
Bill Sempf
Chuck Sphar
Stephen Randy Davis

8 IN 1
BOOKSBOOKS

• Basics of C# Programming
• Object Oriented C#
• Designing for C#
• A Tour of Visual Studio®
• Windows Programming
• Web Programming
• Service Oriented Development
• C# 4.0

C# 2010
A L L - I N - O N E

Making Everything Easier!™

Visit the companion Web site at www.csharpfordummies.

net to find the source code for all the projects in the book,

updated for Visual Studio 2010

 Open the book and find:

• Steps for creating your first C#
console application

• How to take advantage of object-
oriented programming

• Techniques for writing secure
code

• Tips on how to use Visual Studio
and create macros

• Ways to implement Web services
with SOAP

• How to build Web applications
and leverage the Framework

• Where you can take your
applications with dynamic
programming

Bill Sempf is a seasoned programmer and .NET evangelist specializing

in .NET applications. Chuck Sphar is a programmer and former senior

technical writer for the Visual C++ product group at Microsoft. Stephen

Randy Davis is the bestselling author of several books, including C++

For Dummies.

$39.99 US / $47.99 CN / £27.99 UK

ISBN 978-0-470-56348-9

Web/Page Design

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Experience the fun and power
as you learn to write your
own C# applications
What are you going to create with C#? Maybe your first
Windows® 7 application? Or how about digging into Web
construction? With this comprehensive book, you’ll be
able to decide where you want to go next. It takes you
through everything from Visual Studio and WPF to Web and
services development so you can start building your own
applications.

• Dig into C# — dive into object-oriented programming to create
good class libraries

• Make it secure — learn how to identify risks and then build
Windows and Web applications with the right security

• Jump into .NET — from coding for Windows Mobile to accessing
XML files, you’ll uncover what you can do with the .NET
framework

• Develop with WPF — discover key WPF concepts as well as
common application patterns used in the software industry
today

• Get Visual — find out how to use, optimize, and customize Visual
Studio’s graphic user interface

B
asics o

f C

Pro
g

ram
m

in
g

O
b

ject O
rien

ted
 C

#

D
esig

n
in

g
 fo

r C
#

A
 To

u
r o

f V
isu

al
Stu

d
io

®

W
in

d
o

w
s

Pro
g

ram
m

in
g

W
eb

 Pro
g

ram
m

in
g

Service O
rien

ted

D
evelo

p
m

en
t

C
4.0

C
2010

A
L

L
-IN

-O
N

E
Sempf
Sphar
Davis

spine=1.73”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/csharp2010aio

spine=1.73”

www.dummies.com/cheatsheet/csharp2010aio
www.dummies.com
www.dummies.com
www.dummies.com

by Bill Sempf, Chuck Sphar,
and Stephen Randy Davis

C# 2010
A L L - I N - O N E

FOR

DUMmIES
‰

01_563489-ffirs.indd i01_563489-ffirs.indd i 3/22/10 5:29 PM3/22/10 5:29 PM

C# 2010 All-in-One For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: TK

ISBN: 978-0-470-56348-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_563489-ffirs.indd ii01_563489-ffirs.indd ii 3/22/10 5:29 PM3/22/10 5:29 PM

www.wiley.com
www.wiley.com/go/permissions
www.wiley.com/techsupport

About the Authors
Hi, my name is Bill Sempf, and I am a software architect. Although I used to
hate the term architect, it’s clearly the only thing out there that defi nes what
I do. My breadth of experience includes business and technical analysis,
software design, development, testing, server management and maintenance,
and security. In my 17 years of professional experience, I have participated
in the creation of well over 200 applications for large and small companies,
managed the software infrastructure of two Internet service providers,
coded complex software happily in every environment imaginable, and made
mainframes talk to cellphones. In short, I make the technology products that
people are using every day play nicely together.

I started playing with computers in 1979 and haven’t looked back since. In
1985 I was helping my father (also named Bill) manage Apple IIe systems at
the local library. Since then I have built applications for the likes of Bank
One, Lucent Technologies, Nationwide Insurance, and Sears, Roebuck and
Co. I am the author of Visual Basic 2008 For Dummies and Visual Basic 2005
For Dummies; a coauthor of Effective Visual Studio.NET, Professional ASP.
NET Web Services, and Professional VB.NET; a frequent contributor to MSDN,
Builder.com, Hardcore Web Services, Cloud Computing Journal, Inside Web
Development Journal, and Intranet Journal; and have recently been an invited
speaker for the ACM and IEEE, DevEssentials, the International XML Web
Services Expo, and the Association of Information Technology Professionals.
I am a graduate of The Ohio State University with a bachelor’s of science
degree in business administration, a Microsoft Certifi ed Professional, a
Certifi ed Internet Business Strategist, and a Certifi ed Internet Webmaster. My
company is Products Of Innovative New Technology (usually called POINT),
and you can reach me at bill@pointWeb.net.

Chuck Sphar escaped the Microsoft C++ documentation camps after six
years of hard labor as a senior technical writer. You can reach Chuck for
praise and minor nits at csharp@chucksphar.com. His C# material Web
page (references throughout the book) is csharp102.info.

Stephen R. Davis, who goes by the name Randy, lives with his wife and son
near Dallas, Texas.

01_563489-ffirs.indd iii01_563489-ffirs.indd iii 3/22/10 5:29 PM3/22/10 5:29 PM

01_563489-ffirs.indd iv01_563489-ffirs.indd iv 3/22/10 5:29 PM3/22/10 5:29 PM

Dedication
This book goes to the active community of Microsoft developers that I get
to work with every day. Thanks for your commitment to getting things done
right, sharing what you know, and having a good time doing it.

Also, for Gabrielle and Adam, who had to put up with another six months of
Daddy hiding in the basement.

—Sempf

Acknowledgments
A lot of people work to make a book of this size. Don’t think, just because the
authors are listed on the front page, that they conceived every idea in the
book. It takes a community.

First, thanks to Chuck Sphar and Randy Davis for the fantastic source mate-
rial that is the backbone of this book. I learned much just editing the fi rst two
minibooks for use in this All-in-One. Also, thanks to Katie Feltman and Chris
Morris for their editorial expertise.

A number of community members had a huge part in the creation of this book.
Carey Payette and Phil Japikse built Book V (about WPF) basically from the
goodness of their hearts, and I couldn’t have completed it without them — my
WPF skills aren’t worth writing about. These two get the award for Biggest
Contribution, and I thank them both.

The developers at Information Control Corporation were also essential in for-
mulating the initial scope of this book and then fact-checking the details. Steve
Webb, Stephen Giffi n, John Hannah, Larry Beall, Michael Birchmeyer, and Azher
Muhammad all had a big part, especially in the information related specifi cally to
C# 4.0. Thanks to them and all the other ICC experts who gave me ideas and tips.

Kevin Pilch-Bisson at Microsoft provided some C# clarity via Twitter through-
out the scope of this book. Steve Andrews provided the structure for the
T4 chapter in Book IV. Mads Torgerson reviewed the table of contents, and
I thank him for the “It looks delicious” phrase, which I think was my most
quoted phrase of the year.

Lars Corneliussen provided a few choice pointers for the book, and Julie
Lerman’s Entity Framework writing was the basis of my own additions to the
ADO.NET chapter.

As always, thanks to my wife, Gabrielle, for her support. Sometimes I just
can’t believe how lucky I am.

01_563489-ffirs.indd v01_563489-ffirs.indd v 3/22/10 5:29 PM3/22/10 5:29 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Senior Project Editor: Christopher Morris

Acquisitions Editor: Katie Feltman

Copy Editors: Debbye Butler, Heidi Unger,
Becky Whitney

Technical Editor: Mike Spivey

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel,
Douglas Kuhn, Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Sheree Montgomery

Layout and Graphics: Samantha K. Cherolis,
Nikki Gately, Joyce Haughey

Proofreader: Christine Sabooni

Indexer: Broccoli Information Mgt.

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_563489-ffirs.indd vi01_563489-ffirs.indd vi 3/22/10 5:29 PM3/22/10 5:29 PM

Contents at a Glance
Introduction .. 1

Book I: Basics of C# Programming 9
Chapter 1: Creating Your First C# Console Application ... 11
Chapter 2: Living with Variability — Declaring Value-Type Variables 25
Chapter 3: Pulling Strings ... 45
Chapter 4: Smooth Operators .. 73
Chapter 5: Getting Into the Program Flow .. 85
Chapter 6: Lining Up Your Ducks with Collections ... 109
Chapter 7: Stepping through Collections.. 135
Chapter 8: Buying Generic .. 169
Chapter 9: Some Exceptional Exceptions ... 187

Book II: Object-Oriented C# Programming 205
Chapter 1: Object-Oriented Programming: What’s It All About? 207
Chapter 2: Showing Some Class ... 215
Chapter 3: We Have Our Methods ... 227
Chapter 4: Let Me Say This about this.. 247
Chapter 5: Holding a Class Responsible ... 261
Chapter 6: Inheritance: Is That All I Get? .. 285
Chapter 7: Poly-what-ism? .. 307
Chapter 8: Interfacing with the Interface .. 333
Chapter 9: Delegating Those Important Events ... 357
Chapter 10: Can I Use Your Namespace in the Library? ... 377

Book III: Designing for C# .. 399
Chapter 1: Writing Secure Code ... 401
Chapter 2: Accessing Data .. 415
Chapter 3: Fishing the FileStream .. 435
Chapter 4: Accessing the Internet ... 455
Chapter 5: Creating Images... 469

02_563489-ftoc.indd vii02_563489-ftoc.indd vii 3/19/10 8:01 PM3/19/10 8:01 PM

Book IV: A Tour of Visual Studio 479
Chapter 1: Getting Started with Visual Studio ... 481
Chapter 2: Using the Interface .. 495
Chapter 3: Customizing Visual Studio ... 517
Chapter 4: Transforming Text Templates... 533

Book V: Windows Development with WPF 543
Chapter 1: Introducing WPF ... 545
Chapter 2: Understanding the Basics of WPF... 555
Chapter 3: Data Binding in WPF ... 579
Chapter 4: Practical WPF .. 601

Book VI: Web Development with ASP.NET.................. 627
Chapter 1: Looking at How ASP.NET Works with C# ... 629
Chapter 2: Building Web Applications .. 641
Chapter 3: Controlling Your Development Experience ... 659
Chapter 4: Leveraging the .NET Framework ... 685
Chapter 5: Digging into Web Construction ... 703

Book VII: Service-Oriented Development 717
Chapter 1: Getting Acquainted with Web Services .. 719
Chapter 2: Building Web Services with ASMX .. 731
Chapter 3: Building Web Services with WCF .. 745
Chapter 4: Building Web Services with ReST ... 759

Book VIII: New Features in C# 4.0 767
Chapter 1: Programming Dynamically! ... 769
Chapter 2: Improving Productivity with Named and Optional Parameters 781
Chapter 3: Helping Out with Interop ... 789
Chapter 4: Revising Generics ... 795

Index .. 799

02_563489-ftoc.indd viii02_563489-ftoc.indd viii 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents

Introduction ... 1
What’s New in C# 4.0 ... 2
About This Book .. 3
What You Need in Order to Use This Book .. 3
How to Use This Book ... 4
How This Book Is Organized .. 4

Book I: The Basics of C# Programming ... 5
Book II: Object-Oriented C# Programming ... 5
Book III: Designing for C# .. 5
Book IV: A Tour of Visual Studio .. 5
Book V: Windows Development with WPF ... 5
Book VI: Web Development with ASP.NET ... 6
Book VII: Service-Oriented Development .. 6
Book VIII: New Features in C# 4.0 .. 6

Icons Used in This Book ... 6
Conventions Used in This Book ... 7

About this book’s Web site ... 7
Where to Go from Here ... 8

Book I: Basics of C# Programming 9

Chapter 1: Creating Your First C# Console Application.11

Getting a Handle on Computer Languages, C#, and .NET 11
What’s a program? ... 12
What’s C#? .. 12
What’s .NET?... 13
What is Visual Studio 2010? What about Visual C#? 14

Creating Your First Console Application .. 14
Creating the source program ... 15
Taking it out for a test drive ... 18

Making Your Console App Do Something ... 19
Reviewing Your Console Application .. 20

The program framework ... 20
Comments ... 21
The meat of the program .. 21

Introducing the Toolbox Trick ... 22
Saving code in the Toolbox .. 23
Reusing code from the Toolbox ... 23

02_563489-ftoc.indd ix02_563489-ftoc.indd ix 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesx

Chapter 2: Living with Variability — Declaring
Value-Type Variables . 25

Declaring a Variable .. 25
What’s an int? ... 26

Rules for declaring variables .. 27
Variations on a theme: Different types of int 27

Representing Fractions ... 28
Handling Floating-Point Variables ... 29

Declaring a fl oating-point variable ... 30
Converting some more temperatures ... 31
Examining some limitations of fl oating-point variables 31

Using the Decimal Type: Is It an Integer or a Float? 32
Declaring a decimal ... 33
Comparing decimals, integers, and fl oating-point types 33

Examining the bool Type: Is It Logical? .. 34
Checking Out Character Types .. 34

The char variable type .. 34
Special chars .. 35
The string type ... 35

What’s a Value Type? .. 36
Comparing string and char ... 37
Calculating Leap Years: DateTime ... 38
Declaring Numeric Constants .. 40
Changing Types: The Cast .. 41
Letting the C# Compiler Infer Data Types .. 42

Chapter 3: Pulling Strings .45

The Union Is Indivisible, and So Are Strings .. 46
Performing Common Operations on a String ... 47
Comparing Strings ... 48

Equality for all strings: The Compare() method 48
Would you like your compares with or without case?.................... 51

What If I Want to Switch Case? .. 52
Distinguishing between all-uppercase and all-lowercase strings 52
Converting a string to upper- or lowercase 52

Looping through a String .. 53
Searching Strings ... 54

Can I fi nd it? .. 54
Is my string empty? ... 55

Getting Input from the Command Line ... 55
Trimming excess white space .. 55
Parsing numeric input ... 56
Handling a series of numbers ... 58
Joining an array of strings into one string .. 60

Controlling Output Manually ... 60
Using the Trim() and Pad() methods ... 61
Using the Concatenate() method .. 63
Let’s Split() that concatenate program .. 64

02_563489-ftoc.indd x02_563489-ftoc.indd x 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xi

Formatting Your Strings Precisely .. 65
StringBuilder: Manipulating Strings More Effi ciently 69

Chapter 4: Smooth Operators .73

Performing Arithmetic .. 73
Simple operators .. 73
Operating orders .. 74
The assignment operator .. 75
The increment operator .. 76

Performing Logical Comparisons — Is That Logical? 77
Comparing fl oating-point numbers: Is your fl oat

bigger than mine? ... 78
Compounding the confusion with compound

logical operations ... 79
Matching Expression Types at TrackDownAMate.com 80

Calculating the type of an operation ... 81
Assigning types .. 82

Chapter 5: Getting Into the Program Flow .85

Branching Out with if and switch .. 86
Introducing the if statement ... 86
Examining the else statement .. 89
Avoiding even the else .. 90
Nesting if statements ... 90
Running the switchboard.. 92

Here We Go Loop-the-Loop .. 95
Looping for a while .. 95
Doing the do . . . while loop .. 99
Breaking up is easy to do .. 99
Looping until you get it right .. 100
Focusing on scope rules ... 103

Looping a Specifi ed Number of Times with for 104
An example ... 105
Why do you need another loop? .. 105

Nesting Loops .. 106
Don’t goto Pieces ... 107

Chapter 6: Lining Up Your Ducks with Collections 109

The C# Array .. 109
The argument for the array .. 110
The fi xed-value array ... 110
The variable-length array ... 112
The Length property ... 114
Initializing an array .. 115

A Loop Made foreach Array .. 115
Sorting Arrays of Data ... 116
New Feature: Using var for Arrays .. 120
Loosening Up with C# Collections ... 121

02_563489-ftoc.indd xi02_563489-ftoc.indd xi 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxii

Understanding Collection Syntax .. 122
Figuring out <T> ... 123
Going generic .. 124

Using Lists .. 124
Using Dictionaries ... 126
Array and Collection Initializers .. 128

Initializing arrays ... 128
Initializing collections ... 129

Using Sets ... 130
On Not Using Old-Fashioned Collections ... 134

Chapter 7: Stepping through Collections .135

Iterating through a Directory of Files .. 135
Iterating foreach Collections: Iterators ... 141

Accessing a collection: The general problem 141
Letting C# access data foreach container 143

Accessing Collections the Array Way: Indexers 145
Indexer format .. 145
An indexer program example ... 146

Looping Around the Iterator Block ... 150
Iterating days of the month: A fi rst example 154
What a collection is, really ... 155
Iterator syntax gives up so easily .. 156
Iterator blocks of all shapes and sizes .. 158
Where you can put your iterator ... 161

Chapter 8: Buying Generic .169

Writing a New Prescription: Generics ... 169
Generics are type-safe ... 170
Generics are effi cient ... 171

Classy Generics: Writing Your Own .. 171
Shipping packages at OOPs .. 172
Queuing at OOPs: PriorityQueue ... 172
Unwrapping the package .. 177
Touring Main() ... 178
Writing generic code the easy way .. 179
Saving PriorityQueue for last ... 180
Using a (nongeneric) Simple Factory class 182
Tending to unfi nished business ... 184

Chapter 9: Some Exceptional Exceptions .187

Using an Exceptional Error-Reporting Mechanism 187
About try blocks .. 189
About catch blocks .. 189
About fi nally blocks ... 190
What happens when an exception is thrown 190

Throwing Exceptions Yourself ... 192

02_563489-ftoc.indd xii02_563489-ftoc.indd xii 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xiii

Knowing What Exceptions Are For .. 192
Can I Get an Exceptional Example? ... 193

Knowing what makes the example exceptional 194
Tracing the stack ... 195

Assigning Multiple catch Blocks .. 196
Planning Your Exception-Handling Strategy .. 198

Some questions to guide your planning ... 198
Guidelines for code that handles errors well 199
How to analyze a method for possible exceptions 200
How to fi nd out which methods throw which exceptions............ 203

Grabbing Your Last Chance to Catch an Exception 203

Book II: Object-Oriented C# Programming 205

Chapter 1: Object-Oriented Programming: What’s It All About? 207

Object-Oriented Concept #1: Abstraction .. 207
Preparing procedural nachos... 208
Preparing object-oriented nachos ... 209

Object-Oriented Concept #2: Classifi cation ... 209
Why Classify? ... 210
Object-Oriented Concept #3: Usable Interfaces 211
Object-Oriented Concept #4: Access Control .. 212
How C# Supports Object-Oriented Concepts .. 212

Chapter 2: Showing Some Class .215

Defi ning a Class and an Object .. 215
Defi ning a class ... 216
What’s the object? ... 217

Accessing the Members of an Object .. 218
An Object-Based Program Example .. 218
Discriminating between Objects .. 220
Can You Give Me References? .. 221
Classes That Contain Classes Are the Happiest

Classes in the World .. 223
Generating Static in Class Members ... 224
Defi ning const and readonly Data Members 225

Chapter 3: We Have Our Methods .227

Defi ning and Using a Method ... 227
A Method Example for Your Files .. 229
Having Arguments with Methods .. 236

Passing an argument to a method ... 236
Passing multiple arguments to methods .. 237
Matching argument defi nitions with usage 238
Overloading a method doesn’t mean giving it too much to do ... 239
Implementing default arguments ... 240

02_563489-ftoc.indd xiii02_563489-ftoc.indd xiii 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxiv

Returning Values after Christmas ... 243
Returning a value via return postage .. 243
Defi ning a method with no value ... 244

Chapter 4: Let Me Say This about this .247

Passing an Object to a Method .. 247
Defi ning Methods ... 249

Defi ning a static method ... 249
Defi ning an instance method .. 250
Expanding a method’s full name .. 252

Accessing the Current Object .. 253
What is the this keyword? .. 254
When is this explicit? .. 255
What happens when you don’t have this? 257

Chapter 5: Holding a Class Responsible .261

Restricting Access to Class Members ... 261
A public example of public BankAccount 262
Jumping ahead — other levels of security 264

Why You Should Worry about Access Control .. 265
Accessor methods ... 266
Access control to the rescue — an example 266
So what? .. 269

Defi ning Class Properties ... 270
Static properties .. 271
Properties with side effects .. 272
New feature: Letting the compiler write properties for you 272
Accessors with access levels ... 273

Getting Your Objects Off to a Good Start — Constructors 273
The C#-Provided Constructor .. 274
Replacing the Default Constructor .. 275

Constructing something .. 276
Executing the constructor from the debugger 278
Initializing an object directly with an initializer 281
Seeing that construction stuff with initializers 282
New feature: Initializing an object without a constructor 283

Chapter 6: Inheritance: Is That All I Get? .285

Class Inheritance ... 286
Why You Need Inheritance ... 287
Inheriting from a BankAccount Class (A More Complex Example) 288
IS_A versus HAS_A — I’m So Confused_A .. 291

The IS_A relationship .. 291
Gaining access to BankAccount by using containment 292
The HAS_A relationship .. 293

When to IS_A and When to HAS_A .. 293

02_563489-ftoc.indd xiv02_563489-ftoc.indd xiv 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xv

Other Features That Support Inheritance .. 294
Substitutable classes ... 294
Invalid casts at run time.. 295
Avoiding invalid conversions with the is operator 296
Avoiding invalid conversions with the as operator 297

The object Class .. 297
Inheritance and the Constructor ... 298

Invoking the default base class constructor 298
Passing arguments to the base class constructor —

mama sang base ... 300
Getting specifi c with base ... 301

The Updated BankAccount Class .. 302

Chapter 7: Poly-what-ism? .307

Overloading an Inherited Method ... 308
It’s a simple case of method overloading 308
Different class, different method ... 308
Peek-a-boo — hiding a base class method 309
Calling back to base ... 313

Polymorphism .. 314
Using the declared type every time (Is that so wrong?) 316
Using is to access a hidden method polymorphically 318
Declaring a method virtual and overriding it 319
Getting the most benefi t from polymorphism —

the do-to-each trick .. 321
The Class Business Card: ToString() .. 321
C# During Its Abstract Period .. 322

Class factoring .. 322
The abstract class: Left with nothing but a concept 327
How do you use an abstract class? ... 328
Creating an abstract object — not! .. 330

Sealing a Class .. 330

Chapter 8: Interfacing with the Interface. .333

Introducing CAN_BE_USED_AS .. 333
Knowing What an Interface Is .. 335

How to implement an interface .. 335
How to name your interface ... 336
Why C# includes interfaces .. 336
Mixing inheritance and interface implementation 336
And he-e-e-re’s the payoff ... 337

Using an Interface .. 338
As a method return type ... 338
As the base type of an array or collection 339
As a more general type of object reference 339

Using the C# Predefi ned Interface Types ... 339

02_563489-ftoc.indd xv02_563489-ftoc.indd xv 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxvi

Looking at a Program That CAN_BE_USED_AS an Example 340
Creating your own interface at home in your spare time 340
Implementing the incomparable IComparable<T> interface........ 341
Putting it all together... 343
Getting back to the Main() event .. 346

Unifying Class Hierarchies ... 346
Hiding Behind an Interface ... 348
Inheriting an Interface ... 351
Using Interfaces to Manage Change in Object-Oriented Programs 352

Making fl exible dependencies through interfaces 353
Abstract or concrete: When to use an abstract class

and when to use an interface .. 353
Doing HAS_A with interfaces .. 354

Chapter 9: Delegating Those Important Events.357

E.T., Phone Home — The Callback Problem .. 357
Defi ning a Delegate .. 358
Pass Me the Code, Please — Examples ... 360

I delegated the example to Igor .. 360
First, a simple example ... 361

A More Real-World Example .. 362
Getting an overview of the bigger example 363
Putting the app together ... 363
Looking at the code ... 365
Tracking the delegate life cycle ... 366

Shh! Keep It Quiet — Anonymous Methods ... 368
Stuff Happens — C# Events .. 369

The Observer design pattern ... 369
What’s an event? Publish/Subscribe ... 370
How a publisher advertises its events .. 370
How subscribers subscribe to an event ... 371
How to publish an event ... 372
How to pass extra information to an event handler 372
A recommended way to raise your events 373
How observers “handle” an event ... 374

Chapter 10: Can I Use Your Namespace in the Library? 377

Dividing a Single Program into Multiple Source Files 378
Dividing a Single Program into Multiple Assemblies 379

Executable or library? ... 379
Assemblies .. 380
Executables ... 381
Class libraries ... 381

Putting Your Classes into Class Libraries .. 382
Creating the projects for a class library ... 382
Creating a stand-alone class library .. 382
Adding a second project to an existing solution 383

02_563489-ftoc.indd xvi02_563489-ftoc.indd xvi 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xvii

Creating classes for the library .. 384
Using a driver program to test a library ... 385
Using a class library from a program .. 386

Going Beyond Public and Private: More Access Keywords 387
Internal: Eyes only at the CIA ... 387
Protected: Sharing with subclasses... 390
Protected internal: Being a more generous protector 392

Putting Classes into Namespaces .. 392
Declaring a namespace ... 394
Relating namespaces to the access keyword story 395
Using fully qualifi ed names ... 397

Book III: Designing for C# ... 399

Chapter 1: Writing Secure Code .401

Designing Secure Software ... 402
Determining what to protect .. 402
Documenting the components of the program 402
Decomposing components into functions 403
Identifying potential threats in functions 403
Rating the risk .. 404

Building Secure Windows Applications .. 404
Authentication using Windows login .. 404
Encrypting information ... 407
Deployment security ... 407

Building Secure Web Forms Applications .. 408
SQL Injection attacks ... 409
Script exploits .. 410
Best practices for securing Web Forms applications 411

Using System.Security ... 412

Chapter 2: Accessing Data .415

Getting to Know System.Data ... 416
How the Data Classes Fit into the Framework ... 417
Getting to Your Data ... 418
Using the System.Data Namespace ... 418

Setting up a sample database schema .. 419
Connecting to a data source ... 420
Working with the visual tools... 425
Writing data code... 428
Using the Entity Framework ... 431

Chapter 3: Fishing the FileStream .435

Going Where the Fish Are: The File Stream ... 435
Streams.. 435
Readers and writers .. 436

02_563489-ftoc.indd xvii02_563489-ftoc.indd xvii 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxviii

StreamWriting for Old Walter .. 438
Using the stream: An example .. 439
Revving up a new outboard StreamWriter 441
Finally, we’re writing! .. 442
Using some better fi shing gear: The using statement 445

Pulling Them Out of the Stream: Using StreamReader 448
More Readers and Writers ... 452
Exploring More Streams than Lewis and Clark .. 453

Chapter 4: Accessing the Internet .455

Getting to Know System.Net .. 456
How Net Classes Fit into the Framework .. 457
Using the System.Net Namespace ... 458

Checking the network status .. 459
Downloading a fi le from the Internet ... 460
E-mailing a status report ... 462
Logging network activity... 465

Chapter 5: Creating Images .469

Getting to Know System.Drawing .. 469
Graphics .. 470
Pens ... 470
Brushes ... 471
Text .. 471

How the Drawing Classes Fit into the Framework 472
Using the System.Drawing Namespace ... 473

Getting started ... 473
Setting up the project .. 475
Drawing the board ... 476

Book IV: A Tour of Visual Studio 479

Chapter 1: Getting Started with Visual Studio 481

Versioning the Versions ... 481
Express .. 482
Professional .. 483
Team System .. 483
MSDN ... 484
Academic .. 485
An edition breakdown ... 485

Installing Visual Studio ... 486
Breaking Down the Projects ... 488

Exploring the New Project dialog box ... 488
Understanding solutions and projects .. 489
A brief survey of the available project categories 491

02_563489-ftoc.indd xviii02_563489-ftoc.indd xviii 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xix

Chapter 2: Using the Interface .495

Designing in the Designer ... 495
Windows Presentation Foundation (WPF) 496
Windows Forms.. 498
Web Forms .. 499
Class Designer .. 500

Paneling the Studio .. 502
Solution Explorer ... 502
Properties ... 504
The Toolbox ... 505
Server Explorer .. 506
Class View ... 508

Coding in Code View ... 509
Exercising the Code Viewer .. 509
Exploring the auxiliary windows.. 512

Using the Tools of the Trade .. 514
The Tools menu ... 514
Building and Debugging .. 515
Refactor menu .. 515

Chapter 3: Customizing Visual Studio. .517

Setting Options .. 518
Environment ... 518
Language ... 519
Neat stuff ... 520

Using Snippets ... 521
Using snippets .. 521
Using surround snippets ... 522
Making snippets ... 523
Deploying snippets .. 525
Sharing snippets .. 526

Hacking the Project Types ... 527
Hacking Project templates .. 527
Hacking item templates ... 530

Chapter 4: Transforming Text Templates. .533

Getting to Know T4 .. 533
Looking back at the DSL Tools ... 534
Looking ahead to what it became .. 534

Figuring Out When to Use T4 ... 535
Replacing repetitive coding .. 535
Building code based on outside data .. 536

Setting Up the Environment ... 536
Changing the security settings ... 536
Creating a template from a text fi le ... 537

02_563489-ftoc.indd xix02_563489-ftoc.indd xix 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxx

Using Some of the T4 Directives .. 539
Setting the output .. 539
Confi guring a template .. 540
Including includes .. 540
Importing items and assemblies .. 541

Book V: Windows Development with WPF 543

Chapter 1: Introducing WPF .545

Understanding What WPF Can Do ... 545
Introducing XAML .. 547
Diving In! Creating Your First WPF Application 547

Declaring an application-scoped resource 549
Making the application do something ... 550

Whatever XAML Can Do, C# Can Do Better! ... 552

Chapter 2: Understanding the Basics of WPF .555

Using WPF to Lay Out Your Application ... 555
Arranging Elements with Layout Panels ... 557

The Stack Panel .. 557
The Wrap Panel .. 559
The Dock Panel .. 559
Canvas ... 560
The Uniform Grid ... 561
The Grid .. 562
Putting it all together with a simple data entry form 567
Panels of honorable mention ... 569

Exploring Common XAML Controls .. 570
Display only controls .. 570
Basic input controls .. 572
List-based controls .. 574

Chapter 3: Data Binding in WPF .579

Getting to Know Dependency Properties ... 579
Exploring the Binding Modes ... 580
Investigating the Binding Object ... 581

Defi ning a binding with XAML .. 581
Defi ning a binding with C# .. 583

Editing, Validating, Converting,
and Visualizing Your Data ... 584

Validating data ... 589
Converting your data... 592

Finding Out More about WPF Data Binding ... 599

02_563489-ftoc.indd xx02_563489-ftoc.indd xx 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xxi

Chapter 4: Practical WPF .601

Commanding Attention ... 601
ICommand ... 602
Routed commands ... 602
Built-in commands ... 603
Focus!... 605
Custom commands .. 605
Separation of Concerns and testability ... 610

Get Your ViewModel On ... 612
Who cares? ... 612
Tradition! .. 613
Show me the code! ... 614

Book VI: Web Development with ASP.NET 627

Chapter 1: Looking at How ASP.NET Works with C#.629

Breaking Down Web Applications ... 630
Questioning the Client .. 632

Scripting the client... 633
Getting information back from the client 633
Understanding the weaknesses of the browser 634

Dealing with Web Servers ... 636
Getting a PostBack (Hint: It’s not a returned package) 636
It’s a matter of state ... 639

Chapter 2: Building Web Applications. .641

Working in Visual Studio .. 642
Handling the Designer ... 642
Coding in Code View.. 647
Recognizing the other fi le types .. 651

Developing with Style .. 652
Coding behind .. 652
Scripting the experience ... 653
Building in n-tier ... 655
Modeling the View Controller .. 656

Chapter 3: Controlling Your Development Experience 659

Showing Stuff to the User ... 660
Labels versus plain old text .. 660
Images ... 661
Panels and multiviews ... 663
Tables .. 663

02_563489-ftoc.indd xxi02_563489-ftoc.indd xxi 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxxii

Getting Some Input from the User ... 664
Using text input controls .. 664
Using single-item selection controls ... 666
Using multiple-item selection controls ... 668
Using other kinds of input controls ... 669
Submitting input with Submit buttons .. 670

Data Binding ... 670
Setting up your markup for binding .. 671
Data binding using the code-behind .. 673
Using commonly bound controls... 674

Styling Your Controls .. 677
Setting control properties .. 677
Binding styles with CSS ... 678

Making Sure the Site Is Accessible .. 679
Control features for accessibility .. 680
Design considerations ... 680

Constructing User Controls .. 680
Making a new phone number user control 681
Using your new control ... 682

Adding Custom Controls .. 683

Chapter 4: Leveraging the .NET Framework .685

Surfi ng Web Streams ... 686
Intercepting the request ... 686
Altering content sent to clients .. 689

Securing with ASP.NET ... 690
Changing trusts .. 691
Fixing problems .. 692

Navigating with Site Maps .. 692
Adding a site map .. 692
Navigating a site with SiteMap ... 694

Managing Files .. 695
Baking Cookies ... 696

Coding for client-side storage .. 697
Wrangling cookies on the server ... 698
How ASP.NET manages cookies for you ... 699

Tracing with TraceContext ... 699

Chapter 5: Digging into Web Construction .703

Managing Files .. 704
Reviewing project types .. 704
Reviewing fi le types ... 706
Organizing fi les ... 708

Mastering Master Pages .. 709
Making a master page .. 709
Adding content ... 710

Testing Web Applications with Visual Studio .. 711

02_563489-ftoc.indd xxii02_563489-ftoc.indd xxii 3/19/10 8:01 PM3/19/10 8:01 PM

Table of Contents xxiii

Deploying Your Masterpiece .. 713
Lots of options ... 713
Copying Web sites with “Copy Web” .. 714
Package/Publish ... 715

Book VII: Service-Oriented Development 717

Chapter 1: Getting Acquainted with Web Services719

Understanding Web Services ... 719
Loosely coupled ... 721
Contract driven .. 722
Chunky versus chatty .. 724

Building Service-Oriented Applications .. 726
Providing XML Web Services ... 728
Building Three Sample Apps .. 728

Chapter 2: Building Web Services with ASMX 731

Getting to Know SOAP .. 732
SOAP and standards .. 732
The WS-* standards ... 733
The impact to you .. 733
Big, fat, and slow .. 734

Making an ASMX Service .. 735
Creating a new service .. 735
Building the code for SHARP .. 739
Deploying .. 741
Consuming services in your applications 743

Chapter 3: Building Web Services with WCF .745

Getting to Know WCF .. 746
Creating a WCF Service ... 748

Breaking it down .. 748
Making a registration service ... 750
Confi guring ... 752
Deploying .. 756
Consuming .. 757

Chapter 4: Building Web Services with ReST 759

Getting to Know ReST ... 759
Understanding the Guiding Principles of ReST 760

Diving into the details of ReST ... 761
Changing a WCF Service to Use ReST ... 762

Getting the WCF service .. 762
Exposing the ReST service.. 762
Returning data in different ways .. 763

02_563489-ftoc.indd xxiii02_563489-ftoc.indd xxiii 3/19/10 8:01 PM3/19/10 8:01 PM

C# 2010 All-in-One For Dummiesxxiv

Book VIII: New Features in C# 4.0 767

Chapter 1: Programming Dynamically! .769

Shifting C# Toward Dynamic Typing ... 770
Programming Dynamically ... 772
Putting Dynamic to Use .. 774

Classic examples .. 774
Making static operations dynamic .. 775
Understanding what’s happening under the covers 775

Running with the Dynamic Language Runtime .. 776
Dynamic Ruby .. 777
Dynamic C# ... 778

Chapter 2: Improving Productivity with Named and
Optional Parameters .781

Optional Parameters ... 782
Reference types .. 784
Output parameters .. 785

Named Parameters .. 786
Overload Resolution ... 787

Chapter 3: Helping Out with Interop .789

Using Dynamic Import .. 790
Working without Primary Interop Assemblies .. 791
Skipping the Ref Statement .. 793

Chapter 4: Revising Generics. .795

Variance .. 796
Contravariance .. 796
Covariance .. 798

Index ... 799

02_563489-ftoc.indd xxiv02_563489-ftoc.indd xxiv 3/19/10 8:01 PM3/19/10 8:01 PM

Introduction

C# 2010 All-in-One For Dummies represents a different way of looking
at programming languages. Rather than present the standard For

Dummies format, which includes only 350 pages on quite a large subject, the
book was expanded to include a broader scope and just a few pages were
added.

So, although you find all the original C# For Dummies goodness in this
book, you also find discussions about Visual Studio, Windows Presentation
Foundation (WPF), service-oriented development, Web development, and a
host of other topics. This book is a one-stop shop for a C# developer.

The C# programming language is a powerful and, at some nine years old,
relatively mature descendant of the earlier C, C++, and Java languages.
Programming with C# is lots of fun, as you’re about to find out in this book.

Microsoft created C# as a major part of its .NET initiative. The company
turned over the specifications for the C# language to the ECMA (pronounced
“ek-ma”) international standards committee in the summer of 2000 so that
any company can, in theory, come up with its own version of C# written to
run on any operating system, on any machine larger than a calculator.

When the first edition of this book was published, the Microsoft C# compiler
was the only game in town, and its Visual Studio .NET suite of tools was the
only way to program C# (other than at the Windows command line). Since
then, however, Visual Studio has undergone three major revisions — the
latest is Visual Studio 2010. And, at least two other players have entered the
C# game.

You can now write and compile C# programs on Windows and a variety of
Unix-based machines using implementations of .NET and C#, such as Mono
(www. mono-project.com), an open source software project sponsored
by Novell Corporation. Version 1.2 was released in November 2006. Though
Mono lags Microsoft .NET by half a version or so, it appears to be moving
fast, having implemented basically all of .NET 1.1 and much of .NET 2.0,
along with those versions of C#.

Both Mono and a less well developed competitor, Portable .NET (www.
dotgnu.org/pnet.htm), claim to run C# programs on Windows and a
variety of Unix flavors, including Linux and the Apple Macintosh operating
system. At the time of this writing, Portable .NET reaches the greater number
of flavors, whereas Mono boasts a more complete .NET implementation.
So choosing between them can be complicated, depending on your project,
your platform, and your goals. (Books about programming for these platforms
are becoming available already. Check online booksellers.)

03_563489-intro.indd 103_563489-intro.indd 1 3/19/10 8:01 PM3/19/10 8:01 PM

2 What’s New in C# 4.0

 Open source software is written by collaborating groups of volunteer
programmers and is usually free to the world.

A description of how to make C# and other .NET languages portable to other
operating systems is far beyond the scope of this book. But you can expect
that within a few years, the C# Windows programs you discover how to write
in this book will run on all sorts of hardware under all sorts of operating
systems — matching the claim of Sun Microsystems’ Java language to run
on any machine. That’s undoubtedly a good thing, even for Microsoft. The
road to that point is still under construction, so it’s no doubt riddled with
potholes and obstacles to true universal portability for C#. But it’s no longer
just Microsoft’s road.

For the moment, however, Microsoft Visual Studio has the most mature
versions of C# and .NET and the most feature-filled toolset for programming
with them.

Note: Though three authors contributed to this book, saying I rather than we
throughout the main text seemed more economical, so that’s what we (or I)
do throughout.

What’s New in C# 4.0
Although much of C# 4.0 is still virtually the same as the previous version,
this new version adds some exciting new features, most of which revolve
around COM Interop, to assist with Office development. The big new
additions that this book covers include these topics:

 ✦ Dynamic types: Functional programming is all the rage these days, with
the cool kids programming in Ruby and Haskell. Functional program-
ming certainly has some benefits that have a place in the more tightly
woven world of C#, and dynamic typing is one of them. As supported
in C++ and Visual Basic, dynamic types allow runtime declaration when
you don’t know the type of a variable and then have the compiler figure
it out. Properly used, dynamic typing is quite powerful; poorly used, it’s
quite dangerous.

 ✦ Named and optional parameters: In C# 3.0, you had to provide a value
for every parameter in a method call. In C# 4.0 — again, to optimize
interactions with COM — you can mark parameters as optional and
accept outside objects that have optional parameters.

 ✦ Variance in generics: Although objects in previous versions of C# are
variant, generic collections of objects are invariant. This statement
means that although the compiler accepts an apple when you’re asked
for a fruit, it doesn’t accept a basket of apples when you’re asked for a
basket of fruit. This issue is fixed in C# 4.0.

03_563489-intro.indd 203_563489-intro.indd 2 3/19/10 8:01 PM3/19/10 8:01 PM

3About This Book

Leaving aside a few of the more esoteric and advanced additions, we
mention a few smaller items here and there as appropriate. (Don’t worry if
parts of this introduction are Geek to you. You’ll get there.)

Because the features of C# 4.0 all tie together for use in a single major
operation — COM Interop — we bundled discussions of these features in
the back of this book, in Book VIII. Throughout this book, we have updated
chapters from the original C# 3.0 material wherever it seemed appropriate.

About This Book
The goal of this book is to explain C# to you. To write usable programs, you
need a specific coding environment. We’re betting that most readers will
use Microsoft Visual Studio, although we suggest alternatives. Because this
book is an All-in-One, we give you comprehensive coverage of Visual Studio
in Book IV.

The original version of C# For Dummies (like all programming language
books) focused on C# as a language, not all of the things you do with C#.
This version of the book — in the mondo-size All-in-One format — covers
Windows development, Web development, service development, and .NET
Framework development, such as graphics and databases.

Our goal is to make a one-stop shop for development with Microsoft products,
though there is indeed more to the topics than fits in this book. Office
development isn’t covered, for instance. SharePoint has way too much going
on to cover it along with everything else (although Bill co-authored VSTO
For Dummies). This book is designed to handle the vast majority of C# users,
though 20 percent of our readers will be working on something that we don’t
cover. Sorry about that — we’ll try to stretch the book to 1,000 pages next
time.

Another point is that every programming problem is different. Although
many different situations are covered between the covers of this book, your
specific situation is different. Some interpolation has to be taking place.
If you have a question about how your personal situation fits in, send the
author an e-mail at csharpfordummies.net and we’ll try to help.

What You Need in Order to Use This Book
You need, at minimum, the .NET Common Language Runtime (CLR) before you
can even execute the programs generated by C#. Visual Studio 2010 copies the
CLR onto your machine as part of its installation procedure. Alternatively, you
can download the entire .NET package, including the C# compiler and many
other useful tools, from the Microsoft Web site at msdn.microsoft.com.
Look for the .NET Software Development Kit (SDK). The book’s Web site at
csharpfordummies.net explains how to get these items.

03_563489-intro.indd 303_563489-intro.indd 3 3/19/10 8:01 PM3/19/10 8:01 PM

4 How to Use This Book

If all you need is C#, you can download the free version of Visual Studio,
Visual C# 2010 Express, from msdn.microsoft.com/vstudio/express.
The Express versions include the new C# 4.0 features. Alternatively, see
SharpDevelop (www.icsharpcode.net), a good, free Visual Studio
“workalike,” which are provided on the Web site for this book.

You can still create most of the programs in this book using earlier versions
of Visual Studio, such as Visual Studio 2008, if you need to. The exceptions
are the programs that cover the new features available only in C# 4.0, which
we describe in Book VIII.

How to Use This Book
We’ve made this book as easy to use as possible. Figuring out a new language
is hard enough — why make it any more complicated than it needs to be?
Though this book is divided into eight minibooks, we use an even easier
subdivision.

Books I and II comprise the bulk of the original C# For Dummies book,
and they cover the C# language, updated for version 4.0. Books III and IV
cover technologies that are peripheral to C#. Books V, VI, and VII cover the
three main types of development you do in C# — Windows Presentation
Foundation, Web development, and service-oriented programming. We finish
with the (thankfully short) Book VIII, about new C# 4.0 features.

If you’re brand new, start at the beginning and read the first two minibooks.
You’ll discover a lot. Really. It will seem as though you’re reading a lot of
text, but it is engaging and has interesting examples.

If you’re using the .NET Framework (which you probably are), read Book III
as well. If you’re using Visual Studio, read Book IV. (Note that we use Visual
Studio 2010 Professional edition, so if you’re using Express or Ultimate, your
screens might look slightly different.)

Finally, you can focus on your project type — Books V, VI, and VII are
specific to project type, and you can pick and choose what to read. These
three minibooks are organized more as a collection of related articles than
as discrete book units. You’ll find them easier to use that way.

How This Book Is Organized
Here’s a brief rundown of what you’ll find in each part of this book.

03_563489-intro.indd 403_563489-intro.indd 4 3/19/10 8:01 PM3/19/10 8:01 PM

5How This Book Is Organized

Book I: The Basics of C# Programming
This minibook is the first of two that are based on the original C# For
Dummies.

Book II: Object-Oriented C# Programming
In Book II, we dig into the meat of the matter and discuss which tasks C# is
good for. This minibook covers how to create good class libraries and use
the built-in libraries correctly. We also give you a good dose of theory and
practical knowledge.

Book III: Designing for C#
.NET is essentially the set of libraries that you get to use with C#. This broad
topic covers almost everything that Microsoft products can do, from coding
for Windows Mobile to accessing XML files. Book III covers four of the
most-needed topics:

 ✦ Databases

 ✦ Files

 ✦ Graphics

 ✦ Security

Book IV: A Tour of Visual Studio
Because Visual Studio is the tool that 95 percent of C# programmers use,
it’s the tool that is the focus of Book IV. It covers the use, optimization, and
customization of this graphical user interface.

Book V: Windows Development with WPF
This minibook is an unconventional choice for Windows development. For
years in .NET — since its inception — the choice for Windows developers
was Windows Forms, the successor to the Ruby engine in Visual Basic 6.
That’s just how you build Windows applications.

Even with the introduction of C# 4.0 and Visual Studio 2010, Windows Forms
is likely the most common choice for development of Windows applications.
However, it’s not the future. Windows Presentation Foundation — built on
the XML derivative XAML — is the future.

For that reason, we include chapters on Windows development with WPF.
If you’re looking for Windows Forms 101, we include it at csharpfor
dummies.net.

03_563489-intro.indd 503_563489-intro.indd 5 3/19/10 8:01 PM3/19/10 8:01 PM

6 Icons Used in This Book

Book VI: Web Development with ASP.NET
Some people would argue that ASP.NET Web Forms is falling by the wayside
because of ASP.NET MVC, but we believe that it’s a version or two away. In
this book, we look at ASP.NET application creation and form controls and
the other usual suspects. (Look for MVC in the next edition of this book,
though.)

Book VII: Service-Oriented Development
On the topic of Web services, we decided to give you an overview. Our
experience shows that ASP.NET Web Services, Windows Communication
Foundation (WCF), and REpresentational State Transfer, or ReST, are all
used in the wild, so we describe a piece of all of them.

Book VIII: New Features in C# 4.0
In the last minibook in this book, we describe some of the new features in C#
4.0, with a focus on the COM Interop changes.

Icons Used in This Book
Throughout the pages of this book, we use the following icons to highlight
important information:

 This scary-sounding icon flags technical information that you can skip on
your first pass through the book.

The Tip icon highlights a point that can save you a lot of time and effort.

 Remember this information. It’s important.

 Try to retain any Warning information you come across, too. This one
can sneak up on you when you least expect it and generate one of those
extremely hard-to-find bugs. Or, it may lead you down the garden path to
La-La Land.

03_563489-intro.indd 603_563489-intro.indd 6 3/19/10 8:01 PM3/19/10 8:01 PM

7Conventions Used in This Book

 This icon identifies code samples you can find on the book’s Web sites.
Csharp102.info has the samples for Book I and II, and many of the
articles. Csharpfordummies.net has a current blog, errata, and examples
for the rest of the book. This feature is designed to save you some typing
time when your fingers start to cramp, but don’t abuse it: You gain a better
understanding of C# when you enter the programs yourself and then use
them as test beds for your explorations and experiments in C#.

Conventions Used in This Book
Throughout this book, we use several conventions to help you get your
bearings. Terms that aren’t “real words,” such as the names of program
variables, appear in this font to minimize confusion. Program listings are
offset from the text this way:

use System;
namespace MyNameSpace
{
 public class MyClass
 {
 }
}

Each listing is followed by a clever, insightful explanation. Complete
programs are included on the Web site for your viewing pleasure; small
code segments are not.

When you see a command arrow, as in the instruction “Choose File➪Open
With➪Notepad,” you simply choose the File menu option. Then, from the
menu that appears, choose Open With. Finally, from the resulting submenu,
choose Notepad.

About this book’s Web site
Two main Web sites expand on the content in this book.

 ✦ At csharp102.info, you can find support for the original C# For
Dummies book as well as a host of bonus material. A set of utilities is
also included. We’ve used the SharpDevelop utility enough to know that
it can handle the task of writing almost any program example in this
book (with the possible exception, for now, of the new LINQ features).
The Reflector tool lets you peek under the covers to see what the compiler
has created from your lovely C# source code. The NUnit testing tool,
wildly popular among C# programmers, makes testing your code easy,
whether it’s in Visual Studio or SharpDevelop.

03_563489-intro.indd 703_563489-intro.indd 7 3/19/10 8:01 PM3/19/10 8:01 PM

8 Where to Go from Here

 ✦ At csharpfordummies.net, you can find the source code for all
projects in this book, updated for Visual Studio 2010. We give you a
set of links to other resources and a (short, we hope) list of any errata
found in this book. You can also contact the authors at this site.

Additionally, you can find access to both sites at this book’s companion Web
site — check out www.dummies.com/go/csharp2010aiofd.

If you encounter a situation that you can’t figure out, check the Frequently
Asked Questions (FAQ) list at the original Web site for the C# For Dummies
book, at csharp102.info.

In addition, both sites include bonus chapters, a list of any mistakes that
may have crept into the book, and other material on C# and programming
that you may find useful. Finally, you can find links to the authors’ e-mail
addresses, in case you can’t find the answer to your question on the site.

Where to Go from Here
Obviously, your first step is to figure out the C# language — ideally, by using
C# 2010 All-in-One For Dummies, of course. You may want to give yourself
a few months of practice in writing simple C# programs before taking the
next step of discovering how to create graphical Windows applications. Give
yourself many months of Windows application experience before you branch
out into writing programs intended to be distributed over the Internet.

In the meantime, you can keep up with C# goings and comings in several
locations. First, check out the official source: msdn.microsoft.com/msdn.
In addition, various programmer Web sites have extensive material on C#,
including lively discussions all the way from how to save a source file to the
relative merits of deterministic versus nondeterministic garbage collection.
(Around Bill’s house, garbage collection is quite deterministic: It’s every
Wednesday morning.) Here’s a description of a few large C# sites:

 ✦ msdn.microsoft.com/vcsharp, the C# home page, directs you to all
sorts of C# and .NET resources.

 ✦ blogs.msdn.com/csharpfaq is a C# blog with Frequently Asked
Questions.

 ✦ msdn.microsoft.com/vcsharp/team/blogs is composed of the
personal blogs of C# team members.

 ✦ www.c-sharpcorner.com and www.codeproject.com are two major
C# sites that have articles, blogs, code, job information, and other
C#-related resources.

03_563489-intro.indd 803_563489-intro.indd 8 3/19/10 8:01 PM3/19/10 8:01 PM

www.dummies.com/go/csharp2010aiofd

Book I

Basics of C# Programming

04_563489-pp01.indd 904_563489-pp01.indd 9 3/19/10 8:01 PM3/19/10 8:01 PM

Contents at a Glance

Chapter 1: Creating Your First C# Console Application.11

Chapter 2: Living with Variability — Declaring
Value-Type Variables .25

Chapter 3: Pulling Strings .45

Chapter 4: Smooth Operators .73

Chapter 5: Getting Into the Program Flow .85

Chapter 6: Lining Up Your Ducks with Collections 109

Chapter 7: Stepping through Collections .135

Chapter 8: Buying Generic .169

Chapter 9: Some Exceptional Exceptions .187

04_563489-pp01.indd 1004_563489-pp01.indd 10 3/19/10 8:01 PM3/19/10 8:01 PM

Chapter 1: Creating Your First
C# Console Application

In This Chapter
✓ A quick introduction to programming

✓ Creating a simple console application

✓ Reviewing the console application

✓ Saving code for later

In this chapter, I explain a little bit about computers, computer languages —
including the computer language C# (pronounced see sharp) — and

Visual Studio 2010. Then I take you through the steps for creating a simple
program written in C#.

Getting a Handle on Computer Languages,
C#, and .NET

A computer is an amazingly fast but incredibly stupid servant. Computers
will do anything you ask them to (within reason); they do it extremely fast —
and they’re getting faster all the time.

Unfortunately, computers don’t understand anything that resembles a
human language. Oh, you may come back at me and say something like,
“Hey, my telephone lets me dial my friend by just speaking his name. I know
that a tiny computer runs my telephone. So that computer speaks English.”
But that’s a computer program that understands English, not the computer
itself.

The language that computers truly understand is machine language. It’s
possible, but extremely difficult and error-prone, for humans to write
machine language.

Humans and computers have decided to meet somewhere in the middle.
Programmers create programs in a language that isn’t nearly as free as
human speech, but it’s a lot more flexible and easy to use than machine
language. The languages occupying this middle ground — C#, for example —
are high-level computer languages. (High is a relative term here.)

05_563489-bk01ch01.indd 1105_563489-bk01ch01.indd 11 3/19/10 8:01 PM3/19/10 8:01 PM

12 Getting a Handle on Computer Languages, C#, and .NET

What’s a program?
What is a program? In a practical sense, a Windows program is an executable
file that you can run by double-clicking its icon. For example, the version of
Microsoft Word that I’m using to write this book is a program. You call that
an executable program, or executable for short. The names of executable
program files generally end with the extension .exe. Word, for example, is
Winword.exe.

But a program is something else, as well. An executable program consists
of one or more source files. A C# source file, for instance, is a text file that
contains a sequence of C# commands, which fit together according to the
laws of C# grammar. This file is known as a source file, probably because it’s
a source of frustration and anxiety.

Uh, grammar? There’s going to be grammar? Just the C# kind, which is much
easier than the kind most of us struggled with in junior high school.

What’s C#?
The C# programming language is one of those intermediate languages that
programmers use to create executable programs. C# combines the range
of the powerful but complicated C++ (pronounced “see plus plus”) with the
ease of use of the friendly but more verbose Visual Basic. (Visual Basic’s
newer .NET incarnation is almost on par with C# in most respects. As the
flagship language of .NET, C# tends to introduce most new features first.) A
C# program file carries the extension .cs.

Some wags have pointed out that C-sharp and D-flat are the same note,
but you shouldn’t refer to this new language as “D-flat” within earshot of
Redmond, Washington.

C# is

 ✦ Flexible: C# programs can execute on the current machine, or they can
be transmitted over the Web and executed on some distant computer.

 ✦ Powerful: C# has essentially the same command set as C++ but with the
rough edges filed smooth.

 ✦ Easier to use: C# error-proofs the commands responsible for most C++
errors, so you spend far less time chasing down those errors.

 ✦ Visually oriented: The .NET code library that C# uses for many of its
capabilities provides the help needed to readily create complicated
display frames with drop-down lists, tabbed windows, grouped buttons,
scroll bars, and background images, to name just a few.

05_563489-bk01ch01.indd 1205_563489-bk01ch01.indd 12 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 1

C
re

a
tin

g
 Y

o
u

r
First C

C
o

n
so

le

A
p

p
lic

a
tio

n
13Getting a Handle on Computer Languages, C#, and .NET

 ✦ Internet-friendly: C# plays a pivotal role in the .NET Framework,
Microsoft’s current approach to programming for Windows, the Internet,
and beyond.

 .NET is pronounced dot net.

 ✦ Secure: Any language intended for use on the Internet must include
serious security to protect against malevolent hackers.

Finally, C# is an integral part of .NET.

 This book is primarily about the C# language. If your primary goal is to
use Visual Studio, program Windows applications, or use ASP.NET, the For
Dummies books on those topics go well with this book. You can find a good
amount of information later in this book on how to use C# to write Windows,
Web, and service applications. You can also find good stuff about robots,
compilers, and artificial intelligence — in case you’re thinking of building a
robot to take over the world.

What’s .NET?
.NET began several years ago as Microsoft’s strategy to open up the Web
to mere mortals like you and me. Today, it’s bigger than that, encompassing
everything Microsoft does. In particular, it’s the new way to program for
Windows. It also gives a C-based language, C#, the simple, visual tools that
made Visual Basic so popular.

A little background helps you see the roots of C# and .NET. Internet
programming was traditionally very difficult in older languages such as C
and C++. Sun Microsystems responded to that problem by creating the Java
programming language. To create Java, Sun took the grammar of C++, made
it a lot more user-friendly, and centered it around distributed development.

 When programmers say “distributed,” they’re describing geographically
dispersed computers running programs that talk to each other — in many
cases, via the Internet.

When Microsoft licensed Java some years ago, it ran into legal difficulties with
Sun over changes it wanted to make to the language. As a result, Microsoft
more or less gave up on Java and started looking for ways to compete with it.

Being forced out of Java was just as well because Java has a serious problem:
Although Java is a capable language, you pretty much have to write your
entire program in Java to get the full benefit. Microsoft had too many
developers and too many millions of lines of existing source code, so
Microsoft had to come up with some way to support multiple languages.
Enter .NET.

05_563489-bk01ch01.indd 1305_563489-bk01ch01.indd 13 3/19/10 8:01 PM3/19/10 8:01 PM

14 Creating Your First Console Application

.NET is a framework, in many ways similar to Java’s libraries — and the C#
language is highly similar to the Java language. Just as Java is both the
language itself and its extensive code library, C# is really much more than
just the keywords and syntax of the C# language. It’s those things empowered
by a well-organized library containing thousands of code elements that
simplify doing about any kind of programming you can imagine, from
Web-based databases to cryptography to the humble Windows dialog box.

Microsoft would claim that .NET is much superior to Sun’s suite of Web tools
based on Java, but that’s not the point. Unlike Java, .NET doesn’t require
you to rewrite existing programs. A Visual Basic programmer can add just
a few lines to make an existing program Web-knowledgeable (meaning that
it knows how to get data off the Internet). .NET supports all the common
Microsoft languages — and hundreds of other languages written by third-
party vendors. However, C# is the flagship language of the .NET fleet. C# is
always the first language to access every new feature of .NET.

What is Visual Studio 2010? What about Visual C#?
(You sure ask lots of questions.) The first “Visual” language from Microsoft
was Visual Basic. The first popular C-based language from Microsoft was
Visual C++. Like Visual Basic, it had Visual in its name because it had a
built-in graphical user interface (GUI — pronounced “GOO-ee”). This GUI
included everything you needed to develop nifty-gifty C++ programs.

Eventually, Microsoft rolled all its languages into a single environment —
Visual Studio. As Visual Studio 6.0 started getting a little long in the tooth,
developers anxiously awaited version 7. Shortly before its release, however,
Microsoft decided to rename it Visual Studio .NET to highlight this new
environment’s relationship to .NET.

That sounded like a marketing ploy to me — until I started delving into it.
Visual Studio .NET differed quite a bit from its predecessors — enough to
warrant a new name. Visual Studio 2010 is the third-generation successor
to the original Visual Studio .NET. (Book IV is full of Visual Studio goodness,
including instructions for customizing it.)

 Microsoft calls its implementation of the language Visual C#. In reality,
Visual C# is nothing more than the C# component of Visual Studio. C# is C#,
with or without Visual Studio.

Okay, that’s it. No more questions. (For now, anyway.)

Creating Your First Console Application
Visual Studio 2010 includes an Application Wizard that builds template
programs and saves you a lot of the dirty work you’d have to do if you did
everything from scratch. (I don’t recommend the from-scratch approach.)

05_563489-bk01ch01.indd 1405_563489-bk01ch01.indd 14 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 1

C
re

a
tin

g
 Y

o
u

r
First C

C
o

n
so

le

A
p

p
lic

a
tio

n
15Creating Your First Console Application

Typically, starter programs don’t really do anything — at least, not anything
useful. (Sounds like most of my programs.) However, they do get you
beyond that initial hurdle of getting started. Some starter programs are
reasonably sophisticated. In fact, you’ll be amazed at how much capability
the App Wizard can build on its own, especially for graphical programs.

This starter program isn’t even a graphical program, though. A console
application is one that runs in the “console” within Windows, usually
referred to as the DOS prompt or command window. If you press Ctrl+R
and then type cmd, you see a command window. It’s the console where the
application will run.

 The following instructions are for Visual Studio. If you use anything other
than Visual Studio, you have to refer to the documentation that came with
your environment. Alternatively, you can just type the source code directly
into your C# environment. See the Introduction to this book for some
alternatives to Visual Studio.

Creating the source program
To start Visual Studio, choose Start➪All Programs➪Microsoft Visual Studio
2010➪Microsoft Visual Studio 2010.

Complete these steps to create your C# console app:

 1. Open Visual Studio 2010 and click the New Project icon, shown in
Figure 1-1.

 Visual Studio presents you with lots of icons representing the different
types of applications you can create, as shown in Figure 1-2.

 2. In this New Project window, click the Console Application icon.

 Make sure that you select Visual C# — and under it, Windows — in the
Project Types pane; otherwise Visual Studio may create something awful
like a Visual Basic or Visual C++ application. Then click the Console
Application icon in the Templates pane.

 Visual Studio requires you to create a project before you can start enter-
ing your C# program. A project is a folder in which you throw all the
files that go into making your program. It has a set of configuration files
that help the compiler do its work. When you tell your compiler to build
(compile) the program, it sorts through the project to find the files it
needs in order to re-create the executable program.

 3. The default name for your first application is ConsoleApplication1,
but change it this time to Program1 by typing in the Name field.

05_563489-bk01ch01.indd 1505_563489-bk01ch01.indd 15 3/19/10 8:01 PM3/19/10 8:01 PM

16 Creating Your First Console Application

Figure 1-1:
Creating a
new project
starts you
down the
road to
a better
Windows
application.

Figure 1-2:
The Visual
Studio App
Wizard
is eager
to create
a new
program for
you.

05_563489-bk01ch01.indd 1605_563489-bk01ch01.indd 16 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 1

C
re

a
tin

g
 Y

o
u

r
First C

C
o

n
so

le

A
p

p
lic

a
tio

n
17Creating Your First Console Application

 The default place to store this file is somewhere deep in your
Documents directory. Maybe because I’m difficult (or maybe because
I’m writing a book), I like to put my programs where I want them to go,
not necessarily where Visual Studio wants them. To simplify working
with this book, you can change the default program location. Follow
these steps to make that happen:

 a. Choose Tools➪Options.

 The Options dialog box opens.

 b. Choose Projects and Solutions➪General.

 c. Select the new location in the Projects Location field, and click OK.

 (I recommend C:\C#Programs for this book.)

 You can create the new directory in the Projects Location dialog
box at the same time. Click the folder icon with a small sunburst at
the top of the dialog box. (The directory may already exist if you’ve
installed the example programs from the Web site.)

 You can see the Options dialog box in Figure 1-3. Leave the other fields
in the project settings alone for now. Read more about customization of
Visual Studio in Book IV.

Figure 1-3:
Changing
the default
project
location.

 4. Click the OK button.

 After a bit of disk whirring and chattering, Visual Studio generates a
file named Program.cs. (If you look in the window labeled Solution
Explorer, you see some other files; ignore them for now. If Solution
Explorer isn’t visible, choose View➪Solution Explorer.)

 C# source files carry the extension .cs. The name Program is the
default name assigned for the program file.

05_563489-bk01ch01.indd 1705_563489-bk01ch01.indd 17 3/19/10 8:01 PM3/19/10 8:01 PM

18 Creating Your First Console Application

The contents of your first console app appear this way:

using ...

namespace Program1
{
 class Program
 {
 static void Main(string[] args)
 {

 }
 }
}

 Along the left edge of the code window, you see several small plus (+) and
minus (–) signs in boxes. Click the + sign next to using This expands
a code region, a handy Visual Studio feature that minimizes clutter. Here are
the directives that appear when you expand the region in the default console
app:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Regions help you focus on the code you’re working on by hiding code that
you aren’t. Certain blocks of code — such as the namespace block, class
block, methods, and other code items — get a +/– automatically without a
#region directive. You can add your own collapsible regions, if you like, by
typing #region above a code section and #endregion after it. It helps to
supply a name for the region, such as Public methods. This code section
looks like this:

#region Public methods
... your code
#endregion Public methods

 This name can include spaces. Also, you can nest one region inside another,
but regions can’t overlap.

For now, using System; is the only using directive you really need. You
can delete the others; the compiler lets you know whether you’re missing
one.

Taking it out for a test drive
To convert your C# program into an executable program, choose
Build➪Build Program1. Visual Studio responds with the following message:

- Build started: Project: Program1, Configuration: Debug Any CPU -

Csc.exe /noconfig /nowarn ... (and much more)

05_563489-bk01ch01.indd 1805_563489-bk01ch01.indd 18 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 1

C
re

a
tin

g
 Y

o
u

r
First C

C
o

n
so

le

A
p

p
lic

a
tio

n
19Making Your Console App Do Something

Compile complete -- 0 errors, 0 warnings
Program1 -> C:\C#Programs\ ... (and more)==Build: 1 succeeded or up-to-date, 0

failed, 0 skipped==

The key point here is the 1 succeeded part on the last line.

As a general rule of programming, succeeded is good; failed is bad. The
bad — the exceptions — is covered in Chapter 9 of this minibook.

To execute the program, choose Debug➪Start. The program brings up a
black console window and terminates immediately. (If you have a fast
computer, the appearance of this window is just a flash on the screen.) The
program has seemingly done nothing. In fact, this is the case. The template
is nothing but an empty shell.

An alternative command, Debug➪Start Without Debugging, behaves a bit
better at this point. Try it out.

Making Your Console App Do Something
 Edit the Program.cs template file until it appears this way:

using System;

namespace Program1
{
 public class Program
 {
 // This is where your program starts.
 static void Main(string[] args)
 {
 // Prompt user to enter a name.
 Console.WriteLine(“Enter your name, please:”);

 // Now read the name entered.
 string name = Console.ReadLine();

 // Greet the user with the name that was entered.
 Console.WriteLine(“Hello, “ + name);

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

Don’t sweat the stuff following the double or triple slashes (// or ///), and
don’t worry about whether to enter one or two spaces or one or two new
lines. However, do pay attention to capitalization.

05_563489-bk01ch01.indd 1905_563489-bk01ch01.indd 19 3/19/10 8:01 PM3/19/10 8:01 PM

20 Reviewing Your Console Application

Choose Build➪Build Program1 to convert this new version of Program.cs
into the Program1.exe program.

From within Visual Studio 2008, choose Debug➪Start Without Debugging.
The black console window appears and prompts you for your name. (You
may need to activate the console window by clicking it.) Then the window
shows Hello, followed by the name entered, and displays Press Enter
to terminate Pressing Enter closes the window.

 You can also execute the program from the DOS command line. To do so,
open a Command Prompt window and enter the following:

CD \C#Programs\Program1\bin\Debug

Now enter Program1 to execute the program. The output should be identical
to what you saw earlier. You can also navigate to the \C#Programs\
Program1\bin\Debug folder in Windows Explorer and then double-click
the Program1.exe file.

To open a Command Prompt window, try choosing Tools➪Command
Prompt. If that command isn’t available on your Visual Studio Tools menu,
choose Start➪All Programs➪Microsoft Visual Studio 2008➪Visual Studio
Tools➪Visual Studio 2008 Command Prompt.

Reviewing Your Console Application
In the following sections, you take this first C# console app apart one section
at a time to understand how it works.

The program framework
The basic framework for all console applications starts as the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Program1
{
 public class Program
 {
 // This is where your program starts.
 public static void Main(string[] args)
 {
 // Your code goes here.
 }
 }
}

05_563489-bk01ch01.indd 2005_563489-bk01ch01.indd 20 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 1

C
re

a
tin

g
 Y

o
u

r
First C

C
o

n
so

le

A
p

p
lic

a
tio

n
21Reviewing Your Console Application

The program starts executing right after the statement containing Main()
and ends at the closed curly brace (}) following Main(). (I explain the
meaning of these statements in due course. More than that, I cannot say for
now.)

 The list of using directives can come immediately before or immediately
after the phrase namespace Program1 {. The order doesn’t matter. You
can apply using to lots of things in .NET. I explain the whole business of
namespaces and using in the object-oriented programming chapters in
Book II.

Comments
The template already has lots of lines, and I’ve added several other lines,
such as the following (in boldface):

// This is where your program starts.
public static void Main(string[] args)

C# ignores the first line in this example. This line is known as a comment.

Any line that begins with // or /// is free text, and C# ignores it. Consider
// and /// to be equivalent for now.

Why include lines if the computer ignores them? Because comments explain
your C# statements. A program, even in C#, isn’t easy to understand.
Remember that a programming language is a compromise between what
computers understand and what humans understand. These comments
are useful while you write the code, and they’re especially helpful to the
poor sap — possibly you — who tries to re-create your logic a year later.
Comments make the job much easier.

Comment early and often.

The meat of the program
The real core of this program is embedded within the block of code marked
with Main(), like this:

// Prompt user to enter a name.
Console.WriteLine(“Enter your name, please:”);

// Now read the name entered.
string name = Console.ReadLine();

// Greet the user with the name that was entered.
Console.WriteLine(“Hello, “ + name);

05_563489-bk01ch01.indd 2105_563489-bk01ch01.indd 21 3/19/10 8:01 PM3/19/10 8:01 PM

22 Introducing the Toolbox Trick

Save a ton of routine typing with the new C# Code Snippets feature. Snippets
are great for common statements like Console.WriteLine. Press Ctrl+K
and then Ctrl+X to see a pop-up menu of snippets. (You may need to press
Tab once or twice to open the Visual C# folder or other folders on that
menu.) Scroll down the menu to cw and press Enter. Visual Studio inserts
the body of a Console.WriteLine() statement with the insertion point
between the parentheses, ready to go. When you have a few of the shortcuts,
such as cw, for, and if, memorized, use the even quicker technique: Type
cw and press Tab twice. (Also try selecting some lines of code, pressing
Ctrl+K, and then pressing Ctrl+S. Choose something like if. An if statement
surrounds the selected code lines.)

The program begins executing with the first C# statement: Console.
WriteLine. This command writes the character string Enter your name,
please: to the console.

The next statement reads in the user’s answer and stores it in a variable (a
kind of workbox) named name. (See Chapter 2 of this minibook for more on
these storage locations.) The last line combines the string Hello, with the
user’s name and outputs the result to the console.

The final three lines cause the computer to wait for the user to press Enter
before proceeding. These lines ensure that the user has time to read the
output before the program continues:

// Wait for user to acknowledge the results.
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

This step can be important, depending on how you execute the program
and depending on the environment. In particular, running your console app
inside Visual Studio, or from Windows Explorer, makes the preceding lines
necessary — otherwise, the console window closes so fast you can’t read
the output. If you open a console window and run the program from there,
the window stays open regardless.

Introducing the Toolbox Trick
The key part of the program you create in the preceding section consists of
the final two lines of code:

// Wait for user to acknowledge the results.
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

The easiest way to re-create those key lines in each future console application
you write is described in the following sections.

05_563489-bk01ch01.indd 2205_563489-bk01ch01.indd 22 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 1

C
re

a
tin

g
 Y

o
u

r
First C

C
o

n
so

le

A
p

p
lic

a
tio

n
23Introducing the Toolbox Trick

Saving code in the Toolbox
The first step is to save those lines in a handy location for future use in a
handy place: the Toolbox window. With your Program1 console application
open in Visual Studio, follow these steps:

 1. In the Main() method of class Program, select the lines you want to
save — in this case, the three lines mentioned previously.

 2. Make sure the Toolbox window is open on the left. (If it isn’t, open it
by choosing View➪Toolbox.)

 3. Drag the selected lines into the General tab of the Toolbox window
and drop them. (Or copy the lines and paste them into the Toolbox.)

 The Toolbox stores the lines there for you in perpetuity. Figure 1-4
shows the lines placed in the Toolbox.

Figure 1-4:
Setting up
the Toolbox
with some
handy saved
text for
future use.

Reusing code from the Toolbox
Now that you have your template text stored in the Toolbox, you can reuse
it in all console applications you write henceforth. Here’s how to use it:

05_563489-bk01ch01.indd 2305_563489-bk01ch01.indd 23 3/19/10 8:01 PM3/19/10 8:01 PM

24 Introducing the Toolbox Trick

 1. In Visual Studio, create a new console application as described earlier
in this chapter.

 2. Click in the editor at the spot where you’d like to insert some Toolbox
text.

 3. With the Program.cs file open for editing, make sure the Toolbox
window is open. (If it isn’t, see the procedure above.)

 4. In the General tab of the Toolbox window (other tabs could be
showing), find the saved text you want to use and double-click it.

 The selected item is inserted at the insertion point in the editor window.

With that boilerplate text in place, you can write the rest of your application
above those lines. That’s it. You now have a finished console app. Try it out
for about 30 seconds. Then you can check out Chapter 2 of this minibook.

05_563489-bk01ch01.indd 2405_563489-bk01ch01.indd 24 3/19/10 8:01 PM3/19/10 8:01 PM

Chapter 2: Living with Variability —
Declaring Value-Type Variables

In This Chapter
✓ Visiting the train station — the C# variable as storage locker

✓ Using integers — you can count on it

✓ Handling fractional values — what’s half a duck?

✓ Declaring other types of variables — dates, characters, strings

✓ Handling numeric constants — Π in the sky

✓ Changing types — cast doesn’t mean toss

✓ Letting the compiler figure out the type — var magic

The most fundamental of all concepts in programming is that of the
variable. A C# variable is like a small box in which you can store things,

particularly numbers, for later use. (The term variable is borrowed from the
world of mathematics.)

Unfortunately for programmers, C# places several limitations on variables —
limitations that mathematicians don’t have to consider. This chapter takes
you through the steps for declaring, initializing, and using variables. It also
introduces several of the most basic data types in C#.

Declaring a Variable
When the mathematician says, “n is equal to 1,” that means the term n is
equivalent to 1 in some ethereal way. The mathematician is free to introduce
variables in a willy-nilly fashion. For example, the mathematician may say
this:

x = y2 + 2y + y
if k = y + 1 then
x = k2

Programmers must define variables in a particular way that’s more demanding
than the mathematician’s looser style. For example, a C# programmer may
write the following bit of code:

int n;
n = 1;

06_563489-bk01ch02.indd 2506_563489-bk01ch02.indd 25 3/19/10 8:01 PM3/19/10 8:01 PM

26 What’s an int?

The first line means, “Carve off a small amount of storage in the computer’s
memory and assign it the name n.” This step is analogous to reserving one
of those storage lockers at the train station and slapping the label n on the
side. The second line says, “Store the value 1 in the variable n, thereby
replacing whatever that storage location already contains.” The train-locker
equivalent is, “Open the train locker, rip out whatever happens to be in
there, and shove a 1 in its place.”

 The equals symbol (=) is called the assignment operator.

 The mathematician says, “n equals 1.” The C# programmer says in a more
precise way, “Store the value 1 in the variable n.” (Think about the train
locker, and you see why that’s preferable.) C# operators tell the computer
what you want to do. In other words, operators are verbs and not descriptors.
The assignment operator takes the value on its right and stores it in the
variable on the left. We say a lot more about operators in Chapter 3 of this
minibook.

What’s an int?
In C#, each variable has a fixed type. When you allocate one of those train
lockers, you have to pick the size you need. If you pick an integer locker, for
instance, you can’t turn around and hope to stuff the entire state of Texas in
it — maybe Rhode Island, but not Texas.

For the example in the preceding section of this chapter, you select a locker
that’s designed to handle an integer — C# calls it an int. Integers are the
counting numbers 1, 2, 3, and so on, plus 0 and the negative numbers –1, –2,
–3, and so on.

 Before you can use a variable, you must declare it. After you declare a
variable as int, it can hold and regurgitate integer values, as this example
demonstrates:

// Declare a variable named n - an empty train locker.
int n;
// Declare an int variable m and initialize it with the value 2.
int m = 2;
// Assign the value stored in m to the variable n.
n = m;

The first line after the comment is a declaration that creates a little storage
area, n, designed to hold an integer value. The initial value of n is not speci-
fied until it is assigned a value. The second declaration not only declares an
int variable m but also initializes it with a value of 2, all in one shot.

 The term initialize means to assign an initial value. To initialize a variable is
to assign it a value for the first time. You don’t know for sure what the value
of a variable is until it has been initialized. Nobody knows.

06_563489-bk01ch02.indd 2606_563489-bk01ch02.indd 26 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

27What’s an int?

The final statement in the program assigns the value stored in m, which is 2,
to the variable n. The variable n continues to contain the value 2 until it is
assigned a new value. (The variable n doesn’t lose its value when you assign
its value to m. It’s like cloning n.)

Rules for declaring variables
You can initialize a variable as part of the declaration, like this:

// Declare another int variable and give it the initial value of 1.
int p = 1;

This is equivalent to sticking a 1 into that int storage locker when you first
rent it, rather than opening the locker and stuffing in the value later.

Initialize a variable when you declare it. In most (but not all) cases, C#
initializes the variable for you — but don’t rely on it to do that.

You may declare variables anywhere (well, almost anywhere) within a program.

 However, you may not use a variable until you declare it and set it to some
value. Thus the last two assignments shown here are not legal:

// The following is illegal because m is not assigned
// a value before it is used.
int m;
n = m;
// The following is illegal because p has not been
// declared before it is used.
p = 2;
int p;

Finally, you cannot declare the same variable twice in the same scope (a
function, for example).

Variations on a theme: Different types of int
Most simple numeric variables are of type int. However, C# provides a
number of twists to the int variable type for special occasions.

All integer variable types are limited to whole numbers. The int type suffers
from other limitations as well. For example, an int variable can store values
only in the range from roughly –2 billion to 2 billion.

A distance of 2 billion inches is greater than the circumference of the Earth.
In case 2 billion isn’t quite large enough for you, C# provides an integer type
called long (short for long int) that can represent numbers almost as
large as you can imagine. The only problem with a long is that it takes a
larger train locker: A long consumes 8 bytes (64 bits) — twice as much as a
garden-variety 4-byte (32-bit) int. C# provides several other integer variable
types, as shown in Table 2-1.

06_563489-bk01ch02.indd 2706_563489-bk01ch02.indd 27 3/19/10 8:01 PM3/19/10 8:01 PM

28 Representing Fractions

Table 2-1 Size and Range of C# Integer Types

Type Bytes Range of Values In Use

sbyte 1 –128 to 127 sbyte sb = 12;

byte 1 0 to 255 byte b = 12;

short 2 –32,768 to 32,767 short sh =
12345;

ushort 2 0 to 65,535 ushort ush =
62345;

int 4 –2 billion to 2 billion int n =
1234567890;

uint 4 0 to 4 billion (exact values
listed in the Cheat Sheet on
this book’s Web site)

uint un =
3234567890U

long 8 –1020 to 1020 — “a whole lot” long l =
123456789012L

Ulong 8 0 to 2 × 1020 long ul =
123456789012UL

As I explain in the section “Declaring Numeric Constants,” later in this
chapter, fixed values such as 1 also have a type. By default, a simple
constant such as 1 is assumed to be an int. Constants other than an int
must be marked with their variable type. For example, 123U is an unsigned
integer, uint.

Most integer variables are called signed, which means they can represent
negative values. Unsigned integers can represent only positive values, but
you get twice the range in return. As you can see from Table 2-1, the names
of most unsigned integer types start with a u, while the signed types
generally don’t have a prefix.

You don’t need any unsigned integer versions in this book.

Representing Fractions
Integers are useful for most calculations. One of this book’s authors made it
into the sixth grade before he ever found out that anything else existed, and
he still hasn’t forgiven his sixth-grade teacher for starting him down the
slippery slope of fractions.

Many calculations involve fractions, which simple integers can’t accurately
represent. The common equation for converting from Fahrenheit to Celsius
temperatures demonstrates the problem, like this:

06_563489-bk01ch02.indd 2806_563489-bk01ch02.indd 28 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

29Handling Floating-Point Variables

// Convert the temperature 41 degrees Fahrenheit.
int fahr = 41;
int celsius = (fahr - 32) * (5 / 9)

This equation works just fine for some values. For example, 41 degrees
Fahrenheit is 5 degrees Celsius. “Correct, Mr. Davis,” says Stephen’s sixth-
grade teacher.

Okay, try a different value: 100 degrees Fahrenheit. Working through the
equation, 100–32 is 68; 68 times 5⁄9 is 37. “No,” she says, “The answer is 37.78.”
Even that’s wrong because it’s really 37.777 . . . with the 7s repeating forever,
but I don’t push the point.

 An int can represent only integer numbers. The integer equivalent of 37.78
is 37. This lopping off of the fractional part of a number to get it to fit into an
integer variable is called integer truncation.

 Truncation is not the same thing as rounding. Truncation lops off the fractional
part. Goodbye, Charlie. Rounding picks the closest integer value. Thus,
truncating 1.9 results in 1. Rounding 1.9 results in 2.

For temperatures, 37 may be good enough. It’s not like you wear short-sleeve
shirts at 37.7 degrees but pull on a sweater at 37 degrees. But integer truncation
is unacceptable for many, if not most, applications.

Actually, the problem is much worse than that. An int can’t handle the ratio
5⁄9 either; it always yields the value 0. Consequently, the equation as written
in this example calculates celsius as 0 for all values of fahr. Even I admit
that’s unacceptable.

 This book’s Web site includes an int-based temperature-conversion program
contained in the ConvertTemperatureWithRoundOff directory. At this
point, you may not understand all the details, but you can see the conversion
equations and execute the program ConvertTemperatureWithRoundOff.
exe to see the results. (Review Chapter 1 of this minibook if you need a hand
running it.)

Handling Floating-Point Variables
The limitations of an int variable are unacceptable for some applications.
The range generally isn’t a problem — the double-zillion range of a 64-bit-
long integer should be enough for almost anyone. However, the fact that an
int is limited to whole numbers is a bit harder to swallow.

In some cases, you need numbers that can have a nonzero fractional part.
Mathematicians call these real numbers. (Somehow that always seemed like
a ridiculous name for a number. Are integer numbers somehow unreal?)

06_563489-bk01ch02.indd 2906_563489-bk01ch02.indd 29 3/19/10 8:01 PM3/19/10 8:01 PM

30 Handling Floating-Point Variables

 Notice that I said a real number can have a nonzero fractional part — that is,
1.5 is a real number, but so is 1.0. For example, 1.0 + 0.1 is 1.1. Just keep that
point in mind as you read the rest of this chapter.

Fortunately, C# understands real numbers. Real numbers come in two
flavors: floating-point and decimal. Floating-point is the most common type. I
describe the decimal type a little later in this chapter.

Declaring a floating-point variable
A floating-point variable carries the designation float, and you declare one
as shown in this example:

float f = 1.0;

After you declare it as float, the variable f is a float for the rest of its
natural instructions.

Table 2-2 describes the two kinds of floating-point types. All floating-point
variables are signed. (There’s no such thing as a floating-point variable that
can’t represent a negative value.)

Table 2-2 Size and Range of Floating-Point Variable Types

Type Bytes Range of
Values

Accuracy to
Number of Digits

In Use

float 8 1.5 * 10–45 to
3.4 * 1038

6 to 7 float f =
1.2F;

double 16 5.0 * 10–324 to
1.7 * 10308

15 to 16 double d
= 1.2;

 You might think float is the default floating-point variable type, but
actually the double is the default in C#. If you don’t specify the type for, say,
12.3, C# calls it a double.

The Accuracy column in Table 2-2 refers to the number of significant digits
that such a variable type can represent. For example, 5⁄9 is actually 0.555 . . .
with an unending sequence of 5s. However, a float variable is said to have
six significant digits of accuracy — which means numbers after the sixth
digit are ignored. Thus 5⁄9 may appear this way when expressed as a float:

0.5555551457382

Here you know that all the digits after the sixth 5 are untrustworthy.

06_563489-bk01ch02.indd 3006_563489-bk01ch02.indd 30 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

31Handling Floating-Point Variables

The same number — 5⁄9 — may appear this way when expressed as a double:

0.55555555555555557823

The double packs a whopping 15 to 16 significant digits.

Use double variable types unless you have a specific reason to do otherwise.

Converting some more temperatures
Here’s the formula for converting from Fahrenheit to Celsius temperatures
using floating-point variables:

double celsius = (fahr - 32.0) * (5.0 / 9.0)

 The Web site contains a floating-point version of the temperature-conversion
program called ConvertTemperatureWithFloat.

The following example shows the result of executing the double-based
ConvertTemperatureWithFloat program:

Enter temp in degrees Fahrenheit:100
Temperature in degrees Celsius = 37.7777777777778
Press Enter to terminate...

Examining some limitations of
floating-point variables
You may be tempted to use floating-point variables all the time because
they solve the truncation problem so nicely. Sure, they use up a bit more
memory. But memory is cheap these days, so why not? But floating-point
variables also have limitations, which I discuss in the following sections.

Counting
You can’t use floating-point variables as counting numbers. Some C# structures
need to count (as in 1, 2, 3, and so on). You know that 1.0, 2.0, and 3.0 are
counting numbers just as well as 1, 2, and 3, but C# doesn’t know that. For
example, given the accuracy limitations of floating-points, how does C# know
that you aren’t actually saying 1.000001?

 Whether you find that argument convincing, you can’t use a floating-point
variable when counting things.

Comparing numbers
You have to be careful when comparing floating-point numbers. For example,
12.5 may be represented as 12.500001. Most people don’t care about that
little extra bit on the end. However, the computer takes things extremely
literally. To C#, 12.500000 and 12.500001 are not the same numbers.

06_563489-bk01ch02.indd 3106_563489-bk01ch02.indd 31 3/19/10 8:01 PM3/19/10 8:01 PM

32 Using the Decimal Type: Is It an Integer or a Float?

So, if you add 1.1 to 1.1, you can’t tell whether the result is 2.2 or 2.200001. And
if you ask, “Is doubleVariable equal to 2.2?” you may not get the results you
expect. Generally, you have to resort to some bogus comparison like this: “Is
the absolute value of the difference between doubleVariable and 2.2 less
than .000001?” In other words, “within an acceptable margin of error.”

 The Pentium processor plays a trick to make this problem less troublesome
than it otherwise may be: It performs floating-point arithmetic in an
especially long double format — that is, rather than using 64 bits, it uses
a whopping 80 bits. When rounding off an 80-bit float into a 64-bit float,
you (almost) always get the expected result, even if the 80-bit number was
off a bit or two.

Calculation speed
Processors such as the x86 varieties used in older Windows-based PCs could
perform integer arithmetic much faster than arithmetic of the floating-point
persuasion. In those days, programmers would go out of their way to limit a
program to integer arithmetic.

The ratio in additional speed on a Pentium III processor for a simple (perhaps
too simple) test of about 300,000,000 additions and subtractions was about
3 to 1. That is, for every double add, you could have done three int adds.
(Computations involving multiplication and division may show different
results.)

Not-so-limited range
In the past, a floating-point variable could represent a considerably larger
range of numbers than an integer type. It still can, but the range of the long
is large enough to render the point moot.

 Even though a simple float can represent a very large number, the number
of significant digits is limited to about six. For example, 123,456,789F is
the same as 123,456,000F. (For an explanation of the F notation at the end
of these numbers, see “Declaring Numeric Constants,” later in this chapter.)

Using the Decimal Type: Is It an Integer or a Float?
As I explain in previous sections of this chapter, both the integer and floating-
point types have their problems. Floating-point variables have rounding
problems associated with limits to their accuracy, while int variables just
lop off the fractional part of a variable. In some cases, you need a variable
type that offers the best of two worlds:

 ✦ Like a floating-point variable, it can store fractions.

 ✦ Like an integer, numbers of this type offer exact values for use in
computations — for example, 12.5 is really 12.5 and not 12.500001.

06_563489-bk01ch02.indd 3206_563489-bk01ch02.indd 32 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

33Using the Decimal Type: Is It an Integer or a Float?

Fortunately, C# provides such a variable type, called decimal. A decimal
variable can represent a number between 10–28 and 1028 — that’s a lot of
zeros! And it does so without rounding problems.

Declaring a decimal
Decimal variables are declared and used like any variable type, like this:

decimal m1 = 100; // Good
decimal m2 = 100M; // Better

The first declaration shown here creates a variable m1 and initializes it to a
value of 100. What isn’t obvious is that 100 is actually of type int. Thus, C#
must convert the int into a decimal type before performing the initialization.
Fortunately, C# understands what you mean — and performs the conversion
for you.

The declaration of m2 is the best. This clever declaration initializes m2 with
the decimal constant 100M. The letter M at the end of the number specifies
that the constant is of type decimal. No conversion is required. (See the
section “Declaring Numeric Constants,” later in this chapter.)

Comparing decimals, integers,
and floating-point types
The decimal variable type seems to have all the advantages and none of
the disadvantages of int or double types. Variables of this type have a very
large range, they don’t suffer from rounding problems, and 25.0 is 25.0 and
not 25.00001.

The decimal variable type has two significant limitations, however. First, a
decimal is not considered a counting number because it may contain a
fractional value. Consequently, you can’t use them in flow-control loops,
which I explain in Chapter 5 of this minibook.

The second problem with decimal variables is equally as serious or even
more so. Computations involving decimal values are significantly slower
than those involving either simple integer or floating-point values — and I do
mean significant. On a crude benchmark test of 300,000,000 adds and
subtracts, the operations involving decimal variables were approximately
50 times slower than those involving simple int variables. The relative
computational speed gets even worse for more complex operations. Besides
that, most computational functions, such as calculating sines or exponents,
are not available for the decimal number type.

Clearly, the decimal variable type is most appropriate for applications
such as banking, in which accuracy is extremely important but the number
of calculations is relatively small.

06_563489-bk01ch02.indd 3306_563489-bk01ch02.indd 33 3/19/10 8:01 PM3/19/10 8:01 PM

34 Examining the bool Type: Is It Logical?

Examining the bool Type: Is It Logical?
Finally, a logical variable type. Except in this case, I really mean a type
“logical.” The Boolean type bool can have two values: true or false. I kid
thee not — a whole variable type for just two values. Not even a “maybe.”

 Former C and C++ programmers are accustomed to using the int value 0
(zero) to mean false and nonzero to mean true. That doesn’t work in C#.

You declare a bool variable this way:

bool thisIsABool = true;

No conversion path exists between bool variables and any other types. In
other words, you can’t convert a bool directly into something else. (Even if
you could, you shouldn’t because it doesn’t make any sense.) In particular, you
can’t convert a bool into an int (such as false becoming 0) or a string
(such as false becoming the word “false”).

Checking Out Character Types
A program that can do nothing more than spit out numbers may be fine for
mathematicians, accountants, insurance agents with their mortality figures,
and folks calculating cannon-shell trajectories. (Don’t laugh. The original
computers were built to generate tables of cannon-shell trajectories to help
artillery gunners.) However, for most applications, programs must deal with
letters as well as numbers.

C# treats letters in two distinctly different ways: individual characters of
type char (usually pronounced char, as in singe or burn) and strings of
characters — a type called, cleverly enough, string.

The char variable type
The char variable is a box capable of holding a single character. A character
constant appears as a character surrounded by a pair of single quotation
marks, as in this example:

char c = ‘a’;

You can store any single character from the Roman, Hebrew, Arabic, Cyrillic,
and most other alphabets. You can also store Japanese katakana and hiragana
characters, as well as many Japanese and Chinese kanjis.

In addition, char is considered a counting type. That means you can use a
char type to control the looping structures that I describe in Chapter 5 of
this minibook. Character variables do not suffer from rounding problems.

06_563489-bk01ch02.indd 3406_563489-bk01ch02.indd 34 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

35Checking Out Character Types

 The character variable includes no font information. So you may store in a
char variable what you think is a perfectly good kanji (and it may well be) —
but when you view the character, it can look like garbage if you’re not looking
at it through the eyes of the proper font.

Special chars
Some characters within a given font are not printable, in the sense that
you don’t see anything when you look at them on the computer screen or
printer. The most obvious example of this is the space, which is represented
by the character ‘ ‘ (single quote, space, single quote). Other characters
have no letter equivalent — for example, the tab character. C# uses the
backslash to flag these characters, as shown in Table 2-3.

Table 2-3 Special Characters

Character Constant Value

‘\n’ New line

‘\t’ Tab

‘\0’ Null character

‘\r’ Carriage return

‘\\’ Backslash

The string type
Another extremely common variable type is the string. The following
examples show how you declare and initialize string variables:

// Declare now, initialize later.
string someString1;
someString1 = “this is a string”;
// Or initialize when declared - preferable.
string someString2 = “this is a string”;

A string constant, often called a string literal, is a set of characters
surrounded by double quotes. The characters in a string can include the
special characters shown in Table 2-3. A string cannot be written across a
line in the C# source file, but it can contain the new-line character, as the
following examples show (see boldface):

// The following is not legal.
string someString = “This is a line
and so is this”;
// However, the following is legal.
string someString = “This is a line\and so is this”;

06_563489-bk01ch02.indd 3506_563489-bk01ch02.indd 35 3/19/10 8:01 PM3/19/10 8:01 PM

36 What’s a Value Type?

When written out with Console.WriteLine, the last line in this example
places the two phrases on separate lines, like this:

This is a line
and so is this

A string is not a counting type. A string is also not a value-type — no
“string” exists that’s intrinsic (built in) to the processor. Only one of the
common operators works on string objects: The + operator concatenates
two strings into one. For example:

string s = “this is a phrase”
 + “ and so is this”;

These lines of code set the string variable s equal to this character string:

“this is a phrase and so is this”

 The string with no characters, written “” (two double quotes in a row),
is a valid string, called an empty string (or sometimes a null string).
A null string (“”) is different from a null char (‘\0’) and from a string
containing any amount of space, even one (“ ”).

I like to initialize strings using the String.Empty value, which means the
same thing as “” and is less prone to misinterpretation:

string mySecretName = String.Empty; // A property of the String type

By the way, all the other data types in this chapter are value types. The
string type, however, is not a value type, as I explain in the following
section. Chapter 3 of this minibook goes into much more detail about the
string type.

What’s a Value Type?
 The variable types that I describe in this chapter are of fixed length — again

with the exception of string. A fixed-length variable type always occupies
the same amount of memory. So if you assign a = b, C# can transfer the
value of b into a without taking extra measures designed to handle variable-
length types. This characteristic is why these types of variables are called
value types.

 The types int, double, and bool, and their close derivatives (like unsigned
int) are intrinsic variable types built right into the processor. The intrinsic
variable types plus decimal are also known as value types because variables
store the actual data. The string type is neither — because the variable
actually stores a sort of “pointer” to the string’s data, called a reference. The
data in the string is actually off in another location.

06_563489-bk01ch02.indd 3606_563489-bk01ch02.indd 36 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

37Comparing string and char

The programmer-defined types that I explain in Chapter 8 of this minibook,
known as reference types, are neither value types nor intrinsic. The string
type is a reference type, although the C# compiler does accord it some
special treatment because strings are so widely used.

Comparing string and char
Although strings deal with characters, the string type is amazingly different
from the char. Of course, certain trivial differences exist. You enclose a
character with single quotes, as in this example:

‘a’

On the other hand, you put double quotes around a string:

“this is a string”
“a” // So is this -- see the double quotes?

The rules concerning strings are not the same as those concerning characters.
For one thing, you know right up front that a char is a single character, and
that’s it. For example, the following code makes no sense, either as addition
or as concatenation:

char c1 = ‘a’;
char c2 = ‘b’;
char c3 = c1 + c2

 Actually, this bit of code almost compiles — but with a completely different
meaning from what was intended. These statements convert c1 into an int
consisting of the numeric value of c1. C# also converts c2 into an int and
then adds the two integers. The error occurs when trying to store the results
back into c3 — numeric data may be lost storing an int into the smaller
char. In any case, the operation makes no sense.

A string, on the other hand, can be any length. So concatenating two strings,
as shown here, does make sense:

string s1 = “a”;
string s2 = “b”;
string s3 = s1 + s2; // Result is “ab”

As part of its library, C# defines an entire suite of string operations. I
describe them in Chapter 3 of this minibook.

06_563489-bk01ch02.indd 3706_563489-bk01ch02.indd 37 3/19/10 8:01 PM3/19/10 8:01 PM

38 Calculating Leap Years: DateTime

Calculating Leap Years: DateTime
What if you had to write a program that calculates whether this year is a
leap year?

The algorithm looks like this:

It’s a leap year if
 year is evenly divisible by 4
 and, if it happens to be evenly divisible by 100,
 it’s also evenly divisible by 400

You don’t have enough tools yet to tackle that in C#. But you could just ask
the DateTime type (which is a value type, like int):

Naming conventions
Programming is hard enough without program-
mers making it harder. To make your C# source
code easier to wade through, adopt a naming
convention and stick to it. As much as possi-
ble, your naming convention should follow that
adopted by other C# programmers:

 ✓ The names of things other than variables
start with a capital letter, and variables
start with a lowercase letter. Make these
names as descriptive as possible — which
often means that a name consists of mul-
tiple words. These words should be capi-
talized but butted up against each other
with no underscore between them — for
example, ThisIsALongName. Names
that start with a capital are Pascal-cased,
from the way a 1970s-era language called
Pascal named things. (My first book was
about Pascal.)

 ✓ The names of variables start with a lower-
case letter. A typical variable name looks
like this: thisIsALongVariable-
Name. This variable naming style is called
camel-casing because it has humps in the
middle.

Prior to the .NET era, it was common among
Windows programmers to use a convention in
which the first letter of the variable name indi-
cated the type of the variable. Most of these
letters were straightforward: f for float, d
for double, s for string, and so on. The
only one that was even the slightest bit differ-
ent was n for int. One exception to this rule
existed: For reasons that stretch way back into
the Fortran programming language of the 1960s,
the single letters i, j, and k were also used as
common names for an int, and they still are
in C#. This style of naming variables was called
Hungarian notation, after Charles Simonyi, a
famous Microsoftie who recently went to the
International Space Station as a space tourist.
(Martha Stewart packed his sack lunch.)

Hungarian notation has fallen out of favor, at
least in .NET programming circles. With recent
Visual Studio versions, you can simply rest the
cursor on a variable in the debugger to have its
data type revealed in a tooltip box. That makes
the Hungarian prefix a bit less useful, although
a few folks still hold out for Hungarian.

06_563489-bk01ch02.indd 3806_563489-bk01ch02.indd 38 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

39Calculating Leap Years: DateTime

DateTime thisYear = new DateTime(2011, 1, 1);
bool isLeapYear = DateTime.IsLeapYear(thisYear.Year);

The result for 2011 is false, but for 2012, it’s true. (For now, don’t worry
about that first line of code, which uses some things you haven’t gotten to yet.)

With the DateTime data type, you can do something like 80 different
operations, such as pull out just the month; get the day of the week; add
days, hours, minutes, seconds, milliseconds, months, or years to a given
date; get the number of days in a given month; subtract two dates.

The following sample lines use a convenient property of DateTime called
Now to capture the present date and time, and one of the numerous
DateTime methods that let you convert one time into another:

DateTime thisMoment = DateTime.Now;
DateTime anHourFromNow = thisMoment.AddHours(1);

You can also extract specific parts of a DateTime:

int year = DateTime.Now.Year; // For example, 2007
DayOfWeek dayOfWeek = DateTime.Now.DayOfWeek; // For example, Sunday

If you print out that DayOfWeek object, it prints something like “Sunday.”
And you can do other handy manipulations of DateTimes:

DateTime date = DateTime.Today; // Get just the date part.
TimeSpan time = thisMoment.TimeOfDay; // Get just the time part.
TimeSpan duration = new TimeSpan(3, 0, 0, 0); // Specify duration in days.
DateTime threeDaysFromNow = thisMoment.Add(duration);

The first two lines just extract portions of the information in a DateTime.
The next two lines add a duration to a DateTime. A duration, or amount
of time, differs from a moment in time; you specify durations with the
TimeSpan class, and moments with DateTime. So the third line sets up a
TimeSpan of three days, zero hours, zero minutes, and zero seconds. The
fourth line adds the three-day duration to the DateTime representing right
now, resulting in a new DateTime whose day component is three greater
than the day component for thisMoment.

Subtracting a DateTime from another DateTime (or a TimeSpan from a
DateTime) returns a DateTime:

TimeSpan duration1 = new TimeSpan(1, 0, 0); // One hour later.
// Since Today gives 12:00:00 AM (midnight), the following gives 1:00:00 AM:
DateTime anHourAfterMidnight = DateTime.Today.Add(duration1);
Console.WriteLine(“An hour from midnight will be {0}”, anHourAfterMidnight);
DateTime midnight = anHourAfterMidnight.Subtract(duration1);
Console.WriteLine(“An hour before 1 AM is {0}”, midnight);

The first line of the preceding code creates a TimeSpan of one hour. The
next line gets the date (actually, midnight this morning) and adds the

06_563489-bk01ch02.indd 3906_563489-bk01ch02.indd 39 3/19/10 8:01 PM3/19/10 8:01 PM

40 Declaring Numeric Constants

one-hour span to it, resulting in a DateTime representing 1:00 a.m. today.
The next-to-last line subtracts a one-hour duration from 1:00 a.m. to get 12:00
a.m. (midnight).

 For more information, search for DateTime structure in the Visual Studio Help
system and take a look at the DateTimeExample program on this book’s
Web site.

Declaring Numeric Constants
There are very few absolutes in life; however, I’m about to give you a C#
absolute: Every expression has a value and a type. In a declaration such as
int n, you can easily see that the variable n is an int. Further, you can
reasonably assume that the type of a calculation n + 1 is an int. However,
what type is the constant 1?

The type of a constant depends on two things: its value and the presence
of an optional descriptor letter at the end of the constant. Any integer type
less than 2 billion is assumed to be an int. Numbers larger than 2 billion are
assumed to be long. Any floating-point number is assumed to be a double.

Table 2-4 demonstrates constants that have been declared to be of a particular
type. The case of these descriptors is not important; 1U and 1u are equivalent.

Table 2-4 Common Constants Declared along with Their Types

Constant Type

1 int

1U unsigned int

1L long int (avoid lowercase l; it’s too much like the digit 1)

1.0 double

1.0F float

1M decimal

true bool

false bool

‘a’ char

‘\n’ char (the character newline)

‘\x123’ char (the character whose numeric value is hex 123)1

“a string” string

“” string (an empty string); same as String.Empty
1“hex” is short for hexadecimal (numbers in base 16 rather than in base 10).

06_563489-bk01ch02.indd 4006_563489-bk01ch02.indd 40 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

41Changing Types: The Cast

Changing Types: The Cast
Humans don’t treat different types of counting numbers differently. For
example, a normal person (as distinguished from a C# programmer) doesn’t
think about the number 1 as being signed, unsigned, short, or long. Although
C# considers these types to be different, even C# realizes that a relationship
exists between them. For example, this bit of code converts an int into a
long:

int intValue = 10;
long longValue;
longValue = intValue; // This is OK.

An int variable can be converted into a long because any possible value
of an int can be stored in a long — and because they are both counting
numbers. C# makes the conversion for you automatically without comment.
This is called an implicit type conversion.

A conversion in the opposite direction can cause problems, however. For
example, this line is illegal:

long longValue = 10;
int intValue;
intValue = longValue; // This is illegal.

Some values that you can store in a long don’t fit in an int (4 billion, for
example). If you try to shoehorn such a value into an int, C# generates an
error because data may be lost during the conversion process. This type of
bug is difficult to catch.

But what if you know that the conversion is okay? For example, even
though longValue is a long, maybe you know that its value can’t exceed
100 in this particular program. In that case, converting the long variable
longValue into the int variable intValue would be okay.

You can tell C# that you know what you’re doing by means of a cast:

long longValue = 10;
int intValue;
intValue = (int)longValue; // This is now OK.

In a cast, you place the name of the type you want in parentheses and put it
immediately in front of the value you want to convert. This cast says, “Go
ahead and convert the long named longValue into an int — I know what
I’m doing.” In retrospect, the assertion that you know what you’re doing may
seem overly confident, but it’s often valid.

A counting number can be converted into a floating-point number automati-
cally, but converting a floating-point into a counting number requires a cast:

06_563489-bk01ch02.indd 4106_563489-bk01ch02.indd 41 3/19/10 8:01 PM3/19/10 8:01 PM

42 Letting the C# Compiler Infer Data Types

double doubleValue = 10.0;
long longValue = (long)doubleValue;

All conversions to and from a decimal require a cast. In fact, all numeric
types can be converted into all other numeric types through the application
of a cast. Neither bool nor string can be converted directly into any other
type.

 Built-in C# methods can convert a number, character, or Boolean into its
string equivalent, so to speak. For example, you can convert the bool value
true into the string “true”; however, you cannot consider this change a
direct conversion. The bool true and the string “true” are completely
different things.

Letting the C# Compiler Infer Data Types
So far in this book — well, so far in this chapter — when you declared a
variable, you always specified its exact data type, like this:

int i = 5;
string s = “Hello C#”;
double d = 1.0;

You’re allowed to offload some of that work onto the C# compiler, using the
var keyword:

var i = 5;
var s = “Hello C# 4.0”;
var d = 1.0;

Now the compiler infers the data type for you — it looks at the stuff on the
right side of the assignment to see what type the left side is.

 For what it’s worth, Chapter 3 of this minibook shows how to calculate the
type of an expression like the ones on the right side of the assignments in the
preceding example. Not that you need to do that — the compiler mostly does
it for you. Suppose, for example, you have an initializing expression like this:

var x = 3.0 + 2 - 1.5;

The compiler can figure out that x is a double value. It looks at 3.0 and 1.5
and sees that they’re of type double. Then it notices that 2 is an int, which
the compiler can convert implicitly to a double for the calculation. All of
the addition terms in x’s initialization expression end up as doubles. So the
inferred type of x is double.

But now, you can simply utter the magic word var and supply an initialization
expression, and the compiler does the rest:

var aVariable = <initialization expression here>;

06_563489-bk01ch02.indd 4206_563489-bk01ch02.indd 42 3/19/10 8:01 PM3/19/10 8:01 PM

Book I

Chapter 2

Living w
ith V

ariability
—

 D
eclaring

V

alue-Type V
ariables

43Letting the C# Compiler Infer Data Types

 If you’ve worked with a scripting language such as JavaScript or VBScript,
you may have gotten used to all-purpose-in-one data types. VBScript calls
them Variant data types — a Variant can be anything at all. But does var
in C# signify a Variant type? Not at all. The object you declare with var
definitely has a C# data type, such as int, string, or double. You just
don’t have to declare what it is.

 The UsingVarForImplicitTypeInference example on the Web site
demonstrates var with several examples. Here’s a taste.

What’s really lurking in the variables declared in this example with var?
Take a look at this:

var aString = “Hello C# 3.0”;
Console.WriteLine(aString.GetType().ToString());

The mumbo jumbo in that WriteLine statement calls the String.
GetType() method on aString to get its C# type. Then it calls the
resulting object’s ToString() method to display the object’s type.
(Yadda yadda.) Here’s what you see in the console window:

System.String

It proves that the compiler correctly inferred the type of aString.

Most of the time, I recommend that you don’t use var. Save it for when it’s
necessary. Being explicit about the type of a variable is clearer to anyone
reading your code than using var. However, common usage in the C# world
may change so much that everybody uses var all the time, in spite of my
good advice. In that case, you can go along with the crowd.

You see examples later in which var is definitely called for, and I use it part
of the time throughout this book, even sometimes where it’s not strictly
necessary. You need to see it used, and use it yourself, to internalize it. I’m
still getting used to it myself. (I can’t help it if I’m a slow learner.)

You can see var used in other ways: with arrays and collections of data,
in Chapter 6 of this minibook, and with anonymous types, in Book II.
Anonymous? Bet you can’t wait.

What’s more, a new type in C# 4.0 is even more flexible than var: The
dynamic type takes var a step further.

The var type causes the compiler to infer the type of the variable based on
expected input. The dynamic keyword does this at runtime, using a totally
new set of tools called the Dynamic Language Runtime. You can find more
about the dynamic type in Book VIII.

06_563489-bk01ch02.indd 4306_563489-bk01ch02.indd 43 3/19/10 8:01 PM3/19/10 8:01 PM

44 Book I: The Basics of C# Programming

06_563489-bk01ch02.indd 4406_563489-bk01ch02.indd 44 3/19/10 8:01 PM3/19/10 8:01 PM

Chapter 3: Pulling Strings

In This Chapter
✓ Pulling and twisting a string with C# — just don’t string me along

✓ Comparing strings

✓ Other string operations, such as searching, trimming, splitting, and
concatenating

✓ Parsing strings read into the program

✓ Formatting output strings manually or using the String.Format()
method

For many applications, you can treat a string like one of the built-in
value-type variable types such as int or char. Certain operations that

are otherwise reserved for these intrinsic types are available to strings:

int i = 1; // Declare and initialize an int.
string s = “abc”; // Declare and initialize a string.

In other respects, as shown in the following example, a string is treated
like a user-defined class (I cover classes in Book II):

string s1 = new String();
string s2 = “abcd”;
int lengthOfString = s2.Length;

Which is it — a value type or a class? In fact, String is a class for which C#
offers special treatment because strings are so widely used in programs. For
example, the keyword string is synonymous with the class name String,
as shown in this bit of code:

String s1 = “abcd”; // Assign a string literal to a String obj.
string s2 = s1; // Assign a String obj to a string variable.

In this example, s1 is declared to be an object of class String (spelled with
an uppercase S) whereas s2 is declared as a simple string (spelled with a
lowercase s). However, the two assignments demonstrate that string and
String are of the same (or compatible) types.

 In fact, this same property is true of the other intrinsic variable types, to a
more limited extent. Even the lowly int type has a corresponding class
Int32, double has the class Double, and so on. The distinction here is
that string and String truly are the same thing.

07_563489-bk01ch03.indd 4507_563489-bk01ch03.indd 45 3/19/10 7:57 PM3/19/10 7:57 PM

46

In the rest of the chapter, I cover Strings and strings and all the tasks
you can accomplish by using them.

The Union Is Indivisible, and So Are Strings
You need to know at least one thing that you didn’t learn before the sixth
grade: You can’t change a string object itself after it has been created.
Even though I may speak of modifying a string, C# doesn’t have an opera-
tion that modifies the actual string object. Plenty of operations appear
to modify the string that you’re working with, but they always return the
modified string as a new object, instead. One string becomes two.

For example, the operation “His name is “ + “Randy” changes neither
of the two strings, but it generates a third string, “His name is Randy”.
One side effect of this behavior is that you don’t have to worry about some-
one modifying a string out from under you.

Consider this simplistic example program:

 // ModifyString -- The methods provided by class String do
// not modify the object itself. (s.ToUpper() doesn’t
// modify ‘s’; rather it returns a new string that has
// been converted.)
using System;
namespace ModifyString
{
 class Program
 {
 public static void Main(string[] args)
 {
 // Create a student object.
 Student s1 = new Student();
 s1.Name = “Jenny”;
 // Now make a new object with the same name.
 Student s2 = new Student();
 s2.Name = s1.Name;
 // “Changing” the name in the s1 object does not
 // change the object itself because ToUpper() returns
 // a new string without modifying the original.
 s2.Name = s1.Name.ToUpper();
 Console.WriteLine(“s1 - “ + s1.Name + “, s2 - “ + s2.Name);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }

 // Student -- You just need a class with a string in it.
 class Student
 {
 public String Name;
 }
}

The Union Is Indivisible, and So Are Strings

07_563489-bk01ch03.indd 4607_563489-bk01ch03.indd 46 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

47

I fully discuss classes in Book II, but for now, you can see that the Student
class contains a data variable called Name, of type String. The Student
objects s1 and s2 are set up so the student Name data in each points to the
same string data. ToUpper() converts the string s1.Name to all uppercase
characters. Normally, this would be a problem because both s1 and s2
point to the same object. However, ToUpper() does not change Name — it
creates a new, independent uppercase string and stores it in the object s2.
Now the two Students don’t point to the same string data.

The following output of the program is simple:

s1 - Jenny, s2 - JENNY
Press Enter to terminate...

This property of strings is called immutability (meaning, unchangeability).

 The immutability of strings is also important for string constants. A string
such as “this is a string” is a form of a string constant, just as 1 is
an int constant. In the same way that I reuse my shirts to reduce the size of
my wardrobe (and go easy on my bank account), a compiler may choose to
combine all accesses to the single constant “this is a string”. Reusing
string constants can reduce the footprint of the resulting program (its size
on disk or in memory) but would be impossible if a string could be modified.

Performing Common Operations on a String
C# programmers perform more operations on strings than Beverly Hills plas-
tic surgeons do on Hollywood hopefuls. Virtually every program uses the
addition operator that’s used on strings, as shown in this example:

string name = “Randy”;
Console.WriteLine(“His name is “ + name); // + means concatenate.

The String class provides this special operator. However, the String class
also provides other, more direct methods for manipulating strings. You can
see the complete list by looking up “String class” in the Visual Studio Help
index, and you’ll meet many of the usual suspects in this chapter. Among the
string-related tasks I cover here are the ones described in this list:

 ✦ Comparing strings — for equality or for tasks like alphabetizing

 ✦ Changing and converting strings in various ways: replacing part of a
string, changing case, and converting between strings and other things

 ✦ Accessing the individual characters in a string

 ✦ Finding characters or substrings inside a string

Performing Common Operations on a String

07_563489-bk01ch03.indd 4707_563489-bk01ch03.indd 47 3/19/10 7:57 PM3/19/10 7:57 PM

48

 ✦ Handling input from the command line

 ✦ Managing formatted output

 ✦ Working efficiently with strings using the StringBuilder

 In addition to the examples shown in the rest of this chapter, take a look at
the StringCaseChanging and VariousStringTechniques examples on
the Web site.

Comparing Strings
It’s very common to need to compare two strings. For example, did the user
input the expected value? Or maybe you have a list of strings and need to
alphabetize them.

If all you need to know is whether two strings are equal (same length and
same characters in the same order), you can use the == operator (or its
inverse, !=, or not equal):

string a = “programming”;
string b = “Programming”;
if(a == b) ... // True if you don’t consider case, false otherwise.
if(a != b) ... // False if you don’t consider case, true otherwise.

But comparing two strings for anything but equality or inequality is another
matter. It doesn’t work to say

if(a < b) ...

So if you need to ask, Is string A greater than string B? or Is string A less than
string B?, you need another approach.

Equality for all strings: The Compare() method
Numerous operations treat a string as a single object — for example, the
Compare() method. Compare(), with the following properties, compares
two strings as though they were numbers:

 ✦ If the left-hand string is greater than the right string, Compare(left,
right) returns 1.

 ✦ If the left-hand string is less than the right string, it returns –1.

 ✦ If the two strings are equal, it returns 0.

The algorithm works as follows when written in notational C# (that is, C#
without all the details, also known as pseudocode):

Comparing Strings

07_563489-bk01ch03.indd 4807_563489-bk01ch03.indd 48 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

49

compare(string s1, string s2)
{
 // Loop through each character of the strings until
 // a character in one string is greater than the
 // corresponding character in the other string.
 foreach character in the shorter string
 if (s1’s character > s2’s character when treated as a number)
 return 1
 if (s2’s character < s1’s character)
 return -1
 // Okay, every letter matches, but if the string s1 is longer,
 // then it’s greater.
 if s1 has more characters left
 return 1
 // If s2 is longer, it’s greater.
 if s2 has more characters left
 return -1
 // If every character matches and the two strings are the same
 // length, then they are “equal.”
 return 0
}

Thus, “abcd” is greater than “abbd”, and “abcde” is greater than “abcd”.
More often than not, you don’t care whether one string is greater than the
other, but only whether the two strings are equal.

You do want to know which string is bigger when performing a sort.

The Compare() operation returns 0 when two strings are identical. The
following test program uses the equality feature of Compare() to perform
a certain operation when the program encounters a particular string or
strings.

BuildASentence prompts the user to enter lines of text. Each line is con-
catenated to the previous line to build a single sentence. This program exits
if the user enters the word EXIT, exit, QUIT, or quit:

 // BuildASentence -- The following program constructs sentences
// by concatenating user input until the user enters one of the
// termination characters. This program shows when you need to look for
// string equality.
using System;
namespace BuildASentence
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine(“Each line you enter will be “
 + “added to a sentence until you “
 + “enter EXIT or QUIT”);
 // Ask the user for input; continue concatenating
 // the phrases input until the user enters exit or
 // quit (start with an empty sentence).
 string sentence = “”;
 for (; ;)
 {

Comparing Strings

07_563489-bk01ch03.indd 4907_563489-bk01ch03.indd 49 3/19/10 7:57 PM3/19/10 7:57 PM

50

 // Get the next line.
 Console.WriteLine(“Enter a string “);
 string line = Console.ReadLine();
 // Exit the loop if line is a terminator.
 string[] terms = { “EXIT”, “exit”, “QUIT”, “quit” };
 // Compare the string entered to each of the
 // legal exit commands.
 bool quitting = false;
 foreach (string term in terms)
 {
 // Break out of the for loop if you have a match.
 if (String.Compare(line, term) == 0)
 {
 quitting = true;
 }
 }
 if (quitting == true)
 {
 break;
 }
 // Otherwise, add it to the sentence.
 sentence = String.Concat(sentence, line);
 // Let the user know how she’s doing.
 Console.WriteLine(“\nyou’ve entered: “ + sentence);
 }
 Console.WriteLine(“\ntotal sentence:\n” + sentence);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

After prompting the user for what the program expects, the program creates
an empty initial sentence string called sentence. From there, the program
enters an infinite loop.

 The controls while(true) and for(;;) loop forever, or at least long
enough for some internal break or return to break you out. The two loops
are equivalent, and in practice, you’ll see them both. (Looping is covered in
Chapter 5 of this minibook.)

BuildASentence prompts the user to enter a line of text, which the pro-
gram reads using the ReadLine() method. Having read the line, the pro-
gram checks to see whether it is a terminator using the boldfaced lines in
the preceding example.

The termination section of the program defines an array of strings called
terms and a bool variable quitting, initialized to false. Each member of
the terms array is one of the strings you’re looking for. Any of these strings
causes the program to quit faster than a programmer forced to write COBOL.

 The program must include both “EXIT” and “exit” because Compare()
considers the two strings different by default. (The way the program is writ-
ten, these are the only two ways to spell exit. Strings such as “Exit” and

Comparing Strings

07_563489-bk01ch03.indd 5007_563489-bk01ch03.indd 50 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

51

“eXit” aren’t recognized as terminators.) You can also use other string
operations to check for various spellings of exit. I show you this in the next
section.

The termination section loops through each of the strings in the array
of target strings. If Compare() reports a match to any of the terminator
phrases, quitting is set to true. If quitting remains false after the
termination section and line is not one of the terminator strings, it is con-
catenated to the end of the sentence using the String.Concat() method.
The program outputs the immediate result just so the user can see what’s
going on.

Iterating through an array is a classic way to look for one of various possible
values. (I’ll show you another way in the next section, and an even cooler
way in Book II.)

Here’s a sample run of the BuildASentence program:

Each line you enter will be added to a
sentence until you enter EXIT or QUIT
Enter a string
Programming with

You’ve entered: Programming with
Enter a string
 C# is fun

You’ve entered: Programming with C# is fun
Enter a string
 (more or less)

You’ve entered: Programming with C# is fun (more or less)
Enter a string
EXIT

Total sentence:
Programming with C# is fun (more or less)
Press Enter to terminate...

I’ve flagged my input in bold to make the output easier to read.

Would you like your compares with or without case?
The Compare() method used in the previous example considers “EXIT”
and “exit” to be different strings. However, the Compare() method has
a second version that includes a third argument. This argument indicates
whether the comparison should ignore the letter case. A true indicates
“ignore.”

The following version of the lengthy termination section in the
BuildASentence example sets quitting to true whether the string
passed is uppercase, lowercase, or a combination of the two:

Comparing Strings

07_563489-bk01ch03.indd 5107_563489-bk01ch03.indd 51 3/19/10 7:57 PM3/19/10 7:57 PM

52

 // Indicate true if passed either exit or quit,
 // irrespective of case.
 if (String.Compare(“exit”, source, true) == 0) ||
 (String.Compare(“quit”, source, true) == 0)
 {
 quitting = true;
 }
}

This version is simpler than the previous looping version. This code doesn’t
need to worry about case, and it can use a single conditional expression
because it now has only two options to consider instead of a longer list: any
spelling variation of QUIT or EXIT.

What If I Want to Switch Case?
You may be interested in whether all of the characters (or just one) in a
string are uppercase or lowercase characters. And you may need to convert
from one to the other.

Distinguishing between all-uppercase
and all-lowercase strings
I almost hate to bring it up, but you can use the switch command (see
Chapter 5 of this minibook) to look for a particular string. Normally, you use
the switch command to compare a counting number to some set of pos-
sible values; however, switch does work on string objects, as well. This
version of the termination section in BuildASentence uses the switch
construct:

switch(line)
{
 case “EXIT”:
 case “exit”:
 case “QUIT”:
 case “quit”:
 return true;
}
return false;

This approach works because you’re comparing only a limited number of
strings. The for loop offers a much more flexible approach for searching for
string values. Using the case-less Compare() in the previous section gives
the program greater flexibility in understanding the user.

Converting a string to upper- or lowercase
Suppose you have a string in lowercase and need to convert it to uppercase.
You can use the ToUpper() method:

What If I Want to Switch Case?

07_563489-bk01ch03.indd 5207_563489-bk01ch03.indd 52 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

53

string lowcase = “armadillo”;
string upcase = lowcase.ToUpper(); // ARMADILLO.

Similarly, you can convert uppercase to lowercase with ToLower().

What if you want to convert just the first character in a string to uppercase?
The following rather convoluted code will do it (but you can see a better
way in the last section of this chapter):

string name = “chuck”;
string properName =
 char.ToUpper(name[0]).ToString() + name.Substring(1, name.Length - 1);

The idea in this example is to extract the first char in name (that’s
name[0]), convert it to a one-character string with ToString(), and then
tack on the remainder of name after removing the old lowercase first charac-
ter with Substring().

You can tell whether a string is uppercased or lowercased by using this
scary-looking if statement:

if (string.Compare(line.ToUpper(CultureInfo.InvariantCulture),
 line, false) == 0) ... // True if line is all upper.

Here the Compare() method is comparing an uppercase version of line
to line itself. There should be no difference if line is already uppercase.
You can puzzle over the CultureInfo.InvariantCulture gizmo in Help,
’cause I’m not going to explain it here. For “is it all lowercase,” stick a not (!)
operator in front of the Compare() call. Alternatively, you can use a loop, as
described in the next section.

 The StringCaseChanging example on the Web site illustrates these and
other techniques, including a brief explanation of cultures.

Looping through a String
You can access individual characters of a string in a foreach loop. The fol-
lowing code steps through the characters and writes each to the console —
just another (roundabout) way to write out the string:

string favoriteFood = “cheeseburgers”;
foreach(char c in favoriteFood)
{
 Console.Write(c); // Could do things to the char here.
}
Console.WriteLine();

You can use that loop to solve the problem of deciding whether favorite-
Food is all uppercase. (See the previous section for more about case.)

Looping through a String

07_563489-bk01ch03.indd 5307_563489-bk01ch03.indd 53 3/19/10 7:57 PM3/19/10 7:57 PM

54

bool isUppercase = true; // Start with the assumption that it’s uppercase.
foreach(char c in favoriteFood)
{
 if(!char.IsUpper(c))
 {
 isUppercase = false; // Disproves all uppercase, so get out.
 break;
 }
}

At the end of the loop, isUppercase will either be true or false.

As shown in the final example in the previous section on switching case,
you can also access individual characters in a string by using an array index
notation.

 Arrays start with zero, so if you want the first character, you ask for [0]. If
you want the third, you ask for [2].

char thirdChar = favoriteFood[2]; // First ‘e’ in “cheeseburgers”

Searching Strings
What if you need to find a particular word, or a particular character, inside a
string? Maybe you need its index so you can use Substring(), Replace(),
Remove(), or some other method on it. In this section, you’ll see how to find
individual characters or substrings. (I’m still using the favoriteFood vari-
able from the previous section.)

Can I find it?
The simplest thing is finding an individual character with IndexOf():

int indexOfLetterS = favoriteFood.IndexOf(‘s’); // 4.

Class String also has other methods for finding things, either individual
characters or substrings:

 ✦ IndexOfAny() takes an array of chars and searches the string for any
of them, returning the index of the first one found.

char[] charsToLookFor = { ‘a’, ‘b’, ‘c’ };
int indexOfFirstFound = favoriteFood.IndexOfAny(charsToLookFor); // 0.

 That call is often written more briefly this way:
int index = name.IndexOfAny(new char[] { ‘a’, ‘b’, ‘c’ });

 ✦ LastIndexOf() finds not the first occurrence of a character but the last.

 ✦ LastIndexOfAny() works like IndexOfAny(), but starting at the end
of the string.

Searching Strings

07_563489-bk01ch03.indd 5407_563489-bk01ch03.indd 54 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

55

 ✦ Contains() returns true if a given substring can be found within the
target string:

if(favoriteFood.Contains(“ee”)) ... // True

 ✦ And Substring() returns the string (if it’s there), or empty (if not):

string sub = favoriteFood.Substring(6, favoriteFood.Length - 6);

 (I go into Substring() in greater detail later in this chapter.)

Is my string empty?
How can you tell if a target string is empty (“”) or has the value null?
(null means that no value has been assigned yet, not even to the empty
string.) Use the IsNullOrEmpty() method, like this:

bool notThere = string.IsNullOrEmpty(favoriteFood); // False

Notice how you call IsNullOrEmpty(): string.IsNullOrEmpty(s).

You can set a string to the empty string in these two ways:

string name = “”;
string name = string.Empty;

Getting Input from the Command Line
A common task in console applications is getting the information that the
user types in when you prompt her for, say, an interest rate or a name. You
need to read the information that comes in as a string. (Everything coming
from the command line comes as a string.) Then you sometimes need to
parse the input to extract a number from it. And sometimes you need to pro-
cess lots of input numbers.

Trimming excess white space
First, consider that in some cases, you don’t want to mess with any white
space on either end of the string. The term white space refers to the char-
acters that don’t normally display on the screen, for example, space, new-
line (or \n), and tab (\t). You may sometimes also encounter the carriage
return character, \r.

You can use the Trim() method to trim off the edges of the string, like this:

// Get rid of any extra spaces on either end of the string.
random = random.Trim();

Getting Input from the Command Line

07_563489-bk01ch03.indd 5507_563489-bk01ch03.indd 55 3/19/10 7:57 PM3/19/10 7:57 PM

56

Class String also provides TrimFront() and TrimEnd() methods for get-
ting more specific, and you can pass an array of chars to be included in the
trimming along with white space. For example, you might trim a leading cur-
rency sign, such as ‘$’.Cleaning up a string can make it easier to parse. The
trim methods return a new string.

Parsing numeric input
A program can read from the keyboard one character at a time, but you have
to worry about newlines and so on. An easier approach reads a string and
then parses the characters out of the string.

Parsing characters out of a string is another topic I don’t like to mention, for
fear that programmers will abuse this technique. In some cases, program-
mers are too quick to jump into the middle of a string and start pulling out
what they find there. This is particularly true of C++ programmers because
that’s the only way they could deal with strings — until the addition of a
string class.

The ReadLine() method used for reading from the console returns a
string object. A program that expects numeric input must convert this
string. C# provides just the conversion tool you need in the Convert
class. This class provides a conversion method from string to each built-in
variable type. Thus, this code segment reads a number from the keyboard
and stores it in an int variable:

string s = Console.ReadLine(); // Keyboard input is string data
int n = Convert.ToInt32(s); // but you know it’s meant to be a number.

The other conversion methods are a bit more obvious: ToDouble(),
ToFloat(), and ToBoolean().

 ToInt32() refers to a 32-bit, signed integer (32 bits is the size of a normal
int), so this is the conversion method for ints. ToInt64() handles the
size of a long.

When Convert() encounters an unexpected character type, it can generate
unexpected results. Thus, you must know for sure what type of data you’re
processing and ensure that no extraneous characters are present.

Although I haven’t fully discussed methods yet (see Book II), here’s one
anyway. The following method returns true if the string passed to it con-
sists of only digits. You can call this method prior to converting into a type
of integer, assuming that a sequence of nothing but digits is probably a legal
number.

Getting Input from the Command Line

07_563489-bk01ch03.indd 5607_563489-bk01ch03.indd 56 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

57

 To be truly complete, you need to include the decimal point for floating-
point variables and include a leading minus sign for negative numbers — but
hey, you get the idea.

Here’s the method:

// IsAllDigits -- Return true if all characters
// in the string are digits.
public static bool IsAllDigits(string raw)
{
 // First get rid of any benign characters at either end;
 // if there’s nothing left, you don’t have a number.
 string s = raw.Trim(); // Ignore white space on either side.
 if (s.Length == 0) return false;
 // Loop through the string.
 for(int index = 0; index < s.Length; index++)
 {
 // A nondigit indicates that the string probably isn’t a number.
 if (Char.IsDigit(s[index]) == false) return false;
 }
 // No nondigits found; it’s probably okay.
 return true;
}

The method IsAllDigits() first removes any harmless white space at
either end of the string. If nothing is left, the string was blank and could not
be an integer. The method then loops through each character in the string.
If any of these characters turns out to be a nondigit, the method returns
false, indicating that the string is probably not a number. If this method
returns true, the probability is high that the string can be converted into an
integer successfully.

The following code sample inputs a number from the keyboard and prints
it back out to the console. (I omitted the IsAllDigits() method from the
listing to save space, but I’ve boldfaced where this program calls it.)

 // IsAllDigits -- Demonstrate the IsAllDigits method.
using System;
namespace IsAllDigits
{
 class Program
 {
 public static void Main(string[] args)
 {
 // Input a string from the keyboard.
 Console.WriteLine(“Enter an integer number”);
 string s = Console.ReadLine();
 // First check to see if this could be a number.
 if (!IsAllDigits(s)) // Call the special method.
 {
 Console.WriteLine(“Hey! That isn’t a number”);
 }
 else
 {
 // Convert the string into an integer.
 int n = Int32.Parse(s);

Getting Input from the Command Line

07_563489-bk01ch03.indd 5707_563489-bk01ch03.indd 57 3/19/10 7:57 PM3/19/10 7:57 PM

58

 // Now write out the number times 2.
 Console.WriteLine(“2 * “ + n + “, = “ + (2 * n));
 }
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // IsAllDigits here.
 }
}

The program reads a line of input from the console keyboard. If
IsAllDigits() returns false, the program alerts the user. If not, the pro-
gram converts the string into a number using an alternative to Convert.
ToInt32(aString) — the Int32.Parse(aString) call. Finally, the
program outputs both the number and two times the number (the latter to
prove that the program did, in fact, convert the string as advertised).

The output from a sample run of the program appears this way:

Enter an integer number
1A3
Hey! That isn’t a number
Press Enter to terminate...

 You could let Convert try to convert garbage and handle any exception it
may decide to throw. However, a better-than-even chance exists that it won’t
throw an exception but will just return incorrect results — for example,
returning 1 when presented with 1A3. You should validate input data yourself.

You could instead use Int32.TryParse(s, n), which returns false if
the parse fails or true if it succeeds. If it does work, the converted number
is found in the second parameter, an int that I named n. This won’t throw
exceptions. See the next section for an example.

Handling a series of numbers
Often, a program receives a series of numbers in a single line from the key-
board. Using the String.Split() method, you can easily break the string
into a number of substrings, one for each number, and parse them separately.

The Split() method chops a single string into an array of smaller strings
using some delimiter. For example, if you tell Split() to divide a string using
a comma (,) as the delimiter, “1,2,3” becomes three strings, “1”, “2”, and
“3”. (The delimiter is whichever character you use to split collections.)

The following program uses the Split() method to input a sequence of
numbers to be summed. (Again, I’ve omitted the IsAllDigits() method to
save trees.)

Getting Input from the Command Line

07_563489-bk01ch03.indd 5807_563489-bk01ch03.indd 58 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

59

 // ParseSequenceWithSplit -- Input a series of numbers separated by commas,
// parse them into integers and output the sum.
namespace ParseSequenceWithSplit
{
 using System;
 class Program
 {
 public static void Main(string[] args)
 {
 // Prompt the user to input a sequence of numbers.
 Console.WriteLine(
 “Input a series of numbers separated by commas:”);
 // Read a line of text.
 string input = Console.ReadLine();
 Console.WriteLine();
 // Now convert the line into individual segments
 // based upon either commas or spaces.
 char[] dividers = {‘,’, ‘ ‘};
 string[] segments = input.Split(dividers);
 // Convert each segment into a number.
 int sum = 0;
 foreach(string s in segments)
 {
 // Skip any empty segments.
 if (s.Length > 0)
 {
 // Skip strings that aren’t numbers.
 if (IsAllDigits(s))
 {
 // Convert the string into a 32-bit int.
 int num = 0;
 if (Int32.TryParse(s, out num))
 {
 Console.WriteLine(“Next number = {0}”, num);
 // Add this number into the sum.
 sum += num;
 }
 // If parse fails, move on to next number.
 }
 }
 }
 // Output the sum.
 Console.WriteLine(“Sum = {0}”, sum);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // IsAllDigits here.
 }
}

The ParseSequenceWithSplit program begins by reading a string from
the keyboard. The program passes the dividers array of char to the
Split() method to indicate that the comma and the space are the charac-
ters used to separate individual numbers. Either character will cause a split
there.

Getting Input from the Command Line

07_563489-bk01ch03.indd 5907_563489-bk01ch03.indd 59 3/19/10 7:57 PM3/19/10 7:57 PM

60

The program iterates through each of the smaller subarrays created by
Split() using the foreach loop control. The program skips any zero-
length subarrays. (This would result from two dividers in a row.) The pro-
gram next uses the IsAllDigits() method to make sure that the string
contains a number. (It won’t if, for instance, you type ,.3 with an extra
nondigit, nonseparator character.) Valid numbers are converted into inte-
gers and then added to an accumulator, sum. Invalid numbers are ignored. (I
chose not to generate an error message to keep this short.)

Here’s the output of a typical run:

Input a series of numbers separated by commas:
1,2, a, 3 4

Next number = 1
Next number = 2
Next number = 3
Next number = 4
Sum = 10
Press Enter to terminate...

The program splits the list, accepting commas, spaces, or both as separa-
tors. It successfully skips over the a to generate the result of 10. In a real-
world program, however, you probably don’t want to skip over incorrect
input without comment. You almost always want to draw the user’s atten-
tion to garbage in the input stream.

Joining an array of strings into one string
Class String also has a Join() method. If you have an array of strings, you
can use Join() to concatenate all of the strings. You can even tell it to put a
certain character string between each item and the next in the array:

string[] brothers = { “Chuck”, “Bob”, “Steve”, “Mike” };
string theBrothers = string.Join(“:”, brothers);

The result in theBrothers is “Chuck:Bob:Steve:Mike”, with the names
separated by colons. You can put any separator string between the names:
“, ”, “\t”, “ ”. The first item is a comma and a space. The second is a
tab character. The third is a string of several spaces.

Controlling Output Manually
Controlling the output from programs is an important aspect of string
manipulation. Face it: The output from the program is what the user sees. No
matter how elegant the internal logic of the program may be, the user prob-
ably won’t be impressed if the output looks shabby.

Controlling Output Manually

07_563489-bk01ch03.indd 6007_563489-bk01ch03.indd 60 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

61

The String class provides help in directly formatting string data for output.
The following sections examine the Pad(), PadRight(), PadLeft(),
Substring(), and Concat() methods.

Using the Trim() and Pad() methods
I show earlier how to use Trim() and its more specialized variants,
TrimFront() and TrimEnd(). Here, I discuss another common method for
formatting output. You can use the Pad methods, which add characters to
either end of a string to expand the string to some predetermined length. For
example, you may add spaces to the left or right of a string to left- or right-
justify it, or you can add “*” characters to the left of a currency number,
and so on.

The following small AlignOutput program uses both Trim() and Pad() to
trim up and justify a series of names:

 // AlignOutput -- Left justify and align a set of strings
// to improve the appearance of program output.
namespace AlignOutput
{
 using System;
 using System.Collections.Generic;
 class Program
 {
 public static void Main(string[] args)
 {
 List<string> names = new List<string> {“Christa “,
 “ Sarah”,
 “Jonathan”,
 “Sam”,
 “ Schmekowitz “};
 // First output the names as they start out.
 Console.WriteLine(“The following names are of “
 + “different lengths”);
 foreach(string s in names)
 {
 Console.WriteLine(“This is the name ‘” + s + “’ before”);
 }
 Console.WriteLine();

 // This time, fix the strings so they are
 // left justified and all the same length.
 // First, copy the source array into an array that you can manipulate.
 List<string> stringsToAlign = new List<string>();
 // At the same time, remove any unnecessary spaces from either end
 // of the names.
 for (int i = 0; i < names.Count; i++)
 {
 string trimmedName = names[i].Trim();
 stringsToAlign.Add(trimmedName);
 }
 // Now find the length of the longest string so that
 // all other strings line up with that string.
 int maxLength = 0;
 foreach (string s in stringsToAlign)
 {

Controlling Output Manually

07_563489-bk01ch03.indd 6107_563489-bk01ch03.indd 61 3/19/10 7:57 PM3/19/10 7:57 PM

62

 if (s.Length > maxLength)
 {
 maxLength = s.Length;
 }
 }
 // Now justify all the strings to the length of the maximum string.
 for (int i = 0; i < stringsToAlign.Count; i++)
 {
 stringsToAlign[i] = stringsToAlign[i].PadRight(maxLength + 1);
 }
 // Finally output the resulting padded, justified strings.
 Console.WriteLine(“The following are the same names “
 + “normalized to the same length”);
 foreach(string s in stringsToAlign)
 {
 Console.WriteLine(“This is the name ‘” + s + “’ afterwards”);
 }
 // Wait for user to acknowledge.
 Console.WriteLine(“\nPress Enter to terminate...”);
 Console.Read();
 }
 }
}

AlignOutput defines a List<string> of names of uneven alignment and
length. (You could just as easily write the program to read these names from
the console or from a file.) The Main() method first displays the names as
they are. Main() then aligns the names using the Trim() and PadRight()
methods before redisplaying the resulting trimmed up strings:

The following names are of different lengths:
This is the name ‘Christa ‘ before
This is the name ‘ Sarah’ before
This is the name ‘Jonathan’ before
This is the name ‘Sam’ before
This is the name ‘ Schmekowitz ‘ before

The following are the same names rationalized to the same length:
This is the name ‘Christa ‘ afterwards
This is the name ‘Sarah ‘ afterwards
This is the name ‘Jonathan ‘ afterwards
This is the name ‘Sam ‘ afterwards
This is the name ‘Schmekowitz ‘ afterwards

The alignment process begins by making a copy of the input names list.

The code first loops through the list, calling Trim() on each element to
remove unneeded white space on either end. The method loops again through
the list to find the longest member. The code loops one final time, calling
PadRight() to expand each string to match the length of the longest member
in the list. Note how the padded names form a neat column in the output.

PadRight(10) expands a string to be at least ten characters long. For exam-
ple, PadRight(10) adds four spaces to the right of a six-character string.

Finally, the code displays the list of trimmed and padded strings for output.
Voilà.

Controlling Output Manually

07_563489-bk01ch03.indd 6207_563489-bk01ch03.indd 62 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

63

Using the Concatenate() method
You often face the problem of breaking up a string or inserting some sub-
string into the middle of another. Replacing one character with another is
most easily handled with the Replace() method, like this:

string s = “Danger NoSmoking”;
s = s.Replace(‘ ‘, ‘!’)

This example converts the string into “Danger!NoSmoking”.

Replacing all appearances of one character (in this case, a space) with
another (an exclamation mark) is especially useful when generating comma-
separated strings for easier parsing. However, the more common and more
difficult case involves breaking a single string into substrings, manipulating
them separately, and then recombining them into a single, modified string.

The following RemoveWhiteSpace sample program uses the Replace()
method to remove white space (spaces, tabs, and newlines — all instances
of a set of special characters) from a string:

 // RemoveWhiteSpace -- Remove any of a set of chars from a given string.
// Use this method to remove whitespace from a sample string.
namespace RemoveWhiteSpace
{
 using System;
 public class Program
 {
 public static void Main(string[] args)
 {
 // Define the white space characters.
 char[] whiteSpace = {‘ ‘, ‘\n’, ‘\t’};
 // Start with a string embedded with whitespace.
 string s = “ this is a\nstring”; // Contains spaces & newline.
 Console.WriteLine(“before:” + s);
 // Output the string with the whitespace missing.
 Console.Write(“after:”);
 // Start looking for the white space characters.
 for(;;)
 {
 // Find the offset of the character; exit the loop
 // if there are no more.
 int offset = s.IndexOfAny(whiteSpace);
 if (offset == -1)
 {
 break;
 }
 // Break the string into the part prior to the
 // character and the part after the character.
 string before = s.Substring(0, offset);
 string after = s.Substring(offset + 1);
 // Now put the two substrings back together with the
 // character in the middle missing.
 s = String.Concat(before, after);
 // Loop back up to find next whitespace char in
 // this modified s.
 }

Controlling Output Manually

07_563489-bk01ch03.indd 6307_563489-bk01ch03.indd 63 3/19/10 7:57 PM3/19/10 7:57 PM

64

 Console.WriteLine(s);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The key to this program is the boldfaced loop. This loop continually refines
a string consisting of the input string, s, removing every one of a set of char-
acters contained in the array whiteSpace.

The loop uses IndexOfAny() to find the first occurrence of any of the
chars in the whiteSpace array. It doesn’t return until every instance of any
of those chars has been removed. The IndexOfAny() method returns the
index within the array of the first white space char that it can find. A return
value of –1 indicates that no items in the array were found in the string.

The first pass through the loop removes the leading blank on the target
string. IndexOfAny() finds the blank at index 0. The first Substring()
call returns an empty string, and the second call returns the whole string
after the blank. These are then concatenated with Concat(), producing a
string with the leading blank squeezed out.

The second pass through the loop finds the space after “this” and
squeezes that out the same way, concatenating the strings “this” and “is
a\nstring”. After this pass, s has become “thisis a\nstring”.

The third pass finds the \n character and squeezes that out. On the fourth
pass, IndexOfAny() runs out of white space characters to find and returns
–1 (not found). That ends the loop.

The RemoveWhiteSpace program prints out a string containing several
forms of white space. The program then strips out white space characters.
The output from this program appears as follows:

before: this is a
string
after:thisisastring
Press Enter to terminate...

Let’s Split() that concatenate program
The RemoveWhiteSpace program demonstrates the use of the Concat()
and IndexOf() methods; however, it doesn’t use the most efficient
approach. As usual, a little examination reveals a more efficient approach
using our old friend Split(). You can find the program containing this
code — now in another example of a method — on the Web site under
RemoveWhiteSpaceWithSplit. The method that does the work is shown
here:

Controlling Output Manually

07_563489-bk01ch03.indd 6407_563489-bk01ch03.indd 64 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

65

 // RemoveWhiteSpace -- The RemoveSpecialChars method removes every
// occurrence of the specified characters from the string.
// Note: The rest of the program is not shown here.
public static string RemoveSpecialChars(string input, char[] targets)
{
 // Split the input string up using the target
 // characters as the delimiters.
 string[] subStrings = input.Split(targets);

 // output will contain the eventual output information.
 string output = “”;

 // Loop through the substrings originating from the split.
 foreach(string subString in subStrings)
 {
 output = String.Concat(output, subString);
 }
 return output;
}

This version uses the Split() method to break the input string into a set of
substrings, using the characters to be removed as delimiters. The delimiter
is not included in the substrings created, which has the effect of removing
the character(s). The logic here is much simpler and less error-prone.

The foreach loop in the second half of the program puts the pieces back
together again using Concat(). The output from the program is unchanged.

Pulling the code out into a method further simplifies it and makes it clearer.

Formatting Your Strings Precisely
The String class also provides the Format() method for formatting
output, especially the output of numbers. In its simplest form, Format()
allows the insertion of string, numeric, or Boolean input in the middle of a
format string. For example, consider this call:

string myString = String.Format(“{0} times {1} equals {2}”, 2, 5, 2*5);

The first argument to Format() is known as the format string — the quoted
string you see. The {n} items in the middle of the format string indicate that
the nth argument following the format string is to be inserted at that point.
{0} refers to the first argument (in this case, the value 2), {1} refers to the
next (that is, 5), and so on.

This returns a string, myString. The resulting string is

“2 times 5 equals 10”

Unless otherwise directed, Format() uses a default output format for each
argument type. Format() enables you to affect the output format by includ-

Formatting Your Strings Precisely

07_563489-bk01ch03.indd 6507_563489-bk01ch03.indd 65 3/19/10 7:57 PM3/19/10 7:57 PM

66

ing specifiers (modifiers or controls) in the placeholders. See Table 3-1 for a
listing of some of these specifiers. For example, {0:E6} says, “Output the
number in exponential form, using six spaces for the fractional part.”

Table 3-1 Format Specifiers Using String.Format()

Control Example Result Notes

C — currency {0:C} of
123.456

$123.45 The currency sign depends on the
Region setting.

{0:C} of
–123.456

($123.45) (Specify Region in Windows con-
trol panel.)

D — decimal {0:D5} of 123 00123 Integers only.

E — exponen-
tial

{0:E} of
123.45

1.2345E+002 Also known as scientific notation.

F — fixed {0:F2} of
123.4567

123.45 The number after the F indicates
the number of digits after the deci-
mal point.

N — number {0:N} of
123456.789

123,456.79 Adds commas and rounds off to
nearest 100th.

{0:N1} of
123456.789

123,456.8 Controls the number of digits after
the decimal point.

{0:N0} of
123456.789

123,457

X —
hexadecimal

{0:X} of 123 0x7B 7B hex = 123 decimal (integers
only).

{0:0...} {0:000.00}
of 12.3

012.30 Forces a 0 if a digit is not already
present.

{0:#...} {0:###.##}
of 12.3

12.3 Forces the space to be left blank;
no other field can encroach on
the three digits to the left and
two digits after the decimal point
(useful for maintaining decimal-
point alignment).

{0:##0.0#}
of 0

0.0 Combining the # and zeros forces
space to be allocated by the #s and
forces at least one digit to appear,
even if the number is 0.

{0:# or
0%}

{0:#00.#%}
of .1234

12.3% The % displays the number as a
percentage (multiplies by 100 and
adds the % sign).

{0:#00.#%}
of .0234

02.3%

Formatting Your Strings Precisely

07_563489-bk01ch03.indd 6607_563489-bk01ch03.indd 66 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

67

The Console.WriteLine() method uses the same placeholder system.
The first placeholder, {0}, takes the first variable or value listed after the
format string part of the statement, and so on. Given the exact same argu-
ments as in the earlier Format() call, Console.WriteLine() would write
the same string to the console. You also have access to the format specifi-
ers. From now on, I use the formatted form of WriteLine() much of the
time, rather than concatenate items to form the final output string with the +
operator.

These format specifiers can seem a bit bewildering. (I didn’t even mention
the detailed currency and date controls.) Explore the topic “format specifi-
ers” in the Help Index for more information. To help you wade through these
options, the following OutputFormatControls program enables you to
enter a floating-point number followed by a specifier sequence. The program
then displays the number, using the specified Format() control:

 // OutputFormatControls -- Allow the user to reformat input numbers
// using a variety of format specifiers input at run time.
namespace OutputFormatControls
{
 using System;
 public class Program
 {
 public static void Main(string[] args)
 {
 // Keep looping -- inputting numbers until the user
 // enters a blank line rather than a number.
 for(;;)
 {
 // First input a number -- terminate when the user
 // inputs nothing but a blank line.
 Console.WriteLine(“Enter a double number”);
 string numberInput = Console.ReadLine();
 if (numberInput.Length == 0)
 {
 break;
 }
 double number = Double.Parse(numberInput);
 // Now input the specifier codes; split them
 // using spaces as dividers.
 Console.WriteLine(“Enter the format specifiers”
 + “ separated by a blank “
 + “(Example: C E F1 N0 0000000.00000)”);
 char[] separator = {‘ ‘};
 string formatString = Console.ReadLine();
 string[] formats = formatString.Split(separator);
 // Loop through the list of format specifiers.
 foreach(string s in formats)
 {
 if (s.Length != 0)
 {
 // Create a complete format specifier
 // from the letters entered earlier.
 string formatCommand = “{0:” + s + “}”;
 // Output the number entered using the
 // reconstructed format specifier.
 Console.Write(

Formatting Your Strings Precisely

07_563489-bk01ch03.indd 6707_563489-bk01ch03.indd 67 3/19/10 7:57 PM3/19/10 7:57 PM

68

 “The format specifier {0} results in “, formatCommand);
 try
 {
 Console.WriteLine(formatCommand, number);
 }
 catch(Exception)
 {
 Console.WriteLine(“<illegal control>”);
 }
 Console.WriteLine();
 }
 }
 }
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The OutputFormatControls program continues to read floating-point
numbers into a variable numberInput until the user enters a blank line.
(Because the input is a bit tricky, I include an example for the user to imitate
as part of the message asking for input.) Notice that the program does not
include tests to determine whether the input is a legal floating-point number.
I just assume that the user is smart enough to know what a number looks
like (a dangerous assumption!).

The program then reads a series of specifier strings separated by spaces.
Each specifier is then combined with a “{0}” string (the number before
the colon, which corresponds to the placeholder in the format string) into
the variable formatCommand. For example, if you entered N4, the program
would store the specifier “{0:N4}”. The following statement writes the
number number using the newly constructed formatCommand:

Console.WriteLine(formatCommand, number);

In the case of the lowly N4, the command would be rendered this way:

Console.WriteLine(“{0:N4}”, number);

Typical output from the program appears this way (I boldfaced my input):

Enter a double number
12345.6789
Enter the specifiers separated by a blank (Example: C E F1 N0 0000000.00000)
C E F1 N0 0000000.00000
The format specifier {0:C} results in $12,345.68

The format specifier {0:E} results in 1.234568E+004

The format specifier {0:F1} results in 12345.7

The format specifier {0:N0} results in 12,346

Formatting Your Strings Precisely

07_563489-bk01ch03.indd 6807_563489-bk01ch03.indd 68 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

69

The format specifier {0:0000000.00000} results in 0012345.67890

Enter a double number
.12345
Enter the specifiers separated by a blank (Example: C E F1 N0 0000000.00000)
00.0%
The format specifier {0:00.0%} results in 12.3%
Enter a double number

Press Enter to terminate...

When applied to the number 12345.6789, the specifier N0 adds commas in
the proper place (the N part) and lops off everything after the decimal point
(the 0 portion) to render 12,346. (The last digit was rounded off, not trun-
cated.)

Similarly, when applied to 0.12345, the control 00.0% outputs 12.3%. The
percent sign multiplies the number by 100 and adds %. The 00.0 indicates
that the output should include at least two digits to the left of the decimal
point and only one digit after the decimal point. The number 0.01 is dis-
played as 01.0%, using the same 00.0% specifier.

 The mysterious try . . . catch catches any errors that spew forth in
the event you enter an illegal format command such as a D, which stands for
decimal. (I cover exceptions in Chapter 9 of this minibook.)

StringBuilder: Manipulating Strings More Efficiently
Building longer strings out of a bunch of shorter strings can cost you an arm
and its elbow. Because a string, after it’s created, can’t be changed — it’s
immutable, as I say at the beginning of this chapter. This example doesn’t
tack “ly” onto s1:

string s1 = “rapid”;
string s2 = s1 + “ly”; // s2 = rapidly.

It creates a new string composed of the combination. (s1 is unchanged.)
Similarly, other operations that appear to modify a string, such as
Substring() and Replace(), do the same.

The result is that each operation on a string produces yet another string.
Suppose you need to concatenate 1000 strings into one huge one. You’re
going to create a new string for each concatenation:

string[] listOfNames = ... // 1000 pet names
string s = string.Empty;
for(int i = 0; i < 1000; i++)
{
 s += listOfNames[i];
}

StringBuilder: Manipulating Strings More Efficiently

07_563489-bk01ch03.indd 6907_563489-bk01ch03.indd 69 3/19/10 7:57 PM3/19/10 7:57 PM

70

To avoid such costs when you’re doing lots of modifications to strings, use
the companion class StringBuilder. Be sure to add this line at the top of
your file:

using System.Text; // Tells the compiler where to find StringBuilder.

 Unlike String manipulations, the manipulations you do on a
StringBuilder directly change the underlying string. Here’s an example:

StringBuilder builder = new StringBuilder(“012”);
builder.Append(“34”);
builder.Append(“56”);
string result = builder.ToString(); // result = 0123456

Create a StringBuilder instance initialized with an existing string, as just
shown. Or create an empty StringBuilder with no initial value:

StringBuilder builder = new StringBuilder(); // Defaults to 16 characters

You can also create the StringBuilder with the capacity you expect it to
need, which reduces the overhead of increasing the builder’s capacity
frequently:

StringBuilder builder = new StringBuilder(256); // 256 characters.

Use the Append() method to add text to the end of the current contents.
Use ToString() to retrieve the string inside the StringBuilder when
you finish your modifications. Here’s the StringBuilder version of the
loop just shown, with retrieval of the final concatenated string in boldface:

StringBuilder sb = new StringBuilder(20000); // Allocate a bunch.
for(int i = 0; i < 1000; i++)
{
 sb.Append(listOfNames[i]); // Same list of names as earlier
}
string result = sb.ToString(); // Retrieve the results.

StringBuilder has a number of other useful string manipulation methods,
including Insert(), Remove(), and Replace(). It lacks many of string’s
methods, though, such as Substring(), CopyTo(), and IndexOf().

Suppose that you want to make uppercase just the first character of a string,
as in the earlier section “Converting a string to upper- or lowercase.” With
StringBuilder, it’s much cleaner looking than the code I gave earlier.

StringBuilder sb = new StringBuilder(“jones”);
sb[0] = char.ToUpper(sb[0]);
string fixedString = sb.ToString();

This puts the lowercase string “jones” into a StringBuilder, accesses
the first char in the StringBuilder’s underlying string directly with
sb[0], uses the char.ToUpper() method to uppercase the character,

StringBuilder: Manipulating Strings More Efficiently

07_563489-bk01ch03.indd 7007_563489-bk01ch03.indd 70 3/19/10 7:57 PM3/19/10 7:57 PM

Book I

Chapter 3

P
u

llin
g

 S
trin

g
s

71

and reassigns the uppercased character to sb[0]. Finally, it extracts the
improved string “Jones” from the StringBuilder.

The BuildASentence example presented earlier in this chapter could ben-
efit from using a StringBuilder. I use StringBuilder quite a bit.

 The StringCaseChanging and VariousStringTechniques examples on
this book’s Web site show StringBuilder in action.

Book II introduces a C# feature called extension methods. The example there
adds several handy methods to the String class. Later in that minibook,
we describe how to convert between strings, arrays of char, and arrays of
byte. Those are operations you may need to do frequently (and are shown
in the StringCaseChanging example on this book’s Web site).

StringBuilder: Manipulating Strings More Efficiently

07_563489-bk01ch03.indd 7107_563489-bk01ch03.indd 71 3/19/10 7:57 PM3/19/10 7:57 PM

72 Book I: The Basics of C# Programming

07_563489-bk01ch03.indd 7207_563489-bk01ch03.indd 72 3/19/10 7:57 PM3/19/10 7:57 PM

Chapter 4: Smooth Operators

In This Chapter
✓ Performing a little arithmetic

✓ Doing some logical arithmetic

✓ Complicating matters with compound logical operators

Mathematicians create variables and manipulate them in various ways,
adding them, multiplying them, and — here’s a toughie — even

integrating them. Chapter 2 of this minibook describes how to declare and
define variables. However, it says little about how to use variables to get
anything done after you declare them. This chapter looks at the operations
you can perform on variables to do some work. Operations require opera-
tors, such as +, –, =, <, and &. I cover arithmetic, logical, and other types of
operators in this chapter.

Writing programs that get things done is good. You’ll never make it as a
C# programmer if your programs don’t do something — unless, of course,
you’re a consultant.

Performing Arithmetic
The set of arithmetic operators breaks down into several groups: the simple
arithmetic operators, the assignment operators, and a set of special opera-
tors unique to programming. After you digest these, you also need to digest
a separate set of logical operators. Bon appétit!

Simple operators
You most likely learned in elementary school how to use most of the simple
operators. Table 4-1 lists them. Note: Computers use an asterisk (*), not the
multiplication sign (×), for multiplication.

08_563489-bk01ch04.indd 7308_563489-bk01ch04.indd 73 3/19/10 8:03 PM3/19/10 8:03 PM

74

Table 4-1 Simple Operators

Operator What It Means

– (unary) Take the negative of

* Multiply

/ Divide

+ Add

- (binary) Subtract

% Modulo

Most of these operators in the table are binary operators because they oper-
ate on two values: one on the left side of the operator and one on the right
side. The lone exception is the unary negative. However, it’s just as straight-
forward as the others, as shown in this example:

int n1 = 5;
int n2 = -n1; // n2 now has the value -5.

The value of -n is the negative of the value of n.

The modulo operator may not be quite as familiar to you as the others.
Modulo is similar to the remainder after division. Thus, 5 % 3 is 2 (5 / 3 = 1,
remainder 2), and 25 % 3 is 1 (25 / 3 = 8, remainder 1). Read it “five modulo
three” or simply “five mod three.” Even numbers mod 2 are 0: 6 % 2 = 0
(6/2 = 3, remainder 0).

The arithmetic operators other than modulo are defined for all numeric
types. The modulo operator isn’t defined for floating-point numbers because
you have no remainder after the division of floating-point values.

Operating orders
The value of some expressions may not be clear. Consider, for example, the
following expression:

int n = 5 * 3 + 2;

Does the programmer mean “multiply 5 times 3 and then add 2,” which is 17,
or “multiply 5 times the sum of 3 and 2,” which gives you 25?

 C# generally executes common operators from left to right. So, the preced-
ing example assigns the value 17 to the variable n.

Performing Arithmetic

08_563489-bk01ch04.indd 7408_563489-bk01ch04.indd 74 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 4

S
m

o
o

th
 O

p
e

ra
to

rs

75

C# determines the value of n in the following example by first dividing 24 by
6 and then dividing the result of that operation by 2 (as opposed to dividing
24 by the ratio 6 over 2). The result is 2:

int n = 24 / 6 / 2

However, the various operators have a hierarchy, or order of precedence.
C# scans an expression and performs the operations of higher precedence
before those of lower precedence. For example, multiplication has higher
precedence than addition. Many books take great pains to explain the order
of precedence, but, frankly, that’s a complete waste of time (and brain cells).

 Don’t rely on yourself or someone else to know the precedence order. Use
parentheses to make your meaning explicit to human readers of the code as
well as to the compiler. (You can find the precedences on the Cheat Sheet
for this book, if you need to do some language-lawyering.)

The value of the following expression is clear, regardless of the operators’
order of precedence:

int n = (7 % 3) * (4 + (6 / 3));

Parentheses can override the order of precedence by stating exactly how
the compiler is to interpret the expression. To find the first expression to
evaluate, C# looks for the innermost parentheses, dividing 6 by 3 to yield 2:

int n = (7 % 3) * (4 + 2); // 6 / 3 = 2

Then C# works its way outward, evaluating each set of parentheses in turn,
from innermost to outermost:

int n = 1 * 6; // (4 + 2) = 6

So the final result, and the value of n, is 6.

The assignment operator
C# has inherited an interesting concept from C and C++: Assignment is itself
a binary operator. The assignment operator has the value of the argument to
the right. The assignment has the same type as both arguments, which must
match.

This view of the assignment operator has no effect on the other expressions
I’ve described in this chapter:

n = 5 * 3;

Performing Arithmetic

08_563489-bk01ch04.indd 7508_563489-bk01ch04.indd 75 3/19/10 8:03 PM3/19/10 8:03 PM

76

In this example, 5 * 3 is 15 and an int. The assignment operator stores the
int on the right into the int on the left and returns the value 15. However,
this view of the assignment operator allows the following line:

m = n = 5 * 3;

Assignments are evaluated in series from right to left. The right-hand assign-
ment stores the value 15 into n and returns 15. The left-hand assignment
stores 15 into m and returns 15, which is then dropped, leaving the value of
each variable as 15.

This strange definition for assignment makes the following rather bizarre
expressions legal:

int n;
int m;
n = m = 2;

Avoid chaining assignments because it’s less clear to human readers.
Anything that can confuse people reading your code (including you) is worth
avoiding because confusion breeds errors.

The increment operator
Of all the additions that you may perform in programming, adding 1 to a vari-
able is the most common:

n = n + 1; // Increment n by 1.

C# extends the simple operators with a set of operators constructed from
other binary operators. For example, n += 1; is equivalent to n = n + 1;.

An assignment operator exists for just about every binary operator: +=, -=,
*=, /=, %=, &=, |=, ^=. Look up C# language, operators in Help for full details
on them.

Yet even n += 1 is not good enough. C# provides this even shorter version:

++n; // Increment n by 1.

All these forms of incrementing a number are equivalent — they all incre-
ment n by 1.

The increment operator is strange enough, but believe it or not, C# has two
increment operators: ++n and n++. The first one, ++n, is the preincrement
operator, and n++ is the postincrement operator. The difference is subtle but
important.

Performing Arithmetic

08_563489-bk01ch04.indd 7608_563489-bk01ch04.indd 76 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 4

S
m

o
o

th
 O

p
e

ra
to

rs

77

Remember that every expression has a type and a value. In the following
code, both ++n and n++ are of type int:

int n;
n = 1;
int p = ++n;
n = 1;
int m = n++;

But what are the resulting values of m and p? (Hint: The choices are 1
and 2.) The value of p is 2, and the value of m is 1. That is, the value of the
expression ++n is the value of n after being incremented, and the value of
the expression n++ is the value of n before it’s incremented. Either way, the
resulting value of n itself is 2.

C# has equivalent decrement operators — n-- and --n. They work in
exactly the same way as the increment operators.

Performing Logical Comparisons — Is That Logical?
C# provides a set of logical comparison operators, as shown in Table 4-2.
These operators are logical comparisons because they return either a true
or a false value of type bool.

Table 4-2 Logical Comparison Operators

Operator Operator Is True If

a == b a has the same value as b

a > b a is greater than b

a >= b a is greater than or equal to b

a < b a is less than b

a <= b a is less than or equal to b

a != b a is not equal to b

Here’s an example that involves a logical comparison:

int m = 5;
int n = 6;
bool b = m > n;

This example assigns the value false to the variable b because 5 is not
greater than 6.

Performing Logical Comparisons — Is That Logical?

08_563489-bk01ch04.indd 7708_563489-bk01ch04.indd 77 3/19/10 8:03 PM3/19/10 8:03 PM

78

The logical comparisons are defined for all numeric types, including float,
double, decimal, and char. All the following statements are legal:

bool b;
b = 3 > 2; // true
b = 3.0 > 2.0; // true
b = ‘a’ > ‘b’; // false -- Alphabetically, later = greater.
b = ‘A’ < ‘a’; // true -- Upper A is less than lower a.
b = ‘A’ < ‘b’; // true -- All upper are less than all lower.
b = 10M > 12M; // false

The comparison operators always produce results of type bool. The com-
parison operators other than == are not valid for variables of type string.
(Not to worry: C# offers other ways to compare strings.)

Comparing floating-point numbers:
Is your float bigger than mine?
Comparing two floating-point values can get dicey, and you need to be care-
ful with these comparisons. Consider the following comparison:

float f1;
float f2;
f1 = 10;
f2 = f1 / 3;
bool b1 = (3 * f2) == f1; // b1 is true if (3 * f2) equals f1.
f1 = 9;
f2 = f1 / 3;
bool b2 = (3 * f2) == f1;

Notice that both the fifth and eighth lines in the preceding example contain
first an assignment operator (=) and then a logical comparison (==). These
are different animals, so don’t type = when you mean ==. C# does the logical
comparison and then assigns the result to the variable on the left.

The only difference between the calculations of b1 and b2 is the original
value of f1. So, what are the values of b1 and b2? The value of b2 is clearly
true: 9 / 3 is 3; 3 * 3 is 9; and 9 equals 9. Voilà!

The value of b1 isn’t obvious: 10 / 3 is 3.333 . . . and 3.333 . . . * 3 is 9.999 Is
9.999 . . . equal to 10? That depends on how clever your processor and compiler
are. On a Pentium or later processor, C# isn’t smart enough to realize that b1
should be true if the calculations are moved away from the comparison.

 You can use the system absolute value method to compare f1 and f2:

Math.Abs(f1 - 3.0 * f2) < .00001; // Use whatever level of accuracy.

This calculation returns true for both cases. You can use the constant
Double.Epsilon instead of .00001 to produce the maximum level of accu-
racy. Epsilon is the smallest possible difference between two nonequal
double variables.

Performing Logical Comparisons — Is That Logical?

08_563489-bk01ch04.indd 7808_563489-bk01ch04.indd 78 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 4

S
m

o
o

th
 O

p
e

ra
to

rs

79

For a self-guided tour of the System.Math class, where Abs and many other
useful mathematical functions live, look for math in Help.

Compounding the confusion with
compound logical operations
The bool variables have another set of operators defined just for them, as
shown in Table 4-3.

Table 4-3 The Compound Logical Operators

Operator Operator Is True If

!a a is false (also known as the “not” operator).

a & b a and b are true (also known as the “and” operator).

a | b Either a or b or else both are true (also known as a and/or b).

a ^ b a is true or b is true but not both (also known as a xor b).

a && b a is true and b is true with short-circuit evaluation.

a || b a is true or b is true with short-circuit evaluation. (I discuss
short-circuit evaluation in this section.)

 The ! operator (NOT) is the logical equivalent of the minus sign. For exam-
ple, !a (read “not a”) is true if a is false and false if a is true. Can that be
true?

The next two operators in the table are straightforward. First, a & b is true
only if both a and b are true. And a | b is true if either a or b is true (or
both are). The exclusive or (xor) operator, or ^, is sort of an odd beast. An
exclusive or is true if either a or b is true but not if both a and b are true.

All three operators produce a logical bool value as their result.

 The &, |, and ^ operators also have a bitwise operator version. When applied
to int variables, these operators perform their magic on a bit-by-bit basis.
Thus 6 & 3 is 2 (01102 & 00112 is 00102), 6 | 3 is 7 (01102 | 00112 is 01112), and
6 ^ 3 is 5 (01102 ^ 00112 is 01012). Binary arithmetic is cool but beyond the
scope of this book. You can search for it at your favorite search engine.

The remaining two logical operators are similar to, but subtly different from,
the first three. Consider the following example:

bool b = (boolExpression1) & (boolExpression2);

Performing Logical Comparisons — Is That Logical?

08_563489-bk01ch04.indd 7908_563489-bk01ch04.indd 79 3/19/10 8:03 PM3/19/10 8:03 PM

80

In this case, C# evaluates boolExpression1 and boolExpression2. It
then looks to see whether they both are true before deciding the value of b.
However, this may be a wasted effort. If one expression is false, there’s no
reason to perform the other. Regardless of the value of the second expres-
sion, the result will be false. Nevertheless, & goes on to evaluate both expres-
sions.

The && operator avoids evaluating both expressions unnecessarily, as
shown in the following example:

bool b = (boolExpression1) && (boolExpression2);

In this case, C# evaluates boolExpression1. If it’s false, then b is set to
false and the program continues on its merry way. On the other hand, if
boolExpression1 is true, then C# evaluates boolExpression2 and stores
the result in b. The && operator uses this short-circuit evaluation because it
short-circuits around the second Boolean expression, if necessary.

Most programmers use the doubled forms most of the time.

The || operator works the same way, as shown in the following expression:

bool b = (boolExpression1) || (boolExpression2);

If boolExpression1 is true, there’s no point in evaluating boolExpres-
sion2 because the result is always true.

You can read these operators as “short-circuit and” and “short-circuit or.”

Matching Expression Types at TrackDownAMate.com
In calculations, an expression’s type is just as important as its value.
Consider the following expression:

int n;
n = (5 * 5) + 7;

My calculator says the resulting value of n is 32. However, that expression
also has an overall type based on the types of its parts.

Written in “type language,” the preceding expression becomes

int [=] (int * int) + int;

To evaluate the type of an expression, follow the same pattern you use to
evaluate the expression’s value. Multiplication takes precedence over addi-

Matching Expression Types at TrackDownAMate.com

08_563489-bk01ch04.indd 8008_563489-bk01ch04.indd 80 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 4

S
m

o
o

th
 O

p
e

ra
to

rs

81

tion. An int times an int is an int. Addition comes next. An int plus an
int is an int. In this way, you can reduce the preceding expression this
way:

 (int * int) + int
int + int
int

Calculating the type of an operation
Most operators come in various flavors. For example, the multiplication
operator comes in the following forms (the arrow means “produces”):

int * int ➪ int

uint * uint ➪ uint

long * long ➪ long

float * float ➪ float

decimal * decimal ➪ decimal

double * double ➪ double

Thus, 2 * 3 uses the int * int version of the * operator to produce the
int 6.

Implicit type conversion
The * symbol works well for multiplying two ints or two floats. But imag-
ine what happens when the left- and right-hand arguments aren’t of the same
type. For example, consider what happens in this case:

int anInt = 10;
double aDouble = 5.0;
double result = anInt * aDouble;

First, C# doesn’t have an int * double operation. C# could just generate
an error message and leave it at that; however, it tries to make sense of the
programmer’s intention. C# has int * int and double * double versions of
multiplication and could convert aDouble into its int equivalent, but that
would involve losing any fractional part of the number (the digits to the right
of the decimal point). Instead, in implicit promotion, C# converts the int
anInt into a double and uses the double * double operator.

An implicit promotion is implicit because C# does it automatically, and it’s
a promotion because it involves the natural concept of uphill and down-
hill. The list of multiplication operators is in promotion order from int to
double or from int to decimal — from narrower type to wider type. No
implicit conversion exists between the floating-point types and decimal.
Converting from the more capable type, such as double, to a less capable
type, such as int, is known as a demotion.

Matching Expression Types at TrackDownAMate.com

08_563489-bk01ch04.indd 8108_563489-bk01ch04.indd 81 3/19/10 8:03 PM3/19/10 8:03 PM

82

 Implicit demotions aren’t allowed; C# generates an error message.

Explicit type conversion — the cast
Imagine what happens if C# was wrong about implicit conversion and the
programmer wanted to perform integer multiplication?

You can change the type of any value-type variable by using the cast opera-
tor. A cast consists of a type enclosed in parentheses and placed immedi-
ately in front of the variable or expression in question.

Thus the following expression uses the int * int operator:

int anInt = 10;
double aDouble = 5.0;
int result = anInt * (int)aDouble;

The cast of aDouble to an int is known as an explicit demotion or downcast.
The conversion is explicit because the programmer explicitly declared her
intent. (Duh.)

 You can make an explicit conversion between any two value types, whether
it’s up or down the promotion ladder.

Avoid implicit type conversion. Make any changes in value types explicit by
using a cast. Doing so reduces the possibility of error and makes code much
easier for humans to read.

Leave logical alone
C# offers no type conversion path to or from the bool type.

Assigning types
The same matching of types that you find in conversions applies to the
assignment operator.

 Inadvertent type mismatches that generate compiler error messages usually
occur in the assignment operator, not at the point of the mismatch.

Consider the following multiplication example:

int n1 = 10;
int n2 = 5.0 * n1;

The second line in this example generates an error message because of a
type mismatch, but the error occurs at the assignment — not at the multipli-
cation. Here’s the horrible tale: To perform the multiplication, C# implicitly

Matching Expression Types at TrackDownAMate.com

08_563489-bk01ch04.indd 8208_563489-bk01ch04.indd 82 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 4

S
m

o
o

th
 O

p
e

ra
to

rs

83

converts n1 to a double. C# can then perform double multiplication, the
result of which is the all-powerful double.

The type of the right-hand and left-hand operators of the assignment operator
must match, but the type of the left-hand operator cannot change. Because C#
refuses to demote an expression implicitly, the compiler generates the error
message Cannot implicitly convert type double to int.

C# allows this expression with an explicit cast:

int n1 = 10;
int n2 = (int)(5.0 * n1);

(The parentheses are necessary because the cast operator has very high
precedence.) This example works — explicit demotion is okay. The n1 is
promoted to a double, the multiplication is performed, and the double
result is demoted to an int. In this case, however, you would worry about
the sanity of the programmer because 5 * n1 is so much easier for both the
programmer and the C# compiler to read.

Matching Expression Types at TrackDownAMate.com

08_563489-bk01ch04.indd 8308_563489-bk01ch04.indd 83 3/19/10 8:03 PM3/19/10 8:03 PM

84 Book I: The Basics of C# Programming

08_563489-bk01ch04.indd 8408_563489-bk01ch04.indd 84 3/19/10 8:03 PM3/19/10 8:03 PM

Chapter 5: Getting Into the
Program Flow

In This Chapter
✓ Making decisions if you can

✓ Deciding what else to do

✓ Looping without going in a circle

✓ Using the while and do . . . while loops

✓ Using the for loop and understanding scope

Consider this simple program:

using System;
namespace HelloWorld
{
 public class Program
 {
 // This is where the program starts.
 static void Main(string[] args)
 {
 // Prompt user to enter a name.
 Console.WriteLine(“Enter your name, please:”);
 // Now read the name entered.
 string name = Console.ReadLine();
 // Greet the user with the entered name.
 Console.WriteLine(“Hello, “ + name);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate . . . “);
 Console.Read();
 }
 }
}

Beyond introducing you to a few fundamentals of C# programming, this
program is almost worthless. It simply spits back out whatever you entered.
You can imagine more complicated program examples that accept input,
perform some type of calculations, generate some type of output (other-
wise, why do the calculations?), and then exit at the bottom. However, even
a program such as this one can be of only limited use.

One key element of any computer processor is its ability to make decisions.
When I say “make decisions,” I mean that the processor sends the flow
of execution down one path of instructions if a condition is true or down
another path if the condition is not true. Any programming language must
offer this fundamental capability to control the flow of execution.

09_563489-bk01ch05.indd 8509_563489-bk01ch05.indd 85 3/19/10 8:02 PM3/19/10 8:02 PM

86

The three basic types of flow control are the if statement, the loop, and the
jump. (I describe one of the looping controls, the foreach, in Chapter 6 of
this minibook.)

Branching Out with if and switch
The basis of all C# decision-making capability is the if statement (and the
basis of all my decisions is the maybe):

if (bool-expression)
{
 // Control goes here if the expression is true.
}
// Control passes to this statement whether the expression is true or not.

