism
Polymorphism lets objects adapt to different conditions.

Polymorphism lets you

� Build objects with different starting values

� Adapt the behavior of an object’s methods for the current circumstances

122 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 122

Making a Well-Behaved Object
A moving ball can be created using object-oriented techniques. The object-
oriented approach pays off as your sprites get more complicated because
each object keeps track of the variables that control its own behavior.

Listing 6-1 looks quite different than the code in ballMove.

Listing 6-1: Object-Oriented Moving Ball

//from ballOOP.fla
//demonstrates turning ballMove into an Object-oriented

program

ball.dx = 5;
ball.dy = 5;

ball.onEnterFrame = function(){
ball.move();
ball.checkBoundaries();

} // end enterFrame

ball.move = function(){
ball._x += ball.dx;
ball._y += ball.dy;

} // end move

ball.checkBoundaries = function(){
//do nothing for now

} // end

In Listing 6-1, the boundary-checking routine is empty. For now, it’s a place-
holder. Later in the chapter, I show examples of boundary checking. Each
example plugs into the checkBoundaries method in Listing 6-1.

The code in Listing 6-1 does most of the same things as the ballMove pro-
gram featured at the beginning of this chapter, but this object-oriented ver-
sion has some very nice advantages.

Adding dx and dy properties
The dx and dy properties let you manipulate motion in a flexible way. These
properties determine how the ball’s position properties should change each
frame.

123Chapter 6: Introducing Sprites and Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 123

Position values
An object’s horizontal (left-to-right) and vertical (top-to-bottom) positions
are separate properties that combine to find its exact position onscreen:

� Horizontal position (current side-to-side position on the Stage) is deter-
mined by the object’s built-in _x property.

_x is the current horizontal position (position from left to right).

� Horizontal motion (change in side-to-side position) is determined by
the custom dx property.

dx is the change of the horizontal position (how much the object will
move left or right in the current cycle).

� Vertical position (top onscreen) is determined by the object’s built-in _y
property.

y is the current vertical position (position from top to bottom).

� Vertical motion (change in top-to-bottom position) is determined by the
custom dy property.

dy is the change of the vertical position (how much the object moves up
or down in the current cycle).

In dx and dy, think of the d as the difference in position. (Scientists and math-
ematicians might think of d as the delta, or rate of change.)

The _x and _y properties are built-in properties of the movie clip object.
Remember that Flash tends to begin all built-in properties with the under-
score character. I added dx and dy myself, so they do not begin with an
underscore character. Even though dx and dy are not built into movie clip
objects, you’ll find them so useful that you will add them to nearly every
moving object in your games.

Position changes
The dx and dy properties don’t do their jobs automatically. The code in the
move method uses these properties to move the ball.

To add dx and dy properties to a sprite, start by writing code before the
onEnterFrame code:

� The ball.dx and ball.dy values are new properties of the ball object.

� If you create a variable attached to an object such as ball.dx, you’re
creating the dx property of the ball object.

124 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 124

//ballOOP
//demonstrates turning ballMove into an Object-oriented

program

ball.dx = 5;
ball.dy = 5;

This code creates the properties dx and dy, adds them to the ball sprite, and
sets the initial value of both properties to 5. Because the code occurs outside
any function definition, it happens immediately when the program runs.

Building the onEnterFrame event
The code beginning ball.onEnterFrame = function(){ is an event handler
that indicates what should happen every time the current frame is activated.

I moved most of the actual code out of this function. Instead, I replace the
original code with references to two new methods of the ball object.

Even if you don’t know exactly how these methods work, you have to admire
the clarity of the following code:

//from ballOOP.fla
ball.onEnterFrame = function(){
ball.move();
ball.checkBoundaries();

} // end enterFrame

Even if you don’t know anything about programming, you can easily guess
what this code is supposed to do: When the ball enters the frame, it should
move and check for boundaries.

125Chapter 6: Introducing Sprites and Movie Clips

ActionScript’s improper properties
How ActionScript assigns properties is consid-
ered sloppy by Those Who Care About Such
Things.

This approach to properties can give a Java
programmer an aneurysm. But ActionScript is a
looser, more forgiving language. In ActionScript,

it’s okay if properties are created in a way that’s
easier on the programmer but breaks formal
language rules.

Don’t worry. The ActionScript style works, even
if it won’t win any awards for perfect language
design.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 125

The enterFrame event is a triumph of encapsulation. It shows the cool thing
about encapsulation. In this function, I just want to know what the ball is sup-
posed to do. I don’t really care how it does these things, just that it does
them. Describe the big picture here. Each of the main things that needs to be
done gets its own method.

Moving the ball OOP-style
I created a new method for the ball object in much the way I created the
onEnterFrame() event. Here’s the move code:

//from ballOOP.fla
ball.move = function(){
ball._x += ball.dx;
ball._y += ball.dy;

} // end move

In the move method, I added ball.dx to ball._x and ball.dy to ball._y.
However, this function is much more profound than it might appear at first
glance:

� It isn’t simply a function. It’s attached to the ball object, so it’s now
technically a method of that object.

� The function is more adaptable. In the moveBall program, I always
changed x by positive (+) 5, moving the ball five pixels to the right each
frame.

In this version of the program, the ball is moved by the values of the dx and
dy properties. This means that your code can manipulate these variables to
change the speed and direction of the ball:

� You can change dx and dy to change the speed and direction of
your sprite:

• If you give dx a large positive value, the ball races across the
screen from left to right.

• If you give dx a negative value, the ball goes from right to left.

� If you know high-school geometry, the dy value might surprise you:

• Computer screens are drawn from top to bottom, so y is 0 at the
top and increases as you move down the screen.

• In geometry, y values of 0 usually are at the bottom of the graph
and increase upward.

Figure 6-4 shows the coordinate system as Flash sees it.

126 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 126

To see dx, dy, and Flash’s upside-down geometry, grab the ballOOP.fla file
from the Web site (www.dummies.com/go/flashgameprogrammingfd1e)
and mess around with the values of ball.dx and ball.dy:

� Watch what happens when you change these values.

� See whether you can make the ball move in any direction you wish
simply by changing the values of the dx and dy properties.

In ActionScript, the main difference between events and methods is how
they’re called by ActionScript:

� Events are automatically called when they occur. All events in this book
begin with the phrase on.

� Methods must be called explicitly in your code. Methods do not begin
with the keyword on.

• In the preceding ballOOP code, I explicitly call the move() and
checkboundaries() methods. It is not necessary to call the
onEnterFrame() method because it happens automatically when
the frame cycles.

• If you create a function called onEnterFrame(), ActionScript auto-
matically knows that function is an event and calls any code in that
method when the appropriate trigger occurs.

Figure 6-4:
Flash uses

a slightly
different

coordinate
system than

your math
teacher.

127Chapter 6: Introducing Sprites and Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 127

Overcoming Your Boundaries
Boundary checking might sound like a self-help program, but it’s actually an
important part of game programming. Just like children and pets, when you
let sprites loose, they encounter borders sooner or later. You must “teach”
sprites what to do when they try to go out of bounds.

Sprites don’t learn from timeout chairs or a newspaper swatted across the
nose. Believe me, I’ve tried.

Boundary effects
Whenever you move an object onscreen, you need to anticipate the potential
boundaries of the Stage.

In the preceding section, if you run the ballOOP program, the ball moves
until it reaches an edge of the Stage. When the ball gets to the edge of the
Stage, it continues moseying along. If you haven’t stopped the program, the
ball is still wandering in the empty space off-Stage. This is probably not what
you want in your games.

In the gaming world, when an object hits the edge of the screen, it can react
in a number of ways.

The following programs extend the basic ballOOP program by adding differ-
ent code in the checkBoundaries() method.

The following code fragments don’t show all the code in the programs. Most
of the code in these programs is the same as the code in ballOOP. I just show
you how to change checkBoundaries() for different boundary effects.

Wrapping around the screen
One common effect is to wrap the sprite around the screen, much like the
word-wrap feature of a word processor.

� If the object disappears off the left-hand side of the screen, it appears on
the right-hand side.

� If the object disappears off the bottom, it shows up at the top.

This behavior can simulate a much larger area than the actual screen. Asteroids
is the classic example. The wrapping effect is one of the easiest to achieve.
Figure 6-5 shows a ball wrapping around the screen. (The arrows aren’t in the
actual program; I added them to show how the ball moves.)

128 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 128

The wrapping behavior is achieved by Listing 6-2 in checkBoundaries().

Listing 6-2: Wrap Demo

//from wrapDemo.fla
ball.checkBoundaries = function(){
//wrap demo

//ball leaves right side
if (ball._x > Stage.width){
ball._x = 0;

} // end if

//ball leaves left side
if (ball._x < 0){
ball._x = Stage.width;

} // end if

//ball leaves bottom of stage
if (ball._y > Stage.height){
ball._y = 0;

} // end if

//ball leaves top of stage
if (ball._y < 0){
ball._y = Stage.height;

} // end if

} // end checkboundaries

Figure 6-5:
If the ball

leaves the
screen, it

reappears
on the

opposite
side.

129Chapter 6: Introducing Sprites and Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 129

In Listing 6-2, the checkBoundaries() method uses if statements to check
the ball’s horizontal (width) and vertical (height) positions in relationship
to the Stage.

Coordinate values
In Listing 6-2, the horizontal and vertical position of the ball is determined by
the x and y coordinate values:

� x coordinate value (horizontal position)

• 0 is the left edge of the Stage.

• Stage.width (the width of the Stage in pixels) is the right edge of
the Stage.

� y coordinate value (vertical position)

• 0 is the top edge of the Stage.

• Stage.height (the height of the stage in pixels) is the bottom
edge of the Stage.

Stage.width and Stage.height don’t follow the same naming conventions
as the movie clip object. The sidebar “Strangeness on the Stage” shows you
the important differences.

Code process
In wrapDemo, the code checks the ball’s position against stage properties in
a series of if statements:

1. The first two if statements check whether the ball is too far left or
right of the Stage.

� The first if statement checks whether the ball’s x property is greater
than the stage width property:

• If the ball’s x property is greater than the stage width property, the
ball is about to move off the right side of the Stage.

In that case, the next line of code triggers. The ball’s x property
changes to 0 (zipping it over to the left side of the Stage).

• If the ball’s x property isn’t greater than the stage width property,
the program skips the next line of code.

� The second if statement checks whether the ball’s x property is less
than 0:

• If the ball’s x property is less than 0, the ball is off the left side of the
Stage.

130 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 130

In that case, the next line of code triggers. The ball’s x property
changes to Stage.width (zipping it over to the right side of the
Stage).

• If the ball’s x property isn’t less than 0, the program skips the next
line of code.

2. The next two if statements check whether the ball is too far above or
below the Stage.

These statements compare the y property with the stage height and 0.

Keeping the ball on the Stage
When you run the wrapDemo program, the ball gets halfway off the screen
before anything happens. That’s because the ball’s x and y coordinates are
based on the registration point of the ball, which is usually at the center. If you
want to make the jump to the other side of the screen as soon as it touches
the screen, you need to adjust for the width of the ball.

The following variation of wrapDemo makes the ball wrap without appearing
to leave the Stage:

131Chapter 6: Introducing Sprites and Movie Clips

Strangeness on the Stage
Stage.width and Stage.height have
some surprising characteristics. To start, the
term Stage is capitalized. Stage is the name of
the built-in Flash object that describes the Stage.
Built-in objects usually begin with a capital letter
in Flash (and in many other object-oriented lan-
guages). Just like movie clips and buttons, it has
properties you can look at and manipulate:

� The width property shows the width of the
Stage.

� The height property shows the height of
the Stage.

For your program to work correctly, you must
capitalize each property correctly:

� Stage.width is the width of the Stage
object.

� stage.width (all lowercase) is the width
of the undefined stage object. If you refer
to stage.width rather than Stage.
width, your program will not work properly.

� The built-in properties of Stage don’t begin
with an underscore.

The width and height properties of the
movie clip objects begin with underscore char-
acters, but the similar properties in the Stage
object do not. Thanks for that pointless incon-
sistency, Macromedia.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 131

if (ball._x > Stage.width - (ball._width/2)){
ball._x = ball._width/2;

} // end if

I think wrapping looks better if you let the ball partially leave the screen. I
show how to keep the entire ball onscreen in the other boundary examples
because I think balls that bounce off the screen should not appear to halfway
leave the screen.

Stopping at the border
If you’re creating a stop behavior, the object isn’t allowed to leave the screen
when it reaches the border.

Depending on the needs of your game, you might make the object either

� Stop completely (stop moving both horizontally and vertically)

� Slide along the side of the screen until it hits a corner or changes direction:

• If the object reaches the left or right border, you can let the y value
change so the object can move up or down.

• If the object reaches the top or bottom border, you can let the x value
change so the object can move left or right.

In some games (such as a racing game), the object might incur damage.
Chapter 10 shows you how to keep track of damage.

Having the ball stop at the screen border is not difficult. Figure 6-6 shows one
way to achieve this effect.

132 Part III: Sprites, or Movie Clips

What size is the Stage?
Even if you know the Stage’s exact width and
height, it’s better to test against Stage.width
and Stage.height than the exact numbers:

� Someone might change the Stage size (if
your program is run as a standalone SWF
file, for example).

� Whenever possible, make your code easy
to read. It’s easy to look at the code and
guess that Stage.widthmeans the width
of the stage; 500 doesn’t have an obvious
meaning.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 132

The general structure for this effect is similar to the wrapping code, as the
checkBoundaries code in Listing 6-3 shows. (Listing 6-3 shows only the func-
tion that changed. The rest of the code is exactly like the ballOOP code
shown earlier in Listing 6-1.)

Listing 6-3: Stop Demo

//from stopDemo.fla
ball.checkBoundaries = function(){
//stop demo - stop as soon as ball encounters edge
//keep ball entirely on stage

//ball leaves right side
if (ball._x > Stage.width - (ball._width/2)){
ball.dx = 0;
ball.dy = 0;

} // end if

//ball leaves left side
if (ball._x < ball._width/2){
ball.dx = 0;
ball.dy = 0;

} // end if

//ball leaves bottom of stage
if (ball._y > Stage.height - (ball._height/2)){
ball.dx = 0;
ball.dy = 0;

} // end if

Figure 6-6:
When the
ball hits a
border, it

stops.

133Chapter 6: Introducing Sprites and Movie Clips

(continued)

12_589628 ch06.qxd 10/12/05 2:48 PM Page 133

Listing 6-3 (continued)

//ball leaves top of stage
if (ball._y < ball._height/2){
ball.dx = 0;
ball.dy = 0;

} // end if

} // end checkboundaries

There is a critical difference between Listing 6-3 and the code for wrapping. In
Listing 6-3, when the ball hits an edge, I set its dx and dy values to 0. This
means that the ball’s difference in x should be 0 (it should move 0 pixels in
the x axis), and dy is 0 (indicating 0 motion in y). The move() method is
called 12 times per second, but each time it’s called, the program doesn’t add
anything to the ball’s x and y positions. The ball is paralyzed.

Mathematically manipulating dx and dy is the key to 2-D game programming.
These manipulations let you

� Speed an object by giving it larger values of dx and dy.

� Slow it by giving the dx and dy properties smaller values.

� Reverse the direction of an object by inverting the values of dx and dy.

Bouncing off the walls
Sometimes, objects simply bounce off the walls. (This happens in the Pong
game.)

This leads to the technique for bouncing an object off the Stage boundaries.
Figure 6-7 shows what this might look like; I added the arrows to show the
ball motion. (I recommend running the program yourself to see the action.)

Figure 6-7:
This version

of the ball
bounces off

all the walls.

134 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 134

To produce the bouncing effect, make another small modification of the
ballOOP program:

� Invert the value of dx each time the ball hits a vertical (left or right) wall.

� Invert the value of dy each time the ball hits a horizontal (top or
bottom) wall.

The code in Listing 6-4 shows exactly how to duplicate this effect.

Listing 6-4: Bounce Demo

//from bounceDemo.fla
ball.checkBoundaries = function(){
//bounce demo - bounce off walls
//keep ball entirely on stage

//ball leaves right side
if (ball._x > Stage.width - (ball._width/2)){
ball.dx = -ball.dx;

} // end if

//ball leaves left side
if (ball._x < ball._width/2){
ball.dx = -ball.dx;

} // end if

//ball leaves bottom of stage
if (ball._y > Stage.height - (ball._height/2)){
ball.dy = -ball.dy;

} // end if

//ball leaves top of stage
if (ball._y < ball._height/2){
ball.dy = -ball.dy;

} // end if

} // end checkboundaries

Here’s how the bounceDemo code works for horizontal position:

Because the following code is called in an onEnterFrame method, it repeats
indefinitely:

1. The current value of a sprite’s dx indicates whether it’s moving to the
right or the left.

• If dx is a positive value, adding dx to _x moves the object to the right.

• If dx is a negative value, adding dx to _x moves the object to the left.

For example, if dx is 5 (the default value), the program keeps
adding 5 to the ball’s x until the ball hits the right-hand wall.

135Chapter 6: Introducing Sprites and Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 135

2. When the object hits the right wall, its (positive) dx gets its inverse
value (and then becomes negative).

The program keeps adding –5 to the ball’s x position.

This makes the ball move toward the left until it hits the left-hand wall.

3. When x hits the left wall, the now-negative dx is inverted again,
returning the value to a positive value.

If the ball’s dx is –5, it becomes 5 (positive five) after it hits the left-
hand wall.

A similar process handles dy to set the vertical position. If dy is non-zero, the
following steps repeat indefinitely (again because the code is placed in an
enterFrame method):

1. The object moves vertically up or down until it hits the top or bottom
border.

2. When the object hits one of the borders, the value of dy inverts.

3. The object goes in the opposite direction until it hits the other border.

Ignoring borders
Once in a while, a game allows objects to move outside the visual area. You
can achieve this effect by simply omitting the boundary checking statements.
Be careful of this effect because it can result in the user losing control of the
out-of-sight object. You can see examples of this effect in the space games in
Chapter 12.

I once wrote an air traffic control simulator that simulated a much larger area
than the screen showed. The player reads “radio” messages and locates
planes before they became visible. The player still has information about the
whereabouts of the objects even though they’re not visible.

Combinations
You can use different kinds of boundary checking in a game for either

� Different objects

� Different properties of an object

Most games use more than one boundary behavior:

� Civilization uses different boundary-checking strategies for horizontal
and vertical position:

• The characters can wrap across the left and right borders.

136 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 136

• Traffic can’t cross the top and bottom borders.

This turns the map into a cylinder, which is close enough to a globe
shape to simulate a planet in the game.

� Pong uses different boundaries for paddles and balls:

• Paddles stop at the edge of the screen.

• The ball bounces off the top and bottom walls (and the paddles),
but it ignores the left and right borders (and then resets the ball
position).

Making a Cursor
One very interesting difference between game programming and mainstream
programming is the mouse cursor:

� Cursor: In traditional programming, it’s considered very rude to mess
with the mouse cursor unless you change it to one of a number of well-
understood icons (an hourglass or a crosshairs icon, for example). Users
know what these icons mean and don’t want to be surprised.

� Pointer: In game programming, it’s very common to change the mouse
pointer and even to hide it. You often want the user to forget he’s using a
computer.

You can replace the familiar mouse pointer with whatever other object you
want. The customCursor program featured in Figure 6-8 shows exactly how
to convert the mouse to some other symbol.

Figure 6-8:
This star

moves
around the

screen as a
substitute

mouse
pointer.

137Chapter 6: Introducing Sprites and Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 137

In this example, as long as the mouse is over the Stage:

� The normal mouse pointer is hidden.

� A star takes the place of the normal mouse pointer.

This substitute mouse is a very common device in Flash games. Here’s how
it’s done:

1. Create a new Flash document.

Chapter 2 shows you how to create a new document.

2. Build a shape to be the new pointer.

The sidebar “Some pointers about pointers” has tips for making a great
mouse pointer.

3. Convert your shape to a movie clip and export it to ActionScript.

Give our new symbol a name that describes its shape or purpose.

4. Name your pointer instance on the Stage.

Because you have only one pointer, you can name the visible version the
same thing as the object in the Library.

5. Hide the mouse pointer.

When your program first runs, it should turn off the normal mouse pointer
so that your custom pointer appears instead. To accomplish this, use
Mouse.hide(). Flash has a built-in object called Mouse, which has a
very handy method called hide(). Hiding the mouse is something that
should be done on the initial run of the game, so it’s good to write an ini-
tialization method that handles this as well as other startup housekeep-
ing activities.

Write the following code in Frame 1, Layer 1:

//customCursor
//demonstrates how to turn any movie clip into
//a custom cursor

init();

function init(){
Mouse.hide();

} // end init

138 Part III: Sprites, or Movie Clips

12_589628 ch06.qxd 10/12/05 2:48 PM Page 138

The preceding code has two sections:

• A series of comments explaining what’s going on

• A call to the init() function

When the frame is first encountered, any code in init() runs.
(The code in init() simply hides the mouse.)

6. Build an enterFrame event handler for the pointer.

The pointer needs to check several times per second for the mouse’s
position and move accordingly. The enterFrame event is perfect for this.

enterFrame code happens many times per second, but code called from
the frame (like the init() function) happens only once (when the pro-
gram encounters the frame).

Your event handler looks something like this:

star.onEnterFrame = function(){
//get star’s X and Y values from mouse’s X and Y values

} // end enterFrame

I put a comment inside the preceding code explaining how I intend to
move the star. Presumably, there’s some way to retrieve the mouse’s x
and y values. If I can retrieve those values, I can move the star there,
making it act like a mouse cursor.

7. Follow that mouse pointer!

Flash’s Mouse object doesn’t have the same x and y properties as movie
clip objects, so follow this step carefully. (The sidebar “Where’s the
mouse?” explains how the Mouse object differs from a movie clip.)

139Chapter 6: Introducing Sprites and Movie Clips

Some pointers about pointers
You can use any shape as a pointer. Here are
some tips for making a good pointer shape:

� Smaller shapes usually are best.

The pointer shouldn’t hog the entire screen.
It’s used to indicate position on the rest of
the screen.

� If you need precision (for example, to press
small buttons on the screen), use a shape
with an obvious point (such as an arrow or
a pointing finger).

The registration point of your shape
becomes the actual hot spot of the new
pointer.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 139

For the customCursor program, use the special keyword _root to refer
to the entire program’s properties. Armed with this knowledge, you can
now fill in the enterFrame code, like my following example (change star
to the name of your pointer):

star.onEnterFrame = function(){
//get star’s X and Y values from mouse’s X and Y values
star._x = _root._xmouse;
star._y = _root._ymouse;

} // end enterFrame

8. Test your program.

You should be able to wiggle the mouse around and watch the custom
pointer follow it around perfectly.

140 Part III: Sprites, or Movie Clips

Where’s the mouse?
When I discovered that Flash had a Mouse
object, I figured it would have some kind of x
and y properties just like the movie clip objects.
I was surprised to find that Flash doesn’t do it
that way. Instead, each movie clip has the abil-
ity to determine where the mouse pointer is in
relationship to its own position. Movie clips
store this info in the _xmouse and _ymouse
properties.

In my example, you can’t use the star movie
clip to determine the position of the mouse
pointer because the star’s position changes
with the mouse. However, the entire program is
a movie clip object, and the program has all the
properties of ordinary movie clips. That means
you can access all the properties of the main
movie by referring to it as _root.

12_589628 ch06.qxd 10/12/05 2:48 PM Page 140

Chapter 7

Won’t Be Long ’Til You Write Pong
In This Chapter
� Designing a game

� Diagramming your plan

� Managing complex paddle collisions

� Adding scorekeeping and splash screens

� Building an arcade game

It was the mid-1970s. I was a young teenager, hanging out at a pizza parlor
with my family. We had been there many times, but this time, something

new was in the joint. The pinball game that had stood in the corner for years
was replaced by this strange new game, played on a black-and-white TV
screen! I watched people playing this marvel, and I wondered how on Earth it
could work.

Of course, the game was Pong. At the time, I knew it was something big. Now,
of course, the game seems very simple although it’s still a lot of fun. Pong was
a big hit partially because of its simplicity. (Pong was actually the second
video arcade game released. The first, Spacewar, was more sophisticated, but
it didn’t do well. It was just too far from anyone’s experience.)

The simplicity of the game made it simple to program as well as simple to
learn. Still, the basic concepts of that very basic game remain the foundation
of all 2-D video games even today. As a foundation, there are objects
onscreen, some of which move on their own as well as some that move by
player control. The objects move according to some sort of predictable logic,
and when they collide with each other, interesting things happen.

The things that made Pong so successful back when I had a bad complexion
are the same things that make it a great game for beginners to program. If you
can build a Pong-type game, you can extrapolate the same ideas into much
more complicated projects.

13_589628 ch07.qxd 10/12/05 2:49 PM Page 141

Building the Game Plan
Figure 7-1 shows a variation of Pong I wrote for this book:

Play this game from this book’s companion Web site to see how it works
(www.dummies.com/go/flashgameprogrammingfd1e). In this chapter, I
show you the techniques used to build just about any 2-D arcade game. At
the end of the chapter, I show you how to put these concepts together to
build your own version of Pong. Cool, huh?

If you can bounce a ball around onscreen and make objects follow the mouse,
you’re halfway to completing your own Pong game. (Chapter 6 shows those
skills.)

Figure 7-1:
My version

of Pong lets
you play

against the
computer.

142 Part III: Sprites, or Movie Clips

Font troubles
When you open pong.fla in Flash, you might get an error stating that a font is not available. That
happens because I used a custom font called arcade.ttf in this application. I included a copy
of the arcade font on the companion Web site.

www.dummies.com/go/flashgameprogrammingfd1e

If you want to see the font in the Flash editor, install arcade.ttf onto your system. If you don’t
install this font, the game will still play just fine, but you need to choose another font. See the sec-
tion “Adding scorekeeping text fields” later in this chapter for information on using custom fonts
in your Flash applications.

13_589628 ch07.qxd 10/12/05 2:49 PM Page 142

Building any game has a series of steps:

1. Visualize the result.

2. Write down — in words — how you want the game to work.

3. Plan for incremental steps to build your game.

4. Build the game one component at a time.

5. Check each component as you build.

6. Review. Periodically check against your original plans.

I show you in the rest of this chapter how to build the Pong game from noth-
ing. The process is what really matters because there’s very little new pro-
gramming to learn. I start with a blank screen and continually add new
components.

As you look through the process, you see lots of little code fragments in the
book. In this chapter, I show only those things that have been added or changed
from previous incarnations of the program. If you want to see any code in its
current context, look at the HTML version of each program as it appears on the
Web site that accompanies this book. I provide the complete code listing to the
Web page containing the example, including a description of where each code
snippet is in the Timeline. Of course, I also provide the original FLA file for you
to examine as well. (The file types are described in Chapter 2.)

The first step of game development is to build a plan for the game.

Your game plan should clearly state your goals in plain language.

The following example is my plan for the Pong game:

� I intend to build a clone of the classic arcade game Pong.

� My game will run on a Web page.

� The user can control the left-hand paddle by moving the mouse.

The player paddle follows the mouse paddle’s y value but remains con-
stant in x.

� The opponent paddle generally follows the ball but will have some sort
of lag built in, thus making it possible for the human player to win.

It should be possible to adjust the lag for different skill levels.

� The ball will bounce off the top and bottom walls; if the ball passes
either paddle, the other player scores 1 point.

� Whenever a point is scored, the ball is reset heading directly away
from the paddle of the player who just scored.

� Whichever player first accumulates 3 points wins the game.

143Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 143

� Whether the player wins or loses, he’s taken to an appropriate screen
and given an opportunity to restart the game.

� The ball bounces off the paddles in a way that gives the players some
control of the direction.

• If the ball hits a paddle near the center, the ball returns perpendic-
ular to the paddle.

• The farther from the center the ball hits, the more extreme its
return angle is.

� The visual style of the game should balance a retro and modern feel.

• The screen is black, with 1980s-style fonts for score and titles.

• The ball and paddles should stand out a little by using grayscale
gradients.

• No color is used in the game.

The most common game programming error is failing to write a detailed plan
like the one in this section. If you can just sit down and write code that works
without a plan, hey — I’m happy for you. However, when your code doesn’t
work, you probably needed either a plan or a better plan. Think of it this way:
You don’t pull out a map every time you drive to work, but you likely do use a
map any time you go someplace that you haven’t visited before. Game pro-
gramming is about visiting new, interesting places. If you write and follow
directions, you enjoy the trip a lot more.

Following the Mouse with
the Player Paddle

The first milestone is really important because it sets up the rest of the pro-
gram. I decided the first thing I wanted to tackle was the player behavior. In
the overall game plan, the player paddle should follow the mouse. This
requires a number of steps:

1. Start a new Flash document in the normal way.

Write a few comments in the Frame 1, Layer 1 code window, reminding
yourself what the program should do and when you started it.

2. Build a rectangle that will become the player paddle.

To produce the look I wanted, I play around with the linear gradient. My
paddle seems to be lit from the left and slightly up.

Whenever you use gradients to simulate 3-D lighting effects, make all
objects in the scene appear to be lit from the same source. Inconsistent
lighting distracts the player even if he can’t identify what is wrong.

144 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 144

3. Turn the paddle into a movie clip object.

Name your new object paddle and make it available for ActionScript
coding with the usual Convert to Symbol technique.

4. Name the instance of the paddle player.

Use the Instance Name text box in the Properties panel to name the spe-
cific paddle on the screen player.

Because you’ll have another paddle on the screen named opp (for oppo-
nent), you need to tell them apart.

5. Add an enterFrame event handler to the player.

You want the ball to follow the mouse every time the mouse moves.

145Chapter 7: Won’t Be Long ’Til You Write Pong

Making molehills out of a mountain
Writing a game plan like the one I presented in
the previous section can be more difficult than
it seems because

� Taking an idea as seemingly simple as Pong
and breaking it down into the smallest com-
ponent tasks is challenging.

� After you see all the small steps, it’s easy to
be intimidated by the size and complexity of
what first seemed to be a very simple project.
I often look at several steps, wondering how
in the world I’m going to implement them.

Don’t build your game randomly. You can build
very complex programs if you are systematic
about your process:

� Figure out a strategy for writing the parts
you plan.

� Tackle new things one at a time.

Here’s my order of attack for the Pong game:

1. Put a player paddle onscreen that can
follow the mouse.

2. Add the ball and give it the ability to bounce
off the walls.

3. Make the ball bounce off the player paddle
in a simple way and then make a more
advanced version of the ball-paddle collision.

4. Add a simple opponent paddle with proper
ball-rebounding behavior.

5. Improve the opponent’s behavior to be more
lifelike.

6. Add scorekeeping and game-winning
mechanisms.

7. Work in advanced features such as sound
effects, difficulty levels, and power-ups
(special bonuses that give the user tempo-
rary abilities when hit).

Although each of these steps is still potentially
challenging, I turn a mountain into a series of
small hills. There are other completely correct
paths to writing this game, but this is the strat-
egy I chose because I think each step builds
nicely on the preceding steps. I like having a lot
of little goals because I can celebrate when I
reach each one. For example, each time I reach
a program milestone, I like to go play with the
kids for a few minutes. (That is, unless I’m pro-
gramming at two in the morning. My wife frowns
at waking the kids just so I can play with them.)

13_589628 ch07.qxd 10/12/05 2:49 PM Page 145

To do this, you need code that checks the mouse position several times
per second. The enterFrame event is perfect for this, so add the follow-
ing code to Frame 1, Layer 1:

//from paddle.fla
player.onEnterFrame = function(){
//player paddle follows mouse’s y value

} // end enterFrame

This code sets up the event handler. The comment explains what you
intend to do.

Comments are ignored by Flash, but they’re one of the most important
parts of programming. You need to know exactly what you want to do.

6. Have the player paddle follow the mouse’s y.

The player paddle can use a variant of the custom cursor idea! The
paddle is different, though, because it always keeps the same x value
and simply matches y values with the mouse.

The code in the player’s enterFrame function looks like this:

//from paddle.fla
player.onEnterFrame = function(){
//player paddle follows mouse’s y value
player._y = _root._ymouse;

} // end enterFrame

7. Hide the mouse cursor.

The paddle follows the y value of the mouse if you did everything cor-
rectly so far, but the normal mouse cursor is distracting.

Build an init() function to hide the mouse in the customCursor pro-
gram in Chapter 6:

//from paddle.fla
init();
function init(){
//turn off the mouse pointer
Mouse.hide();

} // end init

You’ll add other code to the init function later as you have more objects
to initialize, so the init function is a good thing to have around.

8. Test and refine your code.

Try it out. Check whether it works. If something goes wrong, take a look
at the error message that pops up, which is at least somewhat helpful. If
that doesn’t work, look again at the code. Even little things like misplaced
commas and misspellings can cause big problems. When your code is
working, do a little happy dance.

146 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 146

Celebrate your small victories!

Figure 7-2 shows the program with the paddle following the mouse.

Adding the Bouncing Ball
The next milestone on the game plan list is to add a ball.

The first iteration of the ball should be able to interact with the walls. At first,
I just let it pass right through the paddle. These steps build a ball that moves
on its own and bounces off the walls:

1. Create a circle that will become the ball.

I use a radial gradient to give my ball a 3-D appearance. If you use gradi-
ents to simulate texture, the light should appear to come from a consis-
tent source.

2. Turn the ball into a movie clip by pressing F8.

I recommend using the same name (in this case, ball) for

• The movie clip

• The instance (using the text area on the Properties tab)

Figure 7-2:
You can’t

see it here,
but the
paddle

follows the
mouse’s y

value.

147Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 147

3. Give the ball some default properties.

The best place to do this is in the init() function. Modify init() so it
looks like this:

//from paddleball.fla
function init(){
//turn off the mouse pointer
Mouse.hide();

//initialize ball speed
ball.dx = 15;
ball.dy = 5;

} // end init

The new feature in this section comprises the ball.dx and ball.dy
properties. I give the ball dx and dy properties just like the ones in all
the earlier ball programs.

4. Add an enterFrame event handler to the ball with the following code:

//from paddleball.fla
ball.onEnterFrame = function(){
ball.move();
ball.checkBoundaries();
ball.checkPaddles();

} // end enterFrame

Through the miracle of encapsulation, I turn the event handler into a to-
do list for the program. Anything the ball needs to do each frame is dele-
gated from this event. Of course, this implies that the ball has those
three methods (move, checkBoundaries, and checkPaddles). It doesn’t
yet have those methods, but it won’t be long before it does.

5. Add a move() method to the ball.

I told you it wouldn’t be long! The move method moves the ball accord-
ing to its current values of dx and dy. It should look like this:

//from paddleball.fla
ball.move = function(){
ball._x += ball.dx;
ball._y += ball.dy;

} // end move

This move method is the same one I describe in Chapter 6.

Any object that you move around onscreen in your games probably has
a move() method very much like this.

6. Add a checkBoundaries() method to the ball.

This checkBoundaries is similar in structure to the ones used in the
various boundary demos from Chapter 6:

148 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 148

//from paddleball.fla
ball.checkBoundaries = function(){
//bounce off top and bottom walls
if (ball._y < 0){
ball.dy = -ball.dy;

} // end if

if (ball._y > Stage.height){
ball.dy = -ball.dy;

} // end if

//if past left of screen, opponent scores
//wrap for now
if (ball._x < 0){
trace(“Opponent Scores”);
ball._x = Stage.width;

} // end if

//if past right of stage, player scores,
//bounce for now
if (ball._x > Stage.width){
trace (“Player scores”);
ball.dx = -ball.dx;

} // end if
} // end checkboundaries

The ball simply bounces off the top and bottom walls. The left and right
walls are a little different because they eventually lead to scoring oppor-
tunities. For now, simply put trace statements to indicate that the
human or computer player would score in this situation. I had the ball
wrap if the opponent scores and bounce if the player scores, so in either
case, the ball returns to the human player. Later in the section, “Adding
a Scorekeeping Mechanism,” I set up more sophisticated behavior. Here,
the main goal is to get the ball back in play.

7. Add a checkPaddles() method to the ball.

The purpose of this method is to detect collisions between the paddle and
the ball. The movie clip comes with a very handy method for checking

149Chapter 7: Won’t Be Long ’Til You Write Pong

Recognizing programming patterns
Whenever you move any kind of object
onscreen, you’re likely to give it the same gen-
eral methods. Learn to recognize patterns so
that when your plan reads build a moving
object, you know that it needs dx and dy prop-
erties, a move()method, and some mechanism

for dealing with walls. The goal is to build a
series of patterns in your mind. When you think
bounce the ball off the wall, the pattern should
guide you to a standard wall-bouncing tech-
nique (by inverting dx or dy).

13_589628 ch07.qxd 10/12/05 2:49 PM Page 149

whether two movie clips have collided: hitTest(). Because the paddle is
inherited from the movie clip object, it inherits this useful behavior.

The following code checks whether the ball has hit the player paddle:

//from paddleball.fla
ball.checkPaddles = function(){
//check to see if ball touches paddle
if (ball.hitTest(player)){
//simply bounce off for now
ball.dx = -ball.dx;

} // end if
} // end checkPaddles

The hitTest() method can be used in a couple of ways. The form
shown in this code accepts one parameter, which is another movie clip.

• If the two movie clip objects touch or overlap, the hitTest()
method returns the value true.

• If the two movie clip objects don’t touch, the hitTest() method
returns the value false.

For now, if the ball hits the paddle, it simply bounces off the paddle as if
the paddle were a wall.

8. Test and save the program.

Make sure that everything is working correctly before you proceed to
improving the paddle-ball collision.

Building a Better Bounce
In my Pong, the key to winning the game is how exactly the ball and paddle
collide.

In most forms of Pong (and its cousin Breakout), the user controls the ball by
hitting it with different parts of the paddle:

� If the ball hits a paddle in the center of the paddle, it bounces perpendic-
ular to the paddle — that is, straight to the right in a perfect horizontal
trajectory.

In most implementations of Pong, the angle at which the ball hits the
paddle (the angle of incidence) doesn’t matter. The angle at which the
ball leaves the paddle (the angle of reflection) is determined entirely by
the relative position of the ball and the paddle at the moment of impact.

� As the impact point moves farther toward the ends of the paddle, the
angle at which the ball leaves the paddle becomes more extreme.

The diagram in Figure 7-3 shows my plan for paddle-ball collisions.

150 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 150

Risk has its rewards
More risk, more reward is an important principle in game design. Safe play
should lead to small rewards. Make the player take some risks to get the per-
fect shot or the bonus points. This makes the game more interesting and
rewarding for the player.

Here’s how the risk-rewards principle works in the Pong game:

� If a player hits the ball in the center of the paddle, he is very unlikely to
miss, but the ball sent to the opponent is

• Extremely predictable (low risk)

• Easily returned (bad)

� If the human player wants to get the ball past the computer opponent
(after there actually is an opponent), he must use the riskier high-
deflection shots at the edges of the paddle:

• If you aim just a corner of the paddle at the ball, you stand a great
chance of missing the ball altogether (high risk).

• If you hit that difficult shot, you can set up a very difficult shot for
the computer player to return (good).

Figure 7-3:
The farther

from the
center the

ball hits the
paddle, the
greater its
exit angle.

151Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 151

Load the paddleBounce program from this book’s companion Web site
(www.dummies.com/go/flashgameprogrammingfd1e) and play around with
it a little bit to see how the ball bounces off the paddle as described in the
preceding section. This program looks just like the last one when it isn’t
moving, so I won’t provide a screen shot. You need to play the game to see
the difference.

Refining the bounce
The only new element of paddleBounce comprises

� Some refinements in the checkPaddles() method

� A new function called getDy()

Listing 7-1 shows the new code in paddleBounce. The complete code is on
the companion Web site.

Listing 7-1: New Code for Paddle Bounce

//from paddleBounce.fla
ball.checkPaddles = function(){
//check to see if ball touches paddle
if (ball.hitTest(player)){
//simply bounce off for now
ball.dx = -ball.dx;
ball.dy = getDy(player);

} // end if
} // end checkPaddles

function getDy(paddle){
//determines dy based on where ball hits paddle.

152 Part III: Sprites, or Movie Clips

Many ways to bounce a ball
There are many other ways to handle the colli-
sion between a paddle and a ball. For example,
you could consider the ball’s incoming angle,
or you could calculate the relative motion of
the two objects. I chose the angle approach
because

� It’s simpler than the other techniques to
implement.

� It’s pretty typical of early Pong games
(because it’s easy to do).

� It still gives a pretty good level of control to
the player.

I usually start with the simplest approach I can
think of and then embellish that plan after it’s
working well.

13_589628 ch07.qxd 10/12/05 2:49 PM Page 152

//relY is relative Y of ball to paddle
relY = ball._y - paddle._y;
//trace relY

//relPerc is relY / height of paddle
//will range from -.5 to +.5
relPerc = relY / paddle._height;
//trace (relPerc);

//new DY ranges from -15 to +15
newDy = relPerc * 30;
//trace (newDy);
return newDy;

} // end getDy

The checkPaddles() routine is easy to understand:

� It inverts the ball’s dx property.

� It delegates the handling of dy to the getDy() function.

Getting a new dy value
The real secret to the paddleBounce program is the getDy() function. It
works, but it’s hard to see from the code how I got there. This is where pro-
gramming becomes an arcane art.

There are many ways to produce the type of behavior you’re looking for here.
I chose a mathematical approach. It’s actually very flexible and really not
hard to understand after you understand the trick.

Table 7-1 summarizes how the ball and paddle should interact.

Table 7-1 Determining Bouncing Behavior
paddle._y ball._y relY relPerc newDy

paddle._y – ball._y relY / paddle._height relPerc * 30

100 70 –25 –.5 –15

100 80 –20 –.4 –12

100 90 –10 –.2 –6

100 100 0 0 0

(continued)

153Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 153

Table 7-1 (continued)
paddle._y ball._y relY relPerc newDy

paddle._y – ball._y relY / paddle._height relPerc * 30

100 110 10 .2 6

100 120 20 .4 12

100 130 25 .5 15

The key to producing this chart is to think of the results you’re looking for:

� If the ball hits the paddle squarely in the middle, the new dy value
should be 0, meaning no change in y or a completely horizontal path.

� If the ball hits the top edge of the paddle, dy should be a large nega-
tive number. I set it to –15, which is a pretty steep angle.

This makes the ball move sharply upward on every frame.

� If the ball hits the bottom of the paddle, it should have a large positive
dy component of 15.

This makes the ball move downward a large amount in each frame.

What I had to do was figure out

� Where the ball is in relation to the paddle

� How to convert the ball-paddle relationship to the range of numbers I
need (in this case, +15 to –15)

To figure out the appropriate formula, use the following steps:

1. Identify the information you have.

The only tools I really have are the characteristics of the paddle and the
ball, but that’s quite a bit. The relevant details are ball._y, paddle._y,
and paddle._height.

2. Determine the resulting information you want.

I want a formula that gives me –15 when the ball is at the top of the
paddle, 0 when the ball is at the center of the paddle, and +15 when the
ball is at the bottom of the paddle.

3. Make some test cases to make your life easier.

I want to write formulas that work for any arbitrary paddle size and posi-
tion onscreen. However, I’m going to set up a set of test cases that sim-
plify the math. I’m presuming that the paddle is 50 pixels tall. The
paddle’s y position (which is at the center of the paddle) is 100.

154 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 154

I test for

• Extreme cases (where the paddle’s position is at the top and
bottom of the paddle)

• A predictable center point (where the ball and paddle have the
same y values)

• Some predictable points in between the center and the extremes

4. Begin to translate the information you start with to something more
useful.

In this collision algorithm, the actual position of the ball and the paddle
don’t matter. You need their position in relation to each other. If you sub-
tract ball._y from paddle._y, you should get a value between –25 and
25 if the paddle is 50 pixels tall. I call this value relY, for relative y.

