
by Barry Burd

Beginning
Programming

with Java™

FOR

DUMmIES
‰

2ND EDITION

01_588745 ffirs.qxd 3/16/05 9:31 PM Page i

C1.jpg

01_588745 ffirs.qxd 3/16/05 9:31 PM Page iv

by Barry Burd

Beginning
Programming

with Java™

FOR

DUMmIES
‰

2ND EDITION

01_588745 ffirs.qxd 3/16/05 9:31 PM Page i

Beginning Programming with Java™ For Dummies®, 2nd Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.
wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates in the United
States and other countries, and may not be used without written permission. Java is a trademark of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.,
is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005923219

ISBN-13: 978-0-7645-8874-7

ISBN-10: 0-7645-8874-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2B/QU/QU/QV/IN

01_588745 ffirs.qxd 3/16/05 9:31 PM Page ii

www.wiley.com

About the Author
Dr. Barry Burd has an M.S. in Computer Science from Rutgers University, and
a Ph.D. in Mathematics from the University of Illinois. As a teaching assistant
in Champaign-Urbana, Illinois, he was elected five times to the university-wide
List of Teachers Ranked as Excellent by their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics
and Computer Science at Drew University in Madison, New Jersey. When he’s
not lecturing at Drew University, Dr. Burd leads training courses for profes-
sional programmers in business and industry. He has lectured at conferences
in the United States, Europe, Australia, and Asia. He is the author of several
articles and books, including Java 2 For Dummies and Eclipse For Dummies,
both published by Wiley Publishing, Inc.

Dr. Burd lives in Madison, New Jersey, with his wife and two children. For
hobbies he enjoys anything that wastes his and everyone else’s time.

01_588745 ffirs.qxd 3/16/05 9:31 PM Page iii

01_588745 ffirs.qxd 3/16/05 9:31 PM Page iv

Dedication
For Harriet, Sam and Jennie, Sam and Ruth, Abram and Katie, Benjamin and
Jennie

Author’s Acknowledgments
Author’s To-Do List, February 13, 2005:

Item: Send chocolate to Christine Berman — the book’s project editor and
copy editor. As anyone who reads Chapter 4 learns, chocolate is one of the
most precious commodities on earth. So when I give chocolate, I give it
thoughtfully and intentionally.

The only thing that rivals chocolate’s goodness is the benefit of a good
night’s sleep. But with a 19-month-old child in the house, Christine probably
isn’t getting enough sleep. Even so, she has the time and patience to work on
my manuscript. Yes, Christine deserves special thanks.

Item: Have a plaque erected in honor of Steven Hayes, your acquisitions
editor at Wiley. While you dragged your heels, Steve kept on insisting that
you write this book. (Sure, you wanted a long vacation instead of a big book
project, but who cares? He was right; you were wrong.)

Item: Send a thank-you note to tech editor Jim Kelly who helped polish your
original work and, miraculously, didn’t make a lot of extra work for you.

Item: Recommend your agent Laura Lewin to other computer book authors.
If it weren’t for Laura, you’d still be roaming the book exhibits and looking
needy at the technology conferences.

Item: Visit Frank Thornton, Bonnie Averbach, and Herbert Putz at Temple
University. Thank them for steering you to a career as a professor. In any
other career, you’d have no time left to write. (And by the way, while you’re
in Philly, don’t forget to stop for a cheesesteak.)

Item: Send e-mail to Gaisi Takeuti at the University of Illinois, and to William
Wisdom and Hughes LeBlanc at Temple University. Thank them for teaching
you about Symbolic Logic. It’s made your life as a computer scientist and
mathematician much richer.

Item: Spend more time with your family. (Remind them that you’re the guy
who wandered around the house before this book project got started.) Renew
your pledge to clean up after yourself. Don’t be so highstrung, and finish each
sentence that you start. Remember that you can never fully return the love
they’ve given you, but you should always keep trying.

01_588745 ffirs.qxd 3/16/05 9:31 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Christine Berman

Acquisitions Editor: Steve Hayes

Copy Editor: Christine Berman

Technical Editor: Jim Kelly

Editorial Manager: Carol Sheehan

Media Development Manager: Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Maridee Ennis

Layout and Graphics: Andrea Dahl,
Joyce Haughey, Lynsey Osborn,
Melanee Prendergast, Heather Ryan

Proofreaders: Leeann Harney, Jessica Kramer,
Carl William Pierce, Dwight Ramsey,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_588745 ffirs.qxd 3/16/05 9:31 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Revving Up..7
Chapter 1: Getting Started...9
Chapter 2: Setting Up Your Computer ...23
Chapter 3: Running Programs...33

Part II: Writing Your Own Java Programs45
Chapter 4: Exploring the Parts of a Program..47
Chapter 5: Composing a Program ..65
Chapter 6: Using the Building Blocks: Variables, Values, and Types89
Chapter 7: Numbers and Types ..103
Chapter 8: Numbers? Who Needs Numbers?..121

Part III: Controlling the Flow.....................................139
Chapter 9: Forks in the Road ..141
Chapter 10: Which Way Did He Go? ...157
Chapter 11: How to Flick a Virtual Switch...181
Chapter 12: Around and Around It Goes ...195
Chapter 13: Piles of Files: Dealing with Information Overload.................................215
Chapter 14: Creating Loops within Loops...233
Chapter 15: The Old Runaround...245

Part IV: Using Program Units269
Chapter 16: Using Loops and Arrays ...271
Chapter 17: Programming with Objects and Classes...289
Chapter 18: Using Methods and Variables from a Java Class303
Chapter 19: Creating New Java Methods...325
Chapter 20: Oooey GUI Was a Worm..347

Part V: The Part of Tens ..359
Chapter 21: Ten Sets of Web Links ...361
Chapter 22: Ten Useful Classes in the Java API ..367

Index ...371

02_588745 ftoc.qxd 3/16/05 9:23 PM Page vii

02_588745 ftoc.qxd 3/16/05 9:23 PM Page viii

Table of Contents
Introduction..1

How to Use This Book ...1
Conventions Used in This Book ...2
What You Don’t Have to Read ..2
Foolish Assumptions ...3
How This Book Is Organized...4

Part I: Revving Up...4
Part II: Writing Your Own Java Programs ..4
Part III: Controlling the Flow ...5
Part IV: Using Program Units ..5
Part V: The Part of Tens...5

Icons Used in This Book..5
Where to Go from Here..6

Part I: Revving Up ..7

Chapter 1: Getting Started .9
What’s It All About? ...9

Telling a computer what to do..10
Pick your poison...11

From Your Mind to the Computer’s Processor...12
Translating your code..12
Running code ..13
Code you can use ...17

Your Java Programming Toolset ..19
What’s already on your hard drive?...20
JCreator ...21

Chapter 2: Setting Up Your Computer .23
Downloading and Installing the Software You Need..................................24

Downloading and installing a Java compiler24
Downloading and installing the Java API documentation...............26
Downloading and installing the JCreator

integrated development environment ...28
Running JCreator for the First Time ..29
Is That All There Is to It? ...31

Chapter 3: Running Programs .33
Running a Canned Java Program..33
Typing and Running Your Own Code...38

02_588745 ftoc.qxd 3/16/05 9:23 PM Page ix

Part II: Writing Your Own Java Programs......................45

Chapter 4: Exploring the Parts of a Program .47
Checking Out Java Code for the First Time ..47

Behold! A program!...48
What the program’s lines say ...49

The Elements in a Java Program ..49
Keywords...50
Identifiers that you or I can define...52
Identifiers with agreed upon meanings ...52
Literals ...53
Punctuation...54
Comments ...56

Understanding a Simple Java Program..57
What is a method?..57
The main method in a program..60
How you finally tell the computer to do something61
The Java class ...63

Chapter 5: Composing a Program .65
A Program to Echo Keyboard Input...66

Typing and running a program ...68
How the EchoLine program works...70
Getting numbers, words, and other things72
Type two lines of code, and don’t look back74

Expecting the Unexpected ..74
Diagnosing a problem ..76
What problem? I don’t see a problem..86

Chapter 6: Using the Building Blocks:
Variables, Values, and Types .89

Using Variables ...89
Using a variable ..90
Understanding assignment statements ...92
To wrap or not to wrap? ..93

What Do All Those Zeros and Ones Mean?...94
Types and declarations ...95
What’s the point?..96

Reading Decimal Numbers from the Keyboard..96
Though these be methods, yet there is madness in ’t.....................97
Methods and assignments ..99

Variations on a Theme...99
Moving variables from place to place..100
Combining variable declarations ...101

Beginning Programming with Java For Dummies, 2nd Edition x

02_588745 ftoc.qxd 3/16/05 9:23 PM Page x

Chapter 7: Numbers and Types .103
Using Whole Numbers ...103

Reading whole numbers from the keyboard...................................105
What you read is what you get ...106

Creating New Values by Applying Operators ...108
Finding a remainder ...108
The increment and decrement operators111
Assignment operators ...117

Size Matters ..118

Chapter 8: Numbers? Who Needs Numbers? .121
Characters...122

I digress123
One character only, please..125
Variables and recycling..125
When not to reuse a variable..127
Reading characters ..129

The boolean Type ..131
Expressions and conditions..132
Comparing numbers; comparing characters..................................133

The Remaining Primitive Types ...138

Part III: Controlling the Flow139

Chapter 9: Forks in the Road .141
Making Decisions (Java if Statements)..143

Looking carefully at if statements ..143
A complete program ..147
Indenting if statements in your code ...150

Variations on the Theme ...150
. . . Or else what? ..151
Packing more stuff into an if statement...153
Some handy import declarations ...155

Chapter 10: Which Way Did He Go? .157
Forming Bigger and Better Conditions..157

Combining conditions: An example ...159
When to initialize? ..161
More and more conditions..162
Using boolean variables ..165
Mixing different logical operators together166
Using parentheses ..168

xiTable of Contents

02_588745 ftoc.qxd 3/16/05 9:23 PM Page xi

Building a Nest..170
Nested if statements ..171
Cascading if statements...172

Enumerating the Possibilities...175
Creating an enum type...176
Using an enum type..176
Creating a project with two Java source files179

Chapter 11: How to Flick a Virtual Switch .181
Meet the switch Statement ...181

The cases in a switch statement ..183
The default in a switch statement..184
Picky details about the switch statement185
To break or not to break..188

Using Fall-through to Your Advantage...190
Using a Conditional Operator...192

Chapter 12: Around and Around It Goes .195
Repeating Instructions Over and Over Again

(Java while Statements)...196
Following the action in a loop...197
No early bailout ..199

Thinking about Loops (What Statements Go Where)..............................200
Finding some pieces...200
Assembling the pieces ...203
Getting values for variables ..203
From infinity to affinity ..205

Thinking About Loops (Priming) ...207
Working on the problem..209
Fixing the problem ...212

Chapter 13: Piles of Files: Dealing
with Information Overload .215

Running a Disk-Oriented Program ...216
A sample program ..217
Creating code that messes with your hard drive219
Running the sample program ...222
Troubleshooting problems with disk files224

Writing a Disk-Oriented Program ...226
Reading from a file..227
Writing to a file..227

Writing, Rewriting, and Re-rewriting..230

Chapter 14: Creating Loops within Loops .233
Paying Your Old Code a Little Visit ..234

Reworking some existing code ...235
Running your code ...236

Beginning Programming with Java For Dummies, 2nd Edition xii

02_588745 ftoc.qxd 3/16/05 9:23 PM Page xii

Creating Useful Code ...236
Checking for the end of a file ..237
How it feels to be a computer...239
Why the computer accidentally pushes

past the end of the file ...241
Solving the problem ...243

Chapter 15: The Old Runaround .245
Repeating Statements a Certain Number Times

(Java for Statements) ...246
The anatomy of a for statement ...248
Initializing a for loop ..250

Using Nested for Loops ...252
Repeating Until You Get What You Need (Java do Statements).............254

Getting a trustworthy response ...255
Deleting files..257
Using Java’s do statement ...258
A closer look at the do statement ..259

Repeating with Predetermined Values
(Java’s Enhanced for Statement)..260

Creating an enhanced for loop ...261
Nesting the enhanced for loops ...263

Part IV: Using Program Units269

Chapter 16: Using Loops and Arrays .271
Some for Loops in Action..271

Deciding on a loop’s limit at runtime...274
Using all kinds of conditions in a for loop.......................................275

Reader, Meet Arrays; Arrays, Meet the Reader ..277
Storing values in an array..280
Creating a report ..282

Working with Arrays ..283

Chapter 17: Programming with Objects and Classes 289
Creating a Class ..290

Reference types and Java classes ..291
Using a newly defined class ..291
Running code that straddles two separate files.............................293
Why bother?..294

From Classes Come Objects ...294
Understanding (or ignoring) the subtleties297
Making reference to an object’s parts ...297
Creating several objects ..298

Another Way to Think About Classes..300
Classes, objects, and tables ..301
Some questions and answers ...302

xiiiTable of Contents

02_588745 ftoc.qxd 3/16/05 9:23 PM Page xiii

Chapter 18: Using Methods and Variables from a Java Class 303
The String Class..303

A simple example ...304
Putting String variables to good use..305
Reading and writing strings ..306

Using an Object’s Methods ...307
Comparing strings ..310
The truth about classes and methods...311
Calling an object’s methods..312
Combining and using data...313

Static Methods..313
Calling static and non-static methods ...314
Turning strings into numbers ...315
Turning numbers into strings ...316
How the NumberFormat works ..318

Understanding the Big Picture ...318
Packages and import declarations...319
Shedding light on the static darkness ...320
Barry makes good on an age-old promise.......................................321

Chapter 19: Creating New Java Methods .325
Defining a Method within a Class...325

Making a method ..326
Examining the method’s header...328
Examining the method’s body ..328
Calling the method ...330
The flow of control ...332
Using punctuation ..333
The versatile plus sign...333

Let the Objects Do the Work...334
Passing Values to Methods ...336

Handing off a value...338
Working with a method header ..340
How the method uses the object’s values.......................................340

Getting a Value from a Method ...341
An example..342
How return types and return values work344
Working with the method header (again)345

Chapter 20: Oooey GUI Was a Worm .347
The Java Swing Classes ...348

Showing an image on the screen ..348
Just another class...350

Keeping the User Busy (Working with Buttons and Text Fields)352
Taking Action ..355

Beginning Programming with Java For Dummies, 2nd Edition xiv

02_588745 ftoc.qxd 3/16/05 9:23 PM Page xiv

Part V: The Part of Tens ...359

Chapter 21: Ten Sets of Web Links .361
The Horse’s Mouth...361
Finding News, Reviews, and Sample Code..362
Improving Your Code with Tutorials ...362
Finding Help on Newsgroups..362
Reading Documentation with Additional Commentary363
Checking the FAQs for Useful Info..363
Opinions and Advocacy ..363
Looking for Java Jobs ..364
Finding Out More about Other Programming Languages364
Everyone’s Favorite Sites ..365

Chapter 22: Ten Useful Classes in the Java API 367
Applet ..367
ArrayList..368
File..368
Integer..368
Math...369
NumberFormat ...369
Scanner..369
String..369
StringTokenizer ..370
System ...370

Index..371

xvTable of Contents

02_588745 ftoc.qxd 3/16/05 9:23 PM Page xv

Beginning Programming with Java For Dummies, 2nd Edition xvi

02_588745 ftoc.qxd 3/16/05 9:23 PM Page xvi

Introduction

What’s your story?

� Are you a working stiff, interested in knowing more about the way your
company’s computers work?

� Are you a student who needs some extra reading in order to survive a
beginning computer course?

� Are you a typical computer user — you’ve done lots of word processing,
and you want to do something more interesting with your computer?

� Are you a job seeker with an interest in entering the fast-paced, glam-
orous, high-profile world of computer programming (or at least, the
decent-paying world of computer programming)?

Well, if you want to write computer programs, this book is for you. This book
avoids the snobby “of-course-you-already-know” assumptions, and describes
computer programming from scratch.

The book uses Java — an exciting, relatively new computer programming lan-
guage. But Java’s subtleties and eccentricities aren’t the book’s main focus.
Instead, this book emphasizes a process — the process of creating instructions
for a computer to follow. Many highfalutin’ books describe the mechanics of
this process — the rules, the conventions, and the formalisms. But those other
books aren’t written for real people. Those books don’t take you from where
you are to where you want to be.

In this book, I assume very little about your experience with computers. As you
read each section, you get to see inside my head. You see the problems that I
face, the things that I think, and the solutions that I find. Some problems are
the kind that I remember facing when I was a novice; other problems are the
kind that I face as an expert. I help you understand, I help you visualize, and I
help you create solutions on your own. I even get to tell a few funny stories.

How to Use This Book
I wish I could say, “Open to a random page of this book and start writing Java
code. Just fill in the blanks and don’t look back.” In a sense, this is true. You
can’t break anything by writing Java code, so you’re always free to experiment.

03_588745 intro.qxd 3/16/05 9:14 PM Page 1

But I have to be honest. If you don’t understand the bigger picture, writing a
program is difficult. That’s true with any computer programming language —
not just Java. If you’re typing code without knowing what it’s about, and the
code doesn’t do exactly what you want it to do, then you’re just plain stuck.

So in this book, I divide programming into manageable chunks. Each chunk is
(more or less) a chapter. You can jump in anywhere you want — Chapter 5,
Chapter 10, or wherever. You can even start by poking around in the middle
of a chapter. I’ve tried to make the examples interesting without making one
chapter depend on another. When I use an important idea from another chap-
ter, I include a note to help you find your way around.

In general, my advice is as follows:

� If you already know something, don’t bother reading about it.

� If you’re curious, don’t be afraid to skip ahead. You can always sneak a
peek at an earlier chapter if you really need to do so.

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Beginning
Programming with Java For Dummies, 2nd Edition is no exception. What follows
is a brief explanation of the typefaces used in this book:

� New terms are set in italics.

� When I want you to type something short or perform a step, I use bold.

� You’ll also see this computerese font. I use the computerese font for
Java code, filenames, Web page addresses (URLs), on-screen messages,
and other such things. Also, if something you need to type is really long,
it appears in computerese font on its own line (or lines).

� You need to change certain things when you type them on your own
computer keyboard. For example, I may ask you to type

class Anyname

which means you should type class and then some name that you make
up on you own. Words that you need to replace with your own words are
set in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and
start reading there. Of course, you may hate making decisions as much as I
do. If so, here are some guidelines you can follow:

2 Beginning Programming with Java For Dummies, 2nd Edition

03_588745 intro.qxd 3/16/05 9:14 PM Page 2

� If you already know what computer programming is all about, then skip
the first half of Chapter 1. Believe me, I won’t mind.

� If your computer has a Java compiler, and you’re required to use a devel-
opment environment other than JCreator, then you can skip Chapter 2.
This applies if you plan to use Eclipse, JBuilder, NetBeans, BlueJ, or a
number of other development environments.

Just make sure that your system uses Java 5.0 or later. This book’s exam-
ples don’t work on earlier versions of Java, including versions numbered
1.4.2 and below. So if you’re not sure about your computer’s Java version,
or if you have leeway in choosing a development environment, your safest
move is to read Chapter 3.

And by the way, if Eclipse is your thing, check my Eclipse For Dummies
book, published by Wiley.

� If you’ve already done a little computer programming, be prepared to
skim Chapters 6 through 8. Dive fully into Chapter 9, and see if it feels
comfortable. (If so, then read on. If not, re-skim Chapters 6, 7, and 8.)

� If you feel comfortable writing programs in a language other than Java,
then this book isn’t for you. Keep this book as a memento, and buy my
Java 2 For Dummies book, also published by Wiley Publishing, Inc.

If you want to skip the sidebars and the Technical Stuff icons, then please do.
In fact, if you want to skip anything at all, feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, then you’re probably okay. If all these assumptions
are incorrect . . . well, buy the book anyway.

� I assume that you have access to a computer. Here’s good news. You can
run the code in this book on almost any computer. The only computers
you can’t use to run this code are ancient things that are more than eight
years old (give or take a few years).

Occasionally, I’m lazy and lapse into Microsoft Windows terminology,
but that’s only because so many people run Windows. You can run the
latest version of Java on Windows computers, UNIX/Linux computers,
and (by some time in 2005) the Macintosh.

� I assume that you can navigate through your computer’s common menus
and dialog boxes. You don’t have to be a Windows, Unix, or Macintosh
power user, but you should be able to start a program, find a file, put a
file into a certain directory . . . that sort of thing. Most of the time, when
you practice the stuff in this book, you’re typing code on your keyboard,
not pointing and clicking your mouse.

3Introduction

03_588745 intro.qxd 3/16/05 9:14 PM Page 3

On those rare occasions when you need to drag and drop, cut and
paste, or plug and play, I guide you carefully through the steps. But your
computer may be configured in any of several billion ways, and my
instructions may not quite fit your special situation. So when you reach
one of these platform-specific tasks, try following the steps in this book.
If the steps don’t quite fit, send me an e-mail message, or consult a book
with instructions tailored to your system.

� I assume that you can think logically. That’s all there is to computer
programming — thinking logically. If you can think logically, you’ve got it
made. If you don’t believe that you can think logically, read on. You may
be pleasantly surprised.

� I assume that you know little or nothing about computer programming.
This isn’t one of those “all things to all people” books. I don’t please the
novice while I tease the expert. I aim this book specifically toward the
novice — the person who has never programmed a computer, or has
never felt comfortable programming a computer. If you’re one of these
people, you’re reading the right book.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped finally into five parts.
(When you write a book, you get to know your book’s structure pretty well.
After months of writing, you find yourself dreaming in sections and chapters
when you go to bed at night.) The parts of the book are listed here.

Part I: Revving Up
The chapters in Part I prepare you for the overall programming experience.
In these chapters, you find out what programming is all about and get your
computer ready for writing and testing programs.

Part II: Writing Your Own Java Programs
This part covers the basic building blocks — the elements in any Java program,
and in any program written using a Java-like language. In this part, you dis-
cover how to represent data, and how to get new values from existing values.
The program examples are short, but cute.

4 Beginning Programming with Java For Dummies, 2nd Edition

03_588745 intro.qxd 3/16/05 9:14 PM Page 4

Part III: Controlling the Flow
Part III has some of my favorite chapters. In these chapters, you make the
computer navigate from one part of your program to another. Think of your
program as a big mansion, with the computer moving from room to room.
Sometimes the computer chooses between two or more hallways, and some-
times the computer revisits rooms. As a programmer, your job is to plan the
computer’s rounds through the mansion. It’s great fun.

Part IV: Using Program Units
Have you ever solved a big problem by breaking it into smaller, more manage-
able pieces? That’s exactly what you do in Part IV of this book. You discover
the best ways to break programming problems into pieces and to create solu-
tions for the newly found pieces. You also find out how to use other people’s
solutions. It feels like stealing, but it’s not.

This part also contains a chapter about programming with windows, buttons,
and other graphical items. If your mouse feels ignored by the examples in this
book, read Chapter 20.

Part V: The Part of Tens
The Part of Tens is a little beginning programmer’s candy store. In the Part of
Tens, you can find lists — lists of tips, resources, and all kinds of interesting
goodies.

I added an Appendix on this book’s web site to help you feel comfortable with
Java’s documentation. I can’t write programs without my Java programming
documentation. In fact, no Java programmer can write programs without
those all-important docs. These docs are in Web page format, so they’re easy
to find and easy to navigate. But if you’re not used to all the terminology, the
documentation can be overwhelming.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence several times in my head. When I have
an extra thought, a side comment, something that doesn’t belong in the regu-
lar stream, I twist my head a little bit. That way, whoever’s listening to me
(usually nobody) knows that I’m off on a momentary tangent.

5Introduction

03_588745 intro.qxd 3/16/05 9:14 PM Page 5

Of course, in print, you can’t see me twisting my head. I need some other way
of setting a side thought in a corner by itself. I do it with icons. When you see
a Tip icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — something helpful that the other
books may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think of a mistake that people are especially prone to make, I
write about the mistake in a Warning icon.

Sometimes I want to hire a skywriting airplane crew. “Barry,” says the white
smoky cloud, “if you want to compare two numbers, use the double equal
sign. Please don’t forget to do this.” Because I can’t afford skywriting, I have
to settle for something more modest. I create a Remember icon.

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who developed Java) were
thinking. You don’t have to read it, but you may find it useful. You may also
find the tidbit helpful if you plan to read other (more geeky) books about Java.

This icon calls attention to useful material that you can find online. (You
don’t have to wait long to see one of these icons. I use one at the end of
this introduction!)

Where to Go from Here
If you’ve gotten this far, then you’re ready to start reading about computer
programming. Think of me (the author) as your guide, your host, your per-
sonal assistant. I do everything I can to keep things interesting and, most
importantly, help you understand.

If you like what you read, send me a note. My e-mail address, which I created
just for comments and questions about this book, is BeginProg@BurdBrain.
com. And don’t forget — to get the latest information, visit one of this book’s
support Web sites. Mine is at www.BurdBrain.com. The Wiley site is at
http://www.dummies.com/go/bpjavafd.

6 Beginning Programming with Java For Dummies, 2nd Edition

03_588745 intro.qxd 3/16/05 9:14 PM Page 6

Part I
Revving Up

04_588745 pt01.qxd 3/16/05 9:13 PM Page 7

In this part . . .
You have to eat before you can cook. You have to wear

before you can sew. You have to ride before you can
drive. And you have to run computer programs before you
can write computer programs.

In this part of the book, you run computer programs.

04_588745 pt01.qxd 3/16/05 9:13 PM Page 8

Chapter 1

Getting Started
In This Chapter
� What computer programming is all about

� Understanding the software that enables you write programs

� Revving up to use an integrated development environment

Computer programming? What’s that? Is it technical? Does it hurt? Is it
politically correct? Does Bill Gates control it? Why would anyone want

to do it? And what about me? Can I learn to do it?

What’s It All About?
You’ve probably used a computer to do word processing. Type a letter, print it
out, and then send the printout to someone you love. If you have easy access
to a computer, then you’ve probably surfed the Web. Visit a page, click a link,
and see another page. It’s easy, right?

Well, it’s easy only because someone told the computer exactly what to do. If
you take a computer right from the factory and give no instructions to this
computer, the computer can’t do word processing, the computer can’t surf
the Web, it can’t do anything. All a computer can do is follow the instructions
that people give to it.

Now imagine that you’re using Microsoft Word to write the great American
novel, and you come to the end of a line. (You’re not at the end of a sentence,
just the end of a line.) As you type the next word, the computer’s cursor jumps
automatically to the next line of type. What’s going on here?

05_588745 ch01.qxd 3/16/05 9:18 PM Page 9

Well, someone wrote a computer program — a set of instructions telling the
computer what to do. Another name for a program (or part of a program) is
code. Listing 1-1 shows you what some of Microsoft Word’s code may look like.

Listing 1-1: A Few Lines in a Computer Program

if (columnNumber > 60) {
wrapToNextLine();

}
else {

continueSameLine();
}

If you translate Listing 1-1 into plain English, you get something like this:

If the column number is greater than 60,
then go to the next line.

Otherwise (if the column number isn’t greater than 60),
then stay on the same line.

Somebody has to write code of the kind shown in Listing 1-1. This code,
along with millions of other lines of code, makes up the program called
Microsoft Word.

And what about Web surfing? You click a link that’s supposed to take you
directly to Yahoo.com. Behind the scenes, someone has written code of the
following kind:

Go to Yahoo.

One way or another, someone has to write a program. That someone is called
a programmer.

Telling a computer what to do
Everything you do with a computer involves gobs and gobs of code. Take a
CD-ROM with a computer game on it. It’s really a CD-ROM full of code. At
some point, someone had to write the game program:

if (person.touches(goldenRing)) {
person.getPoints(10);

}

Without a doubt, the people who write programs have valuable skills. These
people have two important qualities:

10 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 10

� They know how to break big problems into smaller step-by-step
procedures.

� They can express these steps in a very precise language.

A language for writing steps is called a programming language, and Java is just
one of several thousand useful programming languages. The stuff in Listing 1-1
is written in the Java programming language.

Pick your poison
This book isn’t about the differences among programming languages, but you
should see code in some other languages so you understand the bigger picture.
For example, there’s another language, Visual Basic, whose code looks a bit
different from code written in Java. An excerpt from a Visual Basic program
may look like this:

If columnNumber > 60 Then
Call wrapToNextLine

Else
Call continueSameLine

End If

The Visual Basic code looks more like ordinary English than the Java code in
Listing 1-1. But, if you think that Visual Basic is like English, then just look at
some code written in COBOL:

IF COLUMN-NUMBER IS GREATER THAN 60 THEN
PERFORM WRAP-TO-NEXT-LINE

ELSE
PERFORM CONTINUE-SAME-LINE

END-IF.

At the other end of the spectrum, you find languages like ISETL. Here’s a
short ISETL program, along with the program’s output:

{x | x in {0..100} | (exists y in {0..10} | y**2=x)};
{81, 64, 100, 16, 25, 36, 49, 4, 9, 0, 1};

Computer languages can be very different from one another but, in some
ways, they’re all the same. When you get used to writing IF COLUMN-NUMBER
IS GREATER THAN 60, then you can also become comfortable writing if
(columnNumber > 60). It’s just a mental substitution of one set of symbols
for another.

11Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 11

From Your Mind to the
Computer’s Processor

When you create a new computer program, you go through a multistep
process. The process involves three important tools:

� Compiler: A compiler translates your code into computer-friendly
(human-unfriendly) instructions.

� Virtual machine: A virtual machine steps through the computer-friendly
instructions.

� Application programming interface: An application programming inter-
face contains useful prewritten code.

The next three sections describe each of the three tools.

Translating your code
You may have heard that computers deal with zeros and ones. That’s cer-
tainly true, but what does it mean? Well, for starters, computer circuits don’t
deal directly with letters of the alphabet. When you see the word Start on
your computer screen, the computer stores the word internally as 01010011
01110100 01100001 01110010 01110100. That feeling you get of seeing a
friendly looking five-letter word is your interpretation of the computer screen’s
pixels, and nothing more. Computers break everything down into very low-level,
unfriendly sequences of zeros and ones, and then put things back together so
that humans can deal with the results.

So what happens when you write a computer program? Well, the program
has to get translated into zeros and ones. The official name for the transla-
tion process is compilation. Without compilation, the computer can’t run
your program.

I compiled the code in Listing 1-1. Then I did some harmless hacking to help me
see the resulting zeros and ones. What I saw was the mishmash in Figure 1-1.

The compiled mumbo jumbo in Figure 1-1 goes by many different names:

� Most Java programmers call it bytecode.

� I often call it a .class file. That’s because, in Java, the bytecode gets
stored in files named SomethingOrOther.class.

� To emphasize the difference, Java programmers call Listing 1-1 the
source code, and refer to the zeros and ones in Figure 1-1 as object code.

12 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 12

To visualize the relationship between source code and object code, see
Figure 1-2. You can write source code, and then get the computer to create
object code from your source code. To create object code, the computer uses
a special software tool called a compiler.

Your computer’s hard drive may have a file named javac or javac.exe.
This file contains that special software tool — the compiler. (Hey, how about
that? The word javac stands for “Java compiler!”) As a Java programmer,
you often tell your computer to build some new object code. Your computer
fulfills this wish by going behind the scenes and running the instructions in
the javac file.

Running code
Several years ago, I spent a week in Copenhagen. I hung out with a friend who
spoke both Danish and English fluently. As we chatted in the public park, I
vaguely noticed some kids orbiting around us. I don’t speak a word of Danish,
so I assumed that the kids were talking about ordinary kid stuff.

Figure 1-2:
The

computer
compiles

source code
to create

object code.

Figure 1-1:
My

computer
understands
these zeros

and ones,
but I don’t.

13Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 13

Then my friend told me that the kids weren’t speaking Danish. “What lan-
guage are they speaking?” I asked.

“They’re talking gibberish,” she said. “It’s just nonsense syllables. They don’t
understand English, so they’re imitating you.”

Now to return to present day matters. I look at the stuff in Figure 1-1, and I’m
tempted to make fun of the way my computer talks. But then I’d be just like
the kids in Copenhagen. What’s meaningless to me can make perfect sense to
my computer. When the zeros and ones in Figure 1-1 percolate through my
computer’s circuits, the computer “thinks” the thoughts in Figure 1-3.

Everyone knows that computers don’t think, but a computer can carry out
the instructions depicted in Figure 1-3. With many programming languages
(languages like C++ and COBOL, for example), a computer does exactly what
I’m describing. A computer gobbles up some object code, and does whatever
the object code says to do.

Figure 1-3:
What the
computer

gleans from
a bytecode

file.

14 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 14

15Chapter 1: Getting Started

What is bytecode, anyway?
Look at Listing 1-1, and at the listing’s translation
into bytecode in Figure 1-1. You may be tempted
to think that a bytecode file is just a cryptogram —
substituting zeros and ones for the letters in
words like if and else. But it doesn’t work that
way at all. In fact, the most important part of a
bytecode file is the encoding of a program’s logic.

The zeros and ones in Figure 1-1 describe the flow
of data from one part of your computer to another.
I’ve illustrated this flow in the following figure. But
remember, this figure is just an illustration. Your
computer doesn’t look at this particular figure, or
at anything like it. Instead, your computer reads a
bunch of zeros and ones to decide what to do next.

Don’t bother to absorb the details in my attempt
at graphical representation in the figure. It’s not
worth your time. The thing you should glean from
my mix of text, boxes, and arrows is that bytecode
(the stuff in a .class file) contains a complete
description of the operations that the computer is
to perform. When you write a computer program,
your source code describes an overall strategy —
a big picture. The compiled bytecode turns the
overall strategy into hundreds of tiny, step-by-step
details. When the computer “runs your program,”
the computer examines this bytecode and carries
out each of the little step-by-step details.

05_588745 ch01.qxd 3/16/05 9:18 PM Page 15

That’s how it works in many programming languages, but that’s not how it
works in Java. With Java, the computer executes a different set of instruc-
tions. The computer executes instructions like the ones in Figure 1-4.

The instructions in Figure 1-4 tell the computer how to follow other instructions.
Instead of starting with Get columnNumber from memory, the computer’s
first instruction is, “Do what it says to do in the bytecode file.” (Of course,
in the bytecode file, the first instruction happens to be Get columnNumber
from memory.)

There’s a special piece of software that carries out the instructions in Figure 1-4.
That special piece of software is called the Java virtual machine (JVM). The
JVM walks your computer through the execution of some bytecode instruc-
tions. When you run a Java program, your computer is really running the Java
virtual machine. That JVM examines your bytecode, zero by zero, one by one,
and carries out the instructions described in the bytecode.

Many good metaphors can describe the Java virtual machine. Think of the
JVM as a proxy, an errand boy, a go-between. One way or another, you have
the situation shown in Figure 1-5. On the (a) side is the story you get with
most programming languages — the computer runs some object code. On
the (b) side is the story with Java — the computer runs the JVM, and the
JVM follows the bytecode’s instructions.

Carry out the first instruction in Figure 1-3.
Carry out the second instruction in Figure 1-3.
Carry out the third instruction in Figure 1-3.
Keep going until you encounter an "If."

When you encounter an "If," then decide which of
the two alternative paths you should follow.

Carry out the instructions in the path that you choose.

Figure 1-4:
How a

computer
runs a Java

program.

16 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 16

Your computer’s hard drive may have a file named java or java.exe. This file
contains the instructions illustrated previously in Figure 1-4 — the instruc-
tions in the Java virtual machine. As a Java programmer, you often tell your
computer to run a Java program. Your computer fulfills this wish by going
behind the scenes and running the instructions in the java file.

Code you can use
During the early 1980s, my cousin-in-law Chris worked for a computer soft-
ware firm. The firm wrote code for word processing machines. (At the time,
if you wanted to compose documents without a typewriter, you bought a
“computer” that did nothing but word processing.) Chris complained about
being asked to write the same old code over and over again. “First, I write a
search-and-replace program. Then I write a spell checker. Then I write another
search-and-replace program. Then, a different kind of spell checker. And then,
a better search-and-replace.”

How did Chris manage to stay interested in his work? And how did Chris’s
employer manage to stay in business? Every few months, Chris had to rein-
vent the wheel. Toss out the old search-and-replace program, and write a new
program from scratch. That’s inefficient. What’s worse, it’s boring.

For years, computer professionals were seeking the Holy Grail — a way to write
software so that it’s easy to reuse. Don’t write and rewrite your search-and-
replace code. Just break the task into tiny pieces. One piece searches for a
single character, another piece looks for blank spaces, a third piece substitutes
one letter for another. When you have all the pieces, just assemble these pieces

Your
computer

(a)

Your
computer

Java bytecode

(b)

object code

Ja
va

Virtual Machine
Figure 1-5:
Two ways

to run a
computer
program.

17Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 17

to form a search-and-replace program. Later on, when you think of a new fea-
ture for your word processing software, you reassemble the pieces in a slightly
different way. It’s sensible, it’s cost efficient, and it’s much more fun.

The late 1980s saw several advances in software development, and by the early
1990s, many large programming projects were being written from prefab com-
ponents. Java came along in 1995, so it was natural for the language’s founders
to create a library of reusable code. The library included about 250 programs,
including code for dealing with disk files, code for creating windows, and code
for passing information over the Internet. Since 1995, this library has grown
to include more than 3,000 programs. This library is called the API — the
Application Programming Interface.

Every Java program, even the simplest one, calls on code in the Java API.
This Java API is both useful and formidable. It’s useful because of all the
things you can do with the API’s programs. It’s formidable because the API
is so extensive. No one memorizes all the features made available by the Java
API. Programmers remember the features that they use often, and look up the
features that they need in a pinch. They look up these features in an online
document called the API Specification (known affectionately to most Java pro-
grammers as the API documentation, or the Javadocs).

The API documentation describes the thousands of features in the Java API.
As a Java programmer, you consult this API documentation on a daily basis.
You can bookmark the documentation at the Sun Microsystems Web site and
revisit the site whenever you need to look up something. But in the long run
(and in the not-so-long run), you can save time by downloading your own
copy of the API docs. (For details, see Chapter 2.)

18 Part I: Revving Up

Write Once, Run AnywhereTM

When Java first hit the tech scene in 1995, the lan-
guage became popular almost immediately. This
happened in part because of the Java virtual
machine. The JVM is like a foreign language inter-
preter, turning Java bytecode into whatever native
language a particular computer understands. So
if you hand my Windows computer a Java byte-
code file, then the computer’s JVM interprets the
file for the Windows environment. If you hand
the same Java bytecode file to my colleague’s
Macintosh, then the Macintosh JVM interprets
that same bytecode for the Mac environment.

Look again at Figure 1-5. Without a virtual
machine, you need a different kind of object code

for each operating system. But with the JVM,
just one piece of bytecode works on Windows
machines, Unix boxes, Macs, or whatever. This
is called portability, and in the computer pro-
gramming world, portability is a very precious
commodity. Think about all the people using
computers to browse the Internet. These people
don’t all run Microsoft Windows, but each
person’s computer can have its own bytecode
interpreter — its own Java virtual machine.

The marketing folks at Sun Microsystems call it
the Write Once, Run AnywhereTM model of com-
puting. I call it a great way to create software.

05_588745 ch01.qxd 3/16/05 9:18 PM Page 18

Your Java Programming Toolset
To write Java programs, you need the tools described previously in this
chapter:

� You need a Java compiler. (See the section entitled, “Translating
your code.”)

� You need a Java virtual machine. (See the section entitled,
“Running code.”)

� You need the Java API. (See the section entitled, “Code you can use.”)

� You need the Java API documentation. (Again, see the “Code you can
use” section.)

You also need some less exotic tools:

� You need an editor to compose your Java programs.

Listing 1-1 contains part of a computer program. When you come right
down to it, a computer program is a big bunch of text. So to write a com-
puter program, you need an editor — a tool for creating text documents.

An editor is a lot like Microsoft Word, or like any other word processing
program. The big difference is that an editor adds no formatting to your
text — no bold, no italic, no distinctions among fonts. Computer programs
have no formatting whatsoever. They have nothing except plain old let-
ters, numbers, and other familiar keyboard characters.

� You need a way to issue commands.

You need a way to say things like “compile this program” and “run the
Java virtual machine.”

Every computer provides ways of issuing commands. (You can double-
click icons or type verbose commands in a Run dialog box.) But when you
use your computer’s facilities, you jump from one window to another.
You open one window to read Java documentation, another window to
edit a Java program, and a third window to start up the Java compiler.
The process can be very tedious.

In the best of all possible worlds, you do all your program editing, documenta-
tion reading, and command issuing through one nice interface. This interface
is called an integrated development environment (IDE).

A typical IDE divides your screen’s work area into several panes — one pane
for editing programs, another pane for listing the names of programs, a third
pane for issuing commands, and other panes to help you compose and test
programs. You can arrange the panes for quick access. Better yet, if you change
the information in one pane, the IDE automatically updates the information in
all the other panes.

19Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 19

Some fancy environments give you point-and-click, drag-and-drop, plug-and-
play, hop-skip-and-jump access to your Java programs. If you want your
program to display a text box, then you click a text box icon and drag it to
the workspace on your screen.

Figure 1-6 illustrates the use of a drag-and-drop IDE. In Figure 1-6, I create a
program that displays two images, two text fields, and two buttons. To help
me create the program, I use the Eclipse IDE with the Jigloo graphical plug-in.
(For a taste of Eclipse, visit www.eclipse.org. For more info on the neato
Jigloo graphical user interface builder, check out www.cloudgarden.com.)

An IDE helps you move seamlessly from one part of the programming endeavor
to another. With an IDE, you don’t have to worry about the mechanics of edit-
ing, compiling, and running a Java virtual machine. Instead, you can worry
about the logic of writing programs. (Wouldn’t you know it? One way or another,
you always have something to worry about!)

What’s already on your hard drive?
You may already have some of the tools you need for creating Java programs.
Here are some examples:

Figure 1-6:
Using the

Eclipse IDE
with the

Jigloo
graphical

user inter-
face builder.

20 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 20

� Most versions of Windows come with a Java virtual machine. Look for
a file named java.exe in your \windows\system32 directory.

� Most computers running Mac OS X come with a Java compiler, a Java
virtual machine, and a Java API.

� Some IDEs come with their own Java tools. For example, when you buy
the Borland JBuilder IDE you get a compiler, a Java virtual machine, and
a copy of the Java API. When you download the free Eclipse IDE you get
a Java compiler, but no Java virtual machine and no Java API.

You may already have some Java tools, but your tools may be obsolete. This
book’s examples use a relatively new version of Java — a version released in
September 2004. Even computers and software sold in 2005 may not be up to
date with the latest Java features. So if you use the tools that come with your
computer, or if you use a commercial product’s software tools, some of this
book’s examples may not run.

The safest bet is to download tools afresh from the Sun Microsystems Web
site. To get detailed instructions on doing the download, see Chapter 2.

Many of this book’s examples don’t run on “older” versions of Java, and by
“older” I mean versions created before the fall of 2004. If you have trouble
running the programs in this book, check to make sure that your version of
Java is numbered 5.0, 5.1, or something like that. Older versions (with version
numbers like 1.4 or 1.4.2) just don’t cut the muster.

JCreator
The programs in this book work with any IDE that can run Java 5.0. You can
even run the programs without an IDE. But to illustrate the examples in this
book, I use JCreator LE (Lite Edition). I chose JCreator LE over other IDEs for
several reasons:

� JCreator LE is free.

� Among all the Java IDEs, JCreator represents a nice compromise
between power and simplicity.

� Unlike some other Java IDEs, JCreator works with almost any version
of Java, from the ancient version 1.0.2 to the new-and-revolutionary ver-
sion 5.0.

� JCreator LE is free. (It’s worth mentioning twice.)

21Chapter 1: Getting Started

05_588745 ch01.qxd 3/16/05 9:18 PM Page 21

This book’s Web site has a special edition of JCreator LE — a version that’s
customized especially for Beginning Programming with Java For Dummies, 2nd
Edition readers! For details on downloading and installing the special edition
of JCreator, see Chapter 2.

JCreator runs only on Microsoft Windows. If you’re a Unix, Linux, or Macintosh
user, please don’t be offended. All the material in this book applies to you, too.
You just have to use a different IDE. My personal recommendations include
Eclipse and Netbeans. For details, visit this book’s Web site at http://www.
dummies.com/go/bpjavafd.

22 Part I: Revving Up

05_588745 ch01.qxd 3/16/05 9:18 PM Page 22

Chapter 2

Setting Up Your Computer
In This Chapter
� Downloading and installing a Java compiler

� Downloading and installing an integrated development environment

� Configuring the integrated development environment

You’ve arrived home, fresh from your local computer store. You have a
brightly colored box (a box with software in it). You tear open the box,

take out a CD-ROM, and put the CD-ROM into your computer. In a few minutes
(or maybe a few hours), you’re off and running. The software is installed and
you’re typing your heart out. This scenario is typical for software that you
buy at your neighborhood computer store.

But what about the software you need to begin writing your own computer
programs? This book tells you how to write Java programs, but before you
can write Java programs, you need several pieces of software. You need a
Java compiler and a Java virtual machine (JVM, for short). You also need the
Java API documentation and an integrated development environment (IDE).

You can get this software in a brightly colored box, but it’s easier (and cheaper)
to download the software from the Web. In fact, all the software you need is free.
It comes as a few downloads — some from Sun Microsystems, and another
from this book’s Web site. Who needs another brightly colored box anyway?

This book’s examples work on any system that supports Java 5.0 or later. If
your computer already has a Java 5.0 compiler, you can skip the next section’s
steps. But if your computer doesn’t have a Java compiler, or if you use an older
version of Java (a version numbered 1.3, 1.4.2, or something like that) then
many of this book’s examples won’t work with your current software configu-
ration. In that case, you must download and install the latest Java compiler.
(Even if your computer already has a Java compiler, it never hurts to down-
load and install the latest version.) Just follow the steps in the next section.

06_588745 ch02.qxd 3/16/05 9:16 PM Page 23

Downloading and Installing
the Software You Need

If you’ve paid for this book, and you already have a working computer, you’ve
already spent all the money you need to spend. All the software you need for
learning Java is free for the downloading.

Downloading and installing
a Java compiler
When I want the weather to be sunny, I bring an umbrella to work. Bringing
an umbrella tells the weather gods to do the opposite of whatever Barry
anticipates. The same kind of thing happens with the Java Web site. If I want
someone to redesign the Web site, I just write an article describing exactly
how to navigate the site. Sometime between the time of my writing and the
date of the article’s publication, the people at Sun Microsystems reorganize
the entire Web site. It’s as dependable as the tides.

Anyway, the Java Web site is in a constant state of flux. That’s why I don’t put
detailed instructions for navigating the Java Web site in this book. Instead, I
offer some timeless tips.

If this section’s “timeless tips” aren’t specific enough for you, visit this book’s
Web site at http://www.dummies.com/go/bpjavafd. At the Web site, you
can find up-to-date instructions on getting the software you need.

24 Part I: Revving Up

What number comes after 1.4.2_06?
The numbering of Java’s versions is really con-
fusing. First comes Java 1.0, then Java 1.1, then
Java 2 Standard Edition 1.2 (J2SE 1.2). Yes, the
“Java 2” numbering overlaps partially with the
“1.x” numbering.

Next come versions 1.3 and 1.4. After version 1.4.1
comes version 1.4.2 (with intermediate stops at
versions like 1.4.1_02). After 1.4.2_06, the next ver-
sion is version 5.0. (That’s no misprint. Version 5.0
comes immediately after the 1.4 versions, although

some people use the term “Java 1.5” when they
mean “Java 5.0.”)

The formal name for version 5.0 is “Java 2
Platform, Standard Edition 5.0.” And to make mat-
ters even worse, the people at Sun Microsystems
are thinking about removing the extra “2.” So after
“Java 2, 5.1” you may see plain old “Java, 5.2.”
That’s what happens when a company lets mar-
keting people call the shots.

06_588745 ch02.qxd 3/16/05 9:16 PM Page 24

With all these disclaimers in mind, you can get a Java compiler by following
these steps:

1. Visit java.sun.com/j2se.

2. Look for a Download J2SE link (or something like that).

The page may have several J2SE version numbers for you to choose from.
You may see links to J2SE 1.4.2, J2SE 5.0, and beyond. If you’re not sure
which version you want, choosing the highest version number is probably
safe, even if that version number is labeled “Beta.” (The Java beta releases
are fairly sturdy.)

While you wander around, you may notice links labeled J2EE or J2ME.
If you know what these are, and you know you need them, then by all
means, download these goodies. But if you’re not sure, then bypass both
the J2EE and the J2ME. Instead, follow the J2SE (Java 2 Standard Edition)
links.

The abbreviation J2EE stands for Java 2 Enterprise Edition and J2ME
stands for Java 2 Micro Edition. You don’t need the J2EE or the J2ME
to run any of the examples in this book.

3. On the J2SE download page, look for an appropriate download link.

A download link is “appropriate” as long as the link refers to J2SE (Java 2
Platform, Standard Edition), to JDK (Java Development Kit), and to your
particular operating system (such as Windows, Linux, or Solaris). From
all possible links, you may have to choose between links labeled for 32-
bit systems and links labeled for 64-bit systems. If you don’t know which
to choose, and you’re running Windows, then you probably have a 32-bit
system.

The Sun Microsystems download page offers you a choice between the
JDK (Java Development Kit) and the JRE (Java Runtime Environment).
The JDK download contains more than the JRE download, and you need
more than that feeble JRE download. You need to download the entire JDK.

Sun’s regular J2SE page has links for Windows, Linux, and Solaris users.
If your favorite operating system isn’t Windows, Linux, or Solaris, don’t
despair. You can probably find an appropriate Java compiler by searching
on the Web. If you use Macintosh OS X, go straight to developer.apple.
com/java. Java 5.0 comes with OS 10.4.

Another choice you may have to make is between an offline and online
installation:

• With the offline installation, you begin by downloading a 50MB
setup file. The file takes up space on your hard drive, but if you
ever need to install the JDK again, you have the file on your own
computer. Until you update your version of the JDK, you don’t
need to download the JDK again.

25Chapter 2: Setting Up Your Computer

06_588745 ch02.qxd 3/16/05 9:16 PM Page 25

• With the online installation, you don’t download a big setup file.
Instead, you download a teeny little setup file. Then you download
(and discard) pieces of the big 50MB file as you need them. Using
online installation saves you 50MB of hard drive space. But, if you
want to install the same version of the JDK a second time, you
have to redo the whole surf/click/download process.

Why would anyone want to install the same version of the JDK a second
time? Typically, I have two reasons. Either I want to install the software
on a second computer, or I mess something up and have to uninstall
(and then reinstall) the software.

4. Download whichever file you chose in Step 3.

5. Execute the file that you’ve downloaded.

With offline or online installation you download an executable file
onto your computer’s hard drive. Execute this file to begin the JDK
installation.

6. During the JDK installation, read the dialog boxes and wizards.
Watch for the name of the directory in which the JDK is being
installed.

On my computer, that directory’s name is c:\Program Files\Java\
jdk1.5.0_01, but on your computer, the name may be slightly different.
This directory is called your Java home directory. (Depending on whom
you ask, this may also be called the JDK home directory.) Write down
the directory’s name, because you’ll need that name for stuff that comes
later in this chapter.

If you don’t catch the Java home directory’s name during the JDK instal-
lation, then search your computer’s hard drive for something named
jdksomething-or-other. Write down the directory’s name and keep
the name in your back pocket.

That’s how you put the Java compiler on your computer. But wait! Don’t walk
away from your Web browser yet. At the same java.sun.com Web site, you
can find the precious Java API documentation.

Downloading and installing the
Java API documentation
I introduced Java’s API documentation in Chapter 1. Without access to the
API documentation, you’re a little lost puppy. With access to the documenta-
tion, you’re a powerful Java programmer.

So follow this section’s steps to get the API documentation (your very own
copy on a computer near you).

26 Part I: Revving Up

06_588745 ch02.qxd 3/16/05 9:16 PM Page 26

1. As in the previous section, visit java.sun.com/j2se and look for a
Download J2SE link.

2. Find a link to the API documentation for the version of Java that you
just downloaded.

The way the Sun Microsystems Web site is currently set up, it’s not too
hard to find the API documentation. In fact, the download links for the JDK
and the Java API documentation are on the same page. This may not be
true by the time you read Beginning Programming with Java For Dummies,
but it’s certainly true while I’m writing this book.

The download page has a big table with the words Download Java 2 on
it. Scroll down in the table, and you find a J2SE Documentation heading
with an option to download the docs.

A language like Java comes with many sets of docs. The documentation
that you want is called the “API documentation,” or the “J2SE documen-
tation.” If you see links to the “Java Language Specification” or the “Java
Virtual Machine Specification,” just ignore these links for now.

3. Download the API documentation.

When the download is finished, you have a big ZIP file on your computer’s
hard drive. If you use Windows XP or some other ZIP-friendly operating
system, you can just double-click the ZIP file’s icon. Your operating system
opens the file as if it’s an ordinary directory.

If you have Windows 98, Windows 2000, or some other system that doesn’t
recognize ZIP files, you need an additional archive handling program.
You can find a bunch of these programs by searching on the Web.

4. Extract the API documentation to your Java home directory.

The downloaded ZIP file is like a directory on your hard drive. The file
contains another directory named docs. Just copy that docs directory
(and all of its contents) to your Java home directory. By the time you’re
done, you have a Java home directory (with a name like jdk1.5.0_01)
and a docs directory immediately inside the Java home directory. (See
Figure 2-1.)

I give this docs directory a special name. I call it your JavaDoc directory.

Figure 2-1:
The docs

subdirectory
of your Java

home
directory.

27Chapter 2: Setting Up Your Computer

06_588745 ch02.qxd 3/16/05 9:16 PM Page 27

Downloading and installing the JCreator
integrated development environment
In the previous sections, you get all the tools your computer needs for pro-
cessing Java programs. This section is different. In this section you get the
tool that you need for composing and testing your Java programs. You get
JCreator — an integrated development environment for Java.

JCreator runs only on Microsoft Windows systems. If you use Linux, Unix,
Macintosh, or some other non-Windows system, visit this book’s Web site
for further instructions.

If you have experience installing software, then downloading and installing
JCreator is a routine procedure. Here’s what you do:

1. Look for the JCreator download link on this book’s Web site.

2. Click the download link, and save the file to your computer’s hard
drive.

Like the Java API documentation, the JCreator installation comes to you
as a compressed ZIP file. (See Step 3 in the section entitled “Downloading
and installing the Java API documentation.”)

3. Unzip the JCreator installation file.

You can extract the file’s contents to any directory on your hard drive.
(Just make sure you remember the directory’s name.)

4. Open My Computer on your Windows desktop.

28 Part I: Revving Up

Two bags of goodies
Sun’s Web site bundles the basic Java tools in
two different ways:

� The Java Runtime Environment (JRE): This
bundle includes a Java virtual machine and
the Application Programming Interface. (See
Chapter 1.) With the JRE, you can run existing
Java programs. That’s all. You can’t create
new Java programs, because you don’t have
a Java compiler.

� The Java Development Kit (JDK): This bundle
includes three tools — a Java compiler, a

Java virtual machine, and the Application
Programming Interface. With the JDK, you
can create and run your own Java programs.

Another name for the JDK is the Java SDK — the
Java Software Development Kit. Some people still
use the SDK acronym, even though the folks at
Sun Microsystems don’t use it anymore. (Actually,
the original name was the JDK. Later Sun changed
it to the SDK. A few years after that, Sun changed
back to the name JDK. As an author, this con-
stant naming and renaming drives me crazy.)

06_588745 ch02.qxd 3/16/05 9:16 PM Page 28

5. From My Computer navigate to whatever directory contains extracted
contents of JCreator’s installation file.

The directory contains a file named Setup.exe (or just plain Setup).

6. Double-click the Setup file’s icon.

In response, the computer fires up JCreator’s installation wizard.

7. Follow the instructions in JCreator’s installation wizard.

In the end, the installation wizard may offer to launch JCreator for you.
(Alternatively, you can scan your Start menu for a new JCreator folder.)
One way or another, you start running JCreator.

Running JCreator for the First Time
The first time you run JCreator, the program asks for some configuration
information. Just follow these steps:

1. If you haven’t already done so, launch JCreator.

The JCreator Setup Wizard appears on your screen. The wizard’s first
page is for File Associations.

2. Accept the File Associations defaults and click Next.

The wizard’s next page (the JDK Home Directory page) appears.

3. Look at the text field on the JDK Home Directory page. Make sure
that this field displays the name of your Java home directory. (See
Figure 2-2.)

Figure 2-2:
Confirming

the location
of your Java

home
directory.

29Chapter 2: Setting Up Your Computer

06_588745 ch02.qxd 3/16/05 9:16 PM Page 29

If the wrong directory name appears in the text field, just click the
Browse button and navigate to your computer’s Java home directory.

For information on your computer’s Java home directory, see Step 6 of
this chapter’s “Downloading and installing a Java compiler” section.

4. When you’re happy with the name in the home directory text field,
click Next.

The wizard’s last page (the JDK JavaDoc Directory page) appears.

5. Look at the text field on the JDK JavaDoc Directory page. Make
sure that this field displays the name of your JavaDoc directory.
(See Figure 2-3.)

Normally, your JavaDoc directory’s name is the name of your Java home
directory, followed by \docs. For information on your computer’s
JavaDoc directory, see Step 4 of this chapter’s “Downloading and
installing the Java API documentation” section.

If the wrong directory name appears in the text field, just click the
Browse button and navigate to your computer’s JavaDoc directory.

If you do anything wrong in Steps 2 through 5, don’t fret. You can correct
your mistake later. See this book’s Web site for details.

6. Click Finish.

At this point, the JCreator work area opens. (See Figure 2-4.)

Figure 2-3:
Confirming

the location
of your

JavaDoc
directory.

30 Part I: Revving Up

06_588745 ch02.qxd 3/16/05 9:16 PM Page 30

In JCreator’s help files, the stuff in Figure 2-4 is called the workspace, not the
work area. But elsewhere in these help files, JCreator reuses the word work-
space to mean something entirely different. To avoid any confusion, I use two
different terms. I use work area for the stuff in Figure 2-4, and I use workspace
for that other, entirely different thing. (I explain that entirely different thing in
Chapter 3.)

Is That All There Is to It?
If you’re reading this paragraph, you’ve probably followed some of the
instructions in this chapter — instructions for installing a Java compiler, the
Java API documentation, and the JCreator IDE on your computer. So the burn-
ing question is, have you done the installation correctly? The answer to that
question lies in Chapter 3, because in that chapter, you use these tools to run
a brand new computer program.

Figure 2-4:
JCreator’s
work area.

31Chapter 2: Setting Up Your Computer

06_588745 ch02.qxd 3/16/05 9:16 PM Page 31

32 Part I: Revving Up

06_588745 ch02.qxd 3/16/05 9:16 PM Page 32

Chapter 3

Running Programs
In This Chapter
� Compiling and running a program

� Working with a workspace

� Editing your own Java code

If you’re a programming newbie, for you, running a program probably means
clicking a mouse. You want to run Internet Explorer. So you double-click

the Internet Explorer icon, or maybe you choose Internet Explorer from the
Start menu. That’s all there is to it.

When you create your own programs, the situation is a bit different. With a
new program, the programmer (or someone from the programmer’s company)
creates the icons. Before that, a perfectly good program may not have an icon
at all. So what do you do with a brand new Java program? How do you get the
program to run? This chapter tells you what you need to know.

Running a Canned Java Program
The best way to get to know Java is to do Java. When you’re doing Java, you’re
writing, testing, and running your own Java programs. This section prepares
you by describing how you run and test a program. Instead of writing your own
program, you run a program that I’ve already written for you. The program
calculates your monthly payments on a home mortgage loan.

The mortgage-calculating program doesn’t open its own window. Instead, the
program runs in JCreator’s General Output pane. (See Figure 3-1.) A program
that operates completely in this General Output pane is called a text-based
program.

07_588745 ch03.qxd 3/16/05 9:15 PM Page 33

If you’re using Linux, Unix, Mac, or some other non-Windows system, the
instructions in this section don’t apply to you. Visit this book’s Web site at
http://www.dummies.com/go/bpjavafd for an alternative set of instructions.

Actually, as you run the mortgage program, you see two things in the General
Output pane:

� Messages and results that the mortgage program sends to you. Messages
include things like How much are you borrowing? Results include lines
like Your monthly payment is $552.20.

� Responses that you give to the mortgage program while it runs. If you
type 100000.00 in response to the program’s question about how much
you’re borrowing, you see that number echoed in the General Output pane.

Figure 3-1:
A run of the
text-based
mortgage
program.

34 Part I: Revving Up

Those pesky filename extensions
The filenames displayed in My Computer or in an
Open dialog box can be misleading. You may visit
the Chapter03_Example01directory and see
the name Mortgage. Instead of just Mortgage,
the file’s full name is Mortgage.java. You may
even see two Mortgage files. What you don’t see
is that one file’s real name is Mortgage.java,
and the other file’s real name is Mortgage.
class.

The ugly truth is that Windows and its dialog
boxes can hide parts of filenames. This awful
feature tends to confuse Java programmers.
So, if you don’t want to be confused, modify the
Windows Hide Extensions feature. To do this,
you have to open the Folder Options dialog box.
Here’s how:

� In Windows 95, 98, or NT: In the Windows
Explorer menu bar, choose View➪Folder
Options (or just View➪Options).

� In Windows Me or 2000: Choose Start➪
Settings➪Control Panel➪Folder Options.

� In Windows XP with the control panel’s de-
fault (category) view: Choose Start➪Control
Panel➪Performance and Maintenance➪
File Types.

� In Windows XP with the control panel’s
classic view: Choose Start➪Control Panel➪
Folder Options.

In the Folder Options dialog box, click the View
tab. Then look for the Hide File Extensions for
Known File Types option. Make sure that this
check box is not selected.

07_588745 ch03.qxd 3/16/05 9:15 PM Page 34

Running the mortgage program is easy. Here’s how you do it:

1. Make sure that you’ve followed the instructions in Chapter 2 —
instructions for installing the JDK and configuring JCreator.

Thank goodness! You don’t have to follow those instructions more
than once.

2. Launch JCreator.

The big JCreator work area stares at you from your computer screen.
(See Figure 3-2.)

If this is your first time running JCreator, you don’t see JCreator’s work
area. Instead you see the JCreator Setup Wizard. To get past the Setup
Wizard, see the instructions in Chapter 2.

3. In JCreator’s menu bar, choose File➪Open Workspace from the
main menu.

Don’t choose File➪Open. Instead, choose File➪Open Workspace.

A familiar-looking Open dialog box appears. This dialog box looks in your
MyProjects directory. This MyProjects directory is a subdirectory of
the directory in which JCreator is installed.

Figure 3-2:
An empty

work area.

35Chapter 3: Running Programs

07_588745 ch03.qxd 3/16/05 9:15 PM Page 35

In this book’s special edition of JCreator the MyProjects directory has
subdirectories named Chapter03_Example01, Chapter04_Listing01
and so on. The MyProjects directory also has files with names like
Chapter03 and Chapter04. If you set your computer so that it doesn’t
hide file extensions, then the names of the files are Chapter03.jcw,
Chapter04.jcw, and so on. (See the sidebar entitled “Those pesky file-
name extensions.”)

4. Select the file named Chapter03 (or Chapter03.jcw), and then
click Open.

Clicking Open may coax out a message box asking if you want to “Save
the workspace modifications?” If so, click Yes. Clicking Open may coax
out another box asking if you want to “. . . close all document Windows?”
If so, click Yes.

JCreator divides things into workspaces. Each workspace is further
subdivided into projects. To organize this book’s examples, I made a
workspace for each chapter, and then made a project for each complete
Java program. When you open Chapter03.jcw, you get my Chapter03
workspace — a workspace that contains two projects. The project’s names
are Chapter03_Example01 and Chapter03_Listing01. That’s why, in
JCreator’s File View pane, you see a Chapter03 tree with branches labeled
Chapter03_Example01 and Chapter03_Listing01. (See Figure 3-3.)

In MyWorkspace.jcw, the extension .jcw stands for “JCreator
workspace.”

5. In the File View’s tree, right-click the Chapter03_Example01 branch.
In the resulting context menu, choose Sets as Active Project. (See
Figure 3-3.)

Choosing Sets as Active Project makes Chapter03_Example01 the
active project.

Figure 3-3:
Two projects

in the File
View pane.

36 Part I: Revving Up

07_588745 ch03.qxd 3/16/05 9:15 PM Page 36

In JCreator, only one project at a time can be the active project. To run
a particular program, the program’s code has to be in whatever project
is currently active. In JCreator’s File View, you can tell which project
is active by looking for the project whose name is boldface. (Refer to
Figure 3-3.) On some systems, the active project’s name is a hazy, light-
gray boldface.

If a particular program isn’t in the active project, you can’t run that pro-
gram, but you can do some other things with that program. For example,
you can see the program in one of JCreator’s panes, make changes to the
program, save the program, and so on. For this reason, it’s really easy to
get confused and forget which project is active. So always keep the active
project in the forefront of your mind. If your code doesn’t do what you
think it should do, check to make sure that the project you want to run
is the active project.

6. Choose Build➪Compile Project from the main menu.

Choosing Compile Project does exactly what it says. It compiles the pro-
ject’s code. (To find out what compile means, see Chapter 1.)