A pair of parentheses immediately following the keyword if contains a
conditional expression of type bool. (See Chapter 2 of this minibook for a
discussion of bool expressions.) Immediately following the expression is
a block of code set off by a pair of braces. If the expression is true, the pro-
gram executes the code within the braces; if the expression is not true, the
program skips the code in the braces. (If the program executes the code in
braces, it ends just after the closing brace and continues from there.)

The if statement is easier to understand by looking at a concrete example:

// Make sure that a is not negative:
// If a is less than 0 . . .
if (a < 0)
{
 // . . . then assign 0 to it so that it’s no longer negative.
 a = 0;
}

This segment of code ensures that the variable a is nonnegative — greater
than or equal to 0. The if statement says, “If a is less than 0, assign 0 to a.”
(In other words, turn a into a positive value.)

 The braces aren’t required. C# treats if(bool-expression) state-
ment; as though it had been written if(bool-expression) {state-
ment;}. The general consensus (and my preference) is to always use braces
for better clarity. In other words, don’t ask — just do it.

Introducing the if statement
Consider a small program that calculates interest. The user enters the prin-
cipal amount and the interest rate, and the program spits out the resulting
value for each year. (This program isn’t sophisticated.) The simplistic calcu-
lation appears as follows in C#:

Branching Out with if and switch

09_563489-bk01ch05.indd 8609_563489-bk01ch05.indd 86 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

87

// Calculate the value of the principal plus interest.
decimal interestPaid;
interestPaid = principal * (interest / 100);
// Now calculate the total.
decimal total = principal + interestPaid;

The first equation multiplies the principal principal times the inter-
est interest to produce the interest to be paid — interestPaid. (You
divide by 100 because interest is usually calculated by entering a percent-
age amount.) The interest to be paid is then added back into the principal,
resulting in a new principal, which is stored in the variable total.

The program must anticipate almost anything when dealing with human
input. For example, you don’t want your program to accept a negative prin-
cipal or interest amount (well, maybe a negative interest). The following
CalculateInterest program includes checks to ensure that neither of
these entries happens:

 // CalculateInterest -- Calculate the interest amount paid
// on a given principal. If either the principal or the
// interest rate is negative, generate an error message.
using System;
namespace CalculateInterest
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Prompt user to enter source principal.
 Console.Write(“Enter principal: “);
 string principalInput = Console.ReadLine();
 decimal principal = Convert.ToDecimal(principalInput);
 // Make sure that the principal is not negative.
 if (principal < 0)
 {
 Console.WriteLine(“Principal cannot be negative”);
 principal = 0;
 }
 // Enter the interest rate.
 Console.Write(“Enter interest: “);
 string interestInput = Console.ReadLine();
 decimal interest = Convert.ToDecimal(interestInput);
 // Make sure that the interest is not negative either.
 if (interest < 0)
 {
 Console.WriteLine(“Interest cannot be negative”);
 interest = 0;
 }
 // Calculate the value of the principal plus interest.
 decimal interestPaid = principal * (interest / 100);
 // Now calculate the total.
 decimal total = principal + interestPaid;
 // Output the result.
 Console.WriteLine(); // Skip a line.
 Console.WriteLine(“Principal = “ + principal);
 Console.WriteLine(“Interest = “ + interest + “%”);
 Console.WriteLine();
 Console.WriteLine(“Interest paid = “ + interestPaid);

Branching Out with if and switch

09_563489-bk01ch05.indd 8709_563489-bk01ch05.indd 87 3/19/10 8:02 PM3/19/10 8:02 PM

88

 Console.WriteLine(“Total = “ + total);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate . . . “);
 Console.Read();
 }
 }
}

The CalculateInterest program begins by prompting the user for his
name using WriteLine() to write a string to the console. Tell the user
exactly what you want and, if possible, specify the format. Users don’t
respond well to uninformative prompts, such as >.

The sample program uses the ReadLine() command to read in whatever the
user types; the program returns the value entered, in the form of a string,
when the user presses Enter. Because the program is looking for the princi-
pal in the form of a decimal, the input string must be converted using the
Convert.ToDecimal() command. The result is stored in principalInput.

 The ReadLine(), WriteLine(), and ToDecimal() commands are all
examples of method calls. A method call delegates some work to another
part of the program, called a method. I describe method calls in detail in
Book II; these particular method calls are straightforward. You should be
able to get the gist of the meaning using my extraordinarily insightful explan-
atory narrative. If that doesn’t work, ignore the narrative. If that doesn’t
work, see Book II.

The next line in the example checks principal. If it’s negative, the program
outputs a polite “nastygram” indicating that the user has fouled up. The pro-
gram does the same thing for the interest rate, and then it performs the simplis-
tic interest calculation outlined earlier, in the “Introducing the If Statement,” and
spits out the result, using a series of WriteLine() commands.

The program generates the following output with a legitimate principal
amount and a usurious interest rate that is perfectly legal in most states:

Enter principal: 1234
Enter interest: 21

Principal = 1234
Interest = 21%

Interest paid = 259.14
Total = 1493.14
Press Enter to terminate . . .

Executing the program with illegal input generates the following output:

Enter principal: 1234
Enter interest: -12.5
Interest cannot be negative

Principal = 1234
Interest = 0%

Branching Out with if and switch

09_563489-bk01ch05.indd 8809_563489-bk01ch05.indd 88 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

89

Interest paid = 0
Total = 1234
Press Enter to terminate . . .

Indent the lines within an if clause to enhance readability. This type of
indentation is ignored by C# but is helpful to us humans. Most programming
editors support autoindenting, whereby the editor automatically indents as
soon as you enter the if command. To set autoindenting in Visual Studio,
choose Tools➪Options. Then expand the Text Editor node. From there,
expand C#. Finally, click Tabs. On this page, enable Smart Indenting and set
the number of spaces per indent to your preference. (I use two spaces per
indent in this book.) Set the tab size to the same value.

Examining the else statement
Sometimes, your code must check for mutually exclusive conditions. For
example, the following code segment stores the maximum of two numbers, a
and b, in the variable max:

// Store the maximum of a and b into the variable max.
int max;
// If a is greater than b . . .
if (a > b)
{
 // . . . save a as the maximum.
 max = a;
}
// If a is less than or equal to b . . .
if (a <= b)
{
 // . . . save b as the maximum.
 max = b;
}

The second if statement causes needless processing because the two con-
ditions are mutually exclusive. If a is greater than b, a can’t possibly be less
than or equal to b. C# defines an else clause for just this case. The else
keyword defines a block of code that’s executed if the if block is not.

The code segment to calculate the maximum now appears this way:

// Store the maximum of a and b into the variable max.
int max;
// If a is greater than b . . .
if (a > b)
{
 // . . . save a as the maximum; otherwise . . .
 max = a;
}
else
{
 // . . . save b as the maximum.
 max = b;
}

Branching Out with if and switch

09_563489-bk01ch05.indd 8909_563489-bk01ch05.indd 89 3/19/10 8:02 PM3/19/10 8:02 PM

90

If a is greater than b, the first block is executed; otherwise, the second block
is executed. In the end, max contains the greater of a or b.

Avoiding even the else
Sequences of else clauses can become confusing. Some programmers like
to avoid them when doing so doesn’t cause even more confusion. You could
write the maximum calculation like this:

// Store the maximum of a and b into the variable max.
int max;
// Start by assuming that a is greater than b.
max = a;
// If it is not . . .
if (b > a)
{
 // . . . then you can change your mind.
 max = b;
}

Some programmers avoid this style like the plague, and I can sympathize.
(That doesn’t mean that I’m going to change; it just means that I sympa-
thize.) You see both this style and the “else style” in common use.

Programmers who like to be cool and cryptic often use the ternary operator,
:?, equivalent to an if/else on one line:

bool informal = true;
string name = informal : “Chuck” ? “Charles”; // Returns “Chuck”

This chunk evaluates the expression before the colon. If the expression is
true, return it after the colon but before the question mark. If the expression
is false, return it after the question mark. This process turns an if/else into
an expression.

I generally advise using ternary only rarely because it truly is cryptic.

Nesting if statements
The CalculateInterest program warns the user of illegal input; however,
continuing with the interest calculation, even if one of the values is illogical,
doesn’t seem quite right. It causes no real harm here because the interest
calculation takes little or no time and the user can ignore the results, but
some calculations aren’t nearly as quick. In addition, why ask the user for an
interest rate after she has already entered an invalid value for the principal?
The user knows that the results of the calculation will be invalid no matter
what she enters next. (You’d be amazed at how much it infuriates users.)

The program should ask the user for an interest rate only if the principal is
reasonable and perform the interest calculation only if both values are valid.
To accomplish this, you need two if statements, one within the other.

Branching Out with if and switch

09_563489-bk01ch05.indd 9009_563489-bk01ch05.indd 90 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

91

 An if statement found within the body of another if statement is an embed-
ded, or nested, statement.

The following program, CalculateInterestWithEmbeddedTest, uses
embedded if statements to avoid stupid questions if a problem is detected
in the input:

 // CalculateInterestWithEmbeddedTest -- Calculate the interest amount
// paid on a given principal. If either the principal or the
// interest rate is negative, then generate an error message
// and don’t proceed with the calculation.
using System;
namespace CalculateInterestWithEmbeddedTest
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Define a maximum interest rate.
 int maximumInterest = 50;
 // Prompt user to enter source principal.
 Console.Write(“Enter principal: “);
 string principalInput = Console.ReadLine();
 decimal principal = Convert.ToDecimal(principalInput);
 // If the principal is negative . . .
 if (principal < 0)
 {
 // . . . generate an error message . . .
 Console.WriteLine(“Principal cannot be negative”);
 }
 else // Go here only if principal was > 0: thus valid.
 {
 // . . . otherwise, enter the interest rate.
 Console.Write(“Enter interest: “);
 string interestInput = Console.ReadLine();
 decimal interest = Convert.ToDecimal(interestInput);
 // If the interest is negative or too large . . .
 if (interest < 0 || interest > maximumInterest)
 {
 // . . . generate an error message as well.
 Console.WriteLine(“Interest cannot be negative “ +
 “or greater than “ + maximumInterest);
 interest = 0;
 }
 else // Reach this point only if all is well.
 {
 // Both the principal and the interest appear to be legal;
 // calculate the value of the principal plus interest.
 decimal interestPaid;
 interestPaid = principal * (interest / 100);
 // Now calculate the total.
 decimal total = principal + interestPaid;
 // Output the result.
 Console.WriteLine(); // Skip a line.
 Console.WriteLine(“Principal = “ + principal);
 Console.WriteLine(“Interest = “ + interest + “%”);
 Console.WriteLine();
 Console.WriteLine(“Interest paid = “ + interestPaid);
 Console.WriteLine(“Total = “ + total);
 }

Branching Out with if and switch

09_563489-bk01ch05.indd 9109_563489-bk01ch05.indd 91 3/19/10 8:02 PM3/19/10 8:02 PM

92

 }
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate . . . “);
 Console.Read();
 }
 }
}

The program first reads the principal from the user. If the principal is negative,
the program outputs an error message and quits. If the principal is not negative,
control passes to the else clause, where the program continues executing.

The interest rate test has been improved in this example. Here, the program
requires an interest rate that’s nonnegative (a mathematical law) and less
than a maximum rate (a judiciary law — I can only wish that credit cards had
an interest rate limit). This if statement uses the following compound test:

if (interest < 0 || interest > maximumInterest)

This statement is true if interest is less than 0 or greater than maximumIn-
terest. Notice that I declare maximumInterest at the top of the program
rather than hard-code it as a constant number here. Hard-coding refers to using
values directly in your code, rather than creating a constant to hold them.

Define important constants at the top of your program. Giving a constant
a descriptive name (rather than just a number) makes it easy to find and
easier to change. If the constant appears ten times in your code, you still
have to make only one change to change all references.

Entering a correct principal but a negative interest rate generates this output:

Enter principal: 1234
Enter interest: -12.5
Interest cannot be negative or greater than 50.
Press Enter to terminate . . .

Only when the user enters both a legal principal and a legal interest rate
does the program generate the correct calculation:

Enter principal: 1234
Enter interest: 12.5

Principal = 1234
Interest = 12.5%

Interest paid = 154.250
Total = 1388.250
Press Enter to terminate . . .

Running the switchboard
You often want to test a variable for numerous different values. For example,
maritalStatus may be 0 for unmarried, 1 for married, 2 for divorced, 3 for

Branching Out with if and switch

09_563489-bk01ch05.indd 9209_563489-bk01ch05.indd 92 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

93

widowed (surely I covered all the options — oh, wait), or 4 for none of your
business. To differentiate among these values, you could use the following
series of if statements:

if (maritalStatus == 0)
{
 // Must be unmarried . . .
 // . . . do something . . .
}
else
{
 if (maritalStatus == 1)
 {
 // Must be married . . .
 // . . . do something else . . .

And so on.

You can see that these repetitive if statements grow tiresome quickly.
Testing for multiple cases is such a common occurrence that C# provides a
special construct to decide between a set of mutually exclusive conditions.
This control, the switch, works as follows:

switch(maritalStatus)
{
 case 0:
 // . . . do the unmarried stuff . . .
 break;
 case 1:
 // . . . do the married stuff . . .
 break;
 case 2:
 // . . . do the divorced stuff . . .
 break;
 case 3:
 // . . . do the widowed stuff . . .
 break;
 case 4:
 // . . . get out of my face . . .
 break;
 default:
 // Goes here if it fails to pass a case;
 // this is probably an error condition.
 break;
}

The expression at the top of the switch statement is evaluated. In this case,
the expression is simply the variable maritalStatus. The value of that
expression is then compared against the value of each of the cases. Control
passes to the default clause if no match is found.

The argument to the switch statement can also be a string:

string s = “Davis”;
switch(s)
{
 case “Davis”:

Branching Out with if and switch

09_563489-bk01ch05.indd 9309_563489-bk01ch05.indd 93 3/19/10 8:02 PM3/19/10 8:02 PM

94

 // . . . control will actually pass here . . .
 break;
 case “Smith”:
 // . . . do Smith stuff . . .
 break;
 case “Jones”:
 // . . . do Jones stuff . . .
 break;
 case “Hvidsten”:
 // . . . do Hvidsten stuff . . .
 break;
 default:
 // Goes here if it doesn’t pass any cases.
 break;
}

 Using the switch statement involves these severe restrictions:

 ✦ The argument to the switch() must be one of the counting types
(including char) or a string. Floating-point values are excluded.

 ✦ The various case values must refer to values of the same type as the
switch expression.

 ✦ The case values must be constant in the sense that their value must be
known at compile time. (A statement such as case x isn’t legal unless x
is a type of constant.)

 ✦ Each clause must end in a break statement (or another exit command,
such as return). The break statement passes control out of the
switch.

 You can omit a break statement if two cases lead to the same actions: A
single case clause may have more than one case label, as in this exam-
ple:

string s = “Davis”;
switch(s)
{
 case “Davis”:
 case “Hvidsten”:
 // Do the same thing whether s is Davis or Hvidsten
 // since they’re related.
 break;
 case “Smith”:
 // . . . do Smith stuff . . .
 break;
 default:
 // Goes here if it doesn’t pass any cases.
 break;
}

 This approach enables the program to perform the same operation,
whether the input is Davis or Hvidsten. The SwitchSyntaxTest exam-
ple on the Web site illustrates a variety of advice about using switch.
The final section of this chapter supplies a small addendum to the
switch story. You can find the code at csharp102.info.

Branching Out with if and switch

09_563489-bk01ch05.indd 9409_563489-bk01ch05.indd 94 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

95

Here We Go Loop-the-Loop
The if statement enables a program to take different paths through the
code being executed depending on the results of a bool expression. This
statement provides for drastically more interesting programs than programs
without decision-making capability. Adding the ability to execute a set of
instructions repeatedly adds another quantum jump in capability.

Consider the CalculateInterest program from the section “Introducing
the if statement,” earlier in this chapter. Performing this simple interest cal-
culation by using a calculator (or by hand, using a piece of paper) would be
much easier than writing and executing a program.

If you could calculate the amount of principal for each of several succeed-
ing years, that would even more useful. A simple macro in a Microsoft Excel
spreadsheet is still easier to handle, but at least you’re getting closer.

What you need is a way for the computer to execute the same short
sequence of instructions multiple times — known as a loop.

Looping for a while
The C# keyword while introduces the most basic form of execution loop:

while(bool-expression)
{
 // . . . repeatedly executed as long as the expression is true.
}

When the while loop is first encountered, the bool expression is evaluated. If
the expression is true, the code within the block is executed. When the block
of code reaches the closed brace, control returns to the top and the whole
process starts over again. (It’s kind of the way I feel when I’m walking the dog.
The dog and I loop around and around the yard until the dog . . . well, until
he’s finished.) Control passes beyond the closed brace the first time the bool
expression is evaluated and turns out to be false.

 If the condition is not true the first time the while loop is encountered, the
set of commands within the braces is never executed.

 Programmers often become sloppy in their speech. (Programmers are
sloppy most of the time.) If a programmer says that a loop is executed until a
condition is false, it implies that control passes outside the loop — no
matter where the program happens to be executing — as soon as the condi-
tion becomes false. This definitely isn’t the case. The program doesn’t check
whether the condition is still true until control specifically passes back to
the top of the loop.

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 9509_563489-bk01ch05.indd 95 3/19/10 8:02 PM3/19/10 8:02 PM

96

You can use the while loop to create the CalculateInterestTable
program, a looping version of the CalculateInterest program.
CalculateInterestTable calculates a table of principals showing accu-
mulated annual payments:

 // CalculateInterestTable -- Calculate the interest paid on a given
// principal over a period of years.
using System;
namespace CalculateInterestTable
{
 using System;
 public class Program
 {
 public static void Main(string[] args)
 {
 // Define a maximum interest rate.
 int maximumInterest = 50;
 // Prompt user to enter source principal.
 Console.Write(“Enter principal: “);
 string principalInput = Console.ReadLine();
 decimal principal = Convert.ToDecimal(principalInput);
 // If the principal is negative . . .
 if (principal < 0)
 {
 // . . . generate an error message . . .
 Console.WriteLine(“Principal cannot be negative”);
 }
 else // Go here only if principal was > 0: thus valid.
 {
 // . . . otherwise, enter the interest rate.
 Console.Write(“Enter interest: “);
 string interestInput = Console.ReadLine();
 decimal interest = Convert.ToDecimal(interestInput);
 // If the interest is negative or too large . . .
 if (interest < 0 || interest > maximumInterest)
 {
 // . . . generate an error message as well.
 Console.WriteLine(“Interest cannot be negative “ +
 “or greater than “ + maximumInterest);
 interest = 0;
 }
 else // Reach this point only if all is well.
 {
 // Both the principal and the interest appear to be
 // legal; finally, input the number of years.
 Console.Write(“Enter number of years: “);
 string durationInput = Console.ReadLine();
 int duration = Convert.ToInt32(durationInput);
 // Verify the input.
 Console.WriteLine(); // Skip a line.
 Console.WriteLine(“Principal = “ + principal);
 Console.WriteLine(“Interest = “ + interest + “%”);
 Console.WriteLine(“Duration = “ + duration + “ years”);
 Console.WriteLine();

 // Now loop through the specified number of years.
 int year = 1;
 while(year <= duration)
 {
 // Calculate the value of the principal plus interest.
 decimal interestPaid;
 interestPaid = principal * (interest / 100);

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 9609_563489-bk01ch05.indd 96 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

97

 // Now calculate the new principal by adding
 // the interest to the previous principal amount.
 principal = principal + interestPaid;
 // Round off the principal to the nearest cent.
 principal = decimal.Round(principal, 2);
 // Output the result.
 Console.WriteLine(year + “-” + principal);
 // Skip over to next year.
 year = year + 1;
 }
 }
 }
 // Wait for user to acknowledge the results.
 Console.WriteLine(“\nPress Enter to terminate . . . “);
 Console.Read();
 }
 }
}

The output from a trial run of CalculateInterestTable appears this way:

Enter principal: 1234
Enter interest: 12.5
Enter number of years: 10

Principal = 1234
Interest = 12.5%
Duration = 10 years

1-1388.25
2-1561.78
3-1757.00
4-1976.62
5-2223.70
6-2501.66
7-2814.37
8-3166.17
9-3561.94
10-4007.18

Press Enter to terminate . . .

Each value represents the total principal after the number of years elapsed,
assuming simple interest compounded annually. For example, the value of
$1,234 at 12.5 percent is $3,561.94 after nine years.

 Most of the values show two decimal places for the cents in the amount.
Because trailing zeros aren’t displayed in all versions of C#, some values
may show only a single digit — or even no digit — after the decimal point.
Thus, $12.70 may be displayed as 12.7. If so, you can fix the problem by
using the special formatting characters described in Chapter 3 of this mini-
book. (C# 2.0 and later appear to show trailing zeros by default.)

The CalculateInterestTable program begins by reading the principal
and interest values from the user and checking to make sure that they’re
valid. CalculateInterestTable then reads the number of years over
which to iterate and stores this value in the variable duration.

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 9709_563489-bk01ch05.indd 97 3/19/10 8:02 PM3/19/10 8:02 PM

98

Before entering the while loop, the program declares a variable year,
which it initializes to 1. This will be the “current year” — that is, this number
changes “each year” as the program loops. If the year number contained in
year is less than the total duration contained in duration, the principal for
“this year” is recalculated by calculating the interest based on the “previous
year.” The calculated principal is output along with the current-year offset.

 The statement decimal.Round() rounds the calculated value to the near-
est fraction of a cent.

The key to the program lies in the last line within the block. The statement
year = year + 1; increments year by 1. If year begins with the value 3,
its value will be 4 after this expression. This incrementing moves the calcula-
tions along from one year to the next.

After the year has been incremented, control returns to the top of the loop,
where the value year is compared to the requested duration. In the sample
run, if the current year is less than 10, the calculation continues. After being
incremented ten times, the value of year becomes 11, which is greater than
10, and program control passes to the first statement after the while loop —
the program stops looping.

Most looping commands follow this basic principle of incrementing a coun-
ter until it exceeds a previously defined value.

The counting variable year in CalculateInterestTable must be
declared and initialized before the while loop in which it is used. In addi-
tion, the year variable must be incremented, usually as the last statement
within the loop. As this example demonstrates, you have to look ahead to
see which variables you need. This pattern is easier to use after you’ve writ-
ten a few thousand while loops, like I have.

 When writing while loops, don’t forget to increment the counting variable,
as I did in this example:

int nYear = 1;
while (nYear < 10)
{
 // . . . whatever . . .
}

(We left off the year = year + 1;.) Without the increment, year is always
1 and the program loops forever. The only way to exit this infinite loop is to
terminate the program or reboot. (So nothing is truly infinite, with the possi-
ble exception of a particle passing through the event horizon of a black hole.)

 Make sure that the terminating condition can be satisfied. Usually, this means
your counting variable is being incremented properly. Otherwise, you’re look-
ing at an infinite loop, an angry user, bad press, and 50 years of drought.

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 9809_563489-bk01ch05.indd 98 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

99

Infinite loops are a common mistake, so don’t be embarrassed when you get
caught in one.

Doing the do . . . while loop
A variation of the while loop is the do . . . while loop. In this example,
the condition isn’t checked until the end of the loop:

int year = 1;
do
{
 // . . . some calculation . . .
 year = year + 1;
} while (year < duration);

In contrast to the while loop, the do . . . while loop is executed at
least once, regardless of the value of duration.

Breaking up is easy to do
You can use two special commands to bail out of a loop: break and con-
tinue. Executing the break command causes control to pass to the first
expression immediately following the loop. The similar continue command
passes control straight back up to the conditional expression at the top of
the loop to start over and get it right this time.

I have rarely used continue in my programming career, and I doubt that
many programmers even remember that it exists. Don’t forget about it com-
pletely because it may be a trick question in an interview or a crossword
puzzle.

Suppose that you want to take your money out of the bank as soon as the
principal exceeds a certain number of times the original amount, irrespec-
tive of the duration in years. (After all, how much money do you really
need?) You could easily accommodate this amount by adding the following
code within the loop:

if (principal > (maxPower * originalPrincipal))
{
 break;
}

 Anyone who watches The Simpsons as much as I do knows who maxPower
is. (Hint: D’oh!)

The break clause isn’t executed until the condition within the if compari-
son is true — in this case, until the calculated principal is maxPower times
the original principal or more. Executing the break statement passes con-
trol outside the while(year <= duration) statement, and the program
resumes execution immediately after the loop.

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 9909_563489-bk01ch05.indd 99 3/19/10 8:02 PM3/19/10 8:02 PM

100

 For a version of the interest table program with this addition, see the
CalculateInterestTableWithBreak program at csharp102.info. (I
don’t include the listing here, for brevity’s sake.)

An example of output from this program looks like this:

Enter principal: 100
Enter interest: 25
Enter number of years: 100

Principal = 100
Interest = 25%
Duration = 100 years
Quit if a multiplier of 10 is reached

1-125.00
2-156.25
3-195.31
4-244.14
5-305.18
6-381.48
7-476.85
8-596.06
9-745.08
10-931.35
11-1164.19
Press Enter to terminate . . .

The program terminates as soon as the calculated principal exceeds $1,000 —
thank goodness, you didn’t have to wait 100 years!

Looping until you get it right
The CalculateInterestTable program is smart enough to terminate in
the event that the user enters an invalid balance or interest amount. However,
jumping immediately out of the program just because the user mistypes some-
thing seems harsh. Even my user-unfriendly accounting program gives me
three chances to enter the correct password before it gives up.

 A combination of while and break enables the program to be a little more
flexible. The CalculateInterestTableMoreForgiving program demon-
strates the principle this way:

// CalculateInterestTableMoreForgiving -- Calculate the interest paid on a
// given principal over a period of years. This version gives the user
// multiple chances to input the legal principal and interest.
using System;
namespace CalculateInterestTableMoreForgiving
{
 using System;
 public class Program
 {
 public static void Main(string[] args)
 {
 // Define a maximum interest rate.
 int maximumInterest = 50;

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 10009_563489-bk01ch05.indd 100 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

101

 // Prompt user to enter source principal; keep prompting
 // until the correct value is entered.
 decimal principal;
 while(true)
 {
 Console.Write(“Enter principal: “);
 string principalInput = Console.ReadLine();
 principal = Convert.ToDecimal(principalInput);
 // Exit if the value entered is correct.
 if (principal >= 0)
 {
 break;
 }
 // Generate an error on incorrect input.
 Console.WriteLine(“Principal cannot be negative”);
 Console.WriteLine(“Try again”);
 Console.WriteLine();
 }
 // Now enter the interest rate.
 decimal interest;
 while(true)
 {
 Console.Write(“Enter interest: “);
 string interestInput = Console.ReadLine();
 interest = Convert.ToDecimal(interestInput);
 // Don’t accept interest that is negative or too large . . .
 if (interest >= 0 && interest <= maximumInterest)
 {
 break;
 }
 // . . . generate an error message as well.
 Console.WriteLine(“Interest cannot be negative “ +
 “or greater than “ + maximumInterest);
 Console.WriteLine(“Try again”);
 Console.WriteLine();
 }
 // Both the principal and the interest appear to be
 // legal; finally, input the number of years.
 Console.Write(“Enter number of years: “);
 string durationInput = Console.ReadLine();
 int duration = Convert.ToInt32(durationInput);
 // Verify the input.
 Console.WriteLine(); // Skip a line.
 Console.WriteLine(“Principal = “ + principal);
 Console.WriteLine(“Interest = “ + interest + “%”);
 Console.WriteLine(“Duration = “ + duration + “ years”);
 Console.WriteLine();
 // Now loop through the specified number of years.
 int year = 1;
 while(year <= duration)
 {
 // Calculate the value of the principal plus interest.
 decimal interestPaid;
 interestPaid = principal * (interest / 100);
 // Now calculate the new principal by adding
 // the interest to the previous principal.
 principal = principal + interestPaid;
 // Round off the principal to the nearest cent.
 principal = decimal.Round(principal, 2);
 // Output the result.
 Console.WriteLine(year + “-” + principal);
 // Skip over to next year.

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 10109_563489-bk01ch05.indd 101 3/19/10 8:03 PM3/19/10 8:03 PM

102

 year = year + 1;
 }
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate . . . “);
 Console.Read();
 }
 }
}

This program works largely the same way as do the examples in previous
sections of this chapter, except in the area of user input. This time, a while
loop replaces the if statement used in earlier examples to detect invalid
input:

decimal principal;
while(true)
{
 Console.Write(“Enter principal: “);
 string principalInput = Console.ReadLine();
 principal = Convert.ToDecimal(principalInput);
 // Exit when the value entered is correct.
 if (principal >= 0)
 {
 break;
 }
 // Generate an error on incorrect input.
 Console.WriteLine(“Principal cannot be negative”);
 Console.WriteLine(“Try again”);
 Console.WriteLine();
}

This section of code inputs a value from the user within a loop. If the value
of the text is okay, the program exits the input loop and continues. However,
if the input has an error, the user sees an error message and control passes
back to the program flow to start over.

 The program continues to loop until the user enters the correct input. (In
the worst case, the program could loop until an obtuse user dies of old age.)

Notice that the conditionals have been reversed because the question is no
longer whether illegal input should generate an error message but, rather,
whether the correct input should exit the loop. In the interest section, for
example, consider this test:

principal < 0 || principal > maximumInterest

This test changes to this:

interest >= 0 && interest <= maximumInterest

Clearly, interest >= 0 is the opposite of interest < 0. What may not
be as obvious is that the OR (||) operator is replaced with an AND (&&)
operator. It says, “Exit the loop if the interest is greater than zero AND less
than the maximum amount (in other words, if it is correct).”

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 10209_563489-bk01ch05.indd 102 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

103

By the way, how could you revise
CalculateInterestTableMoreForgiving to let the user run calculation
after calculation and enter new principal and interest figures every time until
she wants to quit? Hint: Use another while(true) loop with its own exit
condition.

Note that the principal variable must be declared outside the loop
because of scope rules, which I explain in the next section.

 It may sound obvious, but the expression true evaluates to true.
Therefore, while(true) is your archetypical infinite loop. It’s the
embedded break command that exits the loop. Therefore, if you use the
while(true) loop, make sure that your break condition can occur.

The output from a sample execution of this program (showing one of the
author’s ignorance) appears this way:

Enter principal: -1000
Principal cannot be negative
Try again

Enter principal: 1000
Enter interest: -10
Interest cannot be negative or greater than 50
Try again

Enter interest: 10
Enter number of years: 5

Principal = 1000
Interest = 10%
Duration = 5 years

1-1100.0
2-1210.00
3-1331.00
4-1464.10
5-1610.51
Press Enter to terminate . . .

The program refuses to accept a negative principal or interest amount and
patiently explains the mistake on each loop.

 Explain exactly what the user did wrong before looping back for further
input or else that person will become extremely confused. Showing an exam-
ple may also help, especially for formatting problems. A little diplomacy
can’t hurt, either, as Grandma may have pointed out.

Focusing on scope rules
A variable declared within the body of a loop is only defined within that loop.
Consider this code snippet:

Here We Go Loop-the-Loop

09_563489-bk01ch05.indd 10309_563489-bk01ch05.indd 103 3/19/10 8:03 PM3/19/10 8:03 PM

104

int days = 1;
while(days < duration)
{
 int average = value / days;
 // . . . some series of commands . . .
 days = days + 1;
}

 The variable average isn’t defined outside the while loop. Various rea-
sons for this exist, but consider this one: The first time the loop executes,
the program encounters the declaration int average and the variable is
defined. On the second loop, the program again encounters the declaration
for average, and were it not for scope rules, it would be an error because
the variable is already defined.

I could provide other, more convincing reasons than this one, but this one
should do for now.

Suffice it to say that the variable average goes away, as far as C# is con-
cerned, as soon as the program reaches the closed brace — and is redefined
each time through the loop.

Experienced programmers say that the scope of the variable average is lim-
ited to the while loop.

Looping a Specified Number of Times with for
The while loop is the simplest and second most commonly used looping
structure in C#. Compared to the for loop, however, the while loop is used
about as often as metric tools in an American machine shop.

The for loop has this structure:

for(initExpression; condition; incrementExpression)
{
 // . . . body of code . . .
}

When the for loop is encountered, the program first executes the initEx-
pression expression and then executes the condition. If the condition
expression is true, the program executes the body of the loop, which is sur-
rounded by the braces immediately following the for command. When the
program reaches the closed brace, control passes to incrementExpression
and then back to condition, where the next pass through the loop begins.

In fact, the definition of a for loop can be converted into this while loop:

initExpression;
while(condition)
{

Looping a Specified Number of Times with for

09_563489-bk01ch05.indd 10409_563489-bk01ch05.indd 104 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

105

 // . . . body of code . . .
 incrementExpression;
}

An example
You can better see how the for loop works in this example:

// Here is one C# expression or another.
a = 1;
// Now loop for awhile.
for(int year = 1; year < duration; year = year + 1)
{
 // . . . body of code . . .
}
// The program continues here.
a = 2;

Assume that the program has just executed the a = 1; expression. Next,
the program declares the variable year and initializes it to 1. Then the pro-
gram compares year to duration. If year is less than duration, the body
of code within the braces is executed. After encountering the closed brace,
the program jumps back to the top and executes the year = year + 1
clause before sliding back over to the year < duration comparison.

 The year variable is undefined outside the scope of the for loop. The
loop’s scope includes the loop’s heading as well as its body.

Why do you need another loop?
Why do you need the for loop if C# has an equivalent while loop? The
short answer is that you don’t — the for loop doesn’t bring anything to the
table that the while loop can’t already do.

However, the sections of the for loop exist for convenience — and to clearly
establish the three parts that every loop should have: the setup, exit crite-
ria, and increment. Not only is this arrangement easier to read, but it’s also
easier to get right. (Remember that the most common mistakes in a while
loop are forgetting to increment the counting variable and failing to provide
the proper exit criteria.)

Beyond any sort of song-and-dance justification that I may make, the most
important reason to understand the for loop is that it’s the loop everyone
uses — and it (along with its cousin, foreach) is the one you see 90 percent
of the time when you’re reading other people’s code.

 The for loop is designed so that the first expression initializes a counting
variable and the last section increments it; however, the C# language doesn’t
enforce any such rule. You can do anything you want in these two sections —
however, you would be ill advised to do anything but initialize and increment
the counting variable.

Looping a Specified Number of Times with for

09_563489-bk01ch05.indd 10509_563489-bk01ch05.indd 105 3/19/10 8:03 PM3/19/10 8:03 PM

106

The increment operator is particularly popular when writing for loops. (I
describe the increment operator along with other operators in Chapter 4 of
this minibook.) The previous for loop is usually written this way:

for(int year = 1; year < nDuration; year++)
{
 // . . . body of code . . .
}

You almost always see the postincrement operator used in a for loop
instead of the preincrement operator, although the effect in this case is the
same. There’s no reason other than habit and the fact that it looks cooler.
(The next time you want to break the ice, just haul out your C# listing full of
postincrement operators to show how cool you are. It almost never works,
but it’s worth a try.)

The for loop has one variation that I can’t claim to understand. If the logical
condition expression is missing, it’s assumed to be true. Thus for(;;) is
an infinite loop.

You see for(;;) used as an infinite loop more often than while(true). I
have no idea why that’s the case.

Nesting Loops
An inner loop can appear within an outer loop, this way:

for(. . .some condition . . .)
{
 for(. . .some other condition . . .)
 {
 // . . . do whatever . . .
 }
}

The inner loop is executed to completion after each pass through the outer
loop. The loop variable (such as year) used in the inner for loop isn’t
defined outside the inner loop’s scope.

 A loop contained within another loop is a nested loop. Nested loops cannot
“cross.” For example, the following code won’t work:

do // Start a do..while loop.
{
 for(. . .) // Start some for loop.
 {
 } while(. . .) // End do..while loop.
} // End for loop.

I’m not even sure what this chunk would mean, but it doesn’t matter
because the compiler tells you that it’s not legal anyway.

Nesting Loops

09_563489-bk01ch05.indd 10609_563489-bk01ch05.indd 106 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 5

G
e

ttin
g

 In
to

 th
e

P

ro
g

ra
m

 Flo
w

107

 A break statement within a nested loop breaks out of the inner loop only. In
the following example, the break statement exits loop B and goes back into
loop A:

// for loop A
for(. . .some condition . . .)
{
 // for loop B
 for(. . .some other condition . . .)
 {
 // . . . do whatever . . .
 if (something is true)
 {
 break; // Breaks out of loop B and not loop A
 }
 }
}

C# doesn’t have a break command that exits both loops simultaneously.

 That’s not as big a limitation as it sounds. In practice, the often-complex
logic contained within such nested loops is better encapsulated in a method.
Executing a return from within any of the loops exits the method —
thereby bailing out of all loops, no matter how nested they are. We describe
methods and the return statement in Chapter 7 of this minibook.

 The DisplayXWithNestedLoops example (not shown here) illustrates
nesting one loop inside another to do some primitive drawing on the screen.

Don’t goto Pieces
You can transfer control in an unstructured fashion by using the goto state-
ment. It’s followed by one of these items:

 ✦ A label

 ✦ A case in a switch statement

 ✦ The keyword default (the default clause of a switch statement)

The idea behind the latter two items is to “jump” from one case to another.

This snippet demonstrates how the goto statement is used:

// If the condition is true . . .
if (a > b)
{
 // . . . control passes unconditionally from the goto to the label.
 goto exitLabel;
}
// . . . whatever other code goes here . . .
exitLabel:
 // Control continues here.

Don’t goto Pieces

09_563489-bk01ch05.indd 10709_563489-bk01ch05.indd 107 3/19/10 8:03 PM3/19/10 8:03 PM

108

The goto statement is unpopular for the very reason that makes it such a
powerful control: It is almost completely unstructured. Tracking the flow of
control through anything larger than a trivial piece of code can be difficult if
you use goto. (Can you say “spaghetti code”?)

Religious wars have sprung up over the use of the goto statement. In fact, the
C# language itself has been criticized for its inclusion of the control. Actually,
goto is neither all that horrible nor necessary. Because you can almost
always avoid using goto, I recommend staying away from it, other than occa-
sionally using it to link two cases within a switch statement, like this:

switch(n) // This example becomes gnarly in the logic department . . .
{
 case 0:
 // Do something for the 0 case, then . . .
 goto 3; // jump to another case; no break statement needed.
 case 1:
 // Do something for the 1 case.
 break;
 case 3: // Case 0 jumps to here after doing its thing.
 // Add some case 3 stuff to what case 0 did, thus “chaining” the cases.
 break;
 default:
 // Default case.
 break;
}

Don’t get addicted to goto, though. Really.

Don’t goto Pieces

09_563489-bk01ch05.indd 10809_563489-bk01ch05.indd 108 3/19/10 8:03 PM3/19/10 8:03 PM

Chapter 6: Lining Up Your Ducks
with Collections

In This Chapter
✓ Creating variables that contain multiple items of data: Arrays

✓ Going arrays one better with flexible “collections”

✓ New features: Array and collection initializers and set-type collections

Simple one-value variables of the sort you may encounter in this book
fall a bit short in dealing with lots of items of the same kind: ten ducks

instead of just one, for example. C# fills the gap with two kinds of variables
that store multiple items, generally called collections. The two species of col-
lection are the array and the more general purpose collection class. Usually,
if I mean array, I say so, and if I mean collection class, I just call it that. If I
refer to a collection or a list, I usually mean that it can be either one.

An array is a data type that holds a list of items, all of which must be of the
same type: all int or all double, for example.

C# gives you quite a collection of collection classes, and they come in vari-
ous shapes, such as flexible lists (like strings of beads), queues (like the
line to buy your Spider-Man XII tickets), stacks (like the semistack of junk on
someone’s desk), and more. Most collection classes are like arrays in that
they can hold just apples or just oranges. But C# also gives you a few col-
lection classes that can hold both apples and oranges at a time — which is
useful only rarely. (And you have much better ways to manage the feat than
using these elderly collections.)

For now, if you can master the array and the List collection (although this
chapter introduces two other kinds of collections), you’ll do fine throughout
most of this book. But circle back here later if you want to pump up your
collection repertoire.

The C# Array
Variables that contain single values are plenty useful. Even class structures
that can describe compound objects made up of parts (such as a vehicle
with its engine and transmission) are critical. But you also need a construct
for holding a bunch of objects, such as Bill Gates’ extensive collection of

10_563489-bk01ch06.indd 10910_563489-bk01ch06.indd 109 3/19/10 8:03 PM3/19/10 8:03 PM

110

vintage cars or a certain author’s vintage sock collection. The built-in class
Array is a structure that can contain a series of elements of the same type
(all int values and all double values, for example, or all Vehicle objects
and Motor objects — you meet these latter sorts of objects in Chapter 7 of
this minibook).

The argument for the array
Consider the problem of averaging a set of six floating-point numbers. Each
of the six numbers requires its own double storage:

double d0 = 5;
double d1 = 2;
double d2 = 7;
double d3 = 3.5;
double d4 = 6.5;
double d5 = 8;

(Averaging int variables can result in rounding errors, as described in
Chapter 2 of this minibook.)

Computing the average of those variables might look like this:

double sum = d0 + d1 + d2 + d3 + d4 + d5;
double average = sum / 6;

Listing each element by name is tedious. Okay, maybe it’s not so tedious
when you have only 6 numbers to average, but imagine averaging 600 (or
even 6 million) floating-point values.

The fixed-value array
Fortunately, you don’t need to name each element separately. C# provides
the array structure that can store a sequence of values. Using an array, you
can put all your doubles into one variable, like this:

double[] doublesArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};

You can also declare an empty array without initializing it:

double[] doublesArray = new double[6];

This line allocates space for six doubles but doesn’t initialize them.

 The Array class, on which all C# arrays are based, provides a special syntax
that makes it more convenient to use. The paired brackets [] refer to the
way you access individual elements in the array:

The C# Array

10_563489-bk01ch06.indd 11010_563489-bk01ch06.indd 110 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
111

doublesArray[0] // Corresponds to d0 (that is, 5)
doublesArray[1] // Corresponds to d1 (that is, 2)
. . .

The 0th element of the array corresponds to d0, the 1th element to d1, the
2th element to d2, and so on. Programmers commonly refer to the 0th ele-
ment as “doublesArray sub-0,” to the first element as “doublesArray
sub-1,” and so on.

 The array’s element numbers — 0, 1, 2, . . . — are known as the index.

 In C#, the array index starts at 0 and not at 1. Therefore, you typically don’t
refer to the element at index 1 as the first element but, rather, as the “oneth
element” or the “element at index 1.” The first element is the zeroth element.
If you insist on using normal speech, just be aware that the first element is
always at index 0 and the second element is at index 1.

The doublesArray variable wouldn’t be much of an improvement, were it
not for the possibility that the index of the array is a variable. Using a for
loop is easier than writing out each element by hand, as this program
demonstrates:

 // FixedArrayAverage -- Average a fixed array of numbers using a loop.
namespace FixedArrayAverage
{
 using System;
 public class Program
 {
 public static void Main(string[] args)
 {
 double[] doublesArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};
 // Accumulate the values in the array into the variable sum.
 double sum = 0;
 for (int i = 0; i < 10; i++)
 {
 sum = sum + doublesArray[i];
 }
 // Now calculate the average.
 double average = sum / 10;
 Console.WriteLine(average);
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The program begins by initializing a variable sum to 0. Then it loops through the
values stored in doublesArray, adding each one to sum. By the end of the
loop, sum has accumulated the sum of all values in the array. The resulting
sum is divided by the number of elements to create the average. The output
from executing this program is the expected 4.6. (You can check it with your
calculator.)

The C# Array

10_563489-bk01ch06.indd 11110_563489-bk01ch06.indd 111 3/19/10 8:03 PM3/19/10 8:03 PM

112

The variable-length array
The array used in the FixedArrayAverage program example suffers from
these two serious problems:

 ✦ The size of the array is fixed at ten elements.

 ✦ Worse, the elements’ values are specified directly in the program.

A program that could read in a variable number of values, perhaps deter-
mined by the user during execution, would be much more flexible. It would
work not only for the ten values specified in FixedArrayAverage but also
for any other set of values, regardless of their number.

The format for declaring a variable-size array differs slightly from that of a
fixed-size, fixed-value array:

double[] doublesArrayVariable = new double[N]; // Variable, versus ...
double[] doublesArrayFixed = new double[10]; // Fixed

Here, N represents the number of elements to allocate.

The updated program VariableArrayAverage enables the user to specify
the number of values to enter. (N has to come from somewhere.) Because the
program retains the values entered, not only does it calculate the average, but
it also displays the results in a pleasant format, as shown here:

Fortunately, the FixedArrayAverage pro-
gram (in the preceding section “The fixed-value
array”) loops through all ten elements. But what
if you goof and don’t iterate through the loop
properly? You have these two cases to consider:

You iterate through only nine elements: C#
doesn’t consider it an error. If you want to read
nine elements of a ten-element array, who is C#
to say any differently? Of course, the average is
incorrect, but the program doesn’t know that.

You iterate through 11 (or more) elements:
Now C# cares a lot. It doesn’t let you index
beyond the end of an array, for fear that
you may overwrite an important value in
memory. To test it, change the comparison in
FixedArrayAverage’s for loop to the
following, replacing the value 10 with 11:

for(int i = 0; i < 11; i++)

When you execute the program, you see a
dialog box with this error message:

IndexOutOfRangeException was unhandled
Index was outside the bounds of the

array.

At first glance, this error message
seems imposing. However, you can
get the gist rather quickly: Clearly, the
IndexOutOfRangeException tells
you that the program tried to access an array
beyond the end of its range — accessing ele-
ment 11 in a 10-element array. (In Chapter 9 of
this minibook, I show you how to find out more
about that error.)

Checking array bounds

The C# Array

10_563489-bk01ch06.indd 11210_563489-bk01ch06.indd 112 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
113

 // VariableArrayAverage -- Average an array whose size is
// determined by the user at runtime, accumulating the values
// in an array. Allows them to be referenced as often as
// desired. In this case, the array creates an attractive output.
namespace VariableArrayAverage
{
 using System;
 public class Program
 {
 public static void Main(string[] args)
 {
 // First read in the number of doubles the user intends to enter.
 Console.Write(“Enter the number of values to average: “);
 string numElementsInput = Console.ReadLine();
 int numElements = Convert.ToInt32(numElementsInput);
 Console.WriteLine();
 // Now declare an array of that size.
 double[] doublesArray = new double[numElements]; // Here’s the ‘N’.
 // Accumulate the values into an array.
 for (int i = 0; i < numElements; i++)
 {
 // Prompt the user for another double.
 Console.Write(“enter double #” + (i + 1) + “: “);
 string val = Console.ReadLine();
 double value = Convert.ToDouble(val);
 // Add this to the array using bracket notation.
 doublesArray[i] = value;
 }
 // Accumulate ‘numElements’ values from
 // the array in the variable sum.
 double sum = 0;
 for (int i = 0; i < numElements; i++)
 {
 sum = sum + doublesArray[i];
 }

 // Now calculate the average.
 double average = sum / numElements;
 // Output the results in an attractive format.
 Console.WriteLine();
 Console.Write(average + “ is the average of (“ + doublesArray[0]);
 for (int i = 1; i < numElements; i++)
 {
 Console.Write(“ + “ + doublesArray[i]);
 }
 Console.WriteLine(“) / “ + numElements);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

Look at the following output of a sample run in which you enter five sequen-
tial values, 1 through 5, and the program calculates the average to be 3:

Enter the number of values to average:5

enter double #1: 1
enter double #2: 2
enter double #3: 3

The C# Array

10_563489-bk01ch06.indd 11310_563489-bk01ch06.indd 113 3/19/10 8:03 PM3/19/10 8:03 PM

114

enter double #4: 4
enter double #5: 5

3 is the average of (1 + 2 + 3 + 4 + 5) / 5
Press Enter to terminate...

The VariableArrayAverage program begins by prompting the user for
the number of values she intends to average. (That’s the N we mention a
little earlier.) The result is stored in the int variable numElements. In the
example, the number entered is 5.

The program continues by allocating an array doublesArray with the speci-
fied number of elements. In this case, the program allocates an array with five
elements. The program loops the number of times specified by numElements,
reading a new value from the user each time. After the last value, the program
calculates the average.

Getting console output just right, as in this example, is a little tricky. Follow
each statement in VariableArrayAverage carefully as the program out-
puts open parentheses, equal signs, plus signs, and each of the numbers in
the sequence, and compare it with the output.

The VariableArrayAverage program probably doesn’t completely satisfy
your thirst for flexibility. You don’t want to have to tell the program how
many numbers you want to average. What you really want is to enter num-
bers to average as long as you want — and then tell the program to average
what you entered. That’s where the C# collections come in. They give you a
powerful, flexible alternative to arrays. Getting input directly from the user
isn’t the only way to fill up your array or another collection, either.

The Length property
The for loop that’s used to populate the array in the
VariableArrayAverage program begins this way:

// Now declare an array of that size.
double[] doublesArray = new double[numElements];
// Accumulate the values into an array.
for (int i = 0; i < numElements; i++)
{
 . . .
}

The doublesArray is declared to be numElements items long. Thus the
clever programmer used a for loop to iterate through numElements items
of the array. (Iterate means to loop through the array one element at a time,
as with a for loop.)

It would be a shame and a crime to have to schlep around the variable
numElements with doublesArray everywhere it goes just so that you
know how long it is. Fortunately, that isn’t necessary. An array has a property

The C# Array

10_563489-bk01ch06.indd 11410_563489-bk01ch06.indd 114 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
115

named Length that contains its length. doublesArray.Length has the
same value as numElements.

The following for loop is preferable:

// Accumulate the values into an array.
for (int i = 0; i < doublesArray.Length; i++) ...

Initializing an array
The following lines show an array with its initializer and then one that allo-
cates space but doesn’t initialize the elements’ values:

double[] fixedLengthArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};
double[] variableLengthArray = new double[10];

You can do it all yourself using the following code:

double[] fixedLengthArray = new double[10] {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};

Here, you have specifically allocated the memory using new and then fol-
lowed that declaration with the initial values for the members of the array. I
think I can predict which form you prefer. (Hint: Line 1?)

A Loop Made foreach Array
Given an array of strings, the following loop averages their lengths:

public class Student // Read about classes in Book II.
{
 public string name;
 public double gpa; // Grade point average
}
public class Program
{
 public static void Main(string[] args)
 {
 // . . .create the array somehow . . .
 // Now average the students you have.
 double sum = 0.0;
 for (int i = 0; i < students.Length; i++)
 {
 sum += students[i].gpa;
 }
 double avg = sum / students.Length;
 // . . .do something with the average . . .
 }
}

The for loop iterates through the members of the array. (Yes, you can have
arrays of any sort of object, not just of simple types such as double and
string. You most likely haven’t been formally introduced to classes yet, so
bear with me a bit longer. I get into them in the next book.)

A Loop Made foreach Array

10_563489-bk01ch06.indd 11510_563489-bk01ch06.indd 115 3/19/10 8:03 PM3/19/10 8:03 PM

116

students.Length contains the number of elements in the array.

 C# provides another loop, named foreach, designed specifically for iterat-
ing through collections such as the array. It works this way:

// Now average the students that you have.
double sum = 0.0;
foreach (Student student in students)
{
 sum += student.gpa; // This extracts the current student’s GPA.
}
double avg = sum / students.Length;

The first time through the loop, foreach fetches the first Student object in
the array and stores it in the variable student. On each subsequent pass,
foreach retrieves the next element. Control passes out of the foreach
loop when all elements in the array have been processed.

Notice that no index appears in the foreach statement. The lack of an index
greatly reduces the chance of error and is simpler to write than the for
statement, although sometimes that index is handy and you prefer a for
loop.

 The foreach loop is even more powerful than it would seem from the exam-
ple. This statement works on other collection types in addition to arrays.
In addition, foreach handles multidimensional arrays (arrays of arrays, in
effect), a topic I don’t describe in this book. To find out all about multi-
dimensional arrays, look up multidimensional arrays in the C# Help system.

Sorting Arrays of Data
A common programming challenge is the need to sort the elements within
an array. Just because an array cannot grow or shrink doesn’t mean that the
elements within it cannot be moved, removed, or added. For example, the
following code snippet swaps the location of two string elements within
the array strings:

string temp = strings[i]; // Save the i’th string.
strings[i] = strings[k]; // Replace it with the kth.
strings[k] = temp; // Replace kth with temp.

In this example, the object reference in the ith location in the strings array
is saved so that it isn’t lost when the second statement replaces it with
another element. Finally, the temp variable is saved back into the kth loca-
tion. Pictorially, this process looks like Figure 6-1.

The data collections discussed in the rest of this chapter are more versatile
than the array for adding and removing elements.

Sorting Arrays of Data

10_563489-bk01ch06.indd 11610_563489-bk01ch06.indd 116 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
117

Figure 6-1:
The term
swapping
two objects
means
swapping
references
to two
objects.

Before:

After:

planets[i]

planets[j]

planets[i]

planets[j]

“Mercury”

“Earth”

“Mercury”

“Earth”

The following program demonstrates how to use the ability to manipulate
elements within an array as part of a sort. This particular sorting algorithm
is the bubble sort. Though it’s not so great on large arrays with thousands of
elements, it’s simple and effective on small arrays:

 // BubbleSortArray -- Given a list of planets, sort their
// names: first, in alphabetical order.
// Second, by the length of their names, shortest to longest.
// Third, from longest to shortest.
// This demonstrates using and sorting arrays, working with
// them by array index. Two sort algorithms are used:
// 1. The Sort algorithm used by class Array’s Sort() method.
// 2. The classic Bubble Sort algorithm.
using System;

namespace BubbleSortArray
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“The 5 planets closest to the sun, in order: “);
 string[] planets =
 new string[] { “Mercury”, “Venus”, “Earth”, “Mars”, “Jupiter” };
 foreach (string planet in planets)
 {
 // Use the special char \t to insert a tab in the printed line.
 Console.WriteLine(“\t” + planet);
 }

Sorting Arrays of Data

10_563489-bk01ch06.indd 11710_563489-bk01ch06.indd 117 3/19/10 8:03 PM3/19/10 8:03 PM

118

 Console.WriteLine(“\nNow listed alphabetically: “);
 // Array.Sort() is a method on the Array class.
 // Array.Sort() does its work in-place in the planets array,
 // which leaves you without a copy of the original array. The
 // solution is to copy the old array to a new one and sort it.
 string[] sortedNames = planets;
 Array.Sort(sortedNames);
 // This demonstrates that (a) sortedNames contains the same
 // strings as planets and (b) that they’re now sorted.
 foreach (string planet in sortedNames)
 {
 Console.WriteLine(“\t” + planet);
 }

 Console.WriteLine(“\nList by name length - shortest first: “);
 // This algorithm is called “Bubble Sort”: It’s the simplest
 // but worst-performing sort. The Array.Sort() method is much
 // more efficient, but I couldn’t use it directly to sort the
 // planets in order of name length because it sorts strings,
 // not their lengths.
 int outer; // Index of the outer loop
 int inner; // Index of the inner loop
 // Loop DOWN from last index to first: planets[4] to planets[0].
 for (outer = planets.Length - 1; outer >= 0; outer--)
 {
 // On each outer loop, loop through all elements BEYOND the
 // current outer element. This loop goes up, from planets[1]
 // to planets[4]. Using the for loop, you can traverse the
 // array in either direction.
 for (inner = 1; inner <= outer; inner++)
 {
 // Compare adjacent elements. If the earlier one is longer
 // than the later one, swap them. This shows how you can
 // swap one array element with another when they’re out of order.
 if (planets[inner - 1].Length > planets[inner].Length)
 {
 // Temporarily store one planet.
 string temp = planets[inner - 1];
 // Now overwrite that planet with the other one.
 planets[inner - 1] = planets[inner];
 // Finally, reclaim the planet stored in temp and put
 // it in place of the other.
 planets[inner] = temp;
 }
 }
 }
 foreach (string planet in planets)
 {
 Console.WriteLine(“\t” + planet);
 }

 Console.WriteLine(“\nNow listed longest first: “);
 // That is, just loop down through the sorted planets.
 for(int i = planets.Length - 1; i >= 0; i--)
 {
 Console.WriteLine(“\t” + planets[i]);
 }

 Console.WriteLine(“\nPress Enter to terminate...”);
 Console.Read();
 }
 }
}

Sorting Arrays of Data

10_563489-bk01ch06.indd 11810_563489-bk01ch06.indd 118 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
119

The program begins with an array containing the names of the first five plan-
ets closest to the sun. (To keep the figures small, I didn’t include the outer
planets, so I didn’t have to decide about poor Pluto, which is, what now? — a
planetoid or something?)

The program then invokes the array’s own Sort() method. After sorting
with the built-in Sort() method on the Array class, the program sorts the
lengths of the planets’ names using a custom sort just to amaze you.

The built-in Sort() method for arrays (and other collections) is, without
a doubt, more efficient than the custom bubble sort. Don’t roll your own
unless you have good reason to.

The algorithm for the second sort works by continuously looping through
the list of strings until the list is sorted. On each pass through the sorted-
Names array, the program compares each string to its neighbor. If the two
are found to be out of order, the method swaps them and then flags the list
as not sorted. Figures 6-2 through 6-5 show the planets list after each pass.
In Figure 6-5, note that the next-to-last pass results in a sorted list and that
the final pass terminates the sort because nothing changes.

Figure 6-2:
Before
starting the
bubble sort.

Mercury And they’re off and running!

Venus

Earth

Mars

Jupiter

Figure 6-3:
After Pass
1 of the
bubble sort.

Earth Earth edges its way into the lead...

Mercury

Venus

Mars

Jupiter

Figure 6-4:
After Pass
2 of the
bubble sort.

Earth

Mars jumps past Mercury and Venus for second placeMars

Mercury

Venus

Jupiter

Sorting Arrays of Data

10_563489-bk01ch06.indd 11910_563489-bk01ch06.indd 119 3/19/10 8:03 PM3/19/10 8:03 PM

120

Figure 6-5:
The final
pass
terminates
the sort
because
nothing
changes.

Earth

...and Jupiter noses out Mars to place.

At the finish, it’s Earth crossing the line in first place for the win...

Meanwhile, Mars struggles to show.

Jupiter

Mars

Mercury

Venus

Eventually, longer planet names “bubble” their way to the top of the list;
hence the name bubble sort.

Give single-item variables singular names, as in planet or student. The
name of the variable should somehow include the name of the class, as
in badStudent or goodStudent or sexyCoedStudent. Give arrays (or
other collections) plural names, as in students or phoneNumbers or
phoneNumbersInMyPalmPilot. As always, this tip reflects the opinion of
the authors and not of this book’s publisher nor any of its shareholders —
C# doesn’t care how you name your variables.

New Feature: Using var for Arrays
Traditionally, you used one of the following forms (which are as old as C# —
almost six years old at the time this book was written) to initialize an array:

int[] numbers = new int[3]; // Size but no initializer, or ...
int[] numbers = new int[] { 1, 2, 3 }; // Initializer but no size, or ...
int[] numbers = new int[3] { 1, 2, 3 };// Size and initializer, or ...
int[] numbers = { 1, 2, 3 }; // No ‘new’ keyword -- extreme short form.

Chapter 2 of this minibook introduces the new var keyword, which tells the
C# compiler, “You figure out the variable type from the initializer expression
I’m providing.”

Happily, var works with arrays, too:

// myArray is an int[] with 6 elements.
var myArray = new [] { 2, 3, 5, 7, 11, 13 }; // Initializer required!

The new syntax has only two changes:

 ✦ var is used instead of the explicit type information for the numbers
array on the left side of the assignment.

 ✦ The int keyword is omitted before the brackets on the right side of the
assignment. It’s the part that the compiler can infer.

New Feature: Using var for Arrays

10_563489-bk01ch06.indd 12010_563489-bk01ch06.indd 120 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
121

 In the var version, the initializer is required. The compiler uses it to infer
the type of the array elements without the int keyword.

Here are a few more examples:

var names = new [] { “John”, “Paul”, “George”, “Ringo” }; // Strings
var averages = new [] { 3.0, 3.34, 4.0, 2.0, 1.8 }; // Doubles
var prez = new []{new President(“FDR”), new President(“JFK”)}; // Presidents

 You can’t use the extreme short form for initializing an array when you use
var. The following line doesn’t compile:

var names = { “John”, “Paul”, “George”, “Ringo” }; // Needs ‘new []’

The var way is less concise, but when used in some other situations not
involving arrays, it truly shines and in some cases is mandatory. (You can
see examples in Chapter 7.)

 The UsingVarWithArraysAndCollections sample program on this
book’s Web site demonstrates var with array initializers. Note that you can’t
use var as a variable name now, as you could in the past. It’s a crummy vari-
able name anyway.

Loosening Up with C# Collections
Often an array is the simplest, most straightforward way to deal with a list of
Students or a list of doubles. You also encounter many places in the .NET
Framework class library that require the use of arrays.

But arrays have a couple of fairly serious limitations that sometimes get in
your way. At such times, you’ll appreciate the extensive C# repertoire of
more flexible collection classes.

Although arrays have the advantage of simplicity and can have multiple
dimensions, they suffer from two important limitations:

 ✦ A program must declare the size of an array when it’s created. Unlike
Visual Basic, C# doesn’t let you change the size of an array after it’s
defined. For example, you might not know up front how big the array
needs to be.

 ✦ Inserting or removing an element in the middle of an array is wildly
inefficient. You have to move around all the elements to make room. In
a big array, that can be a huge, time-consuming job.

Loosening Up with C# Collections

10_563489-bk01ch06.indd 12110_563489-bk01ch06.indd 121 3/19/10 8:03 PM3/19/10 8:03 PM

122

Most collections, on the other hand, make it much easier to add, insert, or
remove elements, and you can resize them as needed, right in midstream. In
fact, most collections usually take care of resizing automatically.

If you need a multidimensional data structure, use an array. No collection
allows multiple dimensions (although you can create some elaborate data
structures, such as collections of arrays or collections of collections).

Arrays and collections have some characteristics in common:

 ✦ Each can contain elements of only one type. You must specify that type
in your code, at compile time, and after you declare the type, it can’t
change.

 ✦ As with arrays, you can access most collections with array-like syntax
using square brackets to specify an index: myList[3] = “Joe”.

 ✦ Both collections and arrays have methods and properties. Thus, to find
the number of elements in the following smallPrimeNumbers array,
you call its Length property:

var smallPrimeNumbers = new [] { 2, 3, 5, 7, 11, 13 };
int numElements = smallPrimeNumbers.Length; // Result is 6.

 With a collection, you call its Count property:
List<int> smallPrimes = new List<int> { 2, 3, 5, 7, 11, 13 };
int numElements = smallPrimes.Count; // Collections have a Count

property.

 Check out class Array in Help to see what other methods and proper-
ties it has (7 public properties and 36 public methods).

Understanding Collection Syntax
In this section, I’ll get you up and running with collection syntax and intro-
duce the most important and most frequently used collection classes.

Table 6-1 lists the main collection classes in C#. I find it useful to think of col-
lections as having various “shapes” — the list shape or dictionary shape, for
example.

Understanding Collection Syntax

10_563489-bk01ch06.indd 12210_563489-bk01ch06.indd 122 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
123

Table 6-1 The Most Common Collection “Shapes”

Class Description

List<T> This dynamic array contains objects of type T.

LinkedList<T> This is a linked list of objects of type T.

Queue<T> Start at the back end of the line and end up at the
front.

Stack<T> Always add or delete items at the “top” of the list,
like a stack of cafeteria trays.

Dictionary<TKey,
TValue>

This structure works like a dictionary. Look up a key
(a word, for example) and retrieve its corresponding
value (for example, definition).

HashSet<T> This structure resembles a mathematical set, with no
duplicate items. It works much like a list but provides
mathematical set operations, such as union and
intersection.

Figuring out <T>
In the mysterious-looking <T> notation you see in Table 6-1, <T> is a place-
holder for a particular data type. To bring this symbolic object to life, instan-
tiate it by inserting a real type, like this:

List<int> intList = new List<int>(); // Instantiating for int

Instantiate is geekspeak for “Create an object (instance) of this type.”

For example, you might create different List<T> instantiations for types
int, string, and Student, for example. By the way, T isn’t a sacred name.
You can use anything you like — for instance, <dummy> or <aType>. It’s
common to use T, U, V, and so on.

Notice how I express the Dictionary<TKey, TValue> collection in Table
6-1. Here, two types are needed: one for the dictionary’s keys and one for
the values associated with the keys. I cover dictionaries later, in the section
“Using Dictionaries.”

If this notation seems a bit forbidding, don’t worry. You get used to it.

Understanding Collection Syntax

10_563489-bk01ch06.indd 12310_563489-bk01ch06.indd 123 3/19/10 8:03 PM3/19/10 8:03 PM

124

Going generic
These modern collections are known as generic collections, in the sense that
you can fill in a blank template, of sorts, with a type (or types) in order to
create a custom collection. If the generic List<T> seems puzzling, check
out Chapter 8 in this minibook. That chapter discusses the generic C# facili-
ties in more detail. In particular, the chapter shows you how to roll your own
generic collections, classes, methods, and other types.

Using Lists
Suppose you need to store a list of MP3 objects, each of which represents
one item in your MP3 music collection. As an array, it might look like this:

MP3[] myMP3s = new MP3[50]; // Start with an empty array.
myPP3s[0] = new MP3(“Norah Jones”); // Create an MP3 and add it to the array.
// ... and so on.

With a list collection, it looks like this:

List<MP3> myMP3s = new List<MP3>(); // An empty list
myMP3s.Add(new MP3(“Avril Lavigne”)); // Call the list’s Add() method to add.
// ... and so on.

So what, you say? These examples look similar, and the list doesn’t appear
to provide any advantage over the array. But what happens when you add
the 50th MP3 to the array and then want to add a 51st? You’re out of room.
Your only course is to declare a new, larger array and then copy all MP3s
from the old array into the new one. Also, if you remove an MP3 from the
array, your array is left with a gaping hole. What do you put into that empty
slot to take the place of the MP3 you ditched? The value null, maybe?

The list collection sails happily on, in the face of those same obstacles. Want
to add MP3 number 51? No problem. Want to junk your old Pat Boone MP3s?
(Are there any?) No problem. The list takes care of healing itself after you
delete old Pat.

 If your list (or array, for that matter) can contain null items, be sure to
check for null when you’re looping through with for or foreach. You
don’t want to call the Play() method on a null MP3 item. It results in an
error.

 The ListCollection example on this book’s Web site shows some of the
things you can do with List<T>. In the following code listing, I’ll intersperse
explanations with bits of code.

Using Lists

10_563489-bk01ch06.indd 12410_563489-bk01ch06.indd 124 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
125

The following code (excerpted from the example) shows how to instantiate
a new, empty list for the string type. In other words, this list can hold only
strings:

// List<T>: note angle brackets plus parentheses in
// List<T> declaration; T is a “type parameter”,
// List<T> is a “parameterized type.”
// Instantiate for string type.
List<string> nameList = new List<string>();
sList.Add(“one”);
sList.Add(3); // Compiler error here!
sList.Add(new Student(“du Bois”)); // Compiler error here!

You add items to a List<T> by using its Add() method. The preceding
code snippet successfully adds one string to the list, but then it runs into
trouble trying to add first an integer and then a Student. The list was
instantiated for strings, so the compiler rejects both attempts.

The next code fragment instantiates a completely new list for type int and
then adds two int values to the list. Afterward, the foreach loop iterates
the int list, printing out the ints:

// Instantiate for int.
List<int> intList = new List<int>();
intList.Add(3); // Fine.
intList.Add(4);
Console.WriteLine(“Printing intList:”);
foreach(int i in intList) // foreach just works for all collections.
{
 Console.WriteLine(“int i = “ + i);
}

The following bit of code instantiates a new list to hold Students and adds
two students with its Add() method. But then notice the array of Students,
which I add to the student list using its AddRange() method. AddRange()
lets you add a whole array or (almost) any other collection to the list, all at
once:

// Instantiate for Student.
List<Student> studentList = new List<Student>();
Student student1 = new Student(“Vigil”);
Student student2 = new Student(“Finch”);
studentList.Add(student1);
studentList.Add(student2);
Student[] students = { new Student(“Mox”), new Student(“Fox”) };
studentList.AddRange(students); // Add whole array to List.
Console.WriteLine(“Num students in studentList = “ + studentList.Count);

(Don’t worry about the “new Student” stuff. I get to that topic in Book II.)

You can easily convert lists to arrays and vice versa. To put an array into a
list, use the list’s AddRange() method as just described. To convert a list to
an array, call the list’s ToArray() method:

Using Lists

10_563489-bk01ch06.indd 12510_563489-bk01ch06.indd 125 3/19/10 8:03 PM3/19/10 8:03 PM

126

Student[] students = studentList.ToArray(); // studentList is a List<Student>.

List<T> also has a number of other methods for adding items, including
methods to insert one or more items anywhere in the list and methods to
remove items or clear the list. Note that List<T> also has a Count prop-
erty. (This single nit can trip you up if you’re used to the Length property
on arrays and strings. For collections, it’s Count.)

The next snippet demonstrates several ways to search a list: IndexOf()
returns the array-style index of an item within the list, if found, or -1 if not
found. The code also demonstrates accessing an item with array-style index-
ing and via the Contains() method. Other searching methods include
BinarySearch(), not shown:

// Search with IndexOf().
Console.WriteLine(“Student2 at “ + studentList.IndexOf(student2));
string name = studentList[3].Name; // Access list by index.
if(studentList.Contains(student1)) // student1 is a Student object.
{
 Console.WriteLine(student1.Name + “ contained in list”);
}

The final code segment demonstrates several more List<T> operations,
including sorting, inserting, and removing items:

studentList.Sort(); // Assumes Student implements IComparable interface (Ch 14).
studentList.Insert(3, new Student(“Ross”));
studentList.RemoveAt(3); // Deletes the third element.
Console.WriteLine(“removed “ + name); // Name defined above

That’s only a sampling of the List<T> methods. You can look up the full list
in Help.

To look up generic collections you have to look in the Help index for the
term List<T>. If you try searching for just List, you’ll be lost in a list of lists of
lists. If you want to see information about the whole set of collection classes
(well, the generic ones), search the index for generic collections.

Using Dictionaries
You’ve no doubt used Webster’s or another dictionary. It’s organized as a
bunch of words in alphabetical order. Associated with each word is a body
of information including pronunciations, definitions, and other information.
To use a dictionary, you look up a word and retrieve its information.

In C#, the dictionary “shape” differs from the list shape. Dictionaries are rep-
resented by the Dictionary<TKey, TValue> class. TKey represents the
data type used for the dictionary’s keys (similar to the words in a standard
dictionary or the terms you look up). TValue represents the data type used

Using Dictionaries

10_563489-bk01ch06.indd 12610_563489-bk01ch06.indd 126 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
127

to store the information or data associated with a key (similar to the word’s
definitions in Webster’s).

 .NET dictionaries are based on the idea of a hash table. Imagine a group of
buckets spread around the floor. When you compute a hash, using a hash
function, you get a value that specifies only one of the buckets. That same
hash always points to the same bucket. If the hash is computed properly,
you should see a good, fairly even distribution of items spread among the
buckets. Thus the hash is a key to one of the buckets. Provide the key to
retrieve the bucket’s contents — its value.

 Using dictionaries is no harder in C# than in high school. The following
DictionaryExample program (excerpts) shows a few things you can do
with dictionaries. To save a little space, we show just parts of the Main()
method.

 If you find the going a bit rough here, you may want to circle back later.

The first piece of the code just creates a new Dictionary object that has
string keys and string values. You aren’t limited to strings, though.
Either the key or the value, or both, can be any type. Note that the Add()
method requires both a key and a value.

Dictionary<string, string> dict = new Dictionary<string, string>();
// Add(key, value).
dict.Add(“C#”, “cool”);
dict.Add(“C++”, “like writing Sanskrit poetry in Morse code”);
dict.Add(“VB”, “a simple but wordy language”);
dict.Add(“Java”, “good, but not C#”);
dict.Add(“Fortran”, “ANCNT”); // 6-letters-max variable name for “ancient.”
dict.Add(“Cobol”, “even more wordy, or is it wordier, and verbose than VB”);

The ContainsKey() method tells you whether the dictionary contains a
particular key. There’s a corresponding ContainsValue() method too:

// See if the dictionary contains a particular key.
Console.WriteLine(“Contains key C# “ + dict.ContainsKey(“C#”)); // True
Console.WriteLine(“Contains key Ruby “ + dict.ContainsKey(“Ruby”)); // False

You can, of course, iterate the dictionary in a loop just as you can in any
collection. But keep in mind that the dictionary is like a list of pairs of
items — think of each pair as an object that contains both the key and the
value. So to iterate the whole dictionary with foreach, you need to retrieve
one of the pairs each time through the loop. The pairs are objects of type
KeyValuePair<TKey, TValue>. In the WriteLine() call, I use the pair’s
Key and Value properties to extract the items. Here’s what it looks like:

// Iterate the dictionary’s contents with foreach.
// Note that you’re iterating pairs of keys and values.
Console.WriteLine(“\nContents of the dictionary:”);
foreach (KeyValuePair<string, string> pair in dict)

Using Dictionaries

10_563489-bk01ch06.indd 12710_563489-bk01ch06.indd 127 3/19/10 8:03 PM3/19/10 8:03 PM

128

{
 // Because the key happens to be a string, we can call string methods on it.
 Console.WriteLine(“Key: “ + pair.Key.PadRight(8) + “Value: “ + pair.Value);
}

In the final segment of the example program, you can see how to iterate just
the keys or just the values. The dictionary’s Keys property returns another
collection: a list-shaped collection of type Dictionary<TKey, TValue>.
KeyCollection. Because the keys happen to be strings, you can iterate
the keys as strings and call string methods on them. The Values property
is similar. The final bit of code uses the dictionary’s Count property to see
how many key/value pairs it contains.

// List the keys, which are in no particular order.
Console.WriteLine(“\nJust the keys:”);
// Dictionary<TKey, TValue>.KeyCollection is a collection of just the keys,
// in this case strings. So here’s how to retrieve the keys:
Dictionary<string, string>.KeyCollection keys = dict.Keys;
foreach(string key in keys)
{
 Console.WriteLine(“Key: “ + key);
}

// List the values, which are in same order as key collection above.
Console.WriteLine(“\nJust the values:”);
Dictionary<string, string>.ValueCollection values = dict.Values;
foreach (string value in values)
{
 Console.WriteLine(“Value: “ + value);
}
Console.Write(“\nNumber of items in the dictionary: “ + dict.Count);

Of course, that doesn’t exhaust the possibilities for working with dictionar-
ies. Look up generic dictionary in the Help index for all the details.

 Dictionary pairs are in no particular order, and you can’t sort a dictionary. It
really is just like a bunch of buckets spread around the floor.

Array and Collection Initializers
In this section, I summarize initialization techniques for both arrays and col-
lections — both old-style and new. You may want to bend the page corner.

Initializing arrays
 As a reminder, given the new var syntax covered earlier in this chapter, an

array declaration can look like either of these examples:

int[] numbers = { 1, 2, 3 }; // Shorter form -- can’t use var.
var numbers = new [] { 1, 2, 3 }; // Full initializer mandatory with var.

Array and Collection Initializers

10_563489-bk01ch06.indd 12810_563489-bk01ch06.indd 128 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
129

Initializing collections
Meanwhile, the traditional way to initialize a collection, such as a List<T> — or
a Queue<T> or Stack<T> — back in the C# 2.0 days (a number of years ago),
was this:

List<int> numList = new List<int>(); // New empty list.
numbers.Add(1); // Add elements one at a time.
numbers.Add(2);
numbers.Add(3); // ...tedious!

Or, if you had the numbers in an array or another collection already, it went
like this:

List<int> numList = new List<int>(numbers); // Initializing from an array or...
List<int> numList2 = new List<int>(numList);// from another collection or...
numList.AddRange(numbers); // using AddRange

 When initializing lists, queues, or stacks as shown here, you can pass in
any array or list-like collection, including lists, queues, stacks, and the new
sets, which I cover in the next section (but not dictionaries — their shape is
wrong). The MoreCollections example on the Web site illustrates several
cases of initializing one collection from another.

 Since C# 3.0, collection initializers resemble the new array initializers and
are much easier to use than most of the earlier forms. The new initializers
look like this:

List<int> numList = new List<int> { 1, 2, 3 }; // List
int[] intArray = { 1, 2, 3 }; // Array

The key difference between the new array and collection initializers is that you
still must spell out the type for collections — which means giving List<int>
after the new keyword (see the boldface in the preceding example).

 Of course, you can also use the var keyword with collections:

var list = new List<string> { “Head”, “Heart”, “Hands”, “Health” };

You can also use the new dynamic keyword:

Dynamic list = new List<string> { “Head”, “Heart”, “Hands”, “Health” };

Initializing dictionaries with the new syntax looks like this:

Dictionary<int, string> dict =
 new Dictionary<int, string> { { 1, “Sam” }, { 2, “Joe” } };

Outwardly, this example looks the same as for List<T>, but inside the outer
curly braces, you see a second level of curly-brace-enclosed items, one per
entry in the dictionary. Because this dictionary dict has integer keys and

Array and Collection Initializers

10_563489-bk01ch06.indd 12910_563489-bk01ch06.indd 129 3/19/10 8:03 PM3/19/10 8:03 PM

130

string values, each inner pair of curly braces contains one of each, separated
by a comma. The key/value pairs are separated by commas as well.

Initializing sets (see the next section) is much like initializing lists:

HashSet<int> biggerPrimes = new HashSet<int> { 19, 23, 29, 31, 37, 41 };

 The UsingVarWithArraysAndCollections example on this book’s Web
site demonstrates the var keyword used with arrays and collections.

Using Sets
C# 3.0 added the new collection type HashSet<T>. A set is an unordered col-
lection with no duplicate items.

The set concept comes from mathematics. Think of the set of genders
(female and male), the set of days in a week, or the set of variations on the
triangle (isosceles, equilateral, scalene, right, obtuse). Unlike math sets, C#
sets can’t be infinite, though they can be as large as available memory.

You can do things to a set in common with other collections, such as add,
delete, and find items. But you can also perform several specifically set-like
operations, such as union and intersection. Union joins the members of two
sets into one. Intersection finds the overlap between two sets and results in a
set containing only the overlapping members. So sets are good for combin-
ing and eliminating items.

 Like dictionaries, sets are implemented using hash tables. Sets resemble
dictionaries with keys but no values, making them list-like in shape. See the
earlier section “Using Dictionaries” for details.

 To create a HashSet<T>, you can do this:

HashSet<int> smallPrimeNumbers = new HashSet<int>();
smallPrimeNumbers.Add(2);
smallPrimeNumbers.Add(3);

Or, more conveniently, you can use a collection initializer:

HashSet<int> smallPrimeNumbers = new HashSet<int> { 2, 3, 5, 7, 11, 13 };

Or create the set from an existing collection of any list-like kind, including
arrays:

List<int> intList = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7 };
HashSet<int> numbers = new HashSet<int>(intList);

If you attempt to add to a hash set an item that the set already contains, as
in this example:

Using Sets

10_563489-bk01ch06.indd 13010_563489-bk01ch06.indd 130 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
131

smallPrimeNumbers.Add(2);

the compiler doesn’t treat the duplication as an error (and doesn’t change the
hash set, which can’t have duplicates). Actually, Add() returns true if the
addition occurred and false if it didn’t. You don’t have to use that fact, but it
can be useful if you want to do something when an attempt is made to add a
duplicate:

bool successful = smallPrimeNumbers.Add(2);
if(successful)
{
 // 2 was added, now do something useful.
}
// If successful is false, not added because it was already there

 The following example — the HashSetExample on the Web site — shows
off several HashSet<T> methods but, more important, demonstrates using
a HashSet<T> as a tool for working with other collections. You can do strictly
mathematical operations with HashSet<T>, but we find its ability to com-
bine collections in various ways quite handy.

The first segment of this code starts with a List<string> and an array.
Each contains color names. Though you could combine the two by simply
calling the list’s AddRange() method:

colors.AddRange(moreColors);

the resulting list contains some duplicates (yellow, orange). Using a
HashSet<T> and the UnionWith() method, on the other hand, you can
combine two collections and eliminate any duplicates in one shot, as the fol-
lowing example shows.

 Here’s the beginning of the HashSetExample on this book’s Web site:

Console.WriteLine(“Combining two collections with no duplicates:”);
List<string> colors = new List<string> { “red”, “orange”, “yellow” };
string[] moreColors = { “orange”, “yellow”, “green”, “blue”, “violet” };
// Want to combine but without any duplicates.
// Following is just the first stage ...
HashSet<string> combined = new HashSet<string>(colors);
// ... now for the second stage.
// UnionWith() collects items in both lists that aren’t duplicated,
// resulting in a combined collection whose members are all unique.
combined.UnionWith(moreColors);
foreach (string color in combined)
{
 Console.WriteLine(color);
}

The result given here contains “red”, “orange”, “yellow”, “green”,
“blue”, and “violet”. The first stage uses the colors list to initialize
a new HashSet<T>. The second stage then calls the set’s UnionWith()
method to add in the moreColors array — but adding only the ones not

Using Sets

10_563489-bk01ch06.indd 13110_563489-bk01ch06.indd 131 3/19/10 8:03 PM3/19/10 8:03 PM

132

already in the set. The set ends up containing just the colors in both origi-
nal lists. Green, blue, and violet come from the second list; red, orange, and
yellow come from the first. The moreColors array’s orange and yellow
would duplicate the ones already in the set, so they’re screened out.

But suppose that you want to end up with a List<T> containing those
colors, not a HashSet<T>. The next segment shows how to create a new
List<T> initialized with the combined set:

 Console.WriteLine(“\nConverting the combined set to a list:”);
 // Initialize a new List from the combined set above.
 List<string> spectrum = new List<string>(combined);
 foreach(string color in spectrum)
 {
 Console.WriteLine(color);
 }

Back when these examples were written, the 2008 U.S. presidential campaign
was in full swing, with about ten early candidates in each major party. A
good many of those candidates were also members of the U.S. Senate. How
can you produce a list of just the candidates who are also in the Senate? The
HashSet<T> IntersectWith() method gives you the overlapping items
between the candidate list and the Senate list — items in both lists, but only
those items:

Console.WriteLine(“\nFinding the overlap in two lists:”);
List<string> presidentialCandidates =
 new List<string> { “Clinton”, “Edwards”, “Giuliani”, “McCain”, “Obama”,

“Romney” };
List<string> senators = new List<string> { “Alexander”, “Boxer”, “Clinton”,

“McCain”, “Obama”, “Snowe” };
HashSet<string> senatorsRunning = new HashSet<string>(presidentialCandidates);
// IntersectWith() collects items that appear in both lists, eliminates others.
senatorsRunning.IntersectWith(senators);
foreach (string senator in senatorsRunning)
{
 Console.WriteLine(senator);
}

The result is “Clinton”, “McCain”, “Obama” because those are the only
ones in both lists. The opposite trick is to remove any items that appear
in both of two lists so that you end up with just the items in your target
list that aren’t duplicated in the other list. This calls for the HashSet<T>
method ExceptWith():

Console.WriteLine(“\nExcluding items from a list:”);
Queue<int> queue =
 new Queue<int>(new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17 });
HashSet<int> unique = new HashSet<int> { 1, 3, 5, 7, 9, 11, 13, 15 };
// ExceptWith() removes items in unique that are also in queue: 1, 3, 5, 7.
unique.ExceptWith(queue);
foreach (int n in unique)
{
 Console.WriteLine(n.ToString());
}

Using Sets

10_563489-bk01ch06.indd 13210_563489-bk01ch06.indd 132 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 6

Lin
in

g
 U

p
 Y

o
u

r
D

u
c

k
s w

ith

C
o

lle
c

tio
n

s
133

After this code, unique excludes its own items that duplicate items in
queue (1, 3, 5, 7, and 9) and also excludes items in queue that aren’t in
unique (0, 2, 4, 6, 8, and 17). You end up with 11, 13, and 15 in unique.

Meanwhile, the next code segment uses the SymmetricExceptWith()
method to create the opposite result from IntersectWith(). Whereas
intersection gives you the overlapping items, SymmetricExceptWith()
gives you the items in both lists that don’t overlap. The uniqueToOne set
ends up containing just 5, 3, 1, 12, and 10:

 Console.WriteLine(“\nFinding just the non-overlapping items in two lists:”);
 Stack<int> stackOne = new Stack<int>(new int[] { 1, 2, 3, 4, 5, 6, 7, 8 });
 Stack<int> stackTwo = new Stack<int>(new int[] { 2, 4, 6, 7, 8, 10, 12 });
 HashSet<int> nonoverlapping = new HashSet<int>(stackOne);
 // SymmetricExceptWith() collects items that are in one collection but not
 // the other: the items that don’t overlap.
 nonoverlapping.SymmetricExceptWith(stackTwo);
 foreach(int n in nonoverlapping)
 {
 Console.WriteLine(n.ToString());
 }
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
}

My use of stacks here is a bit unorthodox because I add all members at one
time rather than push each one, and I remove a bunch at a time rather than
pop each one. Those operations — pushing and popping — are the correct
ways to interact with a stack.

Notice that all the HashSet<T> methods I demonstrate are void methods —
they don’t return a value. Thus the results are reflected directly in the hash
set on which you call these methods: nonoverlapping in the preceding code
example.

 We found the behavior of UnionWith() and IntersectWith() a bit awk-
ward at first because I wanted a new resulting set, with the original (input)
sets remaining the same when I applied these methods. But in Book II you
meet (I’m happy to report) the new LINQ query operators, which add ver-
sions of these methods that return a whole new set object. Combining what
you see here with what you see there, you get the best of both worlds. More
than that I’d better not say now.

When would you use HashSet<T>? Any time you’re working with two
or more collections and you want to find such items as the overlap — or
create a collection that contains two other collections or exclude a group
of items from a collection — sets can be useful. Many of the HashSet<T>
methods can relate sets and other collection classes. You can do more
with sets, of course, so look up the term HashSet<T> in Help and play with
HashSetExample.

Using Sets

10_563489-bk01ch06.indd 13310_563489-bk01ch06.indd 133 3/19/10 8:03 PM3/19/10 8:03 PM

134

On Not Using Old-Fashioned Collections
At the dawn of time, before C# 2.0, when Zarathustra spake, all collection
classes were implemented as collections of type Object. You couldn’t
create a collection just for strings or just for ints. Such a collection lets
you store any type of data, because all objects in C# are derived from class
Object. Thus you can add both ints and strings to the same collection
without seeing error messages (because of the inheritance and polymor-
phism of C#, which I discuss in Book II).

But a serious drawback occurs in the Object-based arrangement: To extract
the int that you know you put into a collection, you must cast out to an int
the Object you get:

ArrayList ints = new ArrayList(); // An old-fashioned list of Objects
int myInt = (int)ints[0]; // Extract the first int in the list.

It’s as though your ints were hidden inside Easter eggs. If you don’t cast,
you create errors because, for instance, Object doesn’t support the + oper-
ation or other methods, properties, and operators that you expect on ints.
You can work with these limitations, but this kind of code is error-prone,
and it’s just plain tedious to do all that casting. (Besides, as I discuss in Book
II, working with Easter eggs adds some processing overhead because of the
“boxing” phenomenon. Too much boxing slows your program.)

And, if the collection happens to contain objects of more than one type —
pomegranates and basketballs, say — the problem becomes tougher. Somehow,
you have to detect that the object you fish out is a pomegranate or a basketball
so that you can cast it correctly.

With those limitations on the older, nongeneric collections, the newer
generic ones are a gale of fresh air. You never have to cast, and you always
know what you’re getting because you can put only one type into any given
collection. But you still see the older collections occasionally, in code that
other people write — and sometimes you may even have a legitimate reason
to stick apples and oranges in the same collection.

 The nongeneric collections are found in the System.Collections and
System.Collections.Specialized namespaces. The Specialized col-
lections are interesting, sometimes useful, oddball collections, and mainly
nongeneric. The modern, generic ones are found in System.Collections.
Generic. (I explain namespaces and generics in Book II, in my discussion of
object-oriented programming).

On Not Using Old-Fashioned Collections

10_563489-bk01ch06.indd 13410_563489-bk01ch06.indd 134 3/19/10 8:03 PM3/19/10 8:03 PM

Chapter 7: Stepping
through Collections

In This Chapter
✓ Handling a directory as a collection of files and a file as a collection

of bytes

✓ Implementing a LinkedList collection

✓ “Enumerating,” or iterating, LinkedList

✓ Implementing an indexer for easy access to collection objects

✓ Easily looping through a collection with the C# iterator blocks

Chapter 6 in this minibook explores the collection classes provided by
the .NET Framework class library for use with C# and other .NET lan-

guages. As you probably remember, collection classes are constructs in
.NET that can be instantiated to hold groups of items. If you don’t remem-
ber, you can read Chapter 6 for a reminder.

The first part of this chapter extends the notion of collections a bit. For
instance, consider the following collections: a file as a collection of lines or
records of data, and a directory as a collection of files. Thus this chapter
builds on both the collection material in Chapter 6 of this minibook and the
file material in Book III.

However, the focus in this chapter is on several ways to step through, or
iterate, all sorts of collections, from file directories to arrays and lists of all
sorts. You also see how to write your own collection class, or linked list.

Iterating through a Directory of Files
Reading and writing are the basic skills you need to get ahead in this world.
That’s what makes the FileRead and FileWrite programs in Book IV
important. In some cases, however, you simply want to skim a directory of
files, looking for something.

The following LoopThroughFiles program looks at all files in a given direc-
tory, reading each file and dumping out its contents in hexadecimal format
to the console. (That may sound like a silly thing to do, but this program also
demonstrates how to write out a file in a format other than just strings. I
describe hexadecimal format in the following sidebar, “Getting hexed.”)

11_563489-bk01ch07.indd 13511_563489-bk01ch07.indd 135 3/19/10 8:02 PM3/19/10 8:02 PM

136 Iterating through a Directory of Files

 If you run this program in a directory with lots of files, the hex dump can
take a while. Also, long files take a while to loop through. Either pick a direc-
tory with few files or stop a lengthy program run by pressing Ctrl+C. This
command interrupts a program running in any console window.

// LoopThroughFiles -- Loop through all files contained in a directory;
// this time perform a hex dump, though it could have been anything.
using System;
using System.IO;

namespace LoopThroughFiles
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // If no directory name provided...
 string directoryName;
 if (args.Length == 0)
 {
 // ...get the name of the current directory...
 directoryName = Directory.GetCurrentDirectory();
 }
 else
 {
 // ...otherwise, assume that the first argument
 // is the name of the directory to use.
 directoryName = args[0];
 }
 Console.WriteLine(directoryName);

 // Get a list of all files in that directory.
 FileInfo[] files = GetFileList(directoryName);

 // Now iterate through the files in that list,
 // performing a hex dump of each file.
 foreach(FileInfo file in files)
 {
 // Write out the name of the file.
 Console.WriteLine(“\n\nhex dump of file {0}:”, file.FullName);

 // Now “dump” the file to the console.
 DumpHex(file);

 // Wait before outputting next file.
 Console.WriteLine(“\nenter return to continue to next file”);
 Console.ReadLine();
 }

 // That’s it!
 Console.WriteLine(“\no files left”);

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }

11_563489-bk01ch07.indd 13611_563489-bk01ch07.indd 136 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

137Iterating through a Directory of Files

 // GetFileList -- Get a list of all files in a specified directory.
 public static FileInfo[] GetFileList(string directoryName)
 {
 // Start with an empty list.
 FileInfo[] files = new FileInfo[0];
 try
 {
 // Get directory information.
 DirectoryInfo di = new DirectoryInfo(directoryName);

 // That information object has a list of the contents.
 files = di.GetFiles();
 }
 catch(Exception e)
 {
 Console.WriteLine(“Directory \”{0}\” invalid”, directoryName);
 Console.WriteLine(e.Message);
 }
 return files;
 }

 // DumpHex -- Given a file, dump out the contents of the file to the console.
 public static void DumpHex(FileInfo file)
 {
 // Open the file.
 FileStream fs;
 BinaryReader reader;
 try
 {
 fs = file.OpenRead();
 // Wrap the file stream in a BinaryReader.
 reader = new BinaryReader(fs);
 }
 catch(Exception e)
 {
 Console.WriteLine(“\ncan’t read from \”{0}\””, file.FullName);
 Console.WriteLine(e.Message);
 return;
 }

 // Iterate through the contents of the file one line at a time.
 for(int line = 1; true; line++)
 {
 // Read another 10 bytes across (all that will fit on a single
 // line) -- return when no data remains.
 byte[] buffer = new byte[10];
 // Use the BinaryReader to read bytes.
 // Note: Using the bare FileStream would have been just as easy in this

case.
 int numBytes = reader.Read(buffer, 0, buffer.Length);
 if (numBytes == 0)
 {
 return;
 }

 // Write out the data just read, in a single line preceded by line
number.

 Console.Write(“{0:D3} - “, line);
 DumpBuffer(buffer, numBytes);

11_563489-bk01ch07.indd 13711_563489-bk01ch07.indd 137 3/19/10 8:02 PM3/19/10 8:02 PM

138 Iterating through a Directory of Files

 // Stop every 20 lines so that the data doesn’t scroll
 // off the top of the Console screen.
 if ((line % 20) == 0)
 {
 Console.WriteLine(“Enter return to continue another 20 lines”);
 Console.ReadLine();
 }
 }
 }

 // DumpBuffer -- Write a buffer of characters as a single line in hex format.
 public static void DumpBuffer(byte[] buffer, int numBytes)
 {
 for(int index = 0; index < numBytes; index++)
 {
 byte b = buffer[index];
 Console.Write(“{0:X2}, “, b);
 }
 Console.WriteLine();
 }
 }
}

From the command line, the user specifies the directory to use as an argu-
ment to the program. The following command “hex-dumps” each file in the
temp directory (including binary files as well as text files):

loopthroughfiles c:\randy\temp

If you don’t enter a directory name, the program uses the current directory
by default. (A hex dump displays the output as numbers in the hexadecimal —
base 16 — system. See the nearby sidebar, “Getting hexed.”)

 Both FileRead and FileWrite read the input filename from the console,
whereas this program takes its input from the command line. I truly am not
trying to confuse you — I’m trying to show different ways of approaching the
same problem.

Like binary numbers (0 and 1), hexadecimal,
or “hex,” numbers are fundamental to com-
puter programming. In base 16, the digits are
0 through 9 and then A, B, C, D, E, F — where
A=10, B=11 . . . F=15. To illustrate (using the
zero-x prefix to indicate hex):

0xD = 13 decimal
0x10 = 16 decimal: 1*16 + 0*1

0x2A = 42 decimal: 2*16 + A*1 (where A*1
= 10*1)

The alphabetic digits can be uppercase or
lowercase: C is the same as c. It’s weird, but
quite useful, especially when you’re debug-
ging or working close to the metal with memory
contents.

Getting hexed

11_563489-bk01ch07.indd 13811_563489-bk01ch07.indd 138 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

139Iterating through a Directory of Files

The first line in LoopThroughFiles looks for a program argument. If
the argument list is empty (args.Length is zero), the program calls
Directory.GetCurrentDirectory(). If you run inside Visual Studio
rather than from the command line, that value defaults to the bin\Debug
subdirectory of your LoopThroughFiles project directory.

The Directory class gives the user a set of methods for manipulating direc-
tories. The FileInfo class provides methods for moving, copying, and
deleting files, among other tasks.

The program then creates a list of all files in the specified directory by call-
ing the local GetFileList(). This method returns an array of FileInfo
objects. Each FileInfo object contains information about a file — for
example, the filename (with the full path to the file, FullName, or without
the path, Name), the creation date, and the last modified date. Main() iter-
ates through the list of files using your old friend, the foreach statement. It
displays the name of each file and then passes off the file to the DumpHex()
method for display to the console.

At the end of the loop, it pauses to allow the programmer a chance to gaze
on the output from DumpHex().

The GetFileList() method begins by creating an empty FileInfo list.
This list is the one it returns in the event of an error.

 Here’s a neat trick to remember when coding any Get...List() method: If
an error occurs, display an error message and return a zero-length list.

 Be careful about returning a reference to an object. For instance, don’t
return a reference to one of the underlying queues wrapped up in the
PriorityQueue class, described in Chapter 8 of this minibook — unless
you want to invite folks to mess with those queues through the reference
instead of through your class methods, that is. That’s a sure ticket to a cor-
rupt, unpredictable queue. But GetFileList() doesn’t expose the innards
of one of your classes here, so it’s okay.

GetFileList() then creates a DirectoryInfo object. Just as its name
implies, a DirectoryInfo object contains the same type of information
about a directory that a FileInfo object does about a file: name, rank, and
serial-number-type stuff. However, the DirectoryInfo object has access to
one thing that a FileInfo doesn’t: a list of the files in the directory, in the
form of a FileInfo array.

As usual, GetFileList() wraps the directory- and file-related code in a big
try block. The catch at the end traps any errors that are generated. Just
to embarrass you further, the catch block flaunts the name of the directory
(which probably doesn’t exist, because you entered it incorrectly).

11_563489-bk01ch07.indd 13911_563489-bk01ch07.indd 139 3/19/10 8:02 PM3/19/10 8:02 PM

140 Iterating through a Directory of Files

The DumpHex() method is a little tricky only because of the difficulties in
formatting the output just right.

DumpHex() starts out by opening file. A FileInfo object contains
information about the file — it doesn’t open the file. DumpHex() gets the
full name of the file, including the path, and then opens a FileStream in
read-only mode using that name. The catch block throws an exception if
FileStream can’t read the file for some reason.

DumpHex() then reads through the file, 10 bytes at a time. It displays every 10
bytes in hexadecimal format as a single line. Every 20 lines, it pauses until the
user presses Enter. I use the modulo operator, %, to accomplish that task.

Vertically, a console window has room for 25 lines by default. (The user can
change the window’s size, of course, allowing more or fewer lines.) That
means you have to pause every 20 lines or so. Otherwise, the data just
streams off the top of the screen before the user can read it.

The modulo operator (%) returns the remainder after division. Thus (line
% 20) == 0 is true when line equals 20, 40, 60, 80 — you get the idea.
This trick is valuable, useful in all sorts of looping situations where you want
to perform an operation only so often.

DumpBuffer() writes out each member of a byte array using the X2 format
control. Although X2 sounds like the name of a secret military experiment, it
simply means “display a number as two hexadecimal digits.”

The range of a byte is 0 to 255, or 0xFF — two hex digits per byte.

Here are the first 20 lines of the output.txt file (even its own mother
wouldn’t recognize this picture):

Hex dump of file C:\C#ProgramsVi\holdtank\Test2\bin\output.txt:
001 - 53, 74, 72, 65, 61, 6D, 20, 28, 70, 72,
002 - 6F, 74, 65, 63, 74, 65, 64, 29, 0D, 0A,
003 - 20, 20, 46, 69, 6C, 65, 53, 74, 72, 65,
004 - 61, 6D, 28, 73, 74, 72, 69, 6E, 67, 2C,
005 - 20, 46, 69, 6C, 65, 4D, 6F, 64, 65, 2C,
006 - 20, 46, 69, 6C, 65, 41, 63, 63, 65, 73,
007 - 73, 29, 0D, 0A, 20, 20, 4D, 65, 6D, 6F,
008 - 72, 79, 53, 74, 72, 65, 61, 6D, 28, 29,
009 - 3B, 0D, 0A, 20, 20, 4E, 65, 74, 77, 6F,
010 - 72, 6B, 53, 74, 72, 65, 61, 6D, 0D, 0A,
011 - 20, 20, 42, 75, 66, 66, 65, 72, 53, 74,
012 - 72, 65, 61, 6D, 20, 2D, 20, 62, 75, 66,
013 - 66, 65, 72, 73, 20, 61, 6E, 20, 65, 78,
014 - 69, 73, 74, 69, 6E, 67, 20, 73, 74, 72,
015 - 65, 61, 6D, 20, 6F, 62, 6A, 65, 63, 74,
016 - 0D, 0A, 0D, 0A, 42, 69, 6E, 61, 72, 79,
017 - 52, 65, 61, 64, 65, 72, 20, 2D, 20, 72,
018 - 65, 61, 64, 20, 69, 6E, 20, 76, 61, 72,
019 - 69, 6F, 75, 73, 20, 74, 79, 70, 65, 73,
020 - 20, 28, 43, 68, 61, 72, 2C, 20, 49, 6E,
Enter return to continue another 20 lines

11_563489-bk01ch07.indd 14011_563489-bk01ch07.indd 140 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

141Iterating foreach Collections: Iterators

 You could reconstruct the file as a string from the hex display. The 0x61
value is the numeric equivalent of the character a. The letters of the alpha-
bet are arranged in order, so 0x65 should be the character e; 0x20 is a
space. The first line in this example (after the line number) is s)\n\r
Nemo, where \n is a new line and \r is a carriage return. Intriguing, eh?
That’s about as far as I want to go. You can search Google or another
search engine for ASCII table.

Those codes are also valid for the lower part of the much vaster Unicode
character set, which C# uses by default. (You can look on a search engine
on the Web for the term Unicode characters, and I explain the basics in
the article “Converting Between Byte and Char Arrays” on the http://
csharp102.info Web site.)

The following example shows what happens when the user specifies the
invalid directory x:

Directory “x” invalid
Could not find a part of the path “C:\C#Programs\LoopThroughFiles\bin\Debug\x”.

No files left
Press Enter to terminate...

Impressive, no?

Iterating foreach Collections: Iterators
In the rest of this chapter, you see three different approaches to the gen-
eral problem of iterating a collection. In this section, I continue discussing
the most traditional approach (at least for C# programmers), the iterator
class, or enumerator, which implements the IEnumerator interface. As an
example, I take you deeper into the iterator for the linked list, presented in
the previous section.

The terms iterator and enumerator are synonymous. The term iterator is
more common despite the name of the interface, but enumerator has been
popular at Microsoft. Verb forms of these two nouns are also available: You
iterate or enumerate through a container or collection. Note that the index-
ers and the new iterator blocks discussed later in this chapter are other
approaches to the same problem.

Accessing a collection: The general problem
Different collection types may have different accessing schemes. Not
all types of collections can be accessed efficiently with an index like an
array’s — the linked list, for example. Differences between collection types
make it impossible to write a method such as the following without special
provisions:

11_563489-bk01ch07.indd 14111_563489-bk01ch07.indd 141 3/19/10 8:02 PM3/19/10 8:02 PM

142 Iterating foreach Collections: Iterators

// Pass in any kind of collection:
void MyClearMethod(Collection aColl, int index)
{
 aColl[index] = 0; // Indexing doesn’t work for all types of collections.
 // ...continues...
}

Each collection type can (and does) define its own access methods. For
example, a linked list may offer a GetNext() method to fetch the next ele-
ment in the chain of objects or a stack collection may offer a Push() and
Pop() to add and remove objects.

A more general approach is to provide for each collection class a sepa-
rate iterator class, which is wise in the ways of navigating that particular
collection. Each collection X defines its own class IteratorX. Unlike X,
IteratorX offers a common IEnumerator interface, the gold standard
of iterating. This technique uses a second object, the iterator, as a kind of
pointer, or cursor, into the collection.

The iterator (enumerator) approach offers these advantages:

 ✦ Each collection class can define its own iteration class. Because the iter-
ation class implements the standard IEnumerator interface, it’s usually
straightforward to code.

 ✦ The application code doesn’t need to know how the collection code
works. As long as the programmer understands how to use the iterator,
the iteration class can handle the details. That’s good encapsulation.

 ✦ The application code can create multiple independent iterator objects
for the same collection. Because the iterator contains its own state infor-
mation (“knows where it is,” in the iteration), each iterator can navigate
through the collection independently. You can have several iterations
going at one time, each one at a different location in the collection.

To make the foreach loop possible, the IEnumerator interface must
support all different types of collections, from arrays to linked lists.
Consequently, its methods must be as general as possible. For example,
you can’t use the iterator to access locations within the collection class ran-
domly because most collections don’t provide random access. (You’d need
to invent a different enumeration interface with that ability, but it wouldn’t
work with foreach.)

IEnumerator provides these three methods:

 ✦ Reset(): Sets the enumerator to point to the beginning of the collec-
tion. Note: The generic version of IEnumerator, IEnumerator<T>,
doesn’t provide a Reset() method. With the generic LinkedList, just
begin with a call to MoveNext().

11_563489-bk01ch07.indd 14211_563489-bk01ch07.indd 142 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

143Iterating foreach Collections: Iterators

 ✦ MoveNext(): Moves the enumerator from the current object in the col-
lection to the next one.

 ✦ Current: A property, rather than a method, that retrieves the data
object stored at the current position of the enumerator.

The following method demonstrates this principle. The programmer of the
MyCollection class (not shown) creates a corresponding iterator class —
say, IteratorMyCollection (using the IteratorX naming convention
that I describe earlier in this chapter). The application programmer has
stored numerous ContainedDataObjects in MyCollection. The follow-
ing code segment uses the three standard IEnumerator methods to read
these objects back out:

// The MyCollection class holds ContainedDataObject type objects as data.
void MyMethod(MyCollection myColl)
{
 // The programmer who created the MyCollection class also
 // creates an iterator class IteratorMyCollection;
 // the application program creates an iterator object
 // in order to navigate through the myColl object.
 IEnumerator iterator = new IteratorMyCollection(myColl);
 // Move the enumerator to the “next location” within the collection.
 while(iterator.MoveNext())
 {
 // Fetch a reference to the data object at the current location
 // in the collection.
 ContainedDataObject contained; // Data
 contained = (ContainedDataObject)iterator.Current;
 // ...use the contained data object...
 }
}

The method MyMethod() accepts as its argument the collection of
ContainedDataObjects. It begins by creating an iterator of class
IteratorMyCollection. The method starts a loop by calling MoveNext().
On this first call, MoveNext() moves the iterator to the first element in the
collection. On each subsequent call, MoveNext() moves the pointer “over
one position.” MoveNext() returns false when the collection is exhausted
and the iterator cannot be moved any farther.

The Current property returns a reference to the data object at the cur-
rent location of the iterator. The program converts the object returned
into a ContainedDataObject before assigning it to contained. Calls to
Current are invalid if the MoveNext() method didn’t return true on the
previous call or if MoveNext() hasn’t yet been called.

Letting C# access data foreach container
The IEnumerator methods are standard enough that C# uses them auto-
matically to implement the foreach statement.

11_563489-bk01ch07.indd 14311_563489-bk01ch07.indd 143 3/19/10 8:02 PM3/19/10 8:02 PM

144 Iterating foreach Collections: Iterators

The foreach statement can access any class that implements
IEnumerable or IEnumerable<T>. I discuss foreach in terms of
IEnumerable<T> in this section, as shown in this general method that is
capable of processing any such class, from arrays to linked lists to stacks
and queues:

void MyMethod(IEnumerable<T> containerOfThings)
{
 foreach(string s in containerOfThings)
 {
 Console.WriteLine(“The next thing is {0}”, s);
 }
}

A class implements IEnumerable<T> by defining the method
GetEnumerator(), which returns an instance of IEnumerator<T>. Under
the hood, foreach invokes the GetEnumerator() method to retrieve an
iterator. It uses this iterator to make its way through the collection. Each
element it retrieves has been cast appropriately before continuing into the
block of code contained within the braces. Note that IEnumerable<T> and
IEnumerator<T> are different, but related, interfaces. C# provides non-
generic versions of both as well, but you should prefer the generic versions
for their increased type safety.

IEnumerable<T> looks like this:

interface IEnumerable<T>
{
 IEnumerator<T> GetEnumerator();
}

while IEnumerator<T> looks like this:

interface IEnumerator<T>
{
 bool MoveNext();
 T Current { get; }
}

The nongeneric IEnumerator interface adds a Reset() method that
moves the iterator back to the beginning of the collection, and its Current
property returns type Object. Note that IEnumerator<T> inherits from
IEnumerator — and recall that interface inheritance (covered in Book II,
Chapter 8) is different from normal object inheritance.

C# arrays (embodied in the Array class they’re based on) and all the .NET
collection classes already implement both interfaces. So it’s only when
you’re writing your own custom collection class that you need to take care
of implementing these interfaces. For built-in collections, you can just use
them. See the System.Collections.Generic namespace topic in Help.

11_563489-bk01ch07.indd 14411_563489-bk01ch07.indd 144 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

145Accessing Collections the Array Way: Indexers

Thus you can write the foreach loop this way:

foreach(int nValue in myCollection)
{
 // ...
}

 I strongly advise you to use foreach to iterate collections rather than do it
directly with IEnumerator or IEnumerator<T>. Chapter 8 of this mini-
book shows how easily you can go wrong with the raw iterator. The
foreach loop is a helpful tool.

Accessing Collections the Array Way: Indexers
Accessing the elements of an array is simple: The command container[n]
(read “container sub-n”) accesses the nth element of the container array.
The value in brackets is a subscript. If only indexing into other types of col-
lections were so simple.

Stop the presses! C# enables you to write your own implementation of
the index operation. You can provide an index feature for collections that
wouldn’t otherwise enjoy such a feature. In addition, you can index on sub-
script types other than the simple integers to which C# arrays are limited;
for example, strings: for another example, try container[“Joe”].

Indexer format
The indexer looks much like an ordinary get/set property, except for the
appearance of the keyword this and the index operator [] instead of the
property name, as shown in this bit of code:

class MyArray
{
 public string this[int index] // Notice the “this” keyword.
 {
 get
 {
 return array[index];
 }
 set
 {
 array[index] = value;
 }
 }
}

Under the hood, the expression s = myArray[i]; invokes the get acces-
sor method, passing it the value of i as the index. In addition, the expression
myArray[i] = “some string”; invokes the set accessor method, pass-
ing it the same index i and “some string” as value.

11_563489-bk01ch07.indd 14511_563489-bk01ch07.indd 145 3/19/10 8:02 PM3/19/10 8:02 PM

146 Accessing Collections the Array Way: Indexers

An indexer program example
The index type isn’t limited to int. You may choose to index a collection
of houses by their owners’ names, by house address, or by any number
of other indices. In addition, the indexer property can be overloaded with
multiple index types, so you can index on a variety of elements in the same
collection.

The following Indexer program generates the virtual array class
KeyedArray. This virtual array looks and acts like an array except that it
uses a string value as the index:

// Indexer -- This program demonstrates the use of the index operator
// to provide access to an array using a string as an index.
// This version is nongeneric, but see the IndexerGeneric example.
using System;

namespace Indexer
{
 public class KeyedArray
 {
 // The following string provides the “key” into the array --
 // the key is the string used to identify an element.
 private string[] _keys;

 // The object is the actual data associated with that key.
 private object[] _arrayElements;

 // KeyedArray -- Create a fixed-size KeyedArray.
 public KeyedArray(int size)
 {
 _keys = new string[size];
 _arrayElements = new object[size];
 }

 // Find -- Find the index of the element corresponding to the
 // string targetKey (return a negative if it can’t be found).
 private int Find(string targetKey)
 {
 for(int i = 0; i < _keys.Length; i++)
 {
 if (String.Compare(_keys[i], targetKey) == 0)
 {
 return i;
 }
 }
 return -1;
 }

 // FindEmpty -- Find room in the array for a new entry.
 private int FindEmpty()
 {
 for (int i = 0; i < _keys.Length; i++)
 {
 if (_keys[i] == null)
 {
 return i;
 }
 }

11_563489-bk01ch07.indd 14611_563489-bk01ch07.indd 146 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

147Accessing Collections the Array Way: Indexers

 throw new Exception(“Array is full”);
 }

 // Look up contents by string key -- this is the indexer.
 public object this[string key]
 {
 set
 {
 // See if the string is already there.
 int index = Find(key);
 if (index < 0)
 {
 // It isn’t -- find a new spot.
 index = FindEmpty();
 _keys[index] = key;
 }

 // Save the object in the corresponding spot.
 _arrayElements[index] = value;
 }

 get
 {
 int index = Find(key);
 if (index < 0)
 {
 return null;
 }
 return _arrayElements[index];
 }
 }
 }

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create an array with enough room.
 KeyedArray ma = new KeyedArray(100);

 // Save the ages of the Simpson kids.
 ma[“Bart”] = 8;
 ma[“Lisa”] = 10;
 ma[“Maggie”] = 2;

 // Look up the age of Lisa.
 Console.WriteLine(“Let’s find Lisa’s age”);
 int age = (int)ma[“Lisa”];
 Console.WriteLine(“Lisa is {0}”, age);

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The class KeyedArray holds two ordinary arrays. The _arrayElements
array of objects contains the actual KeyedArray data. The strings that
inhabit the _keys array act as identifiers for the object array. The ith element

11_563489-bk01ch07.indd 14711_563489-bk01ch07.indd 147 3/19/10 8:02 PM3/19/10 8:02 PM

148 Accessing Collections the Array Way: Indexers

of _keys corresponds to the ith entry of _arrayElements. The application
program can then index KeyedArray via string identifiers that have mean-
ing to the application.

A noninteger index is referred to as a key. By the way, you can implement
KeyedArray with an underlying List<T> instead of the fixed-size array.
List<T> is indexable like an array because both implement the IList (or
IList<T>) interface. This allows KeyedArray to be generic and to be much
more flexible than using the inner array.

The set[string] indexer starts by checking to see whether the specified
index already exists by calling the method Find(). If Find() returns an
index, set[] stores the new data object into the corresponding index in
_arrayElements. If Find() can’t find the key, set[] calls FindEmpty()
to return an empty slot in which to store the object provided.

The get[] side of the index follows similar logic. It first searches for the
specified key using the Find() method. If Find() returns a nonnegative
index, get[] returns the corresponding member of _arrayElements
where the data is stored. If Find() returns -1, get[] returns null, indicat-
ing that it can’t find the provided key anywhere in the list.

The Find() method loops through the members of _keys to look for
the element with the same value as the string targetKey passed in.
Find() returns the index of the found element (or -1 if none was found).
FindEmpty() returns the index of the first element that has no key element.

 Neither Find() nor FindEmpty() is written in an efficient manner. Any
number of ways exist to make these methods faster, none of which has any-
thing to do with indexers.

 Hey, wouldn’t it be cool to provide an indexer for the LinkedList class?
Sure, you can do that. But notice that even in KeyedArray, you must loop
through the underlying _keys array to locate a specified key — which is
why I provide Find() and FindEmpty(), which do just that. You would
also have to implement an indexer for LinkedList by looping through the
list, and the only way to do that is the same way you iterate it with
LinkedListIterator — by following the forward links from node to
node. An indexer would be convenient but wouldn’t speed things up.

 Notice that you can’t remove an element by providing a null key. As they
used to say in college textbooks, “This problem is left as an exercise for the
reader.”

11_563489-bk01ch07.indd 14811_563489-bk01ch07.indd 148 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

149Accessing Collections the Array Way: Indexers

The Main() method demonstrates the Indexer class in a trivial way:

public class Program
{
 public static void Main(string[] args)
 {
 // Create an array with enough room.
 KeyedArray ma = new KeyedArray(100);

 // Save the ages of the Simpson kids.
 ma[“Bart”] = 8;
 ma[“Lisa”] = 10;
 ma[“Maggie”] = 2;

 // Look up the age of Lisa.
 Console.WriteLine(“Let’s find Lisa’s age”);
 int age = (int)ma[“Lisa”];
 Console.WriteLine(“Lisa is {0}”, age);

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
}

The program creates a KeyedArray object ma of length 100 (that is, with
100 free elements). It continues by storing the ages of the children in The
Simpsons TV show, indexed by each child’s name. Finally, the program
retrieves Lisa’s age using the expression ma[“Lisa”] and displays the
result. The expression ma[“Lisa”] is read as “ma sub-Lisa.”

Notice that the program has to cast the value returned from ma[] because
KeyedArray is written to hold any type of object. The cast wouldn’t be
necessary if the indexer were written to handle only int values — or if
the KeyedArray were generic. (For more information about generics, see
Chapter 8 in this minibook.)

The output of the program is simple yet elegant:

Let’s find Lisa’s age
Lisa is 10
Press Enter to terminate...

 As an aside, the IList interface describes a class that provides an array-like
integer indexer of the form object this[int]. C# also has an IList<T>
interface, which you can use to replace object with your choice of type T.
This would eliminate the need for a cast in the previous example.

 For a generic version of the Indexer program, see the IndexerGeneric
example on this book’s Web site.

11_563489-bk01ch07.indd 14911_563489-bk01ch07.indd 149 3/19/10 8:02 PM3/19/10 8:02 PM

150 Looping Around the Iterator Block

Looping Around the Iterator Block
Here’s a piece of the code from the Main() method to demonstrate the
custom LinkedList (that chunk of code is in the LinkedListContainer
program on this book’s Web site):

public class Program
{
 public static void Main(string[] args)
 {
 // Create a container and add three elements to it.
 LinkedList llc = new LinkedList();
 LLNode first = llc.AddObject(“This is first string”);
 LLNode second = llc.AddObject(“This is second string”);
 LLNode third = llc.AddObject(“This is last string”);

 // Add one at the beginning and one in the middle.
 LLNode newfirst = llc.AddObject(null, “Insert before the first string”);
 LLNode newmiddle = llc.AddObject(second, “Insert between the second and
 third strings”);

 // You can manipulate the iterator “manually.”
 Console.WriteLine(“Iterate through the container manually:”);
 LinkedListIterator lli = (LinkedListIterator)llc.GetEnumerator();
 lli.Reset();
 while(lli.MoveNext())
 {
 string s = (string)lli.Current;
 Console.WriteLine(s);
 }
 ...

This code gets a LinkedListIterator and uses its MoveNext() method
and Current property to iterate a linked list. Just when you thought you had
mastered iterating, it turns out that C# 2.0 has simplified this process so that

 ✦ You don’t have to call GetEnumerator() (and cast the results).

 ✦ You don’t have to call MoveNext().

 ✦ You don’t have to call Current and cast its return value.

 ✦ You can simply use foreach to iterate the collection. (C# does the rest
for you under the hood — it even writes the enumerator class.)

 Well, to be fair, foreach works for the LinkedList class in this chap-
ter, too. That comes from providing a GetEnumerator() method. But
I still had to write the LinkedListIterator class ourselves. The new
wrinkle is that you can skip that part in your roll-your-own collection
classes, if you choose.

Rather than implement all those interface methods in collection classes you
write, you can provide an iterator block — and you don’t have to write your
own iterator class to support the collection. Iterator blocks were introduced
in C# 2.0, which shipped with Visual Studio 2005.

11_563489-bk01ch07.indd 15011_563489-bk01ch07.indd 150 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

151Looping Around the Iterator Block

You can use iterator blocks for a host of other chores, too, as I show you in
the next example.

The best approach to iteration now uses iterator blocks. When you write a
collection class — and the need still exists for custom collection classes such
as KeyedList and PriorityQueue — you implement an iterator block in its
code rather than implement the IEnumerator interface. Then users of that
class can simply iterate the collection with foreach. I walk you through it a
piece at a time, to show you several variations on iterator blocks.

Every example in this section is part of the IteratorBlocks example on
this book’s Web site:

// IteratorBlocks -- Demonstrates using the C# 2.0 iterator
// block approach to writing collection iterators
using System;
namespace IteratorBlocks
{
 class IteratorBlocks
 {
 //Main -- Demonstrate five different applications of
 // iterator blocks.
 static void Main(string[] args)
 {
 // Instantiate a MonthDays “collection” class.
 MonthDays md = new MonthDays();
 // Iterate it.
 Console.WriteLine(“Stream of months:\n”);
 foreach (string month in md)
 {
 Console.WriteLine(month);
 }

 // Instantiate a StringChunks “collection” class.
 StringChunks sc = new StringChunks();
 // Iterate it: prints pieces of text.
 // This iteration puts each chunk on its own line.
 Console.WriteLine(“\nstream of string chunks:\n”);
 foreach (string chunk in sc)
 {
 Console.WriteLine(chunk);
 }
 // And this iteration puts it all on one line.
 Console.WriteLine(“\nstream of string chunks on one line:\n”);
 foreach (string chunk in sc)
 {
 Console.Write(chunk);
 }
 Console.WriteLine();

 // Instantiate a YieldBreakEx “collection” class.
 YieldBreakEx yb = new YieldBreakEx();
 // Iterate it, but stop after 13.
 Console.WriteLine(“\nstream of primes:\n”);
 foreach (int prime in yb)
 {
 Console.WriteLine(prime);
 }

11_563489-bk01ch07.indd 15111_563489-bk01ch07.indd 151 3/19/10 8:02 PM3/19/10 8:02 PM

152 Looping Around the Iterator Block

 // Instantiate an EvenNumbers “collection” class.
 EvenNumbers en = new EvenNumbers();
 // Iterate it: prints even numbers from 10 down to 4.
 Console.WriteLine(“\nstream of descending evens :\n”);
 foreach (int even in en.DescendingEvens(11, 3))
 {
 Console.WriteLine(even);
 }

 // Instantiate a PropertyIterator “collection” class.
 PropertyIterator prop = new PropertyIterator();
 // Iterate it: produces one double at a time.
 Console.WriteLine(“\nstream of double values:\n”);
 foreach (double db in prop.DoubleProp)
 {
 Console.WriteLine(db);
 }

 // Wait for the user to acknowledge.
 Console.WriteLine(“Press enter to terminate...”);
 Console.Read();

 }
 }

 // MonthDays -- Define an iterator that returns the months
 // and their lengths in days -- sort of a “collection” class.
 class MonthDays
 {
 // Here’s the “collection.”
 string[] months =
 { “January 31”, “February 28”, “March 31”,
 “April 30”, “May 31”, “June 30”, “July 31”,
 “August 31”, “September 30”, “October 31”,
 “November 30”, “December 31” };

 // GetEnumerator -- Here’s the iterator. See how it’s invoked
 // in Main() with foreach.
 public System.Collections.IEnumerator GetEnumerator()
 {
 foreach (string month in months)
 {
 // Return one month per iteration.
 yield return month;
 }
 }
 }

 // StringChunks -- Define an iterator that returns chunks of text,
 // one per iteration -- another oddball “collection” class.
 class StringChunks
 {
 // GetEnumerator -- This is an iterator; see how it’s invoked
 // (twice) in Main.
 public System.Collections.IEnumerator GetEnumerator()
 {
 // Return a different chunk of text on each iteration.
 yield return “Using iterator “;
 yield return “blocks “;
 yield return “isn’t all “;
 yield return “that hard”;
 yield return “.”;
 }
 }

11_563489-bk01ch07.indd 15211_563489-bk01ch07.indd 152 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

153Looping Around the Iterator Block

 //YieldBreakEx -- Another example of the yield break keyword
 class YieldBreakEx
 {
 int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };
 //GetEnumerator -- Returns a sequence of prime numbers
 // Demonstrates yield return and yield break
 public System.Collections.IEnumerator GetEnumerator()
 {
 foreach (int prime in primes)
 {
 if (prime > 13) yield break;
 yield return prime;
 }
 }
 }

 //EvenNumbers -- Define a named iterator that returns even numbers
 // from the “top” value you pass in DOWN to the “stop” value.
 // Another oddball “collection” class
 class EvenNumbers
 {
 //DescendingEvens -- This is a “named iterator.”
 // Also demonstrates the yield break keyword.
 // See how it’s invoked in Main() with foreach.
 public System.Collections.IEnumerable DescendingEvens(int top,
 int stop)
 {
 // Start top at nearest lower even number.
 if (top % 2 != 0) // If remainder after top / 2 isn’t 0.
 top -= 1;
 // Iterate from top down to nearest even above stop.
 for (int i = top; i >= stop; i -= 2)
 {
 if (i < stop)
 yield break;
 // Return the next even number on each iteration.
 yield return i;
 }
 }
 }

 //PropertyIterator -- Demonstrate implementing a class
 // property’s get accessor as an iterator block.
 class PropertyIterator
 {
 double[] doubles = { 1.0, 2.0, 3.5, 4.67 };
 // DoubleProp -- A “get” property with an iterator block
 public System.Collections.IEnumerable DoubleProp
 {
 get
 {
 foreach (double db in doubles)
 {
 yield return db;
 }
 }
 }
 }
}

11_563489-bk01ch07.indd 15311_563489-bk01ch07.indd 153 3/19/10 8:02 PM3/19/10 8:02 PM

154 Looping Around the Iterator Block

 For a more real-world illustration of iterator blocks, see the example
PackageFactoryWithIterator, available with this chapter. The example
extends the PriorityQueue example in Chapter 8 of this minibook.

Iterating days of the month: A first example
The following fragment from the IteratorBlocks example provides an
iterator that steps through the months of the year:

//MonthDays -- Define an iterator that returns the months
// and their lengths in days -- sort of a “collection” class.
class MonthDays
{
 // Here’s the “collection.”
 string[] months =
 { “January 31”, “February 28”, “March 31”,
 “April 30”, “May 31”, “June 30”, “July 31”,
 “August 31”, “September 30”, “October 31”,
 “November 30”, “December 31” };

 //GetEnumerator -- Here’s the iterator. See how it’s invoked
 // in Main() with foreach.
 public System.Collections.IEnumerator GetEnumerator()
 {
 foreach (string month in months)
 {
 // Return one month per iteration.
 yield return month;
 }
 }
}

Here’s part of a Main() method that iterates this collection using a
foreach loop:

// Instantiate a MonthDays “collection” class.
MonthDays md = new MonthDays();
// Iterate it.
foreach (string month in md)
{
 Console.WriteLine(month);
}

This extremely simple collection class is based on an array, as KeyedArray
is. The class contains an array whose items are strings. When a client iter-
ates this collection, the collection’s iterator block delivers strings one by
one. Each string contains the name of a month (in sequence), with the
number of days in the month tacked on to the string. It isn’t useful, but,
boy, is it simple — and different!

The class defines its own iterator block, in this case as a method named
GetEnumerator(), which returns an object of type System.Collections.
IEnumerator. Now, it’s true that you had to write such a method before,

11_563489-bk01ch07.indd 15411_563489-bk01ch07.indd 154 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

155Looping Around the Iterator Block

but you also had to write your own enumerator class to support your custom
collection class. Here, you just write a fairly simple method to return an enu-
merator based on the new yield return keywords. C# does the rest for
you: It creates the underlying enumerator class and takes care of calling
MoveNext() to iterate the array. You get away with much less work and
much simpler code.

Less code and less work fit my work ethic to a T.

 Your class containing the GetEnumerator() method no longer needs to
implement the IEnumerator interface. In fact, you don’t want it to.

In the following sections, I show you several varieties of iterator blocks:

 ✦ Ordinary iterators

 ✦ Named iterators

 ✦ Class properties implemented as iterators

Note that class MonthDays’ GetEnumerator() method contains a
foreach loop to yield the strings in its inner array. Iterator blocks often
use a loop of some kind to do this, as you can see in several later examples.
In effect, you have in your own calling code an inner foreach loop serving
up item after item that can be iterated in another foreach loop outside
GetEnumerator().

What a collection is, really
Take a moment to compare the little collection in this example with an elab-
orate LinkedList collection. Whereas LinkedList has a complex struc-
ture of nodes connected by pointers, this little months collection is based
on a simple array — with canned content, at that. I’m expanding the collec-
tion notion a bit, and I expand it even more before this chapter concludes.

(Your collection class may not contain canned content — most collections
are designed to hold things you put into them via Add() methods and the
like. The KeyedArray class in the earlier section “Accessing Collections the
Array Way: Indexers,” for example, uses the [] indexer to add items. Your
collection could also provide an Add() method as well as add an iterator
block so that it can work with foreach.)

The point of a collection, in the most general sense, is to store multiple
objects and to allow you to iterate those objects, retrieving them one at a
time sequentially — and sometimes randomly, or apparently randomly, as
well, as in the Indexer example. (Of course, an array can do that, even with-
out the extra apparatus of a class such as MonthDays, but iterators go well
beyond the MonthDays example, as I’ll show you.)

11_563489-bk01ch07.indd 15511_563489-bk01ch07.indd 155 3/19/10 8:02 PM3/19/10 8:02 PM

156 Looping Around the Iterator Block

More generally, regardless of what an iterable collection does under the
hood, it produces a “stream” of values, which you get at with foreach. (I
cover file streams in Book III — I’m liberating the stream concept to make a
point about iterators.)

To drive home the point, here’s another simple collection class from
IteratorBlocks, one that stretches the idea of a collection about as far as
possible (you may think):

//StringChunks -- Define an iterator that returns chunks of text,
// one per iteration -- another oddball “collection” class.
class StringChunks
{
 //GetEnumerator -- This is an iterator; see how it’s invoked
 // (twice) in Main.
 public System.Collections.IEnumerator GetEnumerator()
 {
 // Return a different chunk of text on each iteration.
 yield return “Using iterator “;
 yield return “blocks “;
 yield return “isn’t all “;
 yield return “that hard”;
 yield return “.”;
 }
}

Oddly, the StringChunks collection stores nothing in the usual sense.
It doesn’t even contain an array. So where’s the collection? It’s in that
sequence of yield return calls, which use a special syntax to return one
item at a time until all have been returned. The collection “contains” five
objects, each a simple string much like the ones stored in an array in the
previous MonthDays example. And, from outside the class, in Main(), you
can iterate those objects with a simple foreach loop because the yield
return statements deliver one string at a time, in sequence. Here’s part of
a simple Main() method that iterates a StringChunks collection:

// Instantiate a StringChunks “collection” class.
StringChunks sc = new StringChunks();
// Iterate it: prints pieces of text.
foreach (string chunk in sc)
{
 Console.WriteLine(chunk);
}

Iterator syntax gives up so easily
As of C# 2.0, the language introduced two new bits of iterator syntax. The
yield return statement resembles the old combination of MoveNext()
and Current for retrieving the next item in a collection. The yield break
statement resembles the C# break statement, which lets you break out of a
loop or switch statement.

11_563489-bk01ch07.indd 15611_563489-bk01ch07.indd 156 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

157Looping Around the Iterator Block

Yield return: Okay, I give up
The yield return syntax works this way:

 1. The first time it’s called, it returns the first value in the collection.

 2. The next time it’s called, it returns the second value.

 3. And so on. . . .

Using yield is much like calling an old-fashioned iterator’s MoveNext()
method explicitly, as in the LinkedList code. Each MoveNext() call
produces a new item from the collection. But here you don’t need to call
MoveNext(). (You can bet, though, that it’s being done for you somewhere
behind that yield return syntax, and that’s fine with us.)

You might wonder what I mean by “the next time it’s called”? Here again, the
foreach loop is used to iterate the StringChunks collection:

foreach (string chunk in sc)
{
 Console.WriteLine(chunk);
}

Each time the loop obtains a new chunk from the iterator (on each pass
through the loop), the iterator stores the position it has reached in the col-
lection (as all iterators do). On the next pass through the foreach loop, the
iterator returns the next value in the collection, and so on.

Yield break: I want out of here!
I need to mention one bit of syntax related to yield. You can stop the prog-
ress of the iterator at some point by specifying the yield break statement
in the iterator. Say a threshold is reached after testing a condition in the
collection class’s iterator block, and you want to stop the iteration at that
point. Here’s a brief example of an iterator block that uses yield break in
just that way:

//YieldBreakEx -- Another example of the yield break keyword
class YieldBreakEx
{
 int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };
 //GetEnumerator -- Returns a sequence of prime numbers
 // Demonstrates yield return and yield break
 public System.Collections.IEnumerator GetEnumerator()
 {
 foreach (int prime in primes)
 {
 if (prime > 13) yield break;
 yield return prime;
 }
 }
}

11_563489-bk01ch07.indd 15711_563489-bk01ch07.indd 157 3/19/10 8:02 PM3/19/10 8:02 PM

158 Looping Around the Iterator Block

In this case, the iterator block contains an if statement that checks each
prime number as the iterator reaches it in the collection (using another
foreach inside the iterator, by the way). If the prime number is greater than
13, the block invokes yield break to stop producing primes. Otherwise,
it continues — with each yield return giving up another prime number
until the collection is exhausted.

Besides using iterator blocks in formal collection classes, using them to
implement enumerators, you could simply write any of the iterator blocks in
this chapter as, say, static methods parallel to Main() in the Program class.
In cases such as many of the examples in this chapter, the collection is
inside the method. Such special-purpose collections can have many uses,
and they’re typically quick and easy to write.

You can also write an extension method on a class (or another type) that
behaves as an iterator block. That can be quite useful when you have a class
that can be thought of in some sense as a collection. My favorite example
comes from the Language Integrated Query (LINQ) realm in C# 3.0. Using a
bit of C# reflection, you can get at the contents of a C# type, such as String,
to enumerate its members. I give several examples of this concept in the
MoreExtensionMethods example on this book’s Web site. I cover exten-
sion methods in Book 2.

Iterator blocks of all shapes and sizes
In earlier examples in this chapter, iterator blocks have looked like this:

public System.Collections.IEnumerator GetEnumerator()
{
 yield return something;
}

But iterator blocks can also take a couple of other forms: as named iterators
and as class properties.

An iterator named Fred
Rather than always write an iterator block presented as a method named
GetEnumerator(), you can write a named iterator — a method that
returns the System.Collections.IEnumerable interface instead of
IEnumerator and that you don’t have to name GetEnumerator() — you
can name it something like MyMethod() instead.

For example, you can use this simple method to iterate the even numbers
from a “top” value that you specify down to a “stop” value — yes, in descend-
ing order — iterators can do just about anything:

//EvenNumbers -- Define a named iterator that returns even numbers
// from the “top” value you pass in DOWN to the “stop” value.
// Another oddball “collection” class
class EvenNumbers

11_563489-bk01ch07.indd 15811_563489-bk01ch07.indd 158 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

159Looping Around the Iterator Block

{
 //DescendingEvens -- This is a “named iterator.”
 // Also demonstrates the yield break keyword
 // See how it’s invoked in Main() with foreach.
 public System.Collections.IEnumerable DescendingEvens(int top,
 int stop)
 {
 // Start top at nearest lower even number.
 if (top % 2 != 0) // If remainder after top / 2 isn’t 0.
 top -= 1;
 // Iterate from top down to nearest even above stop.
 for (int i = top; i >= stop; i -= 2)
 {
 if (i < stop)
 yield break;
 // Return the next even number on each iteration.
 yield return i;
 }
 }
}

The DescendingEvens() method takes two parameters (a handy addi-
tion), which set the upper limit of even numbers that you want to start from
and the lower limit where you want to stop. The first even number that’s
generated will equal the top parameter or, if top is odd, the nearest even
number below it. The last even number generated will equal the value of the
stop parameter (or if stop is odd, the nearest even number above it). The
method doesn’t return an int itself, however; it returns the IEnumerable
interface. But it still contains a yield return statement to return one even
number and then waits until the next time it’s invoked from a foreach loop.
That’s where the int is yielded up.

 This example shows another collection with no underlying collection — such
as StringChunks, mentioned earlier in this chapter. Note that this one is
computed — the method “yield returns” a computed value rather than a stored
or hard-coded value. That’s another way to implement a collectionless collec-
tion. (You can also retrieve items from a data source or Web service.) And,
finally, the example shows that you can iterate a collection pretty much any way
you like: down instead of up or by steps of two instead of one, for example.

An iterator needn’t be finite, either. Consider the following iterator, which
delivers a new number as long as you care to request them:

public System.Collections.IEnumerable PositiveIntegers()
{
 for (int i = 0; ; i++)
 {
 yield return i;
 }
}

 This example is, in effect, an infinite loop. You might want to pass a value
used to stop the iteration. Here’s how you would call DescendingEvens()
from a foreach loop in Main(). (Calling PositiveIntegers() in the

11_563489-bk01ch07.indd 15911_563489-bk01ch07.indd 159 3/19/10 8:02 PM3/19/10 8:02 PM

160 Looping Around the Iterator Block

preceding example would work similarly.) This example demonstrates what
happens if you pass odd numbers as the limit values, too — another use of
the % operator:

// Instantiate an EvenNumbers “collection” class.
EvenNumbers en = new EvenNumbers();
// Iterate it: prints even numbers from 10 down to 4.
Console.WriteLine(“\nstream of descending evens :\n”);
foreach (int even in en.DescendingEvens(11, 3))
{
 Console.WriteLine(even);
}

This call produces a list of even-numbered integers from 10 down through 4.
Notice also how the foreach is specified. You have to instantiate an
EvenNumbers object (the collection class). Then, in the foreach statement,
you invoke the named iterator method through that object:

EvenNumbers en = new EvenNumbers();
foreach(int even in en.DescendingEvens(nTop, nStop)) ...

If DescendingEvens() were static, you wouldn’t even need the class
instance. You would call it through the class itself, as usual:

foreach(int even in EvenNumbers.DescendingEvens(nTop, nStop)) ...

It’s a regular wetland out there!
If you can produce a “stream” of even numbers with a foreach statement,
think of all the other useful things you may produce with special-purpose
collections like these: streams of powers of two or of terms in a mathemati-
cal series such as prime numbers or squares — or even something exotic
such as Fibonacci numbers. Or, how about a stream of random numbers
(that’s what the Random class already does) or of randomly generated
objects?

 If you look at the PriorityQueue example in Chapter 8 of this minibook, you
may want to check out the PackageFactoryWithIterator example —
which appears only on this book’s Web site. The example illustrates the use of
an iterator block to generate a stream of randomly generated objects repre-
senting packages coming into a shipping company. It performs the same func-
tion as the PackageFactory class in the original PriorityQueue example,
but with an iterator block.

Iterated property doesn’t mean “a house that keeps getting sold”
You can also implement an iterator block as a property of a class —
specifically in the get() accessor for the property. In this simple class
with a DoubleProp property, the property’s get() accessor acts as an
iterator block to return a stream of double values:

11_563489-bk01ch07.indd 16011_563489-bk01ch07.indd 160 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

161Looping Around the Iterator Block

//PropertyIterator -- Demonstrate implementing a class
// property’s get accessor as an iterator block.
class PropertyIterator
{
 double[] doubles = { 1.0, 2.0, 3.5, 4.67 };
 // DoubleProp -- A “get” property with an iterator block
 public System.Collections.IEnumerable DoubleProp
 {
 get
 {
 foreach (double db in doubles)
 {
 yield return db;
 }
 }
 }
}

You write the DoubleProp header in much the same way as you write the
DescendingEvens() method’s header in the named iterators example. The
header returns an IEnumerable interface, but as a property it has no paren-
theses after the property name and it has a get() accessor — though no
set(). The get() accessor is implemented as a foreach loop that iterates
the collection and uses the standard yield return to yield up, in turn,
each item in the collection of doubles.

Here’s the way the property is accessed in Main():

// Instantiate a PropertyIterator “collection” class.
PropertyIterator prop = new PropertyIterator();
// Iterate it: produces one double at a time.
Console.WriteLine(“\nstream of double values:\n”);
foreach (double db in prop.DoubleProp)
{
 Console.WriteLine(db);
}

You can also have a generic iterator. Look up iterators, using in Help. The
“Using Iterators” topic for C# includes an example of a named iterator that
also happens to be generic.

Where you can put your iterator
Hmm, I have to be careful about my phrasing.

In the small special-purpose iterator classes in the IteratorBlocks exam-
ple, earlier in this chapter, I put the collection itself inside the iterator class,
as in MonthDays. In some cases, that’s just right — for instance, when the
collection is something like SentenceChunks, which returns canned bits of
text, or something like DescendingEvens, in which the return is calculated
on the spot. But suppose that you want to supply an iterator based on an
iterator block for a real collection class, such as LinkedList.

11_563489-bk01ch07.indd 16111_563489-bk01ch07.indd 161 3/19/10 8:02 PM3/19/10 8:02 PM

162 Looping Around the Iterator Block

That’s what I did in the LinkedListWithIteratorBlock example on this
book’s Web site. That example rewrites the roll-your-own LinkedList with
a GetEnumerator() method implemented as an iterator block. It com-
pletely replaces the old LinkedListIterator class. The following listing
gives just the new version of GetEnumerator() (you can see the whole
example on this book’s Web site):

// LinkedListWithIteratorBlock -- Implements iterator for the linked list as
// an iterator block.
class LinkedList // No longer need “: IEnumerator” here.
{
 ... rest of the class.
 ...
 // Here’s the iterator, implemented as an iterator block.
 public IEnumerator GetEnumerator()
 {
 // Make sure the current node is legal.
 // If it’s null, it hasn’t yet been set to point into the list,
 // so point it at the head.
 if (currentNode == null)
 {
 currentNode = head;
 }
 // Here’s the iteration for the enumerator that
 // GetEnumerator() returns.
 while (currentNode != null)
 {
 yield return currentNode.Object;
 currentNode = currentNode.forward;
 }
 }
}

I show the following basic form of an iterator block in several sections ear-
lier in this chapter, including the section “Iterating days of the month: A first
example”:

public System.Collections.IEnumerator GetEnumerator() {}

This line looks exactly like the IEnumerator object returned by
GetEnumerator() in the original LinkedList class. But implementing
the GetEnumerator() method now works quite differently, as explained
in this list:

 ✦ When you write an iterator block, C# creates the underlying
LinkedListIterator class for you. You don’t even write the class,
and you never see its code. It’s no longer part of the LinkedList
WithIteratorBlock example.

 ✦ In your GetEnumerator() method, you just use a loop to step through
the linked list’s nodes and yield return the data item stored at each
node. You can see this code in the previous listing.

11_563489-bk01ch07.indd 16211_563489-bk01ch07.indd 162 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

163Looping Around the Iterator Block

 ✦ You no longer need to specify that your collection class implements
IEnumerator, as in this class header:

public class LinkedList // No longer need “: IEnumerator” here

Well, of course, it isn’t quite that simple
A few possible “gotchas” are inevitable here:

 ✦ You have to make sure you start stepping at the beginning of the list.

 To make this happen, the new LinkedList class adds a data member,
currentNode, with which it tracks the iterator’s progress through the
list. (That member used to reside in the LinkedListIterator class.)
The currentNode member is initially null, so the iterator needs to
check for it. If so, it sets currentNode to point to the list’s head node.

 Unless head is null itself (the list is empty), currentNode is now non-
null for the rest of the iteration. When the iterator finally reaches the
end of the list, it indeed returns null, which signals the foreach loop
to stop.

 ✦ Each step through the list needs to do what MoveNext() used to do —
advance to the next node; hence the while loop:

// This does what MoveNext() did.
while(currentNode != null)
{
 // This does what Current did.
 yield return currentNode...; // Portions omitted for a moment
 currentNode = currentNode.forward;
}

 Most iterator block implementations employ a loop to step through
the collection — sometimes even an inner foreach loop. (But
StringChunks shows that it isn’t the only way.)

 ✦ When you step through the list and start to yield return data, you
have to dig inside the LLNode object to extract its stored data. A list
node is just a storage bin for a string, an int, a Student, and so on. It
requires that you yield return not currentNode, but, rather, this:

yield return currentNode.Data; // Now complete
currentNode = currentNode.forward;

 Under the hood, the original enumerator did that too. The Data property
of LLNode returns the node’s data as an object. I intentionally designed
the original nongeneric linked list to be as general as possible — back in
the bad old days before generics. Hence it stores objects.

Now the while loop, with its yield break statement, is doing the work that
you used to have to do with more effort, and the resulting GetEnumerator()
method works with foreach, as it did before, in Main().

11_563489-bk01ch07.indd 16311_563489-bk01ch07.indd 163 3/19/10 8:02 PM3/19/10 8:02 PM

164 Looping Around the Iterator Block

If you think about it, this implementation simply moves the functionality of
the old custom iterator class, LinkedListIterator, into the LinkedList
class itself. It’s all swept under the iterator block, you might say.

Under the hood, foreach makes the necessary cast for you (assuming that
it’s a legal cast). So if you stored strings in the list, your foreach loop
looks like this:

foreach(string s in llc) // foreach does the cast for you here.
{
 Console.WriteLine(s);
}

 For a generic version of this chapter’s linked list, complete with an iterator
block enumerator, see the GenericLinkedListContainer example on
this book’s Web site. (It isn’t shown here.) That example demonstrates
instantiating the generic LinkedList for string and then int. You’ll get a
kick out of stepping through the example in the debugger to see how
foreach works. For comparison, see the new, built-in LinkedList<T>
class in the System.Collections.Generic namespace.

Leave behind the whole nongeneric collection world — except for the good
old array, which of course is still quite useful and still type-safe. Use generic
collections. (Of course, I’m about to violate this tip in the next section.)

One more wrinkle
The original iterator implementation in LinkedList implemented its itera-
tor as a separate iterator class designed as a companion to the LinkedList.
That setup had one nice feature that’s missing now from the iterator block
versions I describe in the preceding section: You could easily create multiple
instances of the iterator object and use each one for an independent itera-
tion of the linked list. So iterator1 may be halfway through the list when
iterator2 is just starting.

But the next example in this chapter remedies that problem (although for
a simpler collection, not LinkedList). IteratorBlockIterator sticks
with the separate companion iterator object, with intimate access to the col-
lection’s internal values. But that iterator object is itself implemented using
an iterator block:

// In file Program.cs:

// IteratorBlockIterator -- Implements a separate iterator object as a
// companion to a collection class, a la LinkedList, but
// implements the actual iterator with an iterator block
using System;
using System.Collections;
namespace IteratorBlockIterator
{
 class Program
 {

11_563489-bk01ch07.indd 16411_563489-bk01ch07.indd 164 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

165Looping Around the Iterator Block

 // Create a collection and use two iterator objects to iterate
 // it independently (each using an iterator block).
 static void Main(string[] args)
 {
 string[] strs = new string[] { “Joe”, “Bob”, “Tony”, “Fred” };
 MyCollection mc = new MyCollection(strs);
 // Create the first iterator and start the iteration.
 MyCollectionIterator mci1 = mc.GetEnumerator();
 foreach (string s1 in mci1) // Uses the first iterator object
 {
 // Do some useful work with each string.
 Console.WriteLine(s1);
 // Find Tony’s boss.
 if (s1 == “Tony”)
 {
 // In the middle of that iteration, start a new one, using
 // a second iterator, repeated for each outer loop pass.
 MyCollectionIterator mci2 = mc.GetEnumerator();
 foreach (string s2 in mci2) // Uses the second iterator object
 {
 // Do some useful work with each string.
 if (s2 == “Bob”)
 {
 Console.WriteLine(“\t{0} is {1}’s boss”, s2, s1);
 }
 }
 }
 }
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // A simple collection of strings
 public class MyCollection
 {
 // Implement collection with an old-fashioned ArrayList.
 // Internal, so separate iterator object can access the strings.
 internal ArrayList _list = new ArrayList();
 public MyCollection(string[] strs)
 {
 foreach (string s in strs)
 {
 _list.Add(s);
 }
 }
 // GetEnumerator -- As in LinkedList, returns one of your
 // iterator objects.
 public MyCollectionIterator GetEnumerator()
 {
 return new MyCollectionIterator(this);
 }
 }
 // MyCollectionIterator -- The iterator class for MyCollection
 // (MyCollection is in a separate file.)
 public class MyCollectionIterator
 {
 // Store a reference to the collection.
 private MyCollection _mc;
 public MyCollectionIterator(MyCollection mc)
 {
 this._mc = mc;
 }

11_563489-bk01ch07.indd 16511_563489-bk01ch07.indd 165 3/19/10 8:02 PM3/19/10 8:02 PM

166 Looping Around the Iterator Block

 // GetEnumerator -- This is the iterator block, which carries
 // out the actual iteration for the iterator object.
 public System.Collections.IEnumerator GetEnumerator()
 {
 // Iterate the associated collection’s underlying list,
 // which is accessible because it’s declared internal.
 foreach (string s in _mc._list)
 {
 yield return s; // The iterator block’s heart
 }
 }
 }
 }
}

The collection in IteratorBlockIterator isn’t much to write home about:
a simple class wrapped around a List of strings. Its GetEnumerator()
method simply returns a new instantiation of the companion iterator class,
as in LinkedList:

// GetEnumerator -- As in LinkedList, returns one of your
// iterator objects.
public MyCollectionIterator GetEnumerator()
{
 return new MyCollectionIterator(this);
}

It’s what’s inside that iterator class that’s interesting. It too contains a
GetEnumerator() method. Implemented with an iterator block, this one
does the iteration work. Here’s that method:

// GetEnumerator -- This is the iterator block, which carries
// out the actual iteration for the iterator object.
public System.Collections.IEnumerator GetEnumerator()
{
 // Iterate the associated collection’s underlying list,
 // which is accessible because it’s declared internal.
 foreach (string s in mc.list)
 {
 yield return s; // The iterator block’s heart
 }
}

This method has access to the companion collection’s contained
List<string>, so its yield return statement can return each string in
turn.

But the payoff is in Main(), where two copies of the iterator object are cre-
ated. The foreach loop for the second one is nested in the foreach loop
for the first, so the output looks like this:

Joe
Bob
Tony
 Bob is Tony’s boss
Fred

11_563489-bk01ch07.indd 16611_563489-bk01ch07.indd 166 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 7

S
te

p
p

in
g

 th
ro

u
g

h

C
o

lle
c

tio
n

s

167Looping Around the Iterator Block

The indented line is produced by the nested iteration.

Here are those nested loops in Main() again:

MyCollectionIterator mci1 = mc.GetEnumerator();
foreach (string s1 in mci1) // Uses the first iterator block
{
 // Do some useful work with each string.
 Console.WriteLine(s1);
 // Find Tony’s boss.
 if(s1 == “Tony”)
 {
 // In the middle of that iteration, start a new one, using
 // a second iterator; this is repeated for each outer loop pass.
 MyCollectionIterator mci2 = mc.GetEnumerator();
 foreach (string s2 in mci2) // Uses the second iterator block
 {
 // Do some useful work with each string.
 if(s2 == “Bob”)
 {
 Console.WriteLine(“\t{0} is {1}’s boss”, s2, s1);
 }
 }
 }
}

The original iterator, with MoveNext() and Current, is still more flexible,
but this example comes close — and is easier to do.

11_563489-bk01ch07.indd 16711_563489-bk01ch07.indd 167 3/19/10 8:02 PM3/19/10 8:02 PM

Book I: The Basics of C# Programming168

11_563489-bk01ch07.indd 16811_563489-bk01ch07.indd 168 3/19/10 8:02 PM3/19/10 8:02 PM

Chapter 8: Buying Generic

In This Chapter
✓ Making your code generic — and truly powerful

✓ Writing your own generic class

✓ Writing generic methods

✓ Using generic interfaces and delegates

The problem with collections is that you need to know exactly what is
going in them. Can you imagine a recipe that accepts only the exact

listed ingredients and no others? No substitutions — nothing even named
differently? That’s how most collections treat you, but not generics.

As with prescriptions at your local pharmacy, you can save big by opting
for the generic version. Generics, introduced in C# 2.0, are fill-in-the-blanks
classes, methods, interfaces, and delegates. For example, the List<T> class
defines a generic array-like list that’s quite comparable to the older, non-
generic ArrayList — but better! When you pull List<T> off the shelf to
instantiate your own list of, say, ints, you replace T with int:

List<int> myList = new List<int>(); // A list limited to ints

The versatile part is that you can instantiate List<T> for any single data
type (string, Student, BankAccount, CorduroyPants — whatever) and
it’s still type-safe like an array, without nongeneric costs. It’s the superarray.
(I explain type-safety and the costs of nongeneric collections next.)

Generics come in two flavors in C#: the built-in generics, such as List<T>,
and a variety of roll-your-own items. After a quick tour of generic concepts,
this chapter covers roll-your-own generic classes, generic methods, and
generic interfaces and delegates.

Writing a New Prescription: Generics
What’s so hot about generics? They excel for two reasons: safety and
performance.

12_563489-bk01ch08.indd 16912_563489-bk01ch08.indd 169 3/19/10 8:02 PM3/19/10 8:02 PM

170 Writing a New Prescription: Generics

Generics are type-safe
 When you declare an array, you must specify the exact type of data it can

hold. If you specify int, the array can’t hold anything other than ints or
other numeric types that C# can convert implicitly to int. You see compiler
errors at build-time if you try to put the wrong kind of data into an array.
Thus the compiler enforces type-safety, enabling you to fix a problem before
it ever gets out the door.

A compiler error beats the heck out of a runtime error. In fact, a compiler
error beats everything except a royal flush or a raspberry sundae. Compiler
errors are useful because they help you spot problems now.

 The old-fashioned nongeneric collections aren’t type-safe. In C#, everything
IS_A Object because Object is the base type for all other types, both
value-types and reference-types. But when you store value-types (numbers,
chars, bools, and structs) in a collection, they must be boxed going in
and unboxed coming back out. It’s as though you’re putting items in an egg
carton and having to stuff them inside the eggs so that they fit, and then
breaking the eggshells to get the items back out. (Reference-types such as
string, Student, and BankAccount don’t undergo boxing.)

The first consequence of nongenerics lacking type-safety is that you need
a cast, as shown in the following code, to get the original object out of the
ArrayList because it’s hidden inside an egg, er, Object:

ArrayList aList = new ArrayList();
// Add five or six items, then ...
string myString = (string)aList[4]; // Cast to string.

 Fine, but the second consequence is this: You can put eggs in the carton,
sure. But you can also add marbles, rocks, diamonds, fudge — you name it.
An ArrayList can hold many different types of objects at the same time. So
it’s legal to write this:

ArrayList aList = new ArrayList();
aList.Add(“a string”); // string -- OK
aList.Add(3); // int -- OK
aList.Add(aStudent); // Student -- OK

However, if you put a mixture of incompatible types into an ArrayList
(or another nongeneric collection), how do you know what type is in, say,
aList[3]? If it’s a Student and you try to cast it to string, you get a
runtime error. It’s just like Harry Potter reaching into a box of Bertie Botts’s
Every Flavor Beans: He doesn’t know whether he’ll grab raspberry beans or
earwax.

 To be safe, you have to resort to using the is operator (discussed in Book II)
or the alternative, the as operator:

12_563489-bk01ch08.indd 17012_563489-bk01ch08.indd 170 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

171Classy Generics: Writing Your Own

// See if the object is the right type, then cast it ...
if(aList[i] is Student) // Is the object there a Student?
{
 Student aStudent = (Student)aList[i]; // Yes, so it’s safe to cast.
}
// Or do the conversion and see if it went well...
Student aStudent = aList[i] as Student; // Extract a Student, if present;
if(aStudent != null) // if not, “as” returns null.
{
 // OK to use aStudent; “as” operator worked.
}

You can avoid all this extra work by using generics. Generic collections
work like arrays: You specify the one and only type they can hold when you
declare them.

Generics are efficient
Polymorphism allows the type Object to hold any other type — as with
the egg carton analogy in the previous section. But you can incur a penalty
by putting in value-type objects — numeric, char, and bool types and
structs — and taking them out. That’s because value-type objects that you
add have to be boxed. (See Book II for more on polymorphism.)

Boxing isn’t worrisome unless your collection is big (although the amount
of boxing going on can startle you and be more costly than you imagined). If
you’re stuffing a thousand, or a million, ints into a nongeneric collection, it
takes about 20 times as long, plus extra space on the memory heap, where
reference-type objects are stored. Boxing can also lead to subtle errors that
will have you tearing your hair out. Generic collections eliminate boxing and
unboxing.

 Don’t get me wrong: Boxing allows C# to have a unified type system, which
has great benefits that usually outweigh the inconvenience and cost of
boxing.

Classy Generics: Writing Your Own
Besides the built-in generic collection classes, C# lets you write your own
generic classes, whether they’re collections or not. The point is that you can
create generic versions of classes that you design.

Picture a class definition full of <T> notations. When you instantiate such a
class, you specify a type to replace its generic placeholders, just as you do
with the generic collections. Note how similar these declarations are:

LinkedList<int> aList = new LinkedList<int>(); // Built-in LinkedList class
MyClass<int> aClass = new MyClass<int>(); // Custom class

12_563489-bk01ch08.indd 17112_563489-bk01ch08.indd 171 3/19/10 8:02 PM3/19/10 8:02 PM

172 Classy Generics: Writing Your Own

Both are instantiations of classes — one built-in and one programmer-
defined. Not every class makes sense as a generic; later in this chapter, I
show you an example of one that does.

 Classes that logically could do the same things for different types of data make
the best generic classes. Collections of one sort or another are the prime
example. If you find yourself mumbling, “I’ll probably have to write a version
of this for Student objects, too,” it’s probably a good candidate for generics.

To show you how to write your own generic class, the following example
develops a special kind of queue collection class, a priority queue.

Shipping packages at OOPs
Here’s the scene for an example: a busy shipping warehouse similar to UPS
or FedEx. Packages stream in the front door at OOPs, Inc., and are shipped
out the back as soon as they can be processed. Some packages need to be
delivered by way of superfast next-day teleportation; others can travel a tiny
bit slower, by second-day cargo pigeon; and most can take the snail route:
ground delivery in your cousin Fred’s ’82 Volvo.

But the packages don’t arrive at the warehouse in any particular order, so as
they come in, you need to expedite some of them as next-day or second-day.
Because some packages are more equal than others, they are prioritized and
the folks in the warehouse give the high-priority packages special treatment.

Except for the priority aspect, this situation is tailor-made for a queue data
structure. A queue is perfect for anything that involves turn-taking. You’ve
stood (or driven) in thousands of queues in your life, waiting for your turn to
buy Twinkies or pay too much for prescription medicines. You know the drill.

The shipping warehouse scenario is similar: New packages arrive and go
to the back of the line — normally. But because some have higher priorities,
they’re privileged characters, like those Premium Class folks at the airport
ticket counter. They get to jump ahead, either to the front of the line or not
far from the front.

Queuing at OOPs: PriorityQueue
The shipping queue at OOPs deals with high-, medium-, and low-priority
packages coming in. Here are the queuing rules:

 ✦ High-priority packages (next-day) go to the front of the queue — but
behind any other high-priority packages that are already there.

 ✦ Medium-priority packages (second-day) go as far forward as possible —
but behind all the high-priority packages, even the ones that a laggard
will drop off later, and also behind other medium-priority packages that
are already in the queue.

12_563489-bk01ch08.indd 17212_563489-bk01ch08.indd 172 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

173Classy Generics: Writing Your Own

 ✦ Low-priority ground-pounders must join at the back of the queue.
They get to watch all the high priorities sail by to cut in front of them —
sometimes, way in front of them.

C# comes with built-in queues, even generic ones. But it doesn’t come with a
priority queue, so you have to build your own. How? A common approach is
to embed several actual queues within a wrapper class, sort of like this:

class Wrapper // Or PriorityQueue
{
 Queue queueHigh = new Queue ();
 Queue queueMedium = new Queue ();
 Queue queueLow = new Queue ();
 // Methods to manipulate the underlying queues...

Wrappers are classes (or methods) that encapsulate complexity. A wrapper
may have an interface quite different from the interfaces of what’s inside it —
that’s an adapter.

The wrapper encapsulates three actual queues here (they could be generic),
and the wrapper must manage what goes into which underlying queue and
how. The standard interface to the Queue class, as implemented in C#,
includes these two key methods:

 ✦ Enqueue() (pronounced “N-Q”) inserts items into a queue at the back.

 ✦ Dequeue() (pronounced “D-Q”) removes items from the queue at the
front.

 For the shipping-priority queue, the wrapper provides the same interface as
a normal queue, thus pretending to be a normal queue itself. It implements
an Enqueue() method that determines an incoming package’s priority and
decides which underlying queue it gets to join. The wrapper’s Dequeue()
method finds the highest-priority Package in any of the underlying queues.
The formal name of this wrapper class is PriorityQueue.

Here’s the code for the PriorityQueue example on this book’s Web site:

// PriorityQueue -- Demonstrates using lower-level queue collection objects
// (generic ones at that) to implement a higher-level generic
// Queue that stores objects in priority order
using System;
using System.Collections.Generic;
namespace PriorityQueue
{
 class Program
 {
 // Main -- Fill the priority queue with packages, then
 // remove a random number of them.
 static void Main(string[] args)
 {
 Console.WriteLine(“Create a priority queue:”);
 PriorityQueue<Package> pq = new PriorityQueue<Package>();

12_563489-bk01ch08.indd 17312_563489-bk01ch08.indd 173 3/19/10 8:02 PM3/19/10 8:02 PM

174 Classy Generics: Writing Your Own

 Console.WriteLine(
 “Add a random number (0 - 20) of random packages to queue:”);
 Package pack;
 PackageFactory fact = new PackageFactory();
 // You want a random number less than 20.
 Random rand = new Random();
 int numToCreate = rand.Next(20); // Random int from 0 - 20
 Console.WriteLine(“\tCreating {0} packages: “, numToCreate);
 for (int i = 0; i < numToCreate; i++)
 {
 Console.Write(“\t\tGenerating and adding random package {0}”, i);
 pack = fact.CreatePackage();
 Console.WriteLine(“ with priority {0}”, pack.Priority);
 pq.Enqueue(pack);
 }
 Console.WriteLine(“See what we got:”);
 int total = pq.Count;
 Console.WriteLine(“Packages received: {0}”, total);

 Console.WriteLine(“Remove a random number of packages (0-20): “);
 int numToRemove = rand.Next(20);
 Console.WriteLine(“\tRemoving up to {0} packages”, numToRemove);
 for (int i = 0; i < numToRemove; i++)
 {
 pack = pq.Dequeue();
 if (pack != null)
 {
 Console.WriteLine(“\t\tShipped package with priority {0}”,
 pack.Priority);
 }
 }
 // See how many were “shipped.”
 Console.WriteLine(“Shipped {0} packages”, total - pq.Count);

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }

 // Priority enumeration -- Defines a set of priorities
 // instead of priorities like 1, 2, 3, ... these have names.
 // For information on enumerations,
 // see the article “Enumerating the Charms of the Enum”
 // on csharp102.info.
 enum Priority
 {
 Low, Medium, High
 }

 // IPrioritizable interface -- Defines ability to prioritize.
 // Define a custom interface: Classes that can be added to
 // PriorityQueue must implement this interface.
 interface IPrioritizable
 {
 Priority Priority { get; } // Example of a property in an interface
 }

 //PriorityQueue -- A generic priority queue class
 // Types to be added to the queue *must* implement IPrioritizable interface.
 class PriorityQueue<T> where T : IPrioritizable
 {

12_563489-bk01ch08.indd 17412_563489-bk01ch08.indd 174 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

175Classy Generics: Writing Your Own

 //Queues -- the three underlying queues: all generic!
 private Queue<T> _queueHigh = new Queue<T>();
 private Queue<T> _queueMedium = new Queue<T>();
 private Queue<T> _queueLow = new Queue<T>();

 //Enqueue -- Prioritize T and add it to correct queue; an item of type T.
 // The item must know its own priority.
 public void Enqueue(T item)
 {
 switch (item.Priority) // Require IPrioritizable to ensure this property.
 {
 case Priority.High:
 _queueHigh.Enqueue(item);
 break;
 case Priority.Medium:
 _queueMedium.Enqueue(item);
 break;
 case Priority.Low:
 _queueLow.Enqueue(item);
 break;
 default:
 throw new ArgumentOutOfRangeException(
 item.Priority.ToString(),
 “bad priority in PriorityQueue.Enqueue”);
 }
 }

 //Dequeue -- Get T from highest-priority queue available.
 public T Dequeue()
 {
 // Find highest-priority queue with items.
 Queue<T> queueTop = TopQueue();
 // If a non-empty queue is found.
 if (queueTop != null & queueTop.Count > 0)
 {
 return queueTop.Dequeue(); // Return its front item.
 }
 // If all queues empty, return null (you could throw exception).
 return default(T); // What’s this? See discussion.
 }

 //TopQueue -- What’s the highest-priority underlying queue with items?
 private Queue<T> TopQueue()
 {
 if (_queueHigh.Count > 0) // Anything in high-priority queue?
 return _queueHigh;
 if (_queueMedium.Count > 0) // Anything in medium-priority queue?
 return _queueMedium;
 if (_queueLow.Count > 0) // Anything in low-priority queue?
 return _queueLow;
 return _queueLow; // All empty, so return an empty queue.
 }

 //IsEmpty -- Check whether there’s anything to deqeue.
 public bool IsEmpty()
 {
 // True if all queues are empty
 return (_queueHigh.Count == 0) & (_queueMedium.Count == 0) &
 (_queueLow.Count == 0);
 }

12_563489-bk01ch08.indd 17512_563489-bk01ch08.indd 175 3/19/10 8:02 PM3/19/10 8:02 PM

176 Classy Generics: Writing Your Own

 //Count -- How many items are in all queues combined?
 public int Count // Implement this one as a read-only property.
 {
 get { return _queueHigh.Count + _queueMedium.Count + _queueLow.Count; }
 }
 }

 //Package -- An example of a prioritizable class that can be stored in
 // the priority queue; any class that implements
 // IPrioritizable would look something like Package.
 class Package : IPrioritizable
 {
 private Priority _priority;
 //Constructor
 public Package(Priority priority)
 {
 this._priority = priority;
 }

 //Priority -- Return package priority -- read-only.
 public Priority Priority
 {
 get { return _priority; }
 }
 // Plus ToAddress, FromAddress, Insurance, etc.
 }

 //PackageFactory -- You need a class that knows how to create a new
 // package of any desired type on demand; such a class
 // is a factory class.
 class PackageFactory
 {
 //A random-number generator
 Random _randGen = new Random();

 //CreatePackage -- The factory method selects a random priority,
 // then creates a package with that priority.
 // Could implement this as iterator block.
public Package CreatePackage()
 {
 // Return a randomly selected package priority.
 // Need a 0, 1, or 2 (values less than 3).
 int rand = _randGen.Next(3);
 // Use that to generate a new package.
 // Casting int to enum is clunky, but it saves
 // having to use ifs or a switch statement.
 return new Package((Priority)rand);
 }
 }
}

PriorityQueue is a bit long, so you need to look at each part carefully.
After a look at the target class, Package, you can follow a package’s journey
through the Main() method near the top.

When you run PriorityQueue, run it several times. Because it’s built
around random numbers, you get varying results on each run. Sometimes it
may “receive” zero packages, for instance. (Slow days happen, I guess.)

12_563489-bk01ch08.indd 17612_563489-bk01ch08.indd 176 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

177Classy Generics: Writing Your Own

Unwrapping the package
Class Package, which is intentionally simple for this example (see the list-
ing in the previous section), focuses on the priority part, although a real
Package object would include other members. All that Package needs for
the example are

 ✦ A private data member to store its priority

 ✦ A constructor to create a package with a specific priority

 ✦ A method (implemented as a read-only property here) to return the
priority

Two aspects of class Package require some explanation: the Priority
type and the IPrioritizable interface that Package implements.
Read on.

Specifying the possible priorities
Priorities are measured with an enumerated type, or enum, named
Priority. The Priority enum looks like this:

//Priority -- Instead of priorities like 1, 2, 3, they have names.
enum Priority // See the article “Enumerating the Charms
 // of the Enum” on this book’s Web site.
{
 Low, Medium, High
}

Implementing the IPrioritizable interface
Any object going into the PriorityQueue must “know” its own priority. (A
general object-oriented principle states that objects should be responsible
for themselves.)

You can informally “promise” that class Package has a member to retrieve
its priority, but you should make it a requirement that the compiler can
enforce. You require any object placed in the PriorityQueue to have such
a member.

One way to enforce this requirement is to insist that all shippable objects
implement the IPrioritizable interface, which follows:

//IPrioritizable -- Define a custom interface: Classes that can be added to
// PriorityQueue must implement this interface.
interface IPrioritizable // Any class can implement this interface.
{
 Priority Priority { get; }
}

12_563489-bk01ch08.indd 17712_563489-bk01ch08.indd 177 3/19/10 8:02 PM3/19/10 8:02 PM

178 Classy Generics: Writing Your Own

 The notation { get; } is how to write a property in an interface declaration.

Class Package implements the interface by providing a fleshed-out imple-
mentation for the Priority property:

public Priority Priority
{
 get { return _priority; }
}

You encounter the other side of this enforceable requirement in the decla-
ration of class PriorityQueue, in the later section “Saving PriorityQueue
for last.”

Touring Main()
Before you spelunk the PriorityQueue class itself, it’s useful to get an
overview of how it works in practice at OOPs, Inc. Here’s the Main()
method for the PriorityQueue example:

static void Main(string[] args)
{
 Console.WriteLine(“Create a priority queue:”);
 PriorityQueue<Package> pq = new PriorityQueue<Package>();
 Console.WriteLine(
 “Add a random number (0 - 20) of random packages to queue:”);
 Package pack;
 PackageFactory fact = new PackageFactory();
 // You want a random number less than 20.
 Random rand = new Random();
 int numToCreate = rand.Next(20); // Random int from 0-20.
 Console.WriteLine(“\tCreating {0} packages: “, numToCreate);
 for (int i = 0; i < numToCreate; i++)
 {
 Console.Write(“\t\tGenerating and adding random package {0}”, i);
 pack = fact.CreatePackage();
 Console.WriteLine(“ with priority {0}”, pack.Priority);
 pq.Enqueue(pack);
 }
 Console.WriteLine(“See what we got:”);
 int total = pq.Count;
 Console.WriteLine(“Packages received: {0}”, total);

 Console.WriteLine(“Remove a random number of packages (0-20): “);
 int numToRemove = rand.Next(20);
 Console.WriteLine(“\tRemoving up to {0} packages”, numToRemove);
 for (int i = 0; i < numToRemove; i++)
 {
 pack = pq.Dequeue();
 if (pack != null)
 {
 Console.WriteLine(“\t\tShipped package with priority {0}”,
 pack.Priority);
 }
 }
 // See how many were “shipped.”
 Console.WriteLine(“Shipped {0} packages”, total - pq.Count);

12_563489-bk01ch08.indd 17812_563489-bk01ch08.indd 178 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

179Classy Generics: Writing Your Own

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
}

Here’s what happens in Main():

 1. Instantiate a PriorityQueue object for type Package.

 2. Create a PackageFactory object whose job is to create new packages
with randomly selected priorities, on demand.

 A factory is a class or method that creates objects for you. You tour
PackageFactory in the section “Using a (nongeneric) Simple Factory
class,” later in this chapter.

 3. Use the .NET library class Random to generate a random number and
then call PackageFactory to create that number of new Package
objects with random priorities.

 4. Add each package to the PriorityQueue by using pq.Enqueue(pack).

 5. Write the number of packages created and then randomly remove some
of them from the PriorityQueue by using pq.Dequeue().

 6. End after displaying the number of packages removed.

Writing generic code the easy way
Now you have to figure out how to go about writing a generic class, with all
those <T>s. Looks confusing, doesn’t it? Well, it’s not so hard, as this section
demonstrates.

The simple way to write a generic class is to write a nongeneric version
first and then substitute the <T>s. For example, you would write the
PriorityQueue class for Package objects, test it, and then “genericize” it.

Here’s a small piece of a nongeneric PriorityQueue, to illustrate:

public class PriorityQueue
{
 //Queues -- The three underlying queues: all generic!
 private Queue<Package> _queueHigh = new Queue<Package>();
 private Queue<Package> _queueMedium = new Queue<Package>();
 private Queue<Package> _queueLow = new Queue<Package>();
 //Enqueue -- Prioritize a Package and add it to correct queue.
 public void Enqueue(Package item)
 {
 switch(item.Priority) // Package has this property.
 {
 case Priority.High:
 queueHigh.Enqueue(item);
 break;

12_563489-bk01ch08.indd 17912_563489-bk01ch08.indd 179 3/19/10 8:02 PM3/19/10 8:02 PM

180 Classy Generics: Writing Your Own

 case Priority.Low:
 queueLow.Enqueue(item);
 break;
 case Priority.Medium:
 queueMedium.Enqueue(item);
 break;
 }
 }
 // And so on ...

Testing the logic of the class is easier when you write the class nongeneri-
cally first. When all the logic is straight, you can use find-and-replace to
replace the name Package with T. (I explain a little later that there’s a bit
more to it than that, but not much.)

Saving PriorityQueue for last
Why would a priority queue be last? Seems a little backward to us. But
you’ve seen the rest. Now it’s time to examine the PriorityQueue class
itself. This section shows the code and then walks you through it and shows
you how to deal with a couple of small issues. Take it a piece at a time.

The underlying queues
PriorityQueue is a wrapper class that hides three ordinary Queue<T>
objects, one for each priority level. Here’s the first part of PriorityQueue,
showing the three underlying queues (now generic):

//PriorityQueue -- A generic priority queue class
// Types to be added to the queue *must* implement IPrioritizable interface.
class PriorityQueue<T> where T : IPrioritizable
{
 // Queues -- the three underlying queues: all generic!
 private Queue<T> _queueHigh = new Queue<T>();
 private Queue<T> _queueMedium = new Queue<T>();
 private Queue<T> _queueLow = new Queue<T>();
 // The rest will follow shortly ...

These lines declare three private data members of type Queue<T> and
initialize them by creating the Queue<T> objects. I say more later in this
chapter about that odd-looking class declaration line above the “subqueue”
declarations.

The Enqueue() method
Enqueue() adds an item of type T to the PriorityQueue. This method’s
job is to look at the item’s priority and put it into the correct underlying
queue. In the first line, it gets the item’s Priority property and switches
based on that value. To add the item to the high-priority queue, for example,
Enqueue() turns around and enqueues the item in the underlying queue
High. Here’s PriorityQueue’s Enqueue() method:

12_563489-bk01ch08.indd 18012_563489-bk01ch08.indd 180 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

181Classy Generics: Writing Your Own

//Enqueue -- Prioritize T and add it to correct queue; an item of type T.
// The item must know its own priority.
public void Enqueue(T item)
{
 switch (item.Priority) // Require IPrioritizable to ensure this property.
 {
 case Priority.High:
 _queueHigh.Enqueue(item);
 break;
 case Priority.Medium:
 _queueMedium.Enqueue(item);
 break;
 case Priority.Low:
 _queueLow.Enqueue(item);
 break;
 default:
 throw new ArgumentOutOfRangeException(
 item.Priority.ToString(),
 “bad priority in PriorityQueue.Enqueue”);
 }
}

The Dequeue() method
Dequeue()’s job is a bit trickier than Enqueue()’s: It must locate the highest-
priority underlying queue that has contents and then retrieve the front item
from that subqueue. Dequeue() delegates the first part of the task, finding
the highest-priority queue that isn’t empty, to a private TopQueue() method
(described in the next section). Then Dequeue() calls the underlying queue’s
Dequeue() method to retrieve the frontmost object, which it returns. Here’s
how Dequeue() works:

//Dequeue -- Get T from highest-priority queue available.
public T Dequeue()
{
 // Find highest-priority queue with items.
 Queue<T> queueTop = TopQueue();
 // If a non-empty queue is found
 if (queueTop != null & queueTop.Count > 0)
 {
 return queueTop.Dequeue(); // Return its front item.
 }
 // If all queues empty, return null (you could throw exception).
 return default(T); // What’s this? See discussion.
}

A difficulty arises only if none of the underlying queues have any packages —
in other words, the whole PriorityQueue is empty. What do you return
in that case? Dequeue() returns null. The client — the code that calls
PriorityQueue.Dequeue() — should check the Dequeue() return value in
case it’s null. Where’s the null it returns? It’s that odd duck, default(T),
at the end. I deal with default(T) a little later in this chapter.