5. Normalize the value to be more universal.

The –25 to +25 range isn’t bad as a beginning point, but I need the values
to be in a different range. The easiest way to get to an arbitrary range is
to start with something more universal. If you divide the –25 to +25 value
by the height of the paddle (which I’m presuming to be 50 for this exam-
ple), the result is a ratio between –.5 and +.5. I call this value relPerc,
for relative percentage.

6. Multiply the relative percentage to some constant to get exactly what
you want.

For the final dy value, I’m looking for values between –15 and +15. If I
multiply relPerc by 30, I get values in exactly the range I want.

The code for the getDy() function shows that it simply carries out the
operations I determined in my chart. Here’s one other interesting thing about
getDy(): It is built to accept a movie clip as a parameter. Right now, the only
paddle in the game is the player paddle, so that’s the one I sent to the program.
In the following section, I add an opponent. You’ll see there that I can apply the
same function to the other paddle without having to rewrite the code.

155Chapter 7: Won’t Be Long ’Til You Write Pong

There’s a fancy name for this . . .
If you’re handy with a spreadsheet (such as
Microsoft Excel), you can use it to work up this
type of chart that converts one range of numbers
to another range that you need. The process
described here is a variation of a mathematical

operation called linear regression analysis,
which is a technique for predicting values of
functions that can be defined as straight lines. If
you want more information, look up linear
regression in any statistics book.

13_589628 ch07.qxd 10/12/05 2:49 PM Page 155

Adding a Computer Opponent
One of the most appealing aspects of computer games is the ability to play
games when a human opponent is unavailable. Computer opponents are
sometimes called AI (for Artificial Intelligence). There is an art form behind
creating computer opponents. A good AI has the following characteristics:

� It’s easy to beat. Players want to win most of the time. If you give them
an opponent that never loses, they lose hope and stop playing the game.

� It isn’t too easy to beat. An opponent that’s a total pushover is no fun,
either. If it doesn’t put up much of a fight, the user loses interest.

� It can be adapted to various player abilities. As the player’s skill
improves, the AI should become better so that the game continues to be
challenging.

� It should suspend disbelief. Games are like stories. If a user is supposed
to face some sort of robot, it should act like a robot, with logical, pre-
dictable behavior. If the game is about outwitting a psychopath, the
opponent’s behavior should be much less predictable. If the game is
about beating the stock market, the market and the other traders should
reflect an actual stock market. The AI needs to support the story the
player is being wrapped inside.

Take a look at basicOpp, as shown in Figure 7-4. It’s the paddleBounce pro-
gram with a computer opponent thrown into the mix.

Figure 7-4:
Now there’s
an evil robot

paddle to
contend

with.

156 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 156

The AI for this robot paddle is quite good. In fact, it’s perfect, and that’s the
problem: It never misses. That won’t be very fun for the user. Later in this
chapter, I show you how to make the paddle a little more human.

To add the basic opponent, follow these steps:

1. Begin with the paddleBounce program.

2. Display the Library if it isn’t already open.

Press F11 to display the Library panel.

3. Drag a new paddle onto the screen.

The paddle is the movie clip in the Library. You can have more than one
copy of a movie clip on the Stage at once, and that’s exactly what you
want to do here. Drag the second movie clip near the right-hand side of
the Stage, where the opponent will live.

4. Name this new paddle opp, using the text box in the Properties panel.

This changes the name of the paddle instance.

You can have two instances of the same object with different names. In
the code, you give these two objects different behavior even though
they start from the same movie clip.

5. Add an enterFrame event handler to the opponent.

Type the following code into Frame, 1 Layer 1 in an appropriate place:

//from basicOpp.fla
opp.onEnterFrame = function(){
opp._y = ball._y;

} // end function

Because this function is an enterFrame event handler, it occurs repeat-
edly. During each cycle of the game, the opponent’s y property is set
equal to the ball’s y property. The opponent always has the same y
property as the ball, so the opponent can never miss.

If you try the basicOpponent game, you’ll face a perfect computer
opponent. No matter how devious your deflection, the opponent always
defends and returns.

6. Teach the ball to bounce off the opponent paddle.

This is quite easy because you laid the groundwork in the preceding
segment.

157Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 157

Change the code in the ball.checkPaddles method so it looks like this:

//from basicOpp.fla
ball.checkPaddles = function(){
//check to see if ball touches paddle
if (ball.hitTest(player)){
//simply bounce off for now
ball.dx = -ball.dx;
ball.dy = getDy(player);

} // end if

if (ball.hitTest(opp)){
ball.dx = -ball.dx;
ball.dy = getDy(opp);

} // end if
} // end checkPaddles

I added a section in the preceding code to check whether the ball hit the
opponent. This code is almost identical to the code checking for a player hit.
The only difference is that I send the opp paddle the getDy() function. If the
ball hits opp, the new value for ball.dy should be based on the relationship
between the ball and the opp paddle.

The extra work involved in setting up a generic function to handle ball-paddle
collisions really pays off because

� You don’t have to go through the headache of figuring out how to make
the ball collide with this new paddle.

� If you change how balls and paddles collide, you have to change the
code in only one place.

Building Artificial Stupidity
The basic opponent described in the preceding section is very good at play-
ing Pong. Too good, in fact. Human players get bored quickly playing against
an infallible opponent.

The key to artificial opponents isn’t to make the AI perfect but rather to make
it imitate human behavior in a believable way.

The opponent can’t be perfect. It needs weaknesses for the human player to
learn and exploit. (Check any monster movie for verification of this fact.) The
problem with the basicOpp AI is that it has perfect reflexes.

The following example gives the opponent a variable reflex.

158 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 158

In the earlier example, the opponent paddle doesn’t have a dy value (neither
does the player paddle). Instead, both paddles blindly follow the y value of
some other object. (The player paddle gets its y from the mouse, and the
opponent gets its y from the ball.)

My plan for creating a more loveable opponent works like this:

Each time through the loop

� Check whether the ball is above or below the opp paddle.

This can be done by comparing ball._y with paddle._y.

• If the ball is above the paddle, set the paddle’s dy to a negative
value.

• If the ball is below the paddle, set the paddle’s dy to a positive
value.

� The magnitude of paddle.dy is the paddle’s speed.

• Set a large value to paddle.dy for a very good opponent.

• Set a low value to paddle.dy for a slow, ineffective opponent.

The maximum expected dy for the ball is 15, so the ball can move a maxi-
mum of 15 pixels in the y axis each frame:

� If the paddle’s dy is set to +/–15, it should keep up with the paddle
almost all the time.

� If the paddle’s dy value is set to 5, the opponent can keep up with the
ball on relatively flat trajectories but is outclassed when the ball’s dy is
larger than 5. The opponent paddle will appear to be extremely slow,
and the human player can beat the computer easily by propelling the
ball at high trajectories.

The paddle’s speed can be set to give varying levels of AI and difficulty.

Play against the artStupid program. The game is more entertaining when
the opponent is challenging but not unbeatable. You can see what happens
when you change the opp.speed variable value.

To make a more fallible computer opponent, follow these steps:

1. Begin with the basicOpponent program.

2. Add a speed property to the opp object.

This is done in the init() function. Change that function so it looks like
Listing 7-2.

159Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 159

Listing 7-2: Artificial Stupidity

//from artStupid.fla
function init(){
//turn off the mouse pointer
Mouse.hide();

//initialize ball speed
ball.dx = 15;
ball.dy = 5;

//opp speed is opponent speed
//determines max dy for opponent.
//15 is nearly flawless
//0 is dead
opp.speed = 10;

} // end init

In the init function, I set opp.speed to 10, which is good but not hard
to beat. Change opp.speed to larger and smaller values for a demonstra-
tion of how the algorithm works.

opp.speed is always a positive value. I’ll add or subtract this value to
make the opponent move up or down.

3. Change the opponent paddle’s motion by updating the
paddle.onEnterFrame() method:

//from artStupid.fla
opp.onEnterFrame = function(){
//check to see if ball is above or below opp
if (ball._y < opp._y){
//move opp up
opp.dy = - opp.speed;

} else {
//move opp down
opp.dy = opp.speed;

} // end if

opp._y += opp.dy;

} // end function

The opponent’s code can be summarized like this:

• If the ball is above the opponent paddle, set opp.dy to negative
opp.speed.

This increases the paddle by opp.speed units each frame.

• If the ball is below (or equal to) the opponent paddle, set opp.dy to
opp.speed.

This moves down opp.speed units each frame.

160 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 160

Adding a Scorekeeping Mechanism
The Pong game needs a scorekeeping system to be a complete game.

The game needs to

� Keep score

� Determine whether the player wins or loses

Adding scorekeeping text fields
It won’t matter what the score is if you don’t report the score to the user. Use
dynamic text fields to display the player and opponent scores, as in Figure 7-5:

Figure 7-5:
The user

and player
scores are
displayed

with
dynamic

text fields.

161Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 161

To add scores, follow these steps:

1. Create a dynamic text field for player score.

Place this near the player paddle. Let the position of the field indicate its
meaning so you don’t have to write anything else onscreen. This exam-
ple game benefits from a spare, simplistic design, so I don’t want any
unnecessary labels onscreen.

2. Choose an appropriate font.

The characters should be relatively large and easy to read.

Fonts are a great way to jazz up your programs. I did a search for free
fonts and found a really cool font called Arcade by Jakob Fischer. Check
out his site (www.pizzadude.dk) for more wonderful fonts. If you want
to see the font in Flash, you’ll need to install it on your computer.

3. Specify the characters to embed.

If you use a custom font, Flash usually includes only the visible charac-
ters onscreen. The initial value of the score is 0.

To embed special characters in a text field:

a. Select the text area.

b. Click the Character button to embed characters.

c. Add the uppercase characters and the numerals, as in Figure 7-6.

4. Assign a variable to the text field.

The text field near the player paddle should be associated with the vari-
able playerScore. Associate the variable by typing playerScore in the
var text field of the Properties window.

Figure 7-6:
Embed
all the

characters
you need.

(Flash won’t
do it auto-
matically.)

162 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 162

5. Build the opponent score field.

You can copy and paste the player score field to create the opponent’s
score field. To make the new field attach to the opponent’s score

a. Move the opponent score toward the opponent paddle.

b. Set the associated variable to oppScore.

Add the scorekeeping code
Think through the mechanism for scoring:

� You need to know what condition indicates the player has scored.

� You also need to know what condition indicates the opponent has
scored.

The artStupid version of Pong already has placeholder code that traces a
report to the screen when any player scores.

Now it’s time to implement code to

� Increment the score when somebody has made a point

� Check whether the player has won or lost the game

To add scorekeeping code, follow these steps:

1. Initialize the scores in the init() function.

Add the following code to init():

//from pong.fla
//reset scores
playerScore = 0;
oppScore = 0;

This code resets both scores to 0. It ensures that whenever the game
begins, both the player and the opponent have a score of 0.

2. Update the score code in the ball.checkBoundaries() method.

The code should now read like Listing 7-3. The complete code is on the
companion Web site:

www.dummies.com/go/flashgameprogrammingfd1e

163Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 163

Listing 7-3: Pong

//from pong.fla
//if past left of screen, opponent scores
if (ball._x < 0){
//trace(“Opponent Scores”);
oppScore++;

//opponent serves
ball._x = opp._x - 50;
ball._y = opp_y;
ball.dy = 0;

} // end if

//if past right of stage, player scores,
if (ball._x > Stage.width){
//trace (“Player scores”);
playerScore++;

//player serves
ball._x = player._x + 50;
ball._y = player._y;
ball.dy =0;

} // end if

It’s easy to add basic scorekeeping functionality. Simply add a line to

• Increment oppScore when the ball gets past the player’s border.

• Increment playerScore when the ball passes the opponent’s edge.

The two score variables are attached to dynamic text fields, so the text
onscreen automatically changes to reflect the new score.

In both cases, set up a cleaner serving situation so the ball gets back in
play in a sensible way. The new “serving” mechanism moves the ball in
front of the paddle that just scored, heading toward the other paddle.

3. Test your program.

Play against the computer for a while and let it score. Make sure the
onscreen mechanism is incrementing correctly.

To make it easier to see what happens when you score, temporarily set
the ball.speed to a low value in the init() function. This way, you
can score more easily and see what happens.

Many game programmers leave little triggers in their games to allow them-
selves to quickly access a part of the game for testing without playing
through the entire game.

164 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 164

This is one origin of the cheat codes, or Easter eggs, that hard-core gamers
enjoy. The publishing houses caught onto the potential of this; secret bonus
features are now built into most games. These features are often “leaked”
after the game has been out for a while, presumably to renew interest in the
game and keep it selling.

Add starting, winning, and losing states
To call a game complete, the user must be able to win or lose. Otherwise, it
isn’t much fun. The easiest way to do this in Flash is to make different frames
on the Timeline represent different states.

The Adventure game in Chapter 3 shows how to build a game with multiple
states.

To add introduction, winning, and losing screens to your program

1. Modify the game so it begins with a splash screen, as shown in
Figure 7-7.

Read about splash screens in the upcoming section, “Making other states.”

2. When the user clicks the button, the program goes to the usual play
screen.

Figure 7-7:
Now when

the program
starts, the

user is
treated to
a startup

screen.

165Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 165

3. Winning or losing the game leads to other states.

• If the user wins, he is taken to the elaborate Win screen, as shown
in Figure 7-8.

• If the user loses, he sees another terse but relevant message, as
shown in Figure 7-9.

Figure 7-9:
The Lose
screen is

very much
like the Win

screen.

Figure 7-8:
If the user

wins, he
sees a (not
so) colorful

display.

166 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 166

These screens are very much alike in this program, but they don’t have to
be. The mechanism here lets you jump control to any other part of the program.
The new frame can be a static frame like I’ve made in this program, but it
could also be an elaborate animation, another game, or even another Flash file.

Making other states
Previously in this chapter, the Pong program existed in just one frame. It’s time
to do some surgery on the Timeline. To add other states, follow these steps:

1. Select Frame 10, Layer 1 in the Timeline.

2. Choose Insert➪Timeline➪Keyframe.

A new duplicate of Frame 1 appears in Frame 10.

3. Go to Frame 20, Layer 1 in the Timeline.

4. Choose Insert➪Timeline➪Blank Keyframe.

This creates a new keyframe without any movie clips in it. Frame 20 is
used for the winning state. It will have a much simpler interface than the
game, so I don’t want to copy the paddles and ball from the first frame.

5. Insert a static text field into Frame 20:

a. Set the font and font size to create the effect you want.

Titles should be large, but instructions can be smaller.

b. Set the text to read Win! or something else appropriate for the win-
ning situation.

6. Build a button in Frame 20.

The button can be made any way you want, as long as it

• Is a button object

• Reads something like Click to Play

To make a button, follow these steps:

a. Build an object with normal drawing tools.

b. Press F8 to convert the drawing object to a button.

c. Select the button on the Stage and name the button instance btnPlay.

If you have text in or on the button, make sure it’s static text so the
mouse cursor doesn’t change to an edit cursor when the mouse is
over the button.

7. Go to Frame 30, Layer 1 in the Timeline.

167Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 167

8. Choose Insert➪Timeline➪Keyframe.

This frame handles the losing condition.

This frame is almost identical to the winning frame, so inserting a
keyframe (as opposed to a blank keyframe) duplicates the last keyframe
created. This can be a very handy timesaver.

9. Go to Frame 40, Layer 1 in the Timeline.

10. Choose Insert➪Timeline➪Frame.

This last frame doesn’t need to be a keyframe. In fact, it doesn’t need to
be there at all. I put it in so that when you label the frames in the next
step, you can read all the frame labels in the Timeline.

11. Modify the text field in Frame 30 so it reads Lose! (or what-
ever losing message you want to use).

12. Label the keyframes according to the following table:

Frame Label

0 begin

10 play

20 win

30 lose

You name a frame in the same place you name buttons and movie clip
objects:

a. Select the frame in the Timeline.

b. Type the name on the Properties tab.

13. Build the begin frame.

You currently have two complete sets of paddles and ball: one in the
begin frame, and one in play. You don’t need them both, so follow
these steps to delete the sprites where they are not needed:

a. Select all the elements on the begin frame by dragging the mouse
around them and pressing Delete.

b. Go to the win frame and select all the elements there.

c. Copy the screen objects from the win frame.

d. Return to the begin frame and paste the elements you just copied.

e. Modify the text box in begin to be some sort of greeting.

This greeting screen is commonly called a splash screen. Many programs
have them, especially Flash programs. The main purpose of a splash
screen is to keep the user’s attention while your program loads media

168 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 168

elements in the background. The Pong game (and most games in this
book) are written so efficiently that there’s no noticeable lag in the
game-loading process. For this game, the splash screen is nice because
the player can get situated before the game begins.

Adding code to handle states
At this stage of development, your program should have four keyframes:

� The begin, win, and lose frames all have a text field and a button.

� The play frame contains the paddles and ball from the Pong game.

Examining the code window of each frame shows that the code is now out of
date. There is code only in Frame 1, Layer 1, and that code refers to objects
that aren’t in that frame (the paddles and ball). Fortunately, you can easily
move the code around and add the missing pieces.

Setting up the start and play frames
Follow these steps to get the start and play frames working correctly:

1. Copy the code from the start frame. Follow these steps:

a. Save your work.

If something goes wrong in the following steps, you need a backup.

b. Go to the start frame and open the cod- editing pane.

c. Select all the code in the Actions panel and copy it.

d. Move to the play frame and look at the editor again.

You shouldn’t have any code in the play frame yet. If there’s code,
make sure you’re really in the right place (the Actions panel of the
play frame).

e. Paste all the Pong code into this text editor.

2. Clear the code in the start frame.

Be extremely careful. Make sure you have code in the code window of
the play frame before deleting the code in the start frame.

3. Add some comments to the begin frame.

The begin frame needs some simple code to make it wait until the user
clicks the button and then advance to the play frame when the button is
clicked. Add the following code to the begin frame.

169Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 169

//Pong
//By Andy Harris
//For Flash Game Programming for Dummies
//March ‘05
//Most code in “play” frame

In the first frame of the program, I added a few comments about the
entire program. It’s customary to put similar comments in the most
easily accessible code area of your program. In this case, I add it to the
code in the begin frame. Of course, change the comments to reflect
your own name — it’s your program now!

4. Add a stop command to the begin frame.

stop();

In the play frame, the first executable line is stop();. This command
stops Flash from moving beyond the first frame. It wasn’t necessary
when the Pong game contained only one frame, but now if you don’t
stop the program, the begin frame shows up for a little less than a
second and then moves directly to the game, which also shows for a
second, followed by the lose and win frames. Flash defaults to anima-
tion mode. Use the stop() function to turn off this default behavior.
Your code will control the user’s movement along the Timeline.

5. Add button code to the begin frame.

Of course, the purpose for the button is to let the user begin the game
when he is ready to do so. Make sure that your button’s instance name is
btnPlay and add the following code to the begin frame’s code window:

//from pong.fla
btnPlay.onRelease = function(){
_root.gotoAndStop(“play”);

} // end button

The preceding code tells Flash to move to the play frame when the user
clicks the button. Because it uses the gotoAndStop directive, the other
frames don’t need the stop() command. Flash simply goes to the frame
directed and loops it until some code makes it move to another frame.

6. Duplicate the button code.

The win and lose frames have buttons identical to the one in the begin
frame. These other buttons also have the same behavior. Any time the
user clicks any of these buttons, he should be sent to the play frame.

170 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 170

The code for these frames (which is identical in win and lose) shows
one more interesting feature:

//from pong.fla
Mouse.show();

btnPlay.onRelease = function(){
_root.gotoAndStop(“play”);

} // end button

In the preceding code, the Mouse.show() method reveals the mouse.
The Mouse.hide command you put in init() hides the mouse at the
beginning of the play frame. Now that a button is onscreen, it’s only fair to
give the mouse back to the user so he can actually click the play button.

Modify the scorekeeping code
Follow these steps to move focus to the winning and losing states:

1. Modify the opponent score code.

After your program has a way to handle winning and losing conditions,
you need to change your code so that these conditions are tested. Begin
by modifying the segment of ball.checkBoundaries() that checks
whether the opponent has scored. Modify that code so it looks like this:

//from pong.fla
//if past left of screen, opponent scores
if (ball._x < 0){
trace(“Opponent Scores”);
oppScore++;
//check for opponent win
if (oppScore >= 3){
gotoAndStop(“lose”);

} // endif
//opponent serves
ball._x = opp._x - 50;
ball._y = opp_y;
ball.dy = 0;

} // end if

Immediately after incrementing the opponent score, test whether the
opponent score is greater than the maximum score. In this case, I’m still
testing the program, so I want to play very short games. I set the maxi-
mum score to 3. Of course, you’ll probably want longer games when you
release the final version of the code.

171Chapter 7: Won’t Be Long ’Til You Write Pong

13_589628 ch07.qxd 10/12/05 2:49 PM Page 171

If the opponent score is now larger than or equal to 3, program control
gets diverted to the lose frame. The rest of the code simulates the
opponent serving. The ball is placed near the opponent paddle and is
served horizontally.

2. Modify the player score code.

Make a very similar set of modifications to the code that checks for
player scores:

//from pong.fla
//if past right of stage, player scores,
if (ball._x > Stage.width){
trace (“Player scores”);
playerScore++;
if (playerScore >= 3){
gotoAndStop(“win”);

} // end if
//player serves
ball._x = player._x + 50;
ball._y = player._y;
ball.dy =0;

} // end if

The preceding code is much like the opponent code, except this time,
the code checks whether playerScore is past the maximum score. If
the player has scored enough points

• Program control goes to the win frame.

• The player wins the game.

3. Test your program to ensure it’s working correctly.

If you can port yourself back to 1972, you can use your new programming
abilities to write Pong yourself and make a lot of money. Say hi to Nolan
Bushnell for me!

172 Part III: Sprites, or Movie Clips

13_589628 ch07.qxd 10/12/05 2:49 PM Page 172

Part IV
Getting Control of

the Situation

14_589628 pt04.qxd 10/12/05 2:50 PM Page 173

In this part . . .

I show you how to let the user control sprites to make
more interesting games. This part leads to a complete

arcade game with sound, keyboard input, user-controlled
sprites, computer-controlled monsters, collisions, and
scorekeeping.

Chapter 8 shows how to work with audio files to add cool
sound effects to your games. You also discover how to use
the keyboard to get precise control of your characters.

Chapter 9 looks at how Flash movie clip objects relate to
sprites and also how to make interesting animated sprites.
With this knowledge, your characters can look however
you want, and they can walk, mosey, or saunter around
the screen under user or computer control.

Chapter 10 outlines the design process of another com-
plete game. The Monster Traffic game sports all the fea-
tures you’d expect in an ’80s-style arcade game. Plus, it
has really loud and annoying sound effects!

14_589628 pt04.qxd 10/12/05 2:50 PM Page 174

Chapter 8

Keyboard Input and Audio Output
In This Chapter
� An overview of the Monster Traffic game

� Responding to arrow key input

� Importing audio files

� Playing sounds on demand

G ames (like all programs) require input and output. In this chapter, I
introduce an input technique and an output technique that are both

vital to games. Flash games often rely on the keyboard (including arrow keys)
for input. Here you can discover techniques to read the keyboard and respond
to various kinds of keyboard input. Sound is also critical to games. You will
often use sound effects to communicate important ideas to the player as well
as add atmosphere to the game experience.

Introducing the Monster Traffic Game
In the next few chapters, I show you how to build a complete 2-D arcade
game. I show you how to do this by building a fun game called Monster
Traffic. The introduction screen to this game is shown in Figure 8-1.

A screen shot can’t do this game justice. You need to play the game to see
what it does. Although it isn’t brilliant, the game has a lot of features you
won’t see by looking at this book. For example, the monster is animated,
moving its head from side to side while chasing the car. The car also spits out
little puffs of smoke and wobbles a little bit as it drives. The instruction
screen shown in Figure 8-2 lays out the premise of the game and the game
controls.

15_589628 ch08.qxd 10/12/05 2:51 PM Page 175

The user plays the part of a monster, who is stuck in some sort of parking lot.
(Maybe he’s at a monster sale at the mall.) The monster can warn away cars
(and earn points) by blasting the cars with his fireballs. If a car hits the mon-
ster, his health decreases. The actual game is shown in Figure 8-3.

Figure 8-2:
Even very

simple
games
benefit
greatly

from an
instruction

screen.

Figure 8-1:
The little

monster and
car chase

each other
before the

game starts.

176 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 176

The monster and the cars all wrap around the screen (leave one side of the
screen and return on the other). The fireball disappears after it leaves the
screen. Eventually, the monster is (sigh) defeated. When the game is over,
the score is shown in a screen like Figure 8-4.

Figure 8-4:
The cars

eventually
win, but
it was a

good run.

Figure 8-3:
The player
(monster)
tries to fry

cars without
getting
dinged.

177Chapter 8: Keyboard Input and Audio Output

15_589628 ch08.qxd 10/12/05 2:51 PM Page 177

Monster Traffic has a few features you might not have seen before. You con-
trol the monster by pressing the arrow keys, and pressing the spacebar
makes the monster shoot a fireball. All the sprites, which are animated, can
move in the eight primary directions.

The game also features sound effects. The fireball erupts from the monster
with a whooshing sound; you hear crashes when cars bonk into the monster;
and (my personal favorite) when you hit the cars with a fireball, a car alarm
goes off.

The game is used to highlight a number of new technical features, including
more sprite character animation, moving in a particular direction, detecting
key strokes, and working with audio.

In this chapter, I describe how to respond to keyboard input as well as how to
attach audio files to a Flash program and play them on demand.

Responding to the Keyboard
The keyboard is a very popular input device, especially the arrow keys. The
keyboardDemo program shown in Figure 8-5 shows two ways to get informa-
tion from the keyboard.

Figure 8-5:
When the

user
presses a

key, the
name of
that key

appears.

178 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 178

Trolling for key presses
The most useful technique to get keystroke information in game program-
ming is hardware polling. In this system, a binary value indicates whether a
particular key is pressed.

Games use hardware polling because games often need immediate responses.

Examining keyboard input
My demo program shows the keyboard polling technique in the most simple
form that I could think of.

My code features two dynamic text areas, linked to variables called output
and lastPressed.

The code in Listing 8-1 is in Frame 1, Layer 1.

Listing 8-1: Keyboard Demo

//keyboardDemo

_root.onEnterFrame = function(){

output = “”;
if(Key.isDown(Key.LEFT)){
output = “left”;

} // end if

if(Key.isDown(Key.RIGHT)){
output = “right”;

} // end if

if(Key.isDown(Key.UP)){

179Chapter 8: Keyboard Input and Audio Output

Other ways to read the keys
Other techniques are more frequently used in
nongaming applications, in which the timing of
each keystroke is less important than the
sequence of strokes. For example, you could

have keyboard input that simply tells you what
key was pressed last or keeps track of all the
recent keystrokes in a special memory area
called a buffer.

15_589628 ch08.qxd 10/12/05 2:51 PM Page 179

output = “up”;
} // end if

if(Key.isDown(Key.DOWN)){
output = “down”;

} // end if

if(Key.isDown(Key.SPACE)){
output = “space”;

} // end if

if(Key.isDown(65)){
output = “A”;

} // end if

lastPressed = String.fromCharCode(Key.getAscii());
} // end function

Working with the Key object
The code relies on a special object built into Flash called the Key object. This
object contains information and methods pertaining to the keyboard. Look
up the Key object in the ActionScript dictionary for some ideas about what
this object can do.

Computers assign specific numeric codes to each key on the keyboard. If you
need the code for any particular key, you can look it up in the Flash online
help. You can easily access Help by pressing F1 anywhere in the editor. Look
for the ActionScript Language Reference section. (That’s how I found the code
for the A key, which is 65.) Many of the special keys, including the arrows,
spacebar, Shift, and Ctrl keys, have special named values called constants.
You can also look these up in the online Help if you need them. Most arcade
games simply use the keys that I use in this program: the arrows and the
spacebar. Their special names are pretty easy to guess: Key.DOWN, Key.UP,
Key.SPACE, and so on.

180 Part IV: Getting Control of the Situation

Make a test program for new ideas
Before you add keyboard testing procedures to
existing programs, be smart and build a test pro-
gram like mine first to make sure you know
what’s going on.

When you first test a new idea like keyboard han-
dling, test your concept in isolated code because

� If you mess things up, you don’t want to
break code that was working.

� Existing code can have complexities that
get in the way of seeing a new idea.

15_589628 ch08.qxd 10/12/05 2:51 PM Page 180

In particular, I’m interested in the Key.isDown() method, which

1. Accepts the code for a particular key on the keyboard

2. Returns a binary (true or false) value based on the status of that key

For example, the following code fragment determines whether the spacebar
is being pressed:

if(Key.isDown(Key.SPACE)){
output = “space”;

} // end if

The preceding code fragment performs these tasks:

1. Checks whether the spacebar is down.

The Key.isDown call either

• Returns true if the spacebar is pressed

• Returns false if the spacebar isn’t pressed

2. If the spacebar is pressed, the output variable is assigned the value
space.

Because output is tied to a dynamic text area, the screen displays
space, indicating that the spacebar is pressed.

3. Lather, rinse, and repeat.

Because this code happens inside an enterFrame() event, it happens
many times per second.

181Chapter 8: Keyboard Input and Audio Output

Why trap for ordinary keys?
It makes sense that game programs frequently
make use of special keys like the arrow keys,
spacebar, and function keys, but you should
also know how to trap for other keys as well.

Games that use the keyboard and the mouse at
the same time don’t usually use the arrow keys
because the arrows are placed at the right-hand
side of the keyboard. If you use your left hand to

control the arrow keys and your right hand to
control the mouse (as right-handed players tend
to do), your body is forced in an uncomfortable
position to the right of the screen. Many action
games use the W, A, S, and D keys as alternative
arrows because they can be comfortably con-
trolled with the left hand.

15_589628 ch08.qxd 10/12/05 2:51 PM Page 181

The good news about the keyboard polling technique is that it lets you deter-
mine exactly when a key was pressed and released. For games, this is a criti-
cal feature. However, this approach can be tedious because you have to write
an if statement for each key press you want to trap for. Sometimes all you
need to know is what key was pressed most recently. The following line
shows how to get this information:

lastPressed = String.fromCharCode(Key.getAscii());

The Key.getAscii() method returns a numeric code for the last key
pressed.

A common format for text files in computers and on the Internet, ASCII
(American Standard Code for Information Interchange) uses alphabetic,
numeric, or special character represented with a 7-bit binary number
(a string of seven 0s or 1s); there are 128 possible characters. Modern
computers have often switched to another form called UTF (for Unicode
Transformation Format), but the most common form (UTF-8) is nearly
identical to the ASCII standard I describe here.

The ASCII code returned by Key.getAscii() and the key code used in the
Key.isDown() method are related numeric codes, but they aren’t the same,
especially on international keyboards:

� The key code usually refers to the physical location of a key on the key-
board.

� The ASCII value refers to the character encoding that appears onscreen in
most applications when that key is pressed.

The ASCII code returned by Key.getAscii() isn’t very useful on its own
(unless you happen to speak ASCII), but fortunately, ActionScript has a built-
in function for converting from ASCII to a more readable format. The String.
fromCharCode() method takes an ASCII value and converts it into a text
character.

These two techniques are used in different circumstances:

� Use Key.isDown() when

• You know which keys should be pressed.

• You want a different specific action for each key.

In most gaming environments, you use the Key.isDown() technique.

� Use Key.getAscii() when

• The user can press any key on the keyboard.

• You just want to know which key was pressed most recently.

182 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 182

Adding a keyboard handler
To add keyboard input handling to your programs, make a plan:

1. Consider which keys will do what.

Make sure you decide what should happen when the user presses a cer-
tain key.

If you aren’t using one of the keys with a constant, look up the key codes
you need in the online Help and jot them down before you start writing
code.

2. Decide which keyboard approach you will use:

• If you need to check for any key on the keyboard, the
Key.getAscii() function usually is best.

• In most other gaming applications, the Key.isDown() technique is
preferable.

3. Determine which event handler will hold the code.

In the techniques I’ve shown you, keyboard handling isn’t its own event
but is instead checked inside some other event handler. Because key-
board events can happen pretty frequently, they often go inside an
onEnterFrame() method:

• If the input refers to a particular object, you probably want to asso-
ciate the keyboard inputs to that object’s enterFrame event, so it’s
easier to find the code later. In general, place all code associated
with an object in one of that object’s methods.

• If it doesn’t really matter (as in this example), you can put it in the
onEnterFrame() method of the main movie clip (_root).

4. Write a Key.isDown() condition for each key.

Use a simple if structure to test for any of the keystrokes you expect.

The keyboard demo program ignores any keys you don’t explicitly
test for.

Adding Sounds
Sound effects have always been a critical part of arcade games. The early
machines were incapable of anything but the most rudimentary sound
effects. Flash’s background as an animation tool gives you really wonderful
audio capabilities. You can prepare your game with several preloaded sound

183Chapter 8: Keyboard Input and Audio Output

15_589628 ch08.qxd 10/12/05 2:51 PM Page 183

effects that play on whatever cue you want. You can use many different types
of existing sounds or create and mix your own. Audio can support a game
tremendously by setting the stage, adding humor, building tension, indicating
when key events occur, and providing help to the user.

Figure 8-6 shows a very simple program that demonstrates Flash sound
effects at their simplest.

If you’re testing the programs for this book in a library or other public com-
puting facility, you should really wear headphones unless you enjoy irritating
everyone around you. (Of course, it would be fun to write a program that
causes all kinds of screeching and crashing when the next person sits at the
computer — not that I’m suggesting you do this. I’ve never written anything
like that in a public library. Honest.)

The program uses a button and the code in the following sections.

How Flash sound works
Flash animation and programming handle audio differently:

� Animation: In animation, you incorporate a sound by importing it into
the program and dragging it to the Stage. Sounds frequently take up
many frames because sounds are inherently time dependent (that is, they
happen over some specified range of time). In animation, this is fine —

Figure 8-6:
If the user
clicks the
button, he

hears a
loud,

horrible
crash.

184 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 184

and even desired — because you frequently want to synchronize various
animations to specific parts of the sound. In fact, many animations begin
with sound and add the other elements to match the sound.

� Game programming: In game programming, you want your sound
effects to be queued in the background, ready to be triggered. In a game,
everything is triggered by game events (not completely scripted accord-
ing to a timeline). Game sounds must follow the same convention.

Flash has a construct called a Sound object. This is an object in the same gen-
eral vein as the Stage object and the Mouse object. It is a construct that lets
you treat some entity as a variable with properties and methods. However,
unlike Stage and Mouse, you actually create the Sound object. And you can
have many of them, one for each sound effect you want to use in your project.

Getting sound effects
Getting sound effects for your games is really easy. Flash accepts the very
common WAV and MP3 audio formats. Thousands of audio files in these
formats are available from sound effects CDs, Web sites, and commercial
services.

Of course, just because it’s technically easy to obtain sound effects, don’t over-
look important legal and ethical concerns. As with any kind of intellectual prop-
erty, you shouldn’t use sound effects that someone else has created without
getting his/her permission.

Here are several ways to approach intellectual property problems.

Get the author’s permission
If you can identify the original author of a work, you can always write to him
and seek permission to use his work.

I’ve found that people are generous if you’re willing to give them credit, espe-
cially if your project is free or educational.

Use a commercial medium
You can find numerous sound effects collections in both

� Digital formats (formats intended for computer use)

� Traditional audio formats (audio CDs, LPs, and tapes)

Check your local public library for sound effects collections.

185Chapter 8: Keyboard Input and Audio Output

15_589628 ch08.qxd 10/12/05 2:51 PM Page 185

Extensive sound effects collections can be expensive, but here are some less-
expensive alternatives:

� I’ve found very cost-efficient sound effects collections with thousands of
sound effects. And although the quality of the sounds on cheaper collec-
tions can be uneven, you can often either find what you’re looking for or
something close.

Of course, you get what you pay for. The sound effects in the commer-
cial collections are often of much better quality and usually cover much
more specific kinds of sounds.

� Look for royalty-free audio effects, so you don’t have to deal with licens-
ing issues.

Create your own sound effects
You can make passable sound effects without a huge amount of talent, equip-
ment, or software. I’ve recorded plenty of good audio with ordinary desktop
microphones and freeware audio software. Audacity is a very powerful open
source audio editor. This program lets you do many of the things the profes-
sionals do, including noise reduction, effects filtering, combining and revers-
ing samples, and lots more. Check this book’s companion Web site for a link:

Check this book’s companion Web site for a link to Audacity:

www.dummies.com/go/flashgameprogrammingfd1e

Creating your own sound effects has two major advantages:

� You won’t get into copyright trouble because you’re creating an original
sound. (If your sound incorporates samples from somebody else’s pro-
tected work, copyright protection laws might still apply.)

� You can make the sound exactly what you want.

Considering audio compression
Who doesn’t hate games that seem to take hours to download? When this
happens, the author has typically included large audio files that really slow
the start of the game because they must be downloaded to the client before
the game can start.

Sound files use lots of memory, so audio compression is a necessity.
The sidebar “I want my MP3” briefly describes the popular MP3
compression scheme.

186 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 186

When you incorporate a sound file into Flash, it nearly always does some of
this compression for you. The sidebar “Controlling your own sounds” shows
how to turn off the compression and use your own.

You need to know that Flash’s automatic audio compression is happening
because the automatic compression sometimes creates problems. I find Flash
to be overzealous in its audio compression. It frequently makes the audio
files very difficult to hear. If I’m careful, I can achieve a better sound at the
same file size by doing my own compression and telling Flash to simply use
the file as I provide it.

Start with high-quality audio when possible. You’ll almost always lose some
audio quality in the compression process, but you can usually control the
process so that

� The loss in quality isn’t noticeable.

� The resulting game is small enough to download quickly.

Importing a sound into Flash
To use a sound in a Flash application, you must import it. Follow these steps:

1. Identify the sound.

Find the sound file you want to use:

a. Get a local copy of the sound.

187Chapter 8: Keyboard Input and Audio Output

I want my MP3
One second of uncompressed CD-quality audio
(44 kHz, 32-bit sample rate) is about the same
file size as 78 pages of text. (That’s why you
almost never see uncompressed high-quality
audio on the Internet. It simply takes too much
time to download.)

The easiest path to a small audio file is a shorter
recording time. Even short uncompressed
recordings are usually too large to distribute on
the Internet, so compression is a virtual neces-
sity. A couple of techniques are used to make
an audio file smaller:

� Any digital audio tool can save a sound in
ways that trade audio quality for file size.
Whenever you edit or create a digital audio
file, you can lower the sampling rate (number
of samples per second) or lower the bit depth
(precision of each sample) to get a smaller
file. The tradeoff, however, is a less-clear
sound.

� The MP3 file format throws away data that
the human ear is less capable of perceiving.

15_589628 ch08.qxd 10/12/05 2:51 PM Page 187

Make sure the sound file is on your own machine, not online or on
some other medium.

b. Put the sound file in a directory with the other resources you’re using
for the current project.

If you want to edit your audio file, do it before you import it into Flash.
After Flash gets hold of the file, you have less control of it.

2. Import the sound via File➪Import➪Import to Library.

Import to the Library, not the Stage. (Stage-based audio is much harder
to control programmatically.)

3. Select the file you want to import from the Import to Library
dialog box.

You can choose more than one audio file at a time by using the Ctrl key
while selecting filenames.

4. Open the Library, if it isn’t already visible (press F11).

The only way to see whether your file is loaded is through the Library
panel:

• You see a WAV or MP3 form of the file when you select it.

• You can preview the file with the small Play icon in the Library.

When you listen to a file in the Library, you don’t hear how the user will
hear it. Most files are compressed in the preview process and lose some
quality when you create the final SWF file. The sidebar, “Controlling your
own sounds” shows you how to preview and control the final sound.

5. Set the linkage properties for the sound. Follow these steps:

a. Right-click the sound in the Library.

b. Choose Linkage from the contextual menu that appears.

A dialog box like Figure 8-7 appears.

Figure 8-7:
If you

don’t set
the linkage

correctly,
you can’t
hear your

sound
effects.

188 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 188

c. Select the Export for ActionScript check box.

This automatically enables the Export in First Frame check box.

Flash automatically adds anything it sees on the Stage to the final SWF
file. However, if a sound file (or any other element) is in the Library but
not on the Stage, Flash doesn’t incorporate that element into the final
SWF file. The linkage directive informs Flash that the audio file will be
used even though it isn’t currently on the Stage and also that it should
be included with the file.

If your sound effects don’t work, make sure you’ve set the linkage
properties.

6. Tune up the audio compression.

Flash almost always compresses audio files. An automatic algorithm
tries to find the best compromise between audio quality and download
time.

I’m rarely happy with the results of Flash’s automatic compression. To
specify your own compression properties, see the sidebar, “Controlling
your own sounds.”

7. Create a Sound object in your code.

When you have a sound in the Library, you need to attach it explicitly to
a software Sound object. Create a Sound object with code like this:

sndCrash = new Sound();

You repeat this code for every sound you import into the Library. Give
each sound a name that you can remember.

8. Attach the Library sound to the Sound object.

The following line makes the connection between the Sound object and
the file in the Library:

sndCrash.attachSound(“crash.wav”);

The text inside the parentheses is the name of the audio element in the
Library (not the filename of a particular file). As you add a file to the
Library, the sound effect’s default name is the filename. This technique
doesn’t connect to the file system but refers only to sound already
loaded into the Flash environment. This lets you package all the sounds
in the SWF file without having to send separate files for all the sound
effects.

9. Play the sound, using the Sound.start() method.

For example, the following code plays the crash sound:

sndCrash.start();

If you want to play the sound in response to a button click, for example,
place the start() call in the button’s onRelease() event.

189Chapter 8: Keyboard Input and Audio Output

15_589628 ch08.qxd 10/12/05 2:51 PM Page 189

Incorporating sound into your programs
Typically, you break your sound coding into three steps:

1. Gather and configure the sounds in the Flash editor.

2. Write initialization code to set up the Sound objects.

3. Play the sounds in response to events in the game.

190 Part IV: Getting Control of the Situation

Controlling your own sounds
Monkeying around with Flash’s audio compres-
sion is pretty easy:

1. Right-click the sound file in the Library.

2. Choose Properties from the contextual menu.

You see a dialog box like the following figure.

� If you leave the compression setting to
Default, Flash decides how to compress the
sound. When you run the program, you usu-
ally lose too much quality.

� If you switch the compression type to MP3,
you can play with the compression rates

yourself and often produce both decent
sound and effective compression.

After you change the compression options,
you can click the Test button to hear how
your audio effect sounds.

Tests take longer to compile when you
choose better compression. (Every time you
test a program, Flash rebuilds the sound file
at the quality you request.) To keep compile
times reasonable, use a weaker algorithm
while testing your programs.

� Switch to a better (but slower) algorithm for
your final build.

15_589628 ch08.qxd 10/12/05 2:51 PM Page 190

Listing 8-2 shows how the soundDemo ties all these ideas together.

Listing 8-2: Sound Demo

//soundDemo
//illustrates how to add code-driven sound to
//games
//Andy Harris, 4/05

//assumes a file called “crash.wav” has been loaded into
library

//with link settings changed to “export for actionscript”

init();

function init(){
//create a sound object
sndCrash = new Sound();
sndCrash.attachSound(“crash.wav”);

} // end init

btnCrash.onRelease = function(){
sndCrash.start();

} // end

If you have many sounds, initialize them all in the init() method. (I often
immediately play a sound to ensure it’s working before I move the sound’s
start code to another place.)

Getting the most from your sounds
Sound is important, but it can be tricky to work with. Any resource that
makes your game larger needs to have an adequate payoff. Here are the most
important things to remember when working with sound files in Flash:

� Don’t use long songs. Background music can dramatically lengthen your
game’s download time, and it gets annoying quickly. Many people turn
off background music, so don’t use it unless it’s really important to your
game.

