
by Matthew Telles

C++
Timesaving
Techniques ™

FOR

DUMmIES
‰

01_57986x ffirs.qxd 1/26/05 4:32 PM Page iii

C1.jpg

01_57986x ffirs.qxd 1/26/05 4:32 PM Page ii

C++
Timesaving
Techniques ™

FOR

DUMmIES
‰

01_57986x ffirs.qxd 1/26/05 4:32 PM Page i

01_57986x ffirs.qxd 1/26/05 4:32 PM Page ii

by Matthew Telles

C++
Timesaving
Techniques ™

FOR

DUMmIES
‰

01_57986x ffirs.qxd 1/26/05 4:32 PM Page iii

C++ Timesaving Techniques™ For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of
Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Timesaving Techniques, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the
United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FIT-
NESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN REN-
DERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANI-
ZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2005920299

ISBN: 0-7645-7986-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/RU/QS/QV/IN

01_57986x ffirs.qxd 1/26/05 4:32 PM Page iv

www.wiley.com

About the Author
Matthew Telles is a 20-year veteran of the software-development wars. In his time, he
has seen FORTRAN, COBOL, and other dinosaur languages come and go. Currently a sen-
ior software engineer for Research Systems, Inc., his days are spent finding and fixing
bugs that other people have created. Besides trying to be tactful, he also enjoys working
with other developers to teach the techniques he has mastered over his career. With
expertise in programming, designing, documenting, and debugging applications, he has
reached the pinnacle of a programmer’s existence: the ability to write his own bio blurbs
for books. The author of seven other programming books, Matt lives in Lakewood,
Colorado, and pines away for his beloved DEC 10.

01_57986x ffirs.qxd 1/26/05 4:32 PM Page v

01_57986x ffirs.qxd 1/26/05 4:32 PM Page vi

Dedication
This book is dedicated to my friends and family, without whom I couldn’t have done it.

01_57986x ffirs.qxd 1/26/05 4:32 PM Page vii

01_57986x ffirs.qxd 1/26/05 4:32 PM Page viii

Author’s Acknowledgments
I would like to acknowledge my employer, Research Systems, for allowing me the time
and space to work on this book. In addition, I would like to thank the following people:
Carol, for being there and listening; my children, for bringing a ray of sunshine into a
gloomy day; and, of course, all of the people behind the scenes as well: the editors, the
marketing folk, and that nice guy who kept harassing me for stuff. (Thanks, Chris!)

01_57986x ffirs.qxd 1/26/05 4:32 PM Page ix

Composition Services
Project Coordinator: Maridee Ennis

Layout and Graphics: Melissa Auciello-
Brogan,Denny Hager, Stephanie D. Jumper,
Melanee Prendergast, Jacque Roth, Heather Ryan,
Janet Seib

Proofreaders: Laura Albert, Laura L. Bowman,
John Greenough, Leeann Harney, Arielle Mannelle,
Joe Niesen, Carl Pierce, Dwight Ramsey, Brian Walls

Indexer: Ty Koontz

Acquisitions, Editorial, and Media Development
Project Editor: Christopher Morris

Acquisitions Editor: Katie Feltman

Sr. Copy Editor: Barry Childs-Helton

Technical Editor: John Purdum

Editorial Manager: Kevin Kirschner

Media Development Manager: Laura VanWinkle

Media Development Supervisor: Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online regis-
tration form located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_57986x ffirs.qxd 1/26/05 4:32 PM Page x

www.dummies.com

Contents at a Glance
Introduction 1

Part I: Streamlining the Means
and Mechanics of OOP 5
Technique 1: Protecting Your Data

with Encapsulation 7

Technique 2: Using Abstraction
to Extend Functionality 12

Technique 3: Customizing a Class
with Virtual Functions 19

Technique 4: Inheriting Data and Functionality 23

Technique 5: Separating Rules and
Data from Code 30

Part II: Working with the Pre-Processor 37
Technique 6: Handling Multiple

Operating Systems 39

Technique 7: Mastering the Evils of Asserts 42

Technique 8: Using const Instead of #define 45

Technique 9: Macros and
Why Not to Use Them 48

Technique 10: Understanding sizeof 52

Part III: Types 57
Technique 11: Creating Your Own Basic Types 59

Technique 12: Creating Your Own Types 63

Technique 13: Using Enumerations 70

Technique 14: Creating and Using Structures 73

Technique 15: Understanding Constants 77

Technique 16: Scoping Your Variables 82

Technique 17: Using Namespaces 85

Technique 18: Fixing Breaks with Casts 90

Technique 19: Using Pointers
to Member Functions 96

Technique 20: Defining Default Arguments
for Your Functions and Methods 101

Part IV: Classes 107
Technique 21: Creating a Complete Class 109

Technique 22: Using Virtual Inheritance 116

Technique 23: Creating Overloaded Operators 120

Technique 24: Defining Your Own new
and delete Handlers 128

Technique 25: Implementing Properties 136

Technique 26: Doing Data Validation
with Classes 142

Technique 27: Building a Date Class 149

Technique 28: Overriding Functionality
with Virtual Methods 162

Technique 29: Using Mix-In Classes 168

Part V: Arrays and Templates 173
Technique 30: Creating a Simple

Template Class 175

Technique 31: Extending a Template Class 179

Technique 32: Creating Templates
from Functions and Methods 186

Technique 33: Working with Arrays 192

Technique 34: Implementing Your
Own Array Class 196

Technique 35: Working with
Vector Algorithms 200

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xi

Part VIII: Utilities 335
Technique 56: Encoding and Decoding

Data for the Web 337

Technique 57: Encrypting and
Decrypting Strings 343

Technique 58: Converting the
Case of a String 349

Technique 59: Implementing a
Serialization Interface 354

Technique 60: Creating a Generic
Buffer Class 360

Technique 61: Opening a File Using
Multiple Paths 366

Part IX: Debugging C++ Applications 373
Technique 62: Building Tracing

into Your Applications 375

Technique 63: Creating Debugging
Macros and Classes 387

Technique 64: Debugging
Overloaded Methods 399

Part X: The Scary (or Fun!) Stuff 405
Technique 65: Optimizing Your Code 407

Technique 66: Documenting the Data Flow 416

Technique 67: Creating a Simple
Locking Mechanism 420

Technique 68: Creating and
Using Guardian Classes 425

Technique 69: Working with Complex
Numbers 432

Technique 70: Converting Numbers to Words 439

Technique 71: Reducing the
Complexity of Code 447

Index 455

Technique 36: Deleting an Array of Elements 204

Technique 37: Creating Arrays of Objects 209

Technique 38: Working with Arrays
of Object Pointers 213

Technique 39: Implementing a Spreadsheet 216

Part VI: Input and Output 223
Technique 40: Using the Standard Streams

to Format Data 225

Technique 41: Reading In and
Processing Files 228

Technique 42: How to Read Delimited Files 234

Technique 43: Writing Your Objects as XML 240

Technique 44: Removing White Space
from Input 246

Technique 45: Creating a Configuration File 250

Part VII: Using the Built-In
Functionality 263
Technique 46: Creating an

Internationalization Class 265

Technique 47: Hashing Out Translations 279

Technique 48: Implementing Virtual Files 283

Technique 49: Using Iterators
for Your Collections 291

Technique 50: Overriding the Allocator
for a Collection Class 297

Technique 51: Using the auto_ptr Class
to Avoid Memory Leaks 303

Technique 52: Avoiding Memory Overwrites 307

Technique 53:Throwing, Catching, and
Re-throwing Exceptions 312

Technique 54: Enforcing Return Codes 323

Technique 55: Using Wildcards 330

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xii

Table of Contents
Introduction 1

Saving Time with This Book 2
What’s Available on the Companion Web Site? 2
Conventions Used in This Book 2
What’s In This Book 3

Part I: Streamlining the Means and
Mechanics of OOP 3

Part II: Working with the Pre-Processor 3
Part III: Types 3
Part IV: Classes 3
Part V: Arrays and Templates 3
Part VI: Input and Output 4
Part VII: Using the Built-in Functionality 4
Part VIII: Utilities 4
Part IX: Debugging C++ Applications 4
Part X: The Scary (or Fun!) Stuff 4

Icons Used in This Book 4

Part I: Streamlining the Means and
Mechanics of OOP 5

Technique 1: Protecting Your Data
with Encapsulation 7
Creating and Implementing

an Encapsulated Class 7
Making Updates to an Encapsulated Class 10

Technique 2: Using Abstraction
to Extend Functionality 12
Creating a Mailing-List Application 12
Testing the Mailing-List Application 17

Technique 3: Customizing a Class
with Virtual Functions 19
Customizing a Class with Polymorphism 20
Testing the Virtual Function Code 21
Why Do the Destructors Work? 22

Technique 4: Inheriting Data and
Functionality 23
Implementing a ConfigurationFile Class 24
Testing the ConfigurationFile Class 27
Delayed Construction 27

Technique 5: Separating Rules and
Data from Code 30
The cDate Class 31
Testing the cDate Class 35

Part II: Working with the Pre-Processor 37
Technique 6: Handling Multiple

Operating Systems 39
Creating the Header File 39
Testing the Header File 40

Technique 7: Mastering the Evils of Asserts 42
The Assert Problem 42
Fixing the Assert Problem 44

Technique 8: Using const Instead of #define 45
Using the const Construct 46
Identifying the Errors 47
Fixing the Errors 47

Technique 9: Macros and
Why Not to Use Them 48
Initiating a Function with a

String Macro — Almost 49
Fixing What Went Wrong with the Macro 50
Using Macros Appropriately 51

Technique 10: Understanding sizeof 52
Using the sizeof Function 52
Evaluating the Results 54
Using sizeof with Pointers 55

Part III: Types 57
Technique 11: Creating Your

Own Basic Types 59
Implementing the Range Class 60
Testing the Range Class 62

Technique 12: Creating Your Own Types 63
Creating the Matrix Class 64
Matrix Operations 65

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xiii

C++ Timesaving Techniques For Dummiesxiv

Part IV: Classes 107
Technique 21: Creating a Complete Class 109

Creating a Complete Class Template 110
Testing the Complete Class 113

Technique 22: Using Virtual Inheritance 116
Implementing Virtual Inheritance 118
Correcting the Code 119

Technique 23: Creating Overloaded
Operators 120
Rules for Creating Overloaded Operators 121
Using Conversion Operators 122
Using Overloaded Operators 122
Testing the MyString Class 125

Technique 24: Defining Your Own
new and delete Handlers 128
Rules for Implementing new and delete Handlers 129
Overloading new and delete Handlers 129
Testing the Memory Allocation Tracker 133

Technique 25: Implementing Properties 136
Implementing Properties 137
Testing the Property Class 140

Technique 26: Doing Data Validation
with Classes 142
Implementing Data Validation with Classes 142
Testing Your SSN Validator Class 146

Technique 27: Building a Date Class 149
Creating the Date Class 150
Implementing the Date Functionality 152
Testing the Date Class 159
Some Final Thoughts on the Date Class 161

Technique 28: Overriding Functionality
with Virtual Methods 162
Creating a Factory Class 163
Testing the Factory 166
Enhancing the Manager Class 167

Technique 29: Using Mix-In Classes 168
Implementing Mix-In Classes 169
Compiling and Testing Your Mix-In Class 170

Multiplying a Matrix by a Scalar Value 66
Multiplying a Matrix by Scalar Values, Take 2 67
Testing the Matrix Class 68

Technique 13: Using Enumerations 70
Implementing the Enumeration Class 71
Testing the Enumeration Class 72

Technique 14: Creating and Using Structures 73
Implementing Structures 74
Interpreting the Output 75

Technique 15: Understanding Constants 77
Defining Constants 77
Implementing Constant Variables 78
Testing the Constant Application 80
Using the const Keyword 81

Technique 16: Scoping Your Variables 82
Illustrating Scope 83
Interpreting the Output 84

Technique 17: Using Namespaces 85
Creating a Namespace Application 86
Testing the Namespace Application 88

Technique 18: Fixing Breaks with Casts 90
Using Casts 91
Addressing the Compiler Problems 93
Testing the Changes 94

Technique 19: Using Pointers
to Member Functions 96
Implementing Member-Function Pointers 97
Updating Your Code with Member-Function

Pointers 99
Testing the Member Pointer Code 99

Technique 20: Defining Default Arguments
for Your Functions and Methods 101
Customizing the Functions We Didn’t Write 102
Customizing Functions We Wrote Ourselves 103
Testing the Default Code 105
Fixing the Problem 106

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xiv

Table of Contents xv

Part V: Arrays and Templates 173
Technique 30: Creating a Simple

Template Class 175

Technique 31: Extending a Template Class 179
Implementing Template Classes in Code 180
Testing the Template Classes 182
Using Non-class Template Arguments 184

Technique 32: Creating Templates
from Functions and Methods 186
Implementing Function Templates 186
Creating Method Templates 189

Technique 33: Working with Arrays 192
Using the Vector Class 192

Technique 34: Implementing Your
Own Array Class 196
Creating the String Array Class 196

Technique 35: Working with Vector
Algorithms 200
Working with Vector Algorithms 200

Technique 36: Deleting an Array
of Elements 204
Examining Allocations of Arrays and Pointers 204

Technique 37: Creating Arrays of Objects 209

Technique 38: Working with Arrays
of Object Pointers 213
Creating an Array of Heterogeneous Objects 213

Technique 39: Implementing a Spreadsheet 216
Creating the Column Class 217
Creating the Row Class 218
Creating the Spreadsheet Class 219
Testing Your Spreadsheet 221

Part VI: Input and Output 223
Technique 40: Using the Standard

Streams to Format Data 225
Working with Streams 225

Technique 41: Reading In and
Processing Files 228
Testing the File-Reading Code 232
Creating the Test File 233

Technique 42: How to Read Delimited Files 234
Reading Delimited Files 234
Testing the Code 238

Technique 43: Writing Your Objects as XML 240
Creating the XML Writer 241
Testing the XML Writer 243

Technique 44: Removing White Space
from Input 246

Technique 45: Creating a Configuration File 250
Creating the Configuration-File Class 251
Setting Up Your Test File 260
Testing the Configuration-File Class 260

Part VII: Using the Built-In
Functionality 263

Technique 46: Creating an
Internationalization Class 265
Building the Language Files 266
Creating an Input Text File 272
Reading the International File 272
Testing the String Reader 277

Technique 47: Hashing Out Translations 279
Creating a Translator Class 279
Testing the Translator Class 281

Technique 48: Implementing Virtual Files 283
Creating a Virtual File Class 283
Testing the Virtual File Class 289
Improving Your Virtual File Class 290

Technique 49: Using Iterators
for Your Collections 291

Technique 50: Overriding the Allocator
for a Collection Class 297
Creating a Custom Memory Allocator 298

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xv

C++ Timesaving Techniques For Dummiesxvi

Technique 51: Using the auto_ptr Class
to Avoid Memory Leaks 303
Using the auto_ptr Class 303

Technique 52: Avoiding Memory
Overwrites 307
Creating a Memory Safe Buffer Class 307

Technique 53: Throwing, Catching, and
Re-throwing Exceptions 312
Throwing and Logging Exceptions 312
Dealing with Unhandled Exceptions 317
Re-throwing Exceptions 319

Technique 54: Enforcing Return Codes 323

Technique 55: Using Wildcards 330
Creating the Wildcard Matching Class 331
Testing the Wildcard Matching Class 333

Part VIII: Utilities 335
Technique 56: Encoding and Decoding

Data for the Web 337
Creating the URL Codec Class 338
Testing the URL Codec Class 340

Technique 57: Encrypting and
Decrypting Strings 343
Implementing the Rot13 Algorithm 344
Testing the Rot13 Algorithm 345
Implementing the XOR Algorithm 346
Testing the XOR Algorithm 347

Technique 58: Converting the
Case of a String 349
Implementing the transform Function

to Convert Strings 350
Testing the String Conversions 351

Technique 59: Implementing a
Serialization Interface 354
Implementing the Serialization Interface 355
Testing the Serialization Interface 358

Technique 60: Creating a Generic
Buffer Class 360
Creating the Buffer Class 361
Testing the Buffer Class 364

Technique 61: Opening a File
Using Multiple Paths 366
Creating the Multiple-Search-Path Class 367
Testing the Multiple-Search-Path Class 369

Part IX: Debugging C++ Applications 373
Technique 62: Building Tracing

into Your Applications 375
Implementing the Flow Trace Class 376
Testing the Flow Trace System 379
Adding in Tracing After the Fact 380

Technique 63: Creating Debugging
Macros and Classes 387
The assert Macro 387
Logging 389
Testing the Logger Class 390
Design by Contract 392

Technique 64: Debugging
Overloaded Methods 399
Adding Logging to the Application 401

Part X: The Scary (or Fun!) Stuff 405
Technique 65: Optimizing Your Code 407

Making Functions Inline 407
Avoiding Temporary Objects 408
Passing Objects by Reference 410
Postponing Variable Declarations 412
Choosing Initialization Instead of Assignment 413

Technique 66: Documenting the Data Flow 416
Learning How Code Operates 416
Testing the Properties Class 418

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xvi

Table of Contents xvii

Technique 67: Creating a Simple
Locking Mechanism 420
Creating the Locking Mechanism 421
Testing the Locking Mechanism 422

Technique 68: Creating and Using
Guardian Classes 425
Creating the File-Guardian Class 426
Testing the File-Guardian Class 430

Technique 69: Working with Complex
Numbers 432
Implementing the Complex Class 433
Testing the Complex Number Class 436

Technique 70: Converting
Numbers to Words 439
Creating the Conversion Code 440
Testing the Conversion Code 446

Technique 71: Reducing the
Complexity of Code 447
A Sample Program 447
Componentizing 449
Restructuring 451
Specialization 452

Index 455

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xvii

02_57986x ftoc.qxd 1/26/05 3:44 PM Page xviii

Introduction

C++ is a flexible, powerful programming language with hundreds of
thousands of applications. However, the knowledge of how to take
advantage of its full potential comes only with time and experience.

That’s where this book comes in. Think of it as a “cookbook” for solving
your programming problems, much as The Joy of Cooking is a guide to
solving your dinner dilemmas.

C++ Timesaving Techniques For Dummies is a book for the beginning-to-
advanced C++ programmer who needs immediate answers to the prob-
lems that crop up in the professional software-development world. I
assume that you have prior programming experience, as well as experi-
ence specifically with the C++ programming language. “Fluff” — like dis-
cussions of looping structures or defining variables, or the basics of
compiling applications — is kept to a minimum here. Instead, I offer
quick, step-by-step instructions for solving specific problems in C++.

Each technique includes example code — which you are welcome to use
in your own applications, or modify as you see fit. This is literally a case
of “steal this code, please.” C++ is a language that lends itself well to
component-based design and implementation. This means that you can
take a piece from here and a piece from there to implement the solution
that you have in mind.

C++ Timesaving Techniques For Dummies is not an operating-system-
specific (or even compiler-specific) book. The techniques and code that
you find here should work on all compilers that support the standard
C++ language, and on all operating systems for which a standard com-
piler exists. This book is intended to be as useful to the Unix programmer
as to the Microsoft Windows programmer, and just as useful for program-
ming with X-windows as it is for .Net.

My goal in writing this book is to empower you with some of the stronger
features of C++, as well as some great tips and methods to solve everyday
problems, without the headaches and lost time that go with trying to fig-
ure out how to use those tools. C++ provides simple, fast, powerful solu-
tions to meet the demands of day-to-day programming — my goal is to
save you time while making the tools clear and easy to use.

03_57986x intro.qxd 1/26/05 3:46 PM Page 1

Introduction2

What’s Available on the
Companion Web Site?
The companion Web site for this book contains all
the source code shown for the techniques and exam-
ples listed in this book. This resource can save you
considerable typing when you want to use the code
in your own applications, as well as allowing you to
easily refer back to the original code if you modify
the things you find here. You can find the site at
www.dummies.com/go/cpluspluststfd.

Obviously, in order to utilize the code in the book,
you will need a C++ compiler. The code in this book
was all tested with the GNU C++ compiler, a copy of
which you will find on the GNU organization’s Web
site: www.gnu.org. This compiler is a public-domain
(read: free) compiler that you can use in your own
development, or simply to test things on computers
that don’t have a full-blown commercial develop-
ment system. The GNU C++ compiler contains all the
standard header files, libraries, debuggers, and
other tools that C++ programmers expect.

If you already own another compiler, such as Visual
Studio, Borland’s C++Builder, or another compiler,
hey, no worries. The code you find here should work
with any of these compilers, as long as you follow
the standards for defining header files and including
code libraries.

Conventions Used in This Book
When I describe output from the compiler, operating
system, or application you’re developing, you will
see it in a distinctive typeface that looks like this:

This is some output

Source-code listings — such as the application
you’re developing and feeding to the compiler to
mangle into executable code — will look like this:

Saving Time with This Book
The Timesaving Techniques For Dummies books focus
on big-payoff techniques that save you time, either
on the spot or somewhere down the road. And these
books get to the point in a hurry, with step-by-step
instructions to pace you through the tasks you need
to do, without any of the fluff you don’t want. I’ve iden-
tified more than 70 techniques that C++ programmers
need to know to make the most of their time. In addi-
tion, each technique includes code samples that make
programming a breeze. Decide for yourself how to use
this book: Read it cover to cover if you like, or skip
right to the technique that interests you the most.

In C++ Timesaving Techniques For Dummies, you can
find out how to

� Reduce time-consuming tasks: I’m letting you in
on more than 70 tips and tricks for your C++ sys-
tem, so you can spend more time creating great
results and less time fiddling with a feature so
that it works correctly.

� Take your skills up a notch: You’re already famil-
iar with the basics of using C++. Now this book
takes you to the next level, helping you become a
more powerful programmer.

� Work with the basics of C++ to meet your needs: I
show you how to bend the fundamentals of object-
oriented programming and the pre-processor so
that your programs work faster and more reliably.

� Improve your skills with types, classes, arrays,
and templates: Fine-tuning your abilities with
these elements will improve your programs’
functionality and make your code more readable.

� Understand the finer points of input and output:
Improving the way you work with input and out-
put will reduce memory loss and increase speed.

� Use built-in functionality and utilities: Gaining
familiarity with these features will help you get
the most out of what C++ already offers.

� Improve your debugging skills: Getting better at
debugging will speed up the whole programming
process.

03_57986x intro.qxd 1/26/05 3:46 PM Page 2

What’s In This Book 3

LISTING

// This is a loop
for (int i=0; i<10; ++i)

printf(“This is line %d\n”, i);

If you are entering code by hand, you should enter it
as you see it in the book, although spaces and blank
lines won’t matter. Comments can be skipped, if you
so choose, but in general, the code is commented as
it would be in a production environment.

In general, the code and text in the book should be
quite straightforward. The entries are all in list
format, taking you step by step through the process
of creating source files, compiling them, and
running the resulting application. The code is all
compiler-agnostic — that is, it doesn’t indicate
(because it doesn’t know) the specific compiler
commands you will use for the compiler you have on
your machine. Please refer to your compiler’s docu-
mentation if you have specific questions about the
compilation and linking process for your specific
compiler or operating system.

What’s In This Book
This book is organized into parts — groups of tech-
niques about a common subject that can save you
time and help you get your program written fast and
running better. Each technique is written to be inde-
pendent of the others; you need only implement the
techniques that benefit you and your users.

Part I: Streamlining the Means and
Mechanics of OOP

In this part, you learn the basic concepts of object-
oriented programming and how they apply to the
C++ programming language.

Part II: Working with the Pre-Processor

The C++ pre-processor is a powerful tool for cus-
tomizing your application, making your code more
readable, and creating portable applications. In this
section, you get some handy ways to wring the most
out of the pre-processor; some handy techniques
explain how to create portable code, and the voice
of experience reveals why you should avoid the
assert macro.

Part III: Types

The C++ language is rich in data types and user-
definable types. In this section, we explore using the
built-in types of the language, as well as creating
your own types that can be used just like the built-in
ones. You find techniques in this section that explain
structures and how you can use them. You also zero
in on enumerations and creating default arguments
for methods.

Part IV: Classes

The core of the C++ programming language is the
class. In this section, you get a look at how to create
complete classes that work in any environment — as
well as how to perform data validation and manipu-
lation, create properties for your class, and inherit
from other people’s classes.

Part V: Arrays and Templates

Container classes are a core element of the Standard
Template Library (STL), an important part of the C++
programming environment. In this section, you get
the goods on working with the various container
classes, as well as creating your own containers.
Here’s where to find out how to iterate over a collec-
tion of objects, and how to allocate and de-allocate
blocks of objects.

03_57986x intro.qxd 1/26/05 3:46 PM Page 3

Introduction4

When these things happen, it is extremely important
that you understand how to track down the issues in
the code. In this section, you learn valuable tech-
niques for creating tracing macros, tracking down
memory leaks, and checking for errors at run-time.

Part X: The Scary (or Fun!) Stuff

This part contains techniques to help you take con-
trol of the complexity of your code, and ways you
can avoid being intimidated by convoluted code you
might run into while working. Not being afraid of
your code is the number-one area of importance in
programming; this section will aid you in that
endeavor.

Icons Used in This Book
Each technique in this book has icons pointing to
special information, sometimes quite emphatically.
Each icon has its own purpose.

When there’s a way to save time, either now
or in the future, this icon leads the way. Home
in on these icons when every second counts.

This icon points to handy hints that help you
work through the steps in each technique, or
offer handy troubleshooting info.

These icons are your trail of breadcrumbs,
leading back to information that you’ll want to
keep in mind.

When you see a Warning icon, there’s a
chance that your data or your system is at risk.
You won’t see many of these, but when you
do, proceed with caution.

Part VI: Input and Output

It would be a rare program indeed that did not have
some form of input and output. After all, why would
a user bother to run a program that could not be
controlled in some way, or at least yield some sort of
useful information? In this section, we learn all about
various forms of input and output, from delimited
file input to XML file output, and everything in
between.

Part VII: Using the Built-in Functionality

One hallmark of the C++ programming language is
its extensibility and reusability. Why reinvent the
wheel every time you write an application? C++
makes it easy to avoid this pitfall by providing a ton
of built-in functionality. In this section, you get to
use that built-in functionality — in particular, the
C++ library and STL — to implement a complete
internationalization class. You also get pointers on
avoiding memory leaks, using hash tables, and over-
riding allocators for a container class.

Part VIII: Utilities

The single best way to learn C++ techniques is to
look at the way that other people implement various
things. This section contains simple utilities that can
sharpen your coding techniques, and it provides
valuable code that you can drop directly into your
applications. You will find techniques here for
encoding and decoding data, converting data into a
format that the World Wide Web can understand,
and opening a file using multiple search paths.

Part IX: Debugging C++ Applications

One of the most important things to understand
about programs is that they break. Things go wrong,
code behaves in unexpected ways, and users do
things you (and sometimes they) didn’t intend.

03_57986x intro.qxd 1/26/05 3:46 PM Page 4

Part I

Streamlining
the Means and

Mechanics of OOP

04_57986X pt01.qxd 1/26/05 3:50 PM Page 5

04_57986X pt01.qxd 1/26/05 3:50 PM Page 6

1
Protecting Your
Data with
Encapsulation

The dictionary defines encapsulation as “to encase in or as if in a
capsule” and that is exactly the approach that C++ uses. An object
is a “capsule” and the information and processing algorithms that

it implements are hidden from the user. All that the users see is the
functional-level interface that allows them to use the class to do the job
they need done. By placing the data within the interface, rather than
allowing the user direct access to it, the data is protected from invalid
values, wrongful changes, or improper coercion to new data types.

Most time wasted in application development is spent changing code
that has been updated by another source. It doesn’t really add any-
thing to your program, but it does take time to change things when
someone has modified the algorithm being used. If you hide the algo-
rithm from the developer — and provide a consistent interface — you
will find that it takes considerably less time to change the application
when the base code changes. Since the user only cares about the data
and how it is computed, keeping your algorithm private and your
interface constant protects the data integrity for the user.

Creating and Implementing
an Encapsulated Class
Listing 1-1 presents the StringCoding class, an encapsulated method of
encryption. The benefit of encapsulation is, in effect, that it cuts to the
chase: The programmer utilizing our StringCoding class knows nothing
about the algorithm used to encrypt strings — and doesn’t really need to
know what data was used to encrypt the string in the first place. Okay,
but why do it? Well, you have three good reasons to “hide” the implemen-
tation of an algorithm from its user:

� Hiding the implementation stops people from fiddling with the input
data to make the algorithm work differently. Such changes may be
meant to make the algorithm work correctly, but can easily mess it up;
either way, the meddling masks possible bugs from the developers.

Technique

Save Time By
� Understanding

encapsulation

� Creating and implement-
ing an encapsulated
class

� Making updates to an
encapsulated class

05_57986x ch01.qxd 1/26/05 3:55 PM Page 7

Technique 1: Protecting Your Data with Encapsulation8

1. In the code editor of your choice, create a new
file to hold the code for the definition of your
source file.

In this example, the file is named ch01.cpp,
although you can use whatever you choose.

2. Type the code from Listing 1-1 into your file,
substituting your own names for the italicized
constants, variables, and filenames.

Or better yet, copy the code from the source file
included on this book’s companion Web site.

� Hiding the algorithm makes it easy to replace the
implementation with a more workable alternative
if one is found.

� Hiding the algorithm makes it more difficult for
people to “crack” your code and decrypt your
data.

The following list of steps shows you how to create
and implement this encapsulated method:

LISTING 1-1: THE STRINGCODING CLASS

#include <stdio.h>
#include <string>

class StringCoding
{
private:

// The key to use in encrypting the string
std::string sKey;

public:
// The constructor, uses a preset key
StringCoding(void)
{

sKey = “ATest”;
}
// Main constructor, allows the user to specify a key
StringCoding(const char *strKey)
{

if (strKey)
sKey = strKey;

else
sKey = “ATest”;

}
// Copy constructor
StringCoding(const StringCoding& aCopy)
{

sKey = aCopy.sKey;
}

public:
// Methods
std::string Encode(const char *strIn);
std::string Decode(const char *strIn);

private:
std::string Xor(const char *strIn);

};

05_57986x ch01.qxd 1/26/05 3:55 PM Page 8

Creating and Implementing an Encapsulated Class 9

std::string StringCoding::Xor(const char *strIn)
{

std::string sOut = “”;

int nIndex = 0;
for (int i=0; i<(int)strlen(strIn); ++i)
{

char c = (strIn[i] ^ sKey[nIndex]);
sOut += c;
nIndex ++;
if (nIndex == sKey.length())

nIndex = 0;
}

return sOut;
}

// For XOR encoding, the encode and decode methods are the same.
std::string StringCoding::Encode(const char *strIn)
{

return Xor(strIn);
}

std::string StringCoding::Decode(const char *strIn)
{

return Xor(strIn);
}

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage: ch1_1 inputstring1 [inputstring2...]\n”);
exit(1);

}

StringCoding key(“XXX”);

for (int i=1; i<argc; ++i)
{

std::string sEncode = key.Encode(argv[i]);
printf(“Input String : [%s]\n”, argv[i]);
printf(“Encoded String: [%s]\n”, sEncode.c_str());
std::string sDecode = key.Decode(sEncode.c_str());
printf(“Decoded String: [%s]\n”, sDecode.c_str());

}

printf(“%d strings encoded\n”, argc-1);
return 0;

}

05_57986x ch01.qxd 1/26/05 3:55 PM Page 9

Technique 1: Protecting Your Data with Encapsulation10

Making Updates to an
Encapsulated Class
One of the benefits of encapsulation is that it makes
updating your hidden data simple and convenient.
With encapsulation, you can easily replace the
underlying encryption algorithm in Listing 1-1 with
an alternative if one is found to work better. In our
original algorithm, we did an “exclusive logical or”
to convert a character to another character. In the
following example, suppose that we want to use a
different method for encrypting strings. For simplic-
ity, suppose that this new algorithm encrypts strings
simply by changing each character in the input
string to the next letter position in the alphabet: An
a becomes a b, a c becomes a d, and so on. Obviously,
our decryption algorithm would have to do the exact
opposite, subtracting one letter position from the
input string to return a valid output string. We could
then modify the Encode method in Listing 1-1 to reflect
this change. The following steps show how:

1. Reopen the source file in your code editor.

In this example, we called the source file
ch01.cpp.

2. Modify the code as shown in Listing 1-2.

3. Save the source code as a file in the code-editor
application and then close the code editor.

4. Compile your completed source code, using
your favorite compiler on your favorite operat-
ing system.

5. Run your new application on your favorite
operating system.

If you have done everything properly, you should
see the output shown here in the console window of
your operating system:

$./ch1_1.exe “hello”
Input String : [hello]
Encoded String: [0=447]
Decoded String: [hello]
1 strings encoded

Note that our input and decoded strings are the
same — and that the encoded string is completely
indecipherable (as a good encrypted string should
be). And any programmer using the object will never
see the algorithm in question!