12_563489-bk01ch08.indd 18112_563489-bk01ch08.indd 181 3/19/10 8:02 PM3/19/10 8:02 PM

182 Classy Generics: Writing Your Own

The TopQueue() utility method
Dequeue() relies on the private method TopQueue() to find the highest-
priority, nonempty underlying queue. TopQueue() just starts with queue
High and asks for its Count property. If it’s greater than zero, the queue
contains items, so TopQueue() returns a reference to the whole underlying
queue that it found. (The TopQueue() return type is Queue<T>.) On the
other hand, if queueHigh is empty, TopQueue() tries queueMedium and
then queueLow.

What happens if all subqueues are empty? TopQueue() could return
null, but it’s more useful to simply return one of the empty queues. When
Dequeue() then calls the returned queue’s Dequeue() method, it returns
null. TopQueue() works like this:

//TopQueue -- What’s the highest-priority underlying queue with items?
private Queue<T> TopQueue()
{
 if (_queueHigh.Count > 0) // Anything in high-priority queue?
 return _queueHigh;
 if (_queueMedium.Count > 0) // Anything in medium-priority queue?
 return _queueMedium;
 if (_queueLow.Count > 0) // Anything in low-priority queue?
 return _queueLow;
 return _queueLow; // All empty, so return an empty queue.
}

The remaining PriorityQueue members
PriorityQueue is useful when it knows whether it’s empty and, if not, how
many items it contains. (An object should be responsible for itself.) Look
at PriorityQueue’s IsEmpty() method and Count property in the ear-
lier listing. You might also find it useful to include methods that return the
number of items in each of the underlying queues. Be careful: Doing so may
reveal too much about how the priority queue is implemented. Keep your
implementation private.

Using a (nongeneric) Simple Factory class
Earlier in this chapter, I use a Simple Factory object (although I just call it a
“Factory” there) to generate an endless stream of Package objects with ran-
domized priority levels. At long last, that simple class can be revealed:

 // PackageFactory is part of the PriorityQueue example on the Web site.
 // PackageFactory -- You need a class that knows how to create a new
 // package of any desired type on demand; such a
 // class is a factory class.
 class PackageFactory
 {
 Random _randGen = new Random(); // C#’s random-number generator
 //CreatePackage -- This factory method selects a random priority,
 // then creates a package with that priority.
 public Package CreatePackage()

12_563489-bk01ch08.indd 18212_563489-bk01ch08.indd 182 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

183Classy Generics: Writing Your Own

 {
 // Return a randomly selected package priority:
 // need a 0, 1, or 2 (values less than 3).
 int rand = _randGen.Next(3);
 // Use that to generate a new package.
 // Casting int to enum is clunky, but it saves
 // having to use ifs or a switch statement.
 return new Package((Priority)rand);
 }
 }

Class PackageFactory has one data member and one method. (You can
just as easily implement a simple factory as a method rather than as a
class — for example, a method in class Program.) When you instantiate a
PackageFactory object, it creates an object of class Random and stores
it in the data member rand. Random is a .NET library class that generates
random numbers.

 Take a look at the PackageFactoryWithIterator example on
csharp102.info.

Using PackageFactory
To generate a randomly prioritized Package object, you call your factory
object’s CreatePackage() method this way:

PackageFactory fact = new PackageFactory();
IPrioritizable pack = fact.CreatePackage(); // Note the interface here.

CreatePackage() tells its random-number generator to generate a
number from 0 to 2 (inclusive) and uses the number to set the priority of
a new Package, which the method returns (to a Package or, better, to an
IPrioritizable variable).

 Note that I have CreatePackage return a reference to IPrioritizable,
which is more general than returning a reference to Package. This example
shows indirection — Main() refers to a Package indirectly, through an
interface that Package implements. Indirection insulates Main() from the
details of what CreatePackage returns. You then have greater freedom to
alter the underlying implementation of the factory without affecting Main().

More about factories

Factories are helpful for generating lots of test data. (A factory needn’t use
random numbers — that’s just what was needed for the PriorityQueue
example.)

 Factories improve programs by isolating object creation. Every time you
mention a specific class by name in your code, you create a dependency on
that class. The more such dependencies you have, the more tightly coupled
(bound together) your classes become.

12_563489-bk01ch08.indd 18312_563489-bk01ch08.indd 183 3/19/10 8:02 PM3/19/10 8:02 PM

184 Classy Generics: Writing Your Own

Programmers have long known that they should avoid tight coupling. (One
of the more decoupled approaches is to use the factory indirectly via an
interface, such as IPrioritizable, rather than a concrete class, such as
Package.) Programmers still create objects directly all the time, using the
new operator, and that’s fine. But factories can make code less coupled —
and therefore more flexible.

Tending to unfinished business
 PriorityQueue needs a couple of small bits of “spackling.” Here are the

issues:

 ✦ By itself, PriorityQueue wouldn’t prevent you from trying to instanti-
ate it for, say, int or string or Student — elements that don’t have
priorities. You need to constrain the class so that it can be instantiated
only for types that implement IPrioritizable. Attempting to instanti-
ate for a non-IPrioritizable class should result in a compiler error.

 ✦ The Dequeue() method for PriorityQueue returns the value null
instead of an actual object. But generic types such as <T> don’t have a
natural default null value the way elements such as ints, strings,
and down-and-out object references do. That part of it needs to be
genericized, too.

Adding constraints
PriorityQueue must be able to ask an object what its priority is. To
make it work, all classes that are storable in PriorityQueue must imple-
ment the IPrioritizable interface, as Package does. Package lists
IPrioritizable in its class declaration heading, like this:

class Package : IPrioritizable

Then it implements IPrioritizable’s Priority property.

 A matching limitation is needed for PriorityQueue. You want the compiler
to squawk if you try to instantiate for a type that doesn’t implement
IPrioritizable. In the nongeneric form of PriorityQueue (written
specifically for type Package, say), the compiler squeals automatically (I
recommend earplugs) when one of your priority queue methods tries to call a
method that Package doesn’t have. But, for generic classes, you can go to the
next level with an explicit constraint. Because you could instantiate the generic
class with literally any type, you need a way to tell the compiler which types
are acceptable — because they’re guaranteed to have the right methods.

 You add the constraint by specifying IPrioritizable in the heading for
PriorityQueue, like this:

class PriorityQueue<T> where T: IPrioritizable

12_563489-bk01ch08.indd 18412_563489-bk01ch08.indd 184 3/19/10 8:02 PM3/19/10 8:02 PM

Book I

Chapter 8

B
u

yin
g

 G
e

n
e

ric

185Classy Generics: Writing Your Own

Did you notice the where clause earlier? This boldfaced where clause speci-
fies that T must implement IPrioritizable. That’s the enforcer. It means,
“Make sure that T implements the IPrioritizable interface — or else!”

 You specify constraints by listing one or more of the following elements (sep-
arated by commas) in a where clause:

 ✦ The name of a required base class that T must derive from (or be).

 ✦ The name of an interface that T must implement, as shown in the previ-
ous example.

 ✦ You can see more — Table 8-1 has the complete list.

For information about these constraints, look up Generics [C#], constraints in
the Help index.

Table 8-1 Generic Constraint Options

Constraint Meaning Example

MyBaseClass T must be, or extend,
MyBaseClass.

where T:
MyBaseClass

IMyInterface T must implement
IMyInterface.

where T:
IMyInterface

struct T must be any value type. where T:
struct

class T must be any reference type. where T:
class

new() T must have a parameterless
constructor.

where T:
new()

Note the struct and class options in particular. Specifying struct means
that T can be any value type: a numeric type, a char, a bool, or any object
declared with the struct keyword. Specifying class means that T can be
any reference type: any class type.

These constraint options give you quite a bit of flexibility for making your
new generic class behave just as you want. And a well-behaved class is a
pearl beyond price.

You aren’t limited to just one constraint, either. Here’s an example of a hypo-
thetical generic class declared with multiple constraints on T:

class MyClass<T> : where T: class, IPrioritizable, new()
{ ... }

12_563489-bk01ch08.indd 18512_563489-bk01ch08.indd 185 3/19/10 8:02 PM3/19/10 8:02 PM

186 Classy Generics: Writing Your Own

In this line, T must be a class, not a value type; it must implement
IPrioritizable; and it must contain a constructor without parameters.
Strict!

 You might have two generic parameters and both need to be constrained.
(Yes, you can have more than one generic parameter — think of
Dictionary<TKey, TValue>.) Here’s how to use two where clauses:

class MyClass<T, U> : where T: IPrioritizable, where U: new()

You see two where clauses, separated by a comma. The first constrains T
to any object that implements the IPrioritizable interface. The second
constrains U to any object that has a default (parameterless) constructor.

Determining the null value for type T: Default(T)
In case you read the last paragraph in the previous section and are confused,
well, each type has (as mentioned earlier) a default value that signifies “noth-
ing” for that type. For ints, doubles, and other types of numbers, it’s 0 (or
0.0). For bool, it’s false. And, for all reference types, such as Package, it’s
null. As with all reference types, the default for string is null.

But because a generic class such as PriorityQueue can be instantiated
for almost any data type, C# can’t predict the proper null value to use in
the generic class’s code. For example, if you use the Dequeue() method of
PriorityQueue, you may face this situation: You call Dequeue() to get
a package, but none is available. What do you return to signify “nothing”?
Because Package is a class type, it should return null. That signals the
caller of Dequeue() that there was nothing to return (and the caller must
check for a null return value).

 The compiler can’t make sense of the null keyword in a generic class
because the class may be instantiated for all sorts of data types. That’s why
Dequeue() uses this line instead:

return default(T); // Return the right null for whatever T is.

This line tells the compiler to look at T and return the right kind of null
value for that type. In the case of Package, which as a class is a reference
type, the right null to return is, well, null. But, for some other T, it may be
different and the compiler can figure out what to use.

 If you think PriorityQueue is flexible, take a look at an even more flexible
version of it — and encounter some object-oriented design principles — in
the ProgrammingToAnInterface program, available with this chapter.

12_563489-bk01ch08.indd 18612_563489-bk01ch08.indd 186 3/19/10 8:02 PM3/19/10 8:02 PM

Chapter 9: Some Exceptional
Exceptions

In This Chapter
✓ Handling errors via return codes

✓ Using the exception mechanism instead of return codes

✓ Plotting your exception-handling strategy

Iknow it’s difficult to accept, but occasionally a method doesn’t do what
it’s supposed to do. Even the ones I write — especially the ones I write —

don’t always do what they’re supposed to. Users are notoriously unreliable
as well. No sooner do you ask for an int than a user inputs a double.
Sometimes, the method goes merrily along, blissfully ignorant that it is
spewing out garbage. However, good programmers write their methods to
anticipate problems and report them as they occur.

 I’m talking about runtime errors, not compile-time errors, which C# spits
out when you try to build your program. Runtime errors occur when the pro-
gram is running, not at compile time.

The C# exception mechanism is a means for reporting these errors in a way
that the calling method can best understand and use to handle the problem.
This mechanism has a lot of advantages over the ways that programmers
handled errors in the, uh, good old days. Let‘s revisit yesteryear so that you
can see.

This chapter walks you through the fundamentals of exception handling.
You have a lot to digest here, so lean back in your old, beat-up recliner.

Using an Exceptional Error-Reporting Mechanism
C# introduces a completely different mechanism for capturing and handling
errors: the exception. This mechanism is based on the keywords try,
catch, throw, and finally. In outline form, it works like this: A method
will try to execute a piece of code. If the code detects a problem, it will
throw an error indication, which your code can catch, and no matter what
happens, it finally executes a special block of code at the end, as shown
in this snippet:

13_563489-bk01ch09.indd 18713_563489-bk01ch09.indd 187 3/19/10 8:03 PM3/19/10 8:03 PM

188 Using an Exceptional Error-Reporting Mechanism

public class MyClass
{
 public void SomeMethod()
 {
 // Set up to catch an error.
 try
 {
 // Call a method or do something that could throw an exception.
 SomeOtherMethod();
 // . . . make whatever other calls you want . . .
 }
 catch(Exception e)
 {
 // Control passes here in the event of an error anywhere
 // within the try block.
 // The Exception object e describes the error in detail.
 }
 finally
 {
 // Clean up here: close files, release resources, etc.
 // This block runs even if an exception was caught.
 }
 }
 public void SomeOtherMethod()
 {
 // . . . error occurs somewhere within this method . . .
 // . . . and the exception bubbles up the call chain.
 throw new Exception(“Description of error”);
 // . . . method continues if throw didn’t happen . . .
 }
}

 The combination of try, catch, and (possibly) finally is an exception
handler.

The SomeMethod() method surrounds a section of code in a block labeled
with the keyword try. Any method called within that block (or any method
that it calls or on up the tree . . .) is considered to be within the try block.
If you have a try block, you must have either a catch block or a finally
block, or both.

 A variable declared inside a try, catch, or finally block isn’t accessible
from outside the block. If you need access, declare the variable outside,
before the block:

int aVariable; // Declare aVariable outside the block.
try
{
 aVariable = 1;
 // Declare aString inside the block.
 string aString = aVariable.ToString(); // Use aVariable in block.
}
// aVariable is visible here; aString is not.

13_563489-bk01ch09.indd 18813_563489-bk01ch09.indd 188 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

189Using an Exceptional Error-Reporting Mechanism

About try blocks
Think of using the try block as putting the C# runtime on alert. If an excep-
tion pops up while executing any code within this block, hang a lantern in
the old church tower (one if by land, two if by sea — or, call 911).

Then, if any line of code in the try block throws an exception — or if any
method called within that method throws an exception, or any method
called by those methods does, and so on — try to catch it.

Potentially, a try block may “cover” a lot of code, including all methods
called by its contents. Exceptions can percolate up (sometimes a long way)
from the depths of the execution tree. I show you examples.

About catch blocks
A try block is usually followed immediately by the keyword catch, which is
followed by the catch keyword’s block. Control passes to the catch block
in the event of an error anywhere within the try block. The argument to the
catch block is an object of class Exception or, more likely, a subclass of
Exception.

If your catch doesn’t need to access any information from the exception
object it catches, you can specify only the exception type:

catch(SomeException) // No object specified here (no “Exception e”)
{
 // Do something that doesn’t require access to exception object.
}

However, a catch block doesn’t have to have arguments: A bare catch
catches any exception, equivalent to catch(Exception):

catch
{
}

I have a lot more to say about what goes inside catch blocks in two articles
on csharp102.info: “Creating your own exception class” and “Responding
to exceptions.”

 Unlike a C++ exception, in which the object in the catch argument can be
any arbitrary object, a C# exception requires that the catch argument be a
class that derives from Exception. (The Exception class and its numer-
ous predefined subclasses are defined in the System namespace. Book II,
Chapter 10 covers namespaces.)

13_563489-bk01ch09.indd 18913_563489-bk01ch09.indd 189 3/19/10 8:03 PM3/19/10 8:03 PM

190 Using an Exceptional Error-Reporting Mechanism

About finally blocks
A finally block, if you supply one, runs regardless of whether the try block
throws an exception. The finally block is called after a successful try or
after a catch. You can use finally even if you don’t have a catch. Use the
finally block to clean up before moving on so that files aren’t left open.
Examples appear in the two exception-related articles on csharp102.info.

A common use of finally is to clean up after the code in the try block,
whether an exception occurs or not. So you often see code that looks like this:

try
{
 ...
}
finally
{
 // Clean up code, such as close a file opened in the try block.
}

In fact, you should use finally blocks liberally — only one per try.

 A method can have multiple try/catch handlers. You can even nest a try/
catch inside a try, a try/catch inside a catch, or a try/catch inside a
finally — or all of the above. (And you can substitute try/finally for all
of the above.) See the discussion of the using clause in Book II.

What happens when an exception is thrown
When an exception occurs, a variation of this sequence of events takes
place:

 1. An exception is thrown. Somewhere deep in the bowels of SomeOther
Method(), an error occurs. Always at the ready, the method reports a
runtime error with the throw of an Exception object back to the first
block that knows enough to catch and “handle” it.

 Note that because an exception is a runtime error, not a compile error, it
occurs as the program executes. So an error can occur after you release
your masterpiece to the public. Oops!

 2. C# “unwinds the call stack,” looking for a catch block. The exception
works its way back to the calling method, and then to the method that
called that method, and so on, even all the way to the top of the pro-
gram in Main() if no catch block is found to handle the exception. (We
say more about unwinding the call stack, or call chain, in an article on
csharp102.info. The article, which describes responding to an excep-
tion, explores your options.)

 Figure 9-1 shows the path that’s followed as C# searches for an excep-
tion handler.

13_563489-bk01ch09.indd 19013_563489-bk01ch09.indd 190 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

191Using an Exceptional Error-Reporting Mechanism

Figure 9-1:
Where, oh
where, can
a handler be
found?

Main()

Method calls

Handler here?

Handler here?

Handler here?

Exception thrown here

Unwinding the call stack

If no handler found by return to
Main(), we have an unhandled

exception.

M1()

M2()

M3()

 3. If an appropriate catch block is found, it executes. An appropriate
catch block is one that’s looking for the right exception class (or any of
its base classes). This catch block might do any of a number of things,
which we cover in an article on csharp102.info. As the stack unwinds,
if a given method doesn’t have enough context — that is, doesn’t know
enough — to correct the exceptional condition, it simply doesn’t provide a
catch block for that exception. The right catch may be high up the stack.

 The exception mechanism beats the old-fashioned error-return mecha-
nism described at the beginning of this chapter all hollow, for these
reasons:

 • When the calling method gets an old-style return value and can’t do
anything useful, it must explicitly return the error itself to its caller,
and so on. If the method that can handle the problem is far up the
call chain, then returning a return that returned a return that . . .
grows awkward, leading to some ugly design kludge. (Kludge is an
engineer’s term for something that works but is lame and ugly. Think
“spit and baling wire.”)

 • With exceptions, in contrast, the exception automatically climbs the
call chain until it runs into an exception handler. You don’t have to
keep forwarding the message, which eliminates a lot of kludgy code.

 4. If a finally block accompanies the try block, it executes, whether
an exception was caught or not. The finally is called before the stack
unwinds to the next-higher method in the call chain. All finally blocks
anywhere up the call chain also execute.

 5. If no catch block is found anywhere, the program crashes. If C#
gets to Main() and doesn’t find a catch block there, the user sees an
“unhandled exception” message and the program exits. This is a crash.
However, you can deal with exceptions not caught elsewhere by using
an exception handler in Main(). See the section “Grabbing Your Last
Chance to Catch an Exception,” later in this chapter.

13_563489-bk01ch09.indd 19113_563489-bk01ch09.indd 191 3/19/10 8:03 PM3/19/10 8:03 PM

192 Throwing Exceptions Yourself

This exception mechanism is undoubtedly more complex and difficult to
handle than using error codes. You have to balance the increased difficulty
against these considerations, as shown in Figure 9-1:

 ✦ Exceptions provide a more “expressive” model — one that lets you
express a wide variety of error-handling strategies.

 ✦ An exception object carries far more information with it, thus aiding in
debugging — far more than error codes ever could.

 ✦ Exceptions lead to more readable code — and less code.

 ✦ Exceptions are an integral part of C# rather than an ad hoc, tacked-on
afterthought such as error-code schemes, no two of which are much
alike. A consistent model promotes understanding.

Throwing Exceptions Yourself
If classes in the .NET class library can throw exceptions, so can you.

To throw an exception when you detect an error worthy of an exception, use
the throw keyword:

throw new ArgumentException(“Don’t argue with me!”);

You have as much right to throw things as anybody. Because the .NET class
library has no awareness of your custom BadHairDayException, who will
throw it but you?

If one of the .NET predefined exceptions fits your situation, throw it. But if
none fits, you can invent your own custom exception class.

 .NET has some exception types that you should never throw or catch:
StackOverflowException, OutOfMemoryException, Execution
EngineException, and a few more advanced items related to working with
non-.NET code. The system owns them.

Knowing What Exceptions Are For
 Software that can’t complete what it set out to do should throw exceptions.

If a method is supposed to process all of an array, for example, or read all of
a file — and for some reason can’t complete the job — it should throw an
appropriate exception.

A method can fail at its task for various reasons: bad input values or unex-
pected conditions (such as a missing or smaller than expected file), for
example. The task is incomplete or can’t even be undertaken. If any of these
conditions occurs in your methods, you should throw an exception.

13_563489-bk01ch09.indd 19213_563489-bk01ch09.indd 192 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

193Can I Get an Exceptional Example?

 The overall point here is that whoever called the method needs to know that
its task wasn’t completed. Throwing an exception is almost always better
than using any error-return code.

What the caller does with the exception depends on the nature and sever-
ity of the problem. Some problems are worse than others. We use the
rest of this chapter — plus the article “Responding to an exception” on
csharp102.info — to explore the caller’s options when your method
“throws.”

Can I Get an Exceptional Example?
The following FactorialException program demonstrates the key ele-
ments of the exception mechanism:

 // FactorialException -- Create a factorial program that reports illegal
// Factorial() arguments using an Exception.
using System;

namespace FactorialException
{
 // MyMathFunctions -- A collection of mathematical functions
 // we created (it’s not much to look at yet)
 public class MyMathFunctions
 {
 // Factorial -- Return the factorial of the provided value.
 public static int Factorial(int value)
 {
 // Don’t allow negative numbers.
 if (value < 0)
 {
 // Report negative argument.
 string s = String.Format(
 “Illegal negative argument to Factorial {0}”, value);

 throw new ArgumentException(s);
 }

 // Begin with an “accumulator” of 1.
 int factorial = 1;

 // Loop from value down to 1, each time multiplying
 // the previous accumulator value by the result.
 do
 {
 factorial *= value;
 } while(--value > 1);

 // Return the accumulated value.
 return factorial;
 }
 }

 public class Program
 {
 public static void Main(string[] args)
 {

13_563489-bk01ch09.indd 19313_563489-bk01ch09.indd 193 3/19/10 8:03 PM3/19/10 8:03 PM

194 Can I Get an Exceptional Example?

 // Here’s the exception handler.
 try
 {
 // Call factorial in a loop from 6 down to -6.
 for (int i = 6; i > -6; i--)
 {
 // Calculate the factorial of the number.
 int factorial = MyMathFunctions.Factorial(i);

 // Display the result of each pass.
 Console.WriteLine(“i = {0}, factorial = {1}”,
 i, factorial);
 }
 }
 catch(ArgumentException e)
 {
 // This is a “last-chance” exception handler -- the buck stops at Main().
 // Probably all you can do here is alert the user before quitting.
 Console.WriteLine(“Fatal error:”);
 // When you’re ready to release the program, change this
 // output to something in plain English, preferably with guide-
 // lines for what to do about the problem.
 Console.WriteLine(e.ToString());
 }

 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

This “exceptional” version of Main() wraps almost its entire contents
in a try block. The catch block at the end of Main() catches the
ArgumentException object and uses its ToString() method to display
most of the error information contained within the exception object in a
single string.

 I chose to use ArgumentException here because it most accurately
describes the problem: an unacceptable argument to Factorial().

Knowing what makes the example exceptional
The version of the Factorial() method in the preceding section includes
the same check for a negative argument as the previous version. (The test
for an integer is no longer relevant because we changed the Factorial()
parameter and return types to int.) If its argument is negative,
Factorial() can’t continue, so it formats an error message that describes
the problem, including the value it found to be offensive. Factorial() then
bundles this information into a newly created ArgumentException object,
which it throws back to the calling method.

I recommend running the program in the debugger to watch the exception
occur in real time. (I tell you more about the debugger in Book IV.)

13_563489-bk01ch09.indd 19413_563489-bk01ch09.indd 194 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

195Can I Get an Exceptional Example?

The output from this program appears as follows (we trimmed the error
messages to make them more readable):

i = 6, factorial = 720
i = 5, factorial = 120
i = 4, factorial = 24
i = 3, factorial = 6
i = 2, factorial = 2
i = 1, factorial = 1
i = 0, factorial = 0
Fatal error:
System.ArgumentException: Illegal negative argument to Factorial -1
 at Factorial(Int32 value) in c:\c#programs\Factorial\Program.cs:line 21
 at FactorialException.Program.Main(String[] args) in c:\c#programs\Factorial\

Program.cs:line 49
Press Enter to terminate...

The first few lines display the actual factorial of the numbers 6 through 0.
Attempting to calculate the factorial of –1 generates the message starting
with Fatal error — that doesn’t sound good.

The first line in the error message was formatted back in Factorial()
itself. This line describes the nature of the problem, including the offending
value of –1.

Tracing the stack
The remainder of the output is a stack trace. The first line of the stack trace
describes where the exception was thrown. In this case, the exception was
thrown in Factorial(int) — more specifically, Line 21 within the source file
Program.cs. Factorial() was invoked in the method Main(string[]) on
Line 50 within the same file. The stack trace stops with Main() because that’s
the module in which the exception was caught — end of stack trace.

You have to admit that this process is impressive — the message describes
the problem and identifies the offending argument. The stack trace tells
you where the exception was thrown and how the program got there. Using
that information, you should be drawn to the problem like a tornado to a
trailer park.

If you run the previous example and examine the stack trace it prints to the
console, you see Main() at the bottom of the listing and deeper methods
above it. The trace builds upward from Main(), so, technically, unwinding
the call stack goes down the trace toward Main(). You should think of it
the other way around, though: Callers are higher in the call chain (refer to
Figure 9-1).

Returning geeky information such as the stack trace works just fine during
development, but you would probably want real users to see more intelligi-
ble information. Still, you may want to write the stack trace to a log file
somewhere.

13_563489-bk01ch09.indd 19513_563489-bk01ch09.indd 195 3/19/10 8:03 PM3/19/10 8:03 PM

196 Assigning Multiple catch Blocks

 The versions of Factorial() that I describe earlier in this chapter use a
nonrecursive algorithm, which uses a loop to calculate the factorial. For a
recursive version, see the RecursiveFactorial example on the Web. A
recursive method calls itself, possibly repeatedly until a stopping condition
occurs. The recursive Factorial() calls itself repeatedly (recurses), stop-
ping when the value that’s passed in becomes negative. Recursion is the
most common way to implement Factorial(). Caution: Make sure that the
recursion will stop. You can compare the results of RecursiveFactorial
with those of the less exotic NonrecursiveFactorial example, and the
DeadlyRecursion example shows what happens if the recursion doesn’t
stop — it results in quite an unpleasant StackOverflowException.

While the program is running in the debugger, the stack trace is available in
one of the Visual Studio debugger windows.

Assigning Multiple catch Blocks
I mention earlier in this chapter that you can define your own custom excep-
tion types. Suppose that you defined a CustomException class. (I describe
this process in the article “Creating Your Own Exception Class,” which you
can find on csharp102.info.) Now consider the catch clause used here:

public void SomeMethod()
{
 try
 {
 SomeOtherMethod();
 }
 catch(CustomException ce)
 {
 }
}

What if SomeOtherMethod() had thrown a simple Exception or another
non-CustomException type of exception? It would be like trying to catch a
football with a baseball glove — the catch doesn’t match the throw.

 Fortunately, C# enables the program to define numerous catch clauses,
each designed for a different type of exception. Assuming that this is the
right place to handle the other exceptions, you can tack on one after
another.

Don’t be alarmed by my use of the word numerous. In practice, you don’t use
many catch blocks in one place.

 Multiple catch clauses for different exception types must be lined up nose
to tail after the try block. C# checks each catch block sequentially, com-
paring the object thrown with the catch clause’s argument type, as shown
in this chunk of code:

13_563489-bk01ch09.indd 19613_563489-bk01ch09.indd 196 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

197Assigning Multiple catch Blocks

public void SomeMethod()
{
 try
 {
 SomeOtherMethod();
 }
 catch(CustomException ce) // Most specific exception type
 {
 // All CustomException objects are caught here.
 } // You could insert other exception types between these two.
 catch(Exception e) // Most general exception type
 {
 // All otherwise uncaught exceptions are caught here.
 // Not that you should always do so -- but when it makes sense ...
 }
}

Were SomeOtherMethod() to throw an Exception object, it would pass
over the catch(CustomException) because an Exception isn’t a type
of CustomException. It would be caught by the next catch clause: the
catch(Exception).

 Always line up the catch clauses from most specific to most general. Never
place the more general catch clause first, as in this fairly awful bit of code:

public void SomeMethod()
{
 try
 {
 SomeOtherMethod();
 }
 catch(Exception e) // Most general first -- not good!
 {
 // All exceptions are caught here.
 // The dingo ate everything.
 }
 catch(CustomException ce)
 {
 // No exception ever gets this far, because it’s
 // caught and consumed by the more general catch clause.
 }
}

The more general catch clause starves the catch clause that follows by
intercepting any throw. The compiler alerts you to this error.

 Any class that inherits CustomException IS_A CustomException:

class MySpecialException : CustomException
{
 // . . . whatever .. .
}

Given the chance, a CustomException catch grabs a MySpecial
Exception object like a frog nabs flies.

13_563489-bk01ch09.indd 19713_563489-bk01ch09.indd 197 3/19/10 8:03 PM3/19/10 8:03 PM

198 Planning Your Exception-Handling Strategy

Planning Your Exception-Handling Strategy
It makes sense to have a plan for how your program will deal with errors.
Choosing to use exceptions instead of error codes is just one choice to make.

Due to space limitations, we can’t fully explore all the options you have in
responding to exceptions. This overview — a set of guidelines and some
crucial techniques — should get you well oriented. Refer to the article on
csharp102.info to dig much deeper into the basic question “What can I
do when code throws an exception?”

Some questions to guide your planning
Several questions should be on your mind as you develop your program:

 ✦ What could go wrong? Ask this question about each bit of code you
write.

 ✦ If it does go wrong, can I fix it? If so, you may be able to recover from
the problem, and the program may be able to continue. If not, you prob-
ably need to pack your bags and get out of town.

 ✦ Does the problem put user data at risk? If so, you must do everything in
your power to keep from losing or damaging that data. Knowingly releas-
ing code that can mangle user data is akin to software malpractice.

 ✦ Where should I put my exception handler for this problem? Trying to
handle an exception in the method where it occurs may not be the best
approach. Often, another method higher up in the chain of method calls
has better information and may be able to do something more intelligent
and useful with the exception. Put your try/catch there so that the
try block surrounds the call that leads to the place where the exception
can occur.

 ✦ Which exceptions should I handle? Catch any exception that you can
recover from somehow. Try hard to find a way to recover, as discussed
in the article “Responding to an Exception” on csharp102.info. Then,
during development and testing, the unhandled exceptions will reach
the top of your program. Before you release the program to real users,
fix the underlying causes of any exceptions that go unhandled — if you
can. But sometimes an exception should require terminating the pro-
gram prematurely because things are hopelessly fouled up.

 ✦ What about exceptions that slip through the cracks and elude my han-
dlers? The section “Grabbing Your Last Chance to Catch an Exception,”
later in this chapter, describes providing a “last-chance” exception han-
dler to catch strays.

 ✦ How robust (unbreakable) does my code need to be? If your code oper-
ates an air-traffic control system, it should be robust indeed. If it’s just a
little one-off utility, you can relax a bit.

13_563489-bk01ch09.indd 19813_563489-bk01ch09.indd 198 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

199Planning Your Exception-Handling Strategy

Guidelines for code that handles errors well
You should keep the questions in the previous section in mind as you work.
These guidelines may help too:

 ✦ Protect the user’s data at all costs. This is the Top Dog guideline. See
the “For More Information” sidebar at the end of this chapter Also see
the next bullet item.

 ✦ Don’t crash. Recover if you can, but be prepared to go down as grace-
fully as possible. Don’t let your program just squeak out a cryptic, geeky
message and go belly up. Gracefully means that you provide clear mes-
sages containing as much helpful information as possible before shut-
ting down. Users truly hate crashes. But you probably knew that.

 ✦ Don’t let your program continue running if you can’t recover from a
problem. The program could be unstable or the user’s data left in an
inconsistent state. When all is most certainly lost, you can display a
message and call System.Environment.FailFast() to terminate the
program immediately rather than throw an exception. It isn’t a crash —
it’s deliberate.

 ✦ Treat class libraries differently from applications. In class libraries, let
exceptions reach the caller, who is best equipped to decide how to deal
with the problem. Don’t keep the caller in the dark about problems. But
in applications, handle any exceptions you can. Your goal is to keep the
code running if possible and protect the user’s data without putting a lot
of inconsequential messages in her face.

 ✦ Throw exceptions when, for any reason, a method can’t complete its
task. The caller needs to know about the problem. (The caller may be
a method higher up the call stack in your code or a method in code by
another developer using your code). If you check input values for valid-
ity before using them and they aren’t valid — such as an unexpected
null value — fix them and continue if you can. Otherwise, throw an
exception.

 This advice is contrary to statements you may see elsewhere, but it
comes from Jeffrey Richter, one of the foremost experts on .NET and
C# programming. Often you hear statements such as “Exceptions are
for unexpected situations only — don’t use them for problems that are
likely to occur in the normal course of operations.” That’s not accurate.
An exception is the .NET way to deal with most types of errors. You can
sometimes use an error code or another approach — such as having a
collection method return –1 for “item not found” — but not often. Heed
the previous paragraph.

 Try to write code that doesn’t need to throw exceptions — and correct
bugs when you find them — rather than rely on exceptions to patch it
up. But use exceptions as your main method of reporting and handling
errors.

13_563489-bk01ch09.indd 19913_563489-bk01ch09.indd 199 3/19/10 8:03 PM3/19/10 8:03 PM

200 Planning Your Exception-Handling Strategy

 ✦ In most cases, don’t catch exceptions in a particular method unless
you can handle them in a useful way, preferably by recovering from
the error. Catching an exception that you can’t handle is like catching a
wasp in your bare hand. Now what? Most methods don’t contain excep-
tion handlers.

 ✦ Test your code thoroughly, especially for any category of bad input you
can think of. Can your method handle negative input? Zero? A very large
value? An empty string? A null value? What could the user do to cause
an exception? What fallible resources, such as files, databases, or URLs,
does your code use? See the two previous bullet paragraphs.

 Find out how to write unit tests for your code. It’s reasonably easy and
lots of fun.

 ✦ Catch the most specific exception you can. Don’t write many catch
blocks for high-level exception classes such as Exception or
ApplicationException. You risk starving handlers higher up
the chain.

 ✦ Always put a last-chance exception handler block in Main() — or
wherever the “top” of your program is (except in reusable class librar-
ies). You can catch type Exception in this block. Catch and handle
the ones you can and let the last-chance exception handler pick up
any stragglers. (We explain last-chance handlers in the later section
“Grabbing Your Last Chance to Catch an Exception.”)

 ✦ Don’t use exceptions as part of the normal flow of execution. For
example, don’t throw an exception as a way to get out of a loop or exit a
method.

 ✦ Consider writing your own custom exception classes if they bring
something to the table — such as more information to help in debug-
ging or more meaningful error messages for users. We introduce custom
exceptions in an article on csharp102.info.

The rest of this chapter (along with the articles on csharp102.info) gives
you the tools needed to follow those guidelines. For more information, look
up exception handling, design guidelines in the Help system, but be prepared
for some technical reading.

 If a public method throws any exceptions that the caller may need to catch,
those exceptions are part of your class’s public interface. You need to docu-
ment them, preferably with the XML documentation comments discussed in
Book IV.

How to analyze a method for possible exceptions
In the following method, which is Step 1 in setting up exception handlers,
consider which exceptions it can throw:

13_563489-bk01ch09.indd 20013_563489-bk01ch09.indd 200 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

201Planning Your Exception-Handling Strategy

public string FixNamespaceLine(string line)
{
 const string COMPANY_PREFIX = “CMSCo”;
 int spaceIndex = line.IndexOf(‘ ‘);
 int nameStart = GetNameStartAfterNamespaceKeyword(line, spaceIndex);
 string newline = string.Empty;
 newline = PlugInNamespaceCompanyQualifier(line, COMPANY_PREFIX, nameStart);
 return newline.Trim();
}

Given a C# file, this method is part of some code intended to find the
namespace keyword in the file and insert a string representing a company
name (one of ours) as a prefix on the namespace name. (See Book II, Chapter
10 for information about namespaces.) The following example illustrates
where the namespace keyword is likely to be found in a C# file:

using System;
namespace SomeName
{
 // Code within the namespace . . .
}

The result of running the FixNamespaceLine() method on this type of file
should convert the first line into the second:

namespace SomeName
namespace CmsCo.SomeName

The overall program reads .CS files. Then it steps through the lines one by one,
feeding each one to the FixNamespaceLine() method. Given a line of code,
the method calls String.IndexOf() to find the index of the namespace name
(normally, 10). Then it calls GetNameStartAfterNamespaceKeyword() to
locate the beginning of the namespace name. Finally, it calls another method,
PlugInNamespaceCompanyQualifier() to plug the company name into
the correct spot in the line, which it then returns. Much of the work is done
by the subordinate methods.

First, even without knowing what this code is for or what the two called
methods do, consider the input. The line argument could have at least one
problem for the call to String.IndexOf(). If line is null, the IndexOf()
call results in an ArgumentNullException. You can’t call a method on a
null object. Also, at first blush, will calling IndexOf() on an empty string
work? It turns out that it will, so no exception occurs there, but what happens
if you pass an empty line to one of those methods with the long names? We
recommend adding, if warranted, a guard clause before the first line of code
in FixNamespaceLine() — and at least checking for null:

if(String.IsNullOrEmpty(name)) // A handy string method
{
 return name; // You can get away with a reasonable return value here
 // instead of throwing an exception.
}

13_563489-bk01ch09.indd 20113_563489-bk01ch09.indd 201 3/19/10 8:03 PM3/19/10 8:03 PM

202 Planning Your Exception-Handling Strategy

Second, after you’re safely past the IndexOf() call, one of the two method
calls can throw an exception, even with line carefully checked out first. If
spaceIndex turns out to be –1 (not found) — as can happen because the
line that’s passed in doesn’t usually contain a namespace keyword — pass-
ing it to the first method can be a problem. You can guard for that outcome,
of course, like this:

if(spaceIndex > -1) ...

If spaceIndex is negative, the line doesn’t contain the namespace keyword.
That’s not an error. You just skip that line by returning the original line and
then move on to the next line. In any event, don’t call the subordinate
methods.

Method calls in your method require exploring each one to see which excep-
tions it can throw and then digging into any methods that those methods
call, and so on, until you reach the bottom of this particular call chain.

With this possibility in mind, and given that FixNamespaceLine() needs
additional bulletproofing guard clauses first, where might you put an excep-
tion handler?

You may be tempted to put most of FixNamespaceLine() in a try block.
But you have to consider whether this the best place for it. This method is
low-level, so it should just throw exceptions as needed — or just pass on any
exceptions that occur in the methods it calls. We recommend looking up the
call chain to see which method might be a good location for a handler.

As you move up the call chain, ask yourself the questions in the earlier sec-
tion “Some questions to guide your planning.” What would be the conse-
quences if FixNamespaceLine() threw an exception? That depends on how
its result is used higher up the chain. Also, how dire would the results need
to be? If you can’t “fix” the namespace line for the current file, does the user
lose anything major? Maybe you can get away with an occasional unfixed file,
in which case you might choose to “swallow” the exception at some level in
the call chain and just notify the user of the unprocessed file. Or maybe not.
You get the idea. We discuss these and other exception-handling options in
the article “Responding to an Exception” on csharp102.info.

The moral is that correctly setting up exception handlers requires some
analysis and thought.

 However, keep in mind that any method call can throw exceptions — for
example, the application could run out of memory, or the assembly it’s in
might not be found and loaded. You can’t do much about that.

13_563489-bk01ch09.indd 20213_563489-bk01ch09.indd 202 3/19/10 8:03 PM3/19/10 8:03 PM

Book I

Chapter 9

S
o

m
e

 E
x

c
e

p
tio

n
a

l
E

x
c

e
p

tio
n

s

203Grabbing Your Last Chance to Catch an Exception

How to find out which methods
throw which exceptions

To find out whether calling a particular method in the .NET class libraries,
such as String.IndexOf() — or even one of your own methods — can
throw an exception, consider these guidelines:

 ✦ Visual Studio provides immediate help with tooltips. When you hover
the mouse pointer over a method name in the Visual Studio editor, a
yellow tooltip window lists not only the method’s parameters and return
type but also the exceptions it can throw.

 ✦ If you have used XML comments to comment your own methods, Visual
Studio shows the information in those comments in its IntelliSense tool
tips just as it does for .NET methods. If you documented the exceptions
your method can throw (see the previous section), you see them in a
tooltip. The article “Getting Help in Visual Studio” on csharp102.info
shows how to use XML comments, and the FactorialException
example illustrates documenting Factorial() with XML comments.
Plug in the <exception> line inside your <summary> comment to make
it show in the tooltip.

 ✦ The Help files provide even more. When you look up a .NET method in
Help, you find a list of exceptions that the method can throw, along with
additional descriptions not provided via the yellow Visual Studio tooltip.
To open the Help page for a given method, click the method name in
your code and press F1. You can also supply similar help for your own
classes and methods.

You should look at each of the exceptions you see listed, decide how likely
it is to occur, and (if warranted for your program) guard against it using the
techniques covered in the rest of this chapter.

Grabbing Your Last Chance to Catch an Exception
The FactorialException example in the earlier section “Can I Get an
Exceptional Example?” wraps all of Main(), except for the final console
calls, in an outer, “last-chance” exception handler.

 If you’re writing an application, always sandwich the contents of Main() in a
try block because Main() is the starting point for the program and thus
the ending point as well. (If you’re writing a class library intended for reuse,
don’t worry about unhandled exceptions — whoever is using your library
needs to know about all exceptions, so let them bubble up through your
methods.)

13_563489-bk01ch09.indd 20313_563489-bk01ch09.indd 203 3/19/10 8:03 PM3/19/10 8:03 PM

204 Grabbing Your Last Chance to Catch an Exception

Any exception not caught somewhere else percolates up to Main(). This is
your last opportunity to grab the error before it ends up back in Windows,
where the error message is much harder to interpret and may frustrate — or
scare the bejabbers out of — the program’s user.

All the serious code in FactorialException’s Main() is inside a try
block. The associated catch block catches any exception whatsoever and
outputs a message to the console, and the application exits.

This catch block serves to prevent hard crashes by intercepting all excep-
tions not handled elsewhere. And it’s your chance to explain why the appli-
cation is quitting.

Experiment. To see why you need this last-chance handler, deliberately
throw an exception in a little program without handling it. You see what the
user would see without your efforts to make the landing a bit softer.

 During development, you want to see exceptions that occur as you test the
code, in their natural habitat — so you want all of the geekspeak. In the ver-
sion you release, convert the programmerish details to normal English, dis-
play the message to the user, including, if possible, what he might do to run
successfully next time, and exit stage right. Make this plain-English version
of the exception handler one of the last chores you complete before you
release your program into the wild.

Your last-chance handler should certainly log the exception information
somehow, for later forensic analysis.

For more information
We want to be able to say that we tell you the
whole story on exceptions. We want that very
much. But we don’t, and it’s a fairly long story.

To track down the rest of the story, we rec-
ommend that you adjourn to the Web site
csharp102.info, where you can find
articles on these topics:

 ✓ Creating your own exception class: The
.NET Framework class library develop-
ers aren’t the only ones who can extend
class Exception with new exception
subclasses. You can extend Exception

yourself. For the whats and whys and
hows, see the article “Creating Your Own
Exception Class” on this book’s site.

 ✓ Responding to an exception — what you
can do when code throws exceptions:
Your options are to fix the problem and try
again, partially fix the problem and hand
it off to a higher-level exception handler
that may be able to fix the rest, convert the
exception into a different exception type, or
just do nothing. The article “Responding to
an Exception” on this book’s site explores
the options by using several examples.

13_563489-bk01ch09.indd 20413_563489-bk01ch09.indd 204 3/19/10 8:03 PM3/19/10 8:03 PM

Book II

Object-Oriented C#
Programming

14_563489-pp02.indd 20514_563489-pp02.indd 205 3/19/10 8:03 PM3/19/10 8:03 PM

Contents at a Glance

Chapter 1: Object-Oriented Programming: What’s It All About?207

Chapter 2: Showing Some Class .215

Chapter 3: We Have Our Methods .227

Chapter 4: Let Me Say This about this .247

Chapter 5: Holding a Class Responsible .261

Chapter 6: Inheritance: Is That All I Get? .285

Chapter 7: Poly-what-ism? .307

Chapter 8: Interfacing with the Interface. .333

Chapter 9: Delegating Those Important Events.357

Chapter 10: Can I Use Your Namespace in the Library? 377

14_563489-pp02.indd 20614_563489-pp02.indd 206 3/19/10 8:03 PM3/19/10 8:03 PM

Chapter 1: Object-Oriented
Programming: What’s
It All About?

In This Chapter
✓ Reviewing the basics of object-oriented programming

✓ Getting a handle on abstraction and classification

✓ Understanding why object-oriented programming is important

This chapter answers the two-pronged musical question: “What are the
concepts behind object-oriented programming, and how do they differ

from the procedural concepts covered in Book I?”

Object-Oriented Concept #1: Abstraction
Sometimes, when my son and I are watching football, I whip up a terribly
unhealthy batch of nachos. I dump chips on a plate, throw on some beans
and cheese and lots of jalapeños, and nuke the whole mess in the micro-
wave oven for a few minutes.

To use my microwave, I open the door, throw in the plate of food, and
punch a few buttons on the front. After a few minutes, the nachos are done.
(I try not to stand in front of the microwave while it’s working, lest my eyes
start glowing in the dark.)

Now think for a minute about all the things I don’t do in order to use my
microwave. I don’t

 ✦ Rewire or change anything inside the microwave to get it to work. The
microwave has an interface — the front panel with all the buttons and
the little time display — that lets me do everything I need.

 ✦ Reprogram the software used to drive the little processor inside the
microwave, even if I cooked a different dish the last time I used the
microwave.

 ✦ Look inside the microwave’s case.

15_563489-bk02ch01.indd 20715_563489-bk02ch01.indd 207 3/19/10 7:57 PM3/19/10 7:57 PM

208 Object-Oriented Concept #1: Abstraction

Even if I were a microwave designer and knew all about the inner workings
of a microwave, including its software, I still wouldn’t think about all those
concepts while using it to heat nachos.

 These observations aren’t profound: You can deal with only so much stress
in your life. To reduce the number of issues you deal with, you work at a cer-
tain level of detail. In object-oriented (OO) computerese, the level of detail at
which you’re working is the level of abstraction. To introduce another OO
term while I have the chance, I abstract away the details of the microwave’s
innards.

Happily, computer scientists — and thousands of geeks — have invented
object orientation and numerous other concepts that reduce the level of
complexity at which programmers have to work. Using powerful abstrac-
tions makes the job simpler and far less error-prone than it used to be. In
a sense, that’s what the past half-century or so of computing progress has
been about: managing ever more complex concepts and structures with ever
fewer errors.

When I’m working on nachos, I view my microwave oven as a box. (While
I’m trying to knock out a snack, I can’t worry about the innards of the micro-
wave oven and still follow the Dallas Cowboys on the tube.) As long as I use
the microwave only by way of its interface (the keypad), nothing I can do
should cause the microwave to enter an inconsistent state and crash or,
worse, turn my nachos — or my house — into a blackened, flaming mass.

Preparing procedural nachos
Suppose that I ask my son to write an algorithm for how to make nachos.
After he understands what I want, he can write, “Open a can of beans, grate
some cheese, cut the jalapeños,” and so on. When he reaches the part about
microwaving the concoction, he might write (on a good day) something like
this: “Cook in the microwave for five minutes.”

That description is straightforward and complete. But it isn’t the way a
procedural programmer would code a program to make nachos. Procedural
programmers live in a world devoid of objects such as microwave ovens and
other appliances. They tend to worry about flowcharts with their myriad
procedural paths. In a procedural solution to the nachos problem, the flow
of control would pass through my finger to the front panel and then to the
internals of the microwave. Soon, flow would wiggle through complex logic
paths about how long to turn on the microwave tube and whether to sound
the “come and get it” tone.

In that world of procedural programming, you can’t easily think in terms of
levels of abstraction. You have no objects and no abstractions behind which
to hide inherent complexity.

15_563489-bk02ch01.indd 20815_563489-bk02ch01.indd 208 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 1

O
b

je
c

t-O
rie

n
te

d

P
ro

g
ra

m
m

in
g

:
W

h
a

t’s It A
ll A

b
o

u
t?

209Object-Oriented Concept #2: Classification

Preparing object-oriented nachos
In an object-oriented approach to making nachos, you first identify the
types of objects in the problem: chips, beans, cheese, jalapeños, and an
oven. Then you begin the task of modeling those objects in software, with-
out regard for the details of how they might be used in the final program.
For example, you can model cheese as an object in isolation from the other
objects and then combine it with the beans, the chips, the jalapeños, and
the oven and make them interact. (And you might decide that some of these
objects don’t need to be objects in the software: cheese, for instance.)

While you do that, you’re said to be working (and thinking) at the level of the
basic objects. You need to think about making a useful oven, but you don’t
have to think about the logical process of making nachos — yet. After all, the
microwave designers didn’t think about the specific problem of you making
a snack. Rather, they set about solving the problem of designing and build-
ing a useful microwave.

After you successfully code and test the objects you need, you can ratchet
up to the next level of abstraction and start thinking at the nacho-making
level rather than at the microwave-making level.

(And, at this point, I can translate my son’s instructions directly into C#
code.)

Object-Oriented Concept #2: Classification
Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave?” he might say, “It’s an oven that. . . .” If I then
ask, “What’s an oven?” he might reply “It’s a kitchen appliance that. . . .” If I
then ask “What’s a kitchen appliance?” he would probably say “Why are you
asking so many stupid questions?”

The answers my son might give stems from his understanding of this par-
ticular microwave as an example of the type of item known as a microwave
oven. In addition, he might see a microwave oven as just a special type of
oven, which itself is just a special type of kitchen appliance.

 In object-oriented computerese, the microwave is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the
class oven is a subclass of the class kitchen appliance.

Humans classify. Everything about our world is ordered into taxonomies.
We do this to reduce the number of items we have to remember. For exam-
ple, the first time you saw an SUV, the advertisement probably referred to
the SUV as “revolutionary, the likes of which have never been seen.” But
you and I know that it just isn’t so. I like the looks of certain SUVs (others

15_563489-bk02ch01.indd 20915_563489-bk02ch01.indd 209 3/19/10 7:57 PM3/19/10 7:57 PM

210 Why Classify?

need to go back to take another crack at it), but hey, an SUV is a car. As
such, it shares all (or at least most of) the properties of other cars. It has a
steering wheel, seats, a motor, and brakes, for example. I would bet that I
could even drive one without reading the user’s manual first.

I don’t have to clutter the limited amount of storage space in my head with
all the features that an SUV has in common with other cars. All I have to
remember is “An SUV is a car that . . .” and tack on those few characteristics
that are unique to an SUV (such as the price tag). I can go further. Cars are a
subclass of wheeled vehicles along with other members, such as trucks and
pickups. Maybe wheeled vehicles are a subclass of vehicles, which include
boats and planes — and so on.

Why Classify?
Why should you classify? It sounds like a lot of trouble. Besides, people have
been using the procedural approach for a long time — why change now?

Designing and building a microwave oven specifically for this problem may
seem easier than building a separate, more generic oven object. Suppose that
you want to build a microwave oven to cook only nachos. You wouldn’t need
to put a front panel on it, other than a Start button. You probably always cook
nachos for the same length of time. You could dispense with all that Defrost
and Temp Cook nonsense in the options. The oven needs to hold only one flat,
little plate. Three cubic feet of space would be wasted on nachos.

For that matter, you can dispense with the concept of “microwave oven.”
All you need is the guts of the oven. Then, in the recipe, you put the instruc-
tions to make it work: “Put nachos in the box. Connect the red wire to the
black wire. Bring the radar tube to about 3,000 volts. Notice a slight hum.
Try not to stand too close if you intend to have children.” Stuff like that.

But the procedural approach has these problems:

 ✦ It’s too complex. You don’t want the details of oven-building mixed into
the details of nacho-building. If you can’t define the objects and pull
them from the morass of details to deal with separately, you must deal
with all the complexities of the problem at the same time.

 ✦ It isn’t flexible. Someday, you may need to replace the microwave oven
with another type of oven. You should be able to do so as long as the
two ovens have the same interface. Without being clearly delineated
and developed separately, one object type can’t be cleanly removed and
replaced with another.

15_563489-bk02ch01.indd 21015_563489-bk02ch01.indd 210 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 1

O
b

je
c

t-O
rie

n
te

d

P
ro

g
ra

m
m

in
g

:
W

h
a

t’s It A
ll A

b
o

u
t?

211Object-Oriented Concept #3: Usable Interfaces

 ✦ It isn’t reusable. Ovens are used to make lots of different dishes. You
don’t want to create a new oven every time you encounter a new recipe.
Having solved a problem once, you want to be able to reuse the solution
in other places within my program. If you’re lucky, you may be able to
reuse it in future programs as well.

Object-Oriented Concept #3: Usable Interfaces
An object must be able to project an external interface that is sufficient
but as simple as possible. This concept is sort of the reverse of Concept #4
(described in the next section). If the device interface is insufficient, users
may start ripping the top off the device, in direct violation of the laws of God
and society — or at least the liability laws of the Great State of Texas. And
believe me, you do not want to violate the laws of the Great State of Texas.
On the flip side, if the device interface is too complex, no one will buy the
device — or at least no one will use all its features.

People complain continually that their DVD players are too complex, though
it’s less of a problem with today’s onscreen controls. These devices have too
many buttons with too many different functions. Often, the same button has
different functions, depending on the state of the machine. In addition, no
two DVD players seem to have the same interface. For whatever reason, the
DVD player projects an interface that’s too difficult and too nonstandard for
most people to use beyond the bare basics.

Compare the VCR with an automobile. It would be difficult to argue that a
car is less complicated than a VCR. However, people don’t seem to have
much trouble driving cars.

All automobiles offer more or less the same controls in more or less the
same place. For example, my sister once had a car (need I say a French car?)
that had the headlight control on the left side of the steering wheel, where
the turn signal handle normally lives. You pushed down on the light lever to
turn off the lights, and you raised the lever to turn them on. This difference
may seem trivial, but I never did learn to turn left in that car at night without
turning off the lights.

A well-designed auto doesn’t use the same control to perform more than one
operation, depending on the state of the car. I can think of only one excep-
tion to this rule: Some buttons on most cruise controls are overloaded with
multiple functions.

15_563489-bk02ch01.indd 21115_563489-bk02ch01.indd 211 3/19/10 7:57 PM3/19/10 7:57 PM

212 Object-Oriented Concept #4: Access Control

Object-Oriented Concept #4: Access Control
A microwave oven must be built so that no combination of keystrokes that
you can enter on the front keypad can cause the oven to hurt you. Certainly,
some combinations don’t do anything. However, no sequence of keystrokes
should

 ✦ Break the device: You may be able to put the device into a strange state
in which it doesn’t do anything until you reset it (say, by throwing an
internal breaker). However, you shouldn’t be able to break the device
by using the front panel — unless, of course, you throw it to the ground
in frustration. The manufacturer of this type of device would probably
have to send out some type of fix for it.

 ✦ Cause the device to catch fire and burn down the house: As bad as it
may be for the device to break itself, catching fire is much worse. We
live in a litigious society. The manufacturer’s corporate officers would
likely end up in jail, especially if I have anything to say about it.

However, to enforce these two rules, you have to take some responsibility.
You can’t make modifications to the inside of the device.

Almost all kitchen devices of any complexity, including microwave ovens,
have a small seal to keep consumers from reaching inside them. If the seal
is broken, indicating that the cover of the device has been removed, the
manufacturer no longer bears responsibility. If you modify the internal work-
ings of an oven, you’re responsible if it subsequently catches fire and burns
down the house.

Similarly, a class must be able to control access to its data members. No
sequence of calls to class members should cause your program to crash.
The class cannot possibly ensure control of this access if external elements
have access to the internal state of the class. The class must be able to keep
critical data members inaccessible to the outside world.

How C# Supports Object-Oriented Concepts
Okay, how does C# implement object-oriented programming? In a sense, this
is the wrong question. C# is an object-oriented language; however, it doesn’t
implement object-oriented programming — the programmer does. You can
certainly write a non-object-oriented program in C# or any other language
(by, for instance, writing all of Microsoft Word in Main()). Something like
“you can lead a horse to water” comes to mind. But you can easily write an
object-oriented program in C#.

15_563489-bk02ch01.indd 21215_563489-bk02ch01.indd 212 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 1

O
b

je
c

t-O
rie

n
te

d

P
ro

g
ra

m
m

in
g

:
W

h
a

t’s It A
ll A

b
o

u
t?

213How C# Supports Object-Oriented Concepts

These C# features are necessary for writing object-oriented programs:

 ✦ Controlled access: C# controls the way in which class members can be
accessed. C# keywords enable you to declare some members wide open
to the public whereas internal members are protected from view
and some secrets are kept private. Notice the little hints. Access con-
trol secrets are revealed in Chapter 5 of this minibook.

 ✦ Specialization: C# supports specialization through a mechanism known
as class inheritance. One class inherits the members of another class.
For example, you can create a Car class as a particular type of Vehicle.
Chapter 6 in this minibook specializes in specialization.

 ✦ Polymorphism: This feature enables an object to perform an opera-
tion the way it wants to. The Rocket type of Vehicle may implement
the Start operation much differently from the way the Car type of
Vehicle does. At least, I hope it does every time I turn the key in my
car. (With my car, you never know.) But all Vehicles have a Start oper-
ation, and you can rely on that. Chapter 7 in this minibook finds its own
way of describing polymorphism.

 ✦ Indirection. Objects frequently use the services of other objects — by
calling their public methods. But classes can “know too much” about the
classes they use. The two classes are then said to be “too tightly cou-
pled,” which makes the using class too dependent on the used class. The
design is too brittle — liable to break if you make changes. But change is
inevitable in software, so you should find more indirect ways to connect
the two classes. That’s where the C# interface construct comes in.
(You can get the scoop on interfaces in Chapter 8 of this minibook.)

15_563489-bk02ch01.indd 21315_563489-bk02ch01.indd 213 3/19/10 7:57 PM3/19/10 7:57 PM

Book II: Object-Oriented C# Programming214

15_563489-bk02ch01.indd 21415_563489-bk02ch01.indd 214 3/19/10 7:57 PM3/19/10 7:57 PM

Chapter 2: Showing Some Class

In This Chapter
✓ Introducing the C# class

✓ Storing data in an object

✓ Assigning and using object references

✓ Examining classes that contain classes

✓ Identifying static and instance class members

✓ Using constants in C#

You can freely declare and use all the intrinsic data types — such as
int, double, and bool — to store the information necessary to make

your program the best it can be. For some programs, these simple variables
are enough. However, most programs need a way to bundle related data
into a neat package.

As shown in Book I, C# provides arrays and other collections for gathering
into one structure groups of like-typed variables, such as strings or ints.
A hypothetical college, for example, might track its students by using an
array. But a student is much more than just a name — how should this type
of program represent a student?

Some programs need to bundle pieces of data that logically belong together
but aren’t of the same type. A college enrollment application handles stu-
dents, each with her own name, rank (grade-point average), and serial
number. Logically, the student’s name may be a string; the grade-point
average, a double; and the serial number, a long. That type of program
needs a way to bundle these three different types of variables into a single
structure named Student. Fortunately, C# provides a structure known as
the class for accommodating groupings of unlike-typed variables.

Defining a Class and an Object
A class is a bundling of unlike data and functions that logically belong together
into one tidy package. C# gives you the freedom to foul up your classes any
way you want, but good classes are designed to represent concepts.

16_563489-bk02ch02.indd 21516_563489-bk02ch02.indd 215 3/19/10 8:05 PM3/19/10 8:05 PM

216 Defining a Class and an Object

Computer science models the world via structures that represent concepts
or things in the world, such as bank accounts, tic-tac-toe games, customers,
game boards, documents, and products. Analysts say that “a class maps con-
cepts from the problem into the program.” For example, your problem might
be to build a traffic simulator that models traffic patterns for the purpose of
building streets, intersections, and highways. (I really want you to build traf-
fic simulators that can fix the intersections in front of my house.)

Any description of a problem concerning traffic would include the term
vehicle in its solution. Vehicles have a top speed that must be figured into
the equation. They also have a weight, and some of them are clunkers. In
addition, vehicles stop and vehicles go. Thus, as a concept, vehicle is part of
the problem domain.

A good C# traffic-simulator program would necessarily include the class
Vehicle, which describes the relevant properties of a vehicle. The C#
Vehicle class would have properties such as topSpeed, weight, and
isClunker.

Because the class is central to C# programming, the rest of Book II spelunks
the ins and outs of classes in much more detail. This chapter gets you
started.

Defining a class
An example of the class Vehicle may appear this way:

public class Vehicle
{
 public string model; // Name of the model
 public string manufacturer; // Ditto
 public int numOfDoors; // The number of doors on the vehicle
 public int numOfWheels; // You get the idea.
}

A class definition begins with the words public class, followed by the
name of the class — in this case, Vehicle.

 Like all names in C#, the name of the class is case sensitive. C# doesn’t
enforce any rules concerning class names, but an unofficial rule holds that
the name of a class starts with a capital letter.

The class name is followed by a pair of open and closed braces. Within the
braces, you have zero or more members. The members of a class are vari-
ables that make up the parts of the class. In this example, class Vehicle
starts with the member string model, which contains the name of the
model of the vehicle. If the vehicle were a car, its model name could be
Trooper II. (Have you ever seen or heard of a Trooper I?) The second

16_563489-bk02ch02.indd 21616_563489-bk02ch02.indd 216 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 2

S
h

o
w

in
g

S

o
m

e
 C

la
ss

217Defining a Class and an Object

member of this Vehicle class example is string manufacturer. The
other two properties are the number of doors and the number of wheels on
the vehicle.

As with any variable, make the names of the members as descriptive as pos-
sible. Although I added comments to the data members, it isn’t necessary.
A good variable name says it all.

The public modifier in front of the class name makes the class universally
accessible throughout the program. Similarly, the public modifier in front of
the member names makes them accessible to everything else in the program.
Other modifiers are possible. (Chapter 10 in this minibook covers the topic of
accessibility in more detail and shows how you can hide some members.)

The class definition should describe the properties of the object that are
salient to the problem at hand. That’s a little hard to do right now because
you don’t know what the problem is, but you can see where I’m headed.

What’s the object?
Defining a Vehicle design isn’t the same task as building a car. Someone
has to cut some sheet metal and turn some bolts before anyone can drive an
actual vehicle. A class object is declared in a similar (but not identical) fash-
ion to declaring an intrinsic object such as an int.

 The term object is used universally to mean a “thing.” Okay, that isn’t help-
ful. An int variable is an int object. A vehicle is a Vehicle object. You are
a reader object. I am an author obj — okay, forget that one.

The following code segment creates a car of class Vehicle:

Vehicle myCar;
myCar = new Vehicle();

The first line declares a variable myCar of type Vehicle, just like you can
declare a somethingOrOther of class int. (Yes, a class is a type, and all
C# objects are defined as classes.) The new Vehicle() command creates
a specific object of type Vehicle and stores the location into the variable
myCar. The new has nothing to do with the age of myCar. (My car could
qualify for an antique license plate if it weren’t so ugly.) The new operator
creates a new block of memory in which your program can store the proper-
ties of myCar.

 In C# terms, you say that myCar is an object of class Vehicle. You also say
that myCar is an instance of Vehicle. In this context, instance means “an
example of” or “one of.” You can also use the word instance as a verb, as in
instantiating Vehicle. That’s what new does.

16_563489-bk02ch02.indd 21716_563489-bk02ch02.indd 217 3/19/10 8:05 PM3/19/10 8:05 PM

218 Accessing the Members of an Object

Compare the declaration of myCar with that of an int variable named num:

int num;
num = 1;

The first line declares the variable num, and the second line assigns an
already created constant of type int into the location of the variable num.

 The intrinsic num and the object myCar are stored differently in memory.
The constant 1 doesn’t occupy memory because both the CPU and the C#
compiler already know what 1 is. Your CPU doesn’t have the concept of
Vehicle. The new Vehicle expression allocates the memory necessary to
describe a vehicle to the CPU, to C#, to the world, and yes, to the universe!

Accessing the Members of an Object
Each object of class Vehicle has its own set of members. The following
expression stores the number 1 into the numberOfDoors member of the
object referenced by myCar:

myCar.numberOfDoors = 1;

 Every C# operation must be evaluated by type as well as by value. The
object myCar is an object of type Vehicle. The variable Vehicle.number
OfDoors is of type int. (Look again at the definition of the Vehicle class.)
The constant 5 is also of type int, so the type of the variable on the right
side of the assignment operator matches the type of the variable on the left.

Similarly, the following code stores a reference to the strings describing
the model and manufacturer name of myCar:

myCar.manufacturer = “BMW”; // Don’t get your hopes up.
myCar.model = “Isetta”; // The Urkel-mobile

The Isetta was a small car built during the 1950s with a single door that
opened the entire front of the car. I leave Urkel to you and your favorite
search engine.

An Object-Based Program Example
The simple VehicleDataOnly program performs these tasks:

 ✦ Define the class Vehicle.

 ✦ Create an object myCar.

16_563489-bk02ch02.indd 21816_563489-bk02ch02.indd 218 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 2

S
h

o
w

in
g

S

o
m

e
 C

la
ss

219An Object-Based Program Example

 ✦ Assign properties to myCar.

 ✦ Retrieve those values from the object for display.

Here’s the code for the VehicleDataOnly program:

// VehicleDataOnly -- Create a Vehicle object, populate its
// members from the keyboard, and then write it back out.
using System;
namespace VehicleDataOnly
{
 public class Vehicle
 {
 public string model; // Name of the model
 public string manufacturer; // Ditto
 public int numOfDoors; // The number of doors on the vehicle
 public int numOfWheels; // You get the idea.
 }
 public class Program
 {
 // This is where the program starts.
 static void Main(string[] args)
 {
 // Prompt user to enter her name.
 Console.WriteLine(“Enter the properties of your vehicle”);
 // Create an instance of Vehicle.
 Vehicle myCar = new Vehicle();
 // Populate a data member via a temporary variable.
 Console.Write(“Model name = “);
 string s = Console.ReadLine();
 myCar.model = s;
 // Or you can populate the data member directly.
 Console.Write(“Manufacturer name = “);
 myCar.manufacturer = Console.ReadLine();
 // Enter the remainder of the data.
 // A temp is useful for reading ints.
 Console.Write(“Number of doors = “);
 s = Console.ReadLine();
 myCar.numOfDoors = Convert.ToInt32(s);
 Console.Write(“Number of wheels = “);
 s = Console.ReadLine();
 myCar.numOfWheels = Convert.ToInt32(s);
 // Now display the results.
 Console.WriteLine(“\nYour vehicle is a “);
 Console.WriteLine(myCar.manufacturer + “ “ + myCar.model);
 Console.WriteLine(“with “ + myCar.numOfDoors + “ doors, “
 + “riding on “ + myCar.numOfWheels
 + “ wheels.”);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The program listing begins with a definition of the Vehicle class.

16_563489-bk02ch02.indd 21916_563489-bk02ch02.indd 219 3/19/10 8:05 PM3/19/10 8:05 PM

220 Discriminating between Objects

 The definition of a class can appear either before or after class Program —
it doesn’t matter. However, you should, unlike me, adopt a style and stick
with it. Book IV, which talks about Visual Studio, shows the more conven-
tional technique of creating a separate .cs file to contain each class, but
just put the extra class in your Program.cs file for now.

The program creates an object myCar of class Vehicle and then populates
each field by reading the appropriate data from the keyboard. (The input
data isn’t — but should be — checked for legality.) The program then writes
myCar’s properties in a slightly different format.

The output from executing this program appears this way:

Enter the properties of your vehicle
Model name = Metropolitan
Manufacturer name = Nash
Number of doors = 2
Number of wheels = 4

Your vehicle is a
Nash Metropolitan
with 2 doors, riding on 4 wheels
Press Enter to terminate...

The calls to Read() as opposed to ReadLine() leave the cursor directly
after the output string, which makes the user’s input appear on the same
line as the prompt. In addition, inserting the newline character ‘\n’ in a
write generates a blank line without the need to execute WriteLine()
separately.

Discriminating between Objects
Detroit car manufacturers can track every car they make without getting the
cars confused. Similarly, a program can create numerous objects of the same
class, as shown in this example:

Vehicle car1 = new Vehicle();
car1.manufacturer = “Studebaker”;
car1.model = “Avanti”;
// The following has no effect on car1.
Vehicle car2 = new Vehicle();
car2.manufacturer = “Hudson”;
car2.model = “Hornet”;

Creating an object car2 and assigning it the manufacturer name Hudson has
no effect on the car1 object (with the manufacturer name Studebaker).

16_563489-bk02ch02.indd 22016_563489-bk02ch02.indd 220 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 2

S
h

o
w

in
g

S

o
m

e
 C

la
ss

221Can You Give Me References?

In part, the ability to discriminate between objects is the real power of the
class construct. The object associated with the Hudson Hornet can be cre-
ated, manipulated, and dispensed with as a single entity, separate from
other objects, including the Avanti. (Both are classic automobiles, especially
the latter.)

Can You Give Me References?
The dot operator and the assignment operator are the only two operators
defined on reference types:

// Create a null reference.
Vehicle yourCar;
// Assign the reference a value.
yourCar = new Vehicle();
// Use dot to access a member.
yourCar.manufacturer = “Rambler”;
// Create a new reference and point it to the same object.
Vehicle yourSpousalCar = yourCar;

The first line creates an object yourCar without assigning it a value. A
reference that hasn’t been initialized is said to point to the null object. Any
attempt to use an uninitialized (null) reference generates an immediate error
that terminates the program.

 The C# compiler can catch most attempts to use an uninitialized reference
and generate a warning at build-time. If you somehow slip one past the
compiler, accessing an uninitialized reference terminates the program
immediately.

The second statement creates a new Vehicle object and assigns it to
yourCar. The last statement in this code snippet assigns the reference
yourSpousalCar to the reference yourCar. This action causes your
SpousalCar to refer to the same object as yourCar. This relationship is
shown in Figure 2-1.

Figure 2-1:
Two
references
to the same
object.

yourCar

Vehicle Assign value

yourSpousalCar "Rambler"

16_563489-bk02ch02.indd 22116_563489-bk02ch02.indd 221 3/19/10 8:05 PM3/19/10 8:05 PM

222 Can You Give Me References?

The following two calls have the same effect:

// Build your car.
Vehicle yourCar = new Vehicle();
yourCar.model = “Kaiser”;
// It also belongs to your spouse.
Vehicle yourSpousalCar = yourCar;
// Changing one changes the other.
yourSpousalCar.model = “Henry J”;
Console.WriteLine(“Your car is a “ + yourCar.model);

Executing this program would output Henry J and not Kaiser. Notice that
yourSpousalCar doesn’t point to yourCar; rather, both yourCar and
yourSpousalCar refer to the same vehicle.

In addition, the reference yourSpousalCar would still be valid, even if the
variable yourCar were somehow “lost” (if it went out of scope, for exam-
ple), as shown in this chunk of code:

// Build your car.
Vehicle yourCar = new Vehicle();
yourCar.model = “Kaiser”;
// It also belongs to your spouse.
Vehicle yourSpousalCar = yourCar;
// When your spouse takes your car away . . .
yourCar = null; // yourCar now references the “null object.”
// . . .yourSpousalCar still references the same vehicle
Console.WriteLine(“your car was a “ + yourSpousalCar.model);

Executing this program generates the output Your car was a Kaiser,
even though the reference yourCar is no longer valid.

 The object is no longer reachable from the reference yourCar. The object
doesn’t become completely unreachable until both yourCar and your
SpousalCar are “lost” or nulled out.

At that point — well, at some unpredictable later point, anyway — the C#
garbage collector steps in and returns the space formerly used by that par-
ticular Vehicle object to the pool of space available for allocating more
Vehicles (or Students, for that matter). (I say a little more about garbage
collection in a sidebar at the end of Chapter 6 in this minibook.)

Making one object variable (a variable of a reference type, such as Vehicle
or Student, rather than one of a simple type such as int or double) point
to a different object — as I did here — makes storing and manipulating refer-
ence objects in arrays and collections quite efficient. Each element of the
array stores a reference to an object, and when you swap elements within
the array, you’re just moving references, not the objects themselves.
References have a fixed size in memory, unlike the objects they refer to.

16_563489-bk02ch02.indd 22216_563489-bk02ch02.indd 222 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 2

S
h

o
w

in
g

S

o
m

e
 C

la
ss

223Classes That Contain Classes Are the Happiest Classes in the World

Classes That Contain Classes Are the
Happiest Classes in the World

The members of a class can themselves be references to other classes. For
example, vehicles have motors, which have power and efficiency factors,
including displacement. You could throw these factors directly into the class
this way:

public class Vehicle
{
 public string model; // Name of the model
 public string manufacturer; // Ditto
 public int numOfDoors; // The number of doors on the vehicle
 public int numOfWheels; // You get the idea.
 // New stuff:
 public int power; // Power of the motor [horsepower]
 public double displacement; // Engine displacement [liter]
}

However, power and engine displacement aren’t properties of the car. For
example, your friend’s Jeep might be supplied with two different motor
options that have drastically different levels of horsepower. The 2.4-liter
Jeep is a snail, and the same car outfitted with the 4.0-liter engine is quite
peppy.

The motor is a concept of its own and deserves its own class:

public class Motor
{
 public int power; // Power [horsepower]
 public double displacement; // Engine displacement [liter]
}

You can combine this class into the Vehicle (see boldfaced text):

public class Vehicle
{
 public string model; // Name of the model
 public string manufacturer; // Ditto
 public int numOfDoors; // The number of doors on the vehicle
 public int numOfWheels; // You get the idea.
 public Motor motor;
}

Creating myCar now appears this way:

// First create a Motor.
Motor largerMotor = new Motor();
largerMotor.power = 230;
largerMotor.displacement = 4.0;

16_563489-bk02ch02.indd 22316_563489-bk02ch02.indd 223 3/19/10 8:05 PM3/19/10 8:05 PM

224 Generating Static in Class Members

// Now create the car.
Vehicle friendsCar = new Vehicle();
friendsCar.model = “Cherokee Sport”;
friendsCar.manfacturer = “Jeep”;
friendsCar.numOfDoors = 2;
friendsCar.numOfWheels = 4;
// Attach the motor to the car.
friendsCar.motor = largerMotor;

From Vehicle, you can access the motor displacement in two stages. You
can take one step at a time, as this bit of code shows:

Motor m = friendsCar.motor;
Console.WriteLine(“The motor displacement is “ + m.displacement);

Or, you can access it directly, as shown here:

Console.Writeline(“The motor displacement is “ + friendsCar.motor.displacement);

Either way, you can access the displacement only through the Motor.

 This example is bundled into the simple program VehicleAndMotor on this
book’s Web site, not shown in full here.

Generating Static in Class Members
Most data members of a class are specific to their containing object, not to
any other objects. Consider the Car class:

public class Car
{
 public string licensePlate; // The license plate ID
}

Because the license plate ID is an object property, it describes each object of
class Car uniquely. For example, thank goodness that my car has a license
plate that’s different from yours; otherwise, you may not make it out of your
driveway, as shown in this bit of code:

Car myCar = new Car();
myCar.licensePlate = “XYZ123”;

Car yourCar = new Car();
yourCar.licensePlate = “ABC789”;

However, some properties exist that all cars share. For example, the number
of cars built is a property of the class Car but not of any single object. These
class properties are flagged in C# with the keyword static:

16_563489-bk02ch02.indd 22416_563489-bk02ch02.indd 224 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 2

S
h

o
w

in
g

S

o
m

e
 C

la
ss

225Defining const and readonly Data Members

public class Car
{
 public static int numberOfCars; // The number of cars built
 public string licensePlate; // The license plate ID
}

 Static members aren’t accessed through the object. Instead, you access
them by way of the class itself, as this code snippet demonstrates:

// Create a new object of class Car.
Car newCar = new Car();
newCar.licensePlate = “ABC123”;
// Now increment the count of cars to reflect the new one.
Car.numberOfCars++;

The object member newCar.licensePlate is accessed through the object
newCar, and the class (static) member Car.numberOfCars is accessed
through the class Car. All Cars share the same numberOfCars member, so
each car contains exactly the same value as all other cars.

 Class members are static members. Nonstatic members are specific to each
“instance” (each individual object) and are instance members. The italicized
phrases you see here are the generic way to refer to these types of members.

Defining const and readonly Data Members
One special type of static member is the const data member, which rep-
resents a constant. You must establish the value of a const variable in the
declaration, and you cannot change it anywhere within the program, as
shown here:

class Program
{
 // Number of days in the year (including leap day)
 public const int daysInYear = 366; // Must have initializer.
 public static void Main(string[] args)
 {
 // This is an array, covered later in this chapter.
 int[] maxTemperatures = new int[daysInYear];
 for(int index = 0; index < daysInYear; index++)
 {
 // . . .accumulate the maximum temperature for each
 // day of the year . . .
 }
 }
}

You can use the constant daysInYear in place of the value 366 anywhere
within your program. The const variable is useful because it can replace a
mysterious number such as 366 with the descriptive name daysInYear to
enhance the readability of your program.

16_563489-bk02ch02.indd 22516_563489-bk02ch02.indd 225 3/19/10 8:05 PM3/19/10 8:05 PM

226 Defining const and readonly Data Members

 C# provides another way to declare constants — you can preface a variable
declaration with the readonly modifier, like so:

public readonly int daysInYear = 366; // This could also be static.

As with const, after you assign the initial value, it can’t be changed.
Although the reasons are too technical for this book, the readonly
approach to declaring constants is usually preferable to const.

You can use const with class data members like those you might have seen
in this chapter and inside class methods. But readonly isn’t allowed in a
method. Chapter 3 of this minibook dives into methods.

An alternative convention also exists for naming constants. Rather than
name them like variables (as in daysInYear), many programmers prefer to
use uppercase letters separated by underscores, as in DAYS_IN_YEAR. This
convention separates constants clearly from ordinary read-write variables.

16_563489-bk02ch02.indd 22616_563489-bk02ch02.indd 226 3/19/10 8:05 PM3/19/10 8:05 PM

Chapter 3: We Have Our Methods

In This Chapter
✓ Defining a method

✓ Passing arguments to a method

✓ Getting results back

✓ Reviewing the WriteLine() method

Programmers need to be able to break large programs into smaller
chunks that are easy to handle. For example, the programs contained

in previous chapters of this minibook reach the limit of the amount of pro-
gramming information a person can digest at one time.

C# lets you divide your class code into chunks known as methods. Properly
designed and implemented methods can greatly simplify the job of writing
complex programs.

 A method is equivalent to a function, procedure, or subroutine in other lan-
guages. The difference is that a method is always part of a class.

Defining and Using a Method
Consider the following example:

class Example
{
 public int anInt; // Nonstatic
 public static int staticInt // Static
 public void InstanceMethod() // Nonstatic
 {
 Console.WriteLine(“this is an instance method”);
 }
 public static void ClassMethod() // Static
 {
 Console.WriteLine(“this is a class method”);
 }
}

The element anInt is a data member, just like those shown in Book I.
However, the element InstanceMethod() is new. InstanceMethod()
is known as an instance method (duh!), which is a set of C# statements
that you can execute by referencing the method’s name. This concept is

17_563489-bk02ch03.indd 22717_563489-bk02ch03.indd 227 3/19/10 8:04 PM3/19/10 8:04 PM

228 Defining and Using a Method

best explained by example — even I’m confused right now. (Main() and
WriteLine() are used in nearly every example in this book, and they’re
methods.)

Note: The distinction between static and nonstatic members is important.
I cover part of that story in this chapter and continue in more detail in
Chapter 4 of this minibook with a focus on nonstatic, or instance, methods.

 To invoke a nonstatic — instance — method, you need an instance of the
class. To invoke a static — class — method, you call via the class name, not
an instance. The following code snippet assigns a value to the object data
member anInt and the class, or static, member staticInt:

Example example = new Example(); // Create an instance of class Example.
example.anInt = 1; // Initialize instance member through instance.
Example.staticInt = 2; // Initialize class member through class.

The following snippet defines and accesses InstanceMethod() and
ClassMethod() in almost the same way:

Example example = new Example(); // Create an instance.
example.InstanceMethod(); // Invoke the instance method
 // with that instance.
Example.ClassMethod(); // Invoke the class method with the class.
// The following lines won’t compile.
example.ClassMethod(); // Can’t access class methods via an instance.
Example.InstanceMethod(); // Can’t access instance methods via a class.

 Every instance of a class has its own, private copy of any instance members.
But all instances of the same class share the same class members — both
data members and methods — and their values.

The expression example.InstanceMethod() passes control to the code
contained within the method. C# follows an almost identical process for
Example.ClassMethod(). Executing the lines just shown (after comment-
ing out the last two lines, which don’t compile) generates this output:

this is an instance method
this is a class method

 After a method completes execution, it returns control to the point where it
was called. That is, control moves to the next statement after the call.

The bit of C# code given in the two sample methods does nothing more than
write a silly string to the console, but methods generally perform useful
(and sometimes complex) operations such as calculate sines, concatenate
two strings, sort an array of students, or surreptitiously e-mail your URL
to Microsoft (not really). A method can be as large and complex as you want,
but try to strive for shorter methods, using the approach described next.

17_563489-bk02ch03.indd 22817_563489-bk02ch03.indd 228 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

229A Method Example for Your Files

I include the parentheses when describing methods in text — as in
InstanceMethod() — to make them a little easier to recognize. Otherwise,
you might become confused trying to understand what I’m saying.

A Method Example for Your Files
In this section, I divide the monolithic CalculateInterestTable pro-
grams from Book I, Chapter 5 into several reasonable methods; the dem-
onstration shows how the proper definition of methods can help make a
program easier to write and understand. The process of dividing working
code this way is known as refactoring, and Visual Studio 2010 provides a
handy Refactor menu that automates the most common refactorings.

 I explain the exact details of the method definitions and method calls in later
sections of this chapter. This example simply gives an overview.

By reading the comments with the C# code removed, you should be able to
get a good idea of a program’s intention. If you cannot, you aren’t comment-
ing properly. Conversely, if you can’t strip out most comments and still
understand the intention from the method and variable names, you aren’t
naming your methods clearly enough or aren’t making them small enough
(or both). Smaller methods are preferable, and using good method names
beat using comments. (That’s why real-world code has far fewer comments
than the code examples in this book. I comment more heavily here to
explain more.)

In outline form, the CalculateInterestTable program appears this way:

public static void Main(string[] args)
{
 // Prompt user to enter source principal.
 // If the principal is negative, generate an error message.
 // Prompt user to enter the interest rate.
 // If the interest is negative, generate an error message.
 // Finally, prompt user to input the number of years.
 // Display the input back to the user.
 // Now loop through the specified number of years.
 while(year <= duration)
 {
 // Calculate the value of the principal plus interest.
 // Output the result.
 }
}

This bit of code illustrates a good technique for planning a method. If you
stand back and study the program from a distance, you can see that it’s
divided into these three sections:

17_563489-bk02ch03.indd 22917_563489-bk02ch03.indd 229 3/19/10 8:04 PM3/19/10 8:04 PM

230 A Method Example for Your Files

 ✦ An initial input section in which the user inputs the principal, interest,
and duration information

 ✦ A section mirroring the input data so that the user can verify the entry
of the correct data

 ✦ A section that creates and outputs the table

Use this list to start looking for ways to refactor the program. In fact, if you
further examine the input section of that program, you can see that the same
basic code is used to input these amounts:

 ✦ Principal

 ✦ Interest

 ✦ Duration

Your observation gives you another good place to look. Alternatively, you
can write empty methods for some of those comments and then fill them in
one by one. That’s programming by intention.

I used the techniques for planning a method to create the following version
of the CalculateInterestTableWithMethods program:

// CalculateInterestTableWithMethods -- Generate an interest table
// much like the other interest table programs, but this time using a
// reasonable division of labor among several methods.
using System;
namespace CalculateInterestTableWithMethods
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Section 1 -- Input the data you need to create the table.
 decimal principal = 0M;
 decimal interest = 0M;
 decimal duration = 0M;
 InputInterestData(ref principal, ref interest, ref duration);
 // Section 2 -- Verify the data by mirroring it back to the user.
 Console.WriteLine(); // Skip a line.
 Console.WriteLine(“Principal = “ + principal);
 Console.WriteLine(“Interest = “ + interest + “%”);
 Console.WriteLine(“Duration = “ + duration + “ years”);
 Console.WriteLine();
 // Section 3 -- Finally, output the interest table.
 OutputInterestTable(principal, interest, duration);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // InputInterestData -- Retrieve from the keyboard the
 // principal, interest, and duration information needed
 // to create the future value table. (Implements Section 1.)
 public static void InputInterestData(ref decimal principal,
 ref decimal interest,
 ref decimal duration)
 {

17_563489-bk02ch03.indd 23017_563489-bk02ch03.indd 230 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

231A Method Example for Your Files

 // 1a -- Retrieve the principal.
 principal = InputPositiveDecimal(“principal”);
 // 1b -- Now enter the interest rate.
 interest = InputPositiveDecimal(“interest”);
 // 1c -- Finally, the duration
 duration = InputPositiveDecimal(“duration”);
 }
 // InputPositiveDecimal -- Return a positive decimal number
 // from the keyboard.
 public static decimal InputPositiveDecimal(string prompt)
 {
 // Keep trying until the user gets it right.
 while(true)
 {
 // Prompt the user for input.
 Console.Write(“Enter “ + prompt + “:”);
 // Retrieve a decimal value from the keyboard.
 string input = Console.ReadLine();
 decimal value = Convert.ToDecimal(input);
 // Exit the loop if the value that’s entered is correct.
 if (value >= 0)
 {
 // Return the valid decimal value entered by the user.
 return value;
 }
 // Otherwise, generate an error on incorrect input.
 Console.WriteLine(prompt + “ cannot be negative”);
 Console.WriteLine(“Try again”);
 Console.WriteLine();
 }
 }
 // OutputInterestTable -- Given the principal and interest,
 // generate a future value table for the number of periods
 // indicated in duration. (Implements Section 3.)
 public static void OutputInterestTable(decimal principal,
 decimal interest,
 decimal duration)
 {
 for (int year = 1; year <= duration; year++)
 {
 // Calculate the value of the principal plus interest.
 decimal interestPaid;
 interestPaid = principal * (interest / 100);
 // Now calculate the new principal by adding
 // the interest to the previous principal.
 principal = principal + interestPaid;
 // Round off the principal to the nearest cent.
 principal = decimal.Round(principal, 2);
 // Output the result.
 Console.WriteLine(year + “-” + principal);
 }
 }
 }
}

I divided the Main() method into three clearly distinguishable parts, each
marked with boldfaced comments. I further divided the first section into
subsections labeled 1a, 1b, and 1c.

17_563489-bk02ch03.indd 23117_563489-bk02ch03.indd 231 3/19/10 8:04 PM3/19/10 8:04 PM

232 A Method Example for Your Files

 Normally, you don’t include the boldfaced comments. If you did, the listings
would grow rather complicated because of all the numbers and letters. In
practice, those types of comments aren’t necessary if the methods are well
thought out and their names clearly express the intent of each one.

Part 1 calls the method InputInterestData() to input the three variables
the program needs in order to create the table: principal, interest,
and duration. Part 2 displays these three values for verification just as
earlier versions of the program do. Part 3 outputs the table via the method
OutputInterestTable().

From the bottom and working upward, the OutputInterestTable()
method contains an output loop with the interest rate calculations. This loop
is the same one used in the inline, nonmethod CalculateInterestTable
program. The advantage of this version, however, is that when writing this
section of code, you don’t need to concern yourself with any details of input-
ting or verifying data. When writing this method, think of it this way: “Given
the three numbers — principal, interest, and duration — output an
interest table,” and that’s it. After you’re done, you can return to the line
that called the OutputInterestTable() method and continue from there.

OutputInterestTable() offers a target for trying the Visual Studio 2010
Refactor menu. Take these steps to give it a whirl:

 1. Using the CalculateInterestTableMoreForgiving example from
Book I, Chapter 5 as a starting point, select the code from the declara-
tion of the year variable through the end of the while loop:

int year = 0; // You grab the loop variable
while(year <= duration) // and the entire while loop.
{
 //...
}

 2. Choose Refactor➪Extract Method.

 3. In the Extract Method dialog box, type OutputInterestTable. Examine
the Preview Method Signature box.

 Notice that the proposed signature for the new method begins with
the private static keywords and includes principal, interest,
and duration in parentheses. (I introduce private, an alternative to
public, in Book I. For now, you can make the method public after the
refactoring, if you like.)

private static decimal OutputInterestTable(decimal principal,
 decimal interest, int duration)

17_563489-bk02ch03.indd 23217_563489-bk02ch03.indd 232 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

233A Method Example for Your Files

 4. Click OK and then Apply to complete the Extract Method refactoring.

 The code you selected in Step 1 is moved to a new method, located
below Main() and named OutputInterestTable(). In the spot that it
formerly occupied, you see this method call:

principal = OuputInterestTable(principal, interest, duration);

 The Preview Changes window shows two panes so that you can preview
exactly which information will change. The top pane shows the code
you’re fixing as it looks now. The lower pane shows the code as it will
look when it changes. For more sweeping refactorings, each pane may
have numerous lines. You can select or deselect them individually to
determine which specific elements to refactor.

If, after refactoring, you suffer “buyer’s remorse,” click Undo or press Ctrl+Z.

Suppose that the previous refactoring did something you don’t like, such
as fail to include principal as a parameter. (Because this situation is
possible, you must always check a refactoring to be certain that it’s what
you want.)

This situation happened the first time this section was written, in fact. (I’m
writing this chapter based on beta software.) Rather than make principal a
parameter, the Extract Method refactoring made it a local variable. To move
principal into the parameter list, you can use the Promote Local Variable to
Parameter refactoring. But before you do that, you need to initialize the local
variable principal (the promotion refactoring doesn’t work if the variable is
uninitialized):

decimal principal = 0M; // M means decimal.

To carry out the Promote Local Variable to Parameter refactoring, you right-
click the local principal variable’s name and click Promote Local Variable
to Parameter to move the local variable definition to the parameter list:

private static decimal OutputInterestTable(decimal interest,
 int duration,

 decimal principal) ...

However, principal is at the end of the list and you want it at the begin-
ning. You can use the Reorder Parameters refactoring to fix this problem.

To carry out Reorder Parameters, right-click the new principal parameter
and click the Reorder Parameters link. In the dialog box, click the principal
line to select it. Then click the ↑ button twice to move principal to the top
of the list. Click OK.

17_563489-bk02ch03.indd 23317_563489-bk02ch03.indd 233 3/19/10 8:04 PM3/19/10 8:04 PM

234 A Method Example for Your Files

The result of all this refactoring consists of these two pieces:

 ✦ A new private static method below Main(), named Output
InterestTable()

 ✦ The following line of code within Main() where the extracted code was:
principal = OutputInterestTable(principal, interest, duration);

When FORTRAN introduced the function
concept — methods, in C# — during the
1950s, its sole purpose was to avoid duplica-
tion of code by combining similar sections
into a common element. Suppose that you
were to write a program to calculate ratios
in multiple places. Your program could call
the CalculateRatio() method when
needed, for more or less the sole purpose of
avoiding duplicate code. The savings may
not seem important for a method as small as
CalculateRatio(), but methods can
grow much larger. Besides, a common method
such as WriteLine() may be invoked in
hundreds of different places.

Quickly, a second advantage became obvi-
ous: Coding a single method correctly is easier
than coding many — and is doubly easier if the
method is small. The CalculateRatio()
method includes a check to ensure that the
denominator isn’t zero. If you repeat the calcu-
lation code throughout your program, you can
easily remember this test in some cases — and
in other places, forget.

Not as obvious is a third advantage: A carefully
crafted method reduces the complexity of the
program. A well-defined method should stand
for a concept. You should be able to describe
the purpose of the method without using the
words and or or. The method should do only
one thing.

A method such as CalculateSin() is an
ideal example. The programmer who’s tasked

with this assignment can implement this complex
operation with no concern about how it may
be used. The applications programmer can use
CalculateSin() with no concern about
how this operation is performed internally,
which greatly reduces the number of issues
she must monitor. After the number of “vari-
ables” is reduced, a large job is accomplished
by implementing two smaller, easier jobs.

Large programs, such as word processors, are
built up from many layers of methods at ever-
increasing levels of abstraction. For exam-
ple, a RedisplayDocument() method
would undoubtedly call a Reparagraph()
method to redisplay the paragraphs within the
document. Reparagraph() would need to
invoke a CalculateWordWrap() method
to decide where to wrap the lines that make up
the paragraph. CalculateWordWrap()
would have to call a LookUpWordBreak()
method to decide where to break a word at the
end of the line, to make the sentences wrap
more naturally. Each of these methods was
described in a single, simple sentence. (Notice
that these methods are well named.)

Without the ability to abstract complex con-
cepts, someone writing programs of even
moderate complexity would find that the task
becomes almost impossible — let alone cre-
ating an operating system such as Windows
Vista, a utility such as WinZip, a word proces-
sor such as WordPerfect, or a game such as
Halo.

Why you should bother with methods

17_563489-bk02ch03.indd 23417_563489-bk02ch03.indd 234 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

235A Method Example for Your Files

Cool! The same divide-and-conquer logic holds for InputInterestData().
However, that type of refactoring is more complex, so I do it by hand and
don’t show the steps. A description of the full art of refactoring is beyond
the scope of this book, though you can find an introduction at csharp102.
info. Experiment with the Refactor menu and use it often for building better-
factored code. But always check the results.

Because C# 4.0 now supports named parameters, you can call the parame-
ters in whichever order you want, by specifying the name of the expected
parameter before the value when calling a method. I cover more of this topic
later in Book 8, but in C# 4.0, reordering parameters is less of an issue.

For InputInterestData(), you can focus solely on inputting the three
decimal values. However, in this case, you realize that inputting each
one involves identical operations on three different input variables. The
InputPositiveDecimal() method bundles these operations into a set
of general code that you can apply to principal, interest, and duration alike.
Notice that the three while loops that take input in the original program are
collapsed into one while loop inside InputPositiveDecimal(). This pro-
cess reduces code duplication.

Avoid duplicating code. Refactoring folks call it the worst “code smell.”

This InputPositiveDecimal() method displays the prompt it was given
and awaits input from the user. The method returns the value to the caller
if it isn’t negative. If the value is negative, the method outputs an error mes-
sage and loops back to try again.

From the user’s standpoint, the modified program acts exactly the same as
the inline version, which is just the point:

Enter principal:100
Enter interest:-10
interest cannot be negative
Try again

Enter interest:10
Enter duration:10

Principal = 100
Interest = 10%
Duration = 10 years

1-110.0
2-121.00
3-133.10
4-146.41
5-161.05
6-177.16
7-194.88
8-214.37
9-235.81
10-259.39
Press Enter to terminate...

17_563489-bk02ch03.indd 23517_563489-bk02ch03.indd 235 3/19/10 8:04 PM3/19/10 8:04 PM

236 Having Arguments with Methods

I’ve refactored a lengthy, somewhat difficult program into smaller, more
understandable pieces — while reducing some duplication. As they say in
my neck of the woods, “You can’t beat that with a stick.”

Having Arguments with Methods
A method such as the following example is about as useful as Bill Sempf’s
hairbrush because no data passes into or out of the method:

public static void Output()
{
 Console.WriteLine(“this is a method”);
}

Compare this example to real-world methods that do something. For example,
the mathematical sine operation requires some type of input — after all,
you have to calculate the sine of something. Similarly, to concatenate two
strings, you need two strings. So the Concatenate() method requires at
least two strings as input. (As The Beav might say, “Gee, Wally, that sounds
logical.”) You need to find a way to move data into and out of a method.

Passing an argument to a method
The values you input to a method are method arguments, or parameters.
Most methods require some type of arguments if they’re going to do some-
thing. (In this way, methods remind me of my son: We need to have an argu-
ment before he’ll do anything.) You pass arguments to a method by listing
them in the parentheses that follow the method name. Consider this small
addition to the earlier Example class:

public class Example
{
 public static void Output(string someString)
 {
 Console.WriteLine(“Output() was passed the argument: “ + someString);
 }
}

I could invoke this method from within the same class, like this:

Output(“Hello”);

I would then see this not-too-exciting output:

Output() was passed the argument: Hello

The program passes to the method Output() a reference to the string
“Hello”. The method receives the reference and assigns it the name some
String. The Output() method can use someString within the method
just as it would use any other string variable.

17_563489-bk02ch03.indd 23617_563489-bk02ch03.indd 236 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

237Having Arguments with Methods

I can change the example in one minor way:

string myString = “Hello”;
Output(myString);

This code snippet assigns the variable myString to reference the string
“Hello”. The call Output(myString) passes the object referenced by
myString, which is your old friend “Hello”. Figure 3-1 depicts this pro-
cess. From there, the effect is the same as before.

Figure 3-1:
Copying the
value of my
String
to some
String.

upperString
"Hello"

Output (funcString)

 The placeholders you specify for arguments when you write a method — for
example, someString in Output() — are parameters. The values you pass
to a method via a parameter are arguments. I use the terms more or less
interchangeably in this book.

A similar idea is passing arguments to a program. For example, you may
have noticed that Main() usually takes an array argument.

Passing multiple arguments to methods
When I ask my daughter to wash the car, she usually gives me more than just
a single argument. Because she has lots of time on the couch to think about
it, she can keep several at the ready.

You can define a method with multiple arguments of varying types. Consider
the following sample method AverageAndDisplay():

// AverageAndDisplay -- Demonstrate argument passing.
using System;
namespace Example
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Access the member method.
 AverageAndDisplay(“grade 1”, 3.5, “grade 2”, 4.0);
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }

17_563489-bk02ch03.indd 23717_563489-bk02ch03.indd 237 3/19/10 8:04 PM3/19/10 8:04 PM

238 Having Arguments with Methods

 // AverageAndDisplay -- Average two numbers with their
 // labels and display the results.
 public static void AverageAndDisplay(string s1, double d1,
 string s2, double d2)
 {
 double average = (d1 + d2) / 2;
 Console.WriteLine(“The average of “ + s1
 + “ whose value is “ + d1
 + “ and “ + s2
 + “ whose value is “ + d2
 + “ is “ + average);
 }
 }
}

Executing this simple program generates this output:

The average of grade 1 whose value is 3.5 and grade 2 whose value is 4 is 3.75
Press Enter to terminate...

The method AverageAndDisplay() is declared with several parameters in
the order in which arguments are to be passed to them.

As usual, execution of the sample program begins with the first statement
after Main(). The first noncomment line in Main() invokes the method
AverageAndDisplay(), passing the two strings “grade 1” and
“grade 2” and the two double values 3.5 and 4.0.

The method AverageAndDisplay() calculates the average of the two
double values, d1 and d2, passed to it along with their names contained in
s1 and s2, and the calculated average is stored in average.

Changing the value of an argument inside the method can lead to confusion
and errors, so be wise and assign the value to a temporary variable and
modify it instead.

Matching argument definitions with usage
Each argument in a method call must match the method definition in both
type and order if you call them without naming them. The following (illegal)
example generates a build-time error:

// AverageWithCompilerError -- This version does not compile!
using System;
namespace Example
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Access the member method.
 AverageAndDisplay(“grade 1”, “grade 2”, 3.5, 4.0);

17_563489-bk02ch03.indd 23817_563489-bk02ch03.indd 238 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

239Having Arguments with Methods

 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // AverageAndDisplay -- Average two numbers with their
 // labels and display the results.
 public static void AverageAndDisplay(string s1, double d1,
 string s2, double d2)
 {
 // var okay here, but it’s really double.
 var average = (d1 + d2) / 2;
 Console.WriteLine(“The average of “ + s1
 + “ whose value is “ + d1
 + “ and “ + s2
 + “ whose value is “ + d2
 + “ is “ + average);
 }
 }
}

C# can’t match the type of each argument in the call to AverageAnd
Display() with the corresponding argument in the method definition. The
string “grade 1” matches the first string in the method definition; how-
ever, the method definition calls for a double as its second argument rather
than the string that’s passed.

You can easily see that I simply transposed the second and third arguments.
(That’s what I hate about computers — they take me too literally. I know
what I said, but it’s obvious what I meant!)

To fix the problem, swap the second and third arguments.

Overloading a method doesn’t mean
giving it too much to do

You can give two methods within a given class the same name — known as
overloading the method name — as long as their arguments differ.

This example demonstrates overloading:

// AverageAndDisplayOverloaded -- This version demonstrates that
// the AverageAndDisplay method can be overloaded.
using System;
namespace AverageAndDisplayOverloaded
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Access the first version of the method.
 AverageAndDisplay(“my GPA”, 3.5, “your GPA”, 4.0);
 Console.WriteLine();
 // Access the second version of the method.

17_563489-bk02ch03.indd 23917_563489-bk02ch03.indd 239 3/19/10 8:04 PM3/19/10 8:04 PM

240 Having Arguments with Methods

 AverageAndDisplay(3.5, 4.0);
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // AverageAndDisplay -- Average two numbers with their
 // labels and display the results.
 public static void AverageAndDisplay(string s1, double d1,
 string s2, double d2)
 {
 double average = (d1 + d2) / 2;
 Console.WriteLine(“The average of “ + s1
 + “ whose value is “ + d1);
 Console.WriteLine(“and “ + s2
 + “ whose value is “ + d2
 + “ is “ + average);
 }
 public static void AverageAndDisplay(double d1, double d2)
 {
 double average = (d1 + d2) / 2;
 Console.WriteLine(“The average of “ + d1
 + “ and “ + d2
 + “ is “ + average);
 }
 }
}

This program defines two versions of AverageAndDisplay(). The program
invokes one and then the other by passing the proper arguments. C# can tell
which method the program wants by comparing the call with the definition.
The program compiles properly and generates this output when executed:

The average of my GPA whose value is 3.5
and your GPA whose value is 4 is 3.75

The average of 3.5 and 4 is 3.75
Press Enter to terminate...

C# generally doesn’t allow two methods in the same class to have the same
name unless the number or type of the methods’ arguments differs (or if
both differ). Thus C# differentiates between these two methods:

 ✦ AverageAndDisplay(string, double, string, double)

 ✦ AverageAndDisplay(double, double)

When you say it that way, it’s clear that the two methods are different.

Implementing default arguments
Often, you want to supply two (or more) versions of a method:

 ✦ Complicated: Provides complete flexibility but requires numerous argu-
ments from the calling routine, several of which the user may not even
understand.

17_563489-bk02ch03.indd 24017_563489-bk02ch03.indd 240 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

241Having Arguments with Methods

 The word user doesn’t always refer to the user of a program. References
to the user of a method often mean, in practice, the programmer who is
making use of the method. Another term is client (which is often you).

 ✦ Acceptable (if somewhat bland): Assumes default values for certain
arguments.

You can easily implement default arguments using method overloading.
Consider this pair of DisplayRoundedDecimal() methods:

// MethodsWithDefaultArguments -- Provide variations of the same methods,
// some with default arguments, by overloading the method name.
using System;
namespace MethodsWithDefaultArguments
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Access the member method.
 Console.WriteLine(DisplayRoundedDecimal(12.345678M, 3));
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // DisplayRoundedDecimal -- Convert a decimal value into a string
 // with the specified number of signficant digits.
 public static string DisplayRoundedDecimal(decimal value,
 int numberOfSignificantDigits)
 {
 // First round off the number to the specified number
 // of significant digits.
 decimal roundedValue =
 decimal.Round(value,
 numberOfSignificantDigits);
 // Convert that to a string.
 string s = Convert.ToString(roundedValue);
 return s;
 }
 public static string DisplayRoundedDecimal(decimal value)
 {
 // Invoke DisplayRoundedDecimal(decimal, int) specifying
 // the default number of digits.
 string s = DisplayRoundedDecimal(value, 2);
 return s;
 }
 }
}

The DisplayRoundedDecimal(decimal, int) method converts the
decimal value that’s provided into a string with the specified number
of digits after the decimal point. Because decimals are often used to dis-
play monetary values, the most common choice is to place two digits after
the decimal point. Therefore, the DisplayRoundedDecimal(decimal)
method provides the same conversion service — but defaults the number of
significant digits to two, thereby removing any worry about the meaning of
the second argument.

17_563489-bk02ch03.indd 24117_563489-bk02ch03.indd 241 3/19/10 8:04 PM3/19/10 8:04 PM

242 Having Arguments with Methods

 The generic (decimal) version of the method calls the more specific
(decimal, int) version to perform its magic. This stacked method call-
ing is more common than not because it reduces duplication. The generic
methods simply provide arguments that the programmer doesn’t have the
inclination to find in the documentation, and shouldn’t have to unless she
needs them.

 Having to unnecessarily consult the reference documentation for the mean-
ings of normally defaulted arguments distracts the programmer from the
main job at hand — thereby making it more difficult, wasting time, and
increasing the likelihood of mistakes.

Providing default arguments does more than just save lazy programmers
from exerting a tiny bit of effort (programming requires lots of concentra-
tion). The author of the method understands the relationship between the
arguments — and therefore bears the onus of providing friendlier, over-
loaded versions of methods.

Visual Basic, C, and C++ programmers should be accustomed to supplying a
default value for a parameter directly in the method signature. Until C# 4.0
was released, you couldn’t do that in C#. Now you can.

For instance, although overloading the method in the preceding example is
a perfectly acceptable way to implement a default parameter, you can also
give default parameters by using the equal sign (=), just as in Visual Basic:

// MethodsWithDefaultArguments2-– Provide optional parameters to a method
// to avoid overloading. It’s another way to do the same thing.
using System;
namespace MethodsWithDefaultArguments2
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Access the member method.
 Console.WriteLine(DisplayRoundedDecimal(12.345678M, 3));
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // DisplayRoundedDecimal -- Convert a decimal value into a string
 // that has the specified number of signficant digits. That argument
 // is optional and has a default value. If you call the method
 // without the second argument, it uses the default value.
 public static string DisplayRoundedDecimal(decimal value,
 int numberOfSignificantDigits = 2)
 {
 // First round off the number to the specified number
 // of significant digits.

17_563489-bk02ch03.indd 24217_563489-bk02ch03.indd 242 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

243Returning Values after Christmas

 decimal roundedValue =
 decimal.Round(value,
 numberOfSignificantDigits);
 // Convert that to a string.
 string s = Convert.ToString(roundedValue);
 return s;
 }
 }
}

 Why would Microsoft make these changes? The answer is COM. The
Component Object Model (COM) was the architectural paradigm of choice
for Microsoft products before .NET was released, and it’s still quite preva-
lent. (Notice that I didn’t say popular.) Office, for one, is entirely developed
using COM. COM applications are developed in C++ or Visual Basic 6 and
earlier, and methods from those classes allow for optional parameters. Thus,
communicating with COM without using optional parameters can become
difficult. To address this imbalance, optional parameters (along with a
number of other features) were added to C# 4.0.

I cover named and optional parameters ad nauseam in Book III.

Returning Values after Christmas
Many real-world operations create values to return to the caller. For
example, Sin() accepts an argument and returns the trigonometric sine. A
method can return a value to the caller in two ways — most commonly via
the return statement; however, a second method uses the call-by-reference
feature.

Returning a value via return postage
The following code snippet demonstrates a small method that returns the
average of its input arguments:

public class Example
{
 public static double Average(double d1, double d2)
 {
 double average = (d1 + d2) / 2;
 return average;
 }
 public static void Main(string[] args)
 {
 double v1 = 1.0;
 double v2 = 3.0;
 double averageValue = Average(v1, v2);
 Console.WriteLine(“The average of “ + v1
 + “ and “ + v2 + “ is “
 + averageValue);

17_563489-bk02ch03.indd 24317_563489-bk02ch03.indd 243 3/19/10 8:04 PM3/19/10 8:04 PM

244 Returning Values after Christmas

 // This also works.
 Console.WriteLine(“The average of “ + v1
 + “ and “ + v2 + “ is “
 + Average(v1, v2));
 }
}

Notice first that I declare the method as public static double
Average() — the double in front of its name indicates that the Average()
method returns a double-precision value to the caller.

The Average() method applies the names d1 and d2 to the double values
passed to it. This method creates a variable average to which it assigns
the average of d1 and d2 and returns to the caller the value contained in
average.

 People sometimes use this careless but common shorthand: “The method
returns average.” Saying that average or any other variable is passed or
returned anywhere is imprecise. In this case, the value contained within
average is returned to the caller.

The call to Average() from the Test() method appears the same as any
other method call; however, the double value returned by Average() via
the return keyword is stored in the variable averageValue.

 A method that returns a value, such as Average(), cannot return to the
caller by merely encountering the closed brace of the method. If it did, C#
wouldn’t know which value to return. You need a return statement.

Defining a method with no value
The declaration public static double Average(double, double)
declares a method Average() that returns the average of its arguments as a
double. (The number returned had better be the average of the input values
or else someone has some serious explaining to do.)

Some methods don’t need to return a value to the caller. An earlier method
AverageAndDisplay() example displays the average of its input argu-
ments but doesn’t return that average to the caller. (That idea may not be
a good one, but mine is not to question.) Rather than leave the return type
blank, you declare a method such as AverageAndDisplay() this way:

public void AverageAndDisplay(double, double)

The keyword void, where the return type is normally used, means nontype.
That is, the declaration void indicates that the AverageAndDisplay()
method returns no value to the caller. (Regardless, every method declara-
tion specifies a return type, even if it’s void.)

17_563489-bk02ch03.indd 24417_563489-bk02ch03.indd 244 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 3

W
e

 H
a

ve
 O

u
r

M
e

th
o

d
s

245Returning Values after Christmas

 A void method returns no value. This definition doesn’t mean that the
method is empty or that it’s used for medical or astronautical purposes; it
simply refers to the initial keyword. By comparison, a method that returns a
value is a nonvoid method.

A nonvoid method must pass control back to the caller by executing a
return followed by the value to return to the caller. A void method has
no value to return. A void method returns when it encounters a return
with no value attached. Or, by default (if no return exists), a void
method exits automatically when control reaches the closing brace of
the method.

Consider this DisplayRatio() method:

public class Example
{
 public static void DisplayRatio(double numerator,
 double denominator)
 {
 // If the denominator is zero . . .
 if (denominator == 0.0)
 {
 // . . .output an error message and . . .
 Console.WriteLine(“The denominator of a ratio cannot be 0”);
 // . . .return to the caller.
 return; // An early return due to the error
 }
 // This code is executed only if denominator is nonzero.
 double ratio = numerator / denominator;
 Console.WriteLine(“The ratio of “ + numerator
 + “ over “ + denominator
 + “ is “ + ratio);
 } // If the denominator isn’t zero, the method exits here.
}

The DisplayRatio() method checks whether the denominator value is
zero:

 ✦ If the value is zero: The program displays an error message and returns
to the caller without attempting to calculate a ratio. Doing so would
divide the numerator value by zero and cause a CPU processor fault,
also known by the more descriptive name processor upchuck.

 ✦ If the value is nonzero: The program displays the ratio. The closed
brace immediately following WriteLine() is the closed brace of the
method DisplayRatio()and therefore acts as the return point for the
program.

If that were the only difference, it wouldn’t be much to write home about.
However, the second form of WriteLine() also provides a number of
controls on the output format. I describe these format controls in Book I,
Chapter 3.

17_563489-bk02ch03.indd 24517_563489-bk02ch03.indd 245 3/19/10 8:04 PM3/19/10 8:04 PM

246 Returning Values after Christmas

You may have noticed that the WriteLine() construct I’ve used in program examples earlier
in this book is nothing more than a method call that’s invoked by a Console class:

Console.WriteLine(“this is a method call”);

WriteLine() is one of many predefined methods provided by the .NET Framework library.
The Console predefined class refers to the application console (also known as the command
prompt or command window).

The argument to the WriteLine() method I’ve used until now is a single string. The +
operator enables the programmer to combine strings, or to combine a string and an intrin-
sic variable, before the sum is passed to WriteLine():

string s = “Sarah”
Console.WriteLine(“My name is “ + s + “ and my age is “ + 3);

All that WriteLine() sees in this case is “My name is Sarah and my age is 3.”

A second form of WriteLine() provides a more flexible set of arguments:

Console.WriteLine(“My name is {0} and my age is {1}.”, “Sarah”, 3);

The first argument is a format string. The string “Sarah” is inserted where the symbol {0}
appears — 0 refers to the first argument after the format string. The integer 3 is inserted at the
position marked by {1}. This form is more efficient than in the previous example because concat-
enating strings isn’t as easy as it might sound. It’s a time-consuming business.

The WriteLine() method

17_563489-bk02ch03.indd 24617_563489-bk02ch03.indd 246 3/19/10 8:04 PM3/19/10 8:04 PM

Chapter 4: Let Me Say
This about this

In This Chapter
✓ How to pass an object to a method

✓ Class methods versus instance methods

✓ Understanding what this is

✓ When you don’t have this

✓ When a class doesn’t have a method that you need it to have

This chapter moves from the static methods that Chapter 3 in this mini-
book emphasizes to the nonstatic methods of a class. Static methods

belong to the whole class, and nonstatic methods belong to each instance
created from the class. Important differences exist between static and non-
static class members.

Passing an Object to a Method
You pass object references as arguments to methods in the same way as
you pass value-type variables, with one difference: You always pass objects
by reference.

The following small program demonstrates how you pass objects — to
methods, that is:

// PassObject -- Demonstrate how to pass an object to a method.
using System;
namespace PassObject
{
 public class Student
 {
 public string name;
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 Student student = new Student();
 // Set the name by accessing it directly.
 Console.WriteLine(“The first time:”);
 student.name = “Madeleine”;

18_563489-bk02ch04.indd 24718_563489-bk02ch04.indd 247 3/19/10 8:04 PM3/19/10 8:04 PM

248 Passing an Object to a Method

 OutputName(student);
 // Change the name using a method.
 Console.WriteLine(“After being modified:”);
 SetName(student, “Willa”);
 OutputName(student);
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // OutputName -- Output the student’s name.
 public static void OutputName(Student student)
 {
 // Output current student’s name.
 Console.WriteLine(“Student’s name is {0}”, student.name);
 }
 // SetName -- Modify the student object’s name.
 public static void SetName(Student student, string name)
 {
 student.name = name;
 }
 }
}

The program creates a student object consisting of nothing but a name.
The program first sets the name of the student directly and passes the stu-
dent object to the output method OutputName(). OutputName() displays
the name of any Student object it receives.

The program then updates the name of the student by calling SetName().
Because all reference-type objects are passed by reference in C#, the
changes made to student are retained in the calling method. When Main()
outputs the student object again, the name has changed, as shown in this
bit of code:

The first time:
Student’s name is Madeleine
After being modified:
Student’s name is Willa
Press Enter to terminate...

The SetName() method can change the name within the Student object
and make it stick.

 You don’t use the ref keyword when passing a reference-type object. Yet the
effect is that the object’s contents can be modified through the reference.
However, if SetName() tries to assign a whole new Student object to its
Student parameter, it doesn’t affect the original Student object outside
the method, as this chunk of code shows:

Student student = new Student();
SetName(student, “Pam”);
Console.WriteLine(student.name); // Still “Pam”
...

18_563489-bk02ch04.indd 24818_563489-bk02ch04.indd 248 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 4

Le
t M

e
 S

a
y T

h
is

a
b

o
u

t T
h

is

249Defining Methods

// A revised SetName():
public static void SetName(Student student, string name)
{
 student = new Student(); // Doesn’t replace student outside SetName().
 student.Name = name;
}

Defining Methods
A class is supposed to collect the elements that describe a real-world object
or concept. For example, a Vehicle class may contain data elements for
maximum velocity, weight, and carrying capacity, for example. However, a
Vehicle has active properties — behaviors — as well: the ability to start
and stop and the like. These active properties are described by the methods
related to that vehicular data. These methods are just as much a part of the
Vehicle class as the data elements.

Defining a static method
For example, you could rewrite the program from the previous section in a
slightly better way:

// StudentClassWithMethods -- Demonstrate putting methods that
// operate on a class’s data inside the class. A class is
// responsible for its own data and any operations on it.
using System;
namespace StudentClassWithMethods
{
 // Now the OutputName and SetName methods are members of
 // class Student, not class Program.
 public class Student
 {
 public string name;
 // OutputName -- Output the student’s name.
 public static void OutputName(Student student)
 {
 // Output current student’s name.
 Console.WriteLine(“Student’s name is {0}”, student.name);
 }
 // SetName -- Modify the student object’s name.
 public static void SetName(Student student, string name)
 {
 student.name = name;
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 Student student = new Student();
 // Set the name by accessing it directly.
 Console.WriteLine(“The first time:”);
 student.name = “Madeleine”;

18_563489-bk02ch04.indd 24918_563489-bk02ch04.indd 249 3/19/10 8:04 PM3/19/10 8:04 PM

250 Defining Methods

 Student.OutputName(student); // Method now belongs to Student.
 // Change the name using a method.
 Console.WriteLine(“After being modified:”);
 Student.SetName(student, “Willa”);
 Student.OutputName(student);
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

Other than its name, this program has only one significant change from the
PassObject program in the previous section: I put the OutputName() and
SetName() methods in the Student class.

Rather than say “in” the class, many programmers speak of members “on”
the class.

Because of that change, Main() must reference the Student class in the
calls to SetName() and OutputName(). The methods are now members of
the class Student and not Program, the class in which Main() resides.

This step is small but significant. Placing OutputName() within the class
leads to a higher level of reuse: Outside methods that need to display the
object can find OutputName() right there as part of the class. It doesn’t
have to be written separately by each program using the Student class.

This solution is also better on a philosophical level. Class Program
shouldn’t need to worry about how to initialize the name of a Student
object nor about how to output important material. The Student class
should contain that information. Objects are responsible for themselves.

In fact, Main() shouldn’t initialize the name to Madeleine in the first place.
It should call SetName() instead.

From within Student, one member method can invoke another without
explicitly applying the class name. SetName() could invoke OutputName()
without needing to reference the class name. If you leave off the class name,
C# assumes that the method being accessed is in or on the same class.

Defining an instance method
Although OutputName() and SetName() are static methods, they could as
easily be nonstatic, or instance, methods.

 All static members of a class are class members, and all nonstatic members
are instance members. This includes methods.

18_563489-bk02ch04.indd 25018_563489-bk02ch04.indd 250 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 4

Le
t M

e
 S

a
y T

h
is

a
b

o
u

t T
h

is

251Defining Methods

The nonstatic data members of an object — an instance of a class — are
accessed with the object and not with the class. Thus, you may say

Student student = new Student(); // Create an instance of Student.
student.name = “Madeleine”; // Access the member via the instance.

C# enables you to invoke nonstatic member methods in the same way:

student.SetName(“Madeleine”);

The following example demonstrates this technique:

// InvokeMethod -- Invoke a member method through the object.
using System;
namespace InvokeMethod
{
 class Student
 {
 // The name information to describe a student
 public string firstName;
 public string lastName;
 // SetName -- Save name information. (Nonstatic.)
 public void SetName(string fName, string lName)
 {
 firstName = fName;
 lastName = lName;
 }
 // ToNameString -- Convert the student object into a
 // string for display. (Nonstatic.)
 public string ToNameString()
 {
 string s = firstName + “ “ + lastName;
 return s;
 }
 }
 public class Program
 {
 public static void Main()
 {
 Student student = new Student();
 student.SetName(“Stephen”, “Davis”); // Call instance method.
 Console.WriteLine(“Student’s name is “
 + student.ToNameString());
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The output from this program is this simple line:

Student’s name is Stephen Davis

Other than having a much shorter name, this program is quite similar to the
earlier StudentClassWithMethods program. This version uses nonstatic
methods to manipulate both a first and last name.

18_563489-bk02ch04.indd 25118_563489-bk02ch04.indd 251 3/19/10 8:04 PM3/19/10 8:04 PM

252 Defining Methods

The program begins by creating a new Student object, student. The pro-
gram then invokes the SetName() method, which stores the two strings
“Stephen” and “Davis” into the data members firstName and last
Name. Finally, the program calls the member method ToNameString(),
which returns the name of the student by concatenating the two strings.

Look again at the SetName() method, which updates the first and last name
fields in the Student object. To see which object SetName() modifies, con-
sider this example:

Student christa = new Student(); // Here’s one student.
Student sarah = new Student(); // And here’s a completely different one.
christa.SetName(“Christa”, “Smith”);
sarah.SetName(“Sarah”, “Jones”);

The first call to SetName() updates the first and last name of the christa
object. The second call updates the sarah object.

Thus, C# programmers say that a method operates on the current object. In
the first call, the current object is christa; in the second, it’s sarah.

Expanding a method’s full name
A subtle but important problem exists with my description of method
names. To see the problem, consider this sample code snippet:

public class Person
{
 public void Address()
 {
 Console.WriteLine(“Hi”);
 }
}
public class Letter
{
 string address;
 // Store the address.
 public void Address(string newAddress)
 {
 address = newAddress;
 }
}

Any subsequent discussion of the Address() method is now ambigu-
ous. The Address() method within Person has nothing to do with the
Address() method in Letter. If my programmer friend tells me to access
the Address() method, which Address() does he mean?

The problem lies not with the methods themselves, but, rather, with my
description. In fact, no Address() method exists as an independent
entity — only a Person.Address() and a Letter.Address() method.
Attaching the class name to the beginning of the method name clearly indi-
cates which method is intended.

18_563489-bk02ch04.indd 25218_563489-bk02ch04.indd 252 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 4

Le
t M

e
 S

a
y T

h
is

a
b

o
u

t T
h

is

253Accessing the Current Object

This description is quite similar to people’s names. Within my family, I am
known as Stephen. (Actually, within my family, I am known by my middle
name, but you get the point.) No other Stephens are within my family (at least
not within my close family). However, two other Stephens work where I do.

If I’m at lunch with coworkers and the other two Stephens aren’t present, the
name Stephen clearly refers to me. Back in the trenches (or cubicles), shout-
ing “Stephen” is ambiguous because it can refer to any one of us. In that con-
text, you need to yell out “Stephen Davis” as opposed to “Stephen Williams”
or “Stephen Leija.”

Thus, you can consider Address() to be the first name or nickname of a
method, with its class as the family name.

Accessing the Current Object
Consider the following Student.SetName() method:

class Student
{
 // The name information to describe a student
 public string firstName;
 public string lastName;
 // SetName -- Save name information.
 public void SetName(string firstName, string lastName)
 {
 firstName = firstName;
 lastName = lastName;
 }
}
public class Program
{
 public static void Main()
 {
 Student student1 = new Student();
 student1.SetName(“Joseph”, “Smith”);
 Student student2 = new Student();
 student2.SetName(“John”, “Davis”);
 }
}

The method Main() uses the SetName() method to update first student1
and then student2. But you don’t see a reference to either Student object
within SetName() itself. In fact, no reference to a Student object exists. A
method is said to operate on “the current object.” How does a method know
which one is the current object? Will the real current object please stand up?

The answer is simple. The current object is passed as an implicit argument
in the call to a method — for example:

student1.SetName(“Joseph”, “Smith”);

18_563489-bk02ch04.indd 25318_563489-bk02ch04.indd 253 3/19/10 8:04 PM3/19/10 8:04 PM

254 Accessing the Current Object

This call is equivalent to the following:

Student.SetName(student1, “Joseph”, “Smith”); // Equivalent call,
 // (but this won’t build properly).

I’m not saying that you can invoke SetName() in two different ways; just
that the two calls are semantically equivalent. The object identifying the cur-
rent object — the hidden first argument — is passed to the method, just like
other arguments. Leave that task to the compiler.

Passing an object implicitly is easy to swallow, but what about a reference
from one method to another? The following code snippet illustrates calling
one method from another:

public class Student
{
 public string firstName;
 public string lastName;
 public void SetName(string firstName, string lastName)
 {
 SetFirstName(firstName);
 SetLastName(lastName);
 }
 public void SetFirstName(string name)
 {
 firstName = name;
 }
 public void SetLastName(string name)
 {
 lastName = name;
 }
}

No object appears in the call to SetFirstName(). The current object
continues to be passed along silently from one method call to the next. An
access to any member from within an object method is assumed to be with
respect to the current object. The upshot is that a method “knows” which
object it belongs to. “Current object” (or “current instance”) means some-
thing like “me.”

What is the this keyword?
Unlike most arguments, the current object doesn’t appear in the method
argument list, so it isn’t assigned a name by the programmer. Instead, C#
assigns this object the less-than-imaginative name this, useful in the few
situations where you need to refer directly to the current object.

 The C# keyword this cannot be used for any other purpose, at least not
without the express written permission of the National Football League.

18_563489-bk02ch04.indd 25418_563489-bk02ch04.indd 254 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 4

Le
t M

e
 S

a
y T

h
is

a
b

o
u

t T
h

is

255Accessing the Current Object

Thus you could write the previous example this way:

public class Student
{
 public string firstName;
 public string lastName;
 public void SetName(string firstName, string lastName)
 {
 // Explicitly reference the “current object” referenced by this.
 this.SetFirstName(firstName);
 this.SetLastName(lastName);
 }
 public void SetFirstName(string name)
 {
 this.firstName = name;
 }
 public void SetLastName(string name)
 {
 this.lastName = name;
 }
}

Notice the explicit addition of the keyword this. Adding it to the member
references doesn’t add anything because this is assumed. However, when
Main() makes the following call, this references student1 throughout
SetName() and any other method it may call:

student1.SetName(“John”, “Smith”);

When is this explicit?
You don’t normally need to refer to this explicitly because it is understood
where necessary by the compiler. However, two common cases require
this. You may need it when initializing data members, as in this example:

class Person
{
 public string name; // This is this.name below.
 public int id; // And this is this.id below.
 public void Init(string name, int id) // These are method arguments.
 {
 this.name = name; // Argument names same as data member names
 this.id = id;
 }
}

The arguments to the Init() method are named name and id, which match
the names of the corresponding data members. The method is then easy to
read because you know immediately which argument is stored where. The
only problem is that the name name in the argument list obscures the name
of the data member. The compiler complains about it.

18_563489-bk02ch04.indd 25518_563489-bk02ch04.indd 255 3/19/10 8:04 PM3/19/10 8:04 PM

256 Accessing the Current Object

 The addition of this clarifies which name is intended. Within Init(), the
name name refers to the method argument, but this.name refers to the
data member.

You also need this when storing the current object for use later or by
some other method. Consider this program example ReferencingThis
Explicitly:

// ReferencingThisExplicitly -- Demonstrates how to explicitly use
// the reference to ‘this’.
using System;
namespace ReferencingThisExplicitly
{
 public class Program
 {
 public static void Main(string[] strings)
 {
 // Create a student.
 Student student = new Student();
 student.Init(“Stephen Davis”, 1234);
 // Now enroll the student in a course.
 Console.WriteLine
 (“Enrolling Stephen Davis in Biology 101”);
 student.Enroll(“Biology 101”);
 // Display student course.
 Console.WriteLine(“Resulting student record:”);
 student.DisplayCourse();
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
 // Student -- The class for university students.
 public class Student
 {
 // All students have a name and an id.
 public string _name;
 public int _id;
 // The course in which the student is enrolled
 CourseInstance _courseInstance;
 // Init -- Initialize the student object.
 public void Init(string name, int id)
 {
 this._name = name;
 this._id = id;
 _courseInstance = null;
 }
 // Enroll -- Enroll the current student in a course.
 public void Enroll(string courseID)
 {
 _courseInstance = new CourseInstance();
 _courseInstance.Init(this, courseID); // Here’s the explicit reference.
 }
 // Display the name of the student and the course.
 public void DisplayCourse()
 {

18_563489-bk02ch04.indd 25618_563489-bk02ch04.indd 256 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 4

Le
t M

e
 S

a
y T

h
is

a
b

o
u

t T
h

is

257Accessing the Current Object

 Console.WriteLine(_name);
 _courseInstance.Display();
 }
 }
 // CourseInstance -- A combination of a student with
 // a university course.
 public class CourseInstance
 {
 public Student _student;
 public string _courseID;
 // Init -- Tie the student to the course.
 public void Init(Student student, string courseID)
 {
 this._student = student;
 this._courseID = courseID;
 }
 // Display -- Output the name of the course.
 public void Display()
 {
 Console.WriteLine(_courseID);
 }
 }
}

This program is fairly mundane. The Student object has room for a name,
an ID, and a single instance of a university course (not an industrious stu-
dent). Main() creates the student instance and then invokes Init() to
initialize the instance. At this point, the _courseInstance reference is set
to null because the student isn’t yet enrolled in a class.

The Enroll() method enrolls the student by initializing _courseInstance
with a new object. However, the CourseInstance.Init() method takes
an instance of Student as its first argument along with the course ID as the
second argument. Which Student should you pass? Clearly, you need to pass
the current Student — the Student referred to by this. (Thus you can say
that Enroll() enrolls this student in the CourseInstance.)

Some programmers (and that includes me) like to differentiate data mem-
bers from other variables more clearly by prefixing an underscore to the
name of each data member, like this: _name. You see me adopt this conven-
tion most of the time, but of course, it’s only a convention, and you may do
as you like. If you use the convention, you don’t need to preface the item
with this, as in this._id. It’s completely unambiguous with just the
underscore prefix.

What happens when you don’t have this?
Mixing class (static) methods and instance (nonstatic) methods is like
mixing sheepmen and ranchers. Fortunately, C# gives you some ways
around the problems between the two. To see the problem, consider this
program snippet MixingStaticAndInstanceMethods:

18_563489-bk02ch04.indd 25718_563489-bk02ch04.indd 257 3/19/10 8:04 PM3/19/10 8:04 PM

258 Accessing the Current Object

// MixingStaticAndInstanceMethods -- Mixing class (static) methods
// and instance (nonstatic) methods can cause problems.
using System;
namespace MixingStaticAndInstanceMethods
{
 public class Student
 {
 public string _firstName;
 public string _lastName;
 // InitStudent -- Initialize the student object.
 public void InitStudent(string firstName, string lastName)
 {
 _firstName = firstName;
 _lastName = lastName;
 }
 // OutputBanner (static) -- Output the introduction.
 public static void OutputBanner()
 {
 Console.WriteLine(“Aren’t we clever:”);
 // Console.WriteLine(? what student do we use ?); ß The problem!
 }
 // OutputBannerAndName (nonstatic) -- Output intro.
 public void OutputBannerAndName()
 {
 // The class Student is implied but no this
 // object is passed to the static method.
 OutputBanner();
 // The current Student object is passed explicitly.
 OutputName(this);
 }
 // OutputName -- Output the student’s name.
 public static void OutputName(Student student)
 {
 // Here, the Student object is referenced explicitly.
 Console.WriteLine(“Student’s name is {0}”,
 student.ToNameString());
 }
 // ToNameString -- Fetch the student’s name.
 public string ToNameString()
 {
 // Here, the current object is implicit --
 // this could have been written:
 // return this._firstName + “ “ + this._lastName;
 return _firstName + “ “ + _lastName;
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 Student student = new Student();
 student.InitStudent(“Madeleine”, “Cather”);
 // Output the banner and name statically.
 Student.OutputBanner();
 Student.OutputName(student);
 Console.WriteLine();

18_563489-bk02ch04.indd 25818_563489-bk02ch04.indd 258 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 4

Le
t M

e
 S

a
y T

h
is

a
b

o
u

t T
h

is

259Accessing the Current Object

 // Output the banner and name again using instance.
 student.OutputBannerAndName();
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

Start at the bottom of the program with Main() so that you can better see
the problems. The program begins by creating a Student object and initial-
izing its name. The simpleton program now wants to do nothing more than
output the name preceded by a short message and banner.

Main() first outputs the banner and message using the class or static
method approach. The program invokes the OutputBanner() method for
the banner line and the OutputName() method to output the message and
the student name. The method OutputBanner() outputs a simple mes-
sage to the console. Main() passes the student object as an argument to
OutputName() so that it can display the student’s name.

Next, Main() uses the instance method approach to outputting the banner
and message by calling student.OutputBannerAndName().

OutputBannerAndName() first invokes the static method OutputBanner().
The class Student is assumed. No object is passed because the static
OutputBanner doesn’t need one. Next, OutputBannerAndName() calls the
OutputName() method. OutputName() is also a static method, but it takes a
Student object as its argument. OutputBannerAndName() passes this for
that argument.

A more interesting case is the call to ToNameString() from within
OutputName(). OutputName() is declared static and therefore has no
this. It has an explicit Student object, which it uses to make the call.

The OutputBanner() method would probably like to call ToName
String() as well; however, it has no Student object to use. It has no this
reference because it’s a static method and wasn’t passed an object explic-
itly. Note the first boldfaced line in the sample code: The static method
cannot call the instance method.

 A static method cannot call a nonstatic method without explicitly providing
an object. No object, no call. In general, static methods cannot access any
nonstatic items in the class. But nonstatic (instance) methods can access
static as well as instance items: static data members and static methods.

18_563489-bk02ch04.indd 25918_563489-bk02ch04.indd 259 3/19/10 8:04 PM3/19/10 8:04 PM

Book II: Object-Oriented C# Programming260

18_563489-bk02ch04.indd 26018_563489-bk02ch04.indd 260 3/19/10 8:04 PM3/19/10 8:04 PM

Chapter 5: Holding a
Class Responsible

In This Chapter
✓ Letting the class protect itself through access control

✓ Introducing the property, a specialized kind of method

✓ Allowing an object to initialize itself via the constructor

✓ Defining multiple constructors for the same class

✓ Constructing static or class members

Aclass must be held responsible for its actions. Just as a microwave oven
shouldn’t burst into flames if you press the wrong key, a class shouldn’t

allow itself to roll over and die when presented with incorrect data.

To be held responsible for its actions, a class must ensure that its initial
state is correct and then control its subsequent state so that it remains
valid. C# provides both these capabilities.

Restricting Access to Class Members
Simple classes define all their members as public. Consider a Bank
Account program that maintains a balance data member to retain the bal-
ance in each account. Making that data member public puts everyone on
the honor system.

I don’t know about your bank, but my bank isn’t nearly so forthcoming as to
leave a pile of money and a register for me to mark down every time I add
money to or take money away from the pile. After all, I may forget to mark
my withdrawals in the register.

Controlling access avoids little mistakes, such as forgetting to mark a with-
drawal here or there, and manages to avoid some truly big mistakes with
withdrawals.

 I know exactly what you procedural types out there are thinking: “Just make
a rule that other classes can’t access the balance data member directly,
and that’s that.” That approach may work in theory, but in practice it never

19_563489-bk02ch05.indd 26119_563489-bk02ch05.indd 261 3/19/10 8:05 PM3/19/10 8:05 PM

262 Restricting Access to Class Members

does. People start out with good intentions (like my intentions to work out
every day), but those good intentions get crushed under the weight of
schedule pressures to get the product out the door. Speaking of weight. . . .

A public example of public BankAccount
The following BankAccount class example declares all its methods public
but declares its data members, including _accountNumber and _balance,
to be private. Note that I’ve left it in an incorrect state to make a point.
The following code chunk doesn’t compile correctly yet:

// BankAccount -- Create a bank account using a double variable
// to store the account balance (keep the balance in a private
// variable to hide its implementation from the outside world).
// Note: Until you correct it, this program fails to compile
// because Main() refers to a private member of class BankAccount.
using System;
namespace BankAccount
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine(“This program doesn’t compile in its present state.”);
 // Open a bank account.
 Console.WriteLine(“Create a bank account object”);
 BankAccount ba = new BankAccount();
 ba.InitBankAccount();
 // Accessing the balance via the Deposit() method is okay --
 // Deposit() has access to all the data members.
 ba.Deposit(10);
 // Accessing the data member directly is a compile-time error.
 Console.WriteLine(“Just in case you get this far the following is “
 + “supposed to generate a compile error”);
 ba._balance += 10;
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }

 // BankAccount -- Define a class that represents a simple account.
 public class BankAccount
 {
 private static int _nextAccountNumber = 1000;
 private int _accountNumber;
 // Maintain the balance as a double variable.
 private double _balance;
 // Init -- Initialize a bank account with the next
 // account id and a balance of 0.
 public void InitBankAccount()
 {
 _accountNumber = ++_nextAccountNumber;
 _balance = 0.0;
 }
 // GetBalance -- Return the current balance.
 public double GetBalance()
 {
 return _balance;
 }

19_563489-bk02ch05.indd 26219_563489-bk02ch05.indd 262 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

263Restricting Access to Class Members

 // AccountNumber
 public int GetAccountNumber()
 {
 return _accountNumber;
 }
 public void SetAccountNumber(int accountNumber)
 {
 this._accountNumber = accountNumber;
 }
 // Deposit -- Any positive deposit is allowed.
 public void Deposit(double amount)
 {
 if (amount > 0.0)
 {
 _balance += amount;
 }
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 public double Withdraw(double withdrawal)
 {
 if (_balance <= withdrawal)
 {
 withdrawal = _balance;
 }
 _balance -= withdrawal;
 return withdrawal;
 }
 // GetString -- Return the account data as a string.
 public string GetString()
 {
 string s = String.Format(“#{0} = {1:C}”,
 GetAccountNumber(), GetBalance());
 return s;
 }
 }
}

 In this code example, _balance -= withdrawal is the same as _balance
= _balance - withdrawal. (C# programmers tend to use the shortest
notation available.)

Marking a member public makes that member available to any other code
within your program.

The BankAccount class provides an InitBankAccount() method to ini-
tialize the members of the class, a Deposit() method to handle deposits,
and a Withdraw() method to perform withdrawals. The Deposit() and
Withdraw() methods even provide some rudimentary rules, such as “You
can’t deposit a negative number” and “You can’t withdraw more than you
have in your account” (both good rules for a bank, as I’m sure you’ll agree).
However, everyone’s on the honor system as long as _balance is accessible
to external methods. (In this context, external means “external to the class
but within the same program.”) The honor system can be a problem on big
programs written by teams of programmers. It can even be a problem for
you (and me), given general human fallibility.

19_563489-bk02ch05.indd 26319_563489-bk02ch05.indd 263 3/19/10 8:05 PM3/19/10 8:05 PM

264 Restricting Access to Class Members

 Well-written code with rules that the compiler can enforce saves everyone
from the occasional bullet to the big toe.

Before you get too excited, however, notice that the program doesn’t build.
Attempts to do so generate this error message:

‘BankAccount.BankAccount._balance’ is inaccessible due to its protection level.

I don’t know why it doesn’t just come out and say, “Hey, this is private,
so keep your mitts off.” The statement ba._balance += 10; is illegal
because _balance isn’t accessible to Main(), a method outside the
BankAccount class. Replacing this line with ba.Deposit(10) solves the
problem. The BankAccount.Deposit() method is public and therefore
accessible to Main() and other parts of your program.

 Not declaring a class member’s access type explicitly is the same as declar-
ing it private.

 The default access type is private. However, you should include the
private keyword to remove any doubt. Good programmers make their
intentions explicit, which is another way to reduce errors.

Jumping ahead — other levels of security
 Understanding this section depends on your having some knowledge of

inheritance (see Chapter 6 in this minibook) and namespaces (Chapter 10 in
this minibook). You can skip this section for now if you want, but just know
that it’s here when you need it.

C# provides these levels of security:

 ✦ A public member is accessible to any class in the program.

 ✦ A private member is accessible only from the current class.

 ✦ A protected member is accessible from the current class and any of its
subclasses.

 ✦ An internal member is accessible from any class within the same pro-
gram module or assembly.

 A C# “module,” or assembly, is a separately compiled piece of code,
either an executable program in an .EXE file or a supporting library
module in a .DLL file. A single namespace can extend across multiple
assemblies. (Chapter 10 in this minibook explains C# assemblies and
namespaces and discusses access levels other than public and
private.)

 ✦ An internal protected member is accessible from the current class
and any subclass, and from classes within the same module.

19_563489-bk02ch05.indd 26419_563489-bk02ch05.indd 264 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

265Why You Should Worry about Access Control

Keeping a member hidden by declaring it private offers the maximum
amount of security. However, in many cases, you don’t need that level of
security. After all, the members of a subclass already depend on the mem-
bers of the base class, so protected offers a comfortable level of security.

Why You Should Worry about Access Control
Declaring the internal members of a class public is a bad idea for at least
these reasons:

 ✦ With all data members public, you can’t easily determine when and
how data members are being modified. Why bother building safety
checks into the Deposit() and Withdraw() methods? In fact, why
even bother with these methods? Any method of any class can modify
these elements at any time. If other methods can access these data
members, they almost certainly will.

 Your BankAccount program may execute for an hour or so before
you notice that one of the accounts has a negative balance. The
Withdraw() method would have ensured that this situation didn’t
happen, so obviously another method accessed the balance without
going through Withdraw(). Figuring out which method is responsible
and under which conditions is a difficult problem.

 ✦ Exposing all data members of the class makes the interface too com-
plicated. As a programmer using the BankAccount class, you don’t want
to know about the internal workings of the class. You just need to know
that you can deposit and withdraw funds. It’s like a candy machine that
has 50 buttons versus 1 with just a few buttons — the ones you need.

 ✦ Exposing internal elements leads to a distribution of the class rules.
For example, my BankAccount class doesn’t allow the balance to be
negative under any circumstances. That required business rule should
be isolated within the Withdraw() method. Otherwise, you have to add
this check everywhere the balance is updated.

 Sometimes, a bank decides to change the rules so that “valued custom-
ers” are allowed to carry slightly negative balances for a short period,
to avoid unintended overdrafts. Then you have to search through the
program to update every section of code that accesses the balance, to
ensure that the safety checks are changed.

Make your classes and methods no more accessible than necessary. I give you
this advice not so much to cause paranoia about snoopy hackers as to suggest
a prudent step that helps reduce errors as you code. Use private, if possible,
and then escalate to protected, internal, internal protected, or
public as necessary.

19_563489-bk02ch05.indd 26519_563489-bk02ch05.indd 265 3/19/10 8:05 PM3/19/10 8:05 PM

266 Why You Should Worry about Access Control

Accessor methods
If you look more carefully at the BankAccount class, you see a few other
methods. One, GetString(), returns a string version of the account
fit for presentation to any Console.WriteLine() for display. However,
displaying the contents of a BankAccount object may be difficult if its con-
tents are inaccessible. The class should have the right to decide how it is
displayed.

In addition, you see two “getter” methods, GetBalance() and GetAccount
Number(), and one “setter” method, SetAccountNumber(). You may
wonder why I would bother to declare a data member such as _balance
private but provide a public GetBalance() method to return its value.
I have two reasons:

 ✦ GetBalance() doesn’t provide a way to modify _balance — it
merely returns its value. The balance is read-only. To use the analogy
of an actual bank, you can look at your balance any time you want; you
just can’t withdraw money from your account without using the bank’s
withdrawal mechanism.

 ✦ GetBalance() hides the internal format of the class from external
methods. GetBalance() may perform an extensive calculation by
reading receipts, adding account charges, and accounting for any other
amounts your bank may want to subtract from your balance. External
methods don’t know and don’t care. Of course, you care which fees are
being charged — you just can’t do anything about them, short of chang-
ing banks.

Finally, GetBalance() provides a mechanism for making internal changes
to the class without the need to change the users of BankAccount. If the
Federal Deposit Insurance Corporation (FDIC) mandates that your bank
store deposits differently, the mandate shouldn’t change the way you access
your account.

Access control to the rescue — an example
The following DoubleBankAccount program demonstrates a potential
flaw in the BankAccount program. The entire program is on your Web site;
however, the following listing shows just Main() — the only portion of the
program that differs from the earlier BankAccount program:

// DoubleBankAccount -- Create a bank account using a double variable
// to store the account balance (keep the balance in a private
// variable to hide its implementation from the outside world).
using System;
namespace DoubleBankAccount
{

19_563489-bk02ch05.indd 26619_563489-bk02ch05.indd 266 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

267Why You Should Worry about Access Control

 public class Program
 {
 public static void Main(string[] args)
 {
 // Open a bank account.
 Console.WriteLine(“Create a bank account object”);
 BankAccount ba = new BankAccount();
 ba.InitBankAccount();
 // Make a deposit.
 double deposit = 123.454;
 Console.WriteLine(“Depositing {0:C}”, deposit);
 ba.Deposit(deposit);
 // Account balance
 Console.WriteLine(“Account = {0}”, ba.GetString());
 // Here’s the problem.
 double fractionalAddition = 0.002;
 Console.WriteLine(“Adding {0:C}”, fractionalAddition);
 ba.Deposit(fractionalAddition);
 // Resulting balance
 Console.WriteLine(“Resulting account = {0}”, ba.GetString());
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }

The Main() method creates a bank account and then deposits $123.454, an
amount that contains a fractional number of cents. Main() then deposits a
small fraction of a cent to the balance and displays the resulting balance.

The output from this program appears this way:

Create a bank account object
Depositing $123.45
Account = #1001 = $123.45
Adding $0.00
Resulting account = #1001 = $123.46
Press Enter to terminate...

Users start to complain: “I just can’t reconcile my checkbook with my bank
statement.” Personally, I’m happy if I can get to the nearest $100, but some
people insist that their accounts match to the penny. Apparently, the pro-
gram has a bug.

The problem, of course, is that $123.454 shows up as $123.45. To avoid the
problem, the bank decides to round deposits and withdrawals to the nearest
cent. Deposit $123.454 and the bank takes that extra 0.4 cent. On the other
side, the bank gives up enough 0.4 amounts that everything balances out in
the long run. Well, in theory, it does.

The easiest way to solve the rounding problem is by converting the bank
accounts to decimal and using the Decimal.Round() method, as shown
in this DecimalBankAccount program:

19_563489-bk02ch05.indd 26719_563489-bk02ch05.indd 267 3/19/10 8:05 PM3/19/10 8:05 PM

268 Why You Should Worry about Access Control

// DecimalBankAccount -- Create a bank account using a decimal
// variable to store the account balance.
using System;
namespace DecimalBankAccount
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Open a bank account.
 Console.WriteLine(“Create a bank account object”);
 BankAccount ba = new BankAccount();
 ba.InitBankAccount();
 // Make a deposit.
 double deposit = 123.454;
 Console.WriteLine(“Depositing {0:C}”, deposit);
 ba.Deposit(deposit);
 // Account balance
 Console.WriteLine(“Account = {0}”, ba.GetString());
 // Now add in a very small amount.
 double fractionalAddition = 0.002;
 Console.WriteLine(“Adding {0:C}”, fractionalAddition);
 ba.Deposit(fractionalAddition);
 // Resulting balance.
 Console.WriteLine(“Resulting account = {0}”, ba.GetString());
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
 // BankAccount -- Define a class that represents a simple account.
 public class BankAccount
 {
 private static int _nextAccountNumber = 1000;
 private int _accountNumber;
 // Maintain the balance as a single decimal variable.
 private decimal _balance;
 // Init -- Initialize a bank account with the next
 // account id and a balance of 0.
 public void InitBankAccount()
 {
 _accountNumber = ++_nextAccountNumber;
 _balance = 0;
 }
 // GetBalance -- Return the current balance.
 public double GetBalance()
 {
 return (double)_balance;
 }
 // AccountNumber
 public int GetAccountNumber()
 {
 return _accountNumber;
 }
 public void SetAccountNumber(int accountNumber)
 {
 this._accountNumber = accountNumber;
 }
 // Deposit -- Any positive deposit is allowed.
 public void Deposit(double amount)
 {

19_563489-bk02ch05.indd 26819_563489-bk02ch05.indd 268 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

269Why You Should Worry about Access Control

 if (amount > 0.0)
 {
 // Round off the double to the nearest cent before depositing.
 decimal temp = (decimal)amount;
 temp = Decimal.Round(temp, 2);
 _balance += temp;
 }
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 public double Withdraw(double withdrawal)
 {
 // Convert to decimal and work with the decimal version.
 decimal decWithdrawal = (decimal)withdrawal;
 if (_balance <= decWithdrawal)
 {
 decWithdrawal = _balance;
 }
 _balance -= decWithdrawal;
 return (double)decWithdrawal; // Return a double.
 }
 // GetString -- Return the account data as a string.
 public string GetString()
 {
 string s = String.Format(“#{0} = {1:C}”,
 GetAccountNumber(), GetBalance());
 return s;
 }
 }
}

I’ve converted all internal representations to decimal values, a type better
adapted to handling bank account balances than double in any case. The
Deposit() method now uses the Decimal.Round() method to round the
deposit amount to the nearest cent before making the deposit. The output
from the program is now as expected:

Create a bank account object
Depositing $123.45
Account = #1001 = $123.45
Adding $0.00
Resulting account = #1001 = $123.45
Press Enter to terminate...

So what?
You could argue that I should have written the BankAccount program using
decimal input arguments to begin with, and I probably would agree. But
the point is that I didn’t. Other applications were written using double as
the form of storage. A problem arose. The BankAccount class was able to
fix the problem internally and make no changes to the application software.
(Notice that the class’s public interface didn’t change: Balance() and
Withdraw() still return doubles, and Deposit() and Withdraw() still
take a double parameter.)

19_563489-bk02ch05.indd 26919_563489-bk02ch05.indd 269 3/19/10 8:05 PM3/19/10 8:05 PM

270 Defining Class Properties

 I repeat: Applications using class BankAccount didn’t have to change.

In this case, the only calling method potentially affected was Main(), but
the effects could have extended to dozens of methods that accessed bank
accounts, and those methods could have been spread over hundreds of
assemblies. None of those methods would have to change, because the fix
was within the confines of the BankAccount class, whose public interface
(its public methods) didn’t outwardly change. This solution wouldn’t have
been possible if the internal members of the class had been exposed to
external methods.

 Internal changes to a class still require some retesting of other code, even
though you didn’t have to modify that code.

Defining Class Properties
The GetX() and SetX() methods demonstrated in the BankAccount
programs in the previous section are access methods, or simply accessors.
Although they signify good programming habits in theory, access methods
can become clumsy in practice. For example, the following code line is nec-
essary to increment _accountNumber by 1:

SetAccountNumber(GetAccountNumber() + 1);

C# defines a construct known as a property, which makes using access
methods much easier than making them methods. The following code snip-
pet defines a read-write property, AccountNumber (it’s both a getter and a
setter):

public int AccountNumber // No parentheses here.
{
 get{ return _accountNumber; } // The “read” part. Curly braces and semicolon.
 set{ _accountNumber = value; } // The “write” part. ‘value’ is a keyword.
}

The get section is called whenever the property is read, and the set sec-
tion is invoked on the write. The following Balance property is read-only
because only the get section is defined (using a less compact notation):

public double Balance
{
 get
 {
 return (double)_balance;
 }
}

19_563489-bk02ch05.indd 27019_563489-bk02ch05.indd 270 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

271Defining Class Properties

In use, these properties appear as follows:

BankAccount ba = new BankAccount();
// Set the account number property.
ba.AccountNumber = 1001;
// Get both properties.
Console.WriteLine(“#{0} = {1:C}”, ba.AccountNumber, ba.Balance);

The properties AccountNumber and Balance look much like public data
members, in both appearance and use. However, properties enable the class
to protect internal members (Balance is a read-only property) and hide
their implementation (the underlying _balance data member is private).
Notice that Balance performs a conversion — it could have performed any
number of calculations. Properties aren’t necessarily one-liners.

By convention, the name of a property begins with a capital letter. Note that
properties don’t have parentheses: It’s Balance, not Balance().

 Properties aren’t necessarily inefficient. The C# compiler can optimize a
simple accessor to the point that it generates no more machine code than
accessing the data member directly. This concept is important, not only to
an application program but also to C# itself. The C# library uses properties
throughout, and you should too.

Use properties to access class data members, even from methods in the same
class.

Static properties
A static (class) data member may be exposed through a static property, as
shown in this simplistic example (note its compact layout):

public class BankAccount
{
 private static int _nextAccountNumber = 1000;
 public static int NextAccountNumber { get { return _nextAccountNumber; } }
 // . . .
}

The NextAccountNumber property is accessed through the class as follows
because it isn’t an instance property (it’s declared static):

// Read the account number property.
int value = BankAccount.NextAccountNumber;

(In this example, value is outside the context of a property, so it isn’t a
reserved word.)

19_563489-bk02ch05.indd 27119_563489-bk02ch05.indd 271 3/19/10 8:05 PM3/19/10 8:05 PM

272 Defining Class Properties

Properties with side effects
A get operation can perform extra work other than simply retrieving the
associated property, as shown here:

public static int AccountNumber
{
 // Retrieve the property and set it up for the
 // next retrieval by incrementing it.
 get{ return ++_nextAccountNumber; }
}

This property increments the static account number member before return-
ing the result. This action probably isn’t a good idea, however, because the
user of the property receives no clue that anything is happening other than
the actual reading of the property. The incrementation is a side effect.

 Like the accessor methods that they mimic, properties shouldn’t change the
state of the class other than, say, setting a data member’s value. Both prop-
erties and methods generally should avoid side effects because they can
lead to subtle bugs. Change a class as directly and explicitly as possible.

New feature: Letting the compiler
write properties for you
Most properties described in the previous section are utterly routine, and
writing them is tedious (though simple):

private string _name; // An underlying data member for the property
public string Name { get { return _name; } set { _name = value; } }

Because you write this same boilerplate code repeatedly, the C# 3.0 com-
piler now does it for you. All you have to write for the previous property
(including the private data member) is this line:

public string Name { get; set; }

This line is sort of equivalent to

private string <somename>; // What’s <somename>? Don’t know or care.
public string Name { get { return <somename>; } set { <somename> = value; } }

 The compiler creates a mysterious data member that shall be nameless
along with the accessor boilerplate code. The AccessorProperty
Shortcuts example on csharp102.info illustrates this usage. This style
encourages using the property even inside other members of its containing

19_563489-bk02ch05.indd 27219_563489-bk02ch05.indd 272 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

273Getting Your Objects Off to a Good Start — Constructors

class because the property name is all you know. For that reason, you must
have both get and set. You can initialize such properties using the prop-
erty syntax:

public int AnInt { get; set; } // Compiler provides a private variable.
. . .
AnInt = 2; // Initialize compiler-written instance variable via property.

Accessors with access levels
Accessor properties don’t necessarily have to be declared public. You
can declare them at any appropriate level, even private, if the accessor is
used only inside its class. (The upcoming example marks the Name property
internal.)

You can even adjust the access levels of the get and set portions of an
accessor individually. Suppose that you don’t want to expose the set acces-
sor outside your class — it’s for internal use only. You can write the prop-
erty like this:

internal string Name { get; private set; }

 The AccessorPropertyShortcuts example at csharp102.info illus-
trates this usage.

Getting Your Objects Off to a
Good Start — Constructors

 Controlling class access is only half the problem: An object needs a good start
in life if it is to grow. A class can supply an initialization method that the
application calls to get things started, but the application could forget to call
the method. The class starts out with garbage, and the situation gets no
better after that. If you want to hold the class accountable, you have to
ensure that it has a chance to start out correctly.

C# solves that problem by calling the initialization method for you — for
example:

MyObject mo = new MyObject();

In other words, this statement not only grabs an object from a special
memory area, but it also initializes that object’s members.

 Keep the terms class and object separate in your mind. Cat is a class. My cat
Striper is an object of class Cat.

19_563489-bk02ch05.indd 27319_563489-bk02ch05.indd 273 3/19/10 8:05 PM3/19/10 8:05 PM

274 The C#-Provided Constructor

The C#-Provided Constructor
C# keeps track of whether a variable has been initialized and doesn’t allow
you to use an uninitialized variable. For example, the following code chunk
generates a compile-time error:

public static void Main(string[] args)
{
 int n;
 double d;
 double calculatedValue = n + d;
}

C# tracks the fact that the local variables n and d haven’t been assigned a
value and doesn’t allow them to be used in the expression. Compiling this
tiny program generates these compiler errors:

Use of unassigned local variable ‘n’
Use of unassigned local variable ‘d’

By comparison, C# provides a default constructor that initializes the data
members of an object to

 ✦ 0 for numbers

 ✦ false for Booleans

 ✦ null for object references

Consider the following simple program example:

using System;
namespace Test
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // First create an object.
 MyObject localObject = new MyObject();
 Console.WriteLine(“localObject.n is {0}”, localObject.n);
 if (localObject.nextObject == null)
 {
 Console.WriteLine(“localObject.nextObject is null”);
 }
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
 public class MyObject
 {
 internal int n;
 internal MyObject nextObject;
 }
}

19_563489-bk02ch05.indd 27419_563489-bk02ch05.indd 274 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

275Replacing the Default Constructor

This program defines a class MyObject, which contains both a simple data
member n of type int and a reference to an object, nextObject (both
declared internal). The Main() method creates a MyObject and then
displays the initial contents of n and nextObject.

The output from executing the program appears this way:

localObject.n is 0
localObject.nextObject is null
Press Enter to terminate...

When the object is created, C# executes a small piece of code that the com-
piler provides to initialize the object and its members. Left to their own
devices, the data members localObject.n and nextObject would con-
tain random, garbage values.

 The code that initializes values when they’re created is the default construc-
tor. It “constructs” the class, in the sense of initializing its members. Thus C#
ensures that an object starts life in a known state: all zeros. This concept
affects only data members of the class, not local variables in a method.

Replacing the Default Constructor
Although the compiler automatically initializes all instance variables to
zeroes, for many classes (probably most classes), all zeroes isn’t a valid
state. Consider the following BankAccount class from earlier in this
chapter:

public class BankAccount
{
 private int _accountNumber;
 private double _balance;
 // . . .other members
}

Although an initial balance of 0 is probably okay, an account number of 0
definitely isn’t the hallmark of a valid bank account.

At this in the chapter, the BankAccount class includes the InitBank
Account() method to initialize the object. However, this approach puts too
much responsibility on the application software using the class. If the appli-
cation fails to invoke the InitBankAccount() method, the bank account
methods may not work, through no fault of their own.

 A class shouldn’t rely on external methods such as InitBankAccount() to
start the object in a valid state.

19_563489-bk02ch05.indd 27519_563489-bk02ch05.indd 275 3/19/10 8:05 PM3/19/10 8:05 PM

276 Replacing the Default Constructor

To work around this problem, you can have your class provide its own
explicit class constructor that C# calls automatically when the object is
created. The constructor could have been named Init(), Start(), or
Create(), but C# requires the constructor to carry the name of the class. Thus
a constructor for the BankAccount class appears this way:

public void Main(string[] args)
{
 BankAccount ba = new BankAccount(); // This invokes the constructor.
}
public class BankAccount
{
 // Bank accounts start at 1000 and increase sequentially.
 private static int _nextAccountNumber = 1000;
 // Maintain the account number and balance for each object.
 private int _accountNumber;
 private double _balance;
 // BankAccount constructor -- Here it is -- ta-da!
 public BankAccount() // Parentheses, possible arguments, no return type
 {
 _accountNumber = ++_nextAccountNumber;
 _balance = 0.0;
 }
 // . . . other members . . .
}

The contents of the BankAccount constructor are the same as those of the
original Init...() method. However, the way you declare and use the con-
structor differs:

 ✦ The constructor always carries the same name as the class.

 ✦ The constructor can take parameters (or not).

 ✦ The constructor never has a return type, not even void.

 ✦ Main() doesn’t need to invoke any extra method to initialize the object
when it’s created; no Init() is necessary.

 If you provide your own constructor, C# no longer supplies a default con-
structor. Your constructor replaces the default and becomes the only way to
create an instance of your class.

Constructing something
Try out a constructor thingie. Consider the following program,
DemonstrateCustomConstructor:

// DemonstrateCustomConstructor -- Demonstrate how you can replace the
// C# default constructor with your own, custom constructor.
// Creates a class with a constructor and then steps through a few scenarios.
using System;
namespace DemonstrateCustomConstructor
{
 // MyObject -- Create a class with a noisy custom constructor

19_563489-bk02ch05.indd 27619_563489-bk02ch05.indd 276 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

277Replacing the Default Constructor

 // and an internal data object.
 public class MyObject
 {
 // This data member is a property of the class (it’s static).
 private static MyOtherObject _staticObj = new MyOtherObject();
 // This data member is a property of each instance.
 private MyOtherObject _dynamicObj;
 // Constructor (a real chatterbox)
 public MyObject()
 {
 Console.WriteLine(“MyObject constructor starting”);
 Console.WriteLine(“(Static data member constructed before “ +
 “this constructor)”);
 Console.WriteLine(“Now create nonstatic data member dynamically:”);
 _dynamicObj = new MyOtherObject();
 Console.WriteLine(“MyObject constructor ending”);
 }
 }
 // MyOtherObject -- This class also has a noisy constructor but
 // no internal members.
 public class MyOtherObject
 {
 public MyOtherObject()
 {
 Console.WriteLine(“MyOtherObject constructing”);
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine(“Main() starting”);
 Console.WriteLine(“Creating a local MyObject in Main():”);
 MyObject localObject = new MyObject();
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

Executing this program generates the following output:

Main() starting
Creating a local MyObject in Main():
MyOtherObject constructing
MyObject constructor starting
(Static data member constructed before this constructor)
Now create nonstatic data member dynamically:
MyOtherObject constructing
MyObject constructor ending
Press Enter to terminate...

The following steps reconstruct what just happened:

 1. The program starts, and Main() outputs the initial message and
announces that it’s about to create a local MyObject.

 2. Main() creates a localObject of type MyObject.

19_563489-bk02ch05.indd 27719_563489-bk02ch05.indd 277 3/19/10 8:05 PM3/19/10 8:05 PM

278 Replacing the Default Constructor

 3. MyObject contains a static member _staticObj of class
MyOtherObject.

 All static data members are initialized before the first MyObject()
constructor runs. In this case, C# populates _staticObj with a newly
created MyOtherObject before passing control to the MyObject
constructor. This step accounts for the third line of output.

 4. The constructor for MyObject is given control. It outputs the initial
message, MyObject constructor starting, and then notes that the
static member was already constructed before the MyObject() con-
structor began:

(Static data member constructed before this
constructor).

 5. After announcing its intention with Now create nonstatic data
member dynamically, the MyObject constructor creates an object of
class MyOtherObject using the new operator, generating the second
MyOtherObject constructing message as the MyOtherObject con-
structor is called.

 6. Control returns to the MyObject constructor, which returns to Main().

Job well done!

Executing the constructor from the debugger
Executing the same program from the debugger is illuminating:

 1. Rebuild the program: Choose the command Build➪Build
DemonstrateCustomConstructor.

 2. Before you start executing the program from the debugger, set a
breakpoint at the Console.WriteLine() call in the MyOtherObject
constructor.

 To set a breakpoint, click in the gray trough on the left side of the editor
window, next to the line at which you want to stop.

 Figure 5-1 shows my display with the breakpoint set: The dark ball is in
the trough.

 3. Rather than choose Debug➪Start Debugging, choose Debug➪Step Into
(or press F11).

 Your menus, toolbars, and windows should change a bit, and then a
bright yellow highlight appears on the opening curly brace in Main().

19_563489-bk02ch05.indd 27819_563489-bk02ch05.indd 278 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

279Replacing the Default Constructor

Figure 5-1:
The
highlighting
in the
MyOther
Object
constructor
indicates
the
presence
of a
breakpoint.

 4. Press F11 three more times and lightly rest the mouse pointer on the
localObject variable (without clicking).

 You’re about to call the MyObject constructor. Your display should
now look like the one shown in Figure 5-2. You can see that local
Object is currently null under the cursor. The Locals window shows
the same thing. (If Locals isn’t visible, choose Debug➪Windows➪Locals
to display it.)

 5. Press F11 one more time.

 The program executes to the breakpoint in MyOtherObject, as shown
by the yellow bar shown in Figure 5-3. How did you reach this point? The
last call in Main() invoked the constructor for MyObject. But before
that constructor begins to execute, C# initializes the static data member
in class MyObject. That data member is of type MyOtherObject, so
initializing it means invoking its constructor — which lands you at the
breakpoint. (Without the breakpoint, you wouldn’t see the debugger
stop there, although the constructor would indeed execute, as you could
confirm by checking to ensure that the constructor’s message shows up
in the console window.)

19_563489-bk02ch05.indd 27919_563489-bk02ch05.indd 279 3/19/10 8:05 PM3/19/10 8:05 PM

280 Replacing the Default Constructor

Figure 5-2:
Just
before you
jump into
Constructor
Land, the
Visual
Studio
debugger
display
looks like
this.

Figure 5-3:
Control
passes
to the
MyOther
Object
constructor
before
heading
into the
MyObject
constructor.

 6. Press F11 twice more, and you’re stopped at the static data member,
_staticObj, as shown in Figure 5-4.

 It was that object’s constructor you just stepped out of.

19_563489-bk02ch05.indd 28019_563489-bk02ch05.indd 280 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

281Replacing the Default Constructor

Figure 5-4:
Having
stepped
through the
MyOther
Object
constructor,
you’re back
where the
constructor
was
invoked.

 7. Continue pressing F11 as you walk through the program.

 The first time you press F11, you stop at the beginning of the MyObject
constructor, at last. Note that you step into the MyOtherObject con-
structor a second time when the MyObject constructor creates the
other MyObject data member, _dynamicObj (the nonstatic one).

 Remember to continue the Console.Read() statement back in Main().
After viewing the console window, you can press Enter to close it.

Book IV gives you a thorough tour of the debugger.

Initializing an object directly with an initializer
Besides letting you initialize data members in a constructor, C# enables you
to initialize data members directly by using initializers.

Thus I could have written the BankAccount class as follows:

public class BankAccount
{
 // Bank accounts start at 1000 and increase sequentially.
 private static int _nextAccountNumber = 1000;
 // Maintain the account number and balance for each object.
 private int _accountNumber = ++_nextAccountNumber;
 private double _balance = 0.0;
 // . . . other members . . .
}

19_563489-bk02ch05.indd 28119_563489-bk02ch05.indd 281 3/19/10 8:05 PM3/19/10 8:05 PM

282 Replacing the Default Constructor

Here’s the initializer business. Both _accountNumber and _balance are
assigned a value as part of their declaration, which has the same effect as a
constructor but without having to do the work in it.

Be clear about exactly what’s happening. You may think that this statement
sets _balance to 0.0 right now. However, _balance exists only as a part of
an object. Thus the assignment isn’t executed until a BankAccount object is
created. In fact, this assignment is executed every time an object is created.

Note that the static data member _nextAccountNumber is initialized the
first time the BankAccount class is accessed — as your tour in the debug-
ger showed, that’s the first time you access any method or property of the
object owning the static data member, including the constructor.

 After the static member is initialized, it isn’t reinitialized every time you
construct a BankAccount instance. That’s different from the nonstatic
members.

Initializers are executed in the order of their appearance in the class declara-
tion. If C# encounters both initializers and a constructor, the initializers are
executed before the body of the constructor.

Seeing that construction stuff with initializers
In the DemonstrateCustomConstructor program, move the call new
MyOtherObject() from the MyObject constructor to the declaration itself,
as follows (see the bold text), modify the second WriteLine() statement
as shown, and then rerun the program:

public class MyObject
{
 // This member is a property of the class (it’s static).
 private static MyOtherObject _staticObj = new MyOtherObject();
 // This member is a property of each instance.
 private MyOtherObject _dynamicObj = new MyOtherObject(); // <- Here.
 public MyObject()
 {
 Console.WriteLine(“MyObject constructor starting”);
 Console.WriteLine(
 “Both data members initialized before this constructor)”);
 // _dynamicObj construction was here, now moved up.
 Console.WriteLine(“MyObject constructor ending”);
 }
}

Compare the following output from this modified program with the output
from its predecessor, DemonstrateCustomConstructor:

Main() starting
Creating a local MyObject in Main():
MyOtherObject constructing
MyOtherObject constructing

19_563489-bk02ch05.indd 28219_563489-bk02ch05.indd 282 3/19/10 8:05 PM3/19/10 8:05 PM

Book II

Chapter 5

H
o

ld
in

g
 a

 C
la

ss
R

e
sp

o
n

sib
le

283Replacing the Default Constructor

MyObject constructor starting
(Both data members initialized before this constructor)
MyObject constructor ending
Press Enter to terminate...

 You can find the entire program (after these changes) on the Web site, under
the illustrious name of DemonstrateConstructorWithInitializer.

New feature: Initializing an object
without a constructor
Suppose that you have a little class to represent a Student:

public class Student
{
 public string Name { get; set; }
 public string Address { get; set; }
 public double GradePointAverage { get; set; }
}

A Student object has three public properties, Name, Address, and
GradePointAverage, which specify the student’s basic information.

Normally, when you create a new Student object, you have to initialize its
Name, Address, and GradePointAverage properties like this:

Student randal = new Student();
randal.Name = “Randal Sphar”;
randal.Address = “123 Elm Street, Truth or Consequences, NM 00000”;
randal.GradePointAverage = 3.51;

(Yes, Virginia, there is a Truth or Consequences, New Mexico. My nephew
Randal was born there.)

If Student had a constructor, you could do something like this:

Student randal = new Student
 (“Randal Sphar”, “123 Elm Street, Truth or Consequences, NM, 00000”, 3.51);

Sadly, however, Student lacks a constructor, other than the default one
that C# supplies automatically — which takes no parameters.

 In C# 3.0 and later, you can simplify that initialization with something that
looks suspiciously like a constructor — well, sort of:

Student randal = new Student
 { Name = “Randal Sphar”,
 Address = “123 Elm Street, Truth or Consequences, NM 00000”,
 GradePointAverage = 3.51
 };

19_563489-bk02ch05.indd 28319_563489-bk02ch05.indd 283 3/19/10 8:05 PM3/19/10 8:05 PM

284 Replacing the Default Constructor

The last two examples are different in this respect: The first one, using a con-
structor, shows parentheses containing two strings and one double value
separated by commas, and the second one, using the new object-initializer
syntax, has instead curly braces containing three assignments separated by
commas. The syntax works something like this:

 new LatitudeLongitude
 { assignment to Latitude, assignment to Longitude };

The new object-initializer syntax lets you assign to any accessible set proper-
ties of the LatitudeLongitude object in a code block (the curly braces).
The block is designed to initialize the object. Note that you can set only
accessible properties this way, not private ones, and you can’t call any of
the object’s methods or do any other work in the initializer.

The new syntax is much more concise: one statement versus three. And, it
simplifies the creation of initialized objects that don’t let you do so through
a constructor. (I broke the Student example into multiple lines only to fit it
on the page — and that was only because the name Truth or Consequences
is long. If you lived there, it would seem even longer.)

The new object-initializer syntax doesn’t gain you much of anything besides
convenience, but convenience when you’re coding is high on any program-
mer’s list. So is brevity. Besides, the feature becomes essential when you
read about anonymous classes.

Use the new object-initializer syntax to your heart’s content. I use it fre-
quently myself throughout the rest of this book.

Look up the term object initializer in Help to find the lawyer-y language stuff
concerning which kinds of properties it works with.

 The ObjectInitializers program example on the Web site demonstrates
object initializers.

19_563489-bk02ch05.indd 28419_563489-bk02ch05.indd 284 3/19/10 8:05 PM3/19/10 8:05 PM

Chapter 6: Inheritance:
Is That All I Get?

In This Chapter
✓ Defining one class in terms of another, more fundamental class

✓ Differentiating between is a and has a

✓ Substituting one class object for another

✓ Constructing static or instance members

✓ Including constructors in an inheritance hierarchy

✓ Invoking the base class constructor specifically

Object-oriented programming is based on four principles: the ability to
control access (encapsulation), inherit from other classes, respond

appropriately (polymorphism), and refer from one object to another indi-
rectly (interfaces).

Inheritance is a common concept. I am a human, except when I first wake
up. I inherit certain properties from the class Human, such as my ability to
converse, more or less, and my dependence on air, food, and carbohydrate-
based beverages with lots of caffeine. The class Human inherits its depen-
dencies on air, water, and nourishment from the class Mammal, which
inherits from the class Animal.

The ability to pass down properties is a powerful one. You can use it to
describe items in an economical way. For example, if my son asks, “What’s a
duck?” I can say, “It’s a bird that quacks.” Despite what you may think, that
answer conveys a considerable amount of information. My son knows what
a bird is, and now he knows all those same characteristics about a duck plus
the duck’s additional property of “quackness.”

Object-oriented languages express this inheritance relationship by allowing
one class to inherit properties from another. This feature enables object-
oriented languages to generate a model that’s closer to the real world than
the model generated by languages that don’t support inheritance.

20_563489-bk02ch06.indd 28520_563489-bk02ch06.indd 285 3/19/10 7:56 PM3/19/10 7:56 PM

286

Class Inheritance
In the following InheritanceExample program, the class SubClass inher-
its from the class BaseClass:

// InheritanceExample -- Provide the simplest possible
// demonstration of inheritance.
using System;
namespace InheritanceExample
{
 public class BaseClass
 {
 public int _dataMember;
 public void SomeMethod()
 {
 Console.WriteLine(“SomeMethod()”);
 }
 }
 public class SubClass : BaseClass
 {
 public void SomeOtherMethod()
 {
 Console.WriteLine(“SomeOtherMethod()”);
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 // Create a base class object.
 Console.WriteLine(“Exercising a base class object:”);
 BaseClass bc = new BaseClass();
 bc._dataMember = 1;
 bc.SomeMethod();
 // Now create a subclass object.
 Console.WriteLine(“Exercising a subclass object:”);
 SubClass sc = new SubClass();
 sc._dataMember = 2;
 sc.SomeMethod();
 sc.SomeOtherMethod();
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The class BaseClass is defined with a data member and the simple method
SomeMethod(). Main() creates and exercises the BaseClass object bc.