If you need music, look for short loops of music that can be repeated.
Audio in Flash games is better used with either special effects or instruc-
tion and splash screens.

� Import MP3 files. If you’re pretty handy with audio, you might want to
do your own MP3 conversions. If you load an MP3 file directly into Flash,
the Use Imported MP3 Quality check box of the Properties dialog box is
activated. This setting means

• You do all your tweaking in your audio tool.

• Flash plays your file at the settings you mandate.

191Chapter 8: Keyboard Input and Audio Output

15_589628 ch08.qxd 10/12/05 2:51 PM Page 191

If you don’t enable the Use Imported MP3 Quality check box, Flash tries
to optimize your already optimized MP3 file (and often makes a mess of
things).

� Flash doesn’t love all rates and settings. If Flash doesn’t accept an MP3
file or plays a file too quickly or too slowly, Flash probably doesn’t inter-
pret the settings correctly. I recommend these settings as a starting
place:

• 24 kHz works pretty well for music.

• You can probably get away with 11 kHz or less for spoken words.

If your audio file does not sound right, re-encode the file at a speed that
Flash is more comfortable with.

� Test audio with headphones or high-quality speakers. Concentrating
on audio quality and stereo effects is much easier if you can hear sounds
clearly — and hear little else.

Headphones might make your roommates happier.

� Go mono. Unless the user is wearing headphones, mono is probably just
as good as stereo and cuts the loading time in half.

You can create stereo effects from mono sound with the
Sound.setPan() method (available via online help). You can make the
sound louder in the left speaker if the object is nearer the left, and so on.

� Dynamically adjust the volume. You can adjust the volume of a sound
effect through code. Look up the Sound.setVolume() method to see
how you can dynamically modify sound to make objects sound closer or
farther away.

� Remove sounds during testing. Those sounds that add so much to a
game while you’re playing it can drive you nutty when you’re testing a
game. They can lead to divorce if your spouse is in the room the five-
millionth time you’ve played that agonizing death scream as you try to
fix some bug. Sound effects also slow your testing because Flash has
to compress the audio file each time you test the program. Save your
sound effects work for late in the project or at least get them working
and temporarily comment them out while you work on other parts of
your project.

� Make it quiet. You can use the Sound.stop() method to make a sound
stop. This is an easy way to turn off background music.

� Combine sounds. You can play several audio clips at once. This might
be an interesting way to combine sounds for some good effects. Some
developers have even built basic music generators using nothing more
than the skills described in this chapter and a few buttons.

192 Part IV: Getting Control of the Situation

15_589628 ch08.qxd 10/12/05 2:51 PM Page 192

Chapter 9

It’s Alive! Animating Your Sprites
In This Chapter
� Drawing in Flash

� Building animated sprites

� Moving in a particular direction

� Controlling sprite motion

G ames aren’t much fun without some kind of motion. The two main kinds
of sprite animation are

� Changing how a sprite appears onscreen

� Changing its position

I show you both forms of animation in this chapter.

Creating Animated Sprites
Flash includes some very powerful tools for creating animations inside your
games. You can add visual appeal to your games in many ways. For example,
some objects should rotate to point whichever direction they travel, which
requires both visual and programming elements. You also might want to add
animation effects to your sprites so they appear to walk, sway, jump, or what-
ever else they do (sashay? mosey? amble?). You use a variation of Flash’s
built-in animations for these effects.

Building a shape
Although you can use other drawing tools to create your images, the drawing
features in Flash are well worth learning because

� They’re an easy, powerful way to build any kind of image you want.

� These images are already optimized to work within Flash, so they’re
more efficient (smaller files and animate with less work).

16_589628 ch09.qxd 10/12/05 2:53 PM Page 193

With a little practice, you can build any shape you want with Flash. For exam-
ple, here’s how I built the basic teardrop body shape of the monster.

To build the next few screen shots, I created a simple Flash animation. (If you
want to look directly at that animation to see the process of building this
shape, look at buildShape.swf on this book’s companion Web site: www.
dummies.com/go/flashgameprogrammingfd1e).

1. Begin with a blank movie clip.

Although you can draw simple shapes on the Stage and then convert
them to movie clips later, more complex movie clips are much easier
to build if you choose Insert➪New Symbol from the Flash main menu.

2. Zoom in tight.

194 Part IV: Getting Control of the Situation

Walk like a monster, wobble like a car
When you play the Monster Traffic game, some
small animations add a lot to the game:

� The monster’s head and tail sway from side
to side while he walks.

� The cars wobble and spew out exhaust
fumes.

These elements aren’t critical to a game, but
they’re a wonderful way to add detail. In this case,
I use animation to emphasize the cartoon-like
flavor of the game. Although I’m certainly no artist,

the drawing and animation tools available to a
Flash programmer make creating fun graphics
easy. This figure shows several frames of the
monster up close so you can see his many moods.

The central body remains constant, but the
head and tail sway while the feet move. When
all these frames are shown within one second,
they give a reasonable illusion of a walking
monster. In your games, you’ll build something
else, but the techniques in this chapter work for
drawing anything.

16_589628 ch09.qxd 10/12/05 2:53 PM Page 194

Flash uses a vector-drawing technique that scales very well. When you
build a sprite, increase the magnification so you can clearly see what
you’re doing. You can then make the sprite smaller when you place it on
the screen.

3. Use basic shapes.

Flash gives you many powerful drawing tools, but I really like starting
with a basic rectangle. When you combine it with Flash’s powerful defor-
mation features, you can make any shape you want. Figure 9-1 shows my
basic rectangle.

Make your image large when you’re starting. Flash uses vector drawing,
so you can resize your work later without losing any resolution.

4. Consider gradient fills.

I love using gradient fills because they’re an easy way to get a 3-D look in
images. In this case, I choose a green radial gradient to look like the back
of a green monster. Start by getting the gradient in place. You can modify
it later. Check out Chapter 6 for information on using gradient fills.

5. Deform the points and lines.

You can modify any shape by using the black selection arrow:

a. Move the selection arrow near a corner or edge of your shape.

If you’re near a corner, a small corner cursor appears; near an
edge, a curve cursor appears.

b. Drag the corner or edge.

The shape changes; you can move the corner or “bend” the edge.

You can move the corners and bend the sides to build a body
shape.

In Figure 9-2, I deform the top and sides of my rectangle to build a
bullet shape.

Figure 9-1:
The basic

rectangle is
the starting

point for any
shape in

Flash.

195Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 195

In Figures 9-3 and 9-4, I move one of the bottom corners of the orig-
inal rectangle to form the tail.

I clean up the nearby edges to make the corners disappear.

Figure 9-4:
The tail

corner is
in place.

Figure 9-3:
Move one
corner to

begin
creating
the tail.

Figure 9-2:
The top and
sides curve
out to make

a rounded
shape.

196 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 196

6. Add new vertices if needed.

By using this Flash technique, moving the vertices of your original shape
is easy. If you want to have more vertices, you might need to add them
yourself.

For example, I want some convex curves near the tail to give it a more
convincing shape, but I don’t have enough vertices in the original rec-
tangle. (Okay, I do, but it would have been a very awkward transforma-
tion.) Simply draw a line intersecting any of the segments where you
want new vertices to appear, as shown in Figure 9-5.

7. Continue transforming with the new vertices.

Figure 9-6 shows the tail being formed with the new vertices. If I bend
the sides below the new line, everything above the line stays in place.

8. Remove the temporary line.

Figure 9-6:
Make

convex
curves

below the
temporary

line.

Figure 9-5:
Create new
vertices by

adding a
temporary

line.

197Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 197

You can select the temporary line and delete it, and the underlying
image stays intact.

You probably need to tweak the new vertices and line segments a little
to hide the vertices if you want an organic rounded shape (like this mon-
ster body).

9. Adjust the gradient as necessary.

The Fill Transform tool resides on the toolbar right below the paint-
brush icon. When this tool is selected, you can change the size and rota-
tion of a gradient fill. I use this tool in Figure 9-7 to fix the gradient so it
looks more like what I want.

Building an animated sprite
After you know how to build a basic shape using Flash’s built-in tools, build-
ing a more complex animated sprite image is no big stretch.

I made a Flash document called buildShape.fla (available on the compan-
ion Web site) showing the animated sprites before adding any code to them:

� Run that file to see the sprites moving.

� Look at the FLA file and dissect the sprites (by double-clicking them to
see their underlying structure).

To build something as complicated as the monster and cars, follow these
steps:

1. Begin with a new movie clip.

Animated sprites often use multiple frames and layers, but the finished
movie clip occupies only one frame and one layer in the actual movie.

Figure 9-7:
Remove the

temporary
line and

modify the
gradient fill.

198 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 198

To avoid confusion, make a separate workspace for your sprite by
choosing Insert➪New Symbol from the main menu.

2. Work in layers.

In actual Flash games, I rarely take advantage of the layers in the
Timeline because programming code can do most of the same things.
However, when using Flash as a drawing and animating tool (as you’re
doing inside the sprite objects), layers are very useful indeed. Figure 9-8
shows the various layers of the monster object.

Feet layer drawn
below body layer

Body layer
drawn as reference

Face layer
has eyes and nostrils

Head layer
drawn above body

Figure 9-8:
The parts of
the monster

are in
different

frames to
facilitate

animation.

199Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 199

3. Orient your image facing up.

The animation scheme later in this chapter assumes that the default
orientation of each object is facing toward the top of the screen. This
makes the math easier when you make your sprites move in other
directions.

4. Add other frames for animation.

The movie clip is like a movie within a movie. Although the primary pro-
gram is often halted at one frame, a movie clip residing on a frame can
have its own Timeline and can progress along that Timeline. This makes
animations quite easy. At the default 12 frames per second (fps) frame
rate, 12 frames equal 1 second of animation. If you want an animation to
cycle every second, you can build a 12-frame animation in the sprite’s
Timeline. For my example, I broke the monster’s Timeline into five seg-
ments. I start with the head facing forward, then left, then forward, and
then back. This sequence is shown in Figure 9-9.

The easiest way to get this effect is to create new keyframes in Frames
4, 7, 10, and 13 after drawing the image in Frame 1. Add these keyframes
in every layer of your drawing. Now you can modify each layer of each
frame independently by using the Free Transform tool (located under
the Pencil tool on the main toolbar). Because each body part is isolated,
you can manipulate them all independently for exactly the look you
want. For more detailed animation, simply add more keyframes.

5. Repeat animation for other objects.

In my Monster Traffic game, I have three main sprites. (The cars are all
the same except for color.) For the animated flame effect, I simply create
a radial gradient with what seemed like flame colors to me and drew a

Figure 9-9:
The monster

walks via
animation

on the
Timeline.

200 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 200

lot of small circles on the screen. I built five frames with different circle
placements. Although it looks corny now, when it’s moving across the
screen with appropriate sound effects, the rapidly changing fireball
looks surprisingly convincing. To add a cartoon-like effect to the cars, I
made all the shapes rounded and moved the original shape slightly from
side to side in each frame. I also added small exhaust circles (just like
the fireballs).

Moving a Sprite under Computer Control
The Monster Traffic game has three different kinds of sprites: the cars, the
monster, and the fireball. All the sprites work in similar but not identical
ways. The car moves in a randomly chosen but constant speed and direction.
If you design the code that handles car motion carefully, you can reuse the
code for the other objects. The carMove program does exactly that. The pro-
gram begins with the monster and car sprites defined and on the Stage. The
next several examples refer to that program, which you can see in its entirety
on the book’s companion Web site.

To see any of my graphics up close, follow these steps:

1. Open the original FLA file.

2. Double-click a movie clip object to edit it.

• Use the Zoom command on the Stage to look closely at the object.

• Move throughout the Timeline to see how it changes over time.

• Hide and show any layer by clicking the eyeball icon next to it.

General plan for moving sprites
For most arcade games, you’ll want to be able to move any sprite. Here’s one
procedure for moving a sprite:

To move any sprite using this technique

1. Create the sprite movie clip.

Make sure that the sprite’s default position points north (up). It’s better
to create an empty sprite and then build all its layers and keyframes.
You can then back out to the main Timeline to manipulate the sprite as
a completed entity.

201Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 201

Name both the sprite in the Library and any instances of that sprite on
the Stage.

2. Initialize the sprite in the program’s init method:

• Set appropriate values for dir and speed properties.

• Position the sprite by setting its _x and _y properties.

3. Be sure that your program has turn() and move() functions.

The following functions are handy for moving and turning your sprites.
Use mine at first; then modify them to behave as you want.

4. Turn the sprite with the turn(spriteName) function, where
spriteName is the name of your sprite instance on the stage.

The turn() function translates direction and speed to dx and dy proper-
ties. The turn() function needs to be called every time that speed or
direction changes. This might be only one time if the sprite isn’t meant
to change speed or direction, or it might be in the sprite’s enterFrame()
event if the sprite is meant to change speed and direction throughout
the game.

The carMove code shows the turn() function in full.

5. Move the sprite using the move(spriteName) function, where
spriteName is the name of the sprite instance on the Stage.

The move() function moves the sprite object on the Stage and sets its
visual orientation correctly.

The move() method should usually be called from the sprite’s
enterFrame() event because you usually want to be able to move the
sprite on every frame.

As an example of sprite motion, the following high-level code sets up a car
sprite going north at a speed of 5 pixels per frame (ppf):

init();
function init(){
//randomly position car
car._x = Stage.width / 2;
car._y = Stage.height;
car.dir = NORTH;
car.speed = 5;

} // end init

car.onEnterFrame = function(){
turn(car);
move(car);

} // end car enterFrame

202 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 202

This code presumes the existence of two new functions, turn() and move(),
which I introduce in the appropriately named sections of this chapter. With
these functions in place, you can easily set the speed and direction of any
sprite without directly dealing with dx and dy.

Setting up direction constants
The best way to move objects in a computer game is to manipulate the
object’s dx and dy properties. Although this is a very powerful technique, it’s
a little bit messy. I recommend thinking in terms of an object’s direction and
speed and then let the computer do all the math required to translate these
ideas into dx and dy.

Think about actual directions (like NORTH and SOUTHEAST) instead of worry-
ing about dx and dy properties.

If you create a limited number of directions, your program can translate all
these directions into the appropriate dx and dy values whenever needed.

Chapter 11 shows a technique that works with any direction (not just the
eight basic directions described in this chapter). The technique in Chapter 11
works with any speed and direction but requires more math than the tech-
nique that I describe here.

The carMove code I use to demonstrate movement begins with the standard
comments and continues with an init() function that’s called immediately:

//carMove
//move the car random direction and speed

init();

function init(){
//initialization

//direction constants
NORTH = 0;
NORTHEAST = 1;
EAST = 2;
SOUTHEAST = 3;
SOUTH = 4;
SOUTHWEST = 5;
WEST = 6;
NORTHWEST = 7;

The first order of business is to determine a series of constants. These are
variables that are used to describe the various directions. In this game, all

203Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 203

sprites go in the eight cardinal directions only. To keep track of the direc-
tions, I use numeric codes. Numeric values are convenient because it’s easy
to change directions by addition or subtraction. However, it can be cumber-
some to remember that SOUTHEAST is direction 3, so I declare special vari-
ables to keep track of the variables. When you use variables in this way,
capitalizing them is traditional.

Later in the turn() function, I show how to convert these somewhat arbi-
trary numeric values to the actual directions they represent.

Programmers often use variables with numeric values to represent certain
kinds of information like I do with the direction variables.

� Many languages have constructs called constants and enumerations,
which are handy in this kind of situation. ActionScript doesn’t have
these features yet, so I simulate them with these direction variables.

� Chapter 8 shows that Flash’s own keyboard handling uses a similar
scheme to assign names to the keyboard values.

Determining sprite properties
All the sprites in this game have the same general properties:

� Custom properties, such as speed, dx, dy, and dir (direction). I add
these properties to most of my sprites so I can control them better.

� Built-in properties, such as _x and _y.

In my demo, the car goes in a randomly chosen speed and direction. Listing 9-1
shows the code inside the init() method that gives the random initial values.

Listing 9-1: carMove init() Function

//carMove
//move the car random direction and speed

init();

function init(){
//initialization
//randomly position car
car._x = Math.random() * Stage.width;
car._y = Math.random() * Stage.height;
car.dir = Math.random() * 8;

204 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 204

car.dir = Math.floor(car.dir);
car.speed = Math.random() * 10;
turn(car);

/ * debugging code
trace (“dir: “ + car.dir);
trace (“rot: “ + car._rotation);
trace (“dx: “ + car.dx);
trace (“dy: “ + car.dy);
*/

} // end init

To create a sprite with random initial values, follow these steps:

1. Build the sprite object, including any animations or layers.

Be sure that the object’s default position points north.

2. Give a random starting position by setting the object’s _x and _y
properties.

I derive both properties with Math.random():

• The x position should be somewhere between 0 (zero) and the width
of the Stage.

This is determined with a call to Math.random(). Math.random()
* Stage.width gives a result between 0 (zero) and the width of
the Stage.

• car._y is positioned by multiplying a Math.random() value by the
height of the Stage.

Math.random() * Stage.height gives a result between 0 (zero)
and the height of the Stage.

Multiplying the floating point value of Math.random() by the integer
values of Stage.height and Stage.width produces floating point
values within the range of the screen’s dimensions. If you feed these
floating point values to the _x and _y properties of a sprite, the object is
moved to the nearest pixel automatically. Thus, that floating point value
doesn’t need to be converted to an integer.

3. Establish the car’s direction.

I designated in this program that directions are integers between 0 and
7, inclusive. For example, 3 is a valid direction (SOUTHEAST), but 3.5 is
not. Here’s how I produce a random integer between 0 and 7:

a. Begin with Math.random() * 8.

This returns values between 0 and 7.9999999.

b. The Math.floor() function lops off any trailing decimal points.

205Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 205

This leaves a random integer between 0 and 7, inclusive.

4. Give the object a random speed.

The car’s speed is simply a random number between 0 and 10.

Floating point values are fine here, so I didn’t convert to an integer.

5. Call the turn() function to generate dx and dy values.

ActionScript needs dx and dy properties to move an object, but it’s more
natural to think in terms of direction and speed. The turn() function’s
job is to translate a direction and speed into dx and dy properties.

6. Give yourself some debugging hints.

The final piece of code in the init() method is a set of trace() state-
ments. I use these statements for debugging purposes. I write code for
turn() and move() in the next sections, but there’s really no point in
moving on to those functions if these variables haven’t been created cor-
rectly. After the variables all appear to be working well, I comment out
the code. I don’t remove the comments entirely, though, because there
is some chance that things will go wrong again, and it’s useful to have
the diagnostic tool already in place in case I need it.

7. Move the sprite in the enterFrame() event.

After all the initialization is done, write a move function that moves the
object according to its direction and speed. That function is called in the
sprite’s enterFrame() event.

Turning a sprite
The turn() function is designed to translate a speed and direction into dx
and dy properties. It is specially written so it can work on any movie clip
object. You can use it to turn any object in any program.

The function gets its flexibility by accepting an object as a parameter. Within
the function, the object is called thing. If you call the function turn(car),
thing refers to the car movie clip. You can also turn the monster or anything
else in your program by calling turn(monster) or whatever.

Write your functions to be as flexible as possible. If you can make a function
work so it can turn anything, you can reuse the function and easily add func-
tionality to your program. The final version of the Monster Traffic game has
up to five objects moving around the screen at a time (and later projects
have many more). All of them can use the same turn() and move() func-
tions. If you design those functions upfront so they can manipulate any
object, it’s trivial to upgrade the program.

206 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 206

This function converts the numeric direction and speed of any object to
appropriate values for its dx and dy properties. Listing 9-2 shows the turn
function of the carMove program. As you look at the code, note the use of
negative and decimal values for dx and dy. I explain these values after this
listing.

Listing 9-2: carMove turn() Function

function turn(thing){
thing._rotation = thing.dir * 45;

switch (thing.dir){
case NORTH:
thing.dx = 0;
thing.dy = -1;
break;

case NORTHEAST:
thing.dx = .7;
thing.dy = -.7;
break;

case EAST:
thing.dx = 1;
thing.dy = 0;
break;

case SOUTHEAST:
thing.dx = .7;
thing.dy = .7;
break;

case SOUTH:
thing.dx = 0;
thing.dy = 1;
break;

case SOUTHWEST:
thing.dx = -.7;
thing.dy = .7;
break;

case WEST:
thing.dx = -1;
thing.dy = 0;
break;

case NORTHWEST:
thing.dx = -.7;
thing.dy = -.7;
break;

default:
trace(“there’s a problem here...”);

} // end switch
thing.dx *= thing.speed;
thing.dy *= thing.speed;

} // end turn

207Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 207

To make the car point in the direction in which it will move, I modify the
built-in rotation property. It’s important to understand that rotation
changes the orientation of the physical sprite onscreen but doesn’t directly
affect how the object moves onscreen. The rotation property takes degree
measurements with 0 as north. I was very sneaky about the numbers I used
for the constants. Table 9-1 shows the relationship among the direction con-
stants, their values, and the corresponding rotation value.

Table 9-1 Rotation Values
Direction Value Rotation (Degrees)

NORTH 0 0

NORTHEAST 1 45

EAST 2 90

SOUTHEAST 3 135

SOUTH 4 180

SOUTHWEST 5 225

WEST 6 270

NORTHWEST 7 315

Each rotation is exactly 45 degrees more than the previous direction, making
it easy to calculate the appropriate rotation for each direction. Simply multi-
ply the direction by 45, and you have the appropriate rotation value.

This is why I design the sprites so that they face north as a default. If the
sprite is heading in any other direction, you’d have to compensate for that
beginning angle. If the sprite begins by heading in direction 0, it’s pretty easy
to find the appropriate rotation value for the sprite.

The function then generates a large switch structure that examines the
direction. I set up direction as an integer between 0 and 7. I already con-
verted that direction to a rotation, which changes the visual appearance
of the object. To make the object move in the desired direction, I have to
change the dx and dy properties. The following chunk of code handles the
behavior when the player is moving to the north:

switch (thing.dir){
case NORTH:
thing.dx = 0;
thing.dy = -1;
break;

208 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 208

If thing is moving to the north, its dx property should be set to 0, and its dy
property should be set to –1. This makes the pixel move one pixel to the
north. After the switch statement is over, both the dx and dy properties are
multiplied by the object’s speed, so if the speed is 8, the object now moves
eight units to the north.

Moving in the other cardinal directions (east, south, and west) is pretty
much the same as moving to the north. You might be surprised at the code
for the diagonal directions. As an example, here’s the code for moving to
the southeast:

case SOUTHEAST:
thing.dx = .7;
thing.dy = .7;
break;

You might expect in this case that the dx and dy properties should both be
set to 1, but they are .7 instead. The explanation for this requires a little
math review. (I promise it won’t be too painful.) If you set dx and dy to 1, the
object actually moves about 1.41 pixels to the southeast. When you multiply
these values by the speed, you’ll find that the car appears to move much
faster on the diagonals than it does in the cardinal directions. Don’t take my
word for it. Write your own program or modify mine so that the dx and dy
properties are both 1 when you move southeast. When the program is run-
ning, objects moving to the southeast seem to move much faster than objects
moving to the south or the east. If you want to move in diagonal directions at
a speed of 1, use dx and dy values of .7. If you want to understand how I
came up with the value .7, Figure 9-10 explains the math. (Your geometry
teacher would be so proud of your use of the Pythagorean theorem.)

Figure 9-10:
Pythagoras

did all his
work just to

help you
animate

monsters
and cars.

209Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 209

Table 9-2 shows the dx and dy values for the various directions.

Table 9-2 dx and dy Values for Various Directions
Direction Value Rotation dx dy

(Degrees)

NORTH 0 0 0 –1

NORTHEAST 1 45 –0.7 –0.7

EAST 2 90 –1 0

SOUTHEAST 3 135 –0.7 0.7

SOUTH 4 180 0 1

SOUTHWEST 5 225 0.7 0.7

WEST 6 270 1 0

NORTHWEST 7 315 0.7 –0.7

In Table 9-2, all these directions add up to a distance of (roughly) one pixel.
(That is, if you square dx and dy for a given direction and then add them, you
get something close to 1.) If you calculate how to move one pixel in any direc-
tion, it’s easy to move at any other speed (even backward) by multiplying the
dx and dy values for moving one pixel by that speed. The last few lines of the
turn() function handles this process:

switch(thing.dir){
/// I’m leaving out most of the code for this example ...
default:
trace(“there’s a problem here...”);

} // end switch
thing.dx *= thing.speed;
thing.dy *= thing.speed;

} // end turn

The turn code closes with some housekeeping:

� A default clause acts as a safety net if the unexpected happens and the
program is sent a direction I didn’t expect.

� The multiplication lines multiply the dx and dy properties of thing by
its speed.

By the time this function is done, the object’s dir property is converted to a
number of other properties that are more useful to finally update the object’s
position onscreen. That’s the next project.

210 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 210

Moving the sprite
After you set up an object’s dx and dy properties with the turn function, it’s
time to move the object. (In this case, the car, but you’re setting up your
functions to move anything.) The move function is called immediately after
the turn function. Listing 9-3 shows the move function for the carMove pro-
gram.

Listing 9-3: carMove move() Function

function move(thing){
//moves any thing, wrapping around boundaries

//move
thing._x += thing.dx;
thing._y += thing.dy;

//check boundaries - wrap all directions
if (thing._x > Stage.width){
thing._x = 0;

} // end if

if (thing._x < 0){
thing._x = Stage.width;

} // end if

if (thing._y > Stage.height){
thing._y = 0;

} // end if

if (thing._y < 0){
thing._y = Stage.height;

} // end if
} // end move

This move function is unsurprising: It simply moves thing by its own dx and
dy properties. As usual, when you move something, you should check for
screen boundaries. In this program, I assume that all objects wrap around all
walls because it makes the code easier. If I want, I can write different behavior
later.

Animating the car
The car’s animation code is pretty simple because the car’s direction is
set one time, when the car is created. The following code sets up the car’s
behavior in the program’s init() function:

211Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 211

//randomly position car
car._x = Math.random() * Stage.width;
car._y = Math.random() * Stage.height;
car.dir = Math.random() * 8;
car.dir = Math.floor(car.dir);
car.speed = Math.random() * 10;
turn(car);

The preceding code has two main jobs:

1. Set up a random position and direction for the car.

2. Call the turn() function to convert speed and dir to dx and dy.

The remainder of the car’s (very simple) behavior is contained in its
enterFrame() event:

car.onEnterFrame = function(){
move(car);

} // end car enterFrame

Put code in an object’s enterFrame() event when you want that code to
repeat every frame. Any code that doesn’t need to be checked every frame
should go someplace else.

Creating a User-Controlled Sprite
The car’s direction is set one time at the beginning of the program. The mon-
ster requires a bit more effort because his direction and speed change
dynamically according to keyboard input.

The next few examples refer to the monsterMove program on the book’s
companion Web site. The monsterMove program is very much like the
carMove program shown in this chapter. I’m reproducing only the parts
of monsterMove that differ from carMove. Please check the companion
Web site to see the monsterMove code in its complete state.

Fortunately, the monster can use the same turn and move functions as the
car. The monster’s enterFrame() event code shows how to build a sprite
under keyboard control:

monster.onEnterFrame = function(){
checkKeys();
turn(monster);
move(monster);

} // end monster enterFrame

212 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 212

As you can see in the monster’s enterFrame function, the program must per-
form three actions in each frame:

� Check for any key presses.

� Turn the monster.

� Move the monster.

Gosh, I love encapsulation!

The only thing that’s really new in monster.enterFrame is the checkKeys()
function. This function (not surprisingly) responds to keyboard input:

1. Scans the keyboard to see whether the user wants to change the mon-
ster’s speed or direction.

If the user presses a relevant key, the checkKeys() function changes
appropriate properties in the monster sprite.

2. The turn() function sets dx and dy properties to the appropriate
values.

3. The move() function (I bet you’re ahead of me here) moves the monster.

Planning keyboard input
Keyboard input isn’t very difficult to write, but it can be overwhelming if you
don’t plan what should happen. Before you write any code, consider building
a chart something like Table 9-3.

Table 9-3 Keyboard Plan for Monster Move
Key Action Code Boundary Overflow

Up Speed up .speed ++ speed > 8 speed = 8

Down Slow down .speed -- speed < –3 speed = –3

Left Turn left .dir -- dir < dir =
NORTH NORTHWEST

Right Turn right .dir++ dir > dir = NORTH
NORTHWEST

213Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 213

It makes a lot of sense to think carefully about all these things before you
start writing code. Make a chart with this information:

1. Write down the action associated with each key press.

2. Determine what code will occur.

Usually, you can summarize the action by changing a property or vari-
able. You don’t have to think about all the code here. You need to isolate
only

• The critical variable or property that changes when the user
presses the key

• How that property changes (increase by 1?, decrease by 50?)

3. Think about boundary conditions.

Any time a variable changes, it could be given an illegal value. Decide
what condition summarizes the boundary for this particular situation:

• If you’re increasing a variable, you need to think about the upper
boundary only.

• If you’re decreasing a variable, you need to think about a lower
boundary only.

4. Provide an overflow statement.

Think about what you should do when the boundary is passed.

Usually, the overflow statement should set the variable to a value within
the variable’s legitimate range.

Checking for motion keys
The checkKeys() function scans the keyboard for user input. You can check
for any keys you want, but it’s usually a good idea to stick with the standard
arrow keys and spacebar unless you have a good reason to do something
else. Chapter 8 describes why you might want to use other keys, such as W,
A, S, and D.

To check for keyboard input, follow these steps:

1. Determine your control scheme.

Think about what each keyboard input should do. Create a keyboard
chart (like the chart in the preceding section).

Plan boundary conditions and overflow statements.

2. Create some kind of checkKeys() function.

This function contains all the keyboard code.

214 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 214

3. Call checkKeys() from an enterFrame event.

Keyboard checking should occur frequently to give the user plenty of
control. The enterFrame event is the easiest way to make this happen.

4. Write a condition for each key press.

Each line in your control scheme table is easily translated into a few
lines of code.

For example, here is the code for handling the up arrow:

if (Key.isDown(Key.UP)){
monster.speed++;
if (monster.speed > 8){
monster.speed = 8;

} // end if

} // end if

The items in the keyboard planning chart directly correspond to code. Every
key press contains similar code.

The keyboard demo program in Chapter 7 shows general keyboard input.

Controlling the monster
In this program, the user can

� Speed the monster with the up-arrow key.

� Slow the monster with the down-arrow key.

� Turn left and right with the left- and right-arrow keys, respectively.

I show you how to add a fire command for the flame in Chapter 10.

The complete keyboard-checking routine looks like Listing 9-4.

Listing 9-4: Monster Move checkKeys() Function

function checkKeys(){
//check keyboard to move monster
if (Key.isDown(Key.UP)){
monster.speed++;
if (monster.speed > 8){
monster.speed = 8;

} // end if

} // end if

(continued)

215Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 215

Listing 9-4 (continued)

if (Key.isDown(Key.DOWN)){
monster.speed--;
if (monster.speed < -3){
monster.speed = -3;

} // end if
} // end if

if (Key.isDown(Key.RIGHT)){
monster.dir++;
if (monster.dir > NORTHWEST){
monster.dir = NORTH;

} // end if
} // end if

if (Key.isDown(Key.LEFT)){
monster.dir--;
if (monster.dir < NORTH){
monster.dir = NORTHWEST;

} // end if
} // end if

} // end checkKeys

The checkKeys function responds to key presses:

1. Checks each key to determine whether it is being pressed.

2. If a key is selected, changes the appropriate variable.

Whenever you change a variable, you should check for boundary conditions.
The monster has the following boundaries:

� In the up-arrow code, the speed increases.

If the monster’s speed increases indefinitely, the monster will be impos-
sible to control. I set the maximum speed to 8 ppf. If the user tries to
accelerate past that rate, nothing happens.

� In the down-arrow code, I set the minimum speed to –3.

Because of how I calculate the speed, negative speeds make the sprite
move backward. If you play around with the moveMonster Flash file (on
the book’s companion Web site), you see that backward movement works
great. The monster can move and turn backward without any special
programming.

Turning the monster involves changing the direction. I set up directions using
constants, so turning to the right involves simply adding 1 to the direction.
If the user tries to turn right from EAST (direction number 6), the program

216 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 216

simply adds 1, making the new direction NORTHWEST (direction number 7).
Turn to the left by subtracting 1 from the dir property.

The directions have boundaries, too:

� If the user tries to turn right from NORTHWEST (direction number 7),
adding 1 makes the new direction number 8 (which doesn’t exist in this
scheme).

� If the direction gets past 7 (NORTHWEST), it should move to 0 (NORTH).

The code for checking the right-arrow key handles this situation with a stan-
dard if structure:

if (Key.isDown(Key.RIGHT)){
monster.dir++;
if (monster.dir > NORTHWEST){
monster.dir = NORTH;

} // end if
} // end if

Before you can run the monsterMove program, add some initialization code
to give the monster some initial values. Specify the monster’s initial speed
and position as I did in the init() function:

//set monster initial values
monster.dx = 0;
monster.dy = 0;
monster.speed = 0;
monster.dir = NORTH;

All the other code in the monsterMove program is identical to the carMove
program because both the monster and the car use the same functions for
movement and turning.

217Chapter 9: It’s Alive! Animating Your Sprites

16_589628 ch09.qxd 10/12/05 2:53 PM Page 217

218 Part IV: Getting Control of the Situation

16_589628 ch09.qxd 10/12/05 2:53 PM Page 218

Chapter 10

Building the Monster Traffic Game
In This Chapter
� Working with more sprites

� Handling many collisions

� Sprucing up your program with basic animations

� Solving problems and creating functions

Many skills are involved in game programming, but the ultimate skill is
simply building games. Rather than introducing a lot of new ideas in

this chapter, I take you step by step through the design and creation of a
complete arcade game.

Reviewing the Basic Design
The examples in the last few chapters center around a game called Monster
Traffic. This chapter shows how to put that game together. No new program-
ming ideas are presented here, just a description of how to build the game
after you understand all the component skills.

The Monster Traffic game looks like Figure 10-1 when it’s running.

The main characters of the Monster Traffic game are the same as in Chapters
8 and 9. The complete monsterTraffic game builds on the moveMonster
game developed in Chapter 9. See that chapter for more information on how
to build that version of the game. The final game has other features that are
worth noting:

� Three cars to avoid.

� A fire-breathing monster. (Try some mouthwash, buddy.)

� Sound effects when the monster breathes fire, fire hits a car, or a car hits
the monster.

� A scorekeeping mechanism, win and lose screens, and a help screen.

589628 ch10.qxd 10/18/05 7:55 PM Page 219

Adding More Opponents
One opponent is too easy. It’s much more fun if the monster has to dodge
more cars. The easiest way to generate new opponents is to simply create
new MovieClip objects. Figure 10-2 shows the threeCars program with
three different cars.

Figure 10-1 is the play screen of the complete game, with flames and score-
keeping (and much more that is not visible in a screen shot). Figure 10-2 is
the first step toward that goal.

Figure 10-2:
Now you

have three
different yet
similar cars.

Figure 10-1:
The user

controls a
flame-

breathing
monster

being
pursued
by cars.

220 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 220

Cloning the movie clips
The basic task is to build more than one car. You could, of course, make three
instances of the same car from the Library. If you give each instance a differ-
ent name, they all function independently. However, they’re also all the same
color. I chose to make several new movie clip objects and give them different
colors. Here’s the easiest way to do that:

1. If the Library isn’t open, press F11 to open it.

2. Select the movie clip you want to modify from the Library.

Make sure all the animations and elements that you want duplicated are
finished in the first clip. After you duplicate the clip, you make individ-
ual changes in the clips.

3. Duplicate the movie clip by right-clicking it (in the Library) and choos-
ing Duplicate from the contextual menu.

4. Rename the new movie clip in the resulting dialog box and click the
Export for ActionScript button.

5. Edit the new movie clip from within the Library.

6. If necessary, change all layers and frames.

If the duplicated object has multiple layers and frames, make your
changes on all these parts, not just the visible elements.

7. Make instances of your new objects on the Stage.

Don’t forget to name the instances.

If you want to build a number of identical objects automatically, see
Chapter 13.

Coding for multiple enemies
Games are more interesting with more enemies onscreen, but simply placing
more objects onscreen doesn’t mean they act how you want. Anything you
put onscreen must be animated. Fortunately, the code you’ve been using is
designed to be reused. It’s no big deal to add code to the extra cars, but it
requires a slight change in the program’s code design. Instead of placing all
the code for initializing a car in the init() function as previous examples do,
I built a new function to reset any car. The init() function now contains this
code:

//from threeCars.fla init function
reset(car1);
reset(car2);
reset(car3);

221Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 221

The reset function simply moves all the car initialization code to a separate
function that expects a car as a parameter:

//from threeCars.fla
function reset(sprite){
//given a car sprite, resets its parameters
sprite._x = Math.random() * Stage.width;
sprite._y = Math.random() * Stage.height;
sprite.dir = Math.random() * 8;
sprite.dir = Math.floor(sprite.dir);
sprite._rotation = sprite.dir * 45;
sprite.speed = Math.random() * 10;
turn(sprite);

} // end reset

This is another example of the joy of encapsulation. Any time you’re tempted
to repeat code, consider putting it in a function.

If you’re an advanced programmer, you might know another solution: When
you repeat code on very similar objects, consider creating an array and a
loop. However, arrays of movie clips aren’t so simple in Flash. I show a
workaround approach in Chapter 13.

Somehow you also need to add code to move the object every frame. For
the threeCars game, I move all the cars in the monster’s enterFrame
event because I don’t need to create three new event handlers that are all
the same. The following code shows the monster.onEnterFrame event
from threeCars.fla:

//from threeCars.fla
monster.onEnterFrame = function(){
...

//move the cars, too
move(car1);
move(car2);
move(car3);
...

} // end enterFrame

In this version of the program, the car’s direction and speed still don’t
change, so there’s no need to call the turn() function for any of the cars
each turn.

222 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 222

Firing Missiles
What arcade game is complete without some firepower? The flames in the
Monster Traffic game work very much like missiles in many 2-D arcade games:

� The missile is attached to some object onscreen.

� When the missile is fired, it travels in the same direction as the object
that fired it, but faster.

Missiles usually have a very short lifespan. They die when they either

� Hit something (often damaging or destroying what they hit).

� Leave the screen.

� You fire another missile. (There’s actually only one missile.)

Missiles usually travel in straight lines. You generally don’t expect missiles to
bounce off the walls. Of course, it’s your game, so you can do what you want.
Still, it’s nice to start with the most standard behavior. After you understand
the basic technique, you can add your own flourishes.

The flame.fla program begins with the monster and three cars, and then
adds the flame behavior to the monster. I show you only the new code here
for firing flames. You can view the whole program on the book’s companion
Web site:

www.dummies.com/go/flashgameprogrammingfd1e

To add a missile, follow these steps:

1. Create the movie clip visual representation.

Use the ordinary Flash tools to create the visual design of your object.

In this version of the program, I just made a bunch of circles filled with a
custom gradient that looks (to me) like flames. I made several keyframes,
each with its own set of circles. When these are played in succession, it
looks like a little fireball. Figure 10-3 is a composite image showing my
fireball.

Make your graphics large; then shrink them for a good effect.

223Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 223

One nice thing about the fireball is it doesn’t have a particular direction.
If you design a rocket or torpedo, you must be willing to rotate the
object in the game. (Otherwise, your torpedo appears to slide sideways
through the water.) If you use the generic turn and move functions I
suggest in Chapter 9, your objects already are rotated in the proper
direction.

If the visual orientation of your object matters, build it so it’s facing
north, in the default position.

2. Place an instance of the missile off the Stage.

Usually, you place movie clip objects on the Stage so the user can see
them. However, you don’t want the flame showing unless the monster is
shooting. You can drag items to the space that surrounds the Stage. As
far as Flash is concerned, the object is onscreen, but it isn’t visible to
the user.

If you want an object to be invisible to the user but still on the Stage
area, place the object to the top or left of the Stage. Otherwise, if the
object is on the bottom or right, the user might resize the screen and
see the object.

3. Set initial properties of the missile object.

This is usually done in the init() function. It looks much like the initial-
ization of any object:

//set flame initial values
//from flame.fla
flame.dx = 0;
flame.dy = 0;
flame.speed = 0;
flame.dir = NORTH;

The flame initialization code shows that

• The flame’s dx and dy properties are set to 0 (zero).

• The speed is set to 0 (zero).

• The direction is set to NORTH.

This guy isn’t going anywhere until you tell it to move.

Figure 10-3:
The fireball.
Believe it or
not, it looks
pretty good

in the
program.

224 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 224

4. Set up a situation for firing the missile.

This is usually a keyboard event, often pressing the spacebar.

To fire the flame ball, I add the following code to the checkKeys() func-
tion, which is called once per frame:

//from flame.fla checkKeys()
if (Key.isDown(Key.SPACE)){

//shoot flame
flame._x = monster._x;
flame._y = monster._y;
flame.dir = monster.dir;
flame.speed = monster.speed + 20;
turn(flame);

} // end if

When the user presses the spacebar, moveFlame moves from its off-
Stage position to a place directly under the monster and also moves in
the same direction as the monster but at a faster speed.

5. Move the missile underneath the firing object.

To fire a missile, you first move the missile sprite that has been hiding
patiently off-Stage. Missiles are fired from some other clip, so it should
look like the missile is emerging from the parent (in this case, the mon-
ster). Copy the _x and _y properties of the monster to make the fireball
appear at the same position onscreen as the monster.

//from flame.fla checkKeys()
flame._x = monster._x;
flame._y = monster._y;

If you overlap two movie clip objects, one appears on top of the other.
Typically, you want the missile to appear underneath the monster. To
make sure this happens

a. Drag the two movie clips together in your editor and see which clip
appears on top.

b. Select either object.

c. Press Ctrl+↑ or Ctrl+↓ to change which object appears on top.

6. Give the missile appropriate speed and direction.

Both these properties are inherited from the object launching the
missile.

Typically, you want to launch the missile in the same direction that the
launcher (in this case, the monster) is pointing. Simply copy the direc-
tion from the monster to the flame to get that effect.

//from flame.fla checkKeys()
flame.dir = monster.dir;
flame.speed = monster.speed + 20;

225Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 225

Of course, you can change how missiles are fired. If you want the bullets
to go off at an angle to the object’s nose — say, always at 90 degrees (or
even somewhat randomly) — you can arrange it, but start with the most
simple situation and embellish it after you have the basic form working.

If you want a turret that operates independently of the main vehicle (like
for a tank game), make two different movie clips:

• The turret always travels with the tank, but the turret can be
rotated independently from the tank chassis.

• When the user fires, the bullet goes where the turret is pointed.

The speed of the bullet or missile should be faster than the speed of the
firing object, or your firing platform will outpace its projectiles. (This
was a problem for some of the first supersonic fighter planes.) I simply
added 20 to the monster’s speed to get a firing rate that’s quick enough
to look like flames but slow enough to see.

7. Turn the missile.

Even if your missile doesn’t have a visible direction, you should still set
its dx and dy properties according to the direction you want it to travel.
Use the turn() function in Chapter 7 to automatically set the dx and dy
properties of your missile:

turn(flame);

8. Move the missile.

You could move missiles with the move() function that’s been handling
all your other sprites so well, but there’s a difference. All the other
sprites have wrapped around the screen when they hit a Stage bound-
ary. Missiles need a different behavior from the other objects. When
missiles hit the edge of the screen, I want them to disappear and stop
moving. For that reason, I made a special variant of the move() function
specialized for moving the flame (as shown in Listing 10-1).