LISTING 1-2: UPDATING THE STRINGCODING CLASS

std::string StringCoding::Encode(const char *strIn)
{

std::string sOut = “”;
for (int i=0; i<(int)strlen(strIn); ++i)
{

char c = strIn[i];
c ++;

sOut += c;
}
return sOut;

}

std::string StringCoding::Decode(const char *strIn)
{

std::string sOut = “”;

05_57986x ch01.qxd 1/26/05 3:55 PM Page 10

Making Updates to an Encapsulated Class 11

3. Save the source code as a file in the code editor
and then close the code editor.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the application on your favorite operating
system.

You might think that this approach would have an
impact on the developers who were using our class.
In fact, we can make these changes in our class
(check out the resulting program on this book’s
companion Web site as ch1_1a.cpp) and leave the
remainder of the application alone. The developers
don’t have to worry about it. When we compile and
run this application, we get the following output:

$./ch1_1a.exe “hello”
Input String : [hello]
Encoded String: [ifmmp]
Decoded String: [hello]
1 strings encoded

As you can see, the algorithm changed, yet the
encoding and decoding still worked and the applica-
tion code didn’t change at all. This, then, is the real
power of encapsulation: It’s a black box. The end

users have no need to know how something works in
order to use it; they simply need to know what it
does and how to make it do its thing.

Encapsulation also solves two other big problems in
the programming world:

� By putting all the code to implement specific
functionality in one place, you know exactly
where to go when a bug crops up in that func-
tionality. Rather than having to chase the same
code in a hundred scattered places, you have it
in one place.

� You can change how your data is internally
stored without affecting the program external to
that class. For example, imagine that in the first
version of the code just given, we chose to use
an integer value rather than the string key. The
outside application would never know, or care.

If you really want to “hide” your implementa-
tion from the user — yet still give the end user
a chance to customize your code — implement
your own types for the values to be passed in.
Doing so requires your users to use your spe-
cific data types, rather than more generic ones.

for (int i=0; i<(int)strlen(strIn); ++i)
{

char c = strIn[i];
c --;

sOut += c;
}
return sOut;

}

05_57986x ch01.qxd 1/26/05 3:55 PM Page 11

Save Time By
� Understanding

abstraction

� Using virtual methods

� Creating a mailing-list
application

� Testing applications

Using Abstraction
to Extend
Functionality

The American Heritage Dictionary defines the term abstraction as
“the process of leaving out of consideration one or more properties
of a complex object so as to attend to others.” Basically, this means

that we need to pick and choose the parts of our objects that are impor-
tant to us. To abstract our data, we choose to encapsulate those portions
of the object that contain certain basic types of functionality (base
objects) — that way we can reuse them in other objects that redefine
that functionality. Such basic objects are called, not surprisingly, base
classes. The extended objects are called inherited classes. Together they
form a fundamental principle of C++. Abstraction in C++ is provided
through the pure virtual method. A pure virtual method is a method in a
base class that must be implemented in any derived class in order to
compile and use that derived class.

Virtual methods are one of the best timesavers available in C++.
By allowing people to override just small pieces of your application
functionality — without requiring you to rewrite the entire class — you
give them the chance to extend your work with just a small amount of
effort of their own. The concept of abstraction is satisfied through the
virtual method because the base-class programmer can assume that
later programmers will change the behavior of the class through a
defined interface. Because it’s always better to use less effort, using
virtual methods means your code is more likely to be reused — leading
to fewer errors, freeing up more time to design and develop quality
software.

Creating a Mailing-List Application
This concept is just a little bit abstract (pardon the pun), so here’s a con-
crete example to show you how abstraction really works: Assume you
want to implement a mailing list for your company. This mailing list
consists of objects (called mailing-list entries) that represent each of the
people you’re trying to reach. Suppose, however, that you have to load
the data from one of two sources: from a file containing all the names, or
directly from the user’s command line. A look at the overall “flow” of this
application reveals that the two sides of this system have a lot in common:

2Technique

06_57986x ch02.qxd 1/26/05 3:57 PM Page 12

Creating a Mailing-List Application 13

To handle input from a file, we need some place to
store the names, addresses, cities, states, and zip
codes from a file. To handle input from the command
line, we need to be able to load that exact same data
from the command line and store it in the same place.
Then we need the capability to print those mailing-list
items or merge them into another document. After
the input is stored in memory, of course, we don’t
really care how it got there; we care only how we can
access the data in the objects. The two different
paths, file-based and command-line-based, share the
same basic information; rather than implement the
information twice, we can abstract it into a container
for the mailing-list data. Here’s how to do that:

1. In the code editor of your choice, create a new
file to hold the code for the definition of the
class.

In this example, the file is named ch02.cpp,
although you can use whatever you choose.

2. Type the code from Listing 2-1 into your file,
substituting your own names for the italicized
constants, variables, and filenames.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 2-1: THE BASEMAILINGLISTENTRY CLASS

#include <string>
#include <iostream>
#include <stdio.h>

class BaseMailingListEntry
{
private:

std::string sFirstName;
std::string sLastName;
std::string sAddressLine1;
std::string sAddressLine2;
std::string sCity;
std::string sState;
std::string sZipCode;

public:
BaseMailingListEntry(void)
{
}
BaseMailingListEntry(const BaseMailingListEntry& aCopy)
{

sFirstName = aCopy.sFirstName;
sLastName = aCopy.sLastName;
sAddressLine1 = aCopy.sAddressLine1;
sAddressLine2 = aCopy.sAddressLine2;
sCity = aCopy.sCity;
sState = aCopy.sState;
sZipCode = aCopy.sZipCode;

}

virtual bool First(void) = 0; // A pure virtual function
virtual bool Next(void) = 0; // Another pure virtual function

(continued)

06_57986x ch02.qxd 1/26/05 3:57 PM Page 13

Technique 2: Using Abstraction to Extend Functionality14

3. Save the file in your source-code editor.

4. Using your favorite code editor, add the code in
Listing 2-2.

You may optionally save this code in a separate
header file and include that header file in your
main program as well.

Notice that in Listing 2-1, our base class (the
?? class) contains all the data we’ll be using in
common for the two derived classes (the File
MailingListEntry and CommandLineMailing
ListEntry classes), and implements two
methods — First and Next, which allow those
derived classes to override the processes of
loading the components of the data (whether
from a file or the command line).

LISTING 2-1 (continued)
// Accessors
std::string getFirstName() { return sFirstName; };
std::string getLastName() { return sLastName; };
std::string getAddress1() { return sAddressLine1; };
std::string getAddress2() { return sAddressLine2; };
std::string getCity() { return sCity; };
std::string getState() { return sState; };
std::string getZipCode() { return sZipCode; };

void setFirstName(const char *strFirstName)
{ sFirstName = strFirstName; };

void setLastName(const char *strLastName)
{ sLastName = strLastName; };

void setAddress1(const char *strAddress1)
{ sAddressLine1 = strAddress1; };

void setAddress2(const char *strAddress2)
{ sAddressLine2 = strAddress2; };

void setCity(const char *strCity)
{ sCity = strCity; };

void setState(const char *strState)
{ sState = strState; };

void setZipCode(const char *strZipCode)
{ sZipCode = strZipCode; };
};

LISTING 2-2: THE FILEMAILINGLISTENTRY CLASS

class FileMailingListEntry : public BaseMailingListEntry
{

FILE *fpIn;
public:

FileMailingListEntry(const char *strFileName)
{

fpIn = fopen(strFileName, “r”);
}

virtual bool ReadEntry(void)
{

06_57986x ch02.qxd 1/26/05 3:57 PM Page 14

Creating a Mailing-List Application 15

Please note that we do no error-checking in any
of this code (that’s to avoid making it any larger).
A closer look at this object (before moving on to
the last object in the group) shows that this class
allocates no storage for the various components
of the mailing-list entry — nor will you find any
accessor functions to retrieve those compo-
nents. Yet the class is derived from the base
class (which implements all this functionality),
so we can utilize the storage defined there. This
is a really nice feature; it allows us to encapsu-
late the data in one place and put the “real” func-
tionality in another. You can also see that we’ve

implemented the two required pure virtual func-
tions (First and Next) to make the class read
the data from a file.

5. Save the source file in your source-code
re-editor.

6. Using the code editor, add the code in Listing
2-3 to your source-code file.

You may optionally save this code in a separate
header file and include that header file in your
main program as well.

7. Save the source file in your source-code editor.

char szBuffer[256];
fread(szBuffer, sizeof(char), 255, fpIn);
if (feof(fpIn))

return false;
setFirstName(szBuffer);
fread(szBuffer, sizeof(char), 255, fpIn);
setFirstName(szBuffer);
fread(szBuffer, sizeof(char), 255, fpIn);
setAddress1(szBuffer);
fread(szBuffer, sizeof(char), 255, fpIn);
setAddress2(szBuffer);
fread(szBuffer, sizeof(char), 255, fpIn);
setCity(szBuffer);
fread(szBuffer, sizeof(char), 255, fpIn);
setState(szBuffer);
fread(szBuffer, sizeof(char), 255, fpIn);
setZipCode(szBuffer);
return true;

}
virtual bool First(void)
{

// Move to the beginning of the file, read in the pieces
fseek(fpIn, 0L, SEEK_SET);
return ReadEntry();

}
virtual bool Next(void)
{

// Just get the next one in the file
return ReadEntry();

}

};

06_57986x ch02.qxd 1/26/05 3:57 PM Page 15

Technique 2: Using Abstraction to Extend Functionality16

LISTING 2-3: THE COMMANDLINEMAILINGLISTENTRY CLASS

class CommandLineMailingListEntry : public BaseMailingListEntry
{
private:

bool GetALine(const char *prompt, char *szBuffer)
{

puts(prompt);
gets(szBuffer);

// Remove trailing carriage return
szBuffer[strlen(szBuffer)-1] = 0;

if (strlen(szBuffer))
return true;

return false;
}
bool GetAnEntry()
{

char szBuffer[80];
if (GetALine(“Enter the last name of the person: “,

szBuffer) != true)
return false;

setLastName(szBuffer);
GetALine(“Enter the first name of the person: “,

szBuffer);

setFirstName(szBuffer);
GetALine(“Enter the first address line: “, szBuffer);
setAddress1(szBuffer);
GetALine(“Enter the second address line: “, szBuffer);
setAddress2(szBuffer);
GetALine(“Enter the city: “, szBuffer);
setCity(szBuffer);
GetALine(“Enter the state: “, szBuffer);
setState(szBuffer);
GetALine(“Enter the zip code: “, szBuffer);
setZipCode(szBuffer);

return true;
}

public:
CommandLineMailingListEntry() {

}

virtual bool First(void)
{

printf(“Enter the first name for the mailing list:\n”);
return GetAnEntry();

}
virtual bool Next(void)

06_57986x ch02.qxd 1/26/05 3:57 PM Page 16

Testing the Mailing-List Application 17

Testing the Mailing-List
Application
After you create a class, it is important to create a
test driver that not only ensures that your code is
correct, but also shows people how to use your
code. The following steps show you how:

1. In the code editor of your choice, reopen the
source file to hold the code for your test
program.

In this example, I named the test program
ch02.cpp.

2. Type the code from Listing 2-4 into your file,
substituting your own names for the italicized
constants, variables, and filenames.

A more efficient approach is to copy the code
from the source file on this book’s companion
Web site.

{
printf(“Enter the next name for the mailing list:\n”);
return GetAnEntry();

}
};

LISTING 2-4: THE MAILING-LIST TEST PROGRAM

void ProcessEntries(BaseMailingListEntry *pEntry)
{

bool not_done = pEntry->First();
while (not_done)
{

// Do something with the entry here.

// Get the next one
not_done = pEntry->Next();

}
}
int main(int argc, char **argv)
{

int choice = 0;

printf(“Enter 1 to use a file-based mailing list\n”);
printf(“Enter 2 to enter data from the command line\n”);
scanf(“%d”, &choice);

if (choice == 1)
{

char szBuffer[256];
printf(“Enter the file name: “);
gets(szBuffer);
FileMailingListEntry fmle(szBuffer);
ProcessEntries(&fmle);

}
(continued)

06_57986x ch02.qxd 1/26/05 3:57 PM Page 17

Technique 2: Using Abstraction to Extend Functionality18

enter those fields into the system. You can do all of
this without changing a single line of the
ProcessEntries function! This is the power of pure
virtual functions, and thus the power of abstraction.

When you create a set of classes that are all
doing the same general thing, look for the
common elements of the class and abstract
them into a common base class. Then you can
build on that common base in the future,
more easily creating new versions of the
classes as the need arises.

The main function for the driver really isn’t very
busy — all it’s doing is creating whichever type of
object you want to use. The ProcessEntries function
is the fascinating one because it is a function that is
working on a class type that doesn’t do anything —
it has no idea which type of mailing-list entry object
it is processing. Rather, it works from a pointer to the
base class. If you run this program, you will find that
it works as advertised, as you can see in Listing 2-5.

You could likewise create a file containing all entries
that we just typed into the various fields above to

LISTING 2-4 (continued)
else

if (choice == 2)
{

CommandLineMailingListEntry cmle;
ProcessEntries(&cmle);

}
else

printf(“Invalid option\n”);

return 0;
}

LISTING 2-5: THE MAILING-LIST PROGRAM IN OPERATION

Enter 1 to use a file-based mailing list
Enter 2 to enter data from the command line
2
Enter the first name for the mailing list:
Enter the last name of the person: Telles
Enter the first name of the person: Matt
Enter the first address line: 10 Main St
Enter the second address line:
Enter the city: Anytown
Enter the state: NY
Enter the zip code: 11518
Enter the next name for the mailing list:
Enter the last name of the person:

06_57986x ch02.qxd 1/26/05 3:57 PM Page 18

3
Customizing a Class
with Virtual
Functions

P olymorphism (from the Greek for “having many forms”) is what
happens when you assign different meanings to a symbol or opera-
tor in different contexts. All well and good — but what does it

mean to us as C++ programmers?

Granted, the pure virtual function in C++ (discussed in Technique 2) is
very useful, but C++ gives us an additional edge: The programmer can
override only selected pieces of a class without forcing us to override the
entire class. Although a pure virtual function requires the programmer to
implement functionality, a virtual function allows you to override that
functionality only if you wish to, which is an important distinction.

Allowing the programmer to customize a class by changing small
parts of the functionality makes C++ the fastest development lan-
guage. You should seriously consider making the individual functions
in your classes virtual whenever possible. That way the next devel-
oper can modify the functionality with a minimum of fuss.

Small changes to the derived class are called virtual functions — in
effect, they allow a derived class to override the functionality in a base
class without making you tinker with the base class. You can use this
capability to define a given class’s default functionality, while still letting
end users of the class fine-tune that functionality for their own purposes.
This approach might be used for error handling, or to change the way a
given class handles printing, or just about anything else. In the next sec-
tion, I show you how you can customize a class, using virtual functions to
change the behavior of a base-class method at run-time.

Technique

Save Time By
� Understanding

polymorphism

� Overriding selected
pieces of a class

� Customizing classes at
run-time

� Using destructors with
virtual functions

07_57986x ch03.qxd 1/26/05 4:01 PM Page 19

Technique 3: Customizing a Class with Virtual Functions20

class Orange : public Fruit
{
public:

Orange()
{
}
virtual std::string Color()
{

return “Orange”;
}

};

class Apple : public Fruit
{
public:

Apple()
{
}

virtual std::string Color()
{

return “Reddish”;
}

};

class Grape : public Fruit
{
public:

Grape()
{
}

virtual std::string Color()
{

return “Red”;
}

};

class GreenGrape : public Grape
{
public:

GreenGrape()
{
}

virtual std::string Color()
{

return “Green”;
}

};

Customizing a Class with
Polymorphism
In order to understand how base classes can be cus-
tomized using the polymorphic ability offered by vir-
tual functions, let’s look at a simple example of
customizing a base class in C++.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch03.cpp,
although you can use whatever you choose.

2. Type the code from Listing 3-1 into your file,
substituting your own names for the italicized
constants, variables, and filenames.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 3-1: THE VIRTUAL FUNCTION BASE-CLASS SOURCE CODE

#include <string>
#include <stdio.h>

class Fruit
{
public:

Fruit()
{
}

virtual ~Fruit()
{

printf(“Deleting a fruit\n”);
}

virtual std::string Color()
{

return “Unknown”;
}

void Print()
{

printf(“My color is: %s\n”,
Color().c_str());

}
};

07_57986x ch03.qxd 1/26/05 4:01 PM Page 20

Testing the Virtual Function Code 21

Testing the Virtual
Function Code
Now you should test the code. The following steps
show you how:

1. Open the ch03.cpp source file in your favorite
source-code editor and add the code in Listing
3-2 to the bottom of the file.

LISTING 3-2: THE MAIN DRIVER FOR THE VIRTUAL FUNCTION

CODE

int main(int argc, char **argv)
{

// Create some fruits
Apple a;
Grape g;
GreenGrape gg;
Orange o;
// Show the colors.
a.Print();
g.Print()
gg.Print();
o.Print();
// Now do it indirectly
Fruit *f = NULL;
f = new Apple();
f->Print(); �1
delete f;
f = new GreenGrape();
f->Print(); �2
delete f;

}

2. Save the source code in your source-code
editor.

There are a few interesting things to note in this
example. For one thing, you can see how the base
class calls the overridden methods without hav-
ing to “know” about them (see the lines marked

�1 and �2). What does this magic is a lookup
table for virtual functions (often called the v-
table) that contains pointers to all the methods
within the class. This table is not visible in your
code, it is automatically generated by the C++

compiler while generating the machine code for
your application. When the linker finds a call to a
method that is declared as virtual, it uses the
lookup table to resolve that method at run-time,
rather than at compile-time. For non-virtual
methods, of course, the code is much simpler
and can be determined at compile-time instead.
This means that virtual functions do have some
overhead (in terms of memory requirements and
code speed) — so if you aren’t going to use them
in your code, don’t declare things as virtual. It
might seem counter-intuitive to define virtual
functions in your code if you are not going to use
them, but this is not really the case. In many
cases, you can see future uses for the base class
that will require that you allow the future devel-
oper to override functionality to add new capa-
bilities to the derived class.

3. Save the source code as a file in the code edi-
tor, and then close the editor application.

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the program on your favorite operating-
system console.

If you have done everything properly, you should
see the output shown below on the console window:

The color of the fruit is: Apple
The color of the fruit is: Red
The color of the fruit is: Green
The color of the fruit is: Orange
The color of the fruit is: Apple
Deleting a fruit
The color of the fruit is: Green
Deleting a fruit
Deleting a fruit
Deleting a fruit
Deleting a fruit
Deleting a fruit

As you can see, the direct calls to the code work fine.
In addition, you can see that the code that uses a
base-class pointer to access the functionality in the
derived classes does call the proper overridden vir-
tual methods. This leaves us with only one question
remaining, which is how the derived class destructors

07_57986x ch03.qxd 1/26/05 4:01 PM Page 21

Technique 3: Customizing a Class with Virtual Functions22

If you ever expect anyone to derive a class
from one you implement, make the destructor
for the class virtual, and all manipulation
methods virtual as well.

Notice also that the virtual table for a base class can
be affected by every class derived from it (as we can
see by the GreenGrape class). When I invoke the
Print method on a Fruit object that was created as
a Grape-derived GreenGrape class, the method is
invoked at the Grape class level. This means you can
have as many levels of inheritance as you like. As
you can see, the virtual-method functionality in C++
is extremely powerful.

To recap, here is the hierarchy for calling the correct
Print method when a GreenGrape object is passed to
a function that accepts a Fruit object:

1. Fruit::Print is invoked.

2. The compiler looks at the virtual function table
(v-table) and finds the entry for the Print method.

3. The method is resolved to be the GreenGrape::
Print method.

4. The GreenGrape::Print method is called.

are invoked and in what order. Let’s take a look at
that last virtual method, left undiscussed to this
point—the virtual destructor in the base Fruit class.

Why Do the Destructors Work?
The interesting thing here is that the destructor for
the base class is always called. Because the destruc-
tor is declared as virtual, the destructor chains
upward through the destructors for the other classes
that are derived from the base class. If we created
destructors for each derived class, and printed out
the results, then if you created a new PurpleGrape
GreenGrape class, for example, that was derived from
Grape, you would see output that looked like this:

PurpleGrape destructing
Grape destructing
Deleting a fruit

This output would be shown from the line in which
we deleted the PurpleGrapeGreenGrape object. This
chaining effect allows us to allocate data at each stage
of the inheritance tree — while still ensuring that the
data is cleaned up appropriately for each level of
destructor. It also suggests the following maxim for
writing code for classes from which other classes
can be derived:

07_57986x ch03.qxd 1/26/05 4:01 PM Page 22

4
Inheriting Data and
Functionality

In general, the single greatest bit of functionality that C++ has to offer is
inheritance — the transfer of characteristics from a base class to its
derived classes. Inheritance is the ability to derive a new class from

one or more existing base classes. In addition to saving some coding
labor, the inheritance feature in C++ has many great uses; you can
extend, customize, or even limit existing functionality. This Technique
looks at inheritance and shows you how to use multiple inheritance — a
handy (but little-known) capability that combines the best of several
classes into a single class for the end user.

To really understand what’s going on here, you have to understand some-
thing about the way that C++ compilers implement inheritance — and
how the language takes advantage of this approach.

Each C++ class contains three sections, each with its own purpose:

� Storage for the data that belongs to the class: Every class needs data
to work with, and this section of the class keeps the data handy.

� Jump tables: These store the static methods of the class so the com-
piler can generate efficient instructions for calling the internal meth-
ods of the class.

� One optional v-table for virtual methods: If a class provides no inheri-
tance, there can be an optional v-table, which contains the addresses
of any virtual methods in the class. There will never be more than a
single virtual table per class, because that table contains the pointers
to all of the virtual methods in the class.

If a virtual method is overridden in a derived class, there’s still
only one v-table — and it shows the address of the method that
belongs to the derived class rather than to the base class. The
static method areas repeat for each class.

Okay, but why does inheritance work? Because the compiler generates a
“stack” of data, followed by a “stack” of methods, it is no problem at all to
implement any number of levels of inheritance. The levels of inheritance
define the order of the “stacks.” If a class is derived from classes A, B,
and C, you will see the stack of methods for A, followed by the ones for B,

Technique

Save Time By
� Defining multiple

inheritance

� Implementing a
configuration file
class

� Testing a configuration
file class

� Delaying construction

� Error handling with
multiple inheritance

08_57986x ch04.qxd 1/26/05 4:02 PM Page 23

Technique 4: Inheriting Data and Functionality24

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch04.cpp,
although you can use whatever name you
choose.

2. Type the code from Listing 4-1 into your file,
substituting your own names for the italicized
constants, variables, and filenames.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 4-1: THE PROPERTIES SOURCE CODE.
#include <string>
#include <stdio.h>
#include <vector>

class Properties
{
private:

struct _Prop
{

public:
std::string name;
std::string value;

public:
_Prop operator=(const _Prop&
aCopy)
{

name = aCopy.name;
value = aCopy.value;
return *this;

}

};

std::vector< _Prop > sProps;
public:

Properties(void)
{
}

virtual ~Properties() � 1

{
}
Properties(const Properties& aCopy)
{

std::vector< _Prop >::const_iterator
iter;

followed by the ones for C. This way, the compiler
can easily convert the derived class into any of its
base classes just by selecting a point in the stack to
start from. In addition, because you can inherit data
from classes that are themselves inheriting from
other classes, the whole process just creates a strata
of data and methods. This is a good thing, because it
means that the class structure easily lends itself to
conversions from base class to the derived class.

The capability to extract pieces of functionality
and save them into individual classes makes
C++ an amazingly powerful language. If you
identify all the individual pieces of functionality
in your code and put them in their own base
classes, you can quickly and easily build on
that functionality to extend your application.

Implementing a
ConfigurationFile Class
For the purposes of this example, assume that you
want to implement a configuration file class. This
class will allow you to store configuration informa-
tion for your application in an external file and access
it in a consistent manner throughout your program
source code. I’m just going to explore the idea of
creating a single functional class out of “mix-in”
classes that do one thing very well and then move
on. (As M*A*S*H would say, “Thank you, Doctor
Winchester.”)

When you think about it, configuration files have two
basic sets of functionality — a set of properties (rep-
resenting name and value pairs) and a file manager
(which reads and writes those pairs to and from
disk). For it all to work right, you must implement
the functionality for your class in exactly that way:
first the properties, then their management. You
should have one base class that implements the
property management, and another one that works
with the disk file itself.

So, here’s how to implement the class:

08_57986x ch04.qxd 1/26/05 4:02 PM Page 24

Implementing a ConfigurationFile Class 25

for (iter = aCopy.sProps.begin();
iter != aCopy.sProps.end(); ++iter)

sProps.insert(sProps.end(),
(*iter));

}

int NumProperties(void)
{

return (int)sProps.size();
}
bool GetProperty(int idx, std::string&
name, std::string& value)
{

if (idx < 0 || idx >=
NumProperties())

return false;
name = sProps[idx].name;
value = sProps[idx].value;
return true;

}
void AddProperty(const std::string&
name, const std::string& value)
{

_Prop p;
p.name = name;
p.value = value;
sProps.insert(sProps.end(), p);

}
};

Note that this class makes use of the Standard
Template Library (STL), which I show you in
greater detail in Part V of this book. For now, you
can simply assume that the vector class imple-
ments a generic array that can be expanded. The
vector class requires no minimum number of ele-
ments, and can be expanded as far as memory
permits.

Our property class will form the basis for a series
of property types, all of which could handle dif-
ferent types of properties. In addition, this class
can be used as a base for other classes, which
need the ability to store property information.

There is really no magic here; you can see that
the class simply holds onto property sets and
can either add them or give them back to the
caller. Note, however, that you have implemented
a virtual destructor (see � 1) for the class —
even though nothing in the class needs to be

destroyed just yet. There’s no real way of know-
ing down the line whether this will always be
true, so you may as well assume that the
destructor will need to do its cleanup work at
some point. You are building this class intention-
ally as a base class for inheritance, however, so it
only makes sense to make the destructor virtual.
If your destructor is virtual, all derived classes
will call the base class destructor as the last part
of the destruction process, insuring that all allo-
cated memory is freed.

The next step is to implement the class that man-
ages the file part of the system. For purposes of
space, only the write segment of the class is
shown in Listing 4-2. However, it would be fairly
trivial to implement a ReadAPair method that
would retrieve data from a file.

3. Using your code editor, add the code from
Listing 4-2 to your source-code file.

In this case, we called the file ch04.cpp.

LISTING 4-2: THE SAVEPAIRS CLASS

class SavePairs
{

FILE *fpIn;
public:

SavePairs(void)
{

fpIn = NULL;
}
SavePairs(const char *strName)
{

fpIn = fopen(strName, “w”);
}
virtual ~SavePairs()
{

if (fpIn)
fclose(fpIn);

}
void SaveAPair(std::string name,
std::string value)
{

if (fpIn)
fprintf(fpIn, “%s=%s\n”,
name.c_str(), value.c_str());

}
};

08_57986x ch04.qxd 1/26/05 4:02 PM Page 25

Technique 4: Inheriting Data and Functionality26

))
SaveAPair(name, value);

}

return true;
}

};

5. Save the source code in the code editor.

There really isn’t a lot of code here, but there is a lot
to pay attention to. First of all, notice the DoSave
method. This method, which flushes all of the pairs
of property data to disk (see � 4), calls methods in
both of our base classes. You will notice that you
don’t have to do anything important to get at these
methods, they are just a built-in part of the class
itself.

Probably the most crucial part of Listing 4-3 is actu-
ally a line by itself in one of the constructors. Note
the line marked � 3.

This line is one of the more powerful constructs in
C++. Because the ConfigurationFile class is derived
from the SavePairs class, it will automatically call
the constructor for the SavePairs class before it
invokes its own constructor code. Because this is
necessary, the base class has to be properly con-
structed before you can work with the derived class.
The compiler calls the default constructor unless
you tell it to do otherwise. In this case, you do not
want it to call the default constructor (see � 2),
because that would create a SavePairs object that
had no filename (because it is not assigned in the
constructor) and therefore did not open our prop-
erty file. We want the entire thing to be completely
automatic, so we invoke the proper form of the con-
structor before our ConfigurationFile constructor
even starts. That generates a little programming
peace of mind: As soon as you enter the code for the
inherited class, you can be assured that all setup
work has been done — which (in this case) also
means the file is open and ready to be written to.

Once again, you implement a virtual destructor
for your class because it’s intended as a base
class for inheritance; no point getting specific
about what to destroy just yet. You do, however,
have a real use for the destructor, because the
file pointer that opens in the constructor has to
have a corresponding closing instruction (fclose)
to free the memory and flush the file to disk.

With the virtual destructor in place, the only
thing left to do is to combine these two fairly
useful classes into a single class that includes
the functionality of both and provides a cohesive
interface to the end user of the class. We’ll call
this combined class ConfigurationFile.

4. Using your code editor, add the code in
Listing 4-3 to your source-code file.

LISTING 4-3: THE CONFIGURATIONFILE CLASS

class ConfigurationFile : public Properties,
public SavePairs

{
public:

ConfigurationFile(void) � 2
: SavePairs()

{
}
ConfigurationFile(const char
*strFileName) � 3

: SavePairs(strFileName)
{
}

virtual ~ConfigurationFile()
{

DoSave();
}

bool DoSave() � 4

{
std::string name;
std::string value;

for (int i=0; i<NumProperties(); ++i)
{

if (GetProperty(i, name, value

08_57986x ch04.qxd 1/26/05 4:02 PM Page 26

Delayed Construction 27

Testing the
ConfigurationFile Class
After you create a class, create a test driver that not
only ensures that your code is correct, but also
shows people how to use your code.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch04.cpp. You could, of course, call this program
anything you wanted, since filenames are only
human-readable strings. The compiler does not
care what you call your file.

2. Type the code from Listing 4-4 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 4-4: THE CONFIGURATIONFILE TEST PROGRAM

int main(int argc, char **argv)
{

ConfigurationFile cf(“test.dat”);
cf.AddProperty(“Name”, “Matt”);
cf.AddProperty(“Address”, “1000 Main
St”);

}

3. Save the code in the source-code file created
in your editor, and then close the editor
application.

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the program on your favorite operating-
system console.

If you’ve done everything properly, you should see
the following output from the program on the con-
sole window:

$./a.exe

$ cat test.dat
Name=Matt
Address=1000 Main St

As you can see, the configuration file was properly
saved to the output file.

Delayed Construction
Although the constructor for a class is all wonderful
and good, it does bring up an interesting point. What
if something goes wrong in the construction process
and you need to signal the user? You have two ways
to approach this situation; both have their positives
and negatives:

� You can throw an exception. In general, how-
ever, I wouldn’t. Throwing exceptions is an
option I discuss later, in Technique 53 — but
doing so is rarely a good idea. Your users are
really not expecting a constructor to throw an
exception. Worse, an exception might leave the
object in some ambiguous state, where it’s
unclear whether the constructor has finished
running. If you do choose this route, you should
also make sure that all values are initialized
before you do anything that might generate an
exception. (For example, what happens if you
throw an exception in a base-class constructor?
The error would be propagated up to the main
program. This would be very confusing to the
user, who wouldn’t even know where the error
was coming from.)

� You can delay any work that might create an
error until later in the processing of the object.
This option is usually more valuable and is worth
further exploration.

Let’s say, for example, that you are going to open a
file in your constructor. The file-opening process
could certainly fail, for any number of reasons. One
way to handle this error is to check for it, but this
might be confusing to the end user, because they

08_57986x ch04.qxd 1/26/05 4:02 PM Page 27

Technique 4: Inheriting Data and Functionality28

}
else

// Generate an error
return false;

}

The advantage to this approach is that you can wait
until you absolutely have to before you actually open
the file that the class operates on. Doing so means you
don’t have file overhead every time you construct an
object — and you don’t have to worry about closing
the darn thing if it was never opened. The advantage
of delaying the construction is that you can wait
until the data is actually needed before doing the
time and memory expensive operation of file input
and output.

With a little closer look back at the SavePairs class
(Listing 4-2), you can see a very serious error lurking
there. (Just for practice, take a moment to go back
over the class and look for what’s missing.)

Do you see it? Imagine that you have an object of
type SavePairs, for an example. Now you can make a
copy of that object by assigning it to another object
of the SavePairs class, or by passing it by value into
a method like this:

DoSave(SavePairs obj);

When you make the above function call, you are
making a copy of the obj object by invoking the copy
constructor for the class. Now, because you didn’t
create a copy constructor, you have a serious problem.
Why? A copy is a bitwise copy of all elements in the
class. When a copy is made of the FILE pointer in the
class, it means you now have two pointers pointing to
the same block of memory. Uh-oh. Because you will
destroy that memory in the destructor for the class
(by calling fclose), the code frees up the same block
of memory twice. This is a classic problem that you
need to solve whenever you are allocating memory
in a class. In this case, you really want to be able to
copy the pointer without closing it in the copy. So,
what you really need to do is keep track of whether
the pointer in question is a copy or an original. To
do so, you could rewrite the class as in Listing 4-5:

would not understand where the file was being
opened in the first place and why it failed to open
properly. In cases like this, instead of a constructor
that looks like this . . .