After some pleasant chirping sounds from your hard drive, JCreator’s
Build Output pane displays a Process completed message. (The Build
Output pane appears in the lower portion of JCreator’s work area. See
Figure 3-4.)

7. Choose Build➪Execute Project from the main menu.

When you choose Execute Project, the computer runs the project’s code.
(In this example, the computer runs a Java program that I wrote.) As
part of the run, the message How much are you borrowing? appears
in JCreator’s General Output pane. (The General Output pane and the
Build Output pane share the lower portion of JCreator’s work area. Refer
to Figure 3-1.)

8. Click anywhere inside JCreator’s General Output pane, and then type
a number, like 100000.00, and press Enter.

Figure 3-4:
The

compiling
process is

completed.

37Chapter 3: Running Programs

07_588745 ch03.qxd 3/16/05 9:15 PM Page 37

When you type a number in Step 8, don’t include your country’s currency
symbol. (U.S. residents, don’t type a dollar sign.) Things like $100000.00
cause the program to crash. You see a NumberFormatException mes-
sage in the General Output pane.

After you press Enter, the Java program displays another message
(What’s the interest rate?) in JCreator’s General Output pane.

9. In response to the interest rate question, type a number, like 5.25, and
press Enter.

After you press Enter, the Java program displays another message
(How many years . . . ?) in JCreator’s General Output pane.

10. Type a number, like 30, and press Enter.

In response to the numbers that you’ve typed, the Java program dis-
plays a monthly payment amount. Again, refer to Figure 3-1.

Disclaimer: Your local mortgage company charges more than the
amount that my Java program calculates. (A lot more.)

When you type a number in Step 10, don’t include a decimal point. Things
like 30.0 cause the program to crash. You see a NumberFormatException
message in the General Output pane.

Occasionally you decide in the middle of a program’s run that you’ve
made a mistake of some kind. You want to stop the program’s run dead
in its tracks. To do this, choose Tools➪Stop Tool from the main menu.

If you follow this section’s instructions, and you don’t get the results that I
describe, there are three things you can try. I list them in order from best to
worst:

� Check all the steps to make sure you did everything correctly.

� Send email to me at BeginProg2@BurdBrain.com. If you describe what
happened, I can probably figure out what went wrong and tell you how
to correct the problem.

� Panic.

Typing and Running Your Own Code
The first half of this chapter is about running someone else’s Java code
(code that you download from this book’s Web site). But eventually, you’ll
write code on your own. This section shows you how to create code with
the JCreator development environment.

38 Part I: Revving Up

07_588745 ch03.qxd 3/16/05 9:15 PM Page 38

The version of JCreator that you download from this book’s Web site has
a specially customized MyProjects directory. The MyProjects directory
contains several readymade workspaces. One of these workspaces (named
MyWorkspace) has no projects in it. Here’s how you create a project in
MyWorkspace:

1. Launch JCreator.

2. From JCreator’s menu bar, choose File➪Open Workspace.

An Open dialog box appears.

3. In the Open dialog box, select MyWorkspace.jcw (or simply
MyWorkspace). Then click Open.

Clicking Open may coax out a message box asking whether you want to
“Save the workspace modifications?” If so, click Yes. Clicking Open may
coax out another box asking if you want to “. . . close all document
Windows?” If so, click Yes.

After clicking Open, you see MyWorkspace in JCreator’s File View pane.
The next step is to create a new project within MyWorkspace.

39Chapter 3: Running Programs

Do I see formatting in my Java program?
When you use an editor to write a Java program,
you may notice words in various colors. Certain
words are always blue. Other words are always
black. You may even see some bold and italic
phrases. You may think you see formatting, but
you don’t. Instead, what you see is called syntax
coloring or syntax highlighting.

No matter what you call it, the issue is as follows:

� With Microsoft Word, things like bold for-
matting are marked inside a document.
When you save MyPersonalDiary.doc,
the instructions to make the words “love”
and “hate” bold are recorded inside the
MyPersonalDiary.doc file.

� With a Java program editor, things like bold
and coloring aren’t marked inside the Java

program file. Instead, the editor displays each
word in a way that makes the Java program
easy to read.

For example, in a Java program, certain words
(words like class, public, and void) have
their own special meanings. So JCreator’s editor
displays class, public, and void in blue
letters. When I save my Java program file, the
computer stores nothing about blue letters in
my Java program file. But the editor uses its
discretion to highlight special words with blue
coloring.

Some other editor may display the same words
in a bold, red font. Another editor (like Windows
Notepad) displays all words in plain old black.

07_588745 ch03.qxd 3/16/05 9:15 PM Page 39

4. In the File View pane, right-click MyWorkspace. Then choose Add new
Project from the context menu that appears, as shown in Figure 3-5.

JCreator’s Project Wizard opens. (See Figure 3-6.)

5. On the wizard’s Project Template page, select the Empty Project icon,
and then click Next.

After clicking Next, you see the wizard’s Project Paths page, as shown in
Figure 3-7.

6. In the Name field, type MyFirstProject.

You can add blank spaces, making the name My First Project, but I don’t
recommend it. In fact, having a blank space in any name (a workspace
name, a project name, a filename, or whatever) is generally a bad idea.

7. Make sure that the Add to Current Workspace radio button is
selected, and then click Finish.

If you click Next instead of Finish, you see some other options that you
don’t need right now. So to avoid any confusion, just click Finish.

Figure 3-6:
The Project

Wizard’s
Project

Template
page.

Figure 3-5:
Getting

JCreator to
add a new

project.

40 Part I: Revving Up

07_588745 ch03.qxd 3/16/05 9:15 PM Page 40

Clicking Finish brings you back to JCreator’s work area, with MyFirst
Project set in bold. The bold typeface means that MyFirstProject is
the active project. The next step is to create a new Java source code file.

8. In the File View pane, right-click MyFirstProject. Then choose Add➪
New Class from the context menu that appears, as shown in Figure 3-8.

JCreator’s Class Wizard opens. (See Figure 3-9.)

Like every other windowed environment, JCreator provides many ways
to accomplish the same task. Instead of right-clicking MyFirstProject
and choosing Add➪New Class, you can start at the menu bar and choose
File➪New➪Class. But right-clicking a project has a small benefit. If you
right-click the name of a project, the newly created class is without a
doubt in that project. If you use the menu bar instead, the newly created
class goes in whichever project happens to be the active project. So if
your workspace contains many projects, you can accidentally put the
new class into the wrong project.

Figure 3-8:
Getting

JCreator
to add a

new class.

Figure 3-7:
The Project

Wizard’s
Project

Paths page.

41Chapter 3: Running Programs

07_588745 ch03.qxd 3/16/05 9:15 PM Page 41

9. In the Class Wizard’s Name field, type the name of your new class.

In this example, use the name MyFirstJavaClass, with no blank spaces
between any of the words in the name. (Refer to Figure 3-9.)

The name in the Class Wizard must not have blank spaces. And the only
allowable punctuation symbol is the underscore character (_). You can
name your class MyFirstJavaClass or My_First_Java_Class, but you can’t
name it My First Java Class, and you can’t name it JavaClass,MyFirst.

10. Put a checkmark in the Generate Main Method check box.

I created most of this book’s examples without putting a checkmark in
the Generate Main Method check box. But for this example, just this
once, putting a checkmark in the Generate Main Method check box is
very helpful.

11. Skip everything in the Class Wizard except the Name field and the
Generate Main Method check box. (In other words, click Finish.)

Clicking Finish brings you back to JCreator’s work area. Now the Editor
pane has a tab named MyFirstJavaClass.java. For your convenience, the
MyFirstJavaClass.java tab already has some code in it. (See Figure 3-10.)

Figure 3-10:
JCreator

writes some
code in the

Editor pane.

Figure 3-9:
The Class

Wizard’s
Class

Settings
page.

42 Part I: Revving Up

07_588745 ch03.qxd 3/16/05 9:15 PM Page 42

12. Replace an existing line of code in your new Java program.

Type a line of code in JCreator’s Editor pane. Replace the line

// TODO: Add your code here

with the line

System.out.println(“Chocolate, royalties, sleep”);

Copy the new line of code exactly as you see it in Listing 3-1.

• Spell each word exactly the way I spell it in Listing 3-1.

• Capitalize each word exactly the way I do in Listing 3-1.

• Include all the punctuation symbols — the dots, the quotation
marks, the semicolon, everything.

Listing 3-1: A Program to Display the Things I Like

class MyFirstJavaClass {

/**
* Method main
*
*
* @param args
*
*/
public static void main(String[] args) {

System.out.println(“Chocolate, royalties, sleep”);
}

}

Java is case-sensitive, which means that system.out.printLn isn’t the
same as System.out.println. If you type system.out.printLn, you’re
program won’t work. Be sure to capitalize your code eXactLy as it is in
Listing 3-1.

13. From the menu bar, choose Build➪Compile Project.

If you typed everything correctly, you see the comforting Process com-
pleted message, with no error messages, at the bottom of JCreator’s
work area. The text appears in JCreator’s Build Output pane in the lower
portion of JCreator’s work area. (Refer to Figure 3-4.)

When you choose Build➪Compile Project, JCreator compiles whichever
project is currently active. Only one project at a time is active. So if your
workspace contains several projects, make sure that the project you
want to compile is currently the active project.

43Chapter 3: Running Programs

07_588745 ch03.qxd 3/16/05 9:15 PM Page 43

14. Check for error messages at the bottom of JCreator’s work area.

If, in Step 12, you don’t type the code exactly as it’s shown in Listing 3-1,
then in this step you get error messages in JCreator’s Task List pane.
(Like so many other things, the Task List pane appears in the lower
portion of JCreator’s work area. See Figure 3-11.)

Each error message refers to a specific place in your Java code. To jump
the cursor to that place in the Editor pane, double-click the message in
the Task List pane. Compare everything you see, character by character,
with my code in Listing 3-1. Don’t miss a single detail, including spelling,
punctuation, and uppercase versus lowercase.

15. Make any changes or corrections to the code in the Editor pane. Then
repeat Steps 13 and 14.

When at last you see the Process completed message with no error
messages, you’re ready to run the program.

16. From the menu bar choose Build➪Execute Project.

That does the trick. Your new Java program runs in JCreator’s General
Output pane. If you’re running the code in Listing 3-1, you see the
Chocolate, royalties, sleep message in Figure 3-12. It’s like being
in heaven!

Figure 3-12:
Running the
program in
Listing 3-1.

Figure 3-11:
An error

message
in the Task
List pane.

44 Part I: Revving Up

07_588745 ch03.qxd 3/16/05 9:15 PM Page 44

Part II
Writing Your Own

Java Programs

08_588745 pt02.qxd 3/16/05 9:13 PM Page 45

In this part . . .

This part features some of the world’s simplest pro-
grams. And, as simple as they are, these programs

illustrate the fundamental ideas behind all computer
code. The ideas include things such as variables, values,
types, statements, methods, and lots of other important
stuff. This part of the book is your springboard, your
launch pad, your virtual catapult.

08_588745 pt02.qxd 3/16/05 9:13 PM Page 46

Chapter 4

Exploring the Parts of a Program
In This Chapter
� Identifying the words in a Java program

� Using punctuation and indentation

� Understanding Java statements and methods

I work in the science building at a liberal arts college. When I walk past the
biology lab, I always say a word of thanks under my breath. I’m thankful

for not having to dissect small animals. In my line of work, I dissect computer
programs instead. Computer programs smell much better than preserved
dead animals. Besides, when I dissect a program, I’m not reminded of my own
mortality.

In this chapter, I invite you to dissect a program with me. I have a small pro-
gram, named ThingsILike. I cut apart the program, and carefully investigate
the program’s innards. Get your scalpel ready. Here we go!

Checking Out Java Code
for the First Time

I have a confession to make. The first time I look at somebody else’s computer
program, I feel a bit queasy. The realization that I don’t understand some-
thing (or many things) in the code makes me nervous. I’ve written hundreds
(maybe thousands) of programs, but I still feel insecure when I start reading
someone else’s code.

The truth is, learning about a computer program is a bootstrapping experience.
First I gawk in awe of the program. Then I run the program to see what it does.
Then I stare at the program for a while, or read someone’s explanation of the
program and its parts. Then I gawk a little more and run the program again.
Eventually, I come to terms with the program. Don’t believe the wise guys who
say they never go through these steps. Even the experienced programmers
approach a new project slowly and carefully.

09_588745 ch04.qxd 3/16/05 9:12 PM Page 47

Behold! A program!
In Listing 4-1, you get a blast of Java code. Like all novice programmers, you’re
expected to gawk humbly at the code. But don’t be intimidated. When you get
the hang of it, programming is pretty easy. Yes, it’s fun too.

Listing 4-1: A Simple Java Program

/*
* A program to list the good things in life
* Author: Barry Burd, BeginProg2@BurdBrain.com
* February 13, 2005
*/

class ThingsILike {

public static void main(String args[]) {
System.out.println(“Chocolate, royalties, sleep”);

}
}

When I run the program in Listing 4-1, I get the result shown in Figure 4-1:
The computer displays the words Chocolate, royalties, sleep on the
screen. Now I admit that writing and running a Java program is a lot of work
just to get the words Chocolate, royalties, sleep to appear on some-
body’s computer screen, but every endeavor has to start somewhere.

You can run the code in Listing 4-1 on your computer. Here’s how:

1. Follow the instructions in Chapter 2 for installing the special edition
of JCreator (the edition that you find on this book’s Web site).

2. Next follow the instructions in the first half of Chapter 3.

Those instructions tell you how to run the Chapter03_Example01 project,
which is in the Chapter03 workspace. To run the code in Listing 4-1, select
the Chapter04_Listing01 project in the Chapter04 workspace.

Figure 4-1:
Running the
program in
Listing 4-1.

48 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 48

What the program’s lines say
If the program in Listing 4-1 ever becomes famous, someone will write a Cliffs
Notes book to summarize the program. The book will be really short, because
you can summarize the action of Listing 4-1 in just one sentence. Here’s the
sentence:

Display Chocolate, royalties, sleep on the computer screen.

Now compare the sentence above with the bulk in Listing 4-1. Because Listing
4-1 has so many more lines, you may guess that Listing 4-1 has lots of boiler-
plate code. Well, your guess is correct. You can’t write a Java program without
writing the boilerplate stuff but, fortunately, the boilerplate text doesn’t change
much from one Java program to another. Here’s my best effort at summarizing
all the Listing 4-1 text in 57 words or less:

This program lists the good things in life.
Barry Burd wrote this program on February 13, 2005.
Barry realizes that you may have questions about this
code, so you can reach him at BeginProg2@BurdBrain.com.

This code defines a Java class named ThingsILike.
Here’s the main starting point for the instructions:

Display Chocolate, royalties, sleep on the screen.

The rest of this chapter (about 4,500 more words) explains the Listing 4-1
code in more detail.

The Elements in a Java Program
That both English and Java are called languages is no coincidence. You use
a language to express ideas. English expresses ideas to people, and Java
expresses ideas to computers. What’s more, both English and Java have things
like words, names, and punctuation. In fact, the biggest difference between
the two languages is that Java is easier to learn than English. (If English were
easy, then computers would understand English. Unfortunately, they can’t.)

Take an ordinary English sentence and compare it with the code in Listing 4-1.
Here’s the sentence:

Suzanne says “eh” because, as you know, she lives in Canada.

49Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 49

In your high school grammar class, you worried about verbs, adjectives, and
other such things. But in this book, you’ll think in terms of keywords and
identifiers, as summarized in Figure 4-2.

Suzanne’s sentence has all kinds of things in it. They’re the same kinds of
things that you find in a computer program. So here’s the plan: Compare the
elements in Figure 4-1 with similar elements in Listing 4-1. You already under-
stand English, so you use this understanding to figure out some new things
about Java.

But first, here’s a friendly reminder: In the next several paragraphs, I draw
comparisons between English and Java. As you read these paragraphs, it’s
important to keep an open mind. For example, in comparing Java with English,
I may write that “names of things aren’t the same as dictionary words.” Sure,
you can argue that some dictionaries list proper nouns, and that some people
have first names like Hope, Prudence, and Spike, but please don’t. You’ll get
more out of the reading if you avoid nitpicking. Okay? Are we still friends?
Then read on.

Keywords
A keyword is a dictionary word — a word that’s built right into a language.

In Figure 4-2, a word like “says” is a keyword, because “says” plays the same
role whenever it’s used in an English sentence. The other keywords in the
Suzanne sentence are “because,” “as,” “you,” “know,” “she,” “lives,” and “in.”

Computer programs have keywords, too. In fact, the program in Listing 4-1
uses four of Java’s keywords (shown in bold):

Figure 4-2:
The things
you find in

a simple
sentence.

50 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 50

class ThingsILike {

public static void main(String args[]) {

Each Java keyword has a specific meaning — a meaning that remains
unchanged from one program to another. For example, whenever I write a
Java program, the word public always signals a part of the program that’s
accessible to any other piece of code.

The Java programming language is case-sensitive. This means that if you
change a lowercase letter in a word to an uppercase letter, you change the
word’s meaning. Changing case can make the entire word go from being
meaningful to being meaningless. In Listing 4-1, you can’t replace public with
Public. If you do, the whole program stops working.

This chapter has little or no detail about the meanings of the keywords
class, public, static, and void. You can peek ahead at the material in
other chapters, but you can also get along by cheating. When you write a
program, just start with

class SomethingOrOther {

and then paste the text

public static void main(String args[]) {

into your code. In your first few programs, this strategy serves you well.

The Cheat Sheet in the front of this book has a complete list of Java
keywords.

Here’s one thing to remember about keywords: In Java, each keyword has an
official, predetermined meaning. The people at Sun Microsystems, who have
the final say on what constitutes a Java program, have created all of Java’s
keywords. You can’t make up your own meaning for any of the Java keywords.
For example, you can’t use the word public in a calculation:

//This is BAD, BAD CODE:
public = 6;

If you try to use a keyword this way, then the compiler displays an error
message and refuses to translate your source code. It works the same way
in English. Have a baby, and name it “Because.”

“Let’s have a special round of applause for tonight’s master of ceremonies
— Because O. Borel.”

You can do it, but the kid will never lead a normal life.

51Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 51

Identifiers that you or I can define
I like the name Suzanne, but if you don’t like traditional names, then make up
a brand new name. You’re having a new baby. Call her “Deneen” or “Chrisanta.”
Name him “Belton” or “Merk.”

A name is a word that identifies something, so I’ll stop calling these things
names and start calling them identifiers. In computer programming, an identi-
fier is a noun of some kind. An identifier refers to a value, a part of a program,
a certain kind structure, or any number of things.

Listing 4-1 has two identifiers that you or I can define on our own. They’re the
made-up words ThingsILike and args.

class ThingsILike {

public static void main(String args[]) {

Just as the names Suzanne and Chrisanta have no special meaning in English,
so the names ThingsILike and args have no special meaning in Java. In
Listing 4-1, I use ThingsILike for the name of my program, but I could also
have used a name like GooseGrease, Enzyme, or Kalamazoo. I have to put
(String someName[]) in my program, but I could use (String args[]),
(String commandLineArguments[]), or (String cheese[]).

Do as I say, not as I do. Make up sensible, informative names for the things in
your Java programs. Names like GooseGrease are cute, but they don’t help
you keep track of your program-writing strategy.

When I name my Java program, I can use ThinksILike or GooseGrease, but I
can’t use the word public. Words like class, public, static, and void are
keywords in Java.

The args in (String args[]) holds anything extra that you type when you
issue the command to run a Java program. For example, if you get the pro-
gram to run by typing java ThingsILike won too 3, then args stores the
extra values won, too, and 3. As a beginning programmer, you don’t need to
think about this feature of Java. Just paste (String args[]) into each of
your programs.

Identifiers with agreed upon meanings
Many people are named Suzanne, but only one country is named Canada.
That’s because there’s a standard, well-known meaning for the word “Canada.”
It’s the country with a red maple leaf on its flag. If you start your own country,

52 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 52

you should avoid naming it Canada, because naming it Canada would just
confuse everyone. (I know, a town in Kentucky is named Canada, but that
doesn’t count. Remember, you should ignore exceptions like this.)

Most programming languages have identifiers with agreed upon meanings.
In Java, almost all of these identifiers are defined in the Java API. Listing 4-1
has five such identifiers. They’re the words main, String, System, out, and
println:

public static void main(String args[]) {
System.out.println(“Chocolate, royalties, sleep”);

}

Here’s a quick rundown on the meaning of each of these names (more detailed
descriptions appear throughout this book):

� main: The main starting point for execution in every Java program.

� String: A bunch of text; a row of characters, one after another.

� System: A canned program in the Java API. (This program accesses some
features of your computer that are outside the direct control of the Java
virtual machine.)

� out: The place where a text-based program displays its text. (For a pro-
gram running in JCreator, the word out represents the General Output
pane. To read more about text-based programs, check the first several
paragraphs of Chapter 3.)

� println: Display text on your computer screen.

Strictly speaking, the meanings of the identifiers in the Java API are not cast
in stone. Although you can make up your own meanings for the words like
System or println, this isn’t a good idea. If you did, you would confuse the
dickens out of other programmers, who are used to the standard API mean-
ings for these familiar identifier names.

Literals
A literal is a chunk of text that looks like whatever value it represents.
In Suzanne’s sentence (refer to Figure 4-2), “eh” is a literal, because “eh”
refers to the word “eh.”

Programming languages have literals too. For example, in Listing 4-1, the stuff
in quotes is a literal:

System.out.println(“Chocolate, royalties, sleep”);

53Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 53

When you run the ThingsILike program, you see the words Chocolate,
royalties, sleep on the screen. In Listing 4-1, the text “Chocolate,
royalties, sleep” refers to these words, exactly as they appear on the
screen (minus the quotation marks).

Most of the numbers that you use in computer programs are literals. If you
put the statement

mySalary = 1000000.00;

in a computer program, then 1000000.00 is a literal. It stands for the number
1000000.00 (one million).

Punctuation
A typical computer program has lots of punctuation. For example, consider
the program in Listing 4-1:

class ThingsILike {

public static void main(String args[]) {
System.out.println(“Chocolate, royalties, sleep”);

}
}

Each bracket, each brace, each squiggle of any kind plays a role in making the
program meaningful.

In English, you write all the way across one line, and then you wrap your text
to the start of the next line. In programming, you seldom work this way. Instead,
the code’s punctuation guides the indenting of certain lines. The indentation
shows which parts of the program are subordinate to which other parts. It’s
as if, in English, you wrote Suzanne’s sentence like this:

Suzanne says “eh” because
,

as you know
,
she lives in Canada.

The diagrams in Figures 4-3 and 4-4 show you how parts of the ThingsILike
program are contained inside other parts. Notice how a pair of curly braces
acts like a box. To make the program’s structure be visible at a glance, you
indent all the stuff inside of each box.

54 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 54

I can’t emphasize this point enough. If you don’t indent your code, or if you
indent but you don’t do it carefully, then your code still compiles and runs
correctly. But this successful run gives you a false sense of confidence. The
minute you try to update some poorly indented code, you become hopelessly
confused. So take my advice: Keep your code carefully indented at every step
in the process. Make your indentation precise, whether you’re scratching out
a quick test program, or writing code for a billionaire customer.

Figure 4-4:
The ideas in
a computer

program
are nested

inside of
one another.

Figure 4-3:
A pair of

curly braces
acts like

a box.

55Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 55

Comments
A comment is text that’s outside the normal flow. In Figure 4-2, words “A com-
ment:” aren’t part of the Suzanne sentence. Instead, these words are about
the Suzanne sentence.

The same is true of comments in computer programs. The first five lines in
Listing 4-1 form one big comment. The computer doesn’t act on this comment.
There are no instructions for the computer to perform inside this comment.
Instead, the comment tells other programmers something about your code.

Comments are for your own benefit, too. Imagine that you set aside your
code for a while and work on something else. When you return later to work
on the code again, the comments help you remember what you were doing.

The Java programming language has three different kinds of comments:

� Traditional comments: The comment in Listing 4-1 is a traditional
comment. The comment begins with /* and ends with */. Everything
between the opening /* and the closing */ is for human eyes only.
Nothing between /* and */ gets translated by the compiler.

The second, third, and fourth lines in Listing 4-1 have extra asterisks.
I call them “extra” because these asterisks aren’t required when you
create a comment. They just make the comment look pretty. I include
them in Listing 4-1 because, for some reason that I don’t entirely under-
stand, most Java programmers add these extra asterisks.

� End-of-line comments: Here’s some code with end-of-line comments:

class ThingsILike { //One thing is miss-
ing

public static void main(String args[]) {
System.out.println(“Royalties, sleep”);

//Chocolate
}

}

An end-of-line comment starts with two slashes, and goes to the end of a
line of type.

You may hear programmers talk about “commenting out” certain parts
of their code. When you’re writing a program, and something’s not work-
ing correctly, it often helps to try removing some of the code. If nothing
else, you find out what happens when that suspicious code is removed.
Of course, you may not like what happens when the code is removed, so
you don’t want to delete the code completely. Instead, you turn your
ordinary Java statements into comments. For example, turn System.out.
println(“Sleep”); into /* System.out.println(“Sleep”); */.

56 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 56

This keeps the Java compiler from seeing the code while you try to figure
out what’s wrong with your program.

� Javadoc comments: A special Javadoc comment is any traditional com-
ment that begins with an extra asterisk.

/**
* Print a String and then terminate the line.
*/

This is a cool Java feature. The software that you can download from
java.sun.com includes a little program called javadoc. The javadoc
program looks for these special comments in your code. The program
uses these comments to create a brand new Web page — a customized
documentation page for your code. To find out more about turning
Javadoc comments into Web pages, visit this book’s Web site.

Understanding a Simple Java Program
The following sections present, explain, analyze, dissect, and otherwise
demystify the Java program in Listing 4-1.

What is a method?
You’re working as an auto mechanic in an upscale garage. Your boss, who’s
always in a hurry and has a habit of running words together, says, “FixThe
Alternator on that junkyOldFord.” Mentally, you run through a list of tasks.
“Drive the car into the bay, lift the hood, get a wrench, loosen the alternator
belt,” and so on. Three things are going on here:

� You have a name for the thing you’re supposed to do. The name is
FixTheAlternator.

� In your mind, you have a list of tasks associated with the name
FixTheAlternator. The list includes “Drive the car into the bay, lift
the hood, get a wrench, loosen the alternator belt,” and so on.

� You have a grumpy boss who’s telling you to do all this work. Your
boss gets you working by saying, “FixTheAlternator.” In other words,
your boss gets you working by saying the name of the thing you’re sup-
posed to do.

In this scenario, using the word method wouldn’t be a big stretch. You have a
method for doing something with an alternator. Your boss calls that method
into action, and you respond by doing all the things in the list of instructions
that you’ve associated with the method.

57Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 57

Java methods
If you believe all that stuff in the last several paragraphs, then you’re ready
to read about Java methods. In Java, a method is a list of things to do. Every
method has a name, and you tell the computer to do the things in the list by
using the method’s name in your program.

I’ve never written a program to get a robot to fix an alternator. But, if I did,
the program may include a method named FixTheAlternator. The list of
instructions in my FixTheAlternator method would look something like the
text in Listing 4-2.

Listing 4-2: A Method Declaration

void FixTheAlternator() {
DriveInto(car, bay);
Lift(hood);
Get(wrench);
Loosen(alternatorBelt);
...

}

Somewhere else in my Java code (somewhere outside of Listing 4-2), I need an
instruction to call my FixTheAlternator method into action. The instruc-
tion to call the FixTheAlternator method into action may look like the line
in Listing 4-3.

Listing 4-3: Calling a Method

FixTheAlternator(junkyOldFord);

Don’t scrutinize Listings 4-2 and 4-3 too carefully. All the code in Listings 4-2
and 4-3 is fake! I made up this code so that it looks a lot like real Java code,
but it’s not real. What’s more important, the code in Listings 4-2 and 4-3 isn’t
meant to illustrate all the rules about Java. So if you have a grain of salt handy,
take it with Listings 4-2 and 4-3.

Almost every computer programming language has something akin to Java’s
methods. If you’ve worked with other languages, you may remember things like
subprograms, procedures, functions, subroutines, Sub procedures, or PERFORM
statements. Whatever you call it in your favorite programming language, a
method is a bunch of instructions collected together and given a new name.

The declaration, the header, and the call
If you have a basic understanding of what a method is and how it works, you
can dig a little deeper into some useful terminology:

58 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 58

� If I’m being lazy, I refer to the code in Listing 4-2 as a method. If I’m not
being lazy, I refer to this code as a method declaration.

� The method declaration in Listing 4-2 has two parts. The first line
(the part with the name FixTheAlternator in it, up to but not
including the open curly brace) is called a method header. The rest
of Listing 4-2 (the part surrounded by curly braces) is a method body.

� The term method declaration distinguishes the list of instructions in
Listing 4-2 from the instruction in Listing 4-3, which is known as a
method call.

For a handy illustration of all the method terminology, see Figure 4-5.

A method’s header and declaration are like an entry in a dictionary. An entry
doesn’t really use the word that it defines. Instead, an entry tells you what
happens if and when you use the word.

chocolate (choc-o-late) n. 1. The most habit-forming substance on earth.
2. Something you pay for with money from royalties. 3. The most impor-
tant nutritional element in a person’s diet.

FixTheAlternator() Drive the car into the bay, lift the hood, get the
wrench, loosen the alternator belt, and then eat some chocolate.

Figure 4-5:
The

terminology
describing

methods.

59Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 59

In contrast, a method call is like the use of a word in a sentence. A method
call sets some code in motion.

“I want some chocolate, or I’ll throw a fit.”

“FixTheAlternator on that junkyOldFord.”

A method’s declaration tells the computer what will happen if you call the
method into action. A method call (a separate piece of code) tells the com-
puter to actually call the method into action. A method’s declaration and the
method’s call tend to be in different parts of the Java program.

The main method in a program
In Listing 4-1, the bulk of the code is the declaration of a method named main.
(Just look for the word main in the code’s method header.) For now, don’t
worry about the other words in the method header — the words public,
static, void, String, and args. I explain these words (on a need-to-know
basis) in the next several chapters.

Like any Java method, the main method is a recipe:

How to make biscuits:
Preheat the oven.
Roll the dough.
Bake the rolled dough.

or

How to follow the main instructions in the ThingsILike code:
Display Chocolate, royalties, sleep on the screen.

The word main plays a special role in Java. In particular, you never write
code that explicitly calls a main method into action. The word main is the
name of the method that is called into action automatically when the pro-
gram begins running.

When the ThingsILike program runs, the computer automatically finds the
program’s main method and executes any instructions inside the method’s
body. In the ThingsILike program, the main method’s body has only one
instruction. That instruction tells the computer to print Chocolate, royal-
ties, sleep on the screen.

None of the instructions in a method are executed until the method is called
into action. But if you give a method the name main, then that method is
called into action automatically.

60 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 60

How you finally tell the computer
to do something
Buried deep in the heart of Listing 4-1 is the single line that actually issues a
direct instruction to the computer. The line

System.out.println(“Chocolate, royalties, sleep”);

tells the computer to display the words Chocolate, royalties, sleep.
(If you use JCreator, the computer displays Chocolate, royalties, sleep
in the General Output pane.) I can describe this line of code in at least two
different ways:

� It’s a statement: In Java, a direct instruction that tells the computer to
do something is called a statement. The statement in Listing 4-1 tells the
computer to display some text. The statements in other programs may
tell the computer to put 7 in certain memory location, or make a window
appear on the screen. The statements in computer programs do all kinds
of things.

� It’s a method call: In the “What is a method?” section, earlier in this
chapter, I describe something named a “method call.” The statement

FixTheAlternator(junkyOldFord);

is an example of a method call, and so is

System.out.println(“Chocolate, royalties, sleep”);

Java has many different kinds of statements. A method call is just
one kind.

Ending a statement with a semicolon
In Java, each statement ends with a semicolon. The code in Listing 4-1 has
only one statement in it, so only one line in Listing 4-1 ends with a semicolon.

Take any other line in Listing 4-1, like the method header, for example. The
method header (the line with the word main in it) doesn’t directly tell the
computer to do anything. Instead, the method header describes some action
for future reference. The header announces “Just in case someone ever calls
the main method, the next few lines of code tell you what to do in response
to that call.”

Every complete Java statement ends with a semicolon. A method call is a
statement, so it ends with a semicolon, but neither a method header nor a
method declaration is a statement.

61Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 61

The method named System.out.println
The statement in the middle of Listing 4-1 calls a method named System.
out.println. This method is defined in the Java API. Whenever you call the
System.out.println method, the computer displays text on its screen.

Think about names. Believe it or not, I know two people named Pauline Ott.
One of them is a nun; the other is physicist. Of course, there are plenty of
Paulines in the English-speaking world, just as there are several things named
println in the Java API. So to distinguish the physicist Pauline Ott from the
film critic Pauline Kael, I write the full name “Pauline Ott.” And, to distinguish
the nun from the physicist, I write “Sister Pauline Ott.” In the same way, I
write either System.out.println or DriverManager.println. The first
(which you use often) writes text on the computer’s screen. The second
(which you don’t use at all in this book) writes to a database log file.

Just as Pauline and Ott are names in their own right, so System, out, and
println are names in the Java API. But to use println, you must write the
method’s full name. You never write println alone. It’s always System.out.
println or some other combination of API names.

The Java programming language is case-sensitive. If you change a lowercase
letter to an uppercase letter (or vice versa), you change a word’s meaning.
You can’t replace System.out.println with system.out.Println. If you
do, your program won’t work.

Methods, methods everywhere
Two methods play roles in the ThingsILike program. Figure 4-6 illustrates
the situation, and the next few bullets give you a guided tour:

� There’s a declaration for a main method. I wrote the main method
myself. This main method is called automatically whenever I start run-
ning the ThingsILike program.

� There’s a call to the System.out.println method. The method call for
the System.out.println method is the only statement in the body of
the main method. In other words, calling the System.out.println
method is the only thing on the main method’s to-do list.

The declaration for the System.out.println method is buried inside
the official Java API. For a refresher on the Java API, see the Chapter 1.

When I say things like “System.out.println is buried inside the API,” I’m
not doing justice to the API. True, you can ignore all the nitty-gritty Java code
inside the API. All you need to remember is that System.out.println is
defined somewhere inside that code. But I’m not being fair when I make the
API code sound like something magical. The API is just another bunch of Java
code. The statements in the API that tell the computer what it means to carry
out a call to System.out.println look a lot like the Java code in Listing 4-1.

62 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 62

The Java class
Have you heard the term object-oriented programming (also known as OOP)?
OOP is a way of thinking about computer programming problems — a way
that’s supported by several different programming languages. OOP started in
the 1960s with a language called Simula. It was reinforced in the 1970s with
another language named Smalltalk. In the 1980s, OOP took off big time with
the language C++.

Some people want to change the acronym, and call it COP — class-oriented pro-
gramming. That’s because object-oriented programming begins with something
called a class. In Java, everything starts with classes, everything is enclosed
in classes, and everything is based on classes. You can’t do anything in Java
until you’ve created a class of some kind. It’s like being on Jeopardy!, hearing
Alex Trebek say, “Let’s go to a commercial,” and then interrupting him by
saying, “I’m sorry, Alex. You can’t issue an instruction without putting your
instruction inside a class.”

It’s important for you to understand what a class really is, so I dare not give a
haphazard explanation in this chapter. Instead, I devote much of Chapter 17
to the question, “What is a class?” Anyway, in Java, your main method has to
be inside a class. I wrote the code in Listing 4-1, so I got to make up a name
for my new class. I chose the name ThingsILike, so the code in Listing 4-1
starts with the words class ThingsILike.

Figure 4-6:
Calling the

System.out.
println

method.

63Chapter 4: Exploring the Parts of a Program

09_588745 ch04.qxd 3/16/05 9:12 PM Page 63

Take another look at Listing 4-1, and notice what happens after the line class
ThingsILike. The rest of the code is enclosed in curly braces. These braces
mark all the stuff inside the class. Without these braces, you’d know where the
declaration of the ThingsILike class starts, but you wouldn’t know where
the declaration ends.

It’s as if the stuff inside the ThingsILike class is in a box. (Refer to Figure 4-3.)
To box off a chunk of code, you do two things:

� You use curly braces: These curly braces tell the compiler where a
chunk of code begins and ends.

� You indent code: Indentation tells your human eye (and the eyes of
other programmers) where a chunk of code begins and ends.

Don’t forget. You have to do both.

64 Part II: Writing Your Own Java Programs

09_588745 ch04.qxd 3/16/05 9:12 PM Page 64

Chapter 5

Composing a Program
In This Chapter
� Reading input from the keyboard

� Editing a program

� Shooting at trouble

Just yesterday, I was chatting with my servant, RoboJeeves. (RoboJeeves is
an upscale model in the RJ-3000 line of personal robotic life-forms.) Here’s

how the discussion went:

Me: RoboJeeves, tell me the velocity of an object after it’s been falling for
three seconds in a vacuum.

RoboJeeves: All right, I will. “The velocity of an object after it’s been falling
for three seconds in a vacuum.” There, I told it to you.

Me: RoboJeeves, don’t give me that smart-alecky answer. I want a number.
I want the actual velocity.

RoboJeeves: Okay! “A number; the actual velocity.”

Me: RJ, these cheap jokes are beneath your dignity. Can you or can’t you
tell me the answer to my question?

RoboJeeves: Yes.

Me: “Yes,” what?

RoboJeeves: Yes, I either can or can’t tell you the answer to your question.

Me: Well, which is it? Can you?

RoboJeeves: Yes, I can.

Me: Then do it. Tell me the answer.

RoboJeeves: The velocity is 153,984,792 miles per hour.

10_588745 ch05.qxd 3/16/05 9:24 PM Page 65

Me: (After pausing to think . . .) RJ, I know you never make a mistake, but
that number, 153,984,792, is much too high.

RoboJeeves: Too high? That’s impossible. Things fall very quickly on the
giant planet Mangorrrrkthongo. Now, if you wanted to know about objects
falling on Earth, you should have said so in the first place.

Sometimes that robot rubs me the wrong way. The truth is, RoboJeeves does
whatever I tell him to do — nothing more and nothing less. If I say “Feed the
cat,” then RJ says, “Feed it to whom? Which of your guests will be having cat
for dinner?”

Handy as they are, all computers do the same darn thing. They do exactly
what you tell them to do, and that’s sometimes very unfortunate. For exam-
ple, in 1962, a Mariner spacecraft to Venus was destroyed just four minutes
after its launch. Why? It was destroyed because of a missing keystroke in a
FORTRAN program. Around the same time, NASA scientists caught an error
that could have trashed the Mercury space flights. (Yup! These were flights
with people on board!) The error was a line with a period instead of a comma.
(A computer programmer wrote DO 10 I=1.10 instead of DO 10 I=1,10.)

With all due respect to my buddy RoboJeeves, he and his computer cousins
are all incredibly stupid. Sometimes they look as if they’re second-guessing
us humans, but actually they’re just doing what other humans told them to
do. They can toss virtual coins and use elaborate schemes to mimic creative
behavior, but they never really think on their own. If you say, “Jump,” then
they do what they’re programmed to do in response to the letters J-u-m-p.

So when you write a computer program, you have to imagine that a genie has
granted you three wishes. Don’t ask for eternal love because, if you do, then
the genie will give you a slobbering, adoring mate — someone that you don’t
like at all. And don’t ask for a million dollars, unless you want the genie to
turn you into a bank robber.

Everything you write in a computer program has to be very precise. Take a
look at an example. . . .

A Program to Echo Keyboard Input
Listing 5-1 contains a small Java program. The program lets you type one line
of characters on the keyboard. As soon as you press Enter, the program dis-
plays a second line that copies whatever you typed.

66 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 66

Listing 5-1: A Java Program

import java.util.Scanner;

class EchoLine {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);

System.out.println(myScanner.nextLine());
}

}

Figure 5-1 shows a run of the EchoLine code (the code in Listing 5-1). The text
in the figure is a mixture of my own typing and the computer’s responses.

To illustrate the situation, I concocted Figure 5-2. In Figure 5-2, I added high-
light to the text that I type. (Everything that I type is highlighted. Everything
the computer displays on its own is in regular, un-highlighted style.)

Here’s what happens when you run the code in Listing 5-1:

1. At first, the computer does nothing. You see a cursor on the left edge of
the General Output pane, as shown in Figure 5-3. The computer is wait-
ing for you to type something.

Figure 5-2:
Whatever

you get
to type is

highlighted.

Figure 5-1:
What part of

the word
“don’t” do

you not
understand?

67Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 67

2. You type one line of text — any text at all. (See Figure 5-4.)

3. You press Enter, and the computer displays another copy of the line that
you typed, as shown in Figure 5-5.

After displaying a copy of your input, the program’s run comes to an end.
JCreator adds Process completed to the text in the General Output pane.

Typing and running a program
This book’s special edition of JCreator has a Chapter05 workspace. Within
that workspace you can find a Chapter05_Listing01 project. To test the code
in Listing 5-1, you can just open and run the readymade Chapter05_Listing01
project.

But instead of running the readymade code, I encourage you to start from
scratch — to type Listing 5-1 yourself and then to test your newly-created
code. Just follow these steps:

Figure 5-5:
The

computer
echoes

your input.

Figure 5-4:
You type a
sentence.

Figure 5-3:
The

computer
waits for

you to type
something.

68 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 68

1. Launch JCreator.

2. From JCreator’s menu bar, choose File➪Open Workspace.

An Open dialog box appears.

3. In the Open dialog box, select MyWorkspace.jcw (or simply
MyWorkspace). Then click Open.

After clicking Open, you see MyWorkspace in JCreator’s File View pane.
The next step is to create a new project within MyWorkspace.

4. In the File View pane, right-click MyWorkspace. Then choose Add new
Project from the context menu that appears.

JCreator’s Project Wizard opens.

5. In the wizard’s Project Template tab, select the Empty Project icon,
and then click Next.

After clicking Next, you see the wizard’s Project Paths tab.

6. In the Name field, type MyNewProject.

7. Click Finish.

Clicking Finish brings you back to JCreator’s work area, with MyNew
Project set in bold. The bold typeface means that MyNewProject is the
active project. The next step is to create a new Java source code file.

8. In the File View pane, right-click MyNextProject. Then choose Add➪
New Class from the context menu that appears.

JCreator’s Class Wizard opens.

9. In the Class Wizard’s Name field, type the name of your new class.

In this example, use the name EchoLine. Spell EchoLine exactly the way
I spell it in Listing 5-1, with a capital E, a capital L, and no blank space.

In Java, consistent spelling and capitalization are very important. If you’re
not consistent within a particular program, then you’ll get error messages
when you try to compile the program.

10. Skip everything in the Class Wizard except the Name field. (In other
words, click Finish.)

Clicking Finish brings you back to JCreator’s work area. Now the Editor
pane has a tab named EchoLine.java.

11. Type the program of Listing 5-1 in the Editor pane’s EchoLine.java tab.

Copy the code exactly as you see it in Listing 5-1.

• Spell each word exactly the way I spell it in Listing 5-1.

• Capitalize each word exactly the way I do in Listing 5-1.

• Include all the punctuation symbols — the dots, the semicolons,
everything.

69Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 69

12. From the menu bar, choose Build➪Compile Project.

If you typed everything correctly, you see the comforting Process
completed message, with no error messages, in JCreator’s Build
Output pane.

If you see error messages, then go back to Step 11, and compare every-
thing you typed with the stuff in Listing 5-1. Compare every letter, every
word, every squiggle, every smudge.

13. Make any changes or corrections to the code in the Editor pane. Then
repeat Step 12.

When at last you see the Process completed message with no error
messages, you’re ready to run the program.

14. From the menu bar choose Build➪Execute Project.

Your new Java program runs. A cursor sits on the left edge of JCreator’s
General Output pane. (Refer to Figure 5-3.) The computer is waiting for
you to type something.

15. Type a line of text, and then press Enter.

In response, the computer displays a second copy of your line of text.
Then JCreator displays Process completed, and the program’s run
comes to an end. (Refer to Figure 5-5.)

If this list of steps seems a bit sketchy, you can find much more detail in
Chapter 3. (Look first at the section in Chapter 3 about compiling and run-
ning a program.) For the most part, the steps here in Chapter 5 are a quick
summary of the material in Chapter 3. The big difference is, in Chapter 3, I
don’t encourage you to type the program yourself.

This section tells you how to type the program with JCreator running on
Microsoft Windows. If you don’t use Windows, or if you use Windows but
you don’t use JCreator, then visit this book’s Web site at http://www.
dummies.com/go/bpjavafd. On that site, I’ve posted some handy tips
for creating Java programs in other environments.

So what’s the big deal when you type the program yourself? Well, lots of inter-
esting things can happen when you apply fingers to keyboard. That’s why the
second half of this chapter is devoted to troubleshooting.

How the EchoLine program works
When you were a tiny newborn, resting comfortably in your mother’s arms,
she told you how to send characters to the computer screen:

System.out.println(whatever text you want displayed);

70 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 70

What she didn’t tell you was how to fetch characters from the computer
keyboard. There are lots of ways to do it, but the one I recommend in this
chapter is:

myScanner.nextLine()

Now, here’s the fun part. Calling the nextLine method doesn’t just scoop
characters from the keyboard. When the computer runs your program, the
computer substitutes whatever you type on the keyboard in place of the text
myScanner.nextLine().

To understand this, look at the statement in Listing 5-1:

System.out.println(myScanner.nextLine());

When you run the program, the computer sees your call to nextLine and
stops dead in its tracks. (Refer to Figure 5-3.) The computer waits for you to
type a line of text. So (refer to Figure 5-4) you type the line

Hey, there’s an echo in here.

The computer substitutes this entire Hey line for the myScanner.nextLine()
call in your program. The process is illustrated in Figure 5-6.

Figure 5-6:
The

computer
substitutes

text in
place of the

nextLine call.

71Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 71

The call to myScanner.nextLine() is nestled inside the System.out.
println call. So when all is said and done, the computer behaves as if the
statement in Listing 5-1 looks like this:

System.out.println(“Hey, there’s an echo in here.”);

The computer displays another copy of the text Hey, there’s an echo
in here. on the screen. That’s why you see two copies of the Hey line in
Figure 5-5.

Getting numbers, words, and other things
In Listing 5-1, the words myScanner.nextLine() get an entire line of text
from the computer keyboard. So if you type

Testing 1 2 3

the program in Listing 5-1 echoes back your entire Testing 1 2 3 line
of text.

Sometimes you don’t want a program to get an entire line of text. Instead,
you want the program to get a piece of a line. For example, when you type
1 2 3, you may want the computer to get the number 1. (Maybe the number 1
stands for one customer or something like that.) In such situations, you don’t
put myScanner.nextLine() in your program. Instead, you use myScanner.
nextInt().

Table 5-1 shows you a few variations on the myScanner.next business.
Unfortunately, the table’s entries aren’t very predictable. To read a line of
input, you call nextLine. But to read a word of input, you don’t call nextWord.
(The Java API has no nextWord method.) Instead, to read a word, you call next.

Table 5-1 Some Scanner Methods
To Read This Make This Method Call

A number with no decimal point in it nextInt()

A number with a decimal point in it nextDouble()

A word (ending in a blank space, for example) next()

A line (or what remains of a line after you’ve nextLine()
already read some data from the line)

A single character (such as a letter, a digit, findInLine(“.”).charAt(0)
or a punctuation character)

72 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 72

Also, the table’s story has a surprise ending. To read a single character, you
don’t call nextSomething. Instead, you can call the bizarre findInLine
(“.”).charAt(0) combination of methods. (You’ll have to excuse the folks
who created the Scanner class. They approached the input problem from a
specialized point of view.)

73Chapter 5: Composing a Program

A quick look at the Scanner
In this chapter, I advise you to ignore any mean-
ings behind the lines import java.util.
Scanner and Scanner myScanner, etc.
Just paste these two lines mindlessly in your
code, and then move on.

Of course, you may not want to take my advice.
You may not like ignoring things in your code. If
you happen to be such a stubborn person, I have
a few quick facts for you.

� The word Scanner is defined in the
Java API.

A Scanner is something you can use for
getting input.

This Scanner class is new in version 5.0 of
the Java API. If you use version Java 1.4.2,
then you don’t have access to the Scanner
class. (You get an error when you try to
compile Listing 5-1.)

� The words System and in are defined in
the Java API.

Taken together, the words System.in
stand for the computer keyboard.

In later chapters you see things like new
Scanner(new File(“myData.txt”)).
In those chapters, I replace System.inwith
the words new File(“myData.txt”)
because I’m not getting input from the key-
board. Instead, I’m getting input from a file
on the computer’s hard drive.

� The word myScanner doesn’t come from
the Java API.

The word myScanner is a Barry Burd cre-
ation. Instead of myScanner, you can use

readingThingie (or any other name you
want to use) as long as you use the name
consistently. So, if you want to be creative,
you can write

Scanner readingThingie = new
Scanner(System.in);

System.out.println(readingThing
ie.nextLine());

The revised Listing 5-1 (with reading
Thingie instead of myScanner) compiles
and runs without a hitch.

� The line import java.util.Scanner
is an example of an import declaration.

An optional import declaration allows you to
abbreviate names in the rest of your program.
You can remove the import declaration from
Listing 5-1. But if you do, you must use
the Scanner class’s fully qualified name
throughout your code. Here’s how:

class EchoLine {

public static void
main(String args[]) {

java.util.Scanner
myScanner =

new
java.util.Scanner(System.in)
;

System.out.println(myScanne
r.nextLine());
}

}

10_588745 ch05.qxd 3/16/05 9:24 PM Page 73

To see some of the table’s methods in action, check other program listings in
this book. Chapters 6, 7, and 8 have some particularly nice examples.

Type two lines of code, and don’t look back
Buried innocently inside Listing 5-1 are two extra lines of code. These lines
help the computer read input from the keyboard. The two lines are

import java.util.Scanner;

Scanner myScanner = new Scanner(System.in);

Concerning these two lines, I have bad news and good news.

� The bad news is, the reasoning behind these lines is difficult to under-
stand. That’s especially true here in Chapter 5, where I introduce Java’s
most fundamental concepts.

� The good news is, you don’t have to understand the reasoning behind
these two lines. You can copy and paste these lines into any program
that gets input from the keyboard. You don’t have to change the lines in
any way. These lines work without any modifications in all kinds of Java
programs.

Just be sure to put these lines in the right places:

� Make the import java.util.Scanner line be the first line in your
program.

� Put the Scanner myScanner = new Scanner(System.in) line inside
your main method immediately after the public static void main
(String args[]) { line.

At some point in the future, you may have to be more careful about the posi-
tioning of these two lines. But for now, the rules I give will serve you well.

Expecting the Unexpected
Not long ago, I met an instructor with an interesting policy. He said, “Sometimes
when I’m lecturing, I compose a program from scratch on the computer. I do
it right in front of my students. If the program compiles and runs correctly on
the first try, I expect the students to give me a big round of applause.”

74 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 74

At first you may think this guy has an enormous ego, but you have to put
things in perspective. It’s unusual for a program to compile and run correctly
the first time. There’s almost always a typo or another error of some kind.

So this section deals with the normal, expected errors that you see when you
compile and run a program for the first time. Everyone makes these mistakes,
even the most seasoned travelers. The key is keeping a cool head. Here’s my
general advice:

� Don’t expect a program that you type to compile the first time.

Be prepared to return to your editor and fix some mistakes.

� Don’t expect a program that compiles flawlessly to run correctly.

Getting a program to compile without errors is the easier of the two
tasks.

� Read what’s in JCreator’s Editor pane, not what you assume is in
JCreator’s Editor pane.

Don’t assume that you’ve typed words correctly, that you’ve capitalized
words correctly, or that you’ve matched curly braces or parentheses
correctly. Compare the code you typed with any sample code that you
have. Make sure that every detail is in order.

� Be patient.

Every good programming effort takes a long time to get right. If you
don’t understand something right away, then be persistent. Stick with it
(or put it away for a while and come back to it). There’s nothing you
can’t understand if you put in enough time.

� Don’t become frustrated.

Don’t throw your pie crust. Frustration (not lack of knowledge) is your
enemy. If you’re frustrated, you can’t accomplish anything.

� Don’t think you’re the only person who’s slow to understand.

I’m slow, and I’m proud of it. (Christine, Chapter 6 will be a week late.)

� Don’t be timid.

If your code isn’t working, and you can’t figure out why it’s not working,
then ask someone. Post a message on groups.google.com, or send
me an e-mail message. (Send it to BeginProg2@BurdBrain.com.)
And don’t be afraid of anyone’s snide or sarcastic answer. (For a list
of gestures you can make in response to peoples’ snotty answers, see
Appendix Z.)

75Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 75

Diagnosing a problem
The “Typing and running a program” section, earlier in this chapter, tells you
how to run the EchoLine program. If all goes well, your screen ends up looking
like the one shown in Figure 5-1. But things don’t always go well. Sometimes
your finger slips, inserting a typo into your program. Sometimes you ignore
one of the details in Listing 5-1, and you get a nasty error message.

Of course, some things in Listing 5-1 are okay to change. Not every word in
Listing 5-1 is cast in stone. So here’s a nasty wrinkle — I can’t tell you that
you must always retype Listing 5-1 exactly as it appears. Some changes are
okay; others are not. Keep reading for some “f’rinstances.”

Case sensitivity
Java is case-sensitive. Among other things, this means that, in a Java program,
the letter P isn’t the same as the letter p. If you send me some fan mail and
start with “Dear barry” instead of “Dear Barry,” then I still know what you
mean. But Java doesn’t work that way.

So change just one character in a Java program, and instead of an uneventful
compilation you get a big headache! Change p to P like so:

//The following line is incorrect:
System.out.Println(myScanner.nextLine());

When you try to compile and run the program, you get the ugliness shown in
Figure 5-7.

When you get messages like the ones in Figure 5-7, your best bet is to stay
calm and read the messages carefully. Sometimes, the messages contain
useful hints. (Of course sometimes, they don’t.) The messages in Figure 5-7
start with EchoLine.java:8: cannot find symbol. In plain English, this
means “There’s something that the Java compiler can’t interpret on line 8 of
your EchoLine.java file.”

Figure 5-7:
The Java
compiler

understands
println, but
not Println.

76 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 76

“And what may that something be?” you ask. The answer is also in Figure 5-7.
The second line of the message says symbol : method Println, which
means, “The Java compiler can’t interpret the word Println.” (The message
stops short of saying, “It’s the word Println, you dummy!” In any case, if the
computer says you’re one of us Dummies, you should take it as a compliment.)

Now, there are plenty of reasons why the compiler may not be able to under-
stand a word like Println. But, for a beginning programmer, there are two
important things that you should check right away:

� Have you spelled the word correctly?

Did you type prntlin instead of println?

� Have you capitalized all letters correctly?

Did you type Println or PrintLn instead of println?

Either of these errors can send the Java compiler into a tailspin. So compare
your typing with the approved typing word for word (and letter for letter).
When you find a discrepancy, go back to the editor and fix the problem. Then
try compiling the program again.

When an error message says EchoLine.java:67, you don’t need to count to
the program’s 67th line. Just double-click the phrase EchoLine.java:67 in
JCreator’s Build Output pane. When you do, JCreator draws a little red arrow
next to line 67 (and moves the cursor to line 67) in the Editor pane.

Omitting punctuation
In English and in, Java using the; proper! punctuation is important)

Take, for instance, the semicolons in Listing 5-1. What happens if you forget
to type a semicolon?

//The following code is incorrect:

System.out.println(myScanner.nextLine())
}

If you leave off the semicolon, you get the message shown in Figure 5-8.

Figure 5-8:
A helpful

error
message.

77Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 77

A message like the one in Figure 5-8 makes your life much simpler. I don’t have
to explain the message, and you don’t have to puzzle over the message’s mean-
ing. Just take the message ‘;’ expected on its face value. The message says,
“I expect to see a semicolon at this point in your program.” A caret (a ^ thingy)
points to the place in the program where the computer expects to see a semi-
colon. The computer expects a semicolon after the System.out.println
(myScanner.nextLine()) statement and before the close curly brace.

So do what the message tells you to do. Go back to the editor and put a semi-
colon after the System.out.println(myScanner.nextLine()) statement.
That settles it.

Using too much punctuation
In junior high school, my English teacher said I should use a comma when-
ever I would normally pause for a breath. This advice doesn’t work well
during allergy season, when my sentences have more commas in them than
words. Even as a paid author, I have trouble deciding where the commas
should go, so I often add extra commas for good measure. This makes more
work for my editor, Christine, who has a recycle bin full of commas by the
desk in her office.

It’s the same way in a Java program. You can get carried away with punctua-
tion. Consider, for example, the main method header in Listing 5-1. This line
is a dangerous curve for novice programmers.

For information on the terms method header and method body, see Chapter 4.

Normally, you shouldn’t be ending a method header with a semicolon. But
people add semicolons anyway. (Maybe, in some subtle way, a method
header looks like it should end with a semicolon.)

//The following line is incorrect:
public static void main(String args[]); {

If you add this extraneous semicolon to the code in Listing 5-1, you get the
message shown in Figure 5-9.

Figure 5-9:
A not-so-

helpful error
message.

78 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 78

The error message in Figure 5-9 is a bit misleading. Instead of saying extra
semicolon should be removed, the message says missing method body,
or declare abstract. What the heck does that mean?

79Chapter 5: Composing a Program

Is there life after a failed compilation?
In the section entitled “Typing and running a pro-
gram” you create a file named EchoLine.java.
(See Step 10 of the instructions in that section.)
When you successfully compile the project, the
computer creates another file — a file named
EchoLine.class. (You don’t see EchoLine.
class in JCreator’s File View pane, but even so, the
computer creates an EchoLine.class file.)
Later, to run the program, the Java virtual machine
follows the instructions in this EchoLine.class
file. For details, see Chapter 1.

That’s what happens when the computer suc-
cessfully compiles your program. But what hap-
pens if your program contains errors? Whenever
an attempted compilation isn’t successful, the
computer doesn’t create a .class file. And
without this .class file, an attempted run isn’t
successful either.

But sometimes, the story has a peculiar twist.
Imagine this unfortunate sequence of events:

� You type Listing 5-1 exactly as it appears in
this book.

� On JCreator’s menu bar, you choose Build➪
Compile Project. This creates an Echo
Line.class file. Very nice!

� On JCreator’s menu bar, you choose Build➪
Execute Project. You see the program’s
output. Wonderful!

� You make a harmful change to your Echo
Line.java file. For instance, you turn the
p in println into a heinous, unwanted
capital P.

� You choose Build➪Compile Project again.
This gives you your favorite cannot find
symbol error message. The computer
doesn’t create a new EchoLine.class
file.

� You choose Build➪Execute Project once
again.

And what happens when you choose Build➪
Execute Project the second time? If you guessed
that the old EchoLine program runs correctly,
then you’re right.

Even though your latest compiler effort was a
failure, your earlier compilation created a good
EchoLine.class file. That EchoLine.
class file is still on your hard drive. The file
wasn’t replaced during the failed compilation.
So when you choose Build➪Execute Project
the second time, the computer uses that old
EchoLine.class file and correctly runs the
code in Listing 5-1.

This can be really confusing. When you choose
Build➪Execute Project, your gut tells you that
you’re getting the results of your most recent
compiling attempt. But your gut can be wrong,
wrong, wrong. In the scenario that I just
described, an unsuccessful compilation is fol-
lowed by what appears to be a successful run.
It’s a mess, so you have to keep your wits about
you. If a compilation fails, then don’t march on
and try to run the project. Instead, go back and
figure out why the compilation failed.

10_588745 ch05.qxd 3/16/05 9:24 PM Page 79

Well, when the computer tries to compile the bad code (Listing 5-1 with one
too many semicolons), it gets confused. I illustrate the confusion in Figure 5-10.
Your eye sees an extra semicolon, but the computer’s eye interprets this as a
method without a body. So that’s the first part of the error message — the
computer says missing method body.

We all know that a computer is a very patient, very sympathetic machine.
That’s why the computer looks at your code, and decides to give you one
more chance. The computer remembers that Java has an advanced feature in
which you write a method header without writing a method body. When you
do this, you get what’s called an abstract method — something that I don’t use
at all in this book. Anyway, in Figure 5-10, the computer sees a header with no
body. So the computer says to itself, “I know! Maybe the programmer is trying
to write an abstract method. The trouble is, an abstract method’s header has
to have the word abstract in it. I should remind the programmer about that.”
So the computer displays the declare abstract message in Figure 5-9.

One way or another, you can’t interpret the message in Figure 5-9 without
reading between the lines. So here are some tips to help you decipher murky
messages:

Figure 5-10:
What’s
on this

computer’s
mind?

80 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 80

� Avoid the knee-jerk response.

Some people see the declare abstract message in Figure 5-9 and
wonder how they can declare a method to be abstract. Unfortunately,
this isn’t the right approach. If you don’t know what it means to declare
abstract then, chances are, you didn’t mean to declare anything to be
abstract in the first place.

� Stare at the bad line of code for a long, long time.

If you look carefully at the public static . . . line in Figure 5-9,
then eventually you’ll notice that it’s different from the corresponding
line in Listing 5-1. The line in Listing 5-1 has no semicolon, but the line in
Figure 5-9 has a semicolon.

Of course, you won’t always be starting with some prewritten code like
the stuff in Listing 5-1. That’s where practice makes perfect. The more
code you write, the more sensitive your eyes will become to things like
extraneous semicolons and other programming goofs.

Often the first message is the best
You’re looking for the nearest gas station, so you ask one of the locals. “Go to
the first traffic light and make a left,” says the local. You go straight for a few
streets, and see a blinking yellow signal. You turn left at the signal, and travel
for a mile or so. What? No gas station? Maybe you mistook the blinking signal
for a real traffic light.

81Chapter 5: Composing a Program

Why can’t the computer fix it?
How often do you get to finish someone else’s
sentence? “Please,” says your supervisor, “go
over there and connect the . . .”

“Wires,” you say. “I’ll connect the wires.” If you
know what someone means to say, why wait for
them to say it?

This same question comes up in connection with
computer error messages. Take a look at the
message in Figure 5-8. The computer expects a
semicolon before the curly brace on line 9. Well,
Mr. Computer, if you know where you want a
semicolon, then just add the semicolon, and be
done with it. Why are you bothering me about it?

The answer is simple. The computer isn’t inter-
ested in taking any chances. What if you don’t
really want a semicolon before the curly brace on
line 9? What if the missing semicolon represents
a more profound problem? If the computer added
the extra semicolon, it could potentially do more
harm than good.

Returning to you and your supervisor . . .

Boom! A big explosion. “Not the wires, you
Dummy. The dots. I wanted you to connect the
dots.”

“Sorry,” you say.

10_588745 ch05.qxd 3/16/05 9:24 PM Page 81

You come to a fork in the road. “The directions said nothing about a fork.
Which way should I go?” You veer right, but a minute later you’re forced onto
a highway. You see a sign that says, “Next Exit 24 Miles.” Now you’re really
lost, and the gas gauge points to “S.” (The “S” stands for “Stranded.”)

So here’s what happened: You made an honest mistake. You shouldn’t have
turned left at the yellow blinking light. That mistake alone wasn’t so terrible.
But that first mistake lead to more confusion, and eventually, your choices
made no sense at all. If you hadn’t turned at the blinking light, you’d never
have encountered that stinking fork in the road. Then, getting on the highway
was sheer catastrophe.

Is there a point to this story? Of course there is. A computer can get itself
into the same sort of mess. The computer notices an error in your program.
Then, metaphorically speaking, the computer takes a fork in the road — a
fork based on the original error — a fork for which none of the alternatives
lead to good results.

Here’s an example. You’re retyping the code in Listing 5-1, and you forget to
type a close parenthesis:

//The following line is incorrect:
public static void main(String args[] {

When you try to compile the code, you get the messages shown in Figure 5-11.

The computer reports two errors — one error on line 5, and another error on
line 10. “Let’s see,” you say to yourself. “Line 10 is the last line of the main
method. The message says ‘;’ expected. Why would I want a semicolon at
the end of my main method?”

Well, you better take a step backward. In Figure 5-11, the first error message
says ‘)’ expected. That’s okay. But after that first message, the computer is
really confused. In the second message, the computer suggests that you end
the main method with a semicolon, as if that would fix anything. The computer
is trying to make the best of a bad situation but, at this point, you shouldn’t
believe a word that the computer says.

Figure 5-11:
Two error

messages.

82 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 82

The moral of this story is simple. The first of the computer’s error messages
is often the most reliable. The rest of the messages may be nothing but con-
fusing drivel.

If you get more than one error message, always look carefully at the first mes-
sage in the bunch. That first error message is often the most informative of
all the error messages.

Occasionally, the first error message isn’t the most informative. Take time
reading the messages and look for the most helpful among them.

83Chapter 5: Composing a Program

One message and none very helpful
Look at the following sidebar figure and think
about what happened. The computer got all
upset because it didn’t see one of the words
that it expected. The computer expected to see
either class or interface, and it scolded me
for not using one of these two words.

Oddly enough, the computer was going out on
a limb when it suggested the words class and
interface. The fact is, not all programs begin
with the word class or the word interface.
For example, the code in Listing 5-1 begins with
the word import.