The class SubClass inherits from that class by placing the name of the
class, BaseClass, after a colon in the class definition:

public class SubClass : BaseClass

Class Inheritance

20_563489-bk02ch06.indd 28620_563489-bk02ch06.indd 286 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

287

SubClass gets all members of BaseClass as its own, plus any members it
may add to the pile. Main() demonstrates that SubClass now has a data
member, _dataMember, and a member method, SomeMethod(), to join the
brand-new member of the family, little method SomeOtherMethod() — and
what a joy it is, too.

The program produces the following expected output (I’m usually sort of
surprised whenever one of my programs works as expected):

Exercising a base class object:
SomeMethod()
Exercising a subclass object:
SomeMethod()
SomeOtherMethod()
Press Enter to terminate...

Why You Need Inheritance
Inheritance serves several important functions. You may think, for example,
that inheritance reduces the amount of typing. In a way, it does — you
don’t need to repeat the properties of a Person when you’re describing a
Student class. A more important, related issue is the major buzzword reuse.
Software scientists have known for some time that starting from scratch

To make sense of their surroundings, humans
build extensive taxonomies. For example, Fido
is a special case of dog, which is a special
case of canine, which is a special case of
mammal — and so it goes. This ability to clas-
sify items shapes our human understanding of
the world.

In an object-oriented language such as C#, you
say that the class Student inherits from the
class Person. You also say that Person is a
base class of Student and that Student is
a subclass of Person. Finally, you say that a
Student IS_A Person. (Using all caps and
an underscore is a common way of expressing
this unique relationship — I didn’t make up this
concept.)

Notice that the IS_A property isn’t reflexive:
Although Student IS_A Person, the reverse

isn’t true. A Person IS_NOT_A Student. A
statement such as this one always refers to the
general case. A particular Person might be, in
fact, a Student — but lots of people who are
members of the class Person aren’t mem-
bers of the class Student. In addition, the
class Student has properties that it doesn’t
share with the class Person. For example,
Student has a grade-point average, but the
ordinary Person quite happily does not.

The inheritance property is transi-
tive. For example, if I define a new class
GraduateStudent as a subclass
of Student , GraduateStudent is
also a Person. It must be that way: If a
GraduateStudent IS_A Student
and a Student IS_A Person , a
GraduateStudent IS_A Person.

Inheritance is amazing

Why You Need Inheritance

20_563489-bk02ch06.indd 28720_563489-bk02ch06.indd 287 3/19/10 7:56 PM3/19/10 7:56 PM

288

with each new project and rebuilding the same software components makes
little sense.

Compare the situation in software development to that of other industries.
Think about the number of car manufacturers that start out by building their
own wrenches and screwdrivers before they construct a car. Of those who
do that, estimate how many would start over completely and build all new
tools for the next model. Practitioners in other industries have found that
starting with existing screws, bolts, nuts, and even larger off-the-shelf com-
ponents such as motors and compressors makes more sense than starting
from scratch.

Inheritance enables you to tweak existing software components. You can
adapt existing classes to new applications without making internal modifica-
tions. The existing class is inherited into — or, as programmers often say,
extended by — a new subclass that contains the necessary additions and
modifications. If someone else wrote the base class, you may not be able to
modify it, so inheritance can save the day.

This capability carries with it a third benefit of inheritance. Suppose that
you inherit from — extend — an existing class. Later, you find that the base
class has a bug you must correct. If you modified the class to reuse it, you
must manually check for, correct, and retest the bug in each application sep-
arately. If you inherited the class without changes, you can generally stick
the updated class into the other application with little hassle.

But the biggest benefit of inheritance is that it describes the way life is. Items
inherit properties from each other. There’s no getting around it. (Basta! — as
my Italian grandmother would say.)

Inheriting from a BankAccount Class
(A More Complex Example)

A bank maintains several types of accounts. One type, the savings account,
has all the properties of a simple bank account plus the ability to accumu-
late interest. The following SimpleSavingsAccount program models this
relationship in C#.

 The version of this program on the Web site includes some modifications
from the next section of this chapter, so it’s a bit different from the code list-
ing shown here.

// SimpleSavingsAccount -- Implement SavingsAccount as a form of
// bank account; use no virtual methods.
using System;
namespace SimpleSavingsAccount
{

Inheriting from a BankAccount Class (A More Complex Example)

20_563489-bk02ch06.indd 28820_563489-bk02ch06.indd 288 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

289

 // BankAccount -- Simulate a bank account, each of which
 // carries an account ID (which is assigned
 // on creation) and a balance.
 public class BankAccount // The base class
 {
 // Bank accounts start at 1000 and increase sequentially.
 public static int _nextAccountNumber = 1000;
 // Maintain the account number and balance for each object.
 public int _accountNumber;
 public decimal _balance;
 // Init -- Initialize a bank account with the next account ID and the
 // specified initial balance (default to zero).
 public void InitBankAccount()
 {
 InitBankAccount(0);
 }
 public void InitBankAccount(decimal initialBalance)
 {
 _accountNumber = ++_nextAccountNumber;
 _balance = initialBalance;
 }
 // Balance property.
 public decimal Balance
 {
 get { return _balance;}
 }
 // Deposit -- any positive deposit is allowed.
 public void Deposit(decimal amount)
 {
 if (amount > 0)
 {
 _balance += amount;
 }
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 public decimal Withdraw(decimal withdrawal)
 {
 if (Balance <= withdrawal) // Use Balance property.
 {
 withdrawal = Balance;
 }
 _balance -= withdrawal;
 return withdrawal;
 }
 // ToString - Stringify the account.
 public string ToBankAccountString()
 {
 return String.Format(“{0} - {1:C}”,
 _accountNumber, Balance);
 }
 }
 // SavingsAccount -- A bank account that draws interest
 public class SavingsAccount : BankAccount // The subclass
 {
 public decimal _interestRate;
 // InitSavingsAccount -- Input the rate expressed as a
 // rate between 0 and 100.
 public void InitSavingsAccount(decimal interestRate)
 {
 InitSavingsAccount(0, interestRate);
 }

Inheriting from a BankAccount Class (A More Complex Example)

20_563489-bk02ch06.indd 28920_563489-bk02ch06.indd 289 3/19/10 7:56 PM3/19/10 7:56 PM

290

 public void InitSavingsAccount(decimal initialBalance, decimal interestRate)
 {
 InitBankAccount(initialBalance); // Note call to base class.
 this._interestRate = interestRate / 100;
 }
 // AccumulateInterest -- Invoke once per period.
 public void AccumulateInterest()
 {
 _balance = Balance + (decimal)(Balance * _interestRate);
 }
 // ToString -- Stringify the account.
 public string ToSavingsAccountString()
 {
 return String.Format(“{0} ({1}%)”,
 ToBankAccountString(), _interestRate * 100);
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 // Create a bank account and display it.
 BankAccount ba = new BankAccount();
 ba.InitBankAccount(100M); // M suffix indicates decimal.
 ba.Deposit(100M);
 Console.WriteLine(“Account {0}”, ba.ToBankAccountString());
 // Now a savings account
 SavingsAccount sa = new SavingsAccount();
 sa.InitSavingsAccount(100M, 12.5M);
 sa.AccumulateInterest();
 Console.WriteLine(“Account {0}”, sa.ToSavingsAccountString());
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The BankAccount class is not unlike some that appear in other chapters
of this book. It begins with an overloaded initialization method InitBank
Account(): one for accounts that start out with an initial balance and
another for which an initial balance of zero will have to suffice. Notice that
this version of BankAccount doesn’t take advantage of the latest and great-
est constructor advances. If you read this entire chapter and see that I clean
up this topic in the final version of BankAccount, you can then see why I
chose to “drop back” a little here.

The Balance property allows other people to read the balance without let-
ting them modify it. The Deposit() method accepts any positive deposit.
Withdraw() lets you take out as much as you want, as long as you have
enough money in your account. (My bank’s nice, but it isn’t that nice.)
ToBankAccountString() creates a string that describes the account.

The SavingsAccount class inherits all that good stuff from BankAccount.
It also adds an interest rate and the ability to accumulate interest at regular
intervals.

Inheriting from a BankAccount Class (A More Complex Example)

20_563489-bk02ch06.indd 29020_563489-bk02ch06.indd 290 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

291

Main() does about as little as it can. It creates a BankAccount, displays the
account, creates a SavingsAccount, accumulates one period of interest,
and displays the result, with the interest rate in parentheses:

Account 1001 - $200.00
Account 1002 - $112.50 (12.500%)
Press Enter to terminate...

Notice that the InitSavingsAccount() method invokes InitBank
Account(). It initializes the bank account–specific data members. The
InitSavingsAccount() method could have initialized these members
directly; however, a better practice is to allow BankAccount to initialize its
own members. A class should be responsible for itself.

IS_A versus HAS_A — I’m So Confused_A
The relationship between SavingsAccount and BankAccount is the fun-
damental IS_A relationship in inheritance. In the following sections, I show
you why, and then I show you what the alternative, the HAS_A relationship,
would look like in comparison.

The IS_A relationship
The IS_A relationship between SavingsAccount and BankAccount
is demonstrated by the modification to the class Program in the
SimpleSavingsAccount program from the preceding section:

public class Program
{
 // Add this:
 // DirectDeposit -- Deposit my paycheck automatically.
 public static void DirectDeposit(BankAccount ba, decimal pay)
 {
 ba.Deposit(pay);
 }
 public static void Main(string[] args)
 {
 // Create a bank account and display it.
 BankAccount ba = new BankAccount();
 ba.InitBankAccount(100M);
 DirectDeposit(ba, 100M);
 Console.WriteLine(“Account {0}”, ba.ToBankAccountString());
 // Now a savings account
 SavingsAccount sa = new SavingsAccount();
 sa.InitSavingsAccount(12.5M);
 DirectDeposit(sa, 100M);
 sa.AccumulateInterest();
 Console.WriteLine(“Account {0}”, sa.ToSavingsAccountString());
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
}

IS_A versus HAS_A — I’m So Confused_A

20_563489-bk02ch06.indd 29120_563489-bk02ch06.indd 291 3/19/10 7:56 PM3/19/10 7:56 PM

292

In effect, nothing has changed. The only real difference is that all deposits
are now being made through the local method DirectDeposit(), which
isn’t part of class BankAccount. The arguments to this method are the bank
account and the amount to deposit.

 Notice (here comes the good part) that Main() could pass either a
bank account or a savings account to DirectDeposit() because a
SavingsAccount IS_A BankAccount and is accorded all the same rights
and privileges. Because SavingsAccount IS_A BankAccount, you can assign
a SavingsAccount to a BankAccount-type variable or method argument.

Gaining access to BankAccount
by using containment
The class SavingsAccount could have gained access to the members of
BankAccount in a different way, as shown in the following code, where the
key lines are shown in boldface:

// SavingsAccount -- A bank account that draws interest
public class SavingsAccount_ // Notice the underscore: this isn’t
 // the SavingsAccount class.
{
 public BankAccount _bankAccount; // Notice this, the contained BankAccount.
 public decimal _interestRate;
 // InitSavingsAccount -- Input the rate expressed as a
 // rate between 0 and 100.
 public void InitSavingsAccount(BankAccount bankAccount, decimal interestRate)
 {
 this._bankAccount = bankAccount;
 this._interestRate = interestRate / 100;
 }
 // AccumulateInterest -- Invoke once per period.
 public void AccumulateInterest()
 {
 _bankAccount._balance = _bankAccount.Balance
 + (_bankAccount.Balance * interestRate);
 }
 // Deposit -- Any positive deposit is allowed.
 public void Deposit(decimal amount)
 {
 // Delegate to the contained BankAccount object.
 _bankAccount.Deposit(amount);
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 public double Withdraw(decimal withdrawal)
 {
 return _bankAccount.Withdraw(withdrawal);
 }
}

In this case, the class SavingsAccount_ contains a data member _bank
Account (as opposed to inheriting from BankAccount). The _bankAccount
object contains the balance and account number information needed by the
savings account. The SavingsAccount_ class retains the data unique to
a savings account and delegates to the contained BankAccount object as

IS_A versus HAS_A — I’m So Confused_A

20_563489-bk02ch06.indd 29220_563489-bk02ch06.indd 292 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

293

needed. That is, when the SavingsAccount needs, say, the balance, it asks
the contained BankAccount for it.

In this case, you say that the SavingsAccount_ HAS_A BankAccount.
Hard-core object-oriented jocks say that SavingsAccount composes
a BankAccount. That is, SavingsAccount is partly composed of a
BankAccount.

The HAS_A relationship
The HAS_A relationship is fundamentally different from the IS_A relation-
ship. This difference doesn’t seem so bad in the following application-code
segment example:

// Create a new savings account.
BankAccount ba = new BankAccount()
SavingsAccount_ sa = new SavingsAccount_(); // HAS_A version of SavingsAccount
sa.InitSavingsAccount(ba, 5);
// And deposit 100 dollars into it.
sa.Deposit(100M);
// Now accumulate interest.
sa.AccumulateInterest();

The problem is that this modified SavingsAccount_ cannot be used as
a BankAccount because it doesn’t inherit from BankAccount. Instead, it
contains a BankAccount — not the same concept. For example, this code
example fails:

// DirectDeposit -- Deposit my paycheck automatically.
void DirectDeposit(BankAccount ba, int pay)
{
 ba.Deposit(pay);
}
void SomeMethod()
{
 // The following example fails.
 SavingsAccount_ sa = new SavingsAccount_();
 DirectDeposit(sa, 100);
 // . . . continue . . .
}

 DirectDeposit() can’t accept a SavingsAccount_ in lieu of a
BankAccount. No obvious relationship between the two exists, as far as C#
is concerned, because inheritance isn’t involved. Don’t think, though, that
this situation makes containment a bad idea. You just have to approach the
concept a bit differently in order to use it.

When to IS_A and When to HAS_A
The distinction between the IS_A and HAS_A relationships is more than just
a matter of software convenience. This relationship has a corollary in the
real world.

When to IS_A and When to HAS_A

20_563489-bk02ch06.indd 29320_563489-bk02ch06.indd 293 3/19/10 7:56 PM3/19/10 7:56 PM

294

For example, a Ford Explorer IS_A car (when it’s upright, that is). An
Explorer HAS_A motor. If your friend says, “Come on over in your car” and
you show up in an Explorer, he has no grounds for complaint. He may have a
complaint if you show up carrying your Explorer’s engine in your arms, how-
ever. (Or at least you will.)

The class Explorer should extend the class Car, not only to give Explorer
access to the methods of a Car but also to express the fundamental relation-
ship between the two.

Unfortunately, the beginning programmer may have Car inherit from Motor,
as an easy way to give the Car class access to the members of Motor,
which the Car needs in order to operate. For example, Car can inherit the
method Motor.Go(). However, this example highlights a problem with this
approach: Even though humans become sloppy in their speech, making a
car go isn’t the same thing as making a motor go. The car’s “go” operation
certainly relies on that of the motor’s, but they aren’t the same thing — you
also have to put the transmission in gear, release the brake, and complete
other tasks.

Perhaps even more than that, inheriting from Motor misstates the facts. A
car simply isn’t a type of motor.

 Elegance in software is a goal worth achieving in its own right. It enhances
understandability, reliability, and maintainability (and cures indigestion and
gout).

Hard-core object-oriented jocks recommend preferring HAS_A over IS_A
for simpler program designs. But use inheritance when it makes sense, as it
probably does in the BankAccount hierarchy.

Other Features That Support Inheritance
C# implements a set of features designed to support inheritance. I discuss
these features in the following sections.

Substitutable classes
A program can use a subclass object where a base class object is
called for. In fact, you may have already seen this concept in one of my
examples. SomeMethod() can pass a SavingsAccount object to the
DirectDeposit() method, which expects a BankAccount object.

You can make this conversion more explicit:

BankAccount ba;
SavingsAccount sa = new SavingsAccount(); // The original, not SavingsAccount_
// OK:
ba = sa; // Implicitly converting subclass to base class.

Other Features That Support Inheritance

20_563489-bk02ch06.indd 29420_563489-bk02ch06.indd 294 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

295

ba = (BankAccount)sa; // But the explicit cast is preferred.
// Not OK:
sa = ba; // ERROR: Implicitly converting base class to subclass
sa = (SavingsAccount)ba; // An explicit cast is allowed, however.

The first line stores a SavingsAccount object into a BankAccount vari-
able. C# converts the object for you. The second line uses a cast to explicitly
convert the object.

The final two lines attempt to convert the BankAccount object back into
SavingsAccount. You can complete this operation explicitly, but C#
doesn’t do it for you. It’s like trying to convert a larger numeric type, such as
double, to a smaller one, such as float. C# doesn’t do it implicitly because
the process involves a loss of data.

 The IS_A property isn’t reflexive. That is, even though an Explorer is a car, a
car isn’t necessarily an Explorer. Similarly, a BankAccount isn’t necessarily
a SavingsAccount, so the implicit conversion isn’t allowed. The final line
is allowed because the programmer has indicated her willingness to “chance
it.” She must know something.

Invalid casts at run time
Generally, casting an object from BankAccount to SavingsAccount is a
dangerous operation. Consider this example:

public static void ProcessAmount(BankAccount bankAccount)
{
 // Deposit a large sum to the account.
 bankAccount.Deposit(10000.00M);
 // If the object is a SavingsAccount, collect interest now.
 SavingsAccount savingsAccount = (SavingsAccount)bankAccount;
 savingsAccount.AccumulateInterest();
}
public static void TestCast()
{
 SavingsAccount sa = new SavingsAccount();
 ProcessAmount(sa);
 BankAccount ba = new BankAccount();
 ProcessAmount(ba);
}

ProcessAmount() performs a few operations, including invoking the
AccumulateInterest() method. The cast of ba to a SavingsAccount
is necessary because the bankAccount parameter is declared to be a
BankAccount. The program compiles properly because all type conver-
sions are made by explicit cast.

All goes well with the first call to ProcessAmount() from within TestCast().
The SavingsAccount object sa is passed to the ProcessAmount()
method. The cast from BankAccount to SavingsAccount causes no prob-
lem because the ba object was originally a SavingsAccount, anyway.

Other Features That Support Inheritance

20_563489-bk02ch06.indd 29520_563489-bk02ch06.indd 295 3/19/10 7:56 PM3/19/10 7:56 PM

296

The second call to ProcessAmount() isn’t as lucky, however. The cast
to SavingsAccount cannot be allowed. The ba object doesn’t have an
AccumulateInterest() method.

 An incorrect conversion generates an error during the execution of the pro-
gram (a runtime error). Runtime errors are much more difficult to find and fix
than compile-time errors. Worse, they can happen to a user other than you,
which users tend not to appreciate.

Avoiding invalid conversions with the is operator
The ProcessAmount() method would work if it could ensure that the
object passed to it is a SavingsAccount object before performing the con-
version. C# provides two keywords for this purpose: is and as.

The is operator accepts an object on the left and a type on the right. The is
operator returns true if the runtime type of the object on the left is compat-
ible with the type on the right. Use it to verify that a cast is legal before you
attempt the cast.

You can modify the example in the previous section to avoid the runtime
error by using the is operator:

public static void ProcessAmount(BankAccount bankAccount)
{
 // Deposit a large sum to the account.
 bankAccount.Deposit(10000.00M);
 // If the object is a SavingsAccount . . .
 if (bankAccount is SavingsAccount)
 {
 // ...then collect interest now (cast is guaranteed to work).
 SavingsAccount savingsAccount = (SavingsAccount)bankAccount;
 savingsAccount.AccumulateInterest();
 }
 // Otherwise, don’t do the cast -- but why is BankAccount not what
 // you expected? This could be an error situation.
}
public static void TestCast()
{
 SavingsAccount sa = new SavingsAccount();
 ProcessAmount(sa);
 BankAccount ba = new BankAccount();
 ProcessAmount(ba);
}

The added if statement checks the bankAccount object to ensure that
it’s of the class SavingsAccount. The is operator returns true when
ProcessAmount() is called the first time. When passed a BankAccount
object in the second call, however, the is operator returns false, avoid-
ing the illegal cast. This version of the program doesn’t generate a runtime
error.

Other Features That Support Inheritance

20_563489-bk02ch06.indd 29620_563489-bk02ch06.indd 296 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

297

On one hand, I strongly recommend that you protect all casts with the is
operator to avoid the possibility of a runtime error. On the other hand, you
should avoid casts altogether, if possible. Read on.

Avoiding invalid conversions with the as operator
The as operator works a bit differently from is. Rather than return a bool if
the cast would work, it converts the type on the left to the type on the right,
but safely returns null if the conversion fails — rather than cause a runtime
error. You should always use the result of casting with the as operator only
if it isn’t null. So, using as looks like this:

SavingsAccount savingsAccount = bankAccount as SavingsAccount;
if(savingsAccount != null)
{
 // Go ahead and use savingsAccount.
}
// Otherwise, don’t use it: generate an error message yourself.

 Generally, you should prefer as because it’s more efficient. The conversion
is already done with the as operator, whereas you must complete two steps
when you use is: First test with is and then complete the cast with the cast
operator.

 Unfortunately, as doesn’t work with value-type variables, so you can’t use it
with types such as int, long, or double or with char. When you’re trying
to convert a value-type object, prefer the is operator.

The object Class
Consider these related classes:

public class MyBaseClass {}
public class MySubClass : MyBaseClass {}

The relationship between the two classes enables the programmer to make
the following runtime test:

public class Test
{
 public static void GenericMethod(MyBaseClass mc)
 {
 // If the object truly is a subclass . . .
 MySubClass msc = mc as MyBaseClass;
 if(msc != null)
 {
 // ...then handle as a subclass.
 // . . . continue . . .
 }
 }
}

The object Class

20_563489-bk02ch06.indd 29720_563489-bk02ch06.indd 297 3/19/10 7:56 PM3/19/10 7:56 PM

298

In this case, the method GenericMethod() differentiates between sub-
classes of MyBaseClass using the as keyword.

 To help you differentiate between seemingly unrelated classes using the
same as operator, C# extends all classes from the common base class
object. That is, any class that doesn’t specifically inherit from another
class inherits from the class object. Thus the following two statements
declare classes with the same base class — object — and are equivalent:

class MyClass1 : object {}
class MyClass1 {}

Sharing the common base class of object provides for this generic method:

public class Test
{
 public static void GenericMethod(object o)
 {
 MyClass1 mc1 = o as MyClass1;
 if(mc1 != null)
 {
 // Use the converted object mc1.
 // . . .
 }
 }
}

GenericMethod() can be invoked with any type of object. The as keyword
can dig the MyClass1 pearls from the object oysters. (The generic I’m
referring to isn’t the kind covered in Book I.)

Inheritance and the Constructor
The InheritanceExample program described earlier in this chapter relies
on those awful Init...() methods to initialize the BankAccount and
SavingsAccount objects to a valid state. Outfitting these classes with con-
structors is definitely the right way to go, but it introduces some complexity.
That’s why I used those ugly Init...() methods earlier in this chapter
until I could cover the features in this section.

Invoking the default base class constructor
The default base class constructor is invoked any time a subclass is con-
structed. The constructor for the subclass automatically invokes the con-
structor for the base class, as this simple program demonstrates:

// InheritingAConstructor -- Demonstrate that the base class
// constructor is invoked automatically.
using System;
namespace InheritingAConstructor
{

Inheritance and the Constructor

20_563489-bk02ch06.indd 29820_563489-bk02ch06.indd 298 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

299

 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine(“Creating a BaseClass object”);
 BaseClass bc = new BaseClass();
 Console.WriteLine(“\nnow creating a SubClass object”);
 SubClass sc = new SubClass();
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
 public class BaseClass
 {
 public BaseClass()
 {
 Console.WriteLine(“Constructing BaseClass”);
 }
 }
 public class SubClass : BaseClass
 {
 public SubClass()
 {
 Console.WriteLine(“Constructing SubClass”);
 }
 }
}

The constructors for BaseClass and SubClass do nothing more than
output a message to the command line. Creating the BaseClass object
invokes the default BaseClass constructor. Creating a SubClass object
invokes the BaseClass constructor before invoking its own constructor.

Here’s the output from this program:

Creating a BaseClass object
Constructing BaseClass

Now creating a SubClass object
Constructing BaseClass
Constructing SubClass
Press Enter to terminate...

 A hierarchy of inherited classes is much like the floor layout of a building.
Each class is built on the classes it extends, as upper floors build on lower
ones, and for a clear reason: Each class is responsible for itself. A subclass
shouldn’t be held responsible for initializing the members of the base class.
The BaseClass must be given the opportunity to construct its members
before the SubClass members are given a chance to access them. You want
the horse well out in front of the cart.

Inheritance and the Constructor

20_563489-bk02ch06.indd 29920_563489-bk02ch06.indd 299 3/19/10 7:56 PM3/19/10 7:56 PM

300

Passing arguments to the base class
constructor — mama sang base
The subclass invokes the default constructor of the base class, unless speci-
fied otherwise — even from a subclass constructor other than the default.
The following slightly updated example demonstrates this feature:

using System;
namespace Example
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine(“Invoking SubClass() default”);
 SubClass sc1 = new SubClass();
 Console.WriteLine(“\nInvoking SubClass(int)”);
 SubClass sc2 = new SubClass(0);
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
 public class BaseClass
 {
 public BaseClass()
 {
 Console.WriteLine(“Constructing BaseClass (default)”);
 }
 public BaseClass(int i)
 {
 Console.WriteLine(“Constructing BaseClass (int)”);
 }
 }
 public class SubClass : BaseClass
 {
 public SubClass()
 {
 Console.WriteLine(“Constructing SubClass (default)”);
 }
 public SubClass(int i)
 {
 Console.WriteLine(“Constructing SubClass (int)”);
 }
 }
}

Executing this program generates the following result:

Invoking SubClass()
Constructing BaseClass (default)
Constructing SubClass (default)

Invoking SubClass(int)
Constructing BaseClass (default)
Constructing SubClass (int)
Press Enter to terminate...

Inheritance and the Constructor

20_563489-bk02ch06.indd 30020_563489-bk02ch06.indd 300 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

301

The program first creates a default object. As expected, C# invokes the
default SubClass constructor, which first passes control to the default
BaseClass constructor. The program then creates an object, passing an
integer argument. Again as expected, C# invokes the SubClass(int). This
constructor invokes the default BaseClass constructor, just as in the ear-
lier example, because it has no data to pass.

Getting specific with base
A subclass constructor can invoke a specific base class constructor using
the keyword base.

 This feature is similar to the way that one constructor invokes another
within the same class by using the this keyword.

For example, consider this small program, InvokeBaseConstructor:

// InvokeBaseConstructor -- Demonstrate how a subclass can
// invoke the base class constructor of its choice using
// the base keyword.
using System;
namespace InvokeBaseConstructor
{
 public class BaseClass
 {
 public BaseClass()
 {
 Console.WriteLine(“Constructing BaseClass (default)”);
 }
 public BaseClass(int i)
 {
 Console.WriteLine(“Constructing BaseClass({0})”, i);
 }
 }
 public class SubClass : BaseClass
 {
 public SubClass()
 {
 Console.WriteLine(“Constructing SubClass (default)”);
 }
 public SubClass(int i1, int i2) : base(i1)
 {
 Console.WriteLine(“Constructing SubClass({0}, {1})”, i1, i2);
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine(“Invoking SubClass()”);
 SubClass sc1 = new SubClass();

 Console.WriteLine(“\ninvoking SubClass(1, 2)”);
 SubClass sc2 = new SubClass(1, 2);

 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate...”);

Inheritance and the Constructor

20_563489-bk02ch06.indd 30120_563489-bk02ch06.indd 301 3/19/10 7:56 PM3/19/10 7:56 PM

302

 Console.Read();
 }
 }
}

The output from this program is

Invoking SubClass()
Constructing BaseClass (default)
Constructing SubClass (default)

Invoking SubClass(1, 2)
Constructing BaseClass(1)
Constructing SubClass(1, 2)
Press Enter to terminate...

This version begins the same as the previous examples, by creating a default
SubClass object using the default constructor of both BaseClass and
SubClass.

The second object is created with the expression new SubClass(1, 2).
C# invokes the SubClass(int, int) constructor, which uses the base
keyword to pass one of the values to the BaseClass(int) constructor.
SubClass passes the first argument to the base class for processing and
then uses the second value itself.

The Updated BankAccount Class
The program ConstructorSavingsAccount, found on the Web site, is an
updated version of the SimpleBankAccount program. In this version, how-
ever, the SavingsAccount constructor can pass information back to the
BankAccount constructors. Only Main() and the constructors themselves
are shown here:

// ConstructorSavingsAccount -- Implement a SavingsAccount as
// a form of BankAccount; use no virtual methods, but
// implement the constructors properly.
using System;
namespace ConstructorSavingsAccount
{
 // BankAccount -- Simulate a bank account, each of which carries an
 // account ID (which is assigned upon creation) and a balance.
 public class BankAccount
 {
 // Bank accounts start at 1000 and increase sequentially.
 public static int _nextAccountNumber = 1000;
 // Maintain the account number and balance for each object.
 public int _accountNumber;
 public decimal _balance;
 // Constructors
 public BankAccount() : this(0)
 {
 }
 public BankAccount(decimal initialBalance)
 {

The Updated BankAccount Class

20_563489-bk02ch06.indd 30220_563489-bk02ch06.indd 302 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

303

 _accountNumber = ++_nextAccountNumber;
 _balance = initialBalance;
 }
 public decimal Balance
 {
 get { return _balance; }
 // Protected setter lets subclass use Balance property to set.
 protected set { _balance = value; }
 }
 // Deposit -- Any positive deposit is allowed.
 public void Deposit(decimal amount)
 {
 if (amount > 0)
 {
 Balance += amount;
 }
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 public decimal Withdraw(decimal withdrawal)
 {
 if (Balance <= withdrawal)
 {
 withdrawal = Balance;
 }
 Balance -= withdrawal;
 return withdrawal;
 }
 // ToString -- Stringify the account.
 public string ToBankAccountString()
 {
 return String.Format(“{0} - {1:C}”,
 _accountNumber, Balance);
 }
 }
 // SavingsAccount -- A bank account that draws interest
 public class SavingsAccount : BankAccount
 {
 public decimal _interestRate;
 // InitSavingsAccount -- Input the rate expressed as a
 // rate between 0 and 100.
 public SavingsAccount(decimal interestRate) : this(interestRate, 0) { }
 public SavingsAccount(decimal interestRate, decimal initial) : base(initial)
 {
 this._interestRate = interestRate / 100;
 }
 // AccumulateInterest -- Invoke once per period.
 public void AccumulateInterest()
 {
 // Use protected setter and public getter via Balance property.
 Balance = Balance + (decimal)(Balance * _interestRate);
 }
 // ToString -- Stringify the account.
 public string ToSavingsAccountString()
 {
 return String.Format(“{0} ({1}%)”,
 ToBankAccountString(), interestRate * 100);
 }
 }
 public class Program
 {
 // DirectDeposit -- Deposit my paycheck automatically.

The Updated BankAccount Class

20_563489-bk02ch06.indd 30320_563489-bk02ch06.indd 303 3/19/10 7:56 PM3/19/10 7:56 PM

304

 public static void DirectDeposit(BankAccount ba, decimal pay)
 {
 ba.Deposit(pay);
 }
 public static void Main(string[] args)
 {
 // Create a bank account and display it.
 BankAccount ba = new BankAccount(100M);
 DirectDeposit(ba, 100M);
 Console.WriteLine(“Account {0}”, ba.ToBankAccountString());
 // Now a savings account
 SavingsAccount sa = new SavingsAccount(12.5M);
 DirectDeposit(sa, 100M);
 sa.AccumulateInterest();
 Console.WriteLine(“Account {0}”, sa.ToSavingsAccountString());
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

BankAccount defines two constructors: one that accepts an initial account
balance and the default constructor, which does not. To avoid duplicat-
ing code within the constructor, the default constructor invokes the
BankAccount(initial balance) constructor using the this keyword.

The SavingsAccount class also provides two constructors. The
SavingsAccount(interest rate) constructor invokes the
SavingsAccount(interest rate, initial balance) constructor,
passing an initial balance of 0. This most general constructor passes the
initial balance to the BankAccount(initial balance) constructor using
the base keyword, as shown in Figure 6-1.

Figure 6-1:
The path for
constructing
an object
using the
default
constructor.

Bank Account (0)
 passes balance to base class

Savings Account (12.5%), 0)
 defaults balance to 0

Savings Account (12.5%)

The Updated BankAccount Class

20_563489-bk02ch06.indd 30420_563489-bk02ch06.indd 304 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 6

In
h

e
rita

n
c

e
: Is T

h
a

t
A

ll I G
e

t?

305

Garbage collection and the C# destructor
C# provides a method that’s inverse to the con-
structor: the destructor. It carries the name of
the class with a tilde (~) in front. For example,
the ~BaseClass() method is the destructor
for BaseClass.

C# invokes the destructor when it is no longer
using the object. The default destructor is the
only destructor that can be created because
the destructor cannot be invoked directly. In
addition, the destructor is always virtual.

When an inheritance ladder of classes is
involved, destructors are invoked in reverse
order of constructors. That is, the destructor
for the subclass is invoked before the destruc-
tor for the base class.

The destructor method in C# is much less useful
than it is in other object-oriented languages,
such as C++, because C# has nondeterminis-
tic destruction. Understanding what that term
means — and why it’s important — requires
some explanation.

The memory for an object is borrowed from
the heap when the program executes the new
command, as in new SubClass(). This
block of memory remains reserved as long as
any valid references to that memory are used
by any running programs. You may have sev-
eral variables that reference the same object.

The memory is said to be unreachable when
the last reference goes out of scope. In other
words, no one can access that block of memory
after no more references to it exist.

C# doesn’t do anything in particular when a
memory block first becomes unreachable.
A low-priority system task executes in the
background, looking for unreachable memory
blocks. To avoid negatively affecting program
performance, this “garbage collector” exe-
cutes when little is happening in your program.
As the garbage collector finds unreachable
memory blocks, it returns them to the heap.

Normally, the garbage collector operates
silently in the background. The garbage col-
lector takes over control of the program for
only a short period when heap memory begins
to run out.

The C# destructor — for example,
~BaseClass() — is nondeterministic
because it isn’t invoked until the object is
garbage-collected, and that task can occur
long after the object is no longer being used.
In fact, if the program terminates before the
object is found and returned to the heap, the
destructor is never invoked. Nondeterministic
means you can’t predict when the object will
be garbage-collected. It could be quite a while
before the object is garbage-collected and its
destructor called.

C# programmers seldom use the destructor.
C# has other ways to return borrowed system
resources when they’re no longer needed,
using a Dispose() method, a topic that’s
beyond the scope of this book. (You can search
for the term Dispose method in Help.)

The Updated BankAccount Class

20_563489-bk02ch06.indd 30520_563489-bk02ch06.indd 305 3/19/10 7:56 PM3/19/10 7:56 PM

306

I’ve modified Main() to get rid of those infernal Init...() methods and
replace them with constructors instead. The output from this program is the
same.

Notice the Balance property in BankAccount, which has a public getter
but a protected setter. Using protected here prevents use from outside
of BankAccount but permits using the protected setter in subclasses,
which occurs in SavingsAccount.AccumulateInterest, with Balance
on the left side of the assignment operator. (Properties and the protected
keyword are in Book I. You can look them up in this book’s index.)

The Updated BankAccount Class

20_563489-bk02ch06.indd 30620_563489-bk02ch06.indd 306 3/19/10 7:56 PM3/19/10 7:56 PM

Chapter 7: Poly-what-ism?

In This Chapter
✓ Deciding whether to hide or override a base class method (so many

choices!)

✓ Building abstract classes — are you for real?

✓ Declaring a method and the class that contains it to be abstract

✓ Using ToString, the class business card

✓ Sealing a class from being subclassed

In inheritance, one class “adopts” the members of another. Thus I can
create a class SavingsAccount that inherits data members such

as account id and methods such as Deposit() from a base class
BankAccount. That’s useful, but this definition of inheritance isn’t suffi-
cient to mimic what’s going on out there in the business world.

See Chapter 6 of this minibook if you don’t know (or remember) much about
class inheritance.

A microwave oven is a type of oven, not because it looks like an oven but,
rather, because it performs the same functions as an oven. A microwave
oven may perform additional functions, but it performs, at the least, the
base oven functions — most importantly, heating up my nachos when I say,
“StartCooking.” (I rely on my object of class Refrigerator to cool the
beer.) I don’t particularly care what the oven must do internally to make
that happen, any more than I care what type of oven it is, who made it, or
whether it was on sale when my wife bought it. (Hey, wait — I do care about
that last one.)

From our human vantage point, the relationship between a microwave oven
and a conventional oven doesn’t seem like such a big deal, but consider the
problem from the oven’s point of view. The steps that a conventional oven
performs internally are completely different from those that a microwave
oven may take.

 The power of inheritance lies in the fact that a subclass doesn’t have to
inherit every single method from the base class just the way it’s written. A
subclass can inherit the essence of the base class method while implement-
ing the details differently.

21_563489-bk02ch07.indd 30721_563489-bk02ch07.indd 307 3/19/10 7:56 PM3/19/10 7:56 PM

308 Overloading an Inherited Method

Overloading an Inherited Method
As described in Chapter 3 of this minibook (look up overloading in the
index), two or more methods can have the same name as long as the number
or type of arguments differs (or as long as both differ).

It’s a simple case of method overloading
 Giving two methods the same name is overloading, as in “Keeping them

straight is overloading my brain.”

The arguments of a method become a part of its extended name, as this
example demonstrates:

public class MyClass
{
 public static void AMethod()
 {
 // Do something.
 }
 public static void AMethod(int)
 {
 // Do something else.
 }
 public static void AMethod(double d)
 {
 // Do something even different.
 }
 public static void Main(string[] args)
 {
 AMethod();
 AMethod(1);
 AMethod(2.0);
}

C# can differentiate the methods by their arguments. Each of the calls within
Main() accesses a different method.

 The return type isn’t part of the extended name. You can’t have two meth-
ods that differ only in their return types.

Different class, different method
Not surprisingly, the class to which a method belongs is also a part of its
extended name. Consider this code segment:

public class MyClass
{
 public static void AMethod1();
 public void AMethod2();
}
public class UrClass
{

21_563489-bk02ch07.indd 30821_563489-bk02ch07.indd 308 3/19/10 7:56 PM3/19/10 7:56 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

309Overloading an Inherited Method

 public static void AMethod1();
 public void AMethod2();
}
public class Program
{
 public static void Main(string[] args)
 {
 UrClass.AMethod1(); // Call static method.
 // Invoke the MyClass.AMethod2() instance method:
 MyClass mcObject = new MyClass();
 mcObject.AMethod2();
 }
}

The name of the class is a part of the extended name of the method. The
method MyClass.AMethod1() has about as much to do with UrClass.
AMethod1() as YourCar.StartOnAColdMorning() and MyCar.
StartOnAColdMorning() — at least yours works.

Peek-a-boo — hiding a base class method
So a method in one class can overload another method in its own class by
having different arguments. As it turns out, a method can also overload a
method in its own base class. Overloading a base class method is known as
hiding the method.

Suppose that your bank adopts a policy making savings account withdrawals
different from other types of withdrawals. Suppose, just for the sake of argu-
ment, that withdrawing from a savings account costs $1.50.

Taking the procedural approach, you could implement this policy by
setting a flag (variable) in the class to indicate whether the object is a
SavingsAccount or just a simple BankAccount. Then the withdrawal
method would have to check the flag to decide whether it needs to charge
$1.50, as shown here:

public class BankAccount
{
 private decimal _balance;
 private bool _isSavingsAccount; // The flag
 // Indicate the initial balance and whether the account
 // you’re creating is a savings account.
 public BankAccount(decimal initialBalance, bool isSavingsAccount)
 {
 _balance = initialBalance;
 _isSavingsAccount = isSavingsAccount;
 }
 public decimal Withdraw(decimal amountToWithdraw)
 {
 // If the account is a savings account . . .
 if (_isSavingsAccount)
 {
 // ...then skim off $1.50.
 _balance -= 1.50M;
 }

21_563489-bk02ch07.indd 30921_563489-bk02ch07.indd 309 3/19/10 7:57 PM3/19/10 7:57 PM

310 Overloading an Inherited Method

 // Continue with the usual withdraw code:
 if (amountToWithdraw > _balance)
 {
 amountToWithdraw = _balance;
 }
 _balance -= amountToWithdraw;
 return amountToWithdraw;
 }
}
class MyClass
{
 public void SomeMethod()
 {
 // I want create a savings account:
 BankAccount ba = new BankAccount(0, true);
 }
}

Your method must tell the BankAccount whether it’s a SavingsAccount
in the constructor by passing a flag. The constructor saves that flag and uses
it in the Withdraw() method to decide whether to charge the extra $1.50.

The more object-oriented approach hides the method Withdraw() in the
base class BankAccount with a new method of the same name, height, and
hair color in the SavingsAccount class:

// HidingWithdrawal -- Hide the withdraw method in the base
// class with a method in the subclass of the same name.
using System;
namespace HidingWithdrawal
{
 // BankAccount -- A very basic bank account
 public class BankAccount
 {
 protected decimal _balance;
 public BankAccount(decimal initialBalance)
 {
 _balance = initialBalance;
 }
 public decimal Balance
 {
 get { return _balance; }
 }
 public decimal Withdraw(decimal amount)
 {
 // Good practice means avoiding modifying an input parameter.
 // Modify a copy.
 decimal amountToWithdraw = amount;
 if (amountToWithdraw > Balance)
 {
 amountToWithdraw = Balance;
 }
 _balance -= amountToWithdraw;
 return amountToWithdraw;
 }
 }
 // SavingsAccount -- A bank account that draws interest
 public class SavingsAccount : BankAccount
 {

21_563489-bk02ch07.indd 31021_563489-bk02ch07.indd 310 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

311Overloading an Inherited Method

 public decimal _interestRate;
 // SavingsAccount -- Input the rate expressed as a
 // rate between 0 and 100.
 public SavingsAccount(decimal initialBalance, decimal interestRate)
 : base(initialBalance)
 {
 _interestRate = interestRate / 100;
 }
 // AccumulateInterest -- Invoke once per period.
 public void AccumulateInterest()
 {
 _balance = Balance + (Balance * _interestRate);
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 public decimal Withdraw(decimal withdrawal)
 {
 // Take the $1.50 off the top.
 base.Withdraw(1.5M);
 // Now you can withdraw from what’s left.
 return base.Withdraw(withdrawal);
 }
 }
 public class Program
 {
 public static void Main(string[] args)
 {
 BankAccount ba;
 SavingsAccount sa;
 // Create a bank account, withdraw $100, and
 // display the results.
 ba = new BankAccount(200M);
 ba.Withdraw(100M);
 // Try the same trick with a savings account.
 sa = new SavingsAccount(200M, 12);
 sa.Withdraw(100M);
 // Display the resulting balance.
 Console.WriteLine(“When invoked directly:”);
 Console.WriteLine(“BankAccount balance is {0:C}”, ba.Balance);
 Console.WriteLine(“SavingsAccount balance is {0:C}”, sa.Balance);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

Main() in this case creates a BankAccount object with an initial bal-
ance of $200 and then withdraws $100. Main() repeats the trick with a
SavingsAccount object. When Main() withdraws money from the base
class, BankAccount.Withdraw() performs the withdraw function with
great aplomb. When Main() then withdraws $100 from the savings account,
the method SavingsAccount.Withdraw() tacks on the extra $1.50.

Notice that the SavingsAccount.Withdraw() method uses BankAccount.
Withdraw() rather than manipulate the balance directly. If possible, let the
base class maintain its own data members.

21_563489-bk02ch07.indd 31121_563489-bk02ch07.indd 311 3/19/10 7:57 PM3/19/10 7:57 PM

312 Overloading an Inherited Method

Making the hiding approach better than adding a simple test
On the surface, adding a flag to the BankAccount.Withdraw() method
may seem simpler than all this method-hiding stuff. After all, it’s just four
little lines of code, two of which are nothing more than braces.

The problems are manifold. (I had to write several chapters just to be able to
use that word.) One problem is that the BankAccount class has no business
worrying about the details of SavingsAccount. More formally, it’s known
as “breaking the encapsulation of SavingsAccount.” Base classes don’t
normally know about their subclasses, which leads to the real problem:
Suppose that your bank subsequently decides to add a CheckingAccount
or a CDAccount or a TBillAccount. All those likely additions have differ-
ent withdrawal policies, each requiring its own flag. After adding three or
four different types of accounts, the old Withdraw() method starts look-
ing complicated. Each of those types of classes should worry about its own
withdrawal policies and leave the poor old BankAccount.Withdraw()
alone. Classes are responsible for themselves.

Accidentally hiding a base class method
Oddly enough, you can hide a base class method accidentally. For example,
you may have a Vehicle.TakeOff() method that starts the vehicle rolling.
Later, someone else extends your Vehicle class with an Airplane class. Its
TakeOff() method is entirely different. In airplane lingo, “take off” means
more than just “start moving.” Clearly, this is a case of mistaken identity —
the two methods have no similarity other than their identical name.

Fortunately, C# detects this problem.

C# generates an ominous-looking warning when it compiles the earlier
HidingWithdrawal program example. The text of the warning message is
long, but here’s the important part:

’...SavingsAccount.Withdraw(decimal)’ hides inherited member
 ‘...BankAccount.Withdraw(decimal)’.
 Use the new keyword if hiding was intended.

C# is trying to tell you that you’ve written a method in a subclass that has
the same name as a method in the base class. Is that what you meant to do?

This message is just a warning — you don’t even notice it unless you switch
over to the Error List window to take a look. But you must sort out and fix all
warnings. In almost every case, a warning is telling you about something that
can bite you if you don’t fix it.

Tell the C# compiler to treat warnings as errors, at least part of the time. To
do so, choose Project➪Properties. In the Build pane of your project’s prop-
erties page, scroll down to Errors and Warnings. Set the Warning Level to 4,
the highest level, which turns the compiler into more of a chatterbox. Also,

21_563489-bk02ch07.indd 31221_563489-bk02ch07.indd 312 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

313Overloading an Inherited Method

in the Treat Warnings As Errors section, select All. (If a particular warning
becomes annoying, you can list it in the Suppress Warnings box to keep it
out of your face.) When you treat warnings as errors, you’re forced to fix the
warnings — just as you would be forced to fix real compiler errors. This
practice makes for better code. Even if you don’t enable the Treat Warnings
As Errors option, leave the Warning Level at 4 and select the Error List
window after each build.

The descriptor new, shown in the following sample code, tells C# that the
hiding of methods is intentional and not the result of an oversight (and it
makes the warning disappear):

// No withdraw() pains now.
new public decimal Withdraw(decimal withdrawal)
{
 // . . . no change internally . . .
}

This use of the keyword new has nothing to do with the same word new
that’s used to create an object. (C# even overloads itself!)

Calling back to base
Check out the SavingsAccount.Withdraw() method in the
HidingWithdrawal example, shown earlier in this chapter. The call to
BankAccount.Withdraw() from within this new method includes the new
keyword base.

The following version of the method without the base keyword doesn’t work:

new public decimal Withdraw(decimal withdrawal)
{
 decimal amountWithdrawn = Withdraw(withdrawal);
 amountWithdrawn += Withdraw(1.5);
 return amountWithdrawn;
}

This call has the same problem as this one:

void fn()
{
 fn(); // Call yourself.
}

The call to fn() from within fn() ends up calling itself (recursing) repeat-
edly. Similarly, a call to Withdraw() from within the method calls itself in a
loop, chasing its tail until the program eventually crashes.

Somehow, you need to indicate to C# that the call from within Savings
Account.Withdraw() is meant to invoke the base class BankAccount.
Withdraw() method. One approach is to cast the this reference into an
object of class BankAccount before making the call:

21_563489-bk02ch07.indd 31321_563489-bk02ch07.indd 313 3/19/10 7:57 PM3/19/10 7:57 PM

314 Polymorphism

// Withdraw -- This version accesses the hidden method in the base
// class by explicitly recasting the this object.
new public decimal Withdraw(decimal withdrawal)
{
 // Cast the this reference into an object of class BankAccount.
 BankAccount ba = (BankAccount)this;
 // Invoking Withdraw() using this BankAccount object
 // calls the method BankAccount.Withdraw().
 decimal amountWithdrawn = ba.Withdraw(withdrawal);
 amountWithdrawn += ba.Withdraw(1.5);
 return amountWithdrawn;
}

This solution works: The call ba.Withdraw() now invokes the
BankAccount method, just as intended. The problem with this approach is
the explicit reference to BankAccount. A future change to the program may
rearrange the inheritance hierarchy so that SavingsAccount no longer
inherits directly from BankAccount. This type of rearrangement breaks this
method in a way that future programmers may not easily find. (Heck, I would
never be able to find a bug like that one.)

You need a way to tell C# to call the Withdraw() method from “the class
immediately above” in the hierarchy without naming it explicitly. That would
be the class that SavingsAccount extends. C# provides the keyword base
for this purpose.

 This keyword base is the same one that a constructor uses to pass argu-
ments to its base class constructor.

The C# keyword base, shown in the following chunk of code, is the same
sort of beast as this but is automatically recast to the base class no matter
what that class may be:

// Withdraw -- You can withdraw any amount up to the
// balance; return the amount withdrawn.
new public decimal Withdraw(decimal withdrawal)
{
 // Take the $1.50 off the top.
 base.Withdraw(1.5M);
 // Now you can withdraw from what’s left.
 return base.Withdraw(withdrawal);
}

The call base.Withdraw() now invokes the BankAccount.Withdraw()
method, thereby avoiding the recursive “invoking itself” problem. In addi-
tion, this solution doesn’t break if the inheritance hierarchy is changed.

Polymorphism
You can overload a method in a base class with a method in the subclass.
As simple as this process sounds, it introduces considerable capability, and
with capability comes danger.

21_563489-bk02ch07.indd 31421_563489-bk02ch07.indd 314 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

315Polymorphism

Here’s a thought experiment: Should you make the decision to call
BankAccount.Withdraw() or SavingsAccount.Withdraw() at compile-
time or at runtime?

To illustrate the difference, I change the previous HidingWithdrawal
program in a seemingly innocuous way. I call this new version Hiding
WithdrawalPolymorphically. (I’ve streamlined the listing by leaving out
the stuff that doesn’t change.) The new version is shown here:

// HidingWithdrawalPolymorphically -- Hide the Withdraw() method in the base
// class with a method in the subclass of the same name.
public class Program
{
 public static void MakeAWithdrawal(BankAccount ba, decimal amount)
 {
 ba.Withdraw(amount);
 }
 public static void Main(string[] args)
 {
 BankAccount ba;
 SavingsAccount sa;

 // Create a bank account, withdraw $100, and
 // display the results.
 ba = new BankAccount(200M);
 MakeAWithdrawal(ba, 100M);

 // Try the same trick with a savings account.
 sa = new SavingsAccount(200M, 12);
 MakeAWithdrawal(sa, 100M);

 // Display the resulting balance.
 Console.WriteLine(“When invoked through intermediary:”);
 Console.WriteLine(“BankAccount balance is {0:C}”, ba.Balance);
 Console.WriteLine(“SavingsAccount balance is {0:C}”, sa.Balance);

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
}

The following output from this program may or may not be confusing,
depending on what you expected:

When invoked through intermediary
BankAccount balance is $100.00
SavingsAccount balance is $100.00
Press Enter to terminate...

This time, rather than perform a withdrawal in Main(), the program passes
the bank account object to the method MakeAWithdrawal().

The first question is fairly straightforward: Why does the MakeAWithdrawal()
method even accept a SavingsAccount object when it clearly states
that it’s looking for a BankAccount? The answer is obvious: “Because a
SavingsAccount IS_A BankAccount.” (See Chapter 6 of this minibook.)

21_563489-bk02ch07.indd 31521_563489-bk02ch07.indd 315 3/19/10 7:57 PM3/19/10 7:57 PM

316 Polymorphism

The second question is subtle. When passed a BankAccount object,
MakeAWithdrawal() invokes BankAccount.Withdraw() — that’s clear
enough. But when passed a SavingsAccount object, MakeAWithdrawal()
calls the same method. Shouldn’t it invoke the Withdraw() method in the
subclass?

The prosecution intends to show that the call ba.Withdraw() should
invoke the method BankAccount.Withdraw(). Clearly, the ba object is
a BankAccount. To do anything else would merely confuse the state. The
defense has witnesses back in Main() to prove that although the ba object
is declared BankAccount, it is in fact a SavingsAccount. The jury is dead-
locked. Both arguments are equally valid.

In this case, C# comes down on the side of the prosecution: The safer of
the two possibilities is to go with the declared type because it avoids any
miscommunication. The object is declared to be a BankAccount and that’s
that. However, that may not be what you want.

Using the declared type every time
(Is that so wrong?)
In some cases, you don’t want to choose the declared type. What you want
(or, “what you really, really want,” to quote the popular Spice Girls song) is
to make the call based on the real type — the runtime type — as opposed
to the declared type. For example, you want to use the SavingsAccount
stored in a BankAccount variable. This capability to decide at runtime is
known as polymorphism, or late binding. Using the declared type every time
is called early binding because it sounds like the opposite of late binding.

 The ridiculous term polymorphism comes from the Greek language: Poly
means “more than one,” morph means “transform,” and ism is a fairly useless
Greek term. But we’re stuck with it.

Polymorphism and late binding aren’t exactly the same concept — but the
difference is subtle:

 ✦ Polymorphism refers to the general ability to decide which method to
invoke at runtime.

 ✦ Late binding refers to the specific way a language implements
polymorphism.

Polymorphism is the key to the power of object-oriented (OO) programming.
It’s so important that languages that don’t support it can’t advertise them-
selves as OO languages. (I think it’s an FDA regulation: You can’t label a

21_563489-bk02ch07.indd 31621_563489-bk02ch07.indd 316 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

317Polymorphism

language that doesn’t support it as OO unless you add a disclaimer from the
surgeon general, or something like that.)

 Languages that support classes but not polymorphism are object-based lan-
guages. Visual Basic 6.0 (not VB.NET) is an example of such a language.

Without polymorphism, inheritance has little meaning. Let me spring
another example on you to show you why. Suppose that you had written a
boffo program that uses a class named (just to pick a name out of the air)
Student. After months of design, coding, and testing, you release this appli-
cation to rave reviews from colleagues and critics alike. (You’ve even heard
talk of starting a new Nobel Prize category for software, but you modestly
brush such talk aside.)

Time passes and your boss asks you to add to this program the capability of
handling graduate students, who are similar but not identical to undergradu-
ate students. (The graduate students probably claim that they aren’t similar
in any way.) Suppose that the formula for calculating the tuition amount for
a graduate student is completely different from the formula for an under-
grad. Now, your boss doesn’t know or care that, deep within the program,
are numerous calls to the member method CalcTuition(). (A lot of things
happen that your boss doesn’t know or care about, by the way.) The follow-
ing example shows one of those many calls to CalcTuition():

void SomeMethod(Student s) // Could be grad or undergrad
{
 // . . . whatever it might do . . .
 s.CalcTuition();
 // . . . continues on . . .
}

If C# didn’t support late binding, you would need to edit someMethod() to
check whether the student object passed to it is a GraduateStudent or
a Student. The program would call Student.CalcTuition() when s is
a Student and GraduateStudent.CalcTuition() when it’s a graduate
student.

Editing someMethod() doesn’t seem so bad, except for two problems:

 ✦ You’re assuming use by only one method. Suppose that CalcTuition()
is called from many places.

 ✦ CalcTuition() might not be the only difference between the two
classes. The chances aren’t good that you’ll find all items that need to
be changed.

Using polymorphism, you can let C# decide which method to call.

21_563489-bk02ch07.indd 31721_563489-bk02ch07.indd 317 3/19/10 7:57 PM3/19/10 7:57 PM

318 Polymorphism

Using is to access a hidden
method polymorphically
C# provides one approach to manually solving the problem of making
your program polymorphic, using the keyword is. (I introduce is, and
its cousin as, in Chapter 6 of this minibook.) The expression ba is
SavingsAccount returns true or false depending on the runtime class
of the object. The declared type may be BankAccount, but which type is it
really? The following code chunk uses is to access the SavingsAccount
version of Withdraw() specifically:

public class Program
{
 public static void MakeAWithdrawal(BankAccount ba, decimal amount)
 {
 if(ba is SavingsAccount)
 {
 SavingsAccount sa = (SavingsAccount)ba;
 sa.Withdraw(amount);
 }
 else
 {
 ba.Withdraw(amount);
 }
 }
}

Now, when Main() passes the method a SavingsAccount object,
MakeAWithdrawal() checks the runtime type of the ba object and invokes
SavingsAccount.Withdraw().

 Just as an aside, the programmer could have performed the cast and the call
in the following single line:

((SavingsAccount)ba).Withdraw(amount); // Notice locations of parentheses.

I mention this technique only because you often see it in programs written
by show-offs. (You can use it, but it’s more difficult to read than when you
use multiple lines. Anything written confusingly or cryptically tends to be
more error-prone, too.)

The is approach works, but it’s a bad idea. It requires MakeAWithDrawal()
to be aware of all the different types of bank accounts and which of them is
represented by different classes. That puts too much responsibility on poor
old MakeAWithdrawal(). Right now, your application handles only two
types of bank accounts, but suppose that your boss asks you to implement
a new account type, CheckingAccount, and it has different Withdraw()
requirements. Your program doesn’t work properly if you don’t search out
and find every method that checks the runtime type of its argument.

21_563489-bk02ch07.indd 31821_563489-bk02ch07.indd 318 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

319Polymorphism

Declaring a method virtual and overriding it
As the author of MakeAWithdrawal(), you don’t want to know about all the
different types of accounts. You want to leave to the programmers who use
MakeAWithdrawal() the responsibility to know about their account types
and just leave you alone. You want C# to make decisions about which meth-
ods to invoke based on the runtime type of the object.

You tell C# to make the runtime decision of the version of Withdraw() by
marking the base class method with the keyword virtual and marking
each subclass version of the method with the keyword override.

I used polymorphism to rewrite the program example from the previous sec-
tion. I added output statements to the Withdraw() methods to prove that
the proper methods are indeed being invoked. (I also cut out any duplicated
information.) Here’s the PolymorphicInheritance program:

// PolymorphicInheritance -- Hide a method in the
// base class polymorphically. Show how to use
// the virtual and override keywords.
using System;
namespace PolymorphicInheritance
{
 // BankAccount -- A basic bank account
 public class BankAccount
 {
 protected decimal _balance;
 public BankAccount(decimal initialBalance)
 {
 _balance = initialBalance;
 }
 public decimal Balance
 {
 get { return _balance; }
 }
 public virtual decimal Withdraw(decimal amount)
 {
 Console.WriteLine(“In BankAccount.Withdraw() for ${0}...”, amount);
 decimal amountToWithdraw = amount;
 if (amountToWithdraw > Balance)
 {
 amountToWithdraw = Balance;
 }
 _balance -= amountToWithdraw;
 return amountToWithdraw;
 }
 }
 // SavingsAccount -- A bank account that draws interest
 public class SavingsAccount : BankAccount
 {
 public decimal _interestRate;
 // SavingsAccount -- Input the rate expressed as a
 // rate between 0 and 100.
 public SavingsAccount(decimal initialBalance, decimal interestRate)
 : base(initialBalance)
 {

21_563489-bk02ch07.indd 31921_563489-bk02ch07.indd 319 3/19/10 7:57 PM3/19/10 7:57 PM

320 Polymorphism

 _interestRate = interestRate / 100;
 }
 // AccumulateInterest -- Invoke once per period.
 public void AccumulateInterest()
 {
 _balance = Balance + (Balance * _interestRate);
 }
 // Withdraw -- You can withdraw any amount up to the
 // balance; return the amount withdrawn.
 override public decimal Withdraw(decimal withdrawal)
 {
 Console.WriteLine(“In SavingsAccount.Withdraw()...”);
 Console.WriteLine(“Invoking base-class Withdraw twice...”);
 // Take the $1.50 off the top.
 base.Withdraw(1.5M);
 // Now you can withdraw from what’s left.
 return base.Withdraw(withdrawal);
 }
 }
 public class Program
 {
 public static void MakeAWithdrawal(BankAccount ba, decimal amount)
 {
 ba.Withdraw(amount);
 }
 public static void Main(string[] args)
 {
 BankAccount ba;
 SavingsAccount sa;
 // Display the resulting balance.
 Console.WriteLine(“Withdrawal: MakeAWithdrawal(ba, ...)”);
 ba = new BankAccount(200M);
 MakeAWithdrawal(ba, 100M);
 Console.WriteLine(“BankAccount balance is {0:C}”, ba.Balance);
 Console.WriteLine(“Withdrawal: MakeAWithdrawal(sa, ...)”);
 sa = new SavingsAccount(200M, 12);
 MakeAWithdrawal(sa, 100M);
 Console.WriteLine(“SavingsAccount balance is {0:C}”, sa.Balance);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

The output from executing this program is shown here:

Withdrawal: MakeAWithdrawal(ba, ...)
In BankAccount.Withdraw() for $100...
BankAccount balance is $100.00
Withdrawal: MakeAWithdrawal(sa, ...)
In SavingsAccount.Withdraw()...
Invoking base-class Withdraw twice...
In BankAccount.Withdraw() for $1.5...
In BankAccount.Withdraw() for $100...
SavingsAccount balance is $98.50
Press Enter to terminate...

21_563489-bk02ch07.indd 32021_563489-bk02ch07.indd 320 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

321The Class Business Card: ToString()

 The Withdraw() method is flagged as virtual in the base class
BankAccount, and the Withdraw() method in the subclass is flagged with
the keyword override. The MakeAWithdrawal() method is unchanged,
yet the output of the program is different because the call ba.Withdraw()
is resolved based on the ba runtime type.

To get a good feel for how this works, step through the program in the Visual
Studio 2005 debugger. Just build the program as normal and then repeatedly
press F11 to watch the program walk through its paces. Watch the
Withdraw() calls carefully. Watching the same call end up in two different
methods at two different times is impressive.

Choose sparingly which methods to make virtual. Each one has a cost, so
use the virtual keyword only when necessary. It’s a trade-off between a
class that’s highly flexible and can be overridden (lots of virtual methods)
and a class that isn’t flexible enough (hardly any virtuals).

Getting the most benefit from polymorphism —
the do-to-each trick
Much of the power of polymorphism springs from polymorphic objects shar-
ing a common interface. For example, given a hierarchy of Shape objects —
Circles, Squares, and Triangles, for example — you can count on all
shapes having a Draw() method. Each object’s Draw() method is imple-
mented quite differently, of course. But the point is that, given a collection
of these objects, you can freely use a foreach loop to call Draw() or any
other method in the polymorphic interface on the objects. I call it the “do-to-
each” trick.

The Class Business Card: ToString()
All classes inherit from a common base class that carries the clever name
Object. However, it’s worth mentioning here that Object includes a method,
ToString(), that converts the contents of the object into a string. The idea
is that each class should override the ToString() method to display itself in
a meaningful way. I used the method GetString() until now because I didn’t
want to begin discussing inheritance issues until Chapter 6 of this minibook.
After you understand inheritance, the virtual keyword, and overriding,
we can describe ToString(). By overriding ToString() for each class,
you give each class the ability to display itself in its own way. For example, a
useful, appropriate Student.ToString() method may display the student’s
name and ID.

21_563489-bk02ch07.indd 32121_563489-bk02ch07.indd 321 3/19/10 7:57 PM3/19/10 7:57 PM

322 C# During Its Abstract Period

Most methods — even those built into the C# library — use the ToString()
method to display objects. Thus overriding ToString() has the useful side
effect of displaying the object in its own, unique format, no matter who does
the displaying.

 Always override ToString().

C# During Its Abstract Period
The duck is a type of bird, I think. So are the cardinal and the hummingbird.
In fact, every bird out there is a subtype of bird. The flip side of that argu-
ment is that no bird exists that isn’t some subtype of Bird. That statement
doesn’t sound profound, but in a way, it is. The software equivalent of that
statement is that all bird objects are instances of some subclass of Bird —
there’s never an instance of class Bird. What’s a bird? It’s always a robin or
a grackle or another specific species.

Different types of birds share many properties (otherwise, they wouldn’t be
birds), yet no two types share every property. If they did, they wouldn’t be
different types. To pick a particularly gross example, not all birds Fly() the
same way. Ducks have one style. The cardinal’s style is similar but not iden-
tical. The hummingbird’s style is completely different. (Don’t even get me
started about emus and ostriches or the rubber ducky in my tub.)

But if not all birds fly the same way and there’s no such thing as a Bird, what
the heck is Bird.Fly()? The subject of the following sections, that’s what it is.

Class factoring
People generate taxonomies of objects by factoring out commonalities.
To see how factoring works, consider the two classes HighSchool and
University, shown in Figure 7-1. This figure uses the Unified Modeling
Language (UML), a graphical language that describes a class along with the
relationship of that class to others. UML has become universally popular with
programmers and is worth learning (to a reasonable extent) in its own right.

Figure 7-1:
A UML
description
of the High
School
and
Univer-
sity
classes.

High School

– numStudents Student

+ Enroll ()

*
University

– numStudents
+ avgSAT

Student

+ Enroll ()
+ GetGrant ()

*

21_563489-bk02ch07.indd 32221_563489-bk02ch07.indd 322 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

323C# During Its Abstract Period

 A Car IS_A Vehicle but a Car HAS_A Motor.

High schools and universities have several similar properties — many more
than you may think (refer to Figure 7-1). Both schools offer a publicly avail-
able Enroll() method for adding Student objects to the school. In addition,
both classes offer a private member numStudents that indicates the number
of students attending the school. Another common feature is the relationship
between students: One school can have any number of students — a student

UML Lite
The Unified Modeling Language (UML) is an
expressive language that’s capable of clearly
defining a great deal about the relationships
of objects within a program. One advantage of
UML is that you can ignore the more specific
language features without losing its meaning
entirely.

The most basic features of UML are described
in this list:

 ✓ Classes are represented by a box divided
vertically into three sections. The name of
the class appears in the uppermost section.

 ✓ The data members of the class appear in
the middle section, and the methods of the
class in the bottom. You can omit either the
middle or bottom section if the class has no
data members or methods or if you want
just a high-level classes-only view.

 ✓ Members with a plus sign (+) in front are
public; those with a minus sign (–) are
private. To provide protected and internal
visibility, most people use the pound sign
(#) — or should I say the “sharp” sign? —
and the tilde (~), respectively.

 A private member is accessible only from
other members of the same class. A public
member is accessible to all classes. See
Chapter 5.

 ✓ The label {abstract} next to a name
indicates an abstract class or method.

 UML uses a different symbol for an abstract
method, but I keep it simple. (It’s UML Lite.)
You can also just show abstract items in
italics.

 ✓ An arrow between two classes represents
a relationship between the two classes.
A number above the line expresses
cardinality — the number of items you can
have at each end of the arrow. The asterisk
symbol (*) means any number. If no number
is present, the cardinality is assumed to be
1. Thus you can see that a single university
has any number of students — a one-to-
many relationship (refer to Figure 7-1).

 ✓ A line with a large, open arrowhead, or a
triangular arrowhead, expresses the IS_A
relationship (inheritance). The arrow points
up the class hierarchy to the base class.
Other types of relationships include the
HAS_A relationship (a line with a filled dia-
mond at the owning end).

To explore UML in depth, check out UML 2
For Dummies, by Michael Jesse Chonoles and
James A. Schardt.

21_563489-bk02ch07.indd 32321_563489-bk02ch07.indd 323 3/19/10 7:57 PM3/19/10 7:57 PM

324 C# During Its Abstract Period

can attend only a single school at one time. Even high schools and most uni-
versities offer more than I describe, but one of each type of member is all I
need for illustration.

In addition to the features of a high school, the university contains a method
GetGrant() and a data member avgSAT. High schools have no SAT
entrance requirements and receive no federal grants (unless I went to the
wrong one).

Figure 7-1 is acceptable, as far as it goes, but lots of information is dupli-
cated, and duplication in code (and UML diagrams) stinks. You can reduce
the duplication by allowing the more complex class University to inherit
from the simpler HighSchool class, as shown in Figure 7-2.

Figure 7-2:
Inheriting
High
School
simplifies
the
Univer-
sity
class but
introduces
problems.

High School

– numStudents Student

+ Enroll ()

University

+ avgSAT

+ GetGrant ()

*

The HighSchool class is left unchanged, but the University class is
easier to describe. You say that “a University is a HighSchool that also
has an avgSAT and a GetGrant() method.” But this solution has a funda-
mental problem: A university isn’t a high school with special properties.

You say, “So what? Inheriting works, and it saves effort.” True, but my res-
ervations are more than stylistic trivialities. (My reservations are at some
of the best restaurants in town — at least, that’s what all the truckers say.)
This type of misrepresentation is confusing to the programmer, both now
and in the future. Someday, a programmer who is unfamiliar with your pro-
gramming tricks will have to read and understand what your code does.
Misleading representations are difficult to reconcile and understand.

In addition, this type of misrepresentation can lead to problems down
the road. Suppose that the high school decides to name a “favorite” stu-
dent at the prom — not that I would know anything about that sort of

21_563489-bk02ch07.indd 32421_563489-bk02ch07.indd 324 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

325C# During Its Abstract Period

thing. The clever programmer adds the NameFavorite() method to the
HighSchool class, which the application invokes to name the favorite
Student object.

But now you have a problem: Most universities don’t name a favorite any-
thing, other than price. However, as long as University inherits from
HighSchool, it inherits the NameFavorite() method. One extra method
may not seem like a big deal. “Just ignore it,” you say.

One extra method isn’t a big deal, but it’s just one more brick in the wall of
confusion. Extra methods and properties accumulate over time, until the
University class is carrying lots of extra baggage. Pity the poor software
developer who has to understand which methods are “real” and which
aren’t.

“Inheritances of convenience” lead to another problem. The way it’s written,
Figure 7-2 implies that a University and a HighSchool have the same
enrollment procedure. As unlikely as that statement sounds, assume that it’s
true. The program is developed, packaged up, and shipped off to the unwit-
ting public — of course, I’ve embedded the requisite number of bugs so that
they’ll want to upgrade to Version 2.0 with all its bug fixes — for a small fee,
of course.

Months pass before the school district decides to modify its enrollment pro-
cedure. It isn’t obvious to anyone that modifying the high school enrollment
procedure also modifies the sign-up procedure at the local college.

How can you avoid these problems? Not going to school is one way, but
another is to fix the source of the problem: A university isn’t a particular
type of high school. A relationship exists between the two, but IS_A isn’t
the right one. (HAS_A doesn’t work either. A university HAS_A high school?
A high school HAS_A university? Come on!) Instead, both high schools and
universities are special types of schools. That’s what they have most in
common.

Figure 7-3 describes a better relationship. The newly defined class School
contains the common properties of both types of schools, including the rela-
tionship they both have with Student objects. School even contains the
common Enroll() method, although it’s abstract because HighSchool
and University usually don’t implement Enroll() the same way.

The classes HighSchool and University now inherit from a common
base class. Each contains its unique members: NameFavorite() in the case
of HighSchool, and GetGrant() for the University. In addition, both
classes override the Enroll() method with a version that describes how
that type of school enrolls students. In effect, I’ve extracted a superclass, or
base class, from two similar classes, which now become subclasses.

21_563489-bk02ch07.indd 32521_563489-bk02ch07.indd 325 3/19/10 7:57 PM3/19/10 7:57 PM

326 C# During Its Abstract Period

Figure 7-3:
Both High
School
and
Univer-
sity
should be
based on
a common
School
class.

University

+ avgSAT

+ Enroll ()
+ GetGrant ()

High School

+ Enroll ()
+ NameFavorite ()

School
{abstract}

– numStudents Student

+ Enroll ()
– {abstract}

*

The introduction of the School class has at least two big advantages:

 ✦ It corresponds with reality. A University is a School, but it isn’t a
HighSchool. Matching reality is nice but not conclusive.

 ✦ It isolates one class from changes or additions to the other. When my
boss inevitably requests later that I introduce the commencement exer-
cise to the university, I can add the CommencementSpeech() method
to the University class and not affect HighSchool.

This process of culling common properties from similar classes is known
as factoring. This feature of object-oriented languages is important for the
reasons described earlier in this minibook, plus one more: reducing redun-
dancy. Let me repeat: Redundancy is bad.

 Factoring is legitimate only if the inheritance relationship corresponds to
reality. Factoring together a class Mouse and Joystick because they’re
both hardware pointing devices is legitimate. Factoring together a class
Mouse and Display because they both make low-level operating-system
calls is not.

Factoring can and usually does result in multiple levels of abstraction. For
example, a program written for a more developed school hierarchy may
have a class structure more like the one shown in Figure 7-4.

You can see that I have inserted a pair of new classes between University
and School: HigherLearning and LowerLevel. For example, I’ve subdi-
vided the new class HigherLearning into College and University. This
type of multitiered class hierarchy is common and desirable when factoring
out relationships. They correspond to reality, and they can teach you some-
times subtle features of your solution.

21_563489-bk02ch07.indd 32621_563489-bk02ch07.indd 326 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

327C# During Its Abstract Period

Figure 7-4:
Class
factoring
can (and
usually
does) result
in added
layers of
inheritance
hierarchy.

HigherLearning

College

Jr. College

University

LowerLevel

School

Grammar School High School

Note, however, that no Unified Factoring Theory exists for any given set of
classes. The relationship shown in Figure 7-4 seems natural, but suppose
that an application cared more about differentiating types of schools that
are administered by local politicians from those that aren’t. This relation-
ship, shown in Figure 7-5, is a more natural fit for that type of problem. No
“correct” factoring exists: The proper way to break down the classes is par-
tially a function of the problem being solved.

Figure 7-5:
Breaking
down
classes is
partially a
function of
the problem
being
solved.

Remote

University

Local

School

Public Community

Grammar High School Community College Jr. College

The abstract class: Left with nothing but a concept
As intellectually satisfying as factoring is, it introduces a problem of its own.
Visit (or revisit) BankAccount, introduced at the beginning of this chapter.
Think about how you may go about defining the different member methods
defined in BankAccount.

21_563489-bk02ch07.indd 32721_563489-bk02ch07.indd 327 3/19/10 7:57 PM3/19/10 7:57 PM

328 C# During Its Abstract Period

Most BankAccount member methods are no problem to refactor because
both account types implement them in the same way. You should implement
those common methods in BankAccount. Withdraw() is different, however.
The rules for withdrawing from a savings account differ from those for with-
drawing from a checking account. You have to implement SavingsAccount.
Withdraw() differently from CheckingAccount.Withdraw(). But how are
you supposed to implement BankAccount.Withdraw()?

Ask the bank manager for help. I imagine this conversation taking place:

“What are the rules for making a withdrawal from an account?” you ask,
expectantly.

“Which type of account? Savings or checking?” comes the reply.

“From an account,” you say. “Just an account.”

[Blank look.] (You might say a “blank bank look.” Then again, maybe
not.)

The problem is that the question doesn’t make sense. No such thing as
“just an account” exists. All accounts (in this example) are either checking
accounts or savings accounts. The concept of an account is abstract: It fac-
tors out properties common to the two concrete classes. It’s incomplete
because it lacks the critical property Withdraw(). (After you delve into the
details, you may find other properties that a simple account lacks.)

The concept of a BankAccount is abstract.

How do you use an abstract class?
Abstract classes are used to describe abstract concepts.

An abstract class is a class with one or more abstract methods. (Oh, great.
That helps a lot.) Okay, an abstract method is a method marked abstract.
(We’re moving now!) Let me try again: An abstract method has no implemen-
tation — now you’re really confused.

Consider the following stripped-down demonstration program:

// AbstractInheritance -- The BankAccount class is abstract because
// there is no single implementation for Withdraw.
namespace AbstractInheritance
{
 using System;
 // AbstractBaseClass -- Create an abstract base class with nothing
 // but an Output() method. You can also say “public abstract.”
 abstract public class AbstractBaseClass
 {
 // Output -- Abstract method that outputs a string
 abstract public void Output(string outputString);
 }

21_563489-bk02ch07.indd 32821_563489-bk02ch07.indd 328 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

329C# During Its Abstract Period

 // SubClass1 -- One concrete implementation of AbstractBaseClass
 public class SubClass1 : AbstractBaseClass
 {
 override public void Output(string source) // Or “public override”
 {
 string s = source.ToUpper();
 Console.WriteLine(“Call to SubClass1.Output() from within {0}”, s);
 }
 }
 // SubClass2 -- Another concrete implementation of AbstractBaseClass
 public class SubClass2 : AbstractBaseClass
 {
 public override void Output(string source) // Or “override public”
 {
 string s = source.ToLower();
 Console.WriteLine(“Call to SubClass2.Output() from within {0}”, s);
 }
 }
 class Program
 {
 public static void Test(AbstractBaseClass ba)
 {
 ba.Output(“Test”);
 }
 public static void Main(string[] strings)
 {
 // You can’t create an AbstractBaseClass object because it’s
 // abstract -- duh. C# generates a compile-time error if you
 // uncomment the following line.
 // AbstractBaseClass ba = new AbstractBaseClass();
 // Now repeat the experiment with Subclass1.
 Console.WriteLine(“\ncreating a SubClass1 object”);
 SubClass1 sc1 = new SubClass1();
 Test(sc1);
 // And, finally, a Subclass2 object
 Console.WriteLine(“\ncreating a SubClass2 object”);
 SubClass2 sc2 = new SubClass2();
 Test(sc2);
 // Wait for user to acknowledge.
 Console.WriteLine(“Press Enter to terminate... “);
 Console.Read();
 }
 }
}

The program first defines the class AbstractBaseClass with a single
abstract Output() method. Because it’s declared abstract, Output() has
no implementation — that is, no method body.

Two classes inherit from AbstractBaseClass: SubClass1 and
SubClass2. Both are concrete classes because they override the Output()
method with “real” methods and contain no abstract methods themselves.

A class can be declared abstract whether it has abstract members or not;
however, a class can be concrete only when all abstract methods in any base
class above it have been overridden with full methods.

21_563489-bk02ch07.indd 32921_563489-bk02ch07.indd 329 3/19/10 7:57 PM3/19/10 7:57 PM

330 Sealing a Class

The two subclass Output() methods differ in a trivial way: Both accept
input strings, which they regurgitate to users. However, one converts the
string to all caps before output and the other converts it to all-lowercase
characters.

The following output from this program demonstrates the polymorphic
nature of AbstractBaseClass:

Creating a SubClass1 object
Call to SubClass1.Output() from within TEST

Creating a SubClass2 object
Call to SubClass2.Output() from within test
Press Enter to terminate...

An abstract method is automatically virtual, so you don’t add the virtual
keyword to an abstract method.

Creating an abstract object — not!
Notice something about the AbstractInheritance program: It isn’t legal
to create an AbstractBaseClass object, but the argument to Test() is
declared to be an object of the class AbstractBaseClass or one of its sub-
classes. It’s the “subclasses” clause that’s critical here. The SubClass1 and
SubClass2 objects can be passed because each one is a concrete subclass
of AbstractBaseClass. The IS_A relationship applies. This powerful tech-
nique lets you write highly general methods.

Sealing a Class
You may decide that you don’t want future generations of programmers to
be able to extend a particular class. You can lock the class by using the key-
word sealed.

 A sealed class cannot be used as the base class for any other class.

Consider this code snippet:

using System;
public class BankAccount
{
 // Withdrawal -- You can withdraw any amount up to the
 // balance; return the amount withdrawn
 virtual public void Withdraw(decimal withdrawal)
 {
 Console.WriteLine(“invokes BankAccount.Withdraw()”);
 }
}
public sealed class SavingsAccount : BankAccount
{

21_563489-bk02ch07.indd 33021_563489-bk02ch07.indd 330 3/19/10 7:57 PM3/19/10 7:57 PM

Book II

Chapter 7

P
o

ly-w
h

a
t-ism

?

331Sealing a Class

 override public void Withdraw(decimal withdrawal)
 {
 Console.WriteLine(“invokes SavingsAccount.Withdraw()”);
 }
}
public class SpecialSaleAccount : SavingsAccount // Oops!
{
 override public void Withdraw(decimal withdrawal)
 {
 Console.WriteLine(“invokes SpecialSaleAccount.Withdraw()”);
 }
}

This snippet generates the following compiler error:

‘SpecialSaleAccount’ : cannot inherit from sealed class ‘SavingsAccount’

You use the sealed keyword to protect your class from the prying meth-
ods of a subclass. For example, allowing a programmer to extend a class
that implements system security enables someone to create a security back
door.

Sealing a class prevents another program, possibly somewhere on the
Internet, from using a modified version of your class. The remote program
can use the class as is, or not, but it can’t inherit bits and pieces of your
class while overriding the rest.

21_563489-bk02ch07.indd 33121_563489-bk02ch07.indd 331 3/19/10 7:57 PM3/19/10 7:57 PM

Book II: Object-Oriented C# Programming332

21_563489-bk02ch07.indd 33221_563489-bk02ch07.indd 332 3/19/10 7:57 PM3/19/10 7:57 PM

Chapter 8: Interfacing
with the Interface

In This Chapter
✓ Beyond IS_A and HAS_A: The C# interface

✓ Creating your own interface or using one provided by .NET

✓ Unifying separate class hierarchies with interfaces

✓ Hiding part of your class’s public interface behind an interface

✓ Managing software change — flexibility via interfaces

Aclass can contain a reference to another class; this statement
describes the simple HAS_A relationship. One class can extend another

class by way of the marvel of inheritance — that’s the IS_A relationship.
The C# interface implements another, equally important association: the
CAN_BE_USED_AS relationship.

This chapter introduces C# interfaces and shows some of the numerous ways
they increase the power and flexibility of object-oriented programming.

Introducing CAN_BE_USED_AS
If you want to jot a note, you can scribble it with a pen, type it into your
smartphone, or pound it out on your laptop’s keyboard. You can fairly say
that all three objects — pen, smartphone, and computer — implement the
TakeANote operation. Suppose that you use the magic of inheritance to
implement this concept in C#:

abstract class ThingsThatRecord // The base class
{
 abstract public void TakeANote(string note);
}
public class Pen : ThingsThatRecord // A subclass
{
 override public void TakeANote(string note)
 {
 // ... scribble a note with a pen ...
 }

22_563489-bk02ch08.indd 33322_563489-bk02ch08.indd 333 3/19/10 8:04 PM3/19/10 8:04 PM

334 Introducing CAN_BE_USED_AS

}
public class PDA : ThingsThatRecord // Another subclass
{
 override public void TakeANote(string note)
 {
 // ... stroke a note on the PDA ...
 }
}
public class LapTop : ThingsThatRecord // A third subclass
{
 override public void TakeANote(string note)
 {
 // ... tap, tap, tap ...
 }
}

If the term abstract has you stumped, see Chapter 7 of this minibook and
read the discussion later in this chapter. If the whole concept of inheritance
is a mystery, check out Chapter 6 of this minibook.

The following simple method shows the inheritance approach working just
fine:

void RecordTask(ThingsThatRecord recorder) // Parameter type is base class.
{
 // All classes that extend ThingsThatRecord have a TakeANote method.
 recorder.TakeANote(“Shopping list”);
 // ... and so on.
}

The parameter type is ThingsThatRecord, so you can pass any subclasses
to this method, making the method quite general.

That might seem like a good solution, but it has two big drawbacks:

 ✦ A fundamental problem: Do Pen, PDA, and LapTop truly have an IS_A
relationship? Are those three items all the same type in real life? I don’t
think so, do you? All I can say is that ThingsThatRecord makes a poor
base class here.

 ✦ A purely technical problem: You might reasonably derive both
LapTop and PDA as subclasses of Computer. But nobody would say
that a Pen IS_A Computer. You have to characterize a pen as a type of
MechanicalWritingDevice or DeviceThatStainsYourShirt. But
a C# class can’t inherit from two different base classes at the same
time — a C# class can be only one type of item.

So the Pen, PDA, and LapTop classes have in common only the character-
istic that they CAN_BE_USED_AS recording devices. Inheritance doesn’t
apply.

22_563489-bk02ch08.indd 33422_563489-bk02ch08.indd 334 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

335Knowing What an Interface Is

Knowing What an Interface Is
An interface in C# resembles a class with no data members and nothing but
abstract methods, almost like an abstract class — almost:

interface IRecordable
{
 void TakeANote(string note);
}

The interface begins with the interface keyword. It contains nothing but
abstract methods. It has no data members and no implemented methods.

 Interfaces can contain a few other features, including properties (covered in
Chapter 5 of this minibook), events (covered in Chapter 9 of this minibook),
and indexers (covered at the end of Book I).

Among the elements that a C# interface cannot exhibit are

 ✦ Access specifiers, such as public or private (see Chapter 5 of this
minibook)

 ✦ Keywords such as virtual, override, or abstract (see Chapter 7 of
this minibook)

 ✦ Data members (see Chapter 2 of this minibook)

 ✦ Implemented methods — nonabstract methods with bodies

All members of a C# interface are public (you can’t even mention access
specifiers in defining interface methods), and a C# interface isn’t involved in
normal inheritance; hence, it has none of those keywords. (An interface itself
can be public, protected, internal, or private.)

Unlike an abstract class, a C# interface isn’t a class. It can’t be subclassed,
and none of the methods it contains can have bodies.

How to implement an interface
To put a C# interface to use, you implement it with one or more classes. The
class heading looks like this:

class Pen : IRecordable // Looks like inheritance, but isn’t

 A C# interface specifies that classes which implement the interface must pro-
vide specific implementations. They must. For example, any class that imple-
ments the IRecordable interface must provide an implementation for the
TakeANote method. The method that implements TakeANote doesn’t use
the override keyword. Using an interface isn’t like overriding a virtual
method in classes.

22_563489-bk02ch08.indd 33522_563489-bk02ch08.indd 335 3/19/10 8:04 PM3/19/10 8:04 PM

336 Knowing What an Interface Is

Class Pen might look like this:

class Pen : IRecordable
{
 public void TakeANote(string note) // Interface method implementations
 { // MUST be declared public.
 // ... scribble a note with a pen ...
 }
}

This example fulfills two requirements: Note that the class implements
IRecordable, and provide a method implementation for TakeANote().

The syntax indicating that a class inherits a base class, such as
ThingsThatRecord, is essentially no different from the syntax indicating
that the class implements a C# interface such as IRecordable:

public class PDA : ThingsThatRecord ...
public class PDA : IRecordable ...

Visual Studio can help you implement an interface. Hover the mouse pointer
over the interface name in the class heading. A little underline appears
underneath the first character of the interface name. Move the mouse until a
menu opens and choose Implement Interface <name>. Presto! A skeleton
framework appears — you fill in the details.

How to name your interface
The .NET naming convention for interfaces precedes the name with the
letter I. Interface names are typically adjectives, such as IRecordable.

Why C# includes interfaces
 The bottom line of interfaces is that an interface describes a capability,

such as Swim Safety Training or Class A Driver’s License. As a class, I earn
my IRecordable badge when I implement the TakeANote ability.

More than that, an interface is a contract. If you agree to implement every
method defined in the interface, you get to claim its capability. Not only that,
but a client using your class in her program is guaranteed to be able to call
those methods. Implementing an interface is a promise — enforced by the
compiler. (Enforcing promises through the compiler reduces errors.)

Mixing inheritance and interface implementation
Unlike some languages, such as C++, C# doesn’t allow multiple inheritance —
a class inheriting from two or more base classes. Think of class HouseBoat
inheriting from House and Boat. Just don’t think of it in C#.

22_563489-bk02ch08.indd 33622_563489-bk02ch08.indd 336 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

337Knowing What an Interface Is

But although a class can inherit from only one base class, it can in addition
implement as many interfaces as needed. After I treated recordability as an
interface, a couple of the recording devices looked like this:

public class Pen : IRecordable // Base class is Object.
{
 public void TakeANote(string note)
 {
 // Record the note with a pen.
 }
}
public class PDA : ElectronicDevice, IRecordable
{
 public void TakeANote(string note)
 {
 // Record the note with your thumbs or a stylus.
 }
}

Class PDA inherits from a base class and implements an interface.

And he-e-e-re’s the payoff
To begin to see the usefulness of an interface such as IRecordable, con-
sider this example:

public class Program
{
 static public void RecordShoppingList(IRecordable recorder)
 {
 // Jot it down, using whatever device was passed in.
 recorder.TakeANote(...);
 }
 public static void Main(string[] args)
 {
 PDA pda = new PDA();
 RecordShoppingList(pda); // Oops, battery’s low ...
 RecordShoppingList(pen);
 }
}

The IRecordable parameter is an instance of any class that implements
the IRecordable interface. RecordShoppingList() makes no assump-
tions about the exact type of recording object. Whether the device is a PDA
or a type of ElectronicDevice isn’t important, as long as the device can
record a note.

That concept is immensely powerful because it lets the RecordShopping
List() method be highly general — and thus possibly reusable in other
programs. The method is even more general than using a base class such
as ElectronicDevice for the argument type, because the interface lets
you pass almost arbitrary objects that don’t necessarily have anything in

22_563489-bk02ch08.indd 33722_563489-bk02ch08.indd 337 3/19/10 8:04 PM3/19/10 8:04 PM

338 Using an Interface

common other than implementing the interface. They don’t even have to
come from the same class hierarchy, which truly simplifies the designing of
hierarchies, for example.

 Overworked word alert: Programmers use the term interface in more than
one way. You can see the C# keyword interface and how it’s used. People
also talk about a class’s public interface, or the public methods and proper-
ties that it exposes to the outside world. I keep the distinction clear by
saying C# interface most of the time when that’s what I mean, and saying
public interface when I refer to a class’s set of public methods.

C# structures can implement interfaces just as classes can.

Using an Interface
In addition to your being able to use a C# interface for a parameter type, an
interface is useful as

 ✦ A method return type

 ✦ The base type of a highly general array or collection

 ✦ A more general kind of object reference for variable types

I explain the advantage of using a C# interface as a method parameter type
in the previous section. Now I can tell you about other interfaces.

As a method return type
I like to farm out to a factory method the task of creating the key objects I
need. Suppose that I have a variable like this one:

IRecordable recorder = null; // Yes, you can have interface-type variables.

Somewhere, maybe in my constructor, I call a factory method to deliver a
particular kind of IRecordable object:

recorder = MyClass.CreateRecorder(“Pen”); // A factory method is often static.

where CreateRecorder() is a method, often on the same class, that
returns not a reference to a Pen but, rather, an IRecordable reference:

static IRecordable CreateRecorder(string recorderType)
{
 if(recorderType == “Pen”) return new Pen();
 ...
}

I say more about the factory idea later in this chapter. But note that the
return type for CreateRecorder() is an interface type.

22_563489-bk02ch08.indd 33822_563489-bk02ch08.indd 338 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

339Using the C# Predefined Interface Types

As the base type of an array or collection
Suppose that you have two classes, Animal and Robot, and that both are
abstract. You want to set up an array to hold both thisCat (an Animal)
and thatRobot (a cute droid). The only way is to fall back on type Object,
the ultimate base class in C#, and the only base class that’s common to both
Animal and Robot as well as to their subclasses:

object[] things = new object[] { thisCat, thatRobot };

That’s poor design for lots of reasons. But suppose that you’re focused on
the objects’ movements. You can have each class implement an IMovable
interface:

interface IMovable
{
 void Move(int direction, int speed, int distance);
}

and then set up an array of IMovables to manipulate your otherwise incom-
patible objects:

IMovable[] movables = { thisCat, thatRobot };

The interface gives you a commonality that you can exploit in collections.

As a more general type of object reference
The following variable declaration refers to a specific, physical, concrete
object (see the later section “Abstract or concrete: When to use an abstract
class and when to use an interface”):

Cat thisCat = new Cat();

One alternative is to use a C# interface for the reference:

IMovable thisMovableCat = (IMovable)new Cat(); // Note the required cast.

Now you can put any object into the variable that implements IMovable.
This practice has wide, powerful uses in object-oriented programming, as
you can see later in this chapter.

Using the C# Predefined Interface Types
Because interfaces are extremely useful, you find more interfaces in the
.NET class library than gun racks at an NRA convention. I counted dozens
in Help before I got tired and stopped. Among the dozen or more interfaces
in the System namespace alone are IComparable, IComparable<T>,
IDisposable, and IFormattable. The System.Collections.Generics

22_563489-bk02ch08.indd 33922_563489-bk02ch08.indd 339 3/19/10 8:04 PM3/19/10 8:04 PM

340 Looking at a Program That CAN_BE_USED_AS an Example

namespace includes IEnumerable<T>, IList<T>, ICollection<T>, and
IDictionary<TKey, TValue>. And there are many more. Those with the
<T> notation are generic interfaces. I explain the <T> notation in the discus-
sion of collection classes in Book I, Chapter 6.

The Help files show all the ISomething<T> types with little tick marks
added (IList`1), but look for “IList<T>” in the Help index.

Two interfaces that are commonly used are IComparable and
IEnumerable — largely superseded now by their generic versions
IComparable<T> (read as “IComparable of T”) and IEnumerable<T>.

I show you the IComparable<T> interface in this chapter. It makes pos-
sible a comparison of all sorts of objects, such as Students, to each other,
and enables the Sort() method that all arrays and most collections supply.
IEnumerable<T> makes the powerful foreach loop work — most collec-
tions implement IEnumerable<T>, so you can iterate the collections with
foreach. You can find an additional major use for IEnumerable<T> in
Book I, as the basis for the new C# 3.0 query expressions.

Looking at a Program That CAN_BE_USED_AS
an Example

The following SortInterface program is a special offer. The capabilities
brought to you by two different interfaces cannot be matched in any inheri-
tance relationship. Interface implementations are standing by.

However, I want to break the SortInterface program into sections to
demonstrate various principles. (Pfft! As though I have any principles. I just
want to make sure that you can see exactly how the program works.)

Creating your own interface
at home in your spare time
The following IDisplayable interface is satisfied by any class that contains
a Display() method (and declares that it implements IDisplayable, of
course). Display() returns a string representation of the object that can
be displayed using WriteLine().

// IDisplayable -– Any object that implements the Display() method
interface IDisplayable
{
 // Return a description of yourself.
 string Display();
}

22_563489-bk02ch08.indd 34022_563489-bk02ch08.indd 340 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

341Looking at a Program That CAN_BE_USED_AS an Example

The following Student class implements IDisplayable:

class Student : IDisplayable
{
 public Student(string name, double grade)
 { Name = name; Grade = grade; }
 public string Name { get; private set; }
 public double Grade { get; private set; }
 public string Display()
 {
 string padName = Name.PadRight(9);
 return String.Format(“{0}: {1:N0}”, padName, Grade);
 }
}

Display() uses String’s PadRight() and Format() methods, covered
in Book I, Chapter 3, to return a neatly formatted string.

The following DisplayArray() method takes an array of any objects that
implement the IDisplayable interface. Each of those objects is guaranteed
(by the interface) to have its own Display() method (the entire program
appears in the later section “Putting it all together”):

// DisplayArray -– Display an array of objects that implement
// the IDisplayable interface.
public static void DisplayArray(IDisplayable[] displayables)
{
 foreach(IDisplayable disp in displayables)
 {
 Console.WriteLine(“{0}, disp.Display());
 }
}

The following example shows the output from DisplayArray():

Homer : 0
Marge : 85
Bart : 50
Lisa : 100
Maggie : 30

Implementing the incomparable
IComparable<T> interface
C# defines the interface IComparable<T> this way:

interface IComparable<T>
{
 // Compare the current T object to the object ‘item’; return a
 // 1 if larger, -1 if smaller, and 0 if the same.
 int CompareTo(T item);
}

22_563489-bk02ch08.indd 34122_563489-bk02ch08.indd 341 3/19/10 8:04 PM3/19/10 8:04 PM

342 Looking at a Program That CAN_BE_USED_AS an Example

A class implements the IComparable<T> interface by implementing a
CompareTo() method. Notice that CompareTo() takes an argument of type
T, a type you supply when you instantiate the interface for a particular data
type — as in this example:

class SoAndSo : IComparable<SoAndSo> // Make me comparable.

When you implement IComparable<T> for your class, its CompareTo()
method should return 0 if the two items (of your class type) being compared
are “equal” in a way that you define. If not, it should return 1 or –1, depend-
ing on which object is “greater.”

It seems a little Darwinian, but you could say that one Student object is
“greater than” another Student object if his grade-point average is higher.
(Okay, either a better student or a better apple-polisher — it doesn’t
matter.)

Implementing the CompareTo() method implies that the objects have a
sorting order. If one student is “greater than” another, you must be able to
sort the students from “least” to “greatest.” In fact, most collection classes
(including arrays but not dictionaries) supply a Sort() method something
like this:

void Sort(IComparable<T>[] objects);

This method sorts a collection of objects that implement the IComparable
<T> interface. It doesn’t even matter which class the objects belong to. For
example, they could even be Student objects. Collection classes such as
arrays or List<T> could even sort this version of Student:

 // Student -- Description of a student with name and grade
 class Student : IComparable<Student>, IDisplayable // Instantiation
 {
 // Constructor -- initialize a new student object.
 public Student(double grade)
 { Grade = grade; }
 public double Grade { get; private set; }
 // Implement the IComparable<T> interface:
 // CompareTo -- Compare another object (in this case, Student objects) and
 // decide which one comes after the other in the sorted array.
 public int CompareTo(Student rightStudent)
 {
 // Compare the current Student (call her ‘left’) against the other
 // student (call her ‘right’).
 Student leftStudent = this;

 // Now generate a -1, 0 or 1 based on the Sort criteria (the student’s
 // grade). I could use class Double’s CompareTo() method instead).
 if (rightStudent.Grade < leftStudent.Grade)
 {
 return -1;
 }

22_563489-bk02ch08.indd 34222_563489-bk02ch08.indd 342 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

343Looking at a Program That CAN_BE_USED_AS an Example

 if (rightStudent.Grade > leftStudent.Grade)
 {
 return 1;
 }
 return 0;
 }
 }

Sorting an array of Students is reduced to this single call:

void MyMethod(Student[] students) // Where Student implements IComparable<T>
{
 Array.Sort(students); // Sort array of IComparable<Student>s
}

You provide the comparator (CompareTo()), and Array does all the
work — sounds fair to me.

Putting it all together
This is the moment you’ve been waiting for: the complete SortInterface
program that uses the features described earlier in this chapter:

// SortInterface -- Demonstrates how the interface concept can be used
// to provide an enhanced degree of flexibility in factoring
// and implementing classes.
using System;
namespace SortInterface
{
 // IDisplayable -- An object that can convert itself into a displayable
 // string format (duplicates what you can do by overriding
 // ToString(), but helps me make a point)
 interface IDisplayable
 {
 // Display -- return a string representation of yourself.
 string Display();
 }
 class Program
 {
 public static void Main(string[] args)
 {
 // Sort students by grade...
 Console.WriteLine(“Sorting the list of students”);
 // Get an unsorted array of students.
 Student[] students = Student.CreateStudentList();
 // Use the IComparable<T> interface to sort the array.
 Array.Sort(students);
 // Now the IDisplayable interface to display the results
 DisplayArray(students);

 // Now sort an array of birds by name using the same routines even
 // though the classes Bird and Student have no common base class.
 Console.WriteLine(“\nsorting the list of birds”);
 Bird[] birds = Bird.CreateBirdList();
 // Notice that it’s not necessary to cast the objects explicitly
 // to an array of IDisplayables (and wasn’t for Students, either) ...

22_563489-bk02ch08.indd 34322_563489-bk02ch08.indd 343 3/19/10 8:04 PM3/19/10 8:04 PM

344 Looking at a Program That CAN_BE_USED_AS an Example

 Array.Sort(birds);
 DisplayArray(birds);
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // DisplayArray -- Display an array of objects that
 // implement the IDisplayable interface.
 public static void DisplayArray(IDisplayable[] displayables)
 {
 foreach(IDisplayable displayable in displayables)
 {
 Console.WriteLine(“{0}”, displayable.Display());
 }
 }
 }
 // ----------- Students -- Sort students by grade -------
 // Student -- Description of a student with name and grade
 class Student : IComparable<Student>, IDisplayable
 {
 // Constructor -- Initialize a new student object.
 public Student(string name, double grade)
 { Name = Name; Grade = grade; }
 // CreateStudentList -- To save space here, just create
 // a fixed list of students.
 static string[] names = {“Homer”, “Marge”, “Bart”, “Lisa”, “Maggie”};
 static double[] grades = {0, 85, 50, 100, 30};
 public static Student[] CreateStudentList()
 {
 Student[] students = new Student[names.Length];
 for (int i = 0; i < names.Length; i++)
 {
 students[i] = new Student(names[i], grades[i]);
 }
 return students;
 }
 // Access read-only properties.
 public string Name { get; private set; }
 public double Grade { get; private set; }
 // Implement the IComparable interface:
 // CompareTo -- Compare another object (in this case, Student objects)
 // and decide which one comes after the other in the sorted array.
 public int CompareTo(Student rightStudent)
 {
 // Compare the current Student (call her ‘left’) against
 // the other student (call her ‘right’).
 Student leftStudent = this;
 // Now generate a -1, 0 or 1 based on the Sort criteria (the student’s
 // grade). Double’s CompareTo() method would work, too.
 if (rightStudent.Grade < leftStudent.Grade)
 {
 return -1;
 }
 if (rightStudent.Grade > leftStudent.Grade)
 {
 return 1;
 }
 return 0;
 }
 // Display -- Implement the IDisplayable interface:

22_563489-bk02ch08.indd 34422_563489-bk02ch08.indd 344 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

345Looking at a Program That CAN_BE_USED_AS an Example

 public string Display()
 {
 string padName = Name.PadRight(9);
 return String.Format(“{0}: {1:N0}”, padName, Grade);
 }
 }
 // -----------Birds -- Sort birds by their names--------
 // Bird -- Just an array of bird names.
 class Bird : IComparable<Bird>, IDisplayable
 {
 // Constructor -- initialize a new Bird object.
 public Bird(string name) { Name = name; }
 // CreateBirdList -- Return a list of birds to the caller;
 // Use a canned list here to save space.
 static string[] birdNames =
 { “Oriole”, “Hawk”, “Robin”, “Cardinal”, “Bluejay”, “Finch”, “Sparrow”};
 public static Bird[] CreateBirdList()
 {
 Bird[] birds = new Bird[birdNames.Length];
 for(int i = 0; i < birds.Length; i++)
 {
 birds[i] = new Bird(birdNames[i]);
 }
 return birds;
 }
 public string Name { get; private set; }
 // Implement the IComparable interface:
 // CompareTo -- Compare the birds by name; use the
 // built-in String class compare method.
 public int CompareTo(Bird rightBird)
 {
 // Compare the “current” bird to the “right hand object” bird.
 Bird leftBird = this;
 return String.Compare(leftBird.Name, rightBird.Name);
 }
 // Display -- Implement the IDisplayable interface.
 public string Display() { return Name; }
 }
}

The Student class (it’s in the middle of the program listing) implements the
IComparable<T> and IDisplayable interfaces, as described earlier. The
CompareTo() method compares the students by grade, which results in the
students being sorted by grade. Student’s Display() method returns the
name and grade of the student.

The other methods of Student include the read-only Name and Grade prop-
erties, a simple constructor, and a CreateStudentList() method. This
method just returns a fixed list of students for the code to work on.

The Bird class at the bottom of the listing also implements the interfaces
IComparable<T> and IDisplayable. The class implements CompareTo()
by comparing the names of the birds using String.Compare(). So one bird
is greater than another if its name is greater. Bird.CompareTo() alphabet-
izes the list. Bird’s Display() method just returns the name of the bird.

22_563489-bk02ch08.indd 34522_563489-bk02ch08.indd 345 3/19/10 8:04 PM3/19/10 8:04 PM

346 Unifying Class Hierarchies

Getting back to the Main() event
If you’ve followed along with us so far, you’re set up for the good part,
back in Main(). The CreateStudentList() method is used to return an
unsorted list, which is stored in the array students.

You might think it necessary to cast the array of students into an array of
comparableObjects so that you can pass the students to Array’s Sort()
method:

IComparable<Student>[] comparables = (IComparable<Student>[])students;

But not so, my friend. Sort() sees that the array passed in consists of
objects that implement IComparable<something> and simply calls
CompareTo() on each Student object to sort them. Great, eh?

The sorted array of Student objects is then passed to the locally defined
DisplayArray() method. DisplayArray() uses foreach to iterate
through an array of objects that implement a Display() method (guaran-
teed by the objects’ having implemented IDisplayable). In the loop, it
calls Display() on each object and displays the result to the console using
WriteLine().

The program in Main() continues by sorting and displaying birds! I think we
can agree that birds have nothing to do with students. Yet the same Sort()
and DisplayArray() methods work on Bird as on Student.

The output from the program appears:

Sorting the list of students
Lisa : 100
Marge : 85
Bart : 50
Maggie : 30
Homer : 0

Sorting the list of birds
Bluejay
Cardinal
Finch
Hawk
Oriole
Robin
Sparrow
Press Enter to terminate...

Unifying Class Hierarchies
Figure 8-1 shows the Robot and Animal hierarchies. Some, but not all, of
the classes in each hierarchy not only inherit from the base classes, Robot
or Animal, but they also implement the IPet interface (not all animals are
pets, you see), as shown in the following code — I skipped lots of details:

22_563489-bk02ch08.indd 34622_563489-bk02ch08.indd 346 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

347Unifying Class Hierarchies

// Two abstract base classes and one interface
abstract class Animal
{
 abstract public void Eat(string food);
 abstract public void Sleep(int hours);
 abstract public int NumberOfLegs { get; }
 public void Breathe() { ... } // Nonabstract, implementation not shown.
}
abstract class Robot
{
 public virtual void Speak(string whatToSay) { ... } // Impl not shown
 abstract public void LiftObject(object o);
 abstract public int NumberOfLegs { get; }
}
interface IPet
{
 void AskForStrokes();
 void DoTricks();
 int NumberOfLegs { get; } // Properties in interfaces look like this.
 string Name { get; set; } // get/set must be public in implementations.
}
// Cat -- This concrete class inherits (and partially implements)
// class Animal and also implements interface IPet.
class Cat : Animal, IPet
{
 public Cat(string name) { Name = name; }
 // 1. Overrides and implements Animal members (not shown).
 // 2. Provides additional implementation for IPet.
 #region IPet Members
 public void AskForStrokes() ...
 public void DoTricks() ...
 public string Name { get; set; }
 // Inherits NumberOfLegs property from base class, thus meeting
 // IPet’s requirement for a NumberOfLegs property.
 #endregion IPet Members
 public override string ToString() { return Name; }
}
class Cobra : Animal
{
 // 1. Inherits or overrides all Animal methods only (not shown).
}
class Robozilla : Robot // Not IPet
{
 // 1. Override Speak.
 public override void Speak(string whatToSay)
 { Console.WriteLine(“DESTROY ALL HUMANS!”); }
 // 2. Implement LiftObject and NumberOfLegs, not all shown.
 public override void LiftObject(object o) ...
 public override int NumberOfLegs { get { return 2; } }
}
class RoboCat : Robot, IPet
{
 public RoboCat(string name) { Name = name; }
 // 1. Override some Robot members, not all shown:
 #region IPet Members
 public void AskForStrokes() ...
 public void DoTricks() ...
 public string Name { get; set; }
 #endregion IPet Members
}

22_563489-bk02ch08.indd 34722_563489-bk02ch08.indd 347 3/19/10 8:04 PM3/19/10 8:04 PM

348 Hiding Behind an Interface

(Notice the properties in IPet — that’s how you specify properties in inter-
faces. If you need both getter and setter, just add set; after get;.)

Figure 8-1:
A tale of
two class
hierarchies
and one
interface.

 Cat Robozilla Robocat

Animal Robot

iPet

Cobra

I’ve shown you two concrete classes that inherit from Animal and two that
inherit from Robot. However, you can see that neither class Cobra nor class
Robozilla implements IPet — probably for good reasons. I have no plans
to watch TV with my pet cobra beside me on the couch, and a robozilla
sounds nasty too. Some of the classes in both hierarchies exhibit what you
might call “petness” and some don’t.

 The InterfacesBridgingHierarchies example on this book’s Web site
puts these items through their paces.

The point of this section is that any class can implement an interface, as long
as it provides the right methods and properties. Robotcat and Robodog
can carry out the AskForStrokes() and DoTricks() actions and have the
NumberOfLegs property, as can Cat and Dog in the Animal hierarchy — all
while other classes in the same hierarchies don’t implement IPet.

 You can add support for an interface to any class — but only if you’re free to
modify the source code.

Hiding Behind an Interface
Often in this book, I discuss code that (a) you write but (b) someone else
(a client) uses in her programs (you may be the client yourself, of course).
Sometimes, you have a complex or tricky class for which you would truly
rather not expose the whole public interface to clients. For various reasons,
it includes some dangerous operations that nonetheless have to be public.
Ideally, you would expose a safe subset of your class’s public methods and
properties and hide the dangerous ones. C# interfaces can do that too.

22_563489-bk02ch08.indd 34822_563489-bk02ch08.indd 348 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

349Hiding Behind an Interface

Here’s a different Robozilla class, with several methods and properties
that amateurs can use safely and enjoyably. But Robozilla also has some
advanced features that can be, well, scary:

public class Robozilla // Doesn’t implement IPet!
{
 public void ClimbStairs(); // Safe
 public void PetTheRobodog(); // Safe? Might break it.
 public void Charge(); // Maybe not safe
 public void SearchAndDestroy(); // Dangerous
 public void LaunchGlobalThermonuclearWar(); // Catastrophic
}

You want to expose only the two safer methods while hiding the last three
dangerous ones. Here’s how you can do that by using a C# interface:

 1. Design a C# interface that exposes only the safe methods:
public interface IRobozillaSafe
{
 void ClimbStairs();
 void PetTheRobodog();
}

 2. Modify the Robozilla class to implement the interface. Because it
already has implementations for the required methods, all you need is
the : IRobozillaSafe notation on the class heading:

public class Robozilla : IRobozillaSafe ...

Now you can just keep Robozilla itself a secret from, say, everybody
except Gandhi, Martin Luther King, and Mother Theresa and give most users
the IRobozillaSafe interface. Give your clients a way to instantiate a new
Robozilla, but return to them a reference to the interface (in this example,
by using a static factory method added to class Robozilla):

// Creates a Robozilla but returns only an interface reference to it.
public static IRobozillaSafe CreateRobozilla(<parameter list>)
{
 return (IRobozillaSafe)new Robozilla(<parameter list>);
}

Clients then use Robozilla like this:

IRobozillaSafe myZilla = Robozilla.CreateRobozilla(...);
myZilla.ClimbStairs();
myZilla.PetTheRobodog();

It’s that simple. Using the interface, they can call the Robozilla methods
that it specifies — but not any other Robozilla methods.

22_563489-bk02ch08.indd 34922_563489-bk02ch08.indd 349 3/19/10 8:04 PM3/19/10 8:04 PM

350 Hiding Behind an Interface

 Programmers (I think I can guess which ones) can defeat my little ploy with
a simple cast:

Robozilla myKillaZilla = (Robozilla)myZilla;

Doing so is usually a bad idea, though. The interface has a purpose. Bill
Wagner says, “Programmers who go to that much work to create bugs get
what they deserve.”

In real life, programmers sometimes use this hand-out-an-interface technique
with the complex DataSet class used in ADO.NET to interact with data-
bases. A DataSet can return a set of database tables loaded with records —
such as a table of Customers and a table of Orders. (Modern relational
databases, such as Oracle and SQL Server, contain tables linked by various
relationships. Each table contains lots of records, where each record might
be, for example, the name, rank, and serial number of a Customer.)

Unfortunately, if you hand a client a DataSet reference (even through a
read-only property’s get clause), he can easily muddle the situation by
reaching into the DataSet and modifying elements that you don’t want
modified. One way to prevent such mischief is to return a DataView object,
which is read-only. Alternatively, you can create a C# interface to expose a
safe subset of the operations available on the DataSet. Then you can sub-
class DataSet and have the subclass (call it MyDataSet) implement the
interface. Finally, give clients a way to obtain an interface reference to a live
MyDataSet object and let them have at it in relative safety — through the
interface.

You usually shouldn’t return a reference to a collection, either, because it
lets anyone alter the collection outside the class that created it. Remember
that the reference you hand out can still point to the original collection
inside your class. That’s why List<T>, for instance, provides an
AsReadOnly() method. This method returns a collection that can’t be
altered:

private List<string> _readWriteNames = ... // A modifiable data member
...
ReadonlyCollection<string> readonlyNames = _readWriteNames.AsReadOnly();
return readonlyNames; // Safer to return this than _readWriteNames.

Although it doesn’t qualify as using an interface, the purpose is the same.

 The HidingBehindAnInterface example on this book’s Web site shows
the Robozilla code in this section.

22_563489-bk02ch08.indd 35022_563489-bk02ch08.indd 350 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

351Inheriting an Interface

Inheriting an Interface
A C# interface can “inherit” the methods of another interface. I use quotes
around the word inherit because it’s not true inheritance, no matter how it
may appear. The following interface code lists a base interface, much like a
base class, in its heading:

interface IRobozillaSafe : IPet // Base interface
{
 // Methods not shown here ...
}

By having IRobozillaSafe “inherit” IPet, you can let this subset of
Robozilla implement its own “petness” without trying to impose petness
inappropriately on all of Robozilla:

class PetRobo : Robozilla, IRobozillaSafe // (also an IPet by inheritance)
{
 // Implement Robozilla operations.
 // Implement IRobozillaSafe operations, then ...
 // Implement IPet operations too (required by the inherited IPet interface).
}
...
// Hand out only a safe reference, not one to PetRobo itself.
IPet myPetRobo = (IPet)new PetRobo();
// ... now call IPet methods on the object.

The IRobozillaSafe interface inherits from IPet. Classes that implement
IRobozillaSafe must therefore also implement IPet to make their imple-
mentation of IRobozillaSafe complete.

This type of inheritance isn’t the same concept as class inheritance. For
instance, class PetRobo in the previous example, can have a constructor,
but no equivalent of a base-class constructor exists for IRobozillaSafe
or IPet. Interfaces don’t have constructors. More important, polymorphism
doesn’t work the same way with interfaces. Though you can call a method
of a subclass through a reference to the base class (class polymorphism),
the parallel operation involving interfaces (interface polymorphism) doesn’t
work: You can’t call a method of the derived interface (IRobozillaSafe)
through a base interface reference (IPet).

 Although interface inheritance isn’t polymorphic in the same way that class
inheritance is, you can pass an object of a derived interface type
(IRobozillasafe) through a parameter of its base interface type (IPet).
Therefore, you can also put IRobozillasafe objects into a collection of
IPet objects. The PassInterface example on this book’s Web site demon-
strates the ideas in this section.

22_563489-bk02ch08.indd 35122_563489-bk02ch08.indd 351 3/19/10 8:04 PM3/19/10 8:04 PM

352 Using Interfaces to Manage Change in Object-Oriented Programs

Using Interfaces to Manage Change
in Object-Oriented Programs

Interfaces are the key to object-oriented programs that bend flexibly with
the winds of change. Your code will laugh in the face of new requirements.

 You’ve no doubt heard it said, “Change is a constant.” When you hand a new
program to a bunch of users, they soon start requesting changes. Add this
feature, please. Fix that problem, please. The RoboWarrior has feature X, so
why doesn’t Robozilla? Many programs have a long shelf life — thousands of
programs, especially old Fortran and Cobol programs, have been in service
for 20 or 30 years or longer. They undergo lots of maintenance in that
extended time span, which makes planning and designing for change one of
your highest priorities.

Here’s an example: In the Robot class hierarchy, suppose that all robots can
move in one way or another. Robocats saunter. Robozillas charge — at
least when operated by a power (hungry) user. And Robosnakes slither.
One way to implement these different modes of travel involves inheritance:
Give the base class, Robot, an abstract Move() method. Then each subclass
overrides the Move() method to implement it differently:

abstract public class Robot
{
 abstract public void Move(int direction, int speed);
 // ...
}
public class Robosnake : Robot
{
 public override void Move(int direction, int speed)
 {
 // A real Move() implementation here: slithering.
 ... some real code that computes angles and changes
 snake’s location relative to a coordinate system, say ...
 }
}

But suppose that you often receive requests to add new types of movement
to existing Robot subclasses. “Please make Robosnake undulate rather than
slither,” maybe. (Don’t ask me what the difference is.) Now you have to open
up the Robosnake class and modify its Move() method directly.

 After the Move() method is working correctly for slithering, most program-
mers would prefer not to meddle with it. Implementing slithering is difficult,
and changing the implementation can introduce brand-new bugs. If it ain’t
broke, don’t fix it.

22_563489-bk02ch08.indd 35222_563489-bk02ch08.indd 352 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

353Using Interfaces to Manage Change in Object-Oriented Programs

 The code just given illustrates the problem. The StrategyExample pro-
gram on this book’s Web site illustrates the solution, discussed in the next
several sections. The solution has the advantage of allowing the old, slither-
ing code to flourish for some applications while providing the new, undulat-
ing movement in newer applications. Everybody’s happy.

Making flexible dependencies through interfaces
There must be a way to implement Move() that doesn’t require you to open
a can of worms every time a client wants wriggling instead. You can use
interfaces, of course!

Look at the following code that uses HAS_A, a now-familiar relationship
between two classes in which one class contains the other:

public class Robot
{
 // This object is used to implement motion.
 protected Motor _motor = new Motor(); // Refers to Motor by name
 // ...
}
internal class Motor { ... }

The point about this example is that the contained object is of type Motor,
where Motor is a concrete object. (That is, it represents a real item, not
an abstraction.) HAS_A sets up a dependency between classes Robot and
Motor: Robot depends on the concrete class Motor. A class with concrete
dependencies is tightly coupled to them: When you need to replace Motor
with something else, code that depends directly on Motor like this has to
change too. Instead, insulate your code by relying only on the public inter-
face of dependencies, which you can do with interfaces. You can depend on
dependent objects in a, er, less dependent way.

 Depend on abstractions, not on concrete classes. I show you how.

Abstract or concrete: When to use an abstract
class and when to use an interface
In Chapter 7 of this minibook, in my little discourse about birds, I say, “Every
bird out there is a subtype of Bird.” In other words, a duck is an instance
of a subclass Duck. You never see an instance of Bird itself — Bird is an
abstraction. Instead, you always see concrete, physical ducks, sparrows,
or hummingbirds. Abstractions are concepts. As living creatures, ducks
are real, concrete objects. And, concrete objects are instances of concrete
classes. (A concrete class is a class that you can instantiate. It lacks the
abstract keyword, and it implements all methods.)

22_563489-bk02ch08.indd 35322_563489-bk02ch08.indd 353 3/19/10 8:04 PM3/19/10 8:04 PM

354 Using Interfaces to Manage Change in Object-Oriented Programs

 You can represent abstractions in two ways in C#: with abstract classes or
with C# interfaces. The two have differences that can affect your choice of
which one to use:

 ✦ Use an abstract class when you can profitably share an implementation
with subclasses — the abstract base class can contribute real code that
its subclasses can use by inheritance. For instance, maybe class Robot
can handle part of the robot’s tasks, just not movement.

 An abstract class doesn’t have to be completely abstract. Though it has
to have at least one abstract, unimplemented method or property, some
can provide implementations (bodies). Using an abstract class to pro-
vide an implementation for its subclasses to inherit prevents duplication
of code. That’s always a good thing.

 ✦ Use an interface when you can’t share any implementation or your
implementing class already has a base class.

 C# interfaces are purely, totally abstract. A C# interface supplies no
implementation of any of its methods. Yet it can also add flexibility that
isn’t otherwise possible. The abstract class option may not be available
because you want to add a capability to a class that already has a base
class (that you can’t modify). For example, class Robot may already have
a base class in a library that you didn’t write and therefore can’t alter.
Interfaces are especially helpful for representing completely abstract
capabilities, such as movability or displayability, that you want to add
to multiple classes that may otherwise have nothing in common — for
example, being in the same class hierarchy.

Doing HAS_A with interfaces
I mention earlier in this chapter that you can use interfaces as a more gen-
eral reference type. The containing class can refer to the contained class
not with a reference to a concrete class but, rather, with a reference to an
abstraction — either an abstract class or a C# interface will work:

 AbstractDependentClass dependency1 = ...;
 ISomeInterface dependency2 = ...;

Suppose that you have an IPropulsion interface:

interface IPropulsion
{
 void Movement(int direction, int speed);
}

Class Robot can contain a data member of type IPropulsion instead of the
concrete type Motor:

22_563489-bk02ch08.indd 35422_563489-bk02ch08.indd 354 3/19/10 8:04 PM3/19/10 8:04 PM

Book II

Chapter 8

In
te

rfa
c

in
g

 w
ith

th

e
 In

te
rfa

c
e

355Using Interfaces to Manage Change in Object-Oriented Programs

public class Robot
{
 private IPropulsion _propel; //<--Notice the interface type here.
 // Somehow, you supply a concrete propulsion object at runtime ...
 // Other stuff and then:
 public void Move(int speed, int direction)
 {
 // Use whatever concrete propulsion device is installed in _propel.
 _propel.Movement(speed, direction); // Delegate to its methods.
 }
}

Robot’s Move() method delegates the real work to the object referred to
through the interface. Be sure to provide a way to install a concrete Motor
or Engine or another implementer of IPropulsion in the data member.
Programmers often install that concrete object — “inject the dependency” —
by passing it to a constructor:

Robot r = new Robosnake(someConcreteMotor); // Type IPropulsion

or by assigning it via a setter property:

r.PropulsionDevice = someConcreteMotor; // Invokes the set clause

Another approach to dependency injection is to use a factory method (which
I discuss earlier in this chapter, in the section “As a method return type,”
and illustrate in the section “Hiding Behind an Interface”):

IPropulsion _propel = CreatePropulsion(); // A factory method

22_563489-bk02ch08.indd 35522_563489-bk02ch08.indd 355 3/19/10 8:04 PM3/19/10 8:04 PM

Book II: Object-Oriented C# Programming356

22_563489-bk02ch08.indd 35622_563489-bk02ch08.indd 356 3/19/10 8:04 PM3/19/10 8:04 PM

Chapter 9: Delegating Those
Important Events

In This Chapter
✓ Using delegates to solve the callback problem

✓ Using delegates to customize a method

✓ Implementing delegates by using anonymous methods

✓ Using C# events to notify the world when interesting events happen

This chapter looks into a corner of C# that has been around since the
birth of the language, but one that I’ve avoided because it’s challenging

stuff. However, if you can bear with me — and I try to go as easy on you as
possible — the payoff is well worth it.

E.T., Phone Home — The Callback Problem
If you’ve seen the Steven Spielberg movie E.T., the Extraterrestrial (1982),
you watched the cute but ugly little alien stranded on Earth try to build an
apparatus from old toy parts with which he could “phone home.” He needed
his ship to pick him up.

It’s a big jump from E.T. to C#, but code sometimes needs to phone home, too.
For example, you may have wondered how the Windows progress bar works.
It’s the horizontal “bar” that gradually fills up with coloring to show progress
during a lengthy operation, such as copying files. (On my machine, of course,
good old Murphy’s law — “Whatever can go wrong will go wrong” — seems to
fill it up well before the task is finished. Figure 9-1 shows a green progress bar
(though it isn’t easy being green in a black-and-white book).

The progress bar is based on a lengthy operation’s periodic pause to “phone
home.” In programmerese, it’s a callback. Usually, the lengthy operation esti-
mates how long its task should take and then checks frequently to see how
far it has progressed. Periodically, the progress bar sends a signal by calling a
callback method back on the mother ship — the class that kicked off the long
operation. The mother ship can then update its progress bar.

The trick is that you have to supply this callback method for the long opera-
tion to use.

23_563489-bk02ch09.indd 35723_563489-bk02ch09.indd 357 3/19/10 7:55 PM3/19/10 7:55 PM

358 Defining a Delegate

That callback method may be on the same class as the lengthy operation —
such as phoning your sister on the other side of the house. Or, more often,
it’s on another class that knows about the progress bar — such as phoning
Aunt Maxie in Minnesota. Somehow, at its start, the lengthy operation has
been handed a mechanism for phoning home — sort of like giving your kid a
cellphone so that she can call you at 10 p.m.

This chapter talks about how your code can set up this callback mechanism
and then invoke it to phone home when needed.

 Callbacks are used a lot in Windows programming, typically for a piece of
code, down in your program’s guts, to notify a higher-level module that the
task has finished, to ask for needed data, or to let that module take a useful
action, such as write a log entry or update a progress bar.

Figure 9-1:
Making
progress
with the
Windows
ProgressBar
control.

Defining a Delegate
C# provides delegates for making callbacks — and a number of other tasks.
Delegates are the C# way (the .NET way, really, because any .NET language
can use them) for you to pass around methods as though they were data.

You’re saying, “Here, execute this method when you need it” (and then
handing over the method to execute).

This chapter helps you get a handle on that concept, see its usefulness, and
start using it yourself.

You may be an experienced coder who will recognize immediately that del-
egates are similar to C/C++ function pointers — only much, much better. But
I’m assuming in this section that you aren’t and you don’t.

Think of a delegate as a vehicle for passing a callback method to a “work-
horse” method that needs to call you back or needs help with that action,
as in doing the same action to each element of a collection. Because the

23_563489-bk02ch09.indd 35823_563489-bk02ch09.indd 358 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

359Defining a Delegate

collection doesn’t know about your custom action, you need a way to pro-
vide the action for the collection to carry out. Figure 9-2 shows how the
parts of this scheme fit together.

Figure 9-2:
Sending
your
delegate to
the bungee-
jump on
your behalf.

Delegate type
declaration

The instance “points” to a method –
as if it contained the method.

1. Define a delegate type.

2. Create an instance.

During creation, tell the
delegate instance which

method to “point” to.

5. Invoking the delegate
invokes the callback method

3. Pass in the delegate
instance as a parameter.

4. “Invoke” the delegate to help do the job.

void DoLongComplexProcess(<aDelegate parameter>)
{
 // ... Some code.
aDelegate (3, 4, 5)
}

An instance of
the delegate

type

Callback

A delegate is a data type, similar to a class. As with a class, you create an
instance of the delegate type in order to use the delegate. Figure 9-2 shows
the sequence of events in the delegate’s life cycle as you complete these
steps:

 1. Define the delegate type (in much the same way as you would define a
class).

 Sometimes, C# has already defined a delegate you can use. Much of the
time, though, you need to define your own, custom delegates.

23_563489-bk02ch09.indd 35923_563489-bk02ch09.indd 359 3/19/10 7:55 PM3/19/10 7:55 PM

360 Pass Me the Code, Please — Examples

 Under the surface, a delegate is a class, derived from the class System.
MulticastDelegate, which knows how to store one or more “point-
ers” to methods and invoke them for you. Relax: The compiler writes the
class part of it for you.

 2. Create an instance of the delegate type — such as instantiating a class.

 During creation, you hand the new delegate instance the name of a
method that you want it to use as a callback or an action method.

 3. Pass the delegate instance to a workhorse method, which has a param-
eter of the delegate type. That’s the doorway through which you insert
the delegate instance into the workhorse method.

 It’s like smuggling a candy bar into a movie theater — except that in this
example, the movie theater expects, even invites, the contraband candy.

 4. When the workhorse method is ready — for example, when it’s time to
update the progress bar — the workhorse “invokes” the delegate, pass-
ing it any expected arguments.

 5. Invoking the delegate in turn invokes (calls) the callback method that
the delegate “points” to. Using the delegate, the workhorse phones
home. (Older readers may remember Mr. Ed: “A horse is a horse. . . .”)

This fundamental mechanism solves the callback problem — and it has
other uses too.

 Delegate types can also be generic, allowing you to use the same delegate for
different data types, much as you can instantiate a List<T> collection for
string or int. Book I covers this in detail.

Pass Me the Code, Please — Examples
Let’s jump right into a couple of examples — and solve the callback problem
discussed at the beginning of this chapter.

I delegated the example to Igor
In this section, I walk you through two examples of using a callback — a
delegate instance phoning home to the object that created it, like E.T. But
first take a look at some common variations on what you can use a callback
delegate for:

 ✦ To notify the delegate’s home base of an event: A lengthy operation
has finished or made some progress or perhaps run into an error.
“Mother, this is E.T. Can you come get me at Elliot’s house?”

 ✦ To call back to home base to ask for the necessary data to complete a
task: “Honey, I’m at the store. Should I get white bread or wheat?”

23_563489-bk02ch09.indd 36023_563489-bk02ch09.indd 360 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

361Pass Me the Code, Please — Examples

 ✦ More generally, to customize a method: The method you’re customiz-
ing provides a framework, and its caller supplies a delegate to do the
work. “Honey, take this grocery list to the store and follow it exactly.”
The delegate method carries out a task that the customized method
needs done (but can’t handle by itself). The customized method is
responsible for invoking the delegate at the appropriate moment.

First, a simple example
The SimpleDelegateExample program on the Web site demonstrates a
simple delegate:

// SimpleDelegateExample -- Demonstrate a simple delegate callback.
using System;
namespace SimpleDelegateExample
{
 class Program
 {
 delegate int MyDelType(string name); // Inside class or inside namespace

 static void Main(string[] args)
 {
 // Create a delegate instance pointing to the CallBackMethod below.
 // Note that the callback method is static, so you prefix the name
 // with the class name, Program.
 MyDelType del = new MyDelType(Program.CallBackMethod);
 // Call a method that will invoke the delegate.
 UseTheDel(del, “hello”);
 // Wait for user to acknowledge results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 // UseTheDel -- A “workhorse” method that takes a MyDelType delegate
 // argument and invokes the delegate. arg is a string I want to pass
 // to the delegate invocation.
 private static void UseTheDel(MyDelType del, string arg)
 {
 if (del == null) return; // Don’t invoke a null delegate!
 // Here’s where you invoke the delegate.
 // What’s written here? A number representing the length of arg.
 Console.WriteLine(“UseTheDel writes {0}”, del(arg));
 }
 // CallBackMethod -- A method that conforms to the MyDelType
 // delegate signature (takes a string, returns an int).
 // The delegate will call this method.
 public static int CallBackMethod(string stringPassed)
 {
 // Leave tracks to show you were here.
 // What’s written here? stringPassed.
 Console.WriteLine(“CallBackMethod writes: {0}”, stringPassed);
 // Return an int.
 return stringPassed.Length; // Delegate requires an int return.
 }
 }
}

The delegate-related parts of this example are highlighted in boldface.

23_563489-bk02ch09.indd 36123_563489-bk02ch09.indd 361 3/19/10 7:55 PM3/19/10 7:55 PM

362 A More Real-World Example

First you see the delegate definition. MyDelType defines a signature — you
can pass any method with the delegate; such a method must take a string
argument and return an int. Second, the CallBackMethod(), defined at
the bottom of the listing, matches that signature. Third, Main() creates an
instance of the delegate, called del, and then passes the delegate instance
to a “workhorse” method, UseTheDel(), along with some string data,
“hello”, that the delegate requires.

In that setup, here’s the sequence of events:

 1. UseTheDel() takes two arguments, a MyDelType delegate, and
a string that it calls arg. So, when Main() calls UseTheDel, it
passes my delegate instance to be used inside the method. When I
created the delegate instance, del, in Main(), I passed the name
of the CallBackMethod() as the method to be called. Because
CallBackMethod() is static, I had to prefix the name with the class
name, Program. I tell you more about it later in this chapter.

 2. Inside UseTheDel(), the method ensures that the delegate isn’t
null and then starts a WriteLine() call. Within that call, before
it finishes, the method invokes the delegate by calling del(arg).
arg is just something you can pass to the delegate, which causes the
CallBackMethod() to be called.

 3. Inside CallBackMethod(), the method writes its own message, includ-
ing the string that was passed when UseTheDel() invoked the delegate.
Then CallBackMethod() returns the length of the string it was passed,
and that length is written out as the last part of the WriteLine() in
UseTheDel().

The output looks like this:

CallBackMethod writes: hello
UseTheDel writes 5
Press Enter to terminate...

UseTheDel() phones home and CallBackMethod() answers the call.

A More Real-World Example
For a more realistic example than SimpleDelegateExample, I show you
how to write a little app that puts up a progress bar and updates it every
time a lengthy method invokes a delegate.

23_563489-bk02ch09.indd 36223_563489-bk02ch09.indd 362 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

363A More Real-World Example

Getting an overview of the bigger example
The SimpleProgress example on the Web site demonstrates the Windows
Forms ProgressBar control that I discuss at the top of this chapter. (By the
way, this example of Windows graphical programming is the only one in this
book — even if it’s simple-minded — so I step through it carefully. I urge you
to complete the steps as I provide them.)

The example displays a small dialog-box-style window with two buttons and
a progress bar (refer to Figure 9-1). When you load the solution example into
Visual Studio and then build it, run it, and click the upper button, marked
Click to Start, the progress bar runs for a few seconds. You see it gradually
fill up, one-tenth of its length at a time. When it’s completely full, you can
click the Close button to end the program or click Click to Start again.

Putting the app together
To create the sample app on your own, rather than just load it from the Web
site example — and experience a bit of Windows graphical programming —
follow these steps, working first in design mode, where you’re just laying out
the appearance of your app.

First create the project and position the necessary controls on your
“window”:

 1. Choose File➪New Project and select Windows on the left, under C#,
but this time select Windows Forms Application on the right instead of
the usual Console Application. Name your project SimpleProgress.

 The first thing you see is the form: a window that you lay out yourself
using several controls.

 2. Choose View➪Toolbox, and from the Toolbox window’s Common
Controls group, drag a ProgressBar control to the form and drop it.
Then drag two Buttons onto the form.

 3. Position the buttons and the ProgressBar so that they look some-
what like the one shown in Figure 9-1. Note the handy guide lines that
help with positioning.

Next, set properties for these controls: Choose View➪Properties, select a
control on the form, and set the control’s properties:

 1. For the progress bar — named progressBar1 in the code — make
sure that the Minimum property is 0, the Maximum property is 100, the
Step property is 10, and the Value property is 0.

23_563489-bk02ch09.indd 36323_563489-bk02ch09.indd 363 3/19/10 7:55 PM3/19/10 7:55 PM

364 A More Real-World Example

 2. For the upper button, change the Text property to “Click to
Start” and drag the sizing handles on the button image until it looks
right and shows all its text.

 3. For the lower button, change the Text property to “Close” and
adjust the button’s size to your liking.

In this simple example, you’re putting all code in the form class. (The form is
your window; its class — here, named Form1 — is responsible for all things
graphical.) Generally, you should put all “business” code — the code that
does your calculations, data access, and other important work — in other
classes. Reserve the form class for code that’s intimately involved with dis-
playing elements on the form and responding to its controls. I break that
rule here — but the delegate works no matter where its callback method is.

Now, still in design mode, add a handler method for each button:

 1. On the form, double-click the new Close button.

 This action generates a method in the “code behind the form” (or,
simply, “the code-behind”) — the code that makes the form work. It
looks like this — you add the boldfaced code:

private void button2_Click(object sender, EventArgs e)
{
 this.Close(); // ‘this’ refers to the Form1 class.
}

 To toggle between the form’s code and its image, choose View➪Code or
View➪Designer.

 2. Double-click the new Click to Start button to generate its handler
method, which looks like the following in the code-behind:

private void button1_Click(object sender, EventArgs e)
{
 UpdateProgressCallback callback = UpdateProgressCallback(this.

DoUpdate);
 // Do something that needs periodic progress reports.
 // This passes a delegate instance that knows how to update the bar.
 DoSomethingLengthy(callback);
 // Clear the bar so that it can be used again.
 progressBar1.Value = 0;
 }

 3. Add the following callback method to the form class:

private void DoUpdate()
{
 progressBar1.PerformStep(); // Tells progress bar to update itself
}

I walk you through the remaining code, all of it on the form class, in the next
section. Later in the chapter, I show you other variations on the delegate
that’s passed.

23_563489-bk02ch09.indd 36423_563489-bk02ch09.indd 364 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

365A More Real-World Example

Looking at the code
The remaining bits of code tucked into the Form1 class consist of the parts
of the delegate life cycle, covered earlier in this chapter. I show you the class
and then show you where the parts are. The boldfaced lines are new code
that you add beyond the items you added in the previous section:

using System;
using System.Windows.Forms;
namespace SimpleProgress
{
 public partial class Form1 : Form
 {
 // Declare the delegate. This one is void.
 delegate void UpdateProgressCallback();

 public Form1()
 {
 InitializeComponent();
 }
 // DoSomethingLengthy -- My workhorse method takes a delegate.
 private void DoSomethingLengthy(UpdateProgressCallback updateProgress)
 {
 int duration = 2000;
 int updateInterval = duration / 10;
 for (int i = 0; i < duration; i++)
 {
 Console.WriteLine(“Something or other”);
 // Update every tenth of the duration.
 if ((i % updateInterval) == 0 && updateProgress != null)
 {
 updateProgress(); // Invoke the delegate.
 }
 }
 }
 // DoUpdate -- The callback method
 private void DoUpdate()
 {
 progressBar1.PerformStep();
 }
 private void button1_Click(object sender, EventArgs e)
 {
 // Instantiate the delegate, telling it what method to call.
 UpdateProgressCallback callback = new UpdateProgressCallback(this.

DoUpdate);
 // Do something that needs periodic progress reports.
 // This passes a delegate instance that knows how to update the bar.
 DoSomethingLengthy(callback);

// Clear the bar so that it can be used again.
progressBar1.Value = 0;

 }
 private void button2_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

 The class declaration is interesting as an aside:

public partial class Form1 : Form

23_563489-bk02ch09.indd 36523_563489-bk02ch09.indd 365 3/19/10 7:55 PM3/19/10 7:55 PM

366 A More Real-World Example

The partial keyword indicates that this line is only part of the full class.
The rest can be found in the Form1.Designer.cs file listed in Solution
Explorer. (Take a look at it.) Later in this chapter, I revisit that file to show
you a couple of things about “events.” Partial classes, which were intro-
duced in C# 2.0, let you split a class between two or more files. The compiler
generates the Form1.Designer.cs file, so don’t modify its code directly.
You can modify it indirectly, however, by changing elements on the form.
Form1.cs is your part.

Tracking the delegate life cycle
Look at the example through the parts of the delegate life cycle:

 1. You define the UpdateProgressCallback delegate near the top of
the class:

delegate void UpdateProgressCallback();

 Methods that this delegate can “point” to will be void, with no param-
eters. After the delegate keyword, the rest defines the signature of any
method that the delegate can point to: its return type and the number,
order, and types of its parameters. Delegates don’t have to be void —
you can write delegates that return any type and take any arguments.

 Defining a delegate defines a type, just as class Student {...} does.
You can declare your delegate public, internal, protected, or even
private, as needed.

 It’s considered good form to append the name Callback to the name
of a delegate type that defines a callback method, though C# couldn’t
care less.

 2. You instantiate the delegate and then pass the instance to the
DoSomethingLengthy() method in the button1_Click() method:

UpdateProgressCallback callback =
 new UpdateProgressCallback(this.DoUpdate); // Instantiate the delegate.
DoSomethingLengthy(callback); // Pass the delegate instance to a method.

 This delegate “points” to a method on this class (and this is optional).
To point to a method on another class, you need an instance of that
class (if the method is an instance method), and you pass the method
like this:

SomeClass sc = new SomeClass();
UpdateProgressCallback callback =
 new UpdateProgressCallback(sc.DoUpdate);

 But if the method is a static method (located anywhere), pass it like
this:

UpdateProgressCallback callback =
 new UpdateProgressCallback(SomeClass.DoUpdate);

23_563489-bk02ch09.indd 36623_563489-bk02ch09.indd 366 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

367A More Real-World Example

 What you’re passing in the instantiation is just the method’s name, no
parameters. What you pass to DoSomethingLengthy() is the delegate
instance, callback (which points to the method).

 3. Your DoSomethingLengthy() method does some “lengthy process-
ing” and periodically pauses to call back to the form so that it can
update its progress bar.

 Invoking the delegate inside DoSomethingLengthy() looks like calling
a method, complete with parameters, if any:

updateProgress(); // Invoke the delegate instance passed in.

 DoSomethingLengthy() looks like this:
private void DoSomethingLengthy(UpdateProgressCallback updateProgress)
{
 int duration = 2000;
 int updateInterval = duration / 10; // Every 200 milliseconds
 for (int i = 0; i < duration; i++)
 {
 Console.WriteLine(“Something or other”);
 // Update the form periodically.
 if ((i % updateInterval) == 0 && updateProgress != null)
 {
 updateProgress(); // Invoke the delegate.
 }
 }
}

 The “lengthy process” doesn’t do much. It sets the duration variable
to 2,000 loop iterations — a few seconds at runtime, which is more than
enough for this demo. Next, the method computes an “update interval”
of 200 iterations by dividing the overall duration into tenths. Then the
for loop ticks off those 2,000 iterations. For each one, it checks whether
it’s time to update the user interface, or UI. Most times through the loop,
no update occurs. But whenever the if condition is true, the method
invokes the UpdateProgressCallback instance that was passed to its
updateProgress parameter. That modulo expression, i % update
Interval, comes out only with a 0 remainder, thus satisfying the if
condition, once every 200 iterations.

 Always check a newly instantiated delegate for null before invoking it.

 4. When DoSomethingLengthy() invokes the delegate, the delegate
in turn invokes the method you pointed it at — in this case, the
DoUpdate() method on the Form1 class.

 5. When called via the delegate, DoUpdate() carries out the update by
calling a method on the ProgressBar class named PerformStep():

private void DoUpdate()
{
 progressBar1.PerformStep();
}

23_563489-bk02ch09.indd 36723_563489-bk02ch09.indd 367 3/19/10 7:55 PM3/19/10 7:55 PM

368 Shh! Keep It Quiet — Anonymous Methods

 PerformStep(), in turn, fills another 10 percent increment of the bar
with green, the amount dictated by its Step property, set to 10 at the
outset. Watch the last step closely — it’s just a flicker.

 6. Finally, control returns to DoSomethingLengthy(), which continues
looping. When the loop runs its course, DoSomethingLengthy()
exits, returning control to the button1_Click() method. That
method then clears the ProgressBar by setting its Value property to
0. And the app settles down to wait for another click on one of its but-
tons (or its Close box).

 And there you have it. Using the delegate to implement a callback, the pro-
gram keeps its progress bar up to date. See the list of uses for delegates in
the section “I delegated the example to Igor.” For more delegate examples,
see the DelegateExamples program on the Web site.

Write a custom delegate when you need to define a type for delegate-type
parameters so that you can implement a callback. Use predefined delegates
for events and the collection classes’ Find() and ForEach() methods.

Shh! Keep It Quiet — Anonymous Methods
After you have the gist of using delegates, take a quick look at Microsoft’s
first cut at simplifying delegates in C# 2.0 a couple of years ago.

To cut out some of the delegate rigamarole, you can use an anonymous
method. Anonymous methods are just written in more traditional notation.
Although the syntax and a few details are different, the effect is essentially
the same whether you use a “raw” delegate, an anonymous method, or a
lambda expression. You can find out more about lambda expressions on this
book’s companions Web site.

An anonymous method creates the delegate instance and the method it
“points” to at the same time — right in place, on the fly, tout de suite. Here
are the guts of the DoSomethingLengthy() method again, this time rewrit-
ten to use an anonymous method (boldfaced):

private void DoSomethingLengthy() // No arguments needed this time.
{
 ...
 for (int i = 0; i < duration; i++)
 {
 if ((i % updateInterval) == 0)
 {
 UpdateProgressCallback anon = delegate() // Create delegate instance.
 {
 progressBar1.PerformStep(); // Method ‘pointed’ to
 };
 if(anon != null) anon(); // Invoke the delegate.
 }
 }
}

23_563489-bk02ch09.indd 36823_563489-bk02ch09.indd 368 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

369Stuff Happens — C# Events

The code looks like the delegate instantiations I describe, except that after
the = sign, you see the delegate keyword, any parameters to the anonymous
method in parentheses (or empty parentheses if none), and the method body.
The code that used to be in a separate DoUpdate() method — the method
that the delegate “points” to — has moved inside the anonymous method —
no more pointing. And this method is utterly nameless.

You still need the UpdateProgressCallback delegate type definition, and
you’re still invoking a delegate instance, named anon in this example.

 Needless to say, this description doesn’t cover everything there is to know
about anonymous methods, but it’s a start. Look up the term anonymous
method in Help to see more anonymous method examples in the
DelegateExamples program on the Web site. My parting advice is to keep
your anonymous methods short.

Stuff Happens — C# Events
One more application of delegates deserves discussion in this section: the
C# event, which is implemented with delegates. An event is a variation on a
callback but provides a simpler mechanism for alerting “interested observ-
ers” whenever an important event occurs. An event is especially useful when
more than one anxious relative is waiting for a callback. Events are widely
used in C#, especially for connecting the objects in the user interface to the
code that makes them work. The buttons in the SimpleProgress example,
presented earlier in this chapter, illustrate this use.

The Observer design pattern
It’s extremely common in programming for various objects in the running
program — those anxious relatives I mentioned — to be “interested in”
events that occur on other objects. For example, when the user clicks a
button, the form that contains the button “wants” to know about it. Events
provide the standard mechanism in C# and .NET for notifying any interested
parties of important actions.

The event pattern is so common that it has a name: the Observer design pat-
tern. It’s one of many common design patterns that people have published for
anyone to use in their own code. To begin learning about other design pat-
terns, you can consult Design Patterns For Dummies, by Steve Holzner.

The Observer pattern consists of an Observable object — the object with
interesting events (sometimes called the Subject, though that confuses
me) — and any number of Observer objects: those interested in a particular
event. The observers register themselves with the Observable in some way

23_563489-bk02ch09.indd 36923_563489-bk02ch09.indd 369 3/19/10 7:55 PM3/19/10 7:55 PM

370 Stuff Happens — C# Events

and, when events of interest occur, the Observable notifies all registered
observers. You can implement this pattern in numerous ways without events
(such as callbacks and interfaces), but the C# way is to use events.

An alternative name for observers that you may encounter is listeners.
Listeners “listen” for events. And that’s not the last of the alternatives.

What’s an event? Publish/Subscribe
One analogy for events is your local newspaper. You and many other people
contact the paper to subscribe, and then the paper delivers current news-
papers to you, typically soaked in a rain puddle. The newspaper company
is the Publisher, and its customers are Subscribers, so this variation of
Observer is often called Publish/Subscribe. That’s the analogy I stick to in
this chapter, but keep in mind that the Observer pattern is the Publish/
Subscribe pattern with different terminology. Observers are subscribers,
and the Observable object that they observe is a publisher.

In C#, when you have a class on which interesting events arise, you adver-
tise the availability of notifications to any classes that may have an interest
in knowing about such events by providing an event object (usually public).

 The term event has two meanings in C#. You can think of the word event as
meaning both “an interesting occurrence” and a specific kind of C# object.
The former is the real-world concept, and the latter is the way it’s set up in
C#, using the event keyword.

How a publisher advertises its events
 To advertise for subscribers, a class declares a delegate and a correspond-

ing event, something like this:

public class PublisherOfInterestingEvents
{
 // A delegate type on which to base the event.
 // Should be declared ‘internal’ if all subscribers are in the same assembly.
 public delegate void NewEditionEventHandler(object sender,
 NewEditionEventArgs e);
 // The event:
 public event NewEditionEventHandler NewEdition;
 // ... other code.
}

The delegate and event definitions announce to the world: “Subscribers
welcome!” You can think of the NewEdition event as similar to a variable of
the NewEditionEventHandler delegate type. (So far, no events have been
sent. This is just the infrastructure for them.)

It’s considered good practice to append EventHandler to the name of a
delegate type that is the basis for events.

23_563489-bk02ch09.indd 37023_563489-bk02ch09.indd 370 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

371Stuff Happens — C# Events

 A common example, which you can see in the SimpleProgress code exam-
ple, discussed earlier in this chapter, is a Button advertising its various
events, including a Click event. In C#, class Button exposes this event as

event _dispCommandBarControlEvents_ClickEventHandler Click;

where the second, lo-o-ong item is a delegate defined somewhere in .NET.

 Because events are used so commonly, .NET defines two event-related delegate
types for you, named EventHandler and EventHandler<TEventArgs>.
You can change NewEditionEventHandler in the previous code to
EventHandler or to the generic EventHandler<TEventArgs>, and you
don’t need your own delegate type. Throughout the rest of this chapter, I
pretend that I used the built-in EventHandler<TEventArgs> delegate type
mentioned earlier, not EventHandler or my custom type, NewEdition
EventHandler. You should prefer this form, too:

event EventHandler<NewEditonEventArgs> NewEdition;

 The NewspaperEvents example on the Web site demonstrates correctly
setting up your event and handling it in various subscribers. (A second
sample program, NewspaperEventsNongeneric, avoids the generic stuff if
you get <ahem> code feet. If so, you can mentally omit the <eventhandler-
args> information in the following section.)

How subscribers subscribe to an event
To receive a particular event, subscribers sign up something like this:

publisher.EventName +=
 new EventHandler<some EventArgs type here >(some method name here);

where publisher is an instance of the publisher class, EventName is the
event name, and EventHandler<TEventArgs> is the delegate underneath
the event. More specifically, the code in the previous example might be:

myPublisher.NewEdition += new EventHandler<NewEditionEventArgs>(MyPubHandler);

Because an event object is a delegate under its little hood, the += syntax is
adding a method to the list of methods that the delegate will call when you
invoke it.

Any number of objects can subscribe this way (and the delegate will hold a
list of all subscribed “handler” methods) — even the object on which the
event was defined can subscribe, if you like. (And yes, this example shows
that a delegate can “point” to more than one method.)

23_563489-bk02ch09.indd 37123_563489-bk02ch09.indd 371 3/19/10 7:55 PM3/19/10 7:55 PM

372 Stuff Happens — C# Events

 In the SimpleProgress program, look in the Form1.Designer.cs file for
how the form class registers itself as a subscriber to the buttons’ Click
events.

How to publish an event
When the publisher decides that something worthy of publishing to all sub-
scribers has occurred, it raises (sends) the event. This situation is analogous
to a real newspaper putting out the Sunday edition.

To publish the event, the publisher would have code like this in one of
its methods (but see the later section “A recommended way to raise your
events”):

NewEditionEventArgs e = new NewEditionEventArgs(<args to constructor here>);
NewEdition(this, e); // Raise the event -- ‘this’ is the publisher object.

Or for the Button example, though this is hidden in class Button:

EventArgs e = new EventArgs(); // See next section for more on this topic.
Click(this, e); // Raise the event.

In each of these examples, you set up the necessary arguments — which
differ from event to event; some events need to pass along a lot of info. Then
you raise the event by “calling” its name (like invoking a delegate!):

eventName(<argumentlist>); // Raising an event (distributing the newspaper)
NewEdition(this, e);

 Events can be based on different delegates with different signatures, that
have different parameters, as in the earlier NewEditionEventHandler
example, but providing the sender and e parameters is conventional for
events. The built-in EventHandler and EventHandler<TEventArgs> del-
egate types define them for you.

Passing along a reference to the event’s sender (the object that raises the
event) is useful if the event-handling method needs to get more information
from it. Thus a particular Button object, button1, can pass a reference to
the Form class the button is a part of. The button’s Click event handler
resides in a Form class, so the sender is the form: You would pass this.

 You can “raise” an event in any method on the publishing class. But when?
Raise it whenever appropriate. I have a bit more to say about raising events
after the next section.

How to pass extra information to an event handler
The e parameter to an event handler method is a custom subclass of the
System.EventArgs class. You can write your own NewEditionEventArgs
class to carry whatever information you need to convey:

23_563489-bk02ch09.indd 37223_563489-bk02ch09.indd 372 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

373Stuff Happens — C# Events

public class NewEditionEventArgs : EventArgs
{
 public NewEditionEventArgs(DateTime date, string majorHeadline)
 { PubDate = date; Head = majorHeadline; }
 public DateTime PubDate { get; private set; } // Compiler creates details.
 public string Head { get; private set; } //
}

You should implement this class’s members as properties, as shown in the
previous code example. The constructor uses the private setter clauses on
the properties.

Often, your event doesn’t require any extra arguments and you can just fall
back on the EventArgs base class, as shown in the next section.

If you don’t need a special EventArgs-derived object for your event, just
pass:

NewEdition(this, EventArgs.Empty); // Raise the event.

A recommended way to raise your events
The earlier section “How to publish an event” shows the bare bones of rais-
ing an event. However, I recommend that you always define a special “event
raiser” method, like this:

protected virtual void OnNewEdition(NewEditionEventArgs e)
{
 EventHandler<NewEditionEventArgs> temp = NewEdition;
 if(temp != null)
 {
 temp(this, e);
 }
}

Providing this method ensures that you always remember to complete two
steps:

 1. Store the event in a temporary variable.

 This step makes your event more usable in situations where multiple
“threads” try to use it at the same time — threads divide your program
into a foreground task and one or more background tasks, which run
simultaneously (concurrently). I don’t cover how to write multithreaded
programs in this book; just follow this guideline.

 2. Check the event for null before you try to raise it.

 If it’s null, trying to raise it causes an error. Besides, null also means
that no other objects have shown an interest in your event (none is
subscribed), so why bother raising it? Always check the event for null,
regardless of whether you write this OnSomeEvent method.

23_563489-bk02ch09.indd 37323_563489-bk02ch09.indd 373 3/19/10 7:55 PM3/19/10 7:55 PM

374 Stuff Happens — C# Events

Making the method protected and virtual allows subclasses to override
it. That’s optional.

After you have that method, which always takes the same form (making it
easy to write quickly), you call the method when you need to raise the event:

void SomeMethod()
{
 // Do stuff here and then:
 NewEditionEventArgs e =
 new NewEditionEventArgs(DateTime.Today, “Peace Breaks Out!”);
 OnNewEdition(e);
}

How observers “handle” an event
The subscribing object specifies the name of a handler method when it sub-
scribes — it’s the argument to the constructor (boldfaced):

button1.Click += new EventHandler<EventArgs>(button1_Click);

This line sort of says, “Send my paper to this address, please.” Here’s a han-
dler for the NewEdition event:

myPublisher.NewEdition += new EventHandler<NewEditionEventArgs>(NewEdHandler);
...
void NewEdHandler(object sender, NewEditionEventArgs e)
{
 // Do something in response to the event.
}

For example, a BankAccount class can raise a custom TransactionAlert
event when anything occurs in a BankAccount object, such as a deposit,
withdrawal, or transfer or even an error. A Logger observer object can sub-
scribe and log these events to a file or a database as an audit trail.

When to delegate, when to event,
when to go on the lambda

Events: Use events when you may have mul-
tiple subscribers or when communicating with
client software that uses your classes.

Delegates: Use delegates or anonymous meth-
ods when you need a callback or need to cus-
tomize an operation.

Lambdas: There is an article about lambdas
on this book’s companion Web site. A lambda
expression is, in essence, just a short way to
specify the method you’re passing to a dele-
gate. You can use lambdas instead of anony-
mous methods.

23_563489-bk02ch09.indd 37423_563489-bk02ch09.indd 374 3/19/10 7:55 PM3/19/10 7:55 PM

Book II

Chapter 9

D
e

le
g

a
tin

g
 T

h
o

se

Im
p

o
rta

n
t E

ve
n

ts

375Stuff Happens — C# Events

 When you create a button handler in Visual Studio (by double-clicking the
button on your form), Visual Studio generates the subscription code in the
Form1.Designer.cs file. You shouldn’t edit the subscription, but you can
delete it and replace it with the same code written in your half of the partial
form class. Thereafter, the form designer knows nothing about it.

In your subscriber’s handler method, you do whatever is supposed to
happen when your class learns of this kind of event. To help you write that
code, you can cast the sender parameter to the type you know it to be:

Button theButton = (Button)sender;

and then call methods and properties of that object as needed. Because you
have a reference to the sending object, you can ask the subscriber questions
and carry out operations on it if you need to — like the person who delivers
your newspaper knocking on your door to collect the monthly subscription
fees. And, you can extract information from the e parameter by getting at its
properties in the same way:

Console.WriteLine(e.HatSize);

You don’t always need to use the parameters, but they can be handy.

23_563489-bk02ch09.indd 37523_563489-bk02ch09.indd 375 3/19/10 7:55 PM3/19/10 7:55 PM

Book II: Object-Oriented C# Programming376

23_563489-bk02ch09.indd 37623_563489-bk02ch09.indd 376 3/19/10 7:55 PM3/19/10 7:55 PM

Chapter 10: Can I Use Your
Namespace in the Library?

In This Chapter
✓ Dealing with separately compiled assemblies

✓ Writing a class library

✓ More access-control keywords: protected, internal, protected
internal

✓ Working with namespaces

C# gives you a variety of ways to break code into meaningful, workable
units.

You can use a method to divide a long string of code into separate, main-
tainable units. Use the class structure to group both data and methods in
meaningful ways to further reduce the complexity of the program. Programs
are complex already, and we simple humans become confused easily, so we
need all the help we can get.

C# provides another level of grouping: You can group similar classes into a
separate library. Beyond writing your own libraries, you can use anybody’s
libraries in your programs. These programs contain multiple modules
known as assemblies. I describe libraries and assemblies in this chapter.

Meanwhile, the access-control story in Chapter 5 of this minibook leaves
a few untidy loose ends — the protected, internal, and protected
internal keywords — and is slightly complicated further by the use of
namespaces, another way to group similar classes and allow the use of
duplicate names in two parts of a program. I cover namespaces in this chap-
ter as well.

 The program examples mentioned in this chapter are part of the chapter
download. You can also download them separately on the Example Code
page of the Web site at csharp102.info or csharpfordummies.net.

24_563489-bk02ch10.indd 37724_563489-bk02ch10.indd 377 3/19/10 8:22 PM3/19/10 8:22 PM

378 Dividing a Single Program into Multiple Source Files

Dividing a Single Program into Multiple Source Files
The programs in this book are only for demonstration purposes. Each pro-
gram is no more than a few dozen lines long and contains no more than a
few classes. An industrial-strength program, complete with all the neces-
sary bells and whistles, can include hundreds of thousands of lines of code,
spread over a hundred or more classes.

Consider an airline ticketing system: You have the interface to the reserva-
tions agent whom you call on the phone, another interface to the person
behind the gate counter, the Internet (in addition to the part that controls
aircraft seat inventory plus the part that calculates fares, including taxes); the
list goes on and on. A program such as this one grows huge before it’s all over.

Putting all those classes into one big Program.cs source file quickly
becomes impractical. It’s unreasonable, for these reasons:

 ✦ You have to keep the classes straight. A single source file can become
extremely difficult to understand. Getting a grip on modules such as
these, for example, is much easier:

 Aircraft.cs

 Fare.cs

 GateAgent.cs

 GateAgentInterface.cs

 ResAgent.cs

 ResAgentInterface.cs

 They also make the task of finding things easier.

 ✦ The work of creating large programs is usually spread among numer-
ous programmers. Two programmers can’t edit the same file at the
same time — each programmer needs her own source file or files. You
may have 20 or 30 programmers working on a large project at one
time. One file would limit 24 programmers to one hour of editing a day,
around the clock. If you break the program into 24 files, you could, with
difficulty, have each programmer edit at the same time. If you break up
the program so that each class has its own file, orchestrating the same
24 programmers becomes much easier.

 ✦ Compiling a large file may take a considerable length of time. You can
draw out a coffee break for only so long before the boss starts getting
suspicious.

24_563489-bk02ch10.indd 37824_563489-bk02ch10.indd 378 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

379Dividing a Single Program into Multiple Assemblies

 You certainly wouldn’t want to rebuild all the instructions that make up
a big system just because a programmer changed a single line. Visual
Studio 2010 can rebuild the single modified file in a multifile program
and then stack all the object files together.

For these reasons, the smart C# programmer divides a program into multiple
.cs source files, which are compiled and built together into a single execut-
able .exe file.

 A project file contains the instructions about which files should be used
together and how they’re combined.

You can combine project files to generate combinations of programs that
depend on the same user-defined classes. For example, you may want to
couple a write program with its corresponding read program. That way, if
one changes, the other is rebuilt automatically. One project would describe
the write program while another describes the read program. A set of proj-
ect files is known as a solution. (I could have handled the FileRead and
FileWrite programs covered in Book III as a single combined solution, but
I didn’t.)

Visual C# programmers use the Visual Studio Solution Explorer to combine
multiple C# source files into projects within the Visual Studio 2008 environ-
ment. I describe Solution Explorer in Book IV.

Dividing a Single Program into Multiple Assemblies
In Visual Studio, and in C#, Visual Basic .NET, and the other .NET languages,
one project equals one compiled module — otherwise known as an assembly
in .NET.

 The words module and assembly have somewhat different technical mean-
ings, but only to advanced programmers. In this book, you can just equate
the two terms.

Executable or library?
C# can produce two basic assembly types:

 ✦ Executable (.EXE): A program in its own right that contains a Main()
method. You can double-click a .EXE file in Windows Explorer, for exam-
ple, and cause it to run. This book is full of executables in the form of
console applications. Executable assemblies often use supporting code
from libraries in other assemblies.

24_563489-bk02ch10.indd 37924_563489-bk02ch10.indd 379 3/19/10 8:22 PM3/19/10 8:22 PM

380 Dividing a Single Program into Multiple Assemblies

 ✦ Class library (.DLL): A compiled library of functionality that can be
used by other programs. All programs in this book also use libraries. For
example, the System namespace (the home of classes such as String,
Console, Exception, Math, and Object) exists in a set of library
assemblies. Every program needs System classes. Libraries are housed
in DLL assemblies.

 Libraries aren’t executable — you can’t make them run directly. Instead,
you must call their code from an executable or another library. The
Common Language Runtime (CLR), which runs C# programs, loads
library assemblies into memory as needed.

The important concept to know is that you can easily write your own class
libraries. I show you how in the later section “Putting Your Classes into
Class Libraries.”

Assemblies
Assemblies, which are the compiled versions of individual projects, contain
the project’s code in a special format, along with a bunch of metadata, or
detailed information about the classes in the assembly.

I introduce assemblies in this section because they round out your
understanding of the C# build process — and they come into play in my
discussion of namespaces and access keywords such as protected and
internal. (I cover namespaces and these two access keywords later in
this chapter.) Assemblies also play a big part in understanding class librar-
ies. It’s all covered in the later section “Putting Your Classes into Class
Libraries.”

 The C# compiler converts the project’s C# code to Common Intermediate
Language (usually called IL) that’s stored in the appropriate type of assem-
bly file. IL resembles assembly language (one step beyond the 1s and 0s
used in machine language) that hardcore programmers have used for
decades to get down “close to the metal” because their higher-level lan-
guages couldn’t do what they needed or the compilers couldn’t produce the
most efficient code possible.

One major consequence of compiling from .NET to IL, regardless of language,
is that a program can use assemblies written in different languages. For
example, a C# program can call methods in an assembly originally written in
Visual Basic or C++ or the C# program can subclass a VB class.

You can take a look at some IL by running the Ildasm.exe tool in the .NET
Software Development Kit (SDK) or the Reflector tool that I point you to at
csharp102.info. Select a .EXE or .DLL assembly file to view its code as
IL. A Visual Studio solution can contain any number of projects.

24_563489-bk02ch10.indd 38024_563489-bk02ch10.indd 380 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

381Dividing a Single Program into Multiple Assemblies

Executables
You can run executable assemblies in a variety of ways:

 ✦ Run them in Visual Studio: Choose Debug➪Start Debugging (F5) or
Debug➪Start without Debugging (Ctrl+F5).

 ✦ Double-click the assembly file (.EXE) in Windows Explorer.

 ✦ Right-click the file in Windows Explorer and choose Run or Open from
the pop-up menu.

 ✦ Type the assembly’s name (and path) into a console window.

 ✦ If the program takes arguments, such as filenames, from the command line,
drag the files to the executable file in Windows Explorer. I show you this
process in the article “Passing Arguments to a Program” at csharp102.
info; click the Articles tab and look in the section “C# Techniques.”

 A solution in Visual Studio can contain multiple projects — some .DLL and
some .EXE. If a solution contains more than one .EXE project, you must tell
Visual Studio which project is the start-up project: That one runs from the
Debug menu. To specify a start-up project, right-click that project in Solution
Explorer and choose Set As Startup Project. The start-up project’s name
appears in boldface in Solution Explorer.

Think of a solution containing two .EXE assemblies as two separate pro-
grams that happen to use the same library assemblies. For example, you
might have in a solution a console executable and a Windows Forms execut-
able plus some libraries. If you make the console app the start-up project
and compile the code, you produce a console app. If you make the Windows
Forms app the start-up — well, you get the idea.

Class libraries
A class library contains one or more classes, usually ones that work together
in some way. Often, the classes in a library are in their own namespaces. (I
explain namespaces later in this chapter.) You may build a library of math
routines, a library of string-handling routines, and a library of input/output
routines, for example.

Sometimes, you even build a whole solution that is nothing but a class
library, rather than a program that can be executed on its own. (Typically,
while developing this type of library, you also build an accompanying .EXE
project, or driver, with which to test your library during development. But
when you release the library for programmers to use, you release just the
.DLL [not the .EXE] — and documentation for it that’s generated by the
XML comments are described in Book IV, which is all about Visual Studio.)

The next section shows you how to write your own class libraries (and
drivers).

24_563489-bk02ch10.indd 38124_563489-bk02ch10.indd 381 3/19/10 8:22 PM3/19/10 8:22 PM

382 Putting Your Classes into Class Libraries

Putting Your Classes into Class Libraries
 The simplest definition of a class library project is one whose classes contain

no Main() method. Can that definition be correct? It can and is. The exis-
tence of Main() distinguishes a class library from an executable. C# librar-
ies are much easier to write and use than similar libraries were in C or C++.

The following sections explain the basic concepts involved in creating your
own class libraries. Don’t worry: C# does the heavy lifting. Your end of it is
quite simple.

Even the free Visual C# 2010 Express Edition can now create class libraries.
It used to require a small hack to make it work.

Creating the projects for a class library
You can create the files for a new class library project and its driver in either
of two ways:

 ✦ Create the class library project first and then add the driver project to
its solution. You might take this approach if you were writing a stand-
alone class library assembly. I describe how to create the class library
project in the next section.

 ✦ Create a driver program first and then add one or more library proj-
ects to its solution. Thus you might first create the driver program
as a console application or a graphical Windows Forms (or Windows
Presentation Foundation) application. Then you would add class library
projects to that solution.

 This approach is the one to take if you want to add a supporting library
to an ongoing application. In that case, the “driver” could be either the
ongoing program or a special driver project added to the solution just
to test the library. For testing, you set the driver project as the start-up
project as described in the earlier section “Executables.”

Creating a stand-alone class library
If your whole purpose is to develop a stand-alone class library that can be
used in various other programs, you can create a solution that contains a
class library project from scratch — here’s how simple it is:

 1. Create a new project.

 2. When you pick the template to base it on in the New Project dialog box,
select Class Library (rather than, say, Console Application).

 Figure 10-1 shows what Solution Explorer looks like at this point.

24_563489-bk02ch10.indd 38224_563489-bk02ch10.indd 382 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

383Putting Your Classes into Class Libraries

After you have a class library project, you can add a driver project (or a unit
test project or both) using the approach described in the next section.

Figure 10-1:
A new
library in
Solution
Explorer.

Adding a second project to an existing solution
If you have an existing solution — whether it’s an ongoing application or a
class library project such as the one described in the previous section —
you can easily add a second project to your solution: either a class library
project or an executable project, such as a driver. Follow these steps:

 1. After your existing solution is open in Visual Studio, right-click the
solution node (the top node) in Solution Explorer.

 2. From the pop-up menu, choose Add➪New Project.

 3. In the New Project dialog box, select the type of project you want
to add.

 Select a class library, a console application, a Windows Forms applica-
tion, or another available type on the right side of the dialog box.

 4. Use the Location box to navigate to the folder where you want the
project.

 The location you navigate to depends on how you want to organize your
solution. You can put the new project’s folder in either of two places:

 • All-in-one-folder: Navigate into the main project folder, making the
added project a subfolder. (See Figure 10-2.)

 • Side-by-side: Navigate to the folder that contains the main project
folder so that the two projects are at the same level. (See Figure 10-3.)

 5. Name your project and click OK.

 If the new project is a library project, choose its name carefully — it
will become the name of the library’s .DLL file and the name of the
namespace containing the project’s classes.

24_563489-bk02ch10.indd 38324_563489-bk02ch10.indd 383 3/19/10 8:22 PM3/19/10 8:22 PM

384 Putting Your Classes into Class Libraries

 If you need to give the library project the same name as another project
or even the main project, you can distinguish it by appending the suffix
Lib, as in MyConversionLib.

Figure 10-2:
Organizing
two projects
in an all-in-
one-folder.

Main project folder

Added project folder

If the project you’re adding is intended to stand on its own and be usable in
other programs, use the side-by-side approach.

The ClassLibrary example in this section (like most examples in this book)
takes the all-in-one-folder approach. The point is that although the folders
don’t have to be in the same place, putting them there can be convenient.

The task of selecting the location is independent of adding the new project
directly to the ClassLibrary solution. The two project folders can be in the
same solution while still being located in different places.

Figure 10-3:
Organizing
two projects
side by side.

Containing folder

Added project folderMain project folder

Creating classes for the library
After you have a class library project, create the classes that make up the
library. The following ClassLibrary example shows a simple class library —
I show you some driver code for it after the example:

24_563489-bk02ch10.indd 38424_563489-bk02ch10.indd 384 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

385Putting Your Classes into Class Libraries

// ClassLibrary -- in a Class Library project

// File: Program.cs in ClassLibraryDriver project
// ClassLibrary -- A simple class library and its driver program
using System;
namespace ClassLibrary
{
 public class MyLibrary
 {
 public void LibraryFunction1()
 {
 Console.WriteLine(“This is LibraryFunction1()”);
 }
 public static int LibraryFunction2(int input)
 {
 Console.WriteLine(“This is LibraryFunction2(), returning {0}”, input);
 return input; // Just parrot the input.
 }
 }
}

Libraries can contain any C# type: class, structure, delegate, interface, and
enumeration. I cover structures (structs) in Book I, delegates in Chapter 9
of this minibook, interfaces in Chapter 8 of this minibook, and enumera-
tions (enums) in the article “Enumerating the Charms of the Enum” on
csharp102.info.

 In class library code, you normally shouldn’t catch exceptions. Let them
bubble up from the library to the client code that’s calling into the library.
Clients need to know about these exceptions and handle them in their own
ways. I cover exceptions in Book II.

Using a driver program to test a library
By itself, the class library doesn’t do anything, so you need a driver program,
a small executable program that “drives” the library to test it during devel-
opment by calling its methods.

In other words, write a program that uses classes and methods from the
library. You see this behavior in the NamespaceUse program example later
in this chapter (and other programs in this book) — for example, when you
call the WriteLine() method of class Console from the .NET Framework
class libraries. (Console is in the System namespace, in the library file
mscorlib.dll.)

The following chunk of code continues the previous code listing. This one
adds a new project with one class that contains a Main() method, and you
can write code to exercise your library inside Main():

// ClassLibrary driver program

// In a separate Console Application project:

24_563489-bk02ch10.indd 38524_563489-bk02ch10.indd 385 3/19/10 8:22 PM3/19/10 8:22 PM

386 Putting Your Classes into Class Libraries

// File: Program.cs in ClassLibraryDriver project
using System;
using ClassLibrary;
namespace ClassLibraryExample
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create a library object and use its methods.
 MyLibrary ml = new MyLibrary();
 ml.LibraryFunction1();
 // Call its static methods through the class.
 int result = MyLibrary.LibraryFunction2(27);
 Console.WriteLine(result.ToString());
 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
 }
}

To run and test the library through the driver, add a reference to the library
in the driver project references, mark the driver project as the start-up proj-
ect (as described earlier, in the “Executables” section), and run the program
the same as you run all console applications in this book.

You can test your library in another, even better way, too — using the unit
testing features of Visual Studio. In Book IV, and a little in Book V, I cover
testing using the unit testing framework of Visual Studio.

Here’s the output from the test driver:

This is LibraryMethod1()
This is LibraryMethod2(), returning 27
27
Press Enter to terminate...

Libraries often provide only static methods. In that case, you don’t need
to instantiate the library object. Just call the methods through the class.

Using a class library from a program
From any program you ever write, just include using directives for your
class library’s namespaces and add a reference to the .DLL file that contains
the library (providing a path to wherever it lives). Then use the classes in
the library in your program. This strategy is exactly how other programs in
this book use classes from the .NET Framework libraries. Note that the com-
piler copies the libraries into your project’s build directories.

24_563489-bk02ch10.indd 38624_563489-bk02ch10.indd 386 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

387Going Beyond Public and Private: More Access Keywords

Going Beyond Public and Private:
More Access Keywords

Dividing a program into multiple assemblies, as discussed in the previous
sections, has a bearing on which code in AssemblyB you can access from
AssemblyA.

The access control examples in Chapter 5 of this minibook do a good job (I
hope) of illustrating the public and private keywords. But that chapter
doesn’t say a lot about the other access keywords: protected, internal,
and the combination protected internal. I rectify that situation in this
section, assuming that you understand inheritance and method overriding
as well as public and private.

To ensure that this section makes sense, you might need to read (or reread)
Chapter 5.

Internal: Eyes only at the CIA
Suppose that a program has these two projects:

 ✦ InternalLimitsAccess: An executable whose class Congress con-
tains the Main() method that kicks off program execution. (No law
requires the Main() class to be named Program.)

 ✦ CIAAssembly: The class library project.

You can see this setup in the InternalLimitsAccess example on the Web.

In real life, the U.S. Congress has the annoying habit of expecting the
Central Intelligence Agency (CIA) to reveal its secrets — just to members of
Congress and senators, of course. (“We won’t leak your secrets — honest.”)
Meanwhile, those overly secretive spooks at the CIA have secrets they
would prefer to hang on to. (Maybe they know the secret formula for Coca-
Cola or Colonel Sanders’s secret herbs and spices or a more sinister entity.)
Exactly what Secret X is doesn’t matter here, but the CIA wants to keep
Secret X, well, secret.