FileOpener::FileOpener(const char
*strFileName)

{
fpIn = fopen(strFileName, “r”);

}

. . . you might instead choose to do the following:

FileOpener::FileOpener(const char
*strFileName)

{
// Hold onto the file name for later
use.
sFileName = strFileName;
bIsOpen = false;

}
bool FileOpener::OpenFile() � 5
{

if (!bIsOpen)
{

fpIn = fopen(sFileName.c_str(),
“r”);
if (fpIn != NULL)

bIsOpen = true;
}
return bIsOpen;

}

Because we cannot return an error from a constructor
directly, we break the process into two pieces. The
first piece assigns the member variables to the values
that the user passed in. There is no way that an error
can occur in this process, so the object will be prop-
erly constructed. In the OpenFile method (� 5 in the
above listing), we then try to open the file, and indi-
cate the status as the return value of the method.

Then, when you tell your code to actually read from
the file, you would do something like this:

bool FileOpener::SomeMethod()
{

if (OpenFile())
{

// Continue with processing

08_57986x ch04.qxd 1/26/05 4:02 PM Page 28

Delayed Construction 29

LISTING 4-5: THE REVISED SAVEPAIRS CLASS

class SavePairs
{

FILE *fpIn;
bool bIsACopy;

public:
SavePairs(void)
{

fpIn = NULL;
bIsACopy = false;

}
SavePairs(const char *strName)
{

fpIn = fopen(strName, “w”);
bIsACopy = false;

}
SavePairs(const SavePairs& aCopy)
{

fpIn = aCopy.fpIn;
bIsACopy = true;

}
virtual ~SavePairs()
{

if (fpIn && !bIsACopy)
fclose(fpIn);

}
void SaveAPair(std::string name,
std::string value)
{

if (fpIn)
fprintf(fpIn, “%s=%s\n”,
name.c_str(), value.c_str());

}
};

This code in Listing 4-5 has the advantage of working
correctly no matter how it is handled. If you pass a
pointer into the file, the code will make a copy of it
and not delete it. If you use the original of the file
pointer, it will be properly deleted, not duplicated.

This is an improvement. But does this code really fix
all possible problems? The answer, of course, is no.
Imagine the following scenario:

1. Create a SavePairs object.

2. Copy the object by calling the copy constructor
with a new object.

3. Delete the original SavePairs object.

4. Invoke a method on the copy that uses the file
pointer.

What happens in this scenario? Nothing good, you
can be sure. The problem occurs when the last step
is hit, and the copied file pointer is used. The origi-
nal pointer has been deleted, so the copy is pointing
at junk. Bad things happen — and your program
likely crashes.

A joke that runs around the Internet compares vari-
ous programming languages in terms of shooting
yourself in the foot. The entire joke is easy enough
to find, but the part that applies to this subject looks
something like this:

C: You shoot yourself in the foot.

C++: You accidentally create a dozen instances of
yourself and shoot them all in the foot. Providing
emergency assistance is impossible because you
can’t tell which instances are bitwise copies and
which are just pointing at others, saying, “That’s me
over there.”

Many programmers find the joke is too true to be
amusing. C++ gives you the (metaphorical) ability to
blow off your foot any time you try to compile.
There are so many things to think about, and so
many possibilities to consider.

The best way to avoid the disasters of the past
is to plan for them in the future. This is
nowhere more true than when you’re working
with the basic building blocks of the system,
constructors and destructors. If you do not do
the proper groundwork to make sure that
your class is as safe as possible, you will pay
for it in the long run — each and every time.
Make sure that you always implement virtual
destructors and check for all copies of your
objects in your code. Doing so will make your
code cleaner (dare I say “bulletproof”?) and
eliminate problems of this sort that would oth-
erwise naturally crop up later.

08_57986x ch04.qxd 1/26/05 4:02 PM Page 29

Save Time By
� Using encapsulation to

separate rules and data
from code

� Building a data-
validation class

� Testing the data-
validation class

Separating Rules
and Data from Code

One of the biggest problems in the software-development world is
maintaining code that we did not design or implement in the first
place. Often the hardest thing to do in such cases is to figure out

exactly how the code was meant to work. Usually, there is copious docu-
mentation that tells you what the code is doing (or what the original pro-
grammer thought was going on), but very rarely does it tell you why.

The reason is that the business rules and the data that implement those
rules are usually embedded somewhere in the code. Hard-coded dates,
values — even user names and passwords — can be hidden deep inside
the code base. Wouldn’t it be nice if there was some way to extract all of
that data and those business rules and put them in one place? This really
does sound like a case for encapsulation, now doesn’t it? Of course it
does. As I discuss in Technique 1, encapsulation allows us to insulate the
user from the implementation of things. That statement is ambiguous
and means quite a few things, so to clarify, let me show you a couple of
examples. First, consider the case of the business rule.

When you are creating code for a software project, you must often con-
sider rules that apply across the entire business — such as the allowable
number of departments in an accounting database, or perhaps a calcula-
tion to determine the maximum amount of a pay raise for a given
employee. These rules appear in the form of code snippets scattered
across the entire project, residing in different files and forms. When the
next project comes along, they are often duplicated, modified, or aban-
doned. The problem with this approach is that it becomes harder and
harder to keep track of what the rules are and what they mean.

Assume, for the moment, that you have to implement some code that
checks for dates in the system. (Okay, a date isn’t strictly a business rule
per se, but it makes a handy example.) To run the check, you could try
scattering some code around the entire system to check for leap years,
date validity, and so forth, but that would be inefficient and wasteful.
Here’s why that solution is no solution at all:

5Technique

09_57986x ch05.qxd 1/26/05 4:04 PM Page 30

The cDate Class 31

Once upon a time, there was a project being done at
a very large company. A software audit showed at
least five different routines (functions, macros, and
inline code) that computed whether a given year
was a leap year. This was pretty surprising — but
even more surprising was that of those five routines,
three were actually wrong. If a bug occurred while
the system was calculating whether the current year
was a leap year, did the programmer have any idea
where to look to solve the problem? Of course not.

In this example, despite the risk of bugs, you still
have to determine whether a given date is valid —
and whether the given year is a leap year. Your first
two basic tasks are to set appropriate defaults for
the date, and make sure you can retrieve all the com-
ponents of the date. The same approach works for
any business-rule encapsulation. First, you have to
know the pieces of the puzzle that go into the calcu-
lations. That way, anyone looking at the code will
know exactly what he or she needs to supply. There
should be no “hidden” data unless it’s being
retrieved from an external source. The code should
be plug-and-play; you should be able to take it from
one project to another with minimal changes.

Of course, it’s often impossible to completely
remove application code from business rules. But
that really shouldn’t be your goal when you’re writ-
ing business objects. Instead, you should worry
about how those objects are going to be used.

When you separate the support code from the
business rule that it supports, you separate the
bugs that can occur into two types: physical
errors and logical errors. This alone saves time
in tracking down problems. A logical error
won’t crash a program, but it will cause grief in
other ways. A physical error isn’t likely to
cause you to incorrectly generate checks for
billions, but it will crash your application and
annoy your users.

Your object should be portable; it is going to be used
in multiple projects to support the “date rule.” You
want your dates to be valid, and you want to be able
to extract the components of the date in any project

that might need that data. At the same time, you
don’t want to give people more than they need, so
you aren’t going to bother supporting date math,
such as calculations for adding days or years to a
given date.

This is another important tip when designing
classes for use in C++, whether they are busi-
ness objects or full-blown application objects.
Always keep the code down to a minimum;
only include what people need. Do not simply
add methods to a class for the sheer joy of
adding them. If you bury people in code, they
will look for something simpler. There is a
common acronym for this in the engineering
community, known as “KISS”: Keep It Simple,
Stupid.

Always bear the error-handling process in
mind when you write reusable objects. Your
code is more reusable if it returns error mes-
sages instead of throwing exceptions or log-
ging errors to some external source. The
reason for this advantage is simple: If you
require people to do more than check the
return value of a method or function in your
code, you force them to do a lot of work that
they might not otherwise have to do. People
resist doing extra work; they’ll avoid your code
and use something simpler. (Once again, the
KISS principle in action.)

The cDate Class
In order to best encapsulate all of the date informa-
tion in your program, it is easiest to create a single
class that manages date storage, manipulation, and
output. In this section, we create a class to do all of
that, and call it cDate (for date class, of course). With
a date class, we are removing all of the rules and
algorithms for manipulating dates, such as leap year
calculations, date math, and day of week calcula-
tions, and moving them into a single place. In addi-
tion, we move the date storage, such as how the day,
month, and year elements are stored, into one area
that the user does not need to be concerned about.

09_57986x ch05.qxd 1/26/05 4:04 PM Page 31

Technique 5: Separating Rules and Data from Code32

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
your source file.

In this example, that file is named ch05.cpp,
although you can use whatever you choose.

2. Type the code from Listing 5-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 5-1: THE CDATE CLASS

#include <string>
#include <stdio.h>
#include <time.h>

class cDate
{
private:

int MonthNo;
int DayOfMonth;
int DayOfWeek;
long YearNo;

protected:
void GetTodaysDate()
{

// First, get the data
time_t t;
time(&t);
struct tm *tmPtr = localtime(&t);

// Now, store the pieces we care about
MonthNo = tmPtr->tm_mon;
YearNo = tmPtr->tm_year + 1900;
DayOfMonth = tmPtr->tm_mday;
DayOfWeek = tmPtr->tm_wday;

}

int ComputeDayOfTheWeek() // returns day of week
{

int sum_calc;
int cent_off, year_off, month_off, day_off;
int year_end;

year_end = YearNo % 100; // year in century

// The following calculation calculates offsets for the
// century, year, month, and day to find the name of the
// weekday.

cent_off = ((39 - (YearNo/100)) % 4) * 2;
year_off = year_end + year_end/4;

09_57986x ch05.qxd 1/26/05 4:04 PM Page 32

The cDate Class 33

if (MonthNo == 1) // January
{

month_off = 0;
if (((YearNo%4) == 0) && ((year_end !=0) ||
((YearNo%400) == 0)))

year_off--; // leap year
}
else if (MonthNo == 2) // February
{

month_off = 3;
if (((YearNo%4) == 0) && ((year_end !=0) ||
((YearNo%400) == 0)))

year_off--; // leap year
}
else if ((MonthNo == 3) || (MonthNo == 11))

month_off = 3;
else if ((MonthNo == 4) || (MonthNo == 7))

month_off = 6;
else if (MonthNo == 5) // May

month_off = 1;
else if (MonthNo == 6) // June

month_off = 4;
else if (MonthNo == 8) // August

month_off = 2;
else if ((MonthNo == 9) || (MonthNo == 12))

month_off = 5;
else if (MonthNo == 10) // October

month_off = 0;

day_off = DayOfMonth % 7; // day offset

sum_calc = (cent_off + year_off + month_off + day_off) % 7;

// Using the calculated number, the remainder gives the day
// of the week
sum_calc %= 7;

return sum_calc;

}

int MonthDays(int month, long year)
{

if (month < 0 || month > 11)
return 0;

int days[]={31,28,31,30,31,30,31,31,30,31,30,31 };
int nDays = days[month];

(continued)

09_57986x ch05.qxd 1/26/05 4:04 PM Page 33

Technique 5: Separating Rules and Data from Code34

These are the non-inline methods for the class.
You can put them in the same file as your origi-
nal source code, or create a new source file and
add them to it.

3. In your code editor, add the code in Listing 5-2
to the source-code file for your application.
Alternatively, you could create a new file
called date.cpp to store all of this information
separately.

LISTING 5-1 (continued)
if (IsLeapYear(year) && month == 1)

nDays ++;
return nDays;

}

public:
cDate(void)
{

// Get today’s date
GetTodaysDate();

}
cDate(int day, int month, long year)
{

if (IsValidDate(day, month, year))
{

MonthNo = month;
DayOfMonth = day;
YearNo = year;
DayOfWeek = ComputeDayOfTheWeek();

}
}
cDate(const cDate& aCopy)
{

YearNo = aCopy.YearNo;
MonthNo = aCopy.MonthNo;
DayOfMonth = aCopy.DayOfMonth;
DayOfWeek = aCopy.DayOfWeek;

}

// Accessors
int Month() { return MonthNo; };
long Year() { return YearNo; };
int Day() { return DayOfMonth; };
int DayOfTheWeek() { return DayOfWeek; };
bool IsValidDate(int day, int month, long year);
bool IsLeapYear(long year);

};

09_57986x ch05.qxd 1/26/05 4:04 PM Page 34

Testing the cDate Class 35

Putting this code into a single object and sharing
that code among various projects that might need
this functionality offers some obvious advantages:

� If the code needs to be changed, for example, to
account for some bug in the leap year calcula-
tion, this change can all be done in one place.

� More importantly, if changes are made to imple-
ment a newer, faster way to calculate the leap
year or the day of the week, or even to add func-
tionality, none of those changes affect the calling
programs in the least. They will still work with
the interface as it stands now.

Testing the cDate Class
After you create a class, it is important to create a
test driver — doing so not only ensures that your
code is correct, but also shows people how to use
your code.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch1_5.cpp.

2. Type the code from Listing 5-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 5-2: NON-INLINE METHODS

bool cDate::IsValidDate(int day, int month, long year)
{

// Is the month valid?
if (month < 0 || month > 11)

return false;
// Is the year valid?
if (year < 0 || year > 9999)

return false;
// Is the number of days valid for this month/year?
if (day < 0 || day > MonthDays(month, year))

return false;

// Must be ok
return true;

}

bool cDate::IsLeapYear(long year)
{

int year_end = year % 100; // year in century
if (((year%4) == 0) && ((year_end !=0) || ((year%400) == 0)))

return true;
return false;

}

09_57986x ch05.qxd 1/26/05 4:04 PM Page 35

Technique 5: Separating Rules and Data from Code36

Note that the numbers shown in the output
may be different on your computer, because
they are somewhat random. You should sim-
ply expect to see very invalid values.

This, then, is the advantage to working with object-
oriented programming in C++: You can make changes
“behind the scenes” without interfering with the
work of others. You make it possible for people to
get access to data and algorithms without having to
struggle with how they’re stored or implemented.
Finally, you can fix or extend the implementations
of your algorithms without requiring your users
to change all their applications that use those
algorithms.

3. Save the source code as a file in your code edi-
tor and close the editor application.

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the program on your favorite operating
system console.

If you have done everything properly, you should
see the following output from the program on the
console window:

$./a.exe
D1: Month: 11 Day: 31 Year: 2004
D2: Month: 2011708128 Day: -1 Year:

2011671585
D3: Month: 8 Day: 7 Year: 2004

LISTING 5-3: THE CDATE CLASS TEST PROGRAM

#include <iostream>
using namespace std;

int main(int argc, char **argv)
{

// Do some testing. First, a valid date
cDate d1(31, 11, 2004);
// Now, an invalid one.
cDate d2(31, 12, 2004);
// Finally, let’s just create a blank one.
cDate d3;

// Print them out
cout << “D1: “ << “Month: “ << d1.Month() << “ Day: “ << d1.Day() << “ Year: “ << d1.Year()
<< endl;
cout << “D2: “ << “Month: “ << d2.Month() << “ Day: “ << d2.Day() << “ Year: “ << d2.Year()
<< endl;
cout << “D3: “ << “Month: “ << d3.Month() << “ Day: “ << d3.Day() << “ Year: “ << d3.Year()
<< endl;

return 0;
}

09_57986x ch05.qxd 1/26/05 4:04 PM Page 36

Part II

Working with the
Pre-Processor

10_57986X pt02.qxd 1/26/05 4:04 PM Page 37

10_57986X pt02.qxd 1/26/05 4:04 PM Page 38

6
Handling Multiple
Operating Systems

The problem with the “standard” C++ header files is that they are
anything but standard. For example, on Microsoft Windows, the
header file for containing all of the “standard” output functions is

stdio.h — whereas on Unix, the header file is unistd.h. Imagine you’re
compiling a program that can be used on either Unix or Microsoft
Windows. The code in all your files might look like this:

#ifdef WIN32
#include <stdio.h>
#else
#ifdef UNIX
#include <unistd.h>
#endif
#endif

This approach to coding is messy and inefficient: If you get a new com-
piler that implements the constants for the operating system differently,
you will have to go through each and every file to update your code.
As an alternative, you could simply include all the files in a single header
file — but that would force you to include a lot of header files that you
really don’t need in many of your program files, which would increase the
file bloat and could conceivably cause problems if you need to override
some of the standard function names or types. Obviously, clutter is not a
very good solution either way.

What if — instead of including the things you don’t want and having to
compile conditionally around them — you could include only the “right”
files for a specific operating system in the first place? That solution
would certainly be closer to ideal. Fortunately, the C++ pre-processor
offers a perfect way to solve this problem. Read on.

Creating the Header File
In order to be able to conditionally include the pieces of the code we
wish to use in our application, we will create a single header file that uti-
lizes pre-compiler defined values to determine the files that are needed.
The following steps show you how to create such a file:

Technique

Save Time By
� Defining a solution that

accommodates multiple
operating systems

� Creating the header file

� Testing the header file

11_57986x ch06.qxd 1/26/05 4:08 PM Page 39

Technique 6: Handling Multiple Operating Systems40

3. Save the source code as a file in the code editor
and close the code-editor application.

Testing the Header File
After you create the class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

Here I show you how to create a test driver that illus-
trates various kinds of input from the user, and
shows how the class is intended to be used.

Always make sure that you test your code in
the scenario most likely for your end user.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch06.cpp.

2. Type the code from Listing 6-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 2-2: THE MAIN PROGRAM

#include “osdefines.h”
#include standard_io_header

#define MAX_VALUES 100
#define STRING(A) #A
#define PASTE(A,B) (A##B)
#define MAKE_SAFE(s) (s==NULL? “NULL” : s)

int main(int argc, char **argv)
{

int x = 100;

// We can stringify a variable name
printf(“The value of %s is %d\n”,

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named, osdefines.h
although you can use whatever you choose. This
file will contain the header information.

2. Type the code from Listing 6-1 into your file,
substituting your own names for the italicized
constants, variables, and filenames.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 6-1: THE HEADER FILE.
#ifndef _osdefines_h_
#define _osdefines_h_

// Remove the comment from the WIN32 define
if you are

// developing on the Microsoft Windows plat-
form. Remove

// the comment on the UNIX define if you are
developing

// on the UNIX platform

#define WIN32
// #define UNIX

// Now, define the header files for the
Windows platform

#ifdef WIN32
#define standard_io_header <stdio.h>
#endif

#ifdef UNIX
#define standard_io_header <unistd.h>
#endif

// Make sure SOMETHING is defined
#ifndef standard_io_header
#error “You must define either WIN32 or

UNIX”
#endif

#endif // _osdefines_h

11_57986x ch06.qxd 1/26/05 4:08 PM Page 40

Testing the Header File 41

STRING(x), x);

int y = 200;
int xy = 0;

// We can use a macro to create a new
variable.

PASTE(x,y) = x*y;

printf(“The value of x = %d\n”, x);
printf(“The value of y = %d\n”, y);

// The problem is that we can’t
stringify pastes.

printf(“The value of %s = %d\n”,
STRING(PASTE(x,y)), xy);

char *s1 = NULL;
char *s2 = “Something”;

printf(“String1 = %s\n”, MAKE_SAFE(s1));
printf(“String2 = %s\n”, MAKE_SAFE(s2));

return 0;
}

3. Save the source file in your code editor and
close the code-editor application.

4. Compile the file with your favorite compiler on
your favorite operating system.

To verify that your header file will not work unless
you define the operating system, comment out both

the WIN32 and Unix lines in the osdefines.h file. Try
compiling it and you should see an error message
like this one:

$ gcc test.cpp
In file included from test.cpp:2:
osdefines.h:23:2: #error “You must define

either WIN32 or UNIX”
test.cpp:3:10: #include expects “FILENAME”

or <FILENAME>

As you can see, the compiler definitely knows that
the operating system is not defined. The next step is
to define one of the two constants, depending on the
operating system of your choice. There are two dif-
ferent ways to define these constants. You can either
put a #define statement at the top of the header file
or you can pass the value into the compiler with the
–D compile flag. Recompiling the program after this
operation should result in no errors — and if that’s
the case, you know the proper header file is now
being included!

This technique is very easy to implement —
and very powerful when you’re working with
multiple operating systems, compilers, or even
libraries. Just keep all system-related data in
one header file, and allow the pre-processor to
do the rest of your work for you. It is also very
valuable, because it allows you to give header
files really meaningful names, rather than
stdio.h. What, exactly, is a stdio (an s-t-d-i-
o?) anyway?

11_57986x ch06.qxd 1/26/05 4:08 PM Page 41

7
Mastering the Evils
of Asserts

It’s hard to talk about the C++ pre-processor without talking about the
assert macro. This particular macro is used to test a given condition —
and, if the condition is not logically true, to print out an error message

and exit the program.

Here’s where you can get (ahem) assertive with the problem of testing
for problems, so a quick look at asserts is in order, followed by a simple
technique for using them.

The Assert Problem
The purpose of an assert statement is to check for a problem at run-
time. Assert statements have value during the initial debugging and vali-
dation of code, but they have limited value once the program is out in the
field. For this reason, you should put in enough assert statements to be
sure that the tests of your system will reveal all of the potential problems
that you should check for and handle at run-time. Let’s look at a simple
example of using an assert call in your program.

1. In the code editor of your choice, create a new file to hold the code
for the source file of the technique.

In this example, the file is named ch07.cpp, although you can use
whatever you choose. This file will contain the source code for our
example.

2. Type the code in Listing 7-1 into your file, substituting your own
names for the italicized constants, variables, and filenames.

Better yet, copy the code from the source file on this book’s compan-
ion Web site.

Save Time By
� Defining the problems

asserts can cause

� Compiling with asserts

� Fixing assert problems

Technique

12_57986x ch07.qxd 1/26/05 4:10 PM Page 42

The Assert Problem 43

LISTING 7-1: USING ASSERTS

#include “stdio.h”
#include “assert.h”

int main(int argc, char **argv)
{

assert(argc > 1);
printf(“Argument 1 = %s\n”, argv[1]);
return 0;

}

3. Save the source-code file and close the code
editor.

4. Compile the source file, using your favorite
compiler on your favorite operating system.

If you run this program with no arguments, you
will find that it exits abnormally and displays the
following error message:

$./a.exe
assertion “argc > 1” failed: file

“ch07a.cpp”, line 6
Aborted (core dumped)

As you can see, the assert macro was triggered
properly, and exited the program, which is the
expected behavior of the function when it fails.
Of course, this isn’t exactly what you would nor-
mally want the program to do when you fail to
enter a value, but it does illustrate the source of
the error.

Crashing a program intentionally, no matter
how appealing to the programmer, is no way
to deal with the user and will cost you time
and effort when dealing with customer sup-
port and technical debugging. Save yourself
the time up front and deal with the problem
correctly instead of aborting the application
when an exceptional condition arises.

5. Recompile the source file with your favorite
compiler, using the NDEBUG definition on the
command line.

It is not simply that using an assert to exit a pro-
gram is ugly. Well, okay, it is, but the worst part
is that many compiler environments only define
the assert macro when the program is compiled
in debugging mode. In effect, the assert macro
switches into non-operation (yep, off) when the
program is compiled for optimized running. With
the gcc compiler, you optimize things by compil-
ing with the –DNDEBUG compiler switch. If you
compile the program given here with that switch
set, however, you get a very different set of
output:

$./a.exe
Argument 1 = (null)

The above is the output when you run the pro-
gram after compiling with the –DNDEBUG flag for
the compiler. As you can see, it is very different
from the case where the assert macro is enabled.

Note that there was no argument supplied to the
program, so we are actually stepping all over
memory at this point. Since the array of pointers
is filled with the arguments to the application, we
are restricted to the number of arguments passed
in. If nothing is passed into the program, there
will be nothing in the array of arguments, and the
pointers in the argv array will be pointing at
garbage. Fortunately, we didn’t try to do anything
with the pointer except print it out, but it could
easily have caused a program crash of its own.

Imagine if this code had made it into a produc-
tion system. The first time that an optimized
(often called a “release”) build was created, the
program would crash as soon as the user ran it
without giving the program any arguments on
the command line. Obviously, this is not an opti-
mal solution when you are working in the real
world. In the next section, I show you how to
address this problem.

12_57986x ch07.qxd 1/26/05 4:10 PM Page 43

Technique 7: Mastering the Evils of Asserts44

not, the offending statement that would potentially
crash the program is skipped. It’s hard, and a little
sad, to tell you how many programs were shipped
into the world (over the last twenty years or so) con-
taining functions like this:

int func(char *s)
{
assert(s != NULL);
strcpy(myBuffer, s);
}

This function is intended to copy an input string into
a buffer that is supplied by the programmer. That
buffer has a certain size, but we are not checking for
the maximum allowable number of characters in the
input string. If the number of characters coming in is
bigger than the number of characters in the
myBuffer array, it will cause problems.

As you can imagine, this causes a lot of problems in
the real world, because memory that does not
belong to the application is being used and assigned
values. Asserts are very useful for defining test
cases, trapping exceptional errors that you know
could happen but shouldn’t, and finding problems
that you really didn’t expect to see happen. The
nicest thing about asserts is that after you find the
problem that it indicates, generally you can use
your debugger to figure out exactly what caused the
problem — and usually the best approach is to use a
stack-trace mechanism. In Technique 62, “Building
Tracing into Your Applications,” I show you how to
build a mechanism like this into your application so
that you can find problems like this at run-time.

Always run your program through a complete
test suite, testing for all possible asserts, in an
optimized environment. That way, you know
the assert calls won’t hurt anything when you
get the program into the real world.

Fixing the Assert Problem
Assert macros do have value — especially when
you’re tracking down particularly annoying prob-
lems. By littering your code liberally with asserts,
you can track down conditions you did not expect.
However, those same asserts won’t let you simply
ignore those pesky conditions you find. To fix the
problem, the relevant portion of Listing 7-1 should
be rewritten. The following step shows you how.
(Note that we are leaving in the assert for debugging
purposes — and handling the error appropriately at
the same time.)

1. Modify the source code for the test application
as in Listing 7-2.

In this case, we called the original source code
file ch07.cpp.

LISTING 7-2: FIXING THE ASSERTS PROBLEM

#include “stdio.h”
#include “assert.h”

int main(int argc, char **argv)
{

assert(argc > 1);
if (argc > 1)

printf(“Argument 1 = %s\n”, argv[1]
);
return 0;

}

What is the difference here? Obviously, if you compile
the program in debug (that is, non-optimized) mode
and run it with no arguments, the assert is triggered
and the program exits, kicking out an error statement
as before. If you compile in optimized mode, however,
the assert is skipped and the program tests to see
whether there are enough arguments to process. If

12_57986x ch07.qxd 1/26/05 4:10 PM Page 44

8
Using const Instead
of #define

Throughout this book, I often use the #define statement to create
macros and constant values for use in my programs. It’s a useful
approach — even so, there are enough downsides that the C++

standards group chose to create a new way to define constants in your
application: the const statement. The const statement is used in the
following manner:

const int MaxValues = 100;

If this looks familiar, it’s a lot like the way I’ve been using the #define
statement:

#define MAX_VALUES 100

The difference is that the const construct is defined at the compiler level,
rather than at the pre-processor level. With const, the compiler can better
optimize values, and can perform type-safe checking.

Here’s an example. First, here’s how the #define method works. Suppose
I write a definition like this:

#define NoValues 0

and then write a C++ statement that says

char *sValues = NoValues;

The statement will compile (although some compilers may issue a warning
about an unsafe conversion) because the NoValues declaration equates to
a string value of NULL. So far, so good — but suppose I now change that
value by defining the following (note that any non-null value would illus-
trate the problem the same way):

#define NoValues -99

The behavior of the sValues assignment is unpredictable. Some compilers
will allow it, assigning a very strange character (whatever –99 is in the
character set you are using) to the string. Other compilers will not allow

Technique

Save Time By
� Comparing #define

statements to const
statements

� Using the const
statement

� Understanding errors
caused by the #define
statement

� Resolving those errors

13_57986x ch08.qxd 1/26/05 4:11 PM Page 45

Technique 8: Using const Instead of #define46

2. Type the code in Listing 8-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

Note that in this listing, you can see the effects of
both the #define version of the statement and the
const version of the statement. The compiler will
interpret them differently, as we will see shortly.

LISTING 8-1: USING CONSTANTS

#include <stdio.h>

const int MaxValues = 100;
#define MAX_VALUES 100; � 1

int main(int argc, char **argv)
{

int myArray[MaxValues];
int myOtherArray[MAX_VALUES];

for (int i=0; i<MaxValues; ++i)
myArray[i] = i;

for (int i=0; i<MAX_VALUES; ++i)
myOtherArray[i] = i;

return 0;
}

3. Compile the application, using your favorite
compiler on your favorite operating system.

Compiling this ordinary-looking program, you will
get the following error messages. (This is how it
looks on my version of the gcc compiler; yours
might look slightly different.)

$ gcc ch08.cpp
ch08.cpp: In function `int main(int,

char**)’:
ch08.cpp:9: error: syntax error before `;’

token
ch08.cpp:13: error: syntax error before

`;’ token
ch08.cpp:14: error: `myOtherArray’ unde-

clared (first use this function)
ch08.cpp:14: error: (Each undeclared iden-

tifier is reported only once for each
function it appears in.)

it and will complain bitterly, giving you strange errors
to interpret and correct. Either way, the outcome is
unpleasant.

Now for the const method. If you wrote

const char *NoValues = -99;

then you would immediately see how the compiler
reacted (by generating a compile error) at the
moment you defined the constant. The const con-
struct is type-safe — you give it a type, and can assign
it only to things of the same, or compatible, types; it
won’t accept anything else, so its consistency is safe
from disruption.

One other compelling reason to use the const con-
struct instead of the #define construct is that the
const construct is a legitimate C++ statement that
must compile properly on its own. The #define con-
struct is a pre-processor statement — literally
pasted into the code by the C++ pre-processor wher-
ever the statement is found. That arrangement can
lead to some very strange problems. For example,
when a string that is enclosed in quotes is pasted
into a given position in the code, the compiler may
interpret the quotation marks as enclosing the code
around it as well. This may have the effect of com-
menting out code by making it a literal string rather
than a code string.

Using the const Construct
The C++ standard provides a method for fixing the
problems caused by the #define statement in the
pre-processor. This statement is the const state-
ment, which is handled by the compiler, not the pre-
processor, and therefore makes your code easier to
understand and debug.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch08.cpp,
although you can use whatever you choose.

13_57986x ch08.qxd 1/26/05 4:11 PM Page 46

Fixing the Errors 47

The next section describes how to correct these
errors.

Identifying the Errors
Looking at the lines that the errors appear on, it is
quite unclear what the problem might be. The first
line reference is marked with the � 1 symbol.

This certainly looks like a valid line of code — what
could the problem be? The answer lies not with the
compiler but with the pre-processor. Remember, the
pre-processor takes everything that follows the
token you define (on the #define line) and faithfully
pastes it into the code wherever it finds the token
later on. In this case, after the paste occurs, the line
itself is converted into

int myOtherArray[100;];

You can save yourself a lot of time, effort, and
trouble by using the proper parts of the lan-
guage in the proper places. The #define
mechanism is wonderful for creating macros,
or even for defining constant strings. When it
comes to things that are really constant values,
use the proper syntax, which is the const
keyword.

Note that extra semicolon in the middle of the array
definition. That’s not legal in C++, and will cause
errors. But rather than pointing at the “real” offending
line, which is the #define with a semi-colon at the
end, the compiler gives you a confusing error about
a line that looks just fine.

The #define definition may cause errors, but the
const definition of MaxValues has no such problem.
What it provides is simply a definition of a value —
and you can then use that value anywhere in the
program that a literal value or #define constant can
be used.

The primary advantage of the constant is that
it will always be evaluated properly.

Fixing the Errors
How do we fix these problems in the compiler so
that the code does what we want? Let’s take a look
at some ways in which you can make the code com-
pile and do what you intended, instead of letting the
compiler guess incorrectly at what you want.

1. Reopen the source file in your favorite code
editor.

2. After the file is open, modify the existing pro-
gram to fix the compilation errors, as follows.

Note that this code replaces the previous code
listing, it does not get added to it.

int main(int argc, char **argv)
{

int xVal = 10;
int myArray[xVal];

for (int i=0; i<xVal; ++i)
myArray[i] = i;

return 0;
}

There is a danger with using this approach.
Consider the following:

int xVal;
int myArray[xVal];

Always initialize all variables in your code,
even if you don’t think you will need them.

In the non-optimized version of the code, xVal is
assigned a value of 0 — which allows you to create
an array with 0 elements in it. The trouble starts
when you run the optimized version: The value of
xVal is undetermined, and this code will likely cause
a program crash. Try not to do things like this. The
best way to fix things like this is to set the compiler
warning level to its highest, which will detect unini-
tialized variables that are used.

13_57986x ch08.qxd 1/26/05 4:11 PM Page 47

9
Macros and Why
Not to Use Them

The pre-processor and macros are useful things, but don’t go over-
board in their use. Aside from the obvious possible disaster (the
pre-processor goes berserk and replaces any code in your applica-

tion with whatever resides in the macro), macros often have side effects
that are not clear when they’re invoked. Unlike functions — whose side
effects can be detected in the debugger — a macro has no such debug-
ging functionality. Because the pre-processor “copies” the macro’s code
into your application, the debugger really doesn’t understand how the
macro works. And even though macros allow you to avoid the overhead
of pushing data onto the stack and popping it off to invoke a function, the
macro increases code size by duplicating the same block of code every
time it’s used.