Now, what happens if your pinky finger becomes
heavy, and you type Import instead of import?

//The following line is incor-
rect:

Import java.util.Scanner;

Then, much to your dismay, you get the message
shown in the accompanying figure. The figure
has yet another ‘class’ or ‘interface’

expectedmessage, but this time, the message
is all wrong. Sure, you should have typed import
instead of Import. But no, the computer’s
suggestion that the word class or interface
will fix everything is incorrect.

Now unfortunately, in this particular figure,
you don’t get a message saying cannot find
symbol . . . Import. And you certainly
don’t see a message like ‘import’ expected.
Either of those messages would be more helpful
than ‘class’ or ‘interface’ expected,
but neither message is destined to appear. That’s
just the way the cookie crumbles. Computers
aren’t smart animals, and if someone programs the
computer to say ‘class’ or ‘interface’
expected, then that’s exactly what the com-
puter says.

Some people say that computers make them
feel stupid. For me, it’s the opposite. A computer
reminds me how dumb a machine can be, and
how smart a person can be. I like that.

10_588745 ch05.qxd 3/16/05 9:24 PM Page 83

Same kind of error; different kind of message
You’ve found an old family recipe for deviled eggs (one of my favorites). You
follow every step as carefully as you can, but you leave out the salt because of
your grandmother’s high blood pressure. You hand your grandmother an egg
(a finished masterpiece). “Not enough pepper,” she says, and she walks away.

The next course is beef bourguignon. You take an unsalted slice to dear old
Granny. “Not sweet enough,” she groans, and she leaves the room. “But that’s
impossible,” you think. “There’s no sugar in beef bourguignon. I left out the
salt.” Even so, you go back to the kitchen and prepare mashed potatoes. You
use unsalted butter, of course. “She’ll love it this time,” you think.

“Sour potatoes! Yuck!” Granny says, as she goes to the sink to spit it all out.
Because you have a strong ego, you’re not insulted by your grandmother’s
behavior. But you’re somewhat confused. Why is she saying such different
things about three unsalted recipes? Maybe there are some subtle differences
that you don’t know about.

Well, the same kind of thing happens when you’re writing computer programs.
You can make the same kind of mistake twice (or at least, make what you think
is the same kind of mistake twice), and get different error messages each time.
For example, if you read the earlier stuff in this chapter, you may come to
believe that every unrecognized word leads to a cannot find symbol mes-
sage. Well, I’m sorry. It just doesn’t work that way.

Take, for example, the word class in Listing 5-1. Change the lowercase c to
an uppercase C:

//The following line is incorrect:
Class EchoLine {

When it sees this line, the compiler doesn’t even bother to tell you that it
can’t find a symbol. The compiler just thinks, “Most programs start with the
word class, and some start with the word interface. This incorrect pro-
gram starts with a word that I don’t understand (because I don’t think about
the letters C and c having anything to do with one another). I’ll suggest either
class or interface. That should fix it.” So the computer sends you the mes-
sage that’s shown in Figure 5-12.

Figure 5-12:
Spelling
“Class”

incorrectly
(with a

capital “C”).

84 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 84

In fact, that fixes it, because a change from Class to class gets your code
running again.

An interface is like a class. But unlike a class, an interface can’t stand on its
own. For instance, you can’t put your static void main method in a Java
interface. None of the programs in this book use interfaces, so don’t worry
about interfaces until you advance past the beginning programming stage.

Run-time error messages
Up to this point in the chapter, I describe errors that crop up when you com-
pile a program. Another category of errors hides until you run the program.
A case in point is the improper capitalization of the word main.

Assume that, in a moment of wild abandon, you incorrectly spell main with a
capital M:

//The following line is incorrect:
public static void Main(String args[]) {

When you compile the code, everything is hunky-dory. You see a friendly
Process completed message — nothing else.

But then you try to run your program. At this point, the bits hit the fan. The
catastrophe is illustrated in Figure 5-13.

Sure, your program has something named Main, but does it have anything
named main? (Yes, I’ve heard of a famous poet named e. e. cummings, but
who the heck is E. E. Cummings?) The computer doesn’t presume that your
word Main means the same thing as the expected word main. You need to
change Main back to main. Then everything will be okay.

But in the meantime (or in the maintime), how does this improper capitaliza-
tion make it past the compiler? Why don’t you get any error messages when
you compile the program? And if a capital M doesn’t upset the compiler, why
does this capital M mess everything up at run time?

The answer goes back to the different kinds of words in the Java program-
ming language. As it says in Chapter 4, Java has identifiers and keywords.

Figure 5-13:
Whadaya

mean
“NoSuch

Method
Error”?

85Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 85

The keywords in Java are cast in stone. If you change class to Class, or
change public to Public, then you get something new — something that
the computer probably can’t understand. That’s why the compiler chokes on
improper keyword capitalizations. It’s the compiler’s job to make sure that all
the keywords are used properly.

On the other hand, the identifiers can bounce all over the place. Sure, there’s
an identifier named main, but you can make up a new identifier named Main.
(You shouldn’t do it, though. It’s too confusing to people who know Java’s
usual meaning for the word main.) When the compiler sees a mistyped line,
like public static void Main, the compiler just assumes that you’re making
up a brand new name. So the compiler lets the line pass. You get no complaints
from your old friend, the compiler.

But then, when you try to run the code, the computer goes ballistic. The Java
virtual machine always looks for something spelled main, with a small m. If
the JVM doesn’t see anything named main, then the JVM gets upset. “NoSuch
Method . . . main,” says the JVM. So now the JVM, and not the compiler, gives
you an error message.

What problem? I don’t see a problem
I end this chapter on an upbeat note by showing you some of the things you
can change in Listing 5-1 without rocking the boat.

The identifiers that you create
If you create an identifier, then that name is up for grabs. For instance, in
Listing 5-1, you can change EchoLine to RepeatAfterMe.

class RepeatAfterMe {

public static void main ... etc.

This presents no problem at all, as long as you’re willing to be consistent.
Just follow most of the steps in this chapter’s “Typing and running a pro-
gram” section.

� In Step 9, instead of typing EchoLine, type RepeatAfterMe in the Class
Wizard’s Name field.

� In Step 11, when you copy the code from Listing 5-1, don’t type

class EchoLine {

near the top of the listing. Instead, type the words

class RepeatAfterMe {

86 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 86

Spaces and indentation
Java isn’t fussy about the use of spaces and indentation. All you need to do is
keep your program well-organized and readable. Here’s an example:

import java.util.Scanner;

class EchoLine
{

public static void main(String args[])
{

Scanner myScanner = new Scanner(System.in);
System.out.println

(myScanner.nextLine());
}

}

How you choose to do things
A program is like a fingerprint. No two programs look very much alike. Say I
discuss a programming problem with a colleague. Then we go our separate
ways and write our own programs to solve the same problem. Sure, we’re
duplicating the effort. But will we create the exact same code? Absolutely
not. Everyone has his or her own style, and everyone’s style is unique.

I asked fellow Java programmer David Herst to write his own EchoLine pro-
gram without showing him my code from Listing 5-1. Here’s what he wrote:
0
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class EchoLine {
public static void main(String[] args)

throws IOException {
InputStreamReader isr =

new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String input = br.readLine();
System.out.println(input);

}
}

Don’t worry about BufferedReader, InputStreamReader, or things like that.
Just notice that, like snowflakes, no two programs are written exactly alike,
even if they accomplish the same task. That’s nice. It means your code, how-
ever different, can be as good as the next person’s. That’s very encouraging.

87Chapter 5: Composing a Program

10_588745 ch05.qxd 3/16/05 9:24 PM Page 87

88 Part II: Writing Your Own Java Programs

10_588745 ch05.qxd 3/16/05 9:24 PM Page 88

Chapter 6

Using the Building Blocks:
Variables, Values, and Types

In This Chapter
� Declaring variables

� Assigning values to variables

� Working with numbers

� Using Java types

Back in 1946, John von Neumann wrote a groundbreaking paper about
the newly emerging technology of computers and computing. Among

other things, he established one fundamental fact: For all their complexity,
the main business of computers is to move data from one place to another.
Take a number — the balance in a person’s bank account. Move this number
from the computer’s memory to the computer’s processing unit. Add a few
dollars to the balance, and then move it back to the computer’s memory. The
movement of data . . . that’s all there is; there ain’t no more.

Good enough! This chapter shows you how to move around your data.

Using Variables
Here’s an excerpt from a software company’s Web site:

SnitSoft recognizes its obligation to the information technology community.
For that reason, SnitSoft is making its most popular applications available
for a nominal charge. For just $5.95 plus shipping and handling, you receive
a CD-ROM containing SnitSoft’s premier products.

11_588745 ch06.qxd 3/16/05 9:33 PM Page 89

Go ahead. Click the Order Now! link. Just see what happens. You get an order
form with two items on it. One item is labeled $5.95 (CD-ROM), and the
other item reads $25.00 (shipping and handling). What a rip-off! Thanks
to SnitSoft’s generosity, you can pay $30.95 for ten cents worth of software.

Behind the scenes of the SnitSoft Web page, a computer program does
some scoundrel’s arithmetic. The program looks something like the code
in Listing 6-1.

Listing 6-1: SnitSoft’s Grand Scam

class SnitSoft {

public static void main(String args[]) {
double amount;

amount = 5.95;
amount = amount + 25.00;

System.out.print(“We will bill $”);
System.out.print(amount);
System.out.println(“ to your credit card.”);

}
}

When I run the Listing 6-1 code on my own computer (not the SnitSoft com-
puter), I get the output shown in Figure 6-1.

Using a variable
The code in Listing 6-1 makes use of a variable named amount. A variable is
a placeholder. You can stick a number like 5.95 into a variable. After you’ve
placed a number in the variable, you can change your mind and put a differ-
ent number, like 30.95, into the variable. (That’s what varies in a variable.)
Of course, when you put a new number in a variable, the old number is no
longer there. If you didn’t save the old number somewhere else, the old
number is gone.

Figure 6-1:
Running the

code from
Listing 6-1.

90 Part II: Writing Your Own Java Programs

11_588745 ch06.qxd 3/16/05 9:33 PM Page 90

Figure 6-2 gives a before-and-after picture of the code in Listing 6-1. When the
computer executes amount = 5.95, the variable amount has the number 5.95
in it. Then, after the amount = amount + 25.00 statement is executed, the
variable amount suddenly has 30.95 in it. When you think about a variable,
picture a place in the computer’s memory where wires and transistors store
5.95, 30.95, or whatever. In Figure 6-2, imagine that each box is surrounded by
millions of other such boxes.

Now you need some terminology. (You can follow along in Figure 6-3.) The
thing stored in a variable is called a value. A variable’s value can change
during the run of a program (when SnitSoft adds the shipping and handling
cost, for example). The value stored in a variable isn’t necessarily a number.
(You can, for example, create a variable that always stores a letter.) The kind
of value stored in a variable is a variable’s type. (You can read more about
types in the rest of this chapter and in the next two chapters as well.)

There’s a subtle, almost unnoticeable difference between a variable and a
variable’s name. Even in formal writing, I often use the word variable when I
mean variable name. Strictly speaking, amount is the variable name, and all
the memory storage associated with amount (including the value and type of
amount) is the variable itself. If you think this distinction between variable
and variable name is too subtle for you to worry about, join the club.

Figure 6-2:
A variable

(before
and after).

91Chapter 6: Using the Building Blocks: Variables, Values, and Types

11_588745 ch06.qxd 3/16/05 9:33 PM Page 91

Every variable name is an identifier — a name that you can make up in your
own code (for more about this, see Chapter 4). In preparing Listing 6-1, I
made up the name amount.

Understanding assignment statements
The statements with equal signs in Listing 6-1 are called assignment statements.
In an assignment statement, you assign a value to something. In many cases,
this something is a variable.

You should get into the habit of reading assignment statements from right to
left. For example, the first assignment statement in Listing 6-1 says, “Assign
5.95 to the amount variable.” The second assignment statement is just a bit
more complicated. Reading the second assignment statement from right to
left, you get “Add 25.00 to the value that’s already in the amount variable
and make that number (30.95) be the new value of the amount variable.”
For a graphic, hit-you-over-the-head illustration of this, see Figure 6-4.

In an assignment statement, the thing being assigned a value is always on the
left side of the equal sign.

Figure 6-3:
A variable,

its value,
and its type.

92 Part II: Writing Your Own Java Programs

11_588745 ch06.qxd 3/16/05 9:33 PM Page 92

To wrap or not to wrap?
The last three statements in Listing 6-1 use a neat trick. You want the program
to display just one line on the screen, but this line contains three different
things:

� The line starts with We will bill $.

� The line continues with the amount variable’s value.

� The line ends with to your credit card.

These are three separate things, so you put these things in three separate
statements. The first two statements are calls to System.out.print. The
last statement is a call to System.out.println.

Calls to System.out.print display text on part of a line and then leave the
cursor at the end of the current line. After executing System.out.print, the
cursor is still at the end of the same line, so the next System.out.whatever
can continue printing on that same line. With several calls to print capped
off by a single call to println, the result is just one nice-looking line of output,
as Figure 6-5 illustrates.

A call to System.out.print writes some things and leaves the cursor sitting
at the end of the line of output. A call to System.out.println writes things
and then finishes the job by moving the cursor to the start of a brand new
line of output.

Figure 6-4:
Reading an
assignment

statement
from right

to left.

93Chapter 6: Using the Building Blocks: Variables, Values, and Types

11_588745 ch06.qxd 3/16/05 9:33 PM Page 93

What Do All Those Zeros and Ones Mean?
Here’s a word:

gift

The question for discussion is, what does that word mean? Well, it depends
on who looks at the word. For example, an English-speaking reader would say
that “gift” stands for something one person bestows upon another in a box
covered in bright paper and ribbons.

Look! I’m giving you a gift!

But in German, the word “gift” means “poison.”

Let me give you some gift, my dear.

And in Swedish, “gift” can mean either “married” or “poison.”

As soon as they got gift, she slipped a gift into his drink.

Figure 6-5:
The roles
played by

System.out.
print and

System.out.
println.

94 Part II: Writing Your Own Java Programs

11_588745 ch06.qxd 3/16/05 9:33 PM Page 94

Then there’s French. In France, there’s a candy bar named “Gift.”

He came for the holidays, and all he gave me was a bar of Gift.

So what do the letters g-i-f-t really mean? Well, they don’t mean anything until
you decide on a way to interpret them. The same is true of the zeros and ones
inside a computer’s circuitry.

Take, for example, the sequence 01001010. This sequence can stand for the
letter J, but it can also stand for the number 74. That same sequence of zeros
and ones can stand for 1.0369608636003646×10–43. And when interpreted as
screen pixels, the same sequence can represent the dots shown in Figure 6-6.
The meaning of 01001010 depends entirely on the way the software interprets
this sequence.

Types and declarations
How do you tell the computer what 01001010 stands for? The answer is in the
concept called type. The type of a variable describes the kinds of values that
the variable is permitted to store.

In Listing 6-1, look at the first line in the body of the main method.

double amount;

This line is called a variable declaration. Putting this line in your program is
like saying, “I’m declaring my intention to have a variable named amount in my
program.” This line reserves the name amount for your use in the program.

In this variable declaration, the word double is a Java keyword. This word
double tells the computer what kinds of values you intend to store in amount.
In particular, the word double stands for numbers between –1.8×10308 and

Figure 6-6:
An extreme
close-up of
eight black-

and-white
screen
pixels.

95Chapter 6: Using the Building Blocks: Variables, Values, and Types

11_588745 ch06.qxd 3/16/05 9:33 PM Page 95

1.8×10308. That’s an enormous range of numbers. Without the fancy ×10 nota-
tion, the second of these numbers is

18000
000
000
000
000
0000.0

If the folks at SnitSoft ever charge that much for shipping and handling, they
can represent the charge with a variable of type double.

What’s the point?
More important than the humongous range of the double keyword’s num-
bers is the fact that a double value can have digits to the right of the decimal
point. After you declare amount to be of type double, you can store all sorts
of numbers in amount. You can store 5.95, 0.02398479, or –3.0. In Listing 6-1, if
I hadn’t declared amount to be of type double, then I may not have been able
to store 5.95. Instead, I would have had to store plain old 5 or dreary old 6,
without any digits beyond the decimal point.

For more info on numbers without decimal points, see Chapter 7.

This paragraph deals with a really picky point, so skip it if you’re not in the
mood. People often use the phrase “decimal number” to describe a number
with digits to the right of the decimal point. The problem is, the syllable “dec”
stands for the number ten, so the word “decimal” implies a base-10 representa-
tion. Because computers store base-2 (not base-10) representations, the word
“decimal” to describe such a number is a misnomer. But in this book, I just
can’t help myself. I’m calling them “decimal numbers” whether the techies
like it or not.

Reading Decimal Numbers
from the Keyboard

I don’t believe it! SnitSoft is having a sale! For one week only, you can get the
SnitSoft CD-ROM for the low price of just $5.75! Better hurry up and order one.

No, wait! Listing 6-1 has the price fixed at $5.95. I have to revise the program.

96 Part II: Writing Your Own Java Programs

11_588745 ch06.qxd 3/16/05 9:33 PM Page 96

I know. I’ll make the code more versatile. I’ll input the amount from the key-
board. Listing 6-2 has the revised code, and Figure 6-7 shows a run of the
new code.

Listing 6-2: Getting a Double Value from the Keyboard

import java.util.Scanner;

class VersatileSnitSoft {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
double amount;

System.out.print(“What’s the price of a CD-ROM? “);
amount = myScanner.nextDouble();
amount = amount + 25.00;

System.out.print(“We will bill $”);
System.out.print(amount);
System.out.println(“ to your credit card.”);

}
}

Though these be methods, yet there is
madness in ’t
Notice the call to the nextDouble method in Listing 6-2. Back in Listing 5-1, I
use nextLine, but here in Listing 6-2, I use nextDouble.

In Java, each type of input requires its own special method. If you’re getting a
line of text, then nextLine works just fine. But if you’re reading stuff from the
keyboard, and you want that stuff to be interpreted as a number, you need a
method like nextDouble.

Figure 6-7:
Getting the

value of
a double
variable.

97Chapter 6: Using the Building Blocks: Variables, Values, and Types

11_588745 ch06.qxd 3/16/05 9:33 PM Page 97

To go from Listing 6-1 to Listing 6-2, I added an import declaration and some
stuff about new Scanner(System.in). You can find out more about these
things by reading the section on input and output in Chapter 5. (You can find
out even more about input and output by visiting Chapter 13.) And more exam-
ples (more myScanner.nextSomething methods) are in Chapters 7 and 8.

98 Part II: Writing Your Own Java Programs

Who does what, and how?
When you write a program, you’re called a pro-
grammer, but when you run a program, you’re
called a user. So when you test your own code,
you’re being both the programmer and the user.

Suppose that your program contains a my
Scanner.nextSomething() call, like the
calls in Listings 5-1 and 6-2. Then your program
gets input from the user. But, when the program
runs, how does the user know to type some-
thing on the keyboard? If the user and the pro-
grammer are the same person, and the program
is fairly simple, then knowing what to type is no
big deal. For example, when you start running
the code in Listing 5-1, you have this book in
front of you, and the book says “The computer is
waiting for you to type something . . . You type
one line of text . . .” So you type the text and
press Enter. Everything is fine.

But very few programs come with their own
books. In many instances, when a program starts
running, the user has to stare at the screen to
figure out what to do next. The code in Listing 6-2
works in this stare-at-the-screen scenario. In
Listing 6-2, the first call to print puts an infor-
mative message (What’s the price of a
CD-ROM?) on the user’s screen. A message of
this kind is called a prompt.

When you start writing programs, you can easily
confuse the roles of the prompt and the user’s
input. So remember, no preordained relationship
exists between a prompt and the subsequent
input. To create a prompt, you call print or
println. Then, to read the user’s input, you call

nextLine, nextDouble, or one of the Scanner
class’s other nextSomethingmethods. These
print and next calls belong in two separate
statements. Java has no commonly used, single
statement that does both the prompting and the
“next-ing.”

As the programmer, your job is to combine the
prompting and the next-ing. You can combine
prompting and next-ing in all kinds of ways.
Some ways are helpful to the user, and some
ways aren’t.

� If you don’t have a call to print or
println, then the user sees no prompt. A
blinking cursor sits quietly and waits for the
user to type something. The user has to guess
what kind of input to type. Occasionally
that’s okay, but usually it isn’t.

� If you call print or println, but you
don’t call a myScanner.nextSomething
method, then the computer doesn’t wait for
the user to type anything. The program races
to execute whatever statement comes imme-
diately after the print or println.

� If your prompt displays a misleading mes-
sage, then you mislead the user. Java has
no built-in feature that checks the appropri-
ateness of a prompt. That’s not surprising.
Most computer languages have no prompt-
checking feature.

So be careful with your prompts and gets. Be nice
to your user. Remember, you were once a humble
computer user too.

11_588745 ch06.qxd 3/16/05 9:33 PM Page 98

Methods and assignments
Note how I use myScanner.nextDouble in Listing 6-2. The method myScanner.
nextDouble is called as part of assignment statement. If you look in Chapter
5 at the section on how the EchoLine program works, you see that the com-
puter can substitute something in place of a method call. The computer does
this in Listing 6-2. When you type 5.75 on the keyboard, the computer turns

amount = myScanner.nextDouble();

into

amount = 5.75;

(The computer doesn’t really rewrite the code in Listing 6-2. This amount =
5.75 line just illustrates the effect of the computer’s action.) In the second
assignment statement in Listing 6-2, the computer adds 25.00 to the 5.75 that’s
stored in amount.

Some method calls have this substitution effect, and others (like System.
out.println) don’t. To find out more about this, see Chapter 19.

Variations on a Theme
Look back at Listing 6-1. In that listing, it takes two lines to give the amount
variable its first value:

double amount;
amount = 5.95;

You can do the same thing with just one line:

double amount=5.95;

When you do this, you don’t say that that you’re “assigning” a value to the
amount variable. The line double amount=5.95 isn’t called an “assignment
statement.” Instead, this line is called a declaration with an initialization.
You’re initializing the amount variable. You can do all sorts of things with
initializations, even arithmetic.

double gasBill = 174.59;
double elecBill = 84.21;
double H2OBill = 22.88;
double total = gasBill + elecBill + H2OBill;

99Chapter 6: Using the Building Blocks: Variables, Values, and Types

11_588745 ch06.qxd 3/16/05 9:33 PM Page 99

Moving variables from place to place
It helps to remember the difference between initializations and assignments.
For one thing, you can drag a declaration with its initialization outside of a
method.

//This is okay:
class SnitSoft {

static double amount = 5.95;

public static void main(String args[]) {
amount = amount + 25.00;

System.out.print(“We will bill $”);
System.out.print(amount);
System.out.println(“ to your credit card.”);

}
}

You can’t do the same thing with assignment statements. (See the following
code and Figure 6-8.)

//This does not compile:
class BadSnitSoftCode {

static double amount;

amount = 5.95; //Misplaced statement

public static void main(String args[]) {
amount = amount + 25.00;

System.out.print(“We will bill $”);
System.out.print(amount);
System.out.println(“ to your credit card.”);

}
}

Figure 6-8:
A failed

attempt to
compile

BadSnitSoft
Code.

100 Part II: Writing Your Own Java Programs

11_588745 ch06.qxd 3/16/05 9:33 PM Page 100

You can’t drag statements outside of methods. (Even though a variable decla-
ration ends with a semicolon, a variable declaration isn’t considered to be a
statement. Go figure!)

The advantage of putting a declaration outside of a method is illustrated in
Chapter 19. While you wait impatiently to reach that chapter, notice how I
added the word static to each declaration that I pulled out of the main
method. I had to do this because the main method’s header has the word
static in it. Not all methods are static. In fact, most methods aren’t static.
But, whenever you pull a declaration out of a static method, you have to
add the word static at the beginning of the declaration. All the mystery sur-
rounding the word static is resolved in Chapter 18.

Combining variable declarations
The code in Listing 6-1 has only one variable (as if variables are in short
supply). You can get the same effect with several variables.

class SnitSoftNew {

public static void main(String args[]) {
double cdPrice;
double shippingAndHandling;
double total;

cdPrice = 5.95;
shippingAndHandling = 25.00;
total = cdPrice + shippingAndHandling;

System.out.print(“We will bill $”);
System.out.print(total);
System.out.println(“ to your credit card.”);

}
}

This new code gives you the same output as the code in Listing 6-1. (Refer to
Figure 6-1.)

The new code has three declarations — one for each of the program’s three
variables. Because all three variables have the same type (the type double), I
can modify the code and declare all three variables in one fell swoop:

double cdPrice, shippingAndHandling, total;

101Chapter 6: Using the Building Blocks: Variables, Values, and Types

11_588745 ch06.qxd 3/16/05 9:33 PM Page 101

So which is better, one declaration or three declarations? Neither is better.
It’s a matter of personal style.

You can even add initializations to a combined declaration. When you do,
each initialization applies to only one variable. For example, with the line

double cdPrice, shippingAndHandling = 25.00, total;

the value of shippingAndHandling becomes 25.00, but the variables
cdPrice and total get no particular value.

102 Part II: Writing Your Own Java Programs

11_588745 ch06.qxd 3/16/05 9:33 PM Page 102

Chapter 7

Numbers and Types
In This Chapter
� Processing whole numbers

� Making new values from old values

� Understanding Java’s more exotic types

Not so long ago, people thought computers did nothing but big, number-
crunching calculations. Computers solved arithmetic problems, and

that was the end of the story.

In the 1980s, with the widespread use of word-processing programs, the myth
of the big metal math brain went by the wayside. But even then, computers
made great calculators. After all, computers are very fast and very accurate.
Computers never need to count on their fingers. Best of all, computers don’t
feel burdened when they do arithmetic. I hate ending a meal in a good restau-
rant by worrying about the tax and tip, but computers don’t mind that stuff
at all. (Even so, computers seldom go out to eat.)

Using Whole Numbers
Let me tell you, it’s no fun being an adult. Right now I have four little kids in
my living room. They’re all staring at me because I have a bag full of gumballs
in my hand. With 30 gumballs in the bag, the kids are all thinking “Who’s the
best? Who gets more gumballs than the others? And who’s going to be treated
unfairly?” They insist on a complete, official gumball count, with each kid get-
ting exactly the same number of tasty little treats. I must be careful. If I’m not,
then I’ll never hear the end of it.

12_588745 ch07.qxd 3/16/05 9:19 PM Page 103

With 30 gumballs and four kids, there’s no way to divide the gumballs evenly.
Of course, if I get rid of a kid, then I can give ten gumballs to each kid. The
trouble is, gumballs are disposable; kids are not. So my only alternative is to
divvy up what gumballs I can and dispose of the rest. “Okay, think quick,” I
say to myself. “With 30 gumballs and four kids, how many gumballs can I
promise to each kid?”

I waste no time in programming my computer to figure out this problem for
me. When I’m finished, I have the code in Listing 7-1.

Listing 7-1: How to Keep Four Kids from Throwing Tantrums

class KeepingKidsQuiet {

public static void main(String args[]) {
int gumballs;
int kids;
int gumballsPerKid;

gumballs = 30;
kids = 4;
gumballsPerKid = gumballs / kids;

System.out.print(“Each kid gets “);
System.out.print(gumballsPerKid);
System.out.println(“ gumballs.”);

}
}

A run of the KeepingKidsQuiet program is shown in Figure 7-1. If each kid
gets seven gumballs, then the kids can’t complain that I’m playing favorites.
They’ll have to find something else to squabble about.

At the core of the gumball problem, I’ve got whole numbers — numbers with
no digits beyond the decimal point. When I divide 30 by 4, I get 71⁄2, but I can’t
take the 1⁄2 seriously. No matter how hard I try, I can’t divide a gumball in half,
at least not without hearing “my half is bigger than his half.” This fact is

Figure 7-1:
Fair and
square.

104 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 104

reflected nicely in Java. In Listing 7-1, all three variables (gumballs, kids, and
gumballsPerKid) are of type int. An int value is a whole number. When you
divide one int value by another (as you do with the slash in Listing 7-1), you
get another int. When you divide 30 by 4, you get 7 — not 71⁄2. You see this in
Figure 7-1. Taken together, the statements

gumballsPerKid = gumballs/kids;

System.out.print(gumballsPerKid);

put the number 7 on the computer screen.

Reading whole numbers from the keyboard
What a life! Yesterday there were four kids in my living room, and I had 30 gum-
balls. Today there are six kids in my house, and I have 80 gumballs. How can I
cope with all this change? I know! I’ll write a program that reads the numbers
of gumballs and kids from the keyboard. The program is in Listing 7-2, and a
run of the program is shown in Figure 7-2.

Listing 7-2: A More Versatile Program for Kids and Gumballs

import java.util.Scanner;

class KeepingMoreKidsQuiet {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int gumballs;
int kids;
int gumballsPerKid;

System.out.print(“How many gumballs? How many kids? “);

gumballs = myScanner.nextInt();
kids = myScanner.nextInt();

gumballsPerKid = gumballs / kids;

System.out.print(“Each kid gets “);
System.out.print(gumballsPerKid);
System.out.println(“ gumballs.”);

}
}

105Chapter 7: Numbers and Types

12_588745 ch07.qxd 3/16/05 9:19 PM Page 105

You should notice a couple of things about Listing 7-2. First, you can read an
int value with the nextInt method. Second, you can issue successive calls
to Scanner methods. In Listing 7-2, I call nextInt twice. All I have to do is
separate the numbers I type by blank spaces. In Figure 7-2, I put one blank
space between my 80 and my 6, but more blank spaces would work as well.

This blank space rule applies to many of the Scanner methods. For example,
here’s some code that reads three numeric values:

gumballs = myScanner.nextInt();
costOfGumballs = myScanner.nextDouble();
kids = myScanner.nextInt();

Figure 7-3 shows valid input for these three method calls.

What you read is what you get
When you’re writing your own code, you should never take anything for
granted. Suppose you accidentally reverse the order of the gumballs and
kids assignment statements in Listing 7-2:

Figure 7-3:
Three

numbers
for three
Scanner
method

calls.

Figure 7-2:
Next thing
you know,

I’ll have
seventy

kids and a
thousand
gumballs.

106 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 106

//This code is misleading:
System.out.print(“How many gumballs? How many kids? “);

kids = myScanner.nextInt();
gumballs = myScanner.nextInt();

Then, the line How many gumballs? How many kids? is very misleading.
Because the kids assignment statement comes before the gumballs assign-
ment statement, the first number you type becomes the value of kids, and
the second number you type becomes the value of gumballs. It doesn’t
matter that your program displays the message How many gumballs?
How many kids?. What matters is the order of the assignment statements
in the program.

If the kids assignment statement accidentally comes first, you can get a
strange answer, like the zero answer in Figure 7-4. That’s how int division
works. It just cuts off any remainder. Divide a small number (like 6) by a big
number (like 80), and you get 0.

Figure 7-4:
How to

make six
kids very
unhappy.

107Chapter 7: Numbers and Types

12_588745 ch07.qxd 3/16/05 9:19 PM Page 107

Creating New Values by
Applying Operators

What could be more comforting than your old friend, the plus sign? It was the
first thing you learned about in elementary school math. Almost everybody
knows how to add two and two. In fact, in English usage, adding two and two
is a metaphor for something that’s easy to do. Whenever you see a plus sign,
one of your brain cells says, “Thank goodness, it could be something much
more complicated.”

So Java has a plus sign. You can use the plus sign to add two numbers:

int apples, oranges, fruit;
apples = 5;
oranges = 16;
fruit = apples + oranges;

Of course, the old minus sign is available too:

apples = fruit - oranges;

Use an asterisk for multiplication, and a forward slash for division:

double rate, pay, withholding;
int hours;

rate = 6.25;
hours = 35;
pay = rate * hours;
withholding = pay / 3.0;

When you divide an int value by another int value, you get an int value.
The computer doesn’t round. Instead, the computer chops off any remainder.
If you put System.out.println(11 / 4) in your program, the computer
prints 2, not 2.75. If you need a decimal answer, make either (or both) of the
numbers you’re dividing double values. For example, if you put System.out.
println(11.0 / 4) in your program, the computer divides a double value,
11.0, by an int value, 4. Because at least one of the two values is double,
the computer prints 2.75.

Finding a remainder
There’s a useful arithmetic operator called the remainder operator. The symbol
for the remainder operator is the percent sign (%). When you put System.
out.println(11 % 4) in your program, the computer prints 3. It does this
because 4 goes into 11 who-cares-how-many times, with a remainder of 3.

108 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 108

The remainder operator turns out to be fairly useful. After all, a remainder is
the amount you have left over after you divide two numbers. What if you’re
making change for $1.38? After dividing 138 by 25, you have 13 cents left over,
as shown in Figure 7-5.

The code in Listing 7-3 makes use of this remainder idea.

Listing 7-3: Making Change

import java.util.Scanner;

class MakeChange {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int quarters, dimes, nickels, cents;
int whatsLeft, total;

System.out.print(“How many cents do you have? “);
total = myScanner.nextInt();

quarters = total / 25;
whatsLeft = total % 25;

(continued)

138 cents

138/25 is 5

138%25 is 13

Figure 7-5:
Hey, bud!

Got change
for 138
sticks?

109Chapter 7: Numbers and Types

12_588745 ch07.qxd 3/16/05 9:19 PM Page 109

Listing 7-3 (continued)

dimes = whatsLeft / 10;
whatsLeft = whatsLeft % 10;

nickels = whatsLeft / 5;
whatsLeft = whatsLeft % 5;

cents = whatsLeft;

System.out.println();
System.out.println(“From “ + total + “ cents you get”);
System.out.println(quarters + “ quarters”);
System.out.println(dimes + “ dimes”);
System.out.println(nickels + “ nickels”);
System.out.println(cents + “ cents”);

}
}

A run of the code in Listing 7-3 is shown in Figure 7-6. You start with a total
of 138 cents. The statement

quarters = total / 25;

divides 138 by 25, giving 5. That means you can make 5 quarters from 138
cents. Next, the statement

whatsLeft = total % 25;

divides 138 by 25 again, and puts only the remainder, 13, into whatsLeft.
Now you’re ready for the next step, which is to take as many dimes as you
can out of 13 cents.

You keep going like this until you’ve divided away all the nickels. At that
point, the value of whatsLeft is just 3 (meaning 3 cents).

When two or more variables have similar types, you can create the variables
with combined declarations. For example, Listing 7-3 has two combined
declarations — one for the variables quarters, dimes, nickels, and cents
(all of type int); another for the variables whatsLeft and total (both of

Figure 7-6:
Change

for $1.38.

110 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 110

type int). But to create variables of different types, you need separate decla-
rations. For example, to create an int variable named total and a double
variable named amount, you need one declaration int total; and another
declaration double amount;.

Listing 7-3 has a call to System.out.println() with nothing in the paren-
theses. When the computer executes this statement, the cursor jumps to a
new line on the screen. (I often use this statement to put a blank line in a
program’s output.)

The increment and decrement operators
Java has some neat little operators that make life easier (for the computer’s
processor, for your brain, and for your fingers). Altogether there are four
such operators — two increment operators and two decrement operators.
The increment operators add one, and the decrement operators subtract
one. To see how they work, you need some examples.

Using preincrement
The first example is in Figure 7-7.

Figure 7-7:
Using pre-
increment.

111Chapter 7: Numbers and Types

12_588745 ch07.qxd 3/16/05 9:19 PM Page 111

A run of the program in Figure 7-7 is shown in Figure 7-8. In this horribly
uneventful run, the count of gumballs gets displayed three times.

112 Part II: Writing Your Own Java Programs

If thine int offends thee, cast it out
The run in Figure 7-6 seems artificial. Why would
you start with 138 cents? Why not use the more
familiar $1.38? The reason is that the number
1.38 isn’t a whole number, and without whole
numbers, the remainder operator isn’t very
useful. For example, the value of 1.38 % 0.25
is 0.1299999999999999. All those nines are
tough to work with.

So if you want to input 1.38, then the program
should take your 1.38 and turn it into 138 cents.
The question is, how can you get your program
do this?

My first idea is to multiply 1.38 by 100:

double amount;
int total;
System.out.print(“How much

money do you have? “);
amount =

myScanner.nextDouble();
total = amount * 100; //This

doesn’t quite work.

In everyday arithmetic, multiplying by 100 does
the trick. But computers are fussy. With a com-
puter, you have to be very careful when you mix
int values and double values. (See the first
figure in this sidebar.)

12_588745 ch07.qxd 3/16/05 9:19 PM Page 112

The double plus sign goes under two different names, depending on where
you put it. When you put the ++ before a variable, the ++ is called the prein-
crement operator. In the word preincrement, the pre stands for before. In this
setting, the word before has two different meanings:

� You’re putting ++ before the variable.

� The computer adds 1 to the variable’s value before the variable gets
used in any other part of the statement.

Figure 7-9 has a slow-motion instant replay of the preincrement operator’s
action. In Figure 7-9, the computer encounters the System.out.println
(++gumballs) statement. First, the computer adds 1 to gumballs (raising
the value of gumballs to 29). Then the computer executes System.out.
println, using the new value of gumballs (29).

Figure 7-8:
A run of the

preincre-
ment code

(the code in
Figure 7-7).

113Chapter 7: Numbers and Types

To cram a double value into an int variable,
you need something called casting. When you
cast a value, you essentially say. “I’m aware that
I’m trying to squish a double value into an int
variable. It’s a tight fit, but I want to do it anyway.”

To do casting, you put the name of a type in
parentheses, as follows:

total = (int) (amount * 100);
//This works!

This casting notation turns the double value
138.00 into the int value 138, and everybody’s
happy. (See the second figure in this sidebar.)

12_588745 ch07.qxd 3/16/05 9:19 PM Page 113

114 Part II: Writing Your Own Java Programs

With System.out.println(++gumballs), the computer adds 1 to gum-
balls before printing the new value of gumballs on the screen.

Using postincrement
An alternative to preincrement is postincrement. With postincrement, the post
stands for after. The word after has two different meanings:

� You put ++ after the variable.

� The computer adds 1 to the variable’s value after the variable gets used
in any other part of the statement.

Figure 7-10 has a close-up view of the postincrement operator’s action. In Fig-
ure 7-10, the computer encounters the System.out.println(gumballs++)
statement. First, the computer executes System.out.println, using the old
value of gumballs (28). Then the computer adds 1 to gumballs (raising the
value of gumballs to 29).

Figure 7-10:
The postin-

crement
operator
in action.

Figure 7-9:
The prein-

crement
operator
in action.

12_588745 ch07.qxd 3/16/05 9:19 PM Page 114

Look at the bold line of code in Figure 7-11. The computer prints the old value
of gumballs (28) on the screen. Only after printing this old value does the
computer add 1 to gumballs (raising the gumballs value from 28 to 29).

115Chapter 7: Numbers and Types

Statements and expressions
Any part of a computer program that has a value
is called an expression. If you write

gumballs = 30;

then 30 is an expression (an expression whose
value is the quantity 30). If you write

amount = 5.95 + 25.00;

then 5.95 + 25.00 is an expression (because
5.95 + 25.00 has the value 30.95). If you write

gumballsPerKid = gumballs /
kids;

then gumballs / kids is an expression. (The
value of the expression gumballs / kids
depends on whatever values the variables
gumballs and kids have when the statement
with the expression in it is executed.)

This brings us to the subject of the pre- and
postincrement and decrement operators. There
are two ways to think about these operators: the
way everyone understands it, and the right way.
The way I explain it in most of this section (in
terms of time, with before and after) is the way
everyone understands the concept. Unfortunately,
the way everyone understands the concept isn’t
really the right way. When you see ++ or --,
you can think in terms of time sequence. But
occasionally some programmer uses ++ or --
in a convoluted way, and the notions of before
and after break down. So if you’re ever in a tight
spot, you should think about these operators in
terms of statements and expressions.

First, remember that a statement tells the com-
puter to do something, and an expression has a
value. (Statements are described in Chapter 4, and

expressions are described earlier in this sidebar.)
Which category does gumballs++ belong to?
The surprising answer is both. The Java code
gumballs++ is both a statement and an
expression.

Suppose that, before executing the code
System.out.println(gumballs++), the
value of gumballs is 28:

� As a statement, gumballs++ tells the com-
puter to add 1 to gumballs.

� As an expression, the value of gumballs++
is 28, not 29.

So even though gumballsgets 1 added to it, the
code System.out.println(gumballs++)
really means System.out.println(28).
(See the figure in this sidebar.)

Now, almost everything you just read about
gumballs++ is true about ++gumballs. The
only difference is, as an expression, ++gum-
balls behaves in a more intuitive way. Suppose
that, before executing the code System.out.
println(++gumballs), the value of gum-
balls is 28:

� As a statement, ++gumballs tells the com-
puter to add 1 to gumballs.

� As an expression, the value of ++gumballs
is 29.

So with System.out.println(++gum-
balls), the variable gumballs gets 1 added
to it, and the code System.out.println
(++gumballs) really means System.out.
println(29).

12_588745 ch07.qxd 3/16/05 9:19 PM Page 115

With System.out.println(gumballs++), the computer adds 1 to gumballs
after printing the old value that gumballs already had.

A run of the code in Figure 7-11 is shown in Figure 7-12. Compare Figure 7-12
with the run in Figure 7-8.

� With preincrement in Figure 7-8, the second number that gets displayed
is 29.

� With postincrement in Figure 7-12, the second number that gets displayed
is 28.

In Figure 7-12, the number 29 doesn’t show up on the screen until the end
of the run, when the computer executes one last System.out.println
(gumballs).

Figure 7-12:
A run of the

postincre-
ment code

(the code in
Figure 7-11).

Figure 7-11:
Using

postin-
crement.

116 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 116

Are you trying to decide between using preincrement or postincrement?
Ponder no longer. Most programmers use postincrement. In a typical Java
program, you often see things like gumballs++. You seldom see things like
++gumballs.

In addition to preincrement and postincrement, Java has two operators that
use --. These operators are called predecrement and postdecrement:

� With predecrement (--gumballs), the computer subtracts 1 from the
variable’s value before the variable gets used in the rest of the statement.

� With postdecrement (gumballs--), the computer subtracts 1 from the
variable’s value after the variable gets used in the rest of the statement.

Assignment operators
If you read the previous section — the section about operators that add 1 —
you may be wondering if you can manipulate these operators to add 2, or add
5, or add 1000000. Can you write gumballs++++, and still call yourself a Java
programmer? Well, you can’t. If you try it, then the compiler will give you an
error message:

unexpected type
required: variable
found : value

gumballs++++;
^

So how can you add values other than 1? As luck would have it, Java has
plenty of assignment operators you can use. With an assignment operator,
you can add, subtract, multiply, or divide by anything you want. You can do
other cool operations too.

For example, you can add 1 to the kids variable by writing

kids += 1;

Is this better than kids++ or kids = kids + 1? No, it’s not better. It’s just
an alternative. But you can add 5 to the kids variable by writing

kids += 5;

You can’t easily add 5 with pre- or postincrement. And what if the kids get
stuck in an evil scientist’s cloning machine? The statement

kids *= 2;

multiplies the number of kids by 2.

117Chapter 7: Numbers and Types

12_588745 ch07.qxd 3/16/05 9:19 PM Page 117

With the assignment operators, you can add, subtract, multiply, or divide a
variable by any number. The number doesn’t have to be a literal. You can use
a number-valued expression on the right side of the equal sign:

double amount = 5.95;
double shippingAndHandling = 25.00, discount = 0.15;

amount += shippingAndHandling;
amount -= discount * 2;

The code above adds 25.00 (shippingAndHandling) to the value of amount.
Then, the code subtracts 0.30 (discount * 2) from the value of amount.
How generous!

Size Matters
Here are today’s new vocabulary words:

foregift (fore-gift) n. A premium that a lessee pays to the lessor upon the
taking of a lease.

hereinbefore (here-in-be-fore) adv. In a previous part of this document.

Now imagine yourself scanning some compressed text. In this text, all blanks
have been removed to conserve storage space. You come upon the following
sequence of letters:

hereinbeforegiftedit

The question is, what do these letters mean? If you knew each word’s length,
you could answer the question.

here in be foregift edit

hereinbefore gifted it

herein before gift Ed it

A computer faces the same kind of problem. When a computer stores several
numbers in memory or on a disk, the computer doesn’t put blank spaces
between the numbers. So imagine that a small chunk of the computer’s
memory looks like the stuff in Figure 7-13. (The computer works exclusively
with zeros and ones, but Figure 7-13 uses ordinary digits. With ordinary digits,
it’s easier to see what’s going on.)

118 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 118

What number or numbers are stored in Figure 7-13? Is it two numbers, 42 and
21? Or is it one number, 4,221? And what about storing four numbers, 4, 2, 2,
and 1? It all depends on the amount of space each number consumes.

Imagine a variable that stores the number of paydays in a month. This number
never gets bigger than 31. You can represent this small number with just eight
zeros and ones. But what about a variable that counts stars in the universe?
That number could easily be more than a trillion, and to represent one trillion
accurately, you need 64 zeros and ones.

At this point, Java comes to the rescue. Java has four types of whole numbers.
Just as in Listing 7-1, I declare

int gumballsPerKid;

I can also declare

byte paydaysInAMonth;
short sickDaysDuringYourEmployment;
long numberOfStars;

Each of these types (byte, short, int, and long) has its own range of possi-
ble values. (See Table 7-1.)

Java has two types of decimal numbers (numbers with digits to the right of
the decimal point). Just as in Listing 6-1, I declare

double amount;

I can also declare

float monthlySalary;

Given the choice between double and float, I always choose double. A vari-
able of type double has a greater possible range of values and much greater
accuracy. (See Table 7-1.)

Figure 7-13:
Storing the
digits 4221.

119Chapter 7: Numbers and Types

12_588745 ch07.qxd 3/16/05 9:19 PM Page 119

Table 7-1 Java’s Primitive Numeric Types
Type Name Range of Values

Whole Number Types

Byte –128 to 127

Short –32768 to 32767

Int –2147483648 to 2147483647

Long –9223372036854775808 to 9223372036854775807

Decimal Number Types

Float –3.4×1038 to 3.4×1038

Double –1.8×10308 to 1.8×10308

Table 7-1 lists six of Java’s primitive types (also known as simple types). Java
has only eight primitive types, so only two of Java’s primitive types are miss-
ing from Table 7-1.

Chapter 8 describes the two remaining primitive types. Chapter 17 introduces
types that aren’t primitive.

As a beginning programmer, you don’t have to choose among the types in
Table 7-1. Just use int for whole numbers and double for decimal numbers.
If, in your travels, you see something like short or float in someone else’s
program, just remember the following:

� The types byte, short, int, and long represent whole numbers.

� The types float and double represent decimal numbers.

Most of the time, that’s all you need to know.

120 Part II: Writing Your Own Java Programs

12_588745 ch07.qxd 3/16/05 9:19 PM Page 120

Chapter 8

Numbers? Who Needs Numbers?
In This Chapter
� Working with characters

� Dealing with “true” or “false” values

� Rounding out your knowledge of Java’s primitive types

I don’t particularly like fax machines. They’re so inefficient. Send a short fax
and what do you have? You have two slices of tree — one at the sending

end, and another at the receiving end. You also have millions of dots — dots
that scan tiny little lines across the printed page. The dots distinguish patches
of light from patches of darkness. What a waste!

Compare a fax with an e-mail message. Using e-mail, I can send a 25-word con-
test entry with just 2500 zeros and ones, and I don’t waste any paper. Best of
all, an e-mail message doesn’t describe light dots and dark dots. An e-mail
message contains codes for each of the letters — a short sequence of zeros
and ones for the letter A, a different sequence of zeros and ones for the letter
B, and so on. What could be simpler?

Now imagine sending a one-word fax. The word is “true,” which is understood
to mean, “true, I accept your offer to write Beginning Programming with Java
For Dummies, 2nd Edition.” A fax with this message sends a picture of the four
letters t-r-u-e, with fuzzy lines where dirt gets on the paper and little white
dots where the cartridge runs short on toner.

But really, what’s the essence of the “true” message? There are just two possi-
bilities, aren’t there? The message could be “true” or “false,” and to represent
those possibilities, I need very little fanfare. How about 0 for “false” and 1 for
“true?”

They ask, “Do you accept our offer to write Beginning Programming with
Java For Dummies, 2nd Edition?”

“1,” I reply.

13_588745 ch08.qxd 3/16/05 9:34 PM Page 121

Too bad I didn’t think of that a few months ago. Anyway, this chapter deals
with letters, truth, falsehood, and other such things.

Characters
In Chapters 6 and 7, you store numbers in all your variables. That’s fine, but
there’s more to life than numbers. For example, I wrote this book with a com-
puter, and this book contains thousands and thousands of non-numeric things
called characters.

The Java type that’s used to store characters is char. Listing 8-1 has a simple
program that uses the char type, and a run of the Listing 8-1 program is shown
in Figure 8-1.

Listing 8-1: Using the char Type

class LowerToUpper {

public static void main(String args[]) {
char smallLetter, bigLetter;

smallLetter = ‘b’;
bigLetter = Character.toUpperCase(smallLetter);
System.out.println(bigLetter);

}
}

In Listing 8-1, the first assignment statement stores the letter b in the
smallLetter variable. In that statement, notice how b is surrounded by
single quote marks. In a Java program, every char literal starts and ends
with a single quote mark.

When you surround a letter with quote marks, you tell the computer that
the letter isn’t a variable name. For example, in Listing 8-1, the incorrect
statement smallLetter = b would tell the computer to look for a variable
named b. Because there’s no variable named b, you’d get a cannot find
symbol message.

Figure 8-1:
Converting

lower- to
uppercase.

122 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 122

In the second assignment statement of Listing 8-1, the program calls an API
method whose name is Character.toUpperCase. The method Character.
toUpperCase does what its name suggests — the method produces the
uppercase equivalent of a lowercase letter. In Listing 8-1, this uppercase
equivalent (the letter B) is assigned to the variable bigLetter, and the B
that’s in bigLetter is printed on the screen, as illustrated in Figure 8-2.

When the computer displays a char value on the screen, the computer does
not surround the character with single quote marks.

I digress . . .
A while ago, I wondered what would happen if I called the Character.to
UpperCase method and fed the method a character that isn’t lowercase to
begin with. I yanked out the Java API documentation, but I found no useful
information. The documentation said that toUpperCase “converts the char-
acter argument to uppercase using case mapping information from the
UnicodeData file.” Thanks, but that’s not useful to me.

Silly as it seems, I asked myself what I’d do if I were the toUpperCase method.
What would I say if someone handed me a capital R and told me to capitalize
that letter? I’d say, “Take back your stinking capital R.” In the lingo of comput-
ing, I’d send that person an error message. So I wondered if I’d get an error
message when I applied Character.toUpperCase to the letter R.

smallLetter = 'b';

bigLetter = Character.toUpperCase(smallLetter);

System.out.printIn(bigLetter);

b

B

B

Figure 8-2:
The action in

Listing 8-1.

123Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 123

I tried it. I cooked up the experiment in Listing 8-2.

Listing 8-2: Investigating the Behavior of toUpperCase

class MyExperiment {

public static void main(String args[]) {
char smallLetter, bigLetter;

smallLetter = ‘R’;
bigLetter = Character.toUpperCase(smallLetter);
System.out.println(bigLetter);

smallLetter = ‘3’;
bigLetter = Character.toUpperCase(smallLetter);
System.out.println(bigLetter);

}
}

In my experiment, I didn’t mix chemicals and blow things up. Here’s what I
did instead:

� I assigned ‘R’ to smallLetter.

The toUpperCase method took the uppercase R and gave me back another
uppercase R. (See Figure 8-3.) I got no error message. This told me what
the toUpperCase method does with a letter that’s already uppercase.
The method does nothing.

� I assigned ‘3’ to smallLetter.

The toUpperCase method took the digit 3 and gave me back the same
digit 3. (See Figure 8-3.) I got no error message. This told me what the
toUpperCase method does with a character that’s not a letter. It does
nothing, zip, zilch, bupkis.

I write about this experiment to make an important point. When you don’t
understand something about computer programming, it often helps to write a
test program. Make up an experiment and see how the computer responds.

Figure 8-3:
Running

the code in
Listing 8-2.

124 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 124

I guessed that handing a capital R to the toUpperCase method would give me
an error message, but I was wrong. See? The answers to questions aren’t
handed down from heaven. The people who created the Java API made
decisions. They made some obvious choices, and but they also made some
unexpected choices. No one knows everything about Java’s features, so don’t
expect to cram all the answers into your head.

The Java documentation is great, but for every question that the documenta-
tion answers, it ignores three other questions. So be bold. Don’t be afraid to
tinker. Write lots of short, experimental programs. You can’t break the com-
puter, so play tough with it. Your inquisitive spirit will always pay off.

Reading and understanding Java’s API documentation is an art, not a science.
For advice on making the most of these docs, take a look at the Appendix on
this book’s web site.

One character only, please
A char variable stores only one character. So if you’re tempted to write the
following statements

char smallLetters;
smallLetters = ‘barry’; //Don’t do this

please resist the temptation. You can’t store more than one letter at a time in
a char variable, and you can’t put more than one letter between a pair of single
quotes. If you’re trying to store words or sentences (not just single letters),
then you need to use something called a String. For a look at Java’s String
type, see Chapter 18.

Variables and recycling
In Listing 8-2, I use smallLetter twice and I use bigLetter twice. That’s
why they call these things variables. First the value of smallLetter is R.
Later, I vary the value of smallLetter so that the value of smallLetter
becomes 3.

When I assign a new value to smallLetter, the old value of smallLetter
gets obliterated. For example, in Figure 8-4, the second smallLetter assign-
ment puts 3 into smallLetter. When the computer executes this second
assignment statement, the old value R is gone.

125Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 125

Is that okay? Can you afford to forget the value that smallLetter once had?
Yes, in Listing 8-2, it’s okay. After you’ve assigned a value to bigLetter with
the statement

bigLetter = Character.toUpperCase(smallLetter);

you can forget all about the existing smallLetter value. You don’t need to
do this:

// This code is cumbersome.
// The extra variables are unnecessary.
char smallLetter1, bigLetter1;
char smallLetter2, bigLetter2;

smallLetter1 = ‘R’;
bigLetter1 = Character.toUpperCase(smallLetter1);
System.out.println(bigLetter1);

smallLetter2 = ‘3’;
bigLetter2 = Character.toUpperCase(smallLetter2);
System.out.println(bigLetter2);

You don’t need to store the old and new values in separate variables. Instead,
you can reuse the variables smallLetter and bigLetter as in Listing 8-2.

This reuse of variables doesn’t save you from a lot of extra typing. It doesn’t
save much memory space either. But reusing variables keeps the program
uncluttered. When you look at Listing 8-2, you can see at a glance that the
code has two parts, and you see that both parts do roughly the same thing.

Figure 8-4:
Varying the

value of
small

Letter.

126 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 126

The code in Listing 8-2 is simple and manageable. In such a small program,
simplicity and manageability don’t matter very much. But in a large program,
it helps to think carefully about the use of each variable.

When not to reuse a variable
The previous section discusses the reuse of variables to make a program
slick and easy to read. This section shows you the flip side. In this section,
the problem at hand forces you to create new variables.

Suppose you’re writing code to reverse the letters in a four-letter word. You
store each letter in its own separate variable. Listing 8-3 shows the code, and
Figure 8-5 shows the code in action.

Listing 8-3: Making a Word Go Backwards

import java.util.Scanner;

class ReverseWord {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
char c1, c2, c3, c4;

c1 = myScanner.findInLine(“.”).charAt(0);
c2 = myScanner.findInLine(“.”).charAt(0);
c3 = myScanner.findInLine(“.”).charAt(0);
c4 = myScanner.findInLine(“.”).charAt(0);

System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(c1);
System.out.println();

}
}

Figure 8-5:
Stop those

pots!

127Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 127

The trick in Listing 8-3 is as follows:

� Assign values to variables c1, c2, c3, and c4 in that order.

� Display these variables’ values on the screen in reverse order: c4, c3,
c2, and then c1, as illustrated in Figure 8-6.

If you don’t use four separate variables, then you don’t get the result that you
want. For example, imagine that you store characters in only one variable.
You run the program and type the word pots. When it’s time to display the
word in reverse, the computer remembers the final s in the word pots. But
the computer doesn’t remember the p, the o, or the t, as shown in Figure 8-7.

c1

pots

s s s s

p o t sKeyboard input:

The computer's memory:

Screen output:

Figure 8-7:
Getting
things
wrong

because
you used
only one
variable.

c1

p

c2

o

c3

s t o p

p o t s

t

c4

s

Keyboard input:

The computer's memory:

Screen output:

Figure 8-6:
Using four
variables.

128 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 128

I wish I could give you twelve simple rules to help you decide when and when
not to reuse variables. The problem is, I can’t. It all depends on what you’re
trying to accomplish. So how do you figure out on your own when and when
not to reuse variables? Like the guy says to the fellow who asks how to get to
Carnegie Hall, “Practice, practice, practice.”

Reading characters
The people who created Java’s Scanner class didn’t create a next method
for reading a single character. So to input a single character, I paste two Java
API methods together. I use the findInLine and charAt methods.

129Chapter 8: Numbers? Who Needs Numbers?

What’s behind all this findInLine(“.”).
charAt(0) nonsense?

Without wallowing in too much detail, here’s how
the findInLine(“.”).charAt(0) tech-
nique works:

Java’s findInLinemethod looks for things in a
line of input. The things the method finds depend
on the stuff you put in parentheses. For example,
a call to findInLine(“\\d\\d\\d”) looks
for a group consisting of three digits. With the
following line of code

System.out.println(myScanner.fi
ndInLine(“\\d\\d\\d”));

I can type

Testing 123 Testing Testing

and the computer responds by displaying

123

In the call findInLine(“\\d\\d\\d”),
each \\d stands for a single digit. This \\d
business is one of many abbreviations in spe-
cial code called regular expressions.

Now here’s something strange. In the world of
regular expressions, a dot stands for any charac-
ter at all. (That is, a dot stands for “any character,

not necessarily a dot.”) So findInLine(“.”)
tells the computer to find the next character of
any kind that the user types on the keyboard.
When you’re trying to input a single character,
findInLine(“.”) is mighty useful.

But wait! To grab a single character from the key-
board, I call findInLine(“.”).charAt(0).
What’s the role of charAt(0) in reading a single
character? Unfortunately, any findInLine
call behaves as if it’s finding a bunch of charac-
ters, not just a single character. Even when you
call findInLine(“.”), and the computer
fetches just one letter from the keyboard, the
Java program treats that letter as one of possi-
bly many input characters.

The call to charAt(0) takes care of the multi-
character problem. This charAt(0) call tells
Java to pick the initial character from any of the
characters that findInLine fetches.

Yes, it’s complicated. And yes, I don’t like having
to explain it. But no, you don’t have to under-
stand any of the details in this sidebar. Just read
the details if you want to read them, and skip the
details if you don’t care.

13_588745 ch08.qxd 3/16/05 9:34 PM Page 129

Table 5-1 in Chapter 5 introduces this findInLine(“.”).charAt(0) tech-
nique for reading a single input character, and Listing 8-3 uses the technique
to read one character at a time. (In fact, Listing 8-3 uses the technique four
times to read four individual characters.)

Notice the format for the input in Figure 8-5. To enter the characters in the word
pots, I type four letters, one after another, with no blank spaces between the
letters and no quote marks. The findInLine(“.”).charAt(0) technique
works that way, but don’t blame me or my technique. Other developers’ char-
acter reading methods work the same way. No matter whose methods you
use, reading a character differs from reading a number. Here’s how:

� With methods like nextDouble and nextInt, you type blank spaces
between numbers.

If I type 80 6, then two calls to nextInt read the number 80, followed
by the number 6. If I type 806, then a single call to nextInt reads the
number 806 (eight hundred six), as illustrated in Figure 8-8.

� With findInLine(“.”).charAt(0), you don’t type blank spaces
between characters.

If I type po, then two successive calls to findInLine(“.”).charAt(0)
read the letter p, followed by the letter o. If I type p o, then two calls to
findInLine(“.”).charAt(0) read the letter p, followed by a blank space
character. (Yes, the blank space is a character!) Again, see Figure 8-8.

Figure 8-8:
Reading

numbers and
characters.

130 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 130

To represent a lone character in the text of a computer program, you surround
the character with single quote marks. But, when you type a character as part
of a program’s input, you don’t surround the character with quote marks.

Suppose that your program calls nextInt, and then findInLine(“.”).
charAt(0). If you type 80x on the keyboard, you get an error message. (The
message says InputMismatchException. The nextInt method expects you
to type a blank space after each int value.) Now what happens if, instead of
typing 80x, you type 80 x on the keyboard? Then the program gets 80 for the
int value, followed by a blank space for the character value. For the program
to get the x, the program has to call findInLine(“.”).charAt(0) one more
time. It seems wasteful, but it makes sense in the long run.

The boolean Type
I’m in big trouble. I have 140 gumballs, and 15 kids are running around and
screaming in my living room. They’re screaming because each kid wants 10
gumballs, and they’re running because that’s what kids do in a crowded living
room. I need a program that tells me if I can give 10 gumballs to each kid.

I need a variable of type boolean. A boolean variable stores one of two
values — true or false (true, I can give 10 gumballs to each kid; or false, I
can’t give 10 gumballs to each kid). Anyway, the kids are going berserk, so
I’ve written a short program and put it in Listing 8-4. The output of the pro-
gram is shown in Figure 8-9.

Listing 8-4: Using the boolean Type

class CanIKeepKidsQuiet {

public static void main(String args[]) {
int gumballs;
int kids;
int gumballsPerKid;
boolean eachKidGetsTen;

gumballs = 140;
kids = 15;
gumballsPerKid = gumballs / kids;

System.out.print(“True or false? “);
System.out.println(“Each kid gets 10 gumballs.”);
eachKidGetsTen = gumballsPerKid >= 10;
System.out.println(eachKidGetsTen);

}
}

131Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 131

In Listing 8-4, the variable eachKidGetsTen is of type boolean. So the value
stored in the eachKidGetsTen variable can be either true or false. (I can’t
store a number or a character in the eachKidGetsTen variable.)

To find a value for the variable eachKidGetsTen, the program checks to see
if gumballsPerKid is greater than or equal to ten. (The symbols >= stand for
“greater than or equal to.” What a pity! There’s no _ key on the standard com-
puter keyboard.) Because gumballsPerKid is only nine, gumballsPerKid _
10 is false. So eachKidGetsTen becomes false. Yikes! The kids will tear the
house apart! (Before they do, take a look at Figure 8-10.)

Expressions and conditions
In Listing 8-4, the code gumballsPerKid >= 10 is an expression. The expres-
sion’s value depends on the value stored in the variable gumballsPerKid.
On a bad day, the value of gumballsPerKid >= 10 is false. So the variable
eachKidGetsTen is assigned the value false.

An expression like gumballsPerKid >= 10, whose value is either true or
false, is sometimes called a condition.

Figure 8-10:
Assigning a
value to the
eachKid
GetsTen

variable.

Figure 8-9:
Oh, no!

132 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 132

Values like true and false may look as if they contain characters, but they
really don’t. Internally, the Java Virtual Machine doesn’t store boolean
values with the letters t-r-u-e or f-a-l-s-e. Instead, the JVM stores codes, like 0
for false and 1 for true. When the computer displays a boolean value (as in
System.out.println(eachKidGetsTen)), the Java virtual machine converts
a code like 0 into the five-letter word false.

Comparing numbers; comparing characters
In Listing 8-4, I compare a variable’s value with the number 10. I use the >=
operator in the expression

gumballsPerKid >= 10

Of course, the greater-than-or-equal comparison gets you only so far. Table
8-1 shows you the operators you can use to compare things with one another.

Table 8-1 Comparison Operators
Operator Meaning Example
Symbol

== is equal to yourGuess == winningNumber

!= is not equal to 5 != numberOfCows

< is less than strikes < 3

> is greater than numberOfBoxtops > 1000

<= is less than or equal to numberOfCows + numberOfBulls
<= 5

>= is greater than or equal to gumballsPerKid >= 10

With the operators in Table 8-1, you can compare both numbers and
characters.

Notice the double equal sign in the first row of Table 8-1. Don’t try to use
a single equal sign to compare two values. The expression yourGuess =
winningNumber (with a single equal sign) doesn’t compare yourGuess
with winningNumber. Instead yourGuess = winningNumber changes the
value of yourGuess. (It assigns the value of winningNumber to the variable
yourGuess.)

133Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 133

You can compare other things (besides numbers and characters) with the ==
and != operators. But when you do, you have to be careful. For more infor-
mation, see Chapter 18.

Comparing numbers
Nothing is more humdrum than comparing numbers. “True or false? Five is
greater than or equal to ten.” False. Five is neither greater than nor equal to
ten. See what I mean? Bo-ring.

Comparing whole numbers is an open-and-shut case. But unfortunately, when
you compare decimal numbers, there’s a wrinkle. Take a program for convert-
ing from Celsius to Fahrenheit. Wait! Don’t take just any such program; take
the program in Listing 8-5.