There’s a problem, though. Everybody at the CIA needs to know Secret X.
In the InternalLimitsAccess example, the CIA is divided into several
classes — class GroupA and class GroupB, for example. Think of them as
sections of the CIA that (sometimes) communicate and share with each
other. Suppose that GroupA is the holder of Secret X, so the group marked it
private. The code looks something like this:

24_563489-bk02ch10.indd 38724_563489-bk02ch10.indd 387 3/19/10 8:22 PM3/19/10 8:22 PM

388 Going Beyond Public and Private: More Access Keywords

// In assembly InternalLimitsAccess:
class Congress
{
 static void Main(...)
 {
 // Code to oversee CIA
 }
}

// In assembly CIAAssembly:
public class GroupA
{
 private string _secretFormulaForCocaCola; // Secret X
}
public class GroupB
{
 public void DoSomethingWithSecretX()
 {
 // Do something with Secret X, if only you could access it.
 }
}

Now GroupB can’t see Secret X, but suppose that it has a legitimate need
to know it. GroupA can, of course, bump Secret X to public status, but if
it does, the secret isn’t much of a secret any more. If GroupB can see the
secret, so can those snoops over in Congress. Even worse, CNN knows it
too, not to mention Fox, ABC, and other networks. And you know how well
those folks keep secrets. Oh, right — Russia can see Secret X too.

 Luckily, C# also has the internal keyword. Using internal is just one step
down from public and well above private. If you mark the GroupA class
and its “public” methods — the ones that are visible outside the class — with
the internal keyword instead, everybody at the CIA can see and access
Secret X — as long as you either mark the secret itself (a data member) as
internal or provide an internal property to get it with, as shown in this
version:

// In assembly CIAAssembly:
internal class GroupA
{
 private string _secretFormulaForCocaCola; // Secret X
 internal string SecretX { get { return _secretFormulaForCocaCola; } }
}
public class GroupB
{
 public void DoSomethingWithSecretX()
 {
 // Do something with Secret X, now that we can see it:
 Console.WriteLine(“I know Secret X, which is {0} characters long, but “ +

“I’m not telling.”, GroupA.SecretX.Length);
 }
}

24_563489-bk02ch10.indd 38824_563489-bk02ch10.indd 388 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

389Going Beyond Public and Private: More Access Keywords

Now class GroupB has the access it needs — and it isn’t giving up the secret
(even under threat of waterboarding). All it tells Congress, over in Main(),
is that it knows secret X and secret X has 11 characters. Here’s that chunk of
code:

class Congress
{
 static void Main(string[] args)
 {
 // Code to oversee CIA
 // The following line doesn’t compile because GroupA isn’t accessible
 // outside CIAAssembly. Congress can’t get at GroupA over at CIA.

 // CIAAssembly.GroupA groupA = new CIAAssembly.GroupA();

 // Class Congress can access GroupB because it’s declared public.
 // GroupB is willing to admit to knowing the secret, but it’s
 // not telling -- except for a small hint.
 GroupB groupB = new GroupB();
 groupB.DoSomethingWithSecretX();

 // Wait for user to acknowledge results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }
}

From Main(), GroupA is now invisible, so an attempt to construct an
instance of it doesn’t compile. But because GroupB is public, Main() can
access it and call its public method DoSomethingWithSecretX().

Wait! CIA does have to talk to Congress about certain topics, I’m happy
to report — but on a need-to-know basis, limited to selected members of
Congress and senators, of course. They can do so already, via GroupB, as
long as they present the proper credentials, although you need to add them
to the code:

public string DoSomethingWithSecretXUsingCredentials(string credentials)
{
 if (credentials == “congressman with approved access”)
 {
 return GroupA.SecretX;
 }
 return string.Empty;
}

 The internal keyword makes classes and their members accessible only
inside their own assembly. But within the assembly, the internal items are
effectively “public” to all local classes.

24_563489-bk02ch10.indd 38924_563489-bk02ch10.indd 389 3/19/10 8:22 PM3/19/10 8:22 PM

390 Going Beyond Public and Private: More Access Keywords

 You can mark a method inside an internal class as public, though it isn’t
truly public. A class member can’t be more accessible than its class, so the
so-called “public” member is just internal.

CIA can still keep its deepest, darkest secrets ultra-hush-hush by declaring
them private inside their owning class. That strategy makes them accessible
only in that class.

Protected: Sharing with subclasses
The main purpose of private is to hide information. In particular, pri-
vate hides a class’s internal implementation details. (Classes who know
classes too intimately aren’t the luckiest classes in the world. In fact, they’re
the unluckiest.) Classes with a lot of implementation details are said to be
“too tightly coupled” with the classes they know too much about. If class A
is aware of the internal workings of class B, A can come to rely too much on
those details. If they ever change, you end up having to modify both classes.

The less the other classes — and assemblies — know about how class B per-
forms its magic, the better. In Chapter 5 of this minibook, I use the example
of a BankAccount class. The bank doesn’t want forgetful folks like me — or
forgetful classes such as class A — to be able to change a balance directly.
That balance is properly part of the BankAccount class’s implementa-
tion. It’s private. BankAccount provides access to the balance — but only
through a carefully controlled public interface. In the BankAccount class,
the public interface consists of three public methods:

 ✦ Balance: Provides a read-only way to find out the current balance. You
can’t use Balance to modify the underlying balance.

 ✦ Deposit(): Lets someone outside the class add to the balance in a con-
trolled way.

 ✦ Withdraw():Lets someone (presumably the account owner) subtract
from the balance, but within carefully controlled limits. Withdraw()
enforces the business rule that you can’t withdraw more than you have.

Access control considerations other than private and public arise in
programming. I explain in the previous section how the internal keyword
opens a class — but only to other classes in its own assembly.

However, suppose that the BankAccount class has a subclass, Savings
Account. Methods in SavingsAccount need access to that balance defined
in the base class, of course, although other classes, even in the same assem-
bly, probably don’t. Luckily, SavingsAccount can use the same public
interface, the same access, as outsiders: using Balance, Deposit(), and
Withdraw().

24_563489-bk02ch10.indd 39024_563489-bk02ch10.indd 390 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

391Going Beyond Public and Private: More Access Keywords

Sometimes, though, the base class doesn’t supply such access methods
for its subclasses (and others) to use. What if the _balance data member
in BankAccount is private and the class doesn’t provide the Balance
property?

 Enter the protected keyword: If the _balance instance variable in the
base class is declared protected rather than private, outsiders can’t see
it — it’s effectively private to them. But subclasses can see it just fine.

An even better solution is to mark _balance private in BankAccount as
before and then provide a Balance property marked protected.
Subclasses such as SavingsAccount can access _balance by using the
Balance property. But the balance is invisible to outsiders, which protects
the BankAccount implementation even from its subclasses.

If the balance does indeed need to be accessible (read-only) to outsiders,
you should, of course, provide the public Balance property to get the
balance (read-only). However, you may still need to set the balance from
inside SavingsAccount itself. To do that, you can give the set accessor of
Balance protected access — accessible from SavingsAccount and other
subclasses but inaccessible to outsiders. The discussion of properties in
Chapter 5 of this minibook shows how to do it, and here’s what the code
looks like:

// In BankAccount:
public decimal Balance
{
 get { return _balance; } // Public
 protected set { _balance = value; } // Not public
}

The ProtectedLimitsAccess example on the Web illustrates using the
protected keyword as just described.

You can even subclass BankAccount in a different assembly and the sub-
class has access to anything declared protected in BankAccount. The
ProtectedLimitsAccess example also illustrates this process.

The example has two subclasses of BankAccount: one in the same assem-
bly as BankAccount and one in a different assembly. What’s interesting
with respect to protected is that either BankAccount subclass can access
any item in BankAccount marked protected. The subclass doesn’t have to
be in the same assembly as its base class.

 The ability to extend (subclass) a class from outside the base class’s assembly
has implications for security, which is why many classes should be marked
sealed. Sealing a class prevents outsiders from gaining access by subclass-
ing it. That’s why you’re advised to make classes extendable (nonsealed)

24_563489-bk02ch10.indd 39124_563489-bk02ch10.indd 391 3/19/10 8:22 PM3/19/10 8:22 PM

392 Putting Classes into Namespaces

only if they need to be subclassable. One way to give other code in the same
assembly access to a base class’s members — including a subclass in the
same assembly — is to mark those members internal rather than protected.
That way, you gain the desired level of access from a local subclass while
preventing access from an external subclass. Of course, access is then
allowed from other classes in the assembly. This solution may not be ideal,
but it should be more secure — if that’s a consideration.

Protected internal: Being a more generous protector
Making items in the BankAccount base class protected internal,
rather than just protected, simply adds a new dimension to the accessibil-
ity of those items in your program. Using protected alone allows a sub-
class (in any assembly in the program) to access protected items in the
base class. Adding internal extends the items’ accessibility to any class,
as long as it’s in the same assembly as BankAccount or at least a subclass
in some other assembly.

In the ProtectedInternalLimitsAccess example on csharp102.info,
you can see this effect. The class AnotherClass that’s defined within
BankAccount’s own assembly can access the protected internal set
accessor in the Balance property. However, the nearly identical Another
Class in a different assembly cannot access Balance’s set accessor to set
the balance.

 Make items as inaccessible as possible. Start with private. If some parts of
your code need more access than that, increase it selectively. Maybe just
protected will work (that’s all a subclass needs). Maybe other classes in
the same assembly truly do need access. If so, increase it to internal. If
subclasses and other classes in the same assembly need access, use pro-
tected internal. Use public only for classes (and their members) that
should be accessible to every class in the program, regardless of assembly.

The same advice that applies to whole classes also applies to class mem-
bers: Keep them as inaccessible as possible. Little helper classes, or classes
that support the implementation of more public classes, can be limited to no
more than internal.

If a class or other type needs to be private, protected, or protected
internal, nest it, if you can, inside the class that needs access to it.

Putting Classes into Namespaces
Namespaces exist to put related classes in one bag and to reduce collisions
between names used in different places. For example, you may compile all
math-related classes into a MathRoutines namespace.

24_563489-bk02ch10.indd 39224_563489-bk02ch10.indd 392 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

393Putting Classes into Namespaces

 A single file can be (but isn’t commonly) divided into multiple namespaces:

// In file A.cs:
namespace One
{
}
namespace Two
{
}

More commonly, you group multiple files. For example, the file Point.cs
may contain the class Point, and the file ThreeDSpace.cs contains class
ThreeDSpace to describe the properties of a Euclidean space (like a cube).
You can combine Point.cs and ThreeDSpace.cs and other C# source
files into the MathRoutines namespace (and, possibly, a MathRoutines
library assembly). Each file would wrap its code in the same namespace. (It’s
the classes in those files, rather than the files themselves, that make up the
namespace. Which files the classes are in is irrelevant for namespaces. Nor
does it matter which assembly they’re in: A namespace can span multiple
assemblies.)

// In file Point.cs:
namespace MathRoutines
{
 class Point { }
}
// In file ThreeDSpace.cs:
namespace MathRoutines
{
 class ThreeDSpace { }
}

 If you don’t wrap your classes in a namespace, C# puts them in the global
namespace, the base (unnamed) namespace for all other namespaces. A
better practice, though, is to use a specific namespace.

The namespace serves these purposes:

 ✦ A namespace puts oranges with oranges, not with apples. As an appli-
cation programmer, you can reasonably assume that the classes that
comprise the MathRoutines namespace are all math related. By the
same token, when looking for just the perfect math method, you first
would look in the classes that make up the MathRoutines namespace.

 ✦ Namespaces avoid the possibility of name conflicts. For example, a
file input/output library may contain a class Convert that converts
the representation in one file type to that of another. At the same time,
a translation library may contain a class of the same name. Assigning
the namespaces FileIO and TranslationLibrary to the two sets of
classes avoids the problem: The class FileIO.Convert clearly differs
from the class TranslationLibrary.Convert.

24_563489-bk02ch10.indd 39324_563489-bk02ch10.indd 393 3/19/10 8:22 PM3/19/10 8:22 PM

394 Putting Classes into Namespaces

Declaring a namespace
You declare a namespace using the keyword namespace followed by a name
and an open and closed curly-braces block. The classes (and other types)
within that block are part of the namespace:

namespace MyStuff
{
 class MyClass {}
 class UrClass {}
}

In this example, both MyClass and UrClass are part of the MyStuff
namespace.

 Namespaces are implicitly public, and you can’t use access specifiers on
namespaces, not even public.

Besides classes, namespaces can contain other types, including these:

 ✦ delegate

 ✦ enum

 ✦ interface

 ✦ struct

A namespace can also contain nested namespaces, to any depth of nesting.
You may have Namespace2 nested inside Namespace1, as in this example:

namespace Namespace1
{
 // Classes in Namespace1 here ...
 // Then the nested namespace:
 namespace Namespace2
 {
 // Classes in Namespace2
 public class Class2
 {
 public void AMethod() { }
 }
 }
}

To call a method in Class2, inside Namespace2, from somewhere outside
Namespace1, you specify this line:

Namespace1.Namespace2.Class2.AMethod();

Imagine these namespaces strung together with dots as a sort of logical path
to the desired item.

24_563489-bk02ch10.indd 39424_563489-bk02ch10.indd 394 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

395Putting Classes into Namespaces

 “Dotted names” such as System.IO look like nested namespaces, but they
name only one namespace. So System.Data is a complete namespace
name, not the name of a Data namespace nested inside System. This con-
vention makes it easier to have several related namespaces, such as
System.IO, System.Data, and System.Text and make the family resem-
blance obvious. In practice, nested namespaces and namespaces with
dotted names are indistinguishable.

 Prefixing all namespaces in a program with your company name is conven-
tional — making the company name the front part of multiple segments sep-
arated by dots: MyCompany.MathRoutines. (That statement is true if you
have a company name; you can also use just your own name. I could use
either CMSCo.MathRoutines or Sphar.MathRoutines.) Adding a com-
pany name prevents name clashes if your code uses two third-party code
libraries that happen to use the same basic namespace name, such as
MathRoutines.

The Visual Studio New Project dialog box runs an Application Wizard that
puts all code it generates in namespaces. The wizard names these
namespaces after the project directory it creates. Look at any of the pro-
grams in this book, each of which was created by the Application Wizard.
For example, the AlignOutput program is created in the AlignOutput
folder. The name of the source file is Program.cs, which matches the name
of the default class. The name of the namespace containing Program.cs is
the same as that of the folder: AlignOutput.

(You can change any of those names, though. Just do it carefully and thor-
oughly. You can change the overall namespace name for a project in the
project’s Properties window. Rather than try to rename everything, I some-
times create a new program using the correct names and then import the
class files from the original program — after which I scrap the original.)

Relating namespaces to the access keyword story
 In addition to helping package your code into a more usable form,

namespaces extend the notion of access control presented in Chapter 5 of
this minibook (which introduces the public, private, protected,
internal, and protected internal keywords). Namespaces extend
access control by further limiting which members of a class you can access
from where.

However, namespaces affect visibility more than accessibility. By default,
classes and methods in NamespaceA are invisible to classes in NamespaceB,
regardless of their access-control specifiers. But you can make one
namespace’s classes and methods visible to another namespace in a couple
of ways. The bottom line is that you can access only what’s visible to you
and “public enough.”

24_563489-bk02ch10.indd 39524_563489-bk02ch10.indd 395 3/19/10 8:22 PM3/19/10 8:22 PM

396 Putting Classes into Namespaces

I define “public enough” as having a strong enough access specifier from
the viewpoint of Class1, the caller. This issue involves access control,
extended earlier in this chapter and covered in the discussion of access
specifiers in Chapter 5 of this minibook.

Determining whether the class and method
you need are visible and accessible to you
To determine whether Class1 in NamespaceA can call NamespaceB.
Class2.AMethod(), consider these two questions:

 ✦ Is Class2 over in NamespaceB visible to the calling class, Class1?

 This issue involves namespace visibility, discussed at the end of this list.

 ✦ If the answer to the first question is True, are Class2 and its
AMethod() also “public enough” for Class1 to access?

 If Class2 is in a different assembly from Class1, it must be public
for Class1 to access its members. Class2, it’s in the same assembly,
needs to be declared at least internal. Classes can only be public,
protected, internal, or private.

 Likewise, the Class2 method must have at least a certain level of access
in each of those situations. Methods add the protected internal
option to the list of access specifiers that classes have. Chapter 5 in
this minibook and the earlier section “Going Beyond Public and Private:
More Access Keywords” supply the gory details.

You need to answer Yes to both questions before Class1 can call the
Class2 method.

Making classes and methods in another namespace visible
C# provides two ways to make items in NamespaceB visible in NamespaceA:

 ✦ Fully qualify names from NamespaceB wherever you use them in
NamespaceA. This method results in code such as the following line,
which starts with the namespace name and then adds the class and lists
the method:

System.Console.WriteLine(“my string”);

 ✦ Eliminate the need for fully qualified names in NamespaceA by giving
the namespace files a using directive for NamespaceB:

using System;
using NamespaceB;

24_563489-bk02ch10.indd 39624_563489-bk02ch10.indd 396 3/19/10 8:22 PM3/19/10 8:22 PM

Book II

Chapter 10

C
a

n
 I U

se
 Y

o
u

r
N

a
m

e
sp

a
c

e
 in

th

e
 Lib

ra
ry?

397Putting Classes into Namespaces

Programs throughout this book make items in NamespaceB visible in
NamespaceA with the using directive. I discuss full qualification and using
directives in the next two sections.

 If the items in NamespaceB are in other assemblies, choose Project➪Add
Reference and add a reference for those assemblies.

Using fully qualified names
The namespace of a class is a part of the extended class name, which leads
to the first way to make classes in one namespace visible in another. This
example doesn’t have any using directives to simplify referring to classes in
other namespaces:

namespace MathRoutines // Broken into two segments -- see below.
{
 class Sort
 {
 public void SomeMethod(){}
 }
}
namespace Paint
{
 public class PaintColor
 {
 public PaintColor(int nRed, int nGreen, int nBlue) {}
 public void Paint() {}
 public static void StaticPaint() {}
 }
}
namespace MathRoutines // Another piece of this namespace
{
 public class Test
 {
 static public void Main(string[] args)
 {
 // Create an object of type Sort from the same namespace
 // we’re in and invoke a method.
 Sort obj = new Sort();
 obj.SomeMethod();
 // Create an object in another namespace -- notice that the
 // namespace name must be included explicitly in every
 // class reference.
 Paint.PaintColor black = new Paint.PaintColor(0, 0, 0);
 black.Paint();
 Paint.PaintColor.StaticPaint();
 }
 }
}

In this case, the two classes Sort and Test are contained within the same
namespace, MathRoutines, even though they appear in different declara-
tions within the file (or in different files). That namespace is broken into two
parts.

24_563489-bk02ch10.indd 39724_563489-bk02ch10.indd 397 3/19/10 8:22 PM3/19/10 8:22 PM

398 Putting Classes into Namespaces

 Normally, Sort and Test would be in different C# source files that you build
together into one program.

The method Test.Main() can reference the Sort class without specify-
ing the namespace because the two classes are in the same namespace.
However, Main() must specify the Paint namespace when referring to
PaintColor, as in the call to Paint.PaintColor.StaticPaint(). This
process is known as fully qualifying the name.

Notice that you don’t need to take any special steps when referring to
black.Paint(), because the class of the black object is specified,
namespace and all, in the black declaration.

24_563489-bk02ch10.indd 39824_563489-bk02ch10.indd 398 3/19/10 8:22 PM3/19/10 8:22 PM

Book III

Designing for C#

Using the Data Source Configuration Wizard

25_563489-pp03.indd 39925_563489-pp03.indd 399 3/19/10 7:56 PM3/19/10 7:56 PM

Contents at a Glance

Chapter 1: Writing Secure Code .401

Chapter 2: Accessing Data .415

Chapter 3: Fishing the FileStream .435

Chapter 4: Accessing the Internet .455

Chapter 5: Creating Images .469

25_563489-pp03.indd 40025_563489-pp03.indd 400 3/19/10 7:56 PM3/19/10 7:56 PM

Chapter 1: Writing Secure Code

In This Chapter
✓ Designing for security

✓ Building secure Windows and Web applications

✓ Digging into System.Security

Security is a big topic. Ignoring for a moment all the buzzwords surround-
ing security, I’m sure you realize that you need to protect your appli-

cation from being used by people who shouldn’t use it. You also need to
prevent your application from being used for things it shouldn’t be used for.

At the beginning of the electronic age, security was usually performed by
obfuscation. If you had an application that you didn’t want people peeking
at, you just hid it, and no one would know where to find it. Thus, it would be
secure. (Remember War Games, the movie in which the military assumed that
no one would find the phone number needed to connect to its mainframes —
but Matthew Broderick’s character did?)

That obviously doesn’t cut it anymore; now you need to consider security
as an integral requirement of every system that you write. Your application
might not contain sensitive data, but can it be used to get to other infor-
mation on the machine? Can it be used to gain access to a network that it
shouldn’t? The answers to these questions matter.

The two main parts to security are authentication and authorization.
Authentication is the process of making sure a user is authentic — that the
user is who he claims to be. The most common method of authentication
is to require the use of a username and password, though other ways exist,
such as thumbprint scans. Authorization is the act of ensuring that a user
has the authority to do what he asks to do. File permissions are a good
example of this — users can’t delete system-only files, for instance.

The silent partner of security makes sure that your system can’t be fooled
into believing a user is authentic or authorized. Because of this require-
ment, there is more to security than inserting username and password text
boxes in your program. In this chapter, I tell you what tools are available
in the .NET Framework to help you make sure that your applications are
secure.

26_563489-bk03ch01.indd 40126_563489-bk03ch01.indd 401 3/19/10 8:10 PM3/19/10 8:10 PM

402 Designing Secure Software

Designing Secure Software
Security takes a fair amount of work to accurately design. If you break
the process into pieces, you find that it’s a lot easier to accomplish. The
Patterns and Practices team (a group of software architects at Microsoft who
devise programming best practices) have created a systematic approach
to designing secure programs that I think you will find straightforward, so I
describe it in the following sections.

Determining what to protect
Different applications have different artifacts that need protection, but all
applications share something that needs protection. If you have a database
in your application, that is the most important item to protect. If your appli-
cation is a server-based application, the server should rate fairly high when
you’re determining what to protect.

Even if your program is just a little single-user application, the software
should do no wrong — an outsider shouldn’t be able to use the application
to break into the user’s computer.

Documenting the components of the program
If you think this section’s title sounds similar to part of the design process,
you’re right. A lot of threat modeling is just understanding how the applica-
tion works and describing it well.

First, describe what the application does. This description becomes a func-
tional overview. If you follow the commonly accepted Software Development
Life Cycle (SDLC), and then the use cases, requirements, or user stories
document (depending on your personal methodology) should give you a
good starting point.

Next, describe how the application accomplishes all those tasks at the high-
est level. A Software Architecture Overview (SAO) diagram is a useful way
to do it. This diagram shows which machines and services do what in your
software.

If you happen to be using Visual Studio Team System, building a diagram in
the Enterprise Architect version is the ultimate SAO diagram and is a good
model.

Sometimes the SAO is a simple diagram — if you have a standalone Windows
Forms program like a game, that’s all there is! A standalone program has
no network connection, and no communication between software parts.
Therefore, the software architecture diagram contains only one instance.

26_563489-bk03ch01.indd 40226_563489-bk03ch01.indd 402 3/19/10 8:10 PM3/19/10 8:10 PM

Book III

Chapter 1

W
ritin

g

S
e

c
u

re
 C

o
d

e

403Designing Secure Software

Decomposing components into functions
After you create a document that describes what the software is doing and
how, you need to break out the individual functional pieces of the software.
If you have set up your software in a component fashion, the classes and
methods show the functional decomposition. It’s simpler than it sounds.

The end result of breaking the software into individual pieces is having a
decent matrix of which components need to be protected, which parts of
the software interact with each component, which parts of the network and
hardware system interact with each component, and which functions of the
software do what with each component.

Identifying potential threats in functions
After you create the list of components that you need to protect, you tackle
the tough part: Put two and two together. Identifying threats is the process
that gets the security consultants the big bucks, and it’s almost entirely a
factor of experience.

For instance, if your application connects to a database, you have to imagine
that the connection could be intercepted by a third party. If you use a file to
store sensitive information, the file could, theoretically, be compromised.

To create a threat model, you need to categorize the potential threats to
your software. An easy way to remember the different categories of threats
is as the acronym STRIDE:

 ✦ Spoofing identity: Users pretend that they are someone who they
are not.

 ✦ Tampering with data or files: Users edit something that shouldn’t be
edited.

 ✦ Repudiation of action: Users have the opportunity to say they didn’t do
something that they actually did do.

 ✦ Information disclosure: Users see something that shouldn’t be seen.

 ✦ Denial of service: Users prevent legitimate users from accessing the
system.

 ✦ Elevation of privilege: Users get access to something that they
shouldn’t have access to.

All these threats must be documented in an outline under the functions that
expose the threat. This strategy not only gives you a good, discrete list of
threats but also focuses your security hardening on those parts of the appli-
cation that pose the greatest security risk.

26_563489-bk03ch01.indd 40326_563489-bk03ch01.indd 403 3/19/10 8:10 PM3/19/10 8:10 PM

404 Building Secure Windows Applications

Rating the risk
The final step in the process is to rate the risks. Microsoft uses the DREAD
model to assess risk to its applications. The acronym DREAD represents five
key attributes used to measure each vulnerability:

 ✦ Damage potential: The dollar cost to the company for a breach

 ✦ Reproducibility: Special conditions to the breach that might make it
harder or easier to find

 ✦ Exploitability: A measure of how far into a corporate system a hacker
can get

 ✦ Affected users: The number of users who are affected and who they are

 ✦ Discoverability: The ease with which you can find the potential breach

You can research the DREAD model at msdn.microsoft.com/security,
or position your threat model to consider those attributes. The key is to
determine which threats are most likely to cause problems and then mitigate
them.

Building Secure Windows Applications
The framework lives in a tightly controlled sandbox when running on a client
computer. Because of the realities of this sandbox, the configuration of secu-
rity policy for your application becomes important.

The first place you need to look for security in writing Windows applications
is in the world of authentication and authorization. Authentication confirms
the identity of a user, and authorization determines what she can and can’t
do within an application.

When you are threat modeling, you can easily consider all of the possible
authentication and authorization threats using the STRIDE acronym. (See the
earlier section “Identifying potential threats in functions,” for more about
STRIDE.)

Authentication using Windows login
To be straightforward, the best way for an application to authorize a user is
to make use of the Windows login. A host of arguments take place about this
strategy and others, but the key is simplicity: Simple things are more secure.

For much of the software developed with Visual Studio, the application will be
used in an office by users who have different roles in the company; for exam-
ple, some users might be in the Sales or Accounting department. In many

26_563489-bk03ch01.indd 40426_563489-bk03ch01.indd 404 3/19/10 8:10 PM3/19/10 8:10 PM

Book III

Chapter 1

W
ritin

g

S
e

c
u

re
 C

o
d

e

405Building Secure Windows Applications

environments, the most privileged users are managers or administrators —
yet another set of roles. In most offices, each employee has her own user
account, and each user is assigned to the Windows groups that are appropri-
ate for the roles she plays in the company.

 Using Windows security works only if the Windows environment is set up
correctly. You can’t effectively build a secure application in a workspace
with a bunch of Windows XP machines on which everyone logs on as the
administrator, because you can’t tell who is in what role.

Building a Windows application to take advantage of Windows security is
straightforward. The goal is to check to see who is logged on (authentication)
and then check that user’s role (authorization).

The following steps show you how to create an application that protects the
menu system for each user by showing and hiding buttons:

 1. Start a new Windows Forms Application project by choosing File➪New
Project and giving your project a descriptive name.

 This would work for Windows Presentation Foundation (WPF) too,
but it’s easier to show in Windows Forms. (Book V is all about WPF.) I
named my project Windows Security.

 2. Add three buttons to your form — one for Sales Menu, one for
Accounting Menu, and one for Manager’s Menu.

 My example is shown in Figure 1-1.

Figure 1-1:
The
Windows
Security
application
sample.

26_563489-bk03ch01.indd 40526_563489-bk03ch01.indd 405 3/19/10 8:10 PM3/19/10 8:10 PM

406 Building Secure Windows Applications

 3. Set every button’s visible properties to False so that they aren’t
shown on the form by default.

 4. Double-click the form to reach the Form1_Load event handler.

 5. Above the Namespace statement, import the System.Security.
Principal namespace this way:

using System.Security.Principal;

 6. In the Form1_Load event handler, instantiate a new Identity object
that represents the current user with the GetCurrent method of the
WindowsIdentity object by adding this bit of code:

WindowsIdentity myIdentity = WindowsIdentity.
GetCurrent();

 7. Get a reference to this identity with the WindowsPrincipal class:

WindowsPrincipal myPrincipal = new
WindowsPrincipal(myIdentity);

 8. Finally, also in the Form1_Load subroutine, code a little If/Then
statement to determine which button to show. The code is shown in
Listing 1-1.

Listing 1-1: The Windows Security Application Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Security.Principal;

namespace WindowsSecurity
{
 public partial class Form1 : Form
 {

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 WindowsIdentity myIdentity = WindowsIdentity.GetCurrent();
 WindowsPrincipal myPrincipal = new WindowsPrincipal(myIdentity);
 if(myPrincipal.IsInRole(“Accounting”))
 {
 AccountingButton.Visible=true;
 }
 else if (myPrincipal.IsInRole(“Sales”))
 {

26_563489-bk03ch01.indd 40626_563489-bk03ch01.indd 406 3/19/10 8:10 PM3/19/10 8:10 PM

Book III

Chapter 1

W
ritin

g

S
e

c
u

re
 C

o
d

e

407Building Secure Windows Applications

 SalesButton.Visible = true;
 }
 else if (myPrincipal.IsInRole(“Management”))
 {
 ManagerButton.Visible = true;
 }
 }
 }
}

To successfully run this code, you must have an environment that has
Accounting, Sales, and Management NT user groups.

In some cases, you don’t need this kind of role diversification. Sometimes
you just need to know whether the user is in a standard role, which
System.Security provides for. Using the WindowsBuiltInRole enu-
merator, you describe actions that should take place when, for example, the
administrator is logged on:

if (myPrincipal.IsInRole(WindowsBuiltInRole.Administrator))
 {
 //Do something
 }

Encrypting information
Encryption is, at its core, an insanely sophisticated process. Five namespaces
are devoted to different algorithms. Because encryption is so complex, I don’t
get into the details in this book.

Nonetheless, it is important that you understand one cryptographic element
for a key element of security — encrypting files. When you work with a file in
a Windows Forms application, you risk someone loading it up in a text editor
and looking at it, unless you have encrypted the program.

The common encryption scheme Data Encryption Standard (DES) is imple-
mented in .NET. It isn’t the strongest encryption in these days of 64-bit
desktop machines, but it’s strong enough to encrypt the data files for a
Windows application. You can find the methods to encrypt for DES in the
DESCryptoServiceProvider in the System.Security.Cryptography
namespace.

Deployment security
If you deploy your application using ClickOnce, you need to define the
access to the PC that the application will request. ClickOnce is a Web
server–based deployment strategy that allows users to run Windows Forms
applications from a Web browser by using the WindowsSecurity tab in the
My Project configuration file, shown in Figure 1-2.

26_563489-bk03ch01.indd 40726_563489-bk03ch01.indd 407 3/19/10 8:10 PM3/19/10 8:10 PM

408 Building Secure Web Forms Applications

Figure 1-2:
The
Windows
Security
tab of the
My Project
configura-
tion file.

Getting to the My Project configuration file is straightforward:

 1. From an open project, go the Solution Explorer by pressing Ctrl+Alt+L.

 2. Double-click the My Project file.

 3. Click the WindowsSecurity tab.

Here, you can define the features that your application uses, so that the user
installing it receives a warning at installation rather than a security error
when running the application.

Building Secure Web Forms Applications
Web Forms applications are disconnected, loosely coupled programs that
expose a server to potential attacks through the exposed ports used by the
applications. By loosely coupled, I mean they have a transact-and-wait rela-
tionship with the server.

Because of this coupling, building for security becomes more important than
ever with a Web Forms application. A side effect is that your application can
become less functional.

When building Web-based applications, you spend less time worrying about
authentication (especially if your application is made publicly available) and
more time worrying about crackers. Because you are making a server — usu-
ally something you keep private — available to the public, your programs
are subject to a whole new set of security rules.

26_563489-bk03ch01.indd 40826_563489-bk03ch01.indd 408 3/19/10 8:10 PM3/19/10 8:10 PM

Book III

Chapter 1

W
ritin

g

S
e

c
u

re
 C

o
d

e

409Building Secure Web Forms Applications

The key to protecting a public server is honesty. You have to be honest with
yourself about the weaknesses of the system. Don’t think, “Well, a cracker
could figure out the password by doing XYZ, but no one would ever do that.”
Trust me, someone will figure it out.

The two main types of attacks to be concerned about for a Web Forms appli-
cation are SQL Injection attacks and script exploits.

SQL Injection attacks
A SQL Injection attack happens when a hacker enters a line of SQL code into
an input field used to query a database in a form on a Web page (such as
the username and password text boxes in a login form). Malicious SQL code
causes the database to act in an unexpected way or to allow the hacker to
gain access to, alter, or damage the database.

Understanding SQL Injection
The best way to understand how a hacker uses a SQL Injection is to see an
example. For instance, a Web page has code that accepts a Product ID from
the user in a text box and returns product details based on the Product ID
the user entered. The code on the server might look like this:

//Get productId from user
string ProductId = TextBox1.Text;
//Get information from the database
string SelectString = “SELECT * FROM Items WHERE ProductId =

‘” + ProductId + “’;”;
SqlCommand cmd = new SqlCommand(SelectString, conn);
conn.Open();
SqlDataReader myReader = cmd.ExecuteReader();
//Process results
myReader.Close();
conn.Close();

Normally, a user enters the appropriate information into the text box. But a
cracker attempting a SQL Injection attack would enter the following string
into textBox1:

“FOOBAR’;DELETE FROM Items;--”

The SQL code that would be run by your code would look like this:

SELECT * FROM Items WHERE ProductID = ‘FOOBAR’;DELETE FROM
Items;--’

The SQL Server executes some code you didn’t expect; in this case, the code
deleted everything in the Items table.

26_563489-bk03ch01.indd 40926_563489-bk03ch01.indd 409 3/19/10 8:10 PM3/19/10 8:10 PM

410 Building Secure Web Forms Applications

Preventing SQL Injection
 The easiest way to prevent SQL Injection is to never use string concatena-

tion to generate SQL. Use a stored procedure and SQL parameters. You can
read more about that in Chapter 2 of this minibook.

Script exploits
A script exploit is a security flaw that takes advantage of the JavaScript
engine in a user’s Web browser. Script exploits take advantage of one of the
more common features of public Web Forms applications — enabling inter-
action among users. For instance, a Web Forms application may enable a
user to post a comment that other users of the site can view, or it may allow
a user to fill out an online profile.

Understanding script exploits
If a malicious user were to put some script code in his or her profile or com-
ment, that hacker could take over the browser of the next user who comes
to the site. Several outcomes are possible, and none of them are good.

For instance, the cookies collection is available to JavaScript when a user
comes to your site. A malicious user would put some script code in his or
her profile that could copy the cookie for your site to a remote server. This
could give the malicious user access to the current user’s session because
the session identifier is stored as a cookie. The malicious user would then be
able to spoof the current user’s identity.

Preventing script exploits
Fortunately, ASP.NET prevents users from typing most script code into a
form field and posting it to the server. Try it with a basic Web Forms project
by following these steps (you see the error shown in Figure 1-3):

 1. Create a new Web Forms project.

 2. Add a text box and a button to the default page.

 3. Run the project.

 4. Type <script>msgbox()</script> into the text box.

 5. Click the button.

Additionally, you can use the Server.HTMLEncode method to encode any-
thing that the Web Forms application sends to the screen — this will make
script code appear in real text rather than in HTML.

26_563489-bk03ch01.indd 41026_563489-bk03ch01.indd 410 3/19/10 8:10 PM3/19/10 8:10 PM

Book III

Chapter 1

W
ritin

g

S
e

c
u

re
 C

o
d

e

411Building Secure Web Forms Applications

Figure 1-3:
Script
exploits are
blocked by
default.

Best practices for securing Web Forms applications
Aside from make sure that your Web Forms application will prevent SQL
Injection attacks and script exploits, you should keep in mind some good
practices for securing your Web applications.

The following list runs down some of the most important practices for secur-
ing your Web applications:

 ✦ Keep your IIS box up to date.

 ✦ Back up everything.

 ✦ Avoid using a Querystring variable.

 ✦ Don’t leave HTML comments in place. Any user can view the HTML code
and see your comments by choosing View➪Source in a browser.

 ✦ Don’t depend on client-side validation for security — it can be faked.

 ✦ Use strong passwords.

 ✦ Don’t assume what the user sent you came from your form and is safe. It
is easy to fake a form post.

 ✦ Make sure that error messages don’t give the user any information
about your application. E-mail yourself the error messages instead of
displaying them to the user.

26_563489-bk03ch01.indd 41126_563489-bk03ch01.indd 411 3/19/10 8:10 PM3/19/10 8:10 PM

412 Using System.Security

 ✦ Use Secure Sockets Layer.

 ✦ Don’t store anything useful in a cookie.

 ✦ Close all unused ports on your Web server.

 ✦ Turn off SMTP on IIS unless you need it.

 ✦ Run a virus checker if you allow uploads.

 ✦ Don’t run your application as Administrator.

 ✦ Use temporary cookies, if possible, by setting the expiration date to a
past date. The cookie will stay alive only for the length of the session.

 ✦ Put a size limit on file uploads. You can do it in the Web.Config file:

<configuration>
 <system.web>
 <httpRuntime maxRequestLength=”4096” />
 </system.web>
</configuration>

 ✦ Remember that the ViewState of Web Forms is easily viewable.

Using System.Security
Although many of the security tools are built into the classes that use them,
some classes defy description or classification. For that reason, System.
Security is the holding pot for stuff that doesn’t fit anywhere else.

The more common namespaces for System.Security are described in
Table 1-1. I show how to use the Security.Principal namespace in the
earlier section “Authentication using Windows login.”

Table 1-1 Common Namespaces in System.Security

Namespace Description Common Classes

Security Base classes
for security

CodeAccessPermission,
SecureString

AccessControl Sophisticated
control for
authorization

AccessRule, AuditRule

Authorization Enumerations
that describe
the security of
an application

CipherAlgorithmType

26_563489-bk03ch01.indd 41226_563489-bk03ch01.indd 412 3/19/10 8:10 PM3/19/10 8:10 PM

Book III

Chapter 1

W
ritin

g

S
e

c
u

re
 C

o
d

e

413Using System.Security

Namespace Description Common Classes

Cryptography Contains several
namespaces
that help with
encryption

CryptoConfig,
DESCryptoServiceProvider

Permissions Controls access
to resources

PrincipalPermission,
SecurityPermission

Policy Defends repu-
diation with
classes for
evidence

Evidence, Site, Url

Principal Defines the
object that
represents the
current user
context

WindowsIdentity,
WindowsPrincipal

26_563489-bk03ch01.indd 41326_563489-bk03ch01.indd 413 3/19/10 8:10 PM3/19/10 8:10 PM

414 Book III: Designing for C#

26_563489-bk03ch01.indd 41426_563489-bk03ch01.indd 414 3/19/10 8:10 PM3/19/10 8:10 PM

Chapter 2: Accessing Data

In This Chapter
✓ Understanding the System.Data namespace

✓ Connecting to a data source

✓ Working with data from databases

Not to predispose you to the contents of this chapter, but you will
probably find that data access is the most important part of your

use of the .NET Framework. You likely will use the various features of the
System.Data namespace more than any other namespace.

Unquestionably, one of the most common uses of Visual Studio is the cre-
ation of business applications. Business applications are about data. This is
the black and white of development with Visual Studio. While understanding
a little of everything is important, complete understanding of the System.
Data namespace is essential when you’re building business applications.

Until the .NET Framework became popular in the 2003 timeframe, most
business applications built using Microsoft products used FoxPro or Visual
Basic. C# has unquestionably replaced those languages as the business pro-
grammer’s language of choice over the past several years.

You can look at the data tools in C# in three ways:

 ✦ Database connectivity: Getting information out of and into a database is
a primary part of the System.Data namespace.

 ✦ Holding data in containers within your programs: The DataSet,
DataView, and DataTable containers are useful mechanisms for
accomplishing the holding of data. If you are a Visual Basic 6 or ASP
programmer, you remember Recordsets, which have been replaced by
the new constructs.

 The Language Integrated Query enables you to get the data out of the
data containers using Structured Language Queries (SQL) rather than
complicated object-oriented language (OOL).

27_563489-bk03ch02.indd 41527_563489-bk03ch02.indd 415 3/19/10 8:11 PM3/19/10 8:11 PM

416 Getting to Know System.Data

 ✦ Integration with data controls: The System.Web and System.Windows
namespaces function to integrate with the data controls. Data control
integration uses database connectivity and data containers extensively.
This makes data controls a great target for your reading in this chapter.

Getting to Know System.Data
Data in .NET is different from data in any other Microsoft platform. Microsoft
has and continues to change the way data is manipulated in the .NET
Framework. ADO.NET, whose implementation is contained in the new data
library System.Data, provides yet another new way to think about data
from a development perspective:

 ✦ Disconnected: After you get data from a data source, your program is no
longer connected to that data source. You have a copy of the data. This
cures one problem and causes another:

 • You no longer have a row-locking problem. Because you have a copy
of the data, you don’t have to constrain the database from making
changes.

 • You have the last in wins problem. If two instances of a program get
the same data, and they both update it, the last one back to the data-
base overwrites the changes made by the first program.

 ✦ XML driven: The data copy that’s collected from the data source is XML
under the hood. It might be moved around in a custom format when
Microsoft deems it necessary for performance, but it is just XML either
way, making movement between platforms or applications or databases
much easier.

 ✦ Database-generic containers: The containers don’t depend on the type
of database at all — they can be used to store data from anywhere.

 ✦ Database-specific adapters: Connections to the database are specific to
the database platform, so if you want to connect to a specific database,
you need the components that work with that database.

The process for getting data has changed a little, too. You used to have a
connection and a command, which returned a Recordset. Now, you have
an adapter, which uses a connection and a command to fill a DataSet
container. What has changed is the way the user interface helps you get
the job done.

System.Data has the classes to help you connect to a lot of different
databases and other types of data. These classes are broken up into the
namespaces in Table 2-1.

27_563489-bk03ch02.indd 41627_563489-bk03ch02.indd 416 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

417How the Data Classes Fit into the Framework

Table 2-1 The System.Data Namespaces

Namespace Purpose Most Used Classes

System.Data Classes common to all of
ADO.NET

The containers
DataSet, DataView,
DataTable, DataRow

System.Data.
Common

Utility classes used by
database-specific classes

DbCommand,
DbConnection

System.Data.
ODBC

Classes for connections to
ODBC databases such as
dBASE

OdbcCommand,
OdbcAdapter

System.Data.
OleDb

Classes for connections to
OleDb databases such as
Access

OleDbCommand,
OleDbAdapter

System.Data.
OracleClient

Classes for connections to
Oracle

OracleCommand,
OracleAdapter

System.Data.
SqlClient

Classes for connections to
Microsoft SQL Server

SqlCommand,
SqlDataAdapter

System.Data.
SqlTypes

For referencing the native
types common to SQL
Server

SqlDateTime

Though there is a lot to the System.Data namespace and related tools, I
focus on the way Visual Studio implements these tools. In previous versions
of the development software of all makes and models, the visual tools just
made things harder because of the black box problem.

 The black box problem is that of having a development environment do
some things for you over which you have no control. Sometimes it’s nice to
have things done for you, but when the development environment doesn’t
build them exactly how you need them, code is generated that isn’t useful.

Fortunately, that isn’t the case anymore. Visual Studio now generates com-
pletely open and sensible C# code when you use the visual data tools. I think
you will be pleased with the results.

How the Data Classes Fit into the Framework
The data classes are all about information storage. In Book I, I talk about
collections, which are for storage of information while an application is run-
ning. Hashtables are another example of storing information. Collections hold
lists of objects, and hashtables hold name and value pairs.

27_563489-bk03ch02.indd 41727_563489-bk03ch02.indd 417 3/19/10 8:11 PM3/19/10 8:11 PM

418 Getting to Your Data

The data containers hold data in larger amounts and help you manipulate
that data. Here are the data containers:

 ✦ DataSet: Kind of the granddaddy of them all, the DataSet container is
an in-memory representation of an entire database.

 ✦ DataTable: A single table of data stored in memory, the DataTable
container is the closest thing you can find to a Recordset, if you are a
VB 6 programmer and are looking. DataSet containers are made up of
DataTable containers.

 ✦ DataRow: Unsurprisingly, a row in a DataTable container.

 ✦ DataView: A copy of a DataTable that can be used to sort and filter
data for viewing purposes.

 ✦ DataReader: A read-only, forward-only stream of data used for one-time
processes such as filling up list boxes. Usually called a fire hose.

Getting to Your Data
Everything in the System.Data namespace revolves around getting data
from a database such as Microsoft SQL Server and filling these data contain-
ers. You can get to this data manually. Generally speaking, the process goes
something like this:

 1. You create an adapter.

 2. You tell the adapter how to get information from the database (the
connection).

 3. The adapter connects to the database.

 4. You tell the adapter which information to get from the database (the
command).

 5. The adapter fills the DataSet container with data.

 6. The connection between the adapter and the database is closed.

 7. You now have a disconnected copy of the data in your program.

Not to put too fine a point on it, but you shouldn’t have to go through that
process at all. Visual Studio does a lot of the data management for you if you
let it, and I recommend that you do.

Using the System.Data Namespace
The System.Data namespace is another namespace that gets mixed up
between the code world and the visual tools world. Though it is more of a

27_563489-bk03ch02.indd 41827_563489-bk03ch02.indd 418 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

419Using the System.Data Namespace

relationship between the form controls and the Data namespace, it often
seems like the data lives right inside the controls, especially when you’re
dealing with Windows Forms.

In the following sections, you deal primarily with the visual tools, which are
as much a part of the C# experience as the code. First, I go over connecting
to data sources, and then I show you how to write a quick application using
one of those connections. Finally, I go over a little of the code side.

To make all this work, you need to have some kind of schema set up in your
database. It can be a local project of your own creation or a sample schema.
The next section tells you how.

Setting up a sample database schema
To get started, direct your browser to www.microsoft.com/sqlserver/
2005/en/us/express-starter-schemas.aspx . If this URL doesn’t
work, search the Web for SQL Server 2008 sample schema and find the near-
est Microsoft link. It should get you there.

This page offers two sample listings — sample applications and sample sche-
mas. The sample applications are full-blown applications that show com-
plete end-to-end implementation of data-driven software built using .NET.
Some are in C#, some are in Visual Basic. The sample schemas are databases
only and are designed for database administrators to practice getting experi-
ence in handling the system.

Any of the sample schemas will work. If you want exactly the same one as
I use in the examples here, choose the Asset Management schema. Other
options may be a better fit for the work you’re doing. They include

 ✦ Assets Maintenance

 ✦ Contact Management

 ✦ Customers and Orders

 ✦ Document Management

 ✦ e-Commerce

 ✦ Helpdesk

 ✦ Issue Tracking Software

 ✦ Retail Inventory Control

 ✦ Not for Profits

 ✦ Product Catalogs

27_563489-bk03ch02.indd 41927_563489-bk03ch02.indd 419 3/19/10 8:11 PM3/19/10 8:11 PM

420 Using the System.Data Namespace

To install, follow these steps:

 1. Click the Install link to display the familiar Internet Explorer down-
load dialog box. Agree to run the software, and you see a confirma-
tion for the installation. Click Yes to that confirmation, and then agree
to the EULA.

 Gotta do the licensing bit!

 2. Pick a destination for the database files. I used c:\databases. Agree
to create the folder and acknowledge that you did business with
Microsoft, and then you should be golden.

 The expanded folder includes four items in the following order: the
license that you agreed to, a picture of the database schema, the SQL
files for the schema themselves, and an *.mdf file with the schema and
the database within.

If you are familiar with SQL Server, you can add a database to your local
install and point to it there. In the case that you aren’t a DBA, it is also pos-
sible to point a data provider directly to a file. That’s the angle I take for the
rest of this chapter.

Connecting to a data source
There is more to connecting to a database than establishing a simple con-
nection to Microsoft Access these days. Visual Basic developers have to con-
nect to mainframes, text files, unusual databases, Web services, and other
programs. All these disparate systems get integrated into windows and Web
screens, with update, add, and delete functionality to boot.

Getting to these data sources is mostly dependent on the Adapter classes
of the individualized database namespaces. Oracle has its own, as does SQL
Server. Databases that are ODBC (Open Database Connectivity) compliant
(such as Microsoft Access) have their own Adapter classes; the newer
OLEDB (Object Linking and Embedding Database) protocol has one, too.

Fortunately, a wizard handles most of this. The Data Source Configuration
Wizard is accessible from the Data Sources panel, where you spend much
of your time when working with data. To get started with the Data Source
Configuration Wizard, follow these steps:

 1. Start a new Windows Application project by clicking the New Project
icon in the Start page. Select a C# Windows Forms Application and
give it an appropriate name.

 For this example, I named the Windows Application project Accessing
Data.

 2. To open the Data Sources panel, choose Data➪Show Data Sources, or
press Shift+Alt+D.

 It should tell you that you have no data sources, as shown in Figure 2-1.

27_563489-bk03ch02.indd 42027_563489-bk03ch02.indd 420 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

421Using the System.Data Namespace

Figure 2-1:
The Data
Sources
panel.

 3. Click the Add New Data Source link in the Data Sources panel.

 This brings up the Data Source Configuration Wizard. The wizard has a
variety of data source types that you can choose from. The most inter-
esting of these is the Object source, which gives you access to an object
in an assembly to bind your controls to.

 4. Click the Object source type to see the options there, as shown in
Figure 2-2. Then click the Previous button to go back to the preceding
screen.

Figure 2-2:
Using an
object for a
data source.

 You can pick a Web service to connect to a function on another computer.
I cover Web service creation and consumption in Book V, but this func-
tionality sets you up to have a data source along with the Web service
reference. It’s cool. An example of the blank screen is shown in Figure 2-3.

27_563489-bk03ch02.indd 42127_563489-bk03ch02.indd 421 3/19/10 8:11 PM3/19/10 8:11 PM

422 Using the System.Data Namespace

Figure 2-3:
Using a
Web service
for a data
source.

 When you finish looking around, click the Cancel button to return.

 5. Click the Database data source type to be taken to the Choose Your
Database Model screen.

 For this example, I just used a DataSet. The next part of the wizard is the
Choose Your Data Connection screen, as shown in Figure 2-4.

 The most common point of access is a database.

Figure 2-4:
Choosing
your data
connection.

 6. If you have an existing data connection, it appears in the drop-down
list. Otherwise, you need to click the New Connection button to bring
up the Add Connection dialog box, as shown in Figure 2-5.

 For this example, I click the New Connection button and select
Northwind, the Microsoft sample database.

27_563489-bk03ch02.indd 42227_563489-bk03ch02.indd 422 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

423Using the System.Data Namespace

Figure 2-5:
The Add
Connection
dialog box.

 The Add Connection dialog box assumes that you are going to connect
to a SQL server. If that isn’t the case, click the Change button to select a
different database from the Change Data Source dialog box, as shown in
Figure 2-6. For this example, I chose Microsoft SQL Server Database File
and clicked OK.

Figure 2-6:
The Change
Data Source
dialog box.

 If you do use a database file, Visual Studio will copy pertinent files to
your project. If you are working through this book in an isolated project,
that’s fine. If you are on a development effort with others, check to make
sure it is appropriate to your life cycle methodology.

 7. Click the Next button to save the connection string to the application
configuration file.

 8. Accept the defaults by clicking Next.

 You see the Choose Your Database Objects screen. You can choose the
tables, views, or stored procedures that you want to use.

27_563489-bk03ch02.indd 42327_563489-bk03ch02.indd 423 3/19/10 8:11 PM3/19/10 8:11 PM

424 Using the System.Data Namespace

 9. Under Tables, select Parts and Part_Faults (as shown in Figure 2-7),
and click Next.

Figure 2-7:
Selecting
data
objects.

You’re done! If you look at the Data Sources panel, you find that the new
data connection was added, as shown in Figure 2-8.

Figure 2-8:
New data
connections
appear in
the Data
Sources
panel to the
left.

27_563489-bk03ch02.indd 42427_563489-bk03ch02.indd 424 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

425Using the System.Data Namespace

 Note that the Data Sources panel has the Parts tables, and the Data
Connections panel has all the tables. This is because the DataSet container
that you built in the wizard just has the Parts table and related tables in it.
The Data Connections panel shows everything in the database.

By following the preceding steps, you create two significant entities in Visual
Studio:

 ✦ You create a connection to the database, shown in the Database
Explorer. You find that it sticks around — it’s specific to this installation
of Visual Studio.

 ✦ You also create a project data source, which is specific to this project
and won’t be there if you start another project.

Both of them are important, and they provide different functionality. In this
chapter, I focus on the project-specific data source displayed in the Data
Sources panel.

Working with the visual tools
The Rapid Application Development (RAD) data tools for Visual Basic are a
massive improvement over what Microsoft previously provided. The RAD
data tools in Visual Studio are usable and do what you need, and they write
decent code for you.

 You need to know that I would never show this kind of black magic if it
weren’t a best practice. In the past, tools that did something you couldn’t
see often did their job poorly. Using the tools, in the long run, made your
program worse. The new tools, though, are a good way to build software.
People may tell you that I am wrong, but it really isn’t bad. Try it!

If you click a table in the Data Sources panel, a drop-down arrow appears,
as shown in Figure 2-9. Click it and you see something interesting: A drop-
down list appears, and you can then choose how that table is integrated into
Windows Forms.

Change the Parts table to Details View. It’s used to create a detail type form —
one that easily enables users to view and change data. Then drag the table to
the form, and Details View is created for you, as shown in Figure 2-10.

A whole lot of things happened when you dropped the table on your form:

 ✦ The fields and the field names were added.

 ✦ The fields are in the most appropriate format.

 ✦ The field name is a label.

 ✦ Visual Studio automatically adds a space where the case changes.

27_563489-bk03ch02.indd 42527_563489-bk03ch02.indd 425 3/19/10 8:11 PM3/19/10 8:11 PM

426 Using the System.Data Namespace

Figure 2-9:
Table
Options
drop-down
list.

Figure 2-10:
Creating a
Parts Detail
data form.

Note that each field gets a SmartTag that enables you to specify a query for
the values in the text box. You can also preset the control that’s used by
changing the values in the Data Sources panel (refer to Figure 2-10).

Also, a VCR Bar (technically called the BindingNavigator) is added to the
top of the page. When you run the application, you can use the VCR Bar to
cycle among the records in the table.

Finally, four completely code-based objects are added in the Component
Tray at the bottom of the page: the DataSet, the BindingSource, the
DataAdapter, and the BindingNavigator objects.

27_563489-bk03ch02.indd 42627_563489-bk03ch02.indd 426 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

427Using the System.Data Namespace

Click the Play button and you can see the VCR Bar work. You can walk
through the items in the database with no problems, as shown in Figure 2-11.
It’s just like working in Access or FoxPro, but with enterprise quality!

Figure 2-11:
Running the
example.

It gets better. Follow these steps to create a child table interface:

 1. Open the Parts table in the Data Sources panel by clicking the plus
sign (+) next to the table.

 2. Scroll down until you see the Part FaultsParts table nested in the
Orders table.

 Note that this table is in there twice. You want the one under Parts.

 3. Drag that instance of the table over to the form and place it under
the Parts fields you placed on the form earlier in this section (refer to
Figure 2-10).

 4. Click the Play button to run the example, as shown in Figure 2-12.

You have a running, easy-to-use parent/child form, with parts and part
faults. Creating this form would have required you to write a hundred lines
of code in other environments. With the capability to choose an assembly
for a data source that C# gives you, the form is even nearly enterprise ready.
It’s slick stuff.

27_563489-bk03ch02.indd 42727_563489-bk03ch02.indd 427 3/19/10 8:11 PM3/19/10 8:11 PM

428 Using the System.Data Namespace

Figure 2-12:
A complete
edit form.

Writing data code
In most enterprise development environments, however, you won’t be using
the visual tools to build data access software. Generally, an infrastructure is
already in place.

The reason for this is that often, enterprise software has specific require-
ments, and the easiest way to manage those specifications is with unique
and customized code. In short, some organizations don’t want things done
the way Microsoft does them.

Output of the visual tools
The reason that the visual tools often aren’t used in enterprise environ-
ments is that the code the tools put out is rather sophisticated. If you
switch to Code View and right-click an instance of an object (such as the
PartsTableAdapter object) and select Go to Definition, you see the code
behind the designer.

Figure 2-13 shows what you see when you first get in there. The box mark-
ing the region near the top of the code window is marked as Windows Form
Designer generated code, and you can’t help but notice that the line
number before that section is in the twenties and the number after that is in
the four hundreds. That’s a lot of generated code.

Nothing is wrong with this code, but it is purposely generic to support any-
thing that anyone might want to do with it. Enterprise customers often want
to make sure that everything is done the same way. For this reason, they
often define a specific data code format and expect their software develop-
ers to use that, rather than the visual tools.

27_563489-bk03ch02.indd 42827_563489-bk03ch02.indd 428 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

429Using the System.Data Namespace

Figure 2-13:
Generated
code. Huh?

Basic data code
The code of the sample project is simple:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Accessing_Data
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void partsBindingNavigatorSaveItem_Click(object sender, EventArgs
e)

 {
 this.Validate();
 this.partsBindingSource.EndEdit();
 this.tableAdapterManager.UpdateAll(this.assets_MaintenanceDataSet);

 }

27_563489-bk03ch02.indd 42927_563489-bk03ch02.indd 429 3/19/10 8:11 PM3/19/10 8:11 PM

430 Using the System.Data Namespace

 private void Form1_Load(object sender, EventArgs e)
 {
 // TODO: This line of code loads data into the ‘assets_

MaintenanceDataSet.Part_Faults’ table. You can move, or remove it, as needed.
 this.part_FaultsTableAdapter.Fill(this.assets_MaintenanceDataSet.

Part_Faults);
 // TODO: This line of code loads data into the ‘assets_

MaintenanceDataSet.Parts’ table. You can move, or remove it, as needed.
 this.partsTableAdapter.Fill(this.assets_MaintenanceDataSet.Parts);

 }
 }

}

While this is fairly straightforward, it obviously isn’t everything that you
need. The rest of the code is in the file that generates the visual form itself,
supporting the visual components.

The time may come when you want to connect to a database without using
visual tools. I discuss the steps in the earlier section “How the Data Classes
Fit into the Framework,” and here I show the code to go with it:

1. SqlConnection mainConnection = new SqlConnection();
2. mainConnection.ConnectionString = “server=(local);database=Assets_

Maintenance;Trusted_Connection=True”
3. SqlDataAdapter partsAdapter = new SqlDataAdapter(“SELECT * FROM

Parts”, mainConnection)
4. DataSet partsDataSet = new DataSet();
5. mainConnection.Open();
6. partsAdapter.Fill(partsDataSet);
7. mainConnection.Close();

This becomes useful especially when you want to build a Web service or a
class library — though it should be noted that you can still use the visual
tools in those project types.

Let’s talk about this a line at a time. Line one sets up a new data connection,
and line two populates it with the connection string. You can get this from
your DBA or from the properties panel for the data connection.

Line three has a SQL Query in it. In Chapter 1, I talk about how this is a bad
deal, and you should use Stored Procedures. That’s true. Don’t use inline
SQL for production systems. I could have just as easily put a stored proce-
dure name in there.

Line four builds a new dataset. This is where the schema of the returned
data is held and what I would use to navigate the data.

27_563489-bk03ch02.indd 43027_563489-bk03ch02.indd 430 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

431Using the System.Data Namespace

Lines 5, 6, and 7 perform the magic: Open the connection, contact the data-
base. Fill the dataset using the adapter, and then close the database. It’s all
straightforward in this simple example. More complex examples make for
more complex code.

After running this code, you would have the Parts table in a DataSet con-
tainer, just as you did in the visual tools in the earlier section, “How the Data
Classes Fit into the Framework.” To access the information, you set the value
of a text box to the value of a cell in the DataSet container, like this:

TextBox1.Text = myDataSet.Tables[0].Rows[0][“part_name”]

To change to the next record, you need to write code that changes the
Rows[0] to Rows[1] in the next example. As you can see, it would be a fair
amount of code.

That’s why few people use the basic data code to get the databases. Either
you use the visual tools or you use a data broker of some sort.

Using the Entity Framework
I don’t want to get into much programming philosophy here, but object
models (which I discuss in much of this book) and databases just don’t go
together. They’re two different ways of thinking of the same information.

The problem mostly lies in inheritance, which I discuss in Book II. If you have
a class called ScheduledEvent, which has certain properties, and a bunch of
classes that inherit from it, like Courses, Conferences, and Parties, there
just isn’t a good way to show this in a relational type of database.

If you make a big table for ScheduledEvents with all possible types of prop-
erties, and just make a Type property so you can tell the Courses from the
Parties, and then you will have a lot of empty cells. If you make a table for
just the properties that are in ScheduledEvents, and then separate tables
for Courses and Parties, you make the database remarkably complex.

To address this problem, Microsoft created the Entity Framework. It’s the
latest edition of a product that Microsoft and everyone else has tried to
create since the popularity of relational databases and object-oriented pro-
gramming made object role modelers necessary.

Object Role Modelers try and take the whole shootin’ match and turn it
on its head. The goal is to design the database first (which I recommend
anyway), and then make an object model to work with it automatically.
Then, keep it up to date.

27_563489-bk03ch02.indd 43127_563489-bk03ch02.indd 431 3/19/10 8:11 PM3/19/10 8:11 PM

432 Using the System.Data Namespace

The Entity Framework does an acceptable job at that process. It generates
a context for you that you can use to communicate with your data in a way
that looks more like an object model than it does a database.

Generating the entity model
To get started, you need the model itself. Just follow these steps to generate
the entity model:

 1. Create a new project (I used a Windows Forms project again, called
Entity Framework).

 2. Right-click the project and click Add New in the context menu. Select
ADO.NET Entity Data Model. Name it PartsDatabase.

 3. Choose Generate from Database Option in the Choose Model Contents
window.

 4. Select the Assets_Database.mdf from the Connection drop-down
list. If it isn’t there, see “Connecting to a data source.”

 5. If you get a message asking if you would like to copy the database into
the project, select No. Copying the database is usually a bad practice,
especially if you are on a shared project. If you are building a stand-
alone project, and are working alone, it is an acceptable solution.

 6. Select the Asset_Parts, Assets, Part_Faults, and Parts tables, just for
fun. (See Figure 2-14.) Keep the default name.

Figure 2-14:
Select a few
tables.

The next thing you see is the designer canvas for the Class Designer. A
sample diagram is shown in Figure 2-15. It’s just a class diagram, like the
ones in Book II.

27_563489-bk03ch02.indd 43227_563489-bk03ch02.indd 432 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 2

A
c

c
e

ssin
g

 D
a

ta

433Using the System.Data Namespace

Figure 2-15:
Looks like a
class model,
walks like a
database.

Notice something missing? The Asset_Parts table is gone; it’s been
abstracted into the model for you because the table was there only to link
the Assets and Parts tables in a many-to-many relationship. Slick, isn’t it?

Writing code for the entity model
After you have an interesting addition to your coding environment and the
database is meshed nicely into the C# object model, you can code with the
objects provided in this new entity model. To start, follow these steps:

 1. Go back to the window designer and double-click on the window to go
to Code View.

 2. In the window.load event handler, type Part part = new Part();.

 3. In the next line, type part. and check out the IntelliSense. It contains
all columns in the Parts table as properties to the class.

What you now have is a context to work against. No complex Linq queries —
they’re all done under the covers. No inline SQL. No stored procedures. You
can do it all with a scoped object.

27_563489-bk03ch02.indd 43327_563489-bk03ch02.indd 433 3/19/10 8:11 PM3/19/10 8:11 PM

434 Book III: Designing for C#

27_563489-bk03ch02.indd 43427_563489-bk03ch02.indd 434 3/19/10 8:11 PM3/19/10 8:11 PM

Chapter 3: Fishing the FileStream

In This Chapter
✓ Reading and writing data files

✓ Using the Stream classes

✓ Using the using statement

✓ Dealing with input/output errors

Ionce caught two trout on a single hook, in a lovely mountain stream in
my native Colorado — quite a thrill for an 11-year-old. Fishing the “file

stream” with C# isn’t quite so thrilling, but it’s one of those indispensable
programming skills.

File access refers to the storage and retrieval of data on the disk. I cover
basic text-file input/output in this chapter. Reading and writing data from
databases is covered in Chapter 2 of this minibook, and reading and writing
information to the Internet is covered in Chapter 4.

Going Where the Fish Are: The File Stream
The console application programs in this book mostly take their input from,
and send their output to, the console. Programs outside this chapter have
better — or at least different — things to bore you with than file manipu-
lation. I don’t want to confuse their message with the extra baggage of
involved input/output (I/O). However, console applications that don’t per-
form file I/O are about as common as Sierra Club banners at a paper mill.

The I/O classes are defined in the System.IO namespace. The basic file I/O
class is FileStream. In days past, the programmer would open a file. The
open command would prepare the file and return a handle. Usually, this
handle was nothing more than a number, like the one they give you when
you place an order at a Burger Whop. Every time you wanted to read from
or write to the file, you presented this ID.

Streams
C# uses a more intuitive approach, associating each file with an object of
class FileStream. The constructor for FileStream opens the file and
manages the underlying handle. The methods of FileStream perform the
file I/O.

28_563489-bk03ch03.indd 43528_563489-bk03ch03.indd 435 3/19/10 8:11 PM3/19/10 8:11 PM

436 Going Where the Fish Are: The File Stream

FileStream isn’t the only class that can perform file I/O. However, it repre-
sents your good ol’ basic file that covers 90 percent of your file I/O needs.
This primary class is the one described in this chapter. If it’s good enough
for C#, it’s good enough for me.

The stream concept is fundamental to C# I/O. Think of a parade, which
“streams” by you, first the clowns, and then the floats, and then a band or
two, some horses, a troupe of Customer objects, a BankAccount, and so
on. Viewing a file as a stream of bytes (or characters or strings) is much like
a parade. You “stream” the data in and out of your program.

The .NET classes used in C# include an abstract Stream base class and
several subclasses, for working with files on the disk, over a network, or
already sitting as chunks of data in memory. Some stream classes specialize
in encrypting and decrypting data, some are provided to help speed up I/O
operations that might be slow using one of the other streams, and you’re
free to extend class Stream with your own subclass if you come up with
a great idea for a new stream (although I warn you that extending Stream
is arduous). I give you a tour of the stream classes in the later section
“Exploring More Streams than Lewis and Clark.”

Readers and writers
FileStream, the stream class you’ll probably use the most, is a basic class.
Open a file, close a file, read a block of bytes, and write a block — that’s
about all you have. But reading and writing files down at the byte level is
a lot of work, something I eschew studiously. Fortunately, the .NET class
library introduces the notion of “readers” and “writers.” Objects of these
types greatly simplify file (and other) I/O.

When you create a new reader (of one of several available types), you associ-
ate a stream object with it. It’s immaterial to the reader whether the stream
connects to a file, a block of memory, a network location, or the Mississippi.
The reader requests input from the stream, which gets it from — well, wher-
ever. Using writers is quite similar, except that you’re sending output to the
stream rather than asking for input. The stream sends it to a specified desti-
nation. Often that’s a file, but not always.

The System.IO namespace contains classes that wrap around FileStream
(or other streams) to give you easier access and that warm fuzzy feeling:

 ✦ TextReader/TextWriter: A pair of abstract classes for reading char-
acters (text). These classes are the base for two flavors of subclasses:
StringReader/StringWriter and StreamReader/StreamWriter.

 Because TextReader and TextWriter are abstract, you’ll use one of
their subclass pairs, usually StreamReader/StreamWriter, to do
actual work. I explain abstract classes in Book II.

28_563489-bk03ch03.indd 43628_563489-bk03ch03.indd 436 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

437Going Where the Fish Are: The File Stream

 ✦ StreamReader/StreamWriter: A more sophisticated text reader
and writer for the more discriminating palate — not to mention that
they aren’t abstract, so you can even read and write with them. For
example, StreamWriter has a WriteLine() method much like that in
the Console class. StreamReader has a corresponding ReadLine()
method and a handy ReadToEnd() method that grabs the whole text
file in one gulp, returning the characters read as a string — which
you could then use with a StringReader (discussed later), a foreach
loop, the String.Split() method, and so on. Check out the various
constructors for these classes in Help.

 You see StreamReader and StreamWriter in action in the next two
sections.

One nice thing about reader/writer classes such as StreamReader and
StreamWriter is that you can use them with any kind of stream. This
makes reading from and writing to a MemoryStream no harder than reading
from and writing to the kind of FileStream discussed in earlier sections of
this chapter. (I cover MemoryStream later in the chapter.)

See the later section “More Readers and writers” for additional reader/writer
pairs.

The following sections provide the FileWrite and FileRead programs,
which demonstrate ways to use these classes for text I/O the C# way.

Asynchronous I/O: Is it worth waiting for?
Normally, a program waits for a file I/O request
to complete before continuing. Call a read()
method, and you generally don’t get control
back until the file data is safely in the boat. This
is known as synchronous I/O. Think of synchro-
nous as meaning “while you wait.”

The C# System.IO classes also support
asynchronous I/O. Using asynchronous I/O,
the read() call returns immediately to allow
the program to continue doing something
else while the I/O request is completed in the
background. The program can check a “done”
flag at its leisure to decide when the I/O has
completed.

This is sort of like cooking hamburgers. Using
synchronous I/O, you put the meat in the pan on

the stovetop and stand there watching it until
the meat has completely cooked before you go
off and start cutting the onions that go on the
burgers.

Using asynchronous I/O, you can start cutting
up the onions while the hamburger patties are
cooking. Every once in a while, you peek over
to see whether the meat is done. When it is,
you stop cutting, take the meat off the grill, and
slap it on the buns.

Asynchronous I/O can substantially improve
performance of the program, but it adds
another level of complexity. I don’t discuss it
further in this minibook.

28_563489-bk03ch03.indd 43728_563489-bk03ch03.indd 437 3/19/10 8:11 PM3/19/10 8:11 PM

438 StreamWriting for Old Walter

StreamWriting for Old Walter
In the movie On Golden Pond, Henry Fonda spent his retirement years trying
to catch a monster trout that he named Old Walter. You aren’t out to drag in
the big fish, but you should at least cast a line into the stream. This section
covers writing to files.

Programs generate two kinds of output:

 ✦ Some programs write blocks of data as bytes in pure binary format.
This type of output is useful for storing objects in an efficient way — for
example, a file of Student objects that you need to persist (keep on disk
in a permanent file).

 See the later section “More Readers and Writers” for the BinaryReader
and BinaryWriter classes.

 A sophisticated example of binary I/O is the persistence of groups of
objects that refer to each other (using the HAS_A relationship). Writing
an object to disk involves writing identifying information (so its type can
be reconstructed when you read the object back in), and then each of its
data members, some of which may be references to connected objects,
each with its own identifying information and data members. Persisting
objects this way is called serialization. You can look it up in Help when
you’re ready; I don’t cover it here. Sophistication is out of my league.

 ✦ Most programs read and write human-readable text: you know, let-
ters, numbers, and punctuation, like Notepad. The human-friendly
StreamWriter and StreamReader classes are the most flexible ways
to work with the stream classes. For some details, see the earlier section
“Readers and writers.”

 Human-readable data was formerly known as ASCII or, slightly later,
ANSI, text. These two monikers refer to the standards organization that
defined them. However, ANSI encoding doesn’t provide the alphabets
east of Austria and west of Hawaii; it can handle only Roman letters, like
those used in English. It has no characters for Russian, Hebrew, Arabic,
Hindi, or any other language using a non-Roman alphabet, including
Asian languages such as Chinese, Japanese, and Korean. The modern,
more flexible Unicode file format is “backward-compatible” — including
the familiar ANSI characters at the beginning of its character set, but still
providing a large number of other alphabets, including everything you
need for all the languages I just listed. Unicode comes in several varia-
tions, called encodings; however, UTF8 is the default format for C#. (You
can find out more about encodings and how to use them in the article
“Converting between Byte and Char Arrays” at csharp102.info.)

28_563489-bk03ch03.indd 43828_563489-bk03ch03.indd 438 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

439StreamWriting for Old Walter

Using the stream: An example
The following FileWrite program reads lines of data from the console and
writes them to a file of the user’s choosing. This is pseudocode — it isn’t
meant to compile. I used it only as an example.

// FileWrite -- Write input from the Console into a text file.
using System;
using System.IO;

namespace FileWrite
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // Get a filename from the user -- the while loop lets you
 // keep trying with different filenames until you succeed.
 StreamWriter sw = null;
 string fileName = “”;
 while(true)
 {
 try
 {
 // Enter output filename (simply hit Enter to quit).
 Console.Write(“Enter filename “
 + “(Enter blank filename to quit):”);
 fileName = Console.ReadLine();
 if (fileName.Length == 0)
 {
 // No filename -- this jumps beyond the while
 // loop to safety. You’re done.
 break;
 }

 // I factored out these tasks to simplify the loops a bit.

 // Call a method (below) to set up the StreamWriter.
 sw = PrepareTheStreamWriter(fileName);
 // Read one string at a time, outputting each to the
 // FileStream open for writing.
 ReadAndWriteLines(sw);

 // Done writing, so close the file you just created.
 sw.Close(); // A very important step. Closes the file too.
 sw = null; // Give it to the garbage collector.
 }
 catch (IOException ioErr)
 {
 // Ooops -- Error occurred during the processing of the
 // file -- tell the user the full name of the file:
 // Tack the name of the default directory to the filename.
 string dir = Directory.GetCurrentDirectory(); // Directory class
 string path = Path.Combine(dir, fileName); // System.IO.Path class
 Console.WriteLine(“Error on file {0}”, path);

 // Now output the error message in the exception.
 Console.WriteLine(ioErr.Message);
 }
 }

28_563489-bk03ch03.indd 43928_563489-bk03ch03.indd 439 3/19/10 8:11 PM3/19/10 8:11 PM

440 StreamWriting for Old Walter

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }

 // GetWriterForFile -- Create a StreamWriter set up to write
 // to the specified file.
 private static StreamWriter GetWriterForFile(string fileName)
 {
 StreamWriter sw;
 // Open file for writing in one of these modes:
 // FileMode.CreateNew to create a file if it
 // doesn’t already exist or throw an
 // exception if file exists.
 // FileMode.Append to append to an existing file
 // or create a new file if it doesn’t exist.
 // FileMode.Create to create a new file or
 // truncate an existing file.

 // FileAccess possibilities are:
 // FileAccess.Read,
 // FileAccess.Write,
 // FileAccess.ReadWrite.
 FileStream fs = File.Open(fileName,
 FileMode.CreateNew,
 FileAccess.Write);

 // Generate a file stream with UTF8 characters.
 // Second parameter defaults to UTF8, so can be omitted.
 sw = new StreamWriter(fs, System.Text.Encoding.UTF8);
 return sw;
 }

 // WriteFileFromConsole -- Read lines of text from the console
 // and spit them back out to the file.
 private static void WriteFileFromConsole(StreamWriter sw)
 {
 Console.WriteLine(“Enter text; enter blank line to stop”);
 while (true)
 {
 // Read next line from Console; quit if line is blank.
 string input = Console.ReadLine();
 if (input.Length == 0)
 {
 break;
 }
 // Write the line just read to output file.
 sw.WriteLine(input);
 // Loop back up to get another line and write it.
 }
 }
 }
}

FileWrite uses the System.IO namespace as well as System. System.IO
contains the file I/O classes.

28_563489-bk03ch03.indd 44028_563489-bk03ch03.indd 440 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

441StreamWriting for Old Walter

Revving up a new outboard StreamWriter
The FileWrite program starts in Main() with a while loop containing a
try block. This is common for a file-manipulation program.

 Encase all file I/O activity in a try block. File I/O can be prone to errors,
such as missing files or directories, bad paths, and so on. See Book I for
more on exception handling.

The while loop serves two functions:

 ✦ It allows the program to go back and retry in the event of an I/O failure.
For example, if the program can’t find a file that the user wants to read,
the program can ask for the filename again before blowing off the user.

 ✦ Executing a break command from within the program breezes you right
past the try block and dumps you off at the end of the loop. This is a
convenient mechanism for exiting a method or program. Keep in mind
that break only gets you out of the loop it’s called in. (Chapter 4 covers
loops and break.)

The FileWrite program reads the name of the file to create from the con-
sole. The program terminates by breaking out of the while loop if the user
enters an empty filename. The key to the program occurs in the call to a
GetWriterForFile() method; you can find the method below Main().
The key lines in GetWriterForFile() are

FileStream fs = File.Open(fileName, FileMode.CreateNew, FileAccess.Write);
// ...
sw = new StreamWriter(fs, System.Text.Encoding.UTF8);

In the first line, the program creates a FileStream object that represents
the output file on the disk. The FileStream constructor used here takes
three arguments:

 ✦ The filename: This is clearly the name of the file to open. A simple
name like filename.txt is assumed to be in the current directory (for
FileWrite, working inside Visual Studio, that’s the \bin\Debug sub-
directory of the project directory; it’s the directory containing the .EXE
file after you build the program). A filename that starts with a backs-
lash, like \some directory\filename.txt, is assumed to be the full
path on the local machine. Filenames that start with two slashes — for
example, \\your machine\some directory\filename.txt — are
resident on other machines on your network. The filename encoding
gets rapidly more complicated from here and is beyond the scope of this
minibook.

28_563489-bk03ch03.indd 44128_563489-bk03ch03.indd 441 3/19/10 8:11 PM3/19/10 8:11 PM

442 StreamWriting for Old Walter

 ✦ The file mode: This argument specifies what you want to do to the file.
The basic write modes are create (CreateNew), append (Append),
and overwrite (Create). CreateNew creates a new file but throws an
IOException if the file already exists. Create mode creates the file if
it doesn’t exist but overwrites (“truncates”) the file if it exists. Just like it
sounds, Append adds to the end of an existing file or creates the file if it
doesn’t exist.

 ✦ The access type: A file can be opened for reading, writing, or both.

FileStream has numerous constructors, each of which defaults one or
both of the mode and access arguments. However, in my humble opinion,
you should specify these arguments explicitly because they have a strong
effect on the program’s clarity. That’s good advice in general. Defaults can
be convenient for the programmer but confusing for anyone reading the
code.

In the second noncomment line of the GetWriterForFile() method, the
program “wraps” the newly opened FileStream object in a StreamWriter
object, sw. The StreamWriter class wraps around the FileStream object
to provide a set of text-friendly methods. This StreamWriter is what the
method returns.

The first argument to the StreamWriter constructor is the FileStream
object. There’s the wrapping. The second argument specifies the encoding
to use. The default encoding is UTF8.

 You don’t need to specify the encoding when reading a file. StreamWriter
writes out the encoding type in the first three bytes of the file. The
StreamReader reads these three bytes when the file is opened to deter-
mine the encoding. Hiding this kind of detail is an advantage that good soft-
ware libraries provide.

Finally, we’re writing!
After setting up its StreamWriter, the FileWrite program begins
reading lines of string input from the console (this code is in the
WriteFileFromConsole() method, called from Main()). The program
quits reading when the user enters a blank line; until then, it gobbles up
whatever it’s given and spits it into the StreamWriter sw using that class’s
WriteLine() method.

 The similarity between StreamWriter.WriteLine() and Console.
WriteLine() is more than a coincidence.

Finally, the stream is closed with the sw.Close() expression. This is impor-
tant to do, because it also closes the file. (I have more to say about closing
things in the next section.)

28_563489-bk03ch03.indd 44228_563489-bk03ch03.indd 442 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

443StreamWriting for Old Walter

Notice that the program nulls the sw reference after closing StreamWriter.
A file object is useless after the file has been closed. It is good programming
practice to null a reference after it becomes invalid so that you won’t try to
use it again. (If you do, your code will throw an exception, letting you know
about it!) Closing the file and nulling the reference lets the garbage collector
claim it (see Book II to meet the friendly collector on your route) and leaves
the file available for other programs to open.

Wrap my fish in newspaper
This kind of wrapping one class around
another is a useful software pattern — the
StreamWriter “wraps” (contains a refer-
ence to) another class, FileStream, and
extends the FileStream’s interface with
some nice amenities. The StreamWriter
methods delegate to (call) the methods of
the inner FileStream object. This is the
HAS_A relationship discussed in Book II, so
anytime you use HAS_A, you’re wrapping.
Thus, in effect, you tell the StreamWriter,
the wrapper, what to do, and it translates your
simple instructions into the more complex
ones needed by the wrapped FileStream.
StreamWriter hands these translated
instructions to the FileStream for action.

Wrapping is a powerful, frequently used tech-
nique in programming. A Wrapper class looks
like this:

class Wrapper
{
 private Wrapped _wrapped;
 public Wrapper(Wrapped w)
 {
 _w = w; // Now Wrapper has a

reference to Wrapped.
 }
}

In this example, I used class Wrapper’s con-
structor to install the wrapped object, letting
the caller provide the wrapped object. You
might install it through a SetWrapped()

method or by some other means, such as cre-
ating the wrapped object inside a constructor.

You can also wrap one method around another,
like so:

void WrapperMethod()
{
 _wrapped.DoSomething();
}

In this example, WrapperMethod() ’s
class HAS_A reference to whatever the _
wrapped object is. In other words, the class
wraps that object. WrapperMethod()del-
egates all or part of the evening chores to the
DoSomething() method on the _wrapped
object.

Think of wrapping as a way to translate one
model into another. The wrapped item may be
complicated, so that you want to provide a sim-
pler version, or the wrapped item may have an
inconvenient interface that you want to make
over into a more convenient one. Generally
speaking, wrapping illustrates the Adapter
design pattern (which you can find using your
favorite search engine). You can see it in the
relationship between StreamWriter and
FileStream.

In many cases, you can wrap one stream
around another stream in order to convert one
kind of stream into another.

28_563489-bk03ch03.indd 44328_563489-bk03ch03.indd 443 3/19/10 8:11 PM3/19/10 8:11 PM

444 StreamWriting for Old Walter

The catch block is like a soccer goalie: It’s there to catch any file error that
may have occurred in the program. The catch outputs an error message,
including the name of the errant file. But it doesn’t output just a simple file-
name — it outputs the entire filename, including the path, for your reading
pleasure. It does this by using the Path.Combine() method to tack the cur-
rent directory name, obtained through the Directory class, onto the front
of the filename you entered. (Path is a class designed to manipulate path
information. Directory provides properties and methods for working with
directories.) Book I gives you the goods on exceptions, including the excep-
tions to exceptions, the exceptions to those — I give up.

 The path is the full name of the file folder. For example, in the filename c:\
user\temp directory\text.txt, the path is c:\user\temp
directory.

 The Combine() method is smart enough to realize that for a file like c:\
test.txt, the path isn’t in the current directory. Path.Combine() is also
the safest way to ensure that the two path segments being combined will
combine correctly, including a path separator character between them. (In
Windows, the path separator character is \. You can obtain the correct sep-
arator for whatever operating system your code is running on, whether it’s
Windows or some brand of Unix, say, with Path.DirectorySeparatorChar.
The .NET Framework library is full of features like that, clearly aimed at writ-
ing C# programs that run on multiple operating systems, such as Mono for
Linux and Unix, which I discuss in this book’s Introduction.)

Upon encountering the end of the while loop, either by completing the try
block or by being vectored through the catch, the program returns to the
top of the while loop to allow the user to write to another file.

A few sample runs of the program appear as follows. My input is boldfaced:

Enter filename (Enter blank filename to quit):TestFile1.txt
Enter text; enter blank line to stop
This is some stuff
So is this
As is this

Enter filename (Enter blank filename to quit):TestFile1.txt
Error on file C:\C#Programs\FileWrite\bin\Debug\TestFile1.txt
The file ‘C:\C#Programs\FileWrite\bin\Debug\TestFile1.txt’ already exists.

Enter filename (Enter blank filename to quit):TestFile2.txt
Enter text; enter blank line to stop
I messed up back there. I should have called it
TestFile2.

Enter filename (Enter blank filename to quit):
Press Enter to terminate...

28_563489-bk03ch03.indd 44428_563489-bk03ch03.indd 444 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

445StreamWriting for Old Walter

Everything goes smoothly when I enter some random text into TestFile1.
txt. When I try to open TestFile1.txt again, however, the program
spits out a message, the gist of which is The file already exists,
with the filename attached. The path to the file is tortured because the
“current directory” is the directory in which Visual Studio put the execut-
able file. Correcting my mistake, I enter an acceptable filename — such as
TestFile2.txt — without complaint.

Using some better fishing gear: The using statement
Now that you’ve seen FileStream and StreamWriter in action, I should
point out the more usual way to do stream writing in C# — inside a using
statement:

using(<someresource>)
{
 // Use the resource.
}

The using statement is a construct that automates the process of clean-
ing up after using a stream. On encountering the closing curly brace of the
using block, C# manages “flushing” the stream and closing it for you. (To
flush a stream is to push any last bytes left over in the stream’s buffer out to
the associated file before it gets closed. Think of pushing a handle to drain
the last water out of your . . . trout stream.) Using using eliminates the
common error of forgetting to flush and close a file after writing to it. Don’t
leave open files lying around.

Without using, you’d need to write:

Stream fileStream = null;
TextWriter writer = null;
try
{
 // Create and use the stream, then ...
}
finally
{
 stream.Flush();
 stream.Close();
 stream = null;
}

Note how I declared the stream and writer above the try block (so they’re
visible throughout the method). I also declared the fileStream and
writer variables using abstract base classes rather than the concrete types
FileStream and StreamWriter. That’s a good practice. I set them to null
so the compiler won’t complain about uninitialized variables.

28_563489-bk03ch03.indd 44528_563489-bk03ch03.indd 445 3/19/10 8:11 PM3/19/10 8:11 PM

446 StreamWriting for Old Walter

The preferred way to write the key I/O code in the FileWrite example
looks more like this:

// Prepare the file stream.
FileStream fs = File.Open(fileName,
 FileMode.CreateNew,
 FileAccess.Write);
// Pass the fs variable to the StreamWriter constructor in the using statement.
using (StreamWriter sw = new StreamWriter(fs))
{
 // sw exists only within the using block, which is a local scope.

 // Read one string at a time from the console, outputting each to the
 // FileStream open for writing.
 Console.WriteLine(“Enter text; enter blank line to stop”);
 while (true)
 {
 // Read next line from Console; quit if line is blank.
 string input = Console.ReadLine();
 if (input.Length == 0)
 {
 break;
 }
 // Write the line just read to output file via the stream.
 sw.WriteLine(input);
 // Loop back up to get another line and write it.
 }
} // sw goes away here, and fs is now closed. So ...
fs = null; // Make sure you can’t try to access fs again.

The items in parentheses after the using keyword are its “resource acquisi-
tion” section, where you allocate one or more resources such as streams,
readers/writers, fonts, and so on. (If you allocate more than one resource,
they have to be of the same type.) Following that section is the enclosing
block, bounded by the outer curly braces.

 The using statement’s block is not a loop. The block only defines a local
scope, like the try block or a method’s block. (Variables defined within the
block, including its head, don’t exist outside the block. Thus the Stream
Writer sw isn’t visible outside the using block.) I discuss scope in Book I.

At the top of the preceding example, in the resource-acquisition section,
you set up a resource — in this case, create a new StreamWriter wrapped
around the already-existing FileStream. Inside the block is where you
carry out all your I/O code for the file.

At the end of the using block, C# automatically flushes the StreamWriter,
closes it, and closes the FileStream, also flushing any bytes it still contains
to the file on disk. Ending the using block also disposes the StreamWriter
object — see the warning and the technical discussion coming up.

28_563489-bk03ch03.indd 44628_563489-bk03ch03.indd 446 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

447StreamWriting for Old Walter

It’s a good practice to wrap most work with streams in using statements.
Wrapping the StreamWriter or StreamReader in a using statement, for
example, has the same effect as putting the use of the writer or reader in a
try/finally exception-handling block. (See Book I for exceptions.) In fact,
the compiler translates the using block into the same code it uses for a
try/finally, which guarantees that the resources get cleaned up:

try
{
 // Allocate the resource and use it here.
}
finally
{
 // Close and dispose of the resource here.
}

 After the using block, the StreamWriter no longer exists, and the
FileStream object can no longer be accessed. The fs variable still exists,
assuming that you created the stream outside the using statement, rather
than on the fly like this:

using(StreamWriter sw = new StreamWriter(new FileStream(...)) ...

Flushing and closing the writer has flushed and closed the stream as well.
If you try to carry out operations on the stream, you get an exception tell-
ing you that you can’t access a closed object. Notice that in the FileWrite
code earlier in this section I nulled the FileStream object, fs, after the
using block to ensure that I won’t try to use fs again. After that, the
FileStream object is handed off to the garbage collector.

Of course, the file you wrote to disk exists. Create and open a new file
stream to the file if you need to work with it again.

 Specifically, using is aimed at managing cleanup of objects that implement
the IDisposable interface (see Book II for information on interfaces). The
using statement ensures that the object’s Dispose() method gets called.
Classes that implement IDisposable guarantee that they have a Dispose()
method. IDisposable is mainly about disposing non-.NET resources, mainly
stuff in the outside world of the Windows operating system, such as file han-
dles and graphics resources. FileStream, for example, wraps a Windows file
handle that must be released, which is why I mention IDisposable here.
(Many classes and structs implement IDisposable; your classes can too,
if necessary.)

I don’t go into IDisposable in this book, but you should plan to become
more familiar with it as your C# powers grow. Implementing it correctly has
to do with the kind of indeterminate garbage disposal that I mention briefly

28_563489-bk03ch03.indd 44728_563489-bk03ch03.indd 447 3/19/10 8:11 PM3/19/10 8:11 PM

448 Pulling Them Out of the Stream: Using StreamReader

in Book II and can be complex. So using is for use with classes and structs
that implement IDisposable, something that you can check in Help. It
won’t help you with just any old kind of object. Note: The intrinsic C# types —
int, double, char, and such — do not implement IDisposable. Class
TextWriter, the base class for StreamWriter, does implement the inter-
face. In Help, that looks like this:

public abstract class TextWriter : MarshalByRefObject, IDisposable

When in doubt, check Help to see if the classes or structs you plan to use
implement IDisposable.

 You can examine a rewritten version of FileWrite in the FileWriteWith
Using example on the Web. Note that in the rewrite, I had to un-factor the
two methods that Main() calls, pulling their code back into Main() —
inlining it — before I could introduce the using block.

Pulling Them Out of the Stream: Using StreamReader
Writing to a file is cool, but it’s sort of worthless if you can’t read the file
back later. The following FileRead program puts the input back into the
phrase file I/O. This program reads a text file like the ones created by
FileWrite or by Notepad — it’s sort of FileWrite in reverse (note that I
don’t use using in this one):

// FileRead -- Read a text file and write it out to the Console.
using System;
using System.IO;

namespace FileRead
{
 public class Program
 {
 public static void Main(string[] args)
 {
 // You need a file reader object.
 StreamReader sr = null;
 string fileName = “”;

 try
 {
 // Get a filename from the user.
 sr = GetReaderForFile(fileName);

 // Read the contents of the file.
 ReadFileToConsole(sr);
 }
 catch (IOException ioErr)
 {
 //TODO: Before release, replace this with a more user friendly message.
 Console.WriteLine(“{0}\n\n”, ioErr.Message);
 }
 finally // Clean up.
 {

28_563489-bk03ch03.indd 44828_563489-bk03ch03.indd 448 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

449Pulling Them Out of the Stream: Using StreamReader

 if (sr != null) // Guard against trying to Close()a null object.
 {
 sr.Close(); // Takes care of flush as well
 sr = null;
 }
 }

 // Wait for user to acknowledge the results.
 Console.WriteLine(“Press Enter to terminate...”);
 Console.Read();
 }

 // GetReaderForFile -- Open the file and return a StreamReader for it.
 private static StreamReader GetReaderForFile(string fileName)
 {
 StreamReader sr;
 // Enter input filename.
 Console.Write(“Enter the name of a text file to read:”);
 fileName = Console.ReadLine();

 // User didn’t enter anything; throw an exception
 // to indicate that this is not acceptable.
 if (fileName.Length == 0)
 {
 throw new IOException(“You need to enter a filename.”);
 }

 // Got a name -- open a file stream for reading; don’t create the
 // file if it doesn’t already exist.
 FileStream fs = File.Open(fileName, FileMode.Open, FileAccess.Read);

 // Wrap a StreamReader around the stream -- this will use
 // the first three bytes of the file to indicate the
 // encoding used (but not the language).
 sr = new StreamReader(fs, true);
 return sr;
 }

 // ReadFileToConsole -- Read lines from the file represented
 // by sr and write them out to the console.
 private static void ReadFileToConsole(StreamReader sr)
 {
 Console.WriteLine(“\nContents of file:”);

 // Read one line at a time.
 while(true)
 {
 // Read a line.
 string input = sr.ReadLine();

 // Quit when you don’t get anything back.
 if (input == null)
 {
 break;
 }

 // Write whatever you read to the console.
 Console.WriteLine(input);
 }

 }
 }
}

28_563489-bk03ch03.indd 44928_563489-bk03ch03.indd 449 3/19/10 8:11 PM3/19/10 8:11 PM

450 Pulling Them Out of the Stream: Using StreamReader

 Recall that the current directory that FileRead uses is the \bin\Debug sub-
directory under your FileRead project (not the \bin\Debug directory under
the FileWrite program’s directory, which is where you used FileWrite to
create some test files in the preceding section). Before you run FileRead to
try it out, place any plain text file (.TXT extension) in FileRead’s \bin\
Debug directory and note its name so you can open it. A copy of the
TestFile1.txt file created in the FileWrite example would be good.

In FileRead, the user reads one and only one file. The user must enter a valid
filename for the program to output. No second chances. After the program has
read the file, it quits. If the user wants to peek into a second file, she’ll have to
run the program again. That’s a design choice you might make differently.

The program starts out with all of its serious code wrapped in an exception
handler. In the try block, this handler tries to call two methods, first to get a
StreamReader for the file and then to read the file and dump its lines to the
console. In the event of an exception, the catch block writes the exception
message. Finally, whether the exception occurred or not, the finally block
makes sure the stream and its file are closed and the variable sr is nulled so
the garbage collector can reclaim it (see Book II). I/O exceptions could occur
in either method called from the try block. These percolate up to Main()
looking for a handler. (No need for exception handlers in the methods.)

Note the //TODO: comment in the catch block. This is a reminder to make
the message more user-friendly before releasing the program. Comments
marked this way appear in the Visual Studio Task List window. In that
window, select Comments from the drop-down list at the upper left. Double-
click an item there to open the editor to that comment in the code.

 Because the variable sr is used inside an exception block, you have to set it
to null initially — otherwise, the compiler complains about using an unini-
tialized variable in the exception block. Likewise, check whether sr is
already (or still) null before trying to call its Close() method. Better still,
convert the program to use using.

Within the GetReaderForFile() method, the program gives the user one
chance to enter a filename. If the name of the file entered at the console is
nothing but a blank, the program throws its own error message: You need
to enter a filename. If the filename isn’t empty, it’s used to open a
FileStream object in read mode. The File.Open() call here is the same
as the one used in FileWrite:

 ✦ The first argument is the name of the file.

 ✦ The second argument is the file mode. The mode FileMode.Open says,
“Open the file if it exists, and throw an exception if it doesn’t.” The other
option is OpenNew, which creates a zero-length file if the file doesn’t
exist. Personally, I never saw the need for that mode (who wants to read
from an empty file?), but each to his own is what I say.

28_563489-bk03ch03.indd 45028_563489-bk03ch03.indd 450 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

451Pulling Them Out of the Stream: Using StreamReader

 ✦ The final argument indicates that I want to read from this FileStream.
The other alternatives are Write and ReadWrite. (It would also seem a
bit odd to open a file with FileRead using the Write mode, don’t you
think?)

The resulting FileStream object fs is then wrapped in a StreamReader
object sr to provide convenient methods for accessing the text file. The
StreamReader is finally passed back to Main() for use.

When the file-open process is done, the FileRead program calls the
ReadFileToConsole() method, which loops through the file reading lines
of text using the ReadLine() call. The program echoes each line to the
console with the ubiquitous Console.WriteLine() call before heading
back up to the top of the loop to read another line of text. The ReadLine()
call returns a null when the program reaches the end of the file. When this
happens, the method breaks out of the read loop and then returns. Main()
then closes the object and terminates. (You might say that the reading part
of this reader program is wrapped within a while loop inside a method
that’s in a try block wrapped in an enigma.)

The catch block in Main() exists to keep the exception from propagating up
the food chain and aborting the program. If the program throws an exception,
I have the catch block write a message and then simply swallow (ignore) the
error. You’re in Main(), so there’s nowhere to rethrow the exception to and
nothing to do but close the stream and close up shop. The catch is there to
let the user know why the program failed and to prevent an unhandled excep-
tion. You could have the program loop back up and ask for a different file-
name, but this program is so small that it’s simpler to let the user run it again.

Providing an exception handler with a catch block that swallows the excep-
tion keeps a program from aborting over an unimportant error. However,
use this technique and swallow the exception only if an error would be truly,
no fake, nondamaging. See the more extensive discussion in Book II.

Here are a few sample runs:

Enter the name of a text file to read:yourfile.txt
Could not find file ‘C:\C#Programs\FileRead\bin\Debug\yourfile.txt’.

Press Enter to terminate...

Enter the name of a text file to read:
You need to enter a filename.

Pres Enter to terminate...

Enter the name of a text file to read:myfile.txt

Contents of file:
Dave?
What are you doing, Dave?
Press Enter to terminate...

28_563489-bk03ch03.indd 45128_563489-bk03ch03.indd 451 3/19/10 8:11 PM3/19/10 8:11 PM

452 More Readers and Writers

For an example of reading arbitrary bytes from a file — which could be either
binary or text — see the LoopThroughFiles example in Book I, Chapter 7.
The program actually loops through all files in a target directory, reading each
file and dumping its contents to the console, so it gets tedious if there are lots
of files. Feel free to terminate it by pressing Ctrl+C or by clicking the console
window’s close box. See the discussion of BinaryReader in the next section.

More Readers and Writers
Earlier in this chapter, I show you the StreamReader and StreamWriter
classes that you’ll probably use for the bulk of your I/O needs. However,
.NET also makes several other reader/writer pairs available:

 ✦ BinaryReader/BinaryWriter: A pair of stream classes that con-
tain methods for reading and writing each value type: ReadChar(),
WriteChar(), ReadByte(), WriteByte(), and so on. (These classes
are a little more primitive: They don’t offer ReadLine()/WriteLine()
methods.) The classes are useful for reading or writing an object in binary
(nonhuman-readable) format, as opposed to text. You can use an array of
bytes to work with the binary data as raw bytes. For example, you may
need to read or write the bytes that make up a bitmap graphics file.

 Experiment: Open a file with a .EXE extension using Notepad. You may
see some readable text in the window, but most of it looks like some sort
of garbage. That’s binary data.

 The article “Converting Between Byte and Char Arrays” on my Web
site gives you a brief tour of working with arrays of bytes or chars.
Book II includes an example, mentioned earlier, that reads binary
data. The example uses a BinaryReader with a FileStream object
to read chunks of bytes from a file and then writes out the data on
the console in hexadecimal (base 16) notation, which I explain in
that chapter. Although it wraps a FileStream in the more conve-
nient BinaryReader, that example could just as easily have used the
FileStream itself. The reads are identical. While the BinaryReader
brings nothing to the table in that example, I used it there to provide an
example of this reader. The example does illustrate reading raw bytes
into a buffer (an array big enough to hold the bytes read).

 ✦ StringReader/StringWriter: And now for something a little more
exotic: simple reader and writer classes that are limited to reading and
writing strings. They let you treat a string like a file, an alternative
to accessing a string’s characters in the usual ways, such as with a
foreach loop

foreach(char c in someString) { Console.Write(c); }

 or with array-style bracket notation ([])
char c = someString[3];

28_563489-bk03ch03.indd 45228_563489-bk03ch03.indd 452 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 3

Fish
in

g
 th

e

File
S

tre
a

m

453Exploring More Streams than Lewis and Clark

 or with String methods like Split(), Concatenate(), and
IndexOf(). With StringReader/StringWriter, you read from and
write to a string much as you would to a file. This technique is useful
for long strings with hundreds or thousands of characters that you
want to process in bunches, and it provides a handy way to work with a
StringBuilder.

 When you create a StringReader, you initialize it with a string to read.
When you create a StringWriter, you can pass a StringBuilder
object to it or create it empty. Internally, the StringWriter stores a
StringBuilder — either the one you passed to its constructor or a new,
empty one. You can get at the internal StringBuilder’s contents by
calling StringWriter’s ToString() method.

 Each time you read from the string (or write to it), the “file pointer”
advances to the next available character past the read or write. Thus, as
with file I/O, you have the notion of a “current position.” When you read,
say, 10 characters from a 1,000-character string, the position is set to
the eleventh character after the read.

 The methods in these classes parallel those described earlier for the
StreamReader and StreamWriter classes. If you can use those, you
can use these.

 The StringReadingAndWriting example on the Web illustrates using
StringReader and StringWriter, including a few quirks to watch for.

Exploring More Streams than Lewis and Clark
I should mention, before meandering on, that file streams are not the only
kinds of Stream classes available. The flood of Stream classes includes (but
probably is not limited to) those in the following list. Note that unless I spec-
ify otherwise, these stream classes all live in the System.IO namespace.

 ✦ FileStream: For reading and writing files on a disk.

 ✦ MemoryStream: Manages reading and writing data to a block of
memory. I use this technique sometimes in unit tests, to avoid actually
interacting with the (slow, possibly troublesome) file system. In this
way, I can “fake” a file when testing code that reads and writes. See my
Web site for an illustration of this technique. (I’ll leave a breadcrumb
there.) And see some brief notes on MemoryStream on the Web, in the
MemoryStreamSpike example.

 Note that the StringReader/StringWriter classes discussed in the
preceding section can be useful in unit testing in much the same way as
with MemoryStream. I prefer StringReader/StringWriter for that
purpose. The StringReadingAndWriting example on the Web illus-
trates the technique with some simple unit tests.

28_563489-bk03ch03.indd 45328_563489-bk03ch03.indd 453 3/19/10 8:11 PM3/19/10 8:11 PM

454 Exploring More Streams than Lewis and Clark

 ✦ BufferedStream: Buffering is a technique for speeding up input/output
operations by reading or writing bigger chunks of data at a time. Lots of
small reads or writes mean lots of slow disk access — but if you read a
much bigger chunk than you need now, you can then continue to read
your small chunks out of the buffer — which is far faster than reading
the disk. When a BufferedStream’s underlying buffer runs out of data,
it reads in another big chunk — maybe even the whole file. Buffered
writing is similar.

 Class FileStream automatically buffers its operations, so Buffered
Stream is for special cases, such as working with a NetworkStream
to read and write bytes over a network. In this case, you wrap the
BufferedStream around the NetworkStream, effectively “chain-
ing” streams. When you write to the BufferedStream, it writes to the
underlying NetworkStream, and so on.

 When you’re wrapping one stream around another, you’re composing
streams. (You can look it up in the Help index for more information.) I
discuss wrapping in the earlier sidebar “Wrap my fish in newspaper.”

 ✦ NetworkStream: Manages reading and writing data over a network. See
BufferedStream for a simplified discussion of using it. Network
Stream is in the System.Net.Sockets namespace because it uses a
technology called sockets to make connections across a network.

 ✦ UnmanagedMemoryStream: Lets you read and write data in “unman-
aged” blocks of memory. Unmanaged means, basically, “not .NET” and
not managed by the .NET runtime and its garbage collector. This is
advanced stuff, dealing with interaction between .NET code and code
written under the Windows operating system.

 ✦ CryptoStream: Located in the System.Security.Cryptography
namespace, this stream class lets you pass data to and from an encryp-
tion or decryption transformation. I’m sure you’ll use it daily. I know I do.

28_563489-bk03ch03.indd 45428_563489-bk03ch03.indd 454 3/19/10 8:11 PM3/19/10 8:11 PM

Chapter 4: Accessing the Internet

In This Chapter
✓ Taking a tour of the System.Net namespace

✓ Using built-in tools to access the network

✓ Making the network tools work for you

In my opinion, the reason that Microsoft had to create the .NET
Framework in the first place was the lack of Internet interoperability

within the existing infrastructure. COM just couldn’t handle the Internet.
The Internet works differently than most platforms, such as PCs. The
Internet is based on protocols — carefully defined and agreed upon ways
to get things like mail and file transfers working. Microsoft’s environment
before 2002 distinctly didn’t handle those as well.

As you can see throughout this book, the .NET Framework is designed from
the ground up to take the Internet and networking in general into consider-
ation. Not surprisingly, that is nowhere more clear than it is in the System.
Net namespace. The Internet takes first chair here, with Web tools taking
up nine of the classes in the namespace.

In this fourth version of the framework, even more Internet functionality is
baked in. Although in version one the focus was on tools used to build other
tools (low-level functions), now it contains features that are useful to you,
such as Web, mail, and File Transfer Protocol (FTP). Secure Sockets Layer —
the Internet’s transport security — is much easier to use in this version, as
are FTP and mail, which previously required other, harder-to-use classes.

System.Net is a big, meaty namespace, and finding your way around it can
be difficult. My goal for this chapter is to take things that you do often and
show the basics, and then give you the tools to research the more complex
features of the classes.

Networking is a big part of the .NET Framework, and all the functionality
is in this namespace — a whole book can be (and has been) written on the
subject. For the purposes of this introduction to networking with C#, I show
you these features:

 ✦ Getting a file from the network

 ✦ Sending e-mail

29_563489-bk03ch04.indd 45529_563489-bk03ch04.indd 455 3/19/10 8:11 PM3/19/10 8:11 PM

456 Getting to Know System.Net

 ✦ Logging transfers

 ✦ Checking the status of the network around your running application

Keep in mind that I am not saying that sockets and IPv6 and other advanced
Internet protocols aren’t important. This chapter talks about the parts of
the namespace that you will use every day. As always, there is more to learn
about System.Net.

Getting to Know System.Net
The System.Net namespace is full of classes that are confusing if viewed in
the documentation but make a lot of sense when used in an application. The
namespace removes all the complexity of dealing with the various protocols
used on the Internet.

There are more than 2,000 RFCs for Internet protocols (an RFC is a Request
For Comments, a document that is sent to a standards body for review by
peers before it becomes a standard), and if you have to learn all of them sep-
arately, you will never complete your project. The System.Net namespace
is about making it less painful.

System.Net is not just for Web projects. Like everything else in the base
class library, you can use System.Net with all kinds of projects. You can

 ✦ Get information from Web pages on the Internet and use them on your
programs.

 ✦ Move files via the Internet using FTPs.

 ✦ Send e-mail easily.

 ✦ Use more advanced network structures.

 ✦ Secure communications over the Internet using the SSL protocol.

If you need to check on the connectivity of a computer from a Windows
application, you can use System.Net. If you need to build a class that will
download a file from a Web site, System.Net is the namespace you need.
Just because most classes relate to the Internet doesn’t mean that only Web
applications can use it. That’s the magic of System.Net. Any application
can be a connected application. While some parts of the namespace function
to make the development of Web applications easier, the namespace in gen-
eral is designed to make any application work with the Web.

29_563489-bk03ch04.indd 45629_563489-bk03ch04.indd 456 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 4

A
c

c
e

ssin
g

th

e
 In

te
rn

e
t

457How Net Classes Fit into the Framework

How Net Classes Fit into the Framework
The System.Net namespace contains 62 classes and six smaller
namespaces. Even as I write this, I am overwhelmed. However, if you look
closely, you can see patterns.

 If you need help using classes, you can find more information in Book II.

The classes are well named, and you will note that a few protocols get a
number of classes each. After you translate, you can narrow down what you
need based on the way the protocol is named:

 ✦ Authentication and Authorization: These classes provide security.

 ✦ Cookie: This class manages cookies from Web browsers and usually is
used in ASP.NET pages.

 ✦ DNS (Domain Name Services): These classes help to resolve domain
names into IP addresses.

 ✦ Download: This class is used to get files from servers.

 ✦ EndPoint: This class helps to define a network node.

 ✦ FileWeb: This brilliant set of classes describes network file servers as
local classes.

 ✦ FtpWeb: This class is a simple File Transfer Protocol implementation.

 ✦ Http (HyperText Transfer Protocol): This class is the Web protocol.

 ✦ IP (Internet Protocol): This class helps to define network endpoints that
are specifically Internet related.

 ✦ IrDA: This class is an infrared endpoint. Infrared ports are networks too!

 ✦ NetworkCredential: This class is another security implementation.

 ✦ Service: This class helps manage network connections.

 ✦ Socket: This class deals with the most primitive of network connections.

 ✦ Upload: This set of classes helps you upload information to the
Internet.

 ✦ Web: These classes help with the World Wide Web — largely implemen-
tations of the http classes that are more task oriented.

This list is extensive because the classes build on each other. The EndPoint
classes are used by the socket classes to define certain network specifics,
and the IP classes make them specific to the Internet. The Web classes are
specific to the World Wide Web. You will rarely use highest-level classes, but
it’s often tough to see what is needed when.

29_563489-bk03ch04.indd 45729_563489-bk03ch04.indd 457 3/19/10 8:11 PM3/19/10 8:11 PM

458 Using the System.Net Namespace

Most of the functions that you use every day, though, are encapsulated
within seven mostly new namespaces under the System.Net namespace:

 ✦ Cache: This function has a lot of enumerators that manage the browser
and network caching functions built into the namespace.

 ✦ Configuration: This function grants access to the properties that you
need to set to make many of the other System.Net classes work.

 ✦ Mail: This function takes over for System.Web.Mail to facilitate the
sending of Internet e-mail.

 ✦ Mime: This function bundles file attachments with the Mail namespace.

 ✦ NetworkInformation: This function gets details about the network
around your application.

 ✦ Security: This function implements the network security managed by
many classes of System.Net.

 ✦ Sockets: This function utilizes the most basic network connections
available to Windows.

Using the System.Net Namespace
The System.Net namespace is code-oriented, which means that few imple-
mentations are specifically for user interfaces. Most everything that you do
with these classes is behind the scenes. You have few drag-and-drop user
controls — the System.Net namespace is used in the Code View.

To demonstrate this, in the rest of this chapter, I go over building a Windows
Forms application that has the following requirements:

 ✦ Check the network status.

 ✦ Get a specific file from the Internet.

 ✦ E-mail it to a specific e-mail address.

 ✦ Log the whole transaction.

This is not an insignificant set of requirements. In fact, even in the 1.0 and
1.1 versions of C#, this would be difficult. One of the main goals of the
System.Net namespace in this version is to make common tasks much
easier. You can start by loading the sample code or by starting a new project
and following the steps in the following sections.

29_563489-bk03ch04.indd 45829_563489-bk03ch04.indd 458 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 4

A
c

c
e

ssin
g

th

e
 In

te
rn

e
t

459Using the System.Net Namespace

Checking the network status
First, you need to inform the user about network connectivity by following
these steps:

 1. Create a new Windows Forms Application project in Visual Studio.

 I called mine NetworkTools.

 2. Add a StatusStrip control to the form by dragging it from the
Toolbox.

 3. Select the SmartTag that appears and add a StatusLabel.

 4. Double-click the form to get the Form_Load event handler and move
to Code View.

 5. Reference the System.Net namespace by adding the line using
System.NET.NetworkInformation; to the top of the code.

 6. Add the code in bold from the following listing to test whether the
network is available and display it on the status bar:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Net.NetworkInformation;

namespace NetworkTools
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 toolStripStatusLabel1.Text = “Connected”;
 }
 else
 {
 toolStripStatusLabel1.Text = “Disconnected”;
 }

 }
 }

}

29_563489-bk03ch04.indd 45929_563489-bk03ch04.indd 459 3/19/10 8:11 PM3/19/10 8:11 PM

460 Using the System.Net Namespace

That’s all there is to it. The NetworkInformation class contains a bunch
of information about the status of the network, current IP addresses, the
gateway being used by the current machine, and more.

Keep in mind that the NetworkInformation class will work only on a local
machine. If you use this class in an ASP.NET Web Forms application, you will
get information about the server.

Downloading a file from the Internet
You can get a file from the Internet in one of several ways, and one of the
most common is by using FTP. The lightweight FTP protocol is favored
because it’s secure and supported on many systems.

To build an application that uses FTP, follow these steps:

 1. Drag a button onto the form from the Toolbox.

 2. Double-click the button to get the Click event handler.

 3. Add the required imports, System.Net, System.Net.Mail, and
System.IO to the top of the code.

 4. Create a new subroutine called Download File that accepts a remote
filename and a local filename as strings.

 5. In the new subroutine, create a new FileStream (called local
FileStream) and FTPWebRequest (called ftpRequest), as shown in
Listing 4-1.

 The FileStream references a local file and accepts the local file that is
passed into the subroutine. The FtpWebRequest is the same thing for
the remote file.

 6. Set the Method parameter of the FtpWebRequest to WebRequest
Methods.Ftp.Downloadfile.

 7. Set the Credentials property of the FtpWebRequest to a new
NetworkCredential with anonymous information, like I did in
Listing 4-1.

 8. Create a new WebResponse object from the ftpRequest method. This
gets the statement back from the FTP server about how your request
will be handled.

 9. Get the Stream from the Response object.

 10. Read the file into a 1024-byte buffer, one block at a time, using a
While loop, as shown at the end of Listing 4-1.

29_563489-bk03ch04.indd 46029_563489-bk03ch04.indd 460 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 4

A
c

c
e

ssin
g

th

e
 In

te
rn

e
t

461Using the System.Net Namespace

 11. Call the DownloadFile method from the Button1_Click event
handler, like I show in this chunk of code:

private void button1_Click(object sender, EventArgs e)
DownloadFile(@”ftp://ftp.csharpfordummies.net/sampleFile.bmp”, @”c:\
sampleFile.bmp”);

End Sub

Listing 4-1: The DownloadFile Method

 private void DownLoadFile(string remoteFile, string localFile)
 {
 FileStream localFileStream = new FileStream(localFile, FileMode.

OpenOrCreate);
 FtpWebRequest ftpRequest = (FtpWebRequest)WebRequest.

Create(remoteFile);
 ftpRequest.Method = WebRequestMethods.Ftp.DownloadFile;
 ftpRequest.Credentials = new NetworkCredential(“Anonymous”, “bill@

sempf.net”);
 WebResponse ftpResponse = ftpRequest.GetResponse();
 Stream ftpResponseStream = ftpResponse.GetResponseStream();
 byte[] buffer = new byte[1024];
 int bytesRead = ftpResponseStream.Read(buffer, 0, 1024);
 while (bytesRead > 0)
 {
 localFileStream.Write(buffer, 0, bytesRead);
 bytesRead = ftpResponseStream.Read(buffer, 0, 1024);
 }
 localFileStream.Close();
 ftpResponseStream.Close();
 }

This FTP example is watered down, but it makes my point. The WebRequest
and WebResponse classes in the System.Net namespace are fully utilized
to create the more complete FtpWebRequest, for instance. Properties like
the Method of download and Credentials make it an easy call.

In fact, the toughest part of this process is dealing with a FileStream
object, which is still the best way to move files and not specific to the
System.Net namespace. Streams are discussed in Chapter 3 of this mini-
book, which covers the System.IO namespace, but they have significance
to the network classes too. Streams represent a flow of data of some kind,
and a flow of information from the Internet qualifies.

That’s what you are doing when you get a Web page or a file from the
Internet — gathering a flow of data. If you think about it, it makes sense that
this is a flow, because the status bar in an application shows a percentage of
completion. Just like pouring water into a glass, the flow of data is a stream,
so the concept is named Stream.

This concept holds true for getting a file from the World Wide Web, as well.
HTTP, the Web protocol, is just another protocol that defines how a docu-
ment is moved from a server on the Internet to your local machine. In fact,

29_563489-bk03ch04.indd 46129_563489-bk03ch04.indd 461 3/19/10 8:11 PM3/19/10 8:11 PM

462 Using the System.Net Namespace

the code looks strikingly similar to the FTP example, as you can see in the
following bit of code. The same stream is recovered; only the formatting is
different.

private void DownLoadWebFile(string remoteFile, string localFile)
{
 FileStream localFileStream = new FileStream(localFile, FileMode.

OpenOrCreate);
 WebRequest webRequest = WebRequest.Create(remoteFile);
 webRequest.Method = WebRequestMethods.Http.Get;
 WebResponse webResponse = webRequest.GetResponse();
 Stream webResponseStream = webResponse.GetResponseStream();
 byte[] buffer = new byte[1024];
 int bytesRead = webResponseStream.Read(buffer, 0, 1024);
 while (bytesRead > 0)
 {
 localFileStream.Write(buffer, 0, bytesRead);
 bytesRead = webResponseStream.Read(buffer, 0, 1024);
 }
 localFileStream.Close();
 webResponseStream.Close();
}

 You need to pass in a Web address, so your subroutine call looks like this:

DownloadWebFile(@”http://www.csharpfordummies.net/sampleFile.bmp”, @”c:\
sampleFile.bmp”);

Note the changes, marked as bold. webRequest is now a WebRequest rather
than an FtpWebRequest. Also, the Method property of webRequest has
been changed to WebRequestMethods.Http.Get. Finally, the Credentials
property has been removed because the credentials are no longer required.

E-mailing a status report
E-mail is a common requirement of networked systems. If you are working in
an enterprise environment, you are going to write a larger scale application
to handle all e-mail requirements, rather than make each individual applica-
tion e-mail-aware.

However, if you are writing a standalone product, it might require e-mail sup-
port. Because I happen to be writing a standalone application, that is exactly
what I’m going to do.

E-mail is a server-based operation, so if you don’t have an e-mail server that
you can use to send from, this might be hard. Many ISPs no longer allow
relaying, which is sending an outgoing message without first having an
account and logging in. Therefore, you might have trouble running this part
of the sample.

29_563489-bk03ch04.indd 46229_563489-bk03ch04.indd 462 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 4

A
c

c
e

ssin
g

th

e
 In

te
rn

e
t

463Using the System.Net Namespace

If you are in a corporate environment, however, you can usually talk to your
e-mail administrator and get permission to use the e-mail server. Because
outgoing requests are usually only harnessed inside the firewall, relaying is
often available. To build your e-mail function, follow these steps:

 1. Add a text box to the default form in Design View, and then change to
Code View.

 At the top of Code View, make sure that you have referenced the
System.Net.Mail namespace.

 2. Create a new subroutine called SendEmail.

 It should accept the from e-mail address, the to e-mail address, the sub-
ject of the e-mail, and the body of the e-mail.

 3. Declare a new MailMessage and pass in the fromAddress,
toAddress, subject, and body parameters, like this:

MailMessage message = New MailMessage(fromAddress,
toAddress, subject, body);

 4. Declare a new SmtpClient and pass in the address of your mail
server.

 This can be an IP address, machine name, or URL.

 5. Use the Send method of the SmtpClient object you created to send
the MailMessage, which is passed in as a parameter.

 6. When you’re finished, make sure that you set the values of the
MailMessage and SmtpClient to Nothing, because they do take up
resources.

Listing 4-2 shows the completed subroutine.

Listing 4-2: The SendEmail Subroutine

private void SendEmail(string fromAddress, string toAddress, string subject,
string body)

{
 MailMessage message = new MailMessage(fromAddress, toAddress, subject, body);
 SmtpClient mailClient = new SmtpClient(“localhost”);
 mailClient.Send(message);
 message = null;
 mailClient = null;
}

Notice that I used localhost as the e-mail server name. If you have an
e-mail server software installed locally, even IIS 6.0 with SMTP, this will
work. Most of the time, you will have to put another e-mail server name in
the SmtpClient constructor. The e-mail server name can often be found in
your Outlook preferences.

29_563489-bk03ch04.indd 46329_563489-bk03ch04.indd 463 3/19/10 8:11 PM3/19/10 8:11 PM

464 Using the System.Net Namespace

After you have written your method, you need to call it after the file is down-
loaded in the Button1_Click event handler. Change the code of that sub-
routine to the following to call that method:

private void button1_Click(object sender, EventArgs e)
{
 DownloadFile(@”ftp://ftp.csharpfordummies.net/sampleFile.bmp”, @”c:\

sampleFile.bmp”);
 SendEmail(textBox1.Text, textBox1.Text, “FTP Successful”, “FTP Successfully

downloaded”);
}

Notice that I sent in the value of the text box twice: once for the to address,
and once for the from address. This isn’t always necessary, because you
may have a situation where you want the e-mail to come only from a
Webmaster address or to go only to your address.

You should have enough code in place to run the application now. Press F5
to launch the application in debug mode and give it a try.

When you click the button, the application should download the file to the
local drive and then e-mail you to inform you that the download is complete.
A host of things can go wrong with network applications, though, and you
should be aware of them. Here are a few:

 ✦ For most network activity, the machine running the software must be
connected to a network. This isn’t a problem for you as the developer,
but you need to be conscious of the end users, who may need connectiv-
ity to have access to the features they want to use. Use of the network
status code can help inform users about the availability of those features.

 ✦ Firewalls and other network appliances sometimes block network traffic
from legitimate applications. Some examples of this include:

 • FTP is often blocked from corporate networks.

 • Network analysis features of .NET are often blocked on corporate
servers. If the server is available to the public, these openings can
cause holes for hackers to crawl through.

 • Speaking of hackers, make sure that if you use incoming network fea-
tures in your application, you have adequately secured your applica-
tion. More on this can be found in the excellent book Writing Secure
Code, Second Edition, by Michael Howard and David C. LeBlanc (pub-
lished by Microsoft Press).

 • E-mail is especially fragile. Often, Internet service providers will
block e-mail from an address that is not registered on a mail server.
This means that if you are using your localhost server (like in the
example in Listing 4-2), your ISP might block the e-mail.

29_563489-bk03ch04.indd 46429_563489-bk03ch04.indd 464 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 4

A
c

c
e

ssin
g

th

e
 In

te
rn

e
t

465Using the System.Net Namespace

 ✦ Network traffic is notoriously hard to debug. For instance, if the
sample application works, but you never receive an e-mail from the
SmtpServer you coded, what went wrong? You may never know. XML
Web services (covered in Book VII) have a similar problem — it’s spec-
tacularly tough to see the actual code in the SOAP envelope (markup
added around requests for Web services) to tell what went wrong.

Logging network activity
This brings you to the next topic, which is network logging. Because network
activity problems are so hard to debug and reproduce, Microsoft has built in
several tools for the management of tracing network activity.

What’s more, like the ASP.NET tracing available, the System.Net
namespace tracing is completely managed using the configuration files. To
be able to use the functions, therefore, you don’t need to change and recom-
pile your code. In fact, with a little management, you can even show debug
information to the user by managing the config files your application uses.

Each kind of application has a different kind of configuration file. For
Windows Forms applications, which you are using here, the file is called
app.config and is stored in the development project directory. When you
compile, the name of the file is changed to the name of the application, and
it’s copied into the bin directory for running.

If you open your app.config file now, you see that it already contains some
diagnostic information, as shown in Listing 4-3. You will add some informa-
tion to it.

Listing 4-3: The Default app.config File

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
 <system.diagnostics>
 <sources>
 <!-- This section defines the logging configuration for

My.Application.Log in Windows Forms projects.-->
 <source name=”Microsoft.VisualBasic.Logging.Log.WindowsFormsSource”

switchName=”DefaultSwitch”>
 <listeners>
 <add name=”FileLog”/>
 <!-- Uncomment the below section to write to the Application

Event Log -->
 <!--<add name=”EventLog”/>-->
 </listeners>
 </source>
 </sources>
 <switches>
 <add name=”DefaultSwitch” value=”Information” />
 </switches>

29_563489-bk03ch04.indd 46529_563489-bk03ch04.indd 465 3/19/10 8:11 PM3/19/10 8:11 PM

466 Using the System.Net Namespace

 <sharedListeners>
 <add name=”FileLog”
 type=”Microsoft.VisualBasic.Logging.FileLogTraceListener,

Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f
5f7f11d50a3a, processorArchitecture=MSIL”

 initializeData=”FileLogWriter”/>
 <!-- Uncomment the below section and replace APPLICATION_NAME with

the name of your application to write to the Application Event Log -->
 <!--<add name=”EventLog” type=”System.Diagnostics.

EventLogTraceListener” initializeData=”APPLICATION_NAME”/> -->
 </sharedListeners>
 </system.diagnostics>
</configuration>

First, you need to add a new source for the System.Net namespace. Next,
you add a switch to the Switches section for the source you added. Finally,
you add a SharedListener to that section and set the file to flush the trac-
ing information automatically.

The finished app.config file, with the adds in bold, is shown in Listing 4-4.
It’s also in the sample code on this book’s companion Web site.

Listing 4-4: The Finished app.config File

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name=”Microsoft.VisualBasic.Logging.Log.WindowsFormsSource”

switchName=”DefaultSwitch”>
 <listeners>
 <add name=”FileLog”/>
 </listeners>
 </source>
 <source name=”System.Net”>
 <listeners>
 <add name=”System.Net”/>
 </listeners>
 </source>
 </sources>
 <switches>
 <add name=”DefaultSwitch” value=”Information” />
 <add name=”System.Net” value=”Verbose” />
 </switches>
 <sharedListeners>
 <add name=”FileLog”
 type=”Microsoft.VisualBasic.Logging.FileLogTraceListener,

Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f
5f7f11d50a3a, processorArchitecture=MSIL”

 initializeData=”FileLogWriter”/>
 <add name=”System.Net”
 type=”System.Diagnostics.TextWriterTraceListener”
 initializeData=”my.log”/>
 </sharedListeners>
 <trace autoflush=”true” />
 </system.diagnostics>
</configuration>

29_563489-bk03ch04.indd 46629_563489-bk03ch04.indd 466 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 4

A
c

c
e

ssin
g

th

e
 In

te
rn

e
t

467Using the System.Net Namespace

Run the application again and watch the Output window. Advanced logging
information is shown there because of your changes to the configuration file.
Additionally, a log file was written. In the development environment, this is
in the bin/debug directory of your project. You might have to click the Show
All Files button at the top of the Solution Explorer to see it.

In that folder, you should see the file named my.log, where the Shared
Listener you added to the app.config file directed the logging informa-
tion. My copy of that file is shown in Listing 4-5 — your mileage may vary.

Listing 4-5: The Log Information

System.Net Information: 0 : WebRequest::Create(ftp://ftp.csharpfordummies.net/
sample.bmp)

System.Net Information: 0 : Exiting WebRequest::Create() ->
FtpWebRequest#37460558

System.Net Information: 0 : FtpWebRequest#37460558::GetResponse()
System.Net Information: 0 : Exiting FtpWebRequest#37460558::GetResponse()
System.Net Information: 0 : Associating Message#59487907 with

HeaderCollection#23085090
System.Net Information: 0 : HeaderCollection#23085090::Set(mime-version=1.0)
System.Net Information: 0 : Associating MailMessage#6964596 with Message#59487907
System.Net Information: 0 : SmtpClient::.ctor(host=24.123.157.3)
System.Net Information: 0 : Associating SmtpClient#17113003 with

SmtpTransport#30544512
System.Net Information: 0 : Exiting SmtpClient::.ctor() ->

SmtpClient#17113003
System.Net Information: 0 : SmtpClient#17113003::Send(MailMessage#6964596)
System.Net Information: 0 : SmtpClient#17113003::Send(DeliveryMethod=Network)
System.Net Information: 0 : Associating SmtpClient#17113003 with

MailMessage#6964596
System.Net Information: 0 : Associating SmtpTransport#30544512 with

SmtpConnection#44365459
System.Net Information: 0 : Associating SmtpConnection#44365459 with

ServicePoint#7044526
System.Net Information: 0 : Associating SmtpConnection#44365459 with

SmtpPooledStream#20390146
System.Net Information: 0 : HeaderCollection#30689639::Set(content-transfer-

encoding=base64)
System.Net Information: 0 : HeaderCollection#30689639::Set(content-transfer-

encoding=quoted-printable)
System.Net Information: 0 : HeaderCollection#23085090::Remove(x-receiver)
System.Net Information: 0 : HeaderCollection#23085090::Set(from=bill@sempf.net)
System.Net Information: 0 : HeaderCollection#23085090::Set(to=bill@sempf.net)
System.Net Information: 0 : HeaderCollection#23085090::Set(date=1 Apr 2010

16:32:32 -0500)
System.Net Information: 0 : HeaderCollection#23085090::Set(subject=FTP

Successful)
System.Net Information: 0 : HeaderCollection#23085090::Get(mime-version)
System.Net Information: 0 : HeaderCollection#23085090::Get(from)
System.Net Information: 0 : HeaderCollection#23085090::Get(to)
System.Net Information: 0 : HeaderCollection#23085090::Get(date)
System.Net Information: 0 : HeaderCollection#23085090::Get(subject)
System.Net Information: 0 : HeaderCollection#30689639::Get(content-type)
System.Net Information: 0 : HeaderCollection#30689639::Get(content-transfer-

encoding)
System.Net Information: 0 : Exiting SmtpClient#17113003::Send()

29_563489-bk03ch04.indd 46729_563489-bk03ch04.indd 467 3/19/10 8:11 PM3/19/10 8:11 PM

468 Using the System.Net Namespace

Reading this file, you can see that the reference numbers that match the
requests on the server all appear, dramatically improving the ease of debug-
ging. Also, because everything is in order of action, finding out exactly where
the error occurred in the process is much easier.

29_563489-bk03ch04.indd 46829_563489-bk03ch04.indd 468 3/19/10 8:11 PM3/19/10 8:11 PM

Chapter 5: Creating Images

In This Chapter
✓ Understanding the System.Drawing namespace

✓ Finding out how the drawing classes fit into the .NET Framework

✓ Using System.Drawing to create a simple game application

No one is going to write the next edition of Bioshock using C#. It just
isn’t the kind of language you use to write graphics-intensive applica-

tions like shoot-’em-up games.

Still, C# packs a fair amount of power into the System.Drawing classes.
Though these classes are somewhat primitive in some areas, and using
them might cause you to have to write a few more lines of code than you
should, there isn’t much that these classes can’t do with sufficient work.

The drawing capability provided by the .NET Framework is divided into four
logical areas by the namespace design provided by Microsoft. All the gen-
eral drawing capability is in the System.Drawing namespace. Then there
are some specialized namespaces:

 ✦ System.Drawing.2D has advanced vector drawing functionality.

 ✦ System.Drawing.Imaging is mostly about using bitmap graphic for-
mats, like .bmp and .jpg files.

 ✦ System.Drawing.Text deals with advanced typography.

In this chapter, I focus on the base namespace and cover only the basics of
drawing in C#. (Discussing every aspect of drawing could easily fill an entire
book.)

Getting to Know System.Drawing
Even at the highest level, graphics programming consists of drawing poly-
gons, filling them with color, and labeling them with text — all on a canvas
of some sort. Unsurprisingly, this leaves you with four objects that form the
core of the graphics code you write: graphics, pens, brushes, and text.

30_563489-bk03ch05.indd 46930_563489-bk03ch05.indd 469 3/19/10 8:11 PM3/19/10 8:11 PM

470 Getting to Know System.Drawing

Graphics
Generally speaking, the Graphics class creates an object that is your pal-
ette. It’s the canvas. All the methods and properties of the Graphics object
are designed to make the area you draw upon more appropriate for your
needs.

Also, most of the graphics- and image-related methods of other classes in the
framework provide the Graphics object as output. For instance, you can
call the System.Web.Forms.Control.CreateGraphics method from a
Windows Forms application and get a Graphics object back that enables
you to draw in a form control in your project. You can also handle the
Paint event of a form, and check out the Graphics property of the event.

Graphics objects use pens and brushes (discussed later in this chapter, in
the “Pens” and “Brushes” sections) to draw and fill. Graphics objects have
methods such as these:

 ✦ DrawRectangle

 ✦ FillRectangle

 ✦ DrawCircle

 ✦ FillCircle

 ✦ DrawBezier

 ✦ DrawLine

These methods accept pens and brushes as parameters. You might think,
“How can a circle help me?” but you must remember that even complex
graphic objects such as the Covenant in Halo 3 are made up of circles and
rectangles — thousands of them. The trick to useful art is using math to put
together lots of circles and squares until you have a complete image. The
sample application described later in this chapter is a simple example of
just that.

Pens
You use pens to draw lines and curves. Complex graphics are made up of
polygons, and those polygons are made of lines, and those lines are gener-
ated by pens. Pens have properties such as

 ✦ Color

 ✦ DashStyle

 ✦ EndCap

 ✦ Width

30_563489-bk03ch05.indd 47030_563489-bk03ch05.indd 470 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 5

C
re

a
tin

g
 Im

a
g

e
s

471Getting to Know System.Drawing

You get the idea: You use pens to draw things. These properties are used by
the pens to determine how things are drawn.

Brushes
Brushes paint the insides of polygons. Though you use the pens to draw
the shapes, you use brushes to fill in the shapes with gradients, patterns,
or colors. Brushes are usually passed in as parameters to a DrawWhatever
method of the pen objects. When the pen draws the shape it was asked to
draw, it uses the brush to fill in the shape — just as you did in kindergarten
with crayons and coloring books. (The brush object always stays inside the
lines, though.)

Don’t look for the Brush class, however. It’s a holding area for the real
brushes, which have kind of strange names. Brushes are made to be custom-
ized, but you can do a lot with the brushes that come with the framework as
is. Some of the brushes include

 ✦ SolidBrush

 ✦ TextureBrush

 ✦ HatchBrush

 ✦ PathGradientBrush

Although the pens are used to pass into the Draw methods of the Graphics
object, brushes are used to pass into the Fill methods that form polygons.

Text
Text is painted with a combination of fonts and brushes. Just like pens, the
Font class uses brushes to fill in the lines of a text operation.

System.Drawing.Text has collections of all the fonts installed in the
system running your program, or installed as part of your application.
System.Drawing.Font has all the properties of the typography, such as

 ✦ Bold

 ✦ Size

 ✦ Style

 ✦ Underline

The Graphics object, again, provides the writing of the text on the palette.

30_563489-bk03ch05.indd 47130_563489-bk03ch05.indd 471 3/19/10 8:11 PM3/19/10 8:11 PM

472 How the Drawing Classes Fit into the Framework

How the Drawing Classes Fit into the Framework
The System.Drawing namespace breaks drawing into two steps:

 1. Create a System.Drawing.Graphics object.

 2. Use the tools in the System.Drawing namespace to draw on it.

It seems straightforward, and it is. The first step is to get a Graphics object.
Graphics objects come from two main places — existing images and
Windows Forms.

To get a Graphics object from an existing image, look at the Bitmap object.
The Bitmap object is a great tool that enables you to create an object using
an existing image file. This gives you a new palette that is based on a bitmap
image (a JPEG file, for example) that is already on your hard drive. It’s a con-
venient tool, especially for Web images.

Bitmap currentBitmap = new Bitmap(@”c:\images\myImage.jpg”);
Graphics palette = Graphics.FromImage(currentBitmap);

Now the object myPalette is a Graphics object whose height and width are
based on the image in myBitmap. What’s more, the base of the myPalette
image looks exactly like the image referenced in the myBitmap object.

In VB6, and earlier, one of the most common
ways to get information to paper was to print a
form. This functionality was lacking in .NET but
came back in a Power Pack and now is built
into Visual Studio 2008. It’s available to all lan-
guages, but VB programmers miss it the most.

If you need to build a report, you should use
Microsoft Report Viewer, which isn’t covered
in this book. If you just want to get some text
and images to the user’s printer, though, the
PrintForm component should do the trick.

To use the PrintForm component, drag
it from the Toolbox onto your form in Design
View. It will appear in the component tray. In

the event handler for your print function (the
MenuItem.Click function, for instance),
set up the Form property of the component, the
Print Action, and then call the Print command.
It looks like this:

using PrintForm printForm = new PrintForm
.Form =TheFormIWantPrinted
.PrintAction = PrintToPrinter
.Print()

end using

The form will be sent to the windows Print
function, just as though you had used the Print
dialog box to print a file.

Printing a form

30_563489-bk03ch05.indd 47230_563489-bk03ch05.indd 472 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 5

C
re

a
tin

g
 Im

a
g

e
s

473Using the System.Drawing Namespace

You can use the pens, brushes, and fonts in the Graphics class to draw
directly on that image, as though it were a blank canvas. I use it to put text
on images before I show them on Web pages and to modify the format of
images on the fly, too.

Another way to get a Graphics object is to get it from Windows
Forms. The method you want is System.Windows.Forms.Control.
CreateGraphics. This method gives you a new palette that is based on the
drawing surface of the control being referenced. If it’s a form, it inherits the
height and width of the form and has the form background color. You can
use pens and brushes to draw right on the form.

When you have a Graphics object, the options are endless. Sophisticated
drawing isn’t out of the question, though you would have to do a ton of work
to create graphics like you see in Halo 2 using Visual Studio. (There isn’t a
Master Chief class that you can just generate automatically.)

Nonetheless, even the most complex 3D graphics are just colored polygons,
and you can make those with the System.Drawing class. In the following
sections, I build a cribbage board with a Graphics object, pens, brushes,
and fonts.

Using the System.Drawing Namespace
Good applications come from strange places. Gabrielle (my wife) and I enjoy
games, and one of our favorites is the card game cribbage. We were on vaca-
tion in Disney World when she had the urge to play, but we didn’t have a
cribbage board. We had cards, but not the board.

However, I did have my laptop, Visual Studio, and the System.Drawing
namespace. After just an hour or two of work, I built an application that
serves as a working cribbage board!

It’s shocking, I know, but somehow she still wanted to play me after watch-
ing me program for two hours!

This application is fairly complete, and I don’t have enough pages to walk
you through it step by step. Load the application from this book’s Web site,
and follow along with the rest of this chapter. This application isn’t complex,
but it’s long.

Getting started
Cribbage is a card game where hands are counted up into points, and the
first player to score 121 points wins. It’s up to the players to count up the
points, and the score is kept on a board.

30_563489-bk03ch05.indd 47330_563489-bk03ch05.indd 473 3/19/10 8:11 PM3/19/10 8:11 PM

474 Using the System.Drawing Namespace

Cribbage boards are made up of two lines of holes for pegs, usually totaling
120, but sometimes 60 holes are used and you play through twice. Figure 5-1
shows a typical cribbage board. Cribbage boards come in a bunch of styles —
check out www.cribbage.org if you’re curious; it has a great gallery of
almost 100 boards, from basic to whimsical.

Figure 5-1:
A traditional
cribbage
board.

For this example, I create the board image for an application that keeps
score of a cribbage game — but it wouldn’t be beyond C# to write the cards
into the game too!

So the board for this application has 40 holes on each of three pairs of lines,
which is the standard board setup for two players playing to 120, as shown
in Figure 5-2. The first task is to draw the board, and then to draw the pegs
as the players’ scores — entered in text boxes — change.

The premise is this: The players play a hand and enter the resulting scores
in the text box below their respective names (refer to Figure 5-2). When
the score for each hand is entered, the score next to the player’s name is
updated, and the peg is moved on the board. The next time that same player
scores a hand, the peg is moved forward, and the back peg is moved into

30_563489-bk03ch05.indd 47430_563489-bk03ch05.indd 474 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 5

C
re

a
tin

g
 Im

a
g

e
s

475Using the System.Drawing Namespace

its place. Did I mention the back peg? Oh, yes, the inventor of cribbage was
paranoid of cheating — if you’re unfamiliar with cribbage, you may want to
check out the rules at www.cribbage.org.

Figure 5-2:
The digital
cribbage
board.

Setting up the project
To begin, create a playing surface. I set up the board shown in Figure 5-2
without drawing the board itself — I show you how to paint it on later with
System.Drawing. My board looked a lot like Figure 5-3 when I was ready to
start with the business rules.

Figure 5-3:
The basic
board.

I used a little subroutine to handle score changes by calling it from the two
text boxes’ OnChange events. Here’s the code that calls the subroutine:

private void HandleScore(TextBox scoreBox, Label points, Label otherPlayer)
{
 try {
 if (0 > (int)scoreBox.Text | (int)scoreBox.Text > 27) {
 ScoreCheck.SetError(scoreBox, “Score must be between 0 and 27”);
 scoreBox.Focus();
 }

30_563489-bk03ch05.indd 47530_563489-bk03ch05.indd 475 3/19/10 8:11 PM3/19/10 8:11 PM

476 Using the System.Drawing Namespace

 else {
 ScoreCheck.SetError(scoreBox, “”);
 //Add the score written to the points
 points.Text = (int)points.Text + (int)scoreBox.Text;
 }
 }
 catch (System.InvalidCastException ext) {
 //Something other than a number
 if (scoreBox.Text.Length > 0) {
 ScoreCheck.SetError(scoreBox, “Score must be a number”);
 }
 }
 catch (Exception ex) {
 //Eek!
 MessageBox.Show(“Something went wrong! “ + ex.Message);
 }
 //Check the score
 if ((int)points.Text > 120) {
 if ((int)points.Text / (int)otherPlayer.Text > 1.5) {
 WinMessage.Text = scoreBox.Name.Substring(0, scoreBox.Name.Length -

6) + “ Skunked ‘em!!!”;
 }
 else {
 WinMessage.Text = scoreBox.Name.Substring(0, scoreBox.Name.Length -

6) + “ Won!!”;
 }
 WinMessage.Visible = true;
 }
}

All this changing of screen values causes the Paint event of the form to
fire — every time C# needs to change the look of a form for any reason, this
event fires — so I just tossed a little code in that event handler that would
draw my board for me:

private void CribbageBoard_Paint(object sender, PaintEventArgs e)
{
 PaintBoard(BillsPoints, GabriellesPoints);
}

From that point on, my largest concern is drawing the board itself.

Drawing the board
I need to paint right on a form to create the image of the board for my crib-
bage application, so I use the CreateGraphics method of the form control.
From there, I need to complete these tasks:

 ✦ Paint the board brown using a brush.

 ✦ Draw six rows of little circles using a pen.

 ✦ Fill in the hole if that is the right score.

 ✦ Clean up my supplies.

30_563489-bk03ch05.indd 47630_563489-bk03ch05.indd 476 3/19/10 8:11 PM3/19/10 8:11 PM

Book III

Chapter 5

C
re

a
tin

g
 Im

a
g

e
s

477Using the System.Drawing Namespace

To that end, I came up with the PaintBoard method, which accepts the
labels that contain the standing scores for both players. It’s shown in
Listing 5-1.

Listing 5-1: The PaintBoard Method

private void PaintBoard(ref Label Bill, ref Label Gabrielle)
{
 Graphics palette = this.CreateGraphics;
 SolidBrush brownBrush = new SolidBrush(Color.Brown);
 palette.FillRectangle(brownBrush, new Rectangle(20, 20, 820, 180));
 //OK, now I need to paint the little holes.
 //There are 244 little holes in the board.
 //Three rows of 40 times two, with the little starts and stops on either end.
 //Let’s start with the 240.
 int rows = 0;
 int columns = 0;
 int scoreBeingDrawn = 0;
 Pen blackPen = new Pen(System.Drawing.Color.Black, 1);
 SolidBrush blackBrush = new SolidBrush(Color.Black);
 SolidBrush redBrush = new SolidBrush(Color.Red);

 //There are 6 rows, then, at 24 and 40, 80 and 100, then 140 and 160.
 for (rows = 40; rows <= 160; rows += 60) {
 //There are 40 columns. They are every 20
 for (columns = 40; columns <= 820; columns += 20) {
 //Calculate score being drawn
 scoreBeingDrawn = ((columns - 20) / 20) + ((((rows + 20) / 60) - 1) *

40);
 //Draw Bill
 //If score being drawn = bill fill, otherwise draw
 if (scoreBeingDrawn == (int)Bill.Text) {
 palette.FillEllipse(blackBrush, columns - 2, rows - 2, 6, 6);
 }
 else if (scoreBeingDrawn == BillsLastTotal) {
 palette.FillEllipse(redBrush, columns - 2, rows - 2, 6, 6);
 }
 else {
 palette.DrawEllipse(blackPen, columns - 2, rows - 2, 4, 4);
 }
 //Draw Gabrielle
 //If score being drawn = Gabrielle fill, otherwise draw
 if (scoreBeingDrawn == (int)Gabrielle.Text) {
 palette.FillEllipse(blackBrush, columns - 2, rows + 16, 6, 6);
 }
 else if (scoreBeingDrawn == GabriellesLastTotal) {
 palette.FillEllipse(redBrush, columns - 2, rows + 16, 6, 6);
 }
 else {
 palette.DrawEllipse(blackPen, columns - 2, rows + 16, 4, 4);
 }
 }
 }
 palette.Dispose();
 brownBrush.Dispose();
 blackPen.Dispose();
}

30_563489-bk03ch05.indd 47730_563489-bk03ch05.indd 477 3/19/10 8:11 PM3/19/10 8:11 PM

478 Using the System.Drawing Namespace

Aside from the math, note the decision making. If the score being drawn
is the score in the label, fill in the hole with a red peg. If it’s the last score
drawn, fill in the hole with a black peg. Otherwise, well, just draw a circle.

It’s tough to fathom, but this is exactly how large-scale games are written.
Admittedly, big graphics engines make many more If-Then decisions, but the
premise is the same.

Also, large games use bitmap images sometimes, rather than drawing all
the time. For the cribbage scoring application, for example, you could use a
bitmap image of a peg rather than fill an ellipse with a black or red brush!

30_563489-bk03ch05.indd 47830_563489-bk03ch05.indd 478 3/19/10 8:11 PM3/19/10 8:11 PM

Book IV

A Tour of Visual Studio

31_563489-pp04.indd 47931_563489-pp04.indd 479 3/19/10 8:13 PM3/19/10 8:13 PM

Contents at a Glance

Chapter 1: Getting Started with Visual Studio 481

Chapter 2: Using the Interface .495

Chapter 3: Customizing Visual Studio. .517

Chapter 4: Transforming Text Templates. .533

31_563489-pp04.indd 48031_563489-pp04.indd 480 3/19/10 8:13 PM3/19/10 8:13 PM

Chapter 1: Getting Started
with Visual Studio

In This Chapter
✓ Surveying the available versions

✓ Installing Visual Studio

✓ Understanding projects and solutions

✓ Exploring the different types of projects

Much that you most likely have discovered about C# can be run using
a command prompt and cs.exe. Fact is, that’s a less-than-wonderful

way to program. It’s unforgiving and slow, and it’s hard to remember the
specifics of the language. An Integrated Development Environment (IDE) is
a program that provides a platform for development. It helps make develop-
ment easier.

Programmers who are used to starting with a blank screen and a command
line often dismiss an IDE as a slow, bogged-down waste of time. However, I
have never failed to see any of those coders change their tune after working
in Visual Studio. It’s quick, easy to use, agile, and smart.

It’s true that you don’t have to use an IDE to program, but if you’re going
to use one, it should be Visual Studio. It was purposely built to write C#
code, and it’s made to construct Windows programs. (Sales pitch over —
Microsoft, I’ll take my 20 bucks now.)

Seriously, ever since I did a deep dive to write Effective Visual Studio .NET,
I have been a fan of Visual Studio. It truly makes writing software easier. It
doesn’t replace knowing the language or understanding object-oriented pro-
gramming or the .NET Framework, but it sure makes life a little smoother.

This chapter introduces you to the various versions of Visual Studio and
discusses the C# projects available to you.

Versioning the Versions
Visual Studio has lots of different versions (a metric ton of them — a bushel
and a peck, even).

32_563489-bk04ch01.indd 48132_563489-bk04ch01.indd 481 3/19/10 8:12 PM3/19/10 8:12 PM

482

The reason is its famous licensing problem. If they just sold the whole pack-
age for what it was worth, only the Fortune 50 could afford it, and they
would cut out about 99 percent of their audience. If they make a lot of dif-
ferent versions, and try to incorporate the features that different groups of
people use, they can capture nearly 100 percent of the audience.

This book focuses on the Professional Edition, as I mention in the introduc-
tion. However, much of the sample code works in any version — though the
step lists are different.

In this chapter I run down the features and benefits of all the major editions.
At the end of the section, a grid shows the major features and what each edi-
tion includes.

Express
Express is the free version of Visual Studio.

Yes, I said free, as in “without cost.”

Express is made for hobbyists, but many professional programmers I know
use it as their “home” edition, for small personal projects, or for working on
open source projects.

Although Express is significantly less functional than the Professional
Edition, nearly every code sample in this book can be compiled in Express.
It has the power of the .NET Framework, which is also free, and gives you a
significant means of learning C#.

Express edition is not designed for making production software. It lacks sev-
eral project types and many of the tools for team development. Nonetheless,
it runs C# as well as anything else — remember that C# is just a language.

Express has a number of different subeditions. They split the main technolo-
gies of .NET into parts. You can’t build packaged software for sale using
these editions, but you sure can learn with it. The different subeditions are
described in this list:

 ✦ Visual C# Express: This edition provides much of the power of C# in
a free package. Most of the project types are available, including WPF,
Windows Forms, Web Forms, and service applications. The only kicker —
you can’t deploy. You can’t deploy for production anyway, without break-
ing the license agreement.

Versioning the Versions

32_563489-bk04ch01.indd 48232_563489-bk04ch01.indd 482 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

 w
ith

V

isu
a

l S
tu

d
io

483

 This version is great for learning the language and for participating in
open source application projects, though. Open source projects (in which
you just contribute code, not a whole project for pay) are a good use for
Express editions. I recommend that you get started here if you have noth-
ing else. Much of the material in Books I and II work in Express.

 ✦ Visual Basic Express: Like C# Express, Visual Basic Express is a free
implementation of the language. It isn’t for production use, though you
can learn the language and participate in open source projects. Most of
the project types are available.

 ✦ Visual Web Developer: VWD is an interesting free edition of Visual
Studio. It’s designed around the creation of Web pages using ASP.NET or
Silverlight. Because those languages aren’t compiled, you can write pro-
duction software for free. All the better for you and me.

 Both VB and C# are supported as of this writing, and most of the func-
tionality of the Web projects in Visual Studio is available. Find out more
at www.microsoft.com/express/vwd.

Professional
Professional Edition is designed for professional programmers. This edition
of Visual Studio is the one I use daily. It’s made to generate standalone pro-
grams that solve specific problems.

Microsoft is on the ball, with three goals for its Professional Edition:

 ✦ Enable emerging trends

 ✦ Inspire developer delight

 ✦ Ride the next-generation platform wave

That hits the nail on the head. This is the edition that the entire book is built
on, and what I recommend for the production of most programs.

As good as it is, Professional doesn’t have every feature that Microsoft has
to offer. The comprehensive team management features, reporting, check-in,
and testing features are reserved for the pricy version: Team System.

Team System
Visual Studio Team System, usually referred to as VSTS, is the grand pooh-
bah of the Microsoft platform. It connects to Team Foundation Server (a
Microsoft product that provides team metrics for software development),
which provides a plethora of software creation metrics when teams are
involved in the development.

Versioning the Versions

32_563489-bk04ch01.indd 48332_563489-bk04ch01.indd 483 3/19/10 8:12 PM3/19/10 8:12 PM

484

Figure 1-1 shows a little of what I’m talking about. Build statistics and devel-
opment details can be gathered using the dashboard provided in SharePoint.

Facts are facts — Team System is cool software, but it just doesn’t work
without a big enterprise environment around you. It needs SharePoint,
Exchange, and SQL Server to work right.

Figure 1-1:
Managing
software
development
with Team
Foundation
Server.

MSDN
The Microsoft Developer Network (MSDN) subscription is by far the best
way to get Microsoft products. It seems like setting up a development envi-
ronment to develop anything of significance would be impossibly expensive.
This is not necessarily the case.

The MSDN subscription is exactly what it sounds like — a subscription to a
majority of the Microsoft products that matter. For around a thousand dollars
a year, you get access to everything you need. This isn’t actually an edition of
Visual Studio.

That sounds like a lot, but think about it this way — even if you do
only one project a year on your own time, your investment will pay off.

Versioning the Versions

32_563489-bk04ch01.indd 48432_563489-bk04ch01.indd 484 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

 w
ith

V

isu
a

l S
tu

d
io

485

Considering the fact that Visual Studio alone is half of that, and it gets a
revision every two years or so, it’s a bargain. Along with Visual Studio
Professional, you also get subscriptions to

 ✦ Microsoft Office

 ✦ Windows client platforms

 ✦ Windows Server platforms

 ✦ SQL Server

 ✦ Neat middleware like SharePoint and BizTalk

 ✦ Weird bits that you never used before (but will now)

Basically how it works is this — you go to Amazon or elsewhere and buy an
MSDN license code. Then you go to msdn.microsoft.com and register the
code with your Live account. From there, depending on your license level,
you can download the software for development use only.

That point is an important one. The products you get from MSDN are for
development purpose. So, yes, you get SQL Server (for instance). No, you
can’t put up your new Widget store on the Internet using the MSDN license.

So the operating system in the MSDN license is for development only. That’s
okay. This is a development book. If you can get MSDN, get it.

Academic
If you can’t afford MSDN but you’re a school student or an instructor, buy
the Academic edition of Visual Studio, intended just for learning institutions.
It’s less expensive than MSDN, but is even more limited from the licensing
perspective.

The Academic edition now costs only a hundred bucks or so. That means
it costs more than the free Express edition, but it has all the features of
Professional. If you’re just in it to learn, it’s a helpful option. If you want to
deploy production software, though, you have to look elsewhere. This prod-
uct isn’t licensed for it.

Students, teachers, head over to the school bookstore. If they don’t have
Visual Studio Academic, tell them they should get it.

An edition breakdown
Table 1-1 describes the big features that Microsoft sees and the features in
different versions. I use it every time I recommend software to a client, and I
hope you find it just as useful.

Versioning the Versions

32_563489-bk04ch01.indd 48532_563489-bk04ch01.indd 485 3/19/10 8:12 PM3/19/10 8:12 PM

486

Table 1-1 Visual Studio Versions

Visual Studio 2010 VS 2010
Professional
with MSDN

VS 2010
Premium
with MSDN

VS 2010 Ultimate
with MSDN

Team Foundation
Server

**** **** ****

Development
Platform Support

**** **** ****

Testing * *** ****

Database
Development

**** ****

Debugging and
Diagnostics

** *** ****

Architecture and
Modeling

* ****

Lab Management ***

Installing Visual Studio
Visual Studio Professional, the edition that I use for most of this book,
installs much like any other Windows program. First, assure yourself that
your machine can run Visual Studio. Then you run the setup program (or it
automatically runs from the DVD) and make a few decisions.

Then you wait. Visual Studio is big. It takes a while.

The official requirements for Visual Studio are shown in this list:

 ✦ Operating system:

 • Windows® XP Professional with Service Pack 2 installed, Windows
Server 2003, or Windows Vista in 32 bit

 • Microsoft Windows Server® 2003 with SP1, Standard x64 Edition (WOW)

 • Microsoft Windows Server 2003 with SP1, Enterprise x64 Edition (WOW)

 • Microsoft Windows Server 2003 with SP1, Datacenter x64 Edition
(WOW)

 • Microsoft Windows Server 2003 R2, Standard x64 Edition (WOW)

 • Microsoft Windows Server 2003 R2, Enterprise x64 Edition (WOW)

 • Microsoft Windows Server 2003 R2, Datacenter x64 Edition (WOW)

Installing Visual Studio

32_563489-bk04ch01.indd 48632_563489-bk04ch01.indd 486 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

 w
ith

V

isu
a

l S
tu

d
io

487

 • Microsoft Windows XP Professional x64 Edition (WOW)

 • Windows Vista

 ✦ Client software:

 • Internet Explorer® 6.0 with Service Pack 1,

 • Microsoft Office 2003 with Service Pack 1 or

 • Microsoft Office 2007, MDAC 9.0, .NET Framework 2.0

 ✦ Hardware:

 • Minimum: 2.0 GHz CPU, 512MB RAM, 8GB HDD

 • Recommended: 2.6 GHz CPU, 1GB RAM, 20GB HDD

You can run on this configuration — I have tried it and it works. It’s not
pretty. Visual Studio 2010 is all written in WPF, which can (with this size of
an application) be a resource hog.

Seeing how that is the case, I am sure you aren’t surprised to find that I have
a collection of suggestions for installing Visual Studio.

First, here is what I consider to be a realistic base configuration for Visual
Studio:

 ✦ 2.4 GHz 64 bit dual core processor

 ✦ 64-bit Windows 7 with 8GB of RAM

 ✦ 250GB of available HDD space

 ✦ Dual monitors (or a laptop with an external monitor)

Seems excessive? It isn’t. First, I recommend that you use a virtual machine
for any project that does anything to your base install of Windows. Virtual
PC is free, and you can usually get a 180-day trial of Windows 7 without a
problem. Change the settings on Virtual PC to run only the clock while the
machine is running, and you have a perfect test bed.

To find Virtual PC, search for Virtual PC on download.microsoft.com. To
find the hack to change the clock on virtual PCs, go to the Virtual PC Guy’s
blog at www.virtualpcguy.com and search for “clock only while active.”

This plan takes power, though. You must have 4GB of RAM so that you can
give 2GB of it to the virtual machine. The virtual hard drives are usually
around 13GB, so you need space. Two monitors make it possible to easily see
the host operating system while still running the virtual machine full screen.

Even if you aren’t going to run in a virtual PC (but I recommend that you
do), you still want a solid, dual core processor and lots of RAM. Why skimp?
Hardware is cheap. Your time isn’t!

Installing Visual Studio

32_563489-bk04ch01.indd 48732_563489-bk04ch01.indd 487 3/19/10 8:12 PM3/19/10 8:12 PM

488

Breaking Down the Projects
All there is left to do after you have run the setup program and set your
default settings is to start on a project and get your fingers dirty. All the proj-
ect types (expect maybe one or two) in the first two minibooks were Console
applications, meaning they are meant to be run at the command prompt.
There are a lot more projects available.

Notice three main kinds of projects in the Visual Studio New Project
dialog box.

 ✦ Windows projects are rich client applications that compile into .
EXEs and run right on your computer. Microsoft Word is a Windows
application.

 ✦ Web projects make Web sites and require a Web server to run. (A
Web server is included with Visual Studio for development purposes.)
Microsoft.com is an example of a Web application.

 ✦ Special projects include things like setup projects (projects that build
setup programs) and database projects (projects that give a framework
for databases). They usually are used with a Windows or Web applica-
tion. The Setup.exe program you run in the preceding section to install
Visual Studio is an example of one of these special project — a setup
project.

Exploring the New Project dialog box
Let’s start with a breakdown of the New Project dialog box, shown in Figure
1-2. This screen is an important part of the usability of Visual Studio. You
open it by clicking the New Project link on the setup page.

The section of the dialog box to the far left is a tree-view selector, similar to
the one in Outlook. You have three options — Recent Templates, Installed
Templates, and Online templates. Installed Templates is selected. These
templates, as Visual Studio calls them, are project types.

Within the selector is a WPF style tree viewer. Instead of maples and oaks,
this tree viewer has all the project categories described in upcoming sec-
tions of this chapter.

If you click, for example, the Visual C# option in the tree view, all the proj-
ects for Visual C# appear in the window just to the right. If you click one of
the suboptions, just those project types — for Visual C# —appear.

To specify the version of the .NET Framework you would like to develop
for, you can use the drop-down list just above the project list that currently
says .NET Framework 4.0. To change the sorting options, use the Sort By:
drop-down list directly to the right. One more step to the right and you can
change your view options.

Breaking Down the Projects

32_563489-bk04ch01.indd 48832_563489-bk04ch01.indd 488 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

 w
ith

V

isu
a

l S
tu

d
io

489

Figure 1-2:
So many
(project)
options!

In the upper-right corner is a search box, which isn’t as silly as it sounds
given the large number of templates now in Visual Studio. Just below the
search box is the description panel, where you can see a text description of
the selected project type.

At the bottom are three important text boxes:

 ✦ Name: The name of this project.

 ✦ Location: The path to the project file.

 ✦ Solution: The name of the solution. Solutions are collections of projects.

For more about solutions and projects, see the next section.

Understanding solutions and projects
Visual Studio project files, and the solutions that love them, are a constant
topic of interest to Microsoft developers. You work on one solution at a
time, with a number of projects within. How you organize your solutions and
their projects will make or break you when it comes time to find something.

You can think of solutions as folders that hold projects. They’re just folders
with special properties. In fact, note the check box shown earlier, in Figure 1-2.
It’s the one labeled Create Directory for Solution. That’s what I mean — the
solution is really an organizational “folder” for the projects.

Breaking Down the Projects

32_563489-bk04ch01.indd 48932_563489-bk04ch01.indd 489 3/19/10 8:12 PM3/19/10 8:12 PM

490

Projects are where you put the code files for your programs. They store all
kinds of things, like references to the .NET Framework, resources like graph-
ics or files, and what file should be used to start the project.

Solutions do the same thing for projects that projects do for files. They keep
the projects in a folder, and store certain properties. For instance, they store
which project should be started when debugging starts.

Neither the project nor the solutions have much to do with a finished pro-
gram. They are just simple organizational structures for Visual Studio. The
installation of finished program is determined by the setup project. The solu-
tion itself is just a logical storage mechanism for the source files.

In reality, the solution is more than a folder. It’s a file in a folder that is used
by Visual Studio to manage the developer experience. So, inside the folder
for the solution is a file describing the projects within, and then a bunch of
folders with the projects themselves.

There are files for the projects, too — files that describe the resources and
references for the project. They are all XML files that contain text references
to the values that you set using Visual Studio.

When developing in Visual Studio, you shouldn’t worry about that. In 14 years
of working in various versions of Visual Studio, I have had to look at a solution
or project file only a few times, and only in special situations. Knowing how
they work, however, will help you design your project structure.

The way I work is to look at what I want to be a finished program and consider
it a solution. Above that, I have a client folder. The result looks like Figure 1-3.

Figure 1-3:
My
preferred
project
structure.

Client

Solution (an application for a client)

Project (part of the application, like the user interface)

Project

Project

Solution

Project

Project

Client

Solution

Project

Project

Solution

Project

Breaking Down the Projects

32_563489-bk04ch01.indd 49032_563489-bk04ch01.indd 490 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

 w
ith

V

isu
a

l S
tu

d
io

491

This strategy keeps me much more organized and works with the Visual
Studio model. All I have to do is use the Browse button to change the loca-
tion of the project and solution. It also helps to make the main project of a
solution first (like the user interface) before the rest of the solution.

A brief survey of the available project categories
The following list describes the project types listed in the New Project dialog
box in Visual Studio. These kinds of finished programs are ones you can
make using the installed templates.

 ✦ Windows Projects: Windows projects in Visual C# are programs that
compile into a running program, like Microsoft Word, or Visual Studio
itself. The projects include

 • Windows Forms Application: The classic “program.” Compiles into
a program that runs with its own window and with a red close box
(with the little X in it) to exit. This is the original Windows Program
style, gradually being replaced by Windows Presentation Foundation.

 • Class Library: Makes a DLL when you’re all done. This is the basis of
the .NET Framework, and COM before that. It’s used to make blocks
of reusable code.

 • WPF Application: The new “program.” Also compiles into an EXE,
but uses a new user interface format called Windows Presentation
Foundation. I cover this in depth in Book V.

 • WPF Browser Application: Just like a WPF application but runs in
Internet Explorer. This is not a Silverlight application; it’s an XBAP
application, short for XML Browser Application. It has a smaller set
of available user interface toys but is still powerful.

 • Console application: These EXEs are designed to be run from a com-
mand prompt.

 • WPF Custom Control Library: This is a way to make actual controls
that appear in the toolbox that you can use in your WPF applications.

 • Empty Project: Just what it sounds like — a project that’s empty,
poetic. It’s used to build a program for which you don’t have a
template.

 • Windows Services: These programs appear in the Services control
panel. Didn’t know you could make those with .NET? You aren’t
alone. It’s a powerful feature that few people know about. Windows
Services are essentially terminate-and-stay-resident, or TSR, programs.
(Remember those from your DOS days? They stay in memory.) Check
out the article on the topic at csharpfordummies.net.

Breaking Down the Projects

32_563489-bk04ch01.indd 49132_563489-bk04ch01.indd 491 3/19/10 8:12 PM3/19/10 8:12 PM

492

 • WPF User Control Library: The finished product of this looser control
format doesn’t appear in the toolbox but is much easier to build
because it doesn’t require coding the whole thing in C#.

 • Windows Forms control library: Like the WPF control library but for
Windows Forms. It helps to build a control that you can use from the
toolbox.

 ✦ Web Projects: Web projects are programs that require a server to run
(well, usually) and are used from the browser. They render HTML to the
browser, rather than fancy formats like Silverlight. Projects include

 • ASP.NET Web Application: This is the centerpiece of the Web devel-
opment space. It creates an application that can be run on IIS, which
presents a Web page to the user.

 • ASP.NET Web Service Application: This is a class library for service-
oriented applications. If you’re going to distribute applications over
several machines, or provide broadly distributed applications, this
project type will provide a standards-based implementation for your
service offerings.

 • ASP.NET AJAX Server Control: Asynchronous JavaScript And XML is a
development style that provides a significant quantity of user inter-
actions within the Web browser. This allows you to build controls
that support this pattern.

 • WCF Service Application: This project belongs in the Communication
Foundation section. It’s like the ASP.NET Web Service Application,
except it provides a number of different standards-based implemen-
tations for your service offerings. ASP.NET Web services only pro-
vide one.

 • ASP.NET Server Control: This Web control would appear in the tool-
box, enabling you to drag the selected functionality right onto the
Web page in development.

 • ASP.NET AJAX Server Control Extender: This control extends the func-
tionality of another AJAX control. It targets a control and adds a feature.

 • Dynamic Data Linq to SQL Web Application: This is an ASP.NET Web
application that uses Linq to make a data-active Web page.

 • Dynamic Data Entities Web Application: This ASP.NET Web applica-
tion uses ADO.NET Data Entities to make a data-active Web page.

 ✦ Office Projects: Office projects are part of the Visual Studio Tools for
Office package, and use Office as a platform instead of Windows or a
Web browser. To find out more, look at the book I coauthored with Peter
Jaunovich, Office Development For Dummies. Office Projects include

 • Excel 2007 Workbook: Has a Microsoft Excel Workbook (a collection
of Excel worksheets) as an output.

Breaking Down the Projects

32_563489-bk04ch01.indd 49232_563489-bk04ch01.indd 492 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 1

G
e

ttin
g

 S
ta

rte
d

 w
ith

V

isu
a

l S
tu

d
io

493

 • Word 2007 Template: Has a Microsoft Word 2007 template (a .dot
file) as an output.

 • Project 2007 Add-in: Creates an add-in for Microsoft Project.

 • Visio 2007 Add-in: Creates an add-in for Microsoft Visio.

 • Word 2007 Add-in: Creates an add-in for Microsoft Word.

 • Excel 2007 Add-in: Creates an add-in for Microsoft Excel.

 • Outlook 2007 Add-in: Creates an add-in for Microsoft Outlook.

 • Word 2007 Document: Has a Microsoft Word 2007 document as an
output.

 • Excel 2007 Template: Has a Microsoft Excel 2007 template (an .xlt
file) as an output.

 • InfoPath 2007 Add-in: Creates an add-in for Microsoft Infopath.

 • PowerPoint 2007 Add-in: Creates an add-in for Microsoft PowerPoint.

 ✦ Communication Foundation Projects: Windows Communication
Foundation is Microsoft’s way to provide a mechanism for programs to
speak with one another:

 • Syndication Service Library: Creates a syndicated feed service (RSS)
that speaks either ATOM or RSS.

 • WCF Service Library: A class library for Communication Foundation.

 • Declarative Flowchart Service Library: Makes a set of services that use
a flowchart-style workflow to provide services.

 • Declarative Sequential Service library: Makes a set of services that use
a sequential-style workflow to provide services.

 ✦ Workflow Projects: Workflow Foundation is the standard library for cre-
ating workflows in Microsoft programs. You can set up standard approv-
als, movement of documents, and the like:

 • Activity Designer Library: This project assists you with creating a user
interface for creating activities.

 • Activity Library: If you aren’t in the mood to create user interfaces for
the creation of activities, you can create an activity.

 • Flowchart Workflow Console application: This project, and the
sequential project, provides a way to test WF workflows in a safe
environment.

 • Sequential Workflow Console Application: This is just like the flow-
chart WF project, but for sequential workflows.

Breaking Down the Projects

32_563489-bk04ch01.indd 49332_563489-bk04ch01.indd 493 3/19/10 8:12 PM3/19/10 8:12 PM

494

 ✦ Special Projects: Refers to anything that doesn’t fit into the preceding
bullets:

 • Test Project: If you’re working in Visual Studio, right-click a method,
and select Create Unit Test, you will get this kind of project. In the
case where you want to make a test project manually, this is your
project.

 • Silverlight: Admittedly, Microsoft Expression would be your best
choice for Silverlight. If you want to use Visual Studio, however, you
can use this project.

 • SQL Server Project: Again, I would rather use Microsoft SQL Server
Management Studio to make database projects. If you have to use
Visual Studio for some reason, this is your project.

 • Reports Application: You can include reports right in your Windows
or Web application. If you’re deploying directly to Reporting
Services, this project does the job.

 ✦ Other kinds of projects: It’s easy to make a project type for Visual
Studio, and there are a bunch of them out there. Some of them are pat-
terns, some of them are languages, and some of them are new project
outputs. Here are a few of my favorites:

 • ASP.NET MVC: Model View Controller (MVC), a project type that
allows for a separation of duties between development teams. This
project type allows you to make ASP.NET applications using MVC.
Search MSDN for more information.

 • MVC4WPF: Allows for Model View Controller development for
Windows Presentation Foundation. It has automation and templates
just like regular WPF applications. Check it out at www.mvc4wpf.com.

 • IRONRuby: An implementation of Ruby in Visual Studio.

 • IRONPython: An implementation of Python in Visual Studio.

Breaking Down the Projects

32_563489-bk04ch01.indd 49432_563489-bk04ch01.indd 494 3/19/10 8:12 PM3/19/10 8:12 PM

Chapter 2: Using the Interface

In This Chapter
✓ Using the Designer

✓ Exploring Solution Explorer

✓ Coding with Code View

✓ Using the Tools menu

Integrated Development Environments, or IDEs, are the Swiss army knife
of the programmer’s toolkit. IDEs provide a mechanism for storing pro-

gram code, organizing and building it, and looking at finished products with
design editors. IDEs make things happen, and in the bargain, cut hours from
a task.

Visual Studio is becoming truly globally recognized as the cream of the crop of
IDEs, even by Microsoft detractors. I know Python programmers who will rail
on Windows all day while surfing their Linux box and then switch to a Windows
partition to use Visual Studio to code with IRONPython in Visual Studio.

Visual Studio is impressive; it is massive. I wrote a book with David Deloveh
at the turn of the century (heh!) that attempted to cover all Visual Studio fea-
tures. It was 600 pages. The major complaint by readers: too short. Didn’t cover
enough. Visual Studio is twice as large now. It’s far too big for a single chapter.

So, rather than try to cover everything, I give you the chance to experience
only the features of Visual Studio that I use every day. I don’t want to try
and cover anything up, and I hope that you continue exploring the IDE and
discovering new stuff — don’t just stop with what I tell you about. This is
only a brief overview of some of the astonishing features in the tool.

Designing in the Designer
One thing that is integrated into an Integrated Development Environment
is a way to edit files graphically, sometimes called a Graphic Development
Environment or designer. Visual Studio allows you to graphically edit five
different types of code bases and provides adjunct tools for the further man-
agement of said code bases.

In short, the designer is the drag-and-drop element of the Visual Studio
world. It isn’t always the best way to develop a program, but it sure can help
sometimes.

33_563489-bk04ch02.indd 49533_563489-bk04ch02.indd 495 3/19/10 8:12 PM3/19/10 8:12 PM

496

For each major type of project that Visual Studio maintains, there is a
designer. The designer handles the What You See Is What You Get portion of
the experience and usually the behind-the-scenes markup code.

The problem is that because of the necessities of the software development
world we live in, different designers all work a little differently. A signifi-
cant difference exists between HTML and XAML, for example, so the Web
designer and the WPF designer don’t look or act the same.

Visual Studio gives you several visual designers to help develop applica-
tions, including these:

 ✦ Class Designer

 ✦ Data View

 ✦ Web Forms

 ✦ Windows Forms

 ✦ Windows Presentation Foundation

Windows Presentation Foundation (WPF)
Windows Presentation Foundation is covered in some depth in Book V, but
for now you should know that it is the future of Microsoft’s Windows devel-
opment experience. Book V talks all about WPF, so you can read more about
it there.

The core of the user interface design experience is a language called XAML,
which (unsurprisingly) is an XML-derived domain-specific markup language
for the creation of user interfaces. In the Designer, shown in Figure 2-1, the
design is in the top frame, and the underlying code is in the bottom frame.

You can click in the design in the designer and move things around, if you
want, or use the designer to select things and edit the properties in the
Properties panel (which I cover in the upcoming section “Paneling the
Studio”). Additionally, if you change something in the code area, you’ll see
the change in the design. It’s a good system.

There are a few small but significant features in the WPF designer that
should be pointed out. You can see them all in Figure 2-1.

Near the upper-left corner is a zoom bar. You can click at the bottom of it
and Zoom To Fit, or move the slider. This is invaluable for working on an
application that is bigger than your screen, or lightening things just so.

At the left side of the dividing line between the Design and XAML frames is a
little double-arrow icon. Clicking this icon changes whatever is in the bottom
frame to be in the top frame, and vice versa.

Designing in the Designer

33_563489-bk04ch02.indd 49633_563489-bk04ch02.indd 496 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

497

Figure 2-1:
The WPF
Designer.

On the right side of the same dividing line are three buttons that determine
the kind of split you have — a vertical split, a horizontal split (which is
default), or no split.

A few cool point-and-click adjustment tools are in the designer itself. Here’s
just one: Click in the red area of the table in the window in the designer. Put
your mouse right above where the “146” size designation appears.

See the little floating box that appears, with an asterisk, a hash, and the
word Auto? That’s just one of the many little helpers that you find in the
WPF designer. The hash sets the column width to a set number (as it is by
default). The asterisk sets it to a percentage of the table — useful for resiz-
ing. The word Auto sizes the column based on the contents.

These little features make changes only to the XAML in the frame below the
designer. If you click the word Auto in the floating table designer, you will
change this line of code:

<ColumnDefinition Width=”146” />

to this line of code in the XAML frame:

<ColumnDefinition Width=”Auto” />

Designing in the Designer

33_563489-bk04ch02.indd 49733_563489-bk04ch02.indd 497 3/19/10 8:12 PM3/19/10 8:12 PM

498

Some people like the code. Some people like the designer. Some people (like
me) prefer a strange mixture of the two. You determine how you want to use
the tools.