Of course, these reasons by themselves aren’t enough to make program-
mers want to avoid using macros. There are much better reasons. For
example, consider the min (for “minimum”) macro, which many programs
define like this:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

Suppose you use the min macro with an argument that does something
else — say, like this —

next = min (x + y, func(z));

The macro expands as follows:

next = ((x + y) < (func(z)) ? (x + y) : (func(z)));

where x + y replaces X and func(z) replaces Y.

In C++ programming, macros are generally a bad idea unless you are
simply tired of typing the same code over and over. Think of them as
a keyboard shortcut instead of as a block of code and you will save a
lot of time debugging them.

Save Time By
� Understanding the

drawbacks of macros

� Using functions instead
of macros

� Avoiding problems with
string macros

� Determining errors when
using macros

� Using macros
appropriately

Technique

14_57986x ch09.qxd 1/26/05 4:11 PM Page 48

Initiating a Function with a String Macro — Almost 49

use strdup because it always duplicates the string
entirely. Further, assume that in order to conserve
memory, you want to remove the original string after
copying. This might be done to shrink a string, per-
haps, or to make sure something always fits in a par-
ticular database field. The following steps show how
to create code that does this handy task — imple-
menting it as a macro and then as a function to see
what the issues with each might be.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch09.cpp,
although you can use whatever you choose.

2. Type the code in Listing 9-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 9-1: THE MACRO FILE

#include <stdio.h>
#include <string.h>

// This will be our macro version
#define COPY_AND_TRUNC(ns, s) \

if (strlen(s) > 20) \
{ \

ns = new char[20]; \
memset(ns, 0, 20); \
strncpy(ns, s, 20-1); \

} \
else \
{ \

ns = new char[strlen(s)]; \
memset(ns, 0, strlen(s)); \
strcpy(ns, s); \

} \
delete s;

int main(int argc, char **argv)
{

char *s = new char[80];
strcpy(s, “This is a really long string
to test something”);
char *ns = NULL;
COPY_AND_TRUNC(ns, s);

(continued)

Now, this might not seem like a bad thing. But what
if the func function has some side effect that occurs
when it is called more than once? The side effect
would not be immediately apparent from reading the
code that shows the function being called twice. But
a programmer debugging your program might be
stunned if (for example) a function func cropped up
looking like this, because it would mean that the input
value was being changed not once, as it appears, but
twice:

int func(int &x)
{

x *= 2;
return x;

}

Obviously, this function accepts a single integer
argument by reference. It then multiples this argu-
ment by two and returns it. What is the problem
here? Well, because the argument is passed by refer-
ence, the original argument is changed. This out-
come may be what was intended, but it can also
cause problems, as in the case of the min macro.
Instead of having the function return twice the value
and compare it, we are actually looking at it com-
pared to four times the argument. You can see from
the expanded version of the macro that z will be
passed into the function two times, and since the
function takes its argument by reference, it will be
modified in the main program This is very unlikely
to be what the programmer originally intended.

Initiating a Function with a
String Macro — Almost
Macro issues become subtler when you’re allocating
and copying strings — which programmers do in
C++ all the time. Here’s the usual scenario: You have
an input string, want to make a copy of it, and store
the result in another string. A library function, called
strdup, does this exact thing. But suppose that you
want to copy only a certain number of bytes of
the original string into your new string. You couldn’t

14_57986x ch09.qxd 1/26/05 4:11 PM Page 49

Technique 9: Macros and Why Not to Use Them50

LISTING 9-1 (continued)
printf(“New string: [%s]\n”, ns);

char *s2 = new char[80];
strcpy(s2, “This is a really long
string to test something”);
COPY_AND_TRUNC(s2, s2);
printf(“New string: [%s]\n”, ns);
return 0;

}

Note that you can create a multiple line macro by
using the backslash (‘\’) character at the end of
the previous line. Doing so expands the macro
until it’s almost a complete function.

3. Compile the program with your favorite com-
piler on your favorite operating system.

4. Run the program on your favorite operating
system.

If you’ve done everything properly, you will see
the following output:

$./a.exe
New string: [This is a really lo]
New string: [(null)]

Fixing What Went Wrong
with the Macro
What happened here? The output of the last function
call should have been the same as the first one! This
is a serious problem that can be traced to a side effect
of the macro. Because the procedure didn’t check to
see whether input and output were the same, you
cannot safely delete the character-pointer buffer
that you didn’t allocate. However, by following the
steps given here, you can rewrite this macro as an
equivalent — but safer — function.

1. Reopen the source file in your code editor.

2. Make changes to the source code as shown in
Listing 9-2. Note that the lines to be modified
are shown at � 1 and � 2. The blocks of code
shown here should be added.

LISTING 9-2: THE UPDATED MACRO FILE

#include <stdio.h>
#include <string.h>

// This will be our macro version
#define COPY_AND_TRUNC(ns, s) \

if (strlen(s) > 20) \
{ \

ns = new char[20]; \
memset(ns, 0, 20); \
strncpy(ns, s, 20-1); \

} \
else \
{ \

ns = new char[strlen(s)]; \
memset(ns, 0, strlen(s)); \
strcpy(ns, s); \

} \
delete s; \
s = NULL;

char *copy_and_truncate(char *& s) � 1
{

char *temp = NULL;
if (strlen(s) > 20)
{

temp = new char[20];
memset(temp, 0, 20);
strncpy(temp, s, 20-1);

}
else
{

temp = new char[strlen(s)];
memset(temp, 0, strlen(s));
strcpy(temp, s);

}

delete s;
s = NULL;
return temp;

}

int main(int argc, char **argv)
{

char *s = new char[80];
strcpy(s, “This is a really long string
to test something”);

14_57986x ch09.qxd 1/26/05 4:11 PM Page 50

Using Macros Appropriately 51

tion, I recommend choosing functions for anything
but the very simplest macros. The function shown in
the modified code causes no problems, whereas the
macros in the initial listing do. This should illustrate
the problems caused unintentionally by macros.

Using Macros Appropriately
What are macros good for, then? Remember, a macro
is nothing more (and nothing less) than syntactical
sugar; it’s easy to wind up with too much of a good
thing. Using a heap of macros may make reading
your coding easier, but you should never modify
your code itself with a macro. For example, if you
have a particularly complex expression — such as
(*iter).c_str() — which can occur when you’re
using the Standard Template Library (STL) in C++ —
you could create a macro that says:

#define PTR(x) (*x)

Then you can write PTR(x).c_str(), and however
often you write it, the definition will be consistent.
This isn’t a complicated example, but it gives you an
idea of when and when not to use macros in your
C++ applications. The macro is straightforward, has
no side effects, and makes the code easier to read
later. These are all good reasons to use a macro.

If you are trying to generalize a block of code,
use templates instead of macros. Your finished
source code is more compact that way, and
debugging considerations are easier.

char *ns = NULL;
COPY_AND_TRUNC(ns, s);
printf(“New string: [%s]\n”, ns);
char *s2 = new char[80];
strcpy(s2, “This is a really long
string to test something”);
COPY_AND_TRUNC(s2, s2);
printf(“New string: [%s]\n”, s2);
char *s3 = new char[80];
strcpy(s3, “This is a really long
string to test something”);
s3 = copy_and_truncate(s3); � 2
printf(“New string: [%s]\n”, s3);

}

3. Save the source code in your source-code editor
and close the source-code editor application.

4. Compile the program using your favorite com-
piler on your favorite operating system.

If you have done everything properly, this time
you should see the following output in your con-
sole window:

$./a.exe
New string: [This is a really lo]
New string: [(null)]
New string: [This is a really lo]

Note that this time, your function did exactly what
you expected it to do. Not only did you not wipe out
your pointer, you also did not cause the memory
leak that the previous version caused. Okay, imagine
having to hassle with macros like that over and over
just to get your work done. To avoid all that aggrava-

14_57986x ch09.qxd 1/26/05 4:11 PM Page 51

Save Time By
� Using the sizeof

function

� Exploring and understand-
ing the byte sizes of vari-
ous types

� Using sizeof with
pointers

Understanding
sizeof10

The sizeof operator is not technically a part of the pre-processor,
but it should be thought of as one. The sizeof operator, as its
name implies, returns the size, in bytes, of a given piece of informa-

tion in your application. It can be used on basic types — such as int,
long, float, double, or char * — and on objects, classes, and allocated
blocks as well. In fact, anything that is a legitimate type can be passed to
the sizeof function.

The sizeof function is extremely useful. If (for example) you want to allo-
cate a block of memory to hold exactly one specific type of data, you can
use the sizeof function to determine how many bytes you need to allocate,
like this:

int bytes = sizeof(block);
char *newBlock = new char[bytes];
memcpy(newBlock, block, bytes);

This capability is also useful when you’re saving an object into memory
while performing a global undo function. You save the state of the object
each time it’s going to change, and then return it to that saved state by
simply copying the block of memory over it. There are other ways to do
this task, of course, but this one is simple and very extensible.

In the following sections, I show you what sizeof can and cannot do.

Using the sizeof Function
The sizeof function can be valuable in determining system configurations,
sizes of classes, and illustrating many of the internals of the C++ system.
The following steps show you how the sizeof function is used, and how it
can show you something about the internals of your own code:

1. In the code editor of your choice, create a new file to hold the code
for the source file of the technique.

In this example, the file is named ch10.cpp, although you can use
whatever you choose.

Technique

15_57986x ch10.qxd 1/26/05 4:12 PM Page 52

Using the sizeof Function 53

2. Type the code from Listing 10-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 10-1: THE SIZEOF PROGRAM

#include <stdio.h>
#include <string>

class Foo
{
public:

Foo() {};
~Foo() {};

};

class Bar
{
public:

Bar() {};
virtual ~Bar() {};

};

class Full
{

int x;
double y;

public:
Full()
{
}
virtual ~Full()
{
}

};

class Derived : public Foo
{
public:

Derived() {};
~Derived() {};

};

int main()
{

int x = 0;
long y = 0;
float z = 0;
double d = 0.0;
std::string s = “hello”;

// Basic types

printf(“size of char: %d\n”,
sizeof(char));
printf(“size of char *: %d\n”,
sizeof(char *));
printf(“size of int: %d\n”, sizeof(x));
printf(“size of long: %d\n”, sizeof(y));
printf(“size of float: %d\n”,
sizeof(z));
printf(“size of double: %d\n”,
sizeof(d));

printf(“size of string: %d\n”, sizeof(s)
);
printf(“size of Foo: %d\n”,
sizeof(Foo));
printf(“size of Bar: %d\n”,
sizeof(Bar));
printf(“size of Full: %d\n”,
sizeof(Full));
printf(“size of Derived: %d\n”,
sizeof(Derived));

}

3. Save the source code as a file in the code editor
and then close the editor application.

4. Compile the program, using your favorite com-
piler on your favorite operating system.

5. Run the program.

If you have done everything properly, you should
see the following output in your console window:

$./a.exe
size of char: 1
size of char *: 4
size of int: 4
size of long: 4
size of float: 4
size of double: 8
size of string: 4
size of Foo: 1
size of Bar: 4
size of Full: 16
size of Derived: 1

15_57986x ch10.qxd 1/26/05 4:12 PM Page 53

Technique 10: Understanding sizeof54

required to return at least 1 byte for every class. This
is to ensure the address of one object will never be the
same as the address of another object. If C++ permit-
ted objects to have zero size, the compiler wouldn’t
be forced to assign those objects a new address in
memory. To illustrate, if I wrote the following:

Foo f1;
Foo f2;

the compiler would be free to make both of these
objects point at the same location in memory. This is
not desirable, even if neither object had any memory
allocated to it. Having two objects with the same loca-
tion would break too many standard library functions.
Any function that compared source and destination
(for example) would be broken, even if that breakage
caused no real harm. The reason for this is that com-
parison is done by looking at the addresses the two
pointers occupy in memory. If the two addresses are
the same, the assumption is that what they point at is
the same. If two objects have no data in them, but
occupy the same position in memory, they are not the
same, even if they seem to be.

The Bar class also contains no member variables,
but contains a virtual function, and thus pushes the
number of allocated bytes to 4. That way of working
suggests that there is something very physical about
virtual functions, and that you have to incur a mem-
ory cost to use that feature.

Even in programming, there is no such
thing as a free lunch.

The Full class contains several member variables —
a double that takes up 8 bytes, and an integer that
takes up 4 — and yet it has 16 allocated bytes.
Where do the other 4 bytes come from? You guessed
it: from the infamous virtual table, which is created
by that virtual destructor. What does this tell us?
Even if you don’t have a “normal” virtual method,
having a virtual destructor still creates a v-table
entry — and that means 4 more bytes in the
allocation.

You can see from the output the number of bytes
that each of the elements we print up occupy in
memory for this program. There are no real sur-
prises here, except for the size of the classes. Let’s
take a look at what these results mean.

Evaluating the Results
There are some interesting conclusions to be made
from this output. For example, although some of the
results are not surprising at all (for instance, that the
size of a character field is 1 byte), some surprises
crop up — for example, the size of a character
pointer is the same as any other pointer, which turns
out to be the size of a long. That means the maxi-
mum allowable number of bytes you can allocate
using standard pointers is 4 bytes worth — 32 bits.
(That’s why Microsoft Windows is a 32-bit operating
system. But you knew that.)

You can save a lot of debugging time and
design effort by remembering one handy rule:
Always check the size of the values you are
working with. Rather than hard-code into your
application numbers specifically for reading
bytes, words, and floating-point values, use the
sizeof function to get the correct sizes for
the compiler, platform, and operating system
you are using.

The next surprise is lurking among the objects in the
list: The size of a string is shown as 4 bytes, which
can’t possibly be right — the string it’s storing is
longer than that. How can that be? The answer is that
the sizeof function returns the number of bytes
directly allocated by the object — that is, the number
of bytes occupied by the private and public variables
in the object, plus a few bytes for virtual functions
(such as those in the Foo and Bar classes). Notice
that even though the Bar class has no member vari-
ables, it still takes up 4 bytes because it needs the
virtual function table (or v-table) discussed earlier in
Technique 2. Now, why does the Foo class take up 1
byte, when it has no virtual methods and no member
variables? The answer is that the sizeof function is

15_57986x ch10.qxd 1/26/05 4:12 PM Page 54

Using sizeof with Pointers 55

The Derived class is puzzling — it looks like it ought
to eat up more size than it does. When you look care-
fully at this class, however, you realize that it contains
no virtual function, and neither does the base class
from which it is derived. So once again, here is an
example of an empty class that takes up a single byte.

Using sizeof with Pointers
No discussion of the sizeof function would be quite
complete without a look at a common mistake that
C++ programmers make when they use the function.
Consider the following little program:

#include <stdio.h>
#include <stdlib.h>

const char arr[] = “hello”;
const char *cp = arr;

main(){

printf(“Size of array %d\n”,
sizeof(arr));

printf(“Size of pointer %dn”,
sizeof(cp));

return(0);
}

Because one statement outputs the size of an array
and the other the size of a pointer to that array, you
would think that the two printf statements in this
little program would display the same values. But
they do not. In fact, if you take a look at the output,
it looks like this:

Size of array 6
Size of pointer 4

The C++ language offers no way to get the
size of an array from a single pointer. If
you try to use the sizeof operator for
that purpose, it will return a valid result
but won’t give you what you want.

The size of an array is known at compile time and
can be displayed by the sizeof function. On the
other hand, a pointer is always the size of a pointer,
no matter what it’s pointing at. Furthermore, if you
try to return the size of an array by including the
statement sizeof(*cp) where cp is the array, you’ll
find that the answer is (again) not 6 but 1. Oops.
Why is this? Because the expression *cp evaluates to
a character, and the size of a single character is
always one byte. Be very careful if you’re trying to
use the sizeof function on pointers — especially if
you want to use the result to represent the size of
what’s being pointed at.

15_57986x ch10.qxd 1/26/05 4:12 PM Page 55

15_57986x ch10.qxd 1/26/05 4:12 PM Page 56

Part III

Types

16_57986X pt03.qxd 1/26/05 4:13 PM Page 57

16_57986X pt03.qxd 1/26/05 4:13 PM Page 58

Save Time By
� Removing duplicated

code with self-created
basic types

� Checking ranges in
integer values

� Testing self-created basic
types

Creating Your Own
Basic Types11

In C++, types are separated into two regions, basic and user-defined.
Basic types are those defined by the language, which generally are
modeled on types supported directly by the computer hardware.

These types include integers, floating point numbers, and characters.
Advanced types, such as strings, structures, and classes, fall into the
user-defined region. In this technique, we examine the first region, the
basic type. I save the advanced types for the next technique.

How many times have you written a program that required a basic inte-
ger variable to be constrained within a given range? You end up duplicat-
ing the same code over and over throughout your application, in blocks
that look like this:

int value = get_a_value();
if (value < 0 || value > 10)
{

printf(“invalid input, try again\n”);
return false;

}

Of course, after you have shoehorned all these blocks into the code, your
boss comes along and tells you that the folks in the accounting depart-
ment have decided that ten is no longer the magic number — now it’s 12.
So, you modify all of the code, learning something in the process —
namely that you’re better off using constants in this situation than vari-
ables. Your modifications look like this:

const int maxValue = 12;

int value = get_a_value();
if (value < 0 || value > maxValue)
{

printf(“invalid input, try again\n”);
return false;

}

You check the code into your source-code repository and sure enough,
the boss comes into your office again. The accountants have requested
another change. While the maximum allowable value is still 12, zeroes

Technique

17_57986x ch11.qxd 1/26/05 4:13 PM Page 59

Technique 11: Creating Your Own Basic Types60

are not allowed in the accounting system. The small-
est value you are permitted to enter is 1. Grumbling,
you rewrite the code one more time (taking advan-
tage of what you have learned in the first two experi-
ences) to create something slightly more generic:

const int minValue = 1;
const int maxValue = 12;

int value = get_a_value();
if (value < minValue || value > maxValue

)
{

printf(“invalid input, try again\n”);
return false;

}

Implementing the Range Class
In this technique, I show you a more general way to
solve this problem — by using a C++ class. The idea is
to just extend the basic type of int to allow for mini-
mum and maximum values. The problem, of course, is
that I still want to be able to use other types (such as
integers) for comparisons and assignments and the
like. The class created in the following steps handles
minimum and maximum values, and restricts input
within those values.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch11.cpp,
although you can use whatever you choose.

2. Type the code from Listing 11-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 11-1: THE RANGE CLASS

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

class IntRange
{

private:
int iMin;
int iMax;
int iValue;

virtual void SetValue(int value)
{

if (value < GetMin())
value = GetMin();

else
if (value > GetMax())

value = GetMax();
iValue = value;

}

public:
IntRange(void)
{

iMin = 0;
iMax = INT_MAX;
iValue = iMin;

}
IntRange(int min, int max)
{

if (min <= max)
{

iMin = min;
iMax = max;

}
else
{

iMin = max;
iMax = min;

}
iValue = iMin;

}
IntRange(int min, int max, int value)
{

if (min <= max)
{

iMin = min;
iMax = max;

}
else
{

iMin = max;
iMax = min;

}
SetValue(value);

}
IntRange(const IntRange& aCopy)
{

17_57986x ch11.qxd 1/26/05 4:13 PM Page 60

Implementing the Range Class 61

store your data, sure that the value in the object
will always be valid. That’s a comfort, and it
means there’s no longer any reason to write code
like the following:

int x = get_a_value();
if (x < min || x > max)

do_some_error();

Instead, I can simply write

IntRange myRangeObj(min, max);
myRangeObj = val;
int x = myRangeObj.GetValue();

I don’t have to check the returned value, because
the code requires that it be correct. There is
something else that I can do with this class, how-
ever, and that is to define external operators for
it. Being able to define an external operator is
extremely beneficial because it allows users with
no access to the source code of the class to cre-
ate new ways to use the class. This is something
absolutely unique to C++; no previous language
has anything like it. Without having access to the
source code for this class, we can override basic
operations (such as less-than, greater-than, or
equal-to) in our own code. The ability to add
external operators makes it possible to add
things the original programmer did not think of
for the class operations.

3. Add the code from Listing 11-2 to your source-
code file. This code could easily be added at
a later date, in a separate file, by a separate
programmer.

LISTING 11-2: RANGE CLASS OPERATORS

bool operator<(const IntRange& aRange, int
aValue)

{
return aRange.GetValue() < aValue;

}
bool operator==(const IntRange& aRange, int

aValue)
{

return aRange.GetValue() == aValue;
}

iMin = aCopy.iMin;
iMax = aCopy.iMax;
iValue = aCopy.iValue;

}
virtual ~IntRange()
{
}
virtual int GetMin(void)
{

return iMin;
}
virtual int GetMax(void)
{

return iMax;
}
// Define a few operators
IntRange& operator=(int value)
{

SetValue (value);
return *this;

}
IntRange& operator=(double value)
{

SetValue((int)value);
return *this;

}

virtual int GetValue(void) const
{

return iValue;
}};

If you examine this code, you will find that it
verifies that the value of an integer variable falls
within a certain range. You can define your own
minimum and maximum values for the range, and
the class will ensure that any value assigned to
that variable falls inside that range.

The interesting part of this class is the last part,
comprised of the lines below the Define a few
operators comment. This is where the power of
C++’s extensibility shines. I have defined assign-
ment operators so that our class can be used with
the built-in types int and double. Obviously, I
could add additional types here, including strings
and the like, but this is enough for right now. With
this power, you can now use the IntRange class to

17_57986x ch11.qxd 1/26/05 4:13 PM Page 61

Technique 11: Creating Your Own Basic Types62

4. Save your source-code file and close the code
editor.

Testing the Range Class
After you create a Range class, you should create a
test driver that not only ensures that your code is
correct, but also shows people how to use your code.

Here I show you how to create a test driver that
validates various kinds of input from the user, and
illustrates how the Range class, as defined in the pre-
vious section, is intended to be used.

1. In the code editor of your choice, open the
existing file to hold the code for your test
program.

In this example, I named the test program
ch11_1.cpp.

2. Type the code from Listing 11-3 into your file.

Better yet, copy the code from the source file
in the ch11 directory of this book’s companion
Web site.

LISTING 11-2: THE RANGE CLASS TEST DRIVER

int main(int argc, char **argv)
{

IntRange i20(0,20);

for (int i=1; i<argc; ++i)
{

i20 = atoi(argv[i]);
printf(“Setting value to %s, value
is now %d\n”, argv[i],
i20.GetValue());

}
i20 = 13;
if (i20 < 19)

printf(“The value is under 19\n”);
else

printf(“The value is over 19\n”);

if (i20 < 10)
printf(“The value is under 10\n”);

else
printf(“The value is over 10\n”);

if (i20 == 13)
printf(“The value is 13\n”);

else
printf(“The value is NOT 13\n”);

return 0;
}

3. Compile and run the application in the operat-
ing system of your choice.

If you have done everything right, you should
see the following output in the shell window on
your system:

$./a.exe 1 2 -1 30
Setting value to 1, value is now 1
Setting value to 2, value is now 2
Setting value to -1, value is now 0
Setting value to 30, value is now 20
The value is under 19
The value is over 10
The value is 13

As you can see, the Range class does not allow
the values to be assigned outside of the valid
entries we defined in our source code.

Notice how the Range class can be used just as if
it were a basic type that was a part of the lan-
guage from the very start! This amazingly power-
ful technique lets you do just about anything you
want (in code, that is). It even makes possible
the direct conversion of your own data types
into the base type you are extending, in order to
pass them directly to functions that expect the
basic type.

17_57986x ch11.qxd 1/26/05 4:13 PM Page 62

12
Creating Your
Own Types

Of course, although it is all well and good to create extensions of
built-in types, the real goal of programming in C++ is to create new
types that the language designers never thought about. For exam-

ple, imagine that you need to work with a matrix in your program. A
matrix is simply a two-dimensional array of values. In this technique, I
show you how to create a new type, a Matrix class for use in graphics
calculations. To do so, it pays to remember that users don’t really have
to understand how things work behind the scenes; if they can just use
those new types as if they were a natural part of the language all along,
users are much more likely to use the object and return to it again and
again. For the C++ class system, that means our goal is to make the
object into something that looks, feels, and acts like a basic type such as
integer or float.

Let’s start out with the basics of creating a Matrix class. This class will
allow you (eventually) to do basic matrix algebra — such as adding two
matrices, adding or multiplying a constant to a matrix, and the like. The
best syntax for our Matrix class would be one that closely emulates real-
world matrices — that is, something like this:

Matrix m(10,10);
M[5][5] = 20.0;

This code would define a 10 x 10 matrix and allocate space for it. The ele-
ment at 5,5 would then be set to the value of 20.0, and all other elements
would be set to the value of 0.0 (which is the default). We could, for
example, create a derived class that implemented an identity matrix,
where the diagonal values of the matrix from left to right are set to 1.0
and all other values are set to 0.0.

Immediately, however, we run into a very serious problem. Although it’s
possible — in fact, fairly easy — to override the [] operator for a class, it
is not possible to override the operator [][] (or [][][], or any other
number of levels of indirection for arrays). Given this limitation, how do
we create a class that “looks” like it has a two-dimensional array built
into it — and that you can access? The answer lies in some of the magic

Technique

Save Time By
� Creating types users will

want to use

� Creating a matrix class

� Adding matrices

� Multiplying a matrix by a
scalar value

� Testing your matrix class

18_57986x ch12.qxd 1/26/05 4:14 PM Page 63

Technique 12: Creating Your Own Types64

// Initialize the column
for (int i=0; i<size; ++i)

Columns.insert(Columns.end(),
0.0);
}
Row(const Row& aCopy)
{

std::vector< double >::const_iterator
iter;
for (iter = aCopy.Columns.begin();
iter !=

aCopy.Columns.end(); ++iter)
{

double d = (*iter);
Columns.insert(Columns.end(),

d);
}

}

int size()
{

return Columns.size();
}

double& operator[](int index)
{

if (index < 0 || index > Columns.
size())

throw “Array Index out of
Bounds”;

return Columns[index];
}

};

class Matrix
{
private:

std::vector< Row > Rows;
public:

Matrix (int rows, int cols)
{

for (int i=0; i<rows; ++i)
{

Row r(cols);
Rows.insert(Rows.end(), r);

}
}
Row& operator[](int index)
{

if (index < 0 || index > Rows.
size())

throw “Array Index out of
Bounds”;

of C++. To see how it’s done, begin building the
Matrix class by implementing the ability to treat a
two-dimensional array as if it were a single object.
The next section shows you how.

Creating the Matrix Class
The Matrix class allows us to treat a two-dimensional
array as if it were a single object. This class looks
to the user as if it was a two-dimensional array of
values, but it does error checking and allows the user
to query the class for basic properties, such as the
width and height of the matrix. To do this, the follow-
ing steps show you how to create two separate
classes, one that encapsulates a single row of the
matrix, and one that holds arrays of those rows to
implement the complete matrix.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch12.cpp,
although you can use whatever you choose.

2. Type the code from Listing 12-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

3. Save the source file.

LISTING 12-1: THE MATRIX CLASS

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <vector>

class Row
{
private:

std::vector< double > Columns;
public:

Row(void)
{
}
Row(int size)
{

18_57986x ch12.qxd 1/26/05 4:14 PM Page 64

Matrix Operations 65

return Rows[index];
}

void Print()
{

for (int r=0; r<Rows.size(); ++r)
{

for (int c=0; c<Rows[r].size();
++c)

printf(“ %lf “, Rows[r][c]
);

printf(“\n”);
}

}

int RowCount()
{

return Rows.size();
}
int ColumnCount()
{

if (Rows.size())
return Rows[0].size();

return 0;
}

};

The code in Listing 12-1 actually does almost
nothing — except provide storage space for the
matrix and provide methods for getting at that stor-
age space. In this way, the code is a perfect example
of object-oriented design and programming: The stor-
age is allocated, the space is managed, and the data is
hidden from the user. Otherwise the actual functional-
ity of the object is external to the object (not a good
idea). Note the use of two separate classes to allow
the illusion of multiple array indices. It’s worth a
closer look at the way this sleight of hand works.

When the user invokes the operator [] on the Matrix
class, it really returns a Row object. Of course, this
process is transparent to the user, who thinks that he
or she is simply operating on a given array element
within the matrix. After you obtain a Row element, you
then use the operator [] on that object to return indi-
vidual Column entries in the row.

To the user, it looks like you’re using a two-
dimensional array. This same technique can be used
to implement any number of levels of array you
want. Just replace the double entries in the Column
class with additional Column objects, and you have a
multidimensional array class that can handle virtu-
ally any number of dimensions. Considering how
little work is needed to manage this trick in the
code, it’s pretty impressive work.

Of course, the problem here is that although we do
have the storage management of the matrix data
solved, we don’t actually do anything with it. Its all
very well and good to set individual elements in a
matrix, but what people really want are the opera-
tions that make matrices what they are — addition,
multiplication, and the like. So the real question is,
how do we implement this when we have already
written the class and added it to the system? That’s
where C++ saves our hash by letting us implement
operators outside a class. In fact, we can do things
that the original class designer never even thought
about — with no impact on the original design of the
class, and no need to modify the code that makes up
that class. The next section takes a closer look at an
operator that adds two matrices, and shows you
how to make it work.

Matrix Operations
After we have the basic class in place to implement
the data storage for the matrix, the next step is to
implement the functionality to operate on matrices.
First, let’s add two matrices. The following steps show
you how:

1. Add the code from Listing 12-2 to your source
file (or just grab the code from this book’s
companion Web site):

These operations are outside of the basic function-
ality of the class itself, so they are presented as
separate listings. You could add them to the origi-
nal file, create a new file to hold them, or put them
in your application source code. For simplicity, I
am just tacking them onto the original source file.

18_57986x ch12.qxd 1/26/05 4:14 PM Page 65

Technique 12: Creating Your Own Types66

One problem with operators is that they have no
real way to return errors to the calling program. For
example, when you write:

x = y + z;

there is really no way to determine that an error
occurred. When we add two integers, we can actu-
ally cause all sorts of errors, such as underflows and
overflows, but those are mostly hidden from the
user. For this reason, the only way that we can indi-
cate to the user that there was a problem is to throw
an exception. This is a very hard decision to make in
terms of design, because it raises the possibility of
exceptions in any line where the end user writes
code — as in this example:

Matrix m3 = m1 + m2;

This line could throw an exception — in which case
you’d have to enclose it in a try/catch block — it
could bounce you straight out of your application.
Obviously, adding two matrices doesn’t seem like
the kind of thing you should be worrying about
crashing your application. We could simply return a
blank matrix if the bounds of both matrices were not
the same; that would be another choice, but a more
complicated one. Now you are getting a result you
did not expect from a standard operation. This is
one reason for not using overloaded operators; they
often have side effects that really don’t apply to
“standard” types.

Multiplying a Matrix
by a Scalar Value
As with the addition of two matrices, we can also
multiply a matrix by a scalar value. This operation is
actually easier to code than the addition of two
matrices, but has an additional side effect that’s
worth talking about — in a minute. The first order of
business is to code the operation. To multiply a
matrix by a scalar value, follow these steps:

LISTING 12-2: THE MATRIX OPERATORS

Matrix operator+(Matrix& m1, Matrix& m2)
{

// Here, we need to check that the rows
// and columns of the two are the same.
if (m1.RowCount() != m2.RowCount())

throw “Adding Matrices: Invalid
Rows”;

if (m1.ColumnCount() !=
m2.ColumnCount())
throw “Adding Matrices: Invalid
Columns”;

Matrix m(m1.RowCount(),
m1.ColumnCount());

for (int r=0; r<m1.RowCount(); ++ r)
{

for (int c=0; c<m1.ColumnCount();
++c)

m[r][c] = m1[r][c] + m2[r][c];
}

return m;
}

2. Save the source-code file.

Aside from its actual functionality, this little code
snippet illustrates some important points. First,
because the operator is defined outside the class,
we can only use methods defined as public in the
class when we’re working on the data. Fortunately,
as you can see by the code, those methods are all we
really need. The “rules” for matrix addition are fairly
simple — you just add the same row and column
values for each matrix and put the result into the
output matrix. Note that because we are returning
an object, rather than a reference to an object, we
need to worry about copying the object. If you are
returning a C++ object, it will automatically invoke
the constructor to create the initial object and then
the copy constructor to return a copy of the object.
Fortunately, the copy constructor is defined for the
Matrix class.