Listing 8-5: It’s Warm and Cozy in Here

import java.util.Scanner;

class CelsiusToFahrenheit {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
double celsius, fahrenheit;

System.out.print(“Enter the Celsius temperature: “);
celsius = myScanner.nextDouble();

fahrenheit = 9.0 / 5.0 * celsius + 32.0;

System.out.print(“Room temperature? “);
System.out.println(fahrenheit == 69.8);

}
}

If you run the code in Listing 8-5 and input the number 21, the computer finds
the value of 9.0 / 5.0 * 21 + 32.0. Believe it or not, you want to check
the computer’s answer. (Who knows? Maybe the computer gets it wrong!)
You need to do some arithmetic, but please don’t reach for your calculator.
A calculator is just a small computer, and machines of that kind stick up for
one another. To check the computer’s work, you need to do the arithmetic by
hand. What? You say you’re math phobic? Well, don’t worry. I’ve done all the
math in Figure 8-11.

If you do the arithmetic by hand, then the value you get for 9.0 / 5.0 * 21
+ 32.0 is exactly 69.8. So run the code in Listing 8-5, and give celsius the
value 21. You should get true when you display the value of fahrenheit ==
69.8, right?

134 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 134

Well, no. Take a look at the run in Figure 8-12. When the computer evaluates
fahrenheit == 69.8, the value turns out to be false, not true. What’s
going on here?

A little detective work can go a long way. So review the facts:

� Fact: The value of fahrenheit should be exactly 69.8.

� Fact: If fahrenheit is 69.8, then fahrenheit == 69.8 is true.

� Fact: In Figure 8-12, the computer displays the word false. So the
expression fahrenheit == 69.8 isn’t true.

How do you reconcile these facts? There can be little doubt that fahrenheit
== 69.8 is false, so what does that say about the value of fahrenheit?
Nowhere in Listing 8-5 is the value of fahrenheit displayed. Could that be
the problem?

At this point, I use a popular programmer’s trick. I add statements to display
the value of fahrenheit.

fahrenheit = 9.0 / 5.0 * celsius + 32.0;
System.out.print(“fahrenheit: “); //Added
System.out.println(fahrenheit); //Added

Figure 8-12:
A run of the

code in
Listing 8-5.

Figure 8-11:
The

Fahrenheit
temperature

is exactly
69.8.

135Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 135

136 Part II: Writing Your Own Java Programs

Automated debugging
If your program isn’t working correctly, you can try
something called a debugger. A debugger auto-
matically adds invisible print and println
calls to your suspicious code. In fact, debuggers
have all kinds of features to help you diagnose
problems. For example, a debugger can pause a
run of your program and accept special com-
mands to display variables’ values. With some
debuggers, you can pause a run and change a
variable’s value (just to see if things go better
when you do).

The debugger jdb comes with the free JDK
download from Sun Microsystems. The only
problem is, jdb is entirely text-based. When you
use jdb, you leave your mouse behind. Instead

of clicking your mouse, you debug a program by
typing commands.

Of course, typing commands can be tedious. So
some integrated development environments
enhance jdb with additional graphical tools. For
example, the Pro version of JCreator provides
menus for issuing jdb commands. (See the figure.)

In this book, I don’t promote the use of an auto-
mated debugger. But for any large programming
project, automated debugging is an essential
tool. So if you plan to write bigger and better
programs, please give jdb a try. To get started,
visit www.jcreator.com and download
JCreator Pro.

13_588745 ch08.qxd 3/16/05 9:34 PM Page 136

A run of the enhanced code is shown in Figure 8-13. As you can see, the com-
puter misses its mark. Instead of the expected value 69.8, the computer’s value
for 9.0 / 5.0 * 21 + 32.0 is 69.80000000000001. That’s just the way the
cookie crumbles. The computer does all its arithmetic with zeros and ones, so
the computer’s arithmetic doesn’t look like the base-10 arithmetic in Figure 8-11.
The computer’s answer isn’t wrong. The answer is just slightly inaccurate.

So be careful when you compare two numbers for equality (with ==) or for
inequality (with !=). When you compare two double values, the values are
almost never dead-on equal to one another.

If your program isn’t doing what you think it should do, then check your sus-
picions about the values of variables. Add print and println statements to
your code.

Comparing characters
The comparison operators in Table 8-1 work overtime for characters. Roughly
speaking, the operator < means “comes earlier in the alphabet.” But you have
to be careful of the following:

� Because B comes alphabetically before H, the condition ‘B’ < ‘H’ is
true. That’s not surprising.

� Because b comes alphabetically before h, the condition ‘b’ < ‘h’ is
true. That’s no surprise either.

� Every uppercase letter comes before any of the lowercase letters, so the
condition ‘b’ < ‘H’ is false. Now that’s a surprise. (See Figure 8-14.)

In practice, you seldom have reason to compare one letter with another. But
in Chapter 18, you can read about Java’s String type. With the String type,
you can compare words, names, and other good stuff. At that point, you have
to think carefully about alphabetical ordering, and the ideas in Figure 8-14
come in handy.

Figure 8-13:
The

Fahrenheit
variable’s
full value.

137Chapter 8: Numbers? Who Needs Numbers?

13_588745 ch08.qxd 3/16/05 9:34 PM Page 137

Under the hood, the letters A through Z are stored with numeric codes 65
through 90. The letters a through z are stored with codes 97 through 122.
That’s why each uppercase letter is “less than” any of the lowercase letters.

The Remaining Primitive Types
In Chapter 7, I tell you that Java has eight primitive types, but Table 7-1 lists
only six out of eight types. Table 8-2 describes the remaining two types — the
types char and boolean. Table 8-2 isn’t too exciting, but I can’t just leave you
with the incomplete story in Table 7-1.

Table 8-2 Java’s Primitive Non-numeric Types
Type Name Range of Values

Character Type

char Thousands of characters, glyphs, and symbols

Logical Type

boolean Only true or false

If you dissect parts of the Java virtual machine, you find that Java considers
char to be a numeric type. That’s because Java represents characters with
something called Unicode — an international standard for representing alpha-
bets of the world’s many languages. For example the Unicode representation
of an uppercase letter C is 67. The representation of a Hebrew letter aleph is
1488. And (to take a more obscure example) the representation for the voiced
retroflex approximant in phonetics is 635. But don’t worry about all this. The
only reason I’m writing about the char type’s being numeric is to save face
among my techie friends.

lesser greater
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzFigure 8-14:

The ordering
of the letters.

138 Part II: Writing Your Own Java Programs

13_588745 ch08.qxd 3/16/05 9:34 PM Page 138

Part III
Controlling

the Flow

14_588745 pt03.qxd 3/16/05 9:23 PM Page 139

In this part . . .

Acomputer program is like a role-playing video game.
It’s not the kind of game that involves shooting,

punching, or racing. It’s a game that involves strategies.
Find the golden ring to open the secret passageway. Save
the princess by reciting the magic words. It’s that sort of
thing.

So in this part of the book, you create passageways. As your
program weaves its way from one virtual room to another,
the computer gets closer and closer to the solution of an
important problem.

Hey, admit it. This sounds like fun!

14_588745 pt03.qxd 3/16/05 9:23 PM Page 140

Chapter 9

Forks in the Road
In This Chapter
� Writing statements that choose between alternatives

� Putting statements inside one another

� Writing several kinds of decision making statements

Here’s an excerpt from Beginning Programming with Java For Dummies,
2nd Edition, Chapter 2:

If your computer already has a Java 5.0 compiler, you can skip the next
section’s steps.*

The excerpt illustrates two important points: First, you may not have to
follow some of the steps in Chapter 2. Second, your choice of action can
depend on something being true or false.

If it’s true that your computer already has a Java 5.0 compiler, skip certain
steps in Chapter 2.

So picture yourself walking along a quiet country road. You’re enjoying a
pleasant summer day. It’s not too hot, and a gentle breeze from the north
makes you feel fresh and alert. You’re holding a copy of this book, opened to
the start of Chapter 2. You read the paragraph about having a Java 5.0 com-
piler, and then you look up.

You see a fork in the road. You see two signs — one pointing to the right; the
other pointing to the left. One sign reads, “Have a Java 5.0 compiler? True.”
The other sign reads, “Have a Java 5.0 compiler? False.” You evaluate the
compiler situation and march on, veering right or left depending on your soft-
ware situation. A diagram of this story is shown in Figure 9-1.

* This excerpt is reprinted with permission from Wiley Publishing, Inc. If you can’t find a copy of
Beginning Programming with Java For Dummies, 2nd Edition in your local bookstore, visit www.
wiley.com.

15_588745 ch09.qxd 3/16/05 9:16 PM Page 141

Life is filled with forks in the road. Take an ordinary set of directions for heat-
ing up a frozen snack:

� Microwave cooking directions:

Place on microwave safe plate.

Microwave on high for 2 minutes.

Turn product.

Microwave on high for 2 more minutes.

� Conventional oven directions:

Preheat oven to 350 degrees.

Place product on baking sheet.

Bake for 25 minutes.

Again, you choose between alternatives. If you use a microwave oven, do
this. Otherwise, do that.

In fact, it’s hard to imagine useful instructions that don’t involve choices. If
you’re a homeowner with two dependents earning more than $30,000 per
year, check here. If you don’t remember how to use curly braces in Java pro-
grams, see Chapter 4. Did the user correctly type his or her password? If yes,

Figure 9-1:
Which way

to go?

142 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 142

then let the user log in; if no, then kick the bum out. If you think the market
will go up, then buy stocks; otherwise, buy bonds. And if you buy stocks,
which should you buy? And when should you sell?

This chapter deals with decision-making, which plays a fundamental role in
the creation of instructions. With the material in this chapter, you expand
your programming power by leaps and bounds.

Making Decisions (Java if Statements)
When you work with computer programs, you make one decision after
another. Almost every programming language has a way of branching in one
of two directions. In Java (and in many other languages) the branching fea-
ture is called an if statement. Check out Listing 9-1 to see an if statement.

Listing 9-1: An if Statement

if (randomNumber > 5) {
System.out.println(“Yes. Isn’t it obvious?”);

} else {
System.out.println(“No, and don’t ask again.”);

}

The if statement in Listing 9-1 represents a branch, a decision, two alternative
courses of action. In plain English, this statement has the following meaning:

If the randomNumber variable’s value is greater than 5,
display “Yes. Isn’t it obvious?” on the screen.

Otherwise,
display “No, and don’t ask again.” on the screen.

Pictorially, you get the fork shown in Figure 9-2.

Looking carefully at if statements
An if statement can take the following form:

if (Condition) {
SomeStatements

} else {
OtherStatements

}

143Chapter 9: Forks in the Road

15_588745 ch09.qxd 3/16/05 9:16 PM Page 143

To get a real-life if statement, substitute meaningful text for the three place-
holders Condition, SomeStatements, and OtherStatements. Here’s how I
make the substitutions in Listing 9-1:

� I substitute randomNumber > 5 for Condition.

� I substitute System.out.println(“Yes. Isn’t it obvious?”); for
SomeStatements.

� I substitute System.out.println(“No, and don’t ask again.”);
for OtherStatements.

The substitutions are illustrated in Figure 9-3.

Sometimes I need alternate names for parts of an if statement. I call them
the if clause and the else clause.

if (Condition) {
if clause

} else {
else clause

}

An if statement is an example of a compound statement — a statement that
includes other statements within it. The if statement in Listing 9-1 includes
two println calls and these calls to println are statements.

tru
e

randomNumber > 5

Display
"Yes. Isn't it obvious?"

false

Display
"No, and don't ask again."

Figure 9-2:
A random

number
decides

your fate.

144 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 144

Notice how I use parentheses and semicolons in the if statement of Listing 9-1.
In particular, notice the following:

� The condition must be in parentheses.

� Statements inside the if clause end with semicolons. So do statements
inside the else clause.

� There’s no semicolon immediately after the condition.

� There’s no semicolon immediately after the word else.

As a beginning programmer, you may think these rules are arbitrary. But
they’re not. These rules belong to a very carefully crafted grammar. They’re
like the grammar rules for English sentences, but they’re even more logical!
(Sorry, Christine.)

Table 9-1 shows you the kinds of things that can go wrong when you break
the if statement’s punctuation rules. The table’s last two items are the most
notorious. In these two situations, the compiler doesn’t catch the error. This
lulls you into a false sense of security. The trouble is, when you run the pro-
gram, the code’s behavior isn’t what you expect it to be.

Figure 9-3:
An if

statement
and its
format.

145Chapter 9: Forks in the Road

15_588745 ch09.qxd 3/16/05 9:16 PM Page 145

Table 9-1 Common if Statement Error Messages
Error Example Message or result

Missing parentheses if randomNumber ‘(‘ expected
surrounding the > 5 {
condition

Missing semicolon System.out. ‘;’ expected
after a statement println()
that’s inside the if
clause or the
else clause

Semicolon immediately if (randomNumber ‘else’ without after the
condition > 5); ‘if’

Semicolon immediately } else; The program compiles
after the word else without errors, but the state-

ment after the word else is
always executed, whether the
condition is true or false.

Missing curly braces if (randomNumber The program sometimes
> 5) compiles without errors, but

the program’s run may not do
what you expect it to do. (So
the bottom line is, don’t omit
the curly braces.)

System.out.
println(“Yes”);
else
System.out.println
(“No”);

As you compose your code, it helps to think of an if statement as one indi-
visible unit. Instead of typing the whole first line (condition and all), try
typing the if statement’s skeletal outline.

if () { //To do: Fill in the condition.
//To do: Fill in SomeStatements.

} else {
//To do: Fill in OtherStatements.

}

With the entire outline in place, you can start working on the items on your
to-do list. When you apply this kind of thinking to a compound statement, it’s
harder to make a mistake.

146 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 146

A complete program
Listing 9-2 contains a complete program with a simple if statement. The list-
ing’s code behaves like an electronic oracle. Ask the program a yes or no
question, and the program answers you back. Of course, the answer to
your question is randomly generated. But who cares? It’s fun to ask anyway.

Listing 9-2: I Know Everything

import java.util.Scanner;
import java.util.Random;

class AnswerYesOrNo {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
Random myRandom = new Random();
int randomNumber;

System.out.print(“Type your question, my child: “);
myScanner.nextLine();

randomNumber = myRandom.nextInt(10) + 1;

if (randomNumber > 5) {
System.out.println(“Yes. Isn’t it obvious?”);

} else {
System.out.println(“No, and don’t ask again.”);

}
}

}

Figure 9-4 shows several runs of the program in Listing 9-2. The program’s
action has four parts:

Figure 9-4:
The all-

knowing
Java

program in
action.

147Chapter 9: Forks in the Road

15_588745 ch09.qxd 3/16/05 9:16 PM Page 147

1. Prompt the user.

Call System.out.print, telling the user to type a question.

2. Get the user’s question from the keyboard.

In Figure 9-4, I run the AnswerYesOrNo program four times, and I type
a different question each time. Meanwhile, back in Listing 9-2, the
statement

myScanner.nextLine();

swallows up my question, and does absolutely nothing with it. This is an
anomaly, but you’re smart so you can handle it.

Normally, when a program gets input from the keyboard, the program
does something with the input. For instance, the program can assign the
input to a variable:

amount = myScanner.nextDouble();

Alternatively, the program can display the input on the screen:

System.out.println(myScanner.nextLine());

But the code in Listing 9-2 is different. When this AnswerYesOrNo
program runs, the user has to type something. (The call to getLine
waits for the user to type some stuff, and then press Enter.) But the
AnswerYesOrNo program has no need to store the input for further
analysis. (The computer does what I do when my wife asks me if I plan
to clean up after myself. I ignore the question and make up an arbitrary
answer.) So the program doesn’t do anything with the user’s input. The
call to myScanner.nextLine just sits there in a statement of its own,
doing nothing, behaving like a big black hole. It’s unusual for a program
to do this, but an electronic oracle is an unusual thing. It calls for some
slightly unusual code.

3. Get a random number — any int value from 1 to 10.

Okay, wise guys. You’ve just trashed the user’s input. How will you
answer yes or no to the user’s question?

No problem! None at all! You’ll display an answer randomly. The user
won’t know the difference. (Hah, hah!) You can do this as long as you can
generate random numbers. The numbers from 1 to 10 will do just fine.

In Listing 9-2, the stuff about Random and myRandom looks very much like
the familiar Scanner code. From a beginning programmer’s point of view,
Random and Scanner work almost the same way. Of course, there’s an
important difference. A call to the Random class’s nextInt(10) method
doesn’t fetch anything from the keyboard. Instead, this nextInt(10)
method gets a number out of the blue.

The name Random is defined in the Java API. The call to myRandom.
nextInt(10) in Listing 9-2 gets a number from 0 to 9. Then my code
adds 1 (making a number from 1 to 10) and assigns that number to the

148 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 148

149Chapter 9: Forks in the Road

Randomness makes me dizzy
When you call myRandom.nextInt(10) + 1,
you get a number from 1 to 10. As a test, I wrote
a program that calls the myRandom.nextInt
(10) + 1 twenty times.

import java.util.Random;
class TwentyNumbers {

public static void
main(String args[]) {

Random myRandom = new
Random();

System.out.print(myRandom.n
extInt(10) + 1);

System.out.print(“ “);

System.out.print(myRandom.n
extInt(10) + 1);

System.out.print(“ “);

System.out.print(myRandom.n
extInt(10) + 1);

//...And so on.
I ran the program several times, and got the
results shown in the figure below. (Actually, I
copied the results from JCreator’s General
Output pane to Windows Notepad.) Stare briefly
at the figure and notice two trends:

� There’s no obvious way to predict what
number comes next.

� No number occurs much more often than
any of the others.

The Java virtual machine jumps through hoops
to maintain these trends. That’s because crank-
ing out numbers in a random fashion is a very
tricky business. Here are some interesting facts
about the process:

� Scientists and non-scientists use the term
random number. But in reality, there’s no

such thing as a single random number. After
all, how random is a number like 9?

A number is random only when it’s one in a
very disorderly collection of numbers. More
precisely, a number is random if the process
used to generate the number follows the two
trends listed above. When they’re being
careful, scientists avoid the term random
number, and use the term randomly gener-
ated number instead.

� It’s hard to generate numbers randomly.
Computer programs do the best they can, but
ultimately, today’s computer programs follow
a pattern, and that pattern isn’t truly random.

To generate numbers in a truly random fash-
ion, you need a big tub of ping-pong balls,
like the kind they use in state lottery draw-
ings. The problem is, most computers don’t
come with big tubs of ping-pong balls among
their peripherals. So strictly speaking, the
numbers generated by Java’s Random class
aren’t random. Instead, scientists call these
numbers pseudorandom.

� It surprises us all, but knowing one randomly
generated value is of no help in predicting
the next randomly generated value.

For example, if you toss a coin twice, and get
heads each time, are you more likely to get
tails on the third flip? No. It’s still fifty-fifty.

If you have three sons, and you’re expect-
ing a fourth child, is the fourth child more
likely to be a girl? No. A child’s gender has
nothing to do with the genders of the older
children. (I’m ignoring any biological
effects, which I know absolutely nothing
about. Wait! I do know some biological
trivia: A newborn child is more likely to be a
boy than a girl. For every 21 newborn boys,
there are only 20 newborn girls. Boys are
weaker, so we die off faster. That’s why
nature makes more of us at birth.)

15_588745 ch09.qxd 3/16/05 9:16 PM Page 149

variable randomNumber. When that’s done, you’re ready to answer the
user’s question.

In Java’s API, the word Random is the name of a Java class, and nextInt
is the name of a Java method. For more information on the relationship
between classes and methods, see Chapters 17, 18, and 19.

4. Answer yes or no.

Calling myRandom.nextInt(10) is like spinning a wheel on a TV game
show. The wheel has slots numbered 1 to 10. The if statement in Listing
9-2 turns your number into a yes or no alternative. If you roll a number
that’s greater than 5, the program answers yes. Otherwise (if you roll a
number that’s less than or equal to 5), the program answers no.

You can trust me on this one. I’ve made lots of important decisions
based on my AnswerYesOrNo program.

Indenting if statements in your code
Notice how, in Listing 9-2, the println calls inside the if statement are
indented. Strictly speaking, you don’t have to indent the statements that are
inside an if statement. For all the compiler cares, you can write your whole
program on a single line or place all your statements in an artful, misshapen
zigzag. The problem is, if you don’t indent your statements in some logical
fashion, then neither you nor anyone else can make sense of your code. In
Listing 9-2, the indenting of the println calls helps your eye (and brain) see
quickly that these statements are subordinate to the overall if/else flow.

In a small program, unindented or poorly indented code is barely tolerable.
But in a complicated program, indentation that doesn’t follow a neat, logical
pattern is a big, ugly nightmare.

Always indent your code to make the program’s flow apparent at a glance.

Variations on the Theme
I don’t like to skin cats. But I’ve heard that, if I ever need to skin one, I have a
choice of several techniques. I’ll keep that in mind the next time my cat Muon
mistakes the carpet for a litter box.*

*Rick Ross, who read about skinning cats in one of my other books, sent me this information via e-mail:
“. . . on page 10 you refer to ‘skinning the cat’ and go on to discuss litter boxes and whatnot. Please note that
the phrase ‘more than one way to skin a cat’ refers to the difficulty in removing the inedible skin from catfish,
and that there is more than one way to do the same. These range from nailing the critter’s tail to a board and
taking a pair of pliers to peel it down, to letting the furry kind of cat have the darn thing and just not worrying
about it. I grew up on The River (the big one running north/south down the US that begins with ‘M’ and has
so many repeated letters), so it’s integral to our experience there. A common misconception (if inhumane
and revolting). Just thought you’d want to know.”

150 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 150

Anyway, whether you’re skinning catfish, skinning kitties, or writing computer
programs, the same principle holds true. You always have alternatives. Listing
9-2 shows you one way to write an if statement. The rest of this chapter (and
all of Chapter 10) show you some other ways to create if statements.

. . . Or else what?
You can create an if statement without an else clause. For example, imagine
a Web page on which one in ten randomly chosen visitors receives a special
offer. To keep visitors guessing, I call the Random class’s nextInt method,
and make the offer to anyone whose number is lucky 7.

� If myRandom.nextInt(10) + 1 generates the number 7, display a special
offer message.

� If myRandom.nextInt(10) + 1 generates any number other than 7, do
nothing. Don’t display a special offer message, and don’t display a dis-
couraging, “Sorry, no offer for you,” message.

The code to implement such a strategy is shown in Listing 9-3. A few runs of the
code are shown in Figure 9-5.

Listing 9-3: Aren’t You Lucky?

import java.util.Random;

class SpecialOffer {

public static void main(String args[]) {
Random myRandom = new Random();
int randomNumber = myRandom.nextInt(10) + 1;

if (randomNumber == 7) {
System.out.println(“An offer just for you!”);

}

System.out.println(randomNumber);
}

}

The if statement in Listing 9-3 has no else clause. This if statement has the
following form:

if (Condition) {
SomeStatements

}

When randomNumber is 7, the computer displays An offer just for you!
When randomNumber isn’t 7, the computer doesn’t display An offer just
for you! The action is illustrated in Figure 9-6.

151Chapter 9: Forks in the Road

15_588745 ch09.qxd 3/16/05 9:16 PM Page 151

Always (I mean always) use a double equal sign when you compare two num-
bers or characters in an if statement’s condition. Never (that’s never, ever,
ever) use a single equal sign to compare two values. A single equal sign does
assignment, not comparison.

In Listing 9-3, I took the liberty of adding an extra println. This println (at
the end of the main method) displays the random number generated by my
call to nextInt. On a Web page with special offers, you probably wouldn’t
see the randomly generated number, but I can’t test my SpecialOffer code
without knowing what numbers the code generates.

tru
e

randomNumber ==7

Display "An offer just for you!"

Display randomNumber

false

Figure 9-6:
If you have

nothing good
to say, then

don’t say
anything.

Figure 9-5:
Three runs
of the code

in Listing 9-3.

152 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 152

Anyway, notice that the value of randomNumber is displayed in every run.
The println for randomNumber isn’t inside the if statement. (This println
comes after the if statement.) So the computer always executes this
println. Whether randomNumber == 7 is true or false, the computer takes
the appropriate if action, and then marches on to execute System.out.
println(randomNumber).

Packing more stuff into an if statement
Here’s an interesting situation: You have two baseball teams — the Hankees
and the Socks. You want to display the teams’ scores on two separate lines,
with the winner’s score coming first. (On the computer screen, the winner’s
score is displayed above the loser’s score. In case of a tie, you display the
two identical scores, one above the other.) Listing 9-4 has the code.

Listing 9-4: May the Best Team Be Displayed First

import java.util.Scanner;
import static java.lang.System.in;
import static java.lang.System.out;

class TwoTeams {

public static void main(String args[]) {
Scanner myScanner = new Scanner(in);
int hankees, socks;

out.print(“Hankees and Socks scores? “);
hankees = myScanner.nextInt();
socks = myScanner.nextInt();
out.println();

if (hankees > socks) {
out.print(“Hankees: “);
out.println(hankees);
out.print(“Socks: “);
out.println(socks);

} else {
out.print(“Socks: “);
out.println(socks);
out.print(“Hankees: “);
out.println(hankees);

}
}

}

Figure 9-7 has a few runs of the code. (To show a few runs in one figure, I
copied the results from JCreator’s General Output pane to Windows Notepad.)

153Chapter 9: Forks in the Road

15_588745 ch09.qxd 3/16/05 9:16 PM Page 153

With curly braces, a bunch of print and println calls are tucked away safely
inside the if clause. Another group of print and println calls are squished
inside the else clause. This creates the forking situation shown in Figure 9-8.

tru
e

hankees > socks

Display hankees

false

Display socks

Display socks Display hankees

Figure 9-8:
Cheer for

your favorite
team.

Figure 9-7:
See? The

code in
Listing 9-4

really
works!

154 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 154

Some handy import declarations
When I wrote this section’s example, I was tired of writing the word System.
After all, Listing 9-4 has ten System.out.print lines. By this point in the
book, shouldn’t my computer remember what out.print means?

Of course, computers don’t work that way. If you want a computer to “know”
what out.print means, you have to code that knowledge somewhere inside
the Java compiler.

Fortunately for me, the ability to abbreviate things like System.out.print is
part of Java 5.0. (This relatively new version of Java wasn’t available until
September 2004. An older Java compiler just chokes on the code in Listing
9-4.) This ability to abbreviate things is called static import. It’s illustrated in
the second and third lines of Listing 9-4.

Whenever I start a program with the line

import static java.lang.System.out;

155Chapter 9: Forks in the Road

Statements and blocks
An elegant way to think about if statements is
to realize that you can put only one statement
inside each clause of an if statement.

if (Condition)
aStatement

else
anotherStatement

On first reading of this one-statement rule,
you’re probably thinking that there’s a misprint.
After all, in Listing 9-4, each clause (the if
clause and the else clause) seems to contain
four statements, not just one.

But technically, the if clause in Listing 9-4 has
only one statement, and the else clause in
Listing 9-4 has only one statement. The trick is,
when you surround a bunch of statements with
curly braces, you get what’s called a block, and
a block behaves, in all respects, like a single
statement. In fact, the official Java documenta-
tion lists a block as a kind of statement (one of

many different kinds of statements). So in Listing
9-4, the block

{
System.out.print(“Hankees:
“);
System.out.println(hankees);
System.out.print(“Socks:
“);
System.out.println(socks);

}

is a single statement. It’s a statement that has
within it, four smaller statements. So this big
block, this single statement, serves as the one
and only statement inside the if clause in
Listing 9-4.

That’s how the one-statement rule works. In an
if statement, when you want the computer to
execute several statements, you combine those
statements into one big statement. To do this,
you make a block using curly braces.

15_588745 ch09.qxd 3/16/05 9:16 PM Page 155

I can replace System.out with plain out in the remainder of the program.
The same holds true of System.in. With an import declaration near the top
of Listing 9-4, I can replace new Scanner(System.in) with the simpler new
Scanner(in).

You may be wondering what all the fuss is about. If I can abbreviate java.
util.Scanner by writing Scanner, what’s so special about abbreviating
System.out? And why do I have to write out.print? Can I trim System.
out.print down to the single word print? Look again at the first few lines
of Listing 9-4. When do I need the word static? And what’s the difference
between java.util and java.lang?

I’m sorry. My response to these questions won’t thrill you. The fact is, I can’t
explain away any of these issues until Chapter 18. Before I can explain static
import declarations, I need to introduce some ideas. I need to describe
classes, packages, and static members.

So until you reach Chapter 18, please bear with me. Just paste three import
declarations to the top of your Java programs, and trust that everything will
work well.

You can abbreviate System.out with the single word out. And you can
abbreviate System.in with the single word in. Just be sure to copy the
import declarations exactly as you see them in Listing 9-4. With any deviation
from the lines in Listing 9-4, you may get a compiler error.

156 Part III: Controlling the Flow

15_588745 ch09.qxd 3/16/05 9:16 PM Page 156

Chapter 10

Which Way Did He Go?
In This Chapter
� Untangling complicated conditions

� Writing cool conditional code

� Intertwining your if statements

It’s tax time again. At the moment, I’m working on Form 12432-89B. Here’s
what it says:

If you’re married with fewer than three children, and your income is
higher than the EIQ (Estimated Income Quota), or if you’re single and
living in a non-residential area (as defined by Section 10, Part iii of the
Uniform Zoning Act), and you’re either self-employed as an LLC (Limited
Liability Company) or you qualify for veterans benefits, then skip Steps 3
and 4 or 4, 5, and 6, depending on your answers to Questions 2a and 3d.

No wonder I have no time to write! I’m too busy interpreting these tax forms.

Anyway, this chapter deals with the potential complexity of if statements.
This chapter has nothing as complex as Form 12432-89B, but if you ever
encounter something that complicated, you’ll be ready for it.

Forming Bigger and Better Conditions
In Listing 9-2, the code chooses a course of action based on one call to the
Random class’s nextInt method. That’s fine for the electronic oracle program
described in Chapter 9, but what if you’re rolling a pair of dice? In Backgammon
and other dice games, rolling 3 and 5 isn’t the same as rolling 4 and 4, even
though the total for both rolls is 8. The next move varies, depending on
whether or not you roll doubles. To get the computer to roll two dice, you exe-
cute myRandom.nextInt(6) + 1 two times. Then you combine the two rolls
into a larger, more complicated if statement.

16_588745 ch10.qxd 3/16/05 9:17 PM Page 157

So to simulate a Backgammon game (and many other, more practical situations)
you need to combine conditions.

If die1 + die2 equals 8 and die1 equals die2, ...

You need things like and and or — things that can wire conditions together.
Java has operators to represent these concepts, which are described in Table
10-1 and illustrated in Figure 10-1.

Table 10-1 Logical Operators
Operator Meaning Example Illustration
Symbol

&& and 4 < age && age < 8 Figure 10-1(a)

|| or age < 4 || 8 < age Figure 10-1(b)

! not !eachKidGetsTen Figure 10-1(c)

Combined conditions, like the ones in Table 10-1, can be mighty confusing.
That’s why I tread carefully when I use such things. Here’s a short explana-
tion of each example in the table:

� 4 < age && age < 8

The value of the age variable is greater than 4 and is less than 8. The
numbers 5, 6, 7, 8, 9 . . . are all greater than 4. But among these numbers,
only 5, 6, and 7 are less than 8. So only the numbers 5, 6, and 7 satisfy
this combined condition.

Figure 10-1:
When you

satisfy a
condition,

you’re
happy.

158 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 158

� age < 4 || 8 < age

The value of the age variable is less than 4 or is greater than 8. To create
the or condition, you use two pipe symbols. On many U.S. English key-
boards, you can find the pipe symbol immediately above the Enter key
(the same key as the backslash, but shifted).

In this combined condition, the value of the age variable is either less
than 4 or is greater than 8. So for example, if a number is less than 4,
then the number satisfies the condition. Numbers like 1, 2, and 3 are all
less than 4, so these numbers satisfy the combined condition.

Also, if a number is greater than 8, then the number satisfies the com-
bined condition. Numbers like 9, 10, and 11 are all greater than 8, so
these numbers satisfy the condition.

� !eachKidGetsTen

If I weren’t experienced with computer programming languages, I’d be
confused by the exclamation point. I’d think that !eachKidGetsTen
means, “Yes, each kid does get ten.” But that’s not what this expression
means. This expression says, “The variable eachKidGetsTen does not
have the value true.” In Java and other programming languages, an
exclamation point stands for negative, for no way, for not.

Listing 8-4 has a boolean variable named eachKidGetsTen. A boolean
variable’s value is either true or false. Because ! means not, the
expressions eachKidGetsTen and !eachKidGetsTen have opposite
values. So when eachKidGetsTen is true, !eachKidGetsTen is false
(and vice versa).

Java’s || operator is inclusive. This means that you get true whenever the
thing on the left side is true, the thing on the right side is true, or both
things are true. For example, the condition 2 < 10 || 20 < 30 is true.

In Java, you can’t combine comparisons the way you do in ordinary English.
In English, you may say, “We’ll have between three and ten people at the
dinner table.” But in Java, you get an error message if you write 3 <= people
<= 10. To do this comparison, you need to something like 3 <= people &&
people <= 10.

Combining conditions: An example
Here’s a handy example of the use of logical operators. A movie theater posts
its prices for admission.

Regular price: $9.25

Kids under 12: $5.25

Seniors (65 and older): $5.25

159Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 159

Because the kids’ and seniors’ prices are the same, you can combine these
prices into one category. (That’s not always the best programming strategy,
but do it anyway for this example.) To find a particular moviegoer’s ticket
price, you need one or more if statements. There are many ways to struc-
ture the conditions, and I chose one of these ways for the code in Listing 10-1.

Listing 10-1: Are You Paying Too Much?

import java.util.Scanner;

class TicketPrice {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int age;
double price = 0.00;

System.out.print(“How old are you? “);
age = myScanner.nextInt();

if (age >= 12 && age < 65) {
price = 9.25;

}
if (age < 12 || age >= 65) {

price = 5.25;
}

System.out.print(“Please pay $”);
System.out.print(price);
System.out.print(“. “);
System.out.println(“Enjoy the show!”);

}
}

Several runs of the TicketPrice program (Listing 10-1) are shown in Figure
10-2. (For your viewing pleasure, I’ve copied the runs from JCreator’s General
Output pane to Windows Notepad.) When you turn 12, you start paying full
price. You keep paying full price until you become 65. At that point, you pay
the reduced price again.

� The first if statement’s condition tests for the regular price group.
Anyone who’s at least 12 years of age and is under 65 belongs in this
group.

� The second if statement’s condition tests for the fringe ages. A person
who’s under 12 or is 65 or older belongs in this category.

160 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 160

The pivotal part of Listing 10-1 is the lump of if statements in the middle,
which are illustrated in Figure 10-3.

When you form the opposite of an existing condition, you can often follow
the pattern in Listing 10-1. The opposite of >= is <. The opposite of < is >=.
The opposite of && is ||.

If you change the dollar amounts in Listing 10-1, you can get into trouble. For
example, with the statement price = 5.00, the program displays Please
pay $5.0. Enjoy the show! This happens because Java doesn’t store the
two zeros to the right of the decimal point (and Java doesn’t know or care
that 5.00 is a dollar amount). To fix this kind of thing, see the discussion of
NumberFormat.getCurrencyInstance in Chapter 18.

When to initialize?
Take a look at Listing 10-1, and notice the price variable’s initialization.

double price = 0.00;

Figure 10-3:
The

meanings
of the

conditions in
Listing 10-1.

Figure 10-2:
Admission
prices for

Beginning
Programm-

ing with
Java For

Dummies:
The Movie.

161Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 161

This line declares the price variable and sets the variable’s starting value to
0.00. When I omit this initialization, I get an error message:

variable price might not have been initialized
System.out.print(price);

^

What’s the deal here? I don’t initialize the age variable, but the compiler
doesn’t complain about that. Why is the compiler fussing over the price
variable?

The answer is in the placement of the code’s assignment statements. Consider
the following two facts:

� The statement that assigns a value to age (age = myScanner.
nextInt()) is not inside an if statement.

That assignment statement always gets executed and (as long as nothing
extraordinary happens) the variable age is sure to be assigned a value.

� Both statements that assign a value to price (price = 9.25 and
price = 5.25) are inside if statements.

If you look at Figure 10-3, you see that every age group is covered. No
one shows up at the ticket counter with an age that forces both if con-
ditions to be false. So whenever you run the TicketPrice program,
either the first or the second price assignment is executed.

The problem is that the compiler isn’t smart enough to check all this.
The compiler just sees the structure in Figure 10-4 and becomes scared
that the computer won’t take either of the true detours.

If (for some unforeseen reason) both of the if statements’ conditions
are false, then the variable price doesn’t get assigned a value. So with-
out an initialization, price has no value. (More precisely, price has no
value that’s intentionally given to it in the code.)

Eventually, the computer reaches the System.out.print(price) state-
ment. It can’t display price unless price has a meaningful value. So at
that point, the compiler throws up its virtual hands in disgust.

More and more conditions
Last night I had a delicious meal at the neighborhood burger joint. As part of
a promotion, I got a discount coupon along with the meal. The coupon is
good for $2.00 off the price of a ticket at the local movie theater.

To make use of the coupon in the TicketPrice program, I have to tweak the
code in Listing 10-1. The revised code is in Listing 10-2. In Figure 10-5, I take
that new code around the block a few times.

162 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 162

Listing 10-2: Do You Have a Coupon?

import java.util.Scanner;

class TicketPriceWithDiscount {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int age;
double price = 0.00;
char reply;

(continued)

Figure 10-4:
The choices

in Listing
10-1.

163Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 163

Listing 10-2 (continued)

System.out.print(“How old are you? “);
age = myScanner.nextInt();

System.out.print(“Have a coupon? (Y/N) “);
reply = myScanner.findInLine(“.”).charAt(0);

if (age >= 12 && age < 65) {
price = 9.25;

}
if (age < 12 || age >= 65) {

price = 5.25;
}

if (reply == ‘Y’ || reply == ‘y’) {
price -= 2.00;

}
if (reply != ‘Y’ && reply != ‘y’ &&

reply!=’N’ && reply!=’n’) {
System.out.println(“Huh?”);

}

System.out.print(“Please pay $”);
System.out.print(price);
System.out.print(“. “);
System.out.println(“Enjoy the show!”);

}
}

Listing 10-2 has two if statements whose conditions involve characters:

� In the first such statement, the computer checks to see if the reply vari-
able stores the letter Y or the letter y. If either is the case, then it sub-
tracts 2.00 from the price. (For information on operators like -=, see
Chapter 7.)

Figure 10-5:
Running

the code in
Listing 10-2.

164 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 164

� The second such statement has a hefty condition. The condition tests to
see if the reply variable stores any reasonable value at all. If the reply
isn’t Y, and isn’t y, and isn’t N, and isn’t n, then the computer expresses its
concern by displaying, “Huh?” (As a paying customer, the word “Huh?”
on the automated ticket teller’s screen will certainly get your attention.)

When you create a big multipart condition, you always have several ways to
think about the condition. For example, you can rewrite the last condition in
Listing 10-2 as if (!(reply == ‘Y’ || reply == ‘y’ || reply == ‘N’
|| reply == ‘n’)). “If it’s not the case that the reply is either Y, y, N, or n,
then display ‘Huh?’” So which way of writing the condition is better — the
way I do it in Listing 10-2, or the way I do it in this tip? It depends on your
taste. Whatever makes the logic easiest for you to understand is the best way.

Using boolean variables
No matter how good a program is, you can always make it a little bit better.
Take the code in Listing 10-2. Does the forest of if statements make you ner-
vous? Do you slow to a crawl when you read each condition? Wouldn’t it be
nice if you could glance at a condition and make sense of it very quickly?

To some extent, you can. If you’re willing to create some additional variables,
you can make your code easier to read. Listing 10-3 shows you how.

Listing 10-3: George Boole Would Be Proud

import java.util.Scanner;

class NicePrice {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int age;
double price = 0.00;
char reply;
boolean isKid, isSenior, hasCoupon, hasNoCoupon;

System.out.print(“How old are you? “);
age = myScanner.nextInt();

System.out.print(“Have a coupon? (Y/N) “);
reply = myScanner.findInLine(“.”).charAt(0);

isKid = age < 12;
isSenior = age >= 65;
hasCoupon = reply == ‘Y’ || reply == ‘y’;
hasNoCoupon = reply == ‘N’ || reply == ‘n’;

(continued)

165Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 165

Listing 10-3 (continued)

if (!isKid && !isSenior) {
price = 9.25;

}
if (isKid || isSenior) {

price = 5.25;
}

if (hasCoupon) {
price -= 2.00;

}
if (!hasCoupon && !hasNoCoupon) {

System.out.println(“Huh?”);
}

System.out.print(“Please pay $”);
System.out.print(price);
System.out.print(“. “);
System.out.println(“Enjoy the show!”);

}
}

Runs of the Listing 10-3 code look like the stuff in Figure 10-5. The only differ-
ence between Listings 10-2 and 10-3 is the use of boolean variables. In Listing
10-3, you get past all the less than signs and double equal signs before the
start of any if statements. By the time you encounter the two if statements,
the conditions can use simple words — words like isKid, isSenior, and
hasCoupon. With all these boolean variables, expressing each if statement’s
condition is a snap. You can read more about boolean variables in Chapter 8.

Adding a boolean variable can make your code more manageable. But some
programming languages don’t have boolean variables, so many program-
mers prefer to create if conditions on the fly. That’s why I mix the two tech-
niques (conditions with and without boolean variables) in this book.

Mixing different logical operators together
If you read about Listing 10-2, you know that my local movie theater offers
discount coupons. The trouble is, I can’t use a coupon along with any other dis-
count. I tried to convince the ticket taker that I’m under 12 years of age, but he
didn’t buy it. When that didn’t work, I tried combining the coupon with the
senior citizen discount. That didn’t work either.

The theater must use some software that checks for people like me. It looks
something like the code in Listing 10-4. To watch the code run, take a look at
Figure 10-6.

166 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 166

Listing 10-4: No Extra Break for Kids or Seniors

import java.util.Scanner;

class CheckAgeForDiscount {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int age;
double price = 0.00;
char reply;

System.out.print(“How old are you? “);
age = myScanner.nextInt();

System.out.print(“Have a coupon? (Y/N) “);
reply = myScanner.findInLine(“.”).charAt(0);

if (age >= 12 && age < 65) {
price = 9.25;

}
if (age < 12 || age >= 65) {

price = 5.25;
}

if ((reply == ‘Y’ || reply == ‘y’) &&
(age >= 12 && age < 65)) {
price -= 2.00;

}

System.out.print(“Please pay $”);
System.out.print(price);
System.out.print(“. “);
System.out.println(“Enjoy the show!”);

}
}

Figure 10-6:
Running

the code in
Listing 10-4.

167Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 167

Listing 10-4 is a lot like its predecessors, Listings 10-1 and 10-2. The big differ-
ence is the bolded if statement. This if statement tests two things, and
each thing has two parts of its own:

1. Does the customer have a coupon?

That is, did the customer reply with either Y or with y?

2. Is the customer in the regular age group?

That is, is the customer at least 12 years old and younger than 65?

In Listing 10-4, I join items 1 and 2 using the && operator. I do this because both
items (item 1 and item 2) must be true in order for the customer to qualify for
the $2.00 discount, as illustrated in Figure 10-7.

Using parentheses
Listing 10-4 demonstrates something important about conditions. Sometimes,
you need parentheses to make a condition work correctly. Take, for example,
the following incorrect if statement:

//This code is incorrect:
if (reply == ‘Y’ || reply == ‘y’ &&

age >= 12 && age < 65) {
price -= 2.00;

}

Figure 10-7:
Both the

reply and
the age

criteria must
be true.

168 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 168

Compare this code with the correct code in Listing 10-4. This incorrect code
has no parentheses to group reply == ‘Y’ with reply == ‘y’, or to group
age >= 12 with age < 65. The result is the bizarre pair of runs in Figure 10-8.

In Figure 10-8, notice how the y and Y inputs yield different ticket prices, even
though the age is 85 in both runs. This happens because, without parenthe-
ses, any && operator gets evaluated before any || operator. (That’s the rule
in the Java programming language — evaluate && before ||.) When reply is
Y, the condition in the bad if statement takes the following form:

reply == ‘Y’ || some-other-stuff-that-doesn’t-matter

Whenever reply == ‘Y’ is true, the whole condition is automatically true,
as illustrated in Figure 10-9.

Figure 10-9:
“True or

false”
makes
“true.”

Figure 10-8:
A capital
offense.

169Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 169

Building a Nest
The year is 1968, and The Prisoner is on TV. In the last episode, the show’s
hero meets his nemesis “Number One.” At first Number One wears a spooky
happy-face/sad-face mask, and when the mask comes off, there’s a monkey
mask underneath. To find out what’s behind the monkey mask, you have to
watch the series on DVD. But in the meantime, notice the layering; a mask
within a mask. You can do the same kind of thing with if statements. This
section’s example shows you how.

But first, take a look at Listing 10-4. In that code, the condition age >= 12 &&
age < 65 is tested twice. Both times, the computer sends the numbers 12, 65,
and the age value through its jumble of circuits, and both times, the computer
gets the same answer. This is wasteful, but waste isn’t your only concern.

What if you decide to change the age limit for senior tickets? From now on, no
one under 100 gets a senior discount. You fish through the code and see the
first age >= 12 && age < 65 test. You change 65 to 100, pat yourself on the
back, and go home. The problem is, you’ve changed one of the two age >= 12
&& age < 65 tests, but you haven’t changed the other. Wouldn’t it be better to
keep all the age >= 12 && age < 65 testing in just one place?

Listing 10-5 comes to the rescue. In Listing 10-5, I smoosh all my if statements
together into one big glob. The code is dense, but it gets the job done nicely.

Listing 10-5: Nested if Statements

import java.util.Scanner;

class AnotherAgeCheck {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int age;
double price = 0.00;
char reply;

System.out.print(“How old are you? “);
age = myScanner.nextInt();

System.out.print(“Have a coupon? (Y/N) “);
reply = myScanner.findInLine(“.”).charAt(0);

if (age >= 12 && age < 65) {
price = 9.25;
if (reply == ‘Y’ || reply == ‘y’) {

price -= 2.00;
}

} else {
price = 5.25;

}

170 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 170

System.out.print(“Please pay $”);
System.out.print(price);
System.out.print(“. “);
System.out.println(“Enjoy the show!”);

}
}

Nested if statements
A run of the code in Listing 10-5 looks identical to a run for Listing 10-4. You
can see several runs in Figure 10-6. The main idea in Listing 10-5 is to put an
if statement inside another if statement. After all, Chapter 9 says that an if
statement can take the following form:

if (Condition) {
SomeStatements

} else {
OtherStatements

}

Who says SomeStatements can’t contain an if statement? For that matter,
OtherStatements can also contain an if statement. And, yes, you can create
an if statement within an if statement within an if statement. There’s no
predefined limit on the number of if statements that you can have.

if (age >= 12 && age < 65) {
price = 9.25;
if (reply == ‘Y’ || reply == ‘y’) {

if (isSpecialFeature) {
price -= 1.00;

} else {
price -= 2.00;

}
}

} else {
price = 5.25;

}

When you put one if statement inside another, you create nested if state-
ments. Nested statements aren’t difficult to write, as long as you take things
slowly, and keep a clear picture of the code’s flow in your mind. If it helps,
draw yourself a diagram like the one shown in Figure 10-10.

When you nest statements, you must be compulsive about the use of indenta-
tion and braces (see Figure 10-11). When code has misleading indentation, no
one (not even the programmer who wrote the code) can figure out how the
code works. A nested statement with sloppy indentation is a programmer’s
nightmare.

171Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 171

Cascading if statements
Here’s a riddle: You have two baseball teams — the Hankees and the Socks.
You want to display the teams’ scores on two separate lines, with the winner’s
score coming first. (On the computer screen, the winner’s score is displayed
above the loser’s score.) What happens when the scores are tied?

Figure 10-11:
Be careful

about
adding the

proper
indentation
and braces.

Figure 10-10:
The flow in

Listing 10-5.

172 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 172

Do you give up? The answer is, there’s no right answer. What happens
depends on the way you write the program. Take a look back at Listing 9-4 in
Chapter 9. When the scores are equal, the condition hankees > socks is
false. So the program’s flow of execution drops down to the else clause.
That clause displays the Socks score first and the Hankees score second.
(Refer to Figure 9-7.)

The program doesn’t have to work this way. If I take Listing 9-4 and change
hankees > socks to hankees >= socks then, in case of a tie, the Hankees
score comes first.

Suppose you want a bit more control. When the scores are equal, you want
an It’s a tie message. To do this, think in terms of a three-pronged fork.
You have a prong for a Hankees win, another prong for a Socks win, and a
third prong for a tie. You can write this code in several different ways, but
one way that makes lots of sense is in Listing 10-6. For three runs of the code
in Listing 10-6, see Figure 10-12.

Listing 10-6: In Case of a Tie . . .

import java.util.Scanner;
import static java.lang.System.out;

class WinLoseOrTie {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int hankees, socks;

out.print(“Hankees and Socks scores? “);
hankees = myScanner.nextInt();
socks = myScanner.nextInt();
out.println();

if (hankees > socks) {
out.println(“Hankees win...”);
out.print(“Hankees: “);
out.println(hankees);
out.print(“Socks: “);
out.println(socks);

} else if (socks > hankees) {
out.println(“Socks win...”);
out.print(“Socks: “);
out.println(socks);
out.print(“Hankees: “);
out.println(hankees);

(continued)

173Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 173

Listing 10-6 (continued)

} else {
out.println(“It’s a tie...”);
out.print(“Hankees: “);
out.println(hankees);
out.print(“Socks: “);
out.println(socks);

}
}

}

Listing 10-6 illustrates a way of thinking about a problem. You have one ques-
tion with more than two answers. (In this section’s baseball problem, the
question is “Who wins?” and the answers are “Hankees,” “Socks,” or “Neither.”)
The problem begs for an if statement, but an if statement has only two
branches — the true branch and the false branch. So you combine alterna-
tives to form cascading if statements.

In Listing 10-6, the format for the cascading if statements is

if (Condition1) {
SomeStatements

} else if (Condition2) {
OtherStatements

} else {
EvenMoreStatements

}

In general, you can use else if as many times as you want:

Figure 10-12:
Go, team,

go!

174 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 174

if (hankeesWin) {
out.println(“Hankees win...”);
out.print(“Hankees: “);
out.println(hankees);
out.print(“Socks: “);
out.println(socks);

} else if (socksWin) {
out.println(“Socks win...”);
out.print(“Socks: “);
out.println(socks);
out.print(“Hankees: “);
out.println(hankees);

} else if (isATie) {
out.println(“It’s a tie...”);
out.print(“Hankees: “);
out.println(hankees);
out.print(“Socks: “);
out.println(socks);

} else if (gameCancelled) {
out.println(“Sorry, sports fans.”);

} else {
out.println(“The game isn’t over yet.”);

}

Nothing is special about cascading if statements. This isn’t a new program-
ming language feature. Cascading if statements take advantage of a loophole
in Java — a loophole about omitting curly braces in certain circumstances.
Other than that, cascading if statements just gives you a new way to think
about decisions within your code.

Note: Listing 10-6 uses a static import declaration to avoid needless repeti-
tion of the words System.out. To read a little bit about the static import
declaration (along with an apology for my not explaining this concept more
thoroughly), see Chapter 9. Then to get the real story on static import decla-
rations, see Chapter 18.

Enumerating the Possibilities
Chapter 8 describes Java’s boolean type — the type with only two values
(true and false). The boolean type is very handy, but sometimes you need
more values. After all, a traffic light’s values can be green, yellow, or red. A
playing card’s suit can be spade, club, heart, or diamond. And a weekday
can be Monday, Tuesday, Wednesday, Thursday, or Friday.

Life is filled with small sets of possibilities, and Java has a feature that can
reflect these possibilities. The feature is called an enum type. It’s new in Java
version 5.0.

175Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 175

Creating an enum type
The story in Listing 10-6 has three possible endings — the Hankees win, the
Socks win, or the game is tied. You can represent the possibilities with a one-
line Java program. The program is in Listing 10-7.

Listing 10-7: Three Possibilities

enum WhoWins {home, visitor, neither}

This week’s game is played at Hankeeville’s SnitSoft Stadium, so the value
home represents a win for the Hankees, and the value visitor represents a
win for the Socks.

I wonder what thoughts you have on your first encounter with Listing 10-7.
“What good is a one-line program?” you ask. “Three values? Who cares?” you
say. “Does this code do anything useful?” you think. “Does the code do any-
thing at all?”

One of the goals in computer programming is for each program’s structure to
mirror whatever problem the program solves. When a program reminds you
of its underlying problem, the program is easy to understand, and inexpen-
sive to maintain. For instance, a program to tabulate customer accounts
should use names like customer and account. And a program that deals with
three possible outcomes (home wins, visitor wins, and tie) should have a
variable with three possible values. So in Listing 10-7, I create a type to store
three values.

The WhoWins type defined in Listing 10-7 is called an enum type. Think of the
new WhoWins type as a boolean on steroids. Instead of two values (true and
false) the WhoWins type has three values (home, visitor, and neither).
You can create a variable of type WhoWins

WhoWins who;

and then assign a value to the new variable.

who = WhoWins.home;

The fact that you define WhoWins in a file all its own may be a bit unsettling,
so I deal with that issue in the this chapter’s final section.

Using an enum type
Listing 10-8 shows you how to use the brand new WhoWins type.

176 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 176

Listing 10-8: Proud Winners and Sore Losers

import java.util.Scanner;
import static java.lang.System.out;

class Scoreboard {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int hankees, socks;
WhoWins who;

out.print(“Hankees and Socks scores? “);
hankees = myScanner.nextInt();
socks = myScanner.nextInt();
out.println();

if (hankees > socks) {
who = WhoWins.home;
out.println(“The Hankees win :-)”);

} else if (socks > hankees) {
who = WhoWins.visitor;
out.println(“The Socks win :-(“);

} else {
who = WhoWins.neither;
out.println(“It’s a tie :-|”);

}

out.println();
out.println(“Today’s game is brought to you by”);
out.println(“SnitSoft, the number one software”);
out.println(“vendor in the Hankeeville area.”);
out.println(“SnitSoft is featured proudly in”);
out.println(“Chapter 6. And remember, four out”);
out.println(“of five doctors recommend SnitSoft”);
out.println(“to their patients.”);
out.println();

if (who == WhoWins.home) {
out.println(“We beat ‘em good. Didn’t we?”);

}
if (who == WhoWins.visitor) {

out.println(“The umpire made an unfair call.”);
}
if (who == WhoWins.neither) {

out.println(“The game goes into overtime.”);
}

}
}

Three runs of the program in Listing 10-8 are pictured in Figure 10-13.

177Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 177

Here’s what happens in Listing 10-8:

� I create a variable to store values of type WhoWins.

Just as the line

double amount;

declares amount to store double values (values like 5.95 and 30.95), the
line

WhoWins who;

declares who to store WhoWins values (values like home, visitor, and
neither).

� I assign a value to the who variable.

I execute one of the

who = WhoWins.something;

assignment statements. The statement that I execute depends on the
outcome of the if statement’s hankees > socks comparison.

Figure 10-13:
Joy in

Hankeeville?

178 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 178

Notice how I refer to each of the WhoWins values in Listing 10-8. I write
WhoWins.home, WhoWins.visitor, or WhoWins.neither. If I forget the
WhoWins prefix and type

who = home; //This assignment doesn’t work!

then the compiler gives me a cannot find symbol error message.
That’s just the way enum types work.

� I compare the variable’s value with each of the WhoWins values.

In one if statement, I check the who == WhoWins.home condition. In
the remaining two if statements I check for the other WhoWins values.

Near the end of Listing 10-8, I could have done without enum values. I could
have tested things like hankees > socks a second time.

if (hankees > socks) {
out.println(“The Hankees win :-)”);

}

// And later in the program...

if (hankees > socks) {
out.println(“We beat ‘em good. Didn’t we?”);

}

But that tactic would be clumsy. In a more complicated program, I may end
up checking hankees > socks a dozen times. It would be like asking the
same question over and over again.

Instead of repeatedly checking the hankees > socks condition, I store the
game’s outcome as an enum value. Then I check the enum value as many times
as I want. That’s a very tidy way to solve the repeated checking problem.

Creating a project with two
Java source files
You can’t run Listing 10-8 without Listing 10-7. And Listing 10-7 does nothing
on its own. To do anything useful, you have to put these two files in the same
JCreator project. Here’s how:

1. Create a new JCreator project.

For details, see Chapter 3.

2. Right-click the new project’s name in the File View tree. Then, in the
resulting context menu, select Add➪New Class.

JCreator’s Class Wizard appears.

179Chapter 10: Which Way Did He Go?

16_588745 ch10.qxd 3/16/05 9:17 PM Page 179

3. In the wizard’s Name field, type the name of your enum type.

To create the code in Listing 10-7, type the name WhoWins.

4. Click Finish.

The wizard disappears to reveal JCreator’s work area. The editor pane
has a new WhoWins.java tab. Delete any code that you see in the
WhoWins.java pane, and replace that code with the line in Listing 10-7.
(See Figure 10-14.)

5. Follow the usual steps to add a new Scoreboard class.

In Scoreboard.java file’s editor pane, type the code in Listing 10-8.

6. Choose Build➪Compile Project.

7. Choose Build➪Execute Project.

Voila! The code runs as it does in Figure 10-13.

Figure 10-14:
Editing the
WhoWins.

java file.

180 Part III: Controlling the Flow

16_588745 ch10.qxd 3/16/05 9:17 PM Page 180

Chapter 11

How to Flick a Virtual Switch
In This Chapter
� Dealing with many alternatives

� Jumping out from the middle of a statement

� Handling alternative assignments

Imagine playing Let’s Make a Deal with ten different doors. “Choose door
number 1, door number 2, door number 3, door number 4. . . . Wait! Let’s

break for a commercial. When we come back, I’ll say the names of the other
six doors.”

Meet the switch Statement
The code back in Listing 9-2 in Chapter 9 simulates a simple electronic oracle.
Ask the program a question, and the program randomly generates a yes or no
answer. But, as toys go, the code in Listing 9-2 isn’t much fun. The code has
only two possible answers. There’s no variety. Even the earliest talking dolls
could say about ten different sentences.

Suppose that you want to enhance the code of Listing 9-2. The call to
myRandom.nextInt(10) + 1 generates numbers from 1 to 10. So maybe you
can display a different sentence for each of the ten numbers. A big pile of if
statements should do the trick:

if (randomNumber == 1) {
System.out.println(“Yes. Isn’t it obvious?”);

}
if (randomNumber == 2) {

System.out.println(“No, and don’t ask again.”);
}
if (randomNumber == 3) {

System.out.print(“Yessir, yessir!”);
System.out.println(“ Three bags full.”);

}

17_588745 ch11.qxd 3/16/05 9:29 PM Page 181

if (randomNumber == 4)
.
.
.

if (randomNumber < 1 || randomNumber > 10) {
System.out.print(“Sorry, the electronic oracle”);
System.out.println(“ is closed for repairs.”);

}

But that approach seems wasteful. Why not create a statement that checks
the value of randomNumber just once and then takes an action based on the
value that it finds? Fortunately, just such a statement exists: the switch state-
ment. Listing 11-1 has an example of a switch statement.

Listing 11-1: An Answer for Every Occasion

import java.util.Scanner;
import java.util.Random;
import static java.lang.System.out;

class TheOldSwitcheroo {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
Random myRandom = new Random();
int randomNumber;

out.print(“Type your question, my child: “);
myScanner.nextLine();

randomNumber = myRandom.nextInt(10) + 1;

switch (randomNumber) {
case 1:

out.println(“Yes. Isn’t it obvious?”);
break;

case 2:
out.println(“No, and don’t ask again.”);
break;

case 3:
out.print(“Yessir, yessir!”);
out.println(“ Three bags full.”);
break;

case 4:
out.print(“What part of ‘no’”);
out.println(“ don’t you understand?”);
break;

182 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 182

case 5:
out.println(“No chance, Lance.”);
break;

case 6:
out.println(“Sure, whatever.”);
break;

case 7:
out.print(“Yes, but only if”);
out.println(“ you’re nice to me.”);
break;

case 8:
out.println(“Yes (as if I care).”);
break;

case 9:
out.print(“No, not until”);
out.println(“ Cromwell seizes Dover.”);
break;

case 10:
out.print(“No, not until”);
out.println(“ Nell squeezes Rover.”);
break;

default:
out.print(“You think you have”);
out.print(“ problems?”);
out.print(“ My random number”);
out.println(“ generator is broken!”);
break;

}

out.println(“Goodbye”);
}

}

The cases in a switch statement
Figure 11-1 shows three runs of the program in Listing 11-1. Here’s what hap-
pens during one of these runs:

� The user types a heavy question, and the variable randomNumber gets a
value. In the second run of Figure 11-1, this value is 2.

� Execution of the code in Listing 11-1 reaches the top of the switch state-
ment, so the computer starts checking this statement’s case clauses.
The value 2 doesn’t match the topmost case clause (the case 1 clause),
so the computer moves on to the next case clause.

183Chapter 11: How to Flick a Virtual Switch

17_588745 ch11.qxd 3/16/05 9:29 PM Page 183

� The value in the next case clause (the number 2) matches the value of
the randomNumber variable, so the computer executes the statements in
this case 2 clause. These two statements are

out.println(“No, and don’t ask again.”);
break;

The first of the two statements displays No, and don’t ask again on
the screen. The second statement is called a break statement. (What a
surprise!) When the computer encounters a break statement, the com-
puter jumps out of whatever switch statement it’s in. So in Listing 11-1,
the computer skips right past case 3, case 4, and so on. The computer
jumps to the statement just after the end of the switch statement.

� The computer displays Goodbye, because that’s what the statement
after the switch statement tells the computer to do.

The overall idea behind the program in Listing 11-1 is illustrated in Figure 11-2.

The default in a switch statement
What if something goes terribly wrong during a run of the Listing 11-1 pro-
gram? Suppose the expression myRandom.nextInt(10) + 1 generates a
number that’s not in the 1 to 10 range. Then the computer responds by drop-
ping past all the case clauses. Instead of landing on a case clause, the com-
puter jumps to the default clause. In the default clause, the computer
displays You think you have problems?..., and then breaks out of the
switch statement. After the computer is out of the switch statement, the
computer displays Goodbye.

You don’t really need to put a break at the very end of a switch statement.
In Listing 11-1, the last break (the break that’s part of the default clause) is
just for the sake of overall tidiness.

Figure 11-1:
Running the

code of
Listing 11-1.

184 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 184

Picky details about the switch statement
A switch statement can take the following form:

switch (Expression) {
case FirstValue:

Statements

case SecondValue:
MoreStatements

// ... more cases...

default:
EvenMoreStatements

}

Here are some tidbits about switch statements:

� The Expression doesn’t have to have an int value. It can be char,
byte, short, or int. For example, the following code works nicely:

You think you have problem
s? ...

other
N

o, not until N
ell squeezes Rover.

10

N
o, not until Crom

w
ell seizes D...

9

Yes (as if I care).

8

Yes, but only if you're nice to m
e.

7

Sure, w
hatever.

6

N
o chance, Lance.

5

W
hat part of 'no' don't you under...

4

Yessir, yessir! Three bags full.

3

N
o, and don't ask again.

2

Yes. Isn't it obvious?

1

Goodbye

Figure 11-2:
A fork with

eleven
prongs.

185Chapter 11: How to Flick a Virtual Switch

17_588745 ch11.qxd 3/16/05 9:29 PM Page 185

char letterGrade;
letterGrade = myScanner.findInLine(“.”).charAt(0);

switch (letterGrade) {
case ‘A’:

System.out.println(“Excellent”);
break;

case ‘B’:
System.out.println(“Good”);
break;

case ‘C’:
System.out.println(“Average”);
break;

}

� The Expression doesn’t have to be a single variable. It can be any
expression of type char, byte, short, or int. For example, you can sim-
ulate the rolling of two dice with the following code:

int die1, die2;

die1 = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

switch (die1 + die2) {
//...etc.

� The cases in a switch statement don’t have to be in order. Here’s some
acceptable code:

switch (randomNumber) {
case 2:

System.out.println(“No, and don’t ask again.”);
break;

case 1:
System.out.println(“Yes. Isn’t it obvious?”);
break;

case 3:
System.out.print(“Yessir, yessir!”);
System.out.println(“ Three bags full.”);
break;

//...etc.

This mixing of cases may slow you down when you’re trying to read a
program, but it’s legal nonetheless.

� You don’t need a case for each expected value of the Expression. You
can leave some expected values to the default. Here’s an example:

186 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 186

switch (randomNumber) {
case 1:

System.out.println(“Yes. Isn’t it obvious?”);
break;

case 5:
System.out.println(“No chance, Lance.”);
break;

case 7:
System.out.print(“Yes, but only if”);
System.out.println(“ you’re nice to me.”);
break;

case 10:
System.out.print(“No, not until”);
System.out.println(“ Nell squeezes Rover.”);
break;

default:
System.out.print(“Sorry,”);
System.out.println(“ I just can’t decide.”);
break;

}

� The default clause is optional.

switch (randomNumber) {
case 1:

System.out.println(“Yes. Isn’t it obvious?”);
break;

case 2:
System.out.println(“No, and don’t ask again.”);
break;

case 3:
System.out.print(“I’m too tired.”);
System.out.println(“ Go ask somebody else.”);

}
System.out.println(“Goodbye”);

If you have no default clause, and a value that’s not covered by any of
the cases comes up, then the switch statement does nothing. For exam-
ple, if randomNumber is 4, then the code shown above displays Goodbye,
and nothing else.