Listing 10-1: Flame Program moveFlame() Function

//from flame.fla
function moveFlame(){
//the flame has different behavior on borders, so give it
// its own movement function

//move
flame._x += flame.dx;
flame._y += flame.dy;

//rotate not needed
//flame._rotation = flame.dir * 45;

226 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 226

//hide on all boundaries
if ((flame._x > Stage.width) ||

(flame._x < 0) ||
(flame._y > Stage.height) ||
(flame._y < 0)){

//move off screen and stop
flame._x = - 200;
flame._y = - 200;

flame.speed = 0;
} // end if

} // end moveFlame

The movement hasn’t changed. I disabled the feature that turned the
flame because I didn’t need it.

9. Remove your missiles.

Sounds like a peace protest, doesn’t it?

Missile objects must have short lifespans, or they clutter the screen and
bog down the processor. I chose to “kill off” my missiles when they hit
any boundary. I use a special condition to check for borders:

//from flame.fla moveFlame()
if ((flame._x > Stage.width) ||

(flame._x < 0) ||
(flame._y > Stage.height) ||
(flame._y < 0)){

This behemoth is actually one if statement, with one condition. The ||
symbol stands for logical or. It works just like the word or in English: If the
flame’s X is greater than the stage width or the flame’s X is less than 0 (zero);
or the flame’s Y is greater than the stage height or the flame’s Y is less than
(0) zero; then do something.

227Chapter 10: Building the Monster Traffic Game

Faster than a speeding bullet?
The rate at which your bullets fly is an important
consideration in the game:

� If projectiles move very quickly, hitting your
target is relatively easy.

� Slower projectiles require the player to
anticipate or lead the target, making a more
interesting game situation.

Many games actually use slow, weak bullets to
make the game more exciting. Counterintuitive,
but true.

589628 ch10.qxd 10/18/05 7:55 PM Page 227

The || symbol lets you combine two or more conditions to make a com-
pound condition.

This particular condition evaluates to true as soon as the flame leaves any
frame boundary. Because I’m doing the same thing no matter what edge
of the screen the flame leaves on, I need to simply write a more complex
condition — and write the code for it but once.

To remove the missiles, simply move them off the Stage and set the speed
to 0 so they don’t sneak back where it isn’t wanted:

//from flame.fla moveFlame()
//move off screen and stop
flame._x = - 200;
flame._y = - 200;

flame.speed = 0;

You can dynamically create and destroy movie clip objects, but this approach
works fine for now.

To see how to make sprites truly live and die, check Chapter 13.

Testing for Collisions
When you have all kinds of sprites moving around onscreen, they’re bound to
crash into one another. Collisions are the key events of most video games.
Figure 10-4 illustrates collisions.swf running from within the editor. (The
output window shows a list of collisions that have occurred.)

Figure 10-4:
When a
collision
occurs,

a note
appears in
the output

window.

228 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 228

This is the easiest way to test that all the collision routines are working cor-
rectly. After you know all the various types of collisions that you want to reg-
ister are working, you can add other behavior, including sound effects,
scoring, and whatever else you want.

Planning your collisions
You’ll have a lot of things crashing into each other, and the game often
depends on what bonks into what.

Summarize what happens in various collisions with a chart like Table 10-1,
which summarizes all the possible collisions between all of the sprite objects
in my game.

Table 10-1 Collision Summary
monster car1 car2 car3 flame

monster x Monster hit Monster hit Monster hit x

car1 Monster hit x x x Car reset

car2 Monster hit x x x Car reset

car3 Monster hit x x x Car reset

flame x Car reset Car reset Car reset x

Certain collisions aren’t important at all. No sprite can collide with itself (or
maybe it’s always colliding with itself . . . ooh, that’s deep . . . I think I need
some chocolate), so I won’t even check those collisions. When a monster
collides with any car, the monster takes a hit, so I need to check for that
collision. When the flame hits a car, that car’s position, direction, and speed
are reset.

To get a good handle on collision detection, build a collision chart for your
game. Based on your game’s logic, determine what will happen on each colli-
sion. You’ll be very glad to have this information while you’re writing code
and debugging.

Adding collision code to your game
After you know the collisions you’re checking for, write the actual code.
To add collision detection to your game, follow these steps:

229Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 229

1. Determine which collisions you are concerned with.

Anything that moves can potentially crash into anything else. Organize
your plan so you know what will happen in various situations.

2. Build a routine to check for collisions.

If you need to check a lot of collisions (as I need for this program), put
them all in one function that can handle all the collisions. My function is
cleverly named checkCollisions(). I call it from one of the
enterFrame events.

3. Create a hitTest if structure for each potential collision.

Look over your chart for the collisions that require some sort of behav-
ior. Build an if structure for each potential collision using the
hitTest() function to determine whether the two movie clips collide.
Your code for one collision might look like this:

if (monster.hitTest(car1)){
//code will go here

} // end if

4. Write a trace statement to describe the hit.

Don’t write any actual code now. Simply write a trace statement in each
if structure that tells you what kind of collision occurred:

if (monster.hitTest(car1)){
trace(“hit by car 1!”);
reset(car1);

} // end if

After you write code that starts moving and hiding your sprites, testing
for the various collisions is much harder.

5. Add some basic functionality.

After you know that all the collisions are being checked correctly, start
adding code. Use the chart (refer to Table 10-1) to determine what
should happen. For example, when a car and monster collide, the car
should get a new position, speed, and direction.

This fragment from the monster.hitTest function in collisions.fla
illustrates one collision check.

//from collisions.fla
if (monster.hitTest(car1)){
trace(“hit by car 1!”);
reset(car1);

} // end if

Test constantly. When trouble happens, you’ll be more likely to know when
things went bad as well as what probably caused the problem.

230 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 230

Building the checkCollisions() function
The details of your collision-checking routine will be unique, but the general
structure will look something like mine (as shown in Listing 10-2).

Listing 10-2: Collisions Program checkCollisions() Function

//from collisions.fla
function checkCollisions(){
//check for various collisions

if (monster.hitTest(car1)){
trace(“hit by car 1!”);
reset(car1);

} // end if

if (monster.hitTest(car2)){
trace(“hit by car 2!”);
reset(car2);

} // end if

if (monster.hitTest(car3)){
trace(“hit by car 3!”);
reset(car3);

} // end if

//look for flame collisions
if (flame.hitTest(car1)){
trace(“burned car 1”);
resetFlame();
reset(car1);

} // end if

if (flame.hitTest(car2)){
trace(“burned car 2”);
resetFlame();
reset(car2);

} // end if

if (flame.hitTest(car3)){
trace(“burned car 3”);
resetFlame();
reset(car3);

} // end if
} // end checkCollisions

Listing 10-2 shows some good strategies for collision routines:

231Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 231

� I left the trace statements in place.

When you finish the collision code, you will use more code in each of
these code segments to handle playing audio, scorekeeping, and game-
ending situations. trace statements are useful when code goes wrong
so you can see where the program processes in the code.

� The trace statements are descriptive.

When I run this program, I can look at the output window and see exactly
what’s happening. I didn’t simply report that a collision occurred but
rather exactly which object hit what as well as what should happen next.

� Each segment calls some other functions.

I avoid putting too much code in these segments. Whenever possible, I
want to call other functions to do the heavy lifting so I can clearly see
the logic flow here. (Gotta love that encapsulation!)

� It looks like I need a new function to reset the flame.

Any time a flame hits a car, I need to take it off the screen. That code
needs to happen in many places, so it’s a candidate for a function.

Building the ResetFlame() function
When you find yourself copying and pasting code, you have a good candidate
for a function. I need to reset the flame sprite from several places in my pro-
gram, so that looks like it would be a good function.

Code for the resetFlame function is actually quite simple. I could just give it
to you as I’ve been doing throughout this book, but I want to take a moment
to talk about how functions are built.

At this point in your travels, you’re probably pretty good at following code,
and you probably understand most of what’s going on in my programs.
However, when you try to write your own code from scratch, knowing where
to start can be really hard.

Building any function begins the same way:

1. Describe in English what you want the function to accomplish.

2. Look for tools to help you do the job.

They might be

• Built-in Flash functions

• Functions you’ve previously written

232 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 232

• Programming concepts (such as a loop, hitTest, or if structure)

• Other intangibles (an idea, a strategy, or an inspiration)

3. Rewrite your problem with the tools you’ve identified.

4. Test your code to see whether it does what you expected.

5. Refine the code to get it working better.

The resetFlame() function was pretty easy to build using this technique. As
I was writing the checkCollision() function, it became apparent that I’d
need to deal with the flame collisions. The code didn’t simply flow out of my
brain. I had to go through this process:

1. Describe the plan in English.

I want the flame to move off the screen and stop.

2. Look for tools.

In this case, all the key tools are properties of the flame object. If I set
the right values to the right properties, I can accomplish all the goals of
the function.

3. Rewrite the problem.

I can move the flame off the screen by setting both its _x and _y proper-
ties to a negative number. (I use –200.) I can stop the flame by setting its
speed to 0.

_x and _y are built-in properties of the MovieClip object, so they
always work. The speed property is something I invented, so it works
only in the context of the move techniques I show you throughout this
book. If you choose to implement movement in some other way, your
code must reflect your technique.

4. Test.

At some point, you must write actual code and see whether it works.
Here’s my code:

//from collisions.fla
function resetFlame(){
//move off screen and stop
flame._x = - 200;
flame._y = - 200;
flame.speed = 0;

} // end resetFlame

It’s pretty easy to write the code if you went through all the planning
steps outlined here, but it’s much harder if you simply blurt out the
code with no planning.

I ran the code and tested many ways to make sure the flame was reset
each time the flame hit a car.

233Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 233

5. Refine the code to get it working better.

Sometimes code works the first time. That rarely happens. Even experi-
enced programmers don’t expect code to work on the first try. If it isn’t
working right

a. Try to isolate the problem.

b. Make sure the condition is being triggered. (That’s why you include
those trace statements.)

c. If the code is being called from several places, check whether it’s
wrong in all of them.

d. Try to separate code that works from code that doesn’t.

Eventually, you will find the problem. After you locate a problem, solving
it is usually pretty easy.

Adding the Sound Effects
Sound is an important part of games. Because many game sounds happen in
response to collisions, I often code sound right after getting the basic colli-
sion behavior.

234 Part IV: Getting Control of the Situation

STAIR and programming
I once attended a conference of computer pro-
gramming teachers. (Sounds dull, huh?) Everyone
agreed it was very difficult to teach students how
to get from an idea to code. We spent a lot of
effort analyzing good programmers. We finally
worked out a variation of the problem-solving
technique I described. Of course, you aren’t
allowed to do anything in the academic world
without a good acronym. I was assigned to come
up with an acronym for the problem-solving
process. I thought about it for a long time but
couldn’t come up with anything. One night I had a
dream about walking up some stairs. I shot out of
bed and knew I had it!

� S: State the problem

� T: Tools

� A: Algorithm

� I: Implement

� R: Refinement

As things go in the university world, this thing
got way out of control. Overzealous teaching
assistants began making people memorize
STAIR, like some sort of mantra. People had to
submit STAIR analysis of all their programming
assignments. I got a little sad. Still, I think the
idea has merit. When you find yourself staring
(get it? STAIRing!) at a blank screen, think about
applying the STAIR technique (or any other
organized problem-solving methodology) to get
over the hump.

589628 ch10.qxd 10/18/05 7:55 PM Page 234

The basics of sound programming are covered in Chapter 8.

To add sounds to your game, follow these steps:

1. Gather your sound files.

You might need to create some sounds, modify them, or adjust their
compression settings. Make sure all your sounds are working correctly
before you begin adding the sound code to your programs. Check
Chapter 8 for information on incorporating sounds.

Store all the audio files for your project in the same place so you can
find them easily.

2. Import the audio files into your Library.

Follow these steps for each audio file:

a. Load the sound file into the Library.

You can load all the sound files at once, but you must repeat the
following steps for each individual sound file.

b. Right-click the sound’s name in the Library and choose Linkages.

c. Set the linkage to Import for ActionScript.

If you don’t get the linkage right, the sound doesn’t play no matter how
you write the code.

3. Create all the sound objects.

The program’s init() function is the best place to create the sound
objects.

Here’s the code I added to init() in my program:

//set up sounds
//from sounds.fla init() function

sndCrash = new Sound();
sndCrash.attachSound(“crash.wav”);

sndFlame = new Sound();
sndFlame.attachSound(“flame.wav”);

sndAlarm = new Sound();
sndAlarm.attachSound(“alarm.wav”);

4. Play the sounds where appropriate.

After the sound objects are created, use the sound’s start() method to
play the sound when it’s needed in the program.

235Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 235

In my game, all the sounds are played as a response to collisions, so I
add code to the collision routines, like this:

//from sounds.fla checkCollisions() function
if (monster.hitTest(car1)){
trace(“hit by car 1!”);
sndCrash.start();
reset(car1);

5. Test your program.

Make sure sounds are happening when they are supposed to and aren’t
happening anywhere else.

When you’re working on code for hours, the sound can really get on
your nerves. If you’re sick of the sounds (or one sound), comment out
the line that starts that sound, like this:

//from sounds.fla collisions()
if (monster.hitTest(car1)){
trace(“hit by car 1!”);

//sound temporarily turned off
//sndCrash.start();
reset(car1);

If you turned the sounds off to preserve your sanity, turn them back on
before you publish your final version of the program!

Completing the Program
Although much of the basic functionality is done, you can’t call a game com-
plete if it doesn’t have winning and losing situations. Winning and losing a
game are usually attached to scorekeeping.

Adding an intro frame
For the Monster Traffic game, I created various games states. Chapter 3 illus-
trates how to implement the concept of state in a program:

1. Think of your game as a series of nodes.

In my game, I have four distinct states: Introduction, Play, GameOver,
and Instructions. Figure 10-5 shows the states. Although these states
share certain elements, they are distinct and thus require separate
attention.

236 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 236

2. Rebuild your main Timeline to incorporate the states.

Each node translates to a keyframe on the main Timeline. Separate
each keyframe by a few frames and add clear labels to your frames.
My Timeline looks like Figure 10-6.

When you’re building a game, you often begin with all the action in
Frame 1, Layer 1. Your final game will probably incorporate one or more
screens before the main play screen, so you need to add a keyframe or
two before the keyframe containing most of your code. To move your
code to a new keyframe, do the following:

a. Create a new keyframe at Frame 10.

By default, all the movie clip objects in the previous frame are
duplicated in the new frame.

Figure 10-6:
Final

Timeline for
Monster

Traffic
game.

Figure 10-5:
Each state

of the
game is

represented
by a

different
frame.

237Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 237

b. Add new keyframes to Timeline Frames 20, 30, and 40 as well.

These new keyframes represent other states in your final game.

c. Place a blank frame in Frame 50.

The last frame doesn’t really do anything: It’s just there to make sure the
label for the last keyframe is readable.

After this procedure, you have four keyframes, all containing the same
movie clip objects. Give each keyframe a meaningful label.

3. Copy the code from Frame 1 to the play frame.

So far you’ve written all the code in Frame 1, Layer 1 because it’s easy
to work with there. For your final game, you have an intro screen in
Frame 1, so all the code belongs in the play frame. Follow these steps
to migrate code to the play frame:

a. Select all the code from Frame 1.

b. Copy the selected code.

c. Paste the copied code into the play frame.

d. Delete the original code from the first frame.

Be absolutely sure you have the code available in the new frame before
you delete it from the original. Do not delete anything from Frame 1 until
you’re sure that you have the code duplicated in the play frame.

4. Clean up the intro frame.

If the first frame is no longer the play frame, remove everything that you
don’t need from that frame. On the intro frame, you need the monster,
one car, a text box for the game’s title, and two buttons. Begin by clear-
ing all the stuff you don’t need from the intro frame. Add a text box for
the game title.

5. Create a button to start the game.

Eventually, you need two buttons on the intro frame, but you can begin
with one. You reuse this button in several other parts of the game, so
take some time to make it something you like. (You can review button
creation in Chapter 2 if you need a refresher.) Don’t forget to name the
button instance something clever, like btnBegin. Add static text on top
of the button to tell the user what the button does.

6. Code the button.

Check again to ensure that all the code that was in Frame 1 is now dupli-
cated in the play frame. Remove all the other code from the intro frame.
Add some button code something like this:

//from monsterTraffic.fla init frame
stop();

//button events

238 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 238

btnBegin.onRelease = function(){
_root.gotoAndStop(“play”);

} // end button event

Because this is now a multi-frame program, the stop() function turns
off the automatic Timeline progression.

When the user clicks the button, program control moves to the play
frame.

7. Test the program.

Be sure that the program begins with the intro screen. Also ensure that
the program moves to the play screen when the user clicks the button.

Don’t worry about animating the car and the monster in the intro screen
now. I show you how to do that in a following section.

Create the other states
My program has four other states, so I need to create them. They’re all pretty
similar to the intro screen, so if you want, you can simply copy the elements
from the intro Stage onto the game over the instruction frames. After you
have all the basic components in place, follow these steps to get the function-
ality working:

1. Add an Instructions button to the intro screen.

You can use another instance of the same button that you use for begin-
ning the game. Drag another instance of the button from the Library;
add a static text field on top of the button; and give the button the new
name, like btnInstructions.

2. Code the new button.

Add code to control the button so that when it is clicked, program con-
trol moves to the instructions frame. The following code shows the
button’s event handler:

//from monsterTraffic.fla init frame
btnInstructions.onRelease = function(){
_root.gotoAndStop(“instructions”);

} // end button event

3. Modify the instructions frame.

Add a second text field to the instructions frame and modify the new
text field so that you can put instructions for the game on this page. You
might also need to modify the font on both text fields so that you have
room for all the text to fit at once. Both of these fields should contain
static text because their values don’t change during the program’s run.
Add enough instructions so that the user can get started in the game.

239Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 239

Don’t get carried away with your instructions. People playing online
games have notoriously short attention spans.

4. Add a button to the instructions frame.

Drag another instance of the button onto the instructions frame. Give
this new button a sensible name and label, and then add code, such as
the following:

//from monsterTraffic.fla instructions frame
//button event
btnBegin.onRelease = function(){
_root.gotoAndStop(“play”);

} // end button event

5. Test your program to ensure that program control moves correctly
from the intro screen to the instructions page as well as from the
instructions to the main game screen.

6. Create the GameOver screen.

Because this node is very much like the intro screen, you can use many
of the same elements. Modify the text field so that it reads Game Over
and create or copy a button that returns the user to the play screen. The
code for that button is identical to similar code in the intro and instruc-
tions screens, so I won’t repeat it here.

7. Test once again.

As always, make sure your new changes work before you move on to
something else.

Adding the scorekeeping functionality
When you have all the states in place, you can add the code that

� Increments the player’s score

� Keeps track of the number of times the player has been hit

This code goes into the checkCollisions() function described earlier in
this chapter. To add scorekeeping capability, follow these steps:

1. Find conditions that should change the score.

The Monster Traffic game has two kinds of conditions:

• When the flame hits a car (a good thing), the player’s score
increases.

There’s no maximum score (except for that imposed by the player’s
ability level), so don’t worry about the score getting too high.

240 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 240

• When a car hits the monster (a bad thing), the number of lives
decreases.

The player has a limited number of lives, so when the monster has
been hit too many times, the game ends.

2. Add text fields to track the current score and lives.

For scorekeeping, you need two dynamic text fields on the play screen:

a. Attach one dynamic text field to the monster.points variable.

b. Attach the other dynamic text field to the monster.lives variable.

3. Add code to modify the player’s score when the flame hits a car.

When the flame hits the car, the player’s score increments. In typical
arcade-game grade-inflation fashion, every hit is worth 100 points.

This is the code for changing the player’s score lives in the
checkCollisions() function on that play screen. The following code
is repeated for each car:

//from monsterTraffic play frame checkCollisions function
//look for flame collisions
if (flame.hitTest(car1)){
trace(“burned car 1”);
sndAlarm.start();
resetFlame();
reset(car1);
monster.points += 100;

} // end if

Because the monster.points variable is already connected to a
dynamic text field, simply modifying the variable automatically places
the score onscreen.

4. Add code to decrease the number of lives when the monster is hit by
a car.

Each time the monster is struck by a car, the number of lives is reduced
by one. Code for this situation also goes in the checkCollisions()
function. The following code is repeated for each car:

//from monsterTraffic play frame checkCollisions()
if (monster.hitTest(car1)){

trace(“hit by car 1!”);
sndCrash.start();
reset(car1);
monster.lives--;
if (monster.lives <= 0){
_root.gotoAndStop(“gameOver”);

} // end if
} // end if

241Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 241

The number of lives decreases, and it has a limit. If the monster has
fewer than 0 (zero) lives, the player has lost, and the game is over. This
is signified by sending program control to the gameOver keyframe.

5. Test your program.

After you add scorekeeping code, check your program to make sure that

a. The score increments correctly.

b. When the number of lives becomes less than 0, program control
reverts to the gameOver state.

Adding the animations
The complete version of the monsterTraffic game features a simple anima-
tion of the monster chasing the car on all the screens. These animations aren’t
necessary, but they add charm to the game and are very easy to create. They
simply reuse the objects already created for the main game and animate them
in a much simpler way.

To add these animations to your intro, instructions, and game over screens,
repeat the following steps for each frame:

1. Make sure the frame has instances of the objects you want to animate.

The animations in the monster game each need the monster and one car:

• For my game, the intro frame needs instances of the monster and one
of the cars.

Name the monster instance monster and the car instance car.

• For each screen, make sure that you name the instances of the mon-
ster and car objects correctly.

2. Initialize the objects.

In the auxiliary frames (everything but the play state), the objects in this
animation are much simpler than in the main game:

• Because the objects move straight up, only the dy property is
important.

• All the other properties are determined by the initial placement of
the objects on the Stage.

Follow these steps to build a simple animation:

a. Create an initialization function (called init()).

b. Call the newly created init() function from the Timeline code.

242 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 242

c. Add the following code to init():

//from monster traffic init frame
init();

function init(){
monster.dy = -5;
car.dy = -5;

} //end init

In monsterTraffic, the monster.dy property and the car.dy property
are both set to –5, indicating that both of these objects move up the
screen five pixels per frame (ppf).

3. Add simple animation code to the frame.

The following code is a simplification of the animation loop:

monster.onEnterFrame = function(){
monster._y += monster.dy;
car._y += car.dy;

//very limited boundary checking
if (monster._y < 0){
monster._y = Stage.height;

} // end if

if (car._y < 0){
car._y = Stage.height;

} // end if

Because the monster and car animation is so limited, you need to
change only the y properties of the two objects. The only necessary
boundary checking determines whether the monster or the car has
moved off the top of the Stage and then wraps the offending object to
the bottom.

Retest your program after you build the animation. Run your program
through its paces and make sure that

• The monster and car animations are working in all the right places.

• Your new code hasn’t broken anything that was working.

243Chapter 10: Building the Monster Traffic Game

589628 ch10.qxd 10/18/05 7:55 PM Page 243

244 Part IV: Getting Control of the Situation

589628 ch10.qxd 10/18/05 7:55 PM Page 244

Part V
Phun with Phuzzy

Physics

18_589628 pt05.qxd 10/12/05 2:54 PM Page 245

In this part . . .

At some point, you probably want to make your games
a little more realistic. Maybe you want a catapult to

shoot things in an arc, a car that slows when you release
the accelerator, or a spacecraft that orbits properly around
a planet. The bad news is all these things are explained by
the basic rules of math and physics. The worse news is we
all hate math and physics. However, there is some good
news: It’s not nearly as bad as you probably think. Dig in,
and you’ll wonder why your math professor didn’t explain
all that icky stuff by having you write a few games. You
never know: You might finally understand why vectors,
radians, and cosines really matter. Of course, if this stuff
truly freaks you out, you don’t have to pay any attention
at all, but play with the examples from these chapters,
anyway. You’ll find them pretty intriguing, and you might
eventually decide that they’re worth a try.

Chapter 11 describes the concept of vectors and how you
can use them to give objects a much more realistic motion
than the techniques shown earlier in the book. You also
discover the important principle of vector projection as
well as how to simulate the effect of gravity on an object
like a cannonball.

Chapter 12 applies the vector ideas to vehicles and illus-
trates how you can simulate various forces acting on a
moving sprite. Read here how to build objects that skid,
spin, and orbit. You can also read about the basic physics
models for various kinds of vehicle motion.

Chapter 13 is about creating and destroying sprites. You
see how to build a sprite from an object in the Library and
then how to destroy it with code. Read how to build and
manage an entire fleet of sprites and how to use Flash’s
new object-oriented paradigm to build extremely powerful
custom sprites easily.

18_589628 pt05.qxd 10/12/05 2:54 PM Page 246

Chapter 11

Vectors and Gravity
In This Chapter
� Introducing vectors

� Converting from angle and length to dx and dy

� Converting from dx and dy to angle and length

� Managing gravity

� Following the mouse

� Responding to mouse input

G ames usually have some relationship to reality. If you want your game to
model the real world — or even exaggerate aspects of the real world —

you need to know how things work in the real world. You don’t need a degree
in math or physics to make more realistic games. Some basic ideas can pro-
vide you a lot of capability. In this chapter, you see how to use vectors and
gravity to improve your games.

Tower, Give Me a Vector
Sprite objects moving around onscreen are the core of 2-D video games. On
each frame of a game, every object moves a given direction and speed. In
Chapter 10, I show you how to convert the direction and speed into the dx
and dy values that are used to move the object. The technique in that chap-
ter is fine if you’re willing to limit your sprites to a limited number of direc-
tions. However, many games call for a lot more flexibility. Fortunately, a really
neat concept — a vector — is perfect for this kind of situation. Vectors can
make your sprites do all kinds of cool things.

Objects don’t normally just move without outside influence. Gravity, which
plays a big part in many games, is essential for realistic behavior in your
games. Fortunately, the math technique for working with any angle is closely
related to an easy way to work with gravity.

19_589628 ch11.qxd 10/12/05 2:56 PM Page 247

Throughout this chapter, I show you how to work with angles, speed, and grav-
ity by using variations of the gravityTrace program featured in Figure 11-1.
The user can control a cannon’s angle and charge, and the cannon fires can-
nonballs in realistic arcs.

Working with vectors
The gravityTrace program in Figure 11-1 is remarkably similar to many
other programs throughout this book. Compared with the Monster Traffic
game developed in Chapters 8 through 10, the new elements are

� Gravity

� Moving objects in any direction at any speed

You can move an object in any angle at any speed with a math trick called
vector projection, which is a lot easier than it sounds. The basic problem
is this: When objects move, think of the motion in terms of direction and
speed. Mathematicians refer to this type of information as a vector.

It’s natural to think about vectors when you’re describing motion, even if you
aren’t familiar with the term vector. In everyday language, if you say, “Drive
east for five miles” or “ I walked 100 yards at a bearing of 35 degrees,” you’re
using vectors to describe motion.

Figure 11-1:
In this

game, users
control a
cannon’s

angle and
charge.

248 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 248

Flash (and most computer animation systems) doesn’t work directly with
vectors. To move an object on the screen, you need dx and dy properties.
You can convert any speed and angle into the appropriate x and y values.

Okay, you caught me. There’s some math in this chapter. However, any math
in this book is used because it makes your job easier, not harder. Basic math
can do incredibly powerful things. If you’ve ever asked when you’ll really use
math, today’s the day!

Math is much less painful when you use it to launch a cow over a castle wall!

Examining the vector
Figure 11-2 shows the most basic type of vector: a line superimposed onto a
coordinate system. One end of the line is on the origin (center) of that coordi-
nate system.

If you want to look at this diagram or any of the other diagrams in this sec-
tion more closely, you can find them all in the vectorAngle.fla file on the
Web site that accompanies this book:

www.dummies.com/go/flashgameprogrammingfd1e

As I was trying to figure out how to draw the math and figures for this section,
I realized I had one of the world’s best vector-drawing packages in front of me.

Figure 11-2:
A vector is
a line with
one end at
the origin.

249Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 249

A vector is usually described as a length and an angle measured against some
other standard. Math usually uses these terms:

� Length of the line: r

� Angle of the line (against the x axis): a or Θ (theta)

I use a in this chapter to avoid Greek symbols.

Mathematicians normally measure angles counterclockwise from the x axis.
This makes the math a little easier later on, but it might be confusing to you
because you’re probably used to measuring angles clockwise from the y axis.
Don’t worry about it. I show you the basic ideas of working with angles now. I
show you how to convert from common measurement to mathematical tech-
niques when you need them later in this chapter.

In your games, you’ll encounter the following terms:

� The angle represents the direction you want the sprite to travel.

� The length of the line represents how far in that direction you want to go.

� The origin of the coordinate system is the current position of the object.

� The other end of the line represents where you want to position the
object in the next frame.

Technically, mathematicians refer to a vector’s magnitude, not its length.
However, length and magnitude can be considered interchangeable for pro-
gramming purposes.

Making a triangle
The angle and length are what you start with, but what you really need to
know is what you should set dx and dy to get the object to the other end of
the line. Draw two lines to make your vector into a triangle, like in Figure 11-3.

You now have a right triangle that shows the difference between the current
and desired location:

� The vertical line represents the difference in y values.

� The horizontal line represents the difference in x values.

Seeing things the trig way
Right triangles are wonderful because of the many tricks for getting informa-
tion from them. The ancient Greeks discovered ways to determine all the
lengths and angles of a triangle based on very small bits of information. With

250 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 250

trigonometry, you give different names to the parts of the triangle. You’re
usually thinking about one angle still called a, but the sides have different
names.

� hyp: The longest side of the triangle is the hypotenuse.

� adj: The side touching the angle is the adjacent side.

� opp: The remaining side is the opposite side.

Figure 11-4 shows the triangle using trigonometry notation.

Figure 11-4:
The trig

names of
the triangle

parts.

Figure 11-3:
The sides of
the triangle

represent
dx and dy.

251Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 251

Trigonometry notation is useful because it describes how the sides of a trian-
gle relate to a specific angle of the triangle.

Getting help from Chief SOHCATOA
The ancient Greeks recognized that certain ratios persist in right triangles,
and that if you understand these ratios, you can calculate any side of a trian-
gle based on an angle and one of the other sides.

Math teachers often use the mnemonic SOHCAHTOA to help people remem-
ber the relationship. SOHCAHTOA is a summary of the three basic trigonome-
try ratios, as shown in Figure 11-5:

� SOH: The sin of angle a is the opposite side divided by the hypotenuse.

� CAH: The cosine of a is the adjacent angle divided by the hypotenuse.

� TOA: The tangent of a is the opposite side divided by the adjacent side.

How do I get dx and dy?
In every frame of your game, you’ll know the current position of each object,
what direction it should move in, and how many pixels you want it to move in
that direction. You need to resolve these values into something more practi-
cal: How much should you add to the object’s x value (dx), and how much
should you add to the object’s y (dy)?

Figure 11-5:
The trig

functions
are nothing

but ratios.

252 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 252

Getting the dy value
Finally, the trig and math stuff pays off. You know an angle and a distance,
and you want to generate dx and dy values. Figure 11-6 shows how you can
use math to do exactly that.

Trig notation says that

sin(a) = opposite/hypotenuse

Figure 11-6:
Derive a
formula

to get dy
from any

angle and
distance.

253Chapter 11: Vectors and Gravity

I want to write games. Why the math lesson?
You might wonder whether all this theory is
absolutely necessary in a book as eminently
practical as a For Dummies book. I can (and will,
later in the chapter) just give you exactly the for-
mulas that you need to handle most of the
vector issues you encounter. But you shouldn’t
write games just like mine — think of new vari-
ations. The only way you can truly create new
ideas is from a fundamental understanding of

the underlying principles. If you truly know how
vector projection works, for example, you have
a much better chance of changing how it’s done
to simulate a black hole onscreen or to make
some other variation I’ve never thought of.
Sometimes the most practical thing of all is a
little bit of well-applied theory. I show you sev-
eral ways to enhance these ideas in Chapters
12 and 15.

19_589628 ch11.qxd 10/12/05 2:56 PM Page 253

This formula can be translated into the original terminology:

sin(a) = dy/r

From there, you can use some basic algebra to create a formula that solves
for dy given any angle (a) and length (r). The formula requires that you know
the sin of angle a, but the computer can do that for you. The resulting for-
mula is

dy = r * sin(a)

In traditional mathematics, most variables are one letter long, so dy means
d * y. In the context of this book, dy is a property used to determine how an
object moves in y. Programmers avoid one-character variable names. I always
explicitly multiply variables together with the asterisk or parentheses conven-
tions. Two characters placed together are a variable name, not a multiplication.

Getting the dx value
Of course, the formula for deriving dx is nearly the same. Figure 11-7 shows
how I derived that formula.

To solve for dx, just recognize that dx is also the adjacent side, so the cosine
function that relates the hypotenuse to the adjacent side is also used to com-
pare the vector distance with its angle. Here’s the final formula:

dx = r * cos(a)

Figure 11-7:
The dx
formula

uses the
cosine

function.

254 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 254

Going the other direction
Sometimes you need to work the angle and length of the vector from dx and
dy. These problems have well-recognized formulas.

Solving for the angle
Solving for the angle uses the tangent function, as illustrated in Figure 11-8.

The tangent of angle a is the opposite side divided by the adjacent side. In
dx/dy terminology, you can say it this way:

tan(a) = dy/dx

To solve for a, you need to use the inverse tangent function (arctan). Of
course, ActionScript has this function built in; you just have to know when
you need it. The final formula for determining the angle when you know dx
and dy is this:

a = atan(dy/dx)

Solving for the distance
If you know dx and dy, you can determine the vector angle with the atan func-
tion, but how do you determine the vector’s length? That is best done with
our old friend Pythagoras. Figure 11-9 illustrates how to figure out the vector
length r given dx and dy values.

Figure 11-8:
Use the
tangent

function to
determine

the angle if
you know

dx and dy.

255Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 255

Unfortunately, the Pythagorean theorem uses yet another terminology to
describe the same triangle. The theorem is traditionally worded

a2 + b2 = c2

where c is the hypotenuse and a and b are the two other sides. If you solve
this function for c, c equals the square root of a squared plus b squared.

Translating to dx and dy notation, you can find the length of the vector (r) by

1. Squaring dx.

2. Squaring dy.

3. Adding these two values.

4. Finding the square root of the sum.

Doing Vector Conversion in Flash
When you can translate between angle and speed to dx and dy with vector
projection, you can modify the turn function to translate speed and direction
to dx and dy. However, there are other tricky details when you want to do the
math in Flash or another computing environment:

� Inconsistent angle measurement units: ActionScript uses different angle
units in different parts of the language:

• radians: The math functions built into ActionScript use radians (the
radius of a circle wrapped around a part of its circumference).

Figure 11-9:
The

Pythagorean
theorem

comes to
the rescue

once again.

256 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 256

• degrees: The _rotation property that is used to change the visual
orientation of a sprite uses degrees.

Degrees and radians are easy to convert:

• Degrees to radians

degrees = (180 * radians)/pi

• Radians to degrees

radians = (pi * degrees)/180

In the vecProj code described in the next section, I show you how to
convert units when necessary:

• Opposite rotation: Mathematicians begin angle measurements at
the x axis, working counterclockwise. In ActionScript, built-in math
functions work the same way.

• Offset by 90 degrees: In mathematics, most angle measurement is
done from the x axis. In navigation, angles are usually measured in
relationship to north. In ActionScript, when you work with degrees,
zero is north. When you work in radians, zero is the positive x axis.
The vecProj code in the next section illustrates how to compen-
sate for this inconsistency as well.

Introducing the vector projection demo
Figure 11-10 shows vecProj.fla, a simple program that illustrates these
concepts.

Figure 11-10:
Given a

length and
angle (in

degrees),
generate dx

and dy.

257Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 257

The vecProj program has dynamic text boxes linked to the variables angle,
length, dx, and dy. Note the button named btnCalc that has the following
code attached:

btnCalc.onRelease = function(){
//calculate DX and DY from angle and length
//use vector projection to get DX and DY

//offset the angle
degrees = angle -90;

//convert to radians
radians = degrees / 180 * Math.PI;

//get DX and DY (normalized: length is one)
dx = Math.cos(radians);
dy = Math.sin(radians);

//compensate for length
dx *= length;
dy *= length;

} // end btnCalc

When you’re running the vecProj program, you see very strange numbers
every now and then. For example, if you enter an angle of 180 and a length of 1,
you might expect dx to be 0 and dy to be 1 (because you’re moving down one
pixel). In this case, dy is 1, but dx is 6.12303176911189e-17! Before you
send me an angry e-mail about the defective program, look at the result. The
e stands for exponential notation, so the actual value being suggested for dx
is approximately

0.00000000000000006123

Computers are famous for not being capable of exact calculations on real
numbers. This number is close enough to 0 for game development.

Calculating the values
The code uses the angle and length variables to calculate new dx and dy
values.

The general procedure for generating dx and dy from angle and length is this:

1. Determine the angle and length of your vector.

In most cases, you extract these values from various sprites in your
game. In this first example, they are input directly from the text fields
shown in Figure 11-10.

258 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 258

Generally, the input values follow these conventions:

• The angle is measured in degrees using normal navigation mode.

• The distance is measured in pixels.

2. Offset the angle.

The trig functions measure angles from the x axis. You can compensate
for this by subtracting 90 from the original angle. I call this new variable
degrees because it’s measured in degrees.

//offset the angle
degrees = angle -90;

3. Convert to radians.

The trig functions require angle measurements in radians. Fortunately,
it’s a pretty easy conversion:

//convert to radians
radians = degrees / 180 * Math.PI;

The Math object has a built-in constant called Math.PI, so you don’t
have to remember the value of pi. Of course, a computer can’t get pi
completely right, but this approximation is more than good enough for
game development purposes.

4. Derive the normalized dx and dy values.

Use the trig functions to get the dx and dy values that would generate a
vector of length 1 in the desired direction. (A vector of length one is a
normalized or unit vector.)

//get DX and DY (normalized: length is one)
dx = Math.cos(radians);
dy = Math.sin(radians);

The trigonometry functions in ActionScript (such as Math.cos and
Math.sin syntax) are built into ActionScript’s incredibly useful Math
object. The Math object in the ActionScript dictionary shows other
useful tricks.

5. Multiply dx and dy by the distance.

After you know how to build a vector of length one in any direction, mul-
tiply both dx and dy by the length value to generate dx and dy values
corresponding to the desired length.

Using Vector Projection in Motion
You generally use vector projection in terms of motion. Chapter 10 describes
how to use a basic turn() function to convert direction and speed into dx

259Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 259

and dy by using a very crude algorithm. You can use vector projection to
vastly improve the turn() function. The cannon.fla program illustrated in
Figure 11-11 shows a cannon that fires bullets in any direction at any speed.

The cannon program demonstrated in Figure 11-11 uses these keys for
adjustments:

� Direction: Left- and right-arrow keys

The cannon’s direction is indicated in degrees.

� Initial velocity of the cannonball: Up- and down-arrow keys

In this example, the cannonball continues to travel in the same speed and
direction until it reaches the edge of the Stage.

Building a cannon
Much of the Cannon program is similar to some of the other programs pre-
sented in this book. Begin your cannon game by building the visual elements
on the screen:

1. Create a cannon movie clip.

My cannon looks like a sphere with a barrel sticking out of it. I built the
sphere as a circle with a radial gradient and the barrel as a rectangle
with a linear gradient. I was careful to ensure that the registration point
of the cannon was near the center of the circular part so that the cannon
appears to rotate around the center of that circle.

Figure 11-11:
The user
aims the

cannon by
adjusting
the angle

and speed
of the

projectile.

260 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 260

2. Create a bullet.

The bullet also is a movie clip.

My projectile is a simple dot, so I don’t have to turn it in the direction of
travel. You might want to use the ctl-up and ctl-down commands to
ensure that the ball appears underneath the cannon sprite so that it
appears to shoot out of the barrel instead of appearing on top of the turret.

For now, move the bullet sprite off the Stage. It’s summoned when it’s
needed.

3. Add text fields to display the angle and speed.

Even if you don’t show this information to the player (or if you use some
kind of graphical representation), it’s good to see the actual input values
while you’re testing.

To display the angle and charge, build two dynamic text boxes:

• A dynamic text box linked to the gun.dir property

• A dynamic text box linked to the gun.charge property

The variables associated with the text fields are the two properties that
are controlled from the keyboard.

4. Initialize your program.

As usual for moving sprites, you need to set up a number of properties
in some sort of init() function:

//from cannon.fla
init();

function init(){
gun.dir = 0;
gun.charge = 0;
bullet.dir = 0;
bullet.speed = 0;

} // end init

In init(), the gun object has the following properties:

• The gun.dir property: This indicates the direction the gun is pointing.

In this program, the gun is stationary. When it’s fired, this is the
direction in which the shells fly.

• The gun also has a gun.charge property that indicates how fast the
bullet flies when the gun is fired.

The bullet has two important properties of its own:

• The bullet.dir property indicates the direction that the bullet trav-
els in each frame.

• The bullet.speed property indicates the distance the bullet travels
in each frame. (Unlike the cannon, the bullet actually moves.)

261Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 261

5. Set up the bullet’s motion with the normal enterFrame code, like this:

//from cannon.fla
_root.onEnterFrame = function(){
checkKeys();
move(bullet);

} // end enterFrame

The next two sections show you how to make these two functions:

• The checkKeys() function checks the keyboard for user input.

• The move() function moves the bullet when it has a speed greater
than zero.

Reading the keyboard
In this case, you want to check for five different keys:

� Left and right arrows control the angle of the gun.

� Up and down arrows control the gun’s charge.

� The spacebar launches the bullet.

The keyboard routine is, well, routine! (Chapter 8 describes the details about
reading from the keyboard.) Listing 11-1 shows the checkKeys function from
the cannon.fla program.

Listing 11-1: Cannon Program checkKeys() Function

//from cannon.fla
function checkKeys(){
if (Key.isDown(Key.LEFT)){
gun.dir--;
gun._rotation = gun.dir;

} // end if

if (Key.isDown(Key.RIGHT)){
gun.dir++;
gun._rotation = gun.dir;

} // end if

if (Key.isDown(Key.UP)){
gun.charge++;

} // end if

if (Key.isDown(Key.DOWN)){
gun.charge--;

} // end if

262 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 262

if (Key.isDown(Key.SPACE)){
bullet._x = gun._x;
bullet._y = gun._y;
bullet.speed = gun.charge;
bullet.dir = gun.dir;
turn(bullet);

} // end if

} // end checkKeys

Listing 11-1 shows these controls:

� Direction control

• The left-arrow key decrements gun.dir by one degree.

• The right-arrow key increments gun.dir by one degree.

I don’t check for a lower boundary because negative angles are com-
pletely acceptable. I then rotate the gun sprite by the new dir.

� Charge

• The up and down arrows simply modify the gun’s charge.

• This doesn’t change anything visible on the screen, so it’s good to
have the text field displaying the gun’s charge.

� Firing

The spacebar fires the gun. In general, this simply involves transferring
information from the gun to the bullet. Follow these steps to fire the
cannon:

a. Place the bullet under the gun by copying the _x and _y properties
from the gun to the bullet.

b. Copy the gun.charge value to the bullet.speed property.

c. Copy the gun.dir property to bullet.dir.

The last line of Listing 11-1 calls a turn function, which translates the bullet’s
speed and direction into dx and dy properties.

Moving the bullet
The bullet is moved on the screen by using a typical move() function, as
shown in Listing 11-2:

� Move the bullet by its dx and dy properties.

� Stop the bullet at the screen boundary.

263Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 263

Listing 11-2: Cannon Program move() Function

//from cannon.fla
function move(sprite){
//moves an object. Kills it if it moves off stage

sprite._x += sprite.dx;
sprite._y += sprite.dy;

if ((sprite._x > Stage.width) ||
(sprite._x < 0) ||
(sprite._y > Stage.height) ||
(sprite._7 < 0)){

//stop sprite and move it off stage
sprite._x = -100;
sprite._y = -100;
sprite._speed = 0;

} //end if
} // end move

When the bullet hits a Stage border, it is quietly moved off the Stage and
stopped until it’s needed again.