Windows Forms
The main difference between the Windows Forms designer and the WPF
designer is the lack of a code panel in Windows Forms. Although there is
code (of sorts) backing up Windows Forms, you don’t get to edit it. So there.

The topic of Windows Forms isn’t covered in this book. Though it’s still an
active development platform, I had to make the tough call to cover WPF
instead. It performs the same programming duties as Windows Forms but is
the newer technology. The Windows Forms designer is shown in Figure 2-2.

In truth, there is little to say about the Windows Forms designer itself. The
individual controls have some nice designer features, but the designer itself
doesn’t do much.

It should be said, though, that I don’t do much with Windows Forms in this
book. First, this isn’t a Windows programming book; it is a C# book. Second,
Windows Forms is on its way out. WPF is the future of Windows program-
ming. Window Forms is just there for backward compatibility.

Figure 2-2:
The
Windows
Forms
designer.

Designing in the Designer

33_563489-bk04ch02.indd 49833_563489-bk04ch02.indd 498 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

499

Web Forms
Web programming resembles WPF programming more than it resembles
Windows Forms programming, but it’s run from a Web server and viewed
in a browser. (Book VI is all about Web forms.) Because the designer has a
back-end code element, you can see a split view, as shown in Figure 2-3.

Getting around in the HTML designer is easy. I want to point out two fea-
tures in particular about the HTML designer. These features can be found in
a menu strip along the bottom of the designer view:

 ✦ The view change buttons, which read Source, Design, and Split: Source
shows only the HTML code. Design shows only the visual designer. Split,
unsurprisingly, shows both in two panels, just like the WPF designer.

 Interestingly, the two frames do not stay in sync. If you change the
HTML, the design frame shows a message that says “Design view is
out of sync with Source view. Click here to synchronize views.” Here’s
hoping they fix that before they release to manufacturing.

 ✦ The small document tree next to the view change buttons: This shows
you where in the hierarchal tree your cursor is and its relationship to
the rest of the HTML document.

Figure 2-3:
Back
to code
with Web
projects.

Designing in the Designer

33_563489-bk04ch02.indd 49933_563489-bk04ch02.indd 499 3/19/10 8:12 PM3/19/10 8:12 PM

500

Class Designer
You can make a Class Designer from any project, but I used a Class Library
project for my next example, shown in Figure 2-4:

Figure 2-4:
My garden,
in digital
form.

The class designer gives you a visual interface into a class library. You can
easily see the inheritance, and the members are visible and editable. Here is
the class library I used for Figure 2-4:

namespace MyGarden
{
 public class Flower
 {
 public string Color;
 }
 public class Vegetable
 {
 public bool Yummy;
 }
 public class Daisy : Flower
 {
 public double Height;
 }
 public class Sunflower : Flower
 {
 public bool Harvested;
 }
 public class Tomato: Vegetable
 {

Designing in the Designer

33_563489-bk04ch02.indd 50033_563489-bk04ch02.indd 500 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

501

 public double StakeHeight;
 }
 public class Carrot : Vegetable
 {
 public double Depth;
 }
}

To create a class library like this, follow these steps:

 1. Create a new Class Library project.

 2. Replace the default code with a listing of your own.

 You can use the one in this section, if you want.

 3. Build the class library by pressing Ctrl + Shift + B.

 4. Right-click on the project and select View Class Diagram.

 Visual Studio creates a new file called ClassDiagram1.cd. This is your
Class Diagram file.

 5. Save your project.

You can add methods to your new class as well. Click on the Methods of the
Flower class and add a Water method by typing Water under name Void
under type, and Public under modifier. If you change back to the library view,
you’ll find that there has been a method added to the code under that class.

To aid in documentation of projects, you can right-click anywhere in the
designer pane and select Export This Diagram as an Image, and then save it
off as a .PNG file. I find this immensely useful when I am creating documen-
tation for a project. It is a lot more useful than Visio because its integrated
with your code, included in Visual Studio, and it’s free!

Data View
Data View is usually used with the Server Explorer and is part of an in-studio
representation of SQL Management Studio. You can view and edit data tables
in the SQL Server (and other) database management system right inside
Visual Studio. An example is shown in Figure 2-5.

There is a remarkable amount of power here, and there just isn’t enough
space to cover it all. Again, this isn’t a database book, so I recommend read-
ing over the MSDN entries for the Data Connections feature of SQL Explorer
for more details.

Designing in the Designer

33_563489-bk04ch02.indd 50133_563489-bk04ch02.indd 501 3/19/10 8:12 PM3/19/10 8:12 PM

502

Figure 2-5:
When you
use Data
View, who
needs SQL
Manage-
ment
Studio?

Paneling the Studio
Paneling: That’s just so very seventies.

To be as flexible as it needs to, Visual Studio has a large collection of modu-
lar windows that are called panels. These panels do everything that isn’t
involved with directly editing a design or code. They manage files, manage
objects, show feedback, show properties, all sorts of stuff.

Visual Studio has something like 23 panels. I don’t have room to discuss
them all here, so I cover only 5 — the ones you use every day. The rest you
can find on the View menu.

Solution Explorer
Solution Explorer (see Figure 2-6) manages solutions, projects, and files.
Despite my claim earlier that solutions are just a matter of files and folders,
it is a somewhat more complex operation than it seems at first blush.

Paneling the Studio

33_563489-bk04ch02.indd 50233_563489-bk04ch02.indd 502 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

503

Figure 2-6:
The explorer
of solutions.

Solutions
For solutions themselves, Solution Explorer provides a number of important
tools, including the following:

 ✦ Configuration Manager provides a useful interface for what is basically
a settings file in the solution itself. You can specify whether Release or
Debug compilation is desired for your build here, if you want all debug-
ging information stored with your file. You can tell the compiler whether
you want the software built for 32-bit systems or 64-bit systems too.

 ✦ Project Dependencies shows how your projects are interrelated and
describes the way in which your projects depend on each other. It has
a tab for the build order, too. When you are getting weird “referenced
member not available in object” errors, check here first.

 ✦ Property Pages determine which project should start on debug and
where source files are kept, among other things.

Additionally, Solution Explorer is a repository for projects. Each appears in a
tree view.

Projects
Projects are the individual compiled units and are divided by type. You can
find more about projects in Chapter 1 of this minibook.

Solution Explorer brings to projects the capability to add and remove files,
make references and services, set up a class diagram, open the representa-
tive Windows Explorer folder, and set properties.

Paneling the Studio

33_563489-bk04ch02.indd 50333_563489-bk04ch02.indd 503 3/19/10 8:12 PM3/19/10 8:12 PM

504

All this information is saved in the Project file. The project file is just an XML
file. There are a few key characteristics of the file:

 ✦ It includes a PropertyGroup for each build type. This is because you can
set different properties for each type of executable.

 ✦ It contains an ItemGroup that has all the references in it, including
required Framework versions, and another set of ItemGroups that have
the project load details.

 ✦ The file includes the import of the project general details and the Target
collections. You can actually edit the file manually to make a custom
build environment.

You likely won’t modify your Project file, but I think it’s important that you
know it can be done, and that Microsoft has inline comments. They expect
the file to get hacked.

Files
Files are a lot less exciting. They are pretty much exactly what you expect.
They host the source code of the program being developed. Nothing hidden
here.

Solution Explorer manages the files in the project basically like Windows
Explorer does. Solution Explorer lists the files and folders and allows them
to be opened in the designer or the code editor.

Solution Explorer also knows what files to show. If the file isn’t in the proj-
ect, but happens to be sitting in the folder for the project, it won’t show in
the Explorer. If you can’t find a file, try clicking the Show All Files button in
the gray button bar at the top of the Explorer. The hidden files will show up
grayed out, but still won’t compile into the project.

Properties
The Properties panel (see Figure 2-7) is a simple, flexible tool that allows
you to update those endless lists of details about everything in development
projects. The panel is basically a window with a two-column-wide datagrid. It
reads properties in key/value pairs and allows for easy view and edit.

When I say it shows endless lists of details about everything, I mean every-
thing. If you click on nearly anything in Visual Studio, press F4 to bring up
the Property Panel (refer to Figure 2-7), you will get properties. Try it with
these fun selections:

 ✦ Files in Solution Explorer

 ✦ Database connections

 ✦ A textbox in a WPF project

Paneling the Studio

33_563489-bk04ch02.indd 50433_563489-bk04ch02.indd 504 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

505

 ✦ An XML tree node

 ✦ An item in Class Explorer

Figure 2-7:
Paneling
your
property.

If there is any meta-data about something, the properties are in the Property
Panel. It’s a great tool.

The Toolbox
One of the great misunderstood tools is the Toolbox. (See Figure 2-8.) On
the surface it seems so simple. The design-time controls for a given file type
are available to drag and drop. Still, there is one important thing you need to
remember about the Toolbox. Wait, I’ll get out my Remember icon.

 The Toolbox displays only controls that are appropriate to the file in focus.

So, if you are running a Windows Form in the designer, you won’t see a data-
base table available to drop. Trust me; if you expect to see a certain control,
and it isn’t there, the Toolbox probably isn’t messed up. If there isn’t a file
open, the Toolbox is empty. That’s by design.

I can’t tell you how many times I have been expecting to see something in
the Toolbox only to find it blank. Then I spend ten minutes tracking down
the problem, only to realize that the problem is mine — I didn’t have a file
open. I once actually called Microsoft because I couldn’t find a maskedtext-
box for my Web Forms project.

Paneling the Studio

33_563489-bk04ch02.indd 50533_563489-bk04ch02.indd 505 3/19/10 8:12 PM3/19/10 8:12 PM

506

Figure 2-8:
The
Toolbox,
with tools.

There is no maskedtextbox for Web Forms projects.

So keep it in mind that the Toolbox is context-sensitive. It works only when
it wants to.

There is one other interesting property of the Toolbox: It can be used to
store text clippings, which can be useful for demonstrations and presenta-
tions. It is also handy for storing often-used pieces of code, but snippets
(covered in Chapter 3) are even better. To do so, follow these steps:

 1. Open a code file.

 Anything will do, .cs file, .xaml file, whatever.

 2. Highlight a piece of code.

 3. Make sure the Toolbox is open. Then drag the selected code to the
General section of the Textbox.

 The copied code becomes a tool.

 4. Open up another blank code file.

 5. Drag the new tool into the code.

 The copied code now appears in the code file.

Server Explorer
 Server Explorer (see Figure 2-9) isn’t in every version of Visual Studio. At the

time this book was printed, it was included only in the Professional Edition
and later.

Paneling the Studio

33_563489-bk04ch02.indd 50633_563489-bk04ch02.indd 506 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

507

Server Explorer enables developers to access important services on a
remote machine. These could be anything from SharePoint to MSMQ but
generally include two types of services:

 ✦ Managed services

 ✦ Database connections

Managed services
Managed services are things like Event Viewer and Microsoft Message
Queue: things that you would need to look at to test parts of your applica-
tion. Internet Information Services, for example, is a managed service that
would show up in the list.

To get a server into Server Explorer, follow these steps:

 1. Right-click on Servers.

 2. Click the Add Server button.

 3. Type the machine name or IP number of the server you want to add.

 4. If you want to use different credentials than you used to log in (for a
different account, for instance), click Connect Using a Different User
Name and enter the new credentials.

 5. Click OK.

Play around with the services you see. There are a lot of features in this
panel that I don’t have space to get into here.

Data connections
Above the Services in Figure 2-9 are the data connections. These are data
connections that have been made on previous projects, which Visual Studio
keeps around in case you need them for any other projects. Although keep-
ing these connections around seems like a bit of a security risk, it sure as
heck is convenient.

The goal is to reduce the dependency on SQL Management Console (the old
method for managing the database for developers), and it does a darn good
job. The key issue is access to the data model (table names and columns)
and stored procedures; developing a program without access to the data-
base is tough.

Paneling the Studio

33_563489-bk04ch02.indd 50733_563489-bk04ch02.indd 507 3/19/10 8:12 PM3/19/10 8:12 PM

508

Figure 2-9:
Server
Explorer.

In a new connection, these database objects are given default folders:

 ✦ Database diagrams

 ✦ Tables

 ✦ Views

 ✦ Stored Procedures

 ✦ Functions

 ✦ Types

 ✦ Synonyms

 ✦ Assemblies

The key thing I want you to try is opening a Stored Procedure (you can do
this by double-clicking it in the Data Sources panel). When you do so, you
can easily edit SQL code, with indenting and colorization, right in Visual
Studio. Use this. It’s really neat.

Class View
The last of the five main panels is Class View. As I discuss throughout Books
I and II, everything in the .NET Framework is an object. The classes that
make up the framework — all derivatives of Object — are viewable in a tree
view.

The Class Viewer is the home for that tree view. (See Figure 2-10.)

Paneling the Studio

33_563489-bk04ch02.indd 50833_563489-bk04ch02.indd 508 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

509

Figure 2-10:
A viewer
with Class.

From the Class View, you can look at all the members of a class and access
the inline documentation, which gives you an overview of the framework and
custom classes that make up your project.

Coding in Code View
Really, what else would you do in Code View? Nothing, that’s what!

There is a lot to the Code Viewer in Visual Studio. Fact is, this is where you
will spend 75 percent of your time, and boy, will you be glad that it works
well.

Code Viewer has two primary tools:

 ✦ The Code Viewer itself: The first is the screen on which you edit the
code — the Code Viewer.

 ✦ Auxiliary windows: The second are the little auxiliary windows that do
a lot of useful things that don’t directly relate to the code.

Exercising the Code Viewer
The Code Viewer is where you edit code. Doesn’t matter what type of code,
all of it is edited here. (See Figure 2-11.)

Coding in Code View

33_563489-bk04ch02.indd 50933_563489-bk04ch02.indd 509 3/19/10 8:12 PM3/19/10 8:12 PM

510

Figure 2-11:
Viewing
the Code
Viewer.

It is a smart tool, however. If you are in XML, it works like an XML editor. In
C++, it helps with the tabbing.

You can get to a code file in the Code Viewer a few ways. The most common
way is to double-click on a code-driven file in Solution Explorer, and it will
open in Code Viewer.

If you are viewing something in the designer, you can get to the code-behind
related to the file in question by any of three methods:

 ✦ Click the View Code button in Solution Explorer.

 ✦ Right-click on the design surface and select View Code.

 ✦ Double-click on a control in the designer to generate an event for that
control, and be moved to Code View.

You’ll find yourself using all three over time. Note that you can get directly
to the code-behind files by clicking the little triangle next to a designer file
and then double-clicking the code files nested within.

Autocompleting with IntelliSense
IntelliSense is Microsoft’s autocompletion feature, and it’s a prominent part
of the Code Viewer. You find IntelliSense no matter whether you want to. In
Code View, click inside a class and press Ctrl+spacebar. Everything you are
allowed to type there shows up in a big list.

Coding in Code View

33_563489-bk04ch02.indd 51033_563489-bk04ch02.indd 510 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

511

The nice thing is, it is context-sensitive. Type Console and press the dot
(.). All available members of Console appear. IntelliSense keeps you honest
and prevents having to remember the two-million-odd members of the .NET
Framework on a day-by-day basis.

IntelliSense helps with method signatures, too. Continue the line you
started earlier by adding WriteLine — in other words, type (Console.
WriteLine(— then check out the IntelliSense. It will tell you all the over-
loads for the member in question. Use the up and down arrows to move
between them. It’s slick.

Outlining
Visual Studio will auto-outline your code for you. Notice the little box with a
minus sign (–) next to every namespace, class, and method? (See Figure 2-12.)
Those are close-up sections of the code for readability. Doesn’t seem like
much now, but when you have 2,200 lines of code in there, you will be glad.

Figure 2-12:
Teeny little
outline
marks.

Coding in Code View

33_563489-bk04ch02.indd 51133_563489-bk04ch02.indd 511 3/19/10 8:12 PM3/19/10 8:12 PM

512

You can create your own outlining, too. Preceding a section that you want
to outline, put #region on a new line. After that section, put #endregion.
This newly defined section — regardless of whether it’s at an existing outline
point — will get a new outline mark.

If there is a comment added after a region statement, it will show in the col-
lapsed outline — as you can see in Figure 2-12.

Exploring the auxiliary windows
A number of windows affect text input and output in order to solve certain
problems. As a group, they don’t really have a name, so I call them auxiliary
windows. I cover four of them here.

 ✦ The Output window: I use the Output window regularly for two things:

 • Build logging: Every time you build, the Output window tracks all of
the linking and compiling that goes on under the sheets and shows
any errors that might come up.

 By default, the Output window shows when you build. You can set
it to not show the Visual Studio Options dialog box, after choosing
General➪Projects and Solutions.

 Errors listed in the Output windows can be used to navigate the
code. The buttons in the Output box assist with getting around the
code based on the messages in the window.

 • Debug statements: The second use of the Output window is Standard
Out (for all you C++ people). If you use a Debug.Write statement in
your code, the Output window is where it will go. Additionally, if you
use Console.Write, but are running a Windows Forms application,
for instance, the text will go to the Output window.

 ✦ The Immediate window: This window does exactly what one would
expect it to do — it does something immediately. In debug mode, you
can use the Immediate window to send commands to the program as it
is running, to change the state, or evaluate operations. Try this to see
what I mean:

 1. Open a Windows Forms project.

 The one in the sample code for this chapter on this book’s compan-
ion Web site is fine — you just need a default project template.

 2. Put a breakpoint on form.load. Do this by clicking in the grey bar
running down the side of Code View.

 A red dot should appear.

Coding in Code View

33_563489-bk04ch02.indd 51233_563489-bk04ch02.indd 512 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

513

 3. Debug the program.

 The program should stop on the load method.

 4. Open the Immediate window.

 You should be able to do this in the Debug window, or by pressing
Ctrl+D, I.

 5. Type ?this.

 See the IntelliSense menu?

 6. After the dot, type WindowPosition.

 The question mark in Step 5 means Print. This command prints the
window position to the screen.

 The response should be windowDefaultLocation.

 That’s what the Immediate window is for. You can do more than print
values, too. You can change variable values and modify the execution of
your program. It is a powerful part of your debugging toolbox.

 ✦ The Breakpoints window: Wait! Don’t change anything in Visual Studio
after trying the last example. Press Ctrl+D, B. The Breakpoints window
appears, and the breakpoint you just added will be in it. (See Figure 2-13.)

Figure 2-13:
The
Breakpoints
window,
which isn’t
called the
Bookmark
window.

 What’s cool here is that you can right-click on any breakpoint and com-
pletely alter the properties of that breakpoint. Try it — the important
options are described in this list:

 • Location: Specifies the location of the line of code that should host
the breakpoint. This is convenient if you have filters set and you find
you need to shift a line back.

 • Condition: You can teach the breakpoint to stop at this line only if a
certain variable is a specific value.

 • Hit Count: Stop here only after the xth time it is hit.

Coding in Code View

33_563489-bk04ch02.indd 51333_563489-bk04ch02.indd 513 3/19/10 8:12 PM3/19/10 8:12 PM

514

 • Filter: It’s similar to Condition, except that you can use system values
such as MachineName, ProcessName, ProcessId, ThreadName,
and ThreadId. It’s useful for multiprocessor development, among
other things.

 • WhenHit: You can do more than just stop on a breakpoint — instead,
you can do something like print a value to the Output window, or
even run a test script.

 ✦ The Tasks window: While coding, have you ever wanted to tell the
developer working after you that something still needs to be done?
Maybe you make a comment, maybe call it //TODO:.

 Well, if you do that, it appears in a task in the Tasks window. Isn’t that
just cool?

Using the Tools of the Trade
There are always a few things in any overview chapter that just don’t fit in
any category. In this one, there are a double handful of tools that I want to at
least mention.

The Tools menu
I am sure you are shocked to find that the Tools menu is a great place to find
tools that don’t fit anywhere else, including the following:

 ✦ Attach to Process: For debugging, this tool enables you to connect to
another running program on a machine and debug your code in that
service.

 ✦ Connect to Database: See the “Server Explorer” section, earlier in this
chapter.

 ✦ Connect to Server: Discussed in the “Server Explorer” section.

 ✦ Code Snippets Manager: I chat about snippets in Chapter 3.

 ✦ Choose Toolbox Items: This tool helps you manage the items in the
Toolbox.

 ✦ Add-in Manager: Manages Visual Studio Add-ins. Add, remove, enable,
and disable.

 ✦ Macros: You can group these commands or instructions as a single
command to accomplish a task automatically. They’re generally used to
automate repetitive actions. Macros are covered in Chapter 4.

 ✦ Create GUID: Funny that this is here. This tool literally creates a
Globally Unique ID (GUID), one of those 25 character codes that are sup-
posed to be unique over the next 2,500 years or something. Make a new
one and sell it on eBay.

Using the Tools of the Trade

33_563489-bk04ch02.indd 51433_563489-bk04ch02.indd 514 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 2

U
sin

g
 th

e
 In

te
rfa

c
e

515

 ✦ Dotfuscator Community Edition: This is a free code obfuscator for .NET.

 ✦ WCF Service Configuration Manager: Graphic interface for the WCF
config files. Services are covered in Book VI.

 ✦ External Tools: This tool enables you to separate .EXE files that add
functionality to Visual Studio.

 ✦ Import and Export Settings: This tools helps you move projects
between development tools.

 ✦ Customize: This tool enables you to alter the look and feel of Visual
Studio.

 ✦ Options: With these, you can alter the way Visual Studio works. Options
are covered in some depth in Chapter 3.

Building and Debugging
I’m sure by now you have gotten the basics of building and debugging. A few
other options in the Build and Debug menus deserve at least a small explana-
tion, including the following:

 ✦ Rebuild: This checks all the references throughout the project before
compiling the project. It’s useful if your development computer has
changed configuration since your last build.

 ✦ Clean: This actually deletes not only the components created as part of
your project, but also all DLLs that were copied into your project by ref-
erences that were set to that mode.

 ✦ Batch Build: This enables you to build release and debug versions (for
instance), or 32 and 64 bit (as another example) at the same time.

 ✦ Configuration Manager: Use this to set the order and mode in which
you build your projects.

Refactor menu
Refactoring is the practice of reorganizing code that might have become
scattered during development or debugging. The Refactoring menu in Visual
Studio provides a few tools that help with refactoring in C#, including these:

 ✦ Rename: Rename is simple — anytime you rename a symbol (a named
object such as a variable, a method, a property, or an enum, for exam-
ple), you can change the name throughout the project. After you change
the name of something, you should see a smart tag appear near the end
of the symbol name that has Rename as an option.

 Rename changes all other symbols with that same name in the project
(not the solution). Rename with Preview shows you each change before
it is performed.

Using the Tools of the Trade

33_563489-bk04ch02.indd 51533_563489-bk04ch02.indd 515 3/19/10 8:12 PM3/19/10 8:12 PM

516

 ✦ Extract Method: Perhaps you’ve written a block of code and then
thought “oh boy, I am going to need this over there.” If so, Extract
Method is for you. It will take a highlighted block of code, move it to a
method, extract all the variables, make them parameters, and then you’ll
be ready for code reuse.

 ✦ Encapsulate Field: In a similar vein as extracting a method, Encapsulate
Field takes a private variable and makes it a public field. For instance,
take a line of code like private string _theValue; highlight it in code
designer and select Encapsulate Field from the Refactor menu.

 Visual Studio asks you to name the new property and create a new prop-
erty based on your selections:

 public string TheValue
 {
 get { return _theValue; }
 set { _theValue = value; }
 }

 ✦ Extract Interface: Extract Interface takes a set of method signatures
and makes an interface for you. Interfaces are vital to contract driven
development.

 If you are working a project that suddenly has more than one program-
mer (as in, they got you help!), extracting interfaces to common classes
in your project decreases barriers to the new folks’ entry pattern.

 ✦ Remove Parameters: This is the safe way to get excess parameters out
of methods. In all honesty, I use this refactoring tool the least.

 ✦ Reorder Parameters: Being able to change the order of parameters is
significantly handier. Sometimes, you just need to switch the order of
two parameters. If you do this, all the places where you call that method
must have the parameter order changed, or they will send in the wrong
stuff.

 This simple tool enables you to change the parameter order and then
finds all places that call the method in question, and switch the param-
eter order sent in.

Using the Tools of the Trade

33_563489-bk04ch02.indd 51633_563489-bk04ch02.indd 516 3/19/10 8:12 PM3/19/10 8:12 PM

Chapter 3: Customizing
Visual Studio

In This Chapter
✓ Setting environment options

✓ Changing menus and commands

✓ Making and accessing snippets

✓ Hacking project templates

You have seen how to install Visual Studio and make a new project. You
have seen the bits that the user interface gives you. The fun’s over.

Now you get to make it work for you.

Then again, maybe the fun is just starting.

Visual Studio offers a dizzying array of options for customization. Used poorly,
these options have the real potential to make the lives of you and your cowork-
ers miserable. Used correctly, they have the potential to double your velocity.

I am after the doubling part.

At its most basic, customization involves setting options to better match
your environment, style, and work patterns. These options include every-
thing from your code visibility to source control. The idea is to configure
Visual Studio’s options to your exact specifications.

The next step is to improve the usability of the application to match your
day-to-day operations. One of the best overall ways to accomplish this is
to change the button tape and the menus to make what you use every day
more available. Another great way to do this is to manage or create snippets
that automate generation of code.

Finally, you take a short deep dive (just hold your breath, you’ll be fine) into
the Project and File templates of Visual Studio. Did you know that when you
create a new XAML file (for example) or C# Class file that the contents of
that file are controlled by a template and are editable? No? Well, do I have a
surprise for you!

All these things put together amount to a rather flexible Integrated
Development Environment (IDE). Although the flexibility is nice, the goal is

34_563489-bk04ch03.indd 51734_563489-bk04ch03.indd 517 3/19/10 8:12 PM3/19/10 8:12 PM

518

to set a configuration that matches your style. I can’t tell you what that con-
figuration is. All I can do is tell you what the software can do and give you
the tools to make the changes.

I learned a new phrase yesterday at DevLink: convention over configuration.
You build software the way most people use it, rather than provide 10,000
options to change the way it works. I think Visual Studio gives you some of
each, but you have to push the balance to the convention side yourself.

Setting Options
The Options dialog box can be found by choosing the Tools➪Options menu
item, and looks a whole lot like Figure 3-1. It is generally designed to set
Boolean type options like Show This or Provide That or to change paths to
resources where Visual Studio will store certain files.

Figure 3-1:
The default
Options
screen.

Those details are all well and good, but my goal is to introduce the other
things that the options provide. I start with adjustments to your environ-
ment and then describe the remarkable language options, and then I explore
some neat stuff.

Environment
The Environment section is where you begin in the Options dialog box.
Sections here include the font details of code-editing screens, key mappings,
and the RSS feed settings for the Start page.

The Font and Colors settings will probably be of interest only when you need
them for a presentation. Sixteen points is the size of choice for most speak-
ers, including myself. There are a number of “code friendly” fonts out there,
and this is where you select them.

Setting Options

34_563489-bk04ch03.indd 51834_563489-bk04ch03.indd 518 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

519

Defining the Start Page
The start page is the first page you see when you start Visual Studio. It con-
sumes an RSS feed from Microsoft with news related to the kind of develop-
ment you do, as you told Visual Studio when you first installed the software.
Often, people change roles and the RSS feed no longer applies to their work.
This is a problem.

 The solution is the Start Page News Channel field. You can pick any RSS feed
you are interested in using for your Start Page content. If you like Microsoft
Developer content, you can choose Scott Hanselman’s feed for your Start
Page. If you are interested in security, you can use Exotic Liability’s blog. If
you like silliness, you can use the feed at www.sempf.net. Alternatively,
you can set it to show nothing. You’re in charge.

Keyboard commands
The most useful settings in the Options dialog box are the Keyboard set-
tings. This is where you make Visual Studio feel like Emacs through the use
of keyboard mappings.

Keyboard mappings are key combinations you set to run commands you
usually run by clicking your mouse. For example, one commonly used map-
ping is Ctrl+C, which copies material in the same way that clicking the Edit
menu and then clicking Copy does. Many developers feel that using key-
board mapped commands makes the development experience faster and
easier.

The keyboard settings essentially enable you to set keyboard commands for any
menu selection in Visual Studio. The Apply the Following Additional Keyboard
Mapping Scheme drop-down list enables the key mappings to be different, if you
happen to like the mappings of other development environments.

Language
By language, I don’t mean the Internationalization setting that enables you to
change the display language of Visual Studio if you have additional language
packs installed (although that is neat). I am talking about the programming
languages you work in with Visual Studio. The Languages option is where
you can provide settings for each of these programming languages.

The Text Editor options change the way the Code Editor behaves. All the
languages that Visual Studio supports out of the box appear in the tree view
under the main heading and allow you to alter general options, tabbing,
formatting, sometimes advanced options, and miscellaneous features of the
text editor.

For instance, look at C#. To open the C# view, click where it says C# with the
little triangle in the Options tree view (that’s a WPF tree view — you’ll get

Setting Options

34_563489-bk04ch03.indd 51934_563489-bk04ch03.indd 519 3/19/10 8:12 PM3/19/10 8:12 PM

520

used to it). The first view in the Options panel is the General view. Here you
can change the default options for statement completion, various behavior
settings, and what the Code Editor should display aside from the code.

After you click the little triangle next to the C# node, you see the General
panel (which is the default view) and then the other panels you can use:

 ✦ Tabs: This section is for people who are obsessive about the tabbing of
their source code. The Tabs panel determines how many spaces make
up a tab, and whether Visual Studio should insert them automatically.

 ✦ Advanced: This section should probably be called Miscellaneous.
Everything that doesn’t fit into other categories is here. In this section,
handling comments, interface implementation, and refactoring details
all have a checkbox that basically says “If you don’t like it when Visual
Studio does this, click here.”

 ✦ Formatting: Formatting in C# is very in-depth. Generally, C# coders are a
little persnickety about the look of their code. Visual Studio does a lot of
work to help make your code look the way you want it, but you have to
tell it what to do. Options for formatting include:

 • Automatic formatting

 • Indentation

 • Newlines

 • Spacing

 • Wrapping

 ✦ IntelliSense: The most interesting field is the list of characters that
“commit” an IntelliSense selection. By typing one of these characters,
you select the highlighted IntelliSense member. Usually, I just use space
or dot (.) but there are many more options, and I had no idea!

Neat stuff
I provide a canonical list of the options that I always forget are in here, but
that I have to use frequently. Right now, they probably won’t make a lot of
sense, but you may remember them when you need them later.

 ✦ To implement a new source control provider, first install the pack-
age (for instance, Turtle for CodePlex’s SVN implementation, or Team
System) and then go to Source Control in Options to pick the one you
want to use. Just one at a time!

 ✦ Many people recommend that you store your projects in a short file
path, like c:\Projects. You can change where you store projects in
the Projects and Solutions section in the options dialog box.

Setting Options

34_563489-bk04ch03.indd 52034_563489-bk04ch03.indd 520 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

521

 ✦ Specify which browser you are coding your HTML for in the Text Editor
/ HTML / Validation section of the Options dialog box.

 ✦ Set up automatic Windows Forms data binding in the Designer for
custom controls (that you have bought or built) in the Windows Forms
Designer / Data UI Customization section of the Options dialog box.

 ✦ If you are one of those crazy people who think table names should not
be pluralized, you can turn off that behavior in the Data Designer in the
Database Tools / O/R Designer section of the Options dialog box.

 ✦ You can teach Visual Studio to open a file with a given extension in a
certain file editor using the Text Editor / File Extension section of the
Options panel.

Using Snippets
Snippets are little bits of pre-coded logic that are meant to help you remem-
ber how to perform some standard code functions in various languages. In
VB, for instance, you might not remember how to read from a file, so there
is a snippet for that. In C#, you may want implement a property getter and
setter, so you use a shortcut to get the snippet in place.

Using snippets
You can use a snippet in a few different ways, most of which are somewhat
slow. The fastest way is through the use of key commands. To use a snippet
this way, type its shortcut code and press Tab twice. For instance, try these
steps:

 1. Open Visual Studio and start a new Class Library project in C#.

 2. In the new class that is created, place the cursor inside the curly
braces.

 3. Type prop.

 4. Press Tab twice. Your results should look like the ones shown in
Figure 3-2.

 See the template that is put into place? Int is highlighted. You can type
over it.

 5. Type string and press Tab twice. Now MyProperty is highlighted.

 6. Type FirstName and press Enter twice.

 Now you have a finished automatically implemented property. It should
look like this:

public string FirstName {get; set; }

Using Snippets

34_563489-bk04ch03.indd 52134_563489-bk04ch03.indd 521 3/19/10 8:12 PM3/19/10 8:12 PM

522

Figure 3-2:
The
automatically
generated
property
snippet.

You can get to a snippet in other ways, including this one:

 1. Right-click at the insertion point.

 You have the option to select Insert Snippet.

 2. Click Insert Snippet.

 The full list of all the installed snippets appears at the insertion point.

 3. Click an item in the list, and the contents of that folder appear.

 Continue selecting categories (the menu extends to the right) until you
have selected the snippet you were looking for.

 4. Double-click the snippet to insert it.

After they’re inserted, populating the variables works just like the shortcut
version.

Using surround snippets
Surround snippets are very cool. Have you ever written a few lines of code,
and then realized that you should probably try and catch errors? You have
to add a little code at the beginning, and then add a little code at the end,
and then make sure the middle is in the right place. It’s a pain.

Using Snippets

34_563489-bk04ch03.indd 52234_563489-bk04ch03.indd 522 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

523

Surround snippets are designed to solve that problem. They are normal
snippets with a bit of logic in them that says “This part goes above the selec-
tion, and this part goes below the selection.” If you want to handle errors for
a section, you highlight that section, and the snippet will put the try before
the selection and the catch at the end. To use a surround snippet, follow
these steps:

 1. Highlight some code in the Code Designer.

 2. Press Ctrl+K,S to open the snippets menu.

 3. Select the appropriate snippet from the menu. You can choose the
snippet that is right for whatever you are coding. Try prop for a prop-
erty getter and setter.

 4. Set the various variables that Visual Studio prompts you.

The snippet will appear appropriately above and below the selected text.
For instance, if I had this chunk of code:

for (int loopcounter = 1; loopcounter <= 10; loopcounter++)
{
 Console.WriteLine(string.Format(“The number is {0}.”,

loopcounter));
}

and I felt that I needed a try ... catch block around it, I could highlight
that code and do the preceding steps. If I select try from the menu, I will get
this:

try
{
 for (int loopcounter = 1; loopcounter <= 10;

loopcounter++)
 {
 Console.WriteLine(string.Format(“The number is {0}.”,

loopcounter));
 }
}
catch (Exception)
{
 throw;
}

Exception is highlighted in green; I can tab to that and add the exception
type I am expecting. It’s a slick system.

Making snippets
Snippets are XML files that follow a format understood by Visual Studio.
They include a Header and Snippet element. The Header includes a title,

Using Snippets

34_563489-bk04ch03.indd 52334_563489-bk04ch03.indd 523 3/19/10 8:12 PM3/19/10 8:12 PM

524

which is how the snippet is referred. The Snippet element, where all the
work is done, includes a Code element, which has the code to be inserted.

The best way to make a new snippet is to modify an existing one. Snippets
can be found in your Visual Studio install directory, which should be C:\
Program Files (x86)\Microsoft Visual Studio 10.0\VC#\
Snippets\1033 if you are on a 64-bit operating system (otherwise you can
drop the x86).

In the folder referenced in the preceding paragraph, let’s look at a simple
example: cw.snippet is a Console.Writeline command. Right-click the
file to open it. Here’s the code:

<?xml version=”1.0” encoding=”utf-8” ?>
<CodeSnippets xmlns=”http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet”>
 <CodeSnippet Format=”1.0.0”>
 <Header>
 <Title>cw</Title>
 <Shortcut>cw</Shortcut>
 <Description>Code snippet for Console.WriteLine</Description>
 <Author>Microsoft Corporation</Author>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 </SnippetTypes>
 </Header>
 <Snippet>
 <Declarations>
 <Literal Editable=”false”>
 <ID>SystemConsole</ID>
 <Function>SimpleTypeName(global::System.Console)</Function>
 </Literal>
 </Declarations>
 <Code Language=”csharp”>
 <![CDATA[$SystemConsole$.WriteLine(end);]]>
 </Code>
 </Snippet>
 </CodeSnippet>
</CodeSnippets>

This list describes what’s in the Header element:

 ✦ Title: Shows up on the context menu.

 ✦ Shortcut: The key combination you can type for IntelliSense.

 ✦ Description and Author: Show up in the tooltip when you mouse over
the snippet in Visual Studio.

 ✦ SnippetType: Defines which menus the snippet appears on. The most
common types are Expansion and SurroundsWith. Expansion means
that it inserts the text. SurroundsWith means that it’s placed above and
below the selection.

Using Snippets

34_563489-bk04ch03.indd 52434_563489-bk04ch03.indd 524 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

525

The Snippet element is where the work is done. In the cw.snippet example
there are two elements in Snippet: Declarations and Code. Declarations
declares the variables, and Code is what gets inserted. Within these, these
statements are true:

 ✦ The Literal element describes a variable that will be used in the creation
of the snippet.

 ✦ In this case, Function tries to get the simplest version of the System.
Console namespace given the current constraints, and ID names it
SystemConsole.

 ✦ The Code element specifies the language and then puts the actual code
in place.

If you want to make your own snippet, I suggest that you start with one of
the samples provided in the Visual Studio install. You can just start from
scratch too — if you wish, you can create an XML file and give it a .snippet
file extension — but I think these things are best done iteratively.

Deploying snippets
To deploy a snippet of your own, use the Code Snippets Manager. The man-
ager is found on the Tools menu and looks like the one shown in Figure 3-3.

Figure 3-3:
The Code
Snippets
Manager.

Adding a new snippet this way is fairly simple. After you create your snip-
pets file, click the Import button, and select the .snippet file. It’s placed in
the selected folder, so make sure you have the snippet folder highlighted.

The Add and Remove buttons in the Manager refer to directories, not files.
Use them to make new snippet folders. The Search Online feature just
searches Help for IntelliSense Code Snippets.

Using Snippets

34_563489-bk04ch03.indd 52534_563489-bk04ch03.indd 525 3/19/10 8:12 PM3/19/10 8:12 PM

526

Sharing snippets
Sharing a snippet is a more complicated act than it should be. One would
think that you could just create a .snippet file, send it to someone, and
that would be that. It isn’t so.

I should amend that — it is so if you are just sending it to a friend — then it
is just a matter of using the Manager. On the other hand, if you are making a
package of snippets for a group to install, you get to the nitty-gritty.

A snippet sharing escapade has three components:

 ✦ The .snippet file itself: This topic is discussed in the preceding
section.

 ✦ The .vscontent file that lists the snippets (even if there is only one):
The .vscontent file is one with a listing of snippets in a package. It
consists of multiple Content elements that describe the various files in
the package. For instance, here is the .vscontent file that would be
used for the previous Console.Writeline example.

<VSContent xmlns=”http://schemas.microsoft.com/
developer/vscontent/2010”>

 <Content>
 <FileName>cw.snippet</FileName>
 <DisplayName>cw</DisplayName>
 <Description>Console.Writeline</Description>
 <FileContentType>Code Snippet</FileContentType>
 <ContentVersion>3.0</ContentVersion>
 <Attributes>
 <Attribute name=”lang” value=”csharp”/>
 </Attributes>
 </Content>
</VSContent>

 This gives you two files in the package — the snippet and the content
file. These need to be packaged in a .vsi file, and then distributed.

 ✦ The .vsi file to package it all together: The .vsi file is a Zip file with
a new extension. To make it, literally zip your folder of snippets with the
vscontent file and change the file extension from .zip to .vsi.

 Visual Studio users can double-click .vsi files in order to have the
vstudio installer handle them. The command line can also be used
for more in-depth installs. The complexity of the system on the snippet
developer side makes sense when you consider that the end user ends
up with a better experience.

Using Snippets

34_563489-bk04ch03.indd 52634_563489-bk04ch03.indd 526 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

527

Hacking the Project Types
Throughout the book, I recommend that you not start with a blank screen.
Click New Project and select a project type in order to get some basic set
of code to start with. In C:\Program Files (x86)\Microsoft Visual
Studio 10.0\Common7\IDE, you find the files that make all the magic
project types work.

Hacking Project templates
The first, most obvious target for hacking are the project types because they
are text based and have a lot of useful information in them. Found in the IDE
folder referenced in the preceding paragraph, the ProjectTemplates folder
follows the hierarchy of the New Project tree view. (See Figure 3-4.)

Figure 3-4:
A bunch of
project-type
Zips.

I focus on the CSharp directory tree because this book is about C#. To keep
examples to a minimum, open the Windows/1033 folder, in order to view
Windows project types. In a default install, that looks something like this:

 ✦ ClassLibrary

 ✦ ConsoleApplication

 ✦ EmptyProject

 ✦ WindowsApplication

Hacking the Project Types

34_563489-bk04ch03.indd 52734_563489-bk04ch03.indd 527 3/19/10 8:12 PM3/19/10 8:12 PM

528

 ✦ WindowsControlLibrary

 ✦ WindowsService

 ✦ WPFApplication

 ✦ WPFBrowserApplication

 ✦ WPFControlLibrary

 ✦ WPFCustomControl

The explorer should look like Figure 3-4. The files are Zip files and should
stay that way. The setup process for the development environment reads
right from the Zips.

The ConsoleApplication is about the simplest project type, and it is a great
place to begin creating your own. Open the ConsoleApplication zip and
take a look at the four files it includes:

 ✦ assemblyinfo.cs: This file goes directly into the project. Take a look
at the code; it is the exact code that is in the assemblyinfo file in a
project, except there are project-specific variables surrounded by dollar
signs.

 ✦ consoleapplication.csproj: This is the actual project file; the
name will be replaced by the new project-creation process. As with the
other included files, there are variable names within the XML of the file.

 ✦ csConsoleApplication.vstemplate: This is the magic file that tells
the project-creation process how to build the new project. The impor-
tant part is the TemplateContent element, which contains the name of
the ProjectFile and the ProjectItems that go into the finished product.
This is clearly where you would put new files if you needed them.

 ✦ program.cs: This is the default file for the application. This is where
you begin when you start coding. Take a look at the code — it should
look familiar.

So where does that leave you? You can change the projects. Try these steps:

 1. Copy the ConsoleApplication.zip from C:\Program
Files\Microsoft Visual Studio 10.0\Common7\IDE\
ProjectTemplates\CSharp\Windows\1033.

 2. Paste the file back into the folder — it should make
ConsoleApplication – Copy.zip.

 3. Rename that file ConsoleAndClass.zip.

 4. Drag the new class to your desktop temporarily.

 5. Right-click and select Extract All from the menu. Select the defaults.

 A new ConsoleAndClass folder is created.

Hacking the Project Types

34_563489-bk04ch03.indd 52834_563489-bk04ch03.indd 528 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

529

 6. Delete the ConsoleAndClass.zip file from your desktop.

 7. Open C:\Program Files\Microsoft Visual Studio 10.0\
Common7\IDE\ProjectTemplates\CSharp\Windows\1033\
ClassLibrary.zip.

 8. Copy the class1.cs file from that compressed folder.

 9. Paste it back into the new ConsoleAndClass folder on your desktop.

 10. Right-click csConsoleApplication.vstemplate and select Edit
from the menu to open the file in Notepad.

 11. In the file, change each instance of ConsoleApplication to
ConsoleClassApplication.

 12. Add the bolded line to the file, in order to reference the new file.

<?xml version=”1.0” encoding=”utf-8”?>
<VSTemplate Version=”3.0.0” Type=”Project” xmlns=”http://schemas.

microsoft.com/developer/vstemplate/2005”>
 <TemplateData>
 <Name Package=”{FAE04EC1-301F-11d3-BF4B-00C04F79EFBC}” ID=”2320” />
 <Description Package=”{FAE04EC1-301F-11d3-BF4B-00C04F79EFBC}”

ID=”2321” />
 <Icon Package=”{FAE04EC1-301F-11d3-BF4B-00C04F79EFBC}” ID=”4548” />
 <TemplateID>Microsoft.CSharp.ConsoleClassApplication</TemplateID>
 <ProjectType>CSharp</ProjectType>
 <RequiredFrameworkVersion>2.0</RequiredFrameworkVersion>
 <SortOrder>70</SortOrder>
 <NumberOfParentCategoriesToRollUp>1</

NumberOfParentCategoriesToRollUp>
 <CreateNewFolder>true</CreateNewFolder>
 <DefaultName>ConsoleClassApplication</DefaultName>
 <ProvideDefaultName>true</ProvideDefaultName>
 </TemplateData>
 <TemplateContent>
 <Project File=”ConsoleClassApplication.csproj”

ReplaceParameters=”true”>
 <ProjectItem ReplaceParameters=”true” TargetFileName=”Properties\

AssemblyInfo.cs”>AssemblyInfo.cs</ProjectItem>
 <ProjectItem ReplaceParameters=”true” OpenInEditor=”true”>Program.

cs</ProjectItem>
 <ProjectItem ReplaceParameters=”true” OpenInEditor=”true”>Class1.

cs</ProjectItem>
 </Project>
 </TemplateContent>
</VSTemplate>

 13. Save and close csConsoleApplication.vstemplate.

 14. Rename consoleapplication.csproj to consoleclass
application.csproj.

 15. Close the folder, right-click its icon on your desktop, and click Send
To / Compressed folder from the resulting menu in order to make a
new ConsoleAndClass.zip folder.

 16. Copy the Zip file back to the original folder.

Hacking the Project Types

34_563489-bk04ch03.indd 52934_563489-bk04ch03.indd 529 3/19/10 8:12 PM3/19/10 8:12 PM

530

 17. Close Visual Studio if it is open.

 18. Open the Visual Studio Command Prompt as Administrator.

 (It is in the All Programs folder in the Start Bar, under Visual Studio 2010
/ Visual Studio tools.)

 19. Run devenv /setup.

Now, when you open Visual Studio and click New Project, there should be a
new project type, called Console And Class. Create a new project based on
this type, and it will make you a Console .cs file and a class .cs file.

Hacking item templates
Items work the same way. Check into C:\Program Files\Microsoft
Visual Studio 10.0\Common7\IDE\ItemTemplates\CSharp and
you’ll see the same set of items types that show in the Add New Item
dialog box:

 ✦ Code

 ✦ Data

 ✦ General

 ✦ Office

 ✦ Reporting

 ✦ Silverlight

 ✦ Web

 ✦ Windows Forms

 ✦ Workflow

 ✦ WPF

If you dig into a directory through the Code/1033 folder, you will find more
or less the same kinds of things you saw in the project templates in the pre-
ceding section. The templates are in Zip files (and have to stay that way).
These files include a .vstemplate file that has the details Visual Studio
needs. The files that go into the project are in there, too.

Yes, some of these item templates are duplicates of the items in the project
templates. I don’t like that, but I can’t see any way around it.

Hacking the Project Types

34_563489-bk04ch03.indd 53034_563489-bk04ch03.indd 530 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 3

C
u

sto
m

izin
g

 V
isu

a
l

S
tu

d
io

531

Look in the Code/1033 folder. There is a Class.zip file that maintains the
Class template, if you were to right-click a project name and select Add New
Class. Suppose that you want to put the default comment block in here too.
Here’s what to do:

 1. Extract the Class.zip onto your desktop temporarily.

 2. Open the class1.cs file in Visual Studio.

 3. Add the bold lines to the file.

 The file in the project group looks like the following listing. To edit it,
you just make a new line before the class declaration and type ///.

using System;
using System.Collections.Generic;
if ($targetframeworkversion$ >= 3.5)using System.Linq;
$endif$using System.Text;

namespace $rootnamespace$
{
 /// <summary>
 ///
 /// </summary>
 class $safeitemrootname$
 {
 }
}

 4. Save the file and close Visual Studio.

 5. Zip the folder on your desktop by right-clicking the folder and choos-
ing Send To/Compressed Folder from the resulting menu.

 6. Put the file back in C:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE\ItemTemplates\CSharp\Code\1033.

 7. Open Visual Studio and make a new Class project.

 8. Right-click the project name and select Add➪Class.

 Keep the default name.

 Visual Studio makes a new file with the comment block, as shown in
Figure 3-5.

Hacking the Project Types

34_563489-bk04ch03.indd 53134_563489-bk04ch03.indd 531 3/19/10 8:12 PM3/19/10 8:12 PM

532

Figure 3-5:
You’ve
changed
Visual
Studio
behavior —
again!

Hacking the Project Types

34_563489-bk04ch03.indd 53234_563489-bk04ch03.indd 532 3/19/10 8:12 PM3/19/10 8:12 PM

Chapter 4: Transforming
Text Templates

In This Chapter
✓ Discovering where templating for Visual Studio originated

✓ Figuring out when to use T4

✓ Getting your environment ready for T4 use

✓ Using some basic T4 directives

T4 (Text Template Transformation Toolkit) is a code generation toolkit
built into Visual Studio. It is a built in language used to make the default

ASP.NET and Windows Forms files in C# or VB, for example, when you use
the Add New Item feature.

Scott Hanselman, from Microsoft, said it best: “Now’s the time to introduce
code generation to your company.” I wholeheartedly agree. Code genera-
tion increases developer productivity, decreases bugs in final versions, and
makes people happy.

Lars Corneliussen, a Microsoft MVP, said, “T4 in VS is the equivalent to
index.php in Apache,” and he isn’t far from the truth. T4 is a starting point
for a project, providing seamless redirection and logical formatting of what
the user (in this case, the developer) actually sees. It is the template, just as
the name suggests.

T4 is a big topic, like so many others in this book, but you should be able
to get started creating code generation from the material here. Getting your
environment ready and understanding the concepts are the most important
steps.

Getting to Know T4
In this chapter, I look at T4 as a code-generation tool. It is a lot more than
that. Really, it is a tool for the management of metadata around Domain
Specific Languages. If that makes no sense to you, join the club.

35_563489-bk04ch04.indd 53335_563489-bk04ch04.indd 533 3/19/10 8:12 PM3/19/10 8:12 PM

534

Many things about computer science are elegant, and the current drive
toward meta-programming and the use of higher and higher level languages
to solve tougher and tougher problems is one of them. I am a second-
generation kind of guy, though. I let the early adopters try something out
first and see whether it works. If it works, then I use it.

For code generation, T4 works.

At its most complex, T4 can review information about the kind of projects
you build and determine what kind of templates you need to get the job
done. That’s cool, but let’s stick with our analysis and just let T4 do the dirty
work.

Looking back at the DSL Tools
One of the first ways that Microsoft tried to implement code generation back
in the day (and it is still around) was through the Environment Design Time
Environment (EnvDTE), and by giving developers access to the code files
themselves.

This bare-bones approach provided by EnvDTE isn’t really what they were
after, though. The goal of templating was to provide a language of languages,
which developers could use to model their own development style. The
code generation is almost secondary.

Microsoft’s next shot to solving the code-generation problem was the
Domain-Specific Language Tools. The idea here was to use the EnvDTE and
other markup languages to describe a very high-level idea in a project — for
example, a new ASPX page. Not any specific ASPX page: any ASPX page.

That description can then become the starter code that you see when you
ask for a new ASPX page. See what I mean? When you describe a higher-level
concept like requesting a new ASPX page, the DLS implements a concrete
version, which you then can edit.

Looking ahead to what it became
To put it in REAL general terms, the DSL Tools split into two things: code
generation and modeling tools. The modeling tools are Oslo and M. The code
generation is T4.

Because T4 is designed to generate anything, it can emit any kind of file. If
you think about it, it all makes sense. If an entity in your domain model is
a product Web site, then T4 would have to emit HTML, CSS, and JavaScript
when a new product is added to the database.

Getting to Know T4

35_563489-bk04ch04.indd 53435_563489-bk04ch04.indd 534 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 4

T
ra

n
sfo

rm
in

g
 T

e
x

t
T

e
m

p
la

te
s

535

The same thing applies to the language that is emitted as part of the project.
T4 doesn’t care what code you are emitting. It just wants to stamp out what
matches the model you define for it. If you set up the model to use C#, that’s
fine. VB? Fine. T4 is just generating and giving text an extension.

Additionally, you can write your code inside the T4 file in C# or VB.NET.
This is the code that makes any decisions about the output, accesses data
sources that might be needed to generate the code, and so on. It follows the
same .NET rules.

Even though T4 was developed as an addition to Visual Studio 2008 and is
baked into version 2010, you can use it in all previous versions back to 2005.

Figuring Out When to Use T4
Now that it is more or less clear what T4 is designed to do, the next step is
figuring out when to use it. There are two main applications, as well as many
lesser ones out there — the following sections are not all-inclusive. The main
ones are replacing repetitive coding and building code based on outside data.

Replacing repetitive coding
Like snippets do at the class level, T4 can replace repetitive coding at the file
level. If you think about it, you realize that there is a whole host of code that
you shouldn’t have to write over and over and over, but nonetheless you do.

Take something simple, like an HTML page. Every page must have certain
elements, by the HTML 4.0 Transitional standard:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title></title>
</head>
<body>

</body>
</html>

Those are required elements! Can’t they just be . . . assumed? As it turns out,
no, they can’t, because some of the elements must have data inserted inside
them. This is just the starting point — exactly what T4 is good at providing.

Figuring Out When to Use T4

35_563489-bk04ch04.indd 53535_563489-bk04ch04.indd 535 3/19/10 8:12 PM3/19/10 8:12 PM

536

Building code based on outside data
The more powerful use of T4 is to reference outside data to set up code tem-
plates. This can be metadata about a project like supporting files that need
to be referenced, or direct data like the previous product Web site example.

Let’s look at project metadata for a moment. MVC4WOF is an open source
project that I participate in, and it uses metadata in the form of contract files
to generate code. (Check it out at www.mvc4wpf.com.)

In a classic example of an automation pattern, MVC4WPF’s New File dialog
box (see Figure 4-1) checks with the user to get the contract (in the form
of an interface) that is being referenced for the given Model, View, or
Controller being generated.

This allows T4 to parse through the interface, grab pertinent information,
and add it to the resultant file.

Figure 4-1:
Selecting
controller
interfaces.

Setting Up the Environment
You need to know a few details relating to the environment.

Changing the security settings
You can relax the security requirements for T4. If you write T4 documents
and don’t sign them (which is often the case), you will receive a dialog box

Setting Up the Environment

35_563489-bk04ch04.indd 53635_563489-bk04ch04.indd 536 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 4

T
ra

n
sfo

rm
in

g
 T

e
x

t
T

e
m

p
la

te
s

537

warning you that you might be generating some dangerous code. You can
see that message in Figure 4-2.

Figure 4-2:
The security
setting in
the Tools/
Options box.

 As T4 files are essentially macros, this warning makes sense. It is possible
for someone to write malicious code and execute it on your development
workstation. I advise that you turn off the security during development
of the template and back on when you are back to your daily scheduled
programming.

Creating a template from a text file
The simplest TT file is just a text file, edited in Notepad, with some basic
commands in it called Directives. Follow these steps to create a template
from that basic text file:

 1. Open Notepad.

 2. In the new file, add the following lines of code.

<#@ output extension=”.cs” #>

public class TestClass
{
}

 The lines are cryptic, I know, but they will make sense in a second.

 3. Save the file in your Documents folder as GenerateClass.tt.

 It should look like Figure 4-3.

Setting Up the Environment

35_563489-bk04ch04.indd 53735_563489-bk04ch04.indd 537 3/19/10 8:12 PM3/19/10 8:12 PM

538

 4. Create a new class library in Visual Studio.

 5. Right-click on the project file, select Add, and then Existing File.

 You’ll see a file selection dialog box.

Figure 4-3:
The world’s
simplest TT
file.

 6. Select the GenerateClass.tt file you created in Step 3. You might
have to select All Files from the Files of Type drop-down menu if .tt
isn’t one of the file types available.

 7. Click OK.

 You get the security warning discussed in the section “Changing the
security settings,” earlier in this chapter, shown in Figure 4-4. Click OK
to that, too.

 Notice that in the file tree in Solution Explorer, under the TT file, there is
now a CS file with your code in it, as shown in Figure 4-5.

Figure 4-4:
The vaunted
security
message.

Setting Up the Environment

35_563489-bk04ch04.indd 53835_563489-bk04ch04.indd 538 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 4

T
ra

n
sfo

rm
in

g
 T

e
x

t
T

e
m

p
la

te
s

539

Figure 4-5:
The
generated
code file.

Using Some of the T4 Directives
Clearly this is a very Hello World example. The magic of T4 is complex, and I
had to spend a lot of time (believe it or not) making the simplest example.

One of the things that makes T4 work well are the directives built into the
language. These commands are just like shell commands. They have param-
eters and perform certain tasks on the file.

Setting the output
The first directive you see in the example in the earlier section “Creating a
template from a text file” is the output directive. I wanted a C# file, so I used
the .cs extension. You could emit anything, though — text, HTML, VB, or
even a custom format that you need for your project, such as

<#@ output extension=”.bill” #>

Another parameter for output is Encoding, which is exactly what it sounds
like. Options include

 ✦ Default

 ✦ ASCII

Using Some of the T4 Directives

35_563489-bk04ch04.indd 53935_563489-bk04ch04.indd 539 3/19/10 8:12 PM3/19/10 8:12 PM

540

 ✦ BigEndianUnicode

 ✦ Unicode

 ✦ UTF32

 ✦ UTF7

 ✦ UTF8

If you need to represent special characters in your files, you need to specify
your encoding.

Configuring a template
Template is a directive that specifies the various properties of the T4 text
itself. The goal is to affect how the parsing engine interprets the code in the
template itself. The options include

 ✦ language: This is the language for the code that does the work. You can
emit anything, but the code in the template has to be VB or C#.

 ✦ inherits: This is a class that derives from TextTransformation to be used
as the base class.

 ✦ culture: This sets the System.Globalization culture. You know, like en-US
or en-GB.

 ✦ debug: Just like the ASP.NET debugger, this sets the return of debug
symbols.

 ✦ hostspecific: This is for use with custom hosts — you’ll run into it if you
are writing for custom hosts.

Including includes
Includes are nice and easy.

Remember ASP classic? No, I don’t mean ASP.NET pre-MVC. I mean the old
ASP, with VB script, pre-.NET. This is like that. (If you don’t, that’s okay; I
explain it in the next section.)

If you want to include the contents of a file somewhere in your template, just
drop the include directive in there and the name of the file in a file attribute.

<#@ include file=”c:\specialsource.cs” #>

That’s all there is to it.

Using Some of the T4 Directives

35_563489-bk04ch04.indd 54035_563489-bk04ch04.indd 540 3/19/10 8:12 PM3/19/10 8:12 PM

Book IV

Chapter 4

T
ra

n
sfo

rm
in

g
 T

e
x

t
T

e
m

p
la

te
s

541

Importing items and assemblies
The import and assembly directives assist with writing code in a template.
In the example earlier in this chapter, I emitted text, but in the real examples
that you find in MSDN, you write C# or VB code to modify the text.

If you want that code to use .NET Framework constructs, you need to refer-
ence the assembly and import the namespace. For instance, if you are
going to get values from a file in your template, you need the System.IO
library.

First you need to reference the assembly, unless you are certain the
assembly will be referenced in the project. Then you should import the
namespace so you don’t have to reference items via fully qualified names, as
like this:

<#@ assembly name=”System.IO.DLL” #>
<#@ import namespace=”System.IO” #>

Then, you can reference the file maintenance classes inside the code of the
template. You reference code using the <# and #> statements.

Using Some of the T4 Directives

35_563489-bk04ch04.indd 54135_563489-bk04ch04.indd 541 3/19/10 8:12 PM3/19/10 8:12 PM

542 Book IV: A Tour of Visual Studio

35_563489-bk04ch04.indd 54235_563489-bk04ch04.indd 542 3/19/10 8:12 PM3/19/10 8:12 PM

Book V

Windows Development
with WPF

A Stack Panel

36_563489-pp05.indd 54336_563489-pp05.indd 543 3/19/10 7:56 PM3/19/10 7:56 PM

Contents at a Glance

Chapter 1: Introducing WPF .545

Chapter 2: Understanding the Basics of WPF .555

Chapter 3: Data Binding in WPF .579

Chapter 4: Practical WPF .601

36_563489-pp05.indd 54436_563489-pp05.indd 544 3/19/10 7:56 PM3/19/10 7:56 PM

Chapter 1: Introducing WPF

In This Chapter
✓ Taking a first look at WPF and what it can do for you

✓ Working with XAML

✓ Building your first WPF application

✓ Comparing XAML to C#

WPF, or Windows Presentation Foundation, is a graphical system for
rendering user interfaces. It provides great flexibility in how you

can lay out and interact with your applications. With Common Language
Runtime (CLR) at its core, you can use C# or any other CLR language to
communicate with user interface elements and develop application logic.
The advantages of WPF for your application are its rich data binding and
visualization support and its design flexibility and styling.

WPF enables you to create an application that is more usable to your audi-
ence. It gives you the power to design an application that would previously
take extremely long development cycles and a calculus genius to implement.
Now you can implement difficult things like graphics and animations in as
few as three lines of code!

This chapter introduces you to key WPF concepts as well as common appli-
cation patterns used in the software industry today.

Understanding What WPF Can Do
WPF’s graphics capabilities make it the perfect choice for data visualization.
Take, for instance, the standard drop-down list (or combo box). Its current
use is to enable the user to choose a single item from a list of items. For this
example, suppose we want the user to select a car model for purchase.

The standard way of displaying this choice is to display a drop-down list
of car model names from which users can choose. There is a fundamental
usability problem with this common solution: Users are given only a single
piece of information from which to base their decision — the text that is
used to represent the item in the list.

For the power user (or car fanatic) this may not be an issue, but other users
need more than just a model name to make an educated decision on the car

37_563489-bk05ch01.indd 54537_563489-bk05ch01.indd 545 3/19/10 8:14 PM3/19/10 8:14 PM

546

they wish to purchase. This is where WPF and its data visualization capabili-
ties come into play.

A template can be provided to define how each item in the drop-down list
is rendered. The template can contain any visual element, such as images,
labels, text boxes, tooltips, drop shadows, and more!

Figure 1-1 shows a typical display of a combo box. This control has limita-
tions: It can relay to the user only a single piece of information, the text used
to represent the car model. Work can be done to display images of the car
models in a separate control based on the selection in the list, but this still
mandates users to make their selection before seeing exactly what it is they
are choosing. In contrast, WPF has the flexibility to display many pieces of
information in each combo box item, like a one-stop shop for all the infor-
mation the user will need to make their decision (see Figure 1-2 for a WPF
combo box).

Figure 1-1:
A typical
combo box.

Figure 1-2 shows a sample combo box in WPF. The way the combo box item
is rendered is defined using a data template. (I cover Data Templates in
Chapter 3 of this minibook.) Each item in this combo box is rendered to pro-
vide the user a visual cue along with multiple data fields. Displaying all this
information enables users to make an educated decision about the choice
they are making.

Figure 1-2:
Visualizing
data — a
WPF combo
box.

Understanding What WPF Can Do

37_563489-bk05ch01.indd 54637_563489-bk05ch01.indd 546 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 1

In
tro

d
u

c
in

g
 W

P
F

547

Introducing XAML
WPF enables you to build user interfaces declaratively. XAML (hint: it
rhymes with camel) forms the foundation of WPF. XAML is similar to HTML
in the sense that interface elements are defined using a tag-based syntax.

 XAML is XML-based and as such it must be well formed, meaning all opening
tags require closing tags, and all elements and attributes contained in the
document must validate strictly against the specified schemas.

By default, when creating a WPF application in Visual Studio 2010, the follow-
ing schemas are represented in generated XAML files:

 • http://schemas.microsoft.com/winfx/2006/xaml/
presentation: This schema represents the default Windows
Presentation Framework namespace.

 • http://schemas.microsoft.com/winfx/2006/xaml: This
schema represents a set of classes that map to CLR objects.

Most CLR objects can be expressed as XAML elements (with the exception of
abstract base classes and some other nonabstract base classes used strictly
for inheritance purposes in the CLR). XAML elements are mapped to classes;
attributes are mapped to properties or events.

At runtime when a XAML element is processed, the default constructor for
its underlying class is called, and the object is instantiated; its properties
and events are set based on the attribute values specified in XAML.

I’m a firm believer that the best way to become comfortable using WPF and
XAML is to jump right in and give it a try. The next section reviews more XAML
basics and gets you started on the path of WPF application development.

Diving In! Creating Your First WPF Application
Now it’s time to get comfortable, stop for a moment, go grab a caffeinated bever-
age, sit in a comfortable chair, pull up to your computer, and get ready to go!

To create your first project, follow these steps:

 1. Open Visual Studio 2010.

 2. Create a new project by choosing File➪New Project.

 3. In the Installed Templates region under the “Visual C#” section in the
tree, click on the Windows item.

 4. Select WPF Application from the list box of templates located in the
center of the window.

Diving In! Creating Your First WPF Application

37_563489-bk05ch01.indd 54737_563489-bk05ch01.indd 547 3/19/10 8:14 PM3/19/10 8:14 PM

548

 5. In the Name text box, enter MyFirstWPFApplication (this also sets the
name of the solution to the same value, which is okay). (See Figure 1-3.)

 6. Click OK.

Figure 1-3:
Creating a
project in
the New
Project
dialog box.

Visual Studio now does its thing, creating the solution structure of the applica-
tion. By default, as shown in Figure 1-4, the WPF Application template creates
two XAML files along with their respective code-behind files: App.xaml (App.
xaml.cs) and MainWindow.xaml (MainWindow.xaml.cs). (See Figure 1-4.)

Figure 1-4:
WPF
Application
solution
structure

App.xaml represents the entry-point of the application. This is where appli-
cation-wide (globally scoped) resources and the startup window are defined.
(See Listing 1-1.)

 Resources are a keyed collection of reusable objects. Resources can be cre-
ated and retrieved using both XAML and C#. Resources can be anything —
data templates, arrays of strings, or brushes used to color the background of
text boxes. Resources are also scoped, meaning they can be available to the
entire Application (global), to the Window, to the User Control, or even to
only a specific control.

Diving In! Creating Your First WPF Application

37_563489-bk05ch01.indd 54837_563489-bk05ch01.indd 548 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 1

In
tro

d
u

c
in

g
 W

P
F

549

Listing 1-1: App.xaml

<Application x:Class=”MyFirstWPFApplication.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 StartupUri=”MainWindow.xaml”>
 <Application.Resources>

 </Application.Resources>
</Application>

Listing 1-1 displays the XAML that was generated by the WPF Application
template in Visual Studio. Note that the WPF namespaces are defined. The
namespace that represents the CLR objects will be distinguished in the
XAML file with the .x prefix.

The StartupUri value defines the window that will be displayed after the
application is executed. In this case, the MainWindow.xaml window will be
displayed.

The x:Class attribute defines the C# code-behind file of this XAML file. If
you open App.xaml.cs, you see that its class name is App and it inherits
from the Application class (which is the root element of the XAML file).

 C# uses namespaces to organize and locate classes. In order to create
objects from a specific namespace, you use the “using” syntax at the top
of your class definitions. Similar to C#, XAML also requires you to declare
which namespaces are used in the document. Namespaces are typically
defined as an attribute within the root element of the document, the root ele-
ment is the first XML tag in the XAML document. XAML uses XML syntax to
define a namespace — “xmlns” means “XML namespace,” and it’s typically
followed by a colon (:) and then an alias. This alias is the shorthand refer-
ence to the namespace throughout the XAML document; it’s what you use to
instantiate an object from a class in that namespace.

For instance, if you want to add the namespace MyTemplates.
DataTemplates from the assembly MyTemplates.dll, you could define
the namespace as:

xmlns:myDTs=”clr-namespace:MyTemplates.DataTemplates;assembly=MyTemplates.dll”

You will then be able to instantiate an object from the MyTemplates.
DataTemplates namespace as follows:

<myDTs:myClass></myDTs:myClass>

Declaring an application-scoped resource
To demonstrate the creation and use of a global application-scoped
resource, in this section we create a resource that holds a string used in our

Diving In! Creating Your First WPF Application

37_563489-bk05ch01.indd 54937_563489-bk05ch01.indd 549 3/19/10 8:14 PM3/19/10 8:14 PM

550

application. An application-scoped resource is available to all Windows and
user controls defined in the project. Follow these steps:

 1. Add the System namespace located in the mscorlib.dll assembly.

 This is where the String class is located.

 2. To do this, add the following namespace to the App.xaml root
element:

xmlns:sys=”clr-namespace:System;assembly=mscorlib”

 The String class is now available for use throughout the App.xaml
document.

 3. Create the resource between the Application.Resource tags, add
the following String class element:

<sys:String x:Key=”Purpose”>Hello WPF World!</sys:String>

 This element instantiates an object of type String, initialized to the
value Hello WPF World!, and keyed off of the key Purpose. This
resource is now available throughout the MyFirstWPFApplication
application by requesting the resource “Purpose.” (See Listing 1-2.)

Listing 1-2: Updated App.xaml with Resource
and System Namespace Defined

<Application x:Class=”MyFirstWPFApplication.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”
 StartupUri=”MainWindow.xaml”>
 <Application.Resources>
 <sys:String x:Key=”Purpose”>Hello WPF World!</sys:String>
 </Application.Resources>
</Application>

 You may observe the Application.Resource tag looks kind of odd.
Application.Resources does not define a class as most XAML elements
do. It is actually assigning a value to the Resources property of its containing
Application object.

This type of tag is called a Property Element, an XML element that represents
a property (or attribute) of an object. Property Elements are used when com-
plex objects are assigned to a property of an object that can’t be expressed as
a simple string value. Property Elements must be contained within the tags of
the parent element — in this case, within the Application tags.

Making the application do something
If you run the application as is, not much happens beyond the display of an
empty window. The empty window is the one defined in MainWindow.xaml.

Diving In! Creating Your First WPF Application

37_563489-bk05ch01.indd 55037_563489-bk05ch01.indd 550 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 1

In
tro

d
u

c
in

g
 W

P
F

551

 App.xaml is the entry point of the WPF application. Within App.xaml, the
StartupUri value defines the window displayed on application startup. In
this case, the StartupUri value is MainWindow.xaml.

Let’s add a label to MainWindow.xaml that displays the purpose of the
String we defined in our Resources. Just follow these steps:

 1. Open MainWindow.xaml.

 2. Between the Grid tags, define a grid with a single row and single
column by adding the following XAML markup:

 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 Each column and row is defined by the ColumnDefinition
and RowDefinition element contained within the Grid.
ColumnDefinitions and Grid.RowDefinitions properties,
respectively. If you want to add more columns, you simply add
another ColumnDefinition element to the Grid.ColumnDefinitions
Property Entity. The same goes for adding rows: You add an additional
RowDefinition element to the Grid.RowDefinitions Property Entity.

 3. Directly below the Grid.RowDefinitions Property entity, create a
label using the following XAML:

<Label x:Name=”lblPurpose” Content=”{StaticResource Purpose}”
FontSize=”25” Grid.Row=”0” Grid.Column=”0” />

 This markup instantiates a WPF Label object accessible to the code-
behind file (MainWindow.xaml.cs) using the variable lblPurpose.
The Content attribute contains the text that is to be displayed in the
label; in this case, we will use the Application Resource that we defined
in the preceding section by retrieving it using its key value, which is
Purpose. The label text is rendered with a font size of 25 units and is to
be located in the grid in the first row and first column.

 WOW! That line of XAML really packs quite the punch! Let’s review some of
what is going on in there:

 ✦ x:Name: This attribute assigns a variable name to the object being cre-
ated by the XAML tag. This enables you to access the object from the
code-behind file. In this case, the variable name of the label object being
instantiated is lblPurpose.

 ✦ Content: The value assigned to this attribute can be of any type. By
default, you can assign it a string value and it will render as you would
think a standard label would render. In the WPF reality, Content can be
composed of anything: a string, an image, an instance of a user control, a
text box, and so forth. For more info, see Chapter 2 of this minibook.

Diving In! Creating Your First WPF Application

37_563489-bk05ch01.indd 55137_563489-bk05ch01.indd 551 3/19/10 8:14 PM3/19/10 8:14 PM

552

 ✦ FontSize: The size of the font of the label. It is important to note that
the size is not denoted in points; it is expressed in Device Independent
Units. WPF gets away from the concepts of pixels and points and moves
to a universal sizing strategy. Think of Device Independent Units as more
of a ratio than a pixel. For instance, if the containing element of the label
were 100 units by 100 units, the label would render as 1⁄4 of that size.

 ✦ Grid.Row: Identifies the grid row in which to render the label. Grid row
collections are zero-based, meaning the first row is row 0, the second
row is row 1, and so on. You should also note that the Label class does
not contain a property named Grid. What you see here is the concept of
Attached Properties. Attached Properties are a way to assign the con-
text of a current control relative to the properties of an ancestor control.
In this case, we assign the label to appear in the first row (row index 0)
of its containing grid. Also observe that the label is located within the
Grid tags; this is how the ancestor Grid element is located.

 ✦ Grid.Column: Similar to Grid.Row, this attached property identifies
the grid column in which to render the label. Together with Grid.Row,
both properties identify the cell where the label is located. In this case,
we are assigning the label to render in the first column of its containing
grid. Grid column collections are also zero-based.

Go ahead and run your application, you will now see Hello World displayed
in the label on your Window. Congratulations, you have just created your
first WPF application!

 The complete solution is available at www.csharpfordummies.net in the
chapter downloads.

Whatever XAML Can Do, C# Can Do Better!
Anything that you can implement using XAML can be implemented in C#.
This is not true in reverse; not everything you can do in C# can be done in
XAML. C# is the obvious choice for performing business logic tasks with pro-
cedural code that can’t be expressed in XAML. Let’s create an identical WPF
application to the one we’ve just created, this time using C# to implement its
functionality. Here’s all you have to do:

 1. Create a new project by choosing File ➪New Project.

 2. Under Visual C#, select Windows.

 3. Select WPF Application.

 4. Name the application MyFirstCodeOnlyWPFApplication.

 5. Click OK.

 Visual Studio creates the Solution and Project structure.

Whatever XAML Can Do, C# Can Do Better!

37_563489-bk05ch01.indd 55237_563489-bk05ch01.indd 552 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 1

In
tro

d
u

c
in

g
 W

P
F

553

 6. Open App.xaml.cs.

 7. Override the OnStartup method to include the creation of the
Purpose application resource by adding the following code to the App
class:

protected override void OnStartup(StartupEventArgs e)
{
 //create and add the Purpose application resource
 string purpose = “Hello WPF World, in C#”;
 this.Resources.Add(“Purpose”, purpose);

 base.OnStartup(e);
}

 8. Open MainWindow.xaml, and give the Grid element a name by
adding the following attribute:

x:Name=”gridLayout”

 9. Open MainWindow.xaml.cs, and in the default constructor, after the
InitializeComponents method call, add the following code:

//define grid column and row
this.gridLayout.ColumnDefinitions.Add(new ColumnDefinition());
this.gridLayout.RowDefinitions.Add(new RowDefinition());

//obtain label content from the application resource, Purpose
string purpose = this.TryFindResource(“Purpose”) as string;
Label lblPurpose = new Label();
lblPurpose.Content = purpose;
lblPurpose.FontSize = 25;

//add label to the grid
this.gridLayout.Children.Add(lblPurpose);

//assign attached property values
Grid.SetColumn(lblPurpose, 0);
Grid.SetRow(lblPurpose, 0);

Run the application and observe the resulting product is similar to that
obtained in the section “Diving In! Creating Your First WPF Application,” ear-
lier in this chapter.

 The complete solution is available at the www.csharpfordummies.net
Web site chapter downloads.

Whatever XAML Can Do, C# Can Do Better!

37_563489-bk05ch01.indd 55337_563489-bk05ch01.indd 553 3/19/10 8:14 PM3/19/10 8:14 PM

554 Book V: Windows Development with WPF

37_563489-bk05ch01.indd 55437_563489-bk05ch01.indd 554 3/19/10 8:14 PM3/19/10 8:14 PM

Chapter 2: Understanding
the Basics of WPF

In This Chapter
✓ Laying out applications

✓ Using layout panels

✓ Working with the grid

✓ Implementing display-only, input, and list-based controls

As Chapter 1 explains, WPF brings not only a dramatic shift to the look
and feel of Windows applications but also changes the manner of

development. The days of dragging and dropping controls from the toolbox
onto a form are long gone. Even though it is still possible to drag and drop
in WPF, you will find yourself better off and much happier if you work in
XAML directly.

What was once difficult is now relatively simple. For example, in traditional
Windows applications, when the user changes the size of the form, the con-
trols typically stay huddled in their corner and a large area of empty canvas
is displayed. The only cure for this was a lot of custom code or expensive
third-party controls. WPF brings the concept of flow layout from the Web
into the Windows world.

In the GDI/GDI+ world of WinForms, modifying a control’s style or building
complex looks was a Herculean feat. WPF has completely redefined the control
paradigm, giving you, the developer, the freedom to make a control do unimagi-
nable tasks — including playing a video on a button face. However, keep in
mind that just because you can do something doesn’t mean you should!

In this chapter, we work with WPF’s layout process to control the layout of
your application and introduce you to the various WPF controls.

Using WPF to Lay Out Your Application
Traditional Windows Forms development deals in absolutes. Position and
size for controls are decided at design time and are based on the resolu-
tion of the developer’s machine. When applications are deployed to users,
the form that looked great on the developer’s machine could now look very
different (and possibly be downright unusable) because of hardware resolu-
tion differences.

38_563489-bk05ch02.indd 55538_563489-bk05ch02.indd 555 3/19/10 8:14 PM3/19/10 8:14 PM

556

Instead of depending on screen resolution, WPF measures UI Elements in
Device Independent Units (DIUs) that are based on the system DPI. This
enables a consistent look between many different hardware configurations.

WPF layout is based on relative values and is adjusted at runtime. When you
place controls in a layout container (see the next section), the rendering
engine considers the height and width only as “suggested” values. Location
is defined in relation to other controls or the container. Actual rendering is a
two-step process that starts with measuring all controls (and querying them
for their preferred dimensions) and then arranging them accordingly. If con-
trols could speak, the conversation might go something like this:

Layout Engine: “Control, how much space would you like to have?”

<This is the Measure Stage>

Control: “I would like 50 DIUs for height, 100 DIUs for width, and a
margin of 3 DIUs in the containing Grid cell.”

Layout Engine asks all other controls and layout containers.

Layout Engine: “Sorry, you can have only 40 DIUs for height, but I can
grant the rest of your requests.”

<This is the Arrange Stage>

It seems every time Microsoft introduces a new
technology, we have to learn new a whole new
set of terms. WPF is no different! At the root of
the change are what we referred to as Forms
and Controls in Windows Forms (WinForms).
Here are some of the new terms:

 ✓ A Form in WinForms is referred to as a
Window in WPF.

 ✓ Anything placed on a WinForms Form is
called a control, whereas items placed
on a WPF Window are referred to as
UIElements.

 ✓ Panels are WPF UIElements used for
layout.

 ✓ A Control in WPF is a UIElement that can
receive focus and respond to user events.

 ✓ A Content control in WPF can contain only
a single item, which can in turn be other
UIElements.

 ✓ The WPF Window class is a specialized
Content control.

New tech, new terms

Using WPF to Lay Out Your Application

38_563489-bk05ch02.indd 55638_563489-bk05ch02.indd 556 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

557

Arranging Elements with Layout Panels
Designing a Window begins with a Layout control, or Panel. Panels are differ-
ent than Content controls in that they can hold multiple items, and depend-
ing on the Panel, a significant amount of plumbing is taken care of for you.

Panels control how UIElements relate to each other and to their contain-
ing UIElement and do not dictate absolute positioning. Most application
Windows require some combination of Panels to achieve the required user
interface, so it’s important to understand them all. WPF ships with six core
Panels:

 ✦ Stack Panel

 ✦ Wrap Panel

 ✦ Dock Panel

 ✦ Canvas

 ✦ Uniform Grid

 ✦ Grid

The Stack Panel
Stack Panels place UIElements in — wait for it — stacks. Items are placed
in either a vertical pile (the default), like a stack of DVDs, or a horizontal
arrangement, like books on a shelf. It is important to understand that the
order items appear in the XAML is the order they appear in the Panel — the
first UIElement in the XAML appears at the top (vertical) or on the far left
(horizontal). Figures 2-1 and 2-2 show the same set of buttons in both orien-
tations. Listing 2-1 contains the XAML for the Vertical Stack Panel shown in
Figure 2-1.

 The code for these samples can be found at csharpfordummies.net.

Figure 2-1:
Vertical
Stack Panel.

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 55738_563489-bk05ch02.indd 557 3/19/10 8:14 PM3/19/10 8:14 PM

558

Listing 2-1: Vertical Stack Panel XAML

<StackPanel Name=”pnlStack” Grid.Row=”0”
Orientation=”Vertical”>

 <Button Content=”A Button”/>
 <Button Content=”Another Button”/>
 <TextBlock Text=”This is a text block”/>
 <Button Content=”Short”/>
 <Button Content=”Really Long Button Label”/>
</StackPanel>

Figure 2-2:
Horizontal
Stack Panel.

Remember the conversation between the rendering Engine and the Control
at the beginning of this chapter? The horizontal layout illustrates the clip-
ping that can take place when the sum of the preferred sizes of controls in a
container is larger than the container can hold.

Orientation (as well as all other properties) can be changed at runtime, as
illustrated by Listing 2-2. The Button at the bottom of the Window changes
the orientation, the button label, and the Window Title in the click event.
Chapter 4 shows a better way of coding Button click events.

Listing 2-2: Changing Stack Panel Orientation in Code

private void cmdOrientation_Click(object sender,
RoutedEventArgs e)

{
 Button button = sender as Button;
 if (button.Content.ToString() == “Set Vertical”)
 {
 pnlStack.Orientation = Orientation.Vertical;
 button.Content = “Set Horizontal”;
 Title = “Stack Panel - Vertical”;
 }
 else
 {
 pnlStack.Orientation = Orientation.Horizontal;
 button.Content = “Set Vertical”;
 Title = “Stack Panel - Horizontal”;
 }
}

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 55838_563489-bk05ch02.indd 558 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

559

The Wrap Panel
The Wrap Panel automatically wraps overflow content onto the next line(s).
This is different than how a typical toolbar works, where overflow items are
hidden when there isn’t enough real estate to show them. Figures 2-3 and 2-4
show the same content controls from the Stack Panel (a mixture of buttons
and a text block) in a Wrap Panel. The first Window has enough room to show
all the UIElements, and the second shows the wrapping of elements because
of a lack of room. The XAML for the Wrap Panel sample is in Listing 2-3.

Figure 2-3:
Wrap Panel
(wide form).

Figure 2-4:
Wrap Panel
(narrow
form).

Note that even with the Wrap Panel, if the container can’t hold the widest
item (the last button in the example), some clipping will take place.

Listing 2-3: Wrap Panel XAML

<WrapPanel>
 <Button Content=”A Button”/>
 <Button Content=”Another Button”/>
 <TextBlock Text=”This is a text block”/>
 <Button Content=”Short”/>
 <Button Content=”Really Long Button Label”/>
</WrapPanel>

The Dock Panel
The Dock Panel uses attached properties (introduced in Chapter 1 of this
minibook) to “dock” child UIElements. (See Figure 2-5 and Listing 2-4.) An
important thing to remember is that child elements are docked in XAML
order, which means if you have two items assigned to the left side (through
DockPanel.Dock=“left”), the first UIElement as it appears in the XAML gets
the far left wall of the Panel, followed by the next item.

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 55938_563489-bk05ch02.indd 559 3/19/10 8:14 PM3/19/10 8:14 PM

560

The Dock Panel also has a setting called LastChildFill. If this is true, the
last element in XAML will fill the remaining real estate. Elements (prior to
the last XAML element) that do not have a Dock setting specified will default
to DockPanel.Dock=“Left”.

Figure 2-5:
Dock Panel.

Listing 2-4: Dock Panel XAML

<DockPanel LastChildFill=”True”>
 <Button DockPanel.Dock=”Left” Content=”Far Left”/>
 <Button DockPanel.Dock=”Left” Content=”Near Left”/>
 <Button DockPanel.Dock=”Top” Content=”Top”/>
 <Button DockPanel.Dock=”Bottom” Content=”Bottom”/>
 <Button Content=”Fill”/>
 <Button Content=”Fill More”/>
</DockPanel>

Canvas
The Canvas is a bit of an anomaly in WPF, since it doesn’t use flow layout,
but goes back to fix position layout rendering. “What?!” you say. “I thought
flow layout was the way of the future!”

Well, it is . . . most of the time. In some cases, part of your application needs
to be laid out the “old way.” A graphical application used to design floor
plans is a perfect example.

Items are placed (or drawn) on the canvas relative to any side, and layering
is handled through z-order. (See Figure 2-6 and Listing 2-5.)

Figure 2-6:
Canvas
sample.

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56038_563489-bk05ch02.indd 560 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

561

Listing 2-5: Canvas XAML

<Canvas>
 <Rectangle Canvas.Left=”40” Canvas.Top=”40”

Height=”53” Name=”rectangle1” Stroke=”Black” Width=”96”
Fill=”#FFE22323” />

 <Ellipse Canvas.Left=”28” Canvas.Top=”142”
Height=”80” Name=”ellipse1” Stroke=”Black” Width=”161”
Fill=”#FF0000FA” />

 <Ellipse Canvas.Left=”96” Canvas.Top=”14” Height=”108”
Name=”ellipse2” Stroke=”Black” Width=”78” Fill=”#FFE5D620”
/>

</Canvas>

The Uniform Grid
The Uniform Grid divides the layout area into equally sized cells. (See
Figure 2-7 and Listing 2-6.) The number of Rows and Columns are defined in
the UniformGrid XAML tag. As discussed in Chapter 1, cell contents are
positioned using the Grid.Row and Grid.Column attached properties.
Note that the Rows and Columns are zero-based.

The Uniform Grid is not as versatile as the Grid (see the next section), but if
you need a very quick checkerboard pattern, it can be an effective Panel. In
order to highlight the borders of the cells, I’ve added Borders. For more on
Borders, see the section “Exploring Common XAML Controls,” later in this
chapter.

Figure 2-7:
Uniform
Grid.

Listing 2-6: Uniform Grid XAML

<UniformGrid Rows=”2” Columns=”2”>
 <Border Grid.Row=”0” Grid.Column=”0” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”0,0”/>
 </Border>
 <Border Grid.Row=”0” Grid.Column=”1” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”0,1”/>
(continued)

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56138_563489-bk05ch02.indd 561 3/19/10 8:14 PM3/19/10 8:14 PM

562

Listing 2-6 (continued)

 </Border>
 <Border Grid.Row=”1” Grid.Column=”0” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”1,0”/>
 </Border>
 <Border Grid.Row=”1” Grid.Column=”1” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”1,1”/>
 </Border>
</UniformGrid>

The Grid
Chapter 1 introduced the Grid, which is the most common starting point to
screen design. The Grid is in fact the default panel in a Window when you
add a new WPF Window to your project.

The Grid divides the layout area with rows (RowDefinitions) and col-
umns (ColumnDefinitions). The difference between the Grid and the
Uniform Grid is that the Grid allows for sizing of the cells by defining
RowDefinition Height and ColumnDefinition Width.

Definitions for Rows and Columns are specified with the Grid.
RowDefinitions and Grid.ColumnDefinitions tags (see Listing 2-7).

Listing 2-7: XAML Grid RowDefinitions and ColumnDefinitions

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”2*” />
 <RowDefinition Height=”3*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
</Grid>

Sizing Rows and Columns
There are three GridUnitTypes used for defining Heights and Widths:

 ✦ Pixel: Fixed size in Device Independent Units.

 You define a fixed height or width based on DIUs by specifying a number
in the definition. This goes against the Flow Layout grain, but there are cer-
tainly valid reasons to do this, such as when a graphic image on a Window
doesn’t scale well (up or down) and needs to be a fixed size. Fixed sizing

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56238_563489-bk05ch02.indd 562 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

563

should be used with caution, as it can limit the effectiveness of the user
interface. If the content is dynamic or needs to be localized, the controls
could clip the content or wind up leaving a lot of wasted space.

 ✦ Auto: Size is based on the preferred size of the contents.

 The Auto definition allows the Row or Column to determine how large
(or small) it can be based on its content. This is decided during the mea-
sure stage of the layout process.

 ✦ Star: Size uses all remaining space.

 The Star tells the rendering engine, “Give me all you’ve got! I’ll take it
all!” Each star defined gets an equal portion of what’s left after all other
sizing options have been computed. To achieve proportional sizing, mul-
tipliers can be added. For example, in Figure 2-8 (and in Listing 2-8), the
first row uses 40 percent (2⁄5) of the available space and the second row
uses the remaining 60 percent (3⁄5).

Figure 2-8:
Basic
Grid with
proportional
(*) row
heights.

Listing 2-8: Basic Grid XAML

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”2*” />
 <RowDefinition Height=”3*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Border Grid.Row=”0” Grid.Column=”0” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”0,0”/>
 </Border>
 <Border Grid.Row=”0” Grid.Column=”1” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”0,1”/>
 </Border>

(continued)

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56338_563489-bk05ch02.indd 563 3/19/10 8:14 PM3/19/10 8:14 PM

564

Listing 2-8 (continued)

 <Border Grid.Row=”1” Grid.Column=”0” BorderBrush=”Black”
BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”1,0”/>
 </Border>
 <Border Grid.Row=”1” Grid.Column=”1” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”1,1”/>
 </Border>
</Grid>

RowSpan and ColumnSpan
Similar to HTML tables, content in a Grid can span rows or columns by using
the Grid.RowSpan and Grid.ColumnSpan attached properties. Figure 2-9
(and Listing 2-9) shows a Grid layout with the Border controls spanning both
columns in the first row and spanning the next two rows in the first column.

Figure 2-9:
Grid with
row and
column
spans.

Listing 2-9: Column and Row Span XAML

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”2*” />
 <RowDefinition Height=”3*” />
 <RowDefinition Height=”5*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Border Grid.Row=”0” Grid.Column=”0” Grid.

ColumnSpan=”2” BorderBrush=”Black” BorderThickness=”1”
HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>

 <TextBlock Text=”0,0 - 0,1”/>
 </Border>
 <Border Grid.Row=”1” Grid.Column=”0” Grid.

RowSpan=”2” BorderBrush=”Black” BorderThickness=”1”
HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>

 <TextBlock Text=”1,0 - 2,1”/>

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56438_563489-bk05ch02.indd 564 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

565

 </Border>
 <Border Grid.Row=”1” Grid.Column=”1” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”1,1”/>
 </Border>
 <Border Grid.Row=”2” Grid.Column=”1” BorderBrush=”Black”

BorderThickness=”1” HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”>

 <TextBlock Text=”2,1”/>
 </Border>
</Grid>

Horizontal and vertical alignment within
parent container’s layout slot
You align an element within a container’s layout slot by setting the
VerticalAlignment and HorizontalAlignment properties (see the
Border element in Listing 2-9 for an example). Horizontal settings are
Center, Left, Right, and Stretch. Vertical options are Center, Top,
Bottom, and Stretch. Stretch specifies the element to fill all available
space. Explicit sizing of elements overrides the Stretch setting.

Content alignment within Content Controls
The same options can be used for setting the alignment of the Content
within a Content Control by using the HorizontalContentAlignment and
VerticalContentAlignment properties in the control.

Margin versus padding
Margins create space around a UIElement and its parent container. Margin
values start with the left and rotate clockwise (which is different than CSS,
just to keep you on your toes). You can also use some abbreviations. Setting
the value as one number makes a uniform margin; setting the value to two
numbers (comma separated) sets the left and right margins to the first
number and the top and bottom margins to the second.

<Button Margin=”2,4,2,4” Content=”Push Me” /> <!--L,T,R,B-->
<Button Margin=”2,4” Content=”Push Me” /> <!--LR,TB-->
<Button Margin=”2” Content=”Push Me” /> <!--LTRB-->

Shared size groups
Most complex Windows require multiple Panels to achieve the desire User
Experience. This can introduce erratic Windows if size of the content in one
Grid is different than that of the other. Figure 2-10 illustrates the problem.

Fortunately, there is a simple solution. By setting the Grid.IsShared
SizeScope attached property on the parent Grid, all the child Grids can

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56538_563489-bk05ch02.indd 565 3/19/10 8:14 PM3/19/10 8:14 PM

566

define Rows and Columns that subscribe to a SharedSizeGroup, and the
rendering engine will ensure that they are sized correctly. Figure 2-11 illus-
trates the effects of setting these properties. The abbreviated XAML is shown
in Listing 2-10.

Listing 2-10: Shared Size Groups

<Grid Grid.IsSharedSizeScope=”False”>
 <Grid Grid.Row=”1” Grid.Column=”0”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto”

SharedSizeGroup=”Header” />
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
 </Grid>
 <Grid Grid.Row=”3” Grid.Column=”0”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto”

SharedSizeGroup=”Header”/>
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
 </Grid>
</Grid>

Figure 2-10:
Multiple
Grids
without
shared
sizing.

Figure 2-11:
Multiple
Grids with
shared
sizing.

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56638_563489-bk05ch02.indd 566 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

567

Putting it all together with a simple data entry form
For complex data entry forms, the DataGrid is most appropriate (for more
information, see the section “Exploring Common XAML Controls,” later in
this chapter). The data entry form in this example uses multiple Grids to
achieve the desired look. The text boxes are contained in columns with Star
sizing so they will grow and shrink with the form. Also notice how the but-
tons stay in the same relative position as the form size changes.

Listing 2-11 shows the XAML required to build the Window shown in Figures
2-12 and 2-13.

Listing 2-11: Simple Data Entry Form XAML

<Grid Background=”FloralWhite”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”10”/>
 <RowDefinition Height=”Auto”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>
 <Label Grid.Row=”0” Grid.Column=”0” Grid.RowSpan=”2”

Content=”Name”
 HorizontalAlignment=”Stretch” HorizontalContentAl

ignment=”Center”>
 <Label.LayoutTransform>
 <RotateTransform Angle=”-90”/>
 </Label.LayoutTransform>
 </Label>
 <Label Grid.Row=”0” Grid.Column=”1” Content=”First:”
 HorizontalAlignment=”Stretch” HorizontalContentAl

ignment=”Right”/>
 <TextBox Grid.Row=”0” Grid.Column=”2”

HorizontalAlignment=”Stretch” />
 <Label Grid.Row=”1” Grid.Column=”1” Content=”Last:”
 HorizontalAlignment=”Stretch” HorizontalContentAl

ignment=”Right”/>
 <TextBox Grid.Row=”1” Grid.Column=”2”

HorizontalAlignment=”Stretch” />
 <Label Grid.Row=”2” Grid.Column=”1” Content=”Address:”
 HorizontalAlignment=”Stretch” HorizontalContentAl

ignment=”Right”/>
(continued)

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56738_563489-bk05ch02.indd 567 3/19/10 8:14 PM3/19/10 8:14 PM

568

Listing 2-11 (continued)

 <TextBox Grid.Row=”2” Grid.Column=”2”
HorizontalAlignment=”Stretch” />

 <Label Grid.Row=”3” Grid.Column=”1” Content=”City:”
 HorizontalAlignment=”Stretch” HorizontalContentAl

ignment=”Right”/>
 <TextBox Grid.Row=”3” Grid.Column=”2”

HorizontalAlignment=”Stretch” />
 <Button Grid.Row=”3” Grid.Column=”3” Content=”Lookup”

Margin=”3,0,3,0”/>
 <Label Grid.Row=”4” Grid.Column=”1” Content=”State:”
 HorizontalAlignment=”Stretch” HorizontalContentAl

ignment=”Right”/>
 <Grid Grid.Row=”4” Grid.Column=”2”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”Auto”/>
 <ColumnDefinition Width=”2*”/>
 </Grid.ColumnDefinitions>
 <TextBox Grid.Row=”0” Grid.Column=”0”

HorizontalAlignment=”Stretch” />
 <Label Grid.Row=”0” Grid.Column=”1” Content=”Zip:”

HorizontalAlignment=”Right” />
 <TextBox Grid.Row=”0” Grid.Column=”2”

HorizontalAlignment=”Stretch” />
 </Grid>
 <Grid Grid.Row=”6” Grid.Column=”0” Grid.ColumnSpan=”3”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”Auto”/>
 <ColumnDefinition Width=”Auto”/>
 </Grid.ColumnDefinitions>
 <Button Grid.Row=”0” Grid.Column=”1” Content=”Save”

Margin=”3,0”/>
 <Button Grid.Row=”0” Grid.Column=”2” Content=”Close”

Margin=”3,0”/>
 </Grid>
</Grid>

And yes, that’s a lot of XAML! One of the many great things about WPF is the
flexibility to be able to create just about any look and feel you can dream up.
But, sometimes (well, most of the time) it will take a lot of angle brackets.

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56838_563489-bk05ch02.indd 568 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

569

Figure 2-12:
Simple data
entry form.

Figure 2-13:
Simple data
entry form
widened.

In addition to using XAML for layout, all the examples shown can be done
exclusively in code. “Shenanigans!” you say? No, it’s true. Even Row/Column
sizing.

Fixed sizing is specified by assigning a number to the Width property of the
ColumnDefinition or RowDefinition. Assigning Auto or * is more com-
plicated, since the Width property is of type GridLength. (See Listing 2-12.)

Listing 2-12: Setting Auto and Star Sizing in Code

//Set to Auto sizing
column1 = new ColumnDefinition();
column1.Width = new GridLength(1, GridUnitType.Auto);
//Set to Star sizing
column2 = new ColumnDefinition();
column2.Width = new GridLength(1, GridUnitType.Star);

 For the full example (and many more), refer to the MSDN Documentation
found here: http://msdn.microsoft.com/en-us/library/system.
windows.gridunittype.aspx

Panels of honorable mention
In addition to the Panels already discussed, there are four additional special-
ized Layout Panels. As they are extremely specialized, I won’t cover them in
any great detail:

 ✦ TabPanel: Handles the layout of items on a TabControl.

 ✦ ToolbarPanel: Handles the layout of items in a Toolbar.

Arranging Elements with Layout Panels

38_563489-bk05ch02.indd 56938_563489-bk05ch02.indd 569 3/19/10 8:14 PM3/19/10 8:14 PM

570

 ✦ ToolbarOverflowPanel: Handles the layout of the controls that over-
flow from a Toolbar.

 ✦ VirtualizingStackPanel: Used for large amounts of data binding
scenarios. Renders only the visible items in the data collection.

 ✦ InkCanvas: Canvas panel that accepts digital ink input. Used for sce-
narios like collection of signatures with Tablet PCs.

Exploring Common XAML Controls
A significant number of controls ship out of the box with Visual Studio 2010
(and more and more vendor-supplied controls are available for purchase).
This section covers the more commonly used controls. I prefer to divide the
available controls into three categories:

 ✦ Display-only controls

 ✦ Basic input controls

 ✦ List- based controls

All the controls in this section are bindable to data (see Chapter 3 in this
minibook) and modifiable through code.

Display only controls
Four main controls focus on displaying information to the user:

 ✦ Image: The Image control display images (of type .bmp, .gif,
.ico, .jpg, .png, .wdp, and .tiff). To preserve the image’s
aspect ratio, set the Width or Height, but not both. Additionally, the
DecodePixelWidth should be set to the same size as the Width. This
will cause the rendering engine to scale the image appropriately, poten-
tially saving a significant amount of memory.

 Listing 2-13 shows the XAML to load an image that shows a color wheel.
Only the Width and DecodePixelWidth are set. The resulting Window
is shown in Figure 2-14.

Listing 2-13: Image Control

<Image Grid.Row=”0” Grid.Column=”0” Width=”256” >
 <Image.Source>
 <BitmapImage DecodePixelWidth=”256” UriSource=”/

Images/1460_PaintPalette_256x256.png”/>
 </Image.Source>
</Image>

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57038_563489-bk05ch02.indd 570 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

571

Figure 2-14:
Image
control.

 ✦ TextBlock and Label: Both the TextBlock and the Label controls
are designed to provide text or other content to the user with a few
distinctions. The TextBlock control is designed to be the light-weight
“little brother” to the Label, deriving directly from UIElement.

 The Label control provides access modifier capability and also derives
from ContentControl, which opens up additional possibilities. Placing an
underscore (_) before a letter enables the access modifiers. To provide
an underscore in the Label, use a double underscore. In XAML, since it
is essentially XML, the underscore is used because an ampersand would
break the XAML. The Target attribute specifies the control to receive
focus when the access modifier is keyed. You have to use a Binding
expression, which is covered in Chapter 3.

 Both the TextBlock and Label controls are illustrated in Listing 2-14
and Figure 2-15.

Listing 2-14: TextBlock and Label

<TextBlock Grid.Row=”0” Grid.Column=”0” Margin=”5,0”
HorizontalAlignment=”Right” Text=”Text_Block:”/>

<TextBox Grid.Row=”0” Grid.Column=”1” Margin=”5,0”
HorizontalAlignment=”Stretch”/>

<Label Grid.Row=”1” Grid.Column=”0” Margin=”5,0”
HorizontalAlignment=”Stretch”

 HorizontalContentAlignment=”Right” Content=”_Label__
Content:” Target=”{Binding ElementName=SampleTextBox}”/>

<TextBox Name=”SampleTextBox” Grid.Row=”1” Grid.Column=”1”
Margin=”5,0” HorizontalAlignment=”Stretch” />

 In the sample, the “L” in the Label content is the access modifier and
the double underscore adds an underscore character to the rendered
output.

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57138_563489-bk05ch02.indd 571 3/19/10 8:14 PM3/19/10 8:14 PM

572

Figure 2-15:
TextBlock
and Label
controls.

 ✦ ProgressBar: The final display-only control is the Progress Bar.
Although technically a descendant of the RangeBase class, it does not
enable user input like the Slider (see the next section). Figure 2-16 shows
a progress bar sample. To have the bar in perpetual motion, set the
IsIndeterminate property to True (although in Visual Studio 2010
Beta 2, this is not functioning properly — I’m sure it will be fixed by the
final release of Visual Studio 2010 and .NET 4).

Figure 2-16:
Progress
Bar at 50
percent.

Basic input controls
The workhorses of line of business applications are the basic input controls.
You will find some of these on every Window you create, and they are very
straightforward. Figure 2-17 shows all these controls on a single Window.
Here are the basic input controls:

 ✦ TextBox and PasswordBox: The TextBox and PasswordBox both
allow for the input of standard text into the Window. The PasswordBox
obfuscates the characters typed (using either the default system pass-
word character or a developer-specified character) and is used for
collection of sensitive information. The TextBox exposes its contents
through the Text property, the PasswordBox through the Password
property.

<TextBox Text=”Some Text”/>

<PasswordBox PasswordChar=”X” Password=”Some Text”/>

 ✦ CheckBox: Check boxes represent Boolean values through the
IsChecked property. The IsChecked property is nullable, which pro-
vides for three-state display (True, False, Unknown).

<CheckBox IsChecked=”True” Content=”True”/>
<CheckBox IsChecked=”False” Content=”False”/>
<CheckBox IsChecked=”{x:Null}” Content=”Null”/>

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57238_563489-bk05ch02.indd 572 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

573

 ✦ RadioButton: Radio buttons allow for a single selection within a range
of choices. The choices are determined by the GroupName property.
After one of the radio buttons is selected, the group can only be entirely
unselected programmatically.

<RadioButton GroupName=”RBSample” IsChecked=”True” Content=”Red”/>
<RadioButton GroupName=”RBSample” Content=”White”/>
<RadioButton GroupName=”RBSample” Content=”Blue”/>

 ✦ Slider: The slider control is a ranged input control. Similar to the
ProgressBar, the control takes Minimum, Maximum, and Interval
values. Additionally, you can specify to show Ticks, the location, and the
Tick frequency. Ticks? Those are the value lines that show on sliders.

<Slider Interval=”1” Minimum=”1” Maximum=”10” IsSnapToTickEnabled=”True”
TickPlacement=”BottomRight” TickFrequency=”1”/>

 ✦ DatePicker: New in Visual Studio 2010, the DatePicker control pro-
vides a concise method for getting (or displaying) date information by
combining a TextBox with a Calendar control. Included in the many
options is the capability to select multiple dates for a range of dates.

<DatePicker />

 ✦ Calendar: Also new in Visual Studio 2010 is the Calendar Control.
The difference between the Calendar and the DatePicker is
the Calendar control is always in full display mode whereas the
DatePicker’s default look is similar to a text box.

<Calendar />

 ✦ Button: Okay, you caught me. The Button control doesn’t really fit in
with the other controls in this section, because it’s more of an action
control. Buttons respond to a user’s click. The following code shows the
Button implemented with an event handler in the Window’s code-behind
file. In Chapter 4, you find out how to use Commands to gain much more
control of Buttons, but for now clicking the button merely displays
“Hello World.”

<Button Content=”Click Me” Click=”Button_Click”/>
private void Button_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(“Hello World”);
}

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57338_563489-bk05ch02.indd 573 3/19/10 8:14 PM3/19/10 8:14 PM

574

Figure 2-17:
All the
basic input
controls.

List-based controls
The list-based controls (also referred to as Item controls) add an incredible
amount of flexibility. As I discuss in Chapter 1, the list based controls no
longer have to rely on data tricks or other magic to make the content mean-
ingful to the user but can be templated to show greater details about the
Items contained.

Data binding is covered in great detail in Chapter 3, but the controls don’t
do anything unless you have something to show. The ComboBox, ListBox,
and DataGrid control samples will be bound to a class that represents a
Person. IList<Person>. See the Person class:

public class Person
{
 public string Name { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip { get; set; }
}

Here are the list based controls:

 ✦ ComboBox and ListBox: The ListBox and the ComboBox in the sample
below use a DataTemplate to create the display for the contained
Items. The main difference between the two controls is that the ComboBox
displays a single item with a drop-down selector (see Figure 2-18) and
the ListBox shows the entire list of items up to the allowed space and
scrolls the rest (see Figure 2-19). The ComboBox can be set up to enable
selecting items that are NOT in the list, as well as editing the items in the
list.

 Both the ComboBox and ListBox shown in Figures 2-18 and 2-19 use
the exact same XAML between the DataTemplate tags, so only the
ComboBox XAML is shown in Listing 2-15.

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57438_563489-bk05ch02.indd 574 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

575

Listing 2-15: ComboBox XAML

<ComboBox Margin=”5,0” HorizontalAlignment=”Stretch” Hori
zontalContentAlignment=”Stretch” ItemsSource=”{Binding
Path=People}”>

 <ComboBox.ItemTemplate>
 <DataTemplate>
 <Border HorizontalAlignment=”Stretch”

BorderBrush=”AliceBlue” BorderThickness=”1”>
 <Grid HorizontalAlignment=”Stretch”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”Auto”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto”/>
 <ColumnDefinition Width=”Auto”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row=”0” Grid.Column=”0” Grid.

ColumnSpan=”3” Margin=”5,0” Text=”{Binding Name}”/>
 <TextBlock Grid.Row=”1” Grid.Column=”0” Grid.

ColumnSpan=”3” Margin=”5,0” Text=”{Binding Address}”/>
 <TextBlock Grid.Row=”2” Grid.Column=”0”

Margin=”5,0” Text=”{Binding City}”/>
 <TextBlock Grid.Row=”2” Grid.Column=”1”

Margin=”5,0” Text=”{Binding State}”/>
 <TextBlock Grid.Row=”2” Grid.Column=”2”

Margin=”5,0” Text=”{Binding Zip}”/>
 </Grid>
 </Border>
 </DataTemplate>
 </ComboBox.ItemTemplate>
</ComboBox>

Figure 2-18:
The
ComboBox.

Figure 2-19:
The ListBox.

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57538_563489-bk05ch02.indd 575 3/19/10 8:14 PM3/19/10 8:14 PM

576

 ✦ TreeView: The TreeView is a hierarchical ItemsControl much like
Windows Explorer. The nodes (or branches) can be expanded or
contracted, giving a nice user interface into any multilevel data. (See
Figure 2-20.)

 The sample shown in Listing 2-16 (taken from MSDN) uses hard-coded
data, but with a simple hierarchical template tree views can be bound
just like any other control.

Listing 2-16: The TreeView XAML

<TreeView Name=”myTreeViewEvent” >
 <TreeViewItem Header=”Employee1” IsSelected=”True”>
 <TreeViewItem Header=”Jesper Aaberg”/>
 <TreeViewItem Header=”Employee Number”>
 <TreeViewItem Header=”12345”/>
 </TreeViewItem>
 <TreeViewItem Header=”Work Days”>
 <TreeViewItem Header=”Monday”/>
 <TreeViewItem Header=”Tuesday”/>
 <TreeViewItem Header=”Thursday”/>
 </TreeViewItem>
 </TreeViewItem>
 <TreeViewItem Header=”Employee2”>
 <TreeViewItem Header=”Dominik Paiha”/>
 <TreeViewItem Header=”Employee Number”>
 <TreeViewItem Header=”98765”/>
 </TreeViewItem>
 <TreeViewItem Header=”Work Days”>
 <TreeViewItem Header=”Tuesday”/>
 <TreeViewItem Header=”Wednesday”/>
 <TreeViewItem Header=”Friday”/>
 </TreeViewItem>
 </TreeViewItem>
</TreeView>

Figure 2-20:
The
TreeView.

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57638_563489-bk05ch02.indd 576 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 2

U
n

d
e

rsta
n

d
in

g
 th

e

B
a

sic
s o

f W
P

F

577

 ✦ DataGrid: Also new in the .NET 4 (along with the DatePicker and
Calendar controls) is the DataGrid. (See Figure 2-21.) Conspicuously
absent from the earlier versions of WPF, this control was part of the
WPF Toolkit, an out-of-band release available from www.codeplex.
com/wpf (still a great resource for WPF information).

 The DataGrid has five base columns:

 • DataGridTextColumn: For Text

 • DataGridCheckBoxColumn: For Boolean

 • DataGridComboBoxColumn: For ListItems

 • DataGridHyperlinkColumn: For displaying Links

 • DataGridTemplateColumn: For designing custom columns

 The DataGrid can be set to AutoGenerate the columns based on the
data it is bound to (as in the sample). It then uses reflection to deter-
mine the best column type based on the data.

<DataGrid HorizontalAlignment=”Stretch”
VerticalAlignment=”Stretch”
AutoGenerateColumns=”True” ItemsSource=”{Binding
People}”>

</DataGrid>

Figure 2-21:
A simple
Data Grid.

Exploring Common XAML Controls

38_563489-bk05ch02.indd 57738_563489-bk05ch02.indd 577 3/19/10 8:14 PM3/19/10 8:14 PM

578 Book V: Windows Development with WPF

38_563489-bk05ch02.indd 57838_563489-bk05ch02.indd 578 3/19/10 8:14 PM3/19/10 8:14 PM

Chapter 3: Data Binding in WPF

In This Chapter
✓ Understanding dependency properties

✓ Understanding binding modes

✓ Defining an example binding object

✓ Editing, converting, and visualizing data

Data binding allows data from your application objects (the binding
source) to be displayed in your user interface elements (the binding

target). What this means is that you can bind a Textbox’s Text property (for
example) to the Name property of an instance of your Car class. Depending
on the binding mode used when setting up the relationship, changes in the
Text property value of the Textbox can automatically update the underlying
Name property of your Car object (and vice versa) without requiring any
additional code.

It’s no mystery these days that most applications deal with data. As a WPF
developer, you have full creative reign on how data is presented, and how
information entered by your user can be validated and used to update your
underlying objects. One of WPF’s strengths is its rich data binding support.
This chapter walks you through the details.

Getting to Know Dependency Properties
Data binding happens when you set up a relationship between a bind-
ing source property with a binding target property. The binding target
object must be a DependencyObject, and the target property must be a
DependencyProperty.

Understanding dependency properties is crucial to obtaining a firm grasp
on WPF technology. Dependency properties are found in objects that inherit
from DependencyObject. At its root, a dependency property extends
the functionality of a regular property that already exists on a CLR object
by adding a set of services that is also known as the WPF Property System
(together, DependencyObject and DependencyProperty make up this
property system). Dependency properties can have their values determined

39_563489-bk05ch03.indd 57939_563489-bk05ch03.indd 579 3/19/10 7:56 PM3/19/10 7:56 PM

580

by multiple input sources, meaning that their values can be obtained through
a Style or a data binding expression. Dependency properties act like regular
properties, but they allow you to set values based on the following:

 ✦ A default value: These are pre-defined on the property.

 ✦ A calculated expression (similar to CSS expressions in the Web world):
This can be a data binding expression or a reference to resources
defined in the application.

 ✦ Data binding: This actually is built upon the preceding bullet using bind-
ing expressions on the binding source object.

 ✦ Property value inheritance: Not to be confused with object inheritance,
property value inheritance allows values set on parent properties to
be propagated down to its children. For instance, if you set FontSize
values on the Window element (the root element), child elements such
as TextBlock and Label automatically inherit those font property
values. You can see another example of this by reviewing the concept of
Attached Properties introduced in Chapter 1.

 ✦ Styling: Each style typically contains setters to set one or more property
values.

The WPF property system also provides built-in property value change noti-
fication and property value validation functionality, which I review in more
detail in this chapter.

At the end of the day, dependency properties give the developer the capabil-
ity to set property values directly in XAML as well as in code. The advantage
to this is that you can keep your code clean and leave initializing object
property values to XAML.

Exploring the Binding Modes
You have full control over how the binding relationship you create behaves.
Multiple types of binding modes are available to you in WPF. These include
the following:

 ✦ The OneTime binding mode is used when you want the source prop-
erty to only initially set the target property value. Subsequent changes
to the source property are not reflected in the target property. Similarly,
changes to the target property are not reflected in the source property.

 ✦ The OneWay binding mode is typically used for read-only behaving
properties. In this binding mode, data from the source property sets the
initial value of the target property. Subsequent changes to the source

Exploring the Binding Modes

39_563489-bk05ch03.indd 58039_563489-bk05ch03.indd 580 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

581

property will automatically update the binding target property value.
Conversely, any subsequent changes made to the target property value
are not reflected in the source property.

 ✦ The OneWayToSource binding mode is essentially the opposite of
the OneWay binding mode. In this binding mode, data from the source
property initializes the target property value. Subsequent changes to
the source property value will not update the target property. However,
updates to the target property value will automatically update the
source property value.

 ✦ The TwoWay binding mode merges the functionality of the OneWay
and OneWayToSource binding modes. In this binding mode, the source
property value initializes the target property value. Subsequent changes
to the source property value update the target property value. Similarly,
updates to the target property value will update the source property
value.

Investigating the Binding Object
Bindings can be defined using code or XAML. Here we begin with the XAML
version. In order to see how to bind data to your UI elements, we first define
a test set of data to work with.

 The complete solution is available at www.csharpfordummies.net in the
chapter downloads under BindingSample1

Defining a binding with XAML
Just follow these steps to create a binding with XAML:

 1. Create a new WPF Application project, name it BindingSample1,

 2. Define a simple Car class by adding a new Class to your solution
named Car.cs. Code it as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace BindingSample1
{
 public class Car
 {
 private string _make;

 public string Make
 {

Investigating the Binding Object

39_563489-bk05ch03.indd 58139_563489-bk05ch03.indd 581 3/19/10 7:56 PM3/19/10 7:56 PM

582

 get { return _make; }
 set { _make = value; }
 }
 private string _model;

 public string Model
 {
 get { return _model; }
 set { _model = value; }
 }

 public Car() { }
 }
}

 3. In MainWindow.xaml, replace the grid with one that defines a double
column and single row grid. Then add a label in each grid cell, like this:

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Label x:Name=”lblCarMake” Grid.Row=”0” Grid.Column=”0”
 Content=”{Binding Path=Make, Mode=OneTime}” />
 <Label x:Name=”lblCarModel” Grid.Row=”0” Grid.Column=”1”
 Content=”{Binding Path=Model, Mode=OneTime}” />
 </Grid>

 Take a look at the Content dependency property value. The information
contained within the curly braces defines the binding for the content to
be displayed in the labels. I describe what this Binding expression means
in just a moment, but first, let’s get some data to bind to!

 4. Open the MainWindow.xaml.cs code-behind file, and create a
method called GenerateData that instantiates a Car object and
assigns it to the DataContext of the window, like this:

 private void GenerateData()
 {
 Car car1 = new Car() { Make = “Athlon”, Model = “XYZ” };
 this.DataContext = car1;
 }

 DataContext defines the root object relative to which all child ele-
ments obtain their values (as long as the DataContext value on the
child elements is not directly set via XAML or code — this property is
an example of property value inheritance; its value is obtained from its
parent element unless otherwise specified).

 5. Call the GenerateData() method in the MainWindow construc-
tor method (public MainWindow()), immediately following
InitializeComponents() call.

 Now, looking back to the XAML file (MainWindow.xaml), the first label
lblCarMake will bind to the DataContext’s Make property. The
value is retrieved from the property specified in the binding’s Path

Investigating the Binding Object

39_563489-bk05ch03.indd 58239_563489-bk05ch03.indd 582 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

583

component. Similarly, the second label lblCarModel will bind to the
DataContext’s Model property as specified in the binding expression’s
Path property. Each of these bindings is using a OneWay mode, which
means the label content will be bound only once, regardless if the under-
lying object property being bound to changes.

 The Path component of the XAML Binding expression simply tells
the XAML processor to take its value from a specific property of its
DataContext. The Path value can also express properties that are
nested, such as in the case of nested complex objects. In these cases,
you use dot notation to reach the desired property, such as Property.
SomeObject.SomeOtherProperty.

 6. Run the application.

 You can see that the labels now display the Make and Model of the
Car object that was assigned to the DataContext of the window. (See
Figure 3-1.)

Figure 3-1:
Data
binding to
properties
of a Data
Context.

Defining a binding with C#
Defining bindings can also be done using C#. To demonstrate this, remove
the Content attribute entirely from both labels in the XAML file. The label
markup should now resemble the following:

 <Label x:Name=”lblCarMake” Grid.Row=”0” Grid.Column=”0” />
 <Label x:Name=”lblCarModel” Grid.Row=”0” Grid.Column=”1” />

Modify the GenerateData() method in MainWindow.xaml.cs to imple-
ment the Binding definitions in code. To do this, you must instantiate
Binding objects directly. The constructor of the Binding object takes
in the string Path value. Use the BindingOperations class to apply the
Binding to the Content dependency property of your labels.

Investigating the Binding Object

39_563489-bk05ch03.indd 58339_563489-bk05ch03.indd 583 3/19/10 7:56 PM3/19/10 7:56 PM

584

 BindingOperations is a helper class provided to you by WPF. It has static
methods that give you the power to add and clear data binding definitions
on application elements.

The following code shows you how to define the Binding objects, and assign
the binding to the Content of the labels:

 private void GenerateData()
 {
 Car car1 = new Car() { Make = “Athlon”, Model = “XYZ” };

 Binding makeBinding = new Binding(“Make”);
 makeBinding.Mode = BindingMode.OneTime;
 BindingOperations.SetBinding(lblCarMake,
 Label.ContentProperty, makeBinding);

 Binding modelBinding = new Binding(“Model”);
 modelBinding.Mode = BindingMode.OneTime;
 BindingOperations.SetBinding(lblCarModel,
 Label.ContentProperty, modelBinding);

 this.DataContext = car1;
 }

Run the application and observe that it runs the same way as when the bind-
ings were defined using XAML.

 Dependency properties are typically defined with the suffix “Property,” but
you only see them this way navigating MSDN documentation and accessing
them through code. In XAML, you specify dependency property attributes
by dropping the “Property” suffix on the name.

Editing, Validating, Converting,
and Visualizing Your Data

In the preceding section, you got a taste of binding syntax and saw data
appear on the screen. This section builds on this knowledge and shows you
a simple example of updating data, from user interface elements as well as
updating the user interface with changes happening to objects behind the
scenes.

 The complete solution is available on the Web in the BindingSample2
project.

To do this, follow these steps:

 1. Create a new WPF Application project and name it BindingSample2.

 Let’s reuse the Car class that we created in BindingSample1 (Note: If
copying and pasting this class, ensure you change the namespace of the
class to BindingSample2.)

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 58439_563489-bk05ch03.indd 584 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

585

 In this example, you will display the make and model of a Car object (the
DataContext) in TextBox controls. This enables you to edit the values
of the Car properties. You will also use a TwoWay data binding mode so
that changes made from the user interface will be reflected in the under-
lying Car object, and any changes made to the Car object from code-
behind will be reflected in the user interface.

 2. Define two buttons, one that shows a message box containing the cur-
rent value of the DataContext, the other that forces changes to the
DataContext through code-behind.

 In MainWindow.xaml, replace the Grid content with this:
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <StackPanel Orientation=”Horizontal” Grid.Row=”0” Grid.

Column=”0”>
 <Label Content=”Make” />
 <TextBox x:Name=”lblCarMake” VerticalAlignment=”Top”
 Text=”{Binding Path=Make, Mode=TwoWay}”
 Width=”200” Height=”25” />
 </StackPanel>

 <StackPanel Orientation=”Horizontal” Grid.Row=”0” Grid.Column=”1”

>
 <Label Content=”Model” />
 <TextBox x:Name=”lblCarModel” VerticalAlignment=”Top”
 Text=”{Binding Path=Model, Mode=TwoWay}”
 Width=”200” Height=”25” />
 </StackPanel>

 <Button x:Name=”btnShowDataContextValue”
 Click=”btnShowDataContextValue_Click”
 Content=”Show Current Data Context Value”
 Grid.Row=”1” Grid.Column=”0”/>

 <Button x:Name=”btnChangeDataContextValue”
 Click=”btnChangeDataContextValue_Click”
 Content=”Change Data Context Value with Code-Behind”
 Grid.Row=”1” Grid.Column=”1” />

 </Grid>

 3. In the code-behind file, MainWindow.xaml.cs, add the following
methods:

 private void GenerateData()
 {
 Car car1 = new Car() { Make = “Athlon”, Model = “XYZ” };
 this.DataContext = car1;
 }

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 58539_563489-bk05ch03.indd 585 3/19/10 7:56 PM3/19/10 7:56 PM

586

 private void btnShowDataContextValue_Click(object sender,
 RoutedEventArgs e)
 {
 Car dc = this.DataContext as Car;
 MessageBox.Show(“Car Make: “ + dc.Make + “\nCar Model: “
 + dc.Model);
 }

 private void btnChangeDataContextValue_Click(object sender,
 RoutedEventArgs e)
 {
 Car dc = this.DataContext as Car;
 dc.Make = “Changed Make”;
 dc.Model = “Changed Model”;
 }

 4. In the constructor for MainWindow(), ensure that you call
the GenerateData() method immediately following the
InitializeComponents() call.

 5. Run this application.

 You will see that the values from the DataContext display properly in
the TextBox controls. Feel free to change the values in the TextBox con-
trols. For instance, change the Make value to Athlon X, and the model
to ABC. When you are finished with your edits, click the Show Current
Data Context Value button. The changes you made to the values in the
TextBox are now reflected in the underlying DataContext object. (See
Figure 3-2.)

Figure 3-2:
Editing
data using
a TwoWay
binding
mode.

 6. Click the OK button to get rid of the message box.

 If you look in the Click event handler of the Change Data Context Value
With Code-Behind button (btnChangeDataContextValue_Click),
you will note that the DataContext Car object properties will be
changed to and Changed Model, respectively.

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 58639_563489-bk05ch03.indd 586 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

587

 7. Click the Change Data Context Value With Code-Behind button.

 Hmmm. Nothing is happening. What is up with that? If you click on
the Show Current Data Context Value button, you will see the prop-
erties have in fact been changed. Because you’re using a TwoWay
binding, your settings should automatically update your UI, right?
Wrong! This is where another feature of WPF, the concept of
INotifyPropertyChanged, comes into play.

 INotifyPropertyChanged is a simple interface that allows your
objects to raise an event that notifies its subscribers (namely your appli-
cation) that a property value on the object has changed. Client applica-
tions subscribe to these events and update the user interface with the
new values only when changes occur.

 A similar interface exists for collections as well — the INotify
CollectionChanged interface. WPF also provides a generic
class called ObservableCollection<T> that already imple-
ments INotifyCollectionChanged for you. When creating
an ObservableCollection or your own collection that imple-
ments INotifyCollectionChanged, you need to ensure that the
objects that will be contained within the collection also implement
INotifyPropertyChanged interface.

 The INotifyPropertyChanged interface contains a single event that
must be implemented. This event is called PropertyChanged, and its
parameters are the object that owns the property that has changed (the
sender), and the string name of the property that has changed.

 8. Open your Car class, and have it implement the INotifyProperty
Changed interface.

 The interface is located in the System.ComponentModel namespace
(add using System.ComponentModel to the top of your class)
Implementing this interface adds the following event to the Car class:

public event PropertyChangedEventHandler PropertyChanged;

 In order for the application to be notified of the changes that occur in
Car objects, the PropertyChanged event must be fired each time a
property value has changed.

 9. To implement this in the Car class, create a helper method called
NotifyPropertyChanged that takes in a string property name and
fires the PropertyChanged event for the object instance and the
name of the property that has changed, like this:

 private void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 58739_563489-bk05ch03.indd 587 3/19/10 7:56 PM3/19/10 7:56 PM

588

 Checking to see if PropertyChanged is not null essentially means we
are checking to see if anyone is listening (subscribed) to the
PropertyChanged event.

 10. Now you need to modify the Set methods in each of the public proper-
ties on the Car object to call the NotifyPropertyChanged helper
method each time the property value has changed. Edit the public
properties like this:

 public string Make
 {
 get { return _make; }
 set {
 if (_make != value)
 {
 _make = value;
 NotifyPropertyChanged(“Make”);
 }
 }
 }

 public string Model
 {
 get { return _model; }
 set {
 if (_model != value)
 {
 _model = value;
 NotifyPropertyChanged(“Model”);
 }
 }
 }

 11. Run the application again.

 Now when you click the Change Data Context Value with Code-Behind
button, the changed values get reflected automatically in the TextBox
elements. This is due to the combination of the TwoWay binding mode
as well as the implementation of INotifyPropertyChanged. (See
Figure 3-3.)

Figure 3-3:
TwoWay
Data
Binding
with INotify-
Property-
Changed.

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 58839_563489-bk05ch03.indd 588 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

589

Validating data
It is good practice to validate any input provided to you from the user.
People aren’t perfect, and some people can be downright malicious. WPF
provides a built-in framework for data validation and error notification. It is
available to you through the implementation of the IDataErrorInfo inter-
face on your classes.

Let’s add validation to the Car class you already created in
BindingSample2 from the preceding section.

 The complete solution is available on the Web in the BindingSample2
Validation project.

Just follow these steps to add validation to your Car class:

 1. Open the Car.cs file, and edit the class to also implement the
IDataErrorInfo interface, like this:

 public class Car : INotifyPropertyChanged, IDataErrorInfo

 Implementing this interface adds the following methods to the Car class:
 public string Error
 {
 get { throw new NotImplementedException(); }
 }

In this chapter, we bind Label and TextBox
controls to properties of underlying objects.
You are not limited to this scenario; you can
bind to just about anything from primitive
variables to property values gleaned from
other UIElements. Element binding in particu-
lar has its own component in the Binding
expression. For instance, suppose you have
a TextBox and Label control in your
window. You would like to have the Content
of the Label automatically update with the
changing value of the Text property of the
TextBox. The XAML code to accomplish
Element Binding between the TextBox and
the Label looks similar to:

 <Label x:Name=”lblCarMake”
 Content=”{Binding

ElementName=txtCarMake,
Path=Text}” />

 <TextBox x:Name=”txtCarMake”
Width=”200” Height=”25” />

The C# code to define this binding looks similar
to:

 Binding b = new
Binding(“Text”);

 b.ElementName = “txtCarMake”;
 BindingOperations.

SetBinding(lblCarMake, Label.
ContentProperty, b);

Element binding

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 58939_563489-bk05ch03.indd 589 3/19/10 7:56 PM3/19/10 7:56 PM

590

 public string this[string columnName]
 {
 get { throw new NotImplementedException(); }
 }

 2. Edit the Get method of the Error property to return null.

 Now it’s time to add some validation rules to the properties of the
Car object. The Car Make and Model properties should enforce the
rule that they must always be at least three characters in length. The
public string this[string columnName] method is used by the
DataBinding engine to validate the properties of the object as they are
changed, based on the name of the property (which is what they mean
by columnName in the method signature). This method returns any
error messages related to the property being edited.

 3. To define and enforce these rules, edit the public string
this[string columnName] method like this:

 public string this[string columnName]
 {
 get {
 string retvalue = null;
 if (columnName == “Make”)
 {
 if (String.IsNullOrEmpty(this._make)
 || this._make.Length < 3)
 {
 retvalue = “Car Make must be at least 3 “ +
 “characters in length”;
 }
 }

 if (columnName == “Model”)
 {
 if (String.IsNullOrEmpty(this._model)
 || this._model.Length < 3)
 {
 retvalue = “Car Model must be at least 3 “+
 “characters in length”;
 }
 }

 return retvalue;
 }
 }

 4. In MainWindow.xaml, the Make and Model properties are bound
to TextBox controls in the user interface. To enable the text being
entered into the TextBoxes to be validated against the constraints
defined on the underlying property, edit the binding expressions in
each TextBox like this:

<TextBox x:Name=”txtCarMake” VerticalAlignment=”Top”
 Text=”{Binding Path=Make, Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnDataErrors=True,

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59039_563489-bk05ch03.indd 590 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

591

 ValidatesOnExceptions=True}”
 Width=”200” Height=”25” />

 <TextBox x:Name=”txtCarModel” VerticalAlignment=”Top”
 Text=”{Binding Path=Model, Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged,
 ValidatesOnDataErrors=True,
 ValidatesOnExceptions=True}”
 Width=”200” Height=”25” />

 UpdateSourceTrigger identifies when the validation calls take place.
In this example, validations occur as the text is changing, and is fired off
when the underlying object property fires the PropertyChanged event.

 ValidatesOnDataErrors is what enables the IDataErrorInfo vali-
dation method to be called on the property.

 ValidatesOnExceptions will invalidate the TextBox if the underly-
ing data source throws an exception, like when, for instance, you have
an integer property and the user enters a string — WPF automatically
throws the exception that the input string was not in the correct format.

 5. Run the Sample, and remove all text from the Make and Model
TextBox controls. You will see the TextBox controls are now ren-
dered in red; as you enter text back into the TextBox, as soon as you
reach three characters, the red stroke disappears Figure 3-4 shows the
Make text box in an invalid state.

Figure 3-4:
Simple Data
Validation
using the
IDataError-
Info
interface.

 6. The red stroke is sufficient enough to indicate that an error has
occurred, but it’s of little use to the users as they are not informed of
the details of the error. A simple way to display the error is to add
a tooltip on the TextBox. Do this by adding a Style resource to your
Window that defines a style that will trigger the tooltip when the

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59139_563489-bk05ch03.indd 591 3/19/10 7:56 PM3/19/10 7:56 PM

592

data is in an invalid state. Add the following XAML directly below the
Window tag at the top of MainWindow.xaml, like this.

 <Window.Resources>
 <Style x:Key=”errorAwareTextBox” TargetType=”{x:Type TextBox}”>
 <Style.Triggers>
 <Trigger Property=”Validation.HasError” Value=”true”>
 <Setter Property=”ToolTip”
 Value=”{Binding RelativeSource={x:Static RelativeSource.

Self},
 Path=(Validation.Errors)[0].ErrorContent}”/>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>

 7. Add a Style attribute to your TextBox Style, like this:

 Style=”{StaticResource ResourceKey=errorAwareTextBox}”

 Now when you run the application and remove the text out of the
TextBox controls, the TextBox displays a tooltip with the actual error
message. (See Figure 3-5.)

Figure 3-5:
Displaying
error
messages
using Styles.

Converting your data
WPF provides you the capability to cater your user interface to be intuitive
for the user. Sometimes this means allowing them to enter data in different
formats that make sense to them, giving you the responsibility of translating
their data entry into a format allowable by your data source. The same is
true vice versa; you will want to translate data from your data source into a
more intuitive form for the user. A popular use-case for this type of conver-
sion is the string representation of a date value, or if you want to display a
red or green circle instead of the values True or False.

WPF makes converting data easy by providing a simple interface to imple-
ment called IValueConverter. This interface contains two methods:

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59239_563489-bk05ch03.indd 592 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

593

 ✦ Convert: This method obtains values from the data source and molds
them to the form to be displayed to the user onscreen.

 ✦ ConvertBack: This method does the opposite — it takes the value from
the user interface and molds it into a form that the data source expects.

It is important to note that with these methods you are not held to the same
data type as the value being bound. For instance, your data source prop-
erty being bound can be a Date data type and the Convert method can still
return a string value to the user interface.

To demonstrate this feature, create a new WPF application project called
BindingSample3. This project is a dashboard application that can show
the status of servers on the network. In this project, you implement two user
controls, RedX and GreenCheck. You also create a value converter named
BooleanToIconConverter that converts a Boolean False value to display
the RedX control and converts a True value to display the GreenCheck con-
trol. These values indicate whether the server is available.

 A user control is a collection of reusable XAML. It can be made up of any
number of elements and is implemented with the same rules as when you imple-
ment a normal Window (for instance, you can have only one root element). You
can also define properties (including dependency properties!!) on user controls.

 Project is available on the Web under BindingSample3.

Follow these steps to create your Sample:

 1. Create a new WPF application named BindingSample3.

 2. Add a new User Control to the project; name it GreenCheck.xaml.

 3. Replace the XAML found in GreenCheck.xaml with this XAML:

<UserControl x:Class=”BindingSample3.GreenCheck”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/

presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-

compatibility/2006”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 mc:Ignorable=”d”
 d:DesignHeight=”50” d:DesignWidth=”50”>

 <Canvas x:Name=”CheckCanvas” Width=”50.4845” Height=”49.6377”
 Canvas.Left=”0” Canvas.Top=”0”>

 <Path x:Name=”CheckPath” Width=”43.4167” Height=”45.6667”
 Canvas.Left=”0” Canvas.Top=”1.3113e-006”
 Stretch=”Fill” Fill=”#FF006432”
 Data=”F1 M 19.0833,45.6667L 43.4167,2.16667L 38,
 1.3113e-006L 19.0833,42.5833L 2.41667,25.3333L

0,
 27.9167L 17.4167,44.25”/>
 </Canvas>
</UserControl>

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59339_563489-bk05ch03.indd 593 3/19/10 7:56 PM3/19/10 7:56 PM

594

 You are not expected to come up with things like the CheckPath off the
top of your head. (The path is what describes how the check mark is
drawn.) In the Expression Suite, you find designer tools that allow you to
draw items in a graphics program and export your final graphics in a
XAML format. Expression Design was the tool used to create the user
controls in this example.

 4. Add another user control to the project; name it RedX.xaml.

 5. Replace the XAML in the RedX.xaml file with this XAML:

<UserControl x:Class=”BindingSample3.RedX”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/

presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-

compatibility/2006”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 mc:Ignorable=”d”
 d:DesignHeight=”50” d:DesignWidth=”50”>

 <Canvas Width=”44.625” Height=”45.9394”>

 <Path x:Name=”Line1Path” Width=”44.625” Height=”44.375”
 Canvas.Left=”0” Canvas.Top=”0” Stretch=”Fill”
 Fill=”#FFDE0909”
 Data=”F1 M 0,3.5L 3.5,0L 44.625,41L 42.125,44.375”/>

 <Path x:Name=”Line2Path” Width=”43.5772” Height=”45.3813”
 Canvas.Left=”0.201177” Canvas.Top=”0.55809”

Stretch=”Fill”
 Fill=”#FFDE0909” Data=”F1 M 3.7719,45.9394L 0.201177,
 42.5115L 40.353,0.55809L 43.7784,2.98867”/>

 </Canvas>
</UserControl>

 6. Add a new class called BooleanToIconConverter.cs.

 7. Add the following using statement to your class:

using System.Windows.Data;

 8. Have the BooleanToIconConverter inherit the IValueConverter
interface. In the Convert method, if the value passed in is True,
have it return a new instance of the GreenCheck user control.
If the value passed in is False, have the Convert method return
an instance of the RedX user control. Here’s the code for the
BooleanToIconConverter class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows.Data;

namespace BindingSample3
{
 public class BooleanToIconConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59439_563489-bk05ch03.indd 594 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

595

 object parameter,
 System.Globalization.CultureInfo culture)
 {
 if (value != null)
 {
 bool boolValue = (bool)value;
 if (boolValue)
 return new GreenCheck();
 else
 return new RedX();
 }

 return value;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter,
 System.Globalization.CultureInfo

culture)
 {
 throw new NotImplementedException();
 }
}

 9. Add a new class called ServerStatus.cs that has three properties:
the Server name, a Boolean indicator if the server is up, and a number
of currently connected users. This will be the data class used in the
application. Here is the code for ServerStatus.cs:

 public class ServerStatus
 {
 private string _serverName;

 public string ServerName
 {
 get { return _serverName; }
 set { _serverName = value; }
 }
 private bool _isServerUp;

 public bool IsServerUp
 {
 get { return _isServerUp; }
 set { _isServerUp = value; }
 }
 private int _numberOfConnectedUsers;

 public int NumberOfConnectedUsers
 {
 get { return _numberOfConnectedUsers; }
 set { _numberOfConnectedUsers = value; }
 }

 public ServerStatus() { }
 }

 10. In MainWindow.xaml.cs, create a GenerateData() method (call it
immediately following the InitializeComponent() method in the
Window constructor) that will initialize a list of a few ServerStatus

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59539_563489-bk05ch03.indd 595 3/19/10 7:56 PM3/19/10 7:56 PM

596

objects and make that list the DataContext of the Window. Here’s the
code:

 private void GenerateData()
 {
 ServerStatus ss = new ServerStatus() {
 ServerName = “HeadquartersApplicationServer1”,
 NumberOfConnectedUsers = 983,
 IsServerUp = true
 };

 ServerStatus ss2 = new ServerStatus()
 {
 ServerName = “HeadquartersFileServer1”,
 NumberOfConnectedUsers = 0,
 IsServerUp = false
 };

 ServerStatus ss3 = new ServerStatus()
 {
 ServerName = “HeadquartersWebServer1”,
 NumberOfConnectedUsers = 0,
 IsServerUp = false
 };

 ServerStatus ss4 = new ServerStatus()
 {
 ServerName = “HQDomainControllerServer1”,
 NumberOfConnectedUsers = 10235,
 IsServerUp = true
 };

 List<ServerStatus> serverList = new List<ServerStatus>();
 serverList.Add(ss);
 serverList.Add(ss2);
 serverList.Add(ss3);
 serverList.Add(ss4);

 this.DataContext = serverList;
 }

 11. Save and build your application — this is done so that the user control
classes that you have defined are available to your XAML files.

 12. In MainWindow.xaml, replace the XAML with the XAML found in
the following code segment. I describe the details of this markup in a
moment.

<Window x:Class=”BindingSample3.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:BindingSample3”
 Title=”MainWindow” Height=”400” Width=”525”>
 <Window.Resources>
 <local:BooleanToIconConverter x:Key=”BooleanToIconConverter” />

 <DataTemplate x:Key=”ServerTemplate”>
 <Border BorderBrush=”Blue” Margin=”3” Padding=”3”
 BorderThickness=”2” CornerRadius=”5”

Background=”Beige”>

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59639_563489-bk05ch03.indd 596 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

597

 <StackPanel Orientation=”Horizontal”>

 <Label Content=”{Binding
 Path=IsServerUp,
 Converter={StaticResource

BooleanToIconConverter}}” />

 <StackPanel Orientation=”Vertical”
 VerticalAlignment=”Center”>

 <TextBlock FontSize=”25” Foreground=”Goldenrod”
 Text=”{Binding Path=ServerName}” />

 <TextBlock FontSize=”18” Foreground=”BlueViolet”
 Text=”{Binding Path=NumberOfConnectedUsers}”

/>
 </StackPanel>

 </StackPanel>
 </Border>
 </DataTemplate>

 </Window.Resources>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 </Grid.RowDefinitions>

 <ListBox x:Name=”lstServers” Width=”490” Height=”350”
 ItemsSource=”{Binding}” Grid.Row=”0” Grid.Column=”0”
 ItemTemplate=”{StaticResource

ResourceKey=ServerTemplate}” />
 </Grid>
</Window>

The first thing to note in MainWindow.xaml is that the namespace for the
local assembly (BindingSample3) was added to the Window (identified
by the namespace definition in the Window tag with the prefix local). This
enables you to instantiate classes that are defined in the current assembly in
XAML.

In the Window resources, we initialized an instance of our
BooleanToIconConverter, which is available to you through the local
namespace.

<local:BooleanToIconConverter x:Key=”BooleanToIconConverter” />

The next Window resource that is defined is a data template. This data tem-
plate provides a way to look at the data associated with a server’s current
status. The data template is defined as follows:

 <DataTemplate x:Key=”ServerTemplate”>
 <Border BorderBrush=”Blue” Margin=”3” Padding=”3”
 BorderThickness=”2” CornerRadius=”5” Background=”Beige”>

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59739_563489-bk05ch03.indd 597 3/19/10 7:56 PM3/19/10 7:56 PM

598

 <StackPanel Orientation=”Horizontal”>

 <Label Content=”{Binding
 Path=IsServerUp,
 Converter={StaticResource BooleanToIconConverter}}” />

 <StackPanel Orientation=”Vertical”
 VerticalAlignment=”Center”>

 <TextBlock FontSize=”25” Foreground=”Goldenrod”
 Text=”{Binding Path=ServerName}” />

 <TextBlock FontSize=”18” Foreground=”BlueViolet”
 Text=”{Binding Path=NumberOfConnectedUsers}” />
 </StackPanel>

 </StackPanel>
 </Border>
 </DataTemplate>

 In Chapter 1, I state that one of the main reasons to adopt WPF as a user
interface technology is its data visualization flexibility. Data templates
enable you to represent data contained in an object using any number of
XAML elements. The world is your oyster, and you can get as creative as you
want to relay application information to your user in the most usable, intui-
tive fashion using data templates.

Let’s analyze the ServerTemplate data template. This data template rep-
resents the display of an instance of a ServerStatus object. Look at the
Label element in the data template:

<Label Content=”{Binding Path=IsServerUp,
 Converter={StaticResource BooleanToIconConverter}}” />

The Content property of the label is bound to the Boolean IsServerUp
property of the ServerStatus object. You’ll also notice that there
is another component to the binding expression, called Converter.
This is where the Boolean value (IsServerUp) gets passed into the
BooleanToIconConverter and is rendered as the RedX or the
GreenCheck user control, depending on its value.

The rest of the data template simply outputs the server name of the
ServerStatus object in yellow, and the number of connected users in
blue-violet.

Within the Grid on the Window, a ListBox control is defined that displays a
list of servers on the network. Let’s look at the definition of the ListBox:

 <ListBox x:Name=”lstServers” Width=”490” Height=”350”
 Grid.Row=”0” Grid.Column=”0”
 ItemsSource=”{Binding}”
 ItemTemplate=”{StaticResource ResourceKey=ServerTemplate}” />

Editing, Validating, Converting, and Visualizing Your Data

39_563489-bk05ch03.indd 59839_563489-bk05ch03.indd 598 3/19/10 7:56 PM3/19/10 7:56 PM

Book V

Chapter 3

D
a

ta
 B

in
d

in
g

in

 W
P

F

599

 WPF provides a number of controls called ItemsControls that allow you
to bind collections of objects to them. Examples of ItemsControls are
ListBox and ComboBox (among others). Collections are bound to an
ItemsControl through the ItemsSource attribute. A data template can
also be applied to each object being bound through the ItemsControl
ItemTemplate attribute.

Through Property Value inheritance, the ItemsSource of the ListBox is
defaulted to the DataContext of Window. The empty {Binding} element
simply states that it will use the current binding of its parent, which uses
recursion up the element tree until it reaches a place where a binding is set.
Remember that in the GenerateData we are setting the Data Context
binding to the list of Servers to the Window itself, so the ListBox will inherit
that list as its ItemSource.

The data template that was defined in resources to describe a ServerStatus
object will be used to render each object being bound. You see this through
the ItemTemplate attribute that uses the StaticResource that points to
the ServerTemplate that was defined in resources.

Now when you run the application, you will see the ServerStatus data pre-
sented in a visually pleasing way! (See Figure 3-6.)

Figure 3-6:
Rendering a
collection of
data using
a value
converter
and data
templates.

Finding Out More about WPF Data Binding
This chapter is not meant to be inclusive of all functionality possible
through WPF’s amazing data binding support. Other aspects of WPF data
templates worth looking into include these concepts:

 ✦ DataTemplateSelector: This is a base class that allows you to render
a data template based on some logical condition.

Finding Out More about WPF Data Binding

39_563489-bk05ch03.indd 59939_563489-bk05ch03.indd 599 3/19/10 7:56 PM3/19/10 7:56 PM

600

 ✦ Using data templates as a means to provide data adding/editing capa-
bilities to the user.

 ✦ Switching a data template at runtime at the preference of the user.
This allows users to switch a data template at will. For instance, in a
ListBox, you may only display summary information; however, you
can provide a button in your data template that will enable users to
switch between the summary template and a more detailed template on
demand.

Finding Out More about WPF Data Binding

39_563489-bk05ch03.indd 60039_563489-bk05ch03.indd 600 3/19/10 7:56 PM3/19/10 7:56 PM

Chapter 4: Practical WPF

In This Chapter
✓ Commanding attention

✓ Getting your ViewModel on

Even though WPF still supports the direct event handler wire up (for
example, through the OnClick event), WPF introduces a much better

mechanism for responding to user events. It significantly reduces the
amount of code you have to write and adds testability to your application.
Traditional event handling is all contained in the code-behind for your form,
which is extremely difficult to test in an automated fashion.

Software patterns have been around for a long time, first brought to the fore-
front by the classic tome Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vissides —
commonly referred to as the “Gang of Four.” Software has evolved and many
new patterns have been developed over the years. One of the most effective
user interface patterns developed for WPF is the Model-View-View Model pat-
tern (commonly referred to as ViewModel). Using the ViewModel pattern in
your WPF applications will improve software reuse, testability, readability,
maintainability, and most of the other “ilities” as well.

Commanding Attention
The Command Pattern has been around since, well, forever, and you most
likely use it every day. Copy and Paste commands are example implemen-
tations of the pattern built into Windows and most Windows applications.
WPF provides a significant number of built-in commands and also allows for
completely customized commands!

Traditional handling of user events (and still supported in WPF) is through
an event handler. When the button on the Window is clicked, the code in the
event handler (which has to be in the code-behind file) will execute. By plac-
ing this code in the code-behind event handler, the business logic is now
mixed with the user interface code, mixing concerns. To be fair, nothing in
the framework makes one put the code in the code-behind; it just seems to
always end up there.

This gets compounded when additional UIElements are added to the
Window that needs to execute the same code. The common fix for this situ-
ation is to refactor the code in the original event handler out into a separate
method and have the event handlers for the related UIElements call the new

40_563489-bk05ch04.indd 60140_563489-bk05ch04.indd 601 3/19/10 8:14 PM3/19/10 8:14 PM

602

method. The new method can even be moved into the Business Layer, sepa-
rating concerns and allowing for testability.

The other issue is one of user experience. Often, menus and buttons need to
be actively enabled or disabled based on the condition of the data (or some
other condition/user action) in the Window. If the user has the option, they
tend to click “active” items repeatedly, wondering why nothing is happening.
They are, after all, trained at birth to find holes in your application.

The command pattern as implemented in WPF cleanly and easily resolves
both issues.

ICommand
ICommand (which is the base interface for all commands discussed here)
defines two event handlers and one event. See Listing 4-1.

Listing 4-1: ICommand Interface

bool CanExecute(object parameter);
void Execute(object parameter);
event EventHandler CanExecuteChanged

Perhaps the most powerful feature of WPF commands is the capability to
determine at runtime if the controls they are bound to are able to execute
(see the next section for a detailed discussion). CanExecute is run by
the CommandManager whenever Focus changes, the PropertyChanged or
CollectionChanged events are raised, or on demand through code. If the event
handler returns false, all UIElements bound to that command are disabled.

The Execute event handler contains the code that gets executed when the
user action is processed or the command is executed through code.

The CanExecuteChanged event provides a mechanism to tie into the
INotifyCollectionChanged and INotifyPropertyChanged event handlers to
determine when CanExecute needs to be requeried.

Routed commands
The ICommand interface doesn’t provide the entire goodness of commands
in WPF. The RoutedCommand class (and its first descendant, the RoutedUI
Command) take advantage of Event Routing to provide additional power.

The CanExecute event handler raises the PreviewCanExecute event and the
Execute event handler raises the PreviewExecuted event. These events are
raised just prior to the CanExecute and Execute handlers, and bubble up the
element tree until an element with the correct Command Binding is located.
This is useful for allowing control of commands at a higher level while the fine-
grained elements still control the CanExecute and the Execute event handlers.

Commanding Attention

40_563489-bk05ch04.indd 60240_563489-bk05ch04.indd 602 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

603

Routed Commands also expose a collection of InputGestures — keystrokes
or other gestures that will fire the Execute event handler. This allows assign-
ing hot key combinations to the commands, such as Control+S for saving (as
in most Windows applications).

Built-in commands
WPF provides a number of built-in commands that you can use with very little
(sometimes no) code. The most common set used by line of business devel-
opers is wrapped up in the ApplicationCommands Library. The advantage of
using the built-in commands is that all the plumbing is taken care of for you.
For example, the CanExecute and Execute event handlers are already imple-
mented. All you have to do is bind them to UIElements through XAML.

 The full list of built-in commands is available online at http://msdn.
microsoft.com/en-us/library/system.windows.input.aspx.

The sample shown in Listing 4-2 and Figure 4-1 uses the ApplicationsCommand.
Copy and ApplicationsCommand.Paste commands to facilitate clipboard
manipulation in your application. When the UIElement with focus supports
the clipboard Paste action and there is data in the clipboard that is support-
able by the element with focus, any elements bound to the Paste command are
enabled. When the UIElement with focus supports the clipboard Copy action
and there are items selected that can be copied to the clipboard, then any ele-
ments bound to the Copy command are enabled. As a side note, WPF allows
you to abbreviate the built-in commands by dropping the container name
(ApplicationCommands), so Copy and Paste are legitimate abbreviations for the
command bindings ApplicationCommands.Copy and ApplicationCommands.
Paste. For readability, I prefer to fully qualify the names.

 The full code for the Command samples is in the project Chapter4Commands
and Chapter4CommandsTests in the Chapter4 Solution.

The only difference between the Routed
Command and the RoutedUICommand is that
the RouteUICommand adds a Text prop-
erty used to decorate the bound controls
content uniformly. MenuItems picks up
this property automatically, and assigns it
to the Header property. Buttons (and other

UIElements) need a bit of binding kung fu, such as the
following XAML snippet, to get the Text into
the Content property.

Content=”{Binding
RelativeSource={RelativeSource
Mode=Self}, Path=Command.Text}”

RoutedCommand versus RoutedUICommand

Commanding Attention

40_563489-bk05ch04.indd 60340_563489-bk05ch04.indd 603 3/19/10 8:14 PM3/19/10 8:14 PM

604

Listing 4-2: Built-in Commands in XAML

<Menu Grid.Row=”0” Grid.Column=”0” HorizontalAlignment=”Left”
Name=”menu1”>

 <MenuItem Command=”ApplicationCommands.Copy”/>
 <MenuItem Command=”ApplicationCommands.Paste”/>
</Menu>
<TextBox Grid.Row=”1” Grid.Column=”0”

HorizontalAlignment=”Stretch”/>
<TextBox Grid.Row=”2” Grid.Column=”0”

HorizontalAlignment=”Stretch”/>

Figures 4-1 through 4-3 show the Window produced by the XAML in Listing
4-2 in different states. When there is text selected in a text box, the Copy
menu is enabled. When there is data in the clipboard that can be pasted
into a text box, the Paste menu becomes enabled. This is all done without a
single line of code!

Figure 4-1:
Built-in
commands
(with empty
clipboard
and no
selections).

Figure 4-2:
Built-in
commands
(with empty
clipboard
and text
selection).

Figure 4-3:
Built-in
commands
(with
clipboard
data and
no text
selection).

Commanding Attention

40_563489-bk05ch04.indd 60440_563489-bk05ch04.indd 604 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

605

Focus!
I know the question you’re dying to ask: If the user clicks on a menu item,
doesn’t that menu item then have focus? The answer is a confusing “No!”
That’s because menus in WPF work a little bit of magic to determine what
UIElement has focus just before a menu item is clicked.

Unfortunately, this doesn’t apply to standard buttons and other command
bindable controls. Even though the menu items in Figure 4-4 are enabled,
the buttons are not. There are two fixes for this problem. The first is by
binding the CommandTarget property in addition to the command to the
UIElement. This is a single element solution, though. To resolve the issue for
all UIElements, the FocusManager.IsSharedScope property needs to be
set to True in the parent container.

Figure 4-4:
Built-in
controls
with
buttons.

Custom commands
Creating a custom command requires either instantiation of a new
Routed[UI]Command or coding a new command based on the ICommand
interface. Well, okay, you are correct — there are other methods as well. The
two most popular are what I discuss here.

Custom routed UI commands
Creating a new RoutedUICommand is a simple instantiation, as the code in
Listing 4-3 shows.

Listing 4-3: Creating a Custom RoutedUICommand

public static RoutedUICommand SaveCommand =
 new RoutedUICommand(“Save”,”SaveCommand”,

typeof(UIElement));

The first parameter in the constructor populates the Text property, the
second parameter is the name used in serialization of the command (I usu-
ally append Command to the text from the first parameter), and the last
parameter is the UIParent. (In this example, the code states any UIElement
can be the parent.) There is a fourth parameter in another Constructor (not
shown here) that is a list of InputGestures.

Commanding Attention

40_563489-bk05ch04.indd 60540_563489-bk05ch04.indd 605 3/19/10 8:14 PM3/19/10 8:14 PM

606

Custom RoutedUICommands are usually created as static variables so there
is only once instance (and it makes binding simpler). Yes, it’s still in the
code-behind file, so we don’t yet have Separation of Concerns, but we’re get-
ting there!

Command bindings
Unlike the built-in commands (which are part of the framework and auto-
matically wired into the CommandManager and the binding system), custom
commands are not. Three changes need to be made in the XAML to support
custom commands:

 ✦ Add the namespace for the command to the namespace declaration.

 ✦ Change the command assignment to a binding expression.

 ✦ Add the command to the bindings collection of the container.

As Chapter 1 explains, you can add custom namespace declarations to the
Window to allow XAML access to custom classes and namespaces. The
namespace for the custom command (which is the same namespace as the
Window if the command is a static variable in the code-behind) needs to be
added to the Window tag. Listing 4-4 shows an example namespace declara-
tion. The bolded text is what has changed from the default namespace decla-
rations that are in the standard WPF Window.

Listing 4-4: Updated XAML for Custom RoutedUICommand

<Window x:Class=”Chapter4.Commands.CommandBindingSample”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/
presentation”

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:Commands=”clr-namespace:Chapter4.Commands”
 Title=”Command Binding” Height=”122” Width=”261”>

After the namespace is brought into the Window, the command must be
inserted into the Window.CommandBindings collection. Three main proper-
ties need to be set and are shown in Listing 4-5:

 ✦ Command: The binding to the command object

 ✦ CanExecute: Event handler for testing execution status

 ✦ Executed: Event handler for the execution of the command

With built-in commands, a simple string assigned the command to the
UIElement. With custom commands, you have to use a binding expression
(as discussed in Chapter 3). The format for a static command binding is

{x:Static NamespaceReference:Class.CommandVariableName}.

Commanding Attention

40_563489-bk05ch04.indd 60640_563489-bk05ch04.indd 606 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

607

The NamespaceReference is the nickname assigned in the Window tag.
Interestingly, the CanExecute and Executed properties are set to the name
of the methods — no funky binding required!

Listing 4-5: Window CommandBindings XAML

<Window.CommandBindings>
 <CommandBinding Command=”{x:Static

Commands:CommandBindingSample.SaveCommand}”
 CanExecute=”Save_CanExecute”
 Executed=”Save_Executed”/>
</Window.CommandBindings>

The Command property of the CommandBinding and UIElements use the
same binding expressions as shown in Listing 4-6. When a UIElement has
a command bound to it, the framework looks for the first match in the
CommandBindings section up the element tree. When one is located, the
UIElement uses the assigned event handlers CanExecute and Execute.

Listing 4-6: Command Assignment to MenuItem and Button

<MenuItem Command=”{x:Static
 Commands:CommandBindingSample.SaveCommand}”/>
<Button Command=”{x:Static
 Commands:CommandBindingSample.SaveCommand}”
 Content=”{Binding RelativeSource={RelativeSource

Mode=Self}, Path=Command.Text}”/>

The CanExecute event handler for a Routed[UI]Command uses the
CanExecuteRoutedEventArgs instead of returning True or False. Setting
e.CanExecute to True (can run) or False (cannot run) will enable or dis-
able the command (and any associated UIElements).

If the command is enabled, the Executed event handler gets executed when
the UIElement triggers the command (for example, when a button is clicked).

Command parameters
The CanExecuteRoutedEventArgs and ExecutedRoutedEventArgs con-
tain a Parameter property that provides a mechanism for passing objects
from the Window into the CanExecute and Executed event handlers. For the
example in Figure 4-5, the text of the TextBox is being passed as the param-
eter. The CanExecute property of the CanExecuteRoutedEventArgs in the
CanExecute event handler is set to False if the string is empty or null, and the
Executed event handler displays it back to the user in a message box. Okay,
not a realistic example, but it’s a demo!

Commanding Attention

40_563489-bk05ch04.indd 60740_563489-bk05ch04.indd 607 3/19/10 8:14 PM3/19/10 8:14 PM

608

Listings 4-7 and 4-8 show passing a parameter into the command through
XAML and then using that parameter in the C# implementation of the events.

Listing 4-7: Updated XAML to Include Command Parameter

<Button Command=”{x:Static
 Commands:CommandBindingSample.SaveCommand}”
 CommandParameter=”{Binding ElementName=txtField,

Path=Text}”
 Content=”{Binding RelativeSource={RelativeSource

Mode=Self}, Path=Command.Text}”/>

Listing 4-8: Updated C# to Display Parameter to User

private void Save_CanExecute(object sender,
CanExecuteRoutedEventArgs e)

{
 e.CanExecute = !String.IsNullOrEmpty(e.Parameter as

string);
}
private void Save_Executed(object sender,

ExecutedRoutedEventArgs e)
{
 MessageBox.Show(e.Parameter.ToString());
}

Figure 4-5:
Custom
routed UI
command.

Custom commands with ICommand
Custom RoutedUICommands solve the problem of getting rid of all those
nasty OnClick event handlers, consolidating execution code into one event
handler and bringing along the goodness of the CanExecute event handler to
enable a more dynamic and intuitive user interface.

To truly achieve Separation of Concerns by removing the implementa-
tion from the code behind, implement the commands from the ground
up starting with the ICommand interface. The interface for ICommand
contains the CanExecute and the Executed event handlers as well as the
CanExecuteChanged event.

Commanding Attention

40_563489-bk05ch04.indd 60840_563489-bk05ch04.indd 608 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

609

The code in Listing 4-9 shows an example custom Save command. There are
some differences to consider:

 ✦ The sender and CanExecuteRoutedEventArgs/ExecuteRoutedEventArgs
parameters are not in the signature for the event handlers. In their
place is a single parameter of type object. This is the “parameter” object
passed in from the UIElement.

 ✦ The CanExecute event handler returns a bool. The return value is the
mechanism for enabling/disabling commands (instead of setting the
CanExecute property of the event argument).

 ✦ The command does not get set in the CommandBindings XAML,
but instead uses the CanExecuteChanged event to tie into the
CommandManager system. To enable the correct handling of the custom
command by the Command subsystem, the RequerySuggested events
get hooked into the CanExecuteChanged event.

 ✦ The ICommand interface doesn’t have a Text property. This is only nec-
essary if your code uses binding to populate the labels for MenuItems
and Buttons bound to the command. The sample code adds a Text
property to enable this, but since it is a simple property and not tied
into the Dependency or RoutedEvent subsystems, MenuItems will not
automatically populate the Header.

Listing 4-9: CustomSaveCommand

public class CustomSaveCommand : ICommand
{
 public string Text { get; set; }
 public CustomSaveCommand(string text)
 {
 Text = text;
 }
 public void Execute(object parameter)
 {
 //Insert Actual “Save” code here
 //Display feedback message to user
 MessageBox.Show(parameter.ToString());
 }

 public bool CanExecute(object parameter)
 {
 return !String.IsNullOrEmpty(parameter as string);
 }

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }
}

Commanding Attention

40_563489-bk05ch04.indd 60940_563489-bk05ch04.indd 609 3/19/10 8:14 PM3/19/10 8:14 PM

610

In the sample, the custom command is instantiated through a static property
in the code-behind the same way the custom RoutedUICommand was in the
preceding example. The next section details a much better way to handle
exposing the commands to the XAML.

Separation of Concerns and testability
The end result for the Window with the custom SaveCommand has the same
look and features as the preceding example. The difference between the two
is that the business logic is now in a wholly self-contained class that is inde-
pendent of the display mechanism (in this case, WPF).

This allows for execution of the code in the custom command class without
having to work (some would say “fight”) with the CommandManager sub-
system or the WPF rendering engine. It also allows for the command to be
reused for more than one Window.

 The unit tests in this chapter use MbUnit, which is part of Gallio. Any test
framework will work (including NUnit, XUnit, MSTest, and so forth). Gallio
can be found at http://www.gallio.org.

First unit test
The first unit test verifies that the Text property of the instantiated com-
mand gets populated in the constructor. The complete unit test is shown in
Listing 4-10. The Arrange, Act, and Assert comments are not usually included
in the unit tests. They are included in Listing 4-10 to demonstrate the struc-
ture of a unit test.

Unit testing is an important piece of software
development. There are many great resources
on getting started with unit testing and test-
driven development, including Kent Beck’s
classic tome, Test-Driven Development: By
Example.

The popular convention for setting up test
projects is to create one for each Line of
Business project and name the projects
<ProjectToTestName>Tests. The project in
the sample code for this chapter is named
Chapter4Commands; therefore, the Test
Project is named Chapter4CommandsTests.

Each test should exercise a distinct Unit of
Code (in C#, this translates to a method), have
a meaningful name that describes the test sce-
nario, and be composed of three parts:

 ✓ Arrange: Sets up any objects or data
required for the test

 ✓ Act: Executes the Unit of Code

 ✓ Assert: Validates the results

The unit tests in this chapter are by no means
extensive, but they illustrate the capabili-
ties gained by adhering to the principle of
Separation of Concerns.

Unit testing

Commanding Attention

40_563489-bk05ch04.indd 61040_563489-bk05ch04.indd 610 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

611

To execute the test, run Gallio Icarus — the GUI test runner that ships with
Gallio. Click on Add Files, navigate to your compiled test project, and then
click on Start to run the tests.

Listing 4-10: Unit Testing the Constructor Setting the Text Property

[Test]
public void Should_Set_Text_Property_In_The_Constructor()
{
 //Arrange
 CustomSaveCommand command;
 //Act
 string expectedValue = “Save”;
 command = new CustomSaveCommand(expectedValue);
 //Assert
 Assert.AreEqual(expectedValue, command.Text);
}

Test positive and negative conditions
When writing unit tests, it’s important to test success as well as failure con-
ditions. For the CanExecute method of the custom Save command, that
means tests must cover when the parameter is null or empty in addition to
having a string value. These tests are shown in Listing 4-11.

Listing 4-11: Testing the CanExecute Event Handler

[Test]
public void Should_Not_Execute_If_Parameter_Is_Null()
{
 ICommand command = new CustomSaveCommand(“Save”);
 bool canExecute = command.CanExecute(null);
 Assert.IsFalse(canExecute);
}
[Test]
public void Should_Not_Execute_If_Parameter_Is_Empty_String()
{
 ICommand command = new CustomSaveCommand(“Save”);
 bool canExecute = command.CanExecute(string.Empty);
 Assert.IsFalse(canExecute);
}
[Test]
public void Should_Execute_If_Parameter_Is_Not_Empty_String()
{
 ICommand command = new CustomSaveCommand(“Save”);
 bool canExecute = command.CanExecute(“Test”);
 Assert.IsTrue(canExecute);
}

Commanding Attention

40_563489-bk05ch04.indd 61140_563489-bk05ch04.indd 611 3/19/10 8:14 PM3/19/10 8:14 PM

612

Get Your ViewModel On
Design patterns have been around for quite some time. Over time, some of
the older patterns lose relevance, and new ones get created to fill needs of
current development. One new pattern that has gained significant traction
with WPF and Silverlight is the Model-View-View Model pattern. Commonly
referred to as “ViewModel” (although this is still very much in flux, even
within the walls of Microsoft), this pattern is very similar to Martin Fowler’s
Presentation Model Pattern.

 You can read Martin Fowler’s paper on the Presentation Model pattern at
http://martinfowler.com/eaaDev/PresentationModel.html.

Who cares?
I know what you’re thinking. “Why can’t I just sit down and start coding up a
WPF application using all the goodies I’ve learned so far?” The short answer
is that you can. But should you? That debate still rages on among those who
like to sit around and debate these things. Using a user interface pattern
(such as ViewModel) that promotes separation of concerns, cuts down on
repeated code, increases testability, and reduces complexity can’t hurt.

“Won’t it take longer to develop an application using one of these patterns?”
That is a common question, and the answer is a very definite, “It depends.”
Once developers fully understand the objectives and techniques, veloc-
ity (the amount of work accomplished by a team in a given period of time)
starts ratcheting up. Getting to that level of understanding (especially if
several variations are attempted) can take time and usually involves a bit of
thrashing along the way.

Several versions of this pattern are floating
around, and an equal number of “frameworks.”
They all seem to have slightly different names
and implementations. This is largely because
MVVM is a recently created pattern (as pat-
terns go), and there are quite a few people
trying to make “their” name stick. In the end,
the name doesn’t matter as much as the benefit
received. This book uses the name ViewModel
because that is where the dart hit the wall.

My best recommendation is to look at all the
different flavors of user interface patterns,
take the parts that work best in your situation,
and throw out the parts that don’t make sense.
Patterns are meant to spark critical thought,
not be considered as absolutes.

The ViewModel pattern presented in this book
has been working extremely well for my cus-
tomers in both large and small applications and
is not meant to be an exact blueprint.

MVVM? ViewModel? Who’s on first?

Get Your ViewModel On

40_563489-bk05ch04.indd 61240_563489-bk05ch04.indd 612 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

613

When there is a change request (users call them “bugs,” but I prefer a dif-
ferent nomenclature), if you are using a presentation pattern that ensures
separation of concerns, it is clear where to go in the codebase to resolve the
issue. Traditional development styles (like those techniques commonly used
in Windows Forms) make it all too easy to place business code into event
handlers and code-behind files, mixing concerns and dependencies.

Tradition!
To fully understand why the ViewModel pattern helps, you need to under-
stand the parts of a “traditional” application architecture.

Data Access Layer (DAL)
The DAL is the set of classes and methods that get the data out of the data
store (such as SQL Server) and populate the Model (see next item). It is also
responsible for persisting any changes to the data back to the data store.

Model
The Model is the data that composes your application — not the data store
itself (for example, the database), but the object graph that represents the
data for your application. In a sales application, example objects could be
classes like Customer, SalesRegion, and SalesPerson.

Business Layer (BL)
The BL is the implementation of the business rules for the application. This
layer ensures that the data in the Model adheres to the law of the land.

View
The View represents the pieces of the application that interact with the user.
For WPF, this is the collection of Windows that compose the application.

The biggest gap with displaying an object graph (Model) in a View is that
applications seldom display only one type of object at a time. If the Window
allows for editing a customer, then it probably needs to display the sales
regions, sales people, and so forth.

Combining multiple objects into a data object clouds the Model, and placing
all that code into the view places too much knowledge in the View — not to
mention a total testability fail. The compilation of the required parts of the
object graph should not detract from any other part of the application.

The Command Objects are another consideration. There isn’t a tidy place in
the traditional application layers to place the custom commands. The code
contained in the commands is (typically) Business Logic, but the Window
needs to bind to the commands, and is therefore specific to the View.

Get Your ViewModel On

40_563489-bk05ch04.indd 61340_563489-bk05ch04.indd 613 3/19/10 8:14 PM3/19/10 8:14 PM

614

Introducing the ViewModel
The ViewModel fills that gap. It is designed to be a single class that pulls in
all the necessary data points and commands into a one-stop shop for a par-
ticular view. Each view typically has its own ViewModel, but that is entirely
dependent on your particular application.

As Chapter 3 discusses, WPF automatically monitors any class that imple-
ments either INotifyPropertyChanged (for items bound to a property of a
class) and/or INotifyCollectionChanged (for items bound to a collection of
items). These interfaces should be implemented in one of two camps — the
ViewModel or the Model.

Implementing those two interfaces in the ViewModel is the more academic,
textbook implementation. This is because it separates user interface code
from the Model. It also requires a lot of additional work, because it entails
recoding all the properties and collections of your Model to include raising
the proper events.

Implementing in the Model reduces work, because it merely entails adding a
few lines of code into properties already being implemented in the classes. A
main argument against Model implementation revolves around code reuse.
For example, if the Model is also used by an ASP.NET application, those
events are still raised but no one is listening. This could potentially pres-
ent a performance issue. Of course, if you use the same model for WPF and
non-WPF Views, then a simple flag passed into the constructor of the Model
classes indicating whether the events should be raised or not resolves that
issue.

Both ways are valid implementations. Your application and specific situation
will most likely dictate where those interfaces are implemented.

In Chapter 3, you discover that if a control doesn’t have an explicit
DataContext, it is inherited from the closest parent in the control tree that
does have a DataContext explicitly assigned.

When developing WPF applications using the ViewModel pattern, the instan-
tiated ViewModel becomes the Window’s (or user control’s) DataContext.

Show me the code!
 The full code for the ViewModel samples is in the project Chapter4View

Models and Chapter4ViewModelsTests in the Chapter4 Solution.

Just what are we building?
The Window (or View, to use “architecture speak”) is a simple customer
maintenance form. The user can select a customer and edit his name and

Get Your ViewModel On

40_563489-bk05ch04.indd 61440_563489-bk05ch04.indd 614 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

615

sales region. Clicking the Add Customer button will add a customer to the
list. You’re right — not very realistic, but it demonstrates the ViewModel
principles. Figure 4-6 shows the completed sample user interface.

Figure 4-6:
The
Customer
Maintenance
Window.

The model
Okay, enough talk. For the sample ViewModel, we need to define a Model.

Listing 4-12 shows the base class from which all the Model classes will
derive. The base class implements the INotifyPropertyChanged interface as
well as the IsDirty property.

Listing 4-12: ModelBase

public class ModelBase : INotifyPropertyChanged
{
 public bool IsDirty { get; private set; }
 public event PropertyChangedEventHandler PropertyChanged;
 internal void NotifyPropertyChanged(object sender, string

propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(sender, new PropertyChangedEventA

rgs(propertyName));
 }
 IsDirty = true;
 }
}

Listings 4-13 and 4-14 show the Customer and SalesRegion classes
that will populate the View. For each property in the class (except for
the primary key and the collection properties), there is a check to see if
the value of the property is being set to a new value. If it is new, then the
PropertyChanged event is raised. The NotifyPropertyChanged method
also sets the IsDirty flag to True to indicate that the model has changes that
need to be persisted.

Get Your ViewModel On

40_563489-bk05ch04.indd 61540_563489-bk05ch04.indd 615 3/19/10 8:14 PM3/19/10 8:14 PM

616

The primary key (in this example) is being set by the data store, so it will
never change in the view. Because the property changed event will never
need to be raised, the property can be coded as an automatic property.

Listing 4-13: The Customer Model Class

public class Customer : ModelBase
{
 private string _name;
 private SalesRegion _region;
 public int ID { get; set; }
 public string Name
 {
 get { return _name; }
 set
 {
 if (value == _name)
 {
 return;
 }
 _name = value;
 NotifyPropertyChanged(this, “Name”);
 }
 }
 public SalesRegion SalesRegion
 {
 get { return _region; }
 set
 {
 if (value == _region)
 {
 return;

The NotifyPropertyChanged method
is marked with the internal access modifier
instead of protected for one main reason —
testing. Protected methods can be accessed
only from derived classes, whereas internal
methods can be accessed by any sibling class
in the same assembly.

The assembly level attribute InternalsVisibleTo
specifies what other assemblies have access
to the internal methods and classes of the
assembly decorated with the attribute. Adding
this attribute to the Chapter4ViewModels proj-
ect (usually placed in the assemblyinfo.
cs class) and specifying the test project
(Chapter4ViewModelsTests) grants access for
your tests to the internals.

Why “internal”?

Get Your ViewModel On

40_563489-bk05ch04.indd 61640_563489-bk05ch04.indd 616 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

617

 }
 _region = value;
 NotifyPropertyChanged(this, “SalesRegion”);
 }
 }
}

Listing 4-14: The SalesRegion Model Class

public class SalesRegion:ModelBase
{
 private string _name;
 public int ID {get; set;}
 public string Name
 {
 get { return _name; }
 set
 {
 if (value == _name)
 {
 return;
 }
 _name = value;
 NotifyPropertyChanged(this, “Name”);
 }
 }
}

Model unit tests
There isn’t much to test in the model. You don’t typically write tests
against the .NET Framework itself — one has to assume that it works! The
only real logic in this sample is setting of the IsDirty and the raising of the
PropertyChanged event when something changes.

The first test is to verify that the IsDirty flag gets set when a property
changes, and it is very straightforward. We create a new Customer, assert
that the IsDirty flag is False, make a change, and then assert that the IsDirty
flag is True. This test is shown in Listing 4-15.

Listing 4-15: Testing the IsDirty Flag

[Test]
public void Should_Set_Is_Dirty_On_Property_Change()
{
 var sut = new Customer();
 Assert.IsFalse(sut.IsDirty);
 sut.Name=”New Name”;
 Assert.IsTrue(sut.IsDirty);
}

Get Your ViewModel On

40_563489-bk05ch04.indd 61740_563489-bk05ch04.indd 617 3/19/10 8:14 PM3/19/10 8:14 PM

618

The second test is much more involved, because it tests the raising of the
PropertyChanged event. We have to create a subscriber to listen for this
event. Windows (and the WPF rendering engine) automatically attach to this
event, but we don’t want to re-create the rendering engine just to test one
method. To test the event, create a subscriber, raise the event, and then
assert that the handler of the event was executed.