� In some ways, if statements are more versatile than switch statements.
For example, you can’t use a condition in a switch statement’s
Expression:

//You can’t do this:
switch (age >= 12 && age < 65)

187Chapter 11: How to Flick a Virtual Switch

17_588745 ch11.qxd 3/16/05 9:29 PM Page 187

You can’t use a condition as a case value either:

//You can’t do this:
switch (age) {
case age <= 12: //...etc.

To break or not to break
In every Java programmer’s life, a time comes when he or she forgets to use
break statements. At first, the resulting output is confusing, but then the pro-
grammer remembers fall-through. The term fall-through describes what hap-
pens when you end a case without a break statement. What happens is that
execution of the code falls right through to the next case in line. Execution
keeps falling through until you eventually reach a break statement or the end
of the entire switch statement.

If you don’t believe me, just look at Listing 11-2. This listing’s code has a
switch statement gone bad:

Listing 11-2: Please, Gimme a Break!

/*
* This isn’t good code. The programmer forgot some
* of the break statements.
*/
import java.util.Scanner;
import java.util.Random;
import static java.lang.System.out;

class BadBreaks {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
Random myRandom = new Random();
int randomNumber;

out.print(“Type your question, my child: “);
myScanner.nextLine();

randomNumber = myRandom.nextInt(10) + 1;

switch (randomNumber) {
case 1:

out.println(“Yes. Isn’t it obvious?”);

case 2:
out.println(“No, and don’t ask again.”);

188 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 188

case 3:
out.print(“Yessir, yessir!”);
out.println(“ Three bags full.”);

case 4:
out.print(“What part of ‘no’”);
out.println(“ don’t you understand?”);
break;

case 5:
out.println(“No chance, Lance.”);

case 6:
out.println(“Sure, whatever.”);

case 7:
out.print(“Yes, but only if”);
out.println(“ you’re nice to me.”);

case 8:
out.println(“Yes (as if I care).”);

case 9:
out.print(“No, not until”);
out.println(“ Cromwell seizes Dover.”);

case 10:
out.print(“No, not until”);
out.println(“ Nell squeezes Rover.”);

default:
out.print(“You think you have”);
out.print(“ problems?”);
out.print(“ My random number”);
out.println(“ generator is broken!”);

}

out.println(“Goodbye”);
}

}

I’ve put two runs of this code in Figure 11-3. In the first run, the randomNumber
is 7. The program executes cases 7 through 10, and the default. In the second
run, the randomNumber is 3. The program executes cases 3 and 4. Then,
because case 4 has a break statement, the program jumps out of the switch
and displays Goodbye.

The switch statement in Listing 11-2 is missing some break statements. Even
without these break statements, the code compiles with no errors. But when
you run the code in Listing 11-2, you don’t get the results that you want.

189Chapter 11: How to Flick a Virtual Switch

17_588745 ch11.qxd 3/16/05 9:29 PM Page 189

Using Fall-through to Your Advantage
Often, when you’re using a switch statement, you don’t want fall-through, so
you pepper break statements throughout the switch. But, sometimes, fall-
through is just the thing you need.

Take the number of days in a month. Is there a simple rule for this? Months
containing the letter “r” have 31 days? Months in which “i” comes before “e”
except after “c” have 30 days?

You can fiddle with if conditions all you want. But to handle all the possibili-
ties, I prefer a switch statement. Listing 11-3 demonstrates the idea.

Listing 11-3: Finding the Number of Days in a Month

import java.util.Scanner;

class DaysInEachMonth {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int month, numberOfDays = 0;
boolean isLeapYear;

System.out.print(“Which month? “);
month = myScanner.nextInt();

switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:

numberOfDays = 31;
break;

case 4:
case 6:

Figure 11-3:
Please

make up
your mind.

190 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 190

case 9:
case 11:

numberOfDays = 30;
break;

case 2:
System.out.print(“Leap year (true/false)? “);
isLeapYear = myScanner.nextBoolean();
if (isLeapYear) {

numberOfDays = 29;
} else {

numberOfDays = 28;
}

}

System.out.print(numberOfDays);
System.out.println(“ days”);

}
}

Figure 11-4 shows several runs of the program in Listing 11-3. For month
number 6, the computer jumps to case 6. There are no statements inside the
case 6 clause, so that part of the program’s run is pretty boring.

But with no break in the case 6 clause, the computer marches right along to
case 9. Once again, the computer finds no statements and no break, so the
computer ventures to the next case, which is case 11. At that point, the com-
puter hits pay dirt. The computer assigns 30 to numberOfDays, and breaks out
of the entire switch statement. (See Figure 11-5.)

February is the best month of all. For one thing, the February case in Listing
11-3 contains a call to the Scanner class’s nextBoolean method. The method
expects me to type either true or false. The code uses whatever word I
type to assign a value to a boolean variable. (In Listing 11-3, I assign true or
false to the isLeapYear variable.)

February also contains its own if statement. In Chapter 10, I nest if state-
ments within other if statements. But in February, I nest an if statement
within a switch statement. That’s cool.

Figure 11-4:
How many
days until

the next big
deadline?

191Chapter 11: How to Flick a Virtual Switch

17_588745 ch11.qxd 3/16/05 9:29 PM Page 191

Using a Conditional Operator
Java has a neat feature that I can’t resist writing about. Using this feature, you
can think about alternatives in a very natural way.

And what do I mean by “a natural way?” If I think out loud as I imitate the if
statement near the end of Listing 11-3, I come up with this:

//The thinking in Listing 11-3:
What should I do next?
If this is a leap year,

I’ll make the numberOfDays be 29;
Otherwise,

I’ll make the numberOfDays be 28.

I’m wandering into an if statement without a clue about what I’m doing next.
That seems silly. It’s February, and everybody knows what you do in
February. You ask how many days the month has.

In my opinion, the code in Listing 11-3 doesn’t reflect the most natural way to
think about February. So here’s a more natural way:

Figure 11-5:
Follow the
bouncing

ball.

192 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 192

//A more natural way to think about the problem:
The value of numberOfDays is...

Wait! Is this a leap year?
If yes, 29
If no, 28

In this second, more natural way of thinking, I know from the start that I’m
picking a number of days. So by the time I reach a fork in the road (Is this
a leap year?), the only remaining task is to choose between 29 and 28.

I can make the choice with finesse:

case 2:
System.out.print(“Leap year (true/false)? “);
isLeapYear = myScanner.nextBoolean();
numberOfDays = isLeapYear ? 29 : 28;

The ? : combination is called a conditional operator. In Figure 11-6, I show
you how my natural thinking about February can morph into the conditional
operator’s format.

Taken as a whole, isLeapYear ? 29 : 28 is an expression with a value. And
what value does this expression have? Well, the value of isLeapYear ? 29 :
28 is either 29 or 28. It depends on whether isLeapYear is or isn’t true. That’s
how the conditional operator works:

� If the stuff before the question mark is true, then the whole expression’s
value is whatever comes between the question mark and the colon.

� If the stuff before the question mark is false, then the whole expression’s
value is whatever comes after the colon.

Figure 11-7 gives you a goofy way to visualize these ideas.

Figure 11-6:
From your

mind to the
computer’s

code.

193Chapter 11: How to Flick a Virtual Switch

17_588745 ch11.qxd 3/16/05 9:29 PM Page 193

So the conditional operator’s overall effect is as if the computer is executing

numberOfDays = 29;

or

numberOfDays = 28;

One way or another, numberOfDays gets a value, and the code solves the
problem with style.

Is this stuff before
the question mark

true or false?

If it's true, my
value is the stuff

between the
question mark
and the colon.

It's true!

29

If it's false, my
value is the

stuff after the
colon.

Figure 11-7:
Have you

ever seen an
expression

talking to
itself?

194 Part III: Controlling the Flow

17_588745 ch11.qxd 3/16/05 9:29 PM Page 194

Chapter 12

Around and Around It Goes
In This Chapter
� Creating program loops

� Formulating solutions to problems with loops

� Diagnosing loop problems

Chapter 8 has code to reverse the letters in a four-letter word that the
user enters. In case you jumped over Chapter 8 or you just don’t want to

flip back, here’s a quick recap of the code:

c1 = myScanner.findInLine(“.”).charAt(0);
c2 = myScanner.findInLine(“.”).charAt(0);
c3 = myScanner.findInLine(“.”).charAt(0);
c4 = myScanner.findInLine(“.”).charAt(0);

System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(c1);

The code is just dandy for words with exactly four letters, but how do you
reverse a five-letter word? As the code stands, you have to add two new
statements:

c1 = myScanner.findInLine(“.”).charAt(0);
c2 = myScanner.findInLine(“.”).charAt(0);
c3 = myScanner.findInLine(“.”).charAt(0);
c4 = myScanner.findInLine(“.”).charAt(0);
c5 = myScanner.findInLine(“.”).charAt(0);

System.out.print(c5);
System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(c1);

What a drag! You add statements to a program whenever the size of a word
changes! You remove statements when the input shrinks! That can’t be the
best way to solve the problem. Maybe you can command a computer to add
statements automatically. (But then again, maybe you can’t.)

18_588745 ch12.qxd 3/16/05 9:21 PM Page 195

As luck would have it, you can do something that’s even better. You can write
a statement once, and tell the computer to execute the statement many
times. How many times? You can tell the computer to execute a statement as
many times as it needs to be executed.

That’s the big idea. The rest of this chapter has the details.

Repeating Instructions Over and Over
Again (Java while Statements)

Here’s a simple dice game: Keep rolling two dice until you roll 7 or 11. Listing
12-1 has a program that simulates the action in the game, and Figure 12-1
shows two runs of the program.

Listing 12-1: Roll 7 or 11

import java.util.Random;
import static java.lang.System.out;

class SimpleDiceGame {

public static void main(String args[]) {
Random myRandom = new Random();
int die1 = 0, die2 = 0;

while (die1 + die2 != 7 && die1 + die2 != 11) {
die1 = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

out.print(die1);
out.print(“ “);
out.println(die2);

}

out.print(“Rolled “);
out.println(die1 + die2);

}
}

At the core of Listing 12-1 is a thing called a while statement (also known as a
while loop). A while statement has the following form:

while (Condition) {
Statements

}

196 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 196

Rephrased in English, the while statement in Listing 12-1 would say

while the sum of the two dice isn’t 7 and isn’t 11
keep doing all the stuff in curly braces: {

}

The stuff in curly braces (the stuff that is repeated over and over again) is the
code that gets two new random numbers and displays those random num-
bers’ values. The statements in curly braces are repeated as long as die1 +
die2 != 7 && die1 + die2 != 11 keeps being true.

Each repetition of the statements in the loop is called an iteration of the loop.
In Figure 12-1, the first run has two iterations, and the second run has twelve
iterations.

When die1 + die2 != 7 && die1 + die2 != 11 is no longer true (that
is, when the sum is either 7 or 11), then the repeating of statements stops
dead in its tracks. The computer marches on to the statements that come
after the loop.

Following the action in a loop
To trace the action of the code in Listing 12-1, I’ll borrow numbers from the
first run in Figure 12-1:

� At the start, the values of die1 and die2 are both 0.

� The computer gets to the top of the while statement, and checks to
see if die1 + die2 != 7 && die1 + die2 != 11 is true. (See Figure
12-2.) The condition is true so the computer takes the true path in
Figure 12-3.

Figure 12-1:
Momma
needs a

new pair of
shoes.

197Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 197

The computer performs an iteration of the loop. During this iteration, the
computer gets new values for die1 and die2, and prints those values on
the screen. In the first run of Figure 12-1, the new values are 3 and 1.

� The computer returns to the top of the while statement, and checks to
see if die1 + die2 != 7 && die1 + die2 != 11 is still true. The
condition is true so the computer takes the true path in Figure 12-3.

The computer performs another iteration of the loop. During this itera-
tion, the computer gets new values for die1 and die2, and prints those
values on the screen. In Figure 12-1, the new values are 4 and 3.

Figure 12-3:
Paths

through the
code in

Listing 12-1.

"true and true"
That makes "true."

0 not equal to 7 ?
That's true.

0 not equal to 11 ?
That's true.

Figure 12-2:
Two wrongs

don’t make
a right, but

two trues
make a true.

198 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 198

� The computer returns to the top of the while statement, and checks to
see if die1 + die2 != 7 && die1 + die2 != 11 is still true. Lo and
behold! This condition has become false! (See Figure 12-4.) The com-
puter takes the false path in Figure 12-3.

The computer leaps to the statements after the loop. The computer dis-
plays Rolled 7, and ends its run of the program.

No early bailout
In Listing 12-1, when the computer finds die1 + die2 != 7 && die1 + die2
!= 11 to be true, the computer marches on and executes all five statements
inside the loop’s curly braces. The computer executes

die1 = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

Maybe (just maybe), the new values of die1 and die2 add up to 7. Even so, the
computer doesn’t jump out in mid-loop. The computer finishes the iteration,
and executes

out.print(die1);
out.print(“ “);
out.println(die2);

one more time. The computer performs the test again (to see if die1 + die2
!= 7 && die1 + die2 != 11 is still true) only after it fully executes all five
statements in the loop.

"false and true"
That makes "false."

7 not equal to 7 ?
That's false.

7 not equal to 11 ?
That's true.

Figure 12-4:
Look! I rolled

a seven!

199Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 199

Thinking about Loops (What
Statements Go Where)

Here’s a simplified version of the card game Twenty-One: You keep taking
cards until the total is 21 or higher. Then, if the total is 21, you win. If the total
is higher, you lose. (By the way, each face card counts as a 10.) To play this
game, you want a program whose runs look like the runs in Figure 12-5.

In most sections of this book, I put a program’s listing before the description
of the program’s features. But this section is different. This section deals with
strategies for composing code. So in this section, I start by brainstorming
about strategies.

Finding some pieces
How do you write a program that plays a simplified version of Twenty-One? I
start by fishing for clues in the game’s rules, spelled out in this section’s first
paragraph. The big fishing expedition is illustrated in Figure 12-6.

200 Part III: Controlling the Flow

Statements and blocks (Plagiarizing my
own sentences from Chapter 9)

Java’s while statements have a lot in common
with if statements. Like an if statement, a
while statement is a compound statement.
That is, a while statement includes other
statements within it. Also, both if statements
and while statements typically include blocks
of statements. When you surround a bunch of
statements with curly braces, you get what’s
called a block, and a block behaves, in all
respects, like a single statement.

In a typical while statement, you want the
computer to repeat several smaller statements
over and over again. To repeat several smaller
statements, you combine those statements into
one big statement. To do this, you make a block
using curly braces.

In Listing 12-1, the block

{
die1 = myRandom.nextInt(6)
+ 1;
die2 = myRandom.nextInt(6)
+ 1;

out.print(die1);
out.print(“ “);
out.println(die2);

}
is a single statement. It’s a statement that has,
within it, five smaller statements. So this big
block, (this single statement) serves as one big
statement inside the while statement in Listing
12-1.

That’s the story about while statements and
blocks. To find out how this stuff applies to if
statements, see the “Statements and blocks”
sidebar near the end of Chapter 9.

18_588745 ch12.qxd 3/16/05 9:21 PM Page 200

With the reasoning in Figure 12-6, I need a loop and an if statement:

while (total < 21) {
//do stuff

}

if (total == 21) {
//You win

} else {
//You lose

}

(total==21) . . .

Keep taking cards until the total is 21 or higher.

If the total is 21, you win. If the total is higher, you lose.

"Keep doing"
something. That means

I need a loop.

There's the loop's
condition. Keep

repeating as long as

I smell an statement.

Figure 12-6:
Thinking
about a

programm-
ing problem.

Figure 12-5:
You win

sum; you
lose sum.

201Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 201

What else do I need to make this program work? Look at the sample output in
Figure 12-5. I need a heading with the words Card and Total. That’s a call to
System.out.println:

System.out.println(“Card Total”);

I also need several lines of output — each containing two numbers. For exam-
ple, in Figure 12-5, the line 6 14 displays the values of two variables. One
variable stores the most recently picked card; the other variable stores the
total of all cards picked so far:

System.out.print(card);
System.out.print(“ “);
System.out.println(total);

Now I have four chunks of code, but I haven’t decided how they all fit together.
Well, you can go right ahead and call me crazy. But at this point in the process,
I imagine those four chunks of code circling around one another, like part of a
dream sequence in a low-budget movie. As you may imagine, I’m not very
good at illustrating circling code in dream sequences. Even so, I handed my
idea to the art department at Wiley Publishing, and they came up with the pic-
ture in Figure 12-7.

Figure 12-7:
. . . and

where they
stop, nobody

knows.

202 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 202

Assembling the pieces
Where should I put each piece of code? The best way to approach the prob-
lem is to ask how many times each piece of code should be executed:

� The program displays card and total values more than once. For
example, in the first run of Figure 12-5, the program displays these
values four times (first 8 8, then 6 14, and so on). To get this repeated
display, I put the code that creates the display inside the loop:

while (total < 21) {
System.out.print(card);
System.out.print(“ “);
System.out.println(total);

}

� The program displays the Card Total heading only once per run.
This display comes before any of the repeated number displays, so I put
the heading code before the loop:

System.out.println(“Card Total”);

while (total < 21) {
System.out.print(card);
System.out.print(“ “);
System.out.println(total);

}

� The program displays You win or You lose only once per run. This
message display comes after the repeated number displays. So I put the
win/lose code after the loop:

//Preliminary draft code - NOT ready for prime time:
System.out.println(“Card Total”);

while (total < 21) {
System.out.print(card);
System.out.print(“ “);
System.out.println(total);

}

if (total == 21) {
System.out.println(“You win :-)”);

} else {
System.out.println(“You lose :-(“);

}

Getting values for variables
I almost have a working program. But if I take the code that I’ve developed for
a mental test run, I face a few problems. To see what I mean, picture yourself

203Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 203

in the computer’s shoes for a minute. (Well, a computer doesn’t have shoes.
Picture yourself in the computer’s boots.)

You start at the top of the code shown previously (the code that starts with
the Preliminary draft comment). In the code’s first statement, you display
the words Card Total. So far, so good. But then you encounter the while
loop, and test the condition total < 21. Well, is total less than 21, or isn’t
it? Honestly, I’m tempted to make up an answer, because I’m embarrassed
about not knowing what the total variable’s value is. (I’m sure the computer
is embarrassed too.)

The variable total must have a known value before the computer reaches
the top of the while loop. Because a player starts with no cards at all, the ini-
tial total value should be 0. That settles it. I declare int total = 0 at the
top of the program.

But what about my friend, the card variable? Should I set card to zero also?
No. There’s no zero-valued card in a deck (at least, not when I’m playing fair).
Besides, card should get a new value several times during the program’s run.

Wait! In the previous sentence, the phrase several times tickles a neuron in
my brain. It stimulates the inside a loop reflex. So I place an assignment to the
card variable inside my while loop:

//This is a DRAFT - still NOT ready for prime time:
int card, total = 0;

System.out.println(“Card Total”);

while (total < 21) {
card = myRandom.nextInt(10) + 1;

System.out.print(card);
System.out.print(“ “);
System.out.println(total);

}

if (total == 21) {
System.out.println(“You win :-)”);

} else {
System.out.println(“You lose :-(“);

}

The code still has an error, and I can probably find the error with more com-
puter role-playing. But instead, I get daring. I run this beta code to see what
happens. Figure 12-8 shows part of a run.

Unfortunately, the run in Figure 12-8 doesn’t stop on its own. This kind of pro-
cessing is called an infinite loop. The loop runs and runs until someone trips
over the computer’s extension cord.

204 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 204

You can stop a program’s run dead in its tracks. If you use JCreator, choose
Tools➪Stop Tool from the main menu. With many other environments, press-
ing Ctrl+C stops the execution of a runaway program.

From infinity to affinity
For some problems, an infinite loop is normal and desirable. Consider, for
example, a real-time mission-critical application — air traffic control, or the
monitoring of a heart-lung machine. In these situations, a program should run
and run and run.

But a game of Twenty-One should end pretty quickly. In Figure 12-8, the game
doesn’t end because the total never reaches 21 or higher. In fact, the total
is always zero. The problem is that my code has no statement to change the
total variable’s value. I should add each card’s value to the total:

total += card;

Again, I ask myself where this statement belongs in the code. How many
times should the computer execute this assignment statement? Once at the
start of the program? Once at the end of the run? Repeatedly?

The computer should repeatedly add a card’s value to the running total. In
fact, the computer should add to the total each time a card gets drawn. So
the assignment statement above should be inside the while loop, right along-
side the statement that gets a new card value:

card = myRandom.nextInt(10) + 1;
total += card;

With this revelation, I’m ready to see the complete program. The code is in
Listing 12-2, and two runs of the code are shown in Figure 12-5.

Figure 12-8:
An incorrect

run.

205Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 205

Listing 12-2: A Simplified Version of the Game Twenty-One

import java.util.Random;

class PlayTwentyOne {

public static void main(String args[]) {
Random myRandom = new Random();
int card, total = 0;

System.out.println(“Card Total”);

while (total < 21) {
card = myRandom.nextInt(10) + 1;
total += card;

System.out.print(card);
System.out.print(“ “);
System.out.println(total);

}

if (total == 21) {
System.out.println(“You win :-)”);

} else {
System.out.println(“You lose :-(“);

}
}

}

206 Part III: Controlling the Flow

Escapism
You can use a neat trick to make a program’s
output line up correctly. In Figure 12-5, the num-
bers 8 8, then 6 14 (and so on) are displayed. I
want these numbers to be right under the head-
ing words Card and Total. Normally, you can
get perfect vertical columns by pressing the tab
key, but a computer program creates the output in
Figure 12-5. How can you get a computer program
to press the tab key?

In Java, there’s a way. You can put \t inside
double quote marks.

System.out.println(“Card\tTotal
”);

System.out.print(card);

System.out.print(“\t”);
System.out.println(total);

In the first statement, the computer displays
Card, then jumps to the next tab stop on the
screen, and then displays Total. In the next
three statements, the computer displays a card
number (like the number 6), then jumps to the next
tab stop (directly under the word Total), and
then displays a total value (like the number 14).

The \t combination of characters is an example
of an escape sequence. Another of Java’s escape
sequences, the combination \n, moves the cursor
to a new line. In other words, System.out.
print(“Hello\n”) does the same thing as
System.out.println(“Hello”).

18_588745 ch12.qxd 3/16/05 9:21 PM Page 206

If you’ve read this whole section, then you’re probably exhausted. Creating a
loop can be a lot of work. Fortunately, the more you practice, the easier it
becomes.

Thinking About Loops (Priming)
I remember when I was a young boy. We lived on Front Street in Philadelphia,
near where the El train turned onto Kensington Avenue. Come early morning,
I’d have to go outside and get water from the well. I’d pump several times
before any water would come out. Ma and Pa called it “priming the pump.”

These days I don’t prime pumps. I prime while loops. Consider the case of a
busy network administrator. She needs a program that extracts a username
from an e-mail address. For example, the program reads

John@BurdBrain.com

and writes

John

How does the program do it? Like other examples in the chapter, this prob-
lem involves repetition:

Repeatedly do the following:
Read a character.
Write the character.

The program then stops the repetition when it finds the @ sign. I take a stab
at writing this program. My first attempt doesn’t work, but it’s a darn good
start. It’s in Listing 12-3.

Listing 12-3: Trying to Get a Username from an E-mail Address

/*
* This code does NOT work, but I’m not discouraged.
*/
import java.util.Scanner;

class FirstAttempt {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
char symbol = ‘ ‘;

(continued)

207Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 207

Listing 12-3 (continued)
while (symbol != ‘@’) {

symbol = myScanner.findInLine(“.”).charAt(0);
System.out.print(symbol);

}

System.out.println();
}

}

When you run the code in Listing 12-3, you get the output shown in Figure 12-9.
The user types one character after another — the letter J, then o, then h, and
so on. At first, the program in Listing 12-3 does nothing. (The computer doesn’t
send any of the user’s input to the program until the user presses Enter.) After
the user types a whole e-mail address and presses Enter, the program gets its
first character (the J in John).

Unfortunately, the program’s output isn’t what you expect. Instead of just the
user name John, you get the username and the @ sign.

To find out why this happens, follow the computer’s actions as it reads the
input John@BurdBrain.com:

Set symbol to ‘ ‘ (a blank space).

Is that blank space the same as an @ sign?
No, so perform a loop iteration.

Input the letter ‘J’.
Print the letter ‘J’.

Is that ‘J’ the same as an @ sign?
No, so perform a loop iteration.

Input the letter ‘o’.
Print the letter ‘o’.

Is that ‘o’ the same as an @ sign?
No, so perform a loop iteration.

Input the letter ‘h’.
Print the letter ‘h’.

Figure 12-9:
Oops! Got
the @ sign

too.

208 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 208

Is that ‘h’ the same as an @ sign?
No, so perform a loop iteration.

Input the letter ‘n’.
Print the letter ‘n’.

Is that ‘n’ the same as an @ sign? //Here’s the problem.
No, so perform a loop iteration.

Input the @ sign.
Print the @ sign. //Oops!

Is that @ sign the same as an @ sign?
Yes, so stop iterating.

Near the end of the program’s run, the computer compares the letter n with
the @ sign. Because n isn’t an @ sign, the computer dives right into the loop:

� The first statement in the loop reads an @ sign from the keyboard.

� The second statement in the loop doesn’t check to see if it’s time to stop
printing. Instead, that second statement just marches ahead and displays
the @ sign.

After you’ve displayed the @ sign, there’s no going back. You can’t change your
mind and undisplay the @ sign. So the code in Listing 12-3 doesn’t quite work.

Working on the problem
You learn from your mistakes. The problem with Listing 12-3 is that, between
reading and writing a character, the program doesn’t check for an @ sign.
Instead of doing “Test, Input, Print,” it should do “Input, Test, Print.” That
is, instead of doing this:

Is that ‘o’ the same as an @ sign?
No, so perform a loop iteration.

Input the letter ‘h’.
Print the letter ‘h’.

Is that ‘h’ the same as an @ sign?
No, so perform a loop iteration.

Input the letter ‘n’.
Print the letter ‘n’.

Is that ‘n’ the same as an @ sign? //Here’s the problem.
No, so perform a loop iteration.

Input the @ sign.
Print the @ sign. //Oops!

209Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 209

the program should do this:

Input the letter ‘o’.
Is that ‘o’ the same as an @ sign?
No, so perform a loop iteration.

Print the letter ‘o’.

Input the letter ‘n’.
Is that ‘n’ the same as an @ sign?
No, so perform a loop iteration.

Print the letter ‘n’.

Input the @ sign.
Is that @ sign the same as an @ sign?
Yes, so stop iterating.

This cycle is shown in Figure 12-10.

You can try to imitate the following informal pattern:

Input a character.
Is that character the same as an @ sign?
If not, perform a loop iteration.

Print the character.

Figure 12-10:
What the
program

needs to do.

210 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 210

The problem is, you can’t create a while loop that looks like this:

//This is not correct code:
{

symbol = myScanner.findInLine(“.”).charAt(0);
while (symbol != ‘@’)

System.out.print(symbol);
}

You can’t sandwich a while statement’s condition between two of the state-
ments that you intend to repeat. So what can you do? You need to follow the
flow in Figure 12-11. Because every while loop starts with a test, that’s where
you jump into the circle, First Test, then Print, and finally Input.

Listing 12-4 shows the embodiment of this “test, then print, then input” strategy.

Listing 12-4: Nice Try, But . . .

/*
* This code almost works, but there’s one tiny error:
*/
import java.util.Scanner;

(continued)

Figure 12-11:
Jumping into

a loop.

211Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 211

Listing 12-4 (continued)

class SecondAttempt {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
char symbol = ‘ ‘;

while (symbol != ‘@’) {
System.out.print(symbol);
symbol = myScanner.findInLine(“.”).charAt(0);

}

System.out.println();
}

}

A run of the Listing 12-4 code is shown in Figure 12-12. The code is almost
correct, but I still have a slight problem. Notice the blank space before the
user’s input. The program races prematurely into the loop. The first time the
computer executes the statements

System.out.print(symbol);
symbol = myScanner.findInLine(“.”).charAt(0);

the computer displays an unwanted blank space. Then the computer gets the
J in John. In some applications, an extra blank space is no big deal. But in
other applications, extra output can be disastrous.

Fixing the problem
Disastrous or not, an unwanted blank space is the symptom of a logical flaw.
The program shouldn’t display results before it has any meaningful results to
display. The solution to this problem is called . . . (drumroll, please) . . . priming
the loop. You pump findInLine(“.”).charAt(0) once to get some values
flowing. Listing 12-5 shows you how to do it.

Figure 12-12:
The

computer
displays an
extra blank

space.

212 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 212

Listing 12-5: How to Prime a Loop

/*
* This code works correctly!
*/
import java.util.Scanner;

class GetUserName {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
char symbol;

symbol = myScanner.findInLine(“.”).charAt(0);

while (symbol != ‘@’) {
System.out.print(symbol);
symbol = myScanner.findInLine(“.”).charAt(0);

}

System.out.println();
}

}

Listing 12-5 follows the strategy shown in Figure 12-13. First you get a character
(the letter J in John, for example), then you enter the loop. After you’re in the
loop, you test the letter against the @ sign, and print the letter if it’s appropri-
ate to do so. Figure 12-14 shows a beautiful run of the GetUserName program.

Figure 12-13:
The strategy

in Listing
12-5.

213Chapter 12: Around and Around It Goes

18_588745 ch12.qxd 3/16/05 9:21 PM Page 213

The priming of loops in an important programming technique. But it’s not the
end of the story. In Chapters 14, 15, and 16, you can read about some other
useful looping tricks.

Figure 12-14:
A run of the

code in
Listing 12-5.

214 Part III: Controlling the Flow

18_588745 ch12.qxd 3/16/05 9:21 PM Page 214

Chapter 13

Piles of Files: Dealing with
Information Overload

In This Chapter
� Using data on your hard drive

� Writing code to access the hard drive

� Troubleshooting input/output behavior

Consider these scenarios:

� You’re a business owner with hundreds of invoices. To avoid boxes full
of paper, you store invoice data in a file on your hard drive. You need
customized code to sort and classify the invoices.

� You’re an astronomer with data from scans of the night sky. When you’re
ready to analyze a chunk of data, you load the chunk onto your com-
puter’s hard drive.

� You’re the author of a popular self-help book. Last year’s fad was called
the Self Mirroring Method. This year’s craze is the Make Your Cake
System. You can’t modify your manuscript without converting to the
publisher’s new specifications. The trouble is, there’s no existing soft-
ware to make the task bearable.

Each situation calls for a new computer program, and each program reads
from a large data file. On top of all that, each program creates a brand new
file containing bright, shiny results.

In previous chapters, the examples get input from the keyboard and send
output to the screen. That’s fine for small tasks, but you can’t have the com-
puter prompt you for each bit of night sky data. For big problems, you need
lots of data, and the best place to store the data is on a computer’s hard
drive.

19_588745 ch13.qxd 3/16/05 9:24 PM Page 215

Running a Disk-Oriented Program
To deal with volumes of data, you need tools for reading from (and writing to)
disk files. At the mere mention of disk files, some peoples’ hearts start to pal-
pitate with fear. After all, a disk file is elusive and invisible. It’s stored some-
where inside your computer, with some magic magnetic process.

The truth is, getting data from a disk is very much like getting data from the
keyboard. And printing data to a disk is like printing data to the computer
screen.

Consider the scenario when you run the code in the previous chapters. You
type some stuff on the keyboard. The program takes this stuff, and spits out
some stuff of its own. The program sends this new stuff to the screen. In
effect, the flow of data goes from the keyboard, to the computer’s innards,
and on to the screen, as shown in Figure 13-1.

Of course, the goal in this chapter is the scenario in Figure 13-2. There’s a file
containing data on your hard drive. The program takes data from the disk file
and spits out some brand new data. The program then sends the new data to
another file on the hard drive. In effect, the flow of data goes from a disk file,
to the computer’s innards, and on to another disk file.

Figure 13-1:
Using the
keyboard

and screen.

216 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 216

The two scenarios in Figures 13-1 and 13-2 are very similar. In fact, it helps to
remember these fundamental points:

� The stuff in a disk file is no different from the stuff that you type on a
keyboard.

If a keyboard-reading program expects you to type 19.95 5, then the
corresponding disk-reading program expects a file containing those
same characters, 19.95 5. If a keyboard-reading program expects you
to press Enter and type more characters, then the corresponding disk-
reading program expects more characters on the next line in the file.

� The stuff in a disk file is no different from the stuff that you see on the
screen.

If a screen-printing program displays the number 99.75, then the corre-
sponding disk-writing program writes the number 99.75 to a file. If a
screen-printing program moves the cursor to the next line, then the
corresponding disk-writing program creates a new line in the file.

If you have trouble imagining what you have in a disk file, just imagine the
text that you would type on the keyboard, or the text that you would see on
the computer screen. That same text can appear in a file on your disk.

A sample program
Listing 13-1 contains a keyboard/screen program. The program multiplies unit
price by quantity to get a total price. A run of the code is shown in Figure 13-3.

cookedData.txt
9 9 . 7 5

rawData.txt
1 9 . 9 5 5

Figure 13-2:
Using disk

files.

217Chapter 13: Piles of Files: Dealing with Information Overload

19_588745 ch13.qxd 3/16/05 9:24 PM Page 217

Listing 13-1: Using the Keyboard and the Screen

import java.util.Scanner;

class ComputeTotal {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
double unitPrice, quantity, total;

unitPrice = myScanner.nextDouble();
quantity = myScanner.nextInt();

total = unitPrice * quantity;

System.out.println(total);
}

}

The goal is to write a program like the one in Listing 13-1. But instead of talk-
ing to your keyboard and screen, this new program talks to your hard drive.
The new program reads unit price and quantity from your hard drive, and
writes the total back to your hard drive.

Java’s API has everything you need for interacting with a hard drive. A nice
example is in Listing 13-2.

Listing 13-2: Using Input and Output Files

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ReadAndWrite {

public static void main(String args[])
throws FileNotFoundException {

Figure 13-3:
Read

from the
keyboard;

write to the
screen.

218 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 218

Scanner diskScanner =
new Scanner(new File(“rawData.txt”));

PrintStream diskWriter =
new PrintStream(“cookedData.txt”);

double unitPrice, quantity, total;

unitPrice = diskScanner.nextDouble();
quantity = diskScanner.nextInt();

total = unitPrice * quantity;

diskWriter.println(total);
}

}

Creating code that messes
with your hard drive

“I _____ (print your name)___ agree to pay $_____ each month on the ___th
day of the month.”

Fill in the blanks. That’s all you have to do. Reading input from a disk can
work the same way. Just fill in the blanks in Listing 13-3.

Listing 13-3: A Template to Read Data from a Disk File

/*
* Before you can compile this code,
* you must fill in the blanks.
*/
import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

class _______________ {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“___________”));

________ = diskScanner.nextInt();
________ = diskScanner.nextDouble();
________ = diskScanner.nextLine();
________ = diskScanner.findInLine(“.”).charAt(0);

(continued)

219Chapter 13: Piles of Files: Dealing with Information Overload

19_588745 ch13.qxd 3/16/05 9:24 PM Page 219

Listing 13-3 (continued)

// Etc.
}

}

To use Listing 13-3, make up a name for your class. Insert that name into the
first blank space. Type the name of the input file in the second space (between
the quotation marks). Then, to read a whole number from the input file, call
diskScanner.nextInt. To read a number that has a decimal point, call
diskScanner.nextDouble. You can call any of the Scanner methods in Table
5-1 (the same methods you call when you get keystrokes from the keyboard).

The stuff in Listing 13-3 isn’t a complete program. Instead, it’s a code template —
a half-baked piece of code, with spaces for you to fill in.

With the template in Listing 13-3, you can input data from a disk file. With a sim-
ilar template, you can write output to a file. The template is in Listing 13-4.

Listing 13-4: A Template to Write Data to a Disk File

/*
* Before you can compile this code,
* you must fill in the blanks.
*/
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class _______________ {

public static void main(String args[])
throws FileNotFoundException {

PrintStream diskWriter =
new PrintStream(“___________”);

diskWriter.print(_____);
diskWriter.println(_____);

// Etc.
}

}

To use Listing 13-4, insert the name of your class into the first blank space.
Type the name of the output file in the space between the quotation marks.
Then, to write part of a line to the output file, call diskWriter.print. To
write the remainder of a line to the output file, call diskWriter.println.

220 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 220

221Chapter 13: Piles of Files: Dealing with Information Overload

A quick look at Java’s disk access facilities
Templates like the ones in Listings 13-3 and 13-4
are very nice. But knowing how the templates
work is even better. Here are a few tidbits
describing the inner workings of Java’s disk
access code.

� A PrintStream is something you can use
for writing output.

A PrintStream is like a Scanner. The
big difference is, a Scanner is for reading
input and a PrintStream is for writing
output. To see what I mean, look at Listing
13-2. Notice the similarity between the
statements that use Scanner and the
statements that use PrintStream.

The word PrintStream is defined in the
Java API.

� In Listing 13-2, the expression new
File(“rawData.txt”) plays the same
role that System.in plays in so many
other programs.

Just as System.in stands for the com-
puter’s keyboard, the expression new
File(“rawData.txt”) stands for a file
on your computer’s hard drive. When the
computer calls new File(“rawData.
txt”), the computer creates something
like System.in— something you can stuff
inside the new Scanner() parentheses.

The word File is defined in the Java API.

� A FileNotFoundException is some-
thing that may go wrong during an attempt to
read input from a disk file (or an attempt
to write output to a disk file).

Disk file access is loaded with pitfalls. Even
the best programs run into disk access trou-
ble occasionally. So to brace against such
pitfalls, Java insists on your adding some
extra words to your code.

In Listing 13-2, the added words throws
FileNotFoundException form a
throws clause. A throws clause is a kind of
disclaimer. Putting a throws clause in your
code is like saying “I realize that this code
can run into trouble.”

Of course in the legal realm, you often have
no choice about signing disclaimers. “If you
don’t sign this disclaimer then the surgeon
won’t operate on you.” Okay, then; I’ll sign it.
The same is true with a Java throws clause.
If you put things like new PrintStream
(“cookedData.txt”) in your code, and
you don’t add something like throws
FileNotFoundException, then the Java
compiler refuses to compile your code.

So when do you need this throws File-
NotFoundException clause, and when
should you do without it? Well, having certain
things in your code — things like new
PrintStream(“cookedData.txt”)—
force you to create a throws clause. You can
learn all about the kinds of things that
demand throws clauses. But at this point, it’s
better to concentrate on other programming
issues. As a beginning Java programmer, the
safest thing to do is to follow the templates in
Listings 13-3 and 13-4.

The word FileNotFoundException is . . .
you guessed it . . . defined in the Java API.

� To create this chapter’s code, I made up the
names diskScanner and diskWriter.

The words diskScanner and disk-
Writer don’t come from the Java API. In
place of diskScanner and diskWriter
you can use any names you want. All you
have to do is to use the names consistently
within each of your Java programs.

19_588745 ch13.qxd 3/16/05 9:24 PM Page 221

The Pro version of JCreator has a built-in feature for creating and inserting code
templates. To download a trial copy of JCreator Pro, visit www.JCreator.com.

If your program gets input from one disk file and writes output to another,
then combine the stuff from Listings 13-3 and 13-4. When you do, you get a
program like the one in Listing 13-2.

Running the sample program
Testing the code in Listing 13-2 is a three-step process. Here’s an outline of
the three steps:

1. Create rawData.txt file.

2. Compile and run the code in Listing 13-2.

3. View the contents of the cookedData.txt file.

The next few sections cover each step in detail.

Creating an input file
You can use any plain old text editor to create an input file for the code in
Listing 13-2. In this section, I show you how to use JCreator’s built-in editor.

1. In the File View pane, right-click the name of a project.

In this example, select the project containing the Listing 13-2 code.

2. In the right-click context menu, choose Add➪New File.

JCreator’s File Wizard opens to the File Path tab.

3. In the Name field, type the name of your new data file.

You can type any name that your computer considers to be a valid file
name. For this section’s example, I used the name rawData.txt, but
other names, such as rawData.dat, rawData, or raw123.01.dataFile
are fine. I try to avoid troublesome names (including short, uninforma-
tive names and names containing blank spaces) but the name you
choose is entirely up to you (and your computer’s operating system, and
your boss’s whims, and your customer’s specifications).

Always include a dot in File Path tab’s Name field. If the file’s name has no
extension, add a dot at the end of the name. For example, to create a file
named rawData (not rawData.txt or rawData.dat), type rawData.
(that’s rawData followed by a dot.) If you don’t type your own dot any-
where in the Name field, then JCreator adds a default extension to the
file’s name (turning rawData into rawData.java).

222 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 222

4. Click Finish.

The file’s name appears in JCreator’s File View pane. A tab (with the new
file’s name) appears in JCreator’s Editor pane.

5. Type text in the Editor pane.

To create this section’s example, I typed the text 19.95 5 as shown in
Figure 13-4. To create your own example, type whatever text your pro-
gram needs during its run.

This book’s Web site has tips for readers who need to create data files with-
out using JCreator. This includes instructions for Linux, Unix, and Macintosh
environments.

Compiling and running the code
Do the same thing you do with any other Java program. Choose Build➪Compile
Project, and then choose Build➪Execute Project. The result of the run (at least
the part of the result that you can see in JCreator’s General Output pane) is
shown in Figure 13-5.

I’m the first to admit it — the run in Figure 13-5 is duller than dirt. The total
lack of any noticeable output gives some people the willies. The truth is, a pro-
gram like the one in Listing 13-2 does all of its work behind the scenes. The
program has no statements that read from the keyboard and has no statements
that print to the screen. So if you have a very loud hard drive, you may hear a
little chirping sound when you choose Build➪Execute Project, but you won’t
type any program input, and you won’t see any program output.

The program sends all its output to a file on your hard drive. So what do you
do to see the file’s contents?

Figure 13-5:
Compiling

and running
the code in

Listing 13-2.

Figure 13-4:
Editing an
input file.

223Chapter 13: Piles of Files: Dealing with Information Overload

19_588745 ch13.qxd 3/16/05 9:24 PM Page 223

Viewing the output file
To see the output of the program in Listing 13-2, follow these steps:

1. In the File View pane, right-click the name of a project.

In this example, select the project containing the Listing 13-2 code.

2. In the right-click context menu, choose Add➪Add Existing Files.

A familiar Open dialog box appears.

3. In the Open dialog box’s Files of Type list, select All Files(*.*).

When you select All Files(*.*), additional entries appear in the Open
dialog’s list of filenames.

4. In the list of filenames, double-click cookedData.txt.

As a result, the name cookedData.txt appears in the File View pane.

5. Double-click the cookedData.txt branch in the File View pane.

The contents of cookedData.txt appear in JCreator’s editor. (See
Figure 13-6.)

Troubleshooting problems with disk files
When you run the code in Listing 13-2, the computer executes new Scanner
(new File(“rawData.txt”)). If the Java virtual machine can’t find the
rawData.txt file, then you see a message like the one shown in Figure 13-7.
This error message can be very frustrating. In many cases, you know darn well
that there’s a rawData.txt file on your hard drive. The stupid computer
simply can’t find it.

Figure 13-7:
The

computer
can’t find
your file.

Figure 13-6:
Viewing an
output file.

224 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 224

There’s no quick, sure-fire way to fix this problem. But you should always
check the following things first:

� Check again for a file named rawData.txt.

Open My Computer and poke around for a file with that name.

The filenames displayed in My Computer can be misleading. You may
see the name rawData even though the file’s real name is rawData.txt.
To fix this problem once and for all, read the sidebar “Those pesky file-
name extensions” in Chapter 3.

� Check the spelling of the file’s name.

Make sure that the name in your program is exactly the same as the
name of the file on your hard drive. Just one misplaced letter can keep
the computer from finding a file.

� If you use Unix or Linux, check the capitalization of the file’s name.

In Unix and Linux, the difference between uppercase and lowercase can
baffle the computer.

� Check that the file is in the correct directory.

Sure, you have a file named rawData.txt. But, to find the file, don’t
expect the computer to search everywhere on your hard drive.

As a general rule, you should have rawData.txt and the Listing 13-2
code in the same directory on your hard drive. But file locations can be
tricky, especially if you work in an unfamiliar programming environment.
In some situations the general rule may not apply to you.

So here’s a trick you can use: Compile and run this stripped-down ver-
sion of the code in Listing 13-2:

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class JustWrite {

public static void main(String args[])
throws FileNotFoundException {

PrintStream diskWriter =
new PrintStream(“cookedData.txt”);

diskWriter.println(99.75);
}

}

This program has no need for a stinking rawData.txt file. If you run this
code and get no error messages, then search your hard drive for this pro-
gram’s output (the cookedData.txt file). Note the name of the directory
that contains the cookedData.txt file. When you put rawData.txt in
this same directory, then any problem you had running the Listing 13-2
code should go away.

225Chapter 13: Piles of Files: Dealing with Information Overload

19_588745 ch13.qxd 3/16/05 9:24 PM Page 225

� Check the rawData.txt file’s content.

It never hurts to peek inside the rawData.txt file, and make sure that
the file contains the numbers 19.95 5. If rawData.txt no longer
appears in JCreator’s editor pane, find the Listing 13-2 project in the File
View tree. Double-clicking the project’s rawData.txt branch makes that
file appear in JCreator’s editor pane.

Writing a Disk-Oriented Program
Listing 13-2 is very much like Listing 13-1. In fact, you can go from Listing 13-1
to Listing 13-2 with some simple editing. Here’s how:

� Add the following import declarations to the beginning of your code:

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

� Add the following throws clause to the method header:

throws FileNotFoundException

� In the call to new Scanner, replace System.in with a call to new File
as follows:

Scanner aVariableName =
new Scanner(new File(“inputFileName”))

� Create a PrintStream for writing output to a disk file.

PrintStream anotherVariableName =
new PrintStream(“outputFileName”);

� Use the Scanner variable name in calls to nextInt, nextLine, and so on.

For example, to go from Listing 13-1 to Listing 13-2, I change

unitPrice = myScanner.nextDouble();
quantity = myScanner.nextInt();

to

unitPrice = diskScanner.nextDouble();
quantity = diskScanner.nextInt();

� Use the PrintStream variable name in calls to print and println.

For example, to go from Listing 13-1 to Listing 13-2, I change

System.out.println(total);

to

diskWriter.println(total);

226 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 226

Reading from a file
All the Scanner methods can read from existing disk files. For instance, to
read a word from a file named mySpeech, use code of the following kind:

Scanner diskScanner =
new Scanner(new File(“mySpeech”));

String oneWord = diskScanner.next();

To read a character from a file named letters.dat, and then display the
character on the screen, you can do something like this:

Scanner diskScanner =
new Scanner(new File(“letters.dat”));

System.out.println(diskScanner.findInLine(“.”).charAt(0));

Notice how I read from a file named mySpeech, not mySpeech.txt or
mySpeech.doc. Anything that you put after the dot is called a filename exten-
sion, and for a file full of numbers and other data, the filename extension is
optional. Sure, a Java program must be called something.java, but a data
file can be named mySpeech.txt, mySpeech.reallymine.allmine, or just
mySpeech. As long as the name in your new File call is the same as the file-
name on your computer’s hard drive, everything is okay.

Writing to a file
The print and println methods can write to disk files. Here are some
examples:

� During a run of the code in Listing 13-2, the variable total stores the
number 99.75. To deposit 99.75 into the cookedData.txt file, you execute

diskWriter.println(total);

This println call writes to a disk file because of the following line in
Listing 13-2:

PrintStream diskWriter =
new PrintStream(“cookedData.txt”);

� In another version of the program, you may decide not to use a total
variable. To write 99.75 to the cookedData.txt file, you can call

diskWriter.println(unitPrice * quantity);

� To display OK on the screen, you can make the following method call:

System.out.print(“OK”);

227Chapter 13: Piles of Files: Dealing with Information Overload

19_588745 ch13.qxd 3/16/05 9:24 PM Page 227

To write OK to a file named approval.txt, you can use the following code:

PrintStream diskWriter =
new PrintStream(“approval.txt”);

diskWriter.print(“OK”);

� You may decide to write OK as two separate characters. To write to the
screen, you can make the following calls:

System.out.print(‘O’);
System.out.print(‘K’);

And to write OK to the approval.txt file, you can use the following code:

PrintStream diskWriter =
new PrintStream(“approval.txt”);

diskWriter.print(‘O’);
diskWriter.print(‘K’);

� Like their counterparts for System.out, the disk-writing print and
println methods differ in their end-of-line behaviors. For example, you
want to display the following text on the screen:

Hankees Socks
7 3

To do this, you can make the following method calls:

System.out.print(“Hankees “);
System.out.println(“Socks”);
System.out.print(7);
System.out.print(“ “);
System.out.println(3);

To plant the same text into a file named scores.dat, you can use the
following code:

PrintStream diskWriter =
new PrintStream(“scores.dat”);

diskWriter.print(“Hankees “);
diskWriter.println(“Socks”);
diskWriter.print(7);
diskWriter.print(“ “);
diskWriter.println(3);

When you make up a new data filename, you don’t have to use a particular
three-letter extension. In fact, you don’t have to use an extension at all. Out
of habit, I normally use .txt or .dat, but I could also use .text, .data,
.flatworm, or I could skip the extension entirely.

228 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 228

229Chapter 13: Piles of Files: Dealing with Information Overload

Name that file
What if a file that contains data is not in your
program’s project directory? If that’s the case,
when you call new File, the file’s name must
include directory names. For example, imagine
that your TallyBudget.java program is in
JCreator’s

MyProjects\Chapter13_Listing09
directory, and that a file named totals is in a
directory named c:\advertisements. (See
the following figure.)

Then, to refer to the totals file, you include
the directory name, the filename and (to be on
the safe side) the drive letter:

Scanner diskScanner =
new Scanner(new
File(“c:\\advertisements\\to
tals”));

Notice how I use double backslashes. To find
out why, look at the sidebar entitled “Escapism”
in Chapter 12. The string “\totals” with a
single backslash stands for a tab, followed by
otals. But in this example, the file’s name is
totals, not otals. With a single backslash,
the name ...advertisements\totals”
would not work correctly.

Inside quotation marks, you use the double back-
slash to indicate what would usually be a single
backslash. So the string “c:\\advertise-
ments\\totals”stands for c:\advertise-
ments\totals. That’s good, because c:\
advertisements\totals is the way you nor-
mally refer to a file in Windows.

Of course, if you use Unix, Linux, or a Macintosh,
then you’re in luck. This double backslash non-
sense doesn’t apply to you. Just write

Scanner diskScanner =
new Scanner(new
File(“/home/bburd/advertise-
ments/totals”));

or something similar that reflects your system’s
directory structure.

19_588745 ch13.qxd 3/16/05 9:24 PM Page 229

Writing, Rewriting, and Re-rewriting
Given my mischievous ways, I tried a little experiment. I asked myself what
would happen if I ran the same file-writing program more than once. So I cre-
ated a tiny program (the program in Listing 13-5) and I ran the program twice.
Then I examined the program’s output file. The output file (shown in Figure
13-8) contains only two letters.

Listing 13-5: A Little Experiment

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class WriteOK {

public static void main(String args[])
throws FileNotFoundException {

PrintStream diskWriter =
new PrintStream(new File(“approval.txt”));

diskWriter.print (‘O’);
diskWriter.println(‘K’);

}
}

Here’s the sequence of events from the start to the end of the experiment:

1. Before I run the code in Listing 13-5, my computer’s hard drive has no
approval.txt file.

That’s okay. Every experiment has to start somewhere.

2. I run the code in Listing 13-5.

The call to new PrintStream in Listing 13-5 creates a file named
approval.txt. Initially, the new approval.txt file contains no charac-
ters. Later in Listing 13-5, calls to print and println put characters in
the file. So after running the code, the approval.txt file contains two
letters — the letters OK.

Figure 13-8:
Testing the

waters.

230 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 230

3. I run the code from Listing 13-5 a second time.

At this point, I could imagine seeing OKOK in the approval.txt file. But
that’s not what I see in Figure 13-8. After running the code twice, the
approval.txt file contains just one OK. Here’s why:

• The call to new PrintStream in Listing 13-5 deletes my existing
approval.txt file. The call creates a new, empty approval.txt
file.

• After creating a new approval.txt file, the print method call
drops the letter O into the new file.

• The println method call adds the letter K to the same
approval.txt file.

So that’s the story. Each time you run the program, it trashes whatever
approval.txt file is already on the hard drive. Then the program adds data
to a newly created approval.txt file.

231Chapter 13: Piles of Files: Dealing with Information Overload

19_588745 ch13.qxd 3/16/05 9:24 PM Page 231

232 Part III: Controlling the Flow

19_588745 ch13.qxd 3/16/05 9:24 PM Page 232

Chapter 14

Creating Loops within Loops
In This Chapter
� Analyzing loop strategies
� Diagnosing loop problems
� Creating nested loops

If you’re an editor at Wiley Publishing, please don’t read the next few para-
graphs. In the next few paragraphs, I give away an important trade secret

(something you really don’t want me to do).

I’m about to describe a surefire process for writing a best-selling For Dummies
book. Here’s the process:

Write several words to create a sentence. Do this several times to create a
paragraph.

Repeat the following to form a paragraph:
Repeat the following to form a sentence:

Write a word.

Repeat the above instructions several times to make a section. Make several
sections, and then make several chapters.

Repeat the following to form a best-selling For Dummies book:
Repeat the following to form a chapter:

Repeat the following to form a section:
Repeat the following to form a paragraph:

Repeat the following to form a sentence:
Write a word.

This process involves a loop within a loop within a loop within a loop within
a loop. It’s like a verbal M.C. Escher print. Is it useful, or is it frivolous?

20_588745 ch14.qxd 3/16/05 9:22 PM Page 233

Well, in the world of computer programming, this kind of thing happens all
the time. Most five-layered loops are hidden behind method calls, but two-
layered loops within loops are everyday occurrences. So this chapter tells
you how to compose a loop within a loop. It’s very useful stuff.

By the way, if you’re a Wiley Publishing editor, you can start reading again
from this point onward.

Paying Your Old Code a Little Visit
The program in Listing 12-5 extracts a username from an e-mail address. For
example, the program reads

John@BurdBrain.com

from the keyboard, and writes

John

to the screen. Let me tell you . . . in this book, I have some pretty lame
excuses for writing programs, but this simple e-mail example tops the list!
Why would you want to type something on the keyboard, only to have the
computer display part of what you typed? There must be a better use for
code of this kind.

Sure enough, there is. The BurdBrain.com network administrator has a list of
10,000 employees’ e-mail addresses. More precisely, the administrator’s hard
drive has a file named email.txt. This file contains 10,000 e-mail addresses,
with one address on each line, as shown in Figure 14-1.

The company’s e-mail software has an interesting feature. To send e-mail
within the company, you don’t need to type an entire e-mail address. For
example, to send e-mail to John, you can type the username John instead of
John@BurdBrain.com. (This @BurdBrain.com part is called the host name.)

Figure 14-1:
A list of

e-mail
addresses.

234 Part III: Controlling the Flow

20_588745 ch14.qxd 3/16/05 9:22 PM Page 234

So the company’s network administrator wants to distill the content of the
email.txt file. She wants a new file, usernames.txt, that contains user-
names with no host names, as shown in Figure 14-2.

Reworking some existing code
To solve the administrator’s problem, you need to modify the code in Listing
12-5. The new version gets an e-mail address from a disk file and writes a
username to another disk file. The new version is in Listing 14-1.

Listing 14-1: From One File to Another

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ListOneUsername {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“email.txt”));

PrintStream diskWriter =
new PrintStream(“usernames.txt”);

char symbol;

symbol = diskScanner.findInLine(“.”).charAt(0);

while (symbol != ‘@’) {
diskWriter.print(symbol);
symbol = diskScanner.findInLine(“.”).charAt(0);

}

diskWriter.println();
}

}

Figure 14-2:
Usernames

extracted
from the list

of e-mail
addresses.

235Chapter 14: Creating Loops within Loops

20_588745 ch14.qxd 3/16/05 9:22 PM Page 235

Listing 14-1 does almost the same thing as its forerunner in Listing 12-5. The
only difference is that the code in Listing 14-1 doesn’t interact with the user.
Instead, the code in Listing 14-1 interacts with disk files.

Running your code
Here’s how you run the code in Listing 14-1:

1. Put the file email.txt in your project directory along with the
ListOneUsername.java file (the code from Listing 14-1).

In the email.txt file, put just one e-mail address. Any address will do,
as long as the address contains an @ sign.

2. Compile and run the code in Listing 14-1.

When you run the code, you see nothing interesting in the General
Output pane. All you see is the phrase Process completed.

3. View the contents of the usernames.txt file.

If your email.txt file contains John@BurdBrain.com, then the
usernames.txt file contains John.

For more details on any of these steps, see the discussion accompanying
Listings 13-2, 13-3, and 13-4 in Chapter 13.

Creating Useful Code
The previous section describes a network administrator’s problem — creating
a file filled with usernames from a file filled with e-mail addresses. The code in
Listing 14-1 solves part of the problem — it extracts just one e-mail address.
That’s a good start, but to get just one username, you don’t need a computer
program. A pencil and paper does the trick.

So don’t keep the network administrator waiting any longer. In this section, you
develop a program that processes dozens, hundreds, and even thousands of
e-mail addresses from a file on your hard drive.

First you need a strategy to create the program. Take the statements in
Listing 14-1 and run them over and over again. Better yet, have the state-
ments run themselves over and over again. Fortunately, you already know
how to do something over and over again: You use a loop. (See Chapter 12
for the basics on loops.)

236 Part III: Controlling the Flow

20_588745 ch14.qxd 3/16/05 9:22 PM Page 236

So here’s the strategy: Take the statements in Listing 14-1 and enclose them
in a larger loop:

while (not at the end of the email.txt file) {
Execute the statements in Listing 14-1

}

Looking back at the code in Listing 14-1, you see that the statements in that
code have a while loop of their own. So this strategy involves putting one
loop inside another loop:

while (not at the end of the email.txt file) {
//Blah-blah

while (symbol != ‘@’) {
//Blah-blah-blah

}

//Blah-blah-blah-blah
}

Because one loop is inside the other, they’re called nested loops. The old loop
(the symbol != ‘@’ loop) is the inner loop. The new loop (the end-of-file loop)
is called the outer loop.

Checking for the end of a file
Now all you need is a way to test the loop’s condition. How do you know
when you’re at the end of the email.txt file?

The answer comes from Java’s Scanner class. This class’s hasNext method
answers true or false to the following question:

Does the email.txt file have anything to read in it (beyond what you’ve
already read)?

If the program’s findInLine calls haven’t gobbled up all the characters in
the email.txt file, then the value of diskScanner.hasNext() is true. So to
keep looping while you’re not at the end of the email.txt file, you do the
following:

while (diskScanner.hasNext()) {
Execute the statements in Listing 14-1

}

237Chapter 14: Creating Loops within Loops

20_588745 ch14.qxd 3/16/05 9:22 PM Page 237

The first realization of this strategy is in Listing 14-2.

Listing 14-2: The Mechanical Combining of Two Loops

/*
* This code does NOT work (but
* you learn from your mistakes).
*/

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ListAllUsernames {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“email.txt”));

PrintStream diskWriter =
new PrintStream(“usernames.txt”);

char symbol;

while (diskScanner.hasNext()) {
symbol = diskScanner.findInLine(“.”).charAt(0);

while (symbol != ‘@’) {
diskWriter.print(symbol);
symbol =

diskScanner.findInLine(“.”).charAt(0);
}

diskWriter.println();
}

}
}

When you run the code in Listing 14-2, you get the disappointing response
shown in Figure 14-3.

Figure 14-3:
You goofed.

238 Part III: Controlling the Flow

20_588745 ch14.qxd 3/16/05 9:22 PM Page 238

How it feels to be a computer
What’s wrong with the code in Listing 14-2? To find out, I role-play the com-
puter. “If I were a computer, what would I do when I execute the code in
Listing 14-2?”

The first several things that I’d do are pictured in Figure 14-4. I would read the
J in John, then write the J in John, and then read the letter o (also in John).

After a few trips through the inner loop, I’d get the @ sign in John@BurdBrain.
com, as shown in Figure 14-5.

Finding this @ sign would jump me out of the inner loop and back to the top
of the outer loop, as shown in Figure 14-6.

I’d get the B in BurdBrain, and sail back into the inner loop. But then (horror
of horrors!) I’d write that B to the usernames.txt file. (See Figure 14-7.)

Figure 14-4:
Role-playing

the code in
Listing 14-2.

239Chapter 14: Creating Loops within Loops

20_588745 ch14.qxd 3/16/05 9:22 PM Page 239

Figure 14-6:
Leaving the
inner loop.

Figure 14-5:
Reaching

the end
of the

username.

240 Part III: Controlling the Flow

20_588745 ch14.qxd 3/16/05 9:22 PM Page 240

There’s the error! You don’t want to write host names to the usernames.txt
file. When the computer found the @ sign, it should have skipped past the rest
of John’s e-mail address.

At this point, you have a choice. You can jump straight to the corrected code
in Listing 14-3, or you can read on to find out about the error message in
Figure 14-3.

Why the computer accidentally
pushes past the end of the file
Ah! You decided to read on to see why Figure 14-3 has that nasty error message.

Once again, I role-play the computer. I’ve completed the steps in Figure 14-7. I
shouldn’t process BurdBrain.com with the inner loop. But unfortunately, I do.

I keep running and processing more e-mail addresses. When I get to the end
of the last e-mail address, I grab the m in BurdBrain.com and go back to test
for an @ sign, as shown in Figure 14-8.

Figure 14-7:
The error of

my ways.

241Chapter 14: Creating Loops within Loops

20_588745 ch14.qxd 3/16/05 9:22 PM Page 241

Now I’m in trouble. This last m certainly isn’t an @ sign. So I jump into the inner
loop, and try to get yet another character. (See Figure 14-9.) The email.txt
file has no more characters, so Java sends an error message to the computer
screen. (The NullPointerException error message is back in Figure 14-3.)

Figure 14-9:
Trying to

read past
the end of

the file.

Figure 14-8:
The

journey’s
last leg.

242 Part III: Controlling the Flow

20_588745 ch14.qxd 3/16/05 9:22 PM Page 242

Solving the problem
Listing 14-3 has the solution to the problem described with Figures 14-1 and
14-2. The code in this listing is almost identical to the code in Listing 14-2. The
only difference is the added call to nextLine. When the computer reaches an
@ sign, this nextLine call gobbles up the rest of the input line. (In other words,
the nextLine call gobbles up the rest of the e-mail address. The idea works
because each e-mail address is on its own separate line.) After chewing and
swallowing @BurdBrain.com, the computer moves gracefully to the next line
of input.

Listing 14-3: That’s Much Better!

/*
* This code is correct!!
*/

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ListAllUsernames {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“email.txt”));

PrintStream diskWriter =
new PrintStream(“usernames.txt”);

char symbol;

while (diskScanner.hasNext()) {
symbol = diskScanner.findInLine(“.”).charAt(0);

while (symbol != ‘@’) {
diskWriter.print(symbol);
symbol =

diskScanner.findInLine(“.”).charAt(0);
}

diskScanner.nextLine();
diskWriter.println();

}
}

}

To run the code in Listing 14-3, you need an email.txt file — a file like the one
shown in Figure 14-1. In the email.txt file, type several e-mail addresses.
Any addresses will do, as long as each address contains an @ sign and each

243Chapter 14: Creating Loops within Loops

20_588745 ch14.qxd 3/16/05 9:22 PM Page 243

address is on its own separate line. Save the email.txt file in your project
directory along with the ListAllUsernames.java file (the code from Listing
14-3). For more details, see the discussion accompanying Listings 13-2, 13-3,
and 13-4 in Chapter 13.

With Listing 14-3, you’ve reached an important milestone. You’ve analyzed
a delicate programming problem and found a complete, working solution.
The tools you used included thinking about strategies and role-playing the
computer. As time goes on, you can use these tools to solve bigger and better
problems.

244 Part III: Controlling the Flow

20_588745 ch14.qxd 3/16/05 9:22 PM Page 244

Chapter 15

The Old Runaround
In This Chapter
� More ways to create repetitive actions

� Creating loops within loops

� Insisting on a valid response from the user

� Looping through enumerated values

I remember it distinctly — the sense of dread I would feel on the way to
Aunt Edna’s house. She was a kind old woman, and her intentions were

good. But visits to her house were always so agonizing.

First we’d sit in the living room and talk about other relatives. That was okay,
as long as I understood what people were talking about. Sometimes, the
gossip would be about adult topics, and I’d become very bored.

After all the family chatter, my father would help Aunt Edna with her bills.
That was fun to watch, because Aunt Edna had a genetically inherited family
ailment. Like me and many of my ancestors, Aunt Edna couldn’t keep track of
paperwork to save her life. It was as if the paper had allergens that made Aunt
Edna’s skin crawl. After ten minutes of useful bill paying, my father would
find a mistake, an improper tally or something else in the ledger that needed
attention. He’d ask Aunt Edna about it, and she’d shrug her shoulders. He’d
become agitated trying to track down the problem, while Aunt Edna rolled
her eyes and smiled with ignorant satisfaction. It was great entertainment.