18_57986x ch12.qxd 1/26/05 4:14 PM Page 66

Multiplying a Matrix by Scalar Values, Take 2 67

1. Using your code editor, reopen the source-code
file for this technique and add the contents of
Listing 12-3.

LISTING 12-3: SCALAR MULTIPLICATION

Matrix operator*(Matrix& m1, double scalar)
{

Matrix m(m1.RowCount(),
m1.ColumnCount());

for (int r=0; r<m1.RowCount(); ++ r)
{

for (int c=0; c<m1.ColumnCount();
++c)

m[r][c] = m1[r][c] * scalar;
}

return m;
}

2. Save the source-code file.

You can then use this code in your program — for
example, by writing the following line:

Matrix m2 = m1 * 4;

This command will work fine, generating a matrix of
the appropriate size that is the scalar multiple of the
original matrix — and it will multiply all elements by
4. The problem comes in when you try this:

Matrix m2 = 4 * m1;

Oops. You’ve reversed the order of the operands —
and suddenly there’s a problem with the compiler.
You get an error that says

error: no match for ‘operator*’ in ‘4 * m4’
error: candidates are: Matrix

operator*(Matrix&, double)

The reason that you get this error is that the com-
piler takes the 4 * m1 command and translates it to
a call to operator*(int, Matrix& m1). You do not
have this method defined.

This is where the apparent magic of C++ gets tricky:
C++ allows you to define operators for addition of
classes that are as simple to use as adding two
numbers (like 1+ 2). It can handle the simple stuff —
scalar multiplication of integers, for example — and
it understands that numbers can be multiplied in any
order. The problem comes in when you try to apply
that same concept to your own classes. You have to
apply a few tricks of your own; in the next section, I
show you how.

Multiplying a Matrix by Scalar
Values, Take 2
To resolve this, we need to create a new operator,
with virtually the same code, and place the argu-
ments in the opposite order. The following steps
show you how:

1. Using your code editor, reopen the source-code
file for this technique and modify the code as
you see in Listing 12-4.

LISTING 12-4: MATRIX MANIPULATION FUNCTIONS

Matrix scalar_multiplication(Matrix& m1,
double scalar)

{
Matrix m(m1.RowCount(),

m1.ColumnCount());

for (int r=0; r<m1.RowCount(); ++ r)
{

for (int c=0; c<m1.ColumnCount();
++c)

m[r][c] = m1[r][c] * scalar;
}

return m;
}

Matrix operator*(Matrix& m1, double scalar)
{

return scalar_multiplication(m1, scalar
);

}
(continued)

18_57986x ch12.qxd 1/26/05 4:14 PM Page 67

Technique 12: Creating Your Own Types68

1. In the code editor of your choice, open the
existing file to hold the code for your test
program.

In this example, I named the test program
ch12.cpp.

2. Type the code from Listing 12-5 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 12-5: THE MATRIX TEST DRIVER

int main()
{

Matrix m1(5,5);
Matrix m2(5,5);

m1[2][2] = 3; � 1
m2[2][2] = 4;
m2[3][3] = 5;

Matrix m3 = m1 + m2; � 2

printf(“Matrix 1:\n”);
m1.Print();
printf(“Matrix 3:\n”);
m3.Print();

Matrix m4 = m3 * 5; � 3
Matrix m5 = 4 * m4;
printf(“Matrix 4:\n”);
m4.Print();
printf(“Matrix 5:\n”);
m5.Print();

}

3. Compile and run the application in the operat-
ing system of your choice.

If you have done everything right, you should
see the output from Listing 12-6 in the shell win-
dow on your system.

LISTING 12-4 (continued)
Matrix operator*(double scalar, Matrix& m1)
{

return scalar_multiplication(m1, scalar
);

}

Note that this code replaces the existing opera-
tor* that we implemented earlier. Remove the
existing implementation or you will get a dupli-
cate definition error from the compiler for having
two of the same methods defined.

This code allows us to write either:

Matrix m2 = 4 * m1;

Or

Matrix m2 = m1 * 4;

Because the compiler can resolve either order
into a valid method, it will allow you to do both
in your code. Because the actual multiplication
action is the same in either case, we factor out
the code that does the “real” work and call it
from both methods. This refactoring reduces the
total amount of code, and makes it easier to
track down problems.

2. Save the source-code file.

Testing the Matrix Class
After you create a Matrix class, you should create
a test driver that not only ensures that your code is
correct, but also shows people how to use your
code.

Here’s the procedure that creates a test driver that
validates various kinds of input from the user, and
illustrates how the Matrix class is intended to be
used:

18_57986x ch12.qxd 1/26/05 4:14 PM Page 68

Testing the Matrix Class 69

LISTING 12-6: OUTPUT FROM THE MATRIX TEST PROGRAM

$./a.exe
Matrix 1:
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 3.000000 0.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
Matrix 3:
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 7.000000 0.000000

0.000000
0.000000 0.000000 0.000000 5.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
Matrix 4:
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 35.000000 0.000000

0.000000
0.000000 0.000000 0.000000 25.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000

Matrix 5:
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000
0.000000 0.000000 140.000000 0.000000

0.000000
0.000000 0.000000 0.000000 100.000000

0.000000
0.000000 0.000000 0.000000 0.000000

0.000000

As you can see from the above output, we are dis-
playing the individual matrix objects that are cre-
ated in the test program. The output shows that the
first matrix (m1) displays the data values which we
placed into it in the line marked � 1 in the test
driver code. The line marked � 2 shows the addi-
tion of two matrices, which we then display as
Matrix 3. Likewise, the code marked with � 3 indi-
cates the multiplication of a matrix by a scalar value,
which is displayed in the output as Matrix 4. If you
do the math, you will see that all of the output is cor-
rect, indicating that our Matrix class and its manipu-
lation methods are working properly.

As you can see, the matrices display properly and
the math is done correctly. We know our test pro-
gram is correct, and we can use it in the future when
we change things.

18_57986x ch12.qxd 1/26/05 4:14 PM Page 69

Save Time By
� Defining enumerations

� Implementing the
Enumeration class

� Testing the Enumeration
class

Using Enumerations

An enumeration is a language type introduced with the C language,
which has migrated almost untouched into the C++ language.
Enumerations are not true types, as classes are. You can’t define

operators for enumerations, nor can you change the way in which they
behave. As with pre-processor commands, the enumeration command is
really more of a syntactical sugar thing, replacing constant values with
more readable names. It allows you slightly better readability, but does
nothing to change the way your code works. Enumerations allow you to
use meaningful names for values, and allow the compiler to do better
type checking. The downside of an enumeration is that because it is sim-
ply a syntactical replacement for a data value, you can easily fool the
compiler by casting invalid values to the enumerated type.

The basic form of an enumeration looks like this:

enum <name> {
value1[=number],
value2,
value3,
. . .
valuen
} EnumerationTypeName;

where the <name> field is the enumeration type we are creating, the value
parameters are the individual values defined in the enumeration, and
number is an optional starting point to begin numbering the enumerated
values. For example, take a look at this enumeration:

enum color {
Red = 1.
White = 2.
Blue

} ColorType;

In this example, every time the compiler encounters ColorType::Red in
our application, it understands the value to be 1, White would be 2, and
Blue 3 (because the numbers are consecutive unless you specify
otherwise).

13Technique

19_57986x ch13.qxd 1/26/05 4:15 PM Page 70

Implementing the Enumeration Class 71

If enumerations actually do not change the logic of
your code, why would you bother with them? The
primary reason for enumerations is to improve the
readability of your code. To illustrate this, here I
show you a simple technique involving enumera-
tions you can use to make your code a little safer to
use, and a lot easier to understand.

Enumerations are a great way to have the
compiler enforce your valid values on the pro-
grammer. Rather than checking after the fact
to see whether the value is valid, you can let
the compiler check at compile-time to validate
that the input will be within the range you
want. When you specify that a variable is of an
enumerated type, the compiler ensures that
the value is of that type, insisting that it be one
of the values in the enumeration list.

You might notice that enumerations are a simpler
form of the Range validation class we developed in
Technique 11. Enumerations are enforced by the com-
piler, not by your code, and require considerably less
effort to implement than a Range checking class. At the
same time, they are not as robust. Your mileage may
vary, but enumerations are usually used more for read-
ability and maintenance concerns than for validation.

Implementing the Enumeration
Class
An enumeration is normally used when the real-world
object it is modeling has very simple, very discrete
values. The first example that immediately leaps to
mind is a traffic light, which has three possible states:
red, yellow, and green. In the following steps, let’s cre-
ate a simple example using the traffic light metaphor
to illustrate how enumerations work and can be used
in your application.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch13.cpp,
although you can use whatever you choose.

2. Type the code from Listing 13-1 into your file.

Better yet, copy the code you find on this book’s
companion Web site and change the names of the
constants and variables as you choose.

3. Save the source-code file.

LISTING 13-1: THE ENUMERATION PROGRAM

#include <stdio.h>

typedef enum
{

Red = 0,
Yellow,
Green

} TrafficLightColor;

int ChangeLight(int color)
{

switch (color)
{

case 1: // Red
printf(“Changing light to RED. Stop!!\n”);
break;

case 2: // Yellow
printf(“Changing light to YELLOW. Slow down\n”);
break;

case 3: // Green
(continued)

19_57986x ch13.qxd 1/26/05 4:15 PM Page 71

Technique 13: Using Enumerations72

2. Save the source-code file and close the code
editor.

3. Compile and run the application with your
favorite compiler on your favorite operating
system.

If you have done everything right, you should see
the following output on the shell window:

$./a.exe
Invalid light state. Crashing
Changing light to RED. Stop!!

Whenever you use an integer value for input to
a function — and that input value is intended
to be mapped directly to a real-world set of
values — use an enumeration rather than a
simple integer. Remember to use meaningful
names for your enumeration values to help the
application programmers understand what val-
ues they are sending to your functions and
methods. This will save you time and effort and
will make your code more self-documenting,
which is always a good thing.

Testing the Enumeration Class

1. Add the following code to test the enumeration
and validate that it is working properly:

This code could easily be moved to a separate
file. It is placed in one file simply as a conven-
ience. The code illustrates why enumerations are
more type-safe than basic integer types, and why
you might want to use enumerations over the
basic types.

int main(int argc, char **argv)
{

int clr = -1;
ChangeLight(clr);

TrafficLightColor c = Red;
ChangeLightEnum(c);

return 0;
}

LISTING 13-1 (continued)
printf(“Changing light to GREEN. Go for it\n”);
break;

default:
printf(“Invalid light state. Crashing\n”);
return -1;

}
return 0;

}

int ChangeLightEnum(TrafficLightColor color)
{

switch (color)
{

case Red: // Red
printf(“Changing light to RED. Stop!!\n”);
break;

case Yellow: // Yellow
printf(“Changing light to YELLOW. Slow down\n”);
break;

case Green: // Green
printf(“Changing light to GREEN. Go for it\n”);
break;

}
return 0;

}

19_57986x ch13.qxd 1/26/05 4:15 PM Page 72

14
Creating and Using
Structures

One of the most interesting constructs created for the C program-
ming language was the structure. Because it allowed the developer
to group a bunch of related data together, and to pass that data

around to various functions, the C++ struct construct was the beginning
of encapsulation for the language.

When the C++ language was being designed, the structure was the primary
component — in fact, C++ classes are simply extensions of the structure.
The original C++ “compilers” were really translator programs that took C++
code and rewrote it into C, which was then compiled using the standard
compiler for that language. This required that all physical parts of the
classes be able to be implemented in structures. The C++ struct construct,
in fact, is a class in which all members are public.

Structures still exist in C++. In fact, a structure is really just a class that
makes all of its data members public by default. Contrast that with a
standard class, which has all members designated private by default.
There is really no difference between

struct foo {
int x;
int y;

};

and

class foo
{
public:

int x;
int y;

};

Here C++ has anadvantage: You can do more with structures in C++ than
you could in C. Structures can contain constructors and accessor meth-
ods. They can even contain methods that do not operate on the data of the
class itself. You can even have structures derived from other structures.
Although the original C++ compilers converted classes into structures, the

Technique

Save Time By
� Defining structures

� Understanding the
advantages of structures
over classes

� Implementing structures

� Using derived structures

� Interpreting the output of
the structure class

20_57986x ch14.qxd 1/26/05 4:15 PM Page 73

Technique 14: Creating and Using Structures74

int x;
int y;

} POINT;

This will be the “standard” structure as it is
implemented in C. Now, let’s try the same thing
in C++, with a little enhancement to take advan-
tage of what the language offers.

3. Append the following structure definition to
your source-code file, using your favorite code
editor:

typedef struct c_plus_plus_structure
{

int x;
int y;

c_plus_plus_structure()
{

x = 0;
y = 0;

}
} CPP_POINT;

The structure listed in the code above is the same
as the previous one, but it contains a constructor
that will automatically initialize the values within
the structure, an otherwise common oversight
among programmers.

4. Append the following structure definition to
your source-code file, using your favorite code
editor:

typedef struct c_plus_plus_enhanced
{

int x;
int y;

c_plus_plus_enhanced()
{

x = 0;
y = 0;

}
void print()
{
printf(“x = %d\n”, x);
printf(“y = %d\n”, y);
}

} CPP_POINTE;

newer compilers differentiate between the two. A
class is still a struct, but the interpretation is differ-
ent. A C++ struct is no longer completely backward-
compatible with C.

What can’t you do with structures? For one thing,
you can’t have virtual methods. Structures do not
contain predefined v-tables, so they cannot contain a
virtual function. Obviously, that means you can’t
override methods in the “base structure” for a
derived structure. It also means that they cannot
have virtual destructors.

Structures are a great way to use C++ without
drawbacks such as huge overhead from
classes, overloaded operators, and the like. In
addition, because they are fully backward-
compatible with C code, structures provide a
great interface to existing legacy code. By
adding elements like constructors to your
structures for initialization, you can get the
best of the old world and the new. The con-
structor allows you to make sure that all of the
elements of the structure contain valid values
at all times, which was not true of the original
C style structure.

Implementing Structures
In this section, I explore the way to implement struc-
tures in C++, as well as what you can — and can’t —
do with them. In this technique, we will look at the
original C style structure, the enhanced C++ structure
with initialization, and a more complete C++ structure
that contains methods.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch14.cpp,
although you can use whatever you choose.

2. Type the code below into your file.

typedef struct classic_c_structure
{

20_57986x ch14.qxd 1/26/05 4:15 PM Page 74

Interpreting the Output 75

In this case, we have simply extended our C++
structure to have another method that allows us
to dump the data values of the class.

5. Append a derived structure to the file. Enter
the following code into your code editor.

This code will show you how derivation is han-
dled in C++ for structures:

typedef struct new_struct : public
CPP_POINTE

{
int version;

new_struct() � 2

{
version = 1;

}

void print()
{
CPP_POINTE::print();
printf(“version = %d\n”,
version);
}

} NEW_POINT;

6. Save the source-code file.

Interpreting the Output
After you have the actual code for your structure
implemented, you should test it to illustrate how it is
to be used, and to validate that it is working properly.

1. Add the code from Listing 14-1 to your source-
code file, immediately below the structure
definitions.

LISTING 14-1: THE STRUCTURE TEST HARNESS

void print_point(CPP_POINTE& p)
{

p.print();
}

int main(int argc, char **argv)
{

POINT p;
CPP_POINT p1;
CPP_POINTE p2;
NEW_POINT p3;

printf(“POINT:\n”);
printf(“X: %d\n”, p.x);
printf(“Y: %d\n”, p.y);

printf(“POINT 1:\n”);
printf(“X: %d\n”, p1.x);
printf(“Y: %d\n”, p1.y);

printf(“POINT 2:\n”);
print_point(p2);

printf(“POINT 3:\n”);
print_point(p3);

}

This code simply exercises the various structures
that we have defined in the source file. You will be
able to see what happens when the initialization
process is done and when it is not.

2. Save the source-code file and close the code
editor.

3. Compile and run the program, using your
favorite compiler on your favorite operating
system.

If you have done everything properly, you should
see the following output on your shell window:

$./a.exe
POINT:
X: 2289768 � 1
Y: 1627507534
POINT 1:
X: 0
Y: 0
POINT 2:
x = 0
y = 0
POINT 3:
x = 0
y = 0

20_57986x ch14.qxd 1/26/05 4:15 PM Page 75

Technique 14: Creating and Using Structures76

It’s handy to dump the data values for a structure
quickly and easily without cluttering the program
with printf statements — as the third variant of
the structure illustrates with its print() member
function. Of course, we could have easily written
a function that accepted a structure of the proper
type to print it out (as we did with the second type),
but then it would have to appear everywhere the
structure was used.

With the derived structure (new_struct), there are
some interesting things to notice. First, because we
can’t override the function print within the base class,
the structure doesn’t print out data that is only in the
derived class. This is due to the limitation of no vir-
tual tables in structures. We can, however, pass this
structure to anything that accepts its base class —
just as we could with a normal class. In this way, the
structure “acts” like a class.

Because the base class members are always
public, we can access them from either the
structure method itself, or from the external
program. This is quite different from a class,
where you would have to have accessor meth-
ods to get or set the data.

There are a few things to notice here. First of all,
you can see why failing to initialize the data values
of a structure is a bad idea (see the lines indicated
by � 1). The first point, the classic C-style struc-
ture, contains junk code that could easily cause seri-
ous problems in an application.

Always initialize all values in classes or struc-
tures to avoid serious problems later in the
application.

Imagine how much worse it would be if the structure
contained pointers: Pointers that are not initialized
to point at something will either be pointing at an
invalid part of memory, or worse, to a part of mem-
ory that should not be modified.

Notice that when we added a constructor to the
structure, our enhanced version called the construc-
tor (� 2) automatically for the class, as you would
expect. That way the structure elements were initial-
ized without requiring any work from the user.
Naturally, you can have constructors that take argu-
ments as well.

Always implement a constructor for all struc-
tures in your C++ code. If you do not, the
structure elements will contain random data
values.

20_57986x ch14.qxd 1/26/05 4:15 PM Page 76

15
Understanding
Constants

Pity the poor, misunderstood C++ constant — there are so very many
ways to use it, yet so few of them are really understood. By using
the constant (or const statement) construct in your code, your

applications can be made safer, more readable, and more efficient. Yet,
programmers are often so overwhelmed by the incredible number of dif-
ferent ways in which they can use constants that they simply avoid the
construct completely, allowing the compiler to pick and choose what can
change and what cannot in the application. A word to the wise: Allowing
the compiler to make choices for you is very rarely a good idea.

Constants provide a way to self-document your code, as well as a
simple way to locate all of the definitions of values in your program.
By utilizing constants for your data values, you can make quick, easy,
simultaneous changes across the scope of your application. In addi-
tion, you can enforce what does and does not change in the methods
and functions of your application by using the const keyword.

In this technique I explore the various possibilities for working with con-
stants in C++ and what they mean to you as an application developer.

Defining Constants
To best understand how constants work and how you can utilize them
in your application, the following steps show you a simple example of
defining various kinds of constants. We will be creating a file that contains
constants for use as whole numbers, floating point numbers, and charac-
ter strings. You will see how a constant can directly replace a #define
value, as well as how the compiler can be used to do type-safe checking of
constant assignments.

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch15.cpp, although you can use
whatever you choose.

Technique

Save Time By
� Exploring the uses of

constants

� Defining constants

� Implementing constants

� Using the const
keyword

21_57986x ch15.qxd 1/26/05 4:16 PM Page 77

Technique 15: Understanding Constants78

Implementing Constant
Variables
The const statement can also be used to tell the
compiler that something is not permitted to change,
as we will see in this simple technique that relies on
another facet of the const keyword. Follow these
steps to see how it all works:

1. Append the code from Listing 15-2 to your
source-code file.

LISTING15-2: A FUNCTION WITH AN IMMUTABLE ARGUMENT

// Functions can take constant arguments,
allowing them

// to guarantee that values don’t change.

int func(const int& x)
{

// We can do this
int z = x;
// We cannot do this. Compile Error:
//x = 10; � 1

return x;
}

This function accepts a single argument of type
const int reference. The const modifier indi-
cates to the compiler that the input argument
cannot be modified. If you were to uncomment
the line marked � 1, you would see the compiler
generate an error telling you that you cannot
modify a constant reference.

This example looks at a function that accepts a
single-integer argument, the constant x. We are
informing both the user of the function and the
compiler that this function will never change the
value of that argument, even if it is passed in by
reference. This information is very important to
the compiler; with this knowledge it can optimize
your function so that it does not have to pop the

2. Type the code from Listing 15-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 15-1: THE CONSTANTS AND THEIR DEFINITIONS

#include <stdio.h>
#include <stdlib.h>

// This is a constant value that can be used
// in place of a #define value

const int MaxValues = 100;

// Unlike the #define, you can use a const
// for typesafe constants

const char *StringName = “Matt Telles”;
const double Cost = 100.35;
const long MaxLong = 1000000;

You can define constants of pretty much any
shape or size. Constants can be numbers,
strings, characters, or floats. More importantly,
the compiler will check for type safety when you
assign a constant to another value. For example,
you’re permitted to assign string values to string
constants, like this:

string myString = StringName;

You are not, however, permitted to assign MaxLong
values to integers, which would look like this:

int iVal = MaxLong; // The compiler will
complain.

3. Save the source-code file.

Of course (so far), all adding the constants has
really done is give us another way to replace the
#define statement in our application. The real
meat of the C++ constant is giving the compiler
directives in your functions and classes, as I
show you in the next section.

21_57986x ch15.qxd 1/26/05 4:16 PM Page 78

Implementing Constant Variables 79

value back off the stack and insure that the mem-
ory location that it is using will not change. This
is possible because this value can be thrown
away after the function is done; after all, it could
not possibly have changed.

Proper use of the const modifier allows the
compiler to generate closer-to-optimal code
and generate better warnings, so you can
write better applications and have fewer errors
to fix in the debugging phase.

Furthermore, because we know that the input is
a constant, we can pass in values that are con-
stant. For example, if the reference was not a
constant, you’d have to write this:

int x = 3;
int myVal = func(x);

because the compiler would never allow you to
write this:

int myVal = func(3);

When you define the input argument as a con-
stant, however, the compiler is now aware that
the actual memory location that’s holding your
value (in this case, 3) will not change, and it will
allow you to pass in the integer value without
first assigning it to anything. This arrangement
saves a few CPU cycles and some memory — and
you don’t have to write some silly code that
doesn’t really do anything.

2. Using your code editor, append the code from
Listing 15-3 to your source-code file.

This technique illustrates how you can use the
const keyword within a class to accomplish the
same things that it does outside of a class listing.

LISTING 15-3: CONSTANTS IN CLASSES

// Classes can have constants in them
const int MaxEntries = 10;
class Foo
{

int entries[MaxEntries];

public:
// You can pass in constant references to arguments
Foo()
{
}
Foo(const Foo& aCopy)
{

for (int i=0; i<MaxEntries; ++i)
entries[i] = aCopy.entries[i];

}
// You can return constant references from methods
const int * getEntries()
{

return &entries[0];
}
// You can indicate that a method will NOT change
// anything in the object
int getEntry(int index) const
{

return entries[index];
(continued)

21_57986x ch15.qxd 1/26/05 4:16 PM Page 79

Technique 15: Understanding Constants80

Finally, you can tell the user that the method you are
calling will never change the object. To do so, you
simply append the const keyword at the end of the
method, which allows your method to be called on
const objects. Doing so also allows the compiler to
avoid the overhead of having to make copies of
objects and such. If the object cannot be changed
via the method, there is no reason to worry about
making the memory location static.

Testing the Constant Application
After you create the class, you should create a test
driver that not only ensures that your code is correct,
but also shows people how to use your code.

1. In the code editor of your choice, open the
existing file to hold the code for your test
program.

In this example, I named the test program
ch15.cpp.

The next step (for wise programmers, and you
know who you are) is to add a simple test driver
to the source file so you can take a look at how
all this plays out.

2. Type the code from Listing 15-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 15-4: THE TEST DRIVER FOR CONSTS

int main(int argc, char **argv)
{

Foo f;

3. Save the source-code file and close the code
editor.

As you can see, the const construct is quite versatile.
It can be used to indicate a value that is used to
replace a number in your code. It can be used to indi-
cate a return value that cannot be changed. It can
indicate that a class method accepts an argument
that it doesn’t change, such as the Copy constructor.
Can you imagine writing a Copy constructor that
changed the object it copied? That would be a little
strange to say the least. Imagine writing something
like this:

Foo f1 = f;

Then imagine having the f object change out from
under you — talk about your basic debugging night-
mare. For this reason, it’s customary to use a const
reference, indicating that you won’t change the
object being copied. In the same manner, we can
pass in values to methods and assure the user that
they won’t be copied (as in the func function we
looked at earlier in Listing 15-2).

Of course, if you can take an input value and assure
the user that you will not change it, then the quid
pro quo argument is that you must be able to give
someone back a value and make sure that they don’t
change it. This is called returning a const reference.
For example, if you have an internal variable, you
could create a reference method that gave it back,
but only in a read-only fashion. That is what the
getEntries method does in Listing 15-3. It returns a
const pointer that makes sure that the user doesn’t
change anything in the program that calls the object.

LISTING 15-3 (continued)
}
// The two can be combined to say that the return value
// cannot be changed and the object will not change
const int& getAConstEntry(int index) const
{

return entries[index];
}

};

21_57986x ch15.qxd 1/26/05 4:16 PM Page 80

Using the const Keyword 81

// Note that to get back the entries, we
MUST define

// our return type as constant
const int *entries = f.getEntries(); � 2
// You can’t do this:
// entries[2] = 2;

return 0;
}

3. Save the source-code file and close the code
editor.

4. Compile the application with your favorite
compiler on your favorite operating system.

Notice that we must use a constant pointer
(� 2) to access the entries in the class, and that
we cannot modify the values in that entry block
passed back. The compiler reinforces both these
conditions at compile-time.

Thus you can see how const works in the C++
world — and how you can use it to enforce your
application’s demands on the end user. (In a good
way, of course.)

Using the const Keyword
Here’s another job for the versatile const keyword:
You can use it as a differentiator to determine which
method to use; the const keyword is a part of the
signature of a method. That means you can have the
two methods shown in Listing 15-5 in your class at
the same time. The const keyword isn’t interpreted
by the user, but rather by the compiler to determine
which method is being called. If the value is modifi-
able, it will call the non-const version. If the value
cannot be modified, it will call the const version.

LISTING 15-5: USING CONST TO DIFFERENTIATE TWO METHODS

// You can indicate that a method will
NOT change

// anything in the object
int getEntry(int index) const � 3
{

return entries[index];
}
// Or not, depending on how you feel.
int getEntry(int index) � 4
{

return entries[index];
}

The first of these methods can be used from any
object, constant (� 3) or otherwise (� 4) . The sec-
ond, on the other hand, can only be used from a non-
const object. If you choose to call the second, you
have to accept the risk that the user will directly
modify the data within your class.

Finally, it is worth pointing out that const is some-
thing that can actually be cast away if the user
explicitly chooses to do so. So, even if you create the
getEntries method (as in Listing 15-3) — which
requires you to use a const int pointer to call the
method — the programmer can get around this little
problem by writing code like that in Listing 15-6.

LISTING 15-6: CASTING AWAY CONST-NESS

// Now, you can break things this way
int *ent2 = (int *)f.getEntries(); � 5
ent2[2] = 2;

C++ always assumes that the programmer knows
what he or she is doing, even if allowing some things
to be done incorrectly (which violates the spirit of
the language). By doing explicit casting (� 5), you
can “de-const” a pointer (that is, make a const
pointer non-const) and do whatever you want.
The compiler assumes that because you did the
explicit cast, you knew exactly what the end result
would be, and had figured out every possible ramifi-
cation for the program as a whole. Such trust is
touching — but not a good idea. If the pointer was
defined to be constant in the first place, there was
probably a good reason for it. In your own application
development, avoid such a technique at all costs.

21_57986x ch15.qxd 1/26/05 4:16 PM Page 81

16
Scoping Your
Variables

The concept of “scope” is fairly unique to the C and C++ languages.
Scope, also called lifetime, is the period of the application during
which a variable exists. Some variables can exist for the entire

length of the program (and unfortunately, as with some memory leaks,
well beyond that length), while others have very short periods — that is,
less scope. The length of an object’s or variable’s lifetime is generally up
to the developer, but sometimes you have to keep close watch on when a
variable goes out of scope in your own applications.

When implementing classes and objects, scope usually is handled auto-
matically. An object starts to exist when its constructor is invoked, and
ceases to exist when its destructor is invoked. Suppose (for example) an
object of the Foo class is created on the stack with a command like this:

Foo f;

The Foo object will be automatically destroyed when the scope it exists
in is destroyed. Consider the following example, with three different
instances of the Foo class being created on the heap:

Foo global_foo; // � 1

int main()
{

Foo main_foo; // � 2

for (int i=0; i<10; ++i)
{

Foo loop_foo; // � 3

} //
} //
//

As you can see, three different Foo objects are created at different points
in the application code. The first one, the global_foo object (indicated at

� 1) is created before the application even starts, in the main function.

Save Time By
� Defining scope

� Exploring the nature of
scope

� Matching constructors to
destructors to control and
predict scope

Technique

22_57986x ch16.qxd 1/26/05 4:17 PM Page 82

Illustrating Scope 83

The second, main_foo (indicated at � 2), is created
at the start of the main function, and the third,
loop_foo (indicated at � 3), exists in the for loop in
the middle of the main function. The loop_foo object
is created each time the program cycles through the
for loop — ten times in all.

If we implemented the Foo class to tell us when the
object was created, and on what line each object
was destroyed , we could actually view this informa-
tion visually and be able to understand the flow of
the process.

In the following section, I show you a simple way to
do just that.

Illustrating Scope
Identifying an object’s starting time and specific
code line on-screen is one way to get an idea of its
scope. Here’s how to make it happen:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch16.cpp,
although you can use whatever you choose.

2. Type the code from Listing 16-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

This code creates a very simple class that self-
documents its creation and destruction
processes. We will then use this class to see the
order in which objects are created and destroyed
in a real-world program setting.

LISTING 16-1: ILLUSTRATING SCOPE

#include <stdio.h>
#include <stdlib.h>

class Foo
{
private:

long _Level;

public:
Foo(long level)
{

printf(“Creating foo object %ld\n”,
level);
_Level = level;

}
~Foo()
{

printf(“Destroying foo object
%ld\n”, _Level);

}
};

3. Append the following code to your source-code
file, using your code editor.

Here we are simply creating a little test driver
that illustrates how the objects are created and
destroyed. You could easily place this code in a
separate file, but for simplicity we will just add it
all to the same file.

This code illustrates the various levels of scope,
global, local, and loop, that an object can
occupy within an application.

Foo global_foo(0);

int main()
{

Foo main_foo(1);

for (int i=0; i<3; ++i)
{

Foo loop_foo(2);

}
}

4. Save the file and close your code editor.

5. Compile and run the application in the operat-
ing system of your choice.

22_57986x ch16.qxd 1/26/05 4:17 PM Page 83

Technique 16: Scoping Your Variables84

When will the Foo object be created? Obviously, the
constructor is called on the line with the new func-
tion call. However, it is not at all clear when the
object is destroyed. If you were to run the program,
you would see the following output:

Creating foo object 10

There will be no corresponding printout saying that
the object was destroyed — because the object is
never destroyed. For this reason, you should always
be very careful either to create your objects on the
heap (using the constructor and no new call), or
match your calls to new and delete for the object
(in other words, if you allocate an object with new,
deallocate it with delete). If you do not delete all
objects that you create, you will create memory
leaks in your application, which can lead to program
crashes, computer slowdowns, and a host of other
unpredictable behavior.

An alternative to this approach is the auto_ptr class
of the Standard Template Library. This class holds a
pointer to a given class, but it does so inside an
object allocated on the heap. When the object on the
heap goes out of scope, the object is destroyed. As
part of that destruction, the pointer is deleted. This
is really the best practical use of the scope concept
in C++.

Interpreting the Output
If you have done everything right, you should see the
following output in the shell window on your system:

$./a.exe
Creating foo object 0
Creating foo object 1
Creating foo object 2
Destroying foo object 2
Creating foo object 2
Destroying foo object 2
Creating foo object 2
Destroying foo object 2
Destroying foo object 1
Destroying foo object 0

Note that the order in which the variables are
destroyed is exactly the reverse of the order in
which they were created. This is due to the object’s
positions in the file: The last object created is the
first one destroyed. Paying attention to when objects
are created and destroyed in your program helps
you optimize the use of memory, and also allows you
to control when objects are available. For example, if
an object used to create a file requires a filename,
instantiating the object before the filename is avail-
able doesn’t make sense, even if the open method of
the object is used well after the fact. Now, consider
the following snippet of a program:

int main()
{

Foo *f = new Foo(10);

// Some other code
}

22_57986x ch16.qxd 1/26/05 4:17 PM Page 84

17Technique

Using Namespaces

Once upon a time, there was a language called C. It was a popular
language that allowed people to create nice, reusable libraries of
code — which they then sold in the marketplace for big bucks.

Later on, this language was replaced by a language called C++, which also
allowed programmers to create reusable code. Learning from the prob-
lems of the past, C++, unlike C, also allowed you to package your code in
classes, which solved one of C’s very difficult problems: resolving func-
tions with name conflicts. Because it is common to have different functions
in different libraries that do similar things, it was inevitable that the names
of those functions would be similar. By restricting those methods to
different class names, it fixed the problem. Of course, that didn’t help
when the class names were the same, but we will discuss that problem in
just a bit.