Turning the bullet
As you learn more sophisticated techniques, you can modify your programs
to use these techniques. The turn() function described in Chapter 10 is
useful for moving any object in eight standard directions. You can make an
even better turn() function using the vector projection principles described
in this chapter.

The Cannon game uses a turn() function like many of the other programs in
this book, but this version of turn() uses the more sophisticated vector pro-
jection scheme to produce the same results. It still uses a direction and speed
to generate dx and dy values.

It’s pretty common to look at a particular function and figure out a way to
keep the same input and output but change the internal coding. This is useful
because you could presumably retrofit a more sophisticated algorithm with-
out having an adverse effect on the other parts of the program. This capability
is one of the biggest advantages of encapsulation. Used correctly, upgradeable
functions can make it very easy to improve your programs incrementally.

Listing 11-3 shows an improved turn() function implementing vector
projection.

264 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 264

Listing 11-3: Cannon Program turn() Function

function turn(sprite){
//use vector projection to get DX and DY

//offset the angle
degrees = sprite.dir -90;

//convert to radians
radians = degrees / 180 * Math.PI;

//get DX and DY (normalized: length is one)
sprite.dx = Math.cos(radians);
sprite.dy = Math.sin(radians);

//compensate for speed
sprite.dx *= sprite.speed;
sprite.dy *= sprite.speed;

} // end turn;

When you use vector projection for motion instead of the pure math version
described in vecProj.fla, you’re still worried about angles and distance,
but there are two special considerations:

� The r variable refers to the distance covered in one frame, so you gener-
ally think of the variable as speed rather than distance.

� Because you’re moving a sprite, the variables generally are properties of
that sprite, not global variables.

To turn a sprite object using vector projection, follow these steps:

1. Initialize your sprites.

Any sprite that’s moved using this scheme must have properties for dx,
dy, dir, and speed. Prepare initial values of these variables in an
init() function.

2. Create a generic turn function that works with any sprite.

For the cannon game, this turn function is different from the turn func-
tions in preceding chapters: You calculate the new dx and dy from the
angle and speed properties (instead of moving in one of a preset
number of directions).

3. Extract the angle from the sprite’s dir property.

Derive the degrees variable from the direction of the sprite.

4. Use the sprite’s speed property as the vector length.

The speed property should indicate how many pixels the object should
move in a given frame, so the sprite speed equals the length of the
vector.

265Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 265

Fun with Ballistics
Cannon games are very popular. The cannon.fla demonstration featured
earlier in this chapter makes sense if you’re looking at a cannon from the
top down. However, if you look at a cannon from a side view, as in the
gravityTrace.fla program, the shell’s trajectory is never a straight line.
Figure 11-12 illustrates the track of the shell for various starting criteria.

If you look at the trajectories in Figure 11-12, you can tell that things look
right, but it’s better to actually run the program to see how it works under
your own control.

Table 11-1 illustrates what happens to the vertical speed of an object pointed
straight up at an initial velocity of 10 with a gravitational pull of 1 ppf.

Table 11-1 Example of a Shell’s Vertical Speed
Frame Velocity Frame Velocity Frame Velocity

Frame 0 10 ppf Frame 7 3 ppf Frame 14 –4 ppf

Frame 1 9 ppf Frame 8 2 ppf Frame 15 –5 ppf

Frame 2 8 ppf Frame 9 1 ppf Frame 16 –6 ppf

Frame 3 7 ppf Frame 10 0 ppf Frame 17 –7 ppf

Frame 4 6 ppf Frame 11 –1 ppf Frame 18 –8 ppf

Frame 5 5 ppf Frame 12 –2 ppf Frame 19 –9 ppf

Frame 6 4 ppf Frame 13 –3 ppf Frame 20 –10 ppf

Figure 11-12:
Trajectories

of various
firing combi-

nations.

266 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 266

From Table 11-1, you can see some important characteristics of an object
moving in gravity:

� At the beginning of the exercise, the bullet is moving very quickly at its
initial speed. The bullet begins moving at 10 ppf.

� On each frame, the upward speed of the projectile slows until its vertical
motion stops altogether.

� On each successive frame, the bullet picks up speed downward until it
hits the ground at a velocity the same speed at which it left the cannon!
The bullet hits the ground at –10 ppf, which is the same speed as its
initial charge.

267Chapter 11: Vectors and Gravity

Gravity is serious
Projectiles should behave in certain ways:

� What goes up must come down. The Earth’s
gravitational field has an effect on things. If
you fire a bullet upward, it eventually comes
down (unless, of course, you shoot it into
orbit, but let’s forget about that for now
because it’s a little more complicated). For
side-view games that occur inside a gravity
field (which is most of them), you need to
somehow compensate for that gravity. (In
games with a top-down perspective, all
objects are perceived at the same height,
so gravity isn’t an issue.)

� Projectiles move in parabolas. Any trace
you can create with the gravityTrace
program is a parabola. This is good because
objects like bullets (that don’t have some
sort of onboard propulsion system) travel
in parabolic paths when in the presence
of some major gravitational feature like
Earth. (Of course, you can easily modify
your games to simulate the gravity of other
planets.)

� Movement is smooth and continuous.
Objects move in smooth curves. They don’t
suddenly change direction, jump, or drasti-
cally change speed.

� dx remains constant. Unless acted upon by
some other force, the horizontal speed of an
object shouldn’t change. In this case, I’m
not modeling drag, which would in fact slow
a cannonball because the effect is much
less important than the effect of gravity
on dy.

� dy changes throughout the trajectory.
When the gravityTrace program is run-
ning, you see that the cannonball’s vertical
speed changes. If you fire straight in the air
(angle 0) at 20 units, the ball leaves the gun’s
barrel at 20 pixels per frame (ppf), but it
slows every frame until it appears to hang
for a moment. It gradually accelerates until
it hits the ground at 20 ppf. In the absence
of any other force, the ending dy is exactly
opposite of the starting dy.

19_589628 ch11.qxd 10/12/05 2:56 PM Page 267

Understanding the gravity of the situation
A ballistic trajectory works in a very specific way, so adding a gravity model
might seem intimidating. In fact, it’s incredibly simple. It’s amazing how easy
the gravity model in the gravityTrace program is despite the fact that it
tends to follow all the rules of a good ballistics model.

The secret to simulating gravity on a planet is very simple:

1. Generate a gravitational constant.

My gravityTrace demonstration uses a gravitational constant of 1 ppf.
In the following example, I add a line to the Cannon program’s init()
function to set up the gravity:

//from gravityTrace init() function
gravity = 1;

The preceding function uses an arbitrary gravity value instead of attempt-
ing to simulate actual Earth gravity. The sidebar, “My physics teacher says
you’re wrong about gravity” describes the process of simulating gravity.

2. Add the gravitational value to each object’s dy in the move() function.

//from gravityTrace move() function at end of function
//incorporate gravity
sprite.dy += gravity;

During each frame, add a small amount to the dy property of each object
that is affected by gravity.

This form of gravity relies on changing the value of an object’s dy
property.

• Negative dy values make the object move up.

• Adding a positive value to dy makes it tend to go up more slowly if
it’s going up or to go more quickly if it’s going down.

3. Leave dx alone.

Doing nothing doesn’t sound like a step, but it’s part of making the grav-
ity work correctly.

The traces from the gravityTrace program show that when you aren’t
firing straight into the air, the arc of the bullet looks like a parabola. This
is because the dy changes, but dx remains constant. If you’re firing high
(like 10 degrees), the initial change in y is much more than the change
in x, making a nearly vertical line. As your bullet nears the top of its

268 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 268

trajectory, the change in y becomes smaller and smaller, but the change
in x remains constant, causing a more nearly horizontal path. Eventually,
the dy gets larger again, and the angle approximates the starting angle
as the bullet hits the ground.

4. Don’t forget to hit the ground.

It seems silly, but it’s even more important to do certain kinds of bound-
ary checking when you’re incorporating gravity. When the bullet hits the
ground, it should either bounce or stop.

The simpler code is to stop the bullet, so that’s what I do here. Make
sure to set the bullet’s speed, dx, and dy properties all to 0.

5. Adjust gravity as necessary.

I chose 1 as an arbitrary gravitational constant. The mass of your
objects in relationship to the planet is the most important characteris-
tic. The key is to play your game but also fiddle with the gravitational
constant until it works for your game.

• If things plummet to the ground too fast, make your gravitational
constant a little smaller.

• If they’re floating too much, make gravity more powerful.

This simple gravity technique works only when you simulate a small
object interacting with a very large object (like a bullet and a planet).
When you work with orbits and objects with similar masses, the calcula-
tions for gravity are different. Chapter 12 describes how to simulate
orbits, and Chapter 14 includes more formal descriptions of the gravity
formulas.

269Chapter 11: Vectors and Gravity

My physics teacher says you’re wrong
about gravity

The gravitational constant of Earth (third planet
from the Sun) is approximately 9.8 meters/
second2. I don’t usually use that value in game
programming because I rarely use either
meters as my unit measurement or seconds as
my time segment. Game programmers usually
do their calculations in pixels per frame. This is
an arbitrary measurement. The actual constant

you should use varies based on the scale of
your game. You generally need to experiment
the actual value until it feels right. For this exam-
ple, start with a gravity value of 1; that value is
easy to understand as you work on the rest of
the gravity code. The last step of the process
involves tweaking the gravitational constant so
it works well for your game.

19_589628 ch11.qxd 10/12/05 2:56 PM Page 269

Drawing on a movie clip
The code that traces the path of the bullet onscreen isn’t critical to under-
standing how to work with gravity, but it has two advantages:

� Tracing the bullet’s trajectory makes the program easier to understand.

� The tricks I use in gravityTrace are useful in other programs when you
want to draw directly on the screen.

The MovieClip object as defined by Flash has methods built in that let you
draw on a movie clip. You can look them up in the ActionScript dictionary for
more details.

In gravityTrace, I use the following methods:

� lineStyle(thickness, rgb, alpha)

This method specifies the color and thickness of the line:

• thickness is measured in pixels.

• rgb is the color.

The color code uses 0x plus six hexadecimal characters. For exam-
ple, 0xFF0000 is red, 0xFFFFFF is white, and 0x000000 is black.

For a complete guide to hexadecimal colors, check the excellent refer-
ence at Wikipedia:

http://en.wikipedia.org/wiki/Web_colors

• alpha is the line’s transparency.

100 is completely opaque (solid), and 0 is completely transparent.

270 Part V: Phun with Phuzzy Physics

Gravity is out of this world!
If you want to simulate gravity on a planet other
than Earth, begin with a gravitational constant
that works well for Earth and then adjust that
by the appropriate scaling factor, as in these
examples:

� If you have gravity working well for Earth
at a gravity constant of 1 and you want
to simulate the moon, simply divide by six

because the moon has one-sixth of the
gravitational effect of Earth. A gravity of
.1667 is close enough to simulate the moon’s
gravity.

� The gravitational pull on the surface of
Jupiter is about 2.6 times that of Earth, so
changing the gravitational constant to 2.6
effectively simulates Jupiter’s gravity.

19_589628 ch11.qxd 10/12/05 2:56 PM Page 270

� moveTo(x,y): Given an x, y coordinate pair, this moves a pen to that
spot on the movie clip without drawing a line.

� lineTo(x,y): This draws a line between the last lineTo() or moveTo()
command and the given x and y coordinates.

� clear(): This clears anything drawn with the drawing methods.

Drawing the path
The drawing methods make it very easy to trace the path of the cannonball:

1. Initialize the line.

The line is redrawn every time the user fires the cannon, so I initialize
the line when the user fires the cannon with the spacebar:

//from gravityTrace.fla checkKeys function
if (Key.isDown(Key.SPACE)){
...

//initialize line
_root.clear();
_root.lineStyle(2,0x000000,100);
_root.moveTo(gun._x, gun._y);

} // end if

The preceding code shows how to initialize the line:

• Clear any line that was on the Stage (with the clear() method).

• Make the line 2 pixels wide, black, and completely opaque with the
lineStyle() method.

• Move the pen to the gun’s position with the moveTo() command.

2. Draw the line as the bullet moves.

Each time the bullet moves, a small line segment should be drawn
between the bullet’s previous position and its current position. This is
quite easy to accomplish:

//from gravityTrace.fla move function
//use drawing tools to trace the path
_root.lineTo(sprite._x, sprite._y);

The lineTo() method draws a line from the previous point to the
sprite’s current position. A series of small straight lines creates an illu-
sion of a curved line.

271Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 271

3. Turn off the line drawing when the bullet stops.

When the bullet leaves the Stage, I move it off-Stage. You don’t want the
user to see that motion, so whenever the bullet hits a screen boundary,
I turn off the line drawing capability by setting the line style to invisible.
The following code shows how to turn off the line-drawing mechanism:

//from gravityTrace.fla move function boundary checking
//turn off line drawing
_root.lineStyle(0,0x000000,0);

The lineStyle property is changed to make the line invisible.

• The line style is set to a width of 0 points and a transparency of 0,
so the line is indeed drawn, but it’s invisible.

• The next time the player fires the cannon, the line style is reset to
be visible again.

Calculating the Vector from dx and dy
It’s common to have a vector that you need to convert to dx and dy values,
but sometimes you must go in the opposite direction. You might have a situa-
tion where you

� Know the location of two objects

� Need the angle and distance between the objects

The followMouse.fla program featured in Figure 11-13 is such a situation.
The program calculates the cannon’s angle and velocity by calculating the
relative position between the mouse and the cannon.

In this program, the difference between the mouse’s position and the
cannon’s position is used to determine the values for dx and dy. By using
some other calculations, the dx and dy values are turned into angle and
speed. As usual, I start with a simpler example that boils down the key ideas.
The dxdyToVec.fla program, as shown in Figure 11-14, is just such a utility.

I copied much of the design from the vecProj program, simply moving
around the variables. Once again, all the code is in the button press event
handler.

272 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 272

Listing 11-4 shows the button code for dxdyToVec.

Figure 11-14:
Calculate
angle and

distance
from dx
and dy.

Figure 11-13:
The cannon
follows the

mouse.
Charge is

determined
by distance.

273Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 273

Listing 11-4: dxdyToVec Program btnCalc() Function

//from dxdyToVec
btnCalc.onRelease = function(){
//calculate angle and length from dx and dy
//use atan to get angle, pythagoras to get length

radians = Math.atan(dy/dx);

//convert to degrees
degrees = radians * 180 / Math.PI;

//offset the angle
degrees += 90;

//handle negative dx angles
if (dx <0) {
degrees -=180;

} // end if

angle = degrees;

//use pythagorean theorem to calculate length
length = Math.sqrt(dx*dx + dy*dy);

} // end btnCalc

Determining the angle
Converting values from dx and dy to the angle is done by using the arctangent
function. If you know dx and dy, you can derive the angle a by the formula

a = atan(dy/dx)

To process the angle, follow these steps:

1. Calculate the angle by using the arctangent function.

The arctan result is in radians, so you should use a variable name to
help you remember that fact:

radians = Math.atan(dy/dx);

2. Convert the measurement to degrees.

If you rotate an object using the _rotation property, you need the angle
measured in degrees.

//convert to degrees
degrees = radians * 180 / Math.PI;

274 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 274

3. Offset the measurement by 90 degrees.

The math world and navigation worlds have different 0 marks. When you
measure in degrees, north is usually 0, so add 90 to your new variable to
compensate.

//offset the angle
degrees += 90;

4. Manage negative dx values.

The arctangent function is based on triangles, so it gets a little mixed up
when angle measurements are larger than 180 degrees. (A triangle can’t
have an angle larger than or equal to 180 degrees.)

To deal with this problem, check whether dx is negative. If dx is nega-
tive, subtract 180 degrees from the measurement, like this:

//handle negative dx angles
if (dx <0) {
degrees -=180;

} // end if

The result is the vector’s angle:

angle = degrees;

Determining the vector length
The vector length is actually a lot easier to calculate than the angle. A simple
application of the Pythagorean theorem does the trick:

//use pythagorean theorem to calculate length
length = Math.sqrt(dx*dx + dy*dy);

Generate the square root by using the sqrt method of the Math object.

You could also use a Math.pow() method to generate the squares, but in this
case, I find it easier to simply multiply the values by themselves.

Following the Mouse
You can modify the dxDyToVec technique to make the cannon follow the
mouse.

Most of this program is just like the other cannon programs, so I highlight
only those areas that make it unique.

275Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 275

Programming the EnterFrame event
In the previous versions of the program, you check the keyboard and move
the bullet in the enterFrame event. Now all the tasks formerly assigned to
the keyboard are delegated to the mouse. The enterFrame method is still
simple:

_root.onEnterFrame = function(){
followMouse();
move(bullet);

} // end enterFrame

Building the followMouse routine
Following the mouse is very much like the vector projection routine described
earlier in this chapter. Listing 11-5 shows the followMouse() function.

Listing 11-5: Follow Mouse Program followMouse() Function

//from followMouse.fla
function followMouse(){
//calculate gun’s direction based on its relationship to
//the mouse

dx = _root._xmouse - gun._x;
dy = _root._ymouse - gun._y;
radians = Math.atan(dy/dx);
degrees = radians * 180 / Math.PI;
degrees += 90;
if (dx <0) {
degrees -=180;

} // end if
gun.dir = degrees;
gun._rotation = degrees;

//charge is distance from gun to mouse divided by 10
distance = Math.sqrt(dx*dx + dy*dy);
gun.charge = distance / 10;

} // end followMouse

The process for making an object point toward the mouse is straightforward:

276 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 276

1. Determine the difference in location between the object and the
mouse.

• Use the _root._xmouse and _root._ymouse properties to deter-
mine the location of the mouse.

• Use the _x and _y properties of the object to determine where it is.

2. Calculate dx by subtracting the object’s x position from the mouse’s x
position.

dx = _root._xmouse - gun._x;

3. Calculate dy by subtracting the y position of the object from the y
position of the mouse.

dy = _root._ymouse - gun._y;

4. Calculate the angle in radians with the arctangent function.

radians = Math.atan(dy/dx);

5. Convert the angle to degrees.

degrees = radians * 180 / Math.PI;

6. Offset the degree measurement by 90 degrees.

degrees += 90;

7. Compensate for negative dx values.

if (dx <0) {
degrees -=180;

} // end if

8. Set the direction property of the object.

gun.dir = degrees;

9. Set the rotation property of the object to change the visual orientation
of the object.

gun._rotation = degrees;

10. Calculate the power of the charge based on the distance.

Often when you have objects follow the mouse, the relative angle between
the mouse and the object is the only thing you’re worried about. In this
case, you also use the distance to get an initial charge for the gun.

In the followMouse() routine, I modify the speed of the bullet. I divide
the length of the vector by 10 because when I use the actual distance as
the initial velocity of the ball, it often shoots across the screen too
quickly to be seen.

//charge is distance from gun to mouse divided by 10
distance = Math.sqrt(dx*dx + dy*dy);
gun.charge = distance / 10;

277Chapter 11: Vectors and Gravity

19_589628 ch11.qxd 10/12/05 2:56 PM Page 277

When you see an animation of a person or creature with eyes that seem to
follow the mouse, it works basically like this program. In most of those ani-
mations, only the angle matters.

Responding to the mouse click
Movie clip objects (including the _root object) can respond to mouse
clicks. In fact, they have an event designed specifically to look for this type
of situation.

In the followMouse version of the game, the cannon is fired by clicking the
mouse — not by keyboard action. The following code shows how to respond
to the mouse click:

_root.onMouseUp = function(){
//move the bullet
bullet._x = gun._x;
bullet._y = gun._y;

bullet.dir = gun.dir;
bullet.speed = gun.charge;
turn(bullet);

} // end mouseUp

Responding to a mouse click is pretty easy:

� The onMouseUp event automatically occurs when the mouse is released
anywhere over the application.

� All the code that had been attached to the keyboard spacebar event is
moved to the mouse’s release event.

Mouse input is often preferred if the user is already using the mouse for
navigation.

278 Part V: Phun with Phuzzy Physics

19_589628 ch11.qxd 10/12/05 2:56 PM Page 278

Chapter 12

Vehicle Motion
In This Chapter
� Understanding basic physics principles

� Generating motion vectors

� Building a realistic car

� Modeling spacecraft

� Making sprites with multiple states

� Adding drift to vehicles

Many arcade games involve various kinds of vehicles. If you’ve looked at
some of the other chapters in this book, you’ve seen several good

ways to handle vehicles. More interesting and realistic vehicles require a
closer approximation to the actual behavior of these objects. The study of
how objects move is a part of physics, but you don’t need a lot of fancy
physics to use it in your games. Frankly, the most realistic physics models
require so much mathematics that they are very difficult to write and run
very slowly on interpreted platforms like Flash. Most games use approxima-
tions of physics rules, not actual physics. This chapter shows several ways to
move an object onscreen so it behaves more naturally.

Newton without the Figs
Isaac Newton would be a great game programmer. He was interested in
understanding how objects move. He proposed three laws of motion that
guide all game programmers.

Newton’s First Law
Newton’s First Law seems really simple at first:

An object in motion stays in motion. An object at rest stays at rest.

20_589628 ch12.qxd 10/12/05 2:57 PM Page 279

I have my own summary of this law:

If it ain’t movin’, it ain’t movin’. If it is, it is.

There’s one strange thing about this simple rule: It doesn’t seem to be true.
Sure, if you have a rock in the middle of the field and nothing touches it, the
rock doesn’t move. But so far, every time I’ve ever thrown a rock, it stopped
moving eventually.

Newton was aware of this. The reason why balls stop rolling and things stop
moving is that lots of forces act on things:

� An object moving in a perfect vacuum indeed keeps moving at the
same trajectory indefinitely. When you code a spaceship flying in
space, you need it to have that behavior. An object on the surface of a
planet is different because it eventually stops. When you roll a ball on a
flat plane, the ball faces wind resistance and friction from the ground.
These forces slow the ball.

� When you drive a car, you constant apply gas to keep a constant
speed. You’re actually applying the force necessary to compensate for
air resistance and friction.

Whenever you model the motion of some object, you need to compensate for
Newton’s First Law regarding these forces. You can simulate different kinds of
motion by understanding and manipulating the forces. For example, a space-
ship has no rolling resistance nor wind resistance but also no traction (the
tendency to go in the direction it’s pointed). You model its motion differently
than how you model a racecar, which has wind resistance, rolling resistance,
and traction. If you can change these values, you can easily model the behav-
ior of a racing car or cargo truck. With a little more modification, you can
model the behavior of a boat or spacecraft.

In game programming, think of each force acting on an object as a vector.
Each vector can be broken into dx and dy components:

� Add all the dx components to get the object’s total change in x.

� Add all the dy components to get the object’s total change in y.

Newton’s Second Law
Newton’s Second Law helps you figure out exactly how much force you need
to overcome Newton’s First Law.

280 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 280

My own eloquent summary of this law is this:

The faster you want something to move, the harder and longer you kick it.

Newton’s Second Law is more officially summarized by this formula:

Force = Mass * Acceleration

This is sometimes shortened to F = ma or a = F/m (but I think my version is
much less stuffy).

The F = ma equation neatly summarizes the relationship among force, mass,
and acceleration:

� Force is required to move something.

� You need more force to move something faster.

� You need more force if the object has more mass.

If you know two of these variables, you can solve for the third. In game pro-
gramming, you often know the amount of acceleration you want to apply, and
you might need to calculate the force necessary. You use a variation of the
formula a = F/m to derive this value.

281Chapter 12: Vehicle Motion

Some basic definitions
Force is the amount of work necessary to move
an object. Force is a vector with a magnitude
and a direction.

Mass is the amount of matter in an object.
Things with more mass are more difficult to
move and stop.

In normal conversation, you might use the terms
mass and weight interchangeably, but that isn’t
precisely correct:

� An object’s mass never changes (unless
the object changes).

An object with a mass of 10 kilograms
always has that mass, whether sitting on
Earth, orbiting Earth, or sitting on the Moon.

� An object’s weight depends on its mass
and the local gravity.

A 10-kilogram object (on Earth) weighs
about 1.6 kilograms on the Moon, or nearly
0 pounds in orbit.

Acceleration is a measurement of how the
object’s motion is changing. It is a vector
quantity.

20_589628 ch12.qxd 10/12/05 2:57 PM Page 281

Newton’s Second Law is useful because you can use it to account easily for the
mass of a vehicle or object. Game programmers often take shortcuts in the
actual calculations (as I do in most of the programs presented in this book).
Still, you need to understand this principle because you can use it to make dif-
ferent kinds of objects act differently. For example, a big boat with a small
motor doesn’t accelerate nearly as well as a small boat with a big motor.

Newton’s Third Law
Newton’s Third Law describes how rocket engines can move spacecraft:

Every action is coupled with an equal and opposite reaction.

If you stand on a skateboard and throw a bowling ball off the front of the board
(preferably not in a china shop), the skateboard moves backward. Once again,
I will illustrate why these are called Newton’s laws and not Harris’ laws:

When you throw a rock, the rock throws you.

Newton’s versions sound a lot more official, but I think my interpretations
have their own cachet.

Every action has an equal and opposite reaction.

Newton’s Third Law explains how to add force to make something move. If
you want something to move in some direction, you must apply force in the
opposite direction.

A car moves forward by pushing back on the Earth with its tires. When an
apple moves toward the Earth, the Earth moves, too! Of course, because of
the relative masses of the two objects, the motion of the Earth is miniscule.

Newton’s Third Law isn’t used as much as the other two in game program-
ming. Game programmers don’t usually worry about how to move an object.
Your code moves it. Still, it’s a handy tool to know.

282 Part V: Phun with Phuzzy Physics

Just make a bigger engine!
You’d think that Newton’s Second Law would
give you a simple formula for making really fast
vehicles, but it isn’t always that simple. The
classic example of this is the famous Gee Bee
racing planes of the 1930s. The designers took a
huge bomber engine and wrapped the tiniest

possible airplane around it. The plane was fast
because the amount of force available through
the engine was enormous, and the mass was
quite small. Unfortunately, the small lifting and
control surfaces made the aircraft difficult to fly.
Several pilots were killed trying to fly the beast.

20_589628 ch12.qxd 10/12/05 2:57 PM Page 282

Newton and Vectors
The reason all this talk about Newton, forces, and vectors is important is that
the vectors that act on an object can be combined to create one motion
vector. A balloon floating in the air looks very simple, but it’s a very complex
balance of forces.

Empty balloons fall to Earth
Figure 12-1 shows an empty balloon in the balloon.fla program.

No other forces are at work, so the balloon moves downward.

283Chapter 12: Vehicle Motion

Physics terminology 101
I use a lot of physics words in this chapter. You
can also use these terms in everyday conver-
sation, but they have important specific mean-
ings for programmers. Position, velocity, and
acceleration are related but are different things.
In the context of game programming, these
terms mean the following:

� Position is the object’s location on the
Stage.

In this book, I use an object’s built-in _x and
_y properties to determine the object’s
position. Position is often seen as an ordered
pair (x and y); however, it can also be
viewed as a vector.

� Velocity is the movement of the object.

Velocity is a vector. Velocity can be viewed
as either an angle and a direction or as a
coordinate pair. An object’s velocity is
denoted by its dx and dy properties. Some
objects have direction and speed proper-
ties, but in most of my games, speed and
direction are used to generate dx and dy.

� Speed is the magnitude of the velocity
vector.

Speed isn’t the same as velocity. Speed is
an ordinary number (scalar); velocity is a
vector.

� Acceleration is the rate of change in an
object’s speed.

If velocity (dx) is the change in x, acceler-
ation is the change in dx (ddx). In practice,
when you add some value to dx or dy, you
accelerate the object. Acceleration is a
vector although I don’t always have specific
acceleration properties. I simply add values
to dx and dy to effect acceleration.

� Deceleration isn’t really important! Decel-
eration is simply acceleration in the oppo-
site direction.

To decelerate, add a motion vector in the
opposite of the direction of travel.

20_589628 ch12.qxd 10/12/05 2:57 PM Page 283

The balloon.fla program illustrated in Figure 12-1 (and on the book’s com-
panion Web site) shows that the balloon is moving downward. It’s much better
to see the actual motion than just to look at these still pictures in the book.

The little diagram at the lower right of Figure 12-1 illustrates the total force
acting on the balloon. You could call gravity a vector, with its own dx and dy
values. Gravity is the only force acting on the balloon, so you could use the
following formula:

balloon.dx = 0;
balloon.dy = 0;
balloon.dx += gravityDX;
balloon.dy += gravityDY;

Adding helium to the balloon
Figure 12-2 shows the balloon after it’s filled with helium. Gravity still exerts a
downward force, but that force is counteracted by the buoyancy of the helium.

The vectors drawn onto the balloon illustrate the two opposing forces. The
small diagram at the bottom right duplicates these vectors. If gravity pulls
the balloon downward some amount (for argument, say 3 pixels per frame
[ppf]), but buoyancy pulls up the balloon (how about 5 ppf?), the resulting
vector is a compromise. The balloon rises 2 ppf.

Figure 12-1:
Gravity pulls

down an
empty

balloon.

284 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 284

The code looks something like this:

balloon.dx = 0;
balloon.dy = 0;
balloon.dx += gravityDX;
balloon.dy += gravityDY;
balloon.dx += bouyancyDX;
balloon.dy += bouyancyDY;

Bringing wind into the mix
You can keep adding vectors all day long if you need to represent other
forces. Figure 12-3 shows what happens if a breeze is blowing.

In Figure 12-3, the balloon appears to move diagonally upward. This simple
diagonal vector is actually the combination of three forces at work:

The vector diagram in Figure 12-3 shows how the forces interact. Here’s the
code to compensate for the wind:

balloon.dx = 0;
balloon.dy = 0;
balloon.dx += gravityDX;
balloon.dy += gravityDY;
balloon.dx += bouyancyDX;
balloon.dy += bouyancyDY;
balloon.dx += windDX;
balloon.dy += windDY;

Figure 12-2:
Adding
helium

makes the
balloon rise.

285Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 285

This code shows that you can model as complicated of a system as you want.
For every force that you want to add to your system, simply

1. Break the force into dx and dy variables.

2. Add the force’s dx to the object’s dx.

3. Add the force’s dy to the object’s dy.

Don’t tie me down
Sometimes what seems to be the simplest situation is actually quite complex.
Imagine a balloon filled with helium, drifting in the wind but tied down with a
string. Even if the balloon seems to be motionless, many forces are acting on
the balloon.

Figure 12-4 illustrates the forces acting on a tied-down balloon.

If the balloon is tied to a string, it seems motionless, but the forces acting on
it haven’t gone away. This apparent contradiction is solved by noting that the
string itself exerts force on the balloon. If the string is strong enough, it can
counteract the buoyancy and wind forces and keep the balloon in place.
Notice that the vector has turned into a simple dot.

Figure 12-3:
The wind

adds its
own vector.

286 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 286

If an object is still, all the forces acting on it are balanced, and the net motion
vector is 0 (zero).

I used Flash’s built-in motion tweening to make this example program. It
worked, but it wasn’t easier than writing the code by hand. After you know
how to use code, it’s often easier to code your programs than to use the
“easy” way.

Baby, You Can Drive My Car
Some of the preceding chapters in this book show an example of basic vehi-
cle motion. Chapter 11 describes how to work with basic vectors. You can
create all kinds of vehicles with interesting motion when you

� Use Newton’s laws of motion.

� Translate standard (speed and direction) vectors to the dx and dy
values needed by ActionScript.

The first variation is a simple car shown in Figure 12-5. It doesn’t look very
different from the car featured in earlier chapters, but the car steers much
more smoothly. It combines two major ideas:

� The basic car (and monster) motion routines in Chapter 9

� The vector techniques described in Chapter 11

Figure 12-4:
Now the

balloon is
tied down.

287Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 287

I use vector projection so that the car can turn at any angle. Listing 12-1 is the
code for the car vector program.

Listing 12-1: carVector Program

//carVector
//use vector projection to go any speed, any direction

init();
function init(){
car.speed = 0;
//direction is now in degrees
car.dir = 33;

}

car.onEnterFrame = function(){
checkKeys();
turn(car);
move(car);

} // end enterFrame

function turn(sprite){
//use vector projection to get DX and DY

//offset the angle
degrees = sprite.dir -90;

//convert to radians
radians = degrees / 180 * Math.PI;

Figure 12-5:
The car
moves

smoothly
with vector

graphics
but doesn’t

look very
different.

288 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 288

//get DX and DY (normalized: length is one)
sprite.dx = Math.cos(radians);
sprite.dy = Math.sin(radians);

//compensate for speed
sprite.dx *= sprite.speed;
sprite.dy *= sprite.speed;

} // end turn;

function move(sprite){
//moves any sprite, wrapping around boundaries

//move
sprite._x += sprite.dx;
sprite._y += sprite.dy;

//rotate changed slightly.
sprite._rotation = sprite.dir;

//check boundaries - wrap all directions
if (sprite._x > Stage.width){
sprite._x = 0;

} // end if

if (sprite._x < 0){
sprite._x = Stage.width;

} // end if

if (sprite._y > Stage.height){
sprite._y = 0;

} // end if

if (sprite._y < 0){
sprite._y = Stage.height;

} // end if
} // end move

function checkKeys(){
//check keyboard to move car
if (Key.isDown(Key.UP)){
car.speed++;
if (car.speed > 8){
car.speed = 8;

} // end if
} // end if

if (Key.isDown(Key.DOWN)){
car.speed--;
if (car.speed < -3){
car.speed = -3;

} // end if
} // end if

(continued)

289Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 289

Listing 12-1 (continued)

if (Key.isDown(Key.RIGHT)){
car.dir += 5;
if (car.dir > 360){
car.dir = 5;

} // end if
} // end if

if (Key.isDown(Key.LEFT)){
car.dir -= 5;
if (car.dir < 0){
car.dir = 355;

} // end if
} // end if

} // end checkKeys

Checking keys for vector input
The basic setup of the carVector program is nothing new. I create a car
sprite facing north. The carVector code contains

� The same init(), move(), and enterFrame() functions used in the
Monster Traffic game in Chapters 9 and 10

� A different turn() function than the turn function in the Monster
Traffic game

The following code fragment shows a minor change in the checkKeys()
function:

//from carVector.fla checkKeys function
if (Key.isDown(Key.RIGHT)){
car.dir += 5;
if (car.dir > 360){
car.dir = 5;

} // end if
} // end if

if (Key.isDown(Key.LEFT)){
car.dir -= 5;
if (car.dir < 0){
car.dir = 355;

} // end if
} // end if

290 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 290

The code for the arrow keys shows a couple of new ideas:

� The car’s direction is stored in degrees instead of the arbitrary direc-
tions used in Chapter 9. When the user presses the right- or left-arrow
key, the car’s direction changes by 5 degrees.

� The boundary-checking code reflects 360 degrees in a circle.

Turning the car
In carVector, the turn() function calculates dx and dy (like other the
turn() functions in Chapter 9).

The following version of turn() incorporates the vector projection princi-
ples so the user can turn in arbitrary angles:

function turn(sprite){
//use vector projection to get DX and DY

//offset the angle
degrees = sprite.dir -90;

//convert to radians
radians = degrees / 180 * Math.PI;

//get DX and DY (normalized: length is one)
sprite.dx = Math.cos(radians);
sprite.dy = Math.sin(radians);

//compensate for speed
sprite.dx *= sprite.speed;
sprite.dy *= sprite.speed;

} // end turn;

Making an object-oriented car
Object-oriented programming (OOP) makes code elements easier to reuse.
You can add properties to your objects with reckless abandon, or convert
functions to methods.

Methods are a lot like functions, but methods are attached to a specific
object.

291Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 291

The following carVectorOOP program is functionally identical to the
carVector program from the preceding section (Listing 12-1). Listing 12-2
in the object-oriented programming (OOP) version shows how object-
oriented features in Chapter 6 can be combined with vector projection.

Listing 12-2: carVectorOOP Program

//carVectorOOP
//convert carVector to OOP notation
//by changing all functions to methods

init();
function init(){
car.speed = 0;
//direction is now in degrees
car.dir = 33;

} // end init

car.onEnterFrame = function(){
this.checkKeys();
this.turn();
this.move();

} // end enterFrame

car.turn = function(){
//use vector projection to get DX and DY

//offset the angle
degrees = this.dir -90;

//convert to radians
radians = degrees / 180 * Math.PI;

//get DX and DY (normalized: length is one)
this.dx = Math.cos(radians);
this.dy = Math.sin(radians);

//compensate for speed
this.dx *= this.speed;
this.dy *= this.speed;

} // end turn;

car.move = function(){
//moves any this, wrapping around boundaries

//move
this._x += this.dx;
this._y += this.dy;

//rotate changed slightly.
this._rotation = this.dir;

292 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 292

//check boundaries - wrap all directions
if (this._x > Stage.width){
this._x = 0;

} // end if

if (this._x < 0){
this._x = Stage.width;

} // end if

if (this._y > Stage.height){
this._y = 0;

} // end if

if (this._y < 0){
this._y = Stage.height;

} // end if
} // end move

car.checkKeys = function(){
//check keyboard to move car
if (Key.isDown(Key.UP)){
car.speed++;
if (car.speed > 8){
car.speed = 8;

} // end if
} // end if

if (Key.isDown(Key.DOWN)){
car.speed--;
if (car.speed < -3){
car.speed = -3;

} // end if
} // end if

if (Key.isDown(Key.RIGHT)){
car.dir += 5;
if (car.dir > 360){
car.dir = 0;

} // end if
} // end if

if (Key.isDown(Key.LEFT)){
car.dir -= 5;
if (car.dir < 0){
car.dir = 360;

} // end if
} // end if

} // end checkKeys

293Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 293

In Listing 12-2, the actual code is the same as Listing 12-1, carVector. The
only difference is how the functions are organized. For example, Table 12-1 is
a line-by-line comparison of carVector and carVectorOOP. The OOP code in
carVectorOOP changes the functions into methods.

Table 12-1 Comparison of carVector and carVectorOOP
Line carVector carVectorOOP

1 Car.onEnterFrame = car.onEnterFrame =
function(){ function(){

2 checkKeys(); this.checkKeys();

3 turn(car); this.turn();

4 move(car); this.move();

5 } // end enterFrame } // end enterFrame

A method is a function attached to a particular object. Just like a property is a
variable attached to some sort of object, a method is a function attached to
an object.

A method is something an object knows how to do.

The keyword this refers to the current object. Inside the car.onEnterFrame
event, the keyword this refers to the car object. Each of the standard func-
tions changes as well:

function turn(sprite){

becomes

car.turn = function(){

There is no need to send a parameter to the function. Now that it’s a method
of the car object, you can use the this keyword to refer to the car. So, inside
the turn method, you can refer to the sprite’s properties through the this
keyword, so

sprite.dx

becomes

this.dx

294 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 294

For many programs, it doesn’t much matter whether you use objects. When
code is more complicated, the object-oriented style makes it easier to build
many copies of a complex object. Chapter 13 shows how to make swarms of
objects.

Making an even better car
The carParam program shown in Figure 12-6 illustrates a car with so many
nifty gadgets that even James Bond is jealous.

I haven’t added a rocket launcher, but it’s easy to do.

The carParam program lets you experiment with various features of a car so
you can make vehicles that act exactly as you want. You can type your own
values into the top four text boxes and then drive the car onscreen to see
how it works.

The car has four main parameters:

� drag: This is the sum of the forces that slow the car.

Think of this variable as a combination of friction and wind resistance.

You can separate variables for all the various types of friction, but for
this simple model, I combine all elements that slow the car with drag.

Figure 12-6:
This car has

all kinds of
parameters

for you to
test and
change.

295Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 295

In carParam, drag is expressed as a percentage:

• 100 percent means the drag forces are so strong that the car will
never move, no matter how powerful the engine is.

• 0 percent means that the car is efficient, is never slowed, and has
an infinite top speed.

The default setting for drag is 35 percent:

• Set a lower drag value for a zippier car.

• Set a higher drag value for a more sluggish response.

The drag and power variables work together to determine the top speed
of the car. A force based on the drag value is multiplied by the car’s speed
each frame to slow the car. Even a fast-moving car eventually slows
because of drag.

� power: This simulates the engine’s power. Power is applied in the direc-
tion the car faces.

The power value affects the acceleration, which in turn affects speed.
A car with high power accelerates well, but it might not have a high top
speed if the drag is set high.

� turnRate: This is the turning rate of the car. It indicates how many
degrees per frame the car turns when an arrow key is pressed. A high
turn rate generates a car with a fast response.

This version of the program assumes a perfect suspension with no skid-
ding. Later in this chapter, the boat example shows a program with a
sliding effect.

� brakes: This is the stopping power of the car.

With the drag effect, you won’t really need brakes unless the car’s drag
ratio is extremely low. What self-respecting arcade gamer wants to slow
down anyway? Still, brakes can be used for some interesting effects, and
they’re easy to model.

Change the various parameters in the text boxes and use the arrow keys to
drive the car. You can add a lot of variety to the car with these four variables.
As you’re driving, watch how the car’s other characteristics (speed, direc-
tion, dx, and dy) change.

The most striking feature of this program is the smooth acceleration and
deceleration (especially at low drag levels). The top speed of the car is no
longer determined by a simple condition but rather by the interplay of the
power and drag variables. When you stop accelerating, the car coasts for a
while and eventually glides to a stop. You can adjust the turning rate so the
car feels like anything from a roadster to an aircraft carrier.

296 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 296

Because the car drives quite quickly in this example, I changed the default
frame rate from 12 frames per second (fps) to 24 fps to get smooth animation.
You can change the frame rate easily by changing the frame rate property
when the stage is selected. Change your frame rate before you start program-
ming, so all your motion values will change with the frame rate. (For example,
moving at 3 ppf at 24 fps is just like moving 6 ppf at 12 fps.)

Coding the parameter car
You can build many kinds of vehicles by adjusting a few well-designed
parameters.

The physics model of the carParam program still isn’t realistic, but it more
nearly approximates the actual physical properties of a motorized vehicle. To
build a car with these parameters, follow these steps:

1. Build an object-oriented car like the car in carVecOOP.

Your car should have all the standard properties and methods as in the
other car examples in this chapter. In Listing 12-3, the init code illus-
trates the standard parameters for my souped-up car.

Listing 12-3: carParam Program init() Function

//from carParam
function init(){
//direction is now in degrees
car.dir = 0;

//getting values from screen
//would normally be initialized here
//car properties
//car.drag = 35;
//car.power = 3;
//car.turnRate = 5;
//car.brakes = 1;

car.speed = 0;
car.dx = 0;
car.dy = 0;

} // end init

The car needs speed, dir, dx, and dy properties, plus the four new
properties: drag, power, turnRate, and brakes.

297Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 297

In the carParam init function, I get values for the car’s drag, power,
turnRate, and brakes properties from text boxes on the screen.
Normally these values are written into the code. I include some property
assignments but comment them out. In a normal situation, you don’t
pull initialization settings from the screen.

2. Write the enterFrame code to indicate what things happen during
each frame.

For each frame, my code looks like this:

car.onEnterFrame = function(){
car.getNumbers();
car.checkKeys();
car.turn();
car.move();

} // end enterFrame

Most of this is familiar stuff. checkKeys, turn, and move are equivalent
to the functions in carVectorOOP from earlier in this chapter. Only the
getNumbers() method is new. This method takes the property values
from the screen and converts them into a useable form.

3. Incorporate the turning rate in the checkKeys() method.

The following code shows how to use the turning rate to adjust how
quickly the car turns:

//from carParam checkKeys function
if (Key.isDown(Key.RIGHT)){
car.dir += car.turnRate;

if (car.dir > 360){
car.dir = car.turnRate;

} // end if
} // end if

if (Key.isDown(Key.LEFT)){
car.dir -= car.turnRate;
if (car.dir < 0){
car.dir = 360 - car.turnRate;

} // end if
} // end if

The checkKeys code adjusts the car’s direction by the turnRate. If the
direction passes the 360-degree value, it is moved to the next appropri-
ate value. (Similar code handles rotation to the left.)