Tests of this type are typically done with a mocking framework, such as
RhinoMocks (the tool used in the samples). Mocking frameworks allow tests
for behavior in addition to state, and since the test needs to validate that
an event was raised, RhinoMocks is the perfect fit. A deep dive into mock-
ing and behavior testing is beyond the scope of this book. Look at the code,
digest it, and tinker with it. It’s a great way to expand your testing knowl-
edge!

Mocking frameworks create proxy objects based on interfaces. For the single
event, create an interface (shown in Listing 4-16) that has the required signa-
ture for the event handler — in this case, the PropertyChanged event.

Listing 4-16: The Event Subscriber

public interface IPropertyChangedSubscriber
{
 void Handler(object sender, PropertyChangedEventArgs e);
}

The test starts off by creating a mock of the subscriber and registering the
PropertyChanged event with the handler. The test acts on the Customer
object by changing the name and then asserts that the handler was called.
The Arg<object>.Is.Anything syntax tells RhinoMocks to not test the
arguments for equality. Again, the test is just verifying that the event is
raised when a property on the Customer object is updated. See the code in
Listing 4-17.

The variable name stands for “System Under
Test” and is a common convention in unit test-
ing. It clearly delineates what is being tested
from other objects that are required for the

test. Why don’t the earlier examples use this?
Ah, grasshopper — gradual introduction is in
play so you aren’t drinking from a fire hose!

Why “SUT”?

Get Your ViewModel On

40_563489-bk05ch04.indd 61840_563489-bk05ch04.indd 618 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

619

Listing 4-17: Testing an Event Was Raised

[Test]
public void Should_Raise_Property_Changed_Event_On_Property_

Change()
{
 var sut = new Customer();
 var eventArgs = new PropertyChangedEventArgs(string.

Empty);
 var subscriber = MockRepository.GenerateMock<IPropertyCha

ngedSubscriber>();
 sut.PropertyChanged += subscriber.Handler;
 sut.Name = “New Name”;
 subscriber.AssertWasCalled(x => x.Handler(Arg<object>.

Is.Anything, Arg<PropertyChangedEventArgs>.Is.Anything));
}

 The RhinoMocks tool can be found on the Web at http://ayende.com/
projects/rhino-mocks/downloads.aspx. For a good description
of mocks versus stubs, see Martin Fowler’s paper “Mocks Aren’t Stubs,”
located at http://martinfowler.com/articles/mocksArentStubs.
html.

Model repositories
The repository pattern is commonly used for Line of Business applications
to move data between the data store and the model classes. For the sample
ViewModel, I’ve included a very simple interface (shown in Listing 4-18)
that has a GetAll method and an Update method (not even remotely a
complete repository, but all that we need for the examples). Note the use
of generics to enforce strong typing in the repositories that implement this
interface.

Listing 4-18: The Repository Interface

public interface IRepository<T>
{
 IList<T> GetAll();
 bool Update(T model);
}

The repositories in the samples return hard-coded values instead of con-
necting to a data store. It’s common practice to create classes that are used
only for testing or prototyping. The convention I prefer is to call them out
by appending Fake to the name (as shown in Listing 4-19) so other develop-
ers have no doubt about their intended purpose. Additionally, the examples
don’t implement the Update methods because they aren’t used for the
ViewModel samples shown.

Get Your ViewModel On

40_563489-bk05ch04.indd 61940_563489-bk05ch04.indd 619 3/19/10 8:14 PM3/19/10 8:14 PM

620

Listing 4-19: Fake SalesRegion Repository

public class SalesRegionRepositoryFake :
IRepository<SalesRegion>

{
 public IList<SalesRegion> GetAll()
 {
 var list = new ObservableCollection<SalesRegion>
 {
 new SalesRegion {ID = 1, Name = “East”},
 new SalesRegion {ID = 2, Name = “Central”},
 new SalesRegion {ID = 3, Name = “West”}
 };
 return list;
 }

 public bool Update(SalesRegion region)
 {
 throw new NotImplementedException();
 }
}

To create a customer, a list of Sales Regions must be available, so the
Customer Repository Fake (as shown in Listing 4-20) uses Constructor
Injection to insert the allowable values into the repository. It could have cre-
ated its own list, but that would have thrown off the binding in XAML since
the objects would be different.

Listing 4-20: Fake Customer Repository

public class CustomerRepositoryFake : IRepository<Customer>
{
 readonly IList<SalesRegion> _salesRegions;

 public CustomerRepositoryFake(IList<SalesRegion>
salesRegions)

 {
 _salesRegions = salesRegions;
 }

State-based testing tests the values of an
object (for example, whether the IsDirty flag
is set). Behavior testing is used to test actions
and interactions of objects. To test that a

particular method was called or an event was
raised becomes much more trivial with the
more advanced frameworks like RhinoMocks.

State versus behavior testing

Get Your ViewModel On

40_563489-bk05ch04.indd 62040_563489-bk05ch04.indd 620 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

621

 public IList<Customer> GetAll()
 {
 var list = new ObservableCollection<Customer>();
 var customer = new Customer {Name = “Jane Doe”, ID=1,

SalesRegion = _salesRegions[0]};
 list.Add(customer);
 customer = new Customer {Name = “John Smith”, ID=2,

SalesRegion = _salesRegions[1]};
 list.Add(customer);
 customer = new Customer { Name = “John Doe”, ID = 3,

SalesRegion = _salesRegions[2] };
 list.Add(customer);
 return list;
 }
 public bool Update(Customer customer)
 {
 throw new NotImplementedException();
 }
}

The Add Customer command
Interestingly enough, using the ViewModel pattern, the commands can be
developed prior to the view, enabling Test Driven Development for the com-
mands. Using the same approach discussed in the “Commanding Attention”
section earlier in this chapter, a CommandBase class (shown in Listing 4-21)
is extracted to hold the common properties and the CanExecuteChanged
event.

Listing 4-21: CommandBase Class

public abstract class CommandBase : ICommand
{
 public string Text { get; internal set; }
 public abstract void Execute(object parameter);
 public abstract bool CanExecute(object parameter);
 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }
}

The AddCustomerCommand (shown in Listing 4-22) will take the Customer
list as a parameter and add another customer to the list. In this example, it’s
a hard-coded set of values, but in reality you would probably have another
Window (or some data entry mechanism) to gather the required information.

Get Your ViewModel On

40_563489-bk05ch04.indd 62140_563489-bk05ch04.indd 621 3/19/10 8:14 PM3/19/10 8:14 PM

622

The CanExecute event handler checks that the parameter is a
List<Customer>. There is an additional check in the Execute method. It is
essentially redundant — the command should never execute if the parame-
ter is not an IList<Customer>. However, defensive programming kicks in, and
I always check again to avoid the possibility of throwing an error.

Listing 4-22: AddCustomerCommand

public class AddCustomerCommand : CommandBase
{
 public AddCustomerCommand()
 {
 Text = “Add Customer”;
 }
 public override void Execute(object parameter)
 {
 var list = parameter as IList<Customer>;
 if (list == null)
 {
 return;
 }
 list.Add(new Customer { ID = 4, Name = “New Customer”

});
 }
 public override bool CanExecute(object parameter)
 {
 return parameter is IList<Customer>;
 }
}

Is it better to code extra lines to prevent excep-
tions, or just wrap the code in a try-catch
block? Exceptions are expensive and gener-
ally should not be considered flow-of-control
devices. Just like their name, exceptions
should be, well, exceptional. It is better to code
defensively and wrap your code in try-catch

blocks to handle those pesky conditions users
have such a knack for finding.

Why don’t these samples have try-catch
blocks? Merely for brevity. Logging and error
handling are musts in any real code, but take a
significant amount of space and could send the
reader down a rabbit hole that would detract
from the concepts of the current section.

Defensive programming or try-catch?

Get Your ViewModel On

40_563489-bk05ch04.indd 62240_563489-bk05ch04.indd 622 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

623

The Add Customer Command unit tests
The tests for the AddCustomerCommand are similar to the tests from the
“Commanding Attention” section, earlier in this chapter. In the code in
Listing 4-23, the first three tests validate the CanExecute event handler; the
last test validates the Executed event handler.

Listing 4-23: The AddCustomerCommand Unit Tests

[Test]
public void Should_Not_Execute_If_Parameter_Is_Null()
{
 var cmd = new AddCustomerCommand();
 var canExecute = cmd.CanExecute(null);
 Assert.IsFalse(canExecute);
}
[Test]
public void Should_Not_Execute_If_Parameter_Is_Not_List_

Customer()
{
 var cmd = new AddCustomerCommand();
 var canExecute = cmd.CanExecute(“test”);
 Assert.IsFalse(canExecute);
}
[Test]
public void Should_Execute_If_Parameter_Is_List_Customer()
{
 var cmd = new AddCustomerCommand();
 var canExecute = cmd.CanExecute(new List<Customer>());
 Assert.IsTrue(canExecute);
}

[Test]
public void Should_Add_Customer_To_List_On_Execute()
{
 var cmd = new AddCustomerCommand();
 var customers = new List<Customer>();
 var count = customers.Count;
 cmd.Execute(customers);
 Assert.AreEqual(count+1, customers.Count);

}

The ViewModel
So, you’re thinking to yourself at this point, “There’s been a lot of code slung
so far. And we haven’t even touched the ViewModel yet?” And you’re right.
However, as you will soon see, the ViewModel becomes a rather trivial exer-
cise because of the setup that we have already done. There are just three
properties in the ViewModel and two lines of code that need to be run in the
constructor (and one of them is required by the XAML rendering engine).
Yep. That’s it.

Get Your ViewModel On

40_563489-bk05ch04.indd 62340_563489-bk05ch04.indd 623 3/19/10 8:14 PM3/19/10 8:14 PM

624

The image in Figure 4-6 contains two combo boxes that need to be popu-
lated. One of the tenants of the ViewModel pattern is to provide a one-stop
shop for the View. In addition to the main data (Customers), this includes
any reference data (Sales Regions). The ViewModel (shown in Listing 4-24)
contains these IList<T> as properties that can be bound to in the view and
(in this example) are populated in the constructor.

The Window also contains a single Button that needs to be bound to the
AddCustomerCommand. Commands require a bit more plumbing, because
they must be instantiated prior to use. The technique shown in this sample
is just in time instantiation and is meant to cut down on resource consump-
tion. If the button never gets clicked, why create the command in memory?

Listing 4-24: The ViewModel

public class CustomerMaintenanceViewModel
{
 ICommand _addCustomerCmd;

 public CustomerMaintenanceViewModel()
 {
 Regions = new SalesRegionRepositoryFake().GetAll();
 Customers = new CustomerRepositoryFake(Regions).

GetAll();
 }
 public IList<Customer> Customers { get; set;}
 public IList<SalesRegion> Regions { get; set;}

 public ICommand AddCustomerCmd
 {
 get { return _addCustomerCmd ?? (_addCustomerCmd =

new AddCustomerCommand()); }
 set { _addCustomerCmd = value; }
 }

}

Testing the ViewModel
There’s actually nothing to test in this ViewModel, because it’s all been
tested elsewhere. But if there was code in a ViewModel that needed testing,
it can be tested like any other class library.

The View
There are a couple of items worth mentioning when it comes to the view. First
and foremost, the constructor for the view needs to assign its DataContext to
an instance of the ViewModel (see the bolded line in Listing 4-25).

Get Your ViewModel On

40_563489-bk05ch04.indd 62440_563489-bk05ch04.indd 624 3/19/10 8:14 PM3/19/10 8:14 PM

Book V

Chapter 4

P
ra

c
tic

a
l W

P
F

625

Listing 4-25: The View Code-Behind

public partial class CustomerMaintenance : Window
{
 public CustomerMaintenance()
 {
 InitializeComponent();
 DataContext = new CustomerMaintenanceViewModel();
 }
}

Wait! Didn’t I say we want to remove all code from the code-behind?
No, not all code. Almost all code. Event handlers stuffed with busi-
ness logic, definitely. But you have to have two lines in the construc-
tor: InitializeComponent(), which renders all the XAML, and the
DataContext assignment. You might have cases for additional code living in
the code-behind, and those cases might be perfectly valid. Just use critical
thought before you start adding code in places where it can’t be tested or
reused.

The Command Binding expressions become very different using the
ViewModel pattern. They actually become quite a bit easier as shown
in Listing 4-26. Since the base class hooks the Command into the
CommandManager, the need for the Windows.CommandBindings section is
eliminated.

Listing 4-26: The Add Customer Button XAML

<Button HorizontalAlignment=”Right” Margin=”3,0,3,0”
 Command=”{Binding Path=AddCustomerCmd}”
 CommandParameter=”{Binding Path=Customers}”
Content=”{Binding RelativeSource={RelativeSource

Mode=Self},Path=Command.Text}”
/>

The ViewModel in this example depends on
getting customer and sales region data. But
hard-coding the fake repositories isn’t a very
good idea in the wild. More than once have I
released a piece of software with a test value
still in the code! “I’ll change that back before
I release” tends to be forgotten in the release
two-step.

Dependency Injection is a technique that
injects required dependencies into the class
that needs them. This helps prevent just such
a scenario. A common tool for DI with WPF
is Unity, but several other high-quality open
source tools exist, such as NInject. Well beyond
the scope of this book, DI is an extremely valu-
able pattern in software development.

Dependency Injection (DI)

Get Your ViewModel On

40_563489-bk05ch04.indd 62540_563489-bk05ch04.indd 625 3/19/10 8:14 PM3/19/10 8:14 PM

626

The Content hasn’t changed from the earlier examples, but the Command
and CommandParameter assignments have. The DataContext for all con-
trols roll up the element tree looking for the first DataContext. Because
the only DataContext is set at the Window level (in the constructor), all
elements have as their DataContext the ViewModel. So binding is reduced
to setting the Path to the property of the ViewModel (in this case, the
AddCustomerCmd for the Command, and the Customers property for the
Command Parameter).

Likewise, ComboBoxes bind their ItemsSource property to the IList<T>
properties in the ViewModel. Listing 4-27 shows the XAML for the two
ComboBoxes on the Window.

Listing 4-27: ComboBoxes XAML with ViewModel

<ComboBox ItemsSource=”{Binding Path=Customers}”
 DisplayMemberPath=”Name”/>
<ComboBox ItemsSource=”{Binding Path=Regions}”
 DisplayMemberPath=”Name”
 SelectedItem=”{Binding ElementName=CustomerList,Path=Selec

tedItem.SalesRegion}”
/>

The second ComboBox shows the power of WPF data binding. The
SelectedItem should be set to the value of the SalesRegion property for
the Customer. To do this through binding, the item is set to the SelectedItem
of the CustomerList. This returns a Customer object, allowing any property
on that Customer to be selected in the Path (in this case, the SalesRegion
property).

Wrap up
I was asked recently if using the ViewModel pattern is worth it since it
“seems like a lot of extra work.” This is a common theme among WPF devel-
opers currently, and it isn’t surprising considering the newness of the pat-
tern, all the current variations in the wild, and conflicting opinions on the
subject.

In short, it is absolutely worth it. The biggest benefit the ViewModel brings
to the table is true separation of concerns with a side of testability. Any
time you can reduce the dependence on manual user testing and increase
automatic test coverage, it’s a win. Increased code isolation, improved capa-
bilities for code reuse, and reduced complexities all come with the package.
And there isn’t “more” code developed — it’s just moved out of the code-
behind files for the Windows.

Get Your ViewModel On

40_563489-bk05ch04.indd 62640_563489-bk05ch04.indd 626 3/19/10 8:14 PM3/19/10 8:14 PM

Book VI

Web Development
with ASP.NET

41_563489-pp06.indd 62741_563489-pp06.indd 627 3/19/10 8:15 PM3/19/10 8:15 PM

Contents at a Glance

Chapter 1: Looking at How ASP.NET Works with C#.629

Chapter 2: Building Web Applications. .641

Chapter 3: Controlling Your Development Experience 659

Chapter 4: Leveraging the .NET Framework .685

Chapter 5: Digging into Web Construction .703

41_563489-pp06.indd 62841_563489-pp06.indd 628 3/19/10 8:15 PM3/19/10 8:15 PM

Chapter 1: Looking at How
ASP.NET Works with C#

In This Chapter
✓ Getting to know Web applications

✓ Conferring with the client

✓ Working with Web servers

When I first started writing about World Wide Web applications, I had
to describe the Web first. There were still a significant number of

programmers who didn’t know what it was, or thought it was CompuServe.

I don’t really have that problem anymore.

The World Wide Web is now ubiquitous. Programmers of all stripes use the
Web for research and communication. Providers use it for product updates
and documentation. It is everywhere.

All the more reason to know how to code in the Web environment. Problem
is that there are so many so-called frameworks for development that it is
nearly impossible to decide which to use with a reasonable methodology.
You almost have the draw straws.

If you are working in a Microsoft environment, and if you are writing a non-
exceptional program, I recommend that you use plain, vanilla ASP.NET.
Why? Sempf’s Fourth Law: Simplicity above all. ASP.NET is a straightforward
platform for Web creation.

ASP.NET has its share of problems, most of which involve writing Google (or
some other really big complicated program). You probably aren’t writing
Google, so don’t worry about it. If your site gets famous, you can get some
venture capital and rewrite it into some custom framework. For now, just
get your site written.

That’s what ASP.NET enables you to do — get the job done. With ASP.NET,
you can write a good Web site quickly, one that can be hosted just about
anywhere. No one can ask for much more than that.

This chapter delves into the details of using ASP.NET with C#.

42_563489-bk06ch01.indd 62942_563489-bk06ch01.indd 629 3/19/10 8:17 PM3/19/10 8:17 PM

630 Breaking Down Web Applications

Breaking Down Web Applications
A Web application is a computer program that uses a very light client inter-
face communicating with a server over the Internet in a stateless manner.
Stateless means that the computer browsing the site and the server provid-
ing the site don’t maintain a connection. You can see this process at a high
level in Figure 1-1.

Figure 1-1:
The Web
application
process.

Internet

Web
Application
Server

Database

Wireless
Access Point

Switch
Firewall

Router

User Submits
Shopping Cart

Order on Web Site

Web Servers

Database Servers

STOP

Company Network Flow

Legend

STOP

1

2

3

4

5

User submits shopping cart
order on Web site via port 80/
443.

Web Server receives shopping
cart data from User and sends
it to the Web Application
Server.

Web Application Server
receives data from Web
Server and sends it to the
Database Server. Database is
also updated.

Web Application Server
dynamically generates a Web
page and sends it to the Web
Server.

Web Server sends the
generated page to the User
informing him of his successful
transaction.

Data exchanged between
User and Web Server via port
80/443.

Data exchanged between
Web Server, Web Application
Server, Database Server and
Database.

Two-Way traffic between
User and Web Server.

User does not have access to
any network asset beyond the
Web Server.

The client requests a document from the server, and the server sends the
document when it gets around to it. The document, usually a combination
of Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and
JavaScript, contains standardized elements which make up the interface of
the application.

Why do we need this? If there is just a set of documents on the server and
the client is just requesting one after another, what’s the point of that? Of
course, getting a document is a good thing, but where does the application
part come in?

42_563489-bk06ch01.indd 63042_563489-bk06ch01.indd 630 3/19/10 8:17 PM3/19/10 8:17 PM

Book VI

Chapter 1

Lo
o

k
in

g
 a

t
H

o
w

 A
S

P
.N

E
T

W

o
rk

s w
ith

 C
#

631Breaking Down Web Applications

The answer is within Web applications. Web applications are powerful
because the server can construct the document on the fly whenever it
receives a request. This server process is what makes Web applications
work. (See Figure 1-2.)

Don’t get me wrong, the light client interface — called the Web browser or
just the browser — provides some important functionality. It handles the
user interface and can do things independently of the server.

The server is largely where it’s at, though. Because the server can remember
things from moment to moment, and because it is assumed that the client
forgets everything from page to page, the server is where the long-running
communications all reside.

Figure 1-2:
ASP.NET
decon-
structed.

Application Server .NET
Data

Provider

ASP .NET Web Application

.NET Framework

Presentation
Layer (Web

Form ...)

Business
Logic

Generated
.NET Code

Persistent
Library

Web Browser

Mobile Device

Rich Client

Other
Applications

Database

...

ASP.NET is a library of controls and processing logic that makes construct-
ing the server side of things much easier. You construct “server pages,”
but they end up transformed into the documents that the client uses to
show you the user interface. ASP.NET is classified as a Web Application
Framework, not a programming language.

The programming language, for our purposes, is C#. However, you can code
for ASP.NET in any .NET language — it is just another set of tools in the
framework.

C# is the language that you use to tell the server how to organize the ASP.
NET pieces and send them to the client. The clients will never see any C#
code; they won’t even know that you coded it in C#.

42_563489-bk06ch01.indd 63142_563489-bk06ch01.indd 631 3/19/10 8:17 PM3/19/10 8:17 PM

632 Questioning the Client

 This gets into the same discussion that we have several times throughout
the book regarding the difference between the library and the language. ASP.
NET is a library of tools, and that library is language independent. You
orchestrate the functionality of the parts of the library using the language.

There are a few little caveats to Web development, however. The client —
which doesn’t care a whit that you are coding in C# — needs some care and
feeding. There is no state in Web applications, so you need to think a little
differently. The client does a lot automatically for you in Web development.
The server has some security concerns.

Before we dig into the details of using C# with ASP.NET, I’d like to take a tour
through the details of Web development and point out some things you need
to keep in mind. So here we go.

Questioning the Client
When you are writing a Windows Form, WPF, or console application, your
platform for the client is a Windows computer. When you are writing a Web
application, you have no idea what the platform for your client is. It could
be a Mac, any one of 12 Windows operating systems, or Linux. It could be a
phone, a tablet, or a netbook. It could be a television, a gaming device, or a
refrigerator (really: see Figure 1-3).

Figure 1-3:
Yes, a
refrigerator.

The point is that you don’t know what you are writing for, so you have a
very different development experience for a Web browser than you do for
a Windows client. You don’t know what size the screen is, you don’t know
what language the machine is set to, you don’t know how fast the connection
to the Internet is. You know nothing about your client.

42_563489-bk06ch01.indd 63242_563489-bk06ch01.indd 632 3/19/10 8:17 PM3/19/10 8:17 PM

Book VI

Chapter 1

Lo
o

k
in

g
 a

t
H

o
w

 A
S

P
.N

E
T

W

o
rk

s w
ith

 C
#

633Questioning the Client

You have to question the client. You can’t assume much about the browser,
so you have to make certain design decisions differently than you usually
would.

You can depend on the browser to do some things for you that you might be
used to having to do for yourself. The programming details are explained in
Chapter 4, but it is important to get a good overview now.

First, the client browser has a built-in scripting system called ECMAScript.
Second, the browser can tell you some subset of details about itself, its host
machine, and the user that is using it.

Scripting the client
By now you get the idea that communication with the browser occurs via
the network, and that the client and browser are disconnected. Although
that is true, the client isn’t completely out in the fog when it comes to inter-
acting with the user.

You can send a script along with your HTML document. This script refer-
ences objects on the screen — just like your C# code would — and makes
things happen for the user.

Usually this script is in the JavaScript language. Why not C#? Well, C# isn’t a
scripting language. C# needs to be compiled, and JavaScript isn’t compiled.
It just sits there, in text, waiting for the browser to run it.

 The fact that it is in text means you have to be careful not to put secure
information in a script. Right-click on any Web page in your browser and
click View Source to see that page’s script code.

A lot of the script that your pages need will be generated by ASP.NET. This
book is about C#, not JavaScript, so we focus on the server features, not the
client features. For now, you should just know that “things are happening”
on the client side, however.

Getting information back from the client
When a browser makes a request to a server, a lot of useful information
about the client gets sent along with the page name that is requested. You
can reference this in the backwardly named ServerVariables collection.

This is about as good as learning about the client gets. These details will,
however, help you get the most out of your communication with the client.
Here some examples of the values available:

 ✦ AUTH_USER: The logged-in user.

 ✦ REMOTE_USER: The same as AUTH_USER.

42_563489-bk06ch01.indd 63342_563489-bk06ch01.indd 633 3/19/10 8:17 PM3/19/10 8:17 PM

634 Questioning the Client

 ✦ CONTENT_LENGTH: Size of the request. This is useful if a file is uploaded.

 ✦ HTTP_USER_AGENT: Which browser the client is using.

 ✦ REMOTE_ADDR: The IP number of the client computer.

 ✦ QUERY_STRING: All the stuff after the question mark in the request.
Check out the Address bar of a browser in many Web applications to see
what I mean.

 ✦ ALL_HTTP: Every header variable (request details made available to the
server) sent by the client.

In total, there are usually 63 variables in the header. The most commonly
accessed of them are in the System.Web.HttpRequest class. You’ll also
find the collection of ServerVariables there. More on getting to that class
in Chapter 4. Search MSDN for ServerVariables to get the complete list.

Understanding the weaknesses of the browser
As you can imagine, there are a few weaknesses to the browser-as-client
model. At this point in the book, you should know that the more layers you
stack on, the more problems you are going to encounter. Not even letting
the programmer know what computer the user has is another.

Here are a few of these weaknesses:

 ✦ Changing window sizes: The most basic difficulty in using a browser as
a client is changing window sizes. In a Windows program, you have at
least some control over how large the window is — if it gets too small,
you can change it programmatically. In a Web application, however, you
have very little control over the window size. For all you know, the user
could be using a cellphone, right? That’s a small window!

 Because of this, every form you develop using ASP.NET has to be size-
agnostic to the best of your ability. Especially when your form is des-
tined for the public Internet — you just can’t make assumptions about
the size of the user’s screen.

 ✦ Sporadic communication: When the client wants something from the
server, the client requests it from the server. It is the server’s responsi-
bility to get the client what it wants, and then wait. And wait. And wait
some more.

 Even if the server wants an acknowledgement from the client, it might
never get one. The user might have closed the browser.

 Communication from the client to the server is sporadic. Secure trans-
actions are nearly impossible because the server can’t be sure that the

42_563489-bk06ch01.indd 63442_563489-bk06ch01.indd 634 3/19/10 8:17 PM3/19/10 8:17 PM

Book VI

Chapter 1

Lo
o

k
in

g
 a

t
H

o
w

 A
S

P
.N

E
T

W

o
rk

s w
ith

 C
#

635Questioning the Client

client will communicate any information back. Because of the loosely
coupled nature of the Internet, you just can’t make any assumptions
about communication time.

 ✦ Distrusted input: Browser documents are sent as a package of text and
images (and sounds and fonts and Flash movies, if needed) to the client
from the server. The requests are sent back to the server from the client
in a similar way — text.

 With all this text, you would think that someone would find a way to fake
a request. Oh wait, they have. Lots of them. And it is easy, and free.

 Take a look at Fiddler, a free tool that lets you completely alter the
requests sent from a browser. (See Figure 1-4.) Fiddler gives you the
capability to view a request — including the results from a form (even a
login form) — alter the text directly, then send it on its merry way.

Figure 1-4:
Fiddler
(www.
fiddler
tool.
com).

 Security risk? You betcha. You need to distrust every character sent to
you from the client. Validate everything in the server code. We look at
this in Chapters 2 and 3.

 ✦ Random implementations: When you are writing a WPF application in
C#, you know the application will be running on Windows. You might not
know which edition, but you have a good idea about how it will work.
When you write an ASP.NET system, on the other hand, you know that
the client might or might not follow a set of standards, but that’s about
it. You don’t know how the browser will behave.

 The more significant impact of this is in positioning, as it turns out. The
technology that specified most of the positioning and styling in brows-
ers, called Cascading Style Sheets (CSS), is rife with misimplementation.

42_563489-bk06ch01.indd 63542_563489-bk06ch01.indd 635 3/19/10 8:17 PM3/19/10 8:17 PM

636 Dealing with Web Servers

 That means that not only do you not know how your application will
behave out there, but also that it might not look right, either! Yea for
the Web! Seriously, scripting is another piece of the puzzle that isn’t the
same across browsers. ECMAScript is another standard, and it is imple-
mented differently by different browser companies.

The only way around all of this is to test, test, test. If all else fails, take the
simplest road. And don’t get tremendously picky about a pixel here and
there.

Dealing with Web Servers
The other side of this client/server equation is the server. For those of us
writing in ASP.NET, the server will be Internet Information Server fully 99.5
percent of the time. Other servers implement ASP.NET in one fashion or
another, but you almost never see them.

The role of the Web server is to accept requests from clients, do what-
ever processing is required, and then pass back a browser-viewable page.
This means that the ASP.NET code we write will be turned into HTML and
JavaScript by the Web server. You have less control over what is happening
than you might think.

Getting a PostBack (Hint: It’s
not a returned package)
A PostBack isn’t a returned package from the post office. It is how ASP.NET
handles communication between the client and the server so you don’t
have to.

The first time users request a page in ASP.NET in a given session, they usu-
ally type the URL into the address bar, or click a link like www.csharpfor
dummies.com. The next page loaded, however, is a carefully controlled
communication with the server, called a PostBack.

A PostBack is a JavaScript function used in place of the built-in POST func-
tion to send information about the data on the page back to the server. It
looks like this to the client:

javascript:WebForm_DoPostBackWithOptions(new WebForm_PostBackOptions("ctl
00$cphAdmin$btnSave", "", true, "", "",
false, false))

Quite a change from a URL, huh? To make what I mean more clear, let’s go
back in time.

42_563489-bk06ch01.indd 63642_563489-bk06ch01.indd 636 3/19/10 8:17 PM3/19/10 8:17 PM

Book VI

Chapter 1

Lo
o

k
in

g
 a

t
H

o
w

 A
S

P
.N

E
T

W

o
rk

s w
ith

 C
#

637Dealing with Web Servers

Looking back to how things used to be
Back in the day, Web servers supported GETs and POSTs. What’s more, they
still support GETs and POSTs.

A GET is a request for a page, using just the URL. You can send data in the
URI (after a question mark in the link of text) but that’s all you are sending —
nothing from the page itself goes back. A GET request looks like this:

GET /fiddler2/updatecheck.asp?isBeta=False HTTP/1.1
User-Agent: Fiddler/2.2.4.6 (.NET 2.0.50727.4918; Microsoft Windows NT

6.1.7100.0)
Pragma: no-cache
Host: www.fiddler2.com
Connection: Close

A POST sends values from a form on the page. The form can be invisible, but
it has to be there. POSTs are a lot bigger than GETs and have a set format
that is hard to navigate at times. Here is an example POST:

POST /feedbackAction.asp HTTP/1.1
Accept: application/x-ms-application, image/jpeg, application/xaml+xml, image/

gif, image/pjpeg, application/x-ms-xbap, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, application/x-shockwave-
flash, */*

Referer: http://www.grovecity.com/feedback.asp
Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;

Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET
CLR 3.0.30729; Media Center PC 6.0; .NET CLR 1.1.4322; InfoPath.2;
OfficeLiveConnector.1.3; OfficeLivePatch.0.0)

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
Host: www.grovecity.com
Content-Length: 69
Connection: Keep-Alive
Pragma: no-cache
Cookie: ASPSESSIONIDAATQCRCA=MJEFOIFACGPONMOBADPIDLKH

user=Bill&email=bill@sempf.net&subject=Test&comment=This+is+a+POST%21

All the header variables are there, and then the contents of the form are all
linked together at the end of the request.

From the past to the PostBack
Having to handle the header had a lot of problems when it came to the
sophisticated Web forms that ASP.NET provides, so Microsoft used
JavaScript to short-circuit the process. They created a special method that
would be on every page that ASP.NET generates.

42_563489-bk06ch01.indd 63742_563489-bk06ch01.indd 637 3/19/10 8:17 PM3/19/10 8:17 PM

638 Dealing with Web Servers

This method formats the information in order to better manage the commu-
nication with the server. A PostBack looks like this:

POST /admin/Pages/Add_entry.aspx?id=e387aab8-1292-4c75-985f-5f8e5db3089a HTTP/1.1
Accept: application/x-ms-application, image/jpeg, application/xaml+xml, image/

gif, image/pjpeg, application/x-ms-xbap, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/msword, application/x-shockwave-
flash, */*

Referer: http://www.sempf.net/admin/Pages/Add_entry.aspx?id=e387ccb8-1292-4c75-
985f-5f8e5db3089a

Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64;

Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET
CLR 3.0.30729; Media Center PC 6.0; .NET CLR 1.1.4322; InfoPath.2;
OfficeLiveConnector.1.3; OfficeLivePatch.0.0)

Content-Type: multipart/form-data; boundary=---------------------------
7d922c323b0016

Accept-Encoding: gzip, deflate
Host: www.sempf.net
Content-Length: 9399
Connection: Keep-Alive
Pragma: no-cache

-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”__LASTFOCUS”

-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$txtTitle”

C# 4.0 at CONDG
-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$ddlAuthor”

Admin
-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$txtDate”

2009-09-08 22:21
-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$txtContent$TinyMCE1$txtCont

ent”

<p>I was very pleased to be able to give my C# 4.0 talk at the <a href=”http://
www.condg.org/”>Central Ohio .NET Developers Group last month.</p>

-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$txtUploadImage”; filename=””
Content-Type: application/octet-stream

-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$txtUploadFile”; filename=””
Content-Type: application/octet-stream

-----------------------------7d922c323b0016
Content-Disposition: form-data; name=”ctl00$cphAdmin$txtSlug”

C-40-at-CONDG
-----------------------------7d922c323b0016

42_563489-bk06ch01.indd 63842_563489-bk06ch01.indd 638 3/19/10 8:17 PM3/19/10 8:17 PM

Book VI

Chapter 1

Lo
o

k
in

g
 a

t
H

o
w

 A
S

P
.N

E
T

W

o
rk

s w
ith

 C
#

639Dealing with Web Servers

Notice the nice layout of the data, with the form field name, and the data and
everything all nice to read? Fortunately, you don’t have to worry about any
of this. ASP.NET gets it for you.

When you create an event handler for an object — a button, for instance — a
PostBack will be used for that communication. This is how ASP.NET changes
your interface with the server and client. It makes Web programming look
like Windows programming, at least as far as events are concerned.

It’s a matter of state
The other major piece of the puzzle in Web server usage is state. No, I don’t
mean that field in the Address database. I mean that the server should know
the state of the application at any given time.

Web servers don’t do a very good job of remembering state because of one
of the problems with Web browsers — inconsistency of communications.
Because the server doesn’t know if you are going to send anything from one
minute to the next, they can’t depend on getting it.

For this reason, the server tries to remember certain things about your ses-
sion by putting values in the form that they can use later. The server uses a
ViewState value for that. The ViewState is an encrypted string that the
server can use to remember who you are from POST to POST.

Even with these values, maintaining session state has its problems. For
instance, in a secure application you might need to maintain a transaction
for a database function. This is nearly impossible in a Web application,
because you can’t be sure you will get the return acknowledgment. Because
of this, nearly all the data processing happens on the server — I cover this in
more detail in Chapter 5.

42_563489-bk06ch01.indd 63942_563489-bk06ch01.indd 639 3/19/10 8:17 PM3/19/10 8:17 PM

Book VI: Web Development with ASP.NET640

42_563489-bk06ch01.indd 64042_563489-bk06ch01.indd 640 3/19/10 8:17 PM3/19/10 8:17 PM

Chapter 2: Building
Web Applications

In This Chapter
✓ Working in Visual Studio

✓ Developing with Style

✓ Modeling the View Controller

There is a lot to Web development. People used to ask me what language
I programmed in. I told them I was a Web developer.

“No, really, what language do you program in?” they would ask.

“Web. It’s seven languages. Seven that I have to know. Criminy, is it really
seven?”

At the time, it was seven. I needed to know SQL, VBScript, XML, Visual
Basic, HTML, CSS, and JavaScript. At least it is a little better now. You can
get by without C++, which was once required. Oh, and C# can replace Visual
Basic. The rest …

With Visual Studio in the mix, things are a little easier than they once were.
You have two considerations when you choose Visual Studio to be your tool
of choice to build a Web application. The first is the tool itself. The second
is the way you are going to use the tool, or your methodology.

If you’ve been working with the samples in this book, working in Visual
Studio is going to feel very familiar. There is a design view for the user inter-
face. Code View works just like the Code View in all the other environments.
The only caveat is the unusual file types that you will see occasionally in
Web applications. You’ll get used to those. I did.

The methodology debate — that is, which methodology works better — is
harder to get used to because it is a religious war. People will tell you to use
one or the other for this reason and that. I do the same thing here. Feel free
to ignore me. Just don’t use something only because it is new and shiny. Do
the research, try things, and build software that works. In this chapter, you
see how to build an application in one methodology, using Visual Studio as
your tool.

43_563489-bk06ch02.indd 64143_563489-bk06ch02.indd 641 3/19/10 8:15 PM3/19/10 8:15 PM

642 Working in Visual Studio

Working in Visual Studio
You already know the basics of working in Visual Studio in C#; we have been
working in Visual Studio all along. Working with Visual Studio in the Web
world is a little different, but not much. Using Visual Studio to build a Web
application is a lot like WPF actually, because Web applications have a code
element to the design view — the HTML document, in an ASPX file. Then
there is a code element, in an ASPX.CS file.

A lot of other files make Web pages work, too. There are images and style
sheets and script files. All of them have editors in Visual Studio. None of
them have a darn thing to do with C#, though, so I won’t talk about them
much here. For more on those files, see the upcoming section, “Recognizing
the other file types,” or refer to ASP.NET 3.5 For Dummies by Ken Cox.

Let’s set up a simple site in Visual Studio. You’ll use it to look at all of Visual
Studio’s cool Web features. Then you can begin looking at more complex
sites. Here’s all you need to do to set up your simple site:

 1. Open Visual Studio, and click on Projects, and then New Project.

 2. In the New Project dialog box, select Visual C# in the treeview to the
left, then Web, and choose ASP.NET Web application in the right-side
window.

 I named mine AspNetFirstSample.

 3. Click OK.

 Visual Studio makes a project.

Hey, that’s it. It runs a lot like all the other projects that you have done,
making all the files that you need to make a Web project work. To run the
project, press <F5>. When you do so, Visual Studio launches Cassini, the
Web Server that comes with Visual Studio. Your Web browser launches, and
your project launches.

Now let’s make it complicated. Web applications have a lot of moving
parts, which can be hard to manage. Visual Studio makes it as easy as any-
thing I have worked with in 17 years of Web development to manage a Web
application.

Handling the Designer
Visual Studio launches the Web project in the designer. The only problem
is that the designer shows a Code View of sorts. That’s not going to help us
build this application right away, is it?

43_563489-bk06ch02.indd 64243_563489-bk06ch02.indd 642 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

643Working in Visual Studio

 Back in the day, visual interfaces were developed using a black box architec-
ture. A black box architecture is a way of designing a component so that the
user has no idea how it works. You used a visual designer to place objects on
a page, and the locations and such were stored in a custom binary format.
Nothing about the “document,” the form itself, was really editable without the
designer. HTML, and now XAML, changes all that. Forms are now at least laid
out using standards-based, well-understood markup language.

To view a form designer, click the Design tab. You’ll get a blank view there.
That’s okay for now. You are going to add stuff.

Click the Toolbox tab all the way to the left. I have used the toolbox for
Windows Forms and other applications. Now it has the controls for Web
applications. Open the Standard tree view.

The Standard tree view has the main HTML controls that are part of the
standard library with an ASP.NET twist. Drag a Label control and a Button
control onto the Web form. It should look like Figure 2-1.

Figure 2-1:
Getting
started is
simple.

What have you done here? Well, you have added a Label control which
becomes a tag with some text in it, and a Button control that will
effectively be an <INPUT> tag when you are done.

43_563489-bk06ch02.indd 64343_563489-bk06ch02.indd 643 3/19/10 8:15 PM3/19/10 8:15 PM

644 Working in Visual Studio

Change to the Source view, back where you started. Check out the designer
source and I’ll break down the ASP.NET code from the HTML code a little bit.
Here is the code after the controls are added:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”
Inherits=”AspNetFirstSample._Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 <asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>

 </div>
 <p>
 <asp:Button ID=”Button1” runat=”server” Text=”Button” />
 </p>
 </form>
</body>
</html>

If you have any experience with HTML, you recognize 90 percent of what is
on the screen. <html>, <head>, <body>, and <form> are all common HTML
tags that you can find on any Web page. The two tags that begin with <asp
are ASP.NET Server controls, and that is what I am talking about here.

To see what these control do, press <F5>. Cassini launches, your Web
browser launches, and your new page appears. (See Figure 2-2.)

Looks a lot like the designer. There are some differences under the sheets.
Remember that Web browsers don’t speak ASP.NET; they speak HTML. Your
Web server must translate our ASP.NET code into something that the Web
browser can use. Here is that translation:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head><title>

</title></head>
<body>
 <form name=”form1” method=”post” action=”Default.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE” value=”/

wEPDwUKMTI2NTY4ODI3MWRkf5c0g2jxUkjj5CIoHCiRot7EU38=” />
</div>

43_563489-bk06ch02.indd 64443_563489-bk06ch02.indd 644 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

645Working in Visual Studio

<div>

 <input type=”hidden” name=”__EVENTVALIDATION” id=”__EVENTVALIDATION” value=”/

wEWAgKZydGJAwKM54rGBjN10vDX6YoBChZcj2JzWRrR7tJR” />
</div>
 <div>

 Label

 </div>
 <p>
 <input type=”submit” name=”Button1” value=”Button” id=”Button1” />
 </p>
 </form>
</body>
</html>

As promised, the ASP.NET Label control became a , and the ASP.NET
Button control becomes an <input> control. All that the designer is doing is
helping you write markup code. There is no magic here.

All the controls that were just added have their default values. In order to
have clean code, you need to intelligently name your controls. Additionally,
you may have other values you need to set on those controls. There might
even be things you didn’t even know the control could do that you can set.

Figure 2-2:
Your artistic
new Web
application.

43_563489-bk06ch02.indd 64543_563489-bk06ch02.indd 645 3/19/10 8:15 PM3/19/10 8:15 PM

646 Working in Visual Studio

The trick to doing this is in the Properties panel, which was introduced in
Book IV, Chapter 2. The Properties panel handles the properties of ASP.NET
controls just as well as it does anything else. For instance, to rename the
controls from the preceding example, follow these steps:

 1. Open the project you were working on earlier, if it isn’t already open.

 2. Double-click on Default.aspx in the Solution Explorer.

 3. Change to Design view.

 4. Press the <F4> key to bring up the Properties panel.

 5. In the Designer, click on the Label you added.

 6. Notice that the Properties panel changes to look like Figure 2-3.
Change the Text Property to This is The Text to Change.

Figure 2-3:
Properties
look like
this!

 7. Open the Font tree view by clicking the little triangle next to the
word Font.

 8. Change the Size property to 14.

 See the label change in the designer?

 9. Change the (ID) to TextToChange.

 10. Change the Text to Text to Change.

43_563489-bk06ch02.indd 64643_563489-bk06ch02.indd 646 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

647Working in Visual Studio

 11. Click the Button in the designer.

 The Properties panel changes to show the button’s properties.

 12. Change the Text property to Click Me.

 13. Change the (ID) to ChangeText.

Now change back to Source view and note the changes in the code:

<%@ Page Language=”VB” AutoEventWireup=”false”
CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 <asp:Label ID=”TextToChange” runat=”server” Font-

Size=”14pt” Text=”Label”>Text to change</asp:Label>

 <asp:Button ID=”ChangeText” runat=”server”

Text=”Click Me” />

 </div>
 </form>
</body>
</html>

So the management of your code is what the designer does for you. Now,
some people don’t like Visual Studio messing with their code. Some people
don’t like to remember all the ins and outs of ASP.NET. It’s all up to you; you
can use it or not.

This isn’t where the magic is, though. This is a C# book, and if you are
working in a big shop your ASP.NET code is probably being written for you
anyway. You want to play with the server code, and I don’t blame you.

Coding in Code View
If you go back to the design view and double-click on the Button control you
dragged over, you will see something a little more familiar than all of this
crazy markup. Usually called the code-behind, this is the C# code that makes
the form manageable by the server. This code should look like this:

43_563489-bk06ch02.indd 64743_563489-bk06ch02.indd 647 3/19/10 8:15 PM3/19/10 8:15 PM

648 Working in Visual Studio

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 protected void ChangeText_Click(object sender, EventArgs

e)
 {

 }
}

Let’s break this down a little. I know you’ve seen a class before, and that’s all
this is, but there are a few things that I want to point out:

 ✦ This is a partial class. Partial classes are covered in Book II. The rest of
this class is built-in Web functionality, and it used to appear in this file.
Fact is, no one ever needed to edit it, so Microsoft took it out. I’m glad
they did. This is a lot easier to look at.

 ✦ The class inherits from System.Web.UI.Page. The Page class pro-
vides all the tools you need to keep a collection of the controls in the
page together. This is very important for some Web applications, but it’s
a little beyond the scope of this book. Read the documentation for the
Page class. It’s an important part of ASP.NET.

 ✦ There is an event handler for Page.Load. Remember the ASP.NET load
sequence in Chapter 1? This is why it is important. You can do pre-setup
operations in this handler.

 ✦ There is an event handler for the Button.Click event. Hey, how did
this get there? Oh yeah, you double-clicked on the control to get the
default event handler, just like I talk about in Book I.

Depending on your background, you might find this feels either very familiar,
or very foreign. This is not like the classic Active Server Pages days, or like
modern PHP with inline scripting. Although inline scripting is a way you can
code with ASP.NET, it isn’t the default way.

If you are a Windows programmer, you will probably feel very comfort-
able with Web forms. They work in a similar fashion. However, as I mention

43_563489-bk06ch02.indd 64843_563489-bk06ch02.indd 648 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

649Working in Visual Studio

in Chapter 1, there is no real state management on these controls — it is
all faked by the ViewState variable in the HTML, and if you overuse the
ViewState, you will have a slow application.

Adding some functionality using C#
Let’s start by making the form do something. Code View basically allows the
developer to write code that does something useful with the Web form. Here
I keep it simple, but it can get much more complex.

There is already an event handler for the Button.Click event so I suggest
you use that method to change the text of the Label. This is a common oper-
ation in Web applications. The label ID was TextToChange, so you need to
add this code:

TextToChange.Text = “It has changed!”;

That was simple. You need to know that this will be the simplest event han-
dler that you will ever write, however. They get harder.

Run the application by pressing <F5>. (If neither of us made a mistake, it
should build.) Then launch the Cassini server, and then your browser should
launch. Click the Click Me button, and your screen should look like the one
in Figure 2-4.

Figure 2-4:
Hey, it
worked!

43_563489-bk06ch02.indd 64943_563489-bk06ch02.indd 649 3/19/10 8:15 PM3/19/10 8:15 PM

650 Working in Visual Studio

 The first time you run the Web form in the debugger, you get a message tell-
ing you that if you want to debug this project you need to change the Web
config. For the purposes of this book, say Yes and move on. However,
remember that when you go to production, you will need to review the
config and change this setting. I cover it in Chapter 5.

You can do even more in Code View — a lot more (and more than I can
cover here). The next three chapters include tips and tricks that you can
absorb.

Using Page.Load to add even more functionality
Now let’s say the client wants something to happen when the page loads.
Pretend that this “something” is dynamic. It isn’t gonna be dynamic for this
example, but it could be.

Because of the nature of ASP.NET, and programming in general for Windows,
you can’t always code properties in the design time controller — especially
for events. Sometimes you need to manually write an event handler to deal
with an event. That is what you are going to do — from the Code View out
this time. Last time you used the designer. Just follow these steps to write
the event handler:

 1. Start by writing an event handler in Code View.

 protected void ChangeTheColor(object sender,
EventArgs e)

 {
 TextToChange.BackColor = System.Drawing.Color.

Red;
 }

 No event arguments are required in C# 4.0, if you aren’t planning on
using them. If you want the forms designer to work properly, however,
include them.

 2. Change back to Design view and select the TextToChange label.

 3. Open the Properties panel and click the lightning bolt in the button
bar at the top.

 This changes the Properties panel into an Event panel of sorts.

 4. Click on the Load event under the Misc header.

 You should see a little drop-down icon as shown in Figure 2-5.

 5. Pick the ChangeTheColor method you created in Step 1.

 6. Run the application again. The background color of the label should
be set to red.

43_563489-bk06ch02.indd 65043_563489-bk06ch02.indd 650 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

651Working in Visual Studio

Figure 2-5:
The Event
panel.

Recognizing the other file types
I am sure you get the idea at this point on the ASPX markup file. There are
ASPX files that have markup, and there are ASPX.CS files that have C# code.
That’s the core of the ASP.NET model.

If you have done any Web development before, you know that there are
other files that get used. Lots of other files get used, in fact.

Visual Studio has a place for nearly all those other files. Table 2-1 is a break-
down of some of those files, what they are for, and how they are accessed.

Table 2-1 Web Application File Types

File Type What It Does How Visual Studio Handles It

Stylesheets
(.css files,
usually)

Controls how the page
looks. For more on CSS,
check out HTML and CSS
For Dummies.

Visual Studio has a fantastic
CSS handler. I like it more
than the supposedly better
ones from Blend.

JavaScript
Files

Handles client-side inter-
activity.

Now that Microsoft supports
AJAX, JavaScript (the J in
AJAX) is suddenly a lot more
important. IntelliSense is sup-
ported now, as well as real
debugging.

(continued)

43_563489-bk06ch02.indd 65143_563489-bk06ch02.indd 651 3/19/10 8:15 PM3/19/10 8:15 PM

652 Developing with Style

Table 2-1 (continued)

File Type What It Does How Visual Studio Handles It

Images (GIFs,
JPEGs, and
PNGs)

Making pretties. Don’t depend on Visual Studio
to edit your images. Use
Photoshop, or a merged prod-
uct or suite like Expression
Blend.

User Controls
(ASCX)

I deal with these in Chapter
4, but basically they are
a way to combine the
Toolbox controls to do
something specific.

Perfect support, and always
has been. Visual Studio wants
you to reuse code, so do it!

Developing with Style
There are a number of different flavors of ASP.NET development. These
flavors include inline scripting and regular Web forms, and also MVC, n-tier,
three-tier, and forms over data. I am not sure why there are so many pat-
terns for the development of ASP.NET applications, but there are.

 Keep in mind, none of this has much to do with how the application runs.
These are just different ways to do the same thing. Each way has pros and
cons. Look into them carefully before making your decisions.

You’ll find that many of the options here have a lot to do with where to put the
code. This falls into the arena of application architecture or software patterns.
I translate the following ASP.NET patterns into the traditional names as closely
as possible, so you can translate what others say to what you learn here.

 This is just high-level software design principles. Nothing you see here will
matter to the end users — they see HTML. Nothing you see here will change
the way ASP.NET works. There is still HTML markup with ASP.NET controls,
and C# code to manage those controls.

Your style of application will be dictated by several different things. The
project type is first and foremost, and your team is second. In this section I
go over a few of the more popular styles, and how these variables fit.

Coding behind
The default condition for creating ASP.NET applications is with a code-
behind file. Just as you saw in the first example, Visual Studio creates an
ASPX file for the markup code and an ASPX.CS file for the C# code. If dia-
grammed, it would look like Figure 2-6.

43_563489-bk06ch02.indd 65243_563489-bk06ch02.indd 652 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

653Developing with Style

Figure 2-6:
The
structure
of a code-
behind style
project.

HTML/APS.NET Markup

C# codebehind

There are a few benefits to this, and they are fairly important.

 ✦ Division of labor: First, it separates the C# server code from the ASP.NET
and HTML template code. Although it doesn’t do a perfect job, it’s a lot
better than scripting languages like Active Server Pages and PHP that have
everything merged together. It just makes things easier to keep track of.

 ✦ Speed and security: Using this pattern, Microsoft compiles the C# code
into a DLL, just like the class libraries Book II delves into. This makes
the application much faster and protects the application somewhat from
criminals.

 ✦ Legacy-based: This pattern mimics Windows Forms development, going
back to Visual Basic 3. It is easy for people to pick up if they already
have experience. I know that history isn’t always the best to mimic, but
it can’t hurt.

Scripting the experience
Using the code-behind isn’t the only way to skin this digital cat, though. If
you want to take a trip back to the nineties, you can code your C# right into
an ASPX file, with your controls in your HTML.

However, if you can’t tell, I am not in favor of this method. It compiles at
runtime, rather than at design time, so it is slower. The code is all junked
together, making it hard to find anything.

Nonetheless, sometimes you have to do this. I once deployed a Web proj-
ect to a hosting company that wouldn’t let me upload a .DLL file. I had to
rewrite the whole app into inline script so that it would run. Knowing how to
do this is important.

Let me give you an example. Let’s start with the project you were editing ear-
lier. From there, follow these steps:

 1. Right-click on the project and select Add New Item.

 2. In the dialog box that comes up, select Web Form, as shown in Figure 2-7.

 See the red box (added) at the bottom of Figure 2-7? By default, it is
checked.

43_563489-bk06ch02.indd 65343_563489-bk06ch02.indd 653 3/19/10 8:15 PM3/19/10 8:15 PM

654 Developing with Style

 3. Uncheck the box in Step 2 so that you don’t build a code-behind file.

 4. Name your file and press OK.

 I named mine InlineCode.

Figure 2-7:
Adding
inline code.

That’s all there is to it, one check box.

What you have now is practically the same thing as the code-behind version,
except no ASPX.CS file. Instead you have a <script> block in the markup
code, which looks like this:

<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

<script runat=”server”>

</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 </div>
 </form>
</body>
</html>

43_563489-bk06ch02.indd 65443_563489-bk06ch02.indd 654 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

655Developing with Style

Note also that there is a language declaration at the top of the page rather
than an InheritsFrom. This is because you are no longer building a DLL
file but are just interpreting this all at runtime.

Go back to Design view, add a button, and double-click on it in the designer.
You return to Source view rather than Code View, because there is no Code
View. The event handler is now in the <script> block, as shown:

<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

<script runat=”server”>

 protected void Button1_Click(object sender, EventArgs e)
 {

 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 <asp:Button ID=”Button1” runat=”server”

onclick=”Button1_Click” Text=”Button” />

 </div>
 </form>
</body>
</html>

That’s really about it. It looks and works a lot like Active Server Pages.
Sometimes you might need to use it so it is valuable to understand how to
do it.

Building in n-tier
Going the opposite direction from inline code, I have what used to be called
n-tier code, but now it’s called a hundred different things. At the essence
here, I am talking about purposefully dividing the code of the application up
into DLLs, instead of just having Visual Studio do it for you.

43_563489-bk06ch02.indd 65543_563489-bk06ch02.indd 655 3/19/10 8:15 PM3/19/10 8:15 PM

656 Developing with Style

To show what I mean in pictures, Figure 2-8 shows a normal code-behind
style ASP.NET application. Now, say you put all the data access code — code
that talks to the database — in one class project. Then you put all the busi-
ness logic — math and validation and stuff — in another class project.

Figure 2-8:
Structure of
n-tier code.

HTML/APS.NET Markup

C# view-specific code

C# business-specific code

C# data-specific code

All the code in the code-behind layer, then, would be stuff that makes the
markup work, right? Yup. That’s the idea. Layering your application like
this makes debugging easier, separates concerns even more, and provides
for code reuse. If you have a cellphone application that uses the same data
model, then you can use the same database code if you break it out.

Implementing n-tier is simple. Just make a class project for every logical divi-
sion in your code. Something so simple can sometimes be demanding, how-
ever. Determining where to put what and how to hook everything together
is non-trivial — but also beyond the scope of this book. recommend getting
some of the Wrox Professional ASP.NET titles to learn more about Web
application architecture.

Modeling the View Controller
ASP.NET MVC takes the idea of n-tier a step further by formalizing it. The
tough decisions I mention related to deciding where everything goes are
largely made for you in ASP.NET MVC.

MVC stands for Model View Controller. In a nutshell, the idea is that your
markup goes in the View, your business logic goes in the Controller, and
your database connection code goes in the Model. Sounds like n-tier to you,
too, huh? I understand. The differences are mostly theoretical.

43_563489-bk06ch02.indd 65643_563489-bk06ch02.indd 656 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 2

B
u

ild
in

g
 W

e
b

A

p
p

lic
a

tio
n

s

657Developing with Style

The big benefit to MVC over other kinds of Web forms apps is that the user
interface code is much more testable with automated tests. In fact, when
you start an ASP.NET MVC project, it asks you to create a test project
along with it.

Another difference from n-tier is some formalization to the implementation
of MVC. It is a project type, and rather than having to figure out how things
hook up, MVC does some of the work for you.

MVC is a big topic that I just can’t cover here in any detail. If you have a
large project for which you need to divide up the work among develop-
ers with varying skill sets, it’s cool. Read more in Professional ASP.NET by
Wrox Press.

43_563489-bk06ch02.indd 65743_563489-bk06ch02.indd 657 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI: Web Development with ASP.NET658

43_563489-bk06ch02.indd 65843_563489-bk06ch02.indd 658 3/19/10 8:15 PM3/19/10 8:15 PM

Chapter 3: Controlling Your
Development Experience

In This Chapter
✓ Showing stuff to the user

✓ Getting some input from the user

✓ Binding

✓ Styling with the best

✓ Making sure the site is accessible

✓ Constructing user controls

✓ Adding custom controls

ASP.NET is a rendering engine. It takes preset batches of functionality
and renders it into HTML. For instance, ASP.NET can take a database

table and a little bit of layout information and make a nice, dynamic HTML
table.

Rendering engines are a good idea in the W world. With a bunch of different
implementations and versions, your rendering engine can produce different
user markup out of the same effective code base.

ASP.NET does this well. You can tell it to make mobile-device markup and
text-only markup and rich Internet Explorer markup from the same ASP.NET
file, and it will do an okay job.

This is possible because of Web controls. Web controls are controls that
ASP.NET renders into client-side markup, like HTML, CSS, and JavaScript.
Well-programmed controls protect the developer from the implementation
details but can still do what is needed to be done when the time comes.

Web controls aren’t anything special. Basically, they show a pretty
text box in the designer pane of Visual Studio, and then emit text — an
<input> tag — when called upon to do so.

ASP.NET has a lot of included controls, many other controls are available
from third-party providers, and you can even build your own and base them
on existing controls. It’s a good system.

44_563489-bk06ch03.indd 65944_563489-bk06ch03.indd 659 3/19/10 8:15 PM3/19/10 8:15 PM

660 Showing Stuff to the User

Showing Stuff to the User
Web surfers want to look at stuff. For them to look at it, you have to show it.
Most of the controls in the ASP.NET control library are about showing things
to the user.

Although there are a lot of controls, only some of them apply to the subject
matter of this book — C#. This doesn’t mean you shouldn’t use them, but
they are more about the HTML and less about the code on the server. So I
am just going to cover a few controls. For more, please pick up ASP.NET For
Dummies.

Labels versus plain old text
The most basic item on an average Web page is text. Take a look at a normal
site, like Microsoft.com. You find a text box, maybe two; a handful of images
also. Most of what is there is text.

Text comes in a few flavors in ASP.NET. The two I want to talk about are
Label text and, well, text text. Label text is text inside a named span that you
can change with C# code. Then there is just normal text on the page. This
text is static — downloaded to the client just as you typed it.

To see what I mean, start a new Web project. Just follow these steps:

 1. Click the New Project button and select C# ASP.NET project.

 I called mine Chapter 3.

 2. Make a new ASP.NET page called Text.aspx.

 3. Change to Design view.

 There will be a default div that you saw in Chapter 2. Put your cursor
between the <div> and the </div> and then type something innova-
tive, like This is new text. Then press Enter.

 4. On the new line, drag a Label from the Toolbox.

 Your finished product should look like Figure 3-1.

 5. Double-click elsewhere on the form to get to the code-behind.

 6. Change the value of the label in the Page.Load event handler by set-
ting the Text property. The new handler should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

44_563489-bk06ch03.indd 66044_563489-bk06ch03.indd 660 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
661Showing Stuff to the User

namespace Chapter_3
{
 public partial class Text : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Label1.Text = “This is some text from the codebehind.”;
 }
 }
}

 7. Press <F5> to launch the application.

 You’ll see that the label text was set by the C# code.

How to decide between labels and text? It’s usually easy. Use a label if the
text will need to change based on input from the user or the server. Use text
if the text is static. A description of an item that is loaded from a database?
That’s a label. Your CEO’s bio? That’s text.

Figure 3-1:
There is
text, and
there is text.

Images
Images are next to text in the realm of standard Web site fare. It’s a complex
topic because few programmers are graphic artists, and making nice images
that fit together and look good is hard.

Nonetheless, sometimes you just want to show a picture on a page. Just as
with text, there are two ways you can go about this. (Okay, there are more
than two.) You can use the HTML tag, or you can use the ASP.NET
Image control.

44_563489-bk06ch03.indd 66144_563489-bk06ch03.indd 661 3/19/10 8:15 PM3/19/10 8:15 PM

662 Showing Stuff to the User

Differences? Same as the text: If you need an image that you can manage
from the C# side of things, use an image control: a product image, for
example. If it is just a static image, like the picture of your CEO, then use the
HTML tag.

Just follow these steps to add an image with ASP.NET’s Image control:

 1. Add two images to your project by right-clicking the project and
choosing Add➪Existing Item.

 You can find two images, or download some. I used a drum and a tuba.
(It’s college football!)

 2. Add a new page called Images.aspx.

 3. Drag one of the pictures right into the box that denotes the div.

 You’ll get the Accessibility Properties dialog box, and then the picture
will just show right up. Press Enter a few times to make some space.

 4. Drag an Image control from the Toolbox onto the page where the
cursor is sitting.

 It should appear as a broken image. That’s okay.

 5. Double-click elsewhere on the page to get the Page.Load event han-
dler and switch to Code View.

 6. Just like we did in the Text example, set the visible property of the
control. In this case, it is ImageUrl. The new code should look like
this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Chapter_3
{
 public partial class Images : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Image1.ImageUrl = “tuba.gif”;
 }
 }
}

 7. Right-click the Images.aspx page in the Solution Explorer and select
Set as Start Page from the context menu.

 8. Press <F5> to see it run.

You are probably getting the idea by this point. You can use HTML and set
static values, or you can use the ASP.NET controls and set dynamic values.
In the examples here, we are obviously just setting “static” dynamic values,

44_563489-bk06ch03.indd 66244_563489-bk06ch03.indd 662 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
663Showing Stuff to the User

but we could be reading from a Web service, a database, or even calculating
the values. Images can be listed from a directory. Text could be generated
and read into a table. The options are endless.

Panels and multiviews
Managing all these text blocks and images can be rough. ASP.NET provides a
number of tools that help, including the two following tools.

 ✦ Panels are just divs that you can manage in code-behind. Just like the
text and images we added earlier, panels can be named and controlled
in C#. The server will process changes before it sends the HTML to the
browser. This helps to break the content into manageable groups.

 ✦ Multiviews are essentially containers that hold a lot of panels. You
can use them for wizards and tag groupings. They help to manage the
panels, which help manage the content. For more information, search
MSDN for ASP.NET Multiview.

From the client’s perspective, panels and multiviews are effectively the same
structure, but they provide developers with a few options. For instance, the
multiview shows one view only of itself by default, whereas you have to hide
panels that are not in use.

Tables
Tables work like other Web controls. In HTML, you have the basic <table>,
<tr>, and <td> tags. In ASP.NET there is a Table control, with TableRows
and TableCells. If you add an ASP.NET table, it looks like this:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Tables.aspx.cs”
Inherits=”Chapter_3.Tables” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 <asp:Table ID=”Table1” runat=”server”>
 <asp:TableRow runat=”server”>
 <asp:TableCell runat=”server”></asp:TableCell>
 <asp:TableCell runat=”server”></asp:TableCell>
 <asp:TableCell runat=”server”></asp:TableCell>
 </asp:TableRow>
 <asp:TableRow runat=”server”>
 <asp:TableCell runat=”server”></asp:TableCell>
 <asp:TableCell runat=”server”></asp:TableCell>
 <asp:TableCell runat=”server”></asp:TableCell>
 </asp:TableRow>

44_563489-bk06ch03.indd 66344_563489-bk06ch03.indd 663 3/19/10 8:15 PM3/19/10 8:15 PM

664 Getting Some Input from the User

 <asp:TableRow runat=”server”>
 <asp:TableCell runat=”server”></asp:TableCell>
 <asp:TableCell runat=”server”></asp:TableCell>
 <asp:TableCell runat=”server”></asp:TableCell>
 </asp:TableRow>
 </asp:Table>

 </div>
 </form>
</body>
</html>

So what’s the point of creating tables this way? Well, you can name those
rows and cells, and then manage then in the code-behind using C#. In all
honesty, though, that’s not how I recommend doing things.

Tables are good for two things — layout and tabular data. Layout has been
superseded by CSS. I recommend you use CSS to lay things out.

For tabular data, tables still work. However, there is a more interesting solu-
tion. The GridView (found in the Data section of the Toolbox) is just as func-
tional — and it is bindable. We chat more about that in the Binding section
later.

Getting Some Input from the User
Acquiring input from the user is one of the most significant processes that
Web developers do. Data-active Web is all about interactivity; Web 2.0 is all
about interactivity. Getting information from a user is job one.

You can do a lot of things to get input from the user, but there is a subset of
the controls that is generally considered to be “User Input.” You’ll use those
controls a lot.

Using text input controls
The most obvious form of collecting data from a user is the text input boxes,
as shown in Figure 3-2. In HTML there are three defined controls: the
textbox, the password, and the textarea. The TextBox ASP.NET control
handles all of those. A TextMode property tells IIS how to render the control.

To use the TextBox control, drag it into the designer from the Toolbox. We
can change the property of the control instance — the only other significant
element — in the ASP.NET markup, the property panel, or the C# code.

The properties that we are the most interested in include:

 ✦ ID: The name that you use to reference the control in the C# code. This
needs to be set first, before you can use the control.

44_563489-bk06ch03.indd 66444_563489-bk06ch03.indd 664 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
665Getting Some Input from the User

Figure 3-2:
The three
text inputs,
all in a row.

 ✦ TextMode: This determines the type of text box that gets rendered, as I
mentioned.

 ✦ MaxLength: The maximum number of characters that the user can type
in the field. Note that this doesn’t work when the TextMode is defined as
TextArea.

 ✦ Height and Width: The size that the text box appears on the page.

 ✦ CssClass: The style sheet class that the control will be rendered to use.
Must be used in conjunction with a style sheet.

 ✦ Enabled: Marks if the field can be typed in by the user.

In the example in Figure 3-1, I just dragged the TextBox control onto the
designer three times and set each to the three different TextModes. Here is
the resultant ASP.NET markup:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”TextInput.aspx.cs”
Inherits=”Chapter_3.WebForm1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

44_563489-bk06ch03.indd 66544_563489-bk06ch03.indd 665 3/19/10 8:15 PM3/19/10 8:15 PM

666 Getting Some Input from the User

 1 - The TextBox

 <asp:TextBox ID=”TextBox1” runat=”server”>The TextBox</asp:TextBox>

 2. The TextArea

 <asp:TextBox ID=”TextBox2” runat=”server” TextMode=”MultiLine”>The

TextArea</asp:TextBox>

 3. The Password

 <asp:TextBox ID=”TextBox3” runat=”server” TextMode=”Password”>The

Password</asp:TextBox>

 </div>
 </form>
</body>
</html>

In order to set properties in the C# code, I would refer to the ID, as set in the
property panel. If you use the defaults (don’t do this in real code, make real
names for controls), configuring the first text box might look something like
this:

 public partial class WebForm1 : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 TextBox1.MaxLength = 20;
 TextBox1.Height = 22;
 TextBox1.Width = 135;
 TextBox1.Enabled = true;
 }
 }

Using single-item selection controls
After collecting text, the next most common user-input gathering operation
is asking them to choose an item from a list. In HTML, you can do this with
check boxes, radio buttons, or drop-down lists. (See Figure 3-3.)

Figure 3-3:
The single
selectors.

44_563489-bk06ch03.indd 66644_563489-bk06ch03.indd 666 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
667Getting Some Input from the User

ASP.NET provides for all of these items:

 ✦ The Boolean check box: This is just one single check box where the
answer is Yes or No. This is still considered a single item selection even
though there is only one item to select from and is usually used to repre-
sent a Boolean or bit in the C# code. It is represented by the checkbox
control.

 ✦ The radio button list: Radio buttons are nice because they prevent the
user from selecting more than one option while seeing all the options.
Lists are an interesting beast, because they can be bound to collec-
tions. We cover that in the next section, “Binding.” This control is
radiobuttonlist.

 ✦ The drop-down list: Represented by the dropdownlist control, this
type of list allows the user to click to see the list, and then click one
item, which then closes the list. It can also be bound to a collection.

Here is the code for all three. Note that both the dropdownlist and the
radiobuttonlist use the listitem control to render the list items.

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”SingleItem.aspx.cs”
Inherits=”Chapter_3.SingleItem” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 1. The Checkbox

 <asp:CheckBox ID=”CheckBox1” runat=”server” />

 2. The Radio Button List

 <asp:RadioButtonList ID=”RadioButtonList1” runat=”server”>
 <asp:ListItem>Item 1</asp:ListItem>
 <asp:ListItem>Item 2</asp:ListItem>
 <asp:ListItem>Item 3</asp:ListItem>
 <asp:ListItem>Item 4</asp:ListItem>
 </asp:RadioButtonList>

 3. The dropdownlist

 <asp:DropDownList ID=”DropDownList1” runat=”server”>
 <asp:ListItem>Item 1</asp:ListItem>
 <asp:ListItem>Item 2</asp:ListItem>
 <asp:ListItem>Item 3</asp:ListItem>
 <asp:ListItem>Item 4</asp:ListItem>
 </asp:DropDownList>

 </div>
 </form>
</body>
</html>

44_563489-bk06ch03.indd 66744_563489-bk06ch03.indd 667 3/19/10 8:15 PM3/19/10 8:15 PM

668 Getting Some Input from the User

Using multiple-item selection controls
Sometimes you want the user to be able to choose more than one of the
items available in a list. HTML has two controls that handle that: the
listbox and the checkbox list. (See Figure 3-4.)

Figure 3-4:
Controls
for multiple
selections.

ASP.NET replicates these, like this:

 ✦ The listbox: This list is a lot like a dropdownlist, except there is no
expansion required — you see the expanded list right away, scroll bar
and all. To select more than one item, the user is usually required to
hold down the control or command key while clicking.

 ✦ The checkboxlist: This is exactly what it sounds like: a list of check
boxes. It looks just like a radio button list, except with check boxes. You
can see what I mean in Figure 3-4.

Here is the code for these. As with the dropdownlist, the listitem is
used to show the items. If it were databound, the listitems would not be
there — they would just be rendered from the data source at runtime.

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 1. Checkboxlist

 <asp:CheckBoxList ID=”CheckBoxList1” runat=”server”>
 <asp:ListItem>Item 1</asp:ListItem>
 <asp:ListItem>Item 2</asp:ListItem>
 <asp:ListItem>Item 3</asp:ListItem>
 <asp:ListItem>Item 4</asp:ListItem>
 </asp:CheckBoxList>

44_563489-bk06ch03.indd 66844_563489-bk06ch03.indd 668 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
669Getting Some Input from the User

 2. Listbox

 <asp:ListBox ID=”ListBox1” runat=”server”>
 <asp:ListItem>Item 1</asp:ListItem>
 <asp:ListItem>Item 2</asp:ListItem>
 <asp:ListItem>Item 3</asp:ListItem>
 <asp:ListItem>Item 4</asp:ListItem>
 </asp:ListBox>

 </div>
 </form>
</body>
</html>

Using other kinds of input controls
ASP.NET provides a number of other input types that are combinations of
the above, or are nontraditional inputs. (See Figure 3-5.) They are all special-
use controls, but they need to be in your toolbox so you can use them when
the need arises.

Figure 3-5:
The
stragglers.

They include the following input types:

 ✦ FileUpload: The FileUpload does exactly what it says. It creates an
HTML input of type File and makes the form enctype (encoding type)
into multipart form-data. This allows the Web server to accept a long
stream of binary data, which you can then capture with a streamreader.

 ✦ Imagemaps: Imagemaps are nearly relics of a bygone era. Essentially,
they allow you to mark off pixel by pixel maps on top of images and
then assign regions within those maps to URLs or other actions.

44_563489-bk06ch03.indd 66944_563489-bk06ch03.indd 669 3/19/10 8:15 PM3/19/10 8:15 PM

670 Data Binding

This control assists you by giving you the framework. You still have to
provide the map. Now, usually people use separate images.

 ✦ Calendars: The calendar control is just a textbox that helps the user
format dates properly. It works well. There are a ton of formatting
options, too — check them out in the property panel.

There are others. I might have covered all the things you will see in the
ToolBox, but there is a lot more out there. What you need to remember are
the basics — they are visible controls with ASP.NET implementations and
HTML output. You can use the property panel, the markup, or the C# code
to change the properties. And you can bind them to objects in your code —
which we discuss later in this chapter.

Submitting input with Submit buttons
After you get all this input into a form, you need the user to send it to you.
The basic way to do this is through the Submit button.

In Chapter 1, I talk about the PostBack event, and how Microsoft used
JavaScript to change the way the posting of forms back to the server works.
The Submit button is how one does this.

Let’s be clear — any control can cause a postback. If you set an event han-
dler for an event in a control, it will cause a postback. You can save off the
form data at any point once it gets back to the server. We use the Submit
button because it is what the user is used to.

The ASP.NET default controls have three buttons.

 ✦ Button is just what it says — an input of type submitted in HTML.

 ✦ ImageButton is a button control that has a built-in src property for
images.

 ✦ LinkButton just shows an HTML anchor and treats it like a button.

We use one of these for nearly every page where we accept user input. Most
of the time, the users expect it.

Data Binding
Getting the data into a control in a Web page isn’t enough. There needs to
be some way to persist (save for reuse) that information after the data is
entered. Data binding is the answer.

44_563489-bk06ch03.indd 67044_563489-bk06ch03.indd 670 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
671Data Binding

Data binding tells a control what member of the underlying class to get its
data from. For instance, if you have a collection of Apple objects with a
property of Color that you want to show in a text box, you can bind the
value Apple.Color to the Text property.

But things get more interesting than that. Let’s say that you want to provide
a list of colors and allow the user to select the color of the object in ques-
tion. You can do that by binding the list of a collection and the selected
value to the SelectedItem property of the list control. If you want to show
the color itself, you can bind to the FontColor property of a text control.

Setting up your markup for binding
Back in the Active Server Page days, you put all your data on the page
by simply printing it there. Sounds simple but it had a lot of problems.
Foremost, your form had to have a lot of knowledge about the data it was
showing. This is a bad thing. Anyway, the format for doing it was

<%= ThisIsWhatIWantToPrint %>

If you needed a list, you looped in the surrounding code. If you needed a
method result, you just put the method right in there. What you saw was
what you got.

Data binding is the more enlightened form of getting data on the screen. The
controls that are built into ASP.NET know how to handle data on their own,
so long as that data meets some basic specifics.

Data binding is accomplished by setting a property of a control to a member
of the underlying class. For a single control, like a text box, you just set the
property in question, like this:

<asp:Label ID=”Label1” runat=”server” Text=’<%#
IAmBindingToThisVariable %>’ />

If you are binding to a repeating control, like a Grid or a ListBox, then you
set the DataSource property. I show you how to do that in the next section,
“Bindings in code.”

 The variables you are binding to need to be in the code-behind, and be
public. If they aren’t, you will get runtime errors. That’s also why binding in
the code is a good idea, which we do in the next section.

Right now, let’s talk binding in the markup. Here’s all you need to do to set
up your markup for binding:

44_563489-bk06ch03.indd 67144_563489-bk06ch03.indd 671 3/19/10 8:15 PM3/19/10 8:15 PM

672 Data Binding

 1. In the Chapter 3 Web project that we have been adding pages with
controls to, right-click and choose Add New and then Class.

 I named my class Show.

 2. Click OK, and then put this simple data class in there. This class is
just for example — it could be a database or a data class or an Entity
Framework model.

using System;

namespace Chapter_3
{
 public class Show
 {
 public int ID { get; set; }
 public String ShowTitle { get; set; }
 public String EpisodeTitle { get; set; }
 public DateTime ScheduledTime { get; set; }
 public int Channel { get; set; }
 }
}

 3. Open the Text.aspx file in the Chapter 3 project.

 4. Double-click the design surface to get to the code-behind.

 If any code already appears in the Page.Load, you can delete it.

 5. Add code to the Page.Load to make a mock Show object.

 In a real project, you would get this object from the database or the ser-
vice layer. For this example, I just use mock code:

 Show show = new Show { ID = 1, Channel = 5,
EpisodeTitle = “ASP.NET Databinding”, ScheduledTime
= new DateTime(2009, 4, 12, 12, 0, 0), ShowTitle =
“The C# Show” };

 6. We need to tell the page that we are going to be data binding. Add a
Page.DataBind() call at the end of the Page_Load.

 The finished method looks like this:
 protected void Page_Load(object sender, EventArgs e)
 {
 Show show = new Show { ID = 1, Channel = 5, EpisodeTitle =

“ASP.NET Databinding”, ScheduledTime = new DateTime(2009, 4, 12, 12,
0, 0), ShowTitle = “The C# Show” };

 Page.DataBind();
 }

 7. Change to the markup in the designer.

 8. The Text field gets the markup for the binding. We can just give it the
property, like this:

<asp:Label ID=”Label1” runat=”server” Text=’<%# show.EpisodeTitle %>’></
asp:Label>

44_563489-bk06ch03.indd 67244_563489-bk06ch03.indd 672 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
673Data Binding

This isn’t the interesting way to bind things. It is nice because you can edit
the binding without recompiling but the interesting way is in the C# code.
Doing it in the C# code is much more readable and manageable. There are
times to use each, but this is a C# book. The least we can do is to focus on
the code-behind, right?

Data binding using the code-behind
Rather than set a property directly in the markup, we can set it equal
to a value in the code-behind. For a repeating control, we can set a
DataSource property in the C# code for the control. Then, when we bind
the page, it uses that value to load in the right value or values from the
code-behind.

Keep in mind, though, that with the Text property of a Label (for instance)
this just simple data binding. I am just setting a value.

Let’s try it with the earlier example. Just follow these steps:

 1. Keep the label text simple — just drop the Text property, like this:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Text.aspx.cs”
Inherits=”Chapter_3.Text” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 This is some text.

 <asp:Label ID=”Label1” runat=”server” />

 </div>
 </form>
</body>
</html>

 2. In the code-behind, set the Text property equal to the property on the
control that you want to bind to.

 Notice that there is no DataBind command for the page:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

44_563489-bk06ch03.indd 67344_563489-bk06ch03.indd 673 3/19/10 8:15 PM3/19/10 8:15 PM

674 Data Binding

namespace Chapter_3
{
 public partial class Text : System.Web.UI.Page
 {
 public Show show;
 protected void Page_Load(object sender, EventArgs e)
 {
 show = new Show { ID = 1, Channel = 5, EpisodeTitle = “ASP.

NET Databinding”, ScheduledTime = new DateTime(2009, 4, 12, 12, 0,
0), ShowTitle = “The C# Show” };

 Label1.Text = show.EpisodeTitle;
 }
 }
}

 3. Run the application to see the value get set.

This works well, but remember, this is only simple data binding. It’s just set-
ting values. Full data binding is for controls with repeating properties.

Using commonly bound controls
After all this label stuff, let’s talk about what data binding is really good for —
collections. Data binding is great for dealing with groups of items, bound to
repeating structures in HTML.

The typical example of data binding is the DataGrid control. If everything
is set up correctly, you have remarkable control over how the grid looks.
If things aren’t named correctly, you still have the option to show all of the
data in a default style. So let’s get started. To create a databound grid, follow
these steps:

 1. Add a new ASPX file to the projects called Grid.aspx.

 2. Change to design view.

 3. Open the Data section of the Toolbox and drag a GridView onto the
design surface.

 4. Double-click the design surface to change to Code View and get a page
load event handler.

 5. Make a mock collection of Shows in the page load event handler. I
used a generic list of Show.

List<Show> shows = new List<Show>();
protected void Page_Load(object sender, EventArgs e)
 {
 shows.Add(new Show { ID = 1, Channel = 5, EpisodeTitle =

“ASP.NET Databinding”, ScheduledTime = new DateTime(2009, 4, 12, 12,
0, 0), ShowTitle = “The C# Show” });

 shows.Add(new Show { ID = 2, Channel = 5, EpisodeTitle =
“ASP.NET Styling”, ScheduledTime = new DateTime(2009, 4, 12, 13, 0,
0), ShowTitle = “The C# Show” });

 shows.Add(new Show { ID = 3, Channel = 8, EpisodeTitle =
“Inheritance”, ScheduledTime = new DateTime(2009, 4, 16, 9, 0, 0),
ShowTitle = “Learning C#” });

44_563489-bk06ch03.indd 67444_563489-bk06ch03.indd 674 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
675Data Binding

 shows.Add(new Show { ID = 4, Channel = 8, EpisodeTitle =
“Partial Classes”, ScheduledTime = new DateTime(2009, 4, 17, 9, 0,
0), ShowTitle = “Learning C#” });

 shows.Add(new Show { ID = 5, Channel = 8, EpisodeTitle =
“Operator Overloading”, ScheduledTime = new DateTime(2009, 4, 18, 9,
0, 0), ShowTitle = “Learning C#” });

 }

 6. Add the datasource and the databind commands at the bottom of the
page load.

 I have bolded the lines that I added in the code:
 List<Show> shows = new List<Show>();
 protected void Page_Load(object sender, EventArgs e)
 {
 shows.Add(new Show { ID = 1, Channel = 5, EpisodeTitle =

“ASP.NET Databinding”, ScheduledTime = new DateTime(2009, 4, 12, 12,
0, 0), ShowTitle = “The C# Show” });

 shows.Add(new Show { ID = 2, Channel = 5, EpisodeTitle =
“ASP.NET Styling”, ScheduledTime = new DateTime(2009, 4, 12, 13, 0,
0), ShowTitle = “The C# Show” });

 shows.Add(new Show { ID = 3, Channel = 8, EpisodeTitle =
“Inheritance”, ScheduledTime = new DateTime(2009, 4, 16, 9, 0, 0),
ShowTitle = “Learning C#” });

 shows.Add(new Show { ID = 4, Channel = 8, EpisodeTitle =
“Partial Classes”, ScheduledTime = new DateTime(2009, 4, 17, 9, 0,
0), ShowTitle = “Learning C#” });

 shows.Add(new Show { ID = 5, Channel = 8, EpisodeTitle =
“Operator Overloading”, ScheduledTime = new DateTime(2009, 4, 18, 9,
0, 0), ShowTitle = “Learning C#” });

 GridView1.DataSource = shows;
 Page.DataBind();
 }

 7. Press <F5> to see the application run.

 As you can see in Figure 3-6, the columns from the database are all auto-
matically bound to the HTML grid.

That’s all well and good, but what if you don’t want to show the ID, or want
to put the columns someplace more to your liking? You can do that, too; it
just takes a little more effort.

The capability of the gridview to automatically show all columns in a table is
handled by a property: AutoGenerateColumns. The first thing we need to
do is set that to False. This tells ASP.NET that we are going to set all of the
columns by hand.

Next, we have to tell C# what columns we are using. This can be done in the
ASP.NET code, but this is a C# book. Let’s do it in the C# code.

We need to add two columns to the grid — let’s say Channel and Episode.
In order to do this, we need to define and set up two BoundColumn objects.
Then we need to add them to the grid. That’s what happens under the
sheets when we add a datacolumn tag in the markup.

44_563489-bk06ch03.indd 67544_563489-bk06ch03.indd 675 3/19/10 8:15 PM3/19/10 8:15 PM

676 Data Binding

Figure 3-6:
The TV
schedule!
Columns
here are
bound to the
grid.

Here’s the resulting markup. I bolded the lines of code that I added to the
page load event handler:

 List<Show> shows = new List<Show>();
 protected void Page_Load(object sender, EventArgs e)
 {
 shows.Add(new Show { ID = 1, Channel = 5, EpisodeTitle = “ASP.NET

Databinding”, ScheduledTime = new DateTime(2009, 4, 12, 12, 0, 0), ShowTitle
= “The C# Show” });

 shows.Add(new Show { ID = 2, Channel = 5, EpisodeTitle = “ASP.NET
Styling”, ScheduledTime = new DateTime(2009, 4, 12, 13, 0, 0), ShowTitle =
“The C# Show” });

 shows.Add(new Show { ID = 3, Channel = 8, EpisodeTitle =
“Inheritance”, ScheduledTime = new DateTime(2009, 4, 16, 9, 0, 0), ShowTitle
= “Learning C#” });

 shows.Add(new Show { ID = 4, Channel = 8, EpisodeTitle = “Partial
Classes”, ScheduledTime = new DateTime(2009, 4, 17, 9, 0, 0), ShowTitle =
“Learning C#” });

 shows.Add(new Show { ID = 5, Channel = 8, EpisodeTitle = “Operator
Overloading”, ScheduledTime = new DateTime(2009, 4, 18, 9, 0, 0), ShowTitle
= “Learning C#” });

 GridView1.DataSource = shows;
 GridView1.AutoGenerateColumns = false;

 BoundField channelColumn = new BoundField();
 channelColumn.DataField = “Channel”;
 channelColumn.HeaderText = “Channel”;
 GridView1.Columns.Add(channelColumn);

 BoundField episodeColumn = new BoundField();
 episodeColumn.DataField = “EpisodeTitle”;
 episodeColumn.HeaderText = “Episode”;
 GridView1.Columns.Add(episodeColumn);

 Page.DataBind();
 }

44_563489-bk06ch03.indd 67644_563489-bk06ch03.indd 676 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
677Styling Your Controls

Styling Your Controls
When you have the data in your controls, you need to get the control look-
ing a certain way. There are a lot of options here. All the controls come with
properties that can be set at design time and at runtime, or bound to cascad-
ing style sheets (CSS).

Being able to style is necessary; being able to manage the styles at runtime
with C# is darn near magic. Using a combination of the three methods
makes it possible to create dynamic applications that give the user the
best experiences.

Setting control properties
By far, the simplest way to set style on a control is to use the built-in proper-
ties. It is straightforward, you know exactly what you are applying a look to,
and IntelliSense helps you do so.

Notice I didn’t say it was the “best” way to do styles. I said it was the
simplest.

Setting control properties has a host of problems. If you have more than one
control to set up, you have to set the properties on each of them — even
if they are the same. The runtime has to handle a lot of extra stuff. Also, it
makes your code messy.

Sometimes, though, you need to set a style this way. The best way to see
them all is to check out the Properties panel. Set it to Categorized, and look
the bottom, as shown in Figure 3-7. If you actually set properties here, they
will be in the markup like the below example, not the code-behind, but you
can at least find the names here.

<asp:GridView ID=”GridView1” runat=”server”
 onselectedindexchanged=”GridView1_SelectedIndexChanged”>
 <RowStyle BackColor=”#FF6666” />
</asp:GridView>

After you get the name of something you want to set, you just set it like any
other property:

GridView1.RowStyle.BackColor = System.Drawing.Color.Red;

The roughest part is discovering what framework element that the style
will want as a value. The easiest way to determine this is to type the part to
the left of the equal sign, and then mouse over the property to see how it is
declared. BackColor, for instance, requires a System.Drawing.Color
element. When I discovered that, I knew where to go to get the value.

44_563489-bk06ch03.indd 67744_563489-bk06ch03.indd 677 3/19/10 8:15 PM3/19/10 8:15 PM

678 Styling Your Controls

Figure 3-7:
Styles in the
Properties
panel.

Binding styles with CSS
Because we are in a Web application, using Cascading Style Sheets (CSS)
seems like a good approach to handle our styles. Nearly every control in
ASP.NET has a property — CssClass — that takes advantage of the styles
loaded as part of the project.

To get started, you need a few CSS classes, which are not the same as .NET
classes. A class in CSS is a collection of styles that can be connected to a
collection of markup, so as to match the properties that can be matched
between them. To bind styles with CSS, follow these steps:

 1. Right-click the project and select Add New.

 2. Select Style Sheet from the dialog box.

 I named mine Chapter3.css.

 3. When the style sheet comes up, right-click the CSS Outline and select
Add Style Rule.

 4. In the element dialog box, select Class Name and type GridViews in
the text box.

 5. Click the right arrow button as shown in Figure 3-8.

 6. Press OK, and notice the new entry in the style sheet.

44_563489-bk06ch03.indd 67844_563489-bk06ch03.indd 678 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
679Making Sure the Site Is Accessible

Figure 3-8:
Adding a
style sheet
class.

Just for demonstration, I added a few things to the style sheet.

body
{
}
.GridView
{
 font-family:French Script MT;
 background-color: Fuchsia;
}

To bind this to the control, we use the CssStyle property, which accepts
the class in the CSS file. Link the CSS file to the page in question in the page
markup first, using the “link” snippet in the ASP.NET markup (remember to
put it in the <head> tag section).

In the code-behind, just set the CssStyle property like you would any other
property, like this:

GridView1.CssStyle = “GridViews”;

Making Sure the Site Is Accessible
When I say accessible here, I am not talking about the server being up. I am
talking about making sure the controls you use are available to people who
have disabilities, such as diminished senses of sight, hearing, or touch. Such
people have a different browsing experience than you or I.

Microsoft has made a significant investment in accessible Web browsing,
and you’ll be pleased to find that most of the controls make good decisions
about accessibility right out of the box. Understanding how to use them for
this purpose takes a little effort, however.

If you are building Web sites for large enterprises or the government, Section
508 (an amendment to the Rehabilitation Act) makes this very important.
Check out www.section508.gov for more information.

44_563489-bk06ch03.indd 67944_563489-bk06ch03.indd 679 3/19/10 8:15 PM3/19/10 8:15 PM

680 Constructing User Controls

Control features for accessibility
Most ASP.NET controls, where applicable, fit a certain feature list for acces-
sibility. The goal is to make coding for accessibility easy for the programmer
and functional for the user.

 ✦ Any element that isn’t made of text should have an alternate text option.
For instance, all image tags support an AlternateText property,
which populates the HTML alt tag. Web-to-text readers will “speak” the
contents of this tag in place of the image. If you add an Image to a Web
page, Visual Studio even prompts you for the alternate text.

 ✦ Controls don’t require the use of style sheets or color dependency. If
you wish, it is easy to strip all style information from a page for simplic-
ity of use by a reader or a low-sight version of the application.

 ✦ All input controls in Getting Input from the User support a TabIndex
property, which allows users to tab from control to control. For those
not using a mouse, this is optimum.

 ✦ Setting which part of the form has the cursor by default (called default
focus) is easy in ASP.NET with the DefaultFocus property. Changing it is
easy with the SetFocus method.

 ✦ Buttons can get keyboard equivalents using the AccessKey property.

 ✦ Labels and input controls can be associated, which many Web readers
depend on.

Design considerations
The principle design consideration for accessibility is to use the features. Set
the alternate text. Use the tab indexing. Set a default focus. Make your appli-
cation easy to use for everyone.

There is a new feature in Visual Studio 2010 called Check Page for
Accessibility, which checks WCAG and Section 508 errors. If you use this fea-
ture, warnings will actually be posted to your build process.

Constructing User Controls
Have you ever been to a site with a three-part U.S. phone number shown as
three textboxes? You can usually automatically tab between them, and this
structure makes sure you have exactly the right number of digits in each text
box. That’s something that you might very well use on every page of many
applications, right?

That phone number control consists of things that we already have around
us: text box controls, client-side scripting, and validation. All that you need
is to put them together.

44_563489-bk06ch03.indd 68044_563489-bk06ch03.indd 680 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
681Constructing User Controls

The technology that you use to combine existing controls in useful ways is
called a User Control, or ASCX. ASCX is encapsulated, easy to create, and
easier to use.

Making a new phone number user control
To show you what I mean, here I show you how to make my favorite user
control, the Phone Number control. In this incarnation, it is only good for
U.S. format, but that’s okay. It gets the point across. Just follow these steps
to create a phone number control:

 1. In the Web project we have been using in this chapter, right-click the
project file, and choose Add➪New Item.

 2. Select Web User Control. (See Figure 3-9.)

 I named it PhoneNumber.ascx.

Figure 3-9:
Adding
the Phone
Number
control.

 3. Switch to Design view.

 4. Drag three text boxes to the designer, next to one another. If you want
to get fancy, put hyphens between them.

 5. In the Properties panel, set the MaxLength for the first two text boxes
to 3 and the last one to 4. This prevents the user from putting too
many characters in a field.

44_563489-bk06ch03.indd 68144_563489-bk06ch03.indd 681 3/19/10 8:15 PM3/19/10 8:15 PM

682 Constructing User Controls

 6. Right-click the designer and select View Code.

 7. Add a property to the code-behind that allows a page using the con-
trol to get to the phone number.

 The goal is to get all the content from the controls, patch it together,
format it, and deliver it as a public property. Here is the code:

private string _phoneNumber;
public string PhoneNumberValue
{
 get
 {
 _phoneNumber = string.Format(“({0}){1}-{2}”);
 return _phoneNumber;
 }
}

So now we have a control — just like the controls in the Toolbox — that
accepts a phone number in pieces and formats it nicely. Let’s play with it.

Using your new control
You’ll love using this control. It really does work just like a Toolbox control.
Follow these steps to see how it works:

 1. Right-click on the project, and add a new Web file.

 I named mine UseThePhoneNumber.aspx.

 2. Change to the design view.

 3. Drag the ascx control right from the Solution Explorer onto the design
surface.

 Ta da! The control shows up just like a plain text box would, but it is just
like we formatted it. Check out Figure 3-10.

Figure 3-10:
The Phone
Number
control.

 4. Add a label and a button to the form. Try to fill out the control, click
the button, and see the formatted phone number.

44_563489-bk06ch03.indd 68244_563489-bk06ch03.indd 682 3/19/10 8:16 PM3/19/10 8:16 PM

Book VI

Chapter 3

C
o

n
tro

llin
g

 Y
o

u
r

D
e

ve
lo

p
m

e
n

t
E

x
p

e
rie

n
c

e
683Adding Custom Controls

 5. Double-click the button to get an event handler for the click event.
Add some code to populate the label on the button click, like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Chapter_3
{
 public partial class UseThePhoneNumber : System.Web.UI.Page
 {
 protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = PhoneNumber1.PhoneNumberValue;
 }
 }
}

 6. Right-click on the ASPX page and set it as the start page.

 7. Press <F5> and run the application. Enter a phone number in the con-
trol and click the button.

 The formatted phone number should appear in the label.

This is a boring example, but you can see how this can be used to collect
commonly used fields together for reuse in an application. Order details,
addresses, and map coordinates, among other types of information, all are
usually grouped together and make great user controls. In a travel applica-
tion I recently worked on, the start city and date and the end city and date
became user controls. It’s a great way to solve simple reuse problems.

Adding Custom Controls
Beyond the scope of a user control is a control that — perhaps — no one
has thought of before. Maybe your company makes a device with a pressure
gauge that you need to replicate in code. Or perhaps you need to display a
unique set of patient statistics on a monitor, or demonstrate the running of
some data engine.

Those kinds of controls call for the next level: custom controls, sometimes
called server controls. A custom control is a Web control built using essen-
tially the same tools that Microsoft used to build the controls that we have
used throughout this chapter.

I won’t fool you — building a server control is nontrivial. To get one started,
you need a whole new project, not just a new file. The project type is a
Server Control project, and it gives us a whole battery of code to start with,
much like this:

44_563489-bk06ch03.indd 68344_563489-bk06ch03.indd 683 3/19/10 8:16 PM3/19/10 8:16 PM

684 Adding Custom Controls

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace NewServerControl
{
 [DefaultProperty(“Text”)]
 [ToolboxData(“<{0}:ServerControl1 runat=server></{0}:ServerControl1>”)]
 public class ServerControl1 : WebControl
 {
 [Bindable(true)]
 [Category(“Appearance”)]
 [DefaultValue(“”)]
 [Localizable(true)]
 public string Text
 {
 get
 {
 String s = (String)ViewState[“Text”];
 return ((s == null) ? “[“ + this.ID + “]” : s);
 }

 set
 {
 ViewState[“Text”] = value;
 }
 }

 protected override void RenderContents(HtmlTextWriter output)
 {
 output.Write(Text);
 }
 }
}

One property and one method appear in the default configuration. A server
control is basically just text output to the screen. It causes markup, just like
a Label control emits a set of tags. If you want this control to emit a
set of <div> tags, you just change the property get statement.

For more information about making good controls, search for Server Control
in MSDN. There are a number of good articles, and anything from ASP.NET
2.0 or later works just fine.

44_563489-bk06ch03.indd 68444_563489-bk06ch03.indd 684 3/19/10 8:16 PM3/19/10 8:16 PM

Chapter 4: Leveraging
the .NET Framework

In This Chapter
✓ Working with the .NET Framework

✓ Dealing with requests

✓ Using ASP.NET security

✓ Using site maps

✓ Managing files and cookies

✓ Tracing and debugging

Let’s be clear about ASP.NET and the .NET Framework. They are differ-
ent. ASP.NET has a dependency on the .NET Framework, but it is really

defined as the collection of controls that are in Chapter 3, plus others. The
.NET Framework brings a different set of tools.

The controls that are in ASP.NET are user experience focused — they
focus on the way the user views the application. The tools that are in the
Framework are transport focused — focused on passing information back
and forth between client and the server. If you look at the System.Web
namespace (which is where most of these bits are stored), you’ll quickly see
that most of the classes within start with “Http.” There is a reason for that:
HTTP is the transport protocol.

This is important because manipulating the information that goes back and
forth between the client and the server is the first and best way to do any-
thing off-trail in a Web application. Whenever the default condition of the
control or the server or the client isn’t exactly what you need, the first place
you turn is the classes of the System.Web namespace.

Controls in ASP.NET and controls in the .NET Framework overlap quite a bit,
but each group is distinct. You should always keep in mind which tools are
at your disposal and how best to use them.

45_563489-bk06ch04.indd 68545_563489-bk06ch04.indd 685 3/19/10 8:15 PM3/19/10 8:15 PM

686 Surfing Web Streams

Surfing Web Streams
At its core, ASP.NET is about the sending and receiving of streams of text.
The client sends requests in, and the server sends HTML out. Sometimes
our application is the client, and sometimes it is the server. Classes in the
System.Web namespace handle all these cases.

 Note that these solutions, along with many others within the System.Web
namespace, aren’t exclusively related to ASP.NET Web sites. Other applica-
tions can sometimes make use of the goodness provided by System.Web, so
consider carefully!

Intercepting the request
In a sudden fit of reasonable naming, Microsoft decided to name the object
that has all the data from the client request: “Request.” That person has
since been fired.

There are a few different ways to look at a request, but we are concerned
here with the current request, or the context request. Fortunately this is the
default request in the ASP.NET space. You can “intercept” that request with
ASP.NET. But let’s back up.

Digging up the request data
Every time a user types in a URL or clicks a button, a request is issued.
Requests are processed by the server, and you can access them through the
current context.

 Don’t let the language fool you: All I mean by “current context” is the object
set that ASP.NET gives you just for being there when the request is pro-
cessed. In short, the class is called HttpRequest, and ASP.NET makes an
instance and calls it Request. It is an instance of the HttpRequest class
and is the HttpContext.Request property.

To create an environment to show you what I mean, set up a project with
these steps:

 1. Create a new ASP.NET project.

 I called mine Chapter4.

 2. Add a page called Request.aspx.

 3. Right-click on the new Request.aspx page and set it as the start page.

 4. Drag a button control onto the page in the designer.

 5. Double-click the new button to get the Click event handler.

45_563489-bk06ch04.indd 68645_563489-bk06ch04.indd 686 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

687Surfing Web Streams

 6. In the new Button1_Click method, add some code to flip through
the Request object.

protected void Button1_Click(object sender, EventArgs e)
{
 foreach (String requestInfo in Request.Form)
 {
 Debug.WriteLine(requestInfo);
 }
}

 What we are doing here is just looking at the context returned by the
request. It is just somewhere for us to put the debugger, really.

 7. Right-click on the Debug statement and resolve the System.Diagnostics
reference.

 8. In Page_Load, add more or less the same code, so we can see the dif-
ference between the original request and the postback.

 Notice the check for the postback statement.
protected void Page_Load(object sender, EventArgs e)
{
 if (!(Page.IsPostBack))
 {
 foreach (String requestInfo in Request.Form)
 {
 Debug.WriteLine(requestInfo);
 }
 }
}

 9. Put breakpoints next to the two foreach statements.

 10. Press <F5> to run the application.

When you run, before the Web application appears, the application breaks
on the foreach in the Page_Load method. Put your mouse over the
Request object there, and you’ll see something like Figure 4-1. Notice that
the ContentLength is 0 and the HttpMethod is GET. This is an initial URL-
based request for a page.

Now press <F10> until the Page_Load event is over the Visual Studio
returns control to your Web browser. Notice that the Debug.WriteLine
statement is never called. Why? ContentLength is 0. There is no Form.
(Kinda like “There is no spoon.”) The content is empty, because it is an ini-
tial request. The Form collection is empty. Nothing is there except the basic
request information.

Press the button when the browser comes back. Visual Studio breaks again
on the other foreach statement in the Button1_Click method. Put your
mouse over the Request object again. Note the Form collection, shown in
Figure 4-2. There are three items in it, the two hidden fields added by ASP.
NET and the button that we added, Button1.

45_563489-bk06ch04.indd 68745_563489-bk06ch04.indd 687 3/19/10 8:15 PM3/19/10 8:15 PM

688 Surfing Web Streams

Figure 4-1:
The initial
request.

Figure 4-2:
The form
request.

45_563489-bk06ch04.indd 68845_563489-bk06ch04.indd 688 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

689Surfing Web Streams

This is the second type of request — the POST. It is in response to a form.
This is where a lot useful information can be found.

Using information from requests
The request is a place that you can collect information about the user’s
needs, and use it. Especially on postback (though not just then), there is a
lot of information that you can use, including the following:

 ✦ The content of the request. The type (ContentType) of the
request tells us if it has data or just text. I can learn if it is ISO or
Unicode (ContentEncoding). I also know how long the request is
(ContentLength).

 ✦ The text of the request itself. For instance, I have all the text of the URL
(Url) and the request before this one (UrlReferrer). If I just want the que-
rystring (the part after the question mark), I can get it with QueryString.

 ✦ Whether the user is logged into a domain (IsAuthenticated) and if so,
who the user is (LogonUserIdentity).

 ✦ Access to the Cookies collection (Cookies).

When you have access to the request, you can make decisions about con-
tent. If you need to know about their login information, you have it. Check a
cookie — no problem. Confirm the querystring. Whatever needs to be done.
You get information to the business layer, get what you need back, compose
the new page of controls, and then need to modify the response. That’s
when you need the HttpResponse class.

Altering content sent to clients
ASP.NET and IIS do a good job of setting up markup for a client browser. You
can even tell Visual Studio that you are targeting a certain browser (say, in
a workgroup environment), and it will tweak the HTML it sends to the client
to make it closer to the exact implementation of the HTML standard that
browser supports.

You sometimes need to change the way the page is rendered on the client.
More often, you need to change the way the metadata about the page is
handed to the client. An HTML page has a lot more than the values you see on
the screen. HttpResponse helps you to manage what you can and can’t see.

Sending the user somewhere else
One of the most common uses of the Response object is to send the user
somewhere else entirely. If you look at the request headers and realize (for
instance) that the user isn’t logged into a Windows domain account (using
HttpRequest.IsAuthenticated), you can redirect the user to a login
screen:

45_563489-bk06ch04.indd 68945_563489-bk06ch04.indd 689 3/19/10 8:15 PM3/19/10 8:15 PM

690 Securing with ASP.NET

If(!Request.IsAuthenticated){
 Response.Redirect(“login.aspx”);
}

On the other hand, sometimes you need to tell the user that this isn’t the
right place to be at all. Especially useful if you have to change the structure
of your Web site, RedirectPermanently tells search engine spiders “nope,
this isn’t here anymore. Go over there and change your index.”

For instance, say you have a product line that was moved to a whole new
URL. You could check the QueryString for the product line statement, and
if you find it, redirect the link permanently.

If(Request.Querystring(“ProductLineId”)==4){
 Response.RedirectPermanently(“http://newproduct.com”)
}

Changing the request or response directly
Sometimes you just want to change things directly.

Response.Write, Response.WriteFile, and Response.
WriteSubstitution all are designed to allow you to do just that. In the old
days (before debugging), we had to use Response.Write to put errors into
the HTML that we could view with ViewSource. If you are using MVC, there is
still a place for that.

In today’s development, Response.Write is mostly used to do something
that you want to do on every page that meets a certain criteria, no matter
who coded it. You can add it to the code-behind of the master page (more on
that in Chapter 5) and know that the output stream of the site will be altered
directly.

Securing with ASP.NET
Book III covers security, and there is a whole book on security that you
should read — Code Complete by Steve McConnell. I’m only covering secu-
rity in this chapter because the AspNetHostingPermission is in the
System.Web namespace, and I want to give it a little airtime.

ASP.NET security is a complex topic. Because visitors to a Web site are
anonymous, bypassing the Windows security system occurs often. That
bypassing — called impersonation — allows IIS to do things on behalf of the
user even if the user isn’t really known to Windows. Remember, just because
you have put in a username and password doesn’t mean that Windows is
okay with your credentials.

45_563489-bk06ch04.indd 69045_563489-bk06ch04.indd 690 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

691Securing with ASP.NET

 So ASP.NET Web sites are run most often with whatever permissions the IIS
service is running with. Under normal conditions, this service is a fairly
restricted account called Network Service. The fact is, however, that you
really have no idea what the permissions will be because a hosting company
most likely will be managing that. Your users can have administrative per-
missions for all you know.

You can purposefully restrict the permissions of your users in your code.
This prevents someone from finding a way through your code logic to call a
method you don’t want them to be able to call.

Believe me, it happens.

The general idea is to trust no one, which I harp on in the Security chapter
in Book III. You want to pretend that most people who are going to run your
code are the enemy. I realize that isn’t any fun. But it is necessary today.
There are pre-built scripts to break into Web pages — there doesn’t even
have to be a real person there to bust in.

The MSDN documentation states this:

“It is recommended that you set the level attribute of the trust configuration
element to High for sites that are trusted. For sites that are not trusted, such
as a Web server that hosts sites that run code from an external customer,
it is recommended that you set the level attribute of the trust configuration
element to Medium.”

For the record, sites without a permission level set default to Full, which is
obviously higher than either of those.

Changing trusts
To change the trust of a class, you want to decorate the class in the ASP.NET
application with the hosting permission, like this:

using System;
using System.Web;
using System.Security.Permissions;

[AspNetHostingPermission(SecurityAction.Demand, Level=AspNetHostingPermissionLe
vel.High)]

public class ApplicationClass
{
 //My Code is here.
}

So this code uses the High level. The others are None, Minimal, Low,
Medium, and Unrestricted. Table 4-1 shows the general breakdown.

45_563489-bk06ch04.indd 69145_563489-bk06ch04.indd 691 3/19/10 8:15 PM3/19/10 8:15 PM

692 Navigating with Site Maps

Table 4-1 ASP.NET Permission Levels

AspNetHostingPermissionLevel Description

None Can’t get anywhere. Don’t ask.

Minimal The code can execute but it can’t DO anything.

Low You have read-only access to some restricted
information, like the Request itself. Very rough.

Medium More or less can look at anything — database,
network, whatever. No write access.

High Read/Write for any managed code, but can’t
run unmanaged (native) code.

Unrestricted Full run of the box.

Fixing problems
The most common problem is the use of None or Minimal as a permission
level. I don’t even know why Microsoft offers these choices. If you set the
class to Minimal, nothing can get to anything so far as I have been able to
figure out. Stick to High for trusted environments, and Medium for shared
servers.

Navigating with Site Maps
A site map is an XML file that assists Web design tools in formulating
dynamic navigation. There has been a more interesting use for them
recently, however. They are used by search engines for indexing your site
better.

 Webmasters.bing.com is a new Microsoft product that makes your suite
more available to users of Bing. It uses the site map file to make your site
more indexable. Check it out!

Search Engine Optimization is a big topic these days, and sitemaps can make
your life a lot easier. Search engines have set up readers that check for the
site map, and then use it to walk the file structure and make sure the links to
the site are accurate.

Adding a site map
To make a site map, follow these steps:

 1. Right-click on the project and select Add New … Item.

45_563489-bk06ch04.indd 69245_563489-bk06ch04.indd 692 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

693Navigating with Site Maps

 2. Select Site Map from the context menu, as shown in Figure 4-3.

Figure 4-3:
Adding a
site map.

 3. Accept the default name, Web.SiteMap.

 Visual Studio builds a template site map. Here is the default code:
<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
 <siteMapNode url=”” title=”” description=””>
 <siteMapNode url=”” title=”” description=”” />
 <siteMapNode url=”” title=”” description=”” />
 </siteMapNode>
</siteMap>

 The template file shows you a guideline for adding the navigation of a
site. If you have a number of files inside an About section, you make a
SiteMapNode of About, and then inside it (before the closing </sitemap-
node>), you add the pages in that section, like Contact Us or Our Story.

 For our example, though, there are no sectional divisions to the site.
There are in Chapter 5. In this current case, we make it flat and play with
that.

 4. Set up the site map for our three-page, flat structure, like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
 <siteMapNode>
 <siteMapNode url=”” title=”” description=”” />
 <siteMapNode url=”” title=”” description=”” />
 <siteMapNode url=”” title=”” description=”” />
 </siteMapNode>
</siteMap>

 Note that the SiteMapNode must be two layers deep, by specification.

45_563489-bk06ch04.indd 69345_563489-bk06ch04.indd 693 3/19/10 8:15 PM3/19/10 8:15 PM

694 Navigating with Site Maps

 5. Add in the three page names and URLs, like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
 <siteMapNode>
 <siteMapNode url=”Cookies.aspx” title=”Cookies” description=”Learn

all about Cookies” />
 <siteMapNode url=”Default.aspx” title=”Home” description=”The main

page” />
 <siteMapNode url=”Request.aspx” title=”Request” description=”Coding

for the Request” />
 </siteMapNode>
</siteMap>

Navigating a site with SiteMap
With the web.sitemap file installed safely in the application, IIS now has
a SiteMap collection that includes the XML file we made right there in
memory. If you need to figure out what other pages are related to the page
the user is viewing, you can do that. Follow these steps:

 1. Open up the Default.aspx page in the current project.

 2. Drag an empty ListBox control into the page.

 3. Go to Code View.

 4. Loop through the items in the SiteMap collection, and add items to the
listbox.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Chapter_4
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // Reference the parent node to keep the object model happy.
 string baseNode = SiteMap.CurrentNode.Title;

 // Check to make sure there are subpages.
 if (SiteMap.CurrentNode.HasChildNodes)
 {
 foreach (SiteMapNode sitemapKids in SiteMap.CurrentNode.

ChildNodes)
 {
 // Put the node name in the listbox.
 ListBox1.Items.Add(new ListItem(sitemapKids.Title));
 }
 }

 }
 }
}

45_563489-bk06ch04.indd 69445_563489-bk06ch04.indd 694 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

695Managing Files

If you get interested, put a debugger in the loop, and check out that
SiteMap object. It’s a nice collection of the pages that have been referenced
in the Web.sitemap file. Though this technology won’t cure every naviga-
tional problem on every site, it is a nice, underused part of System.Web.

Managing Files
The forms collection contains all the data being sent back from the client.
That includes any file that is being uploaded, using the multipart-data format.

ASP.NET uses a two-part plan to get file data to you. Keep in mind, you can
do this all by hand, but this all goes back to the idea behind the ASP.NET
model. Controls on the front end, System.Web stuff on the back end.

Let’s start with the design view. All the user must do is select a local file
and the browser handles encoding the file and sending it up to the server.
The file encoding standard is built into the protocol, like HTML itself. Follow
these steps to set up the upload:

 1. Create a new Web form in our Chapter 4 project called FileUpload.aspx.

 2. Drag a FileUpload control from the Toolbox onto the design surface.

 3. Drag a button onto the surface.

 The button on the FileUpload control is just for selecting an item on
your file system. We still need to postback the form.

 That gives us a good start. The FileUpload has a text box and a button
that gives you access to the local file system. The button provides a
submit function.

 All the magic happens on the back end for this example. The browser
handles the file upload for us. The server is our responsibility.

 4. Double-click the submit button on the design surface to get the
Button1_Click event handler.

 5. Set up a path to save the file.

protected void Button1_Click(object sender, EventArgs e)
{
 String localPath = Server.MapPath(“~/UploadedFiles/”);
}

 6. Add some code to the handler to check if there is a file in the form.
The new code is in bold.

protected void Button1_Click(object sender, EventArgs e)
{
 String localPath = Server.MapPath(“~/UploadedFiles/”);
 if (FileUpload1.HasFile)
 {
 }
}

45_563489-bk06ch04.indd 69545_563489-bk06ch04.indd 695 3/19/10 8:15 PM3/19/10 8:15 PM

696 Baking Cookies

 7. In the body of the if statement, have the FileUpload control help us
save the file.

 New code is in bold.
protected void Button1_Click(object sender, EventArgs e)
{
 String localPath = Server.MapPath(“~/UploadedFiles/”);
 if (FileUpload1.HasFile)
 {
 try
 {
 FileUpload1.PostedFile.SaveAs(localPath + FileUpload1.

FileName);
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 }
}

 This is a nice feature. In the old days, we needed to wrangle the bytes
themselves. Uphill both ways, in the snow.

To build a comprehensive file upload function, you need a little more strin-
gent programming practices. (Like my error handling, for instance?) The
idea here, though, is that there is a FileUpload control that gives us signifi-
cant back-end control.

While we are here, take a look at the HttpFileCollection, which is the
System.Web class that gives the FileUpload control its power. All the
properties of the FileUpload control, like the file’s bits, name, and all that,
are in the HttpFileCollection. Check it out if you need more fine-grained
control than the FileUpload control gives you.

Baking Cookies
Cookies are the only thing that a Web site can directly save on a client
machine without the client’s direct permission. It still requires the indirect
permission, because a user can disable cookies, but passively a cookie can
be saved without actually asking the user, “Is it okay if I save this?”

Cookies are useful for state management. If you know the ID of the client’s
shopping cart, for instance, you can save that ID in a cookie, and even if the
client goes away for a week and comes back, you still will be able to go back
to the business layer and look up the information.

45_563489-bk06ch04.indd 69645_563489-bk06ch04.indd 696 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

697Baking Cookies

Cookies are stored in a collection — actually a dictionary — of keys and
values. If you know what you are looking for, you can query the collection
for the value you want; if you don’t, you can loop through the collection until
you find it.

The cookies collection is managed using the Request and Response object —
based on the HttpRequest and HttpResponse classes we cover earlier in
this chapter.

Coding for client-side storage
To get a cookie, you have to first leave a cookie. In part of the response to a
client — say, after they log in — you want to tell the platform to save infor-
mation in the Cookies collection.

 Remember that cookies are plain text — anyone can read them. Never store
something that can be used by someone wearing a proverbial black hat. I
almost always create a System.Guid (a globally unique identifier) and use
that to track information that I then persist somewhere in my back-end data
store.

What is even better is to store information about the session itself and have
an understanding that the information will be removed from the database
after some time limit. This prevents the impersonation of the user by some-
one who intercepts the cookie. There are a lot of options, but check out the
best practices offered by Microsoft and other organizations before setting
up your cookie strategy.

If I want to store information about the session in the cookie, and tell the
database that my customer is using that session, I generate a Guid and save
it in both places. Then I can retrieve the cookie at the next request, compare
it to the available Guids in the user collection, and find the user in question.

Here is an example of setting the cookie based on session information:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Chapter_4
{
 public partial class Cookies : System.Web.UI.Page
 {
 WebUser currentUser = new WebUser();
 List<WebUser> usersInDatabase = new List<WebUser>();
 protected void Page_Load(object sender, EventArgs e)
 {

45_563489-bk06ch04.indd 69745_563489-bk06ch04.indd 697 3/19/10 8:15 PM3/19/10 8:15 PM

698 Baking Cookies

 if (!Page.IsPostBack)
 {
 //This is a first request, so we need to set the cookie
 Guid sessionGuid = new Guid();
 currentUser.SessionId = sessionGuid;
 //Tell the database about the new user
 usersInDatabase.Add(currentUser);
 //Set the cookie
 Response.Cookies.Add(new HttpCookie(“SessionId”, sessionGuid.

ToString()));
 }
 }
 }
 //This class would be in the library somewhere,
 //not actually in this file.
 public class WebUser
 {
 public Guid SessionId { get; set; }
 }
}

Wrangling cookies on the server
So now the user has the cookie, and the next request comes in. I need to
grab the cookie from the collection and search my known user base to get
the information that I need. The boldface in the code below indicates the
code added:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Chapter_4
{
 public partial class Cookies : System.Web.UI.Page
 {
 WebUser currentUser = new WebUser();
 List<WebUser> usersInDatabase = new List<WebUser>();
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 //This is a first request, so we need to set the cookie
 Guid sessionGuid = new Guid();
 currentUser.SessionId = sessionGuid;
 //Tell the database about the new user
 usersInDatabase.Add(currentUser);
 //Set the cookie
 Response.Cookies.Add(new HttpCookie(“SessionId”, sessionGuid.

ToString()));
 }
 else
 {

45_563489-bk06ch04.indd 69845_563489-bk06ch04.indd 698 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

699Tracing with TraceContext

 //The is a postback so we need to get the cookie
 string cookieSession = Request.Cookies.Get(“SessionId”).Value.

ToString();
 Guid sessionGuid = new Guid(cookieSession);
 var returningUser = from u in usersInDatabase
 where u.SessionId.ToString() == sessionGuid.ToString()
 select u;
 foreach (var user in returningUser)
 {
 //Better only be one
 currentUser = user;
 }
 }
 }
 //This class would be in the library somewhere,
 //not actually in this file.
 public class WebUser
 {
 public Guid SessionId { get; set; }
 }
}

How ASP.NET manages cookies for you
A lot of the stuff we use to store in a cookie is managed by the ASP.NET
engine. Session state, the most common example (discussed earlier), is now
handled by the ViewState object. You can store information in the ViewState
like you would in a variable, and the information is encoded for you and kept
in a special field in the markup.

ViewState has its problems, and a lot of people don’t like to use it. In fact,
many ASP.NET applications in enterprises have turned it off to save band-
width and prevent poor coding practices. In these cases, a return to cookies
is your best bet to maintain a constant communication with the user.

Tracing with TraceContext
The TraceContext class provides all the detailed server processing infor-
mation about a Web page in ASP.NET. It is exposed in the code-behind as
the Trace object and allows you to write messages to the trace log and the
screen when certain things happen.

The benefit is that the Trace code runs only when you have tracing turned
on. This gives programmers the option to leave tracing code in a working
application without it impacting the performance or functionality.

This allows you to think about debugging while you code. When I build a
Web application, I just assume that it will break. Fact is, it probably will.
Programming is hard, and Web programming is harder. It is likely that either
you or the environment will have a fault at some point.

45_563489-bk06ch04.indd 69945_563489-bk06ch04.indd 699 3/19/10 8:15 PM3/19/10 8:15 PM

700 Tracing with TraceContext

Why not make it easy on yourself later on down the road?

If you decide which parts of the application are most likely to have problems
while you code them, you can insert trace messages as you go. It seems like
a defeatist attitude, but really I think it is a realist attitude. Even if it is just
caused by bad data in two years, you are probably going to spend some time
debugging.

To use tracing, you can alter the @Page statement at the top of each page in
the application, or you can alter the Web.config file — which is what we
are gonna do. If you want to set up the whole site for tracing, just add the
bold code below to the Web.Config:

<configuration>
 <system.web>
 <trace enabled=”true” requestLimit=”40” localOnly=”false” />
 </system.web>
</configuration>

Follow these steps to alter the Web.config file for tracing:

 1. Create a new page in the project for tracing.

 I called it Tracing.aspx.

 2. Add the Trace statement to the @page directive of the new Tracing.
aspx page.

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Tracing.aspx.
cs” Inherits=”Chapter_4.Tracing” Trace=”true”%>

 3. In the code-behind, add code to the Page_Load event handler to fake
an exception and catch it, and then write to the Trace.

 This is just to see how Trace works. Book I covers Exception handling in
more detail.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace Chapter_4
{
 public partial class Tracing : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 throw new ApplicationException(“This is the fake

exception.”);
 }

45_563489-bk06ch04.indd 70045_563489-bk06ch04.indd 700 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI

Chapter 4

Le
ve

ra
g

in
g

 th
e

.N

E
T

 Fra
m

e
w

o
rk

701Tracing with TraceContext

 catch (ApplicationException ex)
 {
 Trace.Warn(ex.Message);
 }
 }
 }
}

 4. Press <F5> to run the application.

The page will look nothing like you expect. A ton of information is dumped
on the page, Response.Write style, including our Trace message (check
out Figure 4-4).

Figure 4-4:
An example
of ASP.NET
tracing.

You don’t want to show the user all of this, of course, but if you get word of
a problem with the application, wouldn’t it be nice to be able to turn on the
trace for the page in question? You could give it a little input, and then see
how the server processing details respond using the trace.

45_563489-bk06ch04.indd 70145_563489-bk06ch04.indd 701 3/19/10 8:15 PM3/19/10 8:15 PM

Book VI: Web Development with ASP.NET702

45_563489-bk06ch04.indd 70245_563489-bk06ch04.indd 702 3/19/10 8:15 PM3/19/10 8:15 PM

Chapter 5: Digging into
Web Construction

In This Chapter
✓ Getting started

✓ Managing files

✓ Mastering master pages

✓ Testing the testable

✓ Deploying your masterpiece

You can know the controls, and you can know the framework, but you
don’t really know the Web until you understand the little weird bits

that make it all work together. No technology has more “glue” components
than Web technology.

This chapter is about using some of those “glue” components to build an
application. It gives you a chance to do things that you’ll have to do every
time you make a Web application — set up a master page, test your applica-
tion, and a few other treats.

ASP.NET shields a lot of that from you, the developer. You don’t have to
worry about the details of Common Gateway Interface (CGI), for instance.
Nonetheless, there are a number of details that you do have to manage in
order to get an application on the Internet, such as the following:

 ✦ Setting up a Web project can be … demanding. The default options
that Microsoft provides are not immediately obvious, and the need to
have them right the first time is high.

 ✦ There are templates for ASP.NET sites. These templates provide all
those things that make a site flow as you navigate through it, like the
navigation, advertising, headers, and footers.

 ✦ Security for a Web application is … different. Because a significant
percentage of Web applications are available for public access (quite a
shift from Windows applications), you have to consider the reality that
people are going to try to use your application as a platform for phish-
ing, XSS, and a hundred other contemporary hacks.

 ✦ Testing Web applications is another consideration, because it is more
than unit testing. If your Web application goes viral, you might have

46_563489-bk06ch05.indd 70346_563489-bk06ch05.indd 703 3/19/10 7:56 PM3/19/10 7:56 PM

704 Managing Files

1,000,000 visitors tomorrow. You don’t have to be ready for that today,
but you have to know what you need to do to get ready.

 ✦ Finally, deploying a Web application is a new pile of joy that you’ll
get to know and love. I promise. Remember those UML deployment dia-
grams you learned in school? They can be useful after all! You actually
use them in the Web world.

Managing Files
Setting up an ASP.NET project is not trivial, and there are a lot of wrong
ways to do it. I can’t tell you the right way — it just depends on your circum-
stances. What I want to do is give you some of the best practices that will
help you form your own path. The idea is to know how the tool works, in
order to help you do your work.

Reviewing project types
The first part of the process is making a new project. As with everything
else in ASP.NET, this isn’t a trivial prospect. You even have to use a different
menu item to start the project — New Web Site rather than New Project, as
shown in Figure 5-1.

Figure 5-1:
There is
even a
different
menu item!

The New Web Site dialog box includes several items, but we are concerned
with only one, the ASP.NET Web site. Here are all the options:

46_563489-bk06ch05.indd 70446_563489-bk06ch05.indd 704 3/19/10 7:56 PM3/19/10 7:56 PM

Book VI

Chapter 5

D
ig

g
in

g
 in

to
 W

e
b

C

o
n

stru
c

tio
n

705Managing Files

 ✦ ASP.NET Web site: This is what we want. It is a file share that represents
just what it says: a Web site made up of ASP.NET files. Fantastic. Not as
simple as it sounds, but it is the right start.

 ✦ Silverlight Script Web: This isn’t the right place to talk about Silverlight.
Like WPF, Silverlight is a XAML (rhymes with “camel”) project, but it
is designed for the Web. It is Microsoft’s answer to Adobe Flash. Don’t
sweat it right now.

 ✦ ASP.NET Web service: Don’t use this; use WCF for Web Services.

 ✦ Empty Web site: Just a folder and a share.

 ✦ WCF Service: A template for a service. Book VII covers these.

 ✦ ASP.NET Reports Web site: Same as the first bullet selection except it
includes a bunch of references to the RDL reporting structure.

 ✦ Dynamic Data Linq to SQL Web site: This is a simple, auto-generated
forms-over-data site. I don’t care for them, and they aren’t good exam-
ples of C#, so I skip them for now. Plus, Linq to SQL is end-of-life (mean-
ing Microsoft isn’t supporting it any more).

 ✦ Dynamic Data Entities Web site: Again, an auto-generated forms-over-
data site. Not what we are looking for.

If you cancel out of the New Web Site dialog box, add a New Project, and
then click on Web in the Installed Templates tree view (under C#), you find a
whole new list of goodies. (See Figure 5-2.)

Figure 5-2:
What’s the
difference
between a
Web site
and a Web
application?

46_563489-bk06ch05.indd 70546_563489-bk06ch05.indd 705 3/19/10 7:56 PM3/19/10 7:56 PM

706 Managing Files

 In Visual Studio 2002 and 2003, Web projects worked like all other projects.
They had a project file, needed to be compiled and packaged, and so forth.
In Visual Studio 2005, that plan was scrapped for the Web site — just a loose
collection of files in any folder, which would be treated like a project. No
project file, no compilation of a single resource file — more like classic ASP.

Fact is, there is room for both, and in Visual Studio 2008 and 2010, both are
offered. So, if you say you want a new Web Site, you get a federation of files
in a folder that can just be copied over to a Web server. If you want a new
Web application, you get a real, compiled application. All the same other
constraints apply. Here is a breakdown:

 ✦ ASP.NET Web Application: How to make a site more like a regular pro-
gram. Comes with a project file, and so on.

 ✦ ASP.NET Web Service application: Same advice (use WCF).

 ✦ ASP.NET Ajax Server Control: This allows you to build a new Toolbox
item for AJAX. Really a nice feature, but too in-depth for this minibook.
Check MSDN.

 ✦ WCF Service Application: How to do service-oriented development in
.NET. More in Book VII.

 ✦ ASP.NET Server Control: Like the AJAX control, except it allows you to
make a normal control.

 ✦ ASP.NET AJAX Server Control Extender: A template for changing the
functionality of an existing AJAX Toolbox item.

 ✦ Dynamic Data Linq to SQL Web Application: As earlier — end of life.
Don’t use it.

 ✦ Dynamic Data Entities Web Application: Just like the Entities site,
except a real application. Preferred implementation for this project type.

So which do you choose? If it is a Web site — literally a public site that will
be on a public server and include a handful of pages that an anonymous user
views — I use the Web site format. If it is an application — part of a larger
initiative for a company with development standards and standard libraries
and whatnot — I use the Web application format.

Your mileage may vary. Find out more about the controversy between the
project types at http://Webproject.scottgu.com/.

Reviewing file types
Make a new ASP.NET Web site called Chapter5, and save it in the default
location. Visual Studio makes a new site for you, in the specified folder.
Three files are added:

46_563489-bk06ch05.indd 70646_563489-bk06ch05.indd 706 3/19/10 7:56 PM3/19/10 7:56 PM

Book VI

Chapter 5

D
ig

g
in

g
 in

to
 W

e
b

C

o
n

stru
c

tio
n

707Managing Files

 ✦ Default.aspx: This is the starter markup file. Has the HTML and ASP.NET
controls.

 ✦ Default.aspx.cs: The code-behind file for the Default.aspx file.

 ✦ Web.config: The magic configuration file. A lot goes into this one.

There is also an App_Data folder. This is used by Visual Studio and ASP.NET
to store, for instance, a SQL Lite database that you might make to store your
application data. Just leave it there for a second.

You just know we need a few new files, right? We should add a style sheet, and
maybe a script file or two. Right-click on the project and select Add New Item.

You can add an absurd number of files to a site — just look at Figure 5-3.
Global Application Class? Silverlight-enabled WCF Service? What are these
things? Does anyone actually use this stuff?

Yes, but don’t sweat it too much. You need to worry about only a few file
types to make a good application, like these:

 ✦ Master page: This is the template for the site. We handle these in the
next section.

 ✦ Style sheet: This is the CSS 2.0 style for your application. If you aren’t
familiar, refer to HTML and CSS For Dummies — great book.

 ✦ Jscript file: So named because Microsoft can’t say JavaScript anymore
or the lawyers beat them up.

 ✦ Class: Just your basic C# class, in its own file.

That’s what you need. Now to organize them.

Figure 5-3:
Man, that is
a lot of files.

46_563489-bk06ch05.indd 70746_563489-bk06ch05.indd 707 3/19/10 7:56 PM3/19/10 7:56 PM

708 Managing Files

Organizing files
You have two choices when organizing your Web site. You can build a few
projects to manage your files, or you can build folders into the Web project
and put your files there. My usual methodology is to build separate projects
for the class files and folders for the Web-related files. This way, if you want
to reuse the classes for a Windows Mobile application, you can easily just
reference the class file project.

Web files should be in folders in the Web application. Note that this can
have some implications for referencing files. If your project isn’t the root of a
Web server, you might have to carefully consider how to reference files.

 If you are deploying your Web site to a domain, like www.mynewWebsite.
com, you can use a ./ to refer to files, like this:

If you aren’t deploying to a domain — for instance, if you are making an
application that lives in a folder of a site, such as www.someoneelses
site.com/myApplication, you can’t use ./ because you don’t know how
far away the root of the application is, or what the directory really is.

ASP.NET can handle this problem for you. A construct in ASP.NET is imple-
mented with the tilde (~), but it works only in ASP.NET controls. That
means that the img HTML tag won’t work with a tilde; you have to use the
asp:Image control, like this:

<asp:Image ID=”Image1” runat=”server” ImageUrl=”~/images/
myImage.png”/>

For organization, I have a pattern. It may or may not work for you. Please feel
free to make your own. Mine breaks down like this:

 ✦ I put my class libraries in a separate project. Usually, I have a business
logic layer (or controller) in a second project, and a data access layer
(or model) in a third project.

 ✦ I add a Bits folder, and in that, I put folders for, well, all the bits.

 • Style sheets

 • Images

 • JavaScript files

 • Whatever else

 ✦ I then make a root level folder for every section of the site. If I have
three top level menu items in my site, I have three folders. If I just have
application files, and don’t have a regular menu structure, everything
will be in the root.

46_563489-bk06ch05.indd 70846_563489-bk06ch05.indd 708 3/19/10 7:56 PM3/19/10 7:56 PM

Book VI

Chapter 5

D
ig

g
in

g
 in

to
 W

e
b

C

o
n

stru
c

tio
n

709Mastering Master Pages

Mastering Master Pages
Now that there is some form and function to the project, the next step is to
add some form and function to the site itself. Master pages are exactly what
they sound like, structural elements that contain the content of the site as
“slave” components.

Master pages are more than page templates. They are fully functional con-
tent containers that are supported by Visual Studio in a number of ways.
Master pages reduce the complexity of maintaining common content on Web
pages by replicating that content automatically and containing the program-
ming to one file from the developer’s perspective.

There is no requirement to use master pages. In fact, most of the projects I
work on don’t use Master Pages, because of dependencies on older security
or navigational frameworks. That’s okay. If you are building something new,
certainly consider using master pages.

Making a master page
We start by making a new master page. Just follow these steps:

 1. Right-click on the Chapter5 Web site and select Add New Item.

 2. Click on Master Page.

 3. Keep the default name of MasterPage.Master and click OK.

 4. Change to Design view.

 5. Open the Properties panel.

 6. Click on the designer, outside of the Body marked area, so that the
DOCUMENT is selected in the Properties panel.

 7. Click on the BgColor property, and pick your favorite color.

 8. Back in the designer, click on the Body marked area, and type My
Web Site or something equally fascinating.

 9. Highlight the text, and select H1 in the HTML Source Editing Toolbar,
like I did in Figure 5-4.

 10. Press Enter to add a blank line under the header.

 11. From the Toolbox, drag a ContentPlaceholder control under the title.

Now you have a template for the rest of your pages. You can add navigation
here, and I recommend it. To keep things simple for this introduction, how-
ever, I move on.

46_563489-bk06ch05.indd 70946_563489-bk06ch05.indd 709 3/19/10 7:56 PM3/19/10 7:56 PM

710 Mastering Master Pages

Figure 5-4:
Making a
header.

Adding content
You won’t believe how simple adding content is. You see, the master page
is something that the content page adheres to, not something you have to
inject content into. You just have to make pages like usual, and they will
drop themselves in that content placeholder. Follow these steps to add
content:

 1. Right-click on the Web site, and select Add New Item.

 2. Click on Web Form (the master page is probably still selected) and
name it Home.aspx.

 Wait! Don’t click Add yet!

 3. Check the Select Master Page check box in the lower right-hand
corner.

 4. Now you can click Add.

 The Select a Master Page dialog box appears.

 5. You can select which master page you want — as shown in Figure 5-4.
We have only one, so click it under Contents of Folder.

 6. Click OK.

Notice how different the template content of the page is now that you have
a master page. Visual Studio knew how to handle this! There are no HTML
headers or footers, because VS knows they are in the master page.

46_563489-bk06ch05.indd 71046_563489-bk06ch05.indd 710 3/19/10 7:56 PM3/19/10 7:56 PM

Book VI

Chapter 5

D
ig

g
in

g
 in

to
 W

e
b

C

o
n

stru
c

tio
n

711Testing Web Applications with Visual Studio

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true” CodeFile=”Home.aspx.cs” Inherits=”Home” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”head” Runat=”Server”>
</asp:Content>
<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”

Runat=”Server”>
</asp:Content>

There is obviously more to learn about master pages and how to develop
sites with them, but my goal here is just to cover the best practice. Now that
you know, move to MSDN and see how best to use master pages for your
project.

Testing Web Applications with Visual Studio
It’s easy to test Web applications using Visual Studio, though it isn’t a well-
advertised feature.

 This is available only in Team System. If you have Professional, you can’t
do Web tests. Also important: You don’t have to test a Web project in your
solution — you can write a Web test against any URL.

Follow these steps to test your Web application:

 1. Choose File➪New➪Project and select Test Project.

 2. In the new project, right-click on the project file and select New Test.

 3. In the New Test dialog box, select Web Test.

 4. Change the test name to GoogleTest.Webtest and click OK.

 The Web Test Recorder opens in your browser. (See Figure 5-5.)

 Though I am going to use Google for this test, please don’t use a produc-
tion Web site of your own for testing.

 5. Go to www.google.com.

 6. Search for C# 2010 All In One.

 7. Click on the Amazon link (I assume there is one).

 8. Click Stop to stop the recording.

 Visual Studio takes a minute and tries to detect dynamic parameters.
It should find (at least) the search criteria in the Promote Dynamic
Parameters to Web Test Parameters dialog box shown in Figure 5-6.

 9. Click the search parameter (C# All In One) check box to promote it to
a Web test parameter and click OK.

46_563489-bk06ch05.indd 71146_563489-bk06ch05.indd 711 3/19/10 7:56 PM3/19/10 7:56 PM

712 Testing Web Applications with Visual Studio

Figure 5-5:
Launching
the Web
test
recorder.

Figure 5-6:
The
Promote
Dynamic
Parameters
to Web Test
Parameters
dialog box.

You are returned to the Visual Studio text manager, where you see all the
requests you made (all two of them) in the Web Test panel. You can then
click on separate items in the request tree and change the parameters —
such as the querystring — for any request.

When you run a test, the test manager asks you for any query parameters
that you promoted. In our case, the search term was promoted, so you can
use the test as a search engine! There are probably more convenient ways to
search, however.

46_563489-bk06ch05.indd 71246_563489-bk06ch05.indd 712 3/19/10 7:56 PM3/19/10 7:56 PM

Book VI

Chapter 5

D
ig

g
in

g
 in

to
 W

e
b

C

o
n

stru
c

tio
n

713Deploying Your Masterpiece

Deploying Your Masterpiece
Web deployment has historically been difficult in a number of platforms.
Because you need the markup files, and any back-end support (like script
files or compiled libraries), and perhaps even any middle support, such as
an interpreter for your PHP files, getting a Web application out to a server
can be demanding.

Lots of options
When ASP.NET came out, it promised xcopy deployment and, in general, it
delivered. Because .NET components are versioned, if you strongly name
your DLL files you can just use the DOS xcopy command (or drag and drop
in Explorer) to drag them right to your server, thus the term xcopy deploy-
ment. If you have a permissions thing, you can use File Transfer Protocol
(FTP) or whatever.

In fact, xcopy deployment has made all sorts of things possible. Dot Net
Nuke, an open source content management system for ASP.NET, has taken
things to a logical extreme. When you build a new module for the platform,
you add the files to a compressed folder and upload them right through a
File Upload control on the site. Then the component is installed — you can
use it right away. Neat.

For your site, you can use Windows Explorer if you have share permis-
sions for your server, or FTP if you don’t. Figure 5-7 shows a Web site that
I manage. The left side is my development copy — notice the .cs files. The
right side has the version on the server.

Figure 5-7:
An example
of xcopy
deployment.

46_563489-bk06ch05.indd 71346_563489-bk06ch05.indd 713 3/19/10 7:56 PM3/19/10 7:56 PM

714 Deploying Your Masterpiece

If I want, I can just select all the files that I need on the left and drag them
to the right. That means I have to get all the ASPX files, but not the .CS files
because they are compiled into the DLL. Oh, that’s right, I have to get the
DLL, too. And the script files.

Oh wait, the directories have be sorted out too, because they have their own
ASPX and .CS files. And I can’t remember . . . do you have to copy the report
files (you don’t)? Hmm, this is harder than I thought.

Copying Web sites with “Copy Web”
 If you have a Web site project (earlier in this chapter I point out that there
are two project types), you have a Visual Studio–driven option for the xcopy
option. Because these sites don’t compile and you need to move the .cs
files along with the .aspx files, this tool fits the bill.

To run it, look for the Copy Web icon in Solution Explorer. I highlighted it
with a red box in Figure 5-8. It launches the Copy Web design surface, which
looks a lot like the two Windows Explorer boxes in Figure 5-6, except it
comes with neat buttons.

To use the Web Copy tool, find the location for your deployment on the
right side of the panel. Use the Connect button to get there. Because it is
URI driven, you can easily push to an FTP site or a Windows share, local IIS
install, or a remote site using SharePoint extensions.

Figure 5-8:
Looks a
lot like
Windows
Explorer,
doesn’t it?

Copy Web icon

46_563489-bk06ch05.indd 71446_563489-bk06ch05.indd 714 3/19/10 7:56 PM3/19/10 7:56 PM

Book VI

Chapter 5

D
ig

g
in

g
 in

to
 W

e
b

C

o
n

stru
c

tio
n

715Deploying Your Masterpiece

From there, highlight the files you want to copy, and click the direction you
want to move them (usually the arrow pointing to the right). Visual Studio
gives you a hand by telling you what direction files need to go with the icons
to the left of the files.

Package/Publish
For Web applications, there is an answer too — and one that will fix my
poor application in the previous section, “Copy Web sites with ‘Copy Web.’”
Package and Publish is designed to assist with more sophisticated deploy-
ments usually found with Web Application projects.

To get to the package and deployment options, double-click on the
Properties folder in the project, and then click the Package/Publish tab on
the left-hand side of the designer surface. This panel, shown in Figure 5-9,
has everything you need to solve most mid-range deployment problems.

Starting at the top — you can isolate 64-bit operating systems with the
Platform drop-down list. This is good when you are developing in 32 bit but
know your server is 64. Right below that is a link to the Help files, in case
you don’t have this chapter handy.

Figure 5-9:
Packaging
for
publishing.

46_563489-bk06ch05.indd 71546_563489-bk06ch05.indd 715 3/19/10 7:56 PM3/19/10 7:56 PM

716 Deploying Your Masterpiece

In the Items to Deploy section, you can solve the big problem that I mention
earlier. There you can tell the deployment to deploy only markup and com-
piled files, if that is what you need to do. There are options to exclude debug
symbols, too — remember, they don’t run if they aren’t there, and it all goes
a little faster. You can always add them if you need them.

 You now can use MsDeploy with Visual Studio. MsDeploy is a new feature
of IIS that assists with the deployment of really complex Web applications.
Search for it on TechNet for more information. It takes a Zip file, which you
can configure in the MsDeploy Package Settings section.

46_563489-bk06ch05.indd 71646_563489-bk06ch05.indd 716 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Service-Oriented
Development

Making a SOAP service in ASMX

47_563489-pp07.indd 71747_563489-pp07.indd 717 3/19/10 8:17 PM3/19/10 8:17 PM

Contents at a Glance

Chapter 1: Getting Acquainted with Web Services719

Chapter 2: Building Web Services with ASMX 731

Chapter 3: Building Web Services with WCF .745

Chapter 4: Building Web Services with ReST 759

47_563489-pp07.indd 71847_563489-pp07.indd 718 3/19/10 8:17 PM3/19/10 8:17 PM

Chapter 1: Getting Acquainted
with Web Services

In This Chapter
✓ Exploring the basic principles of service-oriented apps

✓ Building service-oriented apps

✓ Making XML Web services available

AWeb service is just the provision of functionality over the Internet
using an open interface. A Web page provides functionality that you

can see; a Web service provides the underlying data, in a format that you
can use in another application.

Web services are straightforward — at least until the software manufactur-
ers start messing with them. Web services are standards driven, just as
HTML is, and the World Wide Web Consortium (W3C) owns their documen-
tation. Web services have been a hot topic for the past decade, but only in
the past five years or so (in step with the ubiquitous nature of the Internet)
have they become a viable option for the delivery of hard-to-find software
functionality.

A few different Web services formats exist in the .NET world, and they solve
two basic problems:

 ✦ Making part of your application available past the physical boundary of
the application.

 ✦ Making a distributed middle to your application so that you can scale
paragraphs if your site suddenly has a lot of traffic.

After covering a few Web service principles, I present some code to show
you how each format works.

Understanding Web Services
Web services provide a way to extend methods past the normal boundary of
a software system. You usually write the something like the following chunk
of code in order to start building a problem:

48_563489-bk07ch01.indd 71948_563489-bk07ch01.indd 719 3/19/10 7:57 PM3/19/10 7:57 PM

720 Understanding Web Services

public bool AddStuff(String stuff)
{
 //Add it here
 return true;
}

and then you call it like this:

bool DidItWork = AddStuff(“This is the new Stuff”);

Using Web services, however, you call the method this way:

POST /Service1.asmx HTTP/1.1
Host: localhost
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length
<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>

 <soap12:Body>
 <AddStuff xmlns=”http://tempuri.org/”>
 <stuff>string</stuff>
 </AddStuff>
 </soap12:Body>
</soap12:Envelope>

and then see a response like this one:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length
<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>

 <soap12:Body>
 <AddStuffResponse xmlns=”http://tempuri.org/”>
 <AddStuffResult>boolean</AddStuffResult>
 </AddStuffResponse>
 </soap12:Body>
</soap12:Envelope>

Whoa! Hey, why would anyone want to build a function that way? I’m glad
you asked. In the later section “Building Service-Oriented Applications,” I
answer your questions. For now, I describe some concepts that make build-
ing web services easier to handle.

Web services can be defined by three basic principles:

48_563489-bk07ch01.indd 72048_563489-bk07ch01.indd 720 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 1

G
e

ttin
g

 A
c

q
u

a
in

te
d

w

ith
 W

e
b

 S
e

rvic
e

s

721Understanding Web Services

 ✦ Loosely coupled: They don’t require a constant connection to the server

 ✦ Contract driven: They provide an interface that describes all of their
functionality

 ✦ More likely to be chunky, not chatty: Rather than lots of properties with
single values, they provide big methods that return collections.

I discuss these topics more fully in the sections that follow.

Loosely coupled
Because Web services are, like Web applications, loosely coupled , Web
service conversations aren’t guaranteed to make sense. You might get a sen-
tence from three minutes ago, after four other sentences have gone past, or
you might not hear from them again after the first line.

When you stop to think about it, louse coupling makes sense: Web service
calls are just like navigation in a Web page. Sometimes you click a link and
then close your browser, and sometimes you click the link twice. Web appli-
cations are up to the whim of the user, and so are Web services.

For this reason, a client of a Web service must be loosely coupled to the ser-
vice. For example, you don’t want to make a user wait until a Web service
call is complete. You must call x asynchronously and have the result show up
when it is ready.

Fortunately, .NET handles the asynchronous call. You just tell your applica-
tion that you’re calling a service asynchronously and then provide a del-
egate for the service to call when it’s ready. As long as you handle the code
properly, the service will work as expected.

In this example, you can see that we implemented the loose coupling with an
asynchronous call:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 //Here YOU are calling the service

asynchronously.

48_563489-bk07ch01.indd 72148_563489-bk07ch01.indd 721 3/19/10 7:57 PM3/19/10 7:57 PM

722 Understanding Web Services

 AddStuffReference.Service1SoapClient client = new
AddStuffReference.Service1SoapClient();

 client.AddStuffCompleted += new
EventHandler(client_AddStuffCompleted);

 client.AddStuffAsynch(“This is the stuff”);
 }

 //This method is called when the response comes back.
 //No timers or anything. .NET handles it for you.
 void proxy_AddStuffCompleted(object

sender, AddStuffReference.Service1SoapClient.
AddStuffCompletedEventArgs e)

 {
 bool result = e.Result.ToString();
 }
 }
}

 The example above only protects your user interface from experiencing a
tie-up. You still have no real indication that the messages will ever be deliv-
ered, so you should never write software that depends on the delivery of the
data from the service. It has to fail gracefully.

Contract driven
In client-server development, an interface defines a contract of sorts
between the domain model and the user interface. That contract can be
used to drive development in the same way as a contract is used to drive a
business deal. If you know what I require and I know what you require, we
can quickly and easily make a deal.

A Web service is required to have an interface that conforms to the Web
Services Description Language (WSDL) standard. WSDL describes expected
inputs and allowed outputs just as an interface would, creating a contract
between the service provider and the client.

In .NET, your contract is created automatically from the code for the ser-
vice. If you call a service in the browser (which isn’t the way it’s designed
to be called — I tell you more about that topic later in this minibook) from
the development machine, you see the test screen shown in Figure 1-1.
Even though the browser gains some basic important information about
the service, it isn’t the contract. The contract is shown behind the Service
Description link.

Clicking the Service Description link appends the text ?WSDL to the URI, and
the Web browser shows the contract. This contract is used by the client
system to determine exactly which information the service wants and how it
will respond to input. Though the WSDL is displayed in a browser, as shown
in Figure 1-2, the interesting part is the XML that’s behind the screen.

48_563489-bk07ch01.indd 72248_563489-bk07ch01.indd 722 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 1

G
e

ttin
g

 A
c

q
u

a
in

te
d

w

ith
 W

e
b

 S
e

rvic
e

s

723Understanding Web Services

Figure 1-1:
The default
service
overview.

Figure 1-2:
The Service
Description
in WSDL.

48_563489-bk07ch01.indd 72348_563489-bk07ch01.indd 723 3/19/10 7:57 PM3/19/10 7:57 PM

724 Understanding Web Services

For compilable languages, the client machine does essentially the same thing
no matter which platform it’s on (Java or Basic or PHP or Ruby): At compile
time, it reads the WSDL and creates a proxy that the client talks to. This:

 ✦ Brokers the communication process between the client and the service

 ✦ Provides type safety, if it’s supported

 ✦ Generally makes your life easier because WSDL (and the contract it pro-
vides) is an important part of a service developer’s work

 The contract isn’t legally binding (and contains only a small amount of fine
print). The service provider reserves the right to change the service any
time it wants, and can even forgo updating the WSDL with no fear of legal
reprisal. Because you’re a .NET developer, though, your WSDL is generated
automatically.

Chunky versus chatty
Although the chunky-versus-chatty services issue might sound like a face-off
between candy bars, it isn’t.

Rather than perform small, incremental operations via Web services, you
use them to make large, sweeping “strokes.” The length of individual calls
might be larger, but the number of communications is fewer, which reduces
network overhead.

Suppose that an application changes the settings of a piece of hardware
located miles away from it — perhaps your home heating system (which is a
good use of a service). The client application (your computer) is absolutely
local, the remote device (your heater) is certainly remote, and a network
(probably the Internet) is in the middle. If you have a service with a series
of individual controls, such as TurnFanOn and TurnFanOff, it’s a common
interface for a local application, such as connecting a heater directly to your
computer.

The following chunk of code gives an example of that chatty sort of interface:

namespace HomeHeater
{
 public class Chatty : IChatty
 {
 public bool TurnFanOn()
 {
 return true;
 }
 public bool TurnFanOff()
 {
 return true;
 }

48_563489-bk07ch01.indd 72448_563489-bk07ch01.indd 724 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 1

G
e

ttin
g

 A
c

q
u

a
in

te
d

w

ith
 W

e
b

 S
e

rvic
e

s

725Understanding Web Services

 public bool SetTemperature(int newTemperature)
 {
 return true;
 }
 public bool SetFanSpeed(string newFanSpeed)
 {
 return true;
 }
 }

The interface in this example is chatty (in case you couldn’t tell from its class
name). Every time you change a knob on the controller, a call is made to a
service. Move the temperature to 72 degrees and call the service. Turn the
fan to its High setting and call the service. Turn the temperature back down
to 71 degrees and call the service. The client “chats” with the service.

Nothing is intrinsically wrong with this implementation. For a service,
though, with more network overhead for every call, it isn’t the best way to
build methods. Instead, you want your client to change settings and then
pull a big lever on the side to make all the changes at one time.

A chunky interface provides a domain model for the client to use, with prop-
erties to set. Then, after all settings are in the model object, you send the
whole shootin’ match to the service. It looks like this:

namespace HomeHeater
{
 public class Chunky : IChunky
 {
 public bool UpdateHeaterSettings(HeaterModule

heaterModule)
 {
 return true;
 }
 }
 public class HeaterModule
 {
 public int Temperature { get; set; }
 public bool FanOn { get; set; }
 public string FanSpeed { get; set; }
 }
}

Now, no matter how often you make changes, the service is called only
when you “pull the big lever” (update it). Whether this action prevents users
from updating after every change depends on your interface. In general, this
design principle is the best one for service development.

You may wonder why anyone would bother with a concept as convoluted
as Web services. I can assure you that good reasons exist and that you will
want to use this technology on a project.

48_563489-bk07ch01.indd 72548_563489-bk07ch01.indd 725 3/19/10 7:57 PM3/19/10 7:57 PM

726 Building Service-Oriented Applications

Building Service-Oriented Applications
The first and most obvious use of a service is to create a Service-Oriented
Application, or SOA. This overloaded, overused term means that your appli-
cation (like the heating system I mention in the previous section) uses ser-
vices to assist a remote client with communications with a server.

Unfortunately, the term SOA is no longer useful in the marketplace. So many
so-called “experts” have chimed in with large, unmanageable ideas for the
creation of systemwise services that it is impossible for anyone to separate
the wheat from the chaff.

The concept is simple: The user interface calls a service at some point in the
process to communicate with the server. You do this for two reasons:

 ✦ Scalability: It’s the main reason to use a service inside an application —
especially a Web application.

 Up to a point, most Web applications have built-in scaling. If you need
more access points, you just add more servers and then use a device to
sort the traffic to another machine, as shown in Figure 1-3.

 Web applications are different, though, because layers have different
scalability needs. Sometimes the database is loaded, and sometimes the
Web server is. You must be able to separate the layers of the applica-
tion, as shown in Figure 1-4 — that’s where services start to become
useful.

Figure 1-3:
Scaling on a
simple Web
site.

The
Internet

Firewall
Router

Servers

User

48_563489-bk07ch01.indd 72648_563489-bk07ch01.indd 726 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 1

G
e

ttin
g

 A
c

q
u

a
in

te
d

w

ith
 W

e
b

 S
e

rvic
e

s

727Building Service-Oriented Applications

Figure 1-4:
Separating
the layers.

The
Internet

Firewall
Router

Web Servers

Business Servers

Database Servers

User

 Because the services use a common format — usually XML over HTTP —
you can relatively easily install parts of the application on their own
machines to isolate them physically. Because the functionality of the
deleted part is called via a service, you can scale the application
horizontally.

 ✦ Reusability: Every organization has a list of its participants — clients,
users, voters, cooks, or mailing list subscribers, for example. Regardless
of the type of participant, all the people on the list have first and last
names and other identifying characteristics.

 ✦ It seems like nearly every application written today has a table of
People. Savvy programmers use slick tricks to keep these tables in sync
or to share information, for example, but only one way exists to share
the People table — by using a data silo, as shown in Figure 1-5.

 A data silo works this way:

 1. A database on some server somewhere contains all participants’
demographic information.

 2. The database is surrounded by a service layer containing all allowed
operations.

 3. The service layer is consumed by all other applications in the
system, as shown in Figure 1-5.

 This set of steps shows you the concept of reuse. It isn’t about bits of
code (no matter what you might hear) — it’s about data. Services help
to provide access to the data silo.

48_563489-bk07ch01.indd 72748_563489-bk07ch01.indd 727 3/19/10 7:57 PM3/19/10 7:57 PM

728 Providing XML Web Services

Figure 1-5:
A data silo.

App 1

App 2

App 3

Data Services Data Silo

Providing XML Web Services
A common use of services is to give other programmers public access to
your information by using an open API that can be consumed anywhere.
You might recall the WSDL file, described in the earlier section “Contract
driven” — it can make your cool function or valuable data available to
anyone who needs it.

In the demographic silo example, described in the earlier section “Building
Service-Oriented Applications,” if you have a valuable mailing list and you
want to give your customers access to it, you can send them the list. If you
do, however, they can use it forever. Instead, suppose that you could bill
your customers every time they use the list. If you provide Web services to
implemented functions on the list, you can then track actual usage of the list.

You can see this concept, known as provision past the boundary, every-
where. Take Twitter, for example. Rather than making users to go the Web
page to search through billions of messages, Twitter provides a WSDL con-
tract that gives developers the ability to search in their own applications.

Web services can be controlled like any other Web application can. The
field-level or operation-level security that used to be handled at the RDBMS
level can now be built into a semipublic API.

48_563489-bk07ch01.indd 72848_563489-bk07ch01.indd 728 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 1

G
e

ttin
g

 A
c

q
u

a
in

te
d

w

ith
 W

e
b

 S
e

rvic
e

s

729Building Three Sample Apps

Building Three Sample Apps
You can build services in C# in a few ways, as described in the next three
chapters. This section’s heading isn’t exactly right, however: I show you how
to build the same app in three different ways. The app, the SHARP confer-
ence management system (or a simple version of it), was built using these
formats:

 ✦ ASMX: This first version is in the venerable ASMX format: ASP.NET Web
services. Though this format has been largely superseded by WCF, it’s
still available. I cover it in this chapter and the next because it’s a viable
solution for certain situations.

 ✦ WCF: Windows Communication Foundation (WCF), the most impor-
tant service platform, is given enough screen time here to get you
started. The topic is broad, and you can find lots of references to other
resources.

 ✦ REST: REpresentational State Transfer (REST), the oldest service proto-
col on the planet, has a new life, thanks to AJAX. REST isn’t a first-class
citizen in the .NET world, but it’s important.

The entire process uses a single entity data model, shown in Figure 1-6, and
provides allowed operations to it.

Figure 1-6:
The
simplified
SHARP data
model.

Allow NullsData TypeColumn Name
Sessions

Id
Title
Description
NumberExpected
Speaker
StartTime
EndTime
ConferenceId

int
nvarchar(1024)
text
int
int
date
datetime
int

Conferences

Title
Description
LocationId

Id

Locations

PlaceName
Id

Attending

PlaceName
SessionId

Id People

FirstName
Id

LastName
EmailAddress

48_563489-bk07ch01.indd 72948_563489-bk07ch01.indd 729 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII: Service-Oriented Development730

The idea is to provide a service model similar to the heating system platform
described earlier in this chapter, except using a real, stateful, data-driven
application.

Finally, I show you how to solve three different problems. Then you can
shoot for three different outcomes. Otherwise, what fun would it be?

48_563489-bk07ch01.indd 73048_563489-bk07ch01.indd 730 3/19/10 7:57 PM3/19/10 7:57 PM

Chapter 2: Building Web
Services with ASMX

In This Chapter
✓ Getting acquainted with SOAP

✓ Creating an ASMX service

✓ Running an ASMX service

✓ Building the SHARP code

In Chapter 1 I state that services provide access to functional code over
the wire. Though it wasn’t covered, it probably became obvious that one

just can’t call a method on a remote machine without some kind of wrapper.
The black magic that makes .NET methods work in a client program don’t
work over the Internet.

There have been a bunch of remote procedure call (as it is called) protocols
over the years. Some you might be familiar with include:

 ✦ CORBA

 ✦ DCOM

 ✦ RCW

 ✦ OpenBinder

 ✦ LINX

 ✦ DLPI

 ✦ STREAMS

 ✦ DDE

 ✦ Even AJAX, in its own way.

The benefit to using services is that they are based on a:

 ✦ standard

 ✦ human readable

 ✦ extendable

 ✦ protocol

49_563489-bk07ch02.indd 73149_563489-bk07ch02.indd 731 3/19/10 7:56 PM3/19/10 7:56 PM

732 Getting to Know SOAP

None of the other messaging protocols are all of those. They all have some
small (or occasionally large) problem that prevents the benefits of remote
procedure access to really shine. Web services provide what is actually
needed. The second Web service protocol to provide these benefits in
usable form is SOAP. (ReST is the first, but that is a story for a later chapter.)

Getting to Know SOAP
Simple Object Access Protocol or SOAP is an XML-based protocol for send-
ing messages over the Internet, usually via HTTP. You can think of it as an
envelope for remote procedure calls because that is exactly what it is.

The major benefit to SOAP, aside for its rather global acceptance and its
longevity, is the rich experience that it provides the client. There are a lot of
developer features in SOAP, like transactions and security, and they all work
pretty well.

SOAP and standards
Standards are discussed in this book elsewhere, but it bears discussing here
too. Here is how standards-based development works:

 1. Either because of industry need or a company idea, some organization
develops a standard. This is usually a recognized organization like the
World Wide Web Consortium (W3C) or a company, like Microsoft or
IBM.

 2. The standard is distributed to the community for review.

 3. After community acceptance, the standard is certified, either by the
originating organization or an organization like IEEE or ISO.

 4. Some company, when developing a product, realizes that it needs a fea-
ture that happens to be described by that standard.

 5. After reviewing the standard, the company decides to implement the
standard.

Realistically, regardless of certification, only when a large number of com-
panies implement a standard does it actually become a genuine standard.
Many so-called “Web” browsers over the years supported “standard” proto-
cols like VRML and such that never made it.

It’s true, folks. The Internet superhighway is littered with the broken docu-
ments of dead standards.

49_563489-bk07ch02.indd 73249_563489-bk07ch02.indd 732 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Chapter 2

B
u

ild
in

g

W
e

b
 S

e
rvic

e
s

w
ith

 A
S

M
X
733Getting to Know SOAP

The WS-* standards
The WS-* (usually pronounced WS-star, referring to the wildcard * character
that references all standards that begin with WS) standards fit right in here.
These are Web service standards that apply to protocols like SOAP. They are
written by a standards organization, reviewed, certified, and have been used.

What is better is that the additional standards include a lot of really neat
functionality that makes SOAP a very rich development experience. Usually,
distributed communication standards leave transactions, security, and other
such functionality up to the developer.

SOAP isn’t like that. It is supposed to have all that stuff baked in.

The WS-* standards include all this useful functionality:

 ✦ Web Services Transactions (WS-TX): Coordinates the outcome of
broadly distributed communications.

 ✦ Web Services Reliable Exchange (WS-RX): Provides a confirmation of
communication for service calls.

 ✦ Web Service Federation (WS-FED): Allows for a federation of trust
between service providers.

 ✦ Web Service Remote Portlets (WS-RP): A standard for Web parts using
services (like you see in SharePoint).

 ✦ Web Service Security (WS-SX): A supported trusted exchange.

 ✦ Web Services Discovery (WS-DD): A way to find services in a large
enterprise.

 ✦ Building Information Exchange (oBIX): Allows buildings to talk to each
other about their wiring. No, I’m not kidding!

 ✦ OASIS ebXML: A business XML standard that is designed to provide a
standardized data model for communications.

In general, these are fantastic additions. They define a set of functionality
that all Web service development software providers — Microsoft, IBM, Sun,
open source initiatives, whomever — can implement. If you need transac-
tions, they are there. Security? Baked in.

The impact to you
The problem is that these standards were used differently by every com-
pany that implemented them.

49_563489-bk07ch02.indd 73349_563489-bk07ch02.indd 733 3/19/10 7:56 PM3/19/10 7:56 PM

734 Getting to Know SOAP

No, I am not kidding. The problem with standards this detailed in scope is
that in order to be useful they must either leave a lot to the imagination or
define everything. OASIS erred on the side of being too loose, and the imple-
mentations are a mess.

If you are working inside the Microsoft stack — meaning, you are communi-
cating with other .NET projects — you are golden. Within the Microsoft plat-
form, everything is defined the same.

However, if you are communicating outside the .NET Framework — say with
IBM or Sun — you should expect problems if you are using WS-* defined
functionality.

The take-home is that SOAP includes a lot of standard functionality that isn’t
found anywhere else. Sure, some distributed message contracts have a lot
of features found in SOAP, and SOAP might not be completely implemented
the same everywhere, but there isn’t anything else that even tries to provide
this functionality in a standardized way.

From this perspective, SOAP is a fantastic platform. Need transactions, espe-
cially secure transactions? SOAP has them. Need large binary attachments?
SOAP has that. Have BPEL requirements? There’s a SOAP for that.

Big, fat, and slow
All this eating at the trough of standardized features has made SOAP, well, a
little large-boned. Let me give you an example. The XML required just to set
the context for transactions (the service equivalent of a cookie) is:

 <wscoor:CoordinationContext
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:wscoor=”http://docs.oasis-open.org/
 ws-tx/wscoor/2006/06”
 xmlns:myApp=”http://www.example.com/myApp”
 S11:mustUnderstand=”true”>
 <wscoor:Identifier>
 http://Fabrikam123.com/SS/1234
 </wscoor:Identifier>
 <wscoor:Expires>3000</wscoor:Expires>
 <wscoor:CoordinationType>
 http://docs.oasis-open.org/ws-tx/wsat/2006/06
 </wscoor:CoordinationType>
 <wscoor:RegistrationService>
 <wsa:Address>
 http://Business456.com/
 mycoordinationservice/

registration
 </wsa:Address>
 <wsa:ReferenceParameters>
 <myApp:BetaMark> ... </myApp:BetaMark>

49_563489-bk07ch02.indd 73449_563489-bk07ch02.indd 734 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Chapter 2

B
u

ild
in

g

W
e

b
 S

e
rvic

e
s

w
ith

 A
S

M
X
735Making an ASMX Service

 <myApp:EBDCode> ... </myApp:EBDCode>
 </wsa:ReferenceParameters>
 </wscoor:RegistrationService>
 <myApp:IsolationLevel>
 RepeatableRead
 </myApp:IsolationLevel>
 </wscoor:CoordinationContext>

In the Java world, 10MB SOAP messages are not uncommon — although that
includes the payload — and that works out to what, 200,000 lines? In one
HTTP call? That’s probably a bit much.

SOAP dramatically increases your overhead in communication. If you don’t
need the security, federation, and transaction capabilities of SOAP, consider
ReST — covered in Chapter 4. If you are communicating in a homogenous
Microsoft environment, consider binary encoding.

On the other hand, if you are communicating in moderately heterogeneous
environments and do in fact need an encrypted, federated transaction using
a common enterprise data model, by all means look at SOAP.

Making an ASMX Service
You can write a SOAP service in ASMX or WCF.

ASMX doesn’t stand for anything — it is ASPX with the P changed to an M,
which means Service. (Try not to laugh.) It is the extension of an ASP.NET
Web file that provides a service rather than a Web page.

The thing is, ASMX allows only for SOAP. WCF does other things. Here
I cover ASMX; I leave ASMX here because WCF’s additional functional-
ity makes WCF a clear winner in this race. (For writing in WCF, check out
Chapter 3.)

Nonetheless, if you are making a publically consumable service and need
it to be straightforward and simple to deploy, then ASMX might be for you.
Certainly, there is a lot of ASMX service code out there which you might
have to maintain.

Let’s just start by building one.

Creating a new service
ASMX Web services are ASP.NET projects. As such, they seem a lot like ASP.
NET Web applications — because they are ASP.NET Web applications. You
can actually put an ASMX file in a regular ASP.NET application, and a Web
file in a Web service application like we do in the following step list. The tem-
plate is just there to help you get started.

49_563489-bk07ch02.indd 73549_563489-bk07ch02.indd 735 3/19/10 7:56 PM3/19/10 7:56 PM

736 Making an ASMX Service

 1. Open Visual Studio and click on New Project.

 The New Project dialog box appears.

 2. In Installed Templates under the Visual C# node, select Web.

 3. In the box to the right, click ASP.NET Web Service Application.

 4. Change the Name to ANewService and the Solution to
Book7Chapter2.

 An example is shown in Figure 2-1.

 5. Click OK.

This process generates a project that has all the right references for a Web
service project in ASMX and gives you a sample file to start with.

Analyzing the file setup
Note that although a Service1.asmx file (and the usual code-behind file) is
created, the markup file has only one line in it:

<%@ WebService Language=”C#” CodeBehind=”Service1.asmx.cs”
Class=”ANewService.Service1” %>

This is by design. Nothing goes in the markup file. All the magic is in the
code-behind.

Figure 2-1:
Make a
new Web
service.

49_563489-bk07ch02.indd 73649_563489-bk07ch02.indd 736 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Chapter 2

B
u

ild
in

g

W
e

b
 S

e
rvic

e
s

w
ith

 A
S

M
X
737Making an ASMX Service

Breaking down the sample code
The Service1.asmx.cs file does all the work in our new service, starting
with the code in the template. Let’s run through that code a line at a time:

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Web;
5 using System.Web.Services;
6
7 namespace ANewService
8 {
9 /// <summary>
10 /// Summary description for Service1
11 /// </summary>
12 [WebService(Namespace = “http://tempuri.org/”)]
13 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
14 [System.ComponentModel.ToolboxItem(false)]
15 // To allow this Web Service to be called from script, using ASP.NET AJAX,

uncomment the following line.
16 // [System.Web.Script.Services.ScriptService]
17 public class Service1 : System.Web.Services.WebService
18 {
19
20 [WebMethod]
21 public string HelloWorld()
22 {
23 return “Hello World”;
24 }
25 }
26 }

There are eight things to point out:

 ✦ Line 5 brings in the System.Web.Services namespace; it’s essential to
the rest of the template.

 ✦ Line 12 sets the Namespace for the service. The namespace, just like the
namespace of your .NET classes, can be anything you want. It doesn’t
refer to a real place on the Web.

 ✦ Line 13 sets the Web Service Binding. WS-I is the Web Services
Interoperability organization who (you guessed it) sets even more stan-
dards for Web services. Basic Profile 1.1 is more or less the industry
standard. You can find out more at http://www.ws-i.org.

 ✦ Line 14 declares if the item should be a Toolbox item in design time
environments. This declares whether it should show up in design time
Toolboxes.

 ✦ Line 16 (when uncommented) activates runtime support for AJAX.

 ✦ Line 17 is a normal, everyday class definition, but notice that it inherits
System.Web.Service.WebService.

49_563489-bk07ch02.indd 73749_563489-bk07ch02.indd 737 3/19/10 7:56 PM3/19/10 7:56 PM

738 Making an ASMX Service

 ✦ On Line 20, you can see the [WebMethod] attribute. This allows you to
control what methods are available to the service from the class, and
there are a few attributes for fine-grained control.

 ✦ The code itself is fairly boring — the functional code is exactly the same
as it would be in a normal class. All the things that make it a Web service
are in the declaration.

Running the service
Press F5 and run the service. If all goes well, you should see something like
Figure 2-2. This is the default visualization for a service — remember that
you didn’t make a user interface; IIS did this for you, to make it easier to test.
External users can’t see this.

Clicking the Service Description gives you the WDSL for the whole service.
This is what a non-.NET application needs to build its proxy. Note that all it
does is append a ?WSDL to the end of the URL.

Clicking the Hello World link gives you a test screen and implementation
guidance for the method. You will have one of these links for every one of
the methods in the class marked with WebMethod.

Figure 2-2:
Running
the default
service.

49_563489-bk07ch02.indd 73849_563489-bk07ch02.indd 738 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Chapter 2

B
u

ild
in

g

W
e

b
 S

e
rvic

e
s

w
ith

 A
S

M
X
739Making an ASMX Service

Building the code for SHARP
First you need to get set up. Here’s what you need to do to start using the
Web template:

 1. Add a new Web Service Application project to the solution by right-
clicking the solution and selecting Add New Project. Name the project
SharpAsmx.

 2. If you haven’t already, add a data connection to the ConferenceDB.
The database is downloadable from csharpfordummies.net.

 3. Right-click on the SharpAsmx project and add an Entity Data Model
by selecting Add ...New Item and picking ADO.NET Entity Data Model
from the list. (It’s under Data.) I named it SHARP.edmx.

 4. When the Entity Data Model wizard appears, select Generate from
Database and click Next.

 5. In Choose Your Data Connection, pick the ConferenceDb you added
in Step 1. Keep the rest of the defaults.

 6. When it asks you to copy the file to your project, choose No.

 You don’t need copies of the database floating around.

 7. In Choose Your Database Objects, pick all the tables except sysdia-
grams, and change the Model Namespace to SharpModel.

 An example appears in Figure 2-3.

 8. Click Finish.

Figure 2-3:
Adding
the Sharp
tables to the
model.

49_563489-bk07ch02.indd 73949_563489-bk07ch02.indd 739 3/19/10 7:56 PM3/19/10 7:56 PM

740 Making an ASMX Service

That’s how you set up an ASMX Web service project. You have a data
source, an entity model (you could use your organization’s domain model,
or hand-rolled procedures and ADO.NET, or whatever), and a starting point
for the service.

 Next, you set up some services that make sense of your user interface. There
are two schools of thought on this. First, you can roll up the entity model in
the service signature itself. Second, you could write a separate business
layer and just call the Business Layer (BL) methods with the services.

The deciding factor is reuse. If you will later need to roll exactly this logic
into a standalone application (anything that won’t use the services), then
make a separate BL. For simplicity, we will do the former.

 1. Using the default template, delete the default HelloWorld method
and put in a method signature for a new conferencesAtLocation
method. It will accept a conferenceId (maybe from Web site naviga-
tion) and return a list of conferences at that location.

public List<Conference> conferencesAtLocation(int locationId)
{

}

 2. The first step is just to get the entities from the Entity Data Model. Add
the bold lines. They set up a context for the Entity Framework, then
get the list of conferences.

public List<Conference> conferencesAtLocation(int locationId)
{
 ConferenceDbEntities conferenceContext = new ConferenceDbEntities();
 ObjectSet<Conference> allConferences = conferenceContext.Conferences;
}

 3. Next, write a Linq query to just get the conferences with the locatio-
nId. This is in the bold lines below.

public List<Conference> conferencesAtLocation(int locationId)
{
 ConferenceDbEntities conferenceContext = new ConferenceDbEntities();
 ObjectSet<Conference> allConferences = conferenceContext.Conferences;
 var conferenceQuery = from c in allConferences
 where c.LocationId == locationId
 select c;
}

 4. In order to use the results of the Linq query, you must use an iterator.
You need to dispose of the context. Finally, you return the results.
These steps are in the bold lines added below:

public List<Conference> conferencesAtLocation(int locationId)
{
 ConferenceDbEntities conferenceContext = new ConferenceDbEntities();
 ObjectSet<Conference> allConferences = conferenceContext.Conferences;

49_563489-bk07ch02.indd 74049_563489-bk07ch02.indd 740 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Chapter 2

B
u

ild
in

g

W
e

b
 S

e
rvic

e
s

w
ith

 A
S

M
X
741Making an ASMX Service

 var conferenceQuery = from c in allConferences
 where c.LocationId == locationId
 select c;
 List<Conference> locationConferences = conferenceQuery.ToList();
 conferenceContext.Dispose();

 return locationConferences;
}

 5. To make it a Web service, you need to add the WebMethod decorator
on the method signature, and you are done.

[WebMethod]
public List<Conference> conferencesAtLocation(int locationId)
{
 ConferenceDbEntities conferenceContext = new ConferenceDbEntities();
 ObjectSet<Conference> allConferences = conferenceContext.Conferences;
 var conferenceQuery = from c in allConferences
 where c.LocationId == locationId
 select c;
 List<Conference> locationConferences = conferenceQuery.ToList();
 conferenceContext.Dispose();

 return locationConferences;
}

 6. Press F5 to run the test page, and click on the conferencesAtLoca-
tion method link. Enter 3 into the Test field, and the result should
come back like Figure 2-4 if everything is good.

So what about all that other stuff that goes into SOAP? Security, transactions,
and like that? It’s all baked in, but it’s well beyond the scope of this book.

For instance, check out the SoapHeader attribute. It allows you to specify
even the most complex security attributes on your Web methods. There’s
more, too. Check out MSDN.

Deploying
Deploying an XML Web Service is just like deploying a Web application. They
are effectively the same thing.

One benefit of ASMX over WCF is the simple configuration. In fact, if you
check out the configuration file for the application you built here, you’ll see
that the only configuration information revolves around the Entity Model.
Adding an ASMX service to a Web project is easy.