Here is how the problem worked: Consider, for example, two libraries that
exist in a C-style interface: one performs windowing functions; the other
manages documents. In Library One, we have the following function:

void SetTitle(char *sTitle)
{

// Set the title of the window to sTitle
window->title = sTitle;

}

In Library Two, the document library, we have the following function:

void SetTitle(char *sTitle)
{

// Set the file name for the document
_filename = sTitle;

}

Now, both of these functions have the same name and the same signature,
but they have very different goals and code to implement them.

Here we have two routines that do the same basic thing (setting a title)
with different code — but that isn’t the problem. The problem is that the
linker in C (and also in C++) can’t deal with this situation; it freaks out if
two functions have the same name with the same signature. It could handle

Save Time By
� Resolving name conflicts

with namespaces

� Creating a namespace
application

� Testing your namespace
application

23_57986x ch17.qxd 1/26/05 4:18 PM Page 85

Technique 17: Using Namespaces86

Document(const char *_filename)
{

filename = _filename;
}
boolean Read();
Boolean Write();

};

In the windowing library, however, the Document
class is defined a bit differently:

class Document
{
private:

std::string title;
std::vector< Window *> windows;

public:
Document()
{
}
Document(const char *_title);
void CreateWindow();

};

While this is not as simple as the function example,
the problem is exactly the same. When push comes
to shove, the linker is going to need to resolve two
different classes of the same name. This isn’t possi-
ble, so it is going to complain about it. How do you
fix a conflict like this? The answer lies in the concept
of C++ namespaces.

Namespaces were created in C++ to address just this
problem. While you might have a class that is in con-
flict with another class, it would be extremely unlikely
to have an entire library of classes that is in conflict.
With proper naming of a namespace, you can avoid
the entire problem of class name collision.

Creating a Namespace
Application
The basic format of defining a namespace is as
follows:

namespace <name> {
// some classes or definitions

};

that if you only wanted one of them, but that obvi-
ously would not work. So, with the advent of classes,
you’d think all this would be fixed, right? Nope. As
with all other things in life, problems don’t really go
away, they just morph into a different form. Of course,
we can fix this problem, it is just a matter of under-
standing where the problem came from in the first
place. The answer, in this case, is to create different
classes to wrap the functions.

Naming classes properly goes a long way
toward saving you time when you’re trying to
link in multiple libraries from different sources.
Always preface your classes with a known
prefix (such as the company initials) to avoid
problems.

Fast-forward a bit to the C++ world. Programmers are
still developing libraries, but now these are libraries
of classes, rather than of simple functions. The basic
problem of name conflict has not changed — but
our example libraries (now updated in C++) have
changed. The windowing library now implements
classes to handle the all-new, all-different, model-
view-controller concept. This concept allows you to
work not only with documents but also with views of
those documents.

The concept of a document means the data for
a displayed window is encapsulated in a class
that can load the data from a file, save it to a
file, and manipulate it for display purposes.

Meanwhile, over in the document library, we have
document classes that store text, formatting infor-
mation, and preferences for document information.
In the document library, the Document class is
defined like this:

class Document
{
private:

std::string filename;
std::vector< std::string > lines;

public:
Document()
{
}

23_57986x ch17.qxd 1/26/05 4:18 PM Page 86

Creating a Namespace Application 87

To illustrate how all this works, a quick look at some
real code is in order, followed by a tour of the
options you can use in your own code to fix name
collisions. The following steps show you how:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch17.cpp,
although you can use whatever you choose.

2. Type the code from Listing 17-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 17-1: USING NAMESPACES

#include <stdio.h>
#include <stdlib.h>
#include <string>

using namespace std;

namespace foo_windowing
{

class window
{
private:

int window_id;
string title;

public:
window(void)
{

window_id = 0;
title = “”;

}
window(int id, const char *t)
{

window_id = id;
title = t;

}
};

class document
{
private:

int doc_id;
string title;

public:
document(void)
{

doc_id = 0;
title = “”;

}
document(int id, const char *t)
{

doc_id = id;
title = t;

}
};

}; // End of namespace foo_windowing

Before we move on to the next step, let’s take a
look at the important features of this code that
you can adapt to your own programs.

First, notice the using namespace statement up
there at the top — normally you must fully qual-
ify the names of all classes within any name-
space you use. The string class for the Standard
Template Library happens to “live” within the
std namespace. When you utilize the using
namespace std statement, you tell the compiler
that you know what you’re doing and that it
should try the std:: namespace on anything it
cannot immediately recognize. Of course, if you
use all available namespaces, you avoid the
problem of entering the namespace’s name prefix
on all your class names — but then you also run
into the problem of name collisions again. That’s
why the compiler makes you qualify the name
whenever there’s any doubt.

The next step takes a closer look at the second
namespace we create (in this case, for the docu-
ment classes).

3. Modify your source code in the code editor as
shown in Listing 17-2.

Simply append this code to the end of your cur-
rent source-code listing.

LISTING 17-2: CREATING A NEW NAMESPACE

namespace bar_documents
{

class document
{
private:

string filename;
(continued)

23_57986x ch17.qxd 1/26/05 4:18 PM Page 87

Technique 17: Using Namespaces88

document class represents a file on disk.
Fortunately, by placing each of the classes in a
different namespace, we can differentiate
between the two classes easily so the compiler
knows what we’re talking about. A real applica-
tion offers an example in the next section.

Testing the Namespace
Application
The following list shows you the steps to create a
test driver that validates various kinds of input from
the user, and illustrates how namespaces are
intended to be used.

1. In the code editor of your choice, open the exist-
ing file to hold the code for your test program.

In this example, I named the test program
ch17.cpp.

2. Type the code from Listing 17-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 17-2 (continued)
public:

document(void)
{

filename = “”;
}
document(const char *fn)
{

filename = fn;
}

};
string name()
{

return filename;
}

}; // End of namespace bar_documents

4. Save the source code in the source-code editor.

As you can see, we have a definite name conflict
if we use these two class sets together. They
both define a class called document. Worse, the
document class in one is very different from
the document class in the other. In the first case,
our document class represents the data being
displayed in a window. In the second case, the

LISTING 17-3: USING NAMESPACES IN AN APPLICATION

// Let’s default to the bar_documents namespace
using namespace bar_documents;

void print_doc(document& d)
{

printf(“Received file: %s\n”, d.name().c_str());
}

int main(int argc, char **argv)
{

document d(“file1.txt”); // Create a bar_documents document
foo_windowing::document d1(1, “this is a title”);

// This is okay to do
print_doc(d);

// This would not be okay to do
//print_doc(d1); � 1

}

23_57986x ch17.qxd 1/26/05 4:18 PM Page 88

Testing the Namespace Application 89

Here we’ve inserted a line to make the bar_docu-
ments namespace global — which means we
don’t have to say bar_documents::document
everywhere we use the class. In fact (as you can
see in the first line of the main program), we sim-
ply create a document via a standard usage of
the Document class. When we want to use the
foo_windowing namespace classes, however, we
still have to fully qualify them as you can see in
the second line of the main program. Likewise,
we can pass a bar_documents document to the
function print_doc, but we cannot do the same
with a foo_windowing document. If you uncom-
ment the line that calls print_doc with the
foo_windowing document object, you will get the
compile-time error shown in Listing 17-4.

3. Save your source-code file and close the code
editor.

4. Compile the file with your favorite compiler on
your favorite operating system.

If you have done everything properly, you will see
the following output on your shell window:

$./a.exe
Received file: file1.txt

As you can see from the output, the function that we
expected to work with a bar_documents namespace
document object works properly. If we uncom-
mented the line marked with � 1, we would get a
compile error, since that function does not expect to
receive a document object from a different name-
space. This is illustrated in Listing 17-4.

When creating your own reusable classes in
C++, always place them within a namespace
to avoid name collisions with third-party
libraries and other internally developed code.

LISTING 17-4: TRYING TO USE A DIFFERENT NAMESPACE CLASS

ch3_5.cpp: In function ’int main(int, char**)’:
ch3_5.cpp:74: error: no matching function for call to ’foo_windowing::document

::document(const char[16])’
ch3_5.cpp:28: error: candidates are: foo_windowing::document::document(const

foo_windowing::document&)
ch3_5.cpp:39: error: foo_windowing::document::document(int,

const char*)
ch3_5.cpp:34: error: foo_windowing::document::document()

23_57986x ch17.qxd 1/26/05 4:18 PM Page 89

Save Time By
� Defining casts

� Understanding the
problems that casts
can cause

� Addressing cast-related
compiler problems

� Testing your improved
code

Fixing Breaks
with Casts

When you break a bone, the doctor puts it in a cast to make sure
that the bone sets properly and keeps the correct shape. C++
has the same notion of casts — and they’re used for exactly the

same reasons. A cast in C++ explicitly changes a variable or value from
one type to another. In this way, we “fix” things by making them the
proper type for what we need those values for.

The need for casts comes from the picky nature of the C++ compiler. If you
tell it that you’re expecting a given function to take an integer value, it will
complain if it is given anything but an integer value. It might complain (for
example) by warning you that there’s a lack of precision, like this:

int func(int x);

long x=100;
func(x);

Here the compiler gripes about this function-call invocation, saying that
converting a long integer to a regular one is legal, but you’re risking a
possible loss of precision. The compiler is right, too. Imagine, for exam-
ple, that the value of x is 50,000 instead of 100. That number is too big to
be stored in a normal integer, so it overflows and the function gets
passed a negative number to chew on. Don’t believe it? Try the following
little programlet:

#include <stdio.h>

int func(short int x)
{

printf(“x = %d\n”, x);
}

int main(int argc, char **argv)
{

long x = 10;
func(x);
x = 50000;
func(x);
return 0;

}

18Technique

24_57986x ch18.qxd 1/26/05 4:18 PM Page 90

Using Casts 91

Here, because the gcc compiler assumes that int and
a long integers are the same thing, we have to use a
short int in the function itself for gcc to illustrate
the problem.

When you compile and run this program, you see
the following output:

$./a.exe
x = 10
x = -15536

Not exactly what we asked for, is it?

If you know that the value of x is never going to
exceed the maximum value of an integer, you can
safely call the function even with a long integer, as
long as you cast it properly:

func((short int)x);

The reason that you might want to do something like
this is that you don’t want to create a new variable,
assign the value to it, and then check to make sure
that it did not overflow the range of that new variable
type. The cast does all of this for you.

Of course, encasing the integer in a cast is consider-
ably more powerful than simply making an integer
into a long or a double or anything else. Casting one
type to another turns the original variable into a new
one, albeit behind the scenes. This is true whether
we are casting a variable in the example above, or
modifying a variable by casting it to another type.

If you eliminate all compiler warnings in an
application, you can track down problems
much more quickly and easily — you’re letting
the compiler do your work for you. Most
compiler warnings, including those requiring
casts, need to be addressed immediately, not
just ignored. This will save you time in the
long run.

In the next section, I show you a more involved
example of a cast.

Using Casts
Suppose that you have two base classes, Base1 and
Base2. From these two classes, we derive a third
class, called Derived. How can you get at functions
in the base classes that have the same name in both
bases? The answer lies in a cast, as we will see in
this example technique. It might seem that we are
back to the discussion of name differentiation and
namespaces, but this is not the case here. Consider
the following layout:

Class 1: Method A

Class 2: Method A

Class 3: Derived from Class 1 and 2.

When we are using Class 3, and refer to Method A,
which method do we really mean?

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch18.cpp,
although you can use whatever you choose.

2. Type the code from Listing 18-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 18-1: USING CASTS

#include <stdio.h>
#include <string>

using namespace std;

class Base1
{
private:

string _name;
long _value;

public:
Base1()
{

_name = “”;
}

(continued)

24_57986x ch18.qxd 1/26/05 4:18 PM Page 91

Technique 18: Fixing Breaks with Casts92

void SetName(const char *sName)
{

_fileName = sName;
}
void SetFileLength(long l)
{

_fileLength = l;
}

};

3. Save the source-code file.

The code in this listing simply defines two
classes that happen to share a common method
name or two. This is not a problem, of course,
because they are defined in different scopes —
which means they can be reconciled by the com-
piler and linker into different entries in the appli-
cation. In other words, there’s no problem. Now,
let’s create one.

4. Reopen the source-code file with your code edi-
tor and add the code from Listing 18-2 to the file.

LISTING 18-2: THE DERIVED CLASS

class Derived :public Base1, public Base2
{
public:

Derived(void)
: Base1(“AClass”, 10),
Base2(“Derived”)

{
}
Derived(const char *name)

: Base1(name, 0),
Base2(“Derived”)

{
}
void ADerivedMethod()
{

printf(“In a derived method\n”);
}

};

5. Save the source-code file.

This code illustrates a derived class that is built
from two base classes. In this case, both of the
base classes contain a method of the same name.

LISTING 18-1 (continued)
Base1(const char *n, long v)
{

_name = n;
_value = v;

}
virtual ~Base1()
{
}

string GetName()
{

return _name;
}
long GetValue()
{

return _value;
}
void SetName(const char *sName)
{

_name = sName;
}
void SetValue(long l)
{

_value = l;
}

};

class Base2
{
private:

string _fileName;
long _fileLength;

public:
Base2()
{

_fileName = “”;
_fileLength = 0;

}
Base2(const char *n)
{

_fileName = n;
_fileLength = 0;

}
string GetName()
{

return _fileName;
}
long GetLength()
{

return _fileLength;
}

24_57986x ch18.qxd 1/26/05 4:18 PM Page 92

Addressing the Compiler Problems 93

We need to find a way to get at the specific
method in the base class that we want, which
can only be done via casts. Let’s look at that now.

If you were to compile and link this program, it
would be fine — aside from missing its main
function. The compiler would not complain
about the Base classes, nor the derived class.
There is no problem with deriving a class from
two base classes that happen to share a common
method name.

The problem comes in when we try to use a
method from the base classes through the
derived class.

6. Append the code from Listing 18-3 to the file to
implement a test driver for the code.

LISTING 18-3: THE DERIVED CLASS TEST DRIVER

int main()
{

Derived d;

d.SetFileLength(100);
d.SetName(“This is a name”);
string s = d.GetName();
return 0;

}

7. Save the source-code file and close the code
editor.

8. Compile the program using your favorite
source-code compiler on your favorite operat-
ing system.

You should see output from the compiler resembling
that of Listing 18-4:

LISTING 18-4: SAMPLE OUTPUT

$ gcc ch3_8.cpp -lstdc++
ch3_8.cpp: In function ’int main()’:
ch3_8.cpp:102: error: request for member

’SetName’ is ambiguous
ch3_8.cpp:68: error: candidates are: void

Base2::SetName(const char*)

ch3_8.cpp:34: error: void
Base1::SetName(const char*)

ch3_8.cpp:103: error: request for member
’GetName’ is ambiguous

ch3_8.cpp:60: error: candidates are:
std::string Base2::GetName()

ch3_8.cpp:26: error:
std::string Base1::GetName()

Addressing the Compiler
Problems
Now we have an error — so (of course) the question
is, how do you get at the Base-class methods when
they conflict? Actually you have two ways to do this:
Explicitly scope the member function that you want
to use, or specifically cast the object so it has the
type you want it to be. In this section, I show you
how to perform both methods and discuss the con-
sequences of each .

1. Reopen the source-code file from the example
(we called it ch18.cpp) and append the code
from Listing 18-5.

LISTING 18-5: THE MODIFIED TEST DRIVER CODE

int main()
{

Derived d;

d.SetFileLength(100);
/* 1 */ ((Base1)d).SetName(“This is a

name”);
/* 2 */ string s = d.Base1::GetName();

return 0;
}

The two alternatives are labeled with comments,
between the asterisks, as blocks 1 and 2. The line
labeled 1 is the explicit cast; the line labeled 2
is the scoped method call. You can probably see
that the second method is somewhat more read-
able, but both will work just fine. The difference

24_57986x ch18.qxd 1/26/05 4:18 PM Page 93

Technique 18: Fixing Breaks with Casts94

_name = sName;
PrintNameChange();

}
void SetValue(long l)
{

_value = l;
}

};
class Derived :public Base1, public Base2
{

virtual void PrintNameChange()
{

printf(“Derived: PrintNameChange
called\n”);

}

public:
Derived(void)

: Base1(“AClass”, 10),
Base2(“Derived”)

{
}
Derived(const char *name)

: Base1(name, 0),
Base2(“Derived”)

{
}
void ADerivedMethod()
{

printf(“In a derived method\n”);
}

};

Testing the Changes
After you’ve made all the changes in the Base classes
for the objects you’re using, the wise next step is to
test those changes to make sure the compiler is
happy and the code works properly. Here’s the drill:

1. In the code editor of your choice, reopen the
existing file to hold the code for your test
program.

In this example, I named the test program
ch18.cpp.

2. Type the following code into your file as shown
in Listing 18-7.

between them, really, is how the lines are inter-
preted by the compiler. When you cast an object,
you are, as far as the compiler is concerned,
literally changing its type. When you call the
SetName method with the cast of the object,
the SetName method is being called with a Base1
object, rather than a Derived object. What does
this mean?

Modifying the classes a bit provides a handy
illustration, starting with the next step.

2. Replace the original definitions of Base1 and
Base2 with the following code, shown in Listing
18-6.

LISTING 18-6: THE NEW BASE CLASS LISTINGS

class Base1
{
private:

string _name;
long _value;
virtual void PrintNameChange()
{

printf(“Changed name to %s\n”,
_name.c_str());

}
public:

Base1()
{

_name = “”;
}
Base1(const char *n, long v)
{

_name = n;
_value = v;

}
virtual ~Base1()
{
}

string GetName()
{

return _name;
}
long GetValue()
{

return _value;
}
void SetName(const char *sName)
{

24_57986x ch18.qxd 1/26/05 4:18 PM Page 94

Testing the Changes 95

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 18-7: THE NEW TEST DRIVER

int main()
{

Derived d;

d.SetFileLength(100);

((Base1)d).SetName(“This is a name”); � 1

string s = d.Base1::GetName();
d.Base1::SetName(“This is another name”);
return 0;

}

3. Save the source file in the code editor and
close the editor application.

4. Compile and link the application on your
favorite operating system, using your compiler
of choice.

If you have done everything right, you should see
the following output appear on your shell window.

$./a.exe
Changed name to This is a name
Derived: PrintNameChange called � 2

If you trace through the code, you will see what is
going on here:

In the first case, where we physically cast the d
object (shown at � 1) to a Base1 object, the object
does not “know” that it is really a Derived object
when the virtual method PrintNameChange is called.
As a result, the Base class method is used for the
cast case (shown at � 2).

For the second case, where we scoped the method,
however, the object is well aware of what it is, and
will call the inherited virtual method in the Derived
class. This is a very important difference, and can
lead to some very subtle logic errors in your pro-
gram that are very hard to track down and fix. Casts
are a very powerful technique in C++, but they are
also a serious warning that you are doing something
you are not supposed to be doing. If your actions
were acceptable in the language, you would not have
to explicitly tell the compiler that you are changing
the behavior of the code through a cast. This is not a
bad thing, but you need to be aware that you are
changing behavior. Be sure to understand the side
effects of your actions and the possibilities of intro-
ducing more problems than you are solving when
you use a cast.

Whenever possible, avoid putting casts in your
application. If this is not completely possible,
understand fully the warnings that your com-
piler issues for casts you’ve made.

24_57986x ch18.qxd 1/26/05 4:18 PM Page 95

Save Time By
� Understanding member-

function pointers

� Implementing member-
function pointers

� Updating code with
member-function
pointers

� Testing your code

Using Pointers to
Member Functions

Pointers to member functions are incredibly powerful — and an
integral part of the C++ language. If you use them, your code will be
easier to understand and expand, and maintenance will be much

quicker. In addition, new functionality can be added without having to
modify the existing functions in the class. Pointers to member functions
help replace complicated switch statements, lookup tables, and a variety
of other complicated constructs with a simple, easy-to-implement solution.

However, because they are confusing to implement and syntactically
complicated, almost nobody is willing to use the poor things. Nonetheless,
the pointer to a member function is a really useful tool in your arsenal of
techniques for solving problems with the C++ programming language.
The issue, really, is understanding how they work and how to make the
compiler understand what you want to do with them.

The first thing to understand is, what exactly is a pointer to a member
function? In the good old days of C programming, we had plain old function
pointers. A function pointer was a pointer to a global function, whereas a
pointer to a member function works only with a class member function;
they are otherwise the same thing. Essentially, function pointers allowed
you to do this:

typedef int (*error_handler)(char *);

This statement defined a pointer to a function that accepted a single
argument of the character pointer type, and returned an integer value.
You could then assign a function to this pointer, like this:

int my_error_handler(char *s)
{
printf(“Error: %s\n”, s);
return 0;
}

error_handler TheErrorHandler = my_error_handler;

In a library (for example), this is a very useful way to handle errors. You
allow each user to set his or her own error handler, rather than simply
printing them out, or popping up an error dialog box, or logging the

19Technique

25_57986x ch19.qxd 1/26/05 4:18 PM Page 96

Implementing Member-Function Pointers 97

pesky things to a file. This way the end users of the
library could trap errors and deal with them — by
changing the description, printing out additional
debugging information, or whatever else worked
for them.

Within your library code, you would then invoke the
error handler by writing:

(*TheErrorHandler)(theErrorString);

obviously checking to see if the TheErrorHandler
was actually assigned to anything first, or was
instead NULL.

That was how function pointers were used in C.
When C++ arrived, this same kind of functionality
was very useful for a variety of tasks and continued
to work fine with global functions. However, there
was no simple way to implement this functionality
since a member function required an object to oper-
ate on it, so you couldn’t just assign it to a random
pointer. You can store a member function pointer
anywhere. When it comes to using it, however, you
need an object of the class of that member to use it.
For example:

class Foo
{

// A member function
void bar(int x);
// This defines a type
typedef void (*ptr_to_member_function)

(int x) ;

public:
ptr_to_member_function p1;
Foo ()
{
// Assign the member function pointer
p1 = bar;

}
}

// Later in the code....
Foo::p1(0); // This won’t work, since the

member function requires a
pointer.

Foo x;
x.p1(0); // This will work.

With the advent of member-function pointers, you
could assign a member function to a random pointer,
if you didn’t mind a bit of strange syntax. You can
define these pointers as

typedef <return-type> (<classname>::*
PtrMemberFunc)(<args>) ;

Implementing Member-Function
Pointers
Let’s take a look at a technique for using member-
function pointers to implement a simple command
processor.

1. In the code editor of your choice, create a new
file to hold the source code for this technique.

In this example, I named the test program
ch19.cpp.

2. Type the code from Listing 19-1 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 19-1: POINTERS TO MEMBER FUNCTIONS

#include <stdio.h>
#include <string>
#include <vector>

class Processor
{

typedef bool
(Processor::*PtrMemberFunc)(std::string
) ; � 1

private:
std::vector< PtrMemberFunc >
_functionList;

protected:
virtual bool ProcessHello(std::string s)
{

if (s == “Hello”)
{

printf(“Well, hello to you
too!\n”);
return true;

(continued)

25_57986x ch19.qxd 1/26/05 4:18 PM Page 97

Technique 19: Using Pointers to Member Functions98

{
PtrMemberFunc ptr = (*iter);
if ((this->*ptr)(command))

return;
}
printf(“Unknown command %s\n”,
command.c_str());

}

};

3. Save your source code in the editor.

Notice that after you’ve defined a member-function
pointer (see � 1) , you can use it the same way you’d
use a “normal” pointer. In this particular case, we
build up an array of pointers and simply chain
through them to see whether a given string is
processed. Code like this could be easily used for
equation parsers, command processors, or anything
else that requires a list of items to be validated and
parsed. Listing 19-1 is certainly a lot cleaner and eas-
ier to extend than code like the following:

switch (command)
{

case “Hello”:
// Do something
break;

// .. other cases
default:

printf(“Invalid command: %s\n”,
command.c_str());
break

}

Note that in this case, we need to add a new switch
case each time we want to handle a new command.
With our array of function pointers, after it is defined
and added to the code, the member function does all
the work.

LISTING 19-1 (continued)
}
return false;

}
virtual bool ProcessGoodbye(std::
string s)
{

if (s == “Goodbye”)
{

printf(“Goodbye. Have a great
day!\n”);
return true;

}
return false;

}
virtual bool ProcessOpen(std::string s)
{

if (s == “Open”)
{

printf(“The door is now open\n”);
return true;

}
return false;

}

public:
Processor()
{

_functionList.insert(
_functionList.end(),

&Processor::ProcessHello);
_functionList.insert(
_functionList.end(),

&Processor::ProcessGoodbye);
_functionList.insert(
_functionList.end(),

&Processor::ProcessOpen);
}
virtual ~Processor()
{
}
void ProcessCommand(const std::string&
command)
{

std::vector< PtrMemberFunc >::itera-
tor iter;
for (iter = _functionList.begin();
iter !=
_functionList.end(); ++iter)

25_57986x ch19.qxd 1/26/05 4:18 PM Page 98

Testing the Member Pointer Code 99

Updating Your Code with
Member-Function Pointers
Not only is Listing 19-1 cleaner and easier to extend,
it is also vastly easier to expand, because you can
override whatever functionality you want at the
member-function level.

The distinction is worth a closer look, to show you
just how useful this technique can be in your appli-
cation. Imagine that you’ve implemented this
Processor object and are merrily using it to process
input from the user. Now, suddenly, someone else
wants to use the same class — but they want to
implement a completely different use for the Open
command. All the other commands work the same
way. Wouldn’t it be nice to utilize the same class to
do the work — and only override the function that
you wanted to change? It turns out that you can.
Remember, a pointer to a member function is simply
a pointer to whatever will be called when that partic-
ular method is invoked on the object. If we override
a virtual method in a derived class, it should auto-
matically call that method when we use our new
processor. The following steps try that:

1. Append the code from Listing 19-2 to your
source-code file.

LISTING 19-2: THE COMMAND PROCESSOR CLASS

class Processor2 : public Processor
{
protected:

virtual bool ProcessOpen(std::string s)
{

if (s == “Open”)
{

printf(“Derived processing of
Open\n”);
return true;

}
return false;

}
public:

Processor2()
{
}

};

2. Save your source code in the editor and close
the code-editor application.

Testing the Member Pointer Code
After you create a pointer to a member for a class,
you should create a test driver that not only ensures
that your code is correct, but also shows people
how to use your code.

Here’s the classic follow-up — creating a test driver
that shows how the class is intended to be used:

1. In the code editor of your choice, open the exist-
ing file to hold the code for your test program.

In this example, I named the test program
ch19.cpp.

2. Type the code from Listing 19-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 19-3: THE TEST DRIVER FOR THE COMMAND PROCESSOR

int main(int argc, char **argv)
{

Processor2 p;

for (int i=1; i<argc; ++i)
p.ProcessCommand(argv[i]);

}

3. Close your source-code file in the editor and
close the editor application.

25_57986x ch19.qxd 1/26/05 4:18 PM Page 99

Technique 19: Using Pointers to Member Functions100

Derived processing of Open
Goodbye. Have a great day

As you can see, not only have we created a com-
mand handler to process the open command, but we
have also allowed for standard C++ derivation. In
addition, we could easily add additional handlers
that process the same command, something that we
could not do with the switch statement.

4. Compile the source code with your favorite
compiler on your favorite operating system,
and then run it with the following command:

./a.exe Open Goodbye

If you have done everything right, you should
see the following output when you run the pro-
gram with these arguments.

25_57986x ch19.qxd 1/26/05 4:18 PM Page 100

20
Defining Default
Arguments for Your
Functions and
Methods

In C++, a failure to call functions or methods properly is a common
problem. One solution is to verify all input values when the end user
sends them in — but this has the unhappy side effect of creating more

errors for the end developer to fix. The problem is that it is harder to
screen out bad values than it is to accept only good ones. For an integer
value that is supposed to be between 1 and 10, for example, there are ten
valid values. However, there are an infinite number of bad integer values
that exist outside the range of 1 to 10. Wouldn’t it be nice if you could tell
the developer what the most likely value is for some of the less-common
function arguments? The programmer could then ignore the problematic
values by using acceptable defaults. For example, consider the
MessageBox function, a standard function used by many Microsoft
Windows programmers. This function, which has the following signature,
displays a message for the application user to see and respond to.

int MessageBox(
HWND hWnd,
LPCTSTR lpText,
LPCTSTR lpCaption,
UINT uType

);

The MessageBox arguments are as follows:

� hWnd: A handle to a Windows window

� lpText: The text to display in the message box

� lpCaption: The caption to put in the title bar of the message box

� uType: The types of buttons (OK, Cancel, Abort, Retry, and so on) to
display in the message box.

This is a very handy function and is used nearly universally by Windows
programmers to display errors, warnings, and messages. The problem
is that it’s too easy to forget the order of the arguments. In addition, pro-
grammers tend to use the thing over and over in the same ways. This
means that the same code is repeated over and over, and changes must

Technique

Save Time By
� Simplifying code with

default arguments

� Implementing default
arguments in functions
and methods

� Customizing self-defined
functions and methods

� Customizing functions
and methods someone
else wrote

� Testing your code

26_57986x ch20.qxd 1/26/05 4:19 PM Page 101

Technique 20: Defining Default Arguments for Your Functions and Methods102

LISTING 20-1: A CUSTOMIZED MESSAGEBOX FUNCTION

int ErrorBox(HWND hWnd, const char *text,
const char *title = “Error”, UINT type =
MB_OK)

{
MessageBox(hWnd, text, title, type);

}

Okay, we aren’t adding much value here, but consider
how the function is now called within an application
code:

// Display an error
ErrorBox(NULL, “You have to first enter a

file name!”);

This is certainly a lot easier than the full-blown
MessageBox call. The advantage, of course, is that
you don’t have to use the shortened version — you
can still use the entire thing, like this:

ErrorBox(m_hWnd, “The system is very low
on memory! Retry or Cancel?” “Critical
Error”, MB_RETRY | MB_CANCEL);

The shortened version is certainly more readable
and consistent, and it saves you time because it
offers fewer parameters to update. What if, for exam-
ple, management decides that the phrasing of your
error is too harsh and wants to replace it with A
problem has occurred? If you’re using the long ver-
sion of this function, the way to solve this problem is
to find all calls to the function in your code. With our
wrapper function, however, we could eliminate the
error in the call itself, and place it into the wrapper
function. All errors, for example, could begin with
“An error has occurred” and then append the actual
error text. Of course, to make things even easier, you
could go a step further and allow the function to
read data strings from an external file — that capa-
bility would allow for internationalization as well.

be made all over the system when a new way of
doing things is desired. It would be nice, therefore, to
be able to customize this MessageBox function with
some defaults, so we could just call it the way we
want to. We would have to specify only the values
that change, which limits the number of arguments to
enter, making it easier to remember the order and
easier to avoid error values.

Customizing a function can mean one of two things: If
we are the ones writing the function, it means that we
can customize the kind of arguments that go into the
function and how those arguments are likely to be
used. If we didn’t write the function in the first place,
we can’t do those things; we can only “change” the
way the function is called by wrapping something
about it — that is, placing it inside a new function we
created ourselves — one that plays by our rules.
We’ll look at the first case in a bit; for right now, con-
sider the case of wrapping something around our
poor MessageBox function to make it easier for the
application developer to use.

Customizing the Functions
We Didn’t Write
One probable use of the MessageBox function is to
display error messages. Because the end user can do
nothing with such an error, there is no reason to
display the Cancel button on the message box — even
though most applications do just that. In this section,
I show you how to create your own variation on
the MessageBox function — the ErrorBox function —
which is different from MessageBox only in that it puts
the word “Error” at the top of the display title bar and
it displays only an OK button with the text. There’s no
real reason to create any new functionality for this
function, because, after all, the MessageBox function
already does everything we want it to do. Our func-
tion would look like Listing 20-1.

26_57986x ch20.qxd 1/26/05 4:19 PM Page 102

Customizing Functions We Wrote Ourselves 103

Customizing Functions
We Wrote Ourselves
Of course, simply customizing other people’s code
isn’t always the best approach when adding default
arguments. Default arguments are arguments that the
function developer provides. If you do not want to
specify a value other than the default, you omit the
argument entirely. If you wish to change the default
for a specific invocation, you may do so. The real
point to the practice is to provide the most likely uses
of a given argument, while protecting the capability of
the user to change (or customize) your defaults.

This technique creates, in a single class, both the
functions and methods that allow the user complete
control over his or her input — while providing

appropriate defaults that make it simple to use the
class’s methods and functions to accomplish normal
operations.

An example is an operation that most programmers do
on a regular basis: creating a file. The following steps
show you how to create a very simple File class that
allows opening, reading, writing, and closing files:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch20.cpp,
although you can use whatever you choose.

2. Type the code from Listing 20-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 20-2: A CLASS WITH METHODS CONTAINING DEFAULT VALUES

#include <stdio.h>
#include <string>

class FileHandler
{
private:

std::string m_fileName;
FILE *m_fp;

static const char *fileName()
{

return “log.txt”;
}

public:
FileHandler(const char *fn = NULL)
{

if (fn)
m_fileName = fn;

else
m_fileName = fileName();

}

(continued)

26_57986x ch20.qxd 1/26/05 4:19 PM Page 103

Technique 20: Defining Default Arguments for Your Functions and Methods104

and then use it this way:

int open(const char *name = fileName(),
const char *mode)

The compiler will get annoyed, because the fileName
method requires a this pointer to operate on. The level at
which we’re working has no this pointer. Worse, you can’t
write a command like this one:

int open(const char *name = this->
filename, const char *mode)

The reason you can’t is simple: The this pointer makes no
sense in this case. You aren’t inside an object, so you can’t
tell the outside world to refer to the object you are in. It’s an
annoyance, but it’s one of those things you just get used to.
If you find this too much trouble, use the same technique
the constructor uses to call the method.