4. Get accelerator and brake input in the checkKeys() method.

The up- and down-arrow keys control acceleration and braking. In this
model, the input is actually much simpler, as the following code shows:

298 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 298

//from carParam checkKeys function
if (Key.isDown(Key.UP)){
car.speed += car.power;

} // end if

if (Key.isDown(Key.DOWN)){
if (car.speed > -3){
car.speed -= car.brakes;

} // end if
} // end if

Here’s how the up- and down-arrow keys work in carParam:

• When the user presses the up key, increment the car’s speed by the
car’s power.

You don’t need to look for an upper boundary for the speed
because the drag value takes care of that.

• The down arrow subtracts the car’s braking force from the car speed.

If the speed is less than –3, the braking force is not subtracted from the
car’s speed. This limits the car’s backward velocity to 3 ppf regardless of
the drag and power settings.

5. Calculate dx and dy in the turn() method.

In Listing 12-4, the turn method uses the same vector-projection scheme
as carVectorOOP, but carParam also incorporates the drag rating.

Listing 12-4: carParam Program car.turn() Method

//from carParam.fla
car.turn = function(){
//use vector projection to get DX and DY

//offset the angle
degrees = this.dir -90;

//convert to radians
radians = degrees / 180 * Math.PI;

//get DX and DY (normalized: length is one)
this.dx = Math.cos(radians);
this.dy = Math.sin(radians);

//incorporate drag
tempDrag = 1 - (car.drag/100);
this.speed *= tempDrag;

//compensate for speed
this.dx *= this.speed;
this.dy *= this.speed;

} // end turn;

299Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:57 PM Page 299

The only unfamiliar line in Listing 12-4 is the one that incorporates drag.
The drag ratio is meant to be a value between 0 (zero) and 100. I use
this value to calculate a percentage between 0 and 1. I then subtract this
value from 1 and multiply the vehicle’s speed by the result. When you
multiply the speed by tempDrag, the speed decreases. This means that
various forces are always causing the car to slow. The engine’s power is
strong enough to compensate, but when the car is no longer accelerat-
ing, the speed gets smaller and smaller until it becomes negligible.

6. Stop the car at slow speeds.

The sidebar, “Stop that car!” shows a special case to make a coasting car
stop.

7. Grab variables from the screen if you need them.

Generally, you won’t worry about pulling car data from onscreen text
boxes, but I wanted an illustration that was easy to experiment with.

As I was working on the carParam program, I discovered a problem:
ActionScript got really confused when I asked it to read numbers from
text boxes. After some analysis, I discovered that ActionScript was
trying to interpret the data from the text boxes as string data (instead of
numbers), thus giving me bizarre results. This is a common problem in
languages like ActionScript that allow loose variable typing.

The solution for reading numbers from text boxes is pretty easy: In the
enterFrame event, I call a new method called getNumbers. The follow-
ing method is an easy way to read all the text fields as numeric values:

//from carParam.fla
car.getNumbers = function(){
//converts all text input to numbers
//otherwise actionScript gets confused
car.drag = parseFloat(car.drag);
car.power = parseFloat(car.power);
car.turnRate = parseFloat(car.turnRate);
car.brakes = parseFloat(car.brakes);

} // end getNumbers

In the car.getNumbers method, all the relevant variables are linked to
input text boxes, but they are interpreted as text. The parseFloat()
function takes a String value and converts it into a floating-point real
number. I simply converted every value into a float and had no further
problems.

Don’t bother with this conversion step if you don’t need it. In most of
your games, the property values for the vehicles are hard-wired into the
game. This demonstration helps you pick out values that make sense in
your game.

300 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:57 PM Page 300

Getting Lost in Space
The car I describe throughout this chapter has absolutely no skid. It sticks to
the road perfectly, going in exactly the direction it’s pointed. Of course, real
cars usually do that, but arcade cars always skid around crashing into stuff.

To get a vehicle with skidding behavior, here’s an example that’s very different
than a car. Figure 12-7 shows a spacecraft flying in open space. You can run
the space.fla program from the companion Web site to see the real effect:

www.dummies.com/go/flashgameprogrammingfd1e

Figure 12-7:
The

spaceship
is traveling
to the right

but is
pointing up.

301Chapter 12: Vehicle Motion

Stop that car!
Using a ratio to handle drag is a clever trick, but
it has one annoying problem. If I multiply the
speed (say, 10) by some fraction (say, .5), the
new speed becomes half the original speed.
Every frame, the speed gets smaller, but it never
actually equals zero! As a result, the car con-
tinues to drift very slowly after common sense
says it should stop. This is easy to rectify.

The following code at the end of the move()
method makes the stop:

//stop at really slow speeds

if ((this.speed > -0.5) &&

(this.speed < 0.5)){

this.speed = 0;

} // end if

If the speed descends between –0.5 and 0.5,
it is set to a value of 0. This “nails down the car,”
so it stops as it should.

20_589628 ch12.qxd 10/12/05 2:57 PM Page 301

The biggest difference between the spaceship and the car is that the space-
ship’s direction of travel is completely decoupled from the direction it’s
pointing. The ship can easily travel sideways. When you press the up arrow
for the spacecraft, you’re actually adding a motion vector in the direction the
spaceship is traveling.

Space doesn’t have drag or traction, so an object in space conforms to
Newton’s First Law perfectly:

� If it isn’t moving, it stays put.

� If it’s moving, it keeps moving unless a force stops it:

• Each time you apply thrust, you add to the ship’s motion vector.

• If you want to stop the ship, you must add the right thrust vector
to cancel out (oppose) all the previous vectors.

The explanation given here is a simplification. Gravity is always acting on
things in space. My method isn’t perfect science, but it works great for space
games.

Building a multi-state sprite
The spaceship has a special effect that shows little rocket thrusts when you
press an arrow key:

� Most of the time, the ship doesn’t show any flames.

� When the user presses the arrow keys, the rocket changes to reflect
its new status:

• The up arrow makes flames shoot out the back while accelerating.

• The turn arrows fire little retro rockets while rotating the ship.

Figure 12-8 outlines the moods of the ship sprite.

Figure 12-8:
The ship has

four states
that can

be activated
by the

program.

302 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 302

Each visual state is a named frame within the ship movie clip. To show any
particular version, simply send the movie clip to the appropriate frame. For
example, if a movie clip is named ship, you can call the thrust frame with
this code:

ship.gotoAndStop(thrust);

Initializing the ship
The ship has all the typical properties and initialization.

The following code shows how to initialize the ship:

//from space.fla
function init(){
//normal initialization
myShip.dx = 0;
myShip.dy = 0;
myShip.speed = 0;
myShip.dir = 0;
myShip.gotoAndStop(“still”);

} // end init

In the init() code, the only new element is the code that sets the ship’s
visual representation to still. I don’t want to see the flames unless I’m firing
the rockets.

The enterFrame event is completely unsurprising:

myShip.onEnterFrame = function(){
myShip.checkKeys();
myShip.turn();
myShip.move();

} // end if

As all the vehicle code has done, this program checks the keyboard, turns
the ship, and moves it.

Checking for input
In Listing 12-5, the keyboard input has two differences from car games:

� The spacecraft has no brakes, so you don’t need to trap for the down
arrow.

� Each key press triggers a particular visual state on the ship.

303Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:58 PM Page 303

Listing 12-5: Space Program myShip.checkKeys() Method

//from space.fla
myShip.checkKeys = function(){
//check for left and right arrows
if (Key.isDown(Key.LEFT)){
this.dir -= 10;
this.gotoAndStop(“left”);
if (this.dir < 0){
this.dir = 350;

} // end if

} else if (Key.isDown(Key.RIGHT)){
this.dir += 10;
this.gotoAndStop(“right”);
if (this.dir > 360){
this.dir = 10;

} // end if

} else if (Key.isDown(Key.UP)){
//thrust on up arrow
this.thrustSpeed = 1;
this.gotoAndStop(“thrust”);

} else {
this.thrustSpeed = 0;
this.gotoAndStop(“still”);

} // end if

} // end checkKeys

All the keyboard trapping has usually been in separate if statements, but in
Listing 12-5, I use an if...else if structure. I did this so I could handle the
case where none of the keys were pressed. The else clause handles that
eventuality.

The up arrow doesn’t directly control the ship’s speed. Instead, it controls a
special variable called thrustSpeed, which is either 0 or 1. The directions
are handled in the normal form. The thrustSpeed is used to calculate the
speed in the turn() method.

Turning the ship
As in the car programs, the turn() method’s job in Listing 12-6 is to convert
the ship’s speed and angle into dx and dy properties for the move() method.

304 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 304

Listing 12-6: Space Program myShip.turn() Method

//from space.fla
myShip.turn = function(){
this._rotation = this.dir;

//get new thrust vector
degrees = this.dir
degrees -= 90;
radians = degrees * Math.PI / 180;
thrustDX = this.thrustSpeed * Math.cos(radians);
thrustDY = this.thrustSpeed * Math.sin(radians);

//add thrust to dx and dy
this.dx += thrustDX;
this.dy += thrustDY;

} // end turn

In Listing 12-6, the turn method is different in this situation from the turn()
function used in the car programs. The space program adds a vector to the
current motion (instead of creating a new motion vector from the ship’s cur-
rent direction and speed). For example, if the ship is moving to the right but
pointed up, pressing the up-arrow key adds an upward vector to the existing
rightward vector, so the ship angles up and to the right.

To add to an existing motion vector, follow these steps:

1. Calculate the dx and dy of the direction you’re pointing.

The direction your craft is moving might or might not be the direction
you’re heading. Use the standard vector projection formulas from
Chapter 11 to get thrustDX and thrustDY variables.

You aren’t changing the ship’s dx and dy yet. Rather, you’re simply figur-
ing out how much you will change these values (if at all).

2. Multiply your calculated dx and dy values by the thrust speed deter-
mined in the checkKeys() method.

In this program, there are two possible values for thrustSpeed:

• If the user is pressing the up arrow, thrustSpeed is 1.

If thrustSpeed is 1, the thrustDX and thrustDY variables have
meaningful values.

• If the user isn’t pressing the up arrow, thrustSpeed is 0.

If thrustSpeed is 0, thrustDX and thrustDY are 0.

305Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:58 PM Page 305

In essence, if the thrust speed is 1, you add the calculated thrust to
your spaceship’s dx and dy values. If the thrust speed is 0, you add
nothing to the sprite’s motion vector, keeping the ship’s motion the
same.

3. Add the thrust vector (thrustDX, thrustDY) to the object vector
(dx, dy).

When vectors are broken into dx and dy components, you can add vec-
tors by

• Adding the two dx components to get a new dx

• Adding the two dy components to get a new dy

With this technique, the ship’s motion vector doesn’t change every time the
ship’s direction changes. Instead, the ship’s motion vector changes only
when the user accelerates.

Moving the ship
The ship’s move() method is just like the other move() methods throughout
this chapter, so I don’t show it here. If you want to see it in detail, you can
view it on the Web site version of the program:

www.dummies.com/go/flashgameprogrammingfd1e

Captain, We’re Caught in a Gravity Well
Any game vehicle is more fun when there’s stuff to crash into. A spaceship
game is even better when you have a planet to orbit.

The actual calculations for orbiting are complicated, but you can get a very
realistic approximation of planetary orbits with a very simple technique.

Figure 12-9 shows the planet program, with a ship and a planet. The ship’s
path is traced onscreen so you can see that the pilot has skillfully (ahem)
eased the craft into a parking orbit around the planet. Chapter 15 has a pro-
gram called Orbit Matcher that extends the ideas of this program considerably.

306 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 306

Creating the universe
Adding gravitational pull to a ship is surprisingly simple:

1. Begin with a spacecraft (as in the preceding example).

2. Add a movie clip called planet near the center of the screen.

3. Create a gravitational constant for the planet.

The following initialization code actually has two functions:

• Adds a gravity property to the planet

• Turns on line drawing

I’m doing this so you see a trace of the ship’s orbits in these pic-
tures, but it’s darn cool, anyway.

function init(){
//create the ship

myShip.dx = 0;
myShip.dy = 0;
myShip.speed = 0;
myShip.dir = 0;
myShip.gotoAndStop(“still”);

planet.gravity = 1000;

Figure 12-9:
Now the
ship has
a planet
to orbit.

307Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:58 PM Page 307

//set up drawing
_root.lineStyle(.5,0xffffff,100);
_root.moveTo(myShip._x, myShip._y);

} // end init

For planet.fla, most of the code is nearly the same as space.fla, but the
ship’s enterFrame event has this addition in planet.fla:

myShip.onEnterFrame = function(){
myShip.checkKeys();
myShip.turn();
myShip.move();
myShip.gravitate(planet)

} // end enter frame

In planet.fla, the gravitate() method tells the ship to calculate a gravita-
tional pull from the planet based on that planet’s gravity property.

I’m pulling for you . . .
In Listing 12-7, the gravitate method uses a very simple approximation of
planetary gravitation.

Listing 12-7: Planet Program gravitate() Method

myShip.gravitate = function(focus){
//pull this element to the focus object
//assumes focus object has a gravity property

//figure angle difference between ship and planet
tempDX = this._x - focus._x;
tempDY = this._y - focus._y;

//calculate distance between ship and planet
tempDistance = Math.sqrt(tempDX * tempDX + tempDY * tempDY);

//normalize vector (make it length of one)
tempDX /= tempDistance;
tempDY /= tempDistance;

//compensate for the planet’s gravitational pull
tempDX *= focus.gravity / (tempDistance * tempDistance);
tempDY *= focus.gravity / (tempDistance * tempDistance);

//invert the vector so it pulls ship to planet
tempDX *= -1;
tempDY *= -1;

308 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 308

//add vector to ship
this.dx += tempDX;
this.dy += tempDY;

} // end gravitate

You can create a simple planetary gravity well like this:

1. Attach a gravitate method to the moving object.

This method should accept some other movie clip as its focus.

2. Give the focus object a gravity property.

The focus sprite needs a gravity property. I’ve found that large values
(in the range of 100–1000) seem to work best. The larger the value, the
more gravitational pull the object has.

The gravity property really refers to the focus object’s mass. You proba-
bly should set the gravity property in the init() code of your program.

3. Calculate the difference in x and y between the object and the focus.

I call the difference between objects tempDX and tempDY in the
gravitate() code:

//figure angle difference between ship and planet
tempDX = this._x - focus._x;
tempDY = this._y - focus._y;

4. Determine the distance between the ship and the planet.

The good ol’ Pythagorean theorem handles this task admirably (as shown
in Chapter 11). The distance is used in a couple of ways.

//calculate distance between ship and planet
tempDistance = Math.sqrt(tempDX * tempDX + tempDY * tempDY);

5. Normalize the distance vector.

To make any meaningful calculations on the direction between the ship
and the focus object, you must convert the dx and dy values to a vector
of length 1.

Get the normal (length 1) vector by dividing both tempDX and tempDY by
tempDistance:

//normalize vector (make it length of one)
tempDX /= tempDistance;
tempDY /= tempDistance;

6. Calculate the gravitational pull of the planet on the ship.

309Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:58 PM Page 309

The standard formula for this is g = m/r2: Check Chapter 14 for a varia-
tion used when both objects have similar mass.

• g is the gravitational force.

• m is the mass of the dominant object.

In this program, m is the focus object’s gravity property. I’m
ignoring the mass of the ship, as it’s much smaller than the mass of
the planet.

• r is the distance from the center of the object’s mass.

In this program, r is the distance between the two objects.

To find a vector representing the gravitational pull of a planet, solve for
tempDX and tempDY, like this:

//compensate for the planet’s gravitational pull
tempDX *= focus.gravity / (tempDistance * tempDistance);
tempDY *= focus.gravity / (tempDistance * tempDistance);

7. Invert the gravitational pull.

If you run the program as shown here, the gravitational force pushes the
ship away from the planet.

Gravity pulls objects together, so simply invert tempDX and tempDY. The
following code accomplishes this:

//invert the vector so it pulls ship to planet
tempDX *= -1;
tempDY *= -1;

8. Add the gravity vector to the ship’s normal motion vector.

After you calculate the gravitational pull and store its components into
tempDX and tempDY, you can add these values to the dx and dy values of
the actual object to get the required motion, like this:

//add vector to ship
this.dx += tempDX;
this.dy += tempDY;

If one planet is good . . .
You can use the basic gravity calculations in some interesting combinations
For example, the twoPlanets program in Figure 12-10 shows how to calculate
the seemingly complex problem of a spacecraft orbiting two large stationary
planets. (I could also make the planets orbit each other as they would actually
do, but I’ll leave that as an exercise for the class.)

310 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 310

In this program, I add another planet with a different gravitational pull. I
check the gravitational pull of both planets in the enterFrame event:

myShip.onEnterFrame = function(){
myShip.checkKeys();
myShip.turn();
myShip.move();
myShip.gravitate(planet)
myShip.gravitate(planet2)

} // end enter frame

Figure 12-10:
Now the

ship
interacts
with two
planets.

311Chapter 12: Vehicle Motion

This isn’t rocket science
Before I get e-mails from every scientist in
NASA, let me give my standard disclaimer: This
really isn’t rocket science. You can improve your
calculations after you have something good
working. (I did have a friend who is a rocket sci-
entist look it over, though.)

These simple calculations are good enough for
arcade games:

� My model assumes that the focus object is
so much heavier than the orbiting object
that the force of gravity works in only one
direction.

� My ships have ridiculous amounts of power.
If you want a more accurate program, you
must reduce the ship’s thrust substantially.

20_589628 ch12.qxd 10/12/05 2:58 PM Page 311

Now the ship interacts with planet (the planet in the lower left with a gravity
of 10000) and also interacts with planet2 (near the center of the screen with
a gravity of 15000) during each frame.

You can use the same scheme to manipulate complex systems and get some
really fun results.

Building a Better Boat
A vehicle you are modeling might require slipping and sliding.

Most arcade vehicles fit somewhere between two extremes shown in this
chapter.

� In the car examples, the direction in which the vehicle is pointing is the
direction it moves. The vehicle doesn’t skid at all.

� In the spacecraft examples, the vehicle can be traveling in any direction,
not simply the direction in which it is pointed.

As an example of skidding behavior, look at the boat program displayed in
Figure 12-11. This program features a boat that can

� Slip sideways

� Accelerate forward

The best way to see this effect is to run the boat program from the compan-
ion Web site:

www.dummies.com/go/flashgameprogrammingfd1e

You can apply the same skidding concepts to any vehicle. I chose the boat for
variety and because boats have pronounced skidding effects.

In boat.fla, I add lots of dynamic text boxes so you can see what’s going on
with all these variables. Although the final user doesn’t usually want to see all
this information, it can be very useful to you while you test your programs.
The carParam program in this chapter shows you how to add this kind of
dynamic output to your programs.

312 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 312

The Secret of Traction
To get a vehicle to skid well, you actually need to move it twice per frame.
One time, you move it like the car, where it moves in the direction it’s
pointed. Then you move it in the direction of the thrust, like you do in the
spaceship.

You can adjust which type of motion gets the highest priority with a property
called traction:

� When you give a vehicle a high traction value, the vehicle tends to go
in the direction it’s pointed.

� When you give a vehicle a smaller traction value, the vehicle tends to
skid.

To add traction to a vehicle, follow these steps:

1. Begin with a vehicle object like the ones you create throughout this
chapter.

The object should have the same methods as the car examples for
movement, turning, and keyboard input.

Figure 12-11:
The boat
can slip

sideways,
giving a nice

realistic
feel.

313Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:58 PM Page 313

2. Add a traction property to the vehicle.

The best place to put any property definition is in the init() function,
so that’s where you should add the traction value, like this:

//from boat.fla, init function
boat.traction = .5;

3. Determine the boat’s current direction and speed.

The turn() method generates dx and dy values from the boat’s other
characteristics.

To determine these values, I use the following code to calculate the
object’s

• Direction in radians

• Current speed

//from boat.fla turn method
this._rotation = this.dir;

//get new thrust vector
//thrust vector is direction boat is currently pointing
degrees = this.dir
degrees -= 90;
radians = degrees * Math.PI / 180;

//calculate current speed
speed = Math.sqrt(this.dx * this.dx + this.dy * this.dy);

4. Calculate the boat’s drift vector.

The following code calculates the drift amount from the boat’s current
speed and direction. Drift is stored in variables called driftDX and
driftDY.

//from boat.fla turn method
//determine drift from boat’s current direction
driftDX = Math.cos(radians);
driftDY = Math.sin(radians);

//adjust drift for speed.
driftDX *= speed;
driftDY *= speed;

5. Determine the boat’s thrust vector.

This is the amount of change the user intends to apply.

314 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 314

The following code finds the user’s intended change from the boat’s
current direction:

//from boat.fla turn method
thrustDX = this.thrustSpeed * Math.cos(radians);
thrustDY = this.thrustSpeed * Math.sin(radians);

//add thrust to dx and dy
this.dx += thrustDX;
this.dy += thrustDY;

6. Apply the boat’s drift vector in the move() method:

//from boat.fla move method
//move according to current speed BEFORE applying thrust.
this._x += driftDX * this.traction;
this._y += driftDY * this.traction;

To move the boat with a skid factor

• Apply the drift vector to the boat’s current position.

• Use the traction value to indicate how influential the drift is.

7. Apply the boat’s thrust vector in the move() method, like this:

//from boat.fla move method
//move again AFTER applying thrust
this._x += this.dx * (1/this.traction);
boat._y += this.dy * (1/this.traction);

In the preceding code, the thrust vector is multiplied by the reciprocal
(one divided by) of the traction variable:

• If the traction amount is larger, thrust has less influence.

• If the traction amount is smaller, thrust has more influence.

315Chapter 12: Vehicle Motion

20_589628 ch12.qxd 10/12/05 2:58 PM Page 315

316 Part V: Phun with Phuzzy Physics

20_589628 ch12.qxd 10/12/05 2:58 PM Page 316

Chapter 13

The Life and Death of Sprites
In This Chapter
� Creating arrays

� Repeating code

� Building a sprite dynamically

� Creating a bunch of sprites

� Creating custom objects

� Making custom movie clip classes

Flash gives you the movie clip object, which is extremely useful because it
does most of what a sprite should do. (For some background on sprites,

skip back to Chapter 6.) Sometimes you want even more precise control over
your objects, such as making objects pop up and disappear on command, or
creating new kinds of movie clip objects that automatically do whatever you
want them to do. Games should also have lots of sprites onscreen — to add to
the fun and mayhem. You need to know how to create a number of sprites and
control them at once. In fact, you often need to work with a list of things in
programming, so start by reading about the incredibly useful array structure.

In this chapter, I cover how to build arrays, create sprites with your code,
work with a lot of sprites at once, and investigate Flash MX 2004’s new object-
oriented features. With these skills, you’ll be a master game programmer.

Here We Go Loop-de-Loop
This chapter is about repeated behavior. When you want a computer to do
things several times, you can use a special programming device called a loop.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 317

Loops are used to repeat code several times. Figure 13-1 shows the output
screen for loopDemo.fla.

The loopDemo program, as shown in Listing 13-1, demonstrates several basic
ways to perform repetitive behavior.

Listing 13-1: Loop Demo Program

//loop demo

//basic for loop
trace (“basic for loop”);
for (counter = 1; counter <= 5; counter ++){
trace (counter);

} // end for loop

The loopDemo program uses counting to illustrate several kinds of looping
mechanisms.

The most important kind of loop for game developers is the standard for
loop. The for loop is used to repeat code a specified number of times. To
build your own repeating loop

Figure 13-1:
The

loopDemo
program

does a lot of
counting.

318 Part V: Phun with Phuzzy Physics

What are loops doing way back in this chapter?
Loops are a really big deal in traditional pro-
gramming languages, so you might be surprised
that I haven’t mentioned them elsewhere in this
book. Game development is based on the notion
of a built-in animation loop. All your code is
designed to happen several times per second in

the enterFrame event. In essence, your pro-
gram already has a huge loop built in, so there’s
usually no need to think about repeating behav-
ior. However, when you work with several sprites
at a time in this chapter, you will often use loops.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 318

1. Create a counting variable.

Mine is called counter, but you can call it whatever makes sense for
your program. If you don’t have a better name, programmers traditionally
use i as a counting variable. The counting variable should be an integer.

2. Begin the for statement.

The for statement indicates a loop will begin. The for statement con-
tains three key elements (described in the following steps) that deter-
mine the loop’s behavior:

• A starting point for the counter

• An ending condition for the counter

• A mechanism for advancing the counter

3. Initialize the counting variable.

Most of the time, you begin counting at 0 (zero) or 1. (See the next sec-
tion for other variations.) The first clause of the for structure sets the
starting value of the counting variable. In my basic example, I want to
begin counting at 1, so I begin the for loop with the clause

counter = 1;

4. Determine the ending condition.

Create a condition that determines when the loop continues. As long as
the condition is evaluated as true, the loop continues. When the condi-
tion is evaluated as false, the loop ends. My example counts to 5, so I
specify the following condition:

counter <= 5;

If counter is less than or equal to 5, the code inside the loop continues.
As soon as counter is evaluated as greater than 5, the loop exits, and
the next line of code outside the loop executes.

5. Update the counting variable.

Every time the loop executes, the counting variable needs to change.
This can be easily accomplished through the for loop’s last parameter:
an update statement. Usually, this is a line of code that adds to or sub-
tracts from the counter. My update statement looks like this:

counter ++

The ++ operator simply tells ActionScript to increment the counter
variable by 1. Each time through the loop, counter is incremented by 1.
Eventually, the condition triggers, and the loop ends.

6. Create loop contents.

After defining the loop’s parameters, write code inside a pair of braces.
This code occurs as long as the loop’s condition is true. As soon as the
condition is evaluated as false, the next line of code outside the loop
occurs.

319Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 319

Making Many Things with Arrays
Your game programming goal is to create a number of movie clip objects
that are related yet unique. The good news is that programming languages
have had the ability to create lists of elements for years. The bad news is that
ActionScript doesn’t use this capability in a clean way when it comes to Movie
Clip objects. Still, the underlying technique for working with lists of variables
can be extremely useful. Listing 13-2 is a demonstration.

Listing 13-2: Array Demo Program

//arrayDemo.fla
//source: International Union for the Conservation of

Nature

ePop = new Array();
ePop[1] = “Tanzania”;
ePop[2] = “Dem. Rep. Congo”;
ePop[3] = “Botswana”;
ePop[4] = “Gabon”;
ePop[5] = “Zimbabwe”;
ePop[6] = “Rep. Congo”;
ePop[7] = “Zambia”;
ePop[8] = “Kenya”;
ePop[9] = “South Africa”;
ePop[10] = “Cameroon”;

for (i = 1; i <= 10; i++){
trace(i + “: “ + ePop[i]);

} // end for

This program records the ten countries with the largest population of African
elephants. (Remember me when you win big on Jeopardy! with this factoid
tidbit.) Any time you have a list of data, programmers usually like to use a
special structure called an array. In ActionScript, an array is a built-in object
type, created with the new keyword. Several values can be stored in the same
array variable, where they are distinguished by a numeric index.

320 Part V: Phun with Phuzzy Physics

There’s more than for
Many other looping structures are available.
Although the for loop will serve your needs for
this book, you can adjust the basic loop so that
it can count backward and even skip count
(count by fives). You won’t need those behaviors

in this book, so I won’t dwell on them here, but
you can look up these procedures in the online
Help. While you’re at it, you might also investi-
gate the powerful while loop, which is another
popular looping structure.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 320

To create an array, follow these steps:

1. Build an array variable using the new Array() syntax.

You have a number of variations of this approach, but ActionScript
arrays are unusually flexible, so you can simply use the new Array()
syntax without any parameters at all, and it will usually work just fine.

2. Add elements to the array.

The array can be seen as one variable with a lot of variables inside it.
This might seem strange to you, but throughout earlier chapters, you
can see this many times with Flash objects. Each object is a variable, but
it also has many properties, which also are variables. In arrays, each
subvariable has a numeric index rather than a name. Refer to a specific
element in the array with its index in square brackets. For example

ePop[1] = “Tanzania”;

can be read as ePop sub 1 gets Tanzania. You can assign values to array
elements just like normal variables.

3. Retrieve elements from the array.

After values are stored in an array, you can call them back by using the
same square bracket syntax. Thus, trace(ePop[1]) returns the first
element of the ePop array, which is Tanzania.

4. Consider using a for loop.

Because arrays have numeric indices, the for loop is a natural compan-
ion to the array. Frequently you’ll find yourself wanting to do the same
thing to every element in the array, and a for loop is a good way to
accomplish this. For example (pun intended)

for (i = 1; i < ePop.length; i++){
trace(i + “: “ + ePop[i]);

} // end for

Each time through the loop, the value of i increases by 1, so eventually
each element of the array is displayed. Figure 13-2 shows the results in
the output window.

321Chapter 13: The Life and Death of Sprites

Arrays by any other name
If you’re used to arrays in another language like
Java or C, you might be shocked at how little
information you need to create an array in
ActionScript. ActionScript arrays are actually
objects, so they’re much more powerful than

the arrays you might have seen in other lan-
guages. Pair that with the dynamic variable
generation and loose typing of ActionScript, and
it’s really pretty easy to make an array in Flash.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 321

This program creates its output with the trace statement, so the SWF
version doesn’t produce any visible output. To see the results of this
program, be sure to run the FLA version within the Flash editor. (Read
about these file types in Chapter 2.)

5. Use the length property to determine the number of elements in the
array.

Usually, you build loops that step through all elements of an array. You
could build a loop to work with the ePop array that looks like this:

for (i = 1; i <= 10; i++){
trace(i + “: “ + ePop[i]);

} // end for

Such a loop runs ten times, with the value of i ranging from 1 to 10 just
like it’s supposed to do. Consider what would happen if you add one
more value (making it a top 11 list). The loop still counts to 10 even
though there are now 11 elements in the array. Arrays come with a built-
in length property that tells how many elements are in the array.

Arrays begin counting elements with 0, so I wrote ePop originally (with ele-
ments numbering from 1 to 10) to include an element 0 and with a length
of 11. Notice that I actually changed the condition to handle this fact.

Figure 13-2:
One trace

statement in
a loop prints

the top ten
elephant

populations.

322 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 322

Building Sprites Dynamically
In other parts of this book, I show you how to create a sprite on the Stage
and then manipulate that existing sprite. If you want many copies of a sprite,
you can drag them from the Library, but until this chapter, you didn’t really
have a good way to create a sprite if it weren’t already on the Stage. Likewise,
you didn’t have a good way to make a sprite disappear when it’s no longer
needed. The makeaSprite program featured in Figures 13-3 and 13-4 shows
a technique for creating a sprite from the Library. Master how to make one
sprite, and then you can graduate to making a bunch of them.

The makeaSprite program doesn’t look terribly different from anything you
can see in earlier chapters of this book — from the user’s point of view, that
is. However, this program has an important design difference under the hood.
In all previous examples, you create movie clip objects on the Stage or in the
Library, and you can make more copies of a movie clip by dragging more
instances of it from the Library to the Stage. You can also use code to create
and destroy sprite instances. To create and destroy instances of the object
after the program starts running, read the techniques in this chapter to see
how to do exactly that and why it’s such an important technique to master.

Figure 13-3:
In the

design
environment,

there is no
sprite on the

screen.

323Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 323

Dynamically generating a sprite
You can create a sprite instance easily with the attachMovie() command.
To build a movie clip instance, follow these steps:

1. Create the movie clip class.

Build the visual representation of the movie clip object and place it in
the Library. You don’t need to have an instance of the movie clip on the
Stage. When creating the movie clip, be sure to select the Export for
ActionScript check box on the Properties tab, as shown in Figure 13-5.

Figure 13-5:
Dynamically

generated
movie clips

need
exported for
ActionScript.

Figure 13-4:
When the

program
runs, there
is a sprite!

324 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 324

By default, Flash ignores any items in the Library but not on the Stage. If
you’re building movie clips to be placed on the Stage by your code, be
sure you link the movie clip, or Flash won’t include the movie clip object
in the final SWF file.

2. Use the attachMovie() command to create an instance of the sprite.

Add code to build the sprite wherever you want it to occur. The follow-
ing code creates an instance of the ball called theBall and moves it to a
particular spot (I chose 100, 100) on the Stage:

//makeaSprite.fla
//Demonstrates creating multiple sprites at run time

_root.attachMovie(“ball”, “theBall”, 10);
theBall._x = 100;
theBall._y = 100;

attachMovie() is a method of MovieClips, so _root.attachMovie()
creates a movie clip attached to the main program.

3. Determine the class you want to create.

The first parameter of attachMovie is the name of the object in the
Library that you want to duplicate. This object must already exist in the
Library.

4. Name the instance.

The second parameter is the instance name of the object that you’re cre-
ating. When you build an instance in design time (that is, while you’re
working in the Flash editor), you name an instance by typing a name in
the Properties box in the editor. When you generate an instance dynami-
cally (as here), the sprite is generated while the user runs the program,
so there is no Properties box. You must specify the instance name
directly as part of the attachMovie() syntax. You can use this instance
name to refer to the particular instance later in your code.

5. Establish the z-order for the instance.

The Flash documentation calls this third parameter — z — depth.

When you use the attachMovie() method to place instances on the
screen, you must assign a number for the z-order. If you don’t know what
the z-order should be, you can use the _root.getNextHighestDepth()
command to retrieve a valid z-order.

If you accidentally assign two or more elements to the same depth, only
one appears. Be sure each instance is given a unique depth to avoid this
problem. The _root.getNextHighestDepth() command generates a
unique depth, but it does have some documented problems. It’s often best
to simply keep track of which depths you assign. I usually start adding ele-
ments at 10 or 100. In the upcoming “Making many copies of a sprite” sec-
tion, I show you how to ensure unique z-order values even when working
with a large number of elements.

325Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 325

6. Manipulate the instance.

After the instance is created, you can manipulate it through code just
like an ordinary instance. In fact, you almost always need to change a
few properties because the sprite appears in its default position. As a
minimum, you want to change the _x and _y properties so the object
appears somewhere other than the top-left corner of the screen. You can
change properties, and you can also add methods, event handlers, and
anything else you wish. In the preceding example, I move the sprite to
100, 100 by adjusting the _x and _y properties:

theBall._x = 100;
theBall._y = 100;

Building a suicidal sprite
This chapter’s earlier makeaSprite example shows that you can change the
properties of a sprite while it’s being created. You can also attach methods to
sprites while you create them. The killSprite program shown in Figure 13-6
automatically generates a sprite. However, this sprite has a new talent: When
you click the sprite, it disappears. In earlier chapters, I show you how to
make sprites leave the screen, but in those cases, the object stays in exis-
tence and simply moves off-Stage so the user can’t see it. However, with the
ability to create a sprite, you can also destroy it. When you can create and
destroy sprites at will, your game can have as many sprites as you want with-
out having to hide objects off-Stage.

Figure 13-6:
Vaporize

this sprite
with a

mouse click.

326 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 326

The code for this new version looks like this:

//killSprite.fla
//Demonstrates adding methods to sprites,
//deleting them in real time

_root.attachMovie(“ball”, “theBall”, 10);
theBall._x = 100;
theBall._y = 100;

theBall.onRelease = function(){
this.removeMovieClip();

} // end onRelease

The new sprite has two important features:

� Has a predefined method: When I created the sprite, I added a method
to it. This is done the same way in dynamically generated sprites as the
ordinary (design-time) kind. Simply create a function associated with
an event or method. This method is attached to the sprite as soon as
it’s created. The code does not run immediately, but the behavior is
attached to the sprite, so it can act appropriately. In this case, I add
code to the sprite’s onRelease() event so this sprite acts like a button.
When the mouse is released over the sprite, something ill happens.

� Can be destroyed: You can put any code you want in an event handler,
but I want to demonstrate how sprites can be destroyed while the pro-
gram is running. This behavior is handy for programs like Asteroids or
Breakout in which the user can destroy a number of sprites. The sprite
is killed by invoking its removeMovieClip() method.

327Chapter 13: The Life and Death of Sprites

Pick me! Pick me!
When Flash elements touch each other on the
Stage, one element always overlaps another.
Some objects appear to be closer to the user
than others even though they’re all on the same
2-D plane. This behavior is usually referred to as
z-order because in a 3-D environment, the z axis
usually refers to how close the object is to the
viewer’s nose:

� In normal Flash animation, you control the
z-order by determining what layer an object
is on.

� Objects in the same layer have their posi-
tion determined by the order in which they
were placed on the Stage.

� Elements placed later appear to be closer
and have a higher z-order than those
placed earlier.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 327

It doesn’t make sense to me to create a sprite using a method of the root
object and then destroy it by using one of its own methods, but that’s how
you do it.

Inside the onRelease code, I refer to the sprite as this rather than its name
(theBall). The distinction is unimportant when you have only one dynami-
cally generated sprite, but when you use this technique to create lots of
sprites (as you can see in the next section), each instance has its own name.
The this keyword refers to the current object, so inside the theBall event
handler, this means theBall, and you won’t have to worry about exactly
which instance you’re trying to kill. Each sprite knows how to make itself “go
gently into that good night.”

Making many copies of a sprite
Creating a single instance of a sprite dynamically is kind of cool, but the
technique really becomes crucial when you want to build a whole bunch
of objects. As an example, take a look at the lotsOfSprites program that
debuts in Figures 13-7 and 13-8:

This program is noteworthy in a number of ways:

� The user can make a lot of sprites. Every time the user clicks the
button, a new sprite appears. There is no limit to the number of sprites
that can be generated (although they will eventually cover the button).

Figure 13-7:
Every time

you click the
button, a

new sprite
appears.

328 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 328

� Each sprite is unique. Each sprite has a unique position and a unique
name. Each sprite also has a property called index that returns its ID.

� Each sprite has an onRelease event. When any ball is clicked, the pro-
gram reports the ball’s ID. This illustrates how a sprite can report on its
identity.

Listing 13-3 shows the code for generating all the sprites.

Listing 13-3: Lots of Sprites Program

//lotsOfSprites.fla
//Demonstrates creating multiple sprites at run time

i = 0;

theButton.onRelease = function(){
i++;
root.attachMovie(“ball”, “ball” + i, 10 + i);
currentBall = eval(“theBall_” + i);
currentBall._x = Math.random() * Stage.width;
currentBall._y = Math.random() * Stage.height;
currentBall.index = i;

currentBall.onRelease = function(){
output = “last ball clicked... #” + this.index;
this.removeMovieClip();

} // end onRelease

} // end theButton

Figure 13-8:
When you

click a ball,
it reports
its index.

329Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 329

To build a number of sprites, follow these steps:

1. Establish a counting variable.

Name the sprites ball_1, ball_2, and so on. The variable i keeps track
of which particular version of the sprite you’re talking about.

2. Build a mechanism for creating sprites.

In this example, I use a button click to let the user create the sprites. You
could also use a for loop to generate as many sprites as you wish.
(Read about for loops earlier in this chapter.)

3. Increment the counting variable.

Each time you build a new sprite, be sure you increment the counter so
that the sprite gets a unique name.

4. Create the sprite with attachMovie().

Note the special way I define the instance name: “ball_” + i. I con-
catenate the literal value ball_ with the value of the counter i. The first
time the user clicks the button, the ball instance is called ball_1. The
next time the user clicks the button, ball_2 is created, and so on.

5. Get a handle for the current ball.

Here’s one tricky problem. Each sprite has its own name, so how do you
assign the properties of the current ball? The easiest way to do this is to
create a new variable that corresponds to the ball’s name:

currentBall = eval(“theBall_” + i);

The eval function takes a string and attempts to interpret it as
ActionScript code. If i is 1, eval(“theBall_” + i); tries to evaluate
the string “theBall_1”. ActionScript recognizes that “theBall_1” is a
sprite object, and currentBall becomes another temporary name for
theBall_1. By using the currentBall technique, you can designate
properties for whichever ball you’re working on and not have to worry
about its specific name.

6. Generate a random position for the sprite.

After currentBall points to whatever sprite you just made, you can
change properties of currentBall to modify the current sprite.
Specifically, assign random values for the x and y properties to move the
ball to a random position on the Stage.

currentBall._x = Math.random() * Stage.width;
currentBall._y = Math.random() * Stage.height;

7. Create an index for the sprite.

330 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 330

ActionScript doesn’t provide an automatic way for the sprite to report
which of many objects it is, so add an index property.

currentBall.index = i;

The index is copied from i. When the program runs, each instance has a
different value for index to help you tell them apart.

8. Add an onRelease event handler.

Each ball should be capable of acting independently. Give each ball an
event handler that reports its name before destroying the instance. (Of
course, you can make your event handlers do whatever you want —
change states, move the object, whatever.)

9. Report the ball’s status.

Sometimes you need to know which particular instance you’re dealing
with. To illustrate, I have the movie clip report before self-destructing.
The code looks like this:

output = “last ball clicked... #” + this.index;

This code presumes that a dynamic text box is linked to the variable
output. The this.index reference indicates which particular instance
is responding. When you click a ball, you don’t want all the balls to dis-
appear — just the one you click.

10. Self-destruct.

Just for fun, I make the ball disappear when you click it, using the
removeMovieClip() syntax.

Using a similar technique, you could create armies of sprite objects by creat-
ing them inside a for loop. Each of the objects can have its own move meth-
ods, collision detection routines, or anything else you want.

How about creating an array of sprites? After all, arrays are great for this
sort of situation. Unfortunately, Flash doesn’t make it easy to build arrays
of movie clips. The technique I show you here is a workaround, but as far as
I’m concerned, I’m still building an array of sprites. I have to use the eval()
technique to refer to a particular sprite, but otherwise, it works identically
to an actual array.

Creating Custom Objects
Until the advent of Flash MX 2004, the best way to build customized objects
was to build all the sprites as soon as the program starts, as I do in the pre-
ceding section. However, you can encounter problems with this approach.
The technique involves lots of code that prebuilds the objects, and then you

331Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 331

simply release these objects and let them interact. It doesn’t take long before
you start having to declare functions inside functions and to face other
strange and mystical programming problems.

To skirt this potential pitfall, read through this section.

Making a really simple object
The latest version of Flash supports a stronger form of object-oriented pro-
gramming than earlier versions did. Flash MX 2004 includes ActionScript 2.0,
which can incorporate a new kind of class. As an example, take a look at the
following code:

class Dude {
//external definition
var handle: String = “anonymous”;

function sayHi(){
trace(“Hi, my name is “ + handle);

} // end sayHi

} // end class def

Although the code looks similar to the ActionScript throughout this book, it’s
not exactly the same. This code is a class definition. It is a separate file, con-
taining just code for describing one particular kind of thing. In this case, the
class describes Dude. A class definition has the following characteristics:

� It resides in its own file. Classes are separate files; they aren’t part of the
FLA file. Use a text editor to build the class file. Classes must be stored in
the same directory as the Flash programs that use them. Classes must
also end in .as, and the capitalization of the filename does matter.

If you’re using Flash MX 2004 Professional, you can edit class files
directly in the editor. If not, you can still use class files, but you need to
edit them in Notepad or some other text editor.

� It begins with the keyword class. This indicates that the file describes
a class.

� It contains a name. The name follows the class keyword directly. Class
names are usually capitalized. All the code between the class name and
the end of the file is contained in braces({ }) and is usually indented.

� Classes can have properties. Define a property with the var keyword.
Then specify the type of property it is (usually String or Numeric) and
provide a default value. The Dude class has a property called handle.

� Classes can have methods. If you define a function in the context of a
class file, the function is interpreted as a method of the object class.