Then, when the bill paying was done, we’d sit down to eat dinner. That’s
when I would remember why I dreaded these visits. Dinner was unbearable.
Aunt Edna believed in Fletcherism — a health movement whose followers
chewed each mouthful of food one hundred times. The more devoted follow-
ers used a chart, with a different number for the mastication of each kind of
food. The minimal number of chews for any food was 32 — one chomp for
each tooth in your mouth. People who did this said they were “Fletcherizing.”

21_588745 ch15.qxd 3/16/05 9:20 PM Page 245

Mom and Dad thought the whole Fletcher business was silly, but they respected
Aunt Edna and felt that people her age should be humored, not defied. As for
me, I thought I’d explode from the monotony. Each meal lasted forever. Each
mouthful was an ordeal. I can still remember my mantra — the words I’d say
to myself without meaning to do so:

I’ve chewed 0 times so far.
Have I chewed 100 times yet? If not, then

Chew!
Add 1 to the number of times that I’ve chewed.
Go back to “Have I chewed” to find out if I’m done yet.

Repeating Statements a Certain Number
Times (Java for Statements)

Life is filled with examples of counting loops. And computer programming
mirrors life (. . . or is it the other way around?). When you tell a computer
what to do, you’re often telling the computer to print three lines, process ten
accounts, dial a million phone numbers, or whatever. Because counting loops
are so common in programming, the people who create programming lan-
guages have developed statements just for loops of this kind. In Java, the
statement that repeats something a certain number of times is called a for
statement. An example of a for statement is in Listing 15-1.

Listing 15-1: Horace Fletcher’s Revenge

import static java.lang.System.out;

class AuntEdnaSettlesForTen {

public static void main(String args[]) {

for (int count = 0; count < 10; count++) {
out.print(“I’ve chewed “);
out.print(count);
out.println(“ time(s).”);

}

out.println(“10 times! Hooray!”);
out.println(“I can swallow!”);

}
}

246 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 246

Figure 15-1 shows you what you get when you run the program of Listing 15-1:

� The for statement in Listing 15-1 starts by setting the count variable
equal to 0.

� Then the for statement tests to make sure that count is less than 10
(which it certainly is).

� Then the for statement dives ahead and executes the printing state-
ments between the curly braces. At this early stage of the game, the
computer prints I’ve chewed 0 time(s).

� Then the for statement executes count++ — that last thing inside the
for statement’s parentheses. This last action adds 1 to the value of
count.

This ends the first iteration of the for statement in Listing 15-1. Of course,
there’s more to this loop than just one iteration:

� With count now equal to 1, the for statement checks again to make sure
that count is less than 10. (Yes, 1 is smaller than 10.)

� Because the test turns out okay, the for statement marches back into
the curly braced statements and prints I’ve chewed 1 time(s) on the
screen.

� Then the for statement executes that last count++ inside its parenthe-
ses. The statement adds 1 to the value of count, increasing the value of
count to 2.

And so on. This whole thing keeps being repeated over and over again until,
after ten iterations, the value of count finally reaches 10. When this happens,
the check for count being less than 10 fails, and the loop’s execution ends.
The computer jumps to whatever statement comes immediately after the for
statement. In Listing 15-1, the computer prints 10 times! Hooray! I can
swallow! The whole process is illustrated in Figure 15-2.

Figure 15-1:
Chewing

ten times.

247Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 247

The anatomy of a for statement
A typical for statement looks like this:

for (Initialization; Condition; Update) {
Statements

}

After the word for, you put three things in parentheses: an Initialization, a
Condition, and an Update.

Each of the three items in parentheses plays its own distinct role:

� Initialization: The initialization is executed once, when the run of your
program first reaches the for statement.

� Condition: The condition is tested several times (at the start of each
iteration).

� Update: The update is also evaluated several times (at the end of each
iteration).

If it helps, think of the loop as if its text is shifted all around:

Figure 15-2:
The action

of the for
loop in

Listing 15-1.

248 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 248

//This is NOT real code
int count = 0
for count < 0 {

out.print(“I’ve chewed “);
out.print(count);
out.println(“ time(s).”);
count++;

}

249Chapter 15: The Old Runaround

Versatile looping statements
If you were stuck on a desert island with only
one kind of loop, what kind would you want to
have? The answer is, you can get along with
any kind of loop. The choice between a while
loop and a for loop is about the code’s style
and efficiency. It’s not about necessity.

Anything that you can do with a for loop, you
can do with a while loop as well. Consider, for
example, the for loop in Listing 15-1. Here’s
how you can achieve the same effect with a
while loop:

int count = 0;
while (count < 10) {

out.print(“I’ve chewed “);
out.print(count);
out.println(“ time(s).”);
count++;

}

In the while loop, you have explicit statements
to declare, initialize, and increment the count
variable.

The same kind of trick works in reverse.
Anything that you can do with a while loop,
you can do with a for loop as well. But turning
certain while loops into for loops seems
strained and unnatural. Consider a while loop
from Listing 12-2:

while (total < 21) {
card = myRandom.nextInt(10)
+ 1;

total += card;
System.out.print(card);
System.out.print(“
“);
System.out.println(total);

}

Turning this loop into a for loop means
wasting most of the stuff inside the for loop’s
parentheses:

for (; total < 21 ;) {
card = myRandom.nextInt(10)
+ 1;
total += card;
System.out.print(card);
System.out.print(“
“);
System.out.println(total);

}

The for loop above has a condition, but it has
no initialization and no update. That’s okay.
Without an initialization, nothing special hap-
pens when the computer first enters the for
loop. And without an update, nothing special
happens at the end of each iteration. It’s strange,
but it works.

Usually, when you write a for statement,
you’re counting how many times to repeat
something. But, in truth, you can do just about
any kind of repetition with a for statement.

21_588745 ch15.qxd 3/16/05 9:20 PM Page 249

You can’t write a real for statement this way. (The compiler would throw
code like this right into the garbage can.) Even so, this is the order in which
the parts of the for statement are executed.

The first line of a for statement (the word for followed by stuff in parenthe-
ses) is not a complete statement. So you almost never put a semicolon after
the stuff in parentheses. If you make a mistake and type a semicolon, you
usually put the computer into an endless, do-nothing loop. The computer’s
cursor just sits there and blinks until you forcibly stop the program’s run.

Initializing a for loop
Look at the first line of the for loop in Listing 15-1, and notice the declaration
int count = 0. That’s something new. When you create a for loop, you can
declare a variable (like count) as part of the loop initialization.

If you declare a variable in the initialization of a for loop, you can’t use
that variable outside the loop. For example, in Listing 15-1, try putting
out.println(count) after the end of the loop:

//This code does not compile.
for (int count = 0; count < 10; count++) {

out.print(“I’ve chewed “);
out.print(count);
out.println(“ time(s).”);

}

out.print(count); //The count variable doesn’t
// exist here.

With this extra reference to the count variable, the compiler gives you an error
message. You can see the message in Figure 15-3. If you’re not experienced
with for statements, the message may surprise you. “Whadaya mean ‘cannot
find symbol’? There’s a count variable just four lines above that statement.”
Ah, yes. But the count variable is declared in the for loop’s initialization.
Outside the for loop, that count variable doesn’t exist.

Figure 15-3:
What count

variable?
I don’t see

a count
variable.

250 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 250

To use a variable outside of a for statement, you have to declare that variable
outside the for statement. You can even do this with the for statement’s
counting variable. Listing 15-2 has an example.

Listing 15-2: Using a Variable Declared Outside of a for Loop

import static java.lang.System.out;

class AuntEdnaDoesItAgain {

public static void main(String args[]) {
int count;

for (count = 0; count < 10; count++) {
out.print(“I’ve chewed “);
out.print(count);
out.println(“ time(s).”);

}

out.print(count);
out.println(“ times! Hooray!”);
out.println(“I can swallow!”);

}
}

A run of the code in Listing 15-2 looks exactly like the run for Listing 15-1. The
run is pictured in Figure 15-1. Unlike its predecessor, Listing 15-2 enjoys the
luxury of using the count variable to display the number 10. It can do this
because, in Listing 15-2, the count variable belongs to the entire main method,
and not to the for loop alone.

Notice the words for (count = 0 in Listing 15-2. Because count is declared
above the for statement, you don’t declare count again in the for statement’s
initialization. I tried declaring count twice, as in the following code:

//This does NOT work:
int count;

for (int count = 0; count < 10; count++) {
...etc.

and the compiler told me to clean up my act:

count is already defined in main(java.lang.String[])
for (int count = 0; count < 10; count++) {

^

251Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 251

Using Nested for Loops
Because you’re reading Beginning Programming with Java For Dummies, 2nd
Edition, I assume that you manage a big hotel. The next chapter tells you
everything you need to know about hotel management. But before you begin
reading that chapter, you can get a little preview in this section.

I happen to know that your hotel has nine floors, and each floor of your hotel
has twenty rooms. On this sunny afternoon, someone hands you a diskette
containing a file full of numbers. You copy this hotelData file to your hard
drive, and then open the file in JCreator’s editor. You see the stuff shown in
Figure 15-4.

This file gives the number of guests in each room. For example, at the start of
the file, you see 2 1 2. This means that, on the first floor, Room 1 has 2 guests,
Room 2 has 1 guest, and Room 3 has 2 guests. After reading twenty of these
numbers, you see 0 2 2. So, on the second floor, Room 1 has 0 guests, Room 2
has 2 guests, and Room 3 has 2 guests. The story continues until the last
number in the file. According to that number, Room 20 on the ninth floor has
4 guests.

You’d like a more orderly display of these numbers — a display of the kind in
Figure 15-5. So you whip out your keyboard to write a quick Java program.

As in some earlier examples, you decide which statements go where by
asking yourself how many times each statement should be executed.
For starters, the display in Figure 15-5 has nine lines, and each line has
20 numbers:

Number of guests
in room 3 on floor 1

Number of guests
in room 1 on floor 2

Number of guests
in room 1 on floor 1

Number of guests
in room 20 on floor 9

Figure 15-4:
A file con-

taining hotel
occupancy

data.

252 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 252

for (each of 9 floors)
for (each of 20 rooms on a floor)

get a number from the file and
display the number on the screen.

So your program has a for loop within a for loop — a pair of nested for
loops.

Next, you notice how each line begins in Figure 15-5. Each line contains the
word Floor, followed by the floor number. Because this Floor display occurs
only nine times in Figure 15-5, the statements to print this display belong in the
for each of 9 floors loop (and not in the for each of 20 rooms loop).
The statements should be before the for each of 20 rooms loop, because
this Floor display comes once before each line’s twenty number display:

for (each of 9 floors)
display “Floor” and the floor number,
for (each of 20 rooms on a floor)

get a number from the file and
display the number on the screen.

You’re almost ready to write the code. But there’s one detail that’s easy to
forget. (Well, it’s a detail that I always forget.) After displaying 20 numbers,
the program advances to a new line. This new-line action happens only nine
times during the run of the program, and it always happens after the program
displays 20 numbers:

for (each of 9 floors)
display “Floor” and the floor number,
for (each of 20 rooms on a floor)

get a number from the file and
display the number on the screen,

Go to the next line.

Figure 15-5:
A readable

display of
the data in

Figure 15-4.

253Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 253

That does it. That’s all you need. The code to create the display of Figure 15-5
is in Listing 15-3.

Listing 15-3: Hey! Is This a For-by-For?

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

class DisplayHotelData {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“hotelData”));

for (int floor = 1; floor <= 9; floor++) {
out.print(“Floor “);
out.print(floor);
out.print(“: “);

for (int roomNum = 1; roomNum <= 20; roomNum++) {
out.print(diskScanner.nextInt());
out.print(‘ ‘);

}

out.println();
}

}
}

The code in Listing 15-3 has the variable floor going from 1 to 9, and has the
variable roomNum going from 1 to 20. Because the roomNum loop is inside the
floor loop, the writing of twenty numbers happens 9 times. That’s good. It’s
exactly what I want.

Repeating Until You Get What You
Need (Java do Statements)

I introduce Java’s while loop in Chapter 12. When you create a while loop,
you write the loop’s condition first. After the condition, you write the code
that gets repeatedly executed.

254 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 254

while (Condition) {
Code that gets repeatedly executed

}

This way of writing a while statement is no accident. The look of the state-
ment emphasizes an important point — that the computer always checks the
condition before executing any of the repeated code.

If the loop’s condition is never true, then the stuff inside the loop is never
executed — not even once. In fact, you can easily cook up a while loop whose
statements are never executed (although I can’t think of a reason why you
would ever want to do it):

//This code doesn’t print anything:
int twoPlusTwo = 2 + 2;
while (twoPlusTwo == 5) {

System.out.println(“Are you kidding?”);
System.out.println(“2+2 doesn’t equal 5.”);
System.out.print (“Everyone knows that”);
System.out.println(“ 2+2 equals 3.”);

}

In spite of this silly twoPlusTwo example, the while statement turns out to
be the most useful of Java’s looping constructs. In particular, the while loop
is good for situations in which you must look before you leap. For example:
“While money is in my account, write a mortgage check every month.” When
you first encounter this statement, if your account has a zero balance, you
don’t want to write a mortgage check — not even one check.

But at times (not many), you want to leap before you look. In a situation when
you’re asking the user for a response, maybe the user’s response makes sense,
but maybe it doesn’t. Maybe the user’s finger slipped, or perhaps the user
didn’t understand the question. In many situations, it’s important to correctly
interpret the user’s response. If the user’s response doesn’t make sense, you
must ask again.

Getting a trustworthy response
Consider a program that deletes several files. Before deleting anything, the
program asks for confirmation from the user. If the user types Y, then delete;
if the user types N, then don’t delete. Of course, deleting files is serious stuff.
Mistaking a bad keystroke for a “yes” answer can delete the company’s
records. (And mistaking a bad keystroke for a “no” answer can preserve the
company’s incriminating evidence.) So if there’s any doubt about the user’s
response, the program should ask the user to respond again.

255Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 255

Pause a moment to think about the flow of actions — what should and shouldn’t
happen when the computer executes the loop. A loop of this kind doesn’t need
to check anything before getting the user’s first response. Indeed, before the
user gives the first response, the loop has nothing to check. The loop shouldn’t
start with “as long as the user’s response is invalid, get another response from
the user.” Instead, the loop should just leap ahead, get a response from the
user, and then check the response to see if it made sense. The code to do all
this is in Listing 15-4.

Listing 15-4: Repeat Before You Delete

/*
* DISCLAIMER: Neither the author nor Wiley Publishing, Inc.,
* nor anyone else even remotely connected with the
* creation of this book, assumes any responsibility
* for any damage of any kind due to the use of this code,
* or the use of any work derived from this code, including
* any work created partially or in full by the reader.
*
* Sign here:_______________________________
*/

import java.util.Scanner;
import java.io.IOException;

class IHopeYouKnowWhatYoureDoing {

public static void main(String args[])
throws IOException {

Scanner myScanner = new Scanner(System.in);
char reply;

do {
System.out.print(“Reply with Y or N...”);
System.out.print(“ Delete all .keep files? “);
reply = myScanner.findInLine(“.”).charAt(0);

} while (reply != ‘Y’ && reply != ‘N’);

if (reply == ‘Y’) {
Runtime.getRuntime().exec(“cmd /c del *.keep”);

}
}

}

The code in Listing 15-4 works on all the industrial-strength versions of
Microsoft Windows, including Windows NT, 2000, and XP. To get the same
effect in Windows 95, 98, or Me, you have to change the last line of code as
follows:

Runtime.getRuntime().exec(“start command /c del *.keep”);

256 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 256

To work the same magic in Unix or Linux, you can use the following command:

Runtime.getRuntime().exec
(new String[] {“/bin/sh”, “-c”, “rm -f *.keep”});

One way or another, the call to Runtime.getRuntime...yada-yada deletes
all files whose names end with .keep.

In Listing 15-4, the call to Runtime.getRuntime().exec enables the Java
program to execute an operating system command. This Runtime business
can be tricky to use, so don’t fret over the details. Just take my word for it —
the call to Runtime.getRuntime().exec in Listing 15-4 deletes files.

The Runtime.getRuntime().exec method is one of those “you need a
throws clause” methods that I introduce in Chapter 13. Unlike the methods in
Chapter 13, the exec method forces you to throw an IOException. And with
a throws IOException clause comes an import java.io.IOException
declaration.

At this point you may be wondering how I know that the exec method needs
a throws IOException clause. How many other Java API methods require
throws clauses, and how do you find out about all these things? The answer
is, you can find this information in Java’s API documentation. For details, see
the Appendix on this book’s Web site.

Deleting files
A run of the Listing 15-4 program is shown in Figure 15-6. Before deleting a
bunch of files, the program asks the user if it’s okay to do the deletion. If the
user gives one of the two expected answers (Y or N) then the program pro-
ceeds according to the user’s wishes. But if the user enters any other letter
(or any digit, punctuation symbol, or whatever), then the program asks the
user for another response.

In Figure 15-6, the user hems and haws for a while, first with the letter U, then
the digit 8, and then with lowercase letters. Finally, the user enters Y, and the
program deletes the .keep files. If you compare the files on your hard drive
(before and after the run of the program), you’ll see that the program trashes
files with names ending in .keep.

Figure 15-6:
No! Don’t

do it!

257Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 257

If you use JCreator, here’s how you can tell that files are being deleted:

1. Create a project containing the code in Listing 15-4.

If you downloaded the special edition of JCreator from this book’s
Web site, you can skip this create-a-project step and use the existing
Chapter15_Listing04 project.

2. In the File View pane, right-click the name of the project.

A context menu appears.

3. In the context menu, choose Add➪New File.

JCreator’s File Wizard opens to the File Path tab.

4. In the Name field, type the name of your new data file.

Type irreplaceableInfo.keep, or something like that.

5. Click Finish.

The file’s name appears in JCreator’s File View pane. For this experiment,
you don’t have to add any text to the file. The file exists only to be deleted.

6. Repeat Steps 2 through 5 a few more times.

Create files named somethingOrOther.keep and files that don’t have
.keep in their names.

7. Compile and run the program.

When the program runs, type Y to delete the .keep files. (The program
deletes .keep files only in this program’s project directory. The program’s
run has no effect on any files outside of the project directory.)

After running the program, you want to check to make sure that the pro-
gram deleted the .keep files.

8. In the File View pane, right-click the name of the project.

A context menu appears.

9. In the context menu, select Refresh From Local.

JCreator takes another look at the project directory, and lists the direc-
tory’s files in the File View’s tree. Assuming that the program did its job
correctly, files with names ending in .keep no longer appear in the tree.

Using Java’s do statement
To write the program in Listing 15-4, you need a loop — a loop that repeatedly
asks the user if the .keep files should be deleted. The loop continues to ask
until the user gives a meaningful response. The loop tests its condition at the
end of each iteration, after each of the user’s responses.

258 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 258

That’s why the program in Listing 15-4 has a do loop (also known as a do . . .
while loop). With a do loop, the program jumps right in, executes some state-
ments, and then checks a condition. If the condition is true, then the program
goes back to the top of the loop for another go-around. If the condition is false,
then the computer leaves the loop (and jumps to whatever code comes imme-
diately after the loop). The action of the loop in Listing 15-4 is illustrated in
Figure 15-7.

A closer look at the do statement
The format of a do loop is

do {
Statements

} while (Condition)

Writing the Condition at the end of the loop reminds me that the computer
executes the Statement inside the loop first. After the computer executes
the Statement, the computer goes on to check the Condition. If the
Condition is true, the computer goes back for another iteration of the
Statement.

Figure 15-7:
Here we
go loop,
do loop.

259Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 259

With a do loop, the computer always executes the statements inside the loop
at least once:

//This code prints something:
int twoPlusTwo = 2 + 2;
do {

System.out.println(“Are you kidding?”);
System.out.println(“2+2 doesn’t equal 5.”);
System.out.print (“Everyone knows that”);
System.out.println(“ 2+2 equals 3.”);

} while (twoPlusTwo == 5);

This code displays Are you kidding? 2+2 doesn’t equal 5 . . . and
so on, and then tests the condition twoPlusTwo == 5. Because twoPlusTwo
== 5 is false, the computer doesn’t go back for another iteration. Instead, the
computer jumps to whatever code comes immediately after the loop.

Repeating with Predetermined Values
(Java’s Enhanced for Statement)

Most people say that they “never win anything.” Other people win raffles,
drawings, and contests, but they don’t win things. Well, I have news for these
people — other people don’t win things either. Nobody wins things. That’s
how the laws of probability work. Your chance of winning one of the popular
U.S. lottery jackpots is roughly 1 in 135,000,000. If you sell your quarter-million
dollar house and use all the money to buy lottery tickets, your chance of win-
ning is still only 1 in 540. If you play every day of the month (selling a house
each day), your chance of winning the jackpot is still less than 1 in 15.

Of course, nothing in the previous paragraph applies to me. I don’t buy lot-
tery tickets, but I often win things. My winning streak started a few years ago.
I won some expensive Java software at the end of an online seminar. Later
that month, I won a microchip-enabled pinky ring (a memento from a 1998
Java conference). The following year I won a wireless PDA. Just last week I
won a fancy business-class printer.

I never spend money to enter any contests. All these winnings are freebies.
When the national computer science educators’ conference met in Reno,
Nevada, my colleagues convinced me to try the slot machines. I lost $23, and
then I won back $18. At that point, I stopped playing. I wanted to quit while I
was only $5 behind.

260 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 260

That’s why my writing a Java program about slot machines is such a strange
occurrence. A typical slot machine has three reels, with each reel having
about twenty symbols. But to illustrate this section’s ideas, I don’t need
twenty symbols. Instead I use four symbols — a cherry, a lemon, a kumquat,
and a rutabaga.

Creating an enhanced for loop
When you play my simplified slot machine you can spin any one of over 60
combinations — cherry+cherry+kumquat, rutabaga+rutabaga+rutabaga, or
whatever. This chapter’s goal is to list all possible combinations. But first, I
show you another kind of loop. Listing 15-5 defines an enum type for a slot
machine’s symbols, and Listing 15-6 displays a list of the symbols.

Listing 15-5: Slot Machine Symbols

enum Symbol {cherry, lemon, kumquat, rutabaga}

Listing 15-6: Listing the Symbols

import static java.lang.System.out;

class ListSymbols {

public static void main(String args[]) {
for (Symbol leftReel : Symbol.values()) {

out.println(leftReel);
}

}
}

Listing 15-6 uses Java’s enhanced for loop. The word “enhanced” means
“enhanced compared with the loops in earlier versions of Java.” The enhanced
for loop is new to Java version 5.0. If you run Java version 1.4.2 (or something
like that) then you can’t use an enhanced for loop.

Here’s the format of the enhanced for loop:

for (TypeName variableName : RangeOfValues) {
Statements

}

261Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:20 PM Page 261

Here’s how the loop in Listing 15-6 follows the format:

� In Listing 15-6, the word Symbol is the name of a type.

The int type describes values like -1, 0, 1, and 2. The boolean type
describes the values true and false. And (because of the code in
Listing 15-5) the Symbol type describes the values cherry, lemon,
kumquat, and rutabaga. For more information on enum types like
Symbol, see Chapter 10.

� In Listing 15-6, the word leftReel is the name of a variable.

The loop in Listing 15-1 defines count to be an int variable. Similarly, the
loop in Listing 15-6 defines leftReel to be a Symbol variable. So in
theory, the variable leftReel can take on any of the four Symbol values.

By the way, I call this variable leftReel because the code lists all the
symbols that can appear on the leftmost of the slot machine’s three reels.
Because all three of the slot machine’s reels have the same symbols, I
may also have named this variable middleReel or rightReel. But on
second thought, I’ll save the names middleReel and rightReel for a
later example.

� In Listing 15-6, the expression Symbol.values() stands for the four
values in Listing 15-5.

To quote myself in the previous bullet, “in theory, the variable leftReel
can take on any of the four Symbol values.” Well, the RangeOfValues part
of the for statement turns theory into practice. This third item inside the
parentheses says “Have as many loop iterations are there are Symbol
values, and have the leftReel variable take on a different Symbol value
during each of the loop’s iterations.”

So the loop in Listing 15-6 undergoes four iterations — an iteration in
which leftReel has value cherry, another iteration in which leftReel
has value lemon, a third iteration in which leftReel has value kumquat,
and a fourth iteration in which leftReel has value rutabaga. During
each iteration, the program prints the leftReel variable’s value. The
result is in Figure 15-8.

Figure 15-8:
The out-

put of the
code in

Listing 15-6.

262 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:20 PM Page 262

In general, a someEnumTypeName.values() expression stands for the set
of values that a particular enum type’s variable can have. For example, in
Listings 10-7 and 10-8 you may use the expression WhoWins.values() to
refer to the home, visitor, and neither values.

The difference between a type’s name (like Symbol) and the type’s values
(as in Symbol.values()) is really subtle. Fortunately, you don’t have to
worry about the difference. As a beginning programmer, you can just use
the .values() suffix in an enhanced loop’s RangeOfValues part.

Nesting the enhanced for loops
Listing 15-6 solves a simple problem in a very elegant way. So after reading
about Listing 15-6, you ask about more complicated problems. “Can I list all
possible three-reel combinations of the slot machine’s four symbols?” Yes,
you can. Listing 15-7 shows you how to do it.

Listing 15-7: Listing the Combinations

import static java.lang.System.out;

class ListCombinations {

public static void main(String args[]) {

for (Symbol leftReel : Symbol.values()) {
for (Symbol middleReel : Symbol.values()) {

for (Symbol rightReel : Symbol.values()) {
out.print(leftReel);
out.print(“ “);
out.print(middleReel);
out.print(“ “);
out.println(rightReel);

}
}

}
}

}

When you run the program in Listing 15-7, you get 64 lines of output. Some of
those lines are shown in Figure 15-9.

263Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:21 PM Page 263

Like the code in Listing 15-3, the program in Listing 15-7 contains a loop within
a loop. In fact Listing 15-7 has a loop within a loop within a loop. Here’s the
strategy in Listing 15-7:

for (each of the 4 symbols that
can appear on the left reel),

for (each of the 4 symbols that
can appear on the middle reel),

for (each of the 4 symbols that
can appear on the right reel),

display the three reels’ symbols.

So you start the outer loop with the cherry symbol. Then you march on to
the middle loop and begin that loop with the cherry symbol. Then you pro-
ceed to the inner loop and pick the cherry (pun intended). At last, with each
loop tuned to the cherry setting, you display cherry cherry cherry com-
bination. (See Figure 15-10.)

After displaying cherry cherry cherry, you continue with other values of
the innermost loop. That is, you change the right reel’s value from cherry to
lemon. (See Figure 15-11.) Now the three reels’ values are cherry cherry
lemon, so you display these values on the screen. (See the second line in
Figure 15-9.)

After exhausting the four values of the innermost (right reel) loop, you jump
out of that innermost loop. But the jump puts you back to the top of the middle
loop, where you change the value of middleReel from cherry to lemon. Now
the values of leftReel and middleReel are cherry and lemon respectively.
(See Figure 15-12.)

Figure 15-9:
The first

several lines
of output
from the
code in

Listing 15-7.

264 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:21 PM Page 264

Figure 15-11:
Changing

from cherry
to lemon in

the inner-
most loop.

Figure 15-10:
Entering
loops for

the first
time in the

program of
Listing 15-7.

265Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:21 PM Page 265

Having changed to lemon on the middle loop, you go barreling again into the
innermost loop. As if you’d never seen this inner loop before, you set the
loop’s variable to cherry. (See Figure 15-13.)

Figure 15-13:
Restarting

the inner
loop.

Figure 15-12:
Changing

from cherry
to lemon in
the middle

loop.

266 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:21 PM Page 266

After displaying the tasty cherry lemon cherry combination, you start
changing the values of the innermost loop. (See Figure 15-14.)

The loop keeps going until it displays all 64 combinations. Whew!

Figure 15-14:
Traveling a

second time
through the

innermost
loop.

267Chapter 15: The Old Runaround

21_588745 ch15.qxd 3/16/05 9:21 PM Page 267

268 Part III: Controlling the Flow

21_588745 ch15.qxd 3/16/05 9:21 PM Page 268

Part IV
Using Program

Units

22_588745 pt04.qxd 3/16/05 9:18 PM Page 269

In this part . . .

Way back in the Elvis Era, people thought that com-
puter programs should be big lists of instructions.

Then, during the Groovy Sixties, people decided to modular-
ize their programs. A typical program consisted of several
methods (like the main methods in this book’s examples).
Finally, during the Weighty Eighties, programmers grouped
methods and other things into units called objects.

Far from being the flavor of the month, object-oriented
programming has become the backbone of modern
computing. This part of the book tells you all about it.

22_588745 pt04.qxd 3/16/05 9:18 PM Page 270

Chapter 16

Using Loops and Arrays
In This Chapter
� Using for loops to the max

� Storing many values in a single variable

� Working with groups of values

This chapter has seven illustrations. For these illustrations, the people at
Wiley Publishing insist on following numbering: Figure 16-1, Figure 16-2,

Figure 16-3, Figure 16-4, Figure 16-5, Figure 16-6, and Figure 16-7. But I like a
different kind of numbering. I’d like to number the illustrations figure[0],
figure[1], figure[2], figure[3], figure[4], figure[5], and figure[6].
Read on in this chapter and you’ll find out why.

Some for Loops in Action
The Java Motel, with its ten comfortable rooms, sits in a quiet place off the
main highway. Aside from a small, separate office, the motel is just one long
row of ground floor rooms. Each room is easily accessible from the spacious
front parking lot.

Oddly enough, the motel’s rooms are numbered 0 through 9. I could say that
the numbering is a fluke — something to do with the builder’s original design
plan. But the truth is, starting with 0 makes the examples in this chapter easier
to write.

You, as the Java Motel’s manager, store occupancy data in a file on your
computer’s hard drive. The file has one entry for each room in the motel.
For example, in Figure 16-1, Room 0 has one guest, Room 1 has four guests,
Room 2 is empty, and so on.

23_588745 ch16.qxd 3/16/05 9:22 PM Page 271

You want a report showing the number of guests in each room. Because you
know how many rooms you have, this problem begs for a for loop. The code
to solve this problem is in Listing 16-1, and a run of the code is shown in
Figure 16-2.

Listing 16-1: A Program to Generate an Occupancy Report

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

class ShowOccupancy {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“occupancy”));

out.println(“Room\tGuests”);

for (int roomNum = 0; roomNum < 10; roomNum++) {
out.print(roomNum);
out.print(“\t”);
out.println(diskScanner.nextInt());

}
}

}

Figure 16-2:
Running

the code in
Listing 16-1.

Figure 16-1:
Occupancy
data for the
Java Motel.

272 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 272

Listing 16-1 uses a for loop — a loop of the kind described in Chapter 15. As
the roomNum variable’s value marches from 0 to 9, the program displays one
number after another from the occupancy file. To read more about getting
numbers from a disk file like my occupancy file, see Chapter 13.

This example’s input file is named occupancy — not occupancy.txt. If you
use JCreator’s File Wizard to make an occupancy file, you must put a dot in
the wizard’s Name field. That is, you must type occupancy. (occupancy-”dot”)
in the Name field. If you don’t type your own dot anywhere in the Name field,
then JCreator adds a default extension to the file’s name (turning occupancy
into occupancy.java).

273Chapter 16: Using Loops and Arrays

Grabbing input here and there
Listing 16-2 illustrates some pithy issues sur-
rounding the input of data. For one thing, the
program gets input from both the keyboard and a
disk file. (The program gets a room number from
the keyboard. Then the program gets the number
of guests in that room from the occupancy
file.) To make this happen, Listing 16-2 sports
two Scanner declarations — one to declare
myScanner, and a second to declare
diskScanner.

Later in the program, the call myScanner.
nextInt reads from the keyboard, and
diskScanner.nextInt reads from the file.
Within the program, you can read from the key-
board or the disk as many times as you want.
You can even intermingle the calls — reading
once from the keyboard, then three times from
the disk, then twice from the keyboard, and so
on. All you have to do is remember to use
myScanner whenever you read from the key-
board, and use diskScanner whenever you
read from the disk.

Another interesting tidbit in Listing 16-2 concerns
the occupancy file. Many of this chapter’s
examples read from an occupancy file, and I
use the same data in each of the examples. (I use
the data shown in Figure 16-1.) To run an exam-
ple, I copy the occupancy file from one project to

another. (Before running the code in Listing 16-2,
I go to the old Listing 16-1 project in JCreator’s
File View. I right-click the occupancy file in the
Listing 16-1 project, and select Copy from the con-
text menu. Then I right-click the new Listing 16-2
branch, and select Paste from the context menu.)

In real life, having several copies of a data file can
be dangerous. You can modify one copy, and then
accidentally read out-of-date data from a differ-
ent copy. Sure, you should have backup copies,
but you should have only one “master” copy —
the copy from which all programs get the same
input.

So in a real-life program, you don’t copy the occu-
pancy file from one project to another. What do
you do instead? You put an occupancy file in
one place on your hard drive, and then have
each program refer to the file using the names
of the file’s directories. For example, if your
occupancy file is in the c:\data\hotel
directory, you write

Scanner diskScanner =
new Scanner(new
File(“c:\\data\\hotel\\occu
pancy”));

A sidebar in Chapter 13 has more details about
filenames and double backslashes.

23_588745 ch16.qxd 3/16/05 9:22 PM Page 273

Deciding on a loop’s limit at runtime
On occasion, you may want a more succinct report than the one in Figure 16-2.
“Don’t give me a long list of rooms,” you say. “Just give me the number of
guests in Room 3.” To get such a report, you need a slightly smarter program.
The program is in Listing 16-2, with runs of the program shown in Figure 16-3.

Listing 16-2: Report on One Room Only, Please

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

public class ShowOneRoomOccupancy {

public static void main(String args[])
throws FileNotFoundException {

Scanner myScanner = new Scanner(System.in);
Scanner diskScanner =

new Scanner(new File(“occupancy”));
int whichRoom;

out.print(“Which room? “);
whichRoom = myScanner.nextInt();

for(int roomNum = 0; roomNum < whichRoom; roomNum++){
diskScanner.nextInt();

}

out.print(“Room “);
out.print(whichRoom);
out.print(“ has “);
out.print(diskScanner.nextInt());
out.println(“ guest(s).”);

}
}

If Listing 16-2 has a moral, it’s that the number of for loop iterations can vary
from one run to another. The loop in Listing 16-2 runs on and on as long as the
counting variable roomNum is less than a room number specified by the user.
When the roomNum is the same as the number specified by the user (that is,
when roomNum is the same as whichRoom), the computer jumps out of the
loop. Then the computer grabs one more int value from the occupancy file
and displays that value on the screen.

274 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 274

As you stare at the runs in Figure 16-3, it’s important to remember the unusual
numbering of rooms. Room 3 has two guests because Room 3 is the fourth
room in the occupancy file of Figure 16-1. That’s because the motel’s rooms
are numbered 0 through 9.

Using all kinds of conditions in a for loop
Look at the run in Figure 16-3, and notice the program’s awful behavior when
the user mistakenly asks about a nonexistent room. The motel has no Room
10. If you ask for the number of guests in Room 10, the program tries to read
more numbers than the occupancy file contains. This unfortunate attempt
causes a NoSuchElementException.

Listing 16-3 fixes the end-of-file problem.

Listing 16-3: A More Refined Version of the One-Room Code

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

public class BetterShowOneRoom {

public static void main(String args[])
throws FileNotFoundException {

Scanner myScanner = new Scanner(System.in);
Scanner diskScanner =

new Scanner(new File(“occupancy”));
int whichRoom;

(continued)

Figure 16-3:
A few

one-room
reports.

275Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 275

Listing 16-3 (continued)

out.print(“Which room? “);
whichRoom = myScanner.nextInt();

for (int roomNum = 0;
roomNum < whichRoom && diskScanner.hasNext();
roomNum++) {

diskScanner.nextInt();
}
if (diskScanner.hasNext()) {

out.print(“Room “);
out.print(whichRoom);
out.print(“ has “);
out.print(diskScanner.nextInt());
out.println(“ guest(s).”);

}
}

}

The code in Listing 16-3 isn’t earth shattering. To get this code, you take the
code in Listing 16-2 and add a few tests for the end of the occupancy file. You
perform the diskScanner.hasNext test before each call to nextInt. That way,
if the call to nextInt is doomed to failure, you catch the potential failure before
it happens. A few test runs of the code in Listing 16-3 are shown in Figure 16-4.

In Listing 16-3, I want to know if the occupancy file contains any more data (any
data that I haven’t read yet). So I call the Scanner class’s hasNext method.
The hasNext method looks ahead to see if I can read any kind of data — an
int value, a double value, a word, a boolean, or whatever. That’s okay for
this section’s example, but in some situations, you need to be pickier about
your input data. For example, you may want to know if you can call nextInt
(as opposed to nextDouble or nextLine). Fortunately, Java has methods for
your pickiest input needs. The code if (diskScanner. hasNextInt()) tests
to see if you can read an int value from the disk file. Java also has methods
like hasNextLine, hasNextDouble, and so on. For more information on the
plain old hasNext method, see Chapter 14.

Figure 16-4:
The bad

room
number 10

gets no
response.

276 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 276

Listing 16-3 has a big fat condition to keep the for loop going:

for (int roomNum = 0;
roomNum < whichRoom && diskScanner.hasNext();
roomNum++) {

Many for loop conditions are simple “less than” tests, but there’s no rule
saying that all for loop conditions have to be so simple. In fact, any expres-
sion can be a for loop’s condition, as long as the expression has value true
or false. The condition in Listing 16-3 combines a “less than” with a call to
the Scanner class’s hasNext method.

Reader, Meet Arrays; Arrays,
Meet the Reader

A weary traveler steps up to the Java Motel’s front desk. “I’d like a room,”
says the traveler. So the desk clerk runs a report like the one in Figure 16-2.
Noticing the first vacant room in the list, the clerk suggests Room 2. “I’ll take
it,” says the traveler.

It’s so hard to get good help these days. How many times have you told the
clerk to fill the higher numbered rooms first? The lower numbered rooms are
older, and they are badly in need of repair. For example, Room 3 has an indoor
pool. (The pipes leak, so the carpet is soaking wet.) Room 2 has no heat (not
in wintertime, anyway). Room 1 has serious electrical problems (so, for that
room, you always get payment in advance). Besides, Room 8 is vacant, and
you charge more for the higher numbered rooms.

Here’s where a subtle change in presentation can make a big difference. You
need a program that lists vacant rooms in reverse order. That way, Room 8
catches the clerk’s eye before Room 2 does.

Think about strategies for a program that displays data in reverse. With the
input from Figure 16-1, the program’s output should look like the display
shown in Figure 16-5.

Figure 16-5:
A list

of vacant
rooms, with
higher num-
bered rooms
shown first.

277Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 277

Here’s the first (bad) idea for a programming strategy:

Get the last value in the occupancy file.
If the value is 0, print the room number.

Get the next-to-last value in the occupancy file.
If the value is 0, print the room number.

...And so on.

With some fancy input/output programs, this may be a workable strategy. But
no matter what input/output program you use, jumping directly to the end or
to the middle of a file is a big pain in the boot. It’s especially bad if you plan
to jump repeatedly. So go back to the drawing board and think of something
better.

Here’s an idea! Read all the values in the occupancy file and store each value
in a variable of its own. Then you step through the variables in reverse order,
displaying a room number when it’s appropriate to do so.

This idea works, but the code is so ugly that I refuse to dignify it by calling it
a “Listing.” No, this is just a “see the following code” kind of thing. So please,
see the following ugly code:

/*
* Ugh! I can’t stand this ugly code!
*/
guestsIn0 = diskScanner.nextInt();
guestsIn1 = diskScanner.nextInt();
guestsIn2 = diskScanner.nextInt();
guestsIn3 = diskScanner.nextInt();
guestsIn4 = diskScanner.nextInt();
guestsIn5 = diskScanner.nextInt();
guestsIn6 = diskScanner.nextInt();
guestsIn7 = diskScanner.nextInt();
guestsIn8 = diskScanner.nextInt();
guestsIn9 = diskScanner.nextInt();

if (guestsIn9 == 0) {
System.out.println(9);

}
if (guestsIn8 == 0) {

System.out.println(8);
}
if (guestsIn7 == 0) {

System.out.println(7);
}
if (guestsIn6 == 0) {

// ... And so on.

278 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 278

What you’re lacking is a uniform way of naming ten variables. That is, it
would be nice to write

/*
* Nice idea, but this is not real Java code:
*/
for (int roomNum = 0; roomNum < 10; roomNum++) {

guestsInroomNum = diskScanner.nextInt(); //Read forwards
}

for (int roomNum = 9; roomNum >= 0; roomNum--) {
if (guestsInroomNum == 0) {

System.out.println(roomNum); //Write backwards
}

}

Well, there is a way to write loops of this kind. All you need is some square
brackets. When you add square brackets to the idea shown in the preceding
code, you get what’s called an array. An array is a row of values, like the row
of rooms in a one-floor motel. To picture the array, just picture the Java Motel:

� First, picture the rooms, lined up next to one another.

� Next, picture the same rooms with their front walls missing. Inside each
room you can see a certain number of guests.

� If you can, forget that the two guests in Room 9 are putting piles of bills
into a big briefcase. Ignore the fact that the guest in Room 5 hasn’t moved
away from the TV set in a day and a half. Instead of all these details, just
see numbers. In each room, see a number representing the count of guests
in that room. (If freeform visualization isn’t your strong point, then take
a look at Figure 16-6.)

In the lingo of Java programming, the entire row of rooms is called an array.
Each room in the array is called a component of the array (also known as an
array element). Each component has two numbers associated with it:

� Index: In the case of the Java Motel array, the index is the room number
(a number from 0 to 9).

� Value: In the Java Motel array, the value is the number of guests in a
given room (a number stored in a component of the array).

Using an array saves you from having to declare ten separate variables:
guestsIn0, guestsIn1, guestsIn2, and so on. To declare an array with ten
values in it, you can write two fairly short lines of code:

int guestsIn[];
guestsIn = new int[10];

279Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 279

You can even squish these two lines into one longer line:

int guestsIn[] = new int[10];

In either of these code snippets, notice the use of the number 10. This number
tells the computer to make the guestsIn array have ten components. Each
component of the array has a name of its own. The starting component is
named guestsIn[0], the next is named guestsIn[1], and so on. The last of
the ten components is named guestsIn[9].

In creating an array, you always specify the number of components. The array’s
indices always start with 0 and end with the number that’s one less than the
total number of components. For example, if your array has ten components
(and you declare the array with new int[10]), then the array’s indices go
from 0 to 9.

Storing values in an array
After you’ve created an array, you can put values into the array’s components.
For example, the guests in Room 6 are fed up with all those mint candies that
you put on peoples’ beds. So they check out and Room 6 becomes vacant.
You should put the value 0 into the 6 component. You can do it with this
assignment statement:

1

A component
whose index is 6,

and whose value is 4

The value 4

The index 6

4 0 2 2 1 4 3 0 2

0 1 2 3 4 5 6 7 8 9
Figure 16-6:
An abstract
snapshot of

rooms in the
Java Motel.

280 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 280

guestsIn[6] = 0;

On one weekday, business is awful. No one’s staying at the motel. But then
you get a lucky break. A big bus pulls up to the motel. The side of the bus has
a sign that says “Loners’ Convention.” Out of the bus come 25 people, each
walking to the motel’s small office, none paying attention to the others who
were on the bus. Each person wants a private room. Only 10 of them can stay
at the Java Motel, but that’s okay, because you can send the other 15 loners
down the road to the old C-Side Resort and Motor Lodge.

Anyway, to register 10 of the loners into the Java Motel, you put one guest in
each of your 10 rooms. Having created an array, you can take advantage of
the array’s indexing and write a for loop, like this:

for (int roomNum = 0; roomNum < 10; roomNum++) {
guestsIn[roomNum] = 1;

}

This loop takes the place of ten assignment statements, because the com-
puter executes the statement guestsIn[roomNum] = 1 ten times. The first
time around, the value of roomNum is 0, so in effect, the computer executes

guestsIn[0] = 1;

In the next loop iteration, the value of roomNum is 1, so the computer exe-
cutes the equivalent of the following statement:

guestsIn[1] = 1;

During the next iteration, the computer behaves as if it’s executing

guestsIn[2] = 1;

And so on. When roomNum gets to be 9, the computer executes the equivalent
of the following statement:

guestsIn[9] = 1;

Notice how the loop’s counter goes from 0 to 9. Compare this with Figure 16-6,
and remember that the indices of an array go from 0 to one less than the
number of components in the array. Looping with room numbers from 0 to 9
covers all the rooms in the Java Motel.

281Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 281

When you work with an array, and you step through the array’s components
using a for loop, you normally start the loop’s counter variable at 0. To form
the condition that tests for another iteration, you often write an expression
like roomNum < arraySize, where arraySize is the number of components
in the array.

Creating a report
The code to create the report in Figure 16-5 is shown in Listing 16-4. This new
program uses the idea in the world’s ugliest code (the code from several pages
back with variables guestsIn0, guestsIn1, and so on). But instead of having
ten separate variables, Listing 16-4 uses an array.

Listing 16-4: Traveling through Data Both Forwards and Backwards

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

class VacanciesInReverse {

public static void main(String args[])
throws FileNotFoundException {

Scanner diskScanner =
new Scanner(new File(“occupancy”));

int guestsIn[];
guestsIn = new int[10];

for (int roomNum = 0; roomNum < 10; roomNum++) {
guestsIn[roomNum] = diskScanner.nextInt();

}

for (int roomNum = 9; roomNum >= 0; roomNum--) {
if (guestsIn[roomNum] == 0) {

System.out.print(“Room “);
System.out.print(roomNum);
System.out.println(“ is vacant.”);

}
}

}
}

282 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 282

Notice the stuff in parentheses in the VacanciesInReverse program’s second
for loop. It’s easy to get these things wrong. You’re aiming for a loop that
checks Room 9, then Room 8, and so on.

if (guestsIn[9] == 0) {
System.out.print(roomNum);

}
if (guestsIn[8] == 0) {

System.out.print(roomNum);
}
if (guestsIn[7] == 0) {

System.out.print(roomNum);
}

...And so on, until you get to...

if (guestsIn[0] == 0) {
System.out.print(roomNum);

}

Some observations about the code:

� The loop’s counter must start at 9:

for (int roomNum = 9; roomNum >= 0; roomNum--)

� Each time through the loop, the counter goes down by one:

for (int roomNum = 9; roomNum >= 0; roomNum--)

� The loop keeps going as long as the counter is greater than or equal to 0:

for (int roomNum = 9; roomNum >= 0; roomNum--)

Think through each of these three items, and you’ll write a perfect for loop.

Working with Arrays
Earlier in this chapter, a busload of loners showed up at your motel. When they
finally left, you were glad to get rid them, even if it meant having all your rooms
empty for a while. But now, another bus pulls into the parking lot. This bus has
a sign that says “Gregarian Club.” Out of the bus come 50 people, each more
gregarious than the next. Now everybody in your parking lot is clamoring to
meet everyone else. While they meet and greet, they’re all frolicking toward
the front desk, singing the club’s theme song. (Oh no! It’s the Gregarian Chant!)

283Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 283

The first five Gregarians all want Room 7. It’s a tight squeeze, but you were
never big on fire codes anyway. Next comes a group of three with a yen for
Room 0. (They’re computer programmers, and they think the room number is
cute.) Then there’s a pack of four Gregarians who want Room 3. (The in-room
pool sounds attractive to them.)

284 Part IV: Using Program Units

Looping in style
Listing 15-7 uses an enhanced for loop to step
through a bunch of values. In that program, the
values belong to an enum type. Well, this chap-
ter also deals with a bunch of values; namely,
the values in an array. So you’re probably not
surprised if I show you an enhanced for loop
that steps through an array’s values.

To see such a loop, start with the code in Listing
16-5. The last loop in that program looks some-
thing like this:

for (int roomNum = 0; roomNum <
10; roomNum++) {

out.println(guestsIn[roomNu
m]);

}

To turn this into an enhanced for loop, you
make up a new variable name. (What about the
name howMany? I like that name.) Whatever
name you choose, the new variable ranges over
the values in the guestsIn array.

for (int howMany : guestsIn) {
out.println(howMany);

}

This enhanced loop uses the same format as
the loop in Chapter 15.

for (TypeName variableName :
RangeOfValues) {
Statements

}

In Chapter 15, the RangeOfValues belongs to
an enum type. But in this sidebar’s example, the
RangeOfValues belongs to an array.

Enhanced for loops are nice and concise. But
don’t be too anxious to use enhanced loops with
arrays. This feature has some nasty limitations.
For example, my new howMany loop doesn’t
display room numbers. I avoid room numbers
because the room numbers in my guestsIn
array are the indices 0 through 9. Unfortunately,
an enhanced loop doesn’t provide easy access
to an array’s indices.

And here’s another unpleasant surprise. Start
with the following loop from Listing 16-4:

for (int roomNum = 0; roomNum <
10; roomNum++) {
guestsIn[roomNum] =
diskScanner.nextInt();

}

Turn this traditional for loop into an enhanced
for loop, and you get the following misleading
code:

for (int howMany : guestsIn) {
howMany =
diskScanner.nextInt();
//Don’t do this

}

The new enhanced loop doesn’t do what you
want it to do. This loop reads values from an
input file and then dumps these values into the
garbage can. In the end, the array’s values
remain unchanged.

It’s sad but true. To make full use of an array, you
have to fall back on Java’s plain old for loop.

23_588745 ch16.qxd 3/16/05 9:22 PM Page 284

With all this traffic, you better switch on your computer. You start a program
that enables you to enter new occupancy data. The program has five parts:

� Create an array, and then put 0 in each of the array’s components.

When the Loners’ Club members left, the motel was suddenly empty.
(Heck, even before the Loners’ Club members left, the motel seemed
empty.) To declare an array and fill the array with zeros, you execute
code of the following kind:

int guestsIn[];
guestsIn = new int[10];

for (int roomNum = 0; roomNum < 10; roomNum++) {
guestsIn[roomNum] = 0;

}

� Get a room number, and then get the number of guests who will be
staying in that room.

Reading numbers typed by the user is pretty humdrum stuff. Do a little
prompting and a little nextInt calling, and you’re all set:

out.print(“Room number: “);
whichRoom = myScanner.nextInt();
out.print(“How many guests? “);
numGuests = myScanner.nextInt();

� Use the room number and the number of guests to change a value in
the array.

Earlier in this chapter, to put one guest in Room 2, you executed

guestsIn[2] = 1;

So now, you have two variables — numGuests and whichRoom. Maybe
numGuests is 5, and whichRoom is 7. To put numGuests in whichRoom
(that is, to put 5 guests in Room 7), you can execute

guestsIn[whichRoom] = numGuests;

That’s the crucial step in the design of your new program.

� Ask the user if the program should keep going.

Are there more guests to put in rooms? To find out, execute this code:

out.print(“Do another? “);
} while (myScanner.findInLine(“.”).charAt(0) == ‘Y’);

� Display the number of guests in each room.

No problem! You already did this. You can steal the code (almost verba-
tim) from Listing 16-1:

285Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 285

out.println(“Room\tGuests”);
for (int roomNum = 0; roomNum < 10; roomNum++) {

out.print(roomNum);
out.print(“\t”);
out.println(guestsIn[roomNum]);

}

The only difference between this latest code snippet and the stuff in
Listing 16-1 is that this new code uses the guestsIn array. The first time
through this loop, the code does

out.println(guestsIn[0]);

displaying the number of guests in Room 0. The next time through the
loop, the code does

out.println(guestsIn[1]);

displaying the number of guests in Room 1. The last time through the
loop, the code does

out.println(guestsIn[9]);

That’s perfect.

The complete program (with these five pieces put together) is in Listing 16-5.
A run of the program is shown in Figure 16-7.

Listing 16-5: Storing Occupancy Data in an Array

import java.util.Scanner;
import static java.lang.System.out;

class AddGuests {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
int whichRoom, numGuests;
int guestsIn[];
guestsIn = new int[10];

for (int roomNum = 0; roomNum < 10; roomNum++) {
guestsIn[roomNum] = 0;

}

do {
out.print(“Room number: “);
whichRoom = myScanner.nextInt();
out.print(“How many guests? “);
numGuests = myScanner.nextInt();
guestsIn[whichRoom] = numGuests;

286 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 286

out.println();
out.print(“Do another? “);

} while (myScanner.findInLine(“.”).charAt(0) == ‘Y’);

out.println();
out.println(“Room\tGuests”);
for (int roomNum = 0; roomNum < 10; roomNum++) {

out.print(roomNum);
out.print(“\t”);
out.println(guestsIn[roomNum]);

}
}

}

Hey! The program in Listing 16-5 is pretty big! It may be the biggest program
so far in this book. But big doesn’t necessarily mean difficult. If each piece of
the program makes sense, you can create each piece on its own, and then put
all the pieces together. Voilà! The code is manageable.

Figure 16-7:
Running

the code in
Listing 16-5.

287Chapter 16: Using Loops and Arrays

23_588745 ch16.qxd 3/16/05 9:22 PM Page 287

288 Part IV: Using Program Units

23_588745 ch16.qxd 3/16/05 9:22 PM Page 288

Chapter 17

Programming with Objects
and Classes

In This Chapter
� Creating classes

� Making objects from classes

� Joining the exclusive “I understand classes and objects” society

Chapters 6, 7, and 8 introduce Java’s primitive types — things like int,
double, char, and boolean. That’s great, but how often does a real-world

problem deal exclusively with such simple values? Consider an exchange
between a merchant and a customer. The customer makes a purchase, which
can involve item names, model numbers, credit card info, sales tax rates, and
lots of other stuff.

In older computer programming languages, you treat an entire purchase like
a big pile of unbundled laundry. Imagine a mound of socks, shirts, and other
pieces of clothing. You have no basket, so you grab as much as you can handle.
As you walk to the washer, you drop a few things — a sock here and a wash-
cloth there. This is like the older way of storing the values in a purchase. In
older languages, there’s no purchase. There are only double values, char
values, and other loose items. You put the purchase amount in one variable,
the customer’s name in another, and the sales tax data somewhere else. But
that’s awful. You tend to drop things on your way to the compiler. With small
errors in a program, you can easily drop an amount here and a customer’s
name there.

So with laundry and computer programming, you’re better off if you have a
basket. The newer programming languages, like Java, allow you to combine
values and make new, more useful kinds of values. For example, in Java you
can combine double values, boolean values, and other kinds of values to
create something that you call a Purchase. Because your purchase info is all
in one big bundle, it’s easier to keep track of the purchase’s pieces. That’s the
start of an important computer programming concept — the notion of object-
oriented programming.

24_588745 ch17.qxd 3/16/05 9:30 PM Page 289

Creating a Class
I start with a “traditional” example. The program in Listing 17-1 processes
simple purchase data. Two runs of the program are shown in Figure 17-1.

Listing 17-1: Doing It the Old-Fashioned Way

import java.util.Scanner;

class ProcessData {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
double amount;
boolean taxable;
double total;

System.out.print(“Amount: “);
amount = myScanner.nextDouble();
System.out.print(“Taxable? (true/false) “);
taxable = myScanner.nextBoolean();

if (taxable) {
total = amount * 1.05;

} else {
total = amount;

}

System.out.print(“Total: “);
System.out.println(total);

}
}

If the output in Figure 17-1 looks funny, it’s because I do nothing in the code
to control the number of digits beyond the decimal point. So in the output,
the value $20.00 looks like 20.0. That’s okay. I show you how to fix the prob-
lem in Chapter 18.

Figure 17-1:
Processing

a customer’s
purchase.

290 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 290

Reference types and Java classes
The code in Listing 17-1 involves a few simple values — amount, taxable, and
total. So here’s the main point of this chapter: By combining several simple
values, you can get a single, more useful value. That’s the way it works. You
take some of Java’s primitive types, whip them together to make a primitive
type stew, and what do you get? You get a more useful type called a reference
type. Listing 17-2 has an example.

Listing 17-2: What It Means to Be a Purchase

class Purchase {
double amount;
boolean taxable;
double total;

}

The code in Listing 17-2 has no main method, so you can compile the code,
but you can’t run it. When you choose Build➪Compile Project in JCreator’s
main menu, you get a nice Process completed message. But then choose
Build➪Execute Project, and the computer balks. (You get the message box
shown in Figure 17-2.) Because Listing 17-2 has no main method, there’s no
place to start the executing. (In fact, the code in Listing 17-2 has no state-
ments at all. There’s nothing to execute.)

Using a newly defined class
To do something useful with the code in Listing 17-2, you need a main
method. You can put the main method in a separate file. Listing 17-3 shows
you such a file.

Figure 17-2:
The code in
Listing 17-2

has no main
method.

291Chapter 17: Programming with Objects and Classes

24_588745 ch17.qxd 3/16/05 9:30 PM Page 291

Listing 17-3: Making Use of Your Purchase Class

import java.util.Scanner;

class ProcessPurchase {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
Purchase onePurchase = new Purchase();

System.out.print(“Amount: “);
onePurchase.amount = myScanner.nextDouble();
System.out.print(“Taxable? (true/false) “);
onePurchase.taxable = myScanner.nextBoolean();

if (onePurchase.taxable) {
onePurchase.total = onePurchase.amount * 1.05;

} else {
onePurchase.total = onePurchase.amount;

}

System.out.print(“Total: “);
System.out.println(onePurchase.total);

}
}

The best way to understand the code in Listing 17-3 is to compare it, line by
line, with the code in Listing 17-1. In fact, there’s a mechanical formula for
turning the code in Listing 17-1 into the code in Listing 17-3. Table 17-1
describes the formula.

Table 17-1 Converting Your Code to Use a Class
In Listing 17-1 In Listing 17-3

double amount; Purchase onePurchase = new Purchase();
boolean taxable;
double total;

amount onePurchase.amount

taxable onePurchase.taxable

total onePurchase.total

292 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 292

The two programs (in Listings 17-1 and 17-3) do essentially the same thing, but
one uses primitive variables, and the other leans on the Purchase code from
Listing 17-2. Both programs have runs like the ones shown back in Figure 17-1.

Running code that straddles
two separate files
From JCreator’s point of view, a project that contains two Java source files
is no big deal. You create two classes in the same project, and then you
choose Build➪Compile Project. Finally, you choose Build➪Execute Project.
Everything works the way you expect it to work.

The only time things become tricky is when you have two main methods in
the one project. This section’s example (Listings 17-2 and 17-3) doesn’t suffer
from that malady. But as you experiment with your code, you can easily add
classes with additional main methods. You may also create a large application
with several starting points.

When a project has more than one main method, JCreator may prompt you
and ask which class’s main method you want to run. But sometimes JCreator
doesn’t prompt you. Instead, JCreator arbitrarily picks one of the main meth-
ods and ignores all the others. This can be very confusing. You add a println
call to the wrong main method, and nothing appears in the General Output
pane. Hey, what gives?

You can fix the problem by following these steps:

1. Right-click the project’s branch in the File View tree.

2. In the resulting context menu, select Properties.

A Project Properties dialog box appears. The dialog box contains a list
box labeled Run. This list box contains the names of all the classes in
the project that contain main methods.

3. In the Run list box, select the class whose main method you want to run.

4. Click OK.

The Project Properties dialog box disappears.

5. In JCreator’s main menu, choose Build➪Execute Project.

293Chapter 17: Programming with Objects and Classes

24_588745 ch17.qxd 3/16/05 9:30 PM Page 293

You cannot execute a project that has no main method. If you try, you get a
message box like the one shown earlier in Figure 17-2.

Why bother?
On the surface, the code in Listing 17-3 is longer, more complicated, and
harder to read. But think about a big pile of laundry. It may take time to find a
basket, and to shovel socks into the basket. But when you have clothes in the
basket, the clothes are much easier to carry. It’s the same way with the code
in Listing 17-3. When you have your data in a Purchase basket, it’s much
easier to do complicated things with purchases.

From Classes Come Objects
The code in Listing 17-2 defines a class. A class is a design plan; it describes the
way in which you intend to combine and use pieces of data. For example, the
code in Listing 17-2 announces your intention to combine double, boolean,
and double values to make new Purchase values.

Classes are central to all Java programming. But Java is called an object-
oriented language. Java isn’t called a class-oriented language. In fact, no one
uses the term class-oriented language. Why not?

Well, you can’t put your arms around a class. A class isn’t real. A class with-
out an object is like a day without chocolate. If you’re sitting in a room right
now, glance at all the chairs in the room. How many chairs are in the room?
Two? Five? Twenty? In a room with five chairs, you have five chair objects.
Each chair (each object) is something real, something you can use, some-
thing you can sit on.

A language like Java has classes and objects. So what’s the difference
between a class and an object?

� An object is a thing.

� A class is a design plan for things of that kind.

For example, how would you describe what a chair is? Well, a chair has a
seat, a back, and legs. In Java, you may write the stuff in Listing 17-4.

294 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 294

Listing 17-4: What It Means to Be a Chair

/*
* This is real Java code, but this code cannot be compiled
* on its own:
*/

class Chair {
FlatHorizonalPanel seat;
FlatVerticalPanel back;
LongSkinnyVerticalRods legs;

}

The code above is a design plan for chairs. The code tells you that each chair
has three things. The code names the things (seat, back, and legs), and tells
you a little bit about each thing. (For example, a seat is a FlatHorizontal
Panel.) In the same way, the code in Listing 17-2 tells you that each purchase
has three things. The code names the things (amount, taxable, and total),
and tells you the primitive type of each thing.

So imagine some grand factory at the edge of the universe. While you sleep
each night, this factory stamps out tangible objects — objects that you’ll
encounter during the next waking day. Tomorrow you’ll go for an interview at
the Sloshy Shoes Company. So tonight, the factory builds chairs for the com-
pany’s offices. The factory builds chair objects, as shown in Figure 17-3, from
the almost-real code in Listing 17-4.

In Listing 17-3, the line

Purchase onePurchase = new Purchase();

behaves like that grand factory at the edge of the universe. Instead of creat-
ing chair objects, that line in Listing 17-3 creates a purchase object, as shown
in Figure 17-4. That Listing 17-3 line is a declaration with an initialization. Just
as the line

int count = 0;

declares the count variable and sets count to 0, the line in Listing 17-3 declares
the onePurchase variable, and makes onePurchase point to a brand new
object. That new object contains three parts: an amount part, a taxable part,
and a total part.

295Chapter 17: Programming with Objects and Classes

24_588745 ch17.qxd 3/16/05 9:30 PM Page 295

Figure 17-4:
An object

created
from the

Purchase
class.

Figure 17-3:
Chairs

objects
from the

Chair class.

296 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 296

If you want to be picky, there’s a difference between the stuff in Figure 17-4
and the action of the big bold statement in Listing 17-3. Figure 17-4 shows an
object with the values 20.00, true, and 21.00 stored in it. The statement in
Listing 17-3 creates a new object, but it doesn’t fill the object with useful
values. Getting values comes later in Listing 17-3.

Understanding (or ignoring) the subtleties
Sometimes, when you refer to a particular object, you want to emphasize
which class the object came from. Well, subtle differences in emphasis call
for big differences in terminology. So here’s how Java programmers use the
terminology:

� The bold line in Listing 17-3 creates a new object.

� The bold line in Listing 17-3 creates a new instance of the Purchase class.

The words object and instance are almost synonymous, but Java program-
mers never say “object of the Purchase class” (or if they do, they feel funny).

By the way, if you mess up this terminology and say something like “object of
the Purchase class,” then no one jumps down your throat. Everyone under-
stands what you mean, and life goes on as usual. In fact, I often use a phrase
like “Purchase object” to describe an instance of the Purchase class. The
difference between object and instance isn’t terribly important. But it’s very
important to remember that the words object and instance have the same
meaning. (Okay! They have nearly the same meaning.)

Making reference to an object’s parts
After you’ve created an object, you use dots to refer to the object’s parts. For
example, in Listing 17-3, I put a value into the onePurchase object’s amount
part with the following code:

onePurchase.amount = myScanner.nextDouble();

Later in Listing 17-3, I get the amount part’s value with the following code:

onePurchase.total = onePurchase.amount * 1.05;

This dot business may look cumbersome, but it really helps programmers
when they’re trying to organize the code. In Listing 17-1, each variable is a
separate entity. But in Listing 17-3, each use of the word amount is inextrica-
bly linked to the notion of a purchase. That’s good.

297Chapter 17: Programming with Objects and Classes

24_588745 ch17.qxd 3/16/05 9:30 PM Page 297

Creating several objects
After you’ve created a Purchase class, you can create as many purchase
objects as you want. For example, in Listing 17-5, I create three purchase
objects.

Listing 17-5: Processing Purchases

import java.util.Scanner;

class ProcessPurchasesss {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
Purchase aPurchase;

for (int count = 0; count < 3; count++) {
aPurchase = new Purchase();

System.out.print(“Amount: “);
aPurchase.amount = myScanner.nextDouble();
System.out.print(“Taxable? (true/false) “);
aPurchase.taxable = myScanner.nextBoolean();

if (aPurchase.taxable) {
aPurchase.total = aPurchase.amount * 1.05;

} else {
aPurchase.total = aPurchase.amount;

}

System.out.print(“Total: “);
System.out.println(aPurchase.total);
System.out.println();

}
}

}

Figure 17-5 has a run of the code in Listing 17-5, and Figure 17-6 illustrates the
concept.