Finally, we have the second open method that can
open the file — specifying only the mode we wish.
Notice that we can’t default this method. Why? If the
method had a default argument, there would be no
way to tell whether the user meant to call the first or
second version of the open method. To illustrate,
consider the following series of calls in an applica-
tion program:

FileHandler fh; // Invokes the constructor
fh.open();

LISTING 20-2 (continued)
int open(const char *name = fileName(), const char *mode = “rw”) � 1
{

m_fileName = name;
return open(mode);

}

int open(const std::string& mode) � 2
{

m_fp = fopen(m_fileName.c_str(), mode.c_str());
if (m_fp == NULL)

return -1;
return 0;

}
};

3. Save your file.

In the constructor, we set the default filename as a
NULL pointer. If the user overrides the filename, we
use the name they ask for. Otherwise we simply use
the internal name returned by the fileName method
in our class.

For the first open method (� 1), we also allow users
to override the filename — but this time we directly
initialize the filename from the internal method
(fileName()). This default value allows the user to
call the first open function with no arguments, if they
choose.

Working with regular (non-static) methods
Note that this way of calling a method as a default value
works only if the method in question is static. You can’t do
this with a regular method, because regular methods require
an object — and this way of calling puts you outside the
scope of the object you’re using.

For example, we can’t do something like the following:

virtual const char *filename()
{

return “log.txt”;
}

26_57986x ch20.qxd 1/26/05 4:19 PM Page 104

Testing the Default Code 105

Now, if we had given the second variant (� 2) of the
open method a default argument, which version of
the open method would be called ? It could be

fh.open(name, mode);

or it could be

fh.open(mode);

The compiler has no way of knowing which method
the developer originally intended, so it doesn’t allow
the use of this technique at compile-time.

Of course, we need to add a method to write to the
file. There’s no way to rationally default the values
we want to write out — that’s entirely up to the end
user of the class — so we won’t lift a finger to do so.
For a write statement, how could you have any idea
what data the end user wanted to write? You couldn’t,
nor is there any sort of pattern to it.

In your code editor, insert the code shown in Listing
20-3 to your program’s source code. (It goes before
the closing brace of the class’s public part.)

LISTING 20-3: THE FILE WRITE METHOD

bool write(const char *string)
{

bool bRet = false;
if (m_fp)
{

fputs(string, m_fp);
bRet = true;

}
return bRet;

}

Testing the Default Code
It’s a good idea to test the class with both default
and non-default values, just to see whether your
assumptions are valid.

The following steps show you how to create a test
driver that will show how the class is intended to
be used:

1. In the code editor of your choice, open the
existing file to hold the code for your test
program.

In this example, I named the test program
ch20.cpp.

2. Type the code from Listing 20-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 20-4: THE TEST DRIVER FOR THE FILEHANDLER CLASS

int main(int argc, char **argv)
{

FileHandler fh; � 3

if (fh.open() == -1)
printf(“Unable to open file. Errno
%d\n”, errno);

fh.write(“This is a test”);

FileHandler fh2(“log2.txt”); � 4
fh.open(“w”);
fh.write(“This is another test”);

}

3. Save the source code and close the source-code
editor.

4. Compile the code using your favorite compiler
on your favorite operating system.

If you have done everything right, the program
should create the log.txt and log2.txt files.
These files should be created at � 3 and � 4 in
the driver code. The files will contain our output
for the FileHandler objects. However, you will
quickly find that it did not, in fact, create any
files. Depending on your operating system and
compiler, you may even get a program crash. So
what went wrong?

26_57986x ch20.qxd 1/26/05 4:19 PM Page 105

Technique 20: Defining Default Arguments for Your Functions and Methods106

LISTING 20-5: THE MODIFIED OPEN METHOD

int open(const char *name =
fileName(),const char *mode = “rw+”)
{

m_fileName = name;
std::string s = mode;
return open(s);

}

Now, if you compile and run the program, you’ll find
that it runs properly and generates the two files as
expected.

Fixing the Problem
If you put some debugging statements in the open
method with two arguments, you can find the prob-
lem very quickly: The open method is called recur-
sively, until the stack is exhausted and the program
crashes. Why? Because of the nature of our default
arguments, the open function with default arguments
calls open again within itself after having assigned
the arguments. The best match for the open call in
our open method happens to be the method itself!
This causes an endlessly recursive loop. So, of
course, bad things happen when you call yourself
repeatedly in a method. Let’s fix that by modifying
the open method as in Listing 20-5 (replace the exist-
ing method with the new listing code):

26_57986x ch20.qxd 1/26/05 4:19 PM Page 106

Part IV

Classes

27_57986X pt04.qxd 1/26/05 4:19 PM Page 107

27_57986X pt04.qxd 1/26/05 4:19 PM Page 108

21
Creating a
Complete Class

When you are trying to use or reuse a class in C++, there is nothing
quite so frustrating as finding that the method that you need is
not implemented in that class, or that the method does not work

properly when you try to use it in the environment you are using. The rea-
son for this is usually that the programmer who developed the class did
not create a Complete class — but what, exactly, does it mean to create
one? That’s a good question, and this technique will try to answer it.

To do its job, a Complete class must follow a list of specific rules. These
rules, in their correct order, are as follows:

1. The class must implement a void constructor.

2. The class must implement a copy constructor.

3. The class must implement a virtual destructor.

4. The class must implement a get method for each data element defined
in the class.

5. The class must implement a set method for each data element defined
in the class.

6. The class must implement a clone method so it can make a copy of
itself.

7. The class must implement an assignment operator.

If you create a class that follows all these rules, you have likely created a
Complete class, one that will be reused by programmers over and over
again. This will save you time and effort in not having to reinvent the
wheel each time that type of code needs to be used in a project.

Please note that having a set method for a class implies strongly that
the set method will check for invalid values. Also, if you have pointers
in your class, you should make sure that you initialize them to NULL,
copy them properly, and destroy them when they are done. A set
method for a pointer ought to take into account that it is acceptable
to set the pointer to NULL and not have any memory leaks.

Technique

Save Time By
� Defining a Complete

class

� Creating templates for a
Complete class

� Testing the Complete
class

28_57986x ch21.qxd 1/26/05 4:20 PM Page 109

Technique 21: Creating a Complete Class110

technique that you should insist all developers
on your team use in all of their application code.
There are no classes that are “too trivial” to ben-
efit from these enhancements.

1. In the code editor of your choice, open the
existing file to hold the code for your test
program.

In this example, I named the test program
ch21.cpp.

2. Type the code from Listing 21-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

Creating a Complete Class
Template
The following steps show you an example of a
Complete class that you can use as a template for all
the classes you implement in the future.

If you create a template for creating objects and
a process for implementing that template for
new classes, you avoid many of the problems
that haunt C++ programmers. Because the pur-
pose of these techniques is to not only improve
your coding skills, but also to insure that you
create better software, this is a very valuable

LISTING 21-1: THE COMPLETE CLASS

#include <stdio.h>
#include <string>
#include <string.h>

class Complete
{
private:

bool dirty; // Keep track of the object state. � 1
private:

int x;
double y;
std::string s;
char *p;

// Create an initialization function that
// can reset all values.
void Init()
{

x = 0;
y = 0;
s = “”;
if (p)

delete p;
p = NULL;
dirty = false;

}

// Create a copy function that you can use to make
// clones of an object.
void Copy(const Complete& aCopy)
{

Init();

28_57986x ch21.qxd 1/26/05 4:20 PM Page 110

Creating a Complete Class Template 111

x = aCopy.x;
y = aCopy.y;
s = aCopy.s;
if (p)

delete p;
p = NULL;
if (aCopy.p)
{

p = new char[strlen(aCopy.p)];
strcpy(p, aCopy.p);

}
dirty = true;

}
public:

// Always create a default constructor.
Complete()
{

// We need to set the pointer first.
p = NULL;
// Now initialize.
Init();

}
// Always create a copy constructor.
Complete(const Complete& aCopy)
{

// We need to set the pointer first.
p = NULL;
// Now copy the object.
Copy(aCopy);

}
// Always create a full constructor with all accessible
// members defined.
Complete(int _x, double _y, std::string& _s, const char *_p)
{

x = _x;
y = _y;
s = _s;
if (_p)
{

p = new char[strlen(_p)];
strcpy (p, _p);

}
else

p = NULL;
dirty = true;

}
// Always create a virtual destructor.
virtual ~Complete()
{

if (p)
delete p;

(continued)

28_57986x ch21.qxd 1/26/05 4:20 PM Page 111

Technique 21: Creating a Complete Class112

LISTING 21-1 (continued)
}
// Next, define accessors for all data that can be public. If
// it’s not intended to be public, make it a private accessor.
// First, define all the set methods. The “dirty” flag is not
// necessary for completeness, but it makes life a LOT easier.

void setX(const int& _x)
{

if (x != _x)
dirty = true;

x = _x;
}
void setY(const double& _y)
{

if (y != _y)
dirty = true;

y = _y;
}
// Note that for strings, we always use the easiest base type.
void setS(const char *_s)
{

if (s != _s)
dirty = true;

s = _s;
}
void setP(const char *_p)
{

if (p != _p)
dirty = true;

// Always clear out a pointer before setting it.
if (p)
{

delete p;
p = NULL;

}

if (_p)
{

p = new char [strlen(_p)];
strcpy(p, _p);

}
else

p = NULL;
}

// Now the data get functions. Note that since they cannot modify
// the object, they are all marked as const.

28_57986x ch21.qxd 1/26/05 4:20 PM Page 112

Testing the Complete Class 113

3. Save the source file.

When you are creating your own classes, you
should seriously consider using Listing 21-1 as
a template. If all classes implemented all their
functionality in this manner, they would easily
rid the programming world of 10 to 20 percent
of all bugs.

Testing the Complete Class
Just writing the class is not enough. You also need to
test it. Test cases provide two different uses for

developers. First, they provide a way to make sure
that you didn’t make the code work improperly
when you made the change. Secondly, and more
importantly, they act as a tutorial for the user of
your class. By running your test driver and looking
at the order in which you do things, the programmer
can discover how to use the code in his or her own
program as well as what values are expected and
which are error values. It is almost, but not quite,
self-documenting code.

How do you go about writing tests for your classes?
Well, first you test all the “normal” conditions. One
quick way to illustrate is to create a test driver that
tests the constructors for the class, like this:

int getX(void) const
{

return x;
}
double getY(void) const
{

return y;
}
std::string getS(void) const
{

return s;
}
// Note: For internal pointers, always return a CONST pointer.
const char * getP(void) const
{

return p;
}

// Implement a clone operator.
Complete Clone(void)
{

Complete c;
c.Copy(*this);
return c;

}

// Implement an assignment operator.
Complete operator=(const Complete& aCopy)
{

Copy(aCopy);
return *this;

}

};

28_57986x ch21.qxd 1/26/05 4:20 PM Page 113

Technique 21: Creating a Complete Class114

5. Run the application. You should see the output
from Listing 21-3 appear in the console window.

LISTING 21-3: OUTPUT

$./a.exe
Object:
X : 0
Y : 0.000000
S :
P : NULL
Object:
X : 1
Y : 2.000000
S : Three
P : This is a test
Object:
X : 1
Y : 2.000000
S : Three
P : This is a test
Object:
X : 0
Y : 0.000000
S :
P : NULL

As you can see, we get the expected output. The ini-
tialized values default to what we set them to in the
various constructors and copy functions. It’s very
hard to overestimate the importance of having unit
tests like these. With unit tests, you have a built-in
way to verify changes; you have ways to start testing
your software; and you have documentation built
right in the code. Unit testing is an important por-
tion of such development methodologies as eXtreme
Programming (now often called Agile Programming)
and the like.

Another important thing to note in our code is the
dirty flag (shown at � 1 in Listing 21-1) that we
have built into the code. The simple dirty flag could
easily be extracted out into its own small class to
manage dirty objects — and can be reused across
many different classes, as shown in Listing 21-4.

1. In the code editor of your choice, reopen
the existing file to hold the code for your test
program.

In this example, I named the test program
ch21.cpp.

2. Type the code from Listing 21-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 21-2: THE COMPLETE CLASS TEST DRIVER

void DumpComplete(const Complete& anObj)
{

printf(“Object:\n”);
printf(“X : %d\n”, anObj.getX());
printf(“Y : %lf\n”, anObj.getY());
printf(“S : %s\n”, anObj.getS().c_str());
printf(“P : %s\n”, anObj.getP() ?
anObj.getP() : “NULL”);

}

int main()
{

// Test the void constructor.
Complete c1;
// Test the full constructor.
std::string s = “Three”;
Complete c2(1, 2.0, s, “This is a test”);
// Test the copy constructor.
Complete c3(c2);
// Test the = operator.
Complete c4=c1;

DumpComplete(c1);
DumpComplete(c2);
DumpComplete(c2);
DumpComplete(c4);

}

3. Save the source-code file in your editor and
close the code-editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

28_57986x ch21.qxd 1/26/05 4:20 PM Page 114

Testing the Complete Class 115

LISTING 21-4: A CHANGEMANAGEMENT CLASS

class ChangeManagement
{
private:

bool dirty;
public:

ChangeManagement(void)
{

dirty = false;
}
ChangeManagement(bool flag)
{

setDirty(flag);
}
ChangeManagement(const ChangeManagement&
aCopy)
{

setDirty(aCopy.isDirty());
}
virtual ~ChangeManagement()
{
}
void setDirty(bool flag)
{

dirty = flag;
}
bool isDirty(void)
{

return dirty;
}
ChangeManagement& operator=(const
ChangeManagement& aCopy)
{

setDirty(aCopy.isDirty());
return *this;

}
};

Okay, why might we want to create a dirty flag?
Well, for one reason, we could then manage the “dirt-
iness” of objects outside the objects themselves. We
might, for example, have a manager that the
ChangeManagement class “talked to” to notify it when
given objects become dirty or clean (and therefore
have to be written to and from disk). This sort of
thing would be very useful for a cache manager
of objects, when memory is at a premium but disk or
other storage space is available.

Of course, writing unit tests doesn’t mean that
you have done a complete test. At this point,
you’ve simply validated that the code does
what you expected it to do when valid input
was given. Never confuse testing with valida-
tion. Validation shows that the code does what
it is supposed to do when you do everything
right. Testing shows that the code does what it
is supposed to do when you do something
wrong.

28_57986x ch21.qxd 1/26/05 4:20 PM Page 115

Save Time By
� Understanding inheritance

� Defining virtual
inheritance

� Implementing virtual
inheritance

� Testing and correcting
your code

Using Virtual
Inheritance

It’s no accident that this book devotes some time to understanding
how classes are constructed — and how you can inherit from them.
Inheritance allows you to save time and effort by providing a ready

base of code that can be reused in your own classes. When you are doing
class design, however, there are some problems that will cause you pain
and consternation. One such problem is in multiple inheritance. While
multiple inheritance can solve many problems in class design, it can also
cause problems. For example, consider the case of Listing 22-1:

LISTING 22-1: A MULTIPLE INHERITANCE EXAMPLE

class Base
{

char *name;
public:

virtual const char *Name();
void setName(const char *n);

}
class A : public Base
{
}
class B : public Base
{
}
class C : public A, public B
{
}

Listing 22-1 shows a problem with multiple inheritance that you might
not think could ever happen — but it happens nearly all the time.
When we have a base class from which all classes in the system inherit
information — such as an Object class that stores the name (that is, the
type) of the class — we run into the problem of inheriting from the same
base class in multiple ways. This situation is often referred to as the
“deadly triangle” of object-oriented programming. If you instantiate an
object of type C, as in the code shown in Listing 22-1, the compiler and

22Technique

29_57986x ch22.qxd 1/26/05 4:21 PM Page 116

Using Virtual Inheritance 117

linker won’t object — everything appears to work
fine. However, the problem comes in when we try to
use the methods in the base class Base. If we write

const char *name = c.Name();

then the compiler immediately throws a fit, generat-
ing an error for the source-code line. The reason
should be obvious: Which name method are we calling
here? There are two Base classes in the inheritance
tree for class C. Is it the one in the base class A, or the
one in the base class B? Neither is obvious, although
we can scope the answer with a little effort:

const char *name = c.B::Name();

This will fix our compile problem, because the com-
piler now knows that we mean the Name method that
is inherited through the class B tree.

Unfortunately, this doesn’t really solve the problem.
After all, our C class is not a B, nor is it an A — it is a
C, and only that. You might think a dodge like this
could “fix” the problem:

class C : public A, public B
{

public:
C()

: Base(“C”)
{
}

Here we explicitly tell the compiler that this is a C
object and should be used as one. Because the base
class constructor takes a name, and that name is
used in the Name method, it ought to therefore assign
the value C to the name. The problem is, if you try
to compile this mess, you get the error shown in
Listing 22-2:

Curses, foiled again; this doesn’t solve the problem
at all. The compiler is complaining because it does
not see which base class we are trying to use. Is it
the base class of A, or the base class of B? This isn’t
clear, and therefore we cannot simply call the base
class constructor.

How, then, can we inherit from two base classes that
(in turn) inherit from a common base class? The
answer lies in a C++ concept known as virtual inheri-
tance. Virtual inheritance combines multiple base
classes into a single base class within the inheri-
tance tree, so that there is never any ambiguity.

In Listing 22-1, with two classes inheriting from a
common base, the problem occurs because the base
class occurs in the inheritance tree twice. Virtual
inheritance forces the compiler to create only a sin-
gle instance of the base class — and to use the data
in that single instance wherever the data was last
set. This means that the code literally skips the
instantiation of the base classes in the two bases
(A and B, in our example) and uses only the instantia-
tion in the last class level, C.

LISTING 22-2: COMPILER OUTPUT FOR MULTIPLE INHERITANCE ERROR

ch3_11.cpp: In constructor ’C::C()’:
ch3_11.cpp:65: error: ’Object’ is an ambiguous base of ’C’
ch3_11.cpp:65: error: type ’class Object’ is not a direct base of ’C’
ch3_11.cpp: In member function ’void C::Display()’:
ch3_11.cpp:70: error: request for member ’Name’ is ambiguous in multiple

inheritance lattice
ch3_11.cpp:23: error: candidates are: virtual const char* Object::Name()
ch3_11.cpp:23: error: virtual const char* Object::Name()

29_57986x ch22.qxd 1/26/05 4:21 PM Page 117

Technique 22: Using Virtual Inheritance118

{
if (name)

delete name;
name = NULL;

if (n)
{

name = new char[strlen(n)+1];
strcpy(name, n);

}
}

};

class A : public virtual Object � 1
{
public:

A()
: Object(“A”)

{
}
virtual ~A()
{
}

};

class B : public virtual Object � 2
{
public:

B()
: Object(“B”)

{
}

};

class C : public A, public B
{
public:

C()
{
}
void Display()
{

printf(“Name = %s\n”, Name());
}

};

int main(int argc, char **argv)
{

C c;

c.Display();
}

Implementing Virtual Inheritance
Implementing virtual inheritance in your base
classes allows you to create an inheritance structure
that will permit all other classes that inherit from
your base classes to work properly. The following
steps take a look at how we can create an inheri-
tance structure that implements virtual inheritance:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch22.cpp,
although you can use whatever you choose.

2. Type the code from Listing 22-3 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 22-3: BASE-CLASS INHERITANCE

#include <stdio.h>
#include <string>

class Object
{
private:

char *name;
public:

Object(void)
{

name=NULL;
}
Object(const char *n)
{

setName(n);
}
virtual ~Object()
{

if (name)
delete name;
name = NULL;

}
virtual const char *Name()
{

return name;
}
virtual void setName(const char *n)

29_57986x ch22.qxd 1/26/05 4:21 PM Page 118

Correcting the Code 119

The keys to the above code are in the lines
marked with � 1 and � 2. These two lines force
the compiler to create only a single Object
instance in the inheritance tree of both A and B.

3. Save the code as a file in your code editor and
close the editor application.

4. Compile the source-code file with your favorite
compiler on your favorite operating system,
and then run the resulting executable.

If you have done everything right, you should see
the following output:

$./a.exe
Name = (null)

Oops. This is not what we wanted to see. We were
expecting the name of the class. That name should
be ‘C’. The next section fixes that — and gives us the
type we really wanted.

Correcting the Code
The problem in our simple example comes about
because we assumed that the code would naturally
follow one of the two paths through the inheritance
tree and assign a name to the class. With virtual
inheritance, no such thing happens. The compiler
has no idea which class we want to assign the name

to, since the values “belong” to the C class, rather
than the A and B classes. We have to tell the code
what to do. Let’s do that here.

1. Reopen the source-code file created earlier
(called ch22.cpp) and edit it in your code editor.

2. Modify the constructor for the C class as follows:

C()
: Object(“C”)

{
}

3. Recompile and run the program, and you will
see the following (correct) output from the
application:

$./a.exe
Name = C

It isn’t always possible to modify the base classes for
a given object, but when you can, use this technique
to avoid the “dread diamond” (having a class derived
from two base classes both of which derive from
a common base class) — and use classes that have
common bases as your own base classes.

When you’re designing a class, keep in mind
that if you add a virtual method, you should
always inherit from the class virtually. This
way, all derived classes will be able to override
the functionality of that virtual method
directly.

29_57986x ch22.qxd 1/26/05 4:21 PM Page 119

23
Creating Overloaded
Operators

One of the most fascinating abilities that was added to C++ was the
power to actually change the way the compiler interpreted the
language. Before C++, if you had a class called, say, Foo, and you

wanted to write a method or function to add two Foo objects, you would
have to write code similar to the following:

Foo addTwoFoos(const Foo&f1, const
Foo& f2)
{

Foo f3;

// Do something to add the two foos (f1 and f2)

return f3;
}

Then you could call the function in your application code like this:

Foo f1(0);
Foo f2(1);
Foo f3;
f3 = addTwoFoos(f1,f2);

Overloaded operators permit you to change the basic syntax of the lan-
guage, such as changing the way in which the plus operator (+) is used.
With the addition of overloaded operators, however, you can now write
something like this:

Foo operator+(const Foo& f1,
const Foo& f2) � 1

{
Foo f3;

// Do something to add them

return f3;
}

Save Time By
� Defining overloaded

operators

� Rules for creating over-
loaded operators

� Using a conversion
operator

� Using overloaded
operators

� Testing your operator

Technique

30_57986x ch23.qxd 1/26/05 4:21 PM Page 120

Rules for Creating Overloaded Operators 121

operator to do something along the line of
adding. You wouldn’t expect (for example) to use
the plus operator to invert a string; that wouldn’t
make sense. It would drive anyone trying to
understand the code completely batty.

� Make sure that the operator has no unexpected
side effects.

This rule isn’t much more complicated. If I’m
adding two numbers together, I don’t expect the
result of the operation to change either number.
For example, suppose we wrote something like

Foo f1(1);
Foo f2(2);
Foo f3 = f1+f2;

After these statements are run, you certainly
would expect f1 to still contain a 1 and f2 to still
contain a 2. It would be confusing and counter-
intuitive if you added two numbers and found
that f1 was now 3 and f2 was now 5.

� Make sure that an operator is the only way you
can implement the functionality without having
an adverse impact on the end user and the
maintainer of the code.

This rule is somewhat subjective but easy to
understand. If you could easily write an algorithm
as a method or function, there would be no reason
to overload an operator to perform the algorithm.

� Make sure that the operator and all associated
operators are implemented.

This rule is fairly important — especially from
the perspective of a user. For example, if you
implement the plus (+) operator, you’re going to
want to implement the plus-equal operator (+=)
as well. It makes no sense to the end user to be
able to perform the statement

Foo f3 = f1 + f2;

without also being able to perform this one:

f2 += f1;

Unfortunately, the converse operation is not
always valid. For example, we might be able to
add two strings together easily enough, by

In your code, you can now include statements such
as this:

Foo f3 = f1+f2;

Without the overloaded operator (� 1), this line
would generate a compile error, since the compiler
knows of no way to add two objects of type Foo.

Of course, this power comes with a corresponding
price. When you overload operators like this, even
the simplest-looking statement can cause problems.
Because you can no longer assume that a single line
of code results in a single operation, you must step
into every line of code in the debugger to trace
through and see what is really happening.

Take a look at this simple-looking statement, for exam-
ple, in which we assign one Foo object to another:

Foo f1=12;

This statement could, conceivably, be hidden within
hundreds of lines of code. If an error crops up in the
code that processes this simple assignment state-
ment, you have to dig into every one of those lines
to find it. So consider: An overloaded operator may
be hard to beat for readability. It is more intuitive to
say A+B when you mean to add two things than to
write add(A,B), but it’s a debugging nightmare.
Weigh very carefully the real need for overloading a
particular operator against the pain you can cause
someone who’s trying to figure out why a side effect
in your code caused his program not to work.

Rules for Creating Overloaded
Operators
There are four basic rules that you should use when
you overload operators in your own classes:

� Make sure that the operator does not conflict
with standard usage of that operator.

This rule is pretty straightforward. If you over-
load the plus (+) operator, you still expect the

30_57986x ch23.qxd 1/26/05 4:21 PM Page 121

Technique 23: Creating Overloaded Operators122

appending one to the other. What does subtract-
ing a string from another string mean, though? It
could be used to find the string in the first string
and extract it, but that really doesn’t make a
great deal of sense. Therefore, subtraction is not
an “associated operator” for strings. This fails
both the first and third rules.

Using Conversion Operators
Besides addition, the other sort of operator that
often should be implemented for your classes is a
conversion operator. With it, you can convert a given
class into a lot of things. For example, you could con-
vert a string into a character pointer — or a class
into an integer for use in other functions. In such
cases, you use the conversion operator like this:

operator const char *()

The const char * portion of the operator defines
what you are converting the class data into. The
operator keyword just tells the compiler that you
are implementing this as an operator. If you imple-
ment the operator given here in your code, you can
use the class that implements the code anywhere
you would use a const char * value. You can do so
directly, as in the following lines of code:

printf(“The value as a string is: %s\n”,
(const char *)myObj);

Alternatively, you can do it implicitly by first includ-
ing these lines of code:

void print_a_string(const char *s)
{

print(“string: %s\n”, s);
}

and then referencing those lines with this line:

print_a_string(myObj);

The compiler automatically calls your conversion
operator “silently” when the object is passed to the
print_a_string function. The conversion is applied
and the const char * pointer passed into the function
instead of the object. Note that this process does
involve some overhead — and if the conversion is to
a non-basic type, a temporary object is created —
which can cause problems if you are reference-
counting (tracking allocations and de-allocations)
your objects. You will have a new object created by
the compiler that does not appear in your code.
Tracing logic that prints out the creation of objects
will be confused, and may result in trying to find prob-
lems by the end programmer that do not really exist.

Always remember that just because you can use C++
functionality, such as overloaded operators, does not
mean you should or must use that capability. Always
do what makes the most sense in your programming
situation.

Using Overloaded Operators
Overloaded operators are those that have the same
name but different numbers or types of arguments.
Let’s create a few overloaded operators in a class to
illustrate this technique in C++.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch23, although
you can use whatever you choose.

2. Type the code from Listing 23-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

30_57986x ch23.qxd 1/26/05 4:21 PM Page 122

Using Overloaded Operators 123

This code implements the various constructors
and internal methods that we are going to be
using in the class. Note that to be a complete
class, we provide the void constructor (� 1)
and copy constructor (� 2), as well as a virtual
destructor (� 3). In addition, a variety of other
constructors allow you to do the complete cre-
ation of the object in different ways.

3. Add the code from Listing 23-2.

In our case, we only have two different pieces
of data in the class: the buffer itself, which holds
the string we are encapsulating, and the length
of the buffer (for keeping track of valid indexes
into the string). Add the code from Listing 23-2
to your source file to implement the accessors.

LISTING 23-2: ACCESSOR METHODS FOR THE MYSTRING CLASS

// Accessor methods
int Length() const
{

return length;
}
void setLength(int len)
{

if (len != length)
{

char *temp = new char[len+1];
strncpy(temp, buffer, len);
for (int i=length; i<len; ++i)

temp[i] = 0;
delete buffer;
buffer = temp;

}
}
MyString& operator=(const MyString&

aCopy)
{

SetBuffer(aCopy.buffer);
return *this;

}
// We can overload the operator= as well
MyString& operator=(const char *str)
{

SetBuffer(str);
return *this;

}

LISTING 23-1: OVERLOADED OPERATORS

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <ctype.h>

class MyString
{

char *buffer;
int length;

private:
void SetBuffer(const char *s)
{

if(buffer)
delete buffer;

buffer = NULL;
length = 0;
if (s)
{

buffer = new char[strlen(s)+1];
strcpy(buffer, s);
length = strlen(buffer);

}
}

public:
MyString(void) � 1
{

buffer = NULL;
length = 0;

}
MyString(const char *s)
{

buffer = NULL;
SetBuffer (s);

}
// Create a string that is blank, of the

length given.
MyString(int length)
{

buffer = new char[length+1];
for (int i=0; i<length; ++i)

buffer[i] = ‘ ‘;
}
MyString(const MyString& aCopy) � 2
{

buffer = NULL;
SetBuffer (aCopy.buffer);

}
virtual ~MyString() � 3
{

if (buffer)
delete buffer;

}

30_57986x ch23.qxd 1/26/05 4:21 PM Page 123

Technique 23: Creating Overloaded Operators124

4. Add the code from Listing 23-3 to the file.

This adds the operators for the class. This is an
optional step that you might or might not want
to add to your own classes.

Listing 23-3 implements some operators for this
class. (We’ll add conversion operators, indexing
operators, an operator to return a sub-string of
our string, and some comparison operators so
you can see how it all fits together.)

LISTING 23-3: CLASS OPERATORS

// Be able to use the object “just as if” it were a string.
operator const char*()
{

return buffer;
}
// Be able to iterate through the string using the [] construct.
// Note that the users can change the string this way. Define a
// const version of it too, so they cannot change the string.
char& operator[](int index)
{

// This is probably not the right thing to do, in reality,
// but if they give us an invalid index, just give them the first byte.
if (index < 0 || index > length-1)

return buffer[0];
return buffer[index];

}
const char& operator[](int index) const
{

// This is probably not the right thing to do, in reality,
// but if they give us an invalid index, just give them the first byte.
if (index < 0 || index > length-1)

return buffer[0];
return buffer[index];

}
// Now the fun stuff. Create an operator to return a sub-string of the
// buffer.
MyString operator()(int stIndex, int endIndex)
{

if (stIndex < 0 || stIndex > length-1)
stIndex = 0;

if (endIndex < 0 || endIndex > length-1)
endIndex = length-1;

if (stIndex > endIndex)
{

int temp = stIndex;
stIndex = endIndex;
endIndex = temp;

}
// Okay, we have valid indices. Let’s create the string of the right
// size.
MyString s(endIndex-stIndex+1);
// Copy the buffer into the string.
for (int i=stIndex; i<=endIndex; ++i)

30_57986x ch23.qxd 1/26/05 4:21 PM Page 124

Testing the MyString Class 125

2. Type the code from Listing 23-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

Notice that we can use the operator “[]” on
either side of the equal sign in an expression. If
you use the [] as an l-value, you can actually
directly assign values to the buffer in the code.
However, unlike a “standard” C++ array, the code
actually validates to ensure that the index you
pass in is in the valid range for the internal
buffer. Hence no more buffer overruns — and no
more program crashes!

3. Save the source code in your code editor.

Testing the MyString Class
After you create the MyString class, you should create
a test driver that not only ensures that your code is
correct, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates how the class is intended to
be used.

1. In the code editor of your choice, open the exist-
ing file to hold the code for your test program.

In this example, I named the test program ch23.

s[i-stIndex] = buffer[i];
return s;

}
// Define some comparison operators, case-insensitive.
bool operator==(const MyString& aString)
{

if (Length() != aString.Length())
return false;

for (int i=0; i<Length(); ++i)
{

char c1 = (*this)[i];
char c2 = aString[i];
if (toupper(c1) != toupper(c2))

return false;
}
return true;

}
// Do the same for comparisons to literal strings.
bool operator==(const char *str)
{

if (Length() != strlen(str))
return false;

for (int i=0; i<Length(); ++i)
{

char c1 = (*this)[i];
char c2 = str[i];
if (toupper(c1) != toupper(c2))

return false;
}
return true;

}

};

30_57986x ch23.qxd 1/26/05 4:21 PM Page 125

Technique 23: Creating Overloaded Operators126

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the resulting program on the operating
system of your choice.

If you have done everything correctly, you should
see the following output from the application in the
console window.