332 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 332

After you create an object, you can use it in your Flash projects. The
Dude.fla project uses the Dude object:

//Dude Demonstrates ActionScript 2.0
// Simplest possible external object.
// expects a class file in same directory called “Dude.as”

theDude = new Dude();
theDude.handle = “Benjamin”;
theDude.sayHi();

There is no other code or user interface elements in the Dude.fla program
because it’s designed to be as simple as possible. When the program runs,
you see something like Figure 13-9 in the output window.

To incorporate a class file into your project, follow along:

1. Create the class definition.

a. Begin with a very simple class like the one defined here.

b. Store the class in its own text file.

Figure 13-9:
The class

file code is
incorpor-
ated into
the Flash

project.

333Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 333

Be sure that the class name and the filename are the same (including
punctuation) and that the class is stored in the same directory as the
FLA file you use it in.

2. Create an instance of the class.

To use your class in the Flash environment, create an instance of that
object with the new operator.

theDude = new Dude();

This generates a new Dude object and calls this instance of the object
theDude. This behavior might seem strange to you, but it’s much like a
mechanism I use many times throughout this book. The object class
(Dude) is much like a movie clip defined in the Library, and the particu-
lar instance (theDude) is like an instance of that class on the Stage.

3. Use the object’s properties and methods.

After you create an instance of your class, you can use its objects and
properties as if it were generated in the same program.

theDude.handle = “Benjamin”;
theDude.sayHi();

You can assign new values to the handle property and call the sayHi()
method. Because I wrote the sayHi() method to report the user’s name,
it works even though the code for this behavior isn’t in the actual FLA
file. Instead, it’s in the AS file, which is loaded dynamically.

Building custom sprite objects
The real power of custom objects comes when you build custom variations of
the movie clip class. When you create a graphical representation of an object
in the Library, it’s easy to drag that symbol onto the Stage to make multiple
copies. It would be even better if you could define characteristics of that
object (how it moves, the ability to check for keystrokes, or whatever) one
time, and have those behaviors automatically duplicated whenever you make
an instance of the object. That is exactly how custom Sprite objects work.
Take a look at the oopBall program featured in Figure 13-10.

Each ball moves in a random speed and direction, bounces off the walls, and
disappears when you click it. First imagine how much code it takes to get all
these balls to do these things; then load oopBall.fla into the editor. You’ll
be amazed to find that it has no code at all! I simply drop some ball instances
from the Library. I create an external class definition for the ball and associ-
ate it with the ball class in my Library. The class definition has all the code
necessary for the ball encapsulated out of the way. In fact, after I create the
external object definition, I can attach it easily to any movie clip in the
Library.

334 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 334

Using a custom movie clip class
Before writing your own custom movie clip classes, you can see how it works
by using the Ball.as class file on this book’s companion Web site. This
definition causes the sprite to appear automatically at a random spot on
the Stage, move in a random direction, bounce off all walls, and delete itself
when clicked.

To build a sprite using a custom class definition

1. Create the class in a separate file.

I show you in the following section how to create class files to modify
movie clip objects.

2. Create the visual representation of your movie clip in the Library as
normal.

3. Modify the movie clip.

Use the Properties dialog box when you create the movie clip, or right-
click the object in the Library and choose the Properties dialog box from
that menu.

4. Associate the class file to the movie clip.

Type the class file’s name into the AS 2.0 Class text box, as shown in
Figure 13-11.

• Be sure the class file resides in the same directory as the FLA file
you’re working on (and that the FLA file has been saved).

Figure 13-10:
These

moving
sprite

instances
were

created
without any

code!

335Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 335

• Be extremely careful of capitalization. The class file must have the
same capitalization as the text in the Properties dialog box and the
class name as defined in the file.

5. Create instances of the movie clip.

• Drag the movie clip to the Stage.

or

• Use the attachMovie() function.

6. Test the program.

You don’t have to write a single line of code for the movie clip object. If
it’s associated with the class file correctly, it automatically has all the
right behaviors in place as soon as you put it on the Stage.

I added another class called Rock.as to the Chapter 13 examples on the com-
panion Web site. This file has slightly different behavior: It rotates the movie
clip and regenerates it in a new position when it hits a wall. Experiment by
using different class files to change the behavior of your sprites.

Building a custom movie clip
As amazing as the oopBall program is, the code for animating the balls still
has to go somewhere. It’s stored in the separate Ball.as file, which is shown
in Listing 13-4. Create this file with an external text editor (like Notepad).

Listing 13-4: Ball.as Class Definition

class Ball extends MovieClip {

var dx: Number;
var dy: Number;

function Ball(){
_x = Math.random() * Stage.width;

Figure 13-11:
Associate a

movie clip
with a class

file here.

336 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 336

_y = Math.random() * Stage.height;
dx = Math.random() * 20 - 10;
dy = Math.random() * 20 - 10;

} // end constructor

function onEnterFrame(){
move();
checkBounds();

} // end function

function move(){
_x += dx;
_y += dy;

} // end move

function checkBounds(){
if (_x > Stage.width){
dx *= -1;

} // end if

if (_x < 0){
dx *= -1;

} // end if

if (_y > Stage.height){
dy *= -1;

} // end if

if (_y < 0){
dy *= -1;

} // end if

} // end checkBounds

function onRelease(){
//delete when clicked
removeMovieClip(this);

} // end if

} // end class def

A custom movie clip is a special type of class object. It has its own unique
characteristics. If you want to make your own, follow these steps:

1. Begin with a plain text file created in your text editor.

If you’re using Flash MX 2004 Professional, you can create class files
directly in the Flash environment. If you’re not using the Professional
edition, you can still create class files, but you must create them with
your own text editor, like Notepad or SimpleText.

337Chapter 13: The Life and Death of Sprites

21_589628 ch13.qxd 10/12/05 2:59 PM Page 337

Name the file carefully because you need the filename when you associ-
ate the file with a movie clip class.

2. Extend the movie clip class.

The object you’re making is actually an extension of an existing class.
Because this object is attached to a movie clip, you want to be able to
take advantage of all the great things movie clips already have, like the
existing properties and methods. For example:

class Ball extends MovieClip {

establishes your class name as Ball and explains that the ball will be an
enhanced movie clip.

3. Declare any properties.

Because the Ball object is an extended movie clip, it already has all the
normal features of a move clip object. If you want to add other proper-
ties, you need to define them formally in the class file:

var dx: Number;
var dy: Number;

The naming convention is a little stricter than elsewhere in this book. To
create a property, use the var keyword, the property’s name, a colon,
and the property type (Number or String, usually).

4. Build a constructor.

Look carefully to see that the Ball class also has a Ball function defined
within it. This special function is a constructor, which is automatically
called when the class is created. The constructor always has exactly the
same name as the class. You can think of a constructor as an automatic
init() function for a class. Usually, you put initialization code that
should happen whenever the class is created in the constructor.

function Ball(){
_x = Math.random() * Stage.width;
_y = Math.random() * Stage.height;
dx = Math.random() * 20 - 10;
dy = Math.random() * 20 - 10;

} // end constructor

338 Part V: Phun with Phuzzy Physics

Inherit the wind and other stuff, too
The extends keyword is an example of the
object-oriented principle of inheritance. That
might be a handy piece of trivia if you find your-
self magically transported to the middle of a

computer science cocktail party. In this exam-
ple, the new Ball object you’re defining
already has all the built-in characteristics of its
mom: the movie clip class.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 338

In my case, the constructor is used to initialize all the ball’s key proper-
ties. If the ball hasn’t been placed manually on the Stage, its position is
randomly determined, and its dx and dy properties are likewise ran-
domly generated.

5. Add the object’s methods.

Add methods to the object by defining functions. You can refer to any
of the object’s properties (whether built into the movie clip or custom
properties that you add) by simply using the property as a name. Notice
also that the method definition syntax is quite a bit simpler in the class
context than in earlier projects. For example, rather than writing

object.onEnterFrame = function(){

as in other programs, you simply define onEnterFrame as a function
because the object is already defined:

function onEnterFrame(){
move();
checkBounds();

} // end function

function move(){
_x += dx;
_y += dy;

} // end move

Likewise, the other methods can simply be defined as functions, and
they are automatically attached to the movie clip associated with this
class file.

6. End the class definition.

The class definition is a code fragment and should end just like a loop or
function definition.

7. Test by saving your file and associating it with a movie clip in a Flash
project.

339Chapter 13: The Life and Death of Sprites

I’m doing properties the wrong way
If you’ve done some formal object-oriented pro-
gramming, don’t fire up your e-mail client to tell
me how this method of creating properties is
horribly flawed. Purists would agree that object
properties should be controlled a little more
strictly than I do here, through a technique
called access methods. Although Flash does

allow access methods, the Flash implementa-
tion doesn’t provide the protection it should, so
I choose not to use them. You’ll be fine using the
technique I present here in Flash, but when you
move to a more formal object-oriented lan-
guage, like Java or C#, you’ll discover a better
technique.

21_589628 ch13.qxd 10/12/05 2:59 PM Page 339

The removeMovieClip() method works only on movie clips that have been
added through code. If you create an instance in design time by dragging
from the Library, you can’t delete it — yet another reason to create your
sprites dynamically.

One loop to control them all: Making
many custom movie clips
After you’re happy with a custom movie clip’s behavior, you can very easily
build programs that seem much more complicated than they actually are. As
an example, take a look at Figure 13-12 and the oopManyBalls program.

The code for the oopManyBalls program is incredibly simple:

//oopBall
//uses an external definition for the Ball.

for (i = 0; i < 100; i++){
root.attachMovie(“ball”,”ball” + i, i + 10);

} // end for loop

I simply use the attachMovie() command to create all the balls I want in a
big loop. All the behavior for the balls goes in the class definition file for the
ball. When I change (or replace) that file, I can get different behaviors for
every element in the set. With this tool on your belt, you have all the ammo
you need to unleash swarms of aliens on an unsuspecting planet.

Figure 13-12:
All these
balls are

moving
around. I

built them
with a

simple loop.

340 Part V: Phun with Phuzzy Physics

21_589628 ch13.qxd 10/12/05 2:59 PM Page 340

Part VI
The Part of Tens

22_589628 pt06.qxd 10/12/05 3:23 PM Page 341

In this part . . .

It’s the law: You’re reading a For Dummies book, so you
know it will have a Part of Tens. These chapters have

some of my favorite content in the entire book.

Chapter 14 summarizes ten key math and physics con-
cepts for game programmers. It’s a variation of a cheat
sheet that I’ve kept by my computer for many years while
writing games in any language. I took the most important
nuggets of wisdom from the entire book and repeated
them here in this easy-to-review section. If you did have to
take a test on this book, this is the chapter you’d record
and play all night to learn subliminally.

Chapter 15 is the most fun chapter in the book. I take the
concepts described throughout the book and use them
to build the genesis of ten different games. If you want to
build an adventure game, a tile-based strategy game, a top-
down scroller, or a game about matching planetary orbits,
I provide you with a starting framework. Throughout the
chapter, I show you where you can find the details you
need to write each game.

22_589628 pt06.qxd 10/12/05 3:23 PM Page 342

Chapter 14

Ten Math Concepts
for Game Programmers

In This Chapter
� Setting velocity, motion, acceleration, and gravity

� Managing vectors

� Generating random integers

� Using Newton’s Second Law

You might not have loved math class in high school, but if you’ve looked
through this book, you know that math can be really handy when you’re

making games. Here’s a collection of my favorite math and physics concepts.
Use this list as a review when you’re trying to make interesting things happen
in your own games. For each concept, I indicate where in the book you can
turn to get more information about using the formulas in your own games.

Managing Velocity
If this book has one central pair of formulas, it’s the pair that lets you move
an object:

x += dx;

y += dy;

These two formulas are usually used in an onEnterFrame event to move an
object, where

� x and y are the coordinates of the object.

� dx and dy indicate the desired change in x and y in the next frame.

23_589628 ch14.qxd 10/12/05 3:00 PM Page 343

These formulas specifically determine changes in position over a specific unit
of time (one frame); standard physics formulas usually incorporate time as a
variable. Look over Chapter 6 for an introduction to these concepts.

Accelerating an Object
Acceleration is accomplished by changing the values of dx and dy:

dx += x_accel

dy += y_accel

In this formula, dx represents the change in x, and x_accel indicates acceler-
ation in the x axis.

If you want to speed your sprite, add some value to dx. (Read more about
sprites in Chapters 6, 9, and 13.) If you want to slow a sprite, subtract a value
from dx. The same ideas apply to dy, and you need to adjust both dx and dy
to get the desired results. Usually, these values are changed in response to
some kind of event. For example, you might want to accelerate when the user
clicks the mouse button and then decelerate naturally over time. Use of
acceleration is described most completely in Chapter 12.

Calculating a Distance
If you have two objects, with coordinates

(x1, y1)

and

(x2, y2)

you can determine the distance between these objects with a form of the
Pythagorean theorem, as illustrated here in Figure 14-1.

d x x y y2 1 2 1
2 2

= - + -^ _h i

Figure 14-1:
The

distance
formula.

344 Part VI: The Part of Tens

23_589628 ch14.qxd 10/12/05 3:01 PM Page 344

Usually, the two objects are movie clips, and you use the _x and _y proper-
ties of the two objects for x and y.

You can use a variation of this technique as a special form of collision
detection:

function collides (sprite1, sprite2, threshold){
//returns true if the distance between sprite1 and
//sprite2 is less than threshold. Otherwise returns false

result = false;
xDist = sprite1._x - sprite2._x;
yDist = sprite1._y - sprite2._y;
distance = Math.sqrt((xDist * xDist) + (yDist * yDist));
if (distance <= threshold){
result = true;

} // end if
return result;

} // end function def

The advantage of this function is that it tests based on the difference between
the registration points (usually both in the center of the objects) and can be
adjusted regardless of the actual size of the movie clip objects on the screen.

Chapters 11 and 12 use variations of this technique to determine the distance
between either two sprites or a sprite and the mouse.

Projecting a Vector
In physics, the motion of objects is usually expressed in terms of vectors,
which have an angle measurement and a length. In programming, breaking a
vector into its dx and dy components is often more convenient, as shown in
Figure 14-2. Trigonometry is used to perform this manipulation.

cos

sin

dx r

dy r

=

=

i

i

Figure 14-2:
Vector

projection
formulas.

345Chapter 14: Ten Math Concepts for Game Programmers

23_589628 ch14.qxd 10/12/05 3:01 PM Page 345

Usually in game programming, you’re not calculating x and y but rather dx
and dy. Also, you rarely call the angle theta (Θ) because usually it’s the
direction property of a sprite.

The code for using these formulas for calculating a sprite’s velocity is the pri-
mary topic of Chapter 11.

Generating a Vector
Sometimes you need the inverse of a vector projection:

� You know the dx and dy of an object (or the position of two objects,
which amounts to the same thing).

� You want to know the angle and distance.

The angle is calculated through the arctangent function, as shown here in
Figure 14-3:

arctan dx
dy

=i d n

Use the Pythagorean theorem to determine the length of the vector, as shown
in Figure 14-4.

r dx dy2 2= +

These formulas are described fully in Chapter 11.

Figure 14-4:
Distance

formula for
vectors.

Figure 14-3:
Angle

calculation
formula.

346 Part VI: The Part of Tens

23_589628 ch14.qxd 10/12/05 3:02 PM Page 346

Compensating for Gravity
There are a number of ways to think about gravity. In simple games where the
player is near a very large force (usually Earth), calculate gravity by adding
some value to dy each frame:

dy += gravity;

This technique is illustrated in Chapter 11.

If you need to calculate the gravity between two objects in space, you can
use the Law of Universal Gravitation, as shown in Figure 14-5.

f
d

m m G2
1 2=

This formal definition of gravity incorporates

� The mass of both objects

� A gravitational constant G

Chapter 12 describes a simpler variation for calculating the orbit of a
spaceship around a planet. The variation in that chapter eliminates the
need for the constant G.

Newton’s Second Law
Newton’s Second Law is usually expressed as a formula (see Figure 14-6).

F ma=

Figure 14-6:
Newton’s

Second
Law.

Figure 14-5:
The Law of

Universal
Gravitation.

347Chapter 14: Ten Math Concepts for Game Programmers

23_589628 ch14.qxd 10/12/05 3:02 PM Page 347

In Newton’s Second Law, F represents force, m represents mass, and a
represents acceleration.

In game programming, you often know the mass and the force but need to
determine proper acceleration. You can use the variation in Figure 14-7 to
determine acceleration.

a F
m=

A discussion of this technique is found in Chapter 12.

Generating a Random Integer
If you want to generate a random integer between 0 and highest, use the fol-
lowing code:

randomVar = Math.ceil(Math.random() * highest);

Use variations of this formula to alter the range. For example, you can gener-
ate random values between –5 and 5 with this variation:

randomVar = Math.floor(Math.random() * 11) - 5;

Use random numbers to simulate random events, like the rolling of dice, or to
add a level of uncertainty to a computer opponent’s behavior.

Random number generation is described more fully in Chapter 4.

Combining Vectors
All forces acting on an object combine to generate the final motion vector for
that object. If each vector (V) is expressed in its dx and dy components, you
can easily add all the vectors by adding all the components, as shown in
Figure 14-8.

Figure 14-7:
A variant of

Newton’s
Second

Law.

348 Part VI: The Part of Tens

23_589628 ch14.qxd 10/12/05 3:02 PM Page 348

:V V V

dx dx dx dx

dy dy dy dy

1 2 3

1 2 3

1 2 3

+ +

= + +

= + +

The components are the dx and dy components of the various forces acting
on an object, and the results are placed in the object’s dx and dy properties.
This technique is described in Chapter 12.

Sophisticated Vehicle Motion
Sprite motion can be expressed more accurately in a form that incorporates
speed, power, mass, and drag:

speed *= power/mass;
speed *= 1/drag;

dx *= speed;
dy *= speed;

Techniques using these formulas are the basis of Chapter 12.

Figure 14-8:
Add vectors

by adding
components.

349Chapter 14: Ten Math Concepts for Game Programmers

23_589628 ch14.qxd 10/12/05 3:03 PM Page 349

350 Part VI: The Part of Tens

23_589628 ch14.qxd 10/12/05 3:03 PM Page 350

Chapter 15

Ten Game Starters
In This Chapter
� Great ways to start ten games

� Building and enhancing these ten games

The best part of game programming is, well, programming games. This
chapter is almost like a cookbook of games. I give you the starting code

for ten different styles of games. Each game is complete in the sense that it
works and shows the basic functionality of its genre, but these games are
meant as starting points for your own designs. If, for example, you want to
build a version of Space Invaders, you can scan this chapter to see how such
a game can be built by using the techniques described throughout the book.
Get a version up and working by using mine as a template but then modify it
however you want. As you look through the games, consider the following
points:

� Each game is a minimal demonstration. I show the barest form that I
could make work for each game. The code is simple and clean so that
you can modify it yourself. Most are examples of classic gaming genres,
but two (Egg Cannon and Orbit Matcher) are original ideas that show
how you can combine ideas to make something new and interesting.

� The graphics are merely placeholders. I put very little effort into the
graphics because you modify them and make your own. Let my graphics
be a basic guide, but by all means, modify them for your own use.

� I didn’t end anything. I didn’t include ending conditions in any of these
samples. I do suggest (in most cases) how you can end the game, but
that’s really up to you.

� These games are silent. Add your own sound effects and background
music to spruce up the games. See Chapter 8 if you need more info on
adding sound to games.

� The code is on this book’s companion Web site. For length reasons, I
didn’t reproduce the code for any of these games here, but all code is
available on the Web site:

www.dummies.com/go/flashgameprogrammingfd1e

24_589628 ch15.qxd 10/12/05 3:07 PM Page 351

� Use the book as a reference. Most of the ideas used in these games
have been presented in other parts of the book. Rather than describing
these concepts again, I point out where in the book you can find various
techniques if you need a refresher.

� I suggest many enhancements. Each of the games presented here is
shown in a basic form, but I suggest several ways how you can improve
each. And you can probably think of a few enhancements on your own.
I haven’t tried all these enhancements myself. They’re just meant to
get you thinking how to improve on the basic framework I provide.

Asteroids
Asteroids is a classic game, as illustrated in Figure 15-1. The user controls
a spacecraft drifting in an asteroid field, in which several large rocks float.
When a player blasts an asteroid (so as to avoid getting smashed by it),
it breaks into several smaller rocks. These can then be blasted again and
broken up until all the rocks are toast and a new asteroid field appears.

Building Asteroids
You can build your own version like this:

1. Begin with the space game featured in Chapter 12.

You need a spacecraft that flies under user control with vector projec-
tion. The ship should wrap off the sides of the screen.

Figure 15-1:
Asteroids

is easy
to write

when you
generate

sprites
dynamically.

352 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 352

2. Add the ability to fire a projectile from the ship.

See Chapter 10 for a refresher on creating missiles.

3. Add the large rocks.

The easiest way to build a series of rocks is to use an external class file,
as shown in Chapter 13.

4. Manage collision detection.

When any rock hits the ship, the player loses a life. When a bullet hits a
rock, the rock either splits or dies.

5. Generate new rocks.

When a large rock dies (is shot), a number of medium rocks generate at
that spot. When shot, a medium rock breaks into several small rocks.
Small rocks simply disappear when shot.

Enhancements to Asteroids
Consider the following features:

� Power-ups: Various floating elements cause enhancements in the
ship’s behavior. A player can shoot or fly over a power-up to earn
enhancement.

� Shields: These protect the ship from asteroids for a short time.

� Warping: This makes the ship reappear at a random destination.

� A gravity well: A star or planet, for example, acts on all the asteroids
and your ship, changing the game completely. See Chapter 12 for details
on including gravity in space games.

Lunar Lander
The Lunar Lander game is among the oldest computer games (and one of the
first I played). The first computer I played this game on had no monitor: All
output was through a teletype console. Your version can be quite a bit more
colorful if you want. All versions of the Lunar Lander game work in pretty
much the same way, as shown in Figure 15-2. The player controls a spacecraft
landing on some sort of platform or surface. The planet pulls the ship down-
ward, and the player uses arrow-key thrusters to control the descent. Retro-
thrusters counteract the gravitational pull but consume fuel. Side thrusters
provide side-to-side control and also consume fuel.

353Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 353

Building Lunar Lander
You can build your own version like this:

1. Create the ship sprite.

The ship is just an ordinary sprite. Consider adding visual states for
no thrust, firing retro-rockets, thrusting to left, thrusting to right, and
crashing.

2. Add gravity and keyboard control.

Use the basic gravity technique from Chapter 11 to make the ship’s down-
ward speed accelerate. Add keyboard input as described in Chapter 8 to
let the user compensate for gravity and move in the x axis. Getting the
forces exactly right takes some careful tuning.

3. Add landing targets.

These targets can be platforms floating in space or smooth areas on a
planet’s surface. Regardless, they should be represented by movie clips.

4. Determine safe landing parameters.

Just touching the landing site with the lander is not a landing. A safe
landing must include moving downward; that is, you can’t hit a floating
platform from the bottom and call it a landing. Test for this by requiring
dy to be positive. The vertical speed should be small, so ensure that dy
is no larger than some threshold you determine. Also, the horizontal

Figure 15-2:
Land your

ship safely
on the

platform.

354 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 354

speed needs to be within some reasonable limits. The easiest way to
check for many conditions at once is to use a set of nested conditions.
For example, the algorithm might go something like this:

if (lander touches platform){
if (dy > 0){
if (dy < 3){
if (dx > -2){
if (dx < 2){
//safe landing

} // end if
} // end if

} // end if
} // end if

} // end if

5. Limit the fuel supply.

Each time a key is pressed, reduce the value of the lander’s fuel prop-
erty. When the fuel is less than 0 (zero), don’t respond to any more key-
board inputs.

Enhancements to Lunar Lander
Consider the following features:

� Make smaller platforms.

� Change the gravitational pull.

� Add power-ups for fuel and performance enhancements.

� Move the landing platforms.

Egg Cannon
Sometimes you can give an old game type new life by adding an interesting
story and twist to the game. The Egg Cannon game of Figure 15-3 is a variant
of the many cannon games. In this game, the player is a naturalist who dis-
covers many eggs on the ground. He has a cannon that can fire the eggs into
the air to return them to their nest — gently! — or they will break. Thus, the
player must adjust fire to make the egg land as nearly motionless as possible.

355Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 355

Building Egg Cannon
You can build your own version like this:

1. Begin with a standard cannon like the ones featured in Chapter 11.

The cannon should use vector projection and keyboard input to deter-
mine the charge and direction of the egg. Consider adding graphical
feedback of the charge so that the user can tell exactly how much force
is being applied to the egg. Maybe you convert the cannon into a sling-
shot or something if the idea of launching an egg out of a cannon both-
ers you, but the principle is the same.

2. Allow the cannon to move from side to side along the bottom of the
screen.

You might need to be inventive with the keys used for this because
you’ll probably already be using the arrow keys for changing the
cannon’s angle. You might consider using the Z and X or A and S keys for
cannon motion.

3. Randomly generate a bird’s nest.

Use a movie clip object for the nest.

4. Test for landings.

The landing should be soft, so give credit only for those landings when
the egg is moving down, dx is small, and dy is small (much like the Lunar

Figure 15-3:
Launch the
eggs safely

into the
nests with

your egg
cannon.

356 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 356

Lander described in the preceding section). The eggs are much harder
to control than the lander, so allow for a wider range of acceptable
speeds.

5. Penalize for broken eggs.

Of course, missing the nest or having an egg that hits the nest too hard
should result in appropriate sound effects and animations as well as a
loss of score or life.

6. Set a time limit.

The best way to set a time limit in Flash is to employ the setInterval
function. This allows you to designate a function to occur after a certain
number of milliseconds.

Enhancements to Egg Cannon
Consider the following features:

� Make smaller nests that are more difficult to land in.

� Add flying hazards such as birds or squirrels.

� Change the time limit so as the player progresses through the game,
he has less time to land all the eggs.

� Require player to scoop up eggs before launching them.

Start each round with all the eggs on the ground. Make the player pick
up an egg by moving the cannon over it and then let him fire the egg.
Also add a state to the cannon so the player knows that he has scooped
up an egg.

� Add wind that adjusts the egg’s horizontal velocity. Wind works just
like gravity except that it’s constant. Add a small value to x (not dx) for
each frame. Consider using a windsock or something to indicate the
wind’s speed and direction.

� Add a parachute. When the user presses a certain key, the egg deploys
a parachute. This causes the egg to drop more slowly but also makes it
much more susceptible to the wind.

Zelda
Nintendo introduced an entire new type of game in its ground-breaking The
Legend of Zelda. In this type of game, the user controls some sort of character

357Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 357

via the arrow keys. The character can move over certain kinds of terrain but is
blocked from traveling over other types of terrain (such as buildings, rivers,
and mountains). The player encounters various other characters and often
receives clues or special tools from those characters. There are usually one
or more ways to exit each screen, which takes the player to another screen
with a new set of characters, monsters, problems, and treasure.

Figures 15-4 through 15-6 show a very short adventure typical of the genre.

Figure 15-5:
Hmmm.

It seems to
be some

sort of clue.
I wonder

what it
means?

Figure 15-4:
It’s lonely in
the big city,

but I think
I’ll talk to

that skinny
guy on

the left.

358 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 358

Building Zelda
You can build your own version like this:

1. Diagram your plot and each screen on paper first.

First understand the plot and then figure out all the characters, the puz-
zles, monsters, and whatever else you want before you start coding.
Draw a sketch of every room and an overall map that describes the rela-
tionships among the various rooms. This is invaluable as you design
your game.

2. Build a frame to represent each room.

In a sense, this game works a lot like the text-style adventure from
Chapter 3. Each frame is a state, and the player moves from state to
state by exiting rooms. Be sure to name the frames clearly as desig-
nated by your diagram. (You did make a diagram, didn’t you?) A screen
shot of one frame is shown in Figure 15-7.

3. Create a movie clip object holding all the barriers in the current
frame.

The barriers can look like anything you want (walls, lava pits, moun-
tains). These are the things you won’t let the player walk on. You can
have several shapes in the same movie clip. Make sure to leave some
empty space for the player to get around in.

Figure 15-6:
Maybe I

should have
gone to

the east.

359Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 359

4. Make movie clips for all the exits.

Create a movie clip just outside each of the level’s exits. This movie clip
is used to determine which frame the game moves to when the user
leaves a particular exit.

5. Build a movie clip for the player.

Start simple. However, you’ll probably want to add animation to this
character eventually because the player will stare at the main character
animation for the entire game.

6. Build movie clips for any other elements in the scene.

If the scene features a non-player character (such as the skinny friend in
my screen), a monster, a key, or some other important element, create a
movie clip to represent that object and place it on the screen as desired.

7. Make a movie clip showing any dialog boxes that might occur in the
scene.

The easiest way to make pop-ups like the one featured in Figure 15-5 is
to simply create the entire dialog box as a movie clip and move it onto
the Stage when desired.

Figure 15-7:
A typical

room in
the editor

environ-
ment.

360 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 360

8. Add keyboard input to move the character.

Use keyboard commands to move the character around onscreen. Use a
special version of the hitTest() method (shown on the included
source code) to prevent walking through the barrier sprite.

9. Use collision detection to handle various special events.

When the player collides with a special object or character, modify vari-
ables as needed to indicate the current situation. For example, add to
the player’s gold amount or indicate that the player now has the special
blue key, or whatever. If you need to communicate something special to
the user, display a custom dialog box sprite and then have the sprite
remove itself when clicked.

10. Check for collisions with the exit sprites to determine when the user
is trying to exit the room.

When the user encounters one of the exit sprites, use a
_root.gotoAndStop() command to move the program’s focus to the
appropriate new frame.

Enhancements to Zelda
You have limitless ways to enhance this style of game. The most important
element is the story, but you can also consider these features:

� Some type of combat system: An adventure game needs monsters, and
those monsters must be slain. Of the many types of combat systems, the
most common ones use random numbers, the player’s abilities, and the
monster’s capabilities to determine the results of an encounter. You can
also use some type of arcade action (such as shooting fireballs) to
handle encounters with monsters.

� The ability to improve: As the player gets farther along in the game, he
or she should become more powerful. This can be done by adding expe-
rience (which then makes the player capable of handling more difficult
opponents) or through improved equipment. (For example, after a
player picks up the magic sling, he can hurl fireballs at enemies.)

� An inventory system: One fun thing about adventures is all the virtual
equipment, tools, weapons, armor, and useless junk you can pick up.
The player should have to make some kind of decision about what to
carry and what to drop, or he’ll just drag everything around all the time.

� A sense of urgency: Adventure games tend to be slower paced than
arcade games, so you need something to keep up the excitement level.
Many adventure games achieve this through some sort of time limit.
Maybe a level must be completed in a certain number of turns, or the
user gets hungry and must find food to continue.

361Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 361

� A tile-based approach: If you want a more sophisticated variant of
Zelda, look ahead to the section called “Tile-Based World Games,” later
in this chapter.

Platform Scroller Games
The platform scrolling genre was made famous by games like Mario Brothers,
Donkey Kong, and countless others. In this style of game, as shown in Figure
15-8, the user controls some sort of character that’s viewed from the side.
Usually, the character progresses through the game by traversing screens
from left to right, and the player can typically jump to reach higher platforms.
Often the character can also fire some sort of projectile, duck, and run. Too,
some kind of enemy typically appears onscreen to impede the player’s
progress.

Building a platform scroller game
Here is perhaps the easiest technique to build platform scroller games:

1. Design your world.

Begin by sketching the type of game you’re building, what typical
screens look like, how the player acts, and the types of enemies the
player encounters. For now, have each screen be a separate frame. That
way, simply swapping to a new frame is easier than scrolling, but you

Figure 15-8:
The humble

yet fun
platform
scrolling

adventure
game.

362 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 362

can easily convert this technique to a scrolling system after you master
the basics.

2. Create a movie clip to represent the terrain.

Use one movie clip to represent anything the player can stand on. You
can make this clip as visually complex as you want, but make sure that it
includes white space for the user to walk around on.

3. Build the player sprite.

The player sprite should start out simple but will probably involve
multiple visual states (running, crouching, jumping) as you improve
the game.

4. Set the registration point at the bottom of the player movie clip.

Most of the time, you design sprites so that the registration point is the
center of the clip. In this type of game, you’re really more concerned
where the player’s feet are, so design your sprite so that the registration
point is at the bottom center, as shown in Figure 15-9. Placing the regis-
tration point at the player’s feet makes landings easier to calculate.

Figure 15-9:
Place the

registration
point at the

player’s
feet.

363Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 363

5. Add keyboard control to the player.

Begin with basic left and right motion based on the arrow keys (or some
other keyboard command). Usually the player moves only frontward
and backward while a key is pressed and stops motion when the key is
released. Add a jumping command, which sets a value to the player’s
dy so the player begins moving upward.

6. Incorporate gravity.

If the player is in the air, incorporate gravity to pull the player down-
ward. If the player is on the ground (touching the platform sprite), set
dy to 0.

7. Build trigger sprites to let the user move off the screen.

When the player collides with one of these sprites (which can be invisi-
ble or just off the Stage), call the _root.gotoAndStop() method to
transfer program control to a new state.

8. Add enemy characters.

These can be movie clips running under program control.

Enhancements to a platform scroller game
Some possibilities to enhance this style of game are

� Give the player a weapon. Let the player fire some sort of weapon at
the enemies. Weapons usually follow a straight left-to-right trajectory.

� Add enemy types. Be creative with the kinds of enemies you use to
challenge players. Give different types of enemies different behaviors.
Enemies might fly, crawl, explode, or fire bullets. Part of the fun of this
style of game is learning strategies to defeat the various enemies. Be
sure that each enemy has a weakness that can be exploited, or the game
won’t be fun.

� Add player abilities. Use power-ups to give the player new capabilities,
such as invincibility, teleportation (moving to a new random spot
onscreen), flying, a new weapon, or inverse gravity. Special abilities
should last for a short time and should also be placed so that players
can use them to solve otherwise impossible layers.

� Go backward. Let the user move and shoot from right to left as well as
the typical left-to-right orientation.

� Add more rooms. Although there is an action element, scrolling games
are essentially puzzles. Be creative in your room design. Be sure the puz-
zles are interesting and varied by mixing the background themes, music,
enemy types, and style of rooms.

364 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 364

Breakout
The Breakout-style games emerged immediately after Pong. This style of game
is much like Pong, but it’s intended to be a single-player game. The player
controls one paddle near the bottom of the screen and moves the paddle via
the mouse or keyboard. A series of bricks is placed at the top of the screen.
When a brick is hit by a missile (ball) guided by the paddle, it is removed
from the screen. The level is finished when all the bricks are eliminated.
Figure 15-10 illustrates a very basic version of this program.

Building Breakout
The seemingly simple Breakout game has a surprisingly challenging design.
The ball and paddle can be completely borrowed from the Pong game in
Chapter 6, but there are a lot of bricks to control in the game, and you need
some sophisticated techniques to manage them well.

1. Create the ball sprite.

Add code to move the ball onscreen using dx and dy. Have the ball
bounce off all four walls. Check Chapter 5 for a refresher on these
techniques.

2. Create the paddle sprite.

The paddle follows the mouse, so build it much like the one in Chapter 5.

Figure 15-10:
Bounce

the ball to
destroy the

bricks.

365Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 365

3. Build one brick.

When you are building several instances of one object, begin by creating
one instance that works properly. After you get the first one acting cor-
rectly, you can add the code that clones that one individual. The bricks
need to be removed from the screen, and you need several of them, so
use the attachMovie method to create your first brick. Chapter 13
explains this technique.

4. Make more bricks.

Use a for loop around the brick creation code to assemble a series of
bricks. As you look at the code for this program on the companion Web
site, you’ll actually see two for loops. I organized the bricks by row and
column to make them easier to manage. Look carefully at the code to see
that it isn’t that different from the sprite creation code you’ve already
written.

5. Write the brick-ball collision code.

In each brick’s definition, instruct the brick to self-destruct when a ball
collides with it. Also, the ball’s dy should change when it encounters
(and destroys) a brick.

Enhancements to Breakout
The Breakout code is functional as it appears on the companion Web site, but
you’ll have to tweak it to make a fully functional game. Consider the following
improvements:

� Improve the ball-paddle collision routine. As written, the ball-and-
paddle collision doesn’t give the user much control. Modify the routine
shown in Chapter 7 to give the same kind of control to the breakout
paddle that you create in the Pong game.

� Create different brick types. To add visual appeal, make many colors
of bricks. Also consider using special bricks that alter the game play.
For example, you can create super bricks that require multiple hits to
destroy, invisible bricks, and unbreakable bricks.

� Add power-ups. Periodically (randomly or when you hit a certain type
of brick) have various special elements available. If the user touches this
power-up, something happens to change the game play. You can change
the paddle size or ball speed, invert the paddle directions (drives play-
ers crazy!), destroy all the bricks onscreen, or devise some other devi-
ous scheme.

� Build more levels. When the player clears all the bricks from one
screen, move to another with different challenges. You can create each
new level on a different frame, or you can use a data structure to build
new levels dynamically.

366 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 366

Space Invaders
The classic form of Space Invaders involves an array of aliens marching at the
top of the screen. After each pass, the aliens creep lower, coming closer to
the planet (the bottom of the screen), where the user controls a ship via key-
board input. The player can fire bullets at the encroaching aliens, which
removes them from the screen when they are hit. A very simple version of
this game is illustrated in Figure 15-11.

Building Space Invaders
The Space Invaders-style game is quite similar to the Breakout game. Both
games feature a collection of objects. The Breakout bricks are stationary, but
the aliens move in a herd. If you’ve already created the Breakout game (see
the preceding section), you can modify it to make Space Invaders, or you can
start from scratch.

1. Create the ship.

Build a sprite to represent the player’s ship. Usually such games use key-
board input to control the ship’s motion, so add a keyboard handler to
incorporate left- and right-arrow keys. You don’t need to track the ship’s
dy because it moves along only the x axis.

2. Make a bullet.

The bullet is a small movie clip object. Create an instance of the bullet
object but move it offstage until you need it. When the user hits the
spacebar, fire the bullet upward from the ship.

Figure 15-11:
I still have

nightmares
about

hordes of
aliens
slowly

descending
on my

house.

367Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 367

3. Build aliens.

Build alien creatures dynamically so that they can be removed from the
screen when they’re hit by a bullet. Create the aliens in the same type of
2-D structure described earlier in the Breakout game. Move all the aliens
at one time by using global dx and dy variables.

4. Move the aliens.

The aliens are unlike most sprites I use throughout this book. Usually,
each entity has its own dx and dy. However, the aliens are not so inde-
pendent. Rather, they all move in the same direction at the same time,
so rather than moving by the brick’s dx and dy properties, they move
by global motion variables called globalDX and globalDY.

5. Move down the aliens when they encounter an edge.

When one of the aliens encounters the edge of the screen, all the aliens
should move down closer to the planet. The easiest way to do this is
with a special moveDown() function, which uses a pair of for loops to
specify each alien and then move that alien down 20 pixels.

Enhancements to Space Invaders
Although the basic functionality is there, the game is not yet complete. Some
enhancements bring the game to a functional level, and others can add
entirely new challenges.

� Recognize when all aliens have been defeated. To this point, the pro-
gram keeps spinning along after all the aliens have been eliminated from
the screen. Modify your program to recognize the player for winning the
level and add a new level.

� Code alien destruction of the Earth. If the aliens reach a certain level,
they win. Put some code in place to handle this eventuality. Inform the
player of his score and then start the destruction of the Earth all over
again.

� Add special targets. Periodically place special targets onscreen. If the
player strikes these targets, reward him with points or special abilities.

� Add special weapons. Maybe the aliens have advanced technology,
such as a confusion ray that causes the player’s controls to be reversed.
Maybe the player can have an occasional “smart bomb” that can be
steered or a mega-bomb that clears the entire screen.

� Give the aliens weapons. In the original game, the aliens occasionally
dropped bombs on the player. This made timing more important
because the player could no longer simply wait for the aliens to come
right above him.

368 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 368

� Add shields for the player. Add destructible shields that can protect
the player from a certain number of hits.

� Generate more original alien behavior. Let the aliens act in new ways
in later layers. Some aliens might break out from the pack and dive-
bomb the player, or maybe the aliens sometimes break off into random
motions.

Orbit Matcher
Orbit Matcher is an original game of mine based on the planetary orbit simula-
tion described in Chapter 12. The player controls an orbiting spacecraft that
must rendezvous with a satellite in a different orbit. The player can control the
spacecraft with the keyboard and must try to match orbits with the satellite.
You can’t just fly right to the satellite: You have to try to match orbits with it. A
rendezvous is successful if the two craft are near each other and are heading in
nearly the same direction. The game is shown in Figure 15-12.

Building Orbit Matcher
As usual, this game takes bits and pieces from examples throughout the
book. The Orbit Matcher game is based heavily on the planet program
shown in Chapter 12. To make this new game

Figure 15-12:
Match

orbits with
the satellite.

369Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 369

1. Begin with the planet program.

Build a ship that can be controlled by the keyboard. Add a planet and
then build a gravitate function that allows the ship to maintain a rea-
sonable orbit. See Chapter 12 for lots of information on building this
type of game.

2. Tone down the ship’s performance.

The ship in the planet game developed in Chapter 12 has a ridiculous
amount of power. To make the game more interesting, tone down the
ship’s thrustSpeed from 1 to 0.10. This forces the player to use finesse
rather than simply powering up to the satellite.

3. Add the satellite.

The satellite is essentially a second ship. You can copy most of the ship
code to make the satellite. The satellite doesn’t require keyboard input
or a turn() method, but it will still need move() and gravitate()
methods. Make sure that the satellite is moving properly: You might
have to play with the satellite’s initial dx, dy, and position to start it in
a reasonable orbit.

4. Check for rendezvous.

I define a rendezvous by determining the distance between the ship and
the satellite. (I also calculated the relative velocity, but I’m not yet using
that value as part of the rendezvous calculation.)

Enhancements to Orbit Matcher
The game is pretty interesting as it stands, but there are always things that
can be done to improve it:

� Add scorekeeping. To this point, only a trace statement marks a suc-
cessful rendezvous. Make something more interesting happen when the
user docks with the satellite. You might generate a new orbit to reach or
perhaps require the user to return to an orbit within some distance of
the planet.

� Use more realistic thrusting. Most actual orbital maneuvers are per-
formed by firing in the current direction of orbit (a prograde burn) or in
the opposite direction (a retrograde burn). Modify your program so that
the ship’s direction always follows the current orbital path. Use the up
arrow for a prograde burn and the down arrow for retrograde.

� Add a fuel limit. Spacecraft carry very limited amounts of fuel. Reduce
the fuel every time the player fires the main thrusters. The turn
thrusters burn much less fuel, so you can ignore them if you wish.

370 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 370

� Check for relative velocity. If two objects touch, it could be a docking
or a crash. Use the relative velocity of the objects to determine whether
the objects are heading close to the same direction. A good rendezvous
is determined by a small distance and a small deltaV (space talk for rela-
tive velocity). I already calculated a simple form of deltaV in the sample
program.

Tile-Based World Games
Tile-based worlds aren’t a particular type of game but rather a technique that
you can apply to many styles of games. Figure 15-13 shows an adventure game
built using the tile-based technique.

Rather than using Flash tools to generate game details, all the information for
a game is stored in a memory structure. The visual output is generated from
this structure while the game is played. The playing surface is broken into a
series of (usually rectangular) tiles. Each tile can be represented by a movie
clip. A movie clip that can represent many different states is duplicated once
for each square of the map. The main advantage of a tile-based approach is
flexibility. After you design the basic structure, you can easily build new
levels by modifying the data. Changing the visual feel of the program (by
modifying the movie clips) is easy and makes your program smaller because
small amounts of information are being reused efficiently.

Figure 15-13:
This

adventure
game is

made of a
series of

tiles for
flexibility.