 Something important that you need to know: After you deploy, the sample
test page doesn’t run anymore. You’ll still get the information service page,
but if you try to run the test script, you’ll get the message shown in Figure
2-5. This is just for security and can be overridden, though I don’t advise
overriding it in a production setting.

49_563489-bk07ch02.indd 74149_563489-bk07ch02.indd 741 3/19/10 7:56 PM3/19/10 7:56 PM

742 Making an ASMX Service

Figure 2-4:
Results of
our service.

Figure 2-5:
Can’t
run test
scripts in
production!

49_563489-bk07ch02.indd 74249_563489-bk07ch02.indd 742 3/19/10 7:56 PM3/19/10 7:56 PM

Book VII

Chapter 2

B
u

ild
in

g

W
e

b
 S

e
rvic

e
s

w
ith

 A
S

M
X
743Making an ASMX Service

Consuming services in your applications
Consuming an ASMX service works just like consuming any other service,
from any provider. To see what I mean, follow these steps.

 1. Create a new C# Console application in the project. I called mine
ConsumeSharp.

 2. Right-click on the project and select Add Service Reference.

 3. Click the Discover button.

 Visual Studio finds all the services in your solution. In a real project, you
probably would put a URL in the Address text box.

 4. Select the Registration.asmx service and set the Namespace to
SharpReference.

 An example is shown in Figure 2-6.

 5. Click OK.

Visual Studio does a ton of work for you here. There is no magic — Visual
Studio reads the WSDL of the service referenced and builds a proxy just as
though it were a service written in C++ or Java.

Figure 2-6:
Adding a
service
reference.

As such, the objects returned to you will be more along the lines of a service
than what you would expect in C#, especially as delivered by ASMX. The
code in the console application to consume your now-proxied service looks
like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

49_563489-bk07ch02.indd 74349_563489-bk07ch02.indd 743 3/19/10 7:56 PM3/19/10 7:56 PM

744 Making an ASMX Service

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 SharpReference.RegistrationSoapClient serviceReference = new

SharpReference.RegistrationSoapClient();
 SharpReference.Conference[] conferences = serviceReference.

conferencesAtLocation(3);
 Console.WriteLine(“There will be {0} conferences at location number

3.”, conferences.Length)
 Console.ReadKey();
 }
 }
}

Notice that the conferencesAtLocation method now returns an array
rather than a List<Conference>. The consuming language doesn’t have to
have generics, but it does have to have arrays (if it conforms to WS-I). That’s
the only assumption we can make. (See Figure 2-7.)

Right-click on the console application and press F5. The console application
should start, and it should find the two rows in the array just as it would in
the list.

Figure 2-7:
Running the
consumed
service.

49_563489-bk07ch02.indd 74449_563489-bk07ch02.indd 744 3/19/10 7:56 PM3/19/10 7:56 PM

Chapter 3: Building Web
Services with WCF

In This Chapter
✓ Getting acquainted with WCF

✓ Creating WCF services

✓ Configuring a new service

✓ Deploying a new service

Windows Communication Foundation is just that — the foundation
for communication between Windows computers. It just so happens

that thanks to open standards like SOAP and ReST, WCF can communicate
with other software systems.

Although ASMX was really designed to make public services — such as, for
instance, adding an API to a simple Web application — WCF is a complete
distributed computing platform for Windows.

In the early days of .NET, there was a technology called .NET Remoting that
replaced DCOM. DCOM was Distributed COM, or the common accepted
way to communicate between distributed components. It was replaced by
REmoting when .NET came out. Remoting basically took the principles of
DCOM and migrated them to .NET.

WCF isn’t like that. WCF is a complete rethinking of distributed computing,
based on the understanding that computing is becoming more and more
distributed. New protocols for communication come out every day.

The goal here then is to define the differences between ASMX and WCF, and
see that WCF is a true communications protocol and that ASMX is solely for
adding services to Web sites. You can use either technology for both tasks,
but one is certainly more suited than the other for each.

In this chapter I look at why WCF works well and then build the SHARP ser-
vice for a variety of service types. Won’t have to change a lick of code to do
it, either. It’s all in the configuration.

50_563489-bk07ch03.indd 74550_563489-bk07ch03.indd 745 3/19/10 8:18 PM3/19/10 8:18 PM

746 Getting to Know WCF

Getting to Know WCF
First there was DCOM. Then there was .NET Remoting.

The path to a distributed computing platform for Microsoft has been a long
one. Distributed computing is a hard problem to solve; nothing bad on the
Microsoft developers for continuing to hone their platform.

Anyway, there is SOAP, there are Microsoft binary formats, people are creat-
ing custom HTTP contexts — the distributed computing platform is a mess.
Something needed to happen to enable us to all take our existing code and
make it available across the enterprise.

The designers of WCF (largely Doug Purdy, Don Box, and crew) had two
diverse issues. On one hand was ASMX, providing SOAP Web service
access to business logic. On the other hand was .NET Remoting, providing
Microsoft a custom, black box format for the transmission of information
between components via known network protocols.

In Chapter 2, I discuss ASMX and its limitations. Taking a deeper look at
Remoting makes the case for a comprehensive platform even more clear.
(See Figure 3-1.)

Figure 3-1:
The
Remoting
system.

Remoting system

Server object

Remoting system

Client object

ProxyChannel

If each of two systems, say a Client System and a Server System, had a
similarly configured Remoting system, then they could communicate. The
problem, of course, is that it was never, ever configured correctly (or so it
seemed). One side of the equation or the other will make some change, and
the whole system will come to a crashing halt.

Clearly, there has to be some product that brings the various formats of
remote access together under one umbrella. Something that would accept
one block of logic and provide multiple service types.

50_563489-bk07ch03.indd 74650_563489-bk07ch03.indd 746 3/19/10 8:18 PM3/19/10 8:18 PM

Book VII

Chapter 3

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 W

C
F

747Getting to Know WCF

Eventually, WCF was that solution. Starting as an add-on to .NET 2.0, WCF
effectively enabled developers to make specific endpoints for a generic
connector.

Let’s be clear about the problem we were trying to solve. In Figure 3-2, we
see the original problem illustrated by David Chappel for Microsoft back
in 2007.

Figure 3-2:
The original
problem to
be solved.

Internet

Rental Car
Reservation
Application

WCF

Call Center
Client

Application

WCF

Existing
Reservation
Application

Java EE Application
Server

Other
Platforms

Partner
Applications

A car dealership is trying to build a new reservation application (similar
to the conference management application of SHARP). The business logic
needs to be both accessible to outside applications and provide a quality
binary transport format for the internal communication.

WCF is the answer. It uses configuration to provide various endpoints to con-
suming applications, from SOAP to ReST to binary associations that resem-
ble DCOM. It doesn’t require configuration on both ends of the pipe, only on
the server side. If the server serves it, the client can consume it.

50_563489-bk07ch03.indd 74750_563489-bk07ch03.indd 747 3/19/10 8:18 PM3/19/10 8:18 PM

748 Creating a WCF Service

Creating a WCF Service
As with so much in working with the .NET Framework, creating a WCF
service isn’t so much about the code as it is about the configuration. The
SHARP project starts out a lot like the ASMX service.

To get started building out the SHARP service in WCF, follow these steps:

 1. Open Visual Studio and click on New Project.

 2. Select the WCF Service Application in the Web folder of the tree view.

 3. Configure the project, as shown in Figure 3-3.

 4. Click OK.

Figure 3-3:
Starting the
new WCF
Service.

Breaking it down
Let’s look at the template code for a bit. It’s nothing like the ASMX code,
because remember — WCF is different. You can get it to do more or less the
same thing as ASMX, but it isn’t the same technology. Here’s what the WCF
code looks like:

1 namespace SHARPService
2 {
3 // NOTE: You can use the “Rename” command on the “Refactor” menu to change

the class name “Service1” in code, svc and config file together.
 public class Service1 : IService1
4 {

50_563489-bk07ch03.indd 74850_563489-bk07ch03.indd 748 3/19/10 8:18 PM3/19/10 8:18 PM

Book VII

Chapter 3

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 W

C
F

749Creating a WCF Service

5 public string GetData(int value)
6 {
7 return string.Format(“You entered: {0}”, value);
8 }
9
10 public CompositeType GetDataUsingDataContract(CompositeType composite)
11 {
12 if (composite == null)
13 {
14 throw new ArgumentNullException(“composite”);
15 }
16 if (composite.BoolValue)
17 {
18 composite.StringValue += “Suffix”;
19 }
20 return composite;
21 }
22 }
23 }

There are a few of things of interest here:

 ✦ There is no [WebMethod] decoration. You don’t need it in WCF. The
whole project is a service project.

 ✦ The class implements a custom interface, IService. We’ll look at that
in a second.

 ✦ There are two sample methods. The usual old “hello world”
style method GetData, and a more complex example called
GetDataUsingContract.

The GetDataUsingContract method makes a lot more sense when you
take a look at IService.cs below.

1 namespace SHARPService
2 {
3 // NOTE: You can use the “Rename” command on the “Refactor” menu to change

the interface name “IService1” in both code and config file together.
4 [ServiceContract]
5 public interface IService1
6 {
7
8 [OperationContract]
9 string GetData(int value);
10
11 [OperationContract]
12 CompositeType GetDataUsingDataContract(CompositeType composite);
13
14 // TODO: Add your service operations here
15 }
16 // Use a data contract as illustrated in the sample below to add composite

types to service operations.
17 [DataContract]
18 public class CompositeType
19 {
20 bool boolValue = true;
21 string stringValue = “Hello “;
22

50_563489-bk07ch03.indd 74950_563489-bk07ch03.indd 749 3/19/10 8:18 PM3/19/10 8:18 PM

750 Creating a WCF Service

23 [DataMember]
24 public bool BoolValue
25 {
26 get { return boolValue; }
27 set { boolValue = value; }
28 }
29
30 [DataMember]
31 public string StringValue
32 {
33 get { return stringValue; }
34 set { stringValue = value; }
35 }
36 }
37 }

Hey, lookie here! Decorations for the classes! And the mythical
CompositeType! Don’t let the name fool you — this code is just a class,
like any other class. It is just like the List<T> of Conference types that we
returned from the ASMX service. The Framework doesn’t have a Conference
class — we defined it in the entity Data Model.

Line 4 has a [ServiceContract] attribute that is similar to the
[WebClass] of ASMX, and the [OperationContract] too, is similar to
[WebMethod], at least in usage.

Then we have the DataContract. This allows us to decorate classes —
even in our domain model — with attributes that define which classes and
methods get to go out to the service if and when the class is ever called into
service (so to speak).

Making a registration service
Like we do in Chapter 2, let’s just start with a service that returns the list of
our conferences. Follow these steps:

 1. Create a new WCF Service project, just like the earlier example.

 I called mine SHARPService.

 2. Add a Class called Conference.

 This will be a hand-rolled class that won’t be connected to a data-
base for now, but will provide a good example of how to set up a
DataContract. This listing is the code-behind of the service file.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;

namespace SHARPService
{

50_563489-bk07ch03.indd 75050_563489-bk07ch03.indd 750 3/19/10 8:18 PM3/19/10 8:18 PM

Book VII

Chapter 3

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 W

C
F

751Creating a WCF Service

 public class Conference : SHARPService.IConference
 {
 public int Id { get; set; }
 public String Title { get; set; }
 public String Description { get; set; }
 public int LocationId { get; set; }
 }
}

 We want this to be our DataContract for the service. Based on what
we see in the template, we should add a [DataContract] above the
class and [DataMember] above the properties.

 3. Add the DataContract for the service.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Runtime.Serialization;

namespace SHARPService
{
 [DataContract]
 public class Conference : SHARPService.IConference
 {
 [DataMember]
 public int Id { get; set; }
 [DataMember]
 public String Title { get; set; }
 [DataMember]
 public String Description { get; set; }
 [DataMember]
 public int LocationId { get; set; }
 }
}

 Now that there is a class to use, it is time to make the service.

 4. Right-click on the SHARPService project and add a new WCF Service.

 I called mine Registration.svc.

 5. Delete the template method and add the code below.

 Unlike the ASMX sample, this isn’t a working version; we are just setting
up a mock reply.

namespace SHARPService
{
 public class Registration : IRegistration
 {
 public List<Conference> conferencesAtLocation(int locationId)
 {
 List<Conference> locationConferences = new

List<Conference>();
 return locationConferences;
 }
 }
}

50_563489-bk07ch03.indd 75150_563489-bk07ch03.indd 751 3/19/10 8:18 PM3/19/10 8:18 PM

752 Creating a WCF Service

 6. Right-click on the Registration.svc file and select Set as Start Page.

 7. Press F5 to run the Project.

Notice that though the ASP.NET development server runs, your Web
browser does not. The WCF Test Client, shown in Figure 3-4, takes the
place of the development test page for ASMX. It enables you to add in the
request values and see what the response values are without having to
depend on HTTP.

Figure 3-4:
The WCF
test client.

Why is this? WCF enables you to use things other than HTTP (the protocol
that is the backbone of the Web) for transport of message details. (You can
find a few examples in the sidebar, “Using different endpoints.”)

Configuring
The only downside to WCF is the configuration. Because WCF is the be-all
and end-all of the remote procedure call in Windows, there are enough con-
figuration options to handle it all. Gets a little chippy at times.

Fortunately, there is the Service Configuration Editor. Shown in Figure 3-5,
the Service Configuration Editor allows you to manage the complex options
that are WCF’s primary power.

50_563489-bk07ch03.indd 75250_563489-bk07ch03.indd 752 3/19/10 8:18 PM3/19/10 8:18 PM

Book VII

Chapter 3

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 W

C
F

753Creating a WCF Service

The whole point of WCF is that you can write
one service and then have IIS accept a lot of
different protocols calling on the same code.
Sure, we can do SOAP, like we did in ASMX.
We also can do a lot of other protocols. Here
is the breakdown of all the different endpoints,
according to MSDN:

 ✓ BasicHttpBinding: A binding that is suit-
able for communicating with WS-Basic
Profile conformant Web services (for
example, ASP.NET Web services [ASMX]-
based services). This binding uses HTTP as
the transport and text/XML as the default
message encoding.

 ✓ WSHttpBinding: A secure and interoper-
able binding that is suitable for non-duplex
service contracts.

 ✓ WSDualHttpBinding: A secure and
interoperable binding that is suitable for
duplex service contracts or communica-
tion through SOAP intermediaries.

 ✓ WSFederationHttpBinding: A secure and
interoperable binding that supports the
WS-Federation protocol that enables orga-
nizations that are in a federation to effi-
ciently authenticate and authorize users.

 ✓ NetTcpBinding: A secure and optimized
binding suitable for cross-machine com-
munication between WCF applications.

 ✓ NetNamedPipeBinding: A secure, reli-
able, optimized binding that is suitable for
on-machine communication between WCF
applications.

 ✓ NetMsmqBinding: A queued binding that is
suitable for cross-machine communication
between WCF applications.

 ✓ NetPeerTcpBinding: A binding that
enables secure, multiple machine
communication.

 ✓ MsmqIntegrationBinding: A binding that is
suitable for cross-machine communication
between a WCF application and existing
Message Queuing applications.

 ✓ BasicHttpContextBinding: A binding that is
suitable for communicating with WS-Basic
Profile conformant Web services that
enables HTTP cookies to be used to
exchange context.

 ✓ NetTcpContextBinding: A secure and opti-
mized binding suitable for cross-machine
communication between WCF applications
that enables SOAP headers to be used to
exchange context.

 ✓ WebHttpBinding: A binding used to con-
figure endpoints for WCF Web services
that are exposed through HTTP requests
instead of SOAP messages.

 ✓ WSHttpContextBinding: A secure and
interoperable binding that is suitable for
non-duplex service contracts that enables
SOAP headers to be used to exchange
context.

So when do you use what? Well, if you want to
have two .NET applications communicate, or the
layers of a single application communicate, then
use NetTcpBinding. If you are cross-platform
communicating, then use WSHttpBinding.

Only if for some reason those don’t work do you
start to look into the others. Oh, and remem-
ber that you can have many endpoints for the
same service. Don’t use SOAP for a data layer.
Just make a separate SOAP header if you need
cross-platform support.

Using different endpoints

50_563489-bk07ch03.indd 75350_563489-bk07ch03.indd 753 3/19/10 8:18 PM3/19/10 8:18 PM

754 Creating a WCF Service

Figure 3-5:
The Service
Configura-
tion Editor.

Using the Service Configuration Editor for adding a service endpoint seems
more complex than it ought to be. Just follow these steps:

 1. Open the Web.config of your project by clicking File... Open and navi-
gate to your Web.config.

 2. Select File➪Add New then click Create a New Service.

 3. Click Browse and find the compiled DLL of your project.

 It should be in the Bin folder, and named SHARPService.dll if you
used my naming.

 4. Double-click on the DLL, and the services that are represented show
up. As shown in Figure 3-6, click the Registration service. Click Open,
and then Next.

 5. Confirm the service contract.

 (See, I told you it would be useful later!)

 6. Click Next.

 In the Binding Configuration window, you’ll see what I mean about the
number of options. Select the Existing Binding Configuration radio button
and check out the drop-down list. The items in that list are covered in the
sidebar, “Using different endpoints.” For now, accept the default.

 7. Click Next.

50_563489-bk07ch03.indd 75450_563489-bk07ch03.indd 754 3/19/10 8:18 PM3/19/10 8:18 PM

Book VII

Chapter 3

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 W

C
F

755Creating a WCF Service

Figure 3-6:
Selecting
the service
in question.

 8. In the endpoint address, enter http://localhost/ for the purpose of this
walk-through.

 9. Click Finish on your confirmation window.

 10. When you are done, an endpoint with no name appears under the
SHARPService.Registration service. You can click on this end-
point and add a name, like SharpHttp. The endpoint panel is shown in
Figure 3-7.

 11. Choose File➪Save and then close the configuration editor.

Figure 3-7:
A finished
endpoint.

50_563489-bk07ch03.indd 75550_563489-bk07ch03.indd 755 3/19/10 8:18 PM3/19/10 8:18 PM

756 Creating a WCF Service

Back in Visual Studio–land, open the Web.Config file in the code
editor by double-clicking it in the Solution Explorer. You’ll see that the
ServiceModel section has been edited with your new endpoint. The code
looks like this:

 <system.serviceModel>
 <services>
 <service name=”SHARPService.Registration”>
 <clear />
 <endpoint address=”http://localhost” binding=”basicHttpBinding”
 bindingConfiguration=”” name=”SharpHttp” contract=”SHARPService.

IRegistration” />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information, set the value below to

false and remove the metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled=”true” />
 <!-- To receive exception details in faults for debugging purposes, set

the value below to true. Set to false before deployment to avoid disclosing
exception information -->

 <serviceDebug includeExceptionDetailInFaults=”false” />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

Now, would that have been easier to do in code? Maybe. Why is the service
editor around then? Because when you get a lot of bindings, it can get pretty
messy in there. Check out the sidebar on using other bindings to get an idea.

Deploying
If you use IIS to host the service, deployment of WCF is the same as ASMX.
You can effectively copy the .svc and .config files with the compiled
binaries and have a working Web application.

The better way to deploy in Visual Studio 2010 is to use the Publish Web
tool. If you right-click on the project and select Publish, you’ll have the
option to set up a repeatable profile so that you don’t forget anything. (See
Figure 3-8.)

This panel does all the things that you would have to do yourself:

 ✦ Set the URL of the service

 ✦ Name the Application (in the site properties in IIS)

 ✦ Set up credentials

 ✦ Copy the right files

50_563489-bk07ch03.indd 75650_563489-bk07ch03.indd 756 3/19/10 8:18 PM3/19/10 8:18 PM

Book VII

Chapter 3

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 W

C
F

757Creating a WCF Service

Figure 3-8:
The Publish
Web dialog
box.

You can set up the profile once, and then reuse it every time you have to re-
publish the application. Pretty slick.

Consuming
All there is left to do is use it.

As one would expect, setting up a service reference for a WCF service is a
lot like setting up a reference for an ASMX service. You still right-click and
select Add Service Reference, you still get the dialog box shown in Figure 3-9,
and you still can reference the service easily in your code.

Two things to remember:

 ✦ The file extension you are looking for is .svc.

 ✦ The binding you set up is abstracted away from you.

The filename thing is workable, but the binding is important. Keep in mind
that the selecting of a binding is invisible to the developer, but it has a sig-
nificant impact on functionality and especially performance. The decision
of which to use is not to be made lightly; it should be done only after much
research and needs analysis.

50_563489-bk07ch03.indd 75750_563489-bk07ch03.indd 757 3/19/10 8:18 PM3/19/10 8:18 PM

758 Creating a WCF Service

Figure 3-9:
Adding the
WCF service
reference.

50_563489-bk07ch03.indd 75850_563489-bk07ch03.indd 758 3/19/10 8:18 PM3/19/10 8:18 PM

Chapter 4: Building Web
Services with ReST

In This Chapter
✓ Understanding the principles of ReST

✓ Implementing ReST services using WCF

✓ Consuming ReST services

Chapter 3 includes a sidebar, “Using Different Endpoints,” that has a big
list of binding formats you can use with WCF. I point out that for most

applications, you use SOAP, or binary. That’s not necessarily accurate.

Another binding is pretty popular — it is the binding that your Web browser
uses to get pages from Web servers. It is called ReST, and it stands for
Representational State Transfer.

In this chapter, I introduce you to ReST and guide you through its advan-
tages and drawbacks.

Getting to Know ReST
ReST is basically the use of the traditional GET and POST patterns the old
folks will remember from CGI. For you young pups, it is the basic format of
Web requests. For instance, when you click on a link that looks like this:

http://mydomain.com/start.aspx?id=3

. . . you are using ReST. Remember, we aren’t talking about an implementa-
tion here. We are talking about a remote procedure call mechanism. It is just
a way to get parameters for a query to a remote machine and to get data
back.

We also aren’t talking about a protocol, like SOAP is. ReST is an architec-
ture. It has guidelines, not rules.

A ReST interface has four goals. They are

51_563489-bk07ch04.indd 75951_563489-bk07ch04.indd 759 3/19/10 7:57 PM3/19/10 7:57 PM

760 Understanding the Guiding Principles of ReST

 ✦ Scalability of component interactions

 ✦ Generality of interfaces

 ✦ Independent deployment of components

 ✦ Intermediary components to reduce latency, enforce security, and
encapsulate legacy systems

Use of ReST with WCF meets most but not all of those goals. Let’s take a
quick ride over the details of the implementation of ReST in WCF, and you
can make your own call.

Understanding the Guiding Principles of ReST
There are four guiding principles to ReST. According to the standard, all
ReSTful interfaces must provide interfaces that adhere to these principles. In
the real world, compliance is up for discussion. Here are the principles:

 ✦ Identification of resources: Individual resources (like a data item, for
instance) are identified in requests (for example, using URIs in Web-
based ReST systems). The resources themselves are conceptually sepa-
rate from the representations that are returned to the client. For
example, the server does not send its database, but rather, perhaps,
some HTML, XML, or JSON that represents some database records
expressed, for instance, in French and encoded in UTF-8, depending on
the details of the request and the server implementation.

 ✦ Manipulation of resources through these representations: When a
client holds a representation of a resource, including any metadata
attached, it has enough information to modify or delete the resource on
the server, provided it has permission to do so.

 ✦ Self-descriptive messages: Each message includes enough information
to describe how to process the message (for example, which parser to
invoke). An example of this is the use of Internet media types, previously
known as MIME types. From the media type alone, the client must know
how to process its contents. If it needs to look inside the message’s con-
tents in order to understand it, the message is not self-descriptive. For
example, merely using the “application/xml” media type is not sufficient
for knowing what to do with its contents, unless code-download is used.

 ✦ Hypermedia as the engine of application state: If it is likely that the
client will want to access related resources, these should be identified
in the representation returned (for example, by providing their URIs in
sufficient context, such as hypertext links). This creates an environment
where the software system consuming the service has more than normal
knowledge of the way the data is stored.

51_563489-bk07ch04.indd 76051_563489-bk07ch04.indd 760 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 4

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 R

e
S

T

761Understanding the Guiding Principles of ReST

Diving into the details of ReST
ReST as a concept is as old as the Web, but as a Web service implementation
it is fairly new — about as new as SOAP. The largest implementation of ReST
as a standard is the Web itself. CGI is based on the ReST interface.

The call to a ReST interface is clearly smaller than a SOAP call. Seriously.
Look at these two examples:

ReST:

POST /Start.asmx HTTP/1.1
Host: localhost
Content-Type: http; charset=utf-8
http://mydomain.com/start.aspx?id=3

SOAP:

POST /Service1.asmx HTTP/1.1
Host: localhost
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>

 <soap12:Body>
 <HelloWorld xmlns=”http://tempuri.org/” />
 </soap12:Body>
</soap12:Envelope>

The XML of SOAP kinda gets in the way.

On the other hand. SOAP has a list of security features. There is a list of
transaction features. There is a list of attachment features. SOAP has a lot of
features.

ReST, not so much. ReST has only four features:

 ✦ GET – Request a resource

 ✦ PUT – Upload a resource

 ✦ POST – Submit data

 ✦ DELETE – Delete resource

51_563489-bk07ch04.indd 76151_563489-bk07ch04.indd 761 3/19/10 7:57 PM3/19/10 7:57 PM

762 Changing a WCF Service to Use ReST

Changing a WCF Service to Use ReST
Looking at the WCF service that is built in Chapter 3, it seems that changing
the endpoints will solve the problem. This example starts with some of the
code created in Chapter 3.Then we will alter the endpoint behavior manually
to create a ReST service.

Getting the WCF service
Let’s start by getting the code from the WCF service in Chapter 3 and tweak-
ing it. Just follow these steps:

 1. Create a new WCF service application.

 I called mind SharpRest.

 2. Make a new Registration service by right-clicking the folder and
choosing Add a New Service File.

 3. Copy the code into registration.svc and iRegistration.cs from
the similarly named files in the Chapter 3 project.

 4. Add the Conference class and the iConference interface from Chapter 3.

Exposing the ReST service
Now for the editing. The class attributes you add here are important
because they affect how the compiler sets up the service responses.

To implement ReST on the service side, there have to be three (Three!!!
That’s a bunch!) additional attributes on that service contract:

 ✦ ServiceContractAttribute: Defines the interface as a service interface.

 ✦ WebInvokeAttribute: Tells the compiler that this class can be called by
a Web-based ReST model.

 ✦ WebGetAttributeClass: Remember GET, PUT, POST, and DELETE? This
tells the runtime that the class will respond to a GET.

All right, ServiceContract we got — it came with the template. We need to
add the method contract. The interface now looks like this:

namespace SharpRest
{
 [ServiceContract]
 public interface IRegistration
 {
 [OperationContract]
 [WebInvokeAttribute]
 [WebGetAttribute]

51_563489-bk07ch04.indd 76251_563489-bk07ch04.indd 762 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 4

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 R

e
S

T

763Changing a WCF Service to Use ReST

 List<Conference> conferencesAtLocation(int
locationId);

 }
}

What does that do for us? It tells the runtime compiler that a URI can call
this directly. You can check out the binding itself by looking at the test
client, as shown in Figure 4-1.

Figure 4-1:
A ReST
binding.

That isn’t all there is to it, though. We need to create a WebServiceHost.

Returning data in different ways
The WebServiceHost is a ServiceHost class that happens to handle ReST
very well, so we use it for that purpose. There are a few ways to do this, just
like there are in WCF. These include the following:

 ✦ Any .NET application running on a box can be a host. A Windows ser-
vice, console application, even a running WPF application can host a
service. As long as it has access to the network device, it should work.

 ✦ IIS can host the application, and you can configure it in code. This
involves using a WebServiceHost object in the service codebehind, and
decorating the class with attributes for configuration.

 ✦ The Web.config file can be set up to define an endpoint: This is the
easiest way, and the way we do it in Chapter 3. If configured this way,
adding other endpoints to the code is a straightforward change.

51_563489-bk07ch04.indd 76351_563489-bk07ch04.indd 763 3/19/10 7:57 PM3/19/10 7:57 PM

764 Changing a WCF Service to Use ReST

There isn’t a binding in the WCF Configuration tool for the ReST binding,
however, so we have to do it another way. Just follow these steps:

 1. Open the Web.Config for the service.

 There should be binding information in there from the SOAP service we
built in Chapter 3. Leave that there.

 2. Add the bold listing for the custom POX binding under the
ServiceModel section.

 It is the first bold code in Listing 4-1.

 3. Add the Service information into the Service section. It is the second
bold code in Listing 4-1.

Listing 4-1: The ReST Service Implementation

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>
 <system.web>
 <compilation debug=”true” targetFramework=”4.0”>
 <assemblies>
 <add assembly=”System.Data.Entity, Version=4.0.0.0, Culture=neutral, Publ

icKeyToken=b77a5c561934e089” />
 </assemblies>
 </compilation>
 </system.web>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name=”poxBinding”>
 <textMessageEncoding messageVersion=”None” />
 <httpTransport />
 </binding>
 </customBinding>
 </bindings>
 <services>
 <service name=”SHARPService.Registration”>
 <clear />
 <endpoint address=”http://localhost” binding=”basicHttpBinding”
 name=”SharpHttp” contract=”SHARPService.IRegistration”

listenUriMode=”Explicit”>
 <identity>
 <certificateReference storeName=”My” storeLocation=”LocalMachine”
 x509FindType=”FindBySubjectDistinguishedName” />
 </identity>
 </endpoint>
 <endpoint address=”http://localhost” binding=”wsDualHttpBinding”
 bindingConfiguration=”” name=”SharpDual” contract=”SHARPService.

IRegistration” />
 </service>
 <service name=”SHARPService.Registration”>
 <host>
 <baseAddresses>
 <add baseAddress=”http://localhost” />
 </baseAddresses>
 </host>

51_563489-bk07ch04.indd 76451_563489-bk07ch04.indd 764 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII

Chapter 4

B
u

ild
in

g
 W

e
b

S

e
rvic

e
s w

ith
 R

e
S

T

765Changing a WCF Service to Use ReST

 <endpoint address=”registration”
 binding=”customBinding”
 bindingConfiguration=”poxBinding”
 contract=”SHARPService.IRegistration” />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information, set the value below to

false and remove the metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled=”true” />
 <!-- To receive exception details in faults for debugging purposes, set

the value below to true. Set to false before deployment to avoid disclosing
exception information -->

 <serviceDebug includeExceptionDetailInFaults=”false” />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests=”true” />
 </system.webServer>
 <connectionStrings>
 <add name=”ConferenceDbEntities” connectionString=”metadata=res://*/

Sharp.csdl|res://*/Sharp.ssdl|res://*/Sharp.msl;provider=System.Data.
SqlClient;provider connection string=’Data Source=.\SQLEXPRESS;AttachDbFil
ename="C:\Program Files\Microsoft SQL Server\MSSQL10.SQLEXPRESS\MSSQL\
DATA\ConferenceDb.mdf";Integrated Security=True;Connect Timeout=30;User
Instance=True;MultipleActiveResultSets=True’” providerName=”System.Data.
EntityClient” />

 </connectionStrings>
</configuration>

51_563489-bk07ch04.indd 76551_563489-bk07ch04.indd 765 3/19/10 7:57 PM3/19/10 7:57 PM

Book VII: Service-Oriented Development766

51_563489-bk07ch04.indd 76651_563489-bk07ch04.indd 766 3/19/10 7:57 PM3/19/10 7:57 PM

Book VIII

New Features in C# 4.0

52_563489-pp08.indd 76752_563489-pp08.indd 767 3/19/10 8:17 PM3/19/10 8:17 PM

Contents at a Glance

Chapter 1: Programming Dynamically! .769

Chapter 2: Improving Productivity with Named and
Optional Parameters .781

Chapter 3: Helping Out with Interop .789

Chapter 4: Revising Generics. .795

52_563489-pp08.indd 76852_563489-pp08.indd 768 3/19/10 8:17 PM3/19/10 8:17 PM

Chapter 1: Programming
Dynamically!

In This Chapter
✓ Understanding dynamic typing

✓ Defining variables

✓ Putting dynamic to use

✓ Making static operations dynamic

For many years, I thought that dynamic programming referred to being
really flashy and flamboyant while writing code. So, I started wearing

Hawaiian shirts and singing loudly.

Later, I found out this isn’t the case.

Dynamic programming is another one of those buzzwords that really doesn’t
have a clear definition. At its loosest, it means developing something in such
a way that the program makes more decisions about the way it runs while
running, rather than when you compile it.

Scripting languages are a great example of this. When you write something
in VBScript, you don’t compile it at all — all of the decisions are made at
runtime. Ruby is another good example: Most of the time, an entire program
can just be typed into a command prompt and run right from there.

There are examples that are not so good — like VB Classic. Remember the
Variant type? You could declare a variable to be Variant and VB wouldn’t
decide what it was supposed to be for real until the program ran. In the
best of cases, this added immense flexibility to the language. In the worst of
cases, you got Type Mismatch errors at runtime.

 To give a concrete example, when you declare a variable in a dynamically
typed language, you don’t have to say what type you are making that vari-
able. The compiler will just figure it out for you. In a static language, like C#
3.0, you do have to say what type you are making that variable.

Microsoft originally promised that dynamic types would never be in C#,
but later decided that the feature had to be added. Why? Mostly, it’s
because of the development for Microsoft Office (like the reasoning for
much of the rest of Book VIII). Office uses COM, the pre-.NET structure for
Microsoft applications.

53_563489-bk08ch01.indd 76953_563489-bk08ch01.indd 769 3/19/10 8:17 PM3/19/10 8:17 PM

770 Shifting C# Toward Dynamic Typing

COM expects that the languages that use it (like VB Classic and C++) will
have dynamic types. This made developing for Microsoft Office difficult for
C# programmers, which was exactly opposite of what Microsoft wanted to
happen. The end result? The dynamic type.

Shifting C# Toward Dynamic Typing
So-called “dynamic languages” are a trend that keeps coming back, like ruf-
fled tux shirts. Dynamic languages are languages that allow for loose typing,
rather than static. The concept got started in the 1960s with LISP. Dynamic
languages came back in the late 1980s for two reasons: network management
scripting and the artificial intelligence craze. Thanks to the Web, the buzz-
word is back yet again.

The World Wide Web, for those of you who aren’t old enough to remem-
ber, was built on View Source and dynamic languages. Microsoft’s original
Web development language, Active Server Pages, was built on VBScript — a
dynamic language.

The Web is better with a dynamic programming environment, so the trend
is probably here to stay this time (until the next big thing, anyway). C# isn’t
the only language that is adding dynamic language features, and dynamic
type isn’t the only language feature that has been added to make it more
appealing for Web programmers.

Several dynamic languages have been around for a while, like these:

 ✦ Perl

 ✦ Visual Basic

 ✦ Smalltalk

 ✦ LISP

 ✦ Scheme

While some of these aren’t as popular as they once were, they are still out
there and have pushed the trend in the newer languages. You can see this
trend in all the new or refurbished dynamic languages that have popped up
over the last ten years. Many of them have roots in the Web, while others
are being newly used for the Web:

 ✦ PHP

 ✦ Ruby

 ✦ JavaScript

 ✦ Cold Fusion

53_563489-bk08ch01.indd 77053_563489-bk08ch01.indd 770 3/19/10 8:17 PM3/19/10 8:17 PM

Book VIII

Chapter 1

P
ro

g
ra

m
m

in
g

D

yn
a

m
ic

a
lly!

771Shifting C# Toward Dynamic Typing

 ✦ Python

 ✦ Cobra (my new favorite)

 ✦ Groovy

 ✦ Boo

 ✦ Newspeak

Programmers who work in dynamic languages — how can I put this gently —
feel strongly about their choice of tools. The communities are very strong.
Developers who work in dynamic languages use them for practically every-
thing except highly structured team-build kinds of environments, like:

 ✦ Scripting infrastructure for system maintenance

 ✦ Building tests

 ✦ One-use utilities

 ✦ Server farm maintenance

 ✦ Scripting other applications

 ✦ Building Web sites

 ✦ File maintenance

Dynamic languages are popular for these kinds of tasks for two reasons.
First, they provide instant feedback, because you can try a piece of code
outside the constraints of the rest of the program you are writing. Second,
you can start building your higher-level pieces of code without building the
plumbing that makes it work.

For instance, Ruby has a command line interface that you can simply paste
a function into, even out of context, and see how it works. There is even a
Web version at http://tryruby.hobix.com/. You can type code right in
there, even if there are classes referenced that aren’t defined, because Ruby
will just take a guess at it.

This moves nicely into the next point, that a dynamic language enables you
to build a class that refers to a type that you haven’t defined elsewhere. For
example, you can make a class to schedule an event, without actually having
to build the underlying Event type first.

All of this lends itself to a language that is a lot more responsive to change.
You can make a logic change in one place and not have to dig through reams
of code to fix all the type declarations everywhere. Add this to optional and
named parameters (see Chapter 2) and you have a lot less typing to do when
you have to change your program.

53_563489-bk08ch01.indd 77153_563489-bk08ch01.indd 771 3/19/10 8:17 PM3/19/10 8:17 PM

772 Programming Dynamically

Other benefits to dynamic languages in general show up as you use them
more. For instance, macro languages are usually dynamically typed. If you
have tried to build macros in previous versions of Visual Studio, you know
what a pain it is to use a static language.

Making C# (and VB.NET, for that matter) more dynamic not only makes it a
better language for extending Visual Studio, but it also gives programmers
the capability to include the language in the programs they write so that
other developers can further extend those applications.

Programming Dynamically
By now, you must be asking, “What exactly are we talking about here?” Fair
question. When you define a new variable, you can use the dynamic keyword,
and C# will let you make assumptions about the members of the variable.

More or less, what I’m talking about it this. If you want to declare a new
Course object, you do it like this:

Course newCourse = new Course();
newCourse.Schedule();

This is, of course, assuming that you have a Course class defined somewhere
else in your program, like this:

class Course {
 public void Schedule()
 {
 //Something fancy here
 }
}

But what if you don’t know what class the new object will be? How do you
handle that? You could declare it as an Object, because everything derives
from Object, right? Here’s the code:

Object newCourse = new Object();

Not so fast, my friend, if you make your next line this:

newCourse.Schedule();

Note the squiggly line appears almost immediately, and you get the famous
“object does not contain a definition for Schedule...” error in the design time
Error List.

53_563489-bk08ch01.indd 77253_563489-bk08ch01.indd 772 3/19/10 8:17 PM3/19/10 8:17 PM

Book VIII

Chapter 1

P
ro

g
ra

m
m

in
g

D

yn
a

m
ic

a
lly!

773Programming Dynamically

However, we can do this:

dynamic newCourse = SomeFunction();
newCourse.Schedule();

All this code needs to have is the stub of a function that returns some value,
and we are good to go. What if SomeFunction() returns a string? Well, we
will get a runtime error. But it will still compile!

About now, if you are anything like me, you have to be thinking: “This is a
good thing? How!?!” I hear you, trust me. For the time being, you can blame
COM.

You see, COM was mostly constructed using C++, which has a variant type.
In C++, you could declare a variable to be dynamic, like this:

VARIANT newCourse;

It worked just like the dynamic type, except C# wasn’t invented yet. Anyway,
because a lot of the objects in COM used Variant out parameters, it was
really tough to handle Interop using .NET.

Because Microsoft Office is mostly made of COM objects, and because it isn’t
going to change any time soon, and because Microsoft wants us all to be
Office developers one day, bam, we have the dynamic type.

Say, for instance, that our newCourse is a variant out parameter from a
method in a COM class. In order to get the value, we have to declare it an
Object, like this:

CourseMarshaller cm = new CourseMarshaller(); //a COM object
int courseId = 4;
Object newCourse;
cm.MakeCourse(courseId, newCourse);
//and now we are back to square one
newCourse.Schedule(); //This causes a ‘member not found

exception’

Line six will not compile, even if the Schedule method exists, because we
can’t assume that newCourse will always come back as a Course object,
because it is declared a variant. We are stuck.

With a dynamic type, though, we are golden once again, with this code:

CourseMarshaller cm = new CourseMarshaller(); //a COM object
int courseId = 4;
dynamic newCourse;
cm.MakeCourse(courseId, newCourse);
newCourse.Schedule(); //This now compiles

53_563489-bk08ch01.indd 77353_563489-bk08ch01.indd 773 3/19/10 8:17 PM3/19/10 8:17 PM

774 Putting Dynamic to Use

What happens if newCourse comes back as something that doesn’t have a
Schedule method? You get a runtime error. But there are try/catch blocks
for runtime errors. Nothing will help it compile without the dynamic keyword.

Readers who are long-time Visual Basic programmers, or even newer VB.NET
programmers, realize that you can handle this dynamically — and have
always been able to — in Visual Basic. For a long time, I have recommended
that programmers working with legacy systems use Visual Basic for their
new code, and this is exactly why.

In the interest of language parity, now C# can do it, too. In general, this is
good, because many organizations are writing legacy code in VB and new
code in C# — and it can get pretty messy in the trenches. This change makes
the code base slimmer.

Putting Dynamic to Use
When C# encounters a dynamic typed variable, like the variables we created
earlier, it changes everything that variable touches into a dynamic operation.
This dynamic conversion means that when you use a dynamically typed
object in an expression, the entire operation is dynamic.

Classic examples
There are six examples of how this works. Say we have the dynamic vari-
able dynaVariable. Because the dynamic variable will pass through all six
examples, they will all be dispatched dynamically by the C# compiler. Here
are those examples, with nods to Daniel Ng.

 ✦ dynamicVariable.someMethod(“a”, “b”, “c”);: The compiler
binds the method someMethod at runtime, since dynaVariable is
dynamic. No surprise.

 ✦ dynamicVariable.someProperty = 42;: The compiler binds the
property someProperty just like it did in the first method.

 ✦ var newVar = dynamicVariable + 42;: The compiler looks for any
overloaded operators of “+” with a type of dynamic. Lacking that, it out-
puts a dynamic type.

 ✦ int newNumber = dynamicVariable;: This is an implicit conversion
to int. The runtime determines if a conversion to int is possible. If not,
it throws a type mismatch error.

53_563489-bk08ch01.indd 77453_563489-bk08ch01.indd 774 3/19/10 8:17 PM3/19/10 8:17 PM

Book VIII

Chapter 1

P
ro

g
ra

m
m

in
g

D

yn
a

m
ic

a
lly!

775Putting Dynamic to Use

 ✦ int newString = (int) dynamicVariable;: This is an explicit
cast to int. The compiler encodes this as a cast — you actually change
the type here.

 ✦ Console.WriteLine(dynamicVariable);: Because there is no over-
load of WriteLine that accepts a dynamic type explicitly, the entire
method call is dispatched dynamically.

Making static operations dynamic
If the compiler chooses to make a static operation dynamic — as it did in
item 6 in the preceding section — the compiler rebuilds the code on the fly
to have it handle the dynamic variable. What does that mean for you? Glad
you asked.

Let’s take item 6, Console.WriteLine(dynamicVariable);. This piece
of code forces the compiler to build intermediary code, which checks for the
type of variable at runtime in order to come up with something that is writ-
able to the console. The compiled code first checks if the input is a static
type that it knows. Next, it checks for a type present in the program. Then
it will just try a few things that might work. It will fail with an error if it finds
nothing.

If this must happen, that’s fine. But remember that it is slower than all
git out. This is why Variant got such a bad rap in Visual Basic classic.
Dynamic is something you don’t use until you need it. It puts a tremendous
strain on the machine running the program, especially if all variables are
dynamic.

Understanding what’s happening under the covers
Let’s take an example right out of MSDN. Microsoft points out this simple
method:

class C
{
 public dynamic MyMethod(dynamic d)
 {
 return d.Foo();
 }
}

This is pretty straightforward stuff — a method that accepts a dynamic class
and returns the results of the type’s Foo method. Not a big deal.

53_563489-bk08ch01.indd 77553_563489-bk08ch01.indd 775 3/19/10 8:17 PM3/19/10 8:17 PM

776 Running with the Dynamic Language Runtime

Here is the compiled C# code:

 class C
 {
 [return: Dynamic]
 public object MyMethod([Dynamic] object d)
 {
 if (MyMethodo__SiteContainer0.p__Site1 == null)
 {
 MyMethodo__SiteContainer0.p__Site1 =
 CallSite<Func<CallSite, object, object>>
 .Create(new CSharpCallPayload(
 CSharpCallFlags.None, “Foo”,

typeof(object), null,
 new CSharpArgumentInfo[] {
 new CSharpArgumentInfo(CSharpArgumentInfoFl

ags.None,
 null) }));
 }
 return MyMethodo__SiteContainer0.p__Site1
 .Target(MyMethodo__SiteContainer0.p__Site1, d);
 }

 [CompilerGenerated]
 private static class MyMethodo__SiteContainer0
 {
 public static CallSite<Func<CallSite, object,

object>> p__Site1;
 }
 }

Yeah, that’s what I said, too. I am not going to even begin to try breaking
down this code — and fortunately, we don’t have to. That’s what we have
compilers for, right?

Running with the Dynamic Language Runtime
There is more to dynamic languages than just the dynamic typing. You
can do some powerful things. Like all power, you have to be careful not to
misuse it.

The Dynamic Language Runtime — shown in Figure 1-1 — is a library added
to the .NET Framework specifically to provide for adding dynamic languages
(like Ruby) to the Visual Studio fold (like IRONRuby), or to add dynamic lan-
guage features to existing static languages (like C# 4.0).

53_563489-bk08ch01.indd 77653_563489-bk08ch01.indd 776 3/19/10 8:17 PM3/19/10 8:17 PM

Book VIII

Chapter 1

P
ro

g
ra

m
m

in
g

D

yn
a

m
ic

a
lly!

777Running with the Dynamic Language Runtime

Figure 1-1:
The
Dynamic
Language
Runtime.

The runtime helps the compiler to construct code in the compiled assembly
that will make a lot of choices dynamically. The code block at the end of the
preceding section is an example of the simplest kind.

The DLR assisted in the creation of IRONRuby, which makes it possible to
code in Ruby — the current hot dynamic language — right in Visual Studio.
Of course, because the DLR enables C# to take on dynamic language fea-
tures, much that you can do in Ruby you can now do in C#.

Dynamic Ruby
Ruby takes advantage of its dynamic roots in its implementation of the
Trabb Pardo-Knuth algorithm. Don’t be put off by the name — this is just a
straightforward problem that can be solved by computer code.

The program needs to read 11 numbers from an input device — in our case,
the console’s ReadLine method. It stores them in an array. Then, it pro-
cesses the array backward — starting from the last entered value — with
some function. If the value doesn’t exceed some arbitrary threshold, it prints
the result.

The program looks like this in Ruby:

class TPK
 def f(x)
 return Math.sqrt(x.abs) + 5*x **3
 end

53_563489-bk08ch01.indd 77753_563489-bk08ch01.indd 777 3/19/10 8:17 PM3/19/10 8:17 PM

778 Running with the Dynamic Language Runtime

 def main
 Array.new(11) { gets.to_i }.reverse.each do |x|
 y = f(x)
 puts “#{x} #{(y>400) ? ‘TOO LARGE’ : y}”
 end
 end
end

This isn’t a Ruby book, and that fact isn’t lost on me. Nonetheless, this is the
best dynamic language that I can use for an example — bar none.

Two functions are defined: f and main. Main accepts 11 numbers from the
console and then moves them to an integer array (that’s what gets.to_i
does). For each value in the array, it sets y equal to f(x) and then sees if it
is higher than our arbitrary value. If so, it prints “TOO LARGE”; otherwise, it
prints the number.

Why is being dynamic important for this algorithm? It isn’t. You could do it
all statically typed. The dynamic bit does have an impact, though.

First, f(x) doesn’t care what x is. The program assumes that whatever
comes in gets changed to an integer at gets.to_i, but the function itself
is case agnostic. This is good and bad, because if we do happen to give it a
string or some other type, it will fail.

The array itself isn’t typed, either. This can have benefits, because it is pos-
sible to drop a differently typed value in there if you know you are just going
to write it to the screen.

Dynamic C#
Of course, C# now has similar features, right? We should be able to do the
same thing! Yes, in fact, we can. Here’s the code:

 static dynamic f(dynamic x)
 {
 return (Math.Sqrt(x) + 5.0 * Math.Pow(x, 3.0));
 }
 static void Main(string[] args)
 {
 dynamic[] array = new Array[11];
 for (int i = 0; i < 11; i++)
 {
 array[i] = Console.ReadLine();
 }
 for (int i = 10; i>=0; i--)
 {

53_563489-bk08ch01.indd 77853_563489-bk08ch01.indd 778 3/19/10 8:17 PM3/19/10 8:17 PM

Book VIII

Chapter 1

P
ro

g
ra

m
m

in
g

D

yn
a

m
ic

a
lly!

779Running with the Dynamic Language Runtime

 dynamic y = f(array[i]);
 if (y > 400.0)
 {
 Console.WriteLine(string.Format(“{0} TOO

LARGE”, i));
 }else{
 Console.WriteLine(“{0} : {1}”, i,

array[1]);
 }
 }
 Console.ReadKey();
 }

Line for line, the application does the same thing as the Ruby code, albeit
longer. I kept the names the same so it was easier to follow. Because I
had to use for loops to handle the integrators, it made the body of the
program quite a bit beefier. Figure 1-2 shows what the program looks like
when it runs.

Figure 1-2:
The TPK
program
running.

But why use the dynamic type here? Clearly we could have just used double
for this. Use of dynamic just made the program easier to create. Try chang-
ing the array to an array of double, like this:

Double[] array = new Double[11];

Hey, look at that: Now the ReadLine doesn’t work. We’ll just cast it to a
double. Nope, can’t do that; we have to use TryParse. You get the picture.
Static types are hard to code with. Dynamic types are easier to code with.

What’s the other side of this? Well, obviously, if the user enters a string, she
gets a runtime error, and that is bad. If we statically type everything, then we
can trap that error much easier, and handle it right on user input.

53_563489-bk08ch01.indd 77953_563489-bk08ch01.indd 779 3/19/10 8:17 PM3/19/10 8:17 PM

780 Running with the Dynamic Language Runtime

Add to that the reality that C# is making runtime decisions about every
single variable throughout the entire run of the program. That’s a whole
lot of extra processing that we could have avoided if we had just done that
static typing.

The take-home here is that using dynamic types makes your programming
job much easier and your troubleshooting job much harder. If you are writ-
ing a utility script for your own use, and don’t care if it occasionally crashes
with a type mismatch, then use dynamic. If you are writing a backup script
for a hospital and the lives of thousands are at stake, I advise static types.

53_563489-bk08ch01.indd 78053_563489-bk08ch01.indd 780 3/19/10 8:17 PM3/19/10 8:17 PM

Chapter 2: Improving Productivity
with Named and Optional
Parameters

In This Chapter
✓ Distinguishing between named and optional parameters

✓ Using optional parameters

✓ Implementing reference types

✓ Declaring Output parameters

Parameters, as you probably remember, are the inputs to methods.
They are the values that you put in so that you get a return value.

Sometimes, the return values are parameters, too, which confuses things.

In the world of C# and most C-derived languages, parameters can’t be
optional. Instead of making parameters optional, you are just expected to
make a separate overload for every version of the method that you expect
your users to need.

This pattern works fairly well, but there are still a lot of problems. Many VB
programmers point to the flexible parameterization as a strong reason to
use VB over C#.

C# 4.0 has optional parameters. Optional parameters are parameters that
have a default value right in the method signature — just like the VB.NET
implementation. This is one more step toward language parity, and again in
the name of COM programming.

It’s the same control versus productivity issue that Chapter 1 shows us
about the dynamic type. Optional parameters give you just enough rope
to hang yourself. A programmer can make mistakes just as easily as he can
help himself.

54_563489-bk08ch02.indd 78154_563489-bk08ch02.indd 781 3/19/10 7:55 PM3/19/10 7:55 PM

782 Optional Parameters

Optional Parameters
Optional parameters depend on having a default value set in order to be
optional. For instance, if you are searching for a phone number by name and
city, you can default the city name to your city, making the parameter optional.

public static string searchForPhoneNumber(string name, string
city = “Columbus”) {...}

In C# 3.0, you implement this with two overloaded implementations of the
search method. One of them includes the name and the city as parameters.
The second only has the name as a parameter. It sets the city in the body of
the method and calls the first method. The code looks like this:

public static string searchForPhoneNumber(string name, string
city) {...}

public static string searchForPhoneNumber(string name) {
 string city = “Columbus”;
 return searchForPhoneNumber(name, city);
}

The canonical example of this is the addit method. It’s silly, but it illus-
trates the realities of multiple overloads. So, before we had this:

public static int addit(int z, int y)
{
 return z + y;
}
public static int addit(int z, int y, int x)
{
 return z+y+x;
}
public static int addit(int z, int y, int x, int w)
{
 return z + y + x + w;
}
public static int addit(int z, int y, int x, int w, int v)
{
 return z + y + x + w + v;
}

With optional parameters, we now have this:

public static int addit(int z, int y, int x = 0, int w = 0,
int v = 0)

{
 return z + y + x + w + v;
}

54_563489-bk08ch02.indd 78254_563489-bk08ch02.indd 782 3/19/10 7:55 PM3/19/10 7:55 PM

Book VIII

Chapter 2

Im
p

ro
vin

g
 P

ro
d

u
c

tivity
w

ith
 N

a
m

e
d

 a
n

d

O
p

tio
n

a
l P

a
ra

m
e

te
rs

783Optional Parameters

If we need to add two numbers, we can do it easily.

int answer = addit(10, 4),

If we need to add four numbers, we have no problems either.

int answer = addit(10, 4, 5, 12);

So why are optional parameters dangerous? Because sometimes default
values can have unintended consequences. For instance, you don’t want to
make a divideit method and default the parameters to 0. Someone could
call it and get an undebuggable division by zero error. Setting the optional
values in additall to 1 inside the method body would be bad.

public static int addit(int z, int y, int x = 0, int w = 0,
int v = 1)

{
 //You CLEARLY don’t want this
 return z + y + x + w + v;
}

And sometimes problems can be very subtle, so use optional parameters
carefully. For instance, say you have a base class, and then a derived class
that implements the base, like this:

public abstract class Base
{
 public virtual void SomeFunction(int x = 0)
 {...}
}

public sealed class Derived
{
 public override void SomeFunction(int x = 1)
 {...}
}

What happens if you declare a new instance?

Base ex1 = new Base();
ex1. SomeFunction (); // SomeFunction (0)

Base ex2 = new Derived();
ex2. SomeFunction (); // SomeFunction (0)

Derived ex3 = new Derived();
ex3. SomeFunction (); // SomeFunction (1)

54_563489-bk08ch02.indd 78354_563489-bk08ch02.indd 783 3/19/10 7:55 PM3/19/10 7:55 PM

784 Optional Parameters

What happened here? Depending on how you implement the classes, the
default value for the optional parameter is set differently. The first example,
ex1, is an implementation of Base, and the default optional parameter
is 0. In the second example, ex2 is cast to a type of Derived (which is
legal, since Derived is a subclass of Base) and the default value is also 0.
However, in the third example, Derived is instantiated directly and the
default value is 1. This is not particularly expected behavior, though I have
to admit that I am not sure WHAT expected behavior is in a case like this. No
matter how you slice it, it’s a gotcha and something to watch out for.

Reference types
A reference type, as Book 1 discusses, types a variable that stores reference
to actual data, instead of the data itself. Reference types are usually referred
to as objects, though this is a little inaccurate since everything in the .NET
Framework is an object.

New reference types are implemented with

 ✦ Class

 ✦ Interface

 ✦ Delegate

These need to be built before you use them; class itself isn’t a reference
type, but the Calendar class is.

There are three built-in reference types in the .NET Framework:

 ✦ String (who knows why this isn’t a static type)

 ✦ Object

 ✦ Dynamic

You can pass a reference type into a method just like you can pass a static
type. It is still considered a parameter. You still use it inside the method like
any other variable.

But can reference types be passed, like static types can? Let’s try. For
instance, if we have a Schedule method for our Calendar class, we could
pass in the CourseId or we could pass in the whole Course. It all depends
on how we structure the application.

 public class Course
 {
 public int CourseId;
 public string Name;
 public void Course(int id, string name)

54_563489-bk08ch02.indd 78454_563489-bk08ch02.indd 784 3/19/10 7:55 PM3/19/10 7:55 PM

Book VIII

Chapter 2

Im
p

ro
vin

g
 P

ro
d

u
c

tivity
w

ith
 N

a
m

e
d

 a
n

d

O
p

tio
n

a
l P

a
ra

m
e

te
rs

785Optional Parameters

 {
 CourseId = id;
 Name = name;
 }
 }
 public class Calendar
 {
 public static void Schedule(int courseId)
 {
 }
 public static void Schedule(Course course)
 {
 //Something interesting happens here
 }
 }

In this example, we have an overloaded method for Schedule — one that
accepts a CourseId and one that accepts a Course reference type. The
second is a reference type, because Course is a class, rather than a static
type, like the Integer of the CourseId.

What if we want the second Schedule method to support an optional
Course parameter? Say, if I just want it to create a New Course by default if
I omit the parameter. This would be similar to setting a static integer to “0”
or whatever, wouldn’t it?

 public static void Schedule(Course course = New
Course())

 {
 //Implementation here
 }

This isn’t allowed, however. Visual Studio allows optional parameters only
on static types, and the compiler tells you so. If I want to do this, I have to
accept the CourseId in the Schedule method and construct a new Course
in the body of the event.

Output parameters
As Book 1 discusses, Output parameters are parameters in the method sig-
nature that actually change the value of the variable that is passed into them
by the user. The parameter references the location of the original variable,
rather than creating a “working copy.”

Output parameters are declared in a method signature with the out key-
word. You can have as many as you like (well, within reason), although if
you use more than a few, you probably should use something else (a generic
list, maybe?).

54_563489-bk08ch02.indd 78554_563489-bk08ch02.indd 785 3/19/10 7:55 PM3/19/10 7:55 PM

786 Named Parameters

An Output parameter might look like this in a method declaration:

 public static void Schedule(int courseId, out string
name, out DateTime scheduledTime)

 {
 name = “something”;
 scheduledTime = DateTime.Now;
 }

Following the rules, we should be able to make one of these parameters
optional by presetting a value. But, sigh, it doesn’t work, as shown in
Figure 2-1.

Figure 2-1:
Visual
Studio error
on default
optional
parameter
value.

Unlike reference parameters, it makes sense that Output parameters don’t
support default values. The Output parameter is exactly that — output, and
setting the value should happen inside the method body.

Keep in mind the purpose of optional parameters — resolving the need for
heavily overloaded methods. Because Output parameters aren’t expecting a
value coming in any way, it doesn’t benefit the programmer to have default
values.

Named Parameters
Hand in hand with the concept of optional parameters are named parame-
ters. If you have more than one default parameter, you need a way to tell the
compiler which parameter you are supplying!

For example, look at the additall method earlier in this chapter, after
optional parameters are implemented:

public static int addit(int z, int y, int x = 0, int w = 0,
int v = 0)

{
 return z + y + x + w + v;
}

54_563489-bk08ch02.indd 78654_563489-bk08ch02.indd 786 3/19/10 7:55 PM3/19/10 7:55 PM

Book VIII

Chapter 2

Im
p

ro
vin

g
 P

ro
d

u
c

tivity
w

ith
 N

a
m

e
d

 a
n

d

O
p

tio
n

a
l P

a
ra

m
e

te
rs

787Overload Resolution

Clearly the order of the parameters doesn’t matter in this implementation,
but if this were in a class library you might not know that the order of the
parameters is a non-issue! How would you tell the compiler to skip x and w if
you want to supply v? In the old days, you would do this:

int answer = additall(3,7, , ,4);

Fortunately, we don’t have to do that anymore. Now, with named param-
eters, we can say:

int answer = additall(z:3, y:7, v:4);

The nonoptional parameters don’t have to be named, because the position is
assumed since they are required anyway. Nonetheless, it is good practice to
name them. If you skip naming them, you have this instead:

int answer = additall(3, 7, v:4);

You have to admit that this is a little harder to read. One would have to go
back to the method signature to figure out what is happening.

Overload Resolution
Problems begin when you have optional arguments and overloaded meth-
ods in the same method signature. Because C# allows for differently named
parameters in overloads, things can get sort of hairy. Take for example:

class Course
{
 public void New(object course)
 {
 }
 public void New(int courseId)
 {
 }
}

Try calling the New method with something like this:

Course course = new Course();
course.New(10);

Here, the runtime picks the second overload because 10 better matches
an int than an object. The same is true when dealing with overloaded
method signatures with optional parameters. The tiebreaker goes to the
overload with the fewest casts required to make it work.

54_563489-bk08ch02.indd 78754_563489-bk08ch02.indd 787 3/19/10 7:55 PM3/19/10 7:55 PM

Book VIII: New Features in C# 4.0788

54_563489-bk08ch02.indd 78854_563489-bk08ch02.indd 788 3/19/10 7:55 PM3/19/10 7:55 PM

Chapter 3: Helping
Out with Interop

In This Chapter
✓ Using Dynamic Import

✓ Deploying without primary Interop assemblies

✓ Skipping the ref statement

The Component Object Model, usually called COM, is a standard for the
interface of software bits at the binary level. Because it is binary, it is

language-neutral, which was Microsoft’s goal when the company introduced
COM in 1993. COM is a language-neutral way to implement objects in a lot of
different environments.

COM is as an umbrella term for a lot of different technologies in the
Microsoft world. OLE, OLE2, ActiveX, COM+, and DCOM are all versions of
the same idea — just implemented in different ways.

The problem with COM is networking. Although a thorough explana-
tion is outside the scope of this book, it is important to understand that
Microsoft’s answer to broadly distributed applications in the 1990s was less
than good. DCOM, or Distributed COM, was fraught with problems.

When XML Web services entered the scene in the late 1990s with SOAP,
Microsoft just put a wrapper around COM that translated to and from SOAP.
In the background, however, they were planning a much more sophisticated
messaging system for Windows. That system eventually became ASP.NET
Web services, and then WCF in its latest iteration.

Applications that are sewn to the desktop don’t really use DCOM, though,
so they have been slow to move to services, and therefore slow to move to
.NET. These applications still live in COM, so we still need to interact with
COM — even in this service-oriented, .NET world we live in.

What applications could be so Neanderthal? How about Microsoft Office.
Yup — Microsoft Office is the biggie, and it is why C# 4.0 includes a bunch
of COM interoperability features, collectively called Interop Improvements.

55_563489-bk08ch03.indd 78955_563489-bk08ch03.indd 789 3/19/10 8:07 PM3/19/10 8:07 PM

790 Using Dynamic Import

Principally, the optional parameters discussed in Chapter 2 of this book
were implemented for COM Interop. We cover three other major improve-
ments here: using Dynamic Import, deploying without primary Interop
assemblies (PIAs), and skipping the ref statement.

If you plan on coding against Microsoft Office, trust me — this is information
you need.

Using Dynamic Import
Many COM methods accept and return variant types, which are represented
in the primary Interop assemblies as objects. In most cases, a programmer
calling these methods already knows the static type of a returned object
from context, but explicitly has to perform a cast on the returned value to
make use of that knowledge. These casts are so common in day-to-day devel-
opment that they constitute a major nuisance.

To create a smoother experience, you can import these COM APIs in such a
way that variants are represented using the type dynamic. In other words,
from your point of view, COM signatures have occurrences of dynamic
instead of object in them.

This means that you can easily access members directly off a returned
object, or you can assign an object to a strongly typed local variable without
having to cast. To illustrate, you can now say

excel.Cells[1, 1].Value = “Hello”;

instead of

((Excel.Range)excel.Cells[1, 1]).Value2 = “Hello”;

and

Excel.Range range = excel.Cells[1, 1];

instead of

Excel.Range range = (Excel.Range)excel.Cells[1, 1];

Why is this a big deal? One reason is that it simplifies the programmer’s
work. Code from Microsoft Office is tremendously difficult to read. Take a
look at this code block from an Office application I wrote for the VSTO For
Dummies book:

55_563489-bk08ch03.indd 79055_563489-bk08ch03.indd 790 3/19/10 8:07 PM3/19/10 8:07 PM

Book VIII

Chapter 3

H
e

lp
in

g
 O

u
t

w
ith

 In
te

ro
p

791Working without Primary Interop Assemblies

Office.CommandBars commandBars = default(Office.CommandBars);
Office.CommandBar commandBar = default(Office.CommandBar);
Office.CommandBarButton runStoreReport = default(Office.

CommandBarButton);
commandBars = (Microsoft.Office.Core.CommandBars)Application.

CommandBars;
commandBar = commandBars.Add(“VSTOAddinToolbar”, Office.

MsoBarPosition.msoBarTop, , true);
commandBar.Context = Visio.VisUIObjSets.visUIObjSetDrawing +

“*”;
runStoreReport = (Microsoft.Office.Core.CommandBarButton)

commandBar.Controls.Add(Office.MsoControlType.
msoControlButton);

runStoreReport.Tag = “Store Report”;
runStoreReport.Click += VisualizeSales;

Here’s what the code block looks like in C# 4.0:

Office.CommandBars commandBars = Office.CommandBars;
Office.CommandBar commandBar = Office.CommandBar;
Office.CommandBarButton runStoreReport = Office.

CommandBarButton;
commandBars = Application.CommandBars;
commandBar = commandBars.Add(“VSTOAddinToolbar”, msoBarTop, ,

true);
commandBar.Context = Visio.VisUIObjSets.visUIObjSetDrawing +

“*”;
runStoreReport =commandBar.Controls.Add(msoControlButton);
runStoreReport.Tag = “Store Report”;
runStoreReport.Click += VisualizeSales;

It’s a lot simpler to read. Keep in mind, though, that all those casts still
exist — they are just handled by the compiler. Microsoft didn’t redo the
Office components into .NET; the company just made the compiler com-
municate better. The compiler still builds code that speaks to the primary
Interop assemblies as they are.

Working without Primary Interop Assemblies
Speaking of PIAs (excuse the similarity to another well-known, three-letter
acronym), they are handled a lot better in .NET 4.0 in general.

PIAs are large .NET assemblies generated from COM interfaces to facilitate
strongly typed interoperability. They provide great support at design time,
where your experience of the Interop is as good as if the types were really
defined in .NET. However, at runtime these large assemblies can easily bloat
your program and also cause versioning issues because they are distributed
independently of your application.

55_563489-bk08ch03.indd 79155_563489-bk08ch03.indd 791 3/19/10 8:07 PM3/19/10 8:07 PM

792 Working without Primary Interop Assemblies

The no-PIA feature allows you to continue to use PIAs at design time without
having them around at runtime. Instead, the C# 4.0 compiler bakes the small
part of the PIA that a program actually uses directly into its assembly. The
PIA doesn’t have to be loaded at runtime.

To see how this works, try these steps in both Visual Studio 2010 and Visual
Studio 2008 (if you have it):

 1. Create a new console application by choosing File➪New➪Project and
picking C#➪Console application. Name your project PIAs.

 2. After the project loads, right-click on References.

 3. Click Add Reference.

 4. Select Microsoft.Office.Interop.Excel, version 12, if you have it.
Otherwise, use the latest version you have loaded.

 5. Click OK.

 6. Add using Microsoft.Office.Interop.Excel; to the header.

 7. Change the Main procedure to the following (just enough to get Excel
rolling):

 static void Main(string[] args)
 {
 Microsoft.Office.Interop.Excel.Application

xl = new Application();
 xl.Quit();
 }

 8. Right-click on the Solution and select Add Project.

 9. Add a new Setup project.

 10. Right-click on the Setup project and choose Add➪Project Output.

 11. Select Primary Output.

 12. Click OK.

The setup project will automatically determine what to deploy with the
application. In Visual Studio 2008, with C# 3.0, it will deploy the primary
Interop assemblies, as shown in Figure 3-1.

In Visual Studio 2010, the setup doesn’t deploy the PIAs. The specific parts
being used are compiled right into the EXE for the application. This is dem-
onstrated in Figure 3-2.

55_563489-bk08ch03.indd 79255_563489-bk08ch03.indd 792 3/19/10 8:07 PM3/19/10 8:07 PM

Book VIII

Chapter 3

H
e

lp
in

g
 O

u
t

w
ith

 In
te

ro
p

793Skipping the Ref Statement

Figure 3-1:
Deploying
the PIAs in
C# 3.0.

Figure 3-2:
Deploying
without
PIAs in C#
4.0.

Skipping the Ref Statement
Because of a different programming model, many COM APIs contain a lot of
reference parameters. Contrary to refs in C#, these are typically not meant
to mutate a passed-in argument for the subsequent benefit of the caller but
are simply another way of passing value parameters.

55_563489-bk08ch03.indd 79355_563489-bk08ch03.indd 793 3/19/10 8:07 PM3/19/10 8:07 PM

794 Skipping the Ref Statement

It therefore seems unreasonable that a C# programmer should have to
create temporary variables for all such ref parameters and pass these by ref-
erence. So let’s delete them.

Instead, specifically for COM methods, the C# compiler allows you to pass
arguments by values to such a method and automatically generates tempo-
rary variables to hold the passed-in values, subsequently discarding these
when the call returns. In this way, the caller sees value semantics
and doesn’t experience any side effects, but the called method still gets a
reference.

You can see this in action in the canonical optional parameter example from
Chapter 2. In the usual SaveAs from Microsoft Word, everything is a refer-
ence parameter.

object filename = “test.docx”;
object missing = System.Reflection.Missing.Value;

doc.SaveAs(ref filename,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing);

In C# 4.0, you can skip both the “missing” optional parameters and the ref
statement.

object filename = “test.docx”;
doc.SaveAs(filename);

55_563489-bk08ch03.indd 79455_563489-bk08ch03.indd 794 3/19/10 8:07 PM3/19/10 8:07 PM

Chapter 4: Revising Generics

In This Chapter
✓ Understanding variance

✓ Working with contravariance

✓ Using covariance

Generics are covered in length in Books I and II, as they relate to creat-
ing collections of objects or business concepts, and how they impact

object-oriented programming. They also play a large role in dynamic design
and programming, which Chapter 1 of this book covers.

The generics model implemented in C# 2.0 was incomplete. Although param-
eters in C# all allow for variance in several directions, generics do not.

Variance has to do with types of parameters and return values. Covariance
means that an instance of a subclass can be used when an instance of a
parent class is expected, while Contravariance means that an instance of a
superclass can be used when an instance of a subclass is expected. When
neither is possible, it is called Invariance.

All fourth-generation languages support some kind of variance. In C# 3.0 and
earlier versions, parameters are covariant and return types are contravari-
ent. So, this works because string and integer parameters are covariant to
object parameters:

public static void MessageToYou(object theMessage)
{
 if (theMessage != null)
 Console.Writeline(theMessage)
}
//then:
MessageToYou(“It’s a message, yay!”);
MessageToYou(4+6.6);

And this works because object return types are contravarient to string and
integer return types (for example):

object theMessage = MethodThatGetsTheMessage();

56_563489-bk08ch04.indd 79556_563489-bk08ch04.indd 795 3/19/10 8:07 PM3/19/10 8:07 PM

796 Variance

Generics are nonvariant in C# 2.0 and 3.0. This means that if
Basket<apple> is of type Basket<fruit>, those Baskets are not inter-
changeable like strings and objects are in the preceding example.

Variance
If we look at a method like the preceding one:

public static void WriteMessages()
{
 List<string> someMessages = new List<string>();
 someMessages.Add(“The first message”);
 someMessages.Add(“The second message”);
 MessagesToYou(someMessages);
}

and then we try to call that method like we did earlier with a string type:

//This doesn’t work in C#3!!
public static void MessagesToYou(IEnumerable<object>

theMessages)
{
 foreach (var item in theMessages)
 Console.WriteLine(item);
}

this fails in Visual Studio 2008. Generics are invariant in C# 3.0. But, in Visual
Studio 2010 this complies because IEnumerable<T> is covariant — you can
use a more derived type as a substitute for a higher-order type. Let’s look at
a real example.

Contravariance
In my scheduling application, I have Events, which have a date, and then a
set of subclasses, one of which is Course. A Course is an Event. Courses
know their own number of students.

Anyway, back at the ranch, I have a method called MakeCalendar.

public void MakeCalendar(IEnumerable<Event> theEvents)
{
 foreach (Event item in theEvents)
 {
 Console.WriteLine(item.WhenItIs.ToString());
 }
}

56_563489-bk08ch04.indd 79656_563489-bk08ch04.indd 796 3/19/10 8:07 PM3/19/10 8:07 PM

Book VIII

Chapter 4

R
e

visin
g

 G
e

n
e

ric
s

797Contravariance

Pretend it makes a calendar; for now, all it does is print the date to the con-
sole. MakeCalendar is systemwide, so it expects some enumerable list of
events.

I also have a Sort algorithm at the main system, called EventSorter. This
is used to pass into the Sort method of collections. It expects to be called
from a list of Events. Here is the EventSorter class:

class EventSorter : IComparer<Event>
{
 public int Compare(Event x, Event y)
 {
 return x.WhenItIs.CompareTo(y.WhenItIs);
 }
}

I am writing the Instructor Led Training section of the event manager, and
I need to make a list of courses, sort them, and then make a calendar. So I
make my list of courses in ScheduleCourses, then I call sort and pass in
the EventSorter:

public void ScheduleCourses()
{
 List<Course> courses = new List<Course>()
 {
 new Course(){NumberOfStudents=20, WhenItIs = new

DateTime(2009,2,1)},
 new Course(){NumberOfStudents=14, WhenItIs = new

DateTime(2009,3,1)},
 new Course(){NumberOfStudents=24, WhenItIs = new

DateTime(2009,4,1)},
 };
 //Now I am passing an ICompare<Event> class to my

List<Course> collection.
 //It should be an ICompare<Course> but I can use

ICompare<Event> because of contravariance
 courses.Sort(new EventSorter());

 //I am passing a List of courses, where a List of Events
was expected.

 //We can do this because generic parameters are covariant
 MakeCalendar(courses);
}

But wait, this is a list of courses I am calling Sort from, right, not a list of
events. Doesn’t matter — IComparer<Event> is a contravariant generic for
T (its return type) as compared to IComparer<Course> so I can still use
the algorithm.

56_563489-bk08ch04.indd 79756_563489-bk08ch04.indd 797 3/19/10 8:07 PM3/19/10 8:07 PM

798 Covariance

Now I have to pass my list into the MakeSchedule method, but that method
expects an enumerable collection of Events. Because parameters are covar-
iant for generics now, I can pass in a List of Courses, as Course is covariant
to Event. Make sense?

There is another example of contravariance, using parameters rather than
return values. If I have a method that returns a generic list of Courses, I can
call that method expecting a list of Events, because Event is a superclass
of Course.

You know how you can have a method that returns a String and assign the
return value to a variable that you have declared an object? Now you can do
that with a generic collection, too.

In general, the C# compiler makes assumptions about the generic type con-
version. As long as you are working up the chain for parameters, or down
the chain for return types, C# will just magically figure the type out.

Covariance
I now have to pass my list into the MakeSchedule method, but that method
expects an enumerable collection of Events. Because parameters are covar-
iant for generics now, I can pass in a List of Courses, as Course is covariant
to Event. This is covariance for parameters.

56_563489-bk08ch04.indd 79856_563489-bk08ch04.indd 798 3/19/10 8:07 PM3/19/10 8:07 PM

Special Characters
- (unary) operator, 74
! (not) operator, 79
!= (not equal to) operator, 77
% (modulo) operator, 74, 140
& (and) operator, 79
&& (AND) operator, 79, 102
* (multiplication) operator, 73–74, 81
/ (divide) operator, 74
: (colon), class defi nitions, 286
\\ (Backslash character), 35
\0 (Null character), 35
\n (New line character), 35, 220
\r (Carriage return character), 35
\t (Tab character), 35
^ (or) operator, 79
_ (underscore), 257
| (and/or) operator, 79
|| (OR) operator, 79, 102
~ (tilde), 305
+ (add) operator, 74
< (less than) operator, 77
<= (less than or equal to) operator, 77
= (equals symbol), 26, 242
== (same value) operator, 77
> (greater than) operator, 77
>= (greater than or equal to) operator, 77
:? (ternary) operator, 90

A
abstract class
BankAccount class example, 327–328
defi ned, 328–330
determining when to use, 353–354
factoring, 322–327
objects and, 330

abstract keyword, C# interface, 335
abstracting away, 208
AbstractInheritance program, 330

abstraction concept
importance of methods, 234
object-oriented programming

overview, 207–208
preparing, 209

procedural programming, 208
Academic version, Visual Studio, 485
access control

classes
accessor methods, 266
example, 266–269
overview, 265–266

object-oriented programming, 212
overview, 213
restricting to class members

overview, 261–262
public example, 262–264
security levels, 264–265

access keyword
internal, 387–390
protected, 390–392
protected internal, 392
relating namespaces to, 395–397

access methods, 270, 273
AccessControl namespace, 412
accessing collections, 145–149
accessing current object

defi ned, 254–255
explicit, 255–257
overview, 253–254
working without this keyword, 257–259

accessing data
how data classes fi t into framework,

417–418
process, 418
System.Data namespace

connecting to data source, 420–425
entity framework, 431–433
overview, 416–417
sample database schema, 419–420
visual tools, 425–428
writing data code, 428–431

Index

57_563489-bindex.indd 79957_563489-bindex.indd 799 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies800

accessing Internet
how net classes fi t into framework, 457–458
System.Net namespace

checking network status, 459–460
downloading fi le from internet, 460–462
e-mailing status report, 462–465
logging network activity, 465–468
overview, 456

AccessorPropertyShortcuts example
accessor property access levels, 273
compiler-created data members, 272–273

accessors, 270, 273
AccountNumber property, 270–271
AccumulateInterest() method, 295–296
Activity Designer Library project, 493
Activity Library project, 493
Adapter classes, 420
adapters

database-specifi c, 416
defi ned, 173

add (+) operator, 74
Add button, Code Snippets Manager

tool, 525
Add Connection dialog box, Visual Studio,

422–423
Add Customer command, 621–623
Add() method

adding items to List<T> class, 125
collections, 155
DictionaryExample program, 127

Add New Data Source link, Visual
Studio, 421

Add New Item dialog box, 530
AddCustomerCommand, 623
Add-in Manager tool, Visual Studio, 514
adding constraints, 184–186
AddRange() method, 125
Address() method, 252–253
Advanced panel, Visual Studio, 520
Affected users attribute, DREAD model, 404
AlignOutput program, 61–62
All-in-one-folder, 383
altering content sent to clients, 689–690
and (&) operator, 79
AND (&&) operator, 102
and/or (|) operator, 79
anonymous methods, 368–369, 374
ANSI text, 438

app.config fi le, 465–466
Append() method, 70
Append mode, 442
application. See console application;

Windows Presentation Foundation
(WPF)

application code, 142
Application Wizard, Visual Studio 2010, 14–16
ApplicationCommands Library, 603
application-scoped resource, 549–550
Apply the Following Additional Keyboard

Mapping Scheme drop-down list,
Visual Studio, 519

App.xaml fi le, 548, 551
arguments

passing to base class constructor, 300–301
passing to methods, 236–238

arithmetic operators
assignment, 75–76
increment, 76–77
operating orders, 74–75
simple, 73–74

array bounds, 112
array of strings, 60
_arrayElements array, 147–148
ArrayList, 170
arrays

C#
argument for, 110
fi xed-value array, 110–112
initializing, 115
Length property, 114–115
overview, 109–110
variable-length array, 112–114

compared to collections, 122
defi ned, 109

arrays of data, 116–120
as operator

avoiding invalid conversions, 297
type-safety, 170

ASCII text, 438
ASMX, building Web services

building code for SHARP, 739–740
consuming services in applications,

743–744
creating new service, 735–738
deploying, 741–742
overview, 731–732
SOAP, 732–735

57_563489-bindex.indd 80057_563489-bindex.indd 800 3/19/10 8:07 PM3/19/10 8:07 PM

Index 801

ASP.NET
adding custom controls, 683–684
breaking down Web applications,

630–632
constructing user controls

overview, 680–681
Phone Number control, 681–683

cookies, 699
data binding

overview, 670–671
setting up markup for, 671–673
using code-behind, 673–674
using commonly bound controls,

674–676
displaying info to user

images, 661–663
labels versus plain old text, 660–661
panels and multiviews, 663
tables, 663–664

input from user
submitting input with Submit

buttons, 670
using multiple-item selection controls,

668–669
using other kinds of input controls,

669–670
using single-item selection controls,

666–668
using text input controls, 664–666

overview, 629
questioning client

getting information back from client,
633–634

overview, 632–633
scripting client, 633
understanding weaknesses of browser,

634–636
securing with .NET framework

changing trusts, 691–692
fi xing problems, 692
overview, 690–691

site accessibility
control features, 680
design considerations, 680
overview, 679

styling controls
binding styles with CSS, 678–679
setting control properties, 677–678

Web Development with, 6
Web servers

PostBack, 636–639
state, 639

ASP.NET AJAX Server Control Extender
project, 492

ASP.NET AJAX Server Control project, 492
ASP.NET MVC project, 494
ASP.NET Server Control project, 492
ASP.NET Web Application project, 492
ASP.NET Web Service Application

project, 492
AsReadOnly() method, List<T>

class, 350
assemblies, 264, 379–381
assembly directive, T4, 541
assemblyinfo.cs fi le, 528
assignment operator, 26, 75–76, 221
asterisk (*) operator, 73–74
Attach to Process tool, Visual Studio, 514
authentication, 401, 404–407
Authentication class, 457
authorization, 401, 404
Authorization class, 457
Authorization namespace, 412
Auto defi nition, Grid Panel, 563
autocompleting, 510–511
autoindenting, 89
automation pattern, 536
auxiliary windows, 512–514
Auxiliary windows tool, 509
Average() method, 243–244
average variable, 104
AverageAndDisplay() method

example, 237–240
returning values, 244

B
Backslash character (\\), 35
Balance property, 270–271
BankAccount class example

access control, 265–266, 269–270
default constructors, 275–276
initializers, 281–282
listing, 262–263
overview, 288–291

57_563489-bindex.indd 80157_563489-bindex.indd 801 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies802

BankAccount class example (continued)

SimpleSavingsAccount program,
290–295

static properties, 271
updated, 302–306

base class constructor
base keyword, 301–302
invoking default, 298–299
passing arguments to, 300–301

base class method, hiding
accidentally, 312–313
general discussion, 309–311
making hiding approach better than

adding simple test, 312
base interface, 351
base keyword, 301-302, 314
base namespace, 393
basic input controls, XAML, 572–574
Batch Build option, Build and Debug

menus, 515
Beck, Kent, 610
behavior testing, 620
binary operators, 74
BinaryReader class, 452
BinarySearch() method, 126
BinaryWriter class, 452
\bin\Debug directory, 450
\bin\Debug subdirectory, 450
binding, 606–607. See also data binding
BindingNavigator object, Visual Studio,

426–427
BindingOperations class, 583
bitwise operator version, 79
BL (Business Layer), 613
black box problem, 417
blocks. See also catch block; iterator block
finally, 190, 450
streamwriting, 442–445
try, 189, 441, 450

bool type, 34
bound controls, data binding, 674–676
boxed value-type, 170
boxing, 171
braces, 86
break command

looping, 99–100
nesting loops, 107
switch statement and, 94

Breakpoints window, Visual Studio, 513–514
browser-as-client model, 634–636
brushes, System.Drawing namespace, 471
bubble sort algorithm, 117
buffer, 452
BufferedStream class, 454
buffering, 454
BuildASentence program, 51
Building menu, 515
built-in commands

WPF, 603–604
XAML, 604

built-in Sort() method, 119
Business Layer (BL), 613
button handler, Visual Studio, 375
Button input control, 573
byte integer, 28

C
C#

array
argument for, 110
fi xed-value array, 110–112
initializing, 115
Length property, 114–115
overview, 109–110
variable-length array, 112–114

compiler
inferring data types, 42–43
writing properties, 272–273

constructor, 274–275
defi ned, 12–13
defi ning data binding with, 583–584
Dynamic Language Runtime (DLR),

778–780
events

handling, 374–375
how publisher advertises events,

370–371
observer design pattern, 369–370
passing information to event handler,

372–373
publishing, 372
Publish/Subscribe patttern, 370
raising, 373–374
subscribing, 371–372

interface, 338

57_563489-bindex.indd 80257_563489-bindex.indd 802 3/19/10 8:07 PM3/19/10 8:07 PM

Index 803

new features, 2–3, 6
shifting toward dynamic typing, 770–772
support for object-oriented

programming, 212–213
versus XAML, 552–553

Cache function, System.Net
namespace, 458

CalculateInterest program, 87–88, 95
CalculateInterestTable program,

96–97, 229
CalculateInterestTableMore

Forgiving program, 100–103
CalculateInterestTableWithBreak

program, 100
CalculateInterestTableWith

Methods program, 230–231
CalculateInterestWithEmbedded

Test program, 91
CalculateRatio() method, 234
CalculateSin() method, 234
CalculateWordWrap() method, 234
calculating operation type

explicit type conversion, 82
implicit type conversion, 81–82

Calendar input control, 573
call chain, unwinding, 190
callback method, 357–358, 360–362
camel-casing, 38
CanExecute event handler, 611
CanExecute property, 607
CanExecuteChanged event, 602–603
Canvas Panel, WPF, 560–561
Carriage return character (\r), 35
case

class names, 216
strings

converting to upper- or lowercase, 52–53
distinguishing between all-uppercase

and all-lowercase strings, 52
case values, switch statement, 94
cast, 41–42, 82, 295–296
catch block

Directory of Files, 139
exceptions, 189, 196–197
intercepting exceptions, 204
Main() method, 451
StreamReader class, 450

catch keyword, 187–188
Change Data Source dialog box, Visual

Studio, 423
char variable type, 34–35
character types
char variable type, 34–35
special chars, 35
string type, 35–36

chatty Web services, 724–725
CheckBox input control, 572
Chonoles, Michael Jesse, 323
Choose Toolbox Items tool, Visual

Studio, 514
Choose Your Data Connection screen,

Visual Studio, 422
Choose Your Database Objects screen,

Visual Studio
Data Source Confi guration Wizard,

423–425
Entity Data Model Wizard, 432

chunky Web services, 724–725
class constraint, 185
Class Designer

Data View, 501–502
overview, 500–502

class diagrams, 432–433
class inheritance, 213
class libraries, 199, 380–381
Class Library project, 491
class members

defi ned, 216, 250
naming, 217
as static members, 225

class methods, 228
class properties, 224
classes

abstract
BankAccount class example, 327–328
defi ned, 328–330
factoring, 322–327
objects and, 330

access control
accessor methods, 266
to data members, 212–213
example, 266–269
overview, 265–266

const data member, 225–226

57_563489-bindex.indd 80357_563489-bindex.indd 803 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies804

classes (continued)

constructors
C#-provided constructor, 274–275
objects and, 273
replacing default constructor, 275–284

containing classes, 223–224
creating for library, 384–385
defi ning, 215–217
defi ning properties

accessors with access levels, 273
letting compiler write properties,

272–273
overview, 270–271
side effects, 272
static properties, 271

generating static in class members,
224–225

hierarchy of, 299
inheritance, 286–287
naming, 216
objects

accessing members of, 218
defi ning, 217–218
discriminating between, 220–221
program example, 218–220

objects versus, 273
overview, 215–216
putting into libraries

adding second project to existing
solution, 383

creating classes for library, 384–385
creating projects for class library, 382
creating stand-alone class library,

382–383
using class library from program, 386
using driver program to test library,

385–386
putting into namespaces

declaring namespace, 394–395
fully qualifi ed names, 397–398
overview, 392–393
relating namespaces to access keyword,

395–397
readonly data member, 225–226
references, 221–222

restricting access to class members
overview, 261–262
public example, 262–264
security levels, 264–265

sealed, 330–331
Unifi ed Modeling Language (UML), 323
visibility and accesibility in

namespace, 396
classifi cation concept, object-oriented

programming, 209–211
Clean option, Build and Debug

menus, 515
client

altering content sent to, 689–690
questioning

getting information back from client,
633–634

overview, 632–633
scripting client, 633
weaknesses of browser, 634–636

software, Visual Studio, 487
client-side storage, 697–698
CLR (Common Language Runtime),

3, 380, 545
code. See also writing secure code

building based on outside data, 536
changing Stack Panel Orientation, 558
guidelines for error handling, 199–200
reusing, 23–24
reusing from Toolbox, 23–24
saving, 23
saving in Toolbox, 23
WPF ViewModel

Add Customer command, 621–623
model, 615–617
model repositories, 619–621
model unit tests, 617–618
overview, 614–615
testing, 624
View, 624–626

Code element, Visual Studio, 524
code region, Visual Studio, 18
Code Snippets Manager tool, Visual Studio,

514, 525

57_563489-bindex.indd 80457_563489-bindex.indd 804 3/19/10 8:07 PM3/19/10 8:07 PM

Index 805

Code View, Visual Studio
adding functionality using C#, 649–650
interface

autocompleting with IntelliSense,
510–511

exploring auxiliary windows, 512–514
outlining, 511–512
overview, 509–510

overview, 647–649
Page.Load, 650–651

code-oriented namespace, 458
coding behind

data binding, 673–674
event handler, 601
overview, 652–653

collections
accessing, 145–149
C# array

argument for array, 110
fi xed-value array, 110–112
initializing, 115
Length property, 114–115
overview, 109–110
variable-length array, 112–114

compared to arrays, 122
defi ned, 417
dictionaries, 126–128
fl exibility, 121–122
initializing, 129–130
initializing arrays, 128
iterating

iterators, 141–145
through directory of fi les, 135–141

lists, 124–126
loop made foreach array, 115–116
looping around iterator block, 150–167
old-fashioned, 134
sets, 130–133
sorting arrays of data, 116–120
syntax
<T> notation, 123
generic, 124
overview, 122

using var for arrays, 120–121
colon (:), class defi nitions, 286

COM (Component Object Model), 243
Combine() method, 444
ComboBox control

WPF, 546
XAML, 574–575, 626

Command Binding expressions, ViewModel
pattern, 625

command pattern, WPF
built-in commands, 603–604
custom commands

bindings, 606–607
ICommand and, 608–610
parameters, 607–608
UI commands, 605–606

focus, 605
ICommand, 602
overview, 601–602
routed commands, 602–603
testing, 610–611

Command Prompt window, console
application, 20

Command property, Window Command
Bindings XAML, 607

CommandBase class, 621
comments

method names versus, 229, 232
reviewing console application, 21
stripping out, 229

Common Intermediate Language (IL), 380
Common Language Runtime (CLR),

3, 380, 545
Communication Foundation Projects,

Visual Studio, 493
Compare() method

converting string cases, 53
strings, 48–51

Compare() operation, 49
CompareTo() method, IComparable<T>

interface, 342
comparing

decimal type, 33
fl oating-point numbers, 78–79
integers, 33
strings
Compare() method, 48–51
letter case, 51–52

57_563489-bindex.indd 80557_563489-bindex.indd 805 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies806

compiler
inferring data types, 42–43
type-safety, 170
writing properties, 272–273

compiling program, 15
Component Object Model (COM), 243
composing streams, 454
compound logical operations, 79–80
computer languages, 11–14
Concatenate() method

controlling string output manually, 63–64
requiring two strings, 236

concrete class, 353–354
concrete classes, 329
concrete object, 339
condition expression, 104
Condition option, Visual Studio, 513
conditional expression, if statement, 86
Configuration function, System.Net

namespace, 458
Confi guration Manager option, Build and

Debug menus, 515
Confi guration Manager tool, Solution

Explorer, 503
confi guring WCF service, 752–756
Connect to Database tool, Visual

Studio, 514
Connect to Server tool, Visual Studio, 514
console application

.NET language, 13–14
C# language, 12–13
computer languages, 11–14
creating source program, 15–18
making it do something, 19–20
overview, 14–15
reviewing

comments, 21
meat of program, 21–22
program framework, 20–21

taking it out for test drive, 18–19
Toolbox

overview, 22
reusing code, 23–24
saving code, 23

Visual C#, 14
consoleapplication.csproj fi le, 528
Console.WriteLine() method, 22, 67

const data member, 225–226
constants

naming, 226
numeric, 40

constraints, adding, 184–186
constructors

C#-provided, 274–275
objects and, 273
replacing default constructor

example, 276–278
executing constructor from debugger,

278–281
initializing object directly with

initializer, 281–282
initializing object without constructor,

283–284
overview, 275–276

ConstructorSavingsAccount program,
302–304

consuming
ASMX service, 743–744
WCF service, 757–758

container[n] command, 145
containers, database-generic, 416
Contains() method, 55, 126
ContainsKey() method, Dictionary

Example program, 127
Content control, WPF, 556
Content value, XAML, 551
continue command, 99
contract driven Web services, 722–724
contravariance, 796–798
controls, defi ned, 556
conventions used in book, 7–8
conversions

explicit type, 41, 81–82
invalid

avoiding with as operator, 297
avoiding with is operator, 296–297

Convert() method
IValueConverter interface, 592–593
parsing numeric input, 56

ConvertBack method, IValueConverter
interface, 592–593

converting data, WPF, 592–599
ConvertTemperatureWithFloat

program, 31

57_563489-bindex.indd 80657_563489-bindex.indd 806 3/19/10 8:07 PM3/19/10 8:07 PM

Index 807

ConvertTemperatureWithRoundOff
directory, 29

Convert.ToDecimal() command,
CalculateInterest program, 88

Cookie class, 457
cookies

ASP.NET manages, 699
coding for client-side storage, 697–698
overview, 696–697
on server, 698–699

Copy Web design surface, Web
construction, 714–715

Corneliussen, Lars, 533
Count property

dictionaries, 128
List<T> class, 126

counting number, converting, 41
coupling

loose, 408, 721–722
tight, 183–184

covariance, 798
CPU processor fault, 245
Create Directory for Solution check

box, 489
Create GUID tool, Visual Studio, 514
Create mode, 442
CreateNew mode, 442
CreatePackage() method, 183
CreateRecorder() method, 338
Cryptography namespace, 413
CryptoStream class, 454
.cs source fi les

compiling, 379
creating separate for each class, 220

csConsoleApplication.vstemplate
fi le, ConsoleApplication, 528

CSS, binding styles with, 678–679
culture option, Template directive, 540
current object, accessing

defi ned, 254–255
explicit, 255–257
overview, 253–254
working without this keyword, 257–259

Current property, 143
currentNode member, LinkedList

class, 163

custom commands, WPF
bindings, 606–607
ICommand and, 608–610
parameters, 607–608
UI commands, 605–606

custom controls, 683–684
custom delegate, 368
Customer Maintenance Window, 615
Customer Model Class, 616–617
Customize tool, Visual Studio, 515
customizing Visual Studio

hacking project types
item templates, 530–532
project templates, 527–530

overview, 517–518
setting options

additional options, 520–521
Environment section, 518–519
Language, 519–520

snippets
deploying, 525
making, 523–525
overview, 521–522
sharing, 526
surround, 522–523

CustomSaveCommand, 609–610

D
DAL (Data Access Layer), 613
Damage potential attribute, DREAD

model, 404
data, accessing

how data classes fi t into framework,
417–418

process, 418
System.Data namespace, 416–417,

419–433
Data Access Layer (DAL), 613
data binding

additional concepts, 599–600
binding object

defi ning with XAML, 581–583
defi ning with C#, 583–584

converting data, 592–599
dependency properties, 579–580

57_563489-bindex.indd 80757_563489-bindex.indd 807 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies808

data binding (continued)

editing, 584–599
modes, 580–581
overview, 670–671
setting up markup for, 671–673
using code-behind, 673–674
using commonly bound controls, 674–676
validating data, 589–592

data code
basic, 429–431
output of visual tools, 428–429

Data Connections panel, Visual Studio, 425
data connections, Server Explorer panel,

507–508
Data Encryption Standard (DES), 407
data entry form, WPF, 567–569
Data property, LLNode, 163
Data Source Confi guration Wizard, Visual

Studio, 420–424
Data Sources panel, Visual Studio, 425–426

connecting to data sources, 420–421, 424
parent/child forms, 427

data type T
determining null value, 186
letting C# compiler infer, 42–43

Data View, Class Designer, 501–502
DataGrid control, 577
DataGridCheckBoxColumn, 577
DataGridComboBoxColumn, 577
DataGridHyperlinkColumn, 577
DataGridTemplateColumn, 577
DataGridTextColumn, 577
DataReader container, 418
DataRow container, 418
DataSet class, 350
DataSet container

adapters, 416
defi ned, 418
overview, 415

DataTable container
defi ned, 418
overview, 415

DataTemplateSelector base class, 599
DataView container

defi ned, 418
overview, 415

DatePicker input control, 573
DateTime type, 38–40
debug option, Template directive, 540
debugger, executing constructor,

278–281
Debugging menu, 515
decide at runtime, 316. See also

polymorphism
decimal type

comparing, 33
declaring, 33
overview, 32–33

decimal variable, 33
DecimalBankAccount program,

268–269
decimal.Round() statement, 98
declaration, int variable, 26
Declarative Flowchart Service Library

project, 493
Declarative Sequential Service library

project, 493
declared type, polymorphism, 316–317
declaring bool variable, 34
declaring namespace, 394–395
declaring value-type variables

bool type, 34
calculating leap years, 38–40
cast, 41–42
character types

char variable type, 34–35
special chars, 35
string type, 35–36

comparing string and char, 37–38
decimal type, 32–33
declaring numeric constants, 40
fl oating-point variables

converting some more temperatures, 31
declaring fl oating-point variable,

30–31
examining some limitations of

fl oating-point variables, 31–32
overview, 29–30

int
overview, 26–27
rules for declaring variables, 27
types of, 27–28

57_563489-bindex.indd 80857_563489-bindex.indd 808 3/19/10 8:07 PM3/19/10 8:07 PM

Index 809

letting C# compiler infer data types,
42–43

overview, 25–26
representing fractions, 28–29
value type, 36–37

default arguments, 240–243
default base class constructor, 298–299
default constructor

C#-provided, 274–275
replacing

example, 276–278
executing constructor from debugger,

278–281
initializing objects, 281–284
overview, 275–276

delegates
anonymous methods, 368–369
C# events

handling, 374–375
how publisher advertises events,

370–371
Observer design pattern, 369–370
passing information to event handler,

372–373
publishing, 372
Publish/Subscribe patttern, 370
raising, 373–374
subscribing, 371–372

callback method
examples, 360–362
overview, 357–358

code, 365–366
defi ned, 358–360
more real-world example, 362–368
putting app together, 363–364
tracking life cycle, 366–368
when to use, 374

delimiter, 58
DemonstrateCustomConstructor

program
executing constructor from debugger,

278–281
initializers, 282–283
listing, 276–277
process, 277–278

demotion, 81

denial of service, 403
dependencies, 183
Dependency Injection (DI), 625
DependencyObject target property, 579
DependencyProperty target property,

579–580
deployment

security, 407–408
WCF service, 756–757
Web construction

Copy Web design surface, 714–715
options, 713–714
Package/Publish tab, 715–716

XML Web services, 741–742
Deposit() method
BankAccount class example, 263–264
SimpleSavingsAccount program, 290

Dequeue() method
defi ned, 173
PriorityQueue class, 181

DES (Data Encryption Standard), 407
DescendingEvens() method, 159
design mode, 363
Design view, HTML designer, 499
designer, Visual Studio

Class Designer
Data View, 501–502
overview, 500–502

general discussion, 642–647
overview, 495–496
Web Forms, 499
Windows Forms, 498
Windows Presentation Foundation

(WPF), 496–498
designing secure software

decomposing components into
functions, 403

determining what to protect, 402
documenting components of

program, 402
identifying potential threats in

functions, 403
rating risk, 404

destructors, 305
Details View, Visual Studio, 425–426

57_563489-bindex.indd 80957_563489-bindex.indd 809 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies810

development, ASP.NET
adding custom controls, 683–684
constructing user controls

overview, 680–683
Phone Number control, 681–683

data binding
overview, 670–671
setting up markup for, 671–673
using code-behind, 673–674
using commonly bound controls,

674–676
displaying info to user

images, 661–663
labels versus plain old text, 660–661
panels and multiviews, 663
tables, 663–664

input from user
submitting input with Submit

buttons, 670
using multiple-item selection controls,

668–669
using other kinds of input controls,

669–670
using single-item selection controls,

666–668
using text input controls, 664–666

site accessibility
control features, 680
design considerations, 680
overview, 679

styling controls
binding styles with CSS, 678–679
setting control properties, 677–678

Device Independent Units (DIUs), 556
DI (Dependency Injection), 625
dictionaries, 126–128
Dictionary<TKeyTValue> class, 123
DictionaryExample program, 127
DirectDeposit() method,

SimpleSavingsAccount program,
292–294

Directives, NotePad, 537
Directory class, 139, 444
Directory.GetCurrentDirectory()

method, 139
DirectoryInfo object, 139
Discoverability attribute, DREAD

model, 404

display only controls, XAML, 570–572
DisplayArray() method

creating own interface, 341
foreach loop, 346

DisplayRatio() method, 245
DisplayRoundedDecimal()

methods, 241
Dispose() method

destructors versus, 305
using statement, 447

DIUs (Device Independent Units), 556
divide (/) operator, 74
DLR. See Dynamic Language Runtime (DLR)
DNS class, 457
do . . . while loop, 99
Dock Panel, WPF, 559–560
Documents directory, 17
dot operator, 221
Dotfuscator Community Edition tool, Visual

Studio, 515
“do-to-each” trick, 321
double variable, 30
DoubleBankAccount program, 266–267
Double.Epsilon constant, 78
doublesArray array, 114
doublesArray variable, 111
downcast, 82
Download class, 457
DownloadFile method, 461
Draw() method, 321
drawing board, System.Drawing

namespace, 476–478
DREAD model, 403–405
driver, 381–382
driver program, testing library with,

385–386
DSL Tools, 534
DumpBuffer() method, 140
DumpHex() method, 139–140
duration, defi ned, 39
duration variable, CalculateInterest

Table program, 97
Dynamic Data Entities Web Application

project, 492
Dynamic Data Linq to SQL Web Application

project, 492
dynamic import, Interop, 790–791
dynamic keyword, 43

57_563489-bindex.indd 81057_563489-bindex.indd 810 3/19/10 8:07 PM3/19/10 8:07 PM

Index 811

Dynamic Language Runtime (DLR)
C#, 778–780
overview, 776–777
Ruby, 777–778

dynamic programming
DLR

C#, 778–780
overview, 776–777
Ruby, 777–778

examples, 774–775
making static operations dynamic, 775
overview, 772–774
shifting C# toward dynamic typing, 770–772

dynamic type, 43
dynamic typing, 2

E
e parameter, event handler, 372
early binding, 316
editing data, WPF, 584–599
element binding, 589
elevation of privilege, 403
else statement, 89–90
e-mailing status report, 462–465
embedded statement, 91
Empty Project, 491
empty string, 36
Encapsulate Field tool, Visual Studio, 516
encodings, Unicode, 438
encrypting information, 407
EndPoint class, 457
Enqueue() method, 173, 180–181
Enroll() method, 257
Entity Data Model Wizard, Visual Studio, 432
entity framework

generating, 432–433
overview, 431–432
writing code, 433

enumerator, 141. See also iterators
Environment Design Time Environment

(EnvDTE), 534
Environment section, Visual Studio

changing security settings, 536–537
creating template from text fi le, 537–539
keyboard commands, 519
overview, 518–519
start page, 519

Epsilon constant, 78
equals symbol (=), 26, 242
Error List window, 312–313
errors

code guidelines for handling, 199–200
runtime, 187, 296

event handler
coding behind, 601
passing information to, 372–373

Event Viewer, 507
events, C#

handling, 374–375
how publisher advertises, 370–371
Observer design pattern, 369–370
passing information to event handler,

372–373
publishing, 372
Publish/Subscribe patttern, 370
raising, 373–374
subscribing, 371–372

Excel 2007 Add-in project, 493
Excel 2007 Template project, 493
Excel 2007 Workbook project, 492
exceptions

assigning multiple catch blocks, 196–197
example, 193–196
exception mechanism
catch blocks, 189
finally blocks, 190
overview, 187–188
thrown exceptions, 190–192
try blocks, 189

handling strategy
analyzing method for possible

exceptions, 200–202
guidelines for code that handles errors,

199–200
planning guide, 198
which methods throw which

exceptions, 203
“last chance” exception handler, 203–204
purpose of, 192–193
throwing, 192

ExceptWith() method, 132
executable assembly, 379, 381
executable program, 12
Execute event handler, 602
Executed property, Window Command

Bindings XAML, 607

57_563489-bindex.indd 81157_563489-bindex.indd 811 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies812

explicit constraint, 184
explicit demotion, 82
explicit type conversion, 82
Exploitability attribute, DREAD model, 404
Express version, Visual Studio, 4, 482–483
expression types, matching

assigning types, 82–83
calculating type of operation

explicit type conversion, 82
implicit type conversion, 81–82

overview, 80–81
extending classes, 288, 391–392
extension methods, 71, 158
external methods, 263
External Tools tool, Visual Studio, 515
Extract Interface tool, Visual Studio, 516
Extract Method refactoring, Visual Studio,

232–233
Extract Method tool, Visual Studio, 516

F
FactorialException program, 193
factories

defi ned, 179
generics, 183–184

factoring, abstract class, 322–327
factory methods, 338, 355
FAQ (Frequently Asked Questions) list, 8
fi le access, 435
File Transfer Protocol (FTP), 455
FileInfo class, 139
fi les

downloading from Internet, 460–462
Solution Explorer panel, 504

FileStream class
exploring streams, 453–454
readers, 436–437, 452–453
StreamReader, 448–452
streams, 435–436
streamwriting

example, 439–440
methods and blocks, 442–445
overview, 438–439
StreamWriter, 441–442
using statement, 445–448

writers, 436–437, 452–453

FileWeb class, 457
Filter option, Breakpoints window, 514
finally block

exceptions, 190
StreamReader class, 450

finally keyword, 187–188
Find() method, 148
FindEmpty() method, 148
fi re hose, 418
fi xed sizing, 562
FixedArrayAverage program, 112
fi xed-value array, 110–112
fl exible dependencies, 353
fl exible lists, 109
float variable, 30
fl oating-point variables

comparing numbers, 78–79
converting temperatures, 31
declaring, 30–31
limitations

calculation speed, 32
comparing numbers, 31–32
counting, 31
range, 32

overview, 29–30
fl ow control, program, 86
Flowchart Workfl ow Console application

project, 493
fl ushing streams, 445
focus, WPF, 605
font, character variables, 35
FontSize property, XAML, 552
for loop

iterating through numElements
items, 114

looping specifi ed number of times,
104–106

searching string values, 52
VariableArrayAverage program, 114

foreach loop
Draw() method, 321
IEnumerator interface, 142
iterating StringChunks collection, 157
iterating through collections, 115–116
iterating through subarrays, 60
looping specifi ed number of times, 105
looping through string, 53

57_563489-bindex.indd 81257_563489-bindex.indd 812 3/19/10 8:07 PM3/19/10 8:07 PM

Index 813

form class, 364
Format() method, 65
formatCommand variable, 68
Formatting panel, Visual Studio, 520
formatting strings, 65–69
FORTRAN, 234
Fowler, Martin, 612
fractions, representing, 28–29
Frequently Asked Questions (FAQ) list, 8
FTP (File Transfer Protocol), 455
FtpWeb class, 457
fully qualifi ed name, 397–398
functional programming, 2

G
Gamma, Erich, 601
garbage collector, 222, 305
generic constraints, 185
generics

contravariance, 796–798
covariance, 798
effi ciency, 171
overview, 795–796
type-safety, 170–171
variance, 796
writing

adding constraints, 184–186
code, 179–180
determining null value for data

type T, 186
factories, 183–184
Main() method, 178–179
OOPs, 172–176
overview, 171–172
Package class, 177–178
PackageFactory, 183
PriorityQueue class, 180–182

get() accessor, 160–161
get operation, 272
GetAccountNumber() method,

BankAccount class example, 266
GetBalance() method, BankAccount

class example, 266
GetEnumerator() method, 144, 162
GetFileList() method, 139

Get...List() method, 139
GetNext() method, 142
GetString() method, 321
GetString() method, BankAccount

class example, 266
GetType() method, 43
GetX() method, BankAccount class

example, 270
global namespace, 393
Go to Defi nition option, Visual Studio, 428
goto statement, 107–108
Graphic Development Environment, 495
graphical programming, 363
graphical user interface (GUI), 14
graphics, System.Drawing

namespace, 470
greater than (>) operator, 77
greater than or equal to (>=) operator, 77
Grid Panel, WPF

content alignment within Content
Controls, 565

horizontal and vertical alignment within
parent container’s layout slot, 565

margin versus padding, 565
RowSpan and ColumnSpan, 564–565
shared size groups, 565–566
sizing rows and columns, 562–564

Grid.Column property, XAML, 552
Grid.Row property, XAML, 552
GUI (graphical user interface), 14

H
hacking project types

item templates, 530–532
Project templates, 527–530

handling strategy, exceptions
analyzing methods for exceptions,

200–202
guidelines for code that handles errors,

199–200
planning guide, 198
which methods throw which

exceptions, 203
hand-out-an-interface technique, 350
Hanselman, Scott, 519, 533

57_563489-bindex.indd 81357_563489-bindex.indd 813 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies814

hard-coding, 92
hardware, Visual Studio, 487
HAS_A relationship

determining when to use, 293–294
gaining access to BankAccount using

containment, 292–293
with interfaces, 354–355
versus IS_A relationship, 291–292
making fl exible dependencies through

interfaces, 353
overview, 293

hash, computing, 127
HashSet<T> class, 123, 131
hashtable, 417
Header element, Visual Studio, 523–524
Helm, Richard, 601
helper classes, 392
hex dump, 136, 138
hexadecimal system, 138
hiding base class method

accidentally hiding, 312–313
general discussion, 309–311
making hiding approach better than

adding simple test, 312
HidingWithdrawalPolymorphically

program, 315
hierarchy, operator, 75
high-level computer language, 11
Hit Count option, Breakpoints window, 513
Holzner, Steve, 369
horizontal split, WPF designer, 497
Horizontal Stack Panel, 558
HorizontalContentAlignment

property, 565
hostspecifi c option, Template

directive, 540
Howard, Michael, 464
HTML designer, 499
Http class, 457
human-readable data, 438

I
ICommand, WPF, 602, 608–610
IComparable interface, 340
icons used in book, 6–7

id argument, Init() method, 255
IDataErrorInfo interface, 589–591
IDE (Integrated Development

Environment), 481, 495
IDisplayable interface, 340–341
IDisposable interface, 447
IEnumerable interface, 340
IEnumerator interface, 141
if clause, 89
if statement
else statement, 89–90
nesting, 90–92
overview, 86–89

IL (Common Intermediate Language), 380
IList interface, 149
Image control, XAML, 570–571
images

displaying info to user, 661–663
how drawing classes fi t into framework,

472–473
System.Drawing namespace

brushes, 471
drawing board, 476–478
getting started, 473–475
graphics, 470
pens, 470–471
setting up project, 475–476
text, 471–472

Immediate window, Visual Studio, 512–513
immutability of strings, 47
implicit promotion, 81
implicit type conversion, 41, 81–82
Import and Export Settings tool, Visual

Studio, 515
import directive, T4, 541
IMyInterface constraint, 185
include directive, T4, 540
increment operator, 76–77
index, fi xed-value array, 111
indexers, accessing collection, 145–149
IndexOf() method, 54, 126
IndexOfAny() method, 54, 63–64
indirection, defi ned, 213
indivisibility, string, 46–47
infi nite loop, 98
InfoPath 2007 Add-in project, 493

57_563489-bindex.indd 81457_563489-bindex.indd 814 3/19/10 8:07 PM3/19/10 8:07 PM

Index 815

information disclosure, 403
inheritance
BankAccount class example

overview, 288–291
updated, 302–306

base class constructor
base keyword, 301–302
invoking default, 298–299
passing arguments to, 300–301

class, 286–287
databases and, 431
HAS_A relationship

determining when to use, 293–294
gaining access to BankAccount using

containment, 292–293
versus IS_A relationship, 291–292
overview, 293

importance of, 287–288
invalid casts at run time, 295–296
invalid conversions

avoiding with as operator, 297
avoiding with is operator, 296–297

IS_A relationship
determining when to use, 293–294
gaining access to BankAccount using

containment, 292–293
versus HAS_A relationship, 293
overview, 291–292

object class, 297–298
overview, 285
substitutable classes, 294–295

inheritance of convenience, 325
InheritanceExample program, 286–287
inherited method, overloading

calling back to base, 313–314
hiding base class method, 309–313
overview, 308–309

InheritingAConstructor program,
298–299

inherits option, Template directive, 540
Init() method
id argument, 255
name argument, 255–256

InitBankAccount() method
BankAccount class example, 263, 275
SimpleSavingsAccount program, 291

initExpression expression, 104
initializing

arrays, 128
C# array, 115
collections, 129–130
variables, 26

InitSavingsAccount() method,
SimpleSavingsAccount
program, 291

InkCanvas layout panel, 570
inlining code, 448
inner loop, 106
INotifyCollectionChanged interface,

WPF, 587
INotifyPropertyChanged interface,

WPF, 587
input, string

handling series of numbers, 58–60
joining array of strings into one

string, 60
parsing numeric input, 56–58
trimming excess white space, 55–56

input controls, XAML, 572–574
input from user

submitting input with Submit
buttons, 670

using multiple-item selection controls,
668–669

using other kinds of input controls,
669–670

using single-item selection controls,
666–668

using text input controls, 664–666
InputInterestData() method

function of, 232
refactoring, 235

InputPositiveDecimal()
method, 235

inserting element in array, 121
install directory, Visual Studio, 524
installing

sample schemas, 420
Visual Studio, 486–487

instance members
defi ned, 250
as nonstatic members, 225

57_563489-bindex.indd 81557_563489-bindex.indd 815 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies816

instance methods
defi ned, 227
general discussion, 250–252
invoking, 228

instances, defi ned, 217
instantiating

defi ned, 123, 217
new, empty list for string type, 125

int integer, 28
int type, strings, 45
int variable

averaging, 110
overview, 26–28
rules for declaring variables/nl, 27
types of, 27–28

integers
comparing, 33
truncation, 29

Integrated Development Environment
(IDE), 481, 495

IntelliSense
autocompleting with, 510–511
tool tips, 203
Visual Studio, 520

intercepting request
digging up request data, 686–689
using information from requests, 689

interface, C#. See also names of specifi c
interfaces

CAN_BE_USED_AS relationship, 333–334
creating at home, 340–341
defi ned, 338
hiding behind, 348–350
IComparable<T> interface, 341–343
implementing, 335–336
importance of, 336
inheriting, 351–352
Main() method, 346
managing changes in object-oriented

programs
abstract class, 353–354
concrete class, 353–354
HAS_A relationship, 354–355
making fl exible dependencies, 353
overview, 352–353

mixing inheritance and interface
implementation, 336–337

naming, 336
unifying class hierarchies, 346–348
usefulness, 337–338
using as base type of array or

collection, 339
using as method return type, 338
using as more general type of object

reference, 339
using predefi ned interface types, 339–340

interface, Visual Studio
Building menu, 515
Code View

autocompleting with IntelliSense, 510–511
exploring auxiliary windows, 512–514
outlining, 511–512
overview, 509–510

Debugging menu, 515
designer

Class Designer, 500–502
overview, 495–496
Web Forms, 499
Windows Forms, 498
Windows Presentation Foundation

(WPF), 496–498
panels

Class View, 508–509
Properties, 504–505
Server Explorer, 506–508
Solution Explorer, 502–504
Toolbox, 505–506

Refactor menu, 515–516
Tools menu, 514–515

internal access keyword, 387–390
internal keyword, 380
internal members, 264–265
internal method, 616
internal protected member, 264–265
Internet

how net classes fi t into framework,
457–458

System.Net namespace, 456, 459–468
Interop

overview, 789–790
Ref statement, 793–794
using dynamic import, 790–791
working without Primary Interop

Assemblies (PIAs), 791–793

57_563489-bindex.indd 81657_563489-bindex.indd 816 3/19/10 8:07 PM3/19/10 8:07 PM

Index 817

intersection operation, 130
IntersectWith() method, 133
intrinsic variable, 36
invalid cast, 295–296
invalid conversion

avoiding with as operator, 297
avoiding with is operator, 296–297

InvokeBaseConstructor program,
301–302

I/O request, 437
IP class, 457
IPrioritizable interface, 177–178
IrDA class, 457
IRecordable interface, 335–336
IRONPython, 494
IRONRuby, 494
is operator
as operator versus, 297
avoiding invalid conversions, 296–297
avoiding runtime errors, 296
polymorphism, 318
type-safety, 170

IS_A relationship
determining when to use, 293–294
gaining access to BankAccount using

containment, 292–293
versus HAS_A relationship, 293
inheritance and, 287
overview, 291–292

IS_NOT_A relationship, 287
IsAllDigits() method, 57–58
IsChecked property, 572
IsSharedSizeScope property, 565
item templates, hacking, 530–532
ItemsControls, WPF, 599
iterating

days of month, 154–155
through collections, 135
through directory of fi les, 135–141
through numElements items, 114

iterator block
looping around

days of month, 154–155
general discussion, 150–154
syntax, 156–158

shapes and sizes, 158–161

iterators
accessing collections, 141–143
letting C# access data foreach container,

143–145
placing, 161–167

IteratorX naming convention, 142–143
IValueConverter interface, 592–593

J
Java programming language, 13
Johnson, Ralph, 601
Join() method, 60

K
key, 148
KeyedArray virtual array class, 146–147
_keys array, 147–148
Keys property, dictionaries, 128
kludge, 191

L
Label control, 571, 589
labels, 660–661
lambdas, 374
Language Integrated Query, 415
Language option
Template directive, 540
Visual Studio, 519–520

“last chance” exception handler, 203–204
last in wins problem, 416
LastChildFill setting, Dock Panel, 560
LastIndexOf() method, 54
LastIndexOfAny() method, 54
late binding, 316. See also polymorphism
layout panels, WPF

Canvas, 560–561
data entry form, 567–569
Dock, 559–560
Grid, 562–566
specialized, 569–570
Stack, 557–558
Uniform Grid, 561–562
Wrap, 559

57_563489-bindex.indd 81757_563489-bindex.indd 817 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies818

leap years, calculating, 38–40
LeBlanc, David C., 464
left-hand operator, 83
Length property, C# array, 114–115
less than (<) operator, 77
less than or equal to (<=) operator, 77
level of abstraction, 208
libraries

access keywords
internal, 387–390
protected, 390–392
protected internal, 392

putting classes into
adding second project to existing

solution, 383
creating classes for library, 384–385
creating projects for class library, 382
creating stand-alone class library,

382–383
using class library from program, 386
using driver program to test library,

385–386
single program

dividing into multiple assemblies,
379–381

dividing into multiple source fi les,
378–379

life cycle, delegates, 366–368
like-typed variables, bundling, 215
LinkedList<T> class, 123
list collection, 124–126
list node, 163
List<T> class, 123, 169, 350
list-based controls, XAML, 574–577
listeners, 370
Literal element, Visual Studio, 525
local variables, constructor, 274
Location box, Visual Studio, 383, 489
Location option, Breakpoints window, 513
logging network activity, 465–468
logical comparison operators

comparing fl oating-point numbers, 78–79
compound logical operations, 79–80
overview, 77–78

long integer, 27, 28
LookUpWordBreak() method, 234

looping
around iterator block

days of month, 154–155
general discussion, 150–154
shapes and sizes, 158–161
syntax, 156–158

break command, 99–100
do . . . while loop, 99
nesting, 106–107
placing iterators, 161–167
scope rules, 103–104
specifi ed number of times with for loop,

104–106
through strings, 53–54
until you get it right, 100–103
while, 95–99

LoopThroughFiles program, 135–139
loosely coupled

Web Forms application, 408
Web services, 721–722

M
machine language, 11
Macros tool, Visual Studio, 514
Mail function, System.Net

namespace, 458
Main() method
AlignOutput program, 62
catch block, 451
demonstrating custom LinkedList

class, 150
exceptional version, 194
fi nding exceptions, 203–204
generics, 178–179
Indexer class, 149
iterating collections using foreach

loop, 154
iterating StringChunks collection, 156
nested loops, 167

MainWindow.xaml fi le, 548, 551
malicious SQL code, 409
managed services, Server Explorer

panel, 507
markup, setting for data binding, 671–673

57_563489-bindex.indd 81857_563489-bindex.indd 818 3/19/10 8:07 PM3/19/10 8:07 PM

Index 819

Master Pages
adding content, 710–711
making master page, 709–710

maximum calculation, 89–90
MbUnit, Gallio, 610
MemoryStream stream class, 453
MenuItem.Click function, 472
metadata, 380
method call, 88
methods. See also polymorphism

analyzing for possible exceptions,
200–202

anonymous, 368–369
declaring virtual and overriding it,

319–321
defi ning, 227–229
determining which throw which

exceptions, 203
example, 229–236
expanding full name, 252–253
implementing default arguments,

240–243
importance of, 234
instance, 250–252
matching argument defi nitions with

usage, 238–239
naming, 229, 232
with no value, 244–246
overloading, 239–240
passing arguments to, 236–237
passing multiple arguments to, 237–238
passing object to, 247–249
returning value via return postage,

243–244
static, 249–250
streamwriting, 442–445
supplying multiple versions of, 240–241
visibility and accesibility in namespace,

396–397
Microsoft Developer Network (MSDN)

version, Visual Studio, 484–485
Microsoft Message Queue, 507
Microsoft Report Viewer, 472
Mime function, System.Net

namespace, 458

MixingStaticAndInstanceMethods
program, 257–259

mocking framework, 618
Model, ViewModel pattern, 613
Model View Controller development for

Windows Presentation Foundation
(MVC4WPF), 494

Model View Controller (MVC), 494
module, 264, 379–381
modulo (%) operator, 74, 140
Mono, 1
moreColors array, 131–132
MoveNext() method, IEnumerator

interface, 143
MSDN (Microsoft Developer Network)

version, Visual Studio, 484–485
multidimensional arrays, 116
multiple assemblies, dividing single

program into, 379–381
multiple inheritance, 336
multiple source fi les, dividing single

program into, 378–379
multiple-item selection controls, 668–669
multiplication (*) operator, 73–74, 81
multiviews, panels, 663
MVC (Model View Controller), 494
MVC4WPF (Model View Controller

development for Windows
Presentation Foundation), 494

MyBaseClass constraint, 185

N
name argument, Init() method, 255–256
Name box, New Project dialog box, 489
named iterator, 158
named parameters, 786–787
namespaces

putting classes into
declaring namespace, 394–395
fully qualifi ed names, 397–398
overview, 392–393
relating namespaces to access keyword

story, 395–397
System.Security, 412–413

57_563489-bindex.indd 81957_563489-bindex.indd 819 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies820

naming conventions, 38
nesting
if statement, 90–92
namespaces, 394

.NET Common Language Runtime (CLR), 3

.NET dictionaries, 127

.NET framework
cookies

ASP.NET manages, 699
coding for client-side storage, 697–698
overview, 696–697
on server, 698–699

managing fi les, 695–696
navigating with site maps

adding site map, 692–694
navigating site with SiteMap, 694–695

overview, 685
securing with ASP.NET

changing trusts, 691–692
fi xing problems, 692
overview, 690–691

surfi ng Web streams
altering content sent to clients, 689–690
intercepting request, 686–689

tracing with TraceContext, 699–701
.NET language, 13–14
.NET Software Development Kit (SDK),

3, 380
network activity, logging, 465–468
network status, checking, 459–460
NetworkCredential class, 457
NetworkInformation function,

System.Net namespace, 458, 460
networking, 455. See also Internet
NetworkStream class, 454
new() constraint, 185
New line character (\n), 35
new operator, 217
New Project dialog box, Visual Studio, 383,

395, 488–489, 548
New Project window, Visual Studio 2010, 15
newline character (\n), 220
NextAccountNumber property, 271
nondeterministic destruction, 305
noninteger index, 148

nonrecursive algorithm, 196
nonstatic methods, 228
nonvoid methods, 244
not (!) operator, 79
not equal to (!=) operator, 77
notational C#, 48
NotifyPropertyChanged

method, 616
n-tier code, 655–656
Null character (\0), 35
null keyword, 186
null object, 221
null value

determining for data type T, 186
strings, 55

num variable, 217
numberInput variable, 68
numeric constants, 40
numeric input, parsing, 56–58
NUnit testing tool, 7

O
obfuscation, 401
object class, 297–298
object properties, 224
object role modelers, 431
Object-based arrangement, 134
object-based languages, 317
ObjectInitializers program

example, 284
object-oriented (OO) programming

abstraction concept
overview, 207–208
preparing object-oriented

programming, 209
preparing procedural

programming, 208
access control concept, 212
C# support, 212–213
classifi cation concept, 209–210
classifying, 210–211
managing changes with interface

abstract class, 353–354
concrete class, 353–354

57_563489-bindex.indd 82057_563489-bindex.indd 820 3/19/10 8:07 PM3/19/10 8:07 PM

Index 821

HAS_A relationship, 354–355
making fl exible dependencies, 353
overview, 352–353

polymorphism and, 316–317
usable interfaces concept, 211

objects
abstract class and, 330
accessing members of, 218
classes versus, 273
constructors and, 273
defi ning, 217–218
discriminating between, 220–221
initializing in constructors, 281–284
passing to method, 247–249
program example, 218–220

ObservableCollection interface,
WPF, 587

Observer design pattern, 369–370
Offi ce projects, Visual Studio, 492–493
On the Web icon, 7
oneth element, 111
OneTime binding mode, 580
OneWay binding mode, 580–581
OneWayToSource binding mode, 581
OO programming. See object-oriented

(OO) programming
operating orders, 74–75
operating systems, Visual Studio, 486–487
operators. See also names of specifi c

operators
simple, 73–74
smooth

arithmetic, 73–77
logical comparisons, 77–80
matching expression types, 80–83

optional parameters
output, 785–786
overview, 782–784
reference types, 784–785

options, Visual Studio
additional options, 520–521
Environment section, 518–519
Language, 519–520

Options dialog box, Visual Studio, 518
Options tool, Visual Studio, 515

or (^) operator, 79
OR (||) operator, 102
Oracle, 350
order of precedence, 75
outlining code, 511–512
Outlook 2007 Add-in project, 493
output, string

controlling with Concatenate()
method, 63–64

controlling with Split() method,
64–65

controlling with Trim() and Pad()
methods, 61–62

output directive, T4, 539–540
Output() method

abstract classes, 329–330
example using, 236–237

output parameters, 785–786
Output window, Visual Studio, 512
OutputBanner() method, 259
OutputBannerAndName()

method, 259
OutputFormatControls program,

67–68
OutputInterestTable() method,

232–233
OutputName() method, 248, 250, 259
overloading

inherited method
calling back to base, 313–314
general discussion, 308–313

methods, 239–240
resolution, 787

override keyword, 319, 335

P
Package class

implementing IPrioritizable
interface, 177–178

specifying possible priorities, 177
PackageFactory, generics, 183
Package/Publish tab, Web construction,

715–716

57_563489-bindex.indd 82157_563489-bindex.indd 821 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies822

Pad() method, 61–62
PadRight() method, AlignOutput

program, 62
PaintBoard method, 477
paired brackets [], 110–111
panels

multiviews and, 663
Toolbox, 505–506
Visual Studio

Class View, 508–509
Properties, 504–505
Server Explorer, 506–508
Solution Explorer, 502–504

WPF, 556
parameters

defi ned, 236–237
named, 235, 786–787
optional

output parameters, 785–786
overview, 782–784
reference types, 784–785

overload resolution, 787
overview, 781
WPF custom commands, 607–608

parent Grid, IsSharedSizeScope
property, 565

parent/child form, 426–428
parentheses

constructors, 284
operating orders, 75

ParseSequenceWithSplit program,
59–60

parsing numeric input, 56–58
Pascal-cased names, 38
PasswordBox input control, 572
Path class, 444
Path.Combine() method, 444
pens, System.Drawing namespace,

470–471
Permissions namespace, 413
persisting objects, 438
Phone Number control, 681–684
PIAs (Primary Interop Assemblies),

791–793
Pixel defi nition, Grid Panel, 562

plain old text, 660–661
Policy namespace, 413
PolymorphicInheritance program,

319–321
polymorphism

abstract class
BankAccount class example, 327–328
defi ned, 328–330
factoring, 322–327
objects and, 330

declaring method virtual and overriding
it, 319–321

“do-to-each” trick, 321
generics, 171
overloading inherited method

calling back to base, 313–314
hiding base class method, 309–313
overview, 308–309

overview, 213, 314–316
sealed class, 330–331
ToString() method, 321–322
using declared type, 316–317
using is keyword to access hidden

method polymorphically, 318
Pop() method, 142
popping operation, 133
Portable .NET, 1
PostBack, Web servers, 636–639
postincrement operator, 76, 106
PowerPoint 2007 Add-in project, 493
predefi ned delegate, 368
preincrement operator, 76, 106
preventing

script exploits, 410–411
SQL Injection attacks, 410

Preview Changes window, Visual
Studio, 232

Preview Method Signature box, Visual
Studio, 232

Primary Interop Assemblies (PIAs),
791–793

Principal namespace, 413
PrintForm component, Toolbox, 472
Priority enum, Package class, 177

57_563489-bindex.indd 82257_563489-bindex.indd 822 3/19/10 8:07 PM3/19/10 8:07 PM

Index 823

PriorityQueue class
Dequeue() method, 181
Enqueue() method, 180–181
remaining members, 182
TopQueue() utility method, 182
underlying queues, 180

PriorityQueue’s Enqueue() method,
180–181

private access specifi er, 335
private members

access to, 264–265
BankAccount class example, 263–264
Unifi ed Modeling Language (UML), 323

procedural programming
object-oriented programming versus,

210–211
overview, 208

ProcessAmount() method,
SimpleSavingsAccount program,
295–296

processor upchuck, 245
Professional version, Visual Studio, 483
program

single, 378–381
using class library from, 386

program fl ow
goto statement, 107–108
if statement
else statement, 89–90
nesting, 90–92
overview, 86–89

looping
break command, 99–100
do . . . while loop, 99
scope rules, 103–104
specifi ed number of times with for

loop, 104–106
until you get it right, 100–103
while, 95–99

nesting loops, 106–107
overview, 85–86
switch statement, 92–94

program framework, console application,
20–21

program.cs fi le, ConsoleApplication
project, 528

programming by intention, 230
ProgrammingToAnInterface

program, 186
ProgressBar control, 572
Project 2007 Add-in project, 493
Project Dependencies tool, Solution

Explorer, 503
project fi le

defi ned, 379
Solution Explorer, 504

projects
creating for class library, 382
defi ned, 15
hacking

item templates, 530–532
project templates, 527–530

Visual Studio
categories, 491–494
New Project dialog box, 488–489
Solution Explorer panel, 503–504
solutions and, 489–491

Promote Local Variable to Parameter
refactoring, Visual Studio, 233

properties
classes

accessors with access levels, 273
letting compiler write properties,

272–273
overview, 270–271
side effects, 272
static properties, 271

syntax, 271
Properties panel, Visual Studio, 504–505
Property Element tag, 550
Property Pages tool, Solution Explorer, 503
PropertyChanged event, INotify

PropertyChanged interface, 587
protected access keyword, 390–392
protected internal access keyword, 392
protected keyword, 380
protected methods, 616
ProtectedInternalLimitsAccess

example, 392
protocols, 455
pseudocode, 48

57_563489-bindex.indd 82357_563489-bindex.indd 823 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies824

public access specifi er, 335
public interface, 338
public members

access to, 264–265
Unifi ed Modeling Language (UML), 323

public method, 390
public modifi er, 217
publishing C# events, 372
Publish/Subscribe patttern, 370
pulling strings. See strings
Push() method, 142
pushing operation, 133

Q
questioning client

getting information back from client,
633–634

overview, 632–633
scripting client, 633
understanding weaknesses of browser,

634–636
Queue class, 173
queue data structure, 172
Queue<T> class, 123
queues, 109

R
RAD (Rapid Application Development)

data tools, 425
RadioButton input control, 573
raising events, 372
Random class, 183
Rapid Application Development (RAD)

data tools, 425
reachable objects, 222
read() call, synchronous I/O, 437
Read() method, 220
readers, FileStream class, 436–437,

452–453
ReadFileToConsole() method,

FileRead program, 451
ReadLine() command, Calculate

Interest program, 88

ReadLine() method
comparing strings, 50
parsing numeric input, 56
Read() method versus, 220
StreamReader class, 437

readonly data member, 225–226
ReadToEnd() method, StreamReader

class, 437
real number, 29
Rebuild option, Build and Debug

menus, 515
recursive algorithm, 196, 313
RedisplayDocument() method, 234
ref keyword, 248
Ref statement, Interop, 793–794
Refactor menu, Visual Studio, 232,

515–516
refactoring

defi ned, 229
InputInterestData() method, 235
OutputInterestTable() method,

232–233
reference types

generics, 170
optional parameters, 784–785

references
class, 221–222
defi ned, 36

ReferencingThisExplicitly program,
256–257

Refl ector tool, 7, 380
regions, 18
registration service, WCF, 750–752
relational databases, 350
relative values, WPF layout, 556
relaying, 462
Remember icon, 6
Remove button, Visual Studio, 525
Remove Parameters tool, Visual

Studio, 516
RemoveWhiteSpace sample program,

63–64
removing

element from array, 121
white space, 121

Rename tool, Visual Studio, 515

57_563489-bindex.indd 82457_563489-bindex.indd 824 3/19/10 8:07 PM3/19/10 8:07 PM

Index 825

Reorder Parameters refactoring, Visual
Studio, 233

Reorder Parameters tool, Visual
Studio, 516

Reparagraph() method, 234
repetitive coding, replacing, 535
Replace() method

removing white space, 63
replacing characters, 63

Replace() operation, 69
Reports Application project, 494
Repository interface, 619
Representational State Transfer (ReST)

changing WCF service to use, 762–765
guiding principles, 760–761
overview, 759–760

representing fractions, 28–29
Reproducibility attribute, DREAD

model, 404
repudiation of action, 403
request, intercepting, 686–689
Request For Comments (RFC), 456
Reset() method, IEnumerator

interface, 142
resources, scoped, 548
ReST. See Representational State Transfer

(ReST)
restricting access to class members

overview, 261–262
public example, 262–264
security levels, 264–265

reviewing console application
comments, 21
meat of program, 21–22
program framework, 20–21

RFC (Request For Comments), 456
RhinoMocks tool, 618–619
Richter, Jeffrey, 199
right-hand operator, 83
Round() method, DecimalBankAccount

program, 269
rounding, 29
routed commands, WPF, 602–603
RoutedCommand, 603

RoutedCommand class, ICommand
interface, 602

RoutedUICommand, 603
Ruby, 777–778
runtime error, 187, 296

S
SalesRegion Model Class, 617
same value (==) operator, 77
SAO (Software Architecture Overview)

diagram, 402
SavingsAccount class
ConstructorSavingsAccount

program, 304
SimpleSavingsAccount program,

290–296
sbyte integer, 28
Schardt, James A., 323
scope rules, looping, 103–104
scoped resources, 548
script exploits

overview, 410
preventing, 410–411

scripting, 653–655
scripting client, 633
SDK (Software Development Kit), 3, 380
SDLC (Software Development Life

Cycle), 402
sealed class, 330–331
sealed keyword, 330–331
sealing, 391
searching strings, 54–55
security. See also writing secure code

classes, 264–265
text template environment, 536–537

Security function, System.Net
namespace, 458

Security namespace, 412
Select the Data Objects screen Visual

Studio, 421
Sequential Workfl ow Console Application

project, 493
serialization, 438

57_563489-bindex.indd 82557_563489-bindex.indd 825 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies826

series of numbers, 58–60
server

cookies, 698–699
Web

PostBack, 636–639
state, 639

Server Explorer panel
data connections, 507–508
managed services, 507
overview, 506–507

Server.HTMLEncode method, 410
Service class, 457
service-oriented application, 6, 726–728
set[string] indexer, 148
SetAccountNumber() method,

BankAccount class example, 266
SetFirstName() method, 254
SetName() method

example using, 248, 250, 253–254
this keyword, 255

sets, collections, 130–133
setting options, Visual Studio

additional options, 520–521
Environment section

keyboard commands, 519
overview, 518–519
start page, 519

Language, 519–520
SetX() method, BankAccount class

example, 270
SharePoint, 3, 484
SHARP, 739–740
SharpDevelop utility, 4, 7
short integer, 28
short-circuit evaluation, 80
Show All Files button, Solution Explorer,

467, 504
Side-by-side folder, 383
signed integer variable, 28
Silverlight project, 494
Simonyi, Charles, 38
Simple Object Access Protocol (SOAP)

size and speed, 734–735
standards, 732
WS-* standards, 733

simple operators, 73–74
SimpleDelegateExample program, 361
SimpleSavingsAccount program,

288–290
Sin() method, 243
single program

dividing into multiple assemblies
assemblies, 380
class libraries, 381
executables assemblies, 379, 381

dividing into multiple source fi les,
378–379

single-item selection controls, 666–668
single-item variables, 120
site accessibility

control features, 680
design considerations, 680
overview, 679

site maps, navigating .NET framework
adding site map, 692–694
navigating site with SiteMap, 694–695

Slider input control, 573
Smart Indenting, 89
SmartTags, 426
smooth operators

arithmetic
assignment operator, 75–76
increment operator, 76–77
operating orders, 74–75
simple operators, 73–74

logical comparisons
comparing fl oating-point numbers,

78–79
compound logical operations, 79–80
overview, 77–78

matching expression types
assigning types, 82–83
calculating type of operation, 81–82
overview, 80–81

snippets
deploying, 525
making, 523–525
overview, 521–522
sharing, 526
surround, 522–523

57_563489-bindex.indd 82657_563489-bindex.indd 826 3/19/10 8:07 PM3/19/10 8:07 PM

Index 827

SOAP. See Simple Object Access Protocol
(SOAP)

SOAP envelope, 465
Socket class, 457
Sockets function, System.Net

namespace, 458
software

decomposing components
into functions, 403

determining what to protect, 402
documenting components of

program, 402
identifying potential threats

in functions, 403
rating risk, 404

Software Architecture Overview (SAO)
diagram, 402

Software Development Kit (SDK),
3, 380

Software Development Life Cycle
(SDLC), 402

Solution box, New Project dialog
box, 489

Solution Explorer panel
fi les, 504
overview, 502–503
projects, 503–504
solutions, 503

solutions
defi ned, 379
Solution Explorer panel, 503

SomeMethod() method, 188
Sort() method

arrays, 119
collection classes, 342

sorted-Names array, 119
SortInterface program, 340–341
source fi le, 12
source program, 15–18
Source view, HTML designer, 499
Special Projects, Visual Studio,

488, 494
specialization, C# support, 213
specialized panels, WPF, 569–570
specifi ers, format, 66

Split() method, 58
controlling string output manually,

64–65
Split view, HTML designer, 499
spoofi ng identity, 403
SQL (Structured Language Queries), 415
SQL Injection attacks

overview, 409
preventing, 410

SQL Server database, 350
SQL Server Project, 494
Stack Panel, WPF, 557–558
stack trace, 195
Stack<T> class, 123
stacks

defi ned, 109
tracing, 195–196

stand-alone class library, 382–383
Star defi nition, Grid Panel, 563
Start Page News Channel fi eld, Visual

Studio, 519
Start Without Debugging command,

Visual Studio 2008, 20
start-up project, Visual Studio, 381
StartupUri value, XAML fi le, 549
state, application, 639
state-based testing, 620
static

generating in class members, 224–225
making dynamic, 775

static keyword, 224–225
static members, accessing, 225
static methods, 228, 249–250, 366, 386
static properties, 271
status report, e-mailing, 462–465
StreamReader class, 437, 448–452
streams, FileStream class, 435–436
StreamWriter class, 437, 441–442
streamwriting

example, 439–440
methods and blocks, 442–445
overview, 438–439
StreamWriter, 441–442
using statement, 445–448

STRIDE acronym, 403

57_563489-bindex.indd 82757_563489-bindex.indd 827 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies828

string literal, 35
string type, 35–38
StringBuilder, 69–71
StringChunks collection, 156
String.Concat() method, 51
StringReader class, 452
strings

case
converting to upper- or lowercase,

52–53
distinguishing between all-uppercase

and all-lowercase strings, 52
comparing
Compare() method, 48–51
letter case, 51–52

controlling output manually
Concatenate() method, 63–64
overview, 60–61
Split() method, 64–65
Trim() and Pad() methods,

61–62
formatting precisely, 65–69
getting input from command line

handling series of numbers, 58–60
joining array of strings into one

string, 60
parsing numeric input, 56–58
trimming excess white space, 55–56

indivisibility, 46–47
looping through, 53–54
overview, 45–46
performing common operations on,

47–48
searching, 54–55
StringBuilder, 69–71

String.Split() method, 58
StringWriter class, 452
struct constraint, 185
Structured Language Queries (SQL), 415
Student class, 47
StudentClassWithMethods program,

249–250
styling controls

binding styles with CSS, 678–679
setting control properties, 677–678

subclasses
defi ned, 209–210
inheiritance, 307

Submit buttons, ASP.NET, 670
subscribing, C# events, 371–372
subscript, 145
substitutable classes, 294–295
Substring() method, 53, 55
Substring() operation, 69
surfi ng Web streams

altering content sent to clients,
689–690

intercepting request, 686–689
SUT (System Under Test) variable, 618
swapping two objects, 117
sw.Close() expression, 442
switch statement, 52, 92–94, 108
SymmetricExceptWith()

method, 133
synchronous I/O, 437
Syndication Service Library

project, 493
syntax

collections
<T> notation, 123
generic, 124
overview, 122

iterator
overview, 156
yield break, 157–158
yield return, 157

system absolute value method, 78
System Under Test (SUT) variable, 618
System.Collections namespace, 134
System.Collections.Specialized

namespace, 134
System.Data namespace

connecting to data source, 420–425
database connectivity, 415
entity framework

generating, 432–433
overview, 431–432
writing code, 433

getting data, 418
overview, 416–417

57_563489-bindex.indd 82857_563489-bindex.indd 828 3/19/10 8:07 PM3/19/10 8:07 PM

Index 829

purpose of, 417
sample database schema, 419–420
visual tools, 425–428
writing data code

basic, 429–431
output of visual tools, 428–429

System.Data.Common namespace, 417
System.Data.OleDb namespace, 417
System.Data.OracleClient

namespace, 417
System.Data.SqlClient

namespace, 417
System.Data.SqlTypes

namespace, 417
System.Drawing namespace

brushes, 471
drawing board, 476–478
getting started, 473–475
graphics, 470
pens, 470–471
setting up project, 475–476
text, 471–472

System.Drawing.2D namespace, 469
System.Drawing.Imaging

namespace, 469
System.Drawing.Text

namespace, 469
System.IO namespace, 436, 453–454
System.Net namespace

checking network status, 459–460
downloading fi le from internet,

460–462
e-mailing status report, 462–465
functions, 458
logging network activity, 465–468
overview, 456

System.Security, 412–413
System.Web namespace, 416
System.Web.Forms.Control.

CreateGraphics method, Windows
Forms application, 470

System.Windows namespace, 416
System.Windows.Forms.Control.

CreateGraphics method, 473

T
<T> notation, collections syntax, 123
T4. See Text Template Transformation

Toolkit (T4)
Tab character (\t), 35
Table Options drop-down list, Visual

Studio, 425–426
tables, displaying info to user, 663–664
TabPanel layout panel, 569
Tabs panel, Visual Studio, 520
tampering threat, 403
Tasks window, Visual Studio, 514
Team Foundation Server, 483
Team System version, Visual Studio,

483–484
Technical Stuff icon, 6
template directive, T4, 540
templates, hacking, 527–530
temporary variable, storing events, 373
ternary (:?) operator, 90
Test Project, 494
testing

Web applications, 711–712
WPF command pattern, 610–611

text
creating template from, 537–539
input controls, 664–666
System.Drawing namespace,

471–472
text boxes, New Project dialog box, 489
Text Template Transformation

Toolkit (T4)
building code based on outside

data, 536
directives
assembly, 541
import, 541
include, 540
output, 539–540
template, 540

DSL Tools, 534
overview, 533–534
replacing repetitive coding, 535

57_563489-bindex.indd 82957_563489-bindex.indd 829 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies830

text templates. See Text Template
Transformation Toolkit (T4)

TextBlock control, 571
TextBox control, 589
TextBox input control, 572
TextReader class, 436
TextWriter class, 436
this keyword

defi ned, 254–255
overview, 253–254
when explicit, 255–257
working without, 257–259

throw keyword, 187–188
throwing exceptions, 192
tight coupling, 183–184
tilde (~), 305
Tip icon, 6
TKey class, 126
ToArray() method, 125
ToBankAccountString() method,

SimpleSavingsAccount
program, 290

ToBoolean() method, 56
ToDecimal() command, Calculate

Interest program, 88
//TODO: comment, 450
ToDouble() method, 56
ToFloat() method, 56
ToLower() method, 53
ToNameString() method, 259
ToolbarOverflowPanel layout

panel, 570
ToolbarPanel layout panel, 569
Toolbox, Visual Studio

overview, 22, 505–506
reusing code, 23–24
saving code, 23

Tools menu, Visual Studio, 514–515
Tools/Options box, 537
TopQueue() utility method,

PriorityQueue class, 182
ToString() method, 43, 70, 194,

321–322

ToUpper() method
converting string cases, 52–53
overview, 47–48
uppercasing fi rst string characters,

70–71
tracing stack, 195–196
TrackDownAMate.com, matching

expression types at, 80–83
transforming text templates

setting up environment
changing security settings, 536–537
creating template from text fi le, 537–539

Text Template Transformation
Toolkit (T4)

building code based on outside
data, 536

directives, 539–540
DSL Tools, 534
overview, 533–534
replacing repetitive coding, 535

Treat Warnings As Errors section, Build
pane, 312–313

TreeView control, XAML, 576
tree-view selector, New Project dialog

box, 488
Trim() method
AlignOutput program, 62
controlling string output manually, 61–62
white space, 55

TrimEnd() method, 56
TrimFront() method, 56
trimming white space, 55–56
try block

exceptions, 189
fi le I/O activity, 441
StreamReader class, 450

try keyword, 187–188
TValue> class, 126–127
TwoWay binding mode

defi ned, 581
editing data, 586
with INotifyPropertyChanged

interface, 588
type-safety, generics, 170–171
typing, dynamic, 770–772

57_563489-bindex.indd 83057_563489-bindex.indd 830 3/19/10 8:07 PM3/19/10 8:07 PM

Index 831

U
UI commands, 605–606
UIElements, 556
uint integer, 28
Ulong integer, 28
UML (Unifi ed Modeling Language),

322–323
unary (-) operator, 74
unboxed value-type, 170
underscore (_), 257
Unicode characters, 141
Unicode fi le format, 438
Unifi ed Factoring Theory, 327
Unifi ed Modeling Language (UML),

322–323
Uniform Grid Panel, WPF, 561–562
union operation, 130
UnionWith() method, 131
unit testing, 610
UnmanagedMemoryStream class, 454
unreachable memory, 305
UpdateSourceTrigger interface, 591
Upload class, 457
usable interfaces concept, object-oriented

programming, 211
user controls, 680–683
users, 241. See also client; input

from user
UseTheDel() method, Simple

DelegateExample program, 362
ushort integer, 28
using statement, streamwriting,

445–448
UsingVarWithArraysAndCollections

sample program, 121
UTF8 format, 438

V
ValidatesOnDataErrors interface, 591
ValidatesOnExceptions interface, 591
validating data, WPF, 589–592
value variable types, 36–37

Values property, dictionaries, 128
value-type variables, declaring

bool type, 34
calculating leap years, 38–40
cast, 41–42
character types, 34–36
comparing string and char, 37–38
decimal type, 32–33
declaring numeric constants, 40
fl oating-point variables, 29–32
int variable, 26–28
letting C# compiler infer data types,

42–43
overview, 25–26
representing fractions, 28–29
value type, 36–37

var keyword, 43, 120–121, 128
variability, declaring value-type

variables
bool type, 34
calculating leap years, 38–40
cast, 41–42
character types, 34–36
comparing string and char, 37–38
decimal type, 32–33
declaring numeric constants, 40
fl oating-point variables, 29–32
int, 26–28
letting C# compiler infer data types,

42–43
overview, 25–26
representing fractions, 28–29
value type, 36–37

VariableArrayAverage program,
112–114

variable-length array, 112–114
variables. See also fl oating-point variables;

names of specifi c variables; value-type
variables, declaring

declaring inside loop, 103
defi ned, 22
pointing to different objects, 222

variance, 2, 796
Variant data types, 43
VCR Bar, Visual Studio, 426–427

57_563489-bindex.indd 83157_563489-bindex.indd 831 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies832

VehicleAndMotor sample program,
223–224

VehicleDataOnly program example,
218–220

vertical split, WPF designer, 497
Vertical Stack Panel, 557–558
VerticalContentAlignment

property, 565
View Controller, modeling, 656–657
ViewModel, WPF

Business Layer (BL), 613
code

Add Customer command, 621–623
model, 615–617
model repositories, 619–621
model unit tests, 617–618
overview, 614–615
testing, 624
View, 624–626

Data Access Layer (DAL), 613
importance of, 612–613
Model, 613
overview, 614
View, 613

virtual keyword
abstract method, 330
C# interface, 335
methods, 321

Virtual PC, 487
VirtualizingStackPanel layout

panel, 570
visibility, namespace, 395–396
Visio 2007 Add-in project, 493
Vissides, John, 601
Visual Basic Express, 483
Visual C# Express version, 482–483
Visual C# version, 14
Visual Studio

2010, 14
button handler, 375
customizing

hacking project types, 527–532
setting options, 518–521
using snippets, 521–526

determining exceptions of methods, 203
implementing interface, 336
installing, 486–487
New Project dialog box, 395
projects

categories, 491–494
New Project dialog box, 488–489
solutions and, 489–491

Solution Explorer, 379
start-up project, 381
Task List window, 450
Team System, 402
testing Web applications, 711–712
unit testing framework, 386
versions

Academic, 485
Express, 4, 482–483
features, 485–486
Microsoft Developer Network (MSDN),

484–485
Professional, 483
Team System, 483–484

Web application
additional fi le types, 651–652
coding in Code View, 647–651
working in designer, 642–647

visual tools
output, 428–429
System.Data namespace, 425–428

Visual Web Developer (VWD), 483
void keyword, 244
void methods, 133, 244–245
.vscontent fi le, 526
.vsi fi le, 526
VWD (Visual Web Developer), 483

W
Wagner, Bill, 350
Warning icon, 6
WCF. See Windows Communication

Foundation (WCF)
WCF Service Application project, 492

57_563489-bindex.indd 83257_563489-bindex.indd 832 3/19/10 8:07 PM3/19/10 8:07 PM

Index 833

WCF Service Confi guration Manager tool,
Visual Studio, 515

WCF Service Library project, 493
Web application

breaking down, 630–632
developing with style

building in n-tier, 655–656
coding behind, 652–653
modeling View Controller, 656–657
scripting, 653–655

testing with Visual Studio, 711–712
working in Visual Studio

additional fi le types, 651–652
coding in Code View, 647–651
designer, 642–647

Web class, 457
Web construction

deployment
Copy Web design surface, 714–715
options, 713–714
Package/Publish tab, 715–716

managing fi les
organizing, 708
reviewing fi le types, 706–707
reviewing project types, 704–706

Master Pages
adding content, 710–711
making master page, 709–710

testing Web applications with Visual
Studio, 711–712

Web Development with ASP.NET, 6
Web forms applications

best practices for securing, 411–412
overview, 408–409
script exploits

overview, 410
preventing, 410–411

SQL Injection attacks
overview, 409
preventing, 410

Web Forms designer, 499
Web projects, Visual Studio, 488, 492
Web servers

PostBack, 636–639
state, 639

Web services
building service-oriented applications,

726–728
building with ASMX

building code for SHARP, 739–740
consuming services in applications,

743–744
creating new service, 735–738
deploying, 741–742
overview, 731–732
SOAP, 732–735

building with ReST, 759–765
changing WCF service to use ReST,

762–765
getting to know ReST, 759–760
understanding guiding principles of

ReST, 760–761
building with WCF

breaking it down, 748–750
confi guring, 752–756
consuming, 757–758
deploying, 756–757
making registration service,

750–752
overview, 745–747

chunky versus chatty, 724–725
contract driven, 722–724
loosely coupled, 721–722
overview, 719–721
providing XML Web services, 728
sample apps, 728–729

Web-knowledgeable program, 14
WebRequest class, System.Net

namespace, 461
WebResponse class, System.Net

namespace, 461
WhenHit option, Breakpoints

window, 514
where clause, 185
while loop

fi le-manipulation program, 441
incrementing counting variable, 98
overview, 95–99

white space, trimming, 55–56, 121

57_563489-bindex.indd 83357_563489-bindex.indd 833 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies834

Windows applications
authentication using Windows login,

404–407
deployment security, 407–408
encrypting information, 407

Windows Communication Foundation
(WCF)

building Web services
breaking it down, 748–750
confi guring, 752–756
consuming, 757–758
deploying, 756–757
making registration service, 750–752
overview, 745–747

changing service to use ReST, 762–765
Windows Forms (WinForms)

Application project, 491
control library project, 492
designer, 498
terminology, 556

Windows login, 404–407
Windows Presentation Foundation (WPF)

Application project, 491
arranging elements with layout panels

Canvas, 560–561
data entry form, 567–569
Dock, 559–560
Grid, 562–566
specialized, 569–570
Stack, 557–558
Uniform Grid, 561–562
Wrap, 559

Browser Application project, 491
command pattern

built-in commands, 603–604
custom commands, 605–610
focus, 605
ICommand, 602
overview, 601–602
routed commands, 602–603
testing, 610–611

creating application
declaring application-scoped resource,

549–550
overview, 547–549
running application, 550–552

Custom Control Library project, 491
data binding

converting your data, 592–599
dependency properties, 579–580
fi nding out more about WPF data

binding, 599–600
modes, 580–581
objects, 581–584
overview, 584–588
validating data, 589–592

designer, 496–498
general discussion, 545–546
laying out application, 555–556
style tree viewer, 488
User Control Library project, 492
ViewModel

Business Layer (BL), 613
code, 614–626
Data Access Layer (DAL), 613
importance of, 612–613
Model, 613
overview, 614
View, 613

Window class, 556
XAML

basic input controls, 572–574
versus C#, 552–553
display only controls, 570–572
list-based controls, 574–577
overview, 547

Windows progress bar, 357
Windows projects, Visual Studio, 488
Windows Security Application Code,

406–407
Windows Security tab, 407–408
Windows Services project, 491
WinForms. See Windows Forms

(WinForms)
Withdraw() method
BankAccount class example, 263
SimpleSavingsAccount

program, 290
Word 2007 Add-in project, 493
Word 2007 Document project, 493
Word 2007 Template project, 493
Workfl ow Projects, Visual Studio, 493

57_563489-bindex.indd 83457_563489-bindex.indd 834 3/19/10 8:07 PM3/19/10 8:07 PM

Index 835

WPF. See Windows Presentation
Foundation (WPF)

Wrap Panel, WPF, 559
wrapper, defi ned, 173
wrapping

overview, 443
StreamWriter class, 442

write modes, 442
WriteFileFromConsole() method,

StreamWriter class, 442
WriteLine() command, Calculate

Interest program, 88
WriteLine() method

newline character (\n) versus, 220
overview, 246
StreamWriter class, 437

writers, FileStream class, 436–437,
452–453

writing data code
basic data code, 429–431
output of visual tools, 428–429

writing secure code
designing secure software

decomposing components into
functions, 403

determining what to protect, 402
documenting components of

program, 402
identifying potential threats in

functions, 403
rating risk, 404

System.Security, 412–413
Web forms applications

best practices for securing, 411–412
overview, 408–409
script exploits, 410–411
SQL Injection attacks, 409–410

Windows applications
authentication using Windows login,

404–407
deployment security, 407–408
encrypting information, 407

X
XAML

versus C#, 552–553
controls

basic input controls, 572–574
display only controls, 570–572
list-based controls, 574–577

defi ning data binding with, 581–583
overview, 547
Windows Presentation Foundation

(WPF), 496
x:Class attribute, XAML, 549
XML

comments, 203
System.Data namespace, 416
Web services, 728

x:Name attribute, XAML, 551

Y
yield break syntax, 157–158
yield return syntax, 155, 157

Z
zeroth element, 111

57_563489-bindex.indd 83557_563489-bindex.indd 835 3/19/10 8:07 PM3/19/10 8:07 PM

C# 2010 All-in-One For Dummies836

57_563489-bindex.indd 83657_563489-bindex.indd 836 3/19/10 8:07 PM3/19/10 8:07 PM

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Business/Accounting
& Bookkeeping
Bookkeeping For Dummies
978-0-7645-9848-7

eBay Business
All-in-One For Dummies,
2nd Edition
978-0-470-38536-4

Job Interviews
For Dummies,
3rd Edition
978-0-470-17748-8

Resumes For Dummies,
5th Edition
978-0-470-08037-5

Stock Investing
For Dummies,
3rd Edition
978-0-470-40114-9

Successful Time
Management
For Dummies
978-0-470-29034-7

Computer Hardware
BlackBerry For Dummies,
3rd Edition
978-0-470-45762-7

Computers For Seniors
For Dummies
978-0-470-24055-7

iPhone For Dummies,
2nd Edition
978-0-470-42342-4

Laptops For Dummies,
3rd Edition
978-0-470-27759-1

Macs For Dummies,
10th Edition
978-0-470-27817-8

Cooking & Entertaining
Cooking Basics
For Dummies,
3rd Edition
978-0-7645-7206-7

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition
Dieting For Dummies,
2nd Edition
978-0-7645-4149-0

Nutrition For Dummies,
4th Edition
978-0-471-79868-2

Weight Training
For Dummies,
3rd Edition
978-0-471-76845-6

Digital Photography
Digital Photography
For Dummies,
6th Edition
978-0-470-25074-7

Photoshop Elements 7
For Dummies
978-0-470-39700-8

Gardening
Gardening Basics
For Dummies
978-0-470-03749-2

Organic Gardening
For Dummies,
2nd Edition
978-0-470-43067-5

Green/Sustainable
Green Building
& Remodeling
For Dummies
978-0-470-17559-0

Green Cleaning
For Dummies
978-0-470-39106-8

Green IT For Dummies
978-0-470-38688-0

Health
Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies
978-0-471-77383-2

Hobbies/General
Chess For Dummies,
2nd Edition
978-0-7645-8404-6

Drawing For Dummies
978-0-7645-5476-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Organizing For Dummies
978-0-7645-5300-4

SuDoku For Dummies
978-0-470-01892-7

Home Improvement
Energy Efficient Homes
For Dummies
978-0-470-37602-7

Home Theater
For Dummies,
3rd Edition
978-0-470-41189-6

Living the Country Lifestyle
All-in-One For Dummies
978-0-470-43061-3

Solar Power Your Home
For Dummies
978-0-470-17569-9

58_563489-badvert01.indd 83758_563489-badvert01.indd 837 3/19/10 8:07 PM3/19/10 8:07 PM

www.dummies.com
www.wileyeurope.com
www.wiley.ca

Internet
Blogging For Dummies,
2nd Edition
978-0-470-23017-6

eBay For Dummies,
6th Edition
978-0-470-49741-8

Facebook For Dummies
978-0-470-26273-3

Google Blogger
For Dummies
978-0-470-40742-4

Web Marketing
For Dummies,
2nd Edition
978-0-470-37181-7

WordPress For Dummies,
2nd Edition
978-0-470-40296-2

Language & Foreign
Language
French For Dummies
978-0-7645-5193-2

Italian Phrases
For Dummies
978-0-7645-7203-6

Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies,
Audio Set
978-0-470-09585-0

Macintosh
Mac OS X Snow Leopard
For Dummies
978-0-470-43543-4

Math & Science
Algebra I For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies
978-0-7645-5326-4

Calculus For Dummies
978-0-7645-2498-1

Chemistry For Dummies
978-0-7645-5430-8

Microsoft Office
Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 All-in-One

Desk Reference

For Dummies
978-0-471-78279-7

Music
Guitar For Dummies,

2nd Edition
978-0-7645-9904-0

iPod & iTunes

For Dummies,

6th Edition
978-0-470-39062-7

Piano Exercises

For Dummies
978-0-470-38765-8

Parenting & Education
Parenting For Dummies,
2nd Edition
978-0-7645-5418-6

Type 1 Diabetes
For Dummies
978-0-470-17811-9

Pets
Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dog Training For Dummies,
2nd Edition
978-0-7645-8418-3

Puppies For Dummies,
2nd Edition
978-0-470-03717-1

Religion & Inspiration
The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

Women in the Bible
For Dummies
978-0-7645-8475-6

Self-Help & Relationship
Anger Management
For Dummies
978-0-470-03715-7

Overcoming Anxiety
For Dummies
978-0-7645-5447-6

Sports
Baseball For Dummies,
3rd Edition
978-0-7645-7537-2

Basketball For Dummies,
2nd Edition
978-0-7645-5248-9

Golf For Dummies,
3rd Edition
978-0-471-76871-5

Web Development
Web Design All-in-One
For Dummies
978-0-470-41796-6

Windows Vista
Windows Vista
For Dummies
978-0-471-75421-3

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

58_563489-badvert01.indd 83858_563489-badvert01.indd 838 3/19/10 8:07 PM3/19/10 8:07 PM

www.dummies.com
www.wileyeurope.com
www.wiley.ca

Visit us at Dummies.com

From hooking up a modem to cooking up a
casserole, knitting a scarf to navigating an iPod,

you can trust Dummies.com to show you how
to get things done the easy way.

How-to?
How Easy.

Go to www.Dummies.com

58_563489-badvert01.indd 83958_563489-badvert01.indd 839 3/19/10 8:07 PM3/19/10 8:07 PM

www.dummies.com
www.dummies.com
www.dummies.com

DVDs • Music • Games •
DIY • Consumer Electronics •
Software • Crafts • Hobbies •
Cookware • and more!

For more information, go to
Dummies.com® and search
the store by category.

 Dummies products
 make life easier!

Making everything easier!™

58_563489-badvert01.indd 84058_563489-badvert01.indd 840 3/19/10 8:07 PM3/19/10 8:07 PM

Bill Sempf
Chuck Sphar
Stephen Randy Davis

8 IN 1
BOOKSBOOKS

• Basics of C# Programming
• Object Oriented C#
• Designing for C#
• A Tour of Visual Studio®
• Windows Programming
• Web Programming
• Service Oriented Development
• C# 4.0

C# 2010
A L L - I N - O N E

Making Everything Easier!™

Visit the companion Web site at www.csharpfordummies.

net to find the source code for all the projects in the book,

updated for Visual Studio 2010

 Open the book and find:

• Steps for creating your first C#
console application

• How to take advantage of object-
oriented programming

• Techniques for writing secure
code

• Tips on how to use Visual Studio
and create macros

• Ways to implement Web services
with SOAP

• How to build Web applications
and leverage the Framework

• Where you can take your
applications with dynamic
programming

Bill Sempf is a seasoned programmer and .NET evangelist specializing

in .NET applications. Chuck Sphar is a programmer and former senior

technical writer for the Visual C++ product group at Microsoft. Stephen

Randy Davis is the bestselling author of several books, including C++

For Dummies.

$39.99 US / $47.99 CN / £27.99 UK

ISBN 978-0-470-56348-9

Web/Page Design

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Experience the fun and power
as you learn to write your
own C# applications
What are you going to create with C#? Maybe your first
Windows® 7 application? Or how about digging into Web
construction? With this comprehensive book, you’ll be
able to decide where you want to go next. It takes you
through everything from Visual Studio and WPF to Web and
services development so you can start building your own
applications.

• Dig into C# — dive into object-oriented programming to create
good class libraries

• Make it secure — learn how to identify risks and then build
Windows and Web applications with the right security

• Jump into .NET — from coding for Windows Mobile to accessing
XML files, you’ll uncover what you can do with the .NET
framework

• Develop with WPF — discover key WPF concepts as well as
common application patterns used in the software industry
today

• Get Visual — find out how to use, optimize, and customize Visual
Studio’s graphic user interface

B
asics o

f C

Pro
g

ram
m

in
g

O
b

ject O
rien

ted
 C

#

D
esig

n
in

g
 fo

r C
#

A
 To

u
r o

f V
isu

al
Stu

d
io

®

W
in

d
o

w
s

Pro
g

ram
m

in
g

W
eb

 Pro
g

ram
m

in
g

Service O
rien

ted

D
evelo

p
m

en
t

C
4.0

C
2010

A
L

L
-IN

-O
N

E

Sempf
Sphar
Davis

spine=1.73”

www.csharpfordummies.net
www.csharpfordummies.net
www.dummies.com

	C# 2010 All-In-One For Dummies®
	About the Authors
	Dedication
	Acknowledgments
	Table of Contents
	Introduction
	Book I: Basics of C# Programming
	Chapter 1: Creating Your First C# Console Application
	Getting a Handle on Computer Languages, C#, and .NET
	Creating Your First Console Application
	Making Your Console App Do Something
	Reviewing Your Console Application
	Introducing the Toolbox Trick

	Chapter 2: Living with Variability — Declaring Value-Type Variables
	Declaring a Variable
	What’s an int?
	Representing Fractions
	Handling Floating-Point Variables
	Using the Decimal Type: Is It an Integer or a Float?
	Examining the bool Type: Is It Logical?
	Checking Out Character Types
	What’s a Value Type?
	Comparing string and char
	Calculating Leap Years: DateTime
	Declaring Numeric Constants
	Changing Types: The Cast
	Letting the C# Compiler Infer Data Types

	Chapter 3: Pulling Strings
	The Union Is Indivisible, and So Are Strings
	Performing Common Operations on a String
	Comparing Strings
	What If I Want to Switch Case?
	Looping through a String
	Searching Strings
	Getting Input from the Command Line
	Controlling Output Manually
	Formatting Your Strings Precisely
	StringBuilder: Manipulating Strings More Efficiently

	Chapter 4: Smooth Operators
	Performing Arithmetic
	Performing Logical Comparisons — Is That Logical?
	Matching Expression Types at TrackDownAMate.com

	Chapter 5: Getting Into the Program Flow
	Branching Out with if and switch
	Here We Go Loop-the-Loop
	Looping a Specified Number of Times with for
	Nesting Loops
	Don’t goto Pieces

	Chapter 6: Lining Up Your Ducks with Collections
	The C# Array
	A Loop Made
	Array
	Sorting Arrays of Data
	New Feature: Using var for Arrays
	Loosening Up with C# Collections
	Understanding Collection Syntax
	Using Lists
	Using Dictionaries
	Array and Collection Initializers
	Using Sets
	On Not Using Old-Fashioned Collections

	Chapter 7: Stepping through Collections
	Iterating through a Directory of Files
	Iterating
	Collections: Iterators
	Accessing Collections the Array Way: Indexers
	Looping Around the Iterator Block

	Chapter 8: Buying Generic
	Writing a New Prescription: Generics
	Classy Generics: Writing Your Own

	Chapter 9: Some Exceptional Exceptions
	Using an Exceptional Error-Reporting Mechanism
	Throwing Exceptions Yourself
	Knowing What Exceptions Are For
	Can I Get an Exceptional Example?
	Assigning Multiple catch Blocks
	Planning Your Exception-Handling Strategy
	Grabbing Your Last Chance to Catch an Exception

	Book II: Object-Oriented C# Programming
	Chapter 1: Object-Oriented Programming: What’s It All About?
	Object-Oriented Concept # 1: Abstraction
	Object-Oriented Concept # 2: Classification
	Why Classify?
	Object-Oriented Concept # 3: Usable Interfaces
	Object-Oriented Concept # 4: Access Control
	How C# Supports Object-Oriented Concepts

	Chapter 2: Showing Some Class
	Defining a Class and an Object
	Accessing the Members of an Object
	An Object-Based Program Example
	Discriminating between Objects
	Can You Give Me References?
	Classes That Contain Classes Are the Happiest Classes in the World
	Generating Static in Class Members
	Defining const and readonly Data Members

	Chapter 3: We Have Our Methods
	Defining and Using a Method
	A Method Example for Your Files
	Having Arguments with Methods
	Returning Values after Christmas

	Chapter 4: Let Me Say This about
	Passing an Object to a Method
	Defining Methods
	Accessing the Current Object

	Chapter 5: Holding a Class Responsible
	Restricting Access to Class Members
	Why You Should Worry about Access Control
	Defining Class Properties
	Getting Your Objects Off to a Good Start — Constructors
	The C#-Provided Constructor
	Replacing the Default Constructor

	Chapter 6: Inheritance: Is That All I Get?
	Class Inheritance
	Why You Need Inheritance
	Inheriting from a BankAccount Class (A More Complex Example)
	IS_ A versus HAS_A — I’m So Confused_A
	When to IS_A and When to HAS_A
	Other Features That Support Inheritance
	The object Class
	Inheritance and the Constructor
	The Updated BankAccount Class

	Chapter 7: Poly-what-ism?
	Overloading an Inherited Method
	Polymorphism
	The Class Business Card: ToString()
	C# During Its Abstract Period
	Sealing a Class

	Chapter 8: Interfacing with the Interface
	Introducing CAN_ BE_USED_AS
	Knowing What an Interface Is
	Using an Interface
	Using the C# Predefined Interface Types
	Looking at a Program That CAN_ BE_ USED_ AS an Example
	Unifying Class Hierarchies
	Hiding Behind an Interface
	Inheriting an Interface
	Using Interfaces to Manage Change in Object-Oriented Programs

	Chapter 9: Delegating Those Important Events
	E.T., Phone Home — The Callback Problem
	Defining a Delegate
	Pass Me the Code, Please — Examples
	A More Real-World Example
	Shh! Keep It Quiet — Anonymous Methods
	Stuff Happens — C# Events

	Chapter 10: Can I Use Your Namespace in the Library?
	Dividing a Single Program into Multiple Source Files
	Dividing a Single Program into Multiple Assemblies
	Putting Your Classes into Class Libraries
	Going Beyond Public and Private: More Access Keywords
	Putting Classes into Namespaces

	Book III: Designing for C#
	Chapter 1: Writing Secure Code
	Designing Secure Software
	Building Secure Windows Applications
	Building Secure Web Forms Applications
	Using System.Security

	Chapter 2: Accessing Data
	Getting to Know System. Data
	How the Data Classes Fit into the Framework
	Getting to Your Data
	Using the System.Data Namespace

	Chapter 3: Fishing the FileStream
	Going Where the Fish Are: The File Stream
	StreamWriting for Old Walter
	Pulling Them Out of the Stream: Using StreamReader
	More Readers and Writers
	Exploring More Streams than Lewis and Clark

	Chapter 4: Accessing the Internet
	Getting to Know System.Net
	How Net Classes Fit into the Framework
	Using the System.Net Namespace

	Chapter 5: Creating Images
	Getting to Know System. Drawing
	How the Drawing Classes Fit into the Framework
	Using the System. Drawing Namespace

	Book IV: A Tour of Visual Studio
	Chapter 1: Getting Started with Visual Studio
	Versioning the Versions
	Installing Visual Studio
	Breaking Down the Projects

	Chapter 2: Using the Interface
	Designing in the Designer
	Paneling the Studio
	Coding in Code View
	Using the Tools of the Trade

	Chapter 3: Customizing Visual Studio
	Setting Options
	Using Snippets
	Hacking the Project Types

	Chapter 4: Transforming Text Templates
	Getting to Know T4
	Figuring Out When to Use T4
	Setting Up the Environment
	Using Some of the T4 Directives

	Book V: Windows Development with WPF
	Chapter 1: Introducing WPF
	Understanding What WPF Can Do
	Introducing XAML
	Diving In! Creating Your First WPF Application
	Whatever XAML Can Do, C# Can Do Better!

	Chapter 2: Understanding the Basics of WPF
	Using WPF to Lay Out Your Application
	Arranging Elements with Layout Panels
	Exploring Common XAML Controls

	Chapter 3: Data Binding in WPF
	Getting to Know Dependency Properties
	Exploring the Binding Modes
	Investigating the Binding Object
	Editing, Validating, Converting, and Visualizing Your Data
	Finding Out More about WPF Data Binding

	Chapter 4: Practical WPF
	Commanding Attention
	Get Your ViewModel On

	Book VI: Web Development with ASP.NET
	Chapter 1: Looking at How ASP.NET Works with C#
	Breaking Down Web Applications
	Questioning the Client
	Dealing with Web Servers

	Chapter 2: Building Web Applications
	Working in Visual Studio
	Developing with Style

	Chapter 3: Controlling Your Development Experience
	Showing Stuff to the User
	Getting Some Input from the User
	Data Binding
	Styling Your Controls
	Making Sure the Site Is Accessible
	Constructing User Controls
	Adding Custom Controls

	Chapter 4: Leveraging the . NET Framework
	Surfing Web Streams
	Securing with ASP.NET
	Navigating with Site Maps
	Managing Files
	Baking Cookies
	Tracing with TraceContext

	Chapter 5: Digging into Web Construction
	Managing Files
	Mastering Master Pages
	Testing Web Applications with Visual Studio
	Deploying Your Masterpiece

	Book VII: Service-Oriented Development
	Chapter 1: Getting Acquainted with Web Services
	Understanding Web Services
	Building Service-Oriented Applications
	Providing XML Web Services
	Building Three Sample Apps

	Chapter 2: Building Web Services with ASMX
	Getting to Know SOAP
	Making an ASMX Service

	Chapter 3: Building Web Services with WCF
	Getting to Know WCF
	Creating a WCF Service

	Chapter 4: Building Web Services with ReST
	Getting to Know ReST
	Understanding the Guiding Principles of ReST
	Changing a WCF Service to Use ReST

	Book VIII: New Features in C# 4.0
	Chapter 1: Programming Dynamically!
	Shifting C# Toward Dynamic Typing
	Programming Dynamically
	Putting Dynamic to Use
	Running with the Dynamic Language Runtime

	Chapter 2: Improving Productivity with Named and Optional Parameters
	Optional Parameters
	Named Parameters
	Overload Resolution

	Chapter 3: Helping Out with Interop
	Using Dynamic Import
	Working without Primary Interop Assemblies
	Skipping the Ref Statement

	Chapter 4: Revising Generics
	Variance
	Contravariance
	Covariance

	Index