Figure 17-5:
Running the

code in
Listing 17-5.

298 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 298

To compile the code in Listing 17-5 you must have a copy of the Purchase
class in the same project. (The Purchase class is in Listing 17-2.) To copy a
class’s code from one project to another, see Chapter 16. (One of that chap-
ter’s sidebars describes the copy-and-paste routine.)

Listing 17-5 has only one variable that refers to purchase objects. (The vari-
able’s name is aPurchase.) The program has three purchase objects because
the assignment statement

aPurchase = new Purchase();

is executed three times (once for each iteration of the for loop). Just as you
can separate an int variable’s assignment from the variable’s declaration

int count;
count = 0;

you can also separate a Purchase variable’s assignment from the variable’s
declaration:

Purchase aPurchase;

for (int count = 0; count < 3; count++) {
aPurchase = new Purchase();

Figure 17-6:
From one

class come
three

objects.

299Chapter 17: Programming with Objects and Classes

24_588745 ch17.qxd 3/16/05 9:30 PM Page 299

In fact, after you’ve created the code in Listing 17-2, the word Purchase stands
for a brand new type — a reference type. Java has eight built-in primitive types,
and has as many reference types as people can define during your lifetime.
In Listing 17-2, I define the Purchase reference type, and you can define refer-
ence types too.

Table 17-2 has a brief comparison of primitive types and reference types.

Table 17-2 Java Types
Primitive Type Reference Type

How it’s created Built into the language Defined as a Java class

How many are there Eight Indefinitely many

Sample variable int count; Purchase aPurchase;
declaration

Sample assignment count = 0; aPurchase = new
Purchase();

Assigning a value to (Not applicable) aPurchase.amount = 20.00;
one of its parts

Another Way to Think
About Classes

When you start learning object-oriented programming, you may think this
class idea is a big hoax. Some geeks in Silicon Valley had nothing better to do,
so they went to a bar and made up some confusing gibberish about classes.
They don’t know what it means, but they have fun watching people struggle
to understand it.

Well, that’s not what classes are all about. Classes are serious stuff. What’s
more, classes are useful. Many reputable studies have shown that classes and
object-oriented programming save time and money.

Even so, the notion of a class can be very elusive. Even experienced
programmers — the ones who are new to object-oriented programming —
have trouble understanding how an object differs from a class.

300 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 300

Classes, objects, and tables
Because classes can be so mysterious, I’ll expand your understanding with
another analogy. Figure 17-7 has a table of three purchases. The table’s title
consists of one word (the word “Purchase”) and the table has three column
headings — the words “amount,” “taxable,” and “total.” Well, the code in
Listing 17-2 has the same stuff — Purchase, amount, taxable, and total. So
in Figure 17-7, think of the top part of the table (the title and column headings)
as a class. Like the code in Listing 17-2, this top part of the table tells us what
it means to be a Purchase. (It means having an amount value, a taxable value,
and a total value.)

A class is like the top part of a table. And what about an object? Well, an object
is like a row of a table. For example, with the code in Listing 17-5 and the input
in Figure 17-5, I create three objects (three instances of the Purchase class).
The first object has amount value 20.00, taxable value true, and total value
21.00. In the table, the first row has these three values — 20.00, true, and 21.00,
as shown in Figure 17-8.

Figure 17-7:
A table of

purchases.

301Chapter 17: Programming with Objects and Classes

24_588745 ch17.qxd 3/16/05 9:30 PM Page 301

Some questions and answers
Here’s the world’s briefest object-oriented programming FAQ:

� Can I have an object without having a class?

No, you can’t. In Java, every object is an instance of a class.

� Can I have a class without having an object?

Yes, you can. In fact, almost every program in this book creates a class
without an object. Take Listing 17-5, for example. The code in Listing 17-5
defines a class named ProcessPurchasesss. And nowhere in Listing 17-5
(or anywhere else) do I create an instance of the ProcessPurchasesss
class. I have a class with no objects. That’s just fine. It’s business as usual.

� After I’ve created a class and its instances, can I add more instances to
the class?

Yes, you can. In Listing 17-5, I create one instance, then another, and
then a third. If I went one additional time around the for loop, I’d have a
fourth instance, and I’d put a fourth row in the table of Figure 17-8. With
no objects, three objects, four objects, or more objects, I still have the
same old Purchase class.

� Can an object come from more than one class?

Bite your tongue! Maybe other object-oriented languages allow this nasty
class cross-breeding, but in Java, it’s strictly forbidden. That’s one of the
things that distinguishes Java from some of the languages that preceded
it. Java is cleaner, more uniform, and easier to understand.

Figure 17-8:
A purchase

corre-
sponds to

a row of
the table.

302 Part IV: Using Program Units

24_588745 ch17.qxd 3/16/05 9:30 PM Page 302

Chapter 18

Using Methods and Variables
from a Java Class

In This Chapter
� Using Java’s String class

� Calling methods

� Understanding static and non-static methods and variables

� Making numbers look good

I hope you didn’t read Chapter 17, because I tell a big lie in the beginning of
the chapter. Actually, it’s not a lie. It’s an exaggeration.

Actually, it’s not an exaggeration. It’s a careful choice of wording. In Chapter
17, I write that the gathering of data into a class is the start of object-oriented
programming. Well, that’s true. Except that many programming languages had
data-gathering features before object-oriented programming became popular.
Pascal had records. C had structs.

To be painfully precise, the grouping of data into usable blobs is only a prereq-
uisite to object-oriented programming. You’re not really doing object-oriented
programming until you combine both data and methods in your classes.

This chapter starts the “data and methods” ball rolling, and Chapter 19
rounds out the picture.

The String Class
The String class is declared in the Java API. This means that, somewhere
in the stuff you download from java.sun.com is a file named String.java.
If you hunt down this String.java file and peek at the file’s code, you find
some very familiar-looking stuff:

class String {
...And so on.

25_588745 ch18.qxd 3/16/05 9:14 PM Page 303

In your own code, you can use this String class without ever seeing what’s
inside the String.java file. That’s one of the great things about object-
oriented programming.

A simple example
A String is bunch of characters. It’s like having several char values in a row.
You can declare a variable to be of type String and store several letters in
the variable. Listing 18-1 has a tiny example.

Listing 18-1: I’m Repeating Myself Again (Again)

import java.util.Scanner;

class JazzyEchoLine {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
String lineIn;

lineIn = myScanner.nextLine();
System.out.println(lineIn);

}
}

A run of Listing 18-1 is shown in Figure 18-1. This run bears an uncanny resem-
blance to runs of Listing 5-1 from Chapter 5. That’s because Listing 18-1 is a
reprise of the effort in Listing 5-1.

The new idea in Listing 18-1 is the use of a String. In Listing 5-1, I have no
variable to store the user’s input. But in Listing 18-1, I create the lineIn vari-
able. This variable stores a bunch of letters, like the letters Do as I write,
not as I do.

Figure 18-1:
Running

the code in
Listing 18-1.

304 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 304

Putting String variables to good use
The program in Listing 18-1 takes the user’s input and echoes it back on the
screen. This is a wonderful program, but (like many college administrators
that I know) it doesn’t seem to be particularly useful.

So take a look at a more useful application of Java’s String type. A nice one
is in Listing 18-2.

Listing 18-2: Putting a Name in a String Variable

import java.util.Scanner;
import static java.lang.System.out;

class ProcessMoreData {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
String fullName;
double amount;
boolean taxable;
double total;

out.print(“Customer’s full name: “);
fullName = myScanner.nextLine();
out.print(“Amount: “);
amount = myScanner.nextDouble();
out.print(“Taxable? (true/false) “);
taxable = myScanner.nextBoolean();

if (taxable) {
total = amount * 1.05;

} else {
total = amount;

}

out.println();
out.print(“The total for “);
out.print(fullName);
out.print(“ is “);
out.print(total);
out.println(“.”);

}
}

305Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 305

A run of the code in Listing 18-2 is shown in Figure 18-2. The code stores
Barry A. Burd in a variable called fullName, and displays the fullName
variable’s content as part of the output. To make this program work, you
have to store Barry A. Burd somewhere. After all, the program follows a
certain outline:

Get a name.
Get some other stuff.
Compute the total.
Display the name (along with some other stuff).

If you don’t have the program store the name somewhere then, by the time
it’s done getting other stuff and computing the total, it forgets the name (so
the program can’t display the name).

Reading and writing strings
To read a String value from the keyboard, you can call either next or
nextLine:

� The method next reads up to the next blank space.

For example, with the input Barry A. Burd, the statements

String firstName = myScanner.next();
String middleInit = myScanner.next();
String lastName = myScanner.next();

assign Barry to firstName, A. to middleInit, and Burd to lastName.

� The method nextLine reads up to the end of the current line.

For example, with input Barry A. Burd, the statement

String fullName = myScanner.nextLine();

assigns Barry A. Burd to the variable fullName. (Hey, being an author
has some hidden perks.)

Figure 18-2:
Making a

purchase.

306 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 306

To display a String value, you can call one of your old friends, System.out.
print or System.out.println. In fact, most of the programs in this book
display String values. In Listing 18-2, a statement like

out.print(“Customer’s full name: “);

displays the String value “Customer’s full name: “.

You can use print and println to write String values to a disk file. For
details, see Chapter 13.

Chapter 4 introduces a bunch of characters, enclosed in double quote marks:

“Chocolate, royalties, sleep”

In Chapter 4, I call this a literal of some kind. (It’s a literal because, unlike a
variable, it looks just like the stuff that it represents.) Well, in this chapter, I
can continue the story about Java’s literals:

� In Listing 18-2, amount and total are double variables, and 1.05 is a
double literal.

� In Listing 18-2, fullName is a String variable, and things like
“Customer’s full name: “ are String literals.

In a Java program, you surround the letters in a String literal with double
quote marks.

Using an Object’s Methods
If you’re not too concerned about classes and reference types, then the use of
the type String in Listing 18-2 is no big deal. Almost everything you can do
with a primitive type seems to work with the String type as well. But there’s
danger around the next curve. Take a look at the code in Listing 18-3, and the
run of the code shown in Figure 18-3.

Figure 18-3:
But I typed
the correct
password!

307Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 307

Listing 18-3: A Faulty Password Checker

/*
* This code does not work:
*/
import java.util.Scanner;
import static java.lang.System.out;

class TryToCheckPassword {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
String password = “swordfish”;
String userInput;

out.print(“What’s the password? “);
userInput = myScanner.next();

if (password == userInput) {
out.println(“You’re okay!”);

} else {
out.println(“You’re a menace.”);

}
}

}

Here are the facts as they appear in this example:

� According to the code in Listing 18-3, the value of password is
“swordfish”.

� In Figure 18-3, in response to the program’s prompt, the user types
swordfish. So in the code, the value of userInput is “swordfish”.

� The if statement checks the condition password == userInput.
Because both variables have the value “swordfish”, the condition
should be true, but. . . .

� The condition is not true, because the program’s output is You’re a
menace.

What’s going on here? I try beefing up the code to see if I can find any clues.
An enhanced version of the password-checking program is in Listing 18-4,
with a run of the new version shown in Figure 18-4.

Listing 18-4: An Attempt to Debug the Code in Listing 18-3

import java.util.Scanner;
import static java.lang.System.out;

class DebugCheckPassword {

308 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 308

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
String password = “swordfish”;
String userInput;

out.print(“What’s the password? “);
userInput = myScanner.next();

out.println();
out.print(“You typed “);
out.println(userInput);
out.print(“But the password is “);
out.println(password);
out.println();

if (password == userInput) {
out.println(“You’re okay!”);

} else {
out.println(“You’re a menace.”);

}
}

}

Ouch! I’m stumped this time. The run in Figure 18-4 shows that both the
userInput and password variables have value swordfish. So why doesn’t
the program accept the user’s input?

When you compare two things with a double equal sign, reference types and
primitive types don’t behave the same way. Consider, for example, int versus
String:

� You can compare two int values with a double equal sign. When you do,
things work exactly as you would expect. For example, the condition in
the following code is true:

int apples = 7;
int oranges = 7;

if (apples == oranges)
System.out.println(“They’re equal.”);

� When you compare two String values with the double equal sign, things
don’t work the way you expect. The computer doesn’t check to see if the
two String values contain the same letters. Instead, the computer checks
some esoteric property of the way variables are stored in memory.

Figure 18-4:
This looks

even worse.

309Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 309

For your purposes, the term reference type is just a fancy name for a class.
Because String is defined to be a class in the Java API, I call String a refer-
ence type. This terminology highlights the parallel between primitive types
(such as int) and classes (that is, reference types, such as String).

Comparing strings
In the preceding bullets, the difference between int and String is mighty
interesting. But if the double equal sign doesn’t work for String values, how
do you check to see if Joe User enters the correct password? You do it with
the code in Listing 18-5.

Listing 18-5: Calling an Object’s Method

/*
* This program works!
*/
import java.util.Scanner;
import static java.lang.System.out;

class CheckPassword {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
String password = “swordfish”;
String userInput;

out.print(“What’s the password? “);
userInput = myScanner.next();

if (password.equals(userInput)) {
out.println(“You’re okay!”);

} else {
out.println(“You’re a menace.”);

}
}

}

A run of the new password-checking code is shown in Figure 18-5 and, let me
tell you, it’s a big relief! The code in Listing 18-5 actually works! When the
user types swordfish, the if statement’s condition is true.

Figure 18-5:
At last,

Joe User
can log in.

310 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 310

The truth about classes and methods
The magic in Listing 18-5 is the use of a method named equals. I have two
ways to explain the equals method — a simple way, and a more detailed
way. First, here’s the simple way: The equals method compares the charac-
ters in one string with the characters in another. If the characters are the
same, then the condition inside the if statement is true. That’s all there is
to it.

Don’t use a double equal sign to compare two String objects. Instead, use
one of the objects’ equals methods.

For a more detailed understanding of the equals method, flip back to
Chapter 17 and take a look at Figures 17-7 and 17-8. Those figures illustrate
the similarities between classes, objects, and the parts of a table. In the fig-
ures, each row represents a purchase, and each column represents a feature
that purchases possess.

You can observe the same similarities for any class, including Java’s
String class. In fact, what Figure 17-7 does for purchases, Figure 18-6
does for strings.

The stuff shown in Figure 18-6 is much simpler than the real String class
story. But Figure 18-6 makes a good point. Like the purchases in Figure 17-7,
each string has its own features. For example, each string has a value
(the actual characters stored in the string) and each string has a count
(the number of characters stored in the string). You can’t really write the
following line of code:

//This code does NOT work:
System.out.println(password.count);

but that’s because the stuff in Figure 18-6 omits a few subtle details.

Figure 18-6:
Viewing the
String class

and String
objects as
parts of a

table.

311Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 311

Anyway, each row in Figure 18-6 has three items — a value, a count, and an
equals method. So each row of the table contains more than just data. Each
row contains an equals method, a way of doing something useful with the data.
It’s as if each object (each instance of the String class) has three things:

� A bunch of characters (the object’s value)

� A number (the object’s count)

� A way of being compared with other strings (the object’s equals method)

That’s the essence of object-oriented programming. Each string has its
own personal copy of the equals method. For example, in Listing 18-5, the
password string has its own equals method. When you call the password
string’s equals method and put the userInput string in the method’s paren-
theses, the method compares the two strings to see if those strings contain
the same characters.

The userInput string in Listing 18-5 has an equals method too. I could
use the userInput string’s equals method to compare this string with
the password string. But I don’t. In fact, in Listing 18-5, I don’t use the
userInput string’s equals method at all. (To compare the userInput with
the password, I had to use either the password string’s equals method or
the userInput string’s equals method. So I made an arbitrary choice: I
chose the password string’s method.)

Calling an object’s methods
Calling a string’s equals method is like getting a purchase’s total. With both
equals and total, you use your old friend, the dot. For example, in Listing
17-3, you write

System.out.println(onePurchase.total);

and in Listing 18-5, you write

if (password.equals(userInput))

A dot works the same way for an object’s variables and its methods. In either
case, a dot takes the object and picks out one of the object’s parts. It works
whether that part is a piece of data (as in onePurchase.total) or a method
(as in password.equals).

312 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 312

Combining and using data
At this point in the chapter, I can finally say, “I told you so.” Here’s a quota-
tion from Chapter 17:

A class is a design plan. The class describes the way in which you intend
to combine and use pieces of data.

A class can define the way you use data. How do you use a password and a
user’s input? You check to see if they’re the same. That’s why Java’s String
class defines an equals method.

An object can be more than just a bunch of data. With object-oriented pro-
gramming, each object possesses copies of methods for using that object.

Static Methods
You have a fistful of checks. Each check has a number, an amount, and a payee.
You print checks like these with your very own laser printer. To print the
checks, you use a Java class. Each object made from the Check class has
three variables (number, amount, and payee). And each object has one
method (a print method). You can see all this in Figure 18-7.

You’d like to print the checks in numerical order. So you need a method to sort
the checks. If the checks in Figure 18-7 were sorted, the check with number
1699 would come first, and the check with number 1705 would come last.

Figure 18-7:
The Check
class and

some check
objects.

313Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 313

The big question is, should each check have its own sort method? Does the
check with number 1699 need to sort itself? And the answer is no. Some
methods just shouldn’t belong to the objects in a class.

So where do such methods belong? How can you have a sort method with-
out creating a separate sort for each check?

Here’s the answer. You make the sort method be static. Anything that’s static
belongs to a whole class, not to any particular instance of the class. If the
sort method is static, then the entire Check class has just one copy of the
sort method. This copy stays with the entire Check class. No matter how
many instances of the Check class you create — three, ten, or none — you
have just one sort method.

For an illustration of this concept, look back at Figure 18-7. The whole class
has just one sort method. So the sort method is static. No matter how you
call the sort method, that method uses the same values to do its work.

Of course, each individual check (each object, each row of the table in
Figure 18-7) still has its own number, its own amount, its own payee, and it’s
own print method. When you print the first check, you get one amount,
and when you print the second check get another. Because there’s a number,
an amount, a payee, and a print method for each object, I call these things
non-static. I call them non-static, because . . . well . . . because they’re not static.

Calling static and non-static methods
In this book, my first use of the word static is way back in Listing 3-1. I use
static as part of every main method (and this book’s listings have lots of
main methods). In Java, your main method has to be static. That’s just the
way it goes.

To call a static method, you use a class’s name along with a dot. This is just
slightly different from the way you call a non-static method:

� To call an ordinary (non-static) method, you follow an object with a dot.

For example, a program to process the checks in Figure 18-7 may contain
code of the following kind:

Check firstCheck;
firstCheck.number = 1705;
firstCheck.amount = 25.09;
firstCheck.payee = “The Butcher”;
firstCheck.print();

� To call a class’s static method, you follow the class name with a dot.

For example, to sort the checks in Figure 18-7, you may call

Check.sort();

314 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 314

Turning strings into numbers
The code in Listing 18-5 introduces a non-static method named equals. To
compare the password string with the userInput string, you preface .equals
with either of the two string objects. In Listing 18-5, I preface .equals with
the password object:

if (password.equals(userInput))

Each string object has an equals method of its own, so I can achieve the
same effect by writing

if (userInput.equals(password))

But Java has another class named Integer, and the whole Integer class has
a static method named parseInt. If someone hands you a string of characters,
and you want to turn that string into an int value, you can call the Integer
class’s parseInt method. Listing 18-6 has a small example.

Listing 18-6: More Chips, Please

import java.util.Scanner;
import static java.lang.System.out;

class AddChips {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
String reply;
int numberOfChips;

out.print(“How many chips do you have?”);
out.print(“ (Type a number,”);
out.print(“ or type ‘Not playing’) “);
reply = myScanner.nextLine();

if (!reply.equals(“Not playing”)) {
numberOfChips = Integer.parseInt(reply);
numberOfChips += 10;

out.print(“You now have “);
out.print(numberOfChips);
out.println(“ chips.”);

}
}

}

Some runs of the code in Listing 18-6 are shown in Figure 18-8. You want to give
each player ten chips. But some party poopers in the room aren’t playing. So
two people, each with no chips, may not get the same treatment. An empty-
handed player gets ten chips, but an empty-handed party pooper gets none.

315Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 315

So in Listing 18-6, you call the Scanner class’s nextLine method, allowing a
user to enter any characters at all — not just digits. If the user types Not
playing, then you don’t give the killjoy any chips.

If the user types some digits, then you’re stuck holding these digits in the
string variable named reply. You can’t add ten to a string like reply. So you
call the Integer class’s parseInt method, which takes your string, and hands
you back a nice int value. From there, you can add ten to the int value.

Java has a loophole that allows you to add a number to a string. The problem
is, you don’t get real addition. Adding the number 10 to the string “30” gives
you “3010”, not 40.

Don’t confuse Integer with int. In Java, int is the name of a primitive type
(a type that I use throughout this book). But Integer is the name of a class.
Java’s Integer class contains handy methods for dealing with int values.
For example, in Listing 18-6, the Integer class’s parseInt method makes an
int value from a string.

Turning numbers into strings
In Chapter 17, Listing 17-1 adds tax to the amount of a purchase. But a run of
the code in Listing 17-1 has an anomaly. Look back at Figure 17-1. With five
percent tax on 20 dollars, the program displays a total of 21.0. That’s peculiar.
Where I come from, currency amounts aren’t normally displayed with just one
digit beyond the decimal point.

If you don’t choose your purchase amount carefully, the situation is even worse.
For example, in Figure 18-9, I run the same program (the code in Listing 17-1)
with purchase amount 19.37. The resulting display looks very nasty.

With its internal zeros and ones, the computer doesn’t do arithmetic quite
the way you and I are used to doing it. So how do you fix this problem?

Figure 18-8:
Running

the code in
Listing 18-6.

316 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 316

The Java API has a class named NumberFormat, and the NumberFormat class
has a static method named getCurrencyInstance. When you call Number
Format.getCurrencyInstance() with nothing inside the parentheses, you
get an object that can mold numbers into U.S. currency amounts. Listing 18-7
has an example.

Listing 18-7: The Right Way to Display a Dollar Amount

import java.text.NumberFormat;
import java.util.Scanner;

class BetterProcessData {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
double amount;
boolean taxable;
double total;
NumberFormat currency =

NumberFormat.getCurrencyInstance();
String niceTotal;

System.out.print(“Amount: “);
amount = myScanner.nextDouble();
System.out.print(“Taxable? (true/false) “);
taxable = myScanner.nextBoolean();

if (taxable) {
total = amount * 1.05;

} else {
total = amount;

}

niceTotal = currency.format(total);
System.out.print(“Total: “);
System.out.println(niceTotal);

}
}

Figure 18-9:
Do you have

change for
20.33850000

0000003?

317Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 317

For some beautiful runs of the code in Listing 18-7, see Figure 18-10. Now at
last, you see a total like $20.34, not 20.338500000000003. Ah! That’s much
better.

How the NumberFormat works
For my current purposes, the code in Listing 18-7 contains three interesting
variables:

� The variable total stores a number, such as 21.0.

� The variable currency stores an object that can mold numbers into
U.S. currency amounts.

� The variable niceTotal is set up to store a bunch of characters.

The currency object has a format method. So to get the appropriate bunch
of characters into the niceTotal variable, you call the currency object’s
format method. You apply this format method to the variable total.

Understanding the Big Picture
In this section, I answer some of the burning questions that I raise through-
out the book. “What does java.util stand for?” “Why do I need the word
static at certain points in the code?” “How can a degree in Horticultural
Studies help you sort cancelled checks?”

I also explain “static” in some unique and interesting ways. After all, static
methods and variables aren’t easy to understand. It helps to read about
Java’s static feature from several points of view.

Figure 18-10:
See the

pretty
numbers.

318 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 318

Packages and import declarations
In Java, you can group a bunch of classes into something called a package. In
fact, the classes in Java’s standard API are divided into about 170 packages.
This book’s examples make heavy use of three packages — the packages named
java.util, java.lang, and java.io.

The class java.util.Scanner
The package java.util contains about 50 classes, including the very useful
Scanner class. Like most other classes, this Scanner class has two names —
a fully qualified name and an abbreviated simple name. The class’s fully quali-
fied name is java.util.Scanner, and the class’s simple name is Scanner.
You get the fully qualified name by adding the package name to the class’s
simple name. (That is, you add the package name java.util to the simple
name Scanner. You get java.util.Scanner.)

An import declaration lets you abbreviate a class’s name. With the declaration

import java.util.Scanner;

the Java compiler figures out where to look for the Scanner class. So instead of
writing java.util.Scanner throughout your code, you can just write Scanner.

The class java.lang.System
The package java.lang contains about 35 classes, including the ever popu-
lar System class. (The class’s fully qualified name is java.lang.System, and
the class’s simple name is System.) Instead of writing java.lang.System
throughout your code, you can just write System. You don’t even need an
import declaration.

319Chapter 18: Using Methods and Variables from a Java Class

All ye need to know
I can summarize much of Java’s complexity in
only a few sentences:

� The Java API contains many packages.

� A package contains classes.

� From a class, you can create objects.

� An object can have its own methods. An
object can also have its own variables.

� A class can have its own static methods. A
class can also have its own static variables.

25_588745 ch18.qxd 3/16/05 9:14 PM Page 319

Among all of Java’s packages, the java.lang package is special. With or with-
out an import declaration, the compiler imports everything in the java.lang
package. You can start your program with import java.lang.System. But if
you don’t, the compiler adds this declaration automatically.

The static System.out variable
What kind of importing must you do in order to abbreviate System.out.
println? How can you shorten it to out.println? An import declaration lets
you abbreviate a class’s name. But in the expression System.out, the word
out isn’t a class. The word out is a static variable. (The out variable refers to
the place where a Java program sends text output.) So you can’t write

//This code is bogus. Don’t use it:
import java.lang.System.out;

What do you do instead? You write

import static java.lang.System.out;

To find out more about the out variable’s being a static variable, read the
next section.

Shedding light on the static darkness
I love to quote myself. When I quote my own words, I don’t need written
permission. I don’t have to think about copyright infringement and I never
hear from lawyers. Best of all, I can change and distort anything I say.
When I paraphrase my own ideas, I can’t be misquoted.

With that in mind, here’s a quote from the previous section:

“Anything that’s static belongs to a whole class, not to any particular
instance of the class. . . . To call a static method, you use a class’s name
along with a dot.”

How profound! In Listing 18-6, I introduce a static method named parseInt.
Here’s the same quotation applied to the static parseInt method:

The static parseInt method belongs to the whole Integer class, not to
any particular instance of the Integer class. . . . To call the static parseInt
method, you use the Integer class’s name along with a dot. You write
something like Integer.parseInt(reply).

320 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 320

That’s very nice! How about the System.out business that I introduce in
Chapter 3? I can apply my quotation to that too.

The static out variable belongs to the whole System class, not to any
particular instance of the System class. . . . To refer to the static out
variable, you use the System class’s name along with a dot. You write
something like System.out.println().

If you think about what System.out means, this static business makes sense.
After all, the name System.out refers to the place where a Java program
sends text output. (When you use JCreator, the name System.out refers to
JCreator’s General Output pane.) A typical program has only one place to
send its text output. So a Java program has only one out variable. No matter
how many objects you create — three, ten, or none — you have just one out
variable. And when you make something static, you insure that the program
has only one of those things.

Alright, then! The out variable is static.

To abbreviate the name of a static variable (or a static method), you don’t
use an ordinary import declaration. Instead, you use a static import declara-
tion. That’s why, in Chapter 9 and beyond, I use the word static to import
the out variable:

import static java.lang.System.out;

Barry makes good on an age-old promise
In Chapter 6, I pull a variable declaration outside of a main method. I go from
code of the kind in Listing 18-8, to code of the kind that’s in Listing 18-9.

Listing 18-8: Declaring a Variable Inside the main Method

class SnitSoft {

public static void main(String args[]) {
double amount = 5.95;

amount = amount + 25.00;
System.out.println(amount);

}
}

321Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 321

Listing 18-9: Pulling a Variable Outside of the main Method

class SnitSoft {
static double amount = 5.95;

public static void main(String args[]) {
amount = amount + 25.00;
System.out.println(amount);

}
}

In Chapter 6, I promise to explain why Listing 18-9 needs the extra word
static (in static double amount = 5.95). Well, with all the fuss about
static methods in this chapter, I can finally explain everything.

Look back to Figure 18-7. In that figure, you have checks and you have a sort
method. Each individual check has its own number, its own amount, and its
own payee. But the entire Check class has just one sort method.

I don’t know about you, but to sort my cancelled checks, I hang them on my
exotic Yucca Elephantipes tree. I fasten the higher numbered checks to the
upper leaves, and put the lower numbered checks on the lower leaves. When
I find a check whose number comes between two other checks, I select a free
leaf (one that’s between the upper and lower leaves).

A program to mimic my sorting method looks something like this:

class Check {
int number;
double amount;
String payee;

static void sort() {
Yucca tree;

if (myCheck.number > 1700) {
tree.attachHigh(myCheck);

}
// ... etc.

}
}

Because of the word static, the Check class has only one sort method. And
because I declare the tree variable inside the static sort method, this pro-
gram has only one tree variable. (Indeed, I hang all my cancelled checks on
just one Yucca tree.) I can move the tree variable’s declaration outside of
the sort method. But if I do, I may have too many Yucca trees.

322 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 322

class Check {
int number;
double amount;
String payee;
Yucca tree; //This is bad! Each check has its own tree.

static void sort() {
if (myCheck.number > 5000) {

tree.attachHigh(myCheck);
}
// ... etc.

}
}

In the nasty code above, each check has its own number, its own amount, its
own payee, and its own tree. But that’s ridiculous! I don’t want to fasten each
check to its own Yucca tree. Everybody knows you’re supposed to sort checks
with just one Yucca tree. (That’s the way the big banks do it.)

When I move the tree variable’s declaration outside of the sort method, I want
to preserve the fact that I have only one tree. (To be more precise, I have only
one tree for the entire Check class.) To make sure that I have only one tree, I
declare the tree variable to be static.

class Check {
int number;
double amount;
String payee;
static Yucca tree; //That’s better!

static void sort() {
if (myCheck.number > 5000) {

tree.attachHigh(myCheck);
}
// ... etc.

}
}

For exactly the same reason, I write static double amount when I move
from Listing 18-8 to 18-9.

To find out more about sorting, read UNIX For Dummies Quick Reference,
4th Edition, by Margaret Levine Young and John R. Levine. To learn more
about bank checks, read Managing Your Money Online For Dummies by
Kathleen Sindell. To learn more about trees, read Landscaping For Dummies
by Phillip Giroux, Bob Beckstrom, and Lance Walheim.

323Chapter 18: Using Methods and Variables from a Java Class

25_588745 ch18.qxd 3/16/05 9:14 PM Page 323

324 Part IV: Using Program Units

25_588745 ch18.qxd 3/16/05 9:14 PM Page 324

Chapter 19

Creating New Java Methods
In This Chapter
� Creating methods that work with existing values

� Creating methods that modify existing values

� Creating methods that return new values

In Chapters 3 and 4, I introduce Java methods. I show you how to create a
main method and how to call the System.out.println method. Between

that chapter and this one, I make very little noise about methods. In Chapter 18,
I introduce a bunch of new methods for you to call, but that’s only half of the
story.

This chapter completes the circle. In this chapter, you create your own Java
methods — not the tired old main method that you’ve been using all along,
but some new, powerful Java methods.

Defining a Method within a Class
In Chapter 18, Figure 18-6 introduces an interesting notion — a notion that’s
at the core of object-oriented programming. Each Java string has its own
equals method. That is, each string has, built within it, the functionality to
compare itself with other strings. That’s an important point. When you do
object-oriented programming, you bundle data and functionality into a lump
called a class. Just remember Barry’s immortal words from Chapter 17:

A class describes the way in which you intend to combine and use pieces
of data.

26_588745 ch19.qxd 3/16/05 9:28 PM Page 325

And why are these words so important? They’re important because, in object-
oriented programming, chunks of data take responsibility for themselves.
With object-oriented programming, everything you have to know about a
string is located in the file String.java. So if anybody has problems with
the strings, they know just where to look for all the code. That’s great!

So this is the deal — objects contain methods. Chapter 18 shows you how to
use an object’s methods, and this chapter shows you how to create an object’s
methods.

Making a method
Imagine a table containing the information about three accounts. (If you have
trouble imagining such a thing, just look at Figure 19-1.) In the figure, each
account has a last name, an identification number, and a balance. In addition
(and here’s the important part), each account knows how to display itself on
the screen. Each row of the table has its own copy of a display method.

Figure 19-1:
A table of
accounts.

326 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 326

The last names in Figure 19-1 may seem strange to you. That’s because I gen-
erated the table’s data randomly. Each last name is a haphazard combination
of three letters — one uppercase letter followed by two lowercase letters.

Though it may seem strange, generating account values at random is common
practice. When you write new code, you want to test the code to find out if it
runs correctly. You can make up your own data (with values like “Smith”, 0000,
and 1000.00). But to give your code a challenging workout, you should use
some unexpected values. If you have values from some real-life case studies,
you should use them. But if you have don’t have real data, randomly gener-
ated values are easy to create.

I need some code to implement the ideas in Figure 19-1. Fortunately, I have
some code in Listing 19-1.

Listing 19-1: An Account Class

import java.text.NumberFormat;
import static java.lang.System.out;

class Account {
String lastName;
int id;
double balance;

void display() {
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“The account with last name “);
out.print(lastName);
out.print(“ and ID number “);
out.print(id);
out.print(“ has balance “);
out.println(currency.format(balance));

}
}

The Account class in Listing 19-1 defines four things — a lastName, an id,
a balance, and a display. So each instance of Account class has its own
lastName variable, its own id variable, its own balance variable, and its
own display method. These things match up with the four columns in
Figure 19-1.

327Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 327

Examining the method’s header
Listing 19-1 contains the display method’s declaration. Like a main method’s
declaration, the display declaration has a header and a body. (See Chapter 4.)
The header has two words and some parentheses:

� The word void tells the computer that, when the display method is
called, the display method doesn’t return anything to the place that
called it.

Later in this chapter, a method does return something. For now, the
display method returns nothing.

� The word display is the method’s name.

Every method must have a name. Otherwise, you don’t have a way to
call the method.

� The parentheses contain all the things you’re going to pass to the
method when you call it.

When you call a method, you can pass information to that method on
the fly. This display example, with its empty parentheses, looks strange.
That’s because no information is passed to the display method when
you call it. That’s okay. I give a meatier example later in this chapter.

Examining the method’s body
The display method’s body contains some print and println calls. The inter-
esting thing here is that the body makes reference to the variables lastName,
id, and balance. A method’s body can do that. But with each object having
its own lastName, id, and balance variables, what does a variable in the
display method’s body mean?

Well, when I use the Account class, I create little account objects. Maybe I
create an object for each row of the table in Figure 19-1. Each object has its
own values for the lastName, id, and balance variables, and each object has
its own copy of the display method.

So take the first display method in Figure 19-1 — the method for Aju’s
account. The display method for that object behaves as if it had the code
in Listing 19-2.

328 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 328

Listing 19-2: How the display Method Behaves When No One’s Looking

/*
* This is not real code:
*/
void display() {

NumberFormat currency =
NumberFormat.getCurrencyInstance();

out.print(“The account with last name “);
out.print(“Aju”);
out.print(“ and ID number “);
out.print(9936);
out.print(“ has balance “);
out.println(currency.format(8734.00));

}

In fact, each of the three display methods behaves as if its body has a slightly
different code. Figure 19-2 illustrates this idea for two instances of the
Account class.

Figure 19-2:
Two objects,

each with
its own
display

method.

329Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 329

330 Part IV: Using Program Units

Calling the method
To put the previous section’s ideas into action, you need more code. So the
next listing (see Listing 19-3) creates instances of the Account class.

Listing 19-3: Making Use of the Code in Listing 19-1

import java.util.Random;

class ProcessAccounts {

public static void main(String args[]) {

Random myRandom = new Random();
Account anAccount;

for (int i = 0; i < 3; i++) {
anAccount = new Account();

anAccount.lastName = “” +
(char) (myRandom.nextInt(26) + ‘A’) +
(char) (myRandom.nextInt(26) + ‘a’) +
(char) (myRandom.nextInt(26) + ‘a’);

anAccount.id = myRandom.nextInt(10000);
anAccount.balance = myRandom.nextInt(10000);
anAccount.display();

}
}

}

Here’s a summary of the action in Listing 19-3:

Do the following three times:
Create a new object (an instance of the Account class).
Randomly generate values for the object’s lastName,

id and balance.
Call the object’s display method.

The first of the three display calls prints the first object’s lastName, id,
and balance values. The second display call prints the second object’s
lastName, id, and balance values. And so on.

A run of the code from Listing 19-3 is shown in Figure 19-3.

Figure 19-3:
Running

the code in
Listing 19-3.

26_588745 ch19.qxd 3/16/05 9:28 PM Page 330

331Chapter 19: Creating New Java Methods

Generating words randomly
Most programs don’t work correctly the first time
you run them, and some programs don’t work
without extensive trial and error. This section’s
code is a case in point.

To write this section’s code, I needed a way to
generate three-letter words randomly. After
about a dozen attempts, I got the code to work.
But I didn’t stop there. I kept working for a few
hours looking for a simple way to generate three-
letter words randomly. In the end, I settled on
the following code (in Listing 19-3):

anAccount.lastName = “” +
(char)
(myRandom.nextInt(26) +
‘A’) +
(char)
(myRandom.nextInt(26) +
‘a’) +
(char)
(myRandom.nextInt(26) +
‘a’);

This code isn’t simple, but it’s not nearly as bad
as my original working version. Anyway, here’s
how the code works:

� Each call to myRandom.nextInt(26)
generates a number from 0 to 25.

� Adding ‘A’gives you a number from 65 to 90.

To store a letter ‘A’, the computer puts the
number 65 in its memory. That’s why adding
‘A’ to 0 gives you 65, and why adding ‘A’ to 25
gives you 90. For more information on letters
being stored as numbers, see the discussion
of Unicode characters at the end of Chapter 8.

� Applying (char) to a number turns the
number into a char value.

To store the letters ‘A’ through ‘Z’, the com-
puter puts the numbers 65 through 90 in its
memory. So applying (char) to a number
from 65 to 90 turns the number into an upper-
case letter. For more information about
applying things like (char), see the dis-
cussion of casting in Chapter 7.

Let’s pause for a brief summary. The expression
(char) (myRandom.nextInt(26) + ‘A’)
represents a randomly generated uppercase
letter. In a similar way, (char) (myRandom.
nextInt(26) + ‘a’) represents a randomly
generated lowercase letter.

Watch out! The next couple of steps can be
tricky.

� Java doesn’t allow you to assign a char
value to a string variable.

So in Listing 19-3, the following statement
would lead to a compiler error:

//Bad statement:
anAccount.lastName = (char)

(myRandom.nextInt(26) +
‘A’);

� In Java, you can use a plus sign to add a
char value to a string. When you do, the
result is a string.

So “” + (char) (myRandom.nextInt
(26) + ‘A’) is string containing one ran-
domly generated uppercase character. And
when you add (char) (myRandom.next
Int(26) + ‘a’) onto the end of that
string, you get another string — a string con-
taining two randomly generated characters.
Finally, when you add another (char)
(myRandom.nextInt(26) + ‘a’)onto
the end of that string, you get a string
containing three randomly generated char-
acters. So you can assign that big string to
anAccount.lastName. That’s how the
statement in Listing 19-3 works.

When you write a program like the one in
Listing 19-3, you have to be very careful with
numbers, char values and strings. I don’t do
this kind of programming every day of the week.
So before I got this section’s example to work,
I had many false starts. That’s okay. I’m very
persistent.

26_588745 ch19.qxd 3/16/05 9:28 PM Page 331

The flow of control
Suppose that you’re running the code in Listing 19-3. The computer reaches
the display method call:

anAccount.display();

At that point, the computer starts running the code inside the display
method. In other words, the computer jumps to the middle of the Account
class’s code (the code in Listing 19-1).

After executing the display method’s code (that forest of print and
println calls), the computer returns to the point where it departed from
Listing 19-3. That is, the computer goes back to the display method call and
continues on from there.

So when you run the code in Listing 19-3, the flow of action in each loop itera-
tion isn’t exactly from the top to the bottom. Instead, the action goes from the
for loop to the display method, and then back to the for loop. The whole
business is pictured in Figure 19-4.

Figure 19-4:
The flow

of control
between

Listings 19-1
and 19-3.

332 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 332

Using punctuation
In Listing 19-3, notice the use of dots. To refer to the lastName stored in the
anAccount object, you write

anAccount.lastName

To get the anAccount object to display itself, you write

anAccount.display();

That’s great! When you refer to an object’s variable, or call an object’s
method, the only difference is parentheses:

� To refer to an object’s variable, you don’t use parentheses.

� To call an object’s method, you use parentheses.

When you call a method, you put parentheses after the method’s name. You
do this even if you have nothing to put inside the parentheses.

The versatile plus sign
The program in Listing 19-3 uses some cute tricks. In Java, you can do two dif-
ferent things with a plus sign:

� You can add numbers with a plus sign.

For example, you can write

numberOfSheep = 2 + 5;

� You can concatenate strings with a plus sign.

When you concatenate strings, you scrunch them together, one right
after another. For example, the expression

“Barry” + “ “ + “Burd”

scrunches together Barry, a blank space, and Burd. The new scrunched-
up string is (you guessed it) Barry Burd.

In Listing 19-3, the statement

anAccount.lastName = “” +
(char) (myRandom.nextInt(26) + ‘A’) +
(char) (myRandom.nextInt(26) + ‘a’) +
(char) (myRandom.nextInt(26) + ‘a’);

333Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 333

has many plus signs, and some of the plus signs concatenate things together.
The first thing is a mysterious empty string (“”). This empty string is invisible,
so it never gets in the way of your seeing the second, third, and fourth things.

Onto the empty string, the program concatenates a second thing. This second
thing is the value of the expression (char) (myRandom.nextInt(26) +
‘A’). The expression may look complicated, but it’s really no big deal. This
expression represents an uppercase letter (any uppercase letter, generated
randomly).

Onto the empty string and the uppercase letter, the program concatenates a
third thing. This third thing is the value of the expression (char) (myRandom.
nextInt(26) + ‘a’). This expression represents a lowercase letter (any
lowercase letter, generated randomly).

Onto all this stuff, the program concatenates another lowercase letter. So alto-
gether, you have a randomly generated three-letter name. For more details,
see the sidebar.

In Listing 19-3, the statement anAccount.balance = myRandom.nextInt
(10000) assigns an int value to balance. But balance is a double variable,
not an int variable. That’s okay. In a rare case of permissiveness, Java allows
you to assign an int value to a double variable. The result of the assignment
is no big surprise. If you assign the int value 8734 to the double variable
balance, then the value of balance becomes 8734.00. The result is shown on
the first line of Figure 19-3.

Let the Objects Do the Work
When I was a young object, I wasn’t as smart as the objects you have nowa-
days. Consider, for example, the object in Listing 19-4. Not only does this
object display itself, the object can also fill itself with values.

Listing 19-4: A Class with Two Methods

import java.util.Random;
import java.text.NumberFormat;
import static java.lang.System.out;

class BetterAccount {
String lastName;
int id;
double balance;

334 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 334

void fillWithData() {
Random myRandom = new Random();

lastName = “” +
(char) (myRandom.nextInt(26) + ‘A’) +
(char) (myRandom.nextInt(26) + ‘a’) +
(char) (myRandom.nextInt(26) + ‘a’);

id = myRandom.nextInt(10000);
balance = myRandom.nextInt(10000);

}

void display() {
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“The account with last name “);
out.print(lastName);
out.print(“ and ID number “);
out.print(id);
out.print(“ has balance “);
out.println(currency.format(balance));

}
}

I wrote some code to use the class in Listing 19-4. This new code is in
Listing 19-5.

Listing 19-5: This Is So Cool!

class ProcessBetterAccounts {

public static void main(String args[]) {

BetterAccount anAccount;

for (int i = 0; i < 3; i++) {
anAccount = new BetterAccount();
anAccount.fillWithData();
anAccount.display();

}
}

}

Listing 19-5 is pretty slick. Because the code in Listing 19-4 is so darn smart,
the new code in Listing 19-5 has very little work to do. This new code just
creates a BetterAccount object, and then calls the methods in Listing 19-4.
When you run all this stuff, you get results like the ones in Figure 19-3.

335Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 335

Passing Values to Methods
Think about sending someone to the supermarket to buy bread. When you do
this, you say, “Go to the supermarket and buy some bread.” (Try it at home.
You’ll have a fresh loaf of bread in no time at all!) Of course, some other time,
you send that same person to the supermarket to buy bananas. You say, “Go
to the supermarket and buy some bananas.” And what’s the point of all this?
Well, you have a method, and you have some on-the-fly information that you
pass to the method when you call it. The method is named “Go to the super-
market and buy some. . . .” The on-the-fly information is either “bread” or
“bananas,” depending on your culinary needs. In Java, the method calls
would look like this:

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas);

The things in parentheses are called parameters or parameter lists. With para-
meters, your methods become much more versatile. Instead of getting the
same thing each time, you can send somebody to the supermarket to buy
bread one time, bananas another time, and birdseed the third time. When
you call your goToTheSupermarketAndBuySome method, you decide right
there and then what you’re going to ask your pal to buy.

These concepts are made more concrete in Listings 19-6 and 19-7.

Listing 19-6: Adding Interest

import java.text.NumberFormat;
import static java.lang.System.out;

class NiceAccount {
String lastName;
int id;
double balance;

void addInterest(double rate) {
out.print(“Adding “);
out.print(rate);
out.println(“ percent...”);

balance += balance * (rate / 100.0);
}

336 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 336

void display() {
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“The account with last name “);
out.print(lastName);
out.print(“ and ID number “);
out.print(id);
out.print(“ has balance “);
out.println(currency.format(balance));

}
}

Listing 19-7: Calling the addInterest Method

import java.util.Random;

class ProcessNiceAccounts {

public static void main(String args[]) {
Random myRandom = new Random();
NiceAccount anAccount;
double interestRate;

for (int i = 0; i < 3; i++) {
anAccount = new NiceAccount();

anAccount.lastName = “” +
(char) (myRandom.nextInt(26) + ‘A’) +
(char) (myRandom.nextInt(26) + ‘a’) +
(char) (myRandom.nextInt(26) + ‘a’);

anAccount.id = myRandom.nextInt(10000);
anAccount.balance = myRandom.nextInt(10000);

anAccount.display();

interestRate = myRandom.nextInt(5);
anAccount.addInterest(interestRate);

anAccount.display();
System.out.println();

}
}

}

337Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 337

In Listing 19-7, the line

anAccount.addInterest(interestRate);

plays the same role as the line goToTheSupermarketAndBuySome(bread) in
my little supermarket example. The word addInterest is a method name,
and the word interestRate in parentheses is a parameter. Taken as a whole,
this statement tells the code in Listing 19-6 to execute its addInterest method.
This statement also tells Listing 19-6 to use a certain number (whatever value
is stored in the interestRate variable) in the method’s calculations. The
value of interestRate can be 1.0, 2.0, or whatever other value you get by
calling myRandom.nextInt(5). In the same way, the goToTheSupermarket
AndBuySome method works for bread, bananas, or whatever else you need
from the market.

The next section has a detailed description of addInterest and its action.
In the meantime, a run of the code in Listings 19-6 and 19-7 is shown in
Figure 19-5.

Java has very strict rules about the use of types. For example, you can’t
assign a double value (like 3.14) to an int variable. (The compiler simply
refuses to chop off the .14 part. You get an error message. So what else is
new?) But Java isn’t completely unreasonable about the use of types. Java
allows you to assign an int value (like myRandom.nextInt(5)) to a double
variable (like interestRate). If you assign the int value 2 to the double
variable interestRate, then the value of interestRate becomes 2.0. The
result is shown on the second line of Figure 19-5.

Handing off a value
When you call a method, you can pass information to that method on the fly.
This information is in the method’s parameter list. Listing 19-7 has a call to
the addInterest method:

anAccount.addInterest(interestRate);

Figure 19-5:
Running

the code in
Listing 19-7.

338 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 338

The first time through the loop, the value of interestRate is 2.0. (Remember,
I’m using the data in Figure 19-5.) So at that point in the program’s run, the
method call behaves as if it’s the following statement:

anAccount.addInterest(2.0);

The computer is about to run the code inside the addInterest method
(a method in Listing 19-6). But first, the computer passes the value 2.0 to the
parameter in the addInterest method’s header. So inside the addInterest
method, the value of rate becomes 2.0. For an illustration of this idea, see
Figure 19-6.

Here’s something interesting. The parameter in the addInterest method’s
header is rate. But, inside the ProcessNiceAccounts class, the parameter in
the method call is interestRate. That’s okay. In fact, it’s standard practice.

In Listings 19-6 and 19-7, the names of the parameters don’t have to be
the same. The only thing that matters is that both parameters (rate and
interestRate) have the same type. In Listings 19-6 and 19-7, both of these
parameters are of type double. So everything is fine.

Inside the addInterest method, the += assignment operator adds balance *
(rate / 100.0) to the existing balance value. For some info about the +=
assignment operator, see Chapter 7.

Figure 19-6:
Passing a
value to a
method’s

parameter.

339Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 339

Working with a method header
In the next few bullets, I make some observations about the addInterest
method header (in Listing 19-6):

� The word void tells the computer that, when the addInterest method
is called, the addInterest method doesn’t send a value back to the
place that called it.

The next section has an example in which a method sends a value back.

� The word addInterest is the method’s name.

That’s the name you use to call the method when you’re writing the
code for the ProcessNiceAccounts class. (See Listing 19-7.)

� The parentheses in the header contain placeholders for all the things
you’re going to pass to the method when you call it.

When you call a method, you can pass information to that method on
the fly. This information is the method’s parameter list. The addInterest
method’s header says that the addInterest method takes one piece of
information and that piece of information must be of type double:

void addInterest(double rate)

Sure enough, if you look at the call to addInterest (down in the
ProcessNiceAccounts class’s main method), that call has the variable
interestRate in it. And interestRate is of type double. When I call
getInterest, I’m giving the method a value of type double.

How the method uses the object’s values
The addInterest method in Listing 19-6 is called three times from the main
method in Listing 19-7. The actual account balances and interest rates are dif-
ferent each time:

� In the first call of Figure 19-5, the balance is 8983.00 and the interest
rate is 2.0.

When this call is made, the expression balance * (rate / 100.0)
stands for 8983.00 * (2.0 / 100.00). See Figure 19-7.

� In the second call of Figure 19-5, the balance is 3756.00 and the inter-
est rate is 0.0.

When the call is made, the expression balance * (rate / 100.0)
stands for 3756.00 * (0.0 / 100.00). Again, see Figure 19-7.

340 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 340

� In the third call of Figure 19-5, the balance is 8474.00 and the interest
rate is 3.0.

When the addInterest call is made, the expression balance *
(rate / 100.0) stands for 8474.00 * (3.0 / 100.00).

Getting a Value from a Method
The last section had a story about sending a friend to buy groceries. I revisit
that scenario in this section to see what treasures it holds.

You make requests for groceries in the form of method calls. You issue calls
such as

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas);

The things in parentheses are parameters. Each time you call your goToThe
SupermarketAndBuySome method, you put a different value in the method’s
parameter list.

Figure 19-7:
Cbj’s

account
and Bry’s
account.

341Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 341

Now what happens when your friend returns from the supermarket? “Here’s the
bread you asked me to buy,” says your friend. As a result of carrying out your
wishes, your friend returns something to you. You made a method call, and the
method returns information (or better yet, the method returns some food).

The thing returned to you is called the method’s return value, and the type of
thing returned to you is called the method’s return type.

An example
To see how return values and a return types work in a real Java program,
check out the code in Listings 19-8 and 19-9.

Listing 19-8: A Method That Returns a Value

import java.text.NumberFormat;
import static java.lang.System.out;

class GoodAccount {
String lastName;
int id;
double balance;

double getInterest(double rate) {
double interest;

out.print(“Adding “);
out.print(rate);
out.println(“ percent...”);

interest = balance * (rate / 100.0);
return interest;

}

void display() {
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“The account with last name “);
out.print(lastName);
out.print(“ and ID number “);
out.print(id);
out.print(“ has balance “);
out.println(currency.format(balance));

}
}

342 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 342

Listing 19-9: Calling the Method in Listing 19-8

import java.util.Random;
import java.text.NumberFormat;

class ProcessGoodAccounts {

public static void main(String args[]) {
Random myRandom = new Random();
NumberFormat currency =

NumberFormat.getCurrencyInstance();
GoodAccount anAccount;
double interestRate;
double yearlyInterest;

for (int i = 0; i < 3; i++) {
anAccount = new GoodAccount();

anAccount.lastName = “” +
(char) (myRandom.nextInt(26) + ‘A’) +
(char) (myRandom.nextInt(26) + ‘a’) +
(char) (myRandom.nextInt(26) + ‘a’);

anAccount.id = myRandom.nextInt(10000);
anAccount.balance = myRandom.nextInt(10000);

anAccount.display();

interestRate = myRandom.nextInt(5);
yearlyInterest =

anAccount.getInterest(interestRate);

System.out.print(“This year’s interest is “);
System.out.println

(currency.format(yearlyInterest));
System.out.println();

}
}

}

To see a run of code from Listings 19-8 and 19-9, take a look at Figure 19-8.

Figure 19-8:
Running

the code in
Listing 19-9.

343Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 343

How return types and return values work
I want to trace a piece of the action in Listings 19-8 and 19-9. For input data, I
use the first set of values in Figure 19-8.

Here’s what happens when getInterest is called (you can follow along in
Figure 19-9):

� The value of balance is 4084.00, and the value of rate is 1.0. So the
value of balance * (rate / 100.0) is 40.84 — forty dollars and
eighty-four cents.

� The value 40.84 gets assigned to the interest variable, so the statement

return interest;

has the same effect as

return 40.84;

� The return statement sends this value 40.84 back to the code that
called the method. At that point in the process, the entire method call in
Listing 19-9 — anAccount.getInterest(interestRate) — takes on
the value 40.84.

� Finally, the value 40.84 gets assigned to the variable yearlyInterest.

Figure 19-9:
A method
call is an

expression
with a value.

344 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 344

If a method returns anything, then a call to the method is an expression with
a value. That value can be printed, assigned to a variable, added to something
else, or whatever. Anything you can do with any other kind of value, you can
do with a method call.

Working with the method header (again)
When you create a method or a method call, you have to be careful to use
Java’s types consistently. So make sure you check for the following:

� In Listing 19-8, the getInterest method’s header starts with the word
double. So when the method is executed, it should send a double value
back to the place that called it.

� Again in Listing 19-8, the last statement in the getInterest method is
return interest. So the method returns whatever value is stored in
the interest variable, and the interest variable has type double. So
far, so good.

� In Listing 19-9, the value returned by the call to getInterest is assigned
to a variable named yearlyInterest. Sure enough, yearlyInterest is
of type double.

That settles it! The use of types in the handling of method getInterest is
consistent in Listings 19-8 and 19-9. I’m thrilled!

345Chapter 19: Creating New Java Methods

26_588745 ch19.qxd 3/16/05 9:28 PM Page 345

346 Part IV: Using Program Units

26_588745 ch19.qxd 3/16/05 9:28 PM Page 346

Chapter 20

Oooey GUI Was a Worm
In This Chapter
� Swinging into action

� Displaying an image

� Using buttons and textboxes

There’s a wonderful old joke about a circus acrobat jumping over mice.
Unfortunately, I’d get sued for copyright infringement if I included the

joke in this book.

Anyway, the joke is about starting small and working your way up to bigger
things. That’s what you do when you read Beginning Programming with Java
For Dummies, 2nd Edition.

Most of the programs in this book are text-based. A text-based program has no
windows, no dialog boxes, nothing of that kind. With a text-based program,
the user types characters in the command prompt window, and the program
displays output in the same command prompt window.

These days, very few publicly available programs are text-based. Almost all
programs use a GUI — a Graphical User Interface. So if you’ve read every word
of this book up to now, you’re probably saying to yourself, “When am I going
to find out how to create a GUI?”

I’m sorry, Skipper. A Java program with a GUI takes some muscle to write.
The code itself isn’t long or ponderous. What’s difficult is understanding
how the code works.

So with these inspiring words of discouragement, please march ahead anyway.
This chapter gives you a glimpse of the world of GUI programming in Java.

27_588745 ch20.qxd 3/16/05 9:29 PM Page 347

The Java Swing Classes
Java’s Swing classes create graphical objects on a computer screen. The objects
can include buttons, icons, text fields, check boxes, and other good things
that make windows so useful.

The name “Swing” isn’t an acronym. When the people at Sun Microsystems
were first creating the code for these classes, one of the developers named it
“Swing” because swing music was enjoying a nostalgic revival. And yes, in
addition to String and Swing, the standard Java API has a Spring class. But
that’s another story.

Actually, Java’s API has several sets of windowing components. An older set
is called AWT — the Abstract Windowing Toolkit. But to use some of the Swing
classes, you have to call on some of the old AWT classes. Go figure!

Showing an image on the screen
The program in Listing 20-1 displays a window on your computer screen. To
see the window, look at Figure 20-1.

Listing 20-1: Creating a Window with an Image in It

import javax.swing.JFrame;
import javax.swing.ImageIcon;
import javax.swing.JLabel;
import java.awt.Container;

class ShowPicture {

public static void main(String args[]) {
JFrame frame = new JFrame();
ImageIcon icon = new ImageIcon(“j2fd.jpg”);
JLabel label = new JLabel(icon);
Container contentPane = frame.getContentPane();

contentPane.add(label);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
}

The code in Listing 20-1 has very little logic of its own. Instead, this code
pulls together a bunch of classes from the Java API.

348 Part IV: Using Program Units

27_588745 ch20.qxd 3/16/05 9:29 PM Page 348

Back in Listing 17-3, I create an instance of the Purchase class with the line

Purchase onePurchase = new Purchase();

So in Listing 20-1, I do the same kind of thing. I create instances of the
JFrame, ImageIcon, and JLabel classes with the following lines:

JFrame frame = new JFrame();
ImageIcon icon = new ImageIcon(“j2fd.jpg”);
JLabel label = new JLabel(icon);

Here’s some gossip about each of these lines:

� A JFrame is like a window (except that it’s called a JFrame, not a
“window”). In Listing 20-1, the line

JFrame frame = new JFrame();

creates a JFrame object, but this line doesn’t display the JFrame object
anywhere. (The displaying comes later in the code.)

� An ImageIcon object is a picture. In the directory that contains the Java
code, I have a file named j2fd.jpg. That file contains the picture shown
in Figure 20-1. So in Listing 20-1, the line

ImageIcon icon = new ImageIcon(“j2fd.jpg”);

creates an ImageIcon object — an icon containing the j2fd.jpg picture.

� I need a place to put the icon. I can put it on something called a JLabel.
So in Listing 20-1, the line

JLabel label = new JLabel(icon);

creates a JLabel object and puts the j2fd.jpg icon on the new
label’s face.

If you read the previous bullets, you may get a false impression. The wording
may suggest that the use of each component (JFrame, ImageIcon, JLabel,
and so on) is a logical extension of what you already know. “Where do you
put an ImageIcon? Well of course, you put it on a JLabel.” When you’ve
worked long and hard with Java’s Swing components, all these things become
natural to you. But until then, writing GUI code takes hours of trial and error
(along with many hours of reading the API documentation).

Figure 20-1:
What a nice

window!

349Chapter 20: Oooey GUI Was a Worm

27_588745 ch20.qxd 3/16/05 9:29 PM Page 349

You never need to memorize the names or features of Java’s API classes.
Instead, you keep Java’s API documentation handy. When you need to know
about a class, you look it up in the documentation. If you need a certain class
often enough, you’ll remember its features. For classes that you don’t use
often, you always have the docs.

For tips on using Java’s API documentation, see the Appendix on this book’s
web site. To find gobs of sample Java code, visit some of the Web sites listed
in Chapter 21.

Just another class
What is a JFrame? Like any other class, a JFrame has several parts. For a sim-
plified view of some of these parts, see Figure 20-2.

Like the String in Figure 18-6 in Chapter 18, each object formed from the
JFrame class has both data parts and method parts. The data parts include
the frame’s height and width. The method parts include getContentPane,
setDefaultCloseOperation, pack, and setVisible. (I can’t squeeze into
setDefaultCloseOperation into Figure 20-2, but I don’t feel guilty about
this. All told, the JFrame class has about 320 methods. So with or without the
setDefaultCloseOperation method in Figure 20-2, you have to use your
imagination.)

Figure 20-2:
A simplified

depiction
of the

JFrame and
Container

classes.

350 Part IV: Using Program Units

27_588745 ch20.qxd 3/16/05 9:29 PM Page 350

For technical reasons too burdensome for this book, you can’t use dots to
refer to a frame’s height or width. But you can call many JFrame methods
with those infamous dots. In Listing 20-1, I call the frame’s methods by writ-
ing frame.getContentPane(), frame.setDefaultCloseOperation
(JFrame.EXIT_ON_CLOSE), frame.pack(), and frame.setVisible(true).

Here’s the scoop on the JFrame methods in Listing 20-1:

� You can’t put an icon directly onto a JFrame object. In fact, you can’t
put a button, a text field, or anything else like that onto a JFrame object.
Instead, you have to grab something called a content pane, and then put
these widgets onto the content pane.

In Listing 20-1, the call to frame.getContentPane grabs a content pane.
Then the call contentPane.add(label) plops the label onto the pane.
It seems tedious but, when you work with the Java Swing classes, you
have to call all these methods.

� A call to frame.setDefaultCloseOperation tells Java what to do
when you try to close the frame. (In Windows, you click the ‘x’ in the
upper-right-hand corner by the title bar.) For a frame that’s part of a
larger application, you may want the frame to disappear when you click
the ‘x’, but you probably don’t want the application to stop running.

But in Listing 20-1, the frame is the entire application — the whole enchi-
lada. So when you click the ‘x’, you want the Java virtual machine to
shut itself down. To make this happen, you call the setDefaultClose
Operation method with parameter JFrame.EXIT_ON_CLOSE. The other
alternatives are as follows:

• JFrame.HIDE_ON_CLOSE: The frame disappears, but it still exists
in the computer’s memory.

• JFrame.DISPOSE_ON_CLOSE: The frame disappears and no longer
exists in the computer’s memory.

• JFrame.DO_NOTHING_ON_CLOSE: The frame still appears, still
exists, and still does everything it did before you clicked the ‘x.’
Nothing happens when you click ‘x.’ So with this DO_NOTHING_
ON_CLOSE option, you can become very confused.

If you don’t call setDefaultCloseOperation, then Java automatically
chooses the HIDE_ON_CLOSE option. When you click the ‘x’, the frame
disappears but the Java program keeps running. Of course, with no
visible frame, the running of Listing 20-1 doesn’t do much. The only
noticeable effect of the run is your development environment’s behavior.
With JCreator, you don’t see the familiar Process completed message.
In addition, many JCreator menu items (items like Compile Project and
Execute Project) are unavailable. To end the Java program’s run and get
back your precious menu items, choose Tools➪Stop Tool on JCreator’s
main menu.

351Chapter 20: Oooey GUI Was a Worm

27_588745 ch20.qxd 3/16/05 9:29 PM Page 351

� A frame’s pack method shrink-wraps the frame around whatever has
been added to the frame’s content pane. Without calling pack, the frame
can be much bigger or much smaller than is necessary.

Unfortunately, the default is to make a frame much smaller than neces-
sary. If, in Listing 20-1, you forget to call frame.pack, you get the tiny
frame shown in Figure 20-3. Sure, you can enlarge the frame by dragging
the frame’s edges with your mouse. But why should you have to do that?
Just call frame.pack instead.

� Calling setVisible(true) makes the frame appear on your screen. If
you forget to call setVisible(true) (and I often do), when you run the
code in Listing 20-1, you’ll see nothing on your screen. It’s always so dis-
concerting until you figure out what you did wrong.

What I call a “content pane” is really an instance of Java’s Container class,
and each Container instance has its own add method. (Refer to Figure 20-2.)
That’s why the call to contentPane.add(label) in Listing 20-1 puts the
thing that holds the j2fd.jpg picture into the content pane.

Keeping the User Busy (Working
with Buttons and Text Fields)

It takes some muscle to create a high-powered GUI program. First, you create
a frame with buttons and other widgets. Then you write extra methods to
respond to keystrokes, button clicks, and other such things.

The next section contains some “take-my-word-for-it” code to respond to a
user’s button clicks. But in this section, the example simply displays a button
and a text field. The code is in Listing 20-2, and two views of the code’s frame
are shown in Figures 20-4 and 20-5.

Figure 20-3:
A frame that
hasn’t been

packed.