Click a tile
to change
the terrain

under it.

371Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 371

Building a tile-based world game
The example in Figure 15-13 is a Zelda-style adventure game. This particular
version allows the user to change the terrain in any square by clicking the
cell. To build this style of game by using a tile-based approach, follow these
steps:

1. Draw some sample maps, using graph paper.

Think about the kinds of terrain you want to represent and then draw
maps using colored pencils or initials representing each terrain type in
each square of the graph paper.

2. Determine which terrain types you need.

Drawing the sample maps tells you what kinds of terrain types you want.
My sample contains town, grass, mountain, trees, and water. Each ter-
rain type has a different appearance, but it might also have an effect on
game play. For example, you might not let the player cross water spaces
without a boat, or you might give the player a defensive advantage if
he’s fighting in a tree tile.

3. Build a movie clip to represent one tile.

Make one movie clip and add a state for each terrain type you want. At
first, you should make the various terrains relatively simple, but after
you get the basic operations working, you can add animation and fancier
graphics. The tile should be relatively small because you’ll use many
copies of it in your game. My tile is 25 x 25 pixels. Be sure to name each
state so you can determine and change the terrain type of the tile easily.

4. Create an instance of the movie clip using code.

Test your movie clip by writing code that creates the clip, moves it to a
particular part of the screen, and sets its state to represent a particular
terrain type.

5. Build a 2-D array to store the map.

Look at the sample code to see how I made an array of arrays. This
structure seems complex, but it’s an ideal way to make maps because it
corresponds easily to rows and columns on the map. Notice that for
brevity, I store numbers in the array representing the terrain types.

6. Make an ordinary array to retrieve terrain type names.

Because numeric values are used in the terrain array, I use another array
called tileName to help me remember which type of terrain is associ-
ated with which number.

7. Use a pair of nested loops to generate the map.

Each tile of the map is created with an attachMovie() command. The
for loops are used to figure out where each element goes and what type
of data it should represent.

372 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 372

8. Add the player sprite on top of the map.

The player sprite and monster sprites should be generated above the
tiles so that they’re visible to the user. The easiest way to ensure this is
to build these sprites dynamically and assign them a very high z-order.
You’ll probably want to move the player around via the keyboard or
mouse. Have the player move one tile at a time or do a hitTest()
to determine which tile he’s on as well as what that might do to his
behavior.

Enhancements to a tile-based world game
After you understand the tile-based technique, you can use it to create and
improve many kinds of games:

� Build a board game. Checkers, chess, and reversi (Othello) are usually
programmed using a form of tile-based world.

� Create a strategy game. Most war games and other strategy games have
tile-based worlds at their heart.

� Make a side scroller. If you build a side scroller using a tile-based
metaphor, it’s much easier to create new levels than using the technique
described in the platform-scroller section of this chapter.

� Build a level editor. Many games now come with a level editor, which
allows users to generate new levels of the game on their own. Your
game can then have all kinds of new levels, and you won’t have to write
them! With a tile-based approach, a level editor is simply a visual tool
that changes the underlying 2-D array. My version of the game has an
extremely simple level editor that lets you switch terrain types by click-
ing on cells. Take a look at the code to see one way to accomplish this
feat.

Whack-an-Author
The Whack-a-Mole game has been popular for many years in arcades and car-
nivals. In the classic version of the game, each player takes a large hammer
and stands over a series of holes. Moles randomly pop out of the holes, and
the user must pound the defenseless animals back into their underground
refuge. Hundreds of computerized variations abound. No doubt they are pop-
ular because they allow players to vent their aggression. Figure 15-14 shows
my version of the game — Whack-an-Author — that lets you abuse the like-
ness of a certain computer book author, who shall remain nameless.

373Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 373

If you find you’re really good at beating up on authors, you should consider a
career in the publishing industry.

Building Whack-an-Author
After you can build one target, building several of them is easy. The targets
are largely autonomous. To build the game

1. Create a target sprite.

The target sprite should have two states:

• up: The up state shows the target sticking his head up.

• down: The down state shows an empty hole.

Notice that I use an actual raster graphic. I usually avoid raster-based
images, but in this case, it makes the game a lot easier to write. Because
the image is small and is never rotated, it doesn’t hurt the game’s perfor-
mance or download time in a significant way. To add a raster graphic,
simply import it to the library just as you do for audio files.

2. Generate the sprite dynamically.

The target is an ideal candidate for an external class definition (as
described in Chapter 13) or more traditional generation (as I do in
the example code on the companion Web site).

www.dummies.com/go/flashgameprogrammingfd1e

Figure 15-14:
When the

offender
pops out of

his hole,
smack him

down.

374 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 374

In either case, define the sprite using the attachMovie() method. (If
you want to place the sprites by hand, be sure to name the instances
target_0, target_1, and so on to make the remaining code work
correctly.)

3. Make the sprite pop up randomly.

Add code to each target’s enterFrame method. If the target is in the
down state, make a random possibility that the sprite will pop up. I use a
property called popUpRate. By default, I set popUpRate to .05, meaning
that each target has a five percent chance of popping up on every frame
that it is down. Change this value to make the targets pop up more or
less frequently.

4. Have the target retreat after some time out of the hole.

When the target pops up, have it wait a certain number of frames and
then go back to the down state. I use a property called resetFrames that
indicates how many frames the target hangs around before returning to
the hole. If the target retreats without being whacked, increment the
number of misses.

5. Respond to mouse clicks.

The target should ignore mouse clicks if it’s in the hole. If the target is
in the up state and the user releases the mouse over it, move the target
back to the down state and increment the number of hits.

6. Repeat for as many targets as you wish.

After you have one target working correctly, use a for loop to build sev-
eral instances of the target, as described in Chapter 13.

Enhancements to Whack-an-Author
The inherent violence of this game makes it a lot of fun for your users, but
you can do many things to improve it:

� Provide your own target. The easiest and most satisfying change to this
game is to modify the target sprite so it contains a picture of some suit-
able target of your aggressions.

� Add a hammer, or a mallet, an axe, a deadline, or whatever else you
want to smack the targets with. Use the mouse-replacing techniques
described in Chapter 8 to replace the mouse with a movie clip of your
own design.

� Change the difficulty level. You have many ways to make the game
easier or harder. Begin by messing with the popUpRate and

375Chapter 15: Ten Game Starters

24_589628 ch15.qxd 10/12/05 3:07 PM Page 375

resetFrames properties. These properties allow you to change the rate
at which the targets appear and the length of time each target stays
onscreen. You can also manipulate the game by changing the size and
position of the targets. Larger targets are easier to hit than smaller ones,
and targets in a cluster are easier to hit than those in a straight line.

� Add ending conditions. As it stands, the game goes on forever. Provide
a time limit, with a penalty for each miss; time how long it takes to hit
100 targets; or continue until the player misses five times. These condi-
tions encourage the player to try again to beat his high score.

� Move the targets. Moving the targets makes the game more challenging.
Move them slowly or keep them onscreen longer — moving targets are
much harder to hit than stationary ones.

376 Part VI: The Part of Tens

24_589628 ch15.qxd 10/12/05 3:07 PM Page 376

• Symbols and
Numerics •
{ } (braces) for ending functions, 41
: (colon) for ending case statements, 83
“” (double quotes) for outputting text, 41
= (equal) assignment operator, 67
== (equal) comparison operator, 77
! (exclamation point) literal value, 68
// (forward slashes) for indicating

comments, 38
> (greater than) comparison operator, 77
>= (greater than or equal to) comparison

operator, 77
< (less than) comparison operator, 77
<= (less than or equal to) comparison

operator, 77
|| (logical or) character, 227
!= (not equal) comparison operator, 77
() (parentheses) for indicating

conditions, 76
2-D games, 114
3-D ball, 115–116
3-D buttons, 30

• A •
accelerating objects, 344
acceleration (defined), 281, 283
access methods, 339
ActionScript

animation, 12
arrays, 320–321
comparisons, 77
conditions, 76–77
constants, 204
enumerations, 204
features, 11–12
object-oriented programming (OOP), 120
properties, 125
trigonometry functions, 259

addBetter program
parseInt method, 88
user interface, 87–90

adding
buttons, 29–31
elements to arrays, 321
keyframes, 47–48, 200
sound effects, 190–191
states, 167–172
values to variables, 102
vertices (shapes), 197

adjacent side of a triangle, 251
adventure games

buttons, 56–58
creating, 53–59
diagram nodes, 56–57
diagramming, 54–55
Green Grass game, 46–53
introduction, 55

AI (Artificial Intelligence), 156
algorithms, 73
American Standard Code for Information

Interchange (ASCII), 182
angles

calculating, 274–275
cosine, 252
defined, 250
degrees, 257
dx property, 249
dy property, 249
gravityTrace program, 248
measuring, 250
radians, 256
right triangles, 250–252
sin, 252
solving, 255
tangent, 252
vector projection, 248
vectors, 250

animated sprites
car sprite, 211–212
creating, 198–201
layers, 199
Monster Traffic game, 194

Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 377

animated sprites (continued)
moving, 201–204, 211
orientation of, 200
properties, 204–206
shapes, 193–198
turning, 206–208
user-controlled, 212–217

animation
ActionScript, 12
Green Grass game, 51–52
keyframes, 200
layers, 12, 23
Monster Traffic game, 242–243
motion tween tool, 12
shape tween tool, 12
sound effects, 184–185

arcade font, 142
arcade games

sound effects, 183
vehicles, 279

arrayDemo program, 320
arrays

ActionScript, 320–321
adding elements, 321
code example, 320
counting elements, 322
creating, 320–321
for loop, 321
output, 322
retrieving elements, 321

arrow keys, 181
artStupid program, 158–160
Artificial Intelligence (AI), 156
ASCII (American Standard Code for

Information Interchange), 182
assignment operators, 67
Asteroids

creating, 352–353
gravity well, 353
power-ups, 353
shields, 353
sprites, 114
warping, 353

attachMovie() method, 324–325
Audacity open source audio editor, 186
audio effects

adding, 190–191
animation, 184–185
arcade games, 183

Audacity open source audio editor, 186
audio compression, 186–187
combining, 192
creating, 186
game programming, 185
headphones, 184, 192
legal issues, 185–186
Macromedia Flash, 183–184
Monster Traffic game, 178, 234–236

audio files
audio compression, 186–187, 190
bit depth, 187
importing, 187–189, 191–192
MP3 format, 185
sampling rate, 187
WAV format, 185

• B •
Ball.as class definition, 336–339
ballistics, 266
ballMove program, 123–127
balloon program

gravity, 284
helium, 284–285
objective of, 283
tied-down balloon, 286–287
wind, 285–286

binaryDice program, 81–84
bit depth (audio files), 187
board games, 373
boats, 312–313
boundary checking

bouncing off the walls, 134–137
combining behaviors, 136–137
ignoring borders, 136
stopping at the border, 132–134
wrapping around the screen, 128–132

braces ({ }) for ending functions, 41
break statement, 83–84
Breakout game

creating, 365–366
enhancements, 366
power-ups, 366

btnCalc() method, 274
buffer, 179
bugs. See also errors

incorrect names, 107–108
op variable, 109

378 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 378

syntax errors, 106–107
troubleshooting, 109

building
adventure games, 53–59
animated sprites, 198–201
arrays, 320–321
Asteroids game, 352–353
Breakout game, 365–366
buttons, 31–32
class definition, 333–334
Egg Cannon, 355–357
Green Grass game, 48–51
keyframes, 200
Lunar Lander, 353–355
movie clips, 324–325
multiple copies of sprites, 328–331
objects, 332–334
Orbit Matcher, 369–370
platform scrolling games, 362–364
Pong, 143–144
projects, 19–20
shapes, 193–195
sound effects, 186
Space Invaders, 367–368
spaceships, 303
sprites, 113, 323–326
tile-based world games, 371–373
Zelda, 357–361

bullet trajectories, 266
bullet.dir property, 261
bullet.speed property, 261
buttons

adding, 29–31
adventure games, 56–58
code, 37–41
creating, 31–32
events, 40–41
labeling, 36–37
math quiz game, 96–98
mouseover effects, 34–36
naming, 32, 36–37, 57
Onionskin buttons, 57
onRelease() event, 40
states, 34–36
symbols, 31–33
text, 39
3-D buttons, 30

• C •
C language, 12
calculating

angles, 274–275
distance, 344–345
gravity, 347
vectors, 272

calculator, 87–90
camel-case, 24
Cannon game

ballistics, 266
bullet.dir property, 261
bullet.speed property, 261
charging, 263
checkKeys() method, 262–263
controls, 263
direction, 260
direction control, 263
firing bullets, 263
gravity simulation, 268–269
gun.charge property, 261
gun.dir property, 261, 263
keyboard input, 262–263
move() method, 262–264
moving bullets, 263
turn method, 264–265
turning bullets, 264
visual elements, 260–261

cars
carMove program, 201–204
carParam program, 295–300
carVector program, 288–291
carVectorOOP program, 291–294
keyboard input, 290–291
laws of motion, 279–282
motion, 349
traction property, 313–315
turning, 291

case statement, 83–84
ceil function, 72
character sprites

animation, 193–201
boundary checking, 128–137
code, 117–119
creating, 113, 323–326
creating many copies, 328–331

379Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 379

character sprites (continued)
custom sprites, 334–340
defined, 113
destroying, 323, 326–328
examples, 114
killSprite program, 326–327
lotsOfSprites program, 328–331
makeaSprite program, 323–326
Monster Traffic game, 201
motion, 349
MovieClip object, 114, 116–117
moving, 201–204, 211
naming, 117
properties, 204–206
registration point, 117, 345
suicidal sprites, 326–327
3-D ball, 115–116
turning, 206–208
user-controlled, 212–217

checkBoundaries() method, 129–136
checkCollisions method, 231–232
checkKeys method

Cannon game, 215, 262–263
carParam program, 298
carVector program, 290–291
how it works, 214–215
Monster Traffic game, 216–217
space program, 304

Civilization III game, 114
class definition
Ball.as, 336–339
characteristics, 332
creating, 333–334

class keyword, 332
classes

constructors, 338
methods, 332
naming, 332
properties, 332

clear() method, 271
cloning movie clips, 221
code

buttons, 37–41
comments, 38
game programming, 15–16
math quiz game, 95–106
pseudocode, 39
sprites, 117–119
style conventions, 41

colon (:) for ending case statements, 83
combining

boundary checking behaviors, 136–137
sound effects, 192
vectors, 348–349

comments, 38
comparison operators, 77
competition, 11
computer game starters

Asteroids, 352–353
Breakout, 365–366
Egg Cannon, 355–357
Lunar Lander, 353–355
Orbit Matcher, 369–371
Pac-Man, 45
platform scrolling games, 362–364
Space Invaders, 367–369
tile-based world games, 371–373
Whack-an-Author, 373–376
Zelda, 357–362

computer opponents
artStupid program, 158–160
Pong, 156–160

concatenation, 68–69
conditions

ActionScript, 76–77
break statement, 83–84
case statement, 83–84
default clause, 83–84
else clause, 79–81
false conditions, 78–79
if statement, 75–78
parentheses, 76
switch statement, 82–84
true conditions, 78

constants
ActionScript, 204
Math.PI, 259

constructors, 338
controls

Cannon game, 263
Monster Traffic game, 178

converting
degrees to radians, 257
strings to integers, 89
radians to degrees, 257

cosine of an angle, 252
counting elements in arrays, 322
counting variable for loops, 319

380 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 380

creating
adventure games, 53–59
animated sprites, 198–201
arrays, 320–321
Asteroids, 352–353
Breakout, 365–366
buttons, 31–32
class definition, 333–334
Egg Cannon, 355–357
Green Grass, 48–51
keyframes, 200
Lunar Lander, 353–355
movie clips, 324–325
multiple copies of sprites, 328–331
objects, 332–334
Orbit Matcher, 369–370
platform scrolling games, 362–364
Pong.fla game, 143–144
projects, 19–20
shapes, 193–195
sound effects, 186
Space Invaders, 367–368
spaceships, 303
sprites, 113, 323–326
tile-based world games, 371–373
Zelda, 357–361

cursors, 137–140
custom sprites, 334–340
customCursor program

code, 138–140
replacing the mouse pointer, 137–138
shapes, 137–140
testing, 140

• D •
deceleration (defined), 283
default clause, 83–84
definitions of objects, 33–34
depth parameter, 325
degrees (angles), 257
degrees-to-radians conversion, 257
design time, 325
destroying sprites, 323, 326–328
diagram nodes, 56–57
diagramming adventure games, 54–55
Diablo II, 114
dir property, 210

direction (of movement)
Cannon game, 260
dir property, 210
direction constants, 203–204
dx property values, 210
dy property values, 210
rotation property, 208
spaceships, 302
switch statement, 208–209

Director (Macromedia), 12
DirectX graphics engine, 16
distance

calculating, 344–345
registration points, 345
solving, 255–256

Donkey Kong, 362
Don’t Click program, 29–32
double quotes (“”) for outputting text, 41
down state (of button), 36
drawing

movie clips, 270
paths, 271–272
vectors, 249–250

dx property
angles, 249
defined, 123
directions, 203, 210
gravity, 267
speed, 249
values, 124, 252, 254
vectors, 249

dxdyToVec program, 272–274
dy property

angles, 249
defined, 123
directions, 203, 210
gravity, 267
speed, 249
values, 124, 252–254
vectors, 249

dynamic text, 63

• E •
e (exponential notation), 258
Easter eggs, 102
ECMAScript, 12
editing diagram nodes, 56–57

381Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 381

Egg Cannon game
creating, 355–357
enhancements, 357

else clause, 79–81
encapsulation, 122
ending condition for loops, 319
enumerations, 204
equal (=) assignment operator, 67
equal (==) comparison operator, 77
errors

incorrect names, 107–108
op variable, 109
Statement must appear within onClip event

handler, 108
syntax errors, 106–107
troubleshooting, 109

events
buttons, 40–41
defined, 121
keyboard input, 183
onEnterFrame() event, 119, 121, 125–126
onRelease() event, 40, 121

exclamation point (!) literal value, 68
exponential notation (e), 258
extends keyword, 338

• F •
false conditions, 78–79
figures. See sprites
fills

radial gradient, 115
shapes, 195

FLA files, 27
Flash

ActionScript, 11–12
audio compression, 187, 190
buttons, 29–41
FLA files, 27
graphic symbols, 33
Hello World! program, 19–20, 23–27
HTML files, 28
keyframes, 23
layers, 23
Library, 32–34
movie clips, 33
multimedia support, 11
panel stack, 24
project templates, 20–21

projects, 19–20
Properties Inspector, 22
publishing Web page files, 27
sound effects, 183–184
Stage, 21–22
SWF files, 28
symbols, 31–33
Timeline, 23
Tools Panel, 22–23
Web output, 12

Flash game starters
Asteroids, 352–353
Breakout, 365–366
Egg Cannon, 355–357
Lunar Lander, 353–355
Orbit Matcher, 369–371
Pac-Man, 45
platform scrolling games, 362–364
Space Invaders, 367–369
tile-based world games, 371–373
Whack-an-Author, 373–376
Zelda, 357–362

floating point real numbers, 71
floor() function, 72
followMouse program, 272–278
for loop, 318–321
force (defined), 281
forward slashes (//) for indicating

comments, 38
frames

adding, 47–48, 200
creating, 200
defined, 23
sharing variables, 98
states (of game), 47–48

functions
attachMovie, 324–325
braces ({ }), 41
btnCalc, 274
checkBoundaries, 129–136
checkCollisions, 231–232
checkKeys, 214–217, 262–263, 290–291,

298, 304
classes, 332
clear, 271
defined, 121
events, 121
getDy, 153–155
gravitate, 308–309

382 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 382

hide, 138
hitTest, 150
init, 148
Key.getAscii, 182–183
Key.isDown, 181–183
lineStyle, 270
lineTo, 271
Math.ceil(), 72
Math.floor(), 72
Math.pow, 275
Math.random(), 71–72
Math.round(), 72
methods, 121
move, 126–127, 202–203, 211, 262–264
moveTo, 271
objects, 339
parseInt(), 88–90
removeMovieClip, 327, 340
resetFlame, 232–234
Sound.setPan, 192
Sound.setVolume, 192
Sound.start, 189
Sound.stop, 192
String.fromCharCode, 182
trace, 40–41
turn, 202–203, 206–207, 210, 265, 291, 299,

304–305

• G •
game programming

benefits of, 9
coding, 15–16
competition, 11
goal of game development, 13–14
imagination, 10
interactivity, 11
Macromedia Flash, 11–12
objects, 11
process, 16–18
skills required, 9–11
sound effects, 185
themes, 14–15

game starters
Asteroids, 352–353
Breakout, 365–366
Egg Cannon, 355–357
Lunar Lander, 353–355

Orbit Matcher, 369–371
Pac-Man, 45
platform scrolling games, 362–364
Space Invaders, 367–369
tile-based world games, 371–373
Whack-an-Author, 373–376
Zelda, 357–362

generating
random integers, 348
random numbers, 69–72
vectors, 346

getDy function, 153–155
gotSix program, 73–81
gradient fills

radial gradient, 115
shapes, 195

graphic symbols, 33
graphics engines. 16
gravitate method, 308–309
gravity
balloon program, 284
calculating, 347
characteristics, 267
dx property, 267
dy property, 267
Earth’s gravitational constant, 269
gravityTrace program, 248, 267
Jupiter’s gravitational constant, 270
Law of Universal Gravitation, 347
moon’s gravitational constant, 270
Newton’s Second Law, 347–348
projectiles, 267
simulating, 268–269
spaceships, 306–310

gravityTrace program, 248
greater than (>) comparison operator, 77
greater than or equal to (>=) comparison

operator, 77
Green Grass game

animation loop, 51–52
creating, 48–51
keyframes, 47–48
states, 46–47
swapping states, 52–53

greeting program, 61–63
gun.charge property, 261
gun.dir property, 261, 263

383Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 383

• H •
Hampsterdance Web site, 16
hardware polling, 179–182
headphones, 184, 192
height property, 131–132
Hello World! program, 19–20, 23–27
hexadecimal colors, 270
hide method, 138
hiding

mouse pointer, 138
vertices (shapes), 198

hitTest() method, 150
HTML files, 28
hypotenuse of a triangle, 251

• I •
if statement, 75–78
imagination, 10
importing audio files

MP3 files, 191–192
step-by-step directions, 187–189

incorrect names, 107–108
inheritance, 122, 338
init() function, 148
input from keyboard

arrow keys, 181
buffer, 179
Cannon game, 262–263
cars, 290–291
checkKeys method, 214–215, 217
code demo, 179–180
event handlers, 183
hardware polling, 179–182
Monster Traffic game, 178–180, 213–214
planning, 213–214
W, A, S, and D keys (alternative

arrows), 181
input text, 63–66
instances of objects, 33–34, 39
integers, 72
interactivity, 11

• J •
JavaScript, 11

• K •
Key object, 180–181
keyboard input

arrow keys, 181
buffer, 179
Cannon game, 262–263
cars, 290–291
checkKeys method, 214–215, 217
code demo, 179–180
event handlers, 183
hardware polling, 179–182
Monster Traffic game, 178–180, 213–214
planning, 213–214
W, A, S, and D keys (alternative

arrows), 181
keyframes

adding, 47–48, 200
creating, 200
defined, 23
sharing variables, 98
states (of game), 47–48

Key.getAscii() method, 182–183
Key.isDown() method, 181–183
keywords
class, 332
extends, 338
new, 320
this, 294
var, 338

killSprite program, 326–327

• L •
labeling buttons, 36–37
Law of Universal Gravitation, 347
laws of motion

Newton’s First Law, 279–280
Newton’s Second Law, 280–282, 347–348
Newton’s Third Law, 282

layers
animated sprites, 199
defined, 12, 23

legal issues regarding sound effects,
185–186

Legend of Zelda
creating, 357–361
enhancements, 361–362

384 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 384

length of a vector, 250, 275
less than (<) comparison operator, 77
less than or equal to (<=) comparison

operator, 77
level editor, 373
Library (Macromedia Flash), 32–34
linear regression analysis, 155
lineStyle() method, 270
lineStyle property, 272
lineTo() method, 271
literal value, 68
logical or (||) character, 227
loopDemo program, 318
loops

code demo, 318
contents, 319
counting variable, 319
defined, 317
ending condition, 319
for loop, 318–321
while loop, 320

losing state, 165–166
lotsOfSprites program, 328–331
Lunar Lander

creating, 353–355
enhancements, 355
spaceship, 354–355

• M •
Macromedia Flash

ActionScript, 11–12
audio compression, 187, 190
buttons, 29–41
FLA files, 27
graphic symbols, 33
Hello World! program, 19–20, 23–27
HTML files, 28
keyframes, 23
layers, 23
Library, 32–34
movie clips, 33
multimedia support, 11
panel stack, 24
project templates, 20–21
projects, 19–20
Properties Inspector, 22
publishing Web page files, 27
sound effects, 183–184

Stage, 21–22
SWF files, 28
symbols, 31–33
Timeline, 23
Tools Panel, 22–23
Web output, 12

Macromedia Flash game starters
Asteroids, 352–353
Breakout, 365–366
Egg Cannon, 355–357
Lunar Lander, 353–355
Orbit Matcher, 369–371
Pac-Man, 45
platform scrolling games, 362–364
Space Invaders, 367–369
tile-based world games, 371–373
Whack-an-Author, 373–376
Zelda, 357–362

Macromedia Director, 21
magnitude of vectors, 250
makeaSprite program, 323–326
Mario Brothers, 362
mass (defined), 281
Math object, 71
math quiz game

buttons, 96–98
calculator, 87–90
choose page, 91–92, 96
code, 95–106
how it works, 85–87
report page, 94–95, 103–106
solve page, 92–94, 99–102
visual design, 90–95

Math.ceil() function, 72
Math.floor() function, 72
Math.PI constant, 259
Math.pow() method, 275
Math.random() function, 71–72
Math.round() function, 72
measuring angles, 250
methods

access methods, 339
attachMovie, 324–325
btnCalc, 274
checkBoundaries, 129–136
checkCollisions, 231–232
checkKeys, 214–217, 262–263, 290–291,

298, 304
classes, 332

385Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 385

methods (continued)
clear, 271
defined, 121
gravitate, 308–309
hide, 138
hitTest, 150
init, 148
Key.getAscii, 182–183
Key.isDown, 181–183
lineStyle, 270
lineTo, 271
Math.ceil(), 72
Math.floor(), 72
Math.pow, 275
Math.random(), 71–72
Math.round(), 72
move, 126–127, 202–203, 211, 262–264
moveTo, 271
objects, 339
parseInt(), 88–90
removeMovieClip, 327, 340
resetFlame, 232–234
Sound.setPan, 192
Sound.setVolume, 192
Sound.start, 189
Sound.stop, 192
String.fromCharCode, 182
trace, 40–41
turn, 202–203, 206–207, 210, 265, 291, 299,

304–305
modifying shapes, 195–197
Monster Traffic game

animated sprites, 194
animation, 242–243
car sprite, 201, 211–212
carMove program, 201–204
checkCollisions method, 231–232
collision detection, 229–230
collision planning, 229
collision testing, 228
controls, 178
direction constants, 203–204
enemies, 221–222
fireball sprite, 201
instruction screen, 175–176
introduction screen, 175–176, 236–239
keyboard input, 178–180, 213–214
missile firing, 223–228
monster sprite, 201

object of, 176–177
opponents, 220
resetFlame method, 232–234
scorekeeping system, 177, 240–242
sound effects, 178, 234–236
states, 239–240

motion
acceleration (defined), 281, 283
balloon program, 283–287
carVector program, 288–291
deceleration (defined), 283
force (defined), 281
mass (defined), 281
Newton’s First Law, 279–280
Newton’s Second Law, 280–282, 347–348
Newton’s Third Law, 282
vectors, 248
vehicle motion, 349
velocity (defined), 283

motion tween tool, 12
mouse pointers

hiding, 138
replacing, 137–140
shapes, 137–139
_xmouse property, 140
_ymouse property, 140

mouseover effects (buttons), 34–36
move method
ball program, 126–127
Cannon game, 262–264
sprites, 202–203, 211

moveTo() method, 271
movie clips

cloning, 221
creating, 324–325
defined, 33
drawing, 270

MovieClip object
built-in features, 53
creating, 114, 116–117
sprites, 114, 116–117

moving
objects, 343–344
spaceships, 306
sprites, 201–204, 211

MP3 audio format, 185
multi-state games, 48

386 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 386

• N •
naming

buttons, 32, 36–37, 57
classes, 332
projects, 24
sprites, 117

NetHack, 13–14
new keyword, 320
Newton’s First Law, 279–280
Newton’s Second Law, 280–282, 347–348
Newton’s Third Law, 282
normalized vector, 259
not equal (!=) comparison operator, 77
numbers

floating point real numbers, 71
integers, 72
random integers, 348
random numbers, 69–72
real numbers, 71
rounding, 72

• O •
object-oriented programming (OOP), 120
objects

accelerating, 344
ballMove program, 123–127
class definition, 332–334
creating, 332–334
defined, 11, 120
definitions, 33–34
encapsulation, 122
inheritance, 122, 338
instances, 33–34, 39
Key, 180–181
mass (defined), 281
Math, 71
methods, 121, 339
MovieClip, 53, 114, 116–117
moving, 343–344
polymorphism, 122
properties, 120, 339
Sound, 185
weight (defined), 281
z-order, 325, 327

onEnterFrame() event, 119, 121, 125–126
Onionskin buttons, 57

onRelease() event, 40, 121
OOP (object-oriented programming), 120
oopBall program, 334–336
oopManyBalls program, 340
op variable, 109
open source audio editor, 186
OpenGL graphics engine, 16
operators

assignment, 67
comparison, 77

opponents
artStupid program, 158–160
Monster Traffic game, 220
Pong, 156–160

opposite side of a triangle, 251
Orbit Matcher

creating, 369–370
enhancements, 370–371

orientation of animated sprites, 200
output window, 40
outputting arrays, 322
over state (of button), 34–36

• P •
Pac-Man, 45, 114
paddleBounce program, 152–155
panel stack (Macromedia Flash), 24
parentheses () for indicating

conditions, 76
parse to integer, 89
parseInt() function, 88–90
paths, drawing, 271–272
planning games

Pong example, 143–144
step-by-step directions, 145

platform scrolling games
creating, 362–364
enhancements, 364
power-ups, 364

pointers
hiding, 138
replacing, 137–140
shapes, 137–139
_xmouse property, 140
_ymouse property, 140

polymorphism, 122

387Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 387

Pong
adding states, 167–172
arcade font, 142
bouncing ball, 147–150
computer opponents, 156–160
creating, 143–144
hitTest() method, 150
losing screen, 165–166
original Pong, 141–142
paddle-ball collisions, 150–151
paddleBounce program, 152–155
plan, 143–144
player paddle, 144–147
risk-rewards principle, 151–152
scorekeeping systems, 161–165
starting screen, 165
visual design, 144
winning screen, 165–166

position (defined), 283
power-ups

Asteroids game, 353
Breakout, 366
platform scrolling games, 364

process of game programming, 16–18
programming. See game programming
programs
addBetter, 88–90
arrayDemo, 320
ballMove, 123–127
balloon, 283–287
buttons, 29–32
carMove, 201–204
carParam, 295–300
carVector, 288–291
carVectorOOP, 291–294
customCursor, 137–140
Don’t Click, 29–32
dxdyToVec, 272–274
followMouse, 272–278
gravityTrace, 248, 267
greeting, 61–63
Hello World!, 19–20, 23–27
killSprite, 326–327
loopDemo, 318
lotsOfSprites, 328–331
makeaSprite, 323–326
oopBall, 334–336
oopManyBalls, 340
paddleBounce, 152–155

soundDemo, 191
space, 301–302
twoPlanets, 310–312
vecProj, 257–259

projectiles, 267
projecting vectors, 345–346
projects

creating, 19–20
naming, 24
templates, 20–21

programming games
benefits of, 9
coding, 15–16
competition, 11
goal of game development, 13–14
imagination, 10
interactivity, 11
Macromedia Flash, 11–12
objects, 11
process, 16–18
skills required, 9–11
sound effects, 185
themes, 14–15

properties
ActionScript, 125
bullet.dir, 261
bullet.speed, 261
classes, 332
defined, 120
dir, 210
dx, 123–124, 203, 210, 249, 252–254, 267
dy, 123–124, 203, 210, 249, 252–254, 267
gun.charge, 261
gun.dir, 261, 263
height, 131–132
lineStyle, 272
objects, 339
rotation, 208
sprites, 204–206
traction, 313–315
width, 131–132
_xmouse, 140
_ymouse, 140

Properties Inspector (Macromedia
Flash), 22

pseudocode, 39
publishing Web page files, 27

388 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 388

• Q •
“” (quotes, double) for outputting text, 41

• R •
radial gradient, 115
radians (angles), 256
radians-to-degrees conversion, 257
random() function, 71–72
random integer generator, 348
random number generator, 69–72
real numbers, 71
reality in games, 247
registration point, 117, 345
removeMovieClip() method, 327, 340
repeated behavior. See loops
replacing the mouse pointer, 137–140
resetFlame method, 232–234
retrieving elements from arrays, 321
right triangles, 250–252
risk-rewards principle, 151–152
roll program, 69–73
rotation property, 208
round() function, 72
rounding numbers, 72
royalty-free sound effects, 186

• S •
sampling rate of audio files, 187
scorekeeping systems

Monster Traffic game, 177, 240–242
Pong, 161–165

scripting (ActionScript)
animation, 12
arrays, 320–321
comparisons, 77
conditions, 76–77
constants, 204
enumerations, 204
features, 11–12
object-oriented programming (OOP), 120
properties, 125
trigonometry functions, 259

server requirements, 28
shape tween tool, 12

shapes
animated sprites, 193–198
creating, 193–195
gradient fills, 195
modifying, 195–197
mouse pointers, 137–139
vertices, 197–198

sharing variables, 98
side scroller, 373
simulating gravity, 268–269
sin of an angle, 252
SOHCAHTOA mnemonic, 252
solving

angles, 255
distance, 255–256

sound effects
adding, 190–191
animation, 184–185
arcade games, 183
Audacity open source audio editor, 186
audio compression, 186–187
combining, 192
creating, 186
game programming, 185
headphones, 184, 192
legal issues, 185–186
Macromedia Flash, 183–184
Monster Traffic game, 178, 234–236
MP3 audio format, 185
royalty-free, 186
stereo effects, 192
stopping, 192
testing, 192
time dependency, 184–185
tips for using, 191–192
volume, 192
WAV audio format, 185

sound files
audio compression, 186–187, 190
bit depth, 187
importing, 187–189, 191–192
MP3 format, 185
sampling rate, 187
WAV format, 185

Sound object, 185
soundDemo program, 191
Sound.setPan() method, 192
Sound.setVolume() method, 192
Sound.start() method, 189

389Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 389

Sound.stop() method, 192
source code files, 5
Space Invaders

creating, 367–368
enhancements, 368–369

spaceships
creating, 303
direction, 302
gravity, 306–310
keyboard input, 303–304
Lunar Lander game, 354–355
moving, 306
space program, 301–302
states, 302–303
turning, 304–306
twoPlanets program, 310–312

Spacewar, 141
speed

defined, 283
dx property, 249
dy property, 249
gravityTrace program, 248
vector projection, 248

sprites
animation, 193–201
boundary checking, 128–137
code, 117–119
creating, 113, 323–326
creating many copies, 328–331
custom sprites, 334–340
defined, 17, 113
destroying, 323, 326–328
examples, 114
killSprite program, 326–327
lotsOfSprites program, 328–331
makeaSprite program, 323–326
Monster Traffic game, 201
motion, 349
MovieClip object, 114, 116–117
moving, 201–204, 211
naming, 117
properties, 204–206
registration point, 117, 345
suicidal sprites, 326–327
3-D ball, 115–116
turning, 206–208
user-controlled, 212–217

Stage (Macromedia Flash), 21–22
STAIR analysis of programming, 236
starters for games

Asteroids, 352–353
Breakout, 365–366
Egg Cannon, 355–357
Lunar Lander, 353–355
Orbit Matcher, 369–371
Pac-Man, 45
platform scrolling games, 362–364
Space Invaders, 367–369
tile-based world games, 371–373
Whack-an-Author, 373–376
Zelda, 357–362

starting state, 165
Statement must appear within onClip event

handler, 108
states (of button)

down state, 36
over state, 34–36
up state, 36

states (of game)
adding, 167–172
Green Grass game, 46–51
keyframes, 47–48
losing state, 165–166
Monster Traffic game, 239–240
multi-state games, 48
Pac-Man example, 45
spaceship example, 302–303
starting state, 165
swapping, 52–53
winning state, 165–166

static text, 63–65
stereo effects, 192
stopping sound effects, 192
strategy games, 373
strings

concatenation, 68–69
converting to integers, 89

String.fromCharCode() method, 182
style conventions, 41
suicidal sprites, 326–327
swapping states, 52–53
SWF files, 28
switch statement
binaryDice program, 82–84
directions (for movement), 208–209

390 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 390

symbols
buttons, 31–33
graphics, 33
movie clips, 33

syntax errors, 106–107

• T •
tangent of an angle, 252
templates (projects), 20–21
testing
customCursor program, 140
sound effects, 192

text
buttons, 39
dynamic text, 63
input text, 63–66
static text, 63–65
string concatenation, 68–69

text fields
transferring data between, 67
variables, 66–68

Text tool, 64
themes, 14–15
this keyword, 294
3-D ball, 115–116
3-D buttons, 30
tile-based world games

creating, 371–373
enhancements, 373

time dependency of sound effects, 184–185
Timeline (Macromedia Flash), 23
tools

motion tween tool, 12
shape tween tool, 12
Text tool, 64

Tools Panel (Macromedia Flash), 22–23
trace function, 40–41
traction property, 313–315
trajectories of bullets, 266
transferring data between text fields, 67
triangles

adjacent side, 251
hypotenuse, 251
opposite side, 251

right triangles, 250–252
SOHCAHTOA mnemonic, 252
trigonometry functions, 259
trigonometry notation, 251–252
trigonometry ratios, 252

troubleshooting errors, 109
true conditions, 78
turn method

Cannon game, 264–265
carParam program, 299
carVector program, 291
Monster Traffic game, 202–203,

206–207, 210
space program, 304–305

turning
cars, 291
spaceships, 304–306
sprites, 206–208

2-D games, 114
twoPlanets program, 310–312

• U •
Unicode, 182
unit vector, 259
up state (of button), 36
user-controlled sprites, 212–217
UTF (Unicode Transformation Format), 182
UTF-8, 182

• V •
values

adding to variables, 102
dx property, 124, 252, 254
dy property, 124, 252–254
literal value, 68

var keyword, 338
variables

adding values, 102
defined, 66
op variable, 109
sharing, 98
text fields, 66–68

391Index

25_589628 bindex.qxd 10/12/05 3:08 PM Page 391

vecProj program, 257–259
vectorAngle.fla file, 249
vectors

calculating, 272
carVector program, 288–291
combining, 348–349
defined, 247, 250
drawing, 249–250
dx property, 249
dy property, 249
generating, 346
length, 250, 275
magnitude, 250
motion, 248
normalized, 259
projecting, 345–346
right triangles, 250–252
unit, 259
vector projection, 248, 259–260

vehicles
arcade games, 279
boats, 312–313
carMove program, 201–204
carParam program, 295–300
carVector program, 288–291
carVectorOOP program, 291–294
keyboard input, 290–291
laws of motion, 279–282
motion, 349
spaceships, 301–312
traction property, 313–315
turning, 291

velocity (defined), 283
vertices (shapes), 197–198
visual design, 90–95, 144
volume, 192

• W •
W, A, S, and D keys (alternative

arrows), 181
war games, 373
WAV audio format, 185
Web output with Macromedia Flash, 12
Web server requirements, 28
Web sites

Audacity open source audio editor, 186
Hampsterdance, 16
source code files, 5

weight (defined), 281
Whack-an-Author game, 373–376
while loop, 320
width property, 131–132
Wikipedia’s hexadecimal color guide, 270
wind effects, 285–286
winning state, 165–166
writing guidelines, 41

• X •
_xmouse property, 140

• Y •
_ymouse property, 140

• Z •
Zelda

creating, 357–361
enhancements, 361–362

z-order, 325, 327

392 Beginning Flash Game Programming For Dummies

25_589628 bindex.qxd 10/12/05 3:08 PM Page 392

	About the Author
	Dedication
	Table of Contents
	Introduction
	What’s Really (Not) Required
	About This Book
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here
	A Final Word

	Part I Basic Flash
	Chapter 1 Why You Want to Write Games in Flash
	Designing and Writing Games
	Game Programming in Flash
	Comparing ActionScript with Animation
	How You Make a Game
	Game Programming 101

	Chapter 2 Cruising and Using the Flash Environment
	Creating a New Program Project
	Adding Buttons

	Part II The Next Steps
	Chapter 3 Altered States
	State of Nonconfusion
	Adding Keyframes
	Making a Great Adventure

	Chapter 4 Getting with the Program
	Different Text for Different Jobs
	Building the Greeting Program
	On a Roll: Making Random Numbers
	Making Decisions with Conditions
	Responding to False Conditions
	Making Lots of Decisions

	Chapter 5 Making an Interactive Game
	Introducing the Math Game
	Making an Adder
	Building the Visual Design
	Coding the Pages
	Coping with Bugs and Crashes

	Part III Sprites, or Movie Clips
	Chapter 6 Introducing Sprites and Movie Clips
	Building a Sprite
	Don’t Object to Objects
	Making a Well-Behaved Object
	Overcoming Your Boundaries
	Making a Cursor

	Chapter 7 Won’t Be Long ’Til You Write Pong
	Building the Game Plan
	Following the Mouse with the Player Paddle
	Adding the Bouncing Ball
	Building a Better Bounce
	Adding a Computer Opponent
	Building Artificial Stupidity
	Adding a Scorekeeping Mechanism

	Part IV Getting Control of the Situation
	Chapter 8 Keyboard Input and Audio Output
	Introducing the Monster Traffic Game
	Responding to the Keyboard
	Adding Sounds

	Chapter 9 It’s Alive! Animating Your Sprites
	Creating Animated Sprites
	Moving a Sprite under Computer Control
	Creating a User-Controlled Sprite

	Chapter 10 Building the Monster Traffic Game
	Reviewing the Basic Design
	Adding More Opponents
	Firing Missiles
	Testing for Collisions
	Adding the Sound Effects
	Completing the Program

	Part V Phun with Phuzzy Physics
	Chapter 11 Vectors and Gravity
	Tower, Give Me a Vector
	Doing Vector Conversion in Flash
	Using Vector Projection in Motion
	Fun with Ballistics
	Calculating the Vector from dx and dy
	Following the Mouse

	Chapter 12 Vehicle Motion
	Newton without the Figs
	Newton and Vectors
	Baby, You Can Drive My Car
	Getting Lost in Space
	Captain, We’re Caught in a Gravity Well
	Building a Better Boat
	The Secret of Traction

	Chapter 13 The Life and Death of Sprites
	Here We Go Loop-de-Loop
	Making Many Things with Arrays
	Building Sprites Dynamically
	Creating Custom Objects

	Part VI The Part of Tens
	Chapter 14 Ten Math Concepts for Game Programmers
	Managing Velocity
	Accelerating an Object
	Calculating a Distance
	Projecting a Vector
	Generating a Vector
	Compensating for Gravity
	Newton’s Second Law
	Generating a Random Integer
	Combining Vectors
	Sophisticated Vehicle Motion

	Chapter 15 Ten Game Starters
	Asteroids
	Lunar Lander
	Egg Cannon
	Zelda
	Platform Scroller Games
	Breakout
	Space Invaders
	Orbit Matcher
	Tile-Based World Games
	Whack-an-Author

	Index