352 Part IV: Using Program Units

27_588745 ch20.qxd 3/16/05 9:29 PM Page 352

Listing 20-2: Adding Components to a Frame

import javax.swing.JFrame;
import javax.swing.JTextField;
import javax.swing.JButton;
import java.awt.Container;
import java.awt.FlowLayout;

class MyLittleGUI {

public static void main(String args[]) {
JFrame frame;
Container contentPane;
JTextField textfield;
JButton button;
FlowLayout layout;
String sorry;

frame = new JFrame();
frame.setTitle(“Interact”);

contentPane = frame.getContentPane();

textfield = new JTextField(“Type your text here.”);

sorry = “This button is temporarily out of order.”;
button = new JButton(sorry);

contentPane.add(textfield);
contentPane.add(button);
layout = new FlowLayout();
contentPane.setLayout(layout);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
}

Figure 20-4:
The frame in
Listing 20-2.

353Chapter 20: Oooey GUI Was a Worm

27_588745 ch20.qxd 3/16/05 9:29 PM Page 353

As with other programs that use classes from Java’s API, Listing 20-2 comes
with my litany of descriptions and explanations of the classes’ features. One
way or another, it’s all the same story. Each object has its own data and its
own methods. To refer to an object’s data or methods, use a dot. And to find
out more about an object’s data or methods, use Java’s API documentation.

� Each frame (that is, each instance of the JFrame class) has a setTitle
method. If you want, get a pencil and add a setTitle column to the
JFrame table in Figure 20-2.

In Listing 20-2, I make the frame’s title be the word Interact (as if inter-
acting with this frame makes anything useful happen). You can see
Interact in the frame’s title bar in Figures 20-4 and 20-5.

� The JTextField class describes those long white boxes, like the box
containing the words Type your text here in Figures 20-4 and 20-5.
In Listing 20-2, I create a new text field (an instance of the JTextField
class), and I add this new text field to the frame’s content pane.

When you run the code in Listing 20-2, you can type stuff into the text
field. But, because I haven’t written any code to respond to the typing of
text, nothing happens when you type. C’est la vie.

� The JButton class describes those clickable things, like the thing con-
taining the words This button is temporarily out of order in
Figures 20-4 and 20-5. In Listing 20-2, I create a new button (an instance
of the JButton class), and I add this new button to the frame’s content
pane.

When you run the code in Listing 20-2, you can click the button all you
want. Because I haven’t written any code to respond to the clicking, noth-
ing happens when you click the button. For a program that responds to
button clicks, see the next section.

� Each Java container has a setLayout method. A call to this method
ensures that the doohickeys on the frame are arranged in a certain way.

In Listing 20-2, I feed a FlowLayout object to the setLayout method.
This FlowLayout business arranges the text field and the button one
right after another (as in Figures 20-4 and 20-5).

For descriptions of some other things that are going on in Listing 20-2, see
the “Showing an image on the screen” section, earlier in this chapter.

Figure 20-5:
The frame in

Listing 20-2
with the but-
ton pressed.

354 Part IV: Using Program Units

27_588745 ch20.qxd 3/16/05 9:29 PM Page 354

Taking Action
The previous section’s code leaves me feeling a little empty. When you click
the button, nothing happens. When you type in the text field, nothing hap-
pens. What a waste!

To make me feel better, I include one more program in this chapter. The pro-
gram (in Listings 20-3 and 20-4) responds to a button click. When you click
the frame’s button, any text in the text field becomes all uppercase. That’s
very nice, but the code is quite complicated. In fact, the code has so many
advanced features that I can’t fully describe them in the space that I’m allot-
ted. So you may have to trust me.

Listing 20-3: Capitalism in Action

import javax.swing.JFrame;
import javax.swing.JTextField;
import javax.swing.JButton;
import java.awt.Container;
import java.awt.FlowLayout;

class CapitalizeMe {

public static void main(String args[]) {
JFrame frame;
Container contentPane;
JTextField textfield;
JButton button;
FlowLayout layout;

frame = new JFrame();
frame.setTitle(“Handy Capitalization Service”);

contentPane = frame.getContentPane();

textfield =
new JTextField(“Type your text here.”, 20);

button = new JButton(“Capitalize”);
button.addActionListener

(new MyActionListener(textfield));

contentPane.add(textfield);
contentPane.add(button);
layout = new FlowLayout();
contentPane.setLayout(layout);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
}

355Chapter 20: Oooey GUI Was a Worm

27_588745 ch20.qxd 3/16/05 9:29 PM Page 355

Listing 20-4: Responding to Button Clicks

import javax.swing.JTextField;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

class MyActionListener implements ActionListener {

JTextField textfield;

MyActionListener(JTextField textfield) {
this.textfield = textfield;

}

public void actionPerformed(ActionEvent e) {
textfield.setText

(textfield.getText().toUpperCase());
}

}

You can run the code in Listings 20-3 and 20-4. If you do, you see something
like the screen shots in Figures 20-6, 20-7, and 20-8. To get you started reading
the code, I include a few hints about the code’s features:

� Calling new JTextField(“Type your text here.”, 20) creates a
text field containing the words Type your text here. To allow more
space for the user’s typing, the new text field is 20 characters wide.

� Java’s API has a package named java.awt.event, which includes things
like ActionEvent and ActionListener.

• The clicking of a button is an ActionEvent. Other ActionEvent
examples include the user’s pressing Enter in a text field or the
user’s double-clicking an item in a scrolling list.

• An ActionListener is a piece of code that waits for an Action
Event to take place. (In other words, the ActionListener “lis-
tens” for an ActionEvent.)

In Listing 20-3, the call to button.addActionListener tells the Java
virtual machine to make an announcement whenever the user clicks
the button. The JVM announces the action to the ActionListener code
in Listing 20-4. The ActionListener in Listing 20-4 is supposed to do
something useful in response to the ActionEvent.

� The JVM’s “announcement” fires up the actionPerformed method in
Listing 20-4, which in turn makes a call to the toUpperCase method.
That’s how the letters in the text field become uppercase letters.

356 Part IV: Using Program Units

27_588745 ch20.qxd 3/16/05 9:29 PM Page 356

Want to read more? I have a whole chapter about it in Java 2 For Dummies,
2nd Edition (written by yours truly and published by Wiley Publishing, Inc.).

Figure 20-8:
Clicking

the button
capitalizes
the text in

the text box.

Figure 20-7:
The user

types in the
text box.

Figure 20-6:
A brand-

new frame.

357Chapter 20: Oooey GUI Was a Worm

27_588745 ch20.qxd 3/16/05 9:29 PM Page 357

358 Part IV: Using Program Units

27_588745 ch20.qxd 3/16/05 9:29 PM Page 358

Part V
The Part of Tens

28_588745 pt05.qxd 3/16/05 9:12 PM Page 359

In this part . . .
You’re near the end of the book, and it’s time to sum it

all up. This part of the book is your slam-bam two-
thousand-words-or-less resource for Java. What? You
didn’t read every word in the chapters before this one?
That’s okay. You’ll pick up a lot of useful information in
this Part of Tens.

28_588745 pt05.qxd 3/16/05 9:12 PM Page 360

Chapter 21

Ten Sets of Web Links
In This Chapter
� Finding resources from Sun Microsystems

� Getting sample code

� Reading the latest Java news

� Moving up — jobs, certification, and more

� Finding out about other useful technologies and languages

No wonder the Web is so popular: It’s both useful and fun. This chap-
ter has ten bundles of resources. Each bundle has Web sites for you

to visit. Each Web site has resources to help you write programs more
effectively.

The Horse’s Mouth
Sun’s official Web site for Java is java.sun.com. This site has all the latest
development kits, and many of them are free. The site also has a great section
with online tutorials and mini-courses. The tutorial/mini-course section’s
Web address is java.sun.com/developer/onlineTraining.

In addition, Sun has two special-purpose Java Web sites. Consumers of Java
technology should visit www.java.com. Programmers and developers inter-
ested in sharing Java technology can go to www.java.net.

29_588745 ch21.qxd 3/16/05 9:11 PM Page 361

Finding News, Reviews, and Sample Code
The Web has plenty of sites devoted exclusively to Java. Many of these sites
feature reviews, links to other sites, and best of all, gobs of sample Java code.
They may also offer free mailing lists that keep you informed of the latest
Java developments. Here’s a brief list of such sites:

� The JavaRanch: www.javaranch.com

� Developer.com/Gamelan: www.developer.com/java

� The Giant Java Tree: www.gjt.org

� The Java Boutique: javaboutique.internet.com

� FreewareJava.com: www.freewarejava.com

� Java Shareware: www.javashareware.com

Improving Your Code with Tutorials
To find out more about Java, you can visit Sun’s online training pages. Some
other nice sets of tutorials are available at the following Web sites:

� Richard Baldwin’s Web site: www.dickbaldwin.com

� IBM developerWorks: www-106.ibm.com/developerworks/training

� ProgrammingTutorials.com: www.programmingtutorials.com

Finding Help on Newsgroups
Have a roadblock you just can’t get past? Try posting your question on an
Internet newsgroup. Almost always, some friendly expert will post just the
right reply.

With or without Java, you should definitely start exploring newsgroups. You
can find thousands of newsgroups — groups on just about every conceivable
topic. (Yes, there are more newsgroups than For Dummies titles!) To get started
with newsgroups, visit groups.google.com. For postings specific to Java,
look for the groups whose names begin with comp.lang.java. As a novice,
you’ll probably find the following three groups to be the most useful:

� comp.lang.java.programmer

� comp.lang.java.help

� comp.lang.java.api

362 Part V: The Part of Tens

29_588745 ch21.qxd 3/16/05 9:11 PM Page 362

Reading Documentation with
Additional Commentary

When programmers write documentation, they ask themselves questions and
then answer those questions as best they can. But sometimes, they don’t ask
themselves all the important questions. And often, they assume that the reader
already knows certain things. If you’re a reader who doesn’t already know
these things, you may be plain out of luck.

One way or another, all documentation omits some details. That’s why other
peoples’ comments about the documentation can be so helpful. At www.
jdocs.com experienced Java programmers annotate existing Java documen-
tation with their own comments. The comments include tips and tricks, but
they also add useful pieces of information — pieces that the documentation’s
original authors omitted. If you need help with an aspect of the Java API, this
is a great Web site to visit.

Checking the FAQs for Useful Info
Has the acronym FAQ made it to Oxford English Dictionary yet? Everybody
seems to be using FAQ as an ordinary English word. In case you don’t already
know, FAQ stands for Frequently Asked Questions. In reality, a FAQ should be
called ATQTWTOA. This acronym stands for Answers to Questions That We’re
Tired of Answering.

You can find several FAQs at the official Sun Web site. You can also check
www.javafaq.com — a Web site devoted to questions commonly posed by
Java programmers.

Opinions and Advocacy
Java isn’t just techie stuff. The field has issues and opinions of all shapes and
sizes. To find out more about them, visit any of these sites:

� blogs.sun.com

� www.javablogs.com

� www.javalobby.org

In case you don’t know, a blog is a Web log — an online diary for a person’s
thoughts and opinions. Someone who writes a blog is called a blogger.

363Chapter 21: Ten Sets of Web Links

29_588745 ch21.qxd 3/16/05 9:11 PM Page 363

Blogs are hot stuff these days. Business people, politicians, and others write
blogs to draw attention to their ideas. And many people write blogs just for fun.

When it comes to reading about Java, I have a few favorite blogs. I list them
here in alphabetical order:

� Simon Phipps’s blog: www.webmink.net/minkblog.htm

Simon is Chief Technology Evangelist at Sun Microsystems. No matter
what subject he chooses, Simon always speaks his mind.

� Jonathan Schwartz’s blog: blogs.sun.com/jonathan

Jonathan is Chief Operating Officer at Sun Microsystems. When Jonathan
speaks, people listen. And when Jonathan writes, people read.

� Mary Smaragdis’s blog: blogs.sun.com/mary

Mary is Marketing Manager at Sun Microsystems. When you read Mary’s
blog, her enthusiasm gushes from the computer screen. And I’ve met her
at several conferences. She’s even more lively in person.

Looking for Java Jobs
Are you looking for work? Would you like to have an exciting, lucrative career
as a computer programmer? If so, check the SkillMarket at mshiltonj.com/sm.
This site has statistics on the demand for various technology areas. The site
compares languages, databases, certifications, and more. Best of all, the site
is updated every day.

After you’ve checked all the SkillMarket numbers, try visiting a Web site
designed specially for computer job seekers. Point your Web browser to
java.computerwork.com and to www.javajobs.com.

Finding Out More about Other
Programming Languages

It’s always good to widen your view. So to find out more about some languages
other than Java, visit the Éric Lévénez site: www.levenez.com/lang. This site
includes a cool chart that traces the genealogy of the world’s most popular
programming languages. For other language lists, visit the following Web sites:

364 Part V: The Part of Tens

29_588745 ch21.qxd 3/16/05 9:11 PM Page 364

� HyperNews: www.hypernews.org/HyperNews/get/computing/
lang-list.html

� Open Here!: www.openhere.com/tech1/programming/languages

� Steinar Knutsen’s Language list page: home.nvg.org/~sk/
lang/lang.html

Finally, for quick information about anything related to computing, visit the
foldoc.doc.ic.ac.uk/foldoc — the Free On-Line Dictionary of Computing.

Everyone’s Favorite Sites
It’s true — these two sites aren’t devoted exclusively to Java. However, no
geek-worthy list of resources would be complete without Slashdot and
SourceForge.

Slashdot’s slogan, “News for nerds, stuff that matters,” says it all. At slashdot.
org you find news, reviews, and commentary on almost anything related to
computing. There’s even a new word to describe a Web site that’s reviewed
or discussed on the Slashdot site. When a site becomes overwhelmed with
hits from Slashdot referrals, one says that the site has been slashdotted.

Although it’s not quite as high-profile, sourceforge.net is the place to look
for open source software of any kind. The SourceForge repository contains
over 80,000 projects. At the SourceForge site, you can download software, read
about works in process, contribute to existing projects, and even start a pro-
ject of your own. SourceForge is a great site for programmers and developers
at all levels of experience.

365Chapter 21: Ten Sets of Web Links

29_588745 ch21.qxd 3/16/05 9:11 PM Page 365

366 Part V: The Part of Tens

29_588745 ch21.qxd 3/16/05 9:11 PM Page 366

Chapter 22

Ten Useful Classes in the Java API
In This Chapter
� Finding out more about some classes that are introduced earlier in this book

� Discovering some other helpful classes

I’m proud of myself. I’ve written around 400 pages about Java using less than
thirty classes from the Java API. The standard API has about 3,000 classes,

with at least 700 more in the very popular Enterprise Edition API. So I think
I’m doing very well.

Anyway, to help acquaint you with some of my favorite Java API classes, this
chapter contains a brief list. Some of the classes in this list appear in examples
throughout this book. Others are so darn useful that I can’t finish the book
without including them.

For more information on the classes in this chapter, check Java’s API
documentation.

Applet
What Java book is complete without some mention of applets? An applet is a
piece of code that runs inside a Web browser window. For example, a small
currency calculator running in a little rectangle on your Web page can be a
piece of code written in Java.

At one time, Java applets were really hot stuff, but nowadays, people are
much more interested in using Java for business processing. Anyway, if
applets are your thing, then don’t be shy. Check the Applet page of Java’s
API documentation.

30_588745 ch22.qxd 3/16/05 9:15 PM Page 367

ArrayList
Chapter 16 introduces arrays. This is good stuff but, in any programming lan-
guage, arrays have their limitations. For example, take an array of size 100.
If you suddenly need to store a 101st value, then you’re plain out of luck. You
can’t change an array’s size without rewriting some code. Inserting a value
into an array is another problem. To squeeze “Tim” alphabetically between
“Thom” and “Tom”, you may have to make room by moving thousands of
“Tyler”, “Uriah”, and “Victor” names.

But Java has an ArrayList class. An ArrayList is like an array, except
that ArrayList objects grow and shrink as needed. You can also insert new
values without pain using the ArrayList class’s add method. ArrayList
objects are very useful, because they do all kinds of nice things that arrays
can’t do.

File
Talk about your useful Java classes! The File class does a bunch of things
that aren’t included in this book’s examples. Method canRead tells you whether
you can read from a file or not. Method canWrite tells you if you can write
to a file. Calling method setReadOnly ensures that you can’t accidentally
write to a file. Method deleteOnExit erases a file, but not until your pro-
gram stops running. Method exists checks to see if you have a particular
file. Methods isHidden, lastModified, and length give you even more
information about a file. You can even create a new directory by calling the
mkdir method. Face it, this File class is powerful stuff!

Integer
Chapter 18 describes the Integer class and its parseInt method. The
Integer class has lots of other features that come in handy when you work
with int values. For example, Integer.MAX_VALUE stands for the number
2147483647. That’s the largest value that an int variable can store. (Refer
to Table 7-1 in Chapter 7.) The expression Integer.MIN_VALUE stands for
the number –2147483648 (the smallest value that an int variable can store).
A call to Integer.toBinaryString takes an int and returns its base-2
(binary) representation. And what Integer.toBinaryString does for
base 2, Integer.toHexString does for base 16 (hexadecimal).

368 Part V: The Part of Tens

30_588745 ch22.qxd 3/16/05 9:15 PM Page 368

Math
Do you have any numbers to crunch? Do you use your computer to do exotic
calculations? If so, try Java’s Math class. (It’s a piece of code, not a place to
sit down and listen to lectures about algebra.) The Math class deals with π, e,
logarithms, trig functions, square roots, and all those other mathematical
things that give most people the creeps.

NumberFormat
Chapter 18 has a section about the NumberFormat.getCurrencyInstance
method. With this method, you can turn 20.338500000000003 into $20.34. If
the United States isn’t your home, or if your company sells products worldwide,
you can enhance your currency instance with a Java Locale. For example,
with euro = NumberFormat.getCurrencyInstance(Locale.FRANCE), a
call to euro.format(3) returns 3,00 € instead of $3.00.

The NumberFormat class also has methods for displaying things that aren’t
currency amounts. For example, you can display a number with or without
commas, with or without leading zeros, and with as many digits beyond the
decimal point as you care to include.

Scanner
Java’s Scanner class can do more than what it does in this book’s examples.
Like the NumberFormat class, the Scanner can handle numbers from various
locales. For example, to input 3,5 and have it mean “three and half,” you can
type myScanner.useLocale(Locale.FRANCE). You can also tell a Scanner
to skip certain input strings or use numeric bases other than 10. All in all, the
Scanner class is very versatile.

String
Chapter 18 examines Java’s String class. The chapter describes (in gory detail)
a method named equals. The String class has many other useful methods.
For example, with the length method, you find the number of characters in
a string. With replaceAll, you can easily change the phrase “my fault”
to “your fault” wherever “my fault” appears inside a string. And with
compareTo, you can sort strings alphabetically.

369Chapter 22: Ten Useful Classes in the Java API

30_588745 ch22.qxd 3/16/05 9:15 PM Page 369

StringTokenizer
I often need to chop strings into pieces. For example, I have a fullName vari-
able that stores my narcissistic “Barry A. Burd” string. From this fullName
value, I need to create firstName, middleInitial, and lastName values.
I have one big string (“Barry A. Burd”), and I need three little strings —
“Barry”, “A.”, and “Burd”.

Fortunately, the StringTokenizer class does this kind of grunt work. Using
this class, you can separate “Barry A. Burd” or “Barry,A.,Burd” or even
“Barry<tab>A.<tab>Burd” into pieces. You can also treat each separator as
valuable data, or you can ignore each separator as if it were trash. To do lots
of interesting processing using strings, check out Java’s StringTokenizer
class.

System
You’re probably familiar with System.in and System.out. But what about
System.getProperty? The getProperty method reveals all kinds of infor-
mation about your computer. Some of the information you can find includes
your operating system name, you processor’s architecture, your Java Virtual
Machine version, your classpath, your username, and whether your system
uses a backslash or a forward slash to separate folder names from one another.
Sure, you may already know all this stuff. But does your Java code need to
discover it on the fly?

370 Part V: The Part of Tens

30_588745 ch22.qxd 3/16/05 9:15 PM Page 370

• Symbols •
&& (and operator), 158, 161
+= (assignment operator), 339
** (asterisk, double) Javadoc comment, 57
*/ (close traditional comment), 56
== (comparing values), 133, 152, 309
?: (conditional operator), 192–194
{} (curly braces)

block and, 155
class and, 64
example using, 54, 55
nested statements and, 171

/ (division sign), 108
. (dot), 312, 314
“\\” (double backslash inside quotation

marks), 229
// (end-of-line comment), 56
= (equal sign) in assignment statement, 92
> (greater than), 133
>= (greater than or equal to), 132, 133
< (less than), 133
<= (less than or equal to), 133
- (minus sign), 108
— (minus sign, double)

postdecrement operator, 117
predecrement operator, 117

* (multiplication sign), 108
\n (move cursor to new line), 206
!= (not equal to), 133
! (not operator), 158
/* (open traditional comment), 56
|| (or operator), 158, 159, 161
() (parentheses)

conditions and, 168–169
if statement, 145, 146
method and, 328
parameters and, 336

) (parenthesis closing) omitting, 82

% (percent sign) remainder operator,
108–111

+ (plus sign)
add char value to string, 331
addition operator, 108
concatenating strings with, 333–334

++ (plus sign, double)
postincrement operator, 114–117
preincrement operator, 111–114

‘ (quotation mark), 122
“” (quotation marks, double), 53, 307
; (semicolon)

adding unnecessary, 78
if statement, 145, 146
omitting, 77–78
statement and, 61

[] (square brackets), 279
\t (tab stop), 206

• A •
abbreviating

class name, 319
code, 155–156
name of static variable, 320–321

abstract method, 80
Abstract Windowing Toolkit (AWT), 348
Account class

creating instances of, 330
description of, 327
display method, 327, 329

account value, generating at random,
326–327

ActionEvent, 356
ActionListener code, 356
actionPerformed method, 356
active project, 36–37
AddChips class, 315
AddGuests class, 286–287

Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 371

Adding Components to Frame
program, 353

Adding Interest program, 336–337
addInterest method

calling, 336–338
header, 340–341

amount variable, 91, 95
An Answer for Every Occasion program,

182–183
and operator (&&), 158, 161
AnotherAgeCheck class, 170–171
AnswerYesOrNo program, 147–150
API (Application Programming Interface),

17–18
API documentation

description of, 18
downloading and installing, 26–27
reading and understanding, 125
using, 350
Web site, 363

Applet class, 367
Application Programming Interface (API),

17–18
Are You Paying Too Much? program,

160–161
args identifier, 52
array

description of, 277–280
enhanced for statement and, 284
storing values in, 280–282, 286–287
Traveling through Data Both Forwards

and Backwards program, 282–283
working with, 283–287

ArrayList class, 368
assignment operator

description of, 117–118
placement of, 162
+=, 339

assignment statement
description of, 92–93
initialization compared to, 100
order of, 106–107

asterisk, double (**) Javadoc comment, 57
AuntEdnaDoesItAgain class, 251
AuntEdnaSettlesForTen class, 246
AWT (Abstract Windowing Toolkit), 348

• B •
Backgammon game, simulating, 157–159
backslash, double, inside quotation marks

(“\\”), 229
BadBreaks class, 188–189
Beckstrom, Bob, Landscaping For

Dummies, 323
BetterAccount class, 334–335
BetterProcessData class, 317
BetterShowOneRoom class, 275–276
blank line, inserting in program output, 111
blank space rule and Scanner

methods, 106
block, as statement, 155, 200
blogs, 363–364
body of method, 59, 328–329
books recommended

Java 2 For Dummies (Barry Burd), 3, 357
Landscaping For Dummies (Phillip Giroux,

Bob Beckstrom, and Lance
Walheim), 323

Managing Your Money Online For
Dummies (Kathleen Sindell), 323

UNIX For Dummies Quick Reference, 4th
Edition (Margaret Levine Young and
John R. Levine), 323

boolean type, 138
boolean variable

description of, 131–132, 159
George Boole Would Be Proud program,

165–166
Borland JBuilder IDE, 21
break statement, 184, 188–190
Build Output pane (JCreator), 37
Build➪Compile Project (JCreator),

37, 43, 79
Build➪Execute Project (JCreator),

37, 44, 79
Burd, Barry

e-mail address and Web site of, 6
Java 2 For Dummies, 3, 357

buttons
click, responding to, 355–357
displaying, 352–354

byte value, 120
bytecode, 12, 15

372 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 372

• C •
Calling addInterest Method program, 337
calling method
addInterest, 340–341
description of, 60
display, 330
equals method of string, 312
example of, 61, 63
FixTheAlternator, 58
frame.getContentPane, 351
frame.setDefaultCloseOperation, 351
JFrame, 351
myRandom.nextInt, 150, 181–182
next, 306
nextLine, 306
passing information on the fly, 338–339
program for, 58
static and non-static, 314
System.out.print, 93
System.out.println, 62–63, 93, 111

Calling Method in Listing 19-8 program, 343
Calling Object’s Method program, 310
CanIKeepKidsQuiet class, 131
cannot find symbol error message,

76–77, 122
Capitalism in Action program, 355
cascading if statement, 172–175
case clause and switch statement

function of, 183–184
order of, 186–187

case sensitivity, 43, 51, 76
casting, 112–113
CelsiusToFahrenheit class, 134
Chair class, 295
char type, 138
char value, 331
characters

comparing, 137–138
conditions and, 164–165
description of, 122–123
fetching from keyboard, 72
reading single, 129–131
sending to computer screen, 70
variable and, 125

Character.toUpperCase method,
123–125

charAt method, 129–131
Cheat Sheet and keywords, 51
Check class, 313–314, 322–324
CheckAgeForDiscount class, 167
CheckPassword class, 310
class
Account, 327, 329–330
AddChips, 315
AddGuests, 286–287
AnotherAgeCheck, 170–171
AnswerYesOrNo, 147
Applet, 367
ArrayList, 368
AuntEdnaDoesItAgain, 251
AuntEdnaSettlesForTen, 246
BadBreaks, 188–189
BetterAccount, 334–335
BetterProcessData, 317
BetterShowOneRoom, 275–276
CanIKeepKidsQuiet, 131
CapitalizeMe, 355
CelsiusToFahrenheit, 134
Chair, 295
Check, 313–314, 322–324
CheckAgeForDiscount, 167
CheckPassword, 310
Container, 350, 352, 354
creating in JCreator, 41
creating traditional way, 290
curly braces ({}) and, 64
DaysInEachMonth, 190–191
DebugCheckPassword, 308–309
defining methods within, 325–334
description of, 63–64, 294, 313
DisplayHotelData, 254
EchoLine, 67
File, 368
GoodAccount, 342
IHopeYouKnowWhatYoureDoing, 256
ImageIcon, 349
import declaration and, 319
Integer, 315–316, 368
interface compared to, 85

373Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 373

class (continued)
JazzyEchoLine, 304
JButton, 354
JFrame, 349, 350–352
JLabel, 349
JTextField, 354
KeepingKidsQuiet, 104
KeepingMoreKidsQuiet, 105
ListCombinations, 263
ListSymbols, 261
LowerToUpper, 122
main method and, 63, 290–293
MakeChange, 109–110
Math, 369
MyActionListener implements

ActionListener, 356
MyExperiment, 124
MyFirstJavaClass, 43
MyLittleGUI, 353
newly defined, using, 291–293
NiceAccount, 336–337
NicePrice, 165–166
NumberFormat, 316–318, 369
object compared to, 300–302
object-oriented programming and, 289,

303, 325–326
ProcessAccounts, 330
ProcessBetterAccounts, 335
ProcessData, 290
ProcessGoodAccounts, 343
ProcessMoreData, 305
ProcessNiceAccounts, 337
ProcessPurchase, 292
ProcessPurchasesss, 298
Purchase, 291, 298, 299–300
Random, 148, 149, 150
ReverseWord, 127
Scanner, 73, 106, 191, 237–238,

273, 276, 369
Scoreboard, 177
ShowOccupancy, 272
ShowOneRoomOccupancy, 274
ShowPicture, 348
SnitSoft, 90, 321–322
Special Offer, 151

String, 303–307, 369
StringTokenizer, 370
Swing, 348–349
System, 370
TheOldSwitcheroo, 182–183
TicketPrice, 160
TicketPriceWithDiscount, 163–164
TryToCheckPassword, 308
TwoTeams, 153
using newly defined, 291–293
VacanciesInReverse , 282
WinLoseOrTie, 173–174

.class file
bytecode and, 15
description of, 12
failed compilation and, 79

‘class’ or ‘interface’ expected
error message, 83

Class with Two Methods program, 334–335
closing

frame, 351
traditional comment (*/), 56

COBOL code, 11
code. See also compiler; computer

program; listings; programming
language; syntax

abbreviating, 155–156
converting, to use in class, 292
description of, 10
disk access, 221
indentation of, 54–55, 64, 87, 150, 171
in other languages, comparisons of, 11
running, 13–17
spaces in, 87
translating, 12–13
typing and running own, 38–44

code template, 220, 221
combining conditions

example of, 159–161
logical operators and, 158–159

commands
Build➪Compile Project (JCreator),

37, 43, 79
Build➪Execute Project (JCreator),

37, 44, 79

374 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 374

File➪Open Workspace (JCreator), 35
issuing, 19
Tools➪Stop Tool (JCreator), 38, 205

comment, 56–57
comparing

characters, 137–138
numbers, 134–135, 137
strings, 310, 311–312
values (==), 133, 152, 309

comparison operator, 133–134
compilation, failed, 79
compiler

description of, 12–13
downloading and installing, 24–26

component of array, 279
compound statement, 144, 200
computer, as stupid, 65–66
computer program

application programming interface, 17–18
compiler and, 12–13
description of, 10
disk-oriented, writing, 226–228
looking at someone else’s, 47
text-based, 33, 347
tools for creating, 12
typing and running, 68–70
virtual machine, 13–17

concatenating string, 333–334
condition

character and, 164–165
combining, 157–161
description of, 132–133
for statement and, 275–277
parentheses and, 168–169

conditional operator (?:), 192–194
configuring JCreator LE (Lite Edition) IDE,

29–31
Container class, 350, 352, 354
content pane, 351, 352
converting code to use in class, 292
copying file, 273
count variable, 246–248, 249, 250–251, 295
Creating Window with Image in It

program, 348
Ctrl+C (stop program run), 205

curly braces ({})
block and, 155
class and, 64
example using, 54, 55
nested statements and, 171

currency variable, 318
cursor, moving to new line, 206

• D •
DaysInEachMonth class, 190–191
DebugCheckPassword class, 308–309
debugger, 136
debugging, 308–309
decimal numbers

comparing, 134–135, 137
definition of, 96
reading from keyboard, 96–97
types of, 118–120

decision making
forks in road, 141–143
if statement, 143–150

declaration
dragging outside of method, 100–101
import, 73, 155–156, 319–320
method, 59, 60
Scanner class, 273
static import, 155–156, 321
variable, combining, 101–102, 110–111

declaring
method, 58
variable, 95–96

Declaring Variable Inside main Method
program, 321

default clause and switch statement,
184–185, 187

deleting file, 257–258
diagnosing errors. See also error messages

case sensitivity, 76
debugger and, 136
disk file, 224–226
first message, relying on, 81–83
mortgage-calculating program, 38
overview of, 76
in punctuation, 77–81

375Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 375

diagnosing errors (continued)
run-time error message, 85–86
same error, different message, 84–85

dice, rolling, 157–159
directory
docs, 27
Java home, 26
MyProjects, 35, 39

disk access code, 221
disk file

keyboard/screen program, 217–219
reading from and writing to, 216–217,

219–220, 222
rewriting, 229–231
running sample program, 222–224
troubleshooting, 224–226
writing String value to, 307

disk-oriented program, writing, 226–228
display method

calling, 330
description of, 326, 328–329
flow of control, 332

DisplayHotelData class, 254
displaying

button and text field, 352–354
data in reverse, 277–278, 282–283
String value, 307

division sign (/), 108
do statement

description of, 258–259
syntax, 259–260

Do You Have a Coupon? program, 163–164
docs directory, 27
dot (.), 312, 314
double asterisk (**) Javadoc comment, 57
double backslash inside quotation marks

(“\\”), 229
double keyword, 95–96
double minus sign (—), as predecrement

and postdecrement operators, 117
double plus sign (++)

postincrement operator, 114–117
preincrement operator, 113

double quotation marks (“”), 53, 307
double value, 112–113, 130, 137
double variable, 119, 120

downloading
API documentation, 26–27
compiler, 24–26
Java Development Kit (JDK), 25
JCreator LE (Lite Edition) IDE, 28–29

drag-and-drop IDE, 20
dragging declaration outside of method,

100–101

• E •
EchoLine program

by another programmer, 87
explanation of, 70–72
overview of, 66–68

Eclipse IDE, 20
editor

description of, 19
syntax coloring and, 39

element of array, 279
else clause and if statement, 151–153
end-of-line comment (//), 56
enhanced for statement. See also for

statement
creating, 261–263
nesting, 263–267
stepping through array values with, 284

enum type
creating, 176
description of, 175
using, 176–179

equal sign (=) in assignment statement, 92
equals method, 311–312
error messages
cannot find symbol, 76–77, 122
‘class’ or ‘interface’

expected, 83
if statement, 146
InputMismatchException, 131
interpreting, 76–77, 78–83
loop within loop, 241–242
missing method body, or declare

abstract, 80
NullPointerException, 242
run-time, 85–86

376 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 376

errors, diagnosing errors. See also error
messages

case sensitivity, 76
debugger and, 136
disk file, 224–226
first message, relying on, 81–83
mortgage-calculating program, 38
overview of, 76
in punctuation, 77–81
run-time error message, 85–86
same error, different message, 84–85

escape sequence, 206
examples in book and version of Java,

3, 21, 23
expecting unexpected, 74–75
experimenting with test program, 123–125
expression

description of, 115, 132–133
FileNotFoundException, 221
new File(“rawData.txt”), 221
regular, 129

• F •
fall-through
break statement and, 188–190
taking advantage of, 190–192

false value, 130–131
FAQ sites, 363
Faulty Password Checker program, 308
file. See also disk file
.class, 12, 15, 79
copying, 273
deleting, 257–258
input, 222–223, 273
java file, 17
javac file, 13
naming, 229
output, viewing, 224
running code that straddles two, 293–294
source, creating project with two,

179–180
String.java, 326

File class, 368
File View pane (JCreator), 36–37, 224
filename extensions, 34, 227, 228

FileNotFoundException expression, 221
File➪Open Workspace (JCreator), 35
Finding the Number of Days in a Month

program, 190–191
findInLine method, 129–131
FixTheAlternator method, 58
Fletcherism, 245
float value, 120
FlowLayout object, 354
for statement. See also enhanced for

statement
in action, 271–273
conditions in, 275–277
description of, 246
example of, 246–248
initializing, 250–251
nesting, 252–254
syntax, 248–250
while statement compared to, 249

forks in road of decision making, 141–143
frame.getContentPane method, 351
frames, window

creating, 348–350
JFrame class and, 350–352
setTitle method, 354

frame.setDefaultCloseOperation
method, 351

fully qualified name, 73, 319

• G •
General Output pane (JCreator), 33–34,

37–38
generating

occupancy report, 272–277
random number, 148–149
random word, 331

George Boole Would Be Proud program,
165–166

getCurrencyInstance method, 317
getInterest method, 342–345
GetUserName program

fixing problem with, 212–214
listing, 207–209
working on problem with, 209–212

377Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 377

Giroux, Phillip, Landscaping For
Dummies, 323

goals of programming, 176
GoodAccount class, 342
greater than (>), 133
greater than or equal to (>=), 132, 133
GUI (Graphical User Interface)

button click, responding to, 355–357
buttons and text fields, 352–354
description of, 347
frame, creating, 350–352
showing image on screen, 348–349

• H •
hard drive, storing data on

keyboard/screen program for, 217–219
overview of, 215
reading from and writing to file,

219–220, 222
rewriting disk file, 229–231
running disk-oriented program, 216–217
testing code, 222–224
troubleshooting disk file, 224–226
writing disk-oriented program, 226–228

hasNext method, 237–238, 276
header for method
addInterest method, 340
description of, 59
display method, 328
getInterest method, 345

Hide Extensions feature (Microsoft
Windows), 34

host name, 234
How display Method Behaves When No

One’s Looking program, 329

• I •
I Know Everything program, 147
IDE (integrated development

environment). See also JCreator LE
(Lite Edition) IDE

description of, 19–20
Java tools with, 21
JCreator LE (Lite Edition), 21–22

identifiers
with agreed upon meanings, 52–53
compiler and, 86
description of, 52
naming, 86
variable name as, 92

if statement
cascading, 172–175
complete program using, 147–150
conditions with characters and, 164–165
indenting, 150
listing, 143
mixing logical operators and, 166–168
nested, 170–172
nesting within switch statement, 191
one-statement rule and, 155
packing more into, 153–154
parentheses and, 168–169
switch statement compared to, 187–188
syntax, 143–146
without else clause, 151–153

IHopeYouKnowWhatYoureDoing class, 256
I’m Repeating Myself Again (Again)

program, 304
image, showing on screen, 348–349
ImageIcon class, 349
import declaration

description of, 319
examples of, 155–156
packages and, 319–320
Scanner class and, 73
static, 155–156, 321

import java.util.Scanner line, 74
In Case of a Tie... program, 173–174
indentation of code

example of, 64, 87
if statement, 150
nested statements and, 171
punctuation and, 54–55

index, 279
infinite loop, 204
initializing
for statement, 250–251
variable, 99–100, 161–162

inner loop, 237

378 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 378

input file
creating, 222–223
naming, 273

InputMismatchException error
message, 131

inserting blank line in program output, 111
installing

API documentation, 26–27
compiler, 24–26
JCreator LE (Lite Edition) IDE, 28–29

instance, 297, 302
int value

comparing, 309
description of, 105
dividing by another int value, 108
double value and, 112–113
Integer class compared to, 316

Integer class, 315–316, 368
integrated development environment

(IDE). See also JCreator LE (Lite
Edition) IDE

description of, 19–20
Java tools with, 21
JCreator LE (Lite Edition), 21–22

interface, class compared to, 85
Internet resources

author, 6
blogs, 363–364
Eclipse IDE, 20
Javadocs, 363
Java-related, 362
Jigloo graphical plug-in, 20
for job seekers, 364
opinions and advocacy, 363
programming languages, 364–365
Slashdot, 365
SourceForge, 365
Sun Microsystems, 25, 361
tutorials, 362
Wiley, 141

IOException clause, 257
ISETL code, 11
issuing commands, 19
iteration of loop, 197

• J •
Java Development Kit (JDK)

description of, 28
downloading, 25

java file, 17, 21
Java home directory, 26
Java, overview of, 319
Java Runtime Environment (JRE), 28
Java 2 Enterprise Edition (J2EE), 25
Java 2 For Dummies (Barry Burd), 3, 357
Java 2 Micro Edition (J2ME), 25
Java 2 Standard Edition (J2SE), 24, 25
Java Virtual Machine (JVM)

description of, 13–17
popularity of, 18

java.awt.event package, 356
javac file, 13
Javadoc comment (**), 57
javadoc program, 57
Javadocs

description of, 18
downloading and installing, 26–27
reading and understanding, 125
using, 350
Web site, 363

java.lang package, 319–320
java.util package, 319
JazzyEchoLine class, 304
JButton class, 354
JCreator LE (Lite Edition) IDE

Build Output pane, 37
Class Wizard, 41, 42
code templates and, 222
configuring, 29–31
creating project in MyWorkspace, 39–44
description of, 21–22
downloading and installing, 28–29
error messages in, 77
File View pane, 36–37, 224
General Output pane, 33–34, 37–38
jdb debugger and, 136
launching, 35
project, creating with two source files,

179–180

379Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 379

JCreator LE (Lite Edition) IDE (continued)
Project Wizard, 40, 41
stopping program run in, 205
Task List pane, 44
work area, 30–31, 35
workspaces, 36

JCreator Setup Wizard, 29, 30
.jcw extension, 36
jdb debugger, 136
JDK (Java Development Kit)

description of, 28
downloading, 25

JFrame class
description of, 349, 350–352
setTitle method, 354

Jigloo graphical plug-in, 20
JLabel class, 349
JRE (Java Runtime Environment), 28
JTextField class, 354
J2EE (Java 2 Enterprise Edition), 25
J2ME (Java 2 Micro Edition), 25
J2SE (Java 2 Standard Edition), 24, 25
JVM (Java Virtual Machine)

description of, 13–17
popularity of, 18

• K •
KeepingKidsQuiet program

description of, 103–105
revision to, 105–106

KeepingMoreKidsQuiet class, 105
keyboard, fetching characters from, 71
keyboard input, program to echo, 66–68
keyboard, reading from

decimal number, 96–97
whole number, 105–106

keywords
compiler and, 86
description of, 50–51
double, 95–96

• L •
Landscaping For Dummies (Phillip

Giroux, Bob Beckstrom, and
Lance Walheim), 323

language
comments and, 56–57
data-gathering features of, 303
English compared to Java, 49–50
identifiers, 52–53
keywords, 50–51
literals, 53–54
punctuation, 54–55
Web sites, 364–365

launching JCreator, 35
less than (<), 133
less than or equal to (<=), 133
Lévénez, Eric, Web site of, 364
Levine, John R., UNIX For Dummies Quick

Reference, 4th Edition, 323
lineIn variable, 304
Linux

IDE for, 22
Runtime.getRuntime().exe code

for, 257
ListCombinations class, 263
listings

Account Class, 327
Adding Components to Frame, 353
Adding Interest, 336–337
Answer for Every Occasion, 182–183
Are You Paying Too Much?, 160
Aren’t You Lucky?, 151
Attempt to Debug Code in Listing 18-3,

308–309
boolean type, 131
Calling addInterest Method, 337
Calling Method in Listing 19-8, 343
Calling Object’s Method, 310
Capitalism in Action, 355
char type, 122
Character.toUpperCase method, 124
Class with Two Methods, 334–335
computer program example, 10
creating class in traditional way, 290
Creating Window with Image in It, 348
Declaring Variable Inside main

Method, 321
displaying things, 43
Do You Have a Coupon?, 163–164
Double Value from Keyboard, 97
EchoLine program, 67

380 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 380

enum type, 176
Faulty Password Checker, 308
Finding Number of Days in Month,

190–191
From One File to Another, 235
generating occupancy report, 272
George Boole Would Be Proud, 165–166
Hey! Is This a For-by-For?, 254
Horace Fletcher’s Revenge, 246
How display Method Behaves When No

One’s Looking, 329
How to Prime Loop, 213
if statement, 143
if statement, complete program using,

147–150
I’m Repeating Myself Again (Again), 304
In Case of Tie..., 173–174
It’s Warm and Cozy in Here, 134
KeepingKidsQuiet program, 104
Listing Combinations, 263
Listing Symbols, 261
Little Experiment, 230
MakeChange program, 109–110
Making Use of Code in Listing 19-1, 330
Making Use of Your Purchase Class, 292
Making Word Go Backwards, 127
May Best Team Be Displayed First, 153
Mechanical Combining of Two Loops, 237
Method That Returns Value, 342
More Chips, Please, 315
Nested if Statements, 170–171
Nice Try, But..., 211–212
No Extra Break for Kids or Seniors, 167
Please, Gimme a Break!, 188–189
Processing Purchases, 298
Proud Winners and Sore Losers, 177
Pulling Variable Outside main Method

program, 322
Putting Name in String Variable, 305
Refined Version of One-Room Code,

275–276
Repeat Before You Delete, 255
Report on One Room Only, Please, 274
Responding to Button Clicks, 356
revised KeepingKidsQuiet program,

105–106

Right Way to Display Dollar Amount, 317
Roll 7 or 11, 196
Slot Machine Symbols, 261
SnitSoft’s Grand Scam, 90
Storing Occupancy Data in Array, 286–287
Template to Read Data from Disk File,

219–220
Template to Write Data to Disk File,

220, 222
That’s Much Better!, 243
ThingsILike program, 48
This Is So Cool!, 335
Traveling through Data Both Forwards

and Backwards, 282
Trying to Get Username from E-mail

Address, 207–208
Twenty-One card game, simplified

version, 206
Using Input and Output Files, 218–219
Using Keyboard and Screen, 218
Using Variable Declared Outside for

Loop, 251
What It Means to Be a Chair, 295
What It Means to Be a Purchase, 291

ListOneUsername program
description of, 234–235
listing, 235
running, 236

ListSymbols class, 261
Lite Edition (JCreator LE) IDE

Build Output pane, 37
Class Wizard, 41, 42
code templates and, 222
configuring, 29–31
creating project in MyWorkspace, 39–44
description of, 21–22
downloading and installing, 28–29
error messages in, 77
File View pane, 36–37, 224
General Output pane, 33–34, 37–38
jdb debugger and, 136
launching, 35
project, creating with two source files,

179–180
Project Wizard, 40, 41
stopping program run in, 205

381Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 381

Lite Edition (JCreator LE) IDE (continued)
Task List pane, 44
work area, 30–31, 35
workspaces, 36

literals
char, 122
description of, 53–54, 307

logical operators
description of, 158
mixing together, 166–168

long value, 120
loop. See also specific statements

analyzing, 239–241
assembling pieces of code, 203
brainstorming strategies for, 200–202
deciding limit at runtime, 274–275
error message, 241–242
following action in, 197–199
infinite, 204
from infinity to affinity, 205
inner, 237
iteration of, 197
within loop, composing, 233–234,

236–237, 243–244
priming, 207–209, 212–214
Repeat Before You Delete program,

254–257
testing, 237–238
values for variables, 203–205
working on problem with, 209–212

LowerToUpper class, 122

• M •
Macintosh

IDE for, 22
Java Web site for, 25

main identifier, 53
main method

class and, 63
creating class and, 290–293
running code with multiple, 293–294
static variable and, 314, 321–323
ThingsILike program, 60, 62

MakeChange program, 109–110

Making Use of Code in Listing 19-1
program, 330

Managing Your Money Online For Dummies
(Kathleen Sindell), 323

Math class, 369
math operator, 108
Mechanical Combining of Two Loops

program, 237
method

abstract, 80
actionPerformed, 356
addInterest, 336–338, 340–341
body of, 328–329
calling, 58, 61, 63, 310–311, 330
Character.toUpperCase, 123–125
charAt, 129–131
creating, 326–327
declaring, 58
defining within class, 325–334
description of, 57
display, 326, 328–329, 330, 332
dragging declaration outside of, 100–101
equals, 311–312
findInLine, 129–131
FixTheAlternator, 58
flow of control, 332
frame.getContentPane, 351
frame.setDefaultCloseOperation, 351
getCurrencyInstance, 317
getInterest, 342–345
getting value from, 341–345
hasNext, 237–238, 276
header for, 328, 340, 345
JFrame, 351
main, 60, 62, 63, 290–294, 314, 321–323
myRandom.nextInt(), 148–150, 157–159
myScanner.nextInt(), 72
myScanner.nextLine(), 71–72
name of, 328
next method, 306
nextDouble, 97–99, 130
nextInt, 106, 130
nextLine method, 306
non-static, calling, 314
object with two, 334–335

382 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 382

pack, 352
parentheses and, 328
parseInt, 316
passing values to, 336–339
print, 227–228
println, 227–228
referring to, 333
Runtime.getRuntime().exec, 257
scanner, 72, 106
setDefaultCloseOperation, 351
setLayout, 354
setTitle, 354
setVisible(true), 352
sort, 313–314, 322–324
static, 101, 313–314
System.out.print, 93
System.out.println, 62, 70, 93, 111
terminology for, 58–60
ThingsILike program, 62–63
toUpperCase, 356
using, 307–310, 313

Method That Returns Value program, 342
Microsoft Windows

Hide Extensions feature, 34
JavaVirtual Machine and, 22
JCreator and, 22
IDE for, 22
Runtime.getRuntime().exec code

for, 257
minus sign (-), 108
minus sign, double (—)

postdecrement operator, 117
predecrement operator, 117

missing method body, or declare
abstract error message, 79–80

mixing logical operators, 166–168
More Chips, Please program, 315
mortgage-calculating program, running,

33–38
moving cursor to new line, 206
multiplication sign (*), 108
MyActionListener implements

ActionListener class, 356
MyExperiment class, 124
MyFirstJavaClass class, 43

MyLittleGUI class, 353
MyProjects directory, 35, 39
myRandom.nextInt() method

calling, 181–182
description of, 148–150
rolling dice and, 157–159

myScanner.nextInt() method, 72
myScanner.nextLine() method, 71–72

• N •
\n (move cursor to new line), 206
name

of class, 319
fully qualified, 73, 319
of method, 328
of variable, 91, 320–321

naming
conventions for, 52
file, 229
identifiers, 86
input file, 273

nested loop, 237
nesting

enhanced for statements, 263–267
for statements, 252–254
if statements, 170–172, 192

new File(“rawData.txt”)
expression, 221

newsgroups, 75, 362
next method, 306
nextDouble method, 97–99, 130
nextInt method, 106, 130
nextLine method, 306
NiceAccount class, 336–337
NicePrice class, 165–166
niceTotal variable, 318
No Extra Break for Kids or Seniors

program, 167
non-numeric types, primitive, 138
non-static method, calling, 314
NoSuchElementException, 275
not equal to (!+), 133
not operator (!), 158

383Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 383

NullPointerException error
message, 242

NumberFormat class, 316–318, 369
numbers

adding, 333
comparing, 134–135, 137
pseudorandom, 149
random, generating, 148–149
turning into strings, 316–318
turning strings into, 315–316

numbers using decimal
comparing, 134–135, 137
definition of, 96
reading from keyboard, 96–97
types of, 118–120

numbers, whole
comparing, 134
overview of, 103–105
reading from keyboard, 105–106
remainder operator and, 112–113
types of, 118–120

numeric types, primitive, 120

• O •
object

calling methods of, 310–311
class compared to, 300–302
creating multiple, 298–300
description of, 294–297
instance compared to, 297
methods, using, 307–310, 313
referring to parts of, 297
with two methods, 334–335

object code, 12–13
object-oriented programming (OOP)

classes and, 289, 303, 325–326
description of, 63–64
essence of, 312
objects and, 302

occupancy report, generating, 272–277
offline installation, 25
omitting punctuation, 77–78
one-statement rule, 155
online installation, 26

on-the-fly information, 336
OOP (object-oriented programming)

classes and, 289, 303, 325–326
description of, 63–64
essence of, 312
objects and, 302

opening
Javadoc comment (/**), 57
traditional comment (/*), 56

operators
assignment, 117–118, 162, 339
comparison, 133–134
conditional, 192–194
logical, 158, 166–168
math, 108
postincrement, 114–117
predecrement and postdecrement, 117
preincrement, 111–114
remainder, 108–111, 112–113

or operator (||), 158, 159, 161
out identifier, 53
out variable, 320–321
outer loop, 237
output

blank line, inserting in, 111
lining up, 206
wrapping, 93–94

output file, viewing, 224
overusing punctuation, 78–81

• P •
pack method, 352
package
java.awt.event, 356
java.lang, 319–320
java.util, 319

parameters
description of, 336
example of, 338
JFrame methods, 351
names of, 339

parentheses [()]
conditions and, 168–169
if statement, 145, 146

384 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 384

method and, 328
parameters and, 336

parenthesis, closing [)], omitting, 82
parseInt method, 316
passing value to method, 336–339
percent sign (%) remainder operator,

108–111
Phipps, Simon, blog of, 364
Please, Gimme a Break! program, 188–189
plus sign (+)

add char value to string, 331
addition operator, 108
concatenating strings with, 333–334

plus sign double (++)
postincrement operator, 114–117
preincrement operator, 111–114

portability, 18
price variable, 160, 161–162
priming while loop, 207–209, 212–214
primitive types

non-numeric, 138
numeric, 120
object-oriented programming and, 289
reference type compared to, 300, 309

print method, 227–228
println identifier, 53
println method, 227–228
PrintStream, 221
ProcessAccounts class, 330
ProcessBetterAccounts class, 335
ProcessData class, 290
ProcessGoodAccounts class, 343
ProcessMoreData class, 305
ProcessNiceAccounts class, 337
ProcessPurchase class, 292
ProcessPurchasesss class, 298
programmer, 10–11, 98
programming, goals of, 176
programming language

comments, 56–57
data-gathering features of, 303
description of, 11, 49–50
identifiers, 52–53
keywords, 50–51
literals, 53–54

punctuation, 54–55
Web sites, 364–365

project
active, 36–37
creating in JCreator MyWorkspace, 39–44
creating with two source files, 179–180

prompt, 98
Proud Winners and Sore Losers

program, 177
pseudorandom number, 149
public keyword, 51
Pulling Variable Outside main Method

program, 322
punctuation. See also specific punctuation

finding omitted, 77–78
if statement, 145–146
overview of, 54–55
parenthesis, closing [)], omitting, 82
for referring to variables and

methods, 333
using too much, 78–81

Purchase class, 291, 298, 299–300

• Q •
quotation mark (‘), 122
quotation marks

double (“”), 53, 307
double, inside quotation marks

(“\\”), 229

• R •
Random class, 148, 149, 150
random number, generating, 148–149
random words, generating, 331
reading

characters, 129–131
data from disk file, 219–220, 227
decimal number from keyboard, 96–97
String value from keyboard, 306
whole number from keyboard, 105–106

reference type
description of, 310
example of, 291
primitive type compared to, 300, 309

385Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 385

regular expression, 129
remainder operator (%), 108–111, 112–113
Repeat Before You Delete program,

254–257
responding to button click, 355–357
Responding to Button Clicks program, 356
return type, 341–345
return value, 341–345
reusing variable, 125–127
reversing letters in word, 127–129
rewriting disk file, 229–231
Right Way to Display Dollar Amount

program, 317
Roll 7 or 11 program, 196
running

canned program, 33–38
code, 13–17
code that straddles two files, 293–294
disk-oriented program, 216–217
own code, 38–44

run-time error message, 85–86
Runtime.getRuntime().exec method,

256–257

• S •
Scanner class

declarations, 273
description of, 73, 369
hasNext method, 237–238, 276
methods, 72, 106
nextBoolean method, 292

Scanner myScanner - new
Scanner(System.in) line, 74

Schwartz, Jonathan, blog of, 364
Scoreboard class, 177
screen

sending characters to, 70
showing image on, 348–349

semicolon (;)
adding unnecessary, 78
if statement, 145, 146
omitting, 77–78
statement and, 61

setDefaultCloseOperation method, 351

setLayout method, 354
setTitle method, 354
setVisible(true) method, 352
short value, 120
showing image on screen, 348–349
ShowOccupancy class, 272
ShowOneRoomOccupancy class, 274
ShowPicture class, 348
simple name, 319
Sindell, Kathleen, Managing Your Money

Online For Dummies, 323
SkillMarket Web site, 364
skinning cat, origins of phrase, 150
Slashdot Web site, 365
slot machine program, 261–267
Smaragdis, Mary, blog of, 364
SnitSoft class, 90, 321–322
software, open source, Web site for, 365
sorting, 321–324
source code, 12–13
source files, creating project with two,

179–180
SourceForge Web site, 365
spaces in code, 87
SpecialOffer program, 151–153
square brackets ([]), 279
statement. See also specific statements

assignment, 92–93, 100, 106–107
block as, 155, 200
break statement, 184, 188–190
compound, 144, 200
description of, 61
expression and, 115
semicolon (;) and, 61

static import declaration, 155–156, 321
static keyword, 51
static method, 101, 313–314
static variable, 320–323
stopping program, 38, 205
storing data on hard drive

keyboard/screen program for, 217–219
overview of, 215
reading from and writing to file,

219–220, 222
rewriting disk file, 229–231
running disk-oriented program, 216–217

386 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 386

testing code, 222–224
troubleshooting disk file, 224–226
writing disk-oriented program, 226–228

storing value in array, 280–282, 286–287
string

adding char value to, 331
comparing, 310, 311–312
concatenating, 333–334
turning into number, 315–316
turning number into, 316–318

String class
description of, 303–304, 369
equals method and, 311–312
example of, 304
reading and writing values, 306–307
variables, 305–306

String identifier, 53
String type

comparisons and, 137, 309
storing word or sentence and, 125

String.java file, 326
StringTokenizer class, 370
style and writing code, 87
Sun Microsystems Web site, 25, 361
support, asking for, 75
Swing class, 348–349
switch statement
break statement and, 188–189
case clause and, 183–184, 186–187
default clause and, 184–185, 187
description of, 181–182
example of, 182–183
fall-through and, 190–192
nesting if statement within, 191
syntax, 185–188

syntax
cascading if statement, 174
do statement, 259–260
enhanced for statement, 261
for statement, 248–250
if statement, 143–146
switch statement, 185–188
while statement, 196, 255

syntax coloring in editor, 39
System class, 370

System identifier, 53
System.out, abbreviating, 320–321
System.out.print method, 93
System.out.println method, 62,

70, 93, 111

• T •
/t (tab stop), 206
tables, 301–302
Task List pane (JCreator), 44
template, 220, 221
test program, writing, 123–125
text field, displaying, 352–354
text-based program, 33, 347
That’s Much Better! program, 243
TheOldSwitcheroo class, 182–183
ThingsILike program

code for, 48
explanation of, 49
main method, 60, 62
methods, 62–63

This Is So Cool! program, 335
throws clause, 221
TicketPrice program, 160–162
TicketPriceWithDiscount class,

163–164
tools. See also compiler; editor; Java

Virtual Machine (JVM)
Application Programming Interface, 17–18
with IDE, 21
integrated development environment,

19–20
Tools➪Stop Tool (JCreator), 38, 205
total variable, 318
toUpperCase method, 356
traditional comment (/* and */), 56
translating code, 12–13
tree variable, 322–324
troubleshooting
cannot find symbol, 76–77, 122
case sensitivity, 76
‘class’ or ‘interface’

expected, 83
disk file, 224–226

387Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 387

troubleshooting (continued)
first error message, relying on, 81–83
if statement, 146
InputMismatchException, 131
interpreting, 76–77, 78–83
jdb debugger and, 136
loop within loop, 241–242
mortgage-calculating program, 38
missing method body, or declare

abstract, 80
NullPointerException, 242
punctuation, 77–81
run-time error message, 85–86
same error, different message, 84–85

true value, 130–131
Trying to Get a Username from an E-mail

Address
fixing problem with, 212–214
listing, 207–209
working on problem with, 209–212

TryToCheckPassword class, 308
tutorial Web sites, 362
Twenty-One card game simulation

assembling pieces of code, 203
brainstorming strategies for, 200–202
listing, 206
values for variables, 203–205

TwoTeams class, 153
type of variable, 91, 95–96, 338
typefaces in book, 2
typing code, 38–44

• U •
Unicode, 138
Unix

IDE for, 22
Runtime.getRuntime().exec code

for, 257
UNIX For Dummies Quick Reference, 4th

Edition (Margaret Levine Young and
John R. Levine), 323

user, 98

• V •
VacanciesInReverse class, 282
value

array and, 279
byte, 120
char, 331
combining, 289
comparing (==), 133, 152, 309
description of, 91
double, 112–113, 130, 137
float, 120
getting from method, 341–345
int, 105, 108, 112–113, 316
long, 120
passing to method, 336–339
repeating with predetermined
return, 341–345
short, 120
storing in array, 280–282, 286–287
String class and, 306–307
true or false, 130–131

variable
amount, 91, 95
assignment statement and, 92–93
boolean, 131–132, 159, 165–166
char, 125
combining declarations, 101–102, 110–111
count, 246–248, 249, 250–251, 295
creating new rather than reusing, 127–129
currency, 318
declaring, 95–96
double, 119
initializing, 99–100, 161–162
int, 112
lineIn, 304
loop and, 203–205
name of, 91, 320–321
niceTotal, 318
out, 320–321
overview of, 89–90
price, 160, 161–162
referring to, 333
reusing, 125–127

388 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 388

static, 320–323
String class, 305–306
total, 318
tree, 322–324
types of, 91, 95–96, 338
using, 90–92
using outside for statement, 250–251

version of Java
examples and, 3, 21, 23
numbering of, 24

viewing output file, 224
Visual Basic code, 11
void keyword, 51

• W •
Walheim, Lance, Landscaping For Dummies,

323
Web sites

author, 6
blogs, 363–364
Eclipse IDE, 20
Javadocs, 363
Java-related, 362
Jigloo graphical plug-in, 20
for job seekers, 364
opinions and advocacy, 363
programming languages, 364–365
Slashdot, 365
SourceForge, 365
Sun Microsystems, 25, 361
tutorials, 362
Wiley, 141

while statement
as compound statement, 200
condition and, 254–255
example of, 196
following action in, 197–199
for statement compared to, 249
priming, 207–209, 212–214
syntax, 196
working on problem with, 209–212

whole numbers
comparing, 134
overview of, 103–105

reading from keyboard, 105–106
remainder operator and, 112–113
types of, 118–120

window with image in it, creating, 348–350
Windows (Microsoft)

Hide Extensions feature, 34
JavaVirtual Machine and, 22
JCreator and, 22
IDE for, 22
Runtime.getRuntime().exec code

for, 257
WinLoseOrTie class, 173–174
word

generating randomly, 331
reversing, 127–129

wrapping output, 93–94
Write Once, Run Anywhere model of

computing, 18
writing

code, style and, 87
to disk file, 220, 222, 227–228
disk-oriented program, 226–228
String value to disk file, 307

• Y •
Young, Margaret Levine, UNIX For

Dummies Quick Reference, 4th
Edition, 323

• Z •
zero-one sequences, 94–95

389Index

31_588745 bindex.qxd 3/16/05 9:20 PM Page 389

390 Beginning Programming with Java For Dummies, 2nd Edition

31_588745 bindex.qxd 3/16/05 9:20 PM Page 390

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

32_588745 bob.qxd 3/16/05 9:17 PM Page 391

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

32_588745 bob.qxd 3/16/05 9:17 PM Page 392

	Beginning Programming with Java For Dummies, 2nd Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Revving Up
	Chapter 1: Getting Started
	What’s It All About?
	From Your Mind to the Computer’s Processor
	Your Java Programming Toolset

	Chapter 2: Setting Up Your Computer
	Downloading and Installing the Software You Need
	Running JCreator for the First Time
	Is That All There Is to It?

	Chapter 3: Running Programs
	Running a Canned Java Program
	Typing and Running Your Own Code

	Part II: Writing Your Own Java Programs
	Chapter 4: Exploring the Parts of a Program
	Checking Out Java Code for the First Time
	The Elements in a Java Program
	Understanding a Simple Java Program

	Chapter 5: Composing a Program
	A Program to Echo Keyboard Input
	Expecting the Unexpected

	Chapter 6: Using the Building Blocks: Variables, Values, and Types
	Using Variables
	What Do All Those Zeros and Ones Mean?
	Reading Decimal Numbers from the Keyboard
	Variations on a Theme

	Chapter 7: Numbers and Types
	Using Whole Numbers
	Creating New Values by Applying Operators
	Size Matters

	Chapter 8: Numbers? Who Needs Numbers?
	Characters
	The boolean Type
	The Remaining Primitive Types

	Part III: Controlling the Flow
	Chapter 9: Forks in the Road
	Making Decisions (Java if Statements)
	Variations on the Theme

	Chapter 10: Which Way Did He Go?
	Forming Bigger and Better Conditions
	Building a Nest
	Enumerating the Possibilities

	Chapter 11: How to Flick a Virtual Switch
	Meet the switch Statement
	Using Fall-through to Your Advantage
	Using a Conditional Operator

	Chapter 12: Around and Around It Goes
	Repeating Instructions Over and Over Again (Java while Statements)
	Thinking about Loops (What Statements Go Where)
	Thinking About Loops (Priming)

	Chapter 13: Piles of Files: Dealing with Information Overload
	Running a Disk-Oriented Program
	Writing a Disk-Oriented Program
	Writing, Rewriting, and Re-rewriting

	Chapter 14: Creating Loops within Loops
	Paying Your Old Code a Little Visit
	Creating Useful Code

	Chapter 15: The Old Runaround
	Repeating Statements a Certain Number Times (Java for Statements)
	Using Nested for Loops
	Repeating Until You Get What You Need (Java do Statements)
	Repeating with Predetermined Values (Java’s Enhanced for Statement)

	Part IV: Using Program Units
	Chapter 16: Using Loops and Arrays
	Some for Loops in Action
	Reader, Meet Arrays; Arrays, Meet the Reader
	Working with Arrays

	Chapter 17: Programming with Objects and Classes
	Creating a Class
	From Classes Come Objects
	Another Way to Think About Classes

	Chapter 18: Using Methods and Variables from a Java Class
	The String Class
	Using an Object’s Methods
	Static Methods
	Understanding the Big Picture

	Chapter 19: Creating New Java Methods
	Defining a Method within a Class
	Let the Objects Do the Work
	Passing Values to Methods
	Getting a Value from a Method

	Chapter 20: Oooey GUI Was a Worm
	The Java Swing Classes
	Keeping the User Busy (Working with Buttons and Text Fields)
	Taking Action

	Part V: The Part of Tens
	Chapter 21: Ten Sets of Web Links
	The Horse’s Mouth
	Finding News, Reviews, and Sample Code
	Improving Your Code with Tutorials
	Finding Help on Newsgroups
	Reading Documentation with Additional Commentary
	Checking the FAQs for Useful Info
	Opinions and Advocacy
	Looking for Java Jobs
	Finding Out More about Other Programming Languages
	Everyone’s Favorite Sites

	Chapter 22: Ten Useful Classes in the Java API
	Applet
	ArrayList
	File
	Integer
	Math
	NumberFormat
	Scanner
	String
	StringTokenizer
	System

	Index