$./a.exe
The string is: [This is a test]
The string is now: [Thismis a test]
The sub-string is: [smis]
The sub-string is now: [Hello world]
Strings compare
Strings do NOT compare
Strings compare
The string is: Hello world

LISTING 23-4: THE BUFFER CLASS TEST DRIVER

void print_a_string(const char *s)
{

printf(“The string is: %s\n”, s);
}

int main(int argc, char **argv)
{

MyString s(“This is a test”);

printf(“The string is: [%s]\n”, (const char *)s);
s[4] = ‘m’;
printf(“The string is now: [%s]\n”, (const char *)s);

// Get a sub-string of the string.
MyString sub = s(3,7);
printf(“The sub-string is: [%s]\n”, (const char *)sub);

// We can reset strings to be bigger or smaller.
sub = “Hello world”;
printf(“The sub-string is now: [%s]\n”, (const char *)sub);

if (sub == “hEllO world”)
printf(“Strings compare\n”);

else
printf(“Strings do NOT compare\n”);

if (sub == “Goodbye”)
printf(“Strings compare\n”);

else
printf(“Strings do NOT compare\n”);

MyString copy = sub;
if (sub == copy)

printf(“Strings compare\n”);
else

printf(“Strings do NOT compare\n”);

print_a_string(sub);
return 0;

}

30_57986x ch23.qxd 1/26/05 4:21 PM Page 126

Testing the MyString Class 127

This example really shows the power of overriding
operators and creating your own types in C++: You
can protect the end user against just about all the
problems that have cropped up in years of software
development.

As you can see from the output in Listing 23-2, the
indexing functions (operator [] and operator ())
properly allow us to retrieve and modify selected
pieces of our string. The comparison functions work
as well, showing that our overloaded operators are
working correctly.

30_57986x ch23.qxd 1/26/05 4:21 PM Page 127

Save Time By
� Implementing new and

delete handlers

� Overloading new and
delete handlers

� Creating a memory-
allocation tracking
program

� Testing your program

Defining Your Own
new and delete
Handlers

One basic building block of the C++ language is a set of core
keywords for allocating and freeing blocks of memory. The new
and delete keywords (for example) were added to the language

primarily to support the addition of objects with constructors and
destructors — but they’re also used to allocate more “generic” blocks of
memory, such as character arrays.

The main reason for using the new operator was that it would automatically
allocate the needed block of memory, and then call the constructor for
the block of memory to initialize it properly. (The old C style alloc/malloc
functions couldn’t do that.)

The problem with the new and delete operators isn’t really in the way
they are used; it’s that they don’t keep track of what is allocated and
what is deleted. There are other problems — such as dealing with pools
of objects (allowing you to reuse objects without allocating new ones) —
but most programmers would agree that the issue of tracking memory
allocation is more serious. If you can keep track of exactly when memory
is allocated and de-allocated in your application, you will save enormous
amounts of time in the debugging process trying to track down memory
leaks and overwrites.

Consider, as a good example, the following function, written in C++:

int func(int x)
{

char *ptr = new char[200]; � 1
if (x < 0 || x > 100)

return –1; � 2

// Do some processing of the ptr.

// De-allocate memory.
delete ptr;

}

24Technique

31_57986x ch24.qxd 1/26/05 4:22 PM Page 128

Overloading new and delete Handlers 129

This code contains a subtle, but important, memory
leak. If you call the function with a value such as 102
passed for x, you will see the problem. The function
allocates a block of memory that is 200 bytes long
(at � 1), and then returns without de-allocating the
block (at � 2). That memory is then consumed until
the program exits, and is no longer available to the
application. This might not seem like such a big
problem — unless this routine is called several thou-
sand times. Suddenly that 200-byte block becomes a
several-megabyte memory leak. Not a good outcome
at all.

Fortunately, the designers of C++ considered that
problems like this could easily crop up. Although
they chose not to build in a garbage-collection sys-
tem, as in Java, they did provide the building blocks
for creating your own memory allocation and de-
allocation system, and keeping track of such things.
To keep track of memory allocation in C++, we need
the ability to overload the new and delete handlers
in the language. You might think that this would be a
complicated affair, but as Technique 23 shows, over-
loading operators (so they appear to be a basic part
of the language) is simple in C++. The new and delete
operators are no exception to the overloading
process, although you have to go about it a little dif-
ferently. In this technique, we look at how you can
overload the new and delete handlers for the entire
system, although the same process can be scaled
down to just the class level.

Rules for Implementing new
and delete Handlers
There are a few things to note when you are imple-
menting your own new and delete handlers in your
application code.

� You may not call new and delete within your new
or delete handlers. This might seem obvious,
but issuing those calls is almost automatic for

some developers. In short, new and delete may
not be called recursively.

� You may not call any methods, functions, or
objects that call new or delete within your han-
dlers. If you call a function within a new handler
that calls new, you get an instantly recursive call.
Following this rule is often harder than it looks.
(For example, you cannot use the STL containers
because they allocate memory.)

� Your new and delete handlers must be very fast.
Their code is often called over and over, and
must not slow down the application they are
being used from.

� You cannot change the process in which the new
and delete operators are called. That is, you
can’t return a smaller or larger block than was
asked for to the application. Doing so can break
many programs.

Overloading new and
delete Handlers
With these rules in mind, how can we overload the
new and delete operators to keep track of what is
being allocated in a given program and report on
which allocations were never freed? Let’s take a look
at an example of that right now.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch24.cpp,
although you can use whatever you choose.

2. Type the code from Listing 24-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

31_57986x ch24.qxd 1/26/05 4:22 PM Page 129

Technique 24: Defining Your Own new and delete Handlers130

LISTING 24-1: NEW AND DELETE HANDLERS

#include <stdio.h>
#include <stdlib.h>

typedef struct {
long number;
long address;
long size;
char file[64];
long line;

} lALLOC_INFO;

lALLOC_INFO *allocations[100000];
int nPos = 0;

void AddTrack(long addr, long asize)
{

if (asize == 2688)
printf(“Found one!\n”);

lALLOC_INFO *info = (lALLOC_INFO *)malloc(sizeof(lALLOC_INFO));
info->address = addr;
info->size = asize;
info->number = nPos;
allocations[nPos] = info;
nPos ++;

};

bool RemoveTrack(long addr)
{

bool bFound = false;

for(int i = 0; i != nPos; i++)
{

if(allocations[i]->address == addr)
{

// Okay, delete this one.
free(allocations[i]);
bFound = true;
// And copy the rest down to it.
for (int j=i; j<nPos-1; ++j)

allocations[j] = allocations[j+1];
nPos --;
break;

}
}
if (!bFound)
printf(“Unable to find allocation for delete [%ld]\n”,addr);
return bFound;

};

31_57986x ch24.qxd 1/26/05 4:22 PM Page 130

Overloading new and delete Handlers 131

This code keeps track of all allocations — and
adds or removes them from a global array as we
do our processing. This way, we can track all
calls to new or delete within our application —
and report on the calls to new that are not
matched with a call to delete. Of course, this
approach limits how many allocations we are
going to track (it’s a large, but not infinite, num-
ber). We can’t dynamically allocate this array
without writing a bunch of fancy code that’s
beyond the scope of this example, so we will use
this compromise for now.

3. Add the code from Listing 24-2 to your source
file.

This code generates a report of what blocks are
currently allocated and how big they are. This
aids the developer in tracking down the offending
code that created the memory leak in the first
place. Of course, knowing where the leak
occurred doesn’t help if the leak happens in a low-
level library (because we have no access to the
library source code and couldn’t modify it if we
did), but at least the size will help some. By know-
ing the size of our allocation, we might be able to
map that to a specific block size in the program,

or the size of a given object. This code could eas-
ily be moved to a separate utility file but we will
include it in the same file for simplicity.

This code simply steps through the list of alloca-
tions we have kept track of in the add and remove
routines and reports on anything it finds that
was not yet freed. This doesn’t necessarily mean
that the allocation is a leak, though, as we will
see. What it means is that at the moment of this
particular memory-state snapshot, the alloca-
tions in the list have not been freed up.

4. Add the code from Listing 24-3 to your source
file below the remaining code.

This implements the actual new and delete
methods. Once again, we could easily move
these to a separate utility file, but it is easier to
leave it in one place. This functionality is added
separately to indicate how you would append
this code to an existing program.

This will implement the actual overload of the
new and delete operators. To implement that
operation, add the code in Listing 24-3 to your
source file.

LISTING 24-2: ALLOCATION REPORT

void DumpUnfreed()
{

long totalSize = 0;
printf(“-------------------- Allocations ----------------------\n”);
for(int i = 0; i < nPos; i++)
{
lALLOC_INFO *pInfo = allocations[i];
printf(“(%ld) ADDRESS %x\t Size: %d unfreed\n”,

pInfo->number, pInfo->address, pInfo->size);
totalSize += pInfo->size;
}
printf(“--\n”);
printf(“Total Unfreed: %d bytes\n\n\n”, totalSize);

};

31_57986x ch24.qxd 1/26/05 4:22 PM Page 131

Technique 24: Defining Your Own new and delete Handlers132

char *c = new c[100];

// Do some stuff
delete c;

// Do some more stuff
delete c;

Expect bad things to happen in a case like this: It’s
deleting the same pointer twice, which tends to cor-
rupt the stack and destroy all memory in the system.
In our system, however, this process is caught and an
error message is displayed. Furthermore, the actual
pointer is not deleted a second time — so there’s no
memory corruption in the system and your program
does not crash. That’s a good enough reason to use a
system like this in your production code.

5. Save the source-code file.

These implementations of the code are nothing spe-
cial. We simply allocate memory (using the built-in
C function malloc) and de-allocate the memory by
using the free function. The code includes some
debugging printf statements that allow you to show
which functions are being called at what time.
Within each allocation or de-allocation operator, we
call the appropriate tracking function to add or
remove this particular allocation from the global
array. One thing to note is that this code is actually
better than the standard C++ implementation,
because it verifies that a given pointer was allocated
before it allows it to be freed. You could (for exam-
ple) cause some mayhem if you were to do this:

LISTING 24-3: OVERLOADED NEW AND DELETE HANDLERS

inline void * __cdecl operator new(unsigned int size)
{

printf(“Basic operator new called\n”);
void *ptr = (void *)malloc(size);
AddTrack((long)ptr, size);
return(ptr);

};

inline void * __cdecl operator new[](unsigned int size)
{

printf(“Array operator new called\n”);
void *ptr = (void *)malloc(size);
AddTrack((long)ptr, size);
return(ptr);

};

inline void __cdecl operator delete(void *p)
{

printf(“Basic operator delete called\n”);
if (RemoveTrack((long)p))

free(p);
};

inline void __cdecl operator delete[](void *p)
{

printf(“Array operator delete called\n”);
if (RemoveTrack((long)p))

free(p);
};

31_57986x ch24.qxd 1/26/05 4:22 PM Page 132

Testing the Memory Allocation Tracker 133

All production code should be tested with a
memory-leak tool, or run through code like
this to see whether memory is being allocated
and freed properly, not freed correctly, or
freed more than once.

Testing the Memory Allocation
Tracker
In order to see how the allocation tracking code
works, it is easiest to create a simple test driver that
illustrates the various pieces of the system. Let’s cre-
ate a simple test program to use the new and delete
handlers we have created. The following steps show
you how:

1. In the code editor of your choice, open the exist-
ing file to hold the code for your test program.

In this example, I named the test program CH 24.

2. Type the code from Listing 24-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

3. Save the source code and close your code editor.

LISTING 24-4: MEMORY ALLOCATOR TEST DRIVER

int main(int argc, char **argv)
{

DumpUnfreed();
char *c = new char[200];
DumpUnfreed();
char *c2 = new char[256]; � 3
DumpUnfreed();
delete c;
delete c;
DumpUnfreed();
int *x = new int[20];
delete [] x;
DumpUnfreed();
Foo *f = new Foo();
delete f;
Foo *af = new Foo[5];
delete [] af;

Foo *af1 = new Foo[3];
delete af1;

}

4. Compile the source file, using your favorite
compiler on your favorite operating system.

If you run the resulting executable, the program
should give you the output shown in Listing 24-5.

LISTING 24-5: OUTPUT FROM THE MEMORY TRACKING PROGRAM

$./a.exe
----------------------- Allocations ----------------------

Total Unfreed: 0 bytes

Array operator new called
----------------------- Allocations ----------------------
(0) ADDRESS a050648 Size: 200 unfreed

Total Unfreed: 200 bytes

Array operator new called
----------------------- Allocations ----------------------
(0) ADDRESS a050648 Size: 200 unfreed
(1) ADDRESS a050770 Size: 256 unfreed

(continued)

31_57986x ch24.qxd 1/26/05 4:22 PM Page 133

Technique 24: Defining Your Own new and delete Handlers134

others are left in to illustrate how the program is
allocating memory. It’s obvious, from looking at the
program code, that this occurs for the c2 allocation
(see � 3 in Listing 24-4). We simply need to add a
delete call for the character pointer and all will be
copacetic.

The other interesting thing to note in this technique
is which C++ new operator is called when. If you allo-
cate a character pointer, for example, it calls the
array version of the new operator. This situation is

There are a lot of interesting things to take out of
this technique. First, it gives you a better apprecia-
tion of what goes on behind the scenes in a typical
C++ program. Second, you can see right away how
the allocations and de-allocations are being handled
and where the leaks are. In our example, we can see
at the end of the program that we have a single
memory leak of 256 bytes (at � 4 in Listing 24-5).
Note that we print out the current state of the pro-
gram several times, so it is only the last display that
indicates the leak at the end of the program. The

LISTING 24-5 (continued)
Total Unfreed: 456 bytes

Basic operator delete called
Basic operator delete called
Unable to find allocation for delete [168101448]
----------------------- Allocations ----------------------
(1) ADDRESS a050770 Size: 256 unfreed

Total Unfreed: 256 bytes

Array operator new called
Array operator delete called
----------------------- Allocations ----------------------
(1) ADDRESS a050770 Size: 256 unfreed

Total Unfreed: 256 bytes � 4

Basic operator new called
Foo Constructor called
Foo Destructor called
Basic operator delete called
Array operator new called
Foo Constructor called
Foo Constructor called
Foo Constructor called
Foo Constructor called
Foo Constructor called
Foo Destructor called
Foo Destructor called
Foo Destructor called
Foo Destructor called
Foo Destructor called
Array operator delete called

31_57986x ch24.qxd 1/26/05 4:22 PM Page 134

Testing the Memory Allocation Tracker 135

counterintuitive — after all, you’re allocating a single
character pointer — but it makes sense if you really
think about it. It’s an array of characters that we
happen to treat as a single string, which gives us the
array version of the new operator. Likewise, when we
allocate a single object, it calls the basic operator for
the new allocation.

Before we leave this concept, there’s one more
potential mess worth looking at. Try adding the fol-
lowing code to the end of your driver application:

Foo *af1 = new Foo[3];
delete af1;

If you compile this snippet of code at the end of your
driver program, and then run the program, you will
see the following output:

Array operator new called
Foo Constructor called
Foo Constructor called
Foo Constructor called
Foo Destructor called
Basic operator delete called
Unable to find allocation for delete

[168101480]

Looking at the output, you will notice that the con-
structor for the class was called three times, for the
three objects we created. The destructor, however,
was only called once. Worse, because the block of
memory allocated is actually three separate objects,
our deletion routine couldn’t find it to delete it.

Moral: Always call the right version of delete
for the corresponding version of new.

The new new operator
In C++, there is another version of the new operator called
the new in place operator. This operator invokes the con-
structor for an object and sets it to point to a specific block
of memory that is passed into it. If you are implementing a
system that uses an embedded processor, where you can-
not “really” allocate memory, or if you have an object pool,
you might consider such a choice.

Add a memory tracker to every application
you create. You can conditionally compile in
the code to see how things are going at any
stage of the application-development phase,
and can use the resulting reports for quality
assurance.

31_57986x ch24.qxd 1/26/05 4:22 PM Page 135

Save Time By
� Understanding properties

in C++

� Implementing a
Property class

� Testing your Property
class

Implementing
Properties

If you are accustomed to programming in the “new” languages, such as
Java or C#, you are probably already familiar with the concept of
properties. Essentially, properties are public elements of a class that

have their own methods for getting and setting their values. Unlike tradi-
tional public values, however, a property cannot be accessed directly by
the programmer — even though it looks like it can. A property has set
and get functions that are invoked when you attempt to write or read to
the property values. C++ has no direct implementation of properties in
the language. This is really a shame, because properties save a lot of
time for the end user by making it easier to read and write data values
within the class.

For example, suppose you have a class named Foo that contains a prop-
erty called age. This property can be set by the application developer,
but only to values within the range of (say) 18 to 80. Now, in a “standard”
C++ application, you could define the class with a public member such as
in the following:

class Foo
{
public:

Foo()
{
}
int age;

};

If you had such a class, you could then write application code to directly
set the age property, like this:

int main()
{

Foo f;
f.age = 22;

}

25Technique

32_57986x ch25.qxd 1/26/05 4:23 PM Page 136

Implementing Properties 137

The problem is, you can also set age to an invalid
value. The restriction is only implemented by the
“rule” that an age can’t be outside the valid range of
18 to 80. Our code does not enforce this rule, which
could easily cause problems in calculations that rely
on the rule being obeyed. An invalid assignment
might look like this:

f.age = 10; // Invalid

The ideal solution would be to allow people to
directly set the age property in this class, but not
allow them to set it to values outside the valid range.
For example, if a user did so and then added this
statement

f.age = 10;

the age would not be set and would retain its old
value. This resistance to unauthorized change is the
advantage of a property, instead of allowing the
value to change no matter what input value is given.
In addition, we can create read-only properties that
can be read but not written to. C++ does not offer
this capability directly, but it allows us to create
such a thing ourselves. A read-only property would

be useful for values that the programmer needs
access to, but cannot possibly modify, such as the
total memory available in the system. Properties like
these save time by making the code easier to read
while still maintaining data integrity.

Implementing Properties
Creating a simple class that implements properties
for a specific type — in this case, integers — can
illustrate this C++ capability. We can then customize
the class to allow only specific types of integers, or
integer values.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch25.cpp,
although you can use whatever you choose.

2. Type the code from Listing 25-1 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 25-1: PROPERTY CLASS

#include <stdio.h>
#include <string>

class IntProperty
{

int temp;
int &iValue;
bool bWrite;

public:
void Init()
{

bWrite = false;
}
IntProperty(void)

: iValue(temp)
{

Init();
}

(continued)

32_57986x ch25.qxd 1/26/05 4:23 PM Page 137

Technique 25: Implementing Properties138

LISTING 25-1 (continued)

virtual void set(int i) � 1
{

iValue = i;
}
virtual int get(void) � 2
{

return iValue;
}

public:
IntProperty(int& i)

: iValue(i)
{

Init();
}
IntProperty(int i, bool read, bool write)

: iValue(i)
{

Init();
}
IntProperty(const IntProperty& aCopy)

: iValue(aCopy.iValue)
{

Init();
}
virtual ~IntProperty()
{
}

// Accessors
int getValue(void)
{

return iValue;
}
bool getWrite(void)
{

return bWrite;
}
void setWrite(bool write)
{

bWrite=write;
}

// Operators
IntProperty& operator=(int i)
{

if(bWrite)
set(i);

32_57986x ch25.qxd 1/26/05 4:23 PM Page 138

Implementing Properties 139

This class implements a property according to
the C++ standards, and yet works as if it were a
Java or C# property. We will be able to read and
write to the data value without having to write
extra code, but the data values will be validated
for the range allowed. To use it, we need to
embed it in a class that the end user will interact
with. This class will expose the IntProperty
object to the end user, but the instance of the
IntProperty class within any other class will
work with an internal variable of that class. The
IntProperty class is really just a wrapper
around a reference to a variable, but that vari-
able will be outside the scope of the
IntProperty class.

Notice that the set (� 1) and get (� 2) meth-
ods of the class are internal to the class itself,
but are also declared as virtual. That means
implementing a derived class that screens out
certain data values would be trivial, as we
will see in the AgeProperty class later in this
technique.

To derive a class from our IntProperty class, we
just have to override the get and set methods in
the ways we want. To restrict the range of the
integer value, for example, we modify the set
method to only allow the values we permit. In
addition, we must override the operator=
method, because operator= is never inherited
by a derived class. That’s because you could be
setting only a portion of the object — which the
language won’t let you do, so you have to over-
ride the operator as well. When you create a

derived class, the operator= would be called for
the base class. This would set only the member
variables in the base class, and would not set the
ones in the derived class. Otherwise, the remain-
der of the class remains the same.

3. Add the code from Listing 25-2 to your source
file.

We could simply create a new file to store this
new class, but it is easier to just combine them
for the purpose of this technique.

In this case, we are going to use the IntProperty
in another class.

LISTING 25-2: EXTENDING THE INTPROPERTY CLASS

class AgeProperty : public IntProperty
{
private:

virtual void set(int i)
{

if (i >= 18 && i <= 80)
IntProperty::set(i);

}
public:

AgeProperty(int &var)
: IntProperty(var)

{
}
AgeProperty& operator=(int i)
{

IntProperty::operator=(i);
return *this;

}
};

else
printf(“Trying to assign to a read-only property\n”);

return *this;
}
// Cast to int
operator int()
{

return get();
}

};

32_57986x ch25.qxd 1/26/05 4:23 PM Page 139

Technique 25: Implementing Properties140

This class contains a single integer value, its only
data member. The data member is associated
with the Property class in the constructor for the
class, so any changes to the member variable will
be immediately reflected in the Property class
and the TestIntValue class at the same time.

Because the data value is used by reference in
the Property class, changing the property is the
equivalent of changing the original data member
directly. We are controlling how the data is
changed, while allowing the compiler to generate
the code that does the actual data manipulation.

Our class illustrates how the data values change
and what they are assigned to at any given
moment in time. We will use this class to show
off how the property class works.

3. Add the code from Listing 25-4 to the end of
your existing file.

LISTING 25-4: THE TEST DRIVER CODE

int main(int argc, char **argv)
{

TestIntValue tiv;

tiv.i = 23; � 3
printf(“Value = %d\n”, (int)tiv.i);
tiv.Print();
tiv.i.setWrite(true); � 5
tiv.i = 23;
printf(“Value = %d\n”, (int)tiv.i);
int x = tiv.i;
tiv.Print();
printf(“X = %d\n”, x);
tiv.i = 99;
printf(“Value = %d\n”, (int)tiv.i);

}

4. Save the source file in your code editor and
close the editor application.

5. Compile the file with your favorite compiler on
your favorite operating system.

If you have done everything properly, you should
see the following output from the application:

Now, in order to use the class, we need to embed the
object as a public member of our encapsulating
class, and provide it with a data member that it can
access to set and get values. The property class is
just a wrapper around a value. Because it contains a
reference to a data value outside the class, it can
directly modify data in another class. That means
that any changes made to the reference in the
IntProperty class will be immediately reflected in
the underlying class-member variable.

To show how it all fits together, the next section
adds a class that makes use of the AgeProperty class.

Testing the Property Class
After we have defined the Property class, we need to
test it. The following steps show you how:

1. In the code editor of your choice, create a new
file to hold the code for your test program.

In this example, I named the test program
ch25.cpp.

2. Put the code from Listing 25-3 into your test-
driver file.

LISTING 25-3: TESTING THE INTVALUE CLASS

class TestIntValue
{
private:

int myInt;
public:

TestIntValue()
: i(myInt)

{
myInt = 0;

}

void Print()
{

printf(“myInt = %d\n”, myInt);
}

public:
AgeProperty i;

};

32_57986x ch25.qxd 1/26/05 4:23 PM Page 140

Testing the Property Class 141

$./a.exe
Trying to assign to a read-only property
Value = 0 � 4
myInt = 0
Value = 23 � 6
myInt = 23
X = 23
Value = 23

The output above illustrates that our property class
is working properly. The initial value of the integer is
0, as specified in the constructor. Because the class
defaulted to read-only (setWrite was not yet called),
an attempt to write to the variable (� 3) results in
no change being made (� 4). After we set the write

flag to allow changes (� 5), we can then assign val-
ues to the variable and have it modified in the out-
put (� 6).

Properties are an essential part of languages
such as C# and Java, but are not yet a part of
the C++ languages. If you get into the habit of
thinking about them, however, you can save a
lot of time in the long run — for one thing, you
won’t have to relearn how to use data mem-
bers for classes. Translating code to and from
C++ from the newer languages will become
an essential part of mixed language projects in
the future, and making it easy to do that trans-
lation will save you a lot of time and effort.

32_57986x ch25.qxd 1/26/05 4:23 PM Page 141

Save Time By
� Understanding data vali-

dation with classes

� Creating a data-validation
class

� Testing your class

Doing Data
Validation with
Classes

Data validation is one of the most basic and pervasive functions of a
computer program. Before you can operate on a given piece of
data, you need to know whether or not it is valid. It doesn’t matter

if it is a date, a time, an age, or a Social Security number; the data you
accept into your program will cause problems if it is in an invalid format.

Validating a data type is a perfect form of encapsulation, which makes it a
perfect task to assign to a C++ class. Because we encapsulate both the
data and the rules for the data type within a class, we can move that class
from project to project, anywhere that the data type is needed. This saves
time in implementing the class, as well as time and effort in validating and
testing the class.

When you’re writing an application, take time to identify the data
types you’re using. Write classes to validate, save, and load these data
types and you will save yourself endless time debugging and extend-
ing your applications.

Implementing Data Validation with Classes
Follow these steps to create your own validation classes:

1. In the code editor of your choice, create a new file to hold the code
for your header file.

In this example, I call my class ch26.cpp.

2. Type the code from Listing 26-1 into your file.

Better yet, copy the code from the source file on this book’s compan-
ion Web site.

26Technique

33_57986x ch26.qxd 1/26/05 4:25 PM Page 142

Implementing Data Validation with Classes 143

3. Save your code in the code editor.

This will be the definition for our Validator
object. This class can then be included in other
modules to do validation of the type we are
defining. In this example, we are validating a U.S.
Social Security Number.

4. Type the code from Listing 26-2 into your new
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 26-1: THE VALIDATION CLASS

#include <string>

// Constants used in this validation
#define SSN_LENGTH 9 � 1
#define SSN_DELIMITER ‘-’ � 2

// The validator class
class SSNValidator
{

// Internal member variables
private:

// This is the actual SSN.
std::string _ssn;
// This is the flag indicating validity.
bool _valid;

protected:
bool IsValid(const char *strSSN);

public:
// Constructors and destructor
SSNValidator();
SSNValidator(const char *ssn);
SSNValidator(const std::string& ssn);
SSNValidator(const SSNValidator& aCopy);
virtual ~SSNValidator();

// Accessors for this class
bool Valid() { return _valid; };
std::string SSN() { return _ssn; };
void setSSN(const char *ssn);

// Operators for this class

SSNValidator operator=(const char *ssn);
SSNValidator operator=(const std::string& ssn);
SSNValidator operator=(const SSNValidator& aCopy);
operator const char *();

};

33_57986x ch26.qxd 1/26/05 4:25 PM Page 143

Technique 26: Doing Data Validation with Classes144

LISTING 26-2: SOCIAL SECURITY NUMBER VALIDATOR

#include <ctype.h>

bool SSNValidator::IsValid(const char *strSSN)
{
int i;
// No NULL values allowed.
if (strSSN == NULL)

return false;
// Copy the result into a string, removing all delimiters.
std::string sSSN;
for (i=0; i<(int)strlen(strSSN); ++i)

if (strSSN[i] != SSN_DELIMITER)
sSSN += strSSN[i];

// Must be 9 characters.
if (strlen(sSSN.c_str()) != SSN_LENGTH)

return false;
// Check to see whether all characters are numeric.
for (i=0; i<(int)strlen(sSSN.c_str()); ++i)

if (!isdigit(sSSN[i]))
return false;

// Must be okay.
return true;

}

// Constructors and destructor
SSNValidator::SSNValidator()
{

_ssn = “”;
_valid = false;

}

SSNValidator::SSNValidator(const char *ssn)
{

// Only assign if valid.
_valid = IsValid(ssn);
if (_valid)

_ssn = ssn;
}

SSNValidator::SSNValidator(const std::string& ssn)
{

// Only assign if valid.
_valid = IsValid(ssn.c_str());
if (_valid)

_ssn = ssn;
}

SSNValidator::SSNValidator(const SSNValidator& aCopy)

33_57986x ch26.qxd 1/26/05 4:25 PM Page 144

Implementing Data Validation with Classes 145

{
_ssn = aCopy._ssn;
_valid = aCopy._valid;

}

SSNValidator::~SSNValidator()
{
}

void SSNValidator::setSSN(const char *ssn)
{

// Only assign if valid.
if (IsValid(ssn))
{

_valid = true;
_ssn = ssn;

}
}

// Operators for this class
SSNValidator SSNValidator::operator=(const char *ssn)
{

// Only assign if valid.
if (IsValid(ssn))
{

_valid = true;
_ssn = ssn;

}
return *this;

}

SSNValidator SSNValidator::operator=(const std::string& ssn)
{

// Only assign if valid.
if (IsValid(ssn.c_str()))
{

_valid = true;
_ssn = ssn;

}
return *this;

}

SSNValidator SSNValidator::operator=(const SSNValidator& aCopy)
{

_valid = aCopy._valid;
_ssn = aCopy._ssn;
return *this;

}

SSNValidator::operator const char *()
{

return _ssn.c_str();
}

33_57986x ch26.qxd 1/26/05 4:25 PM Page 145

Technique 26: Doing Data Validation with Classes146

Testing Your SSN Validator Class
After you create the Validator class, you should cre-
ate a test driver to ensure that your code is correct
and show people how to use your code.

Creating a test driver will illustrate the validation of
various kinds of input from the user, and will show
how the Validator class is intended to be used. The
driver will contain some basic tests of the class, as
well as accepting Social Security Numbers from the
user to see whether they are valid or not.

In this example, we create a test driver that does two
things. First, it creates a standard battery of tests
that illustrates the expected good and bad entries
for the type. Second, the test driver allows the pro-
grammer to try other styles of entry to see whether
the class catches them.

1. In the code editor of your choice, reopen the
file to hold the code for your test program.

In this example, I named the test program
ch26.cpp.

2. Append the code from Listing 26-3 into your test
driver file, substituting the names you used for
your SSN class definition where appropriate.

Better yet, copy the code you find from the
source file on this book’s companion Web site.

5. Save your code and close the code editor.

The file we just defined will be a real type that
you can use in your own applications to store
and validate Social Security Numbers (SSNs). You
will never again have to write code to check the
length of an entry or its contents to see whether
it could be a valid SSN value.

Create a new type for every kind of data you
will accept and process in your application.
Create a validator for the data type that can be
moved from project to project.

Note that we provided constants for both the
length of the SSN and its delimiter (see lines
marked � 1 and � 2). This allows you to easily
modify the code if the format of the SSN changes
over time. Someday you may need to change the
SSN to use more digits, or to be formatted with a
different delimiter. Preparing for this now saves
you huge amounts of time later.

Never hard-code values into your applications;
always use constants that can be easily
changed at compile-time.

LISTING 26-3: THE TEST DRIVER CODE

const char *TrueOrFalse(bool value)
{

if (value)
return “TRUE”;

return “FALSE”;
}

void DoValidTest(const char *strName, SSNValidator& ssn, bool expected_result)
{

bool bValid = ssn.Valid();
printf(“%s: Result %s. Expected Result: %s. %s\n”, strName,

TrueOrFalse(bValid), TrueOrFalse(expected_result),
(bValid == expected_result ? “PASS” : “FAIL”));

}

33_57986x ch26.qxd 1/26/05 4:25 PM Page 146

Testing Your SSN Validator Class 147

3. Save your test driver file in the code editor and
close the code-editor program.

4. Compile the test program with your chosen
compiler and run it on your chosen operating
system.

Enter command-line arguments, such as

123456789 000-00-0000 0909 a12345678
012-03-3456

These are simply forms of the Social Security
Number, some valid and some invalid. The first one,
containing nine digits and no alphanumeric charac-
ters, will be valid. The third argument does not con-
tain nine characters and is therefore invalid. The
fourth contains an invalid character (a). The second
and fifth entries look valid, but we do not handle the
dash character, so they will be deemed invalid by the
program.

If your program is working properly, you should see
the output from the test driver as shown in Listing
26-4.

LISTING 26-4: OUTPUT FROM THE TEST DRIVER

$./a 123456789 000-00-000 0909 a12345678
01-02-2345

123456789 is a valid Social Security Number
000-00-000 is NOT a valid Social Security

Number
0909 is NOT a valid Social Security Number
a12345678 is NOT a valid Social Security

Number
01-02-2345 is NOT a valid Social Security

Number
NULL Test: Result FALSE. Expected Result:

FALSE. PASS
Good Test: Result TRUE. Expected Result:

TRUE. PASS
Bad Test: Result FALSE. Expected Result:

FALSE. PASS

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage: ch3_15 ssn1 [ssn2]...\n”);
exit(1);

}

for (int i=1; i<argc; ++i)
{

SSNValidator ssn(argv[i]);
if (ssn.Valid())

printf(“%s is a valid Social Security Number\n”, ssn.SSN().c_str());
else

printf(“%s is NOT a valid Social Security Number\n”, argv[i]);
}

// Do some generic testing.
SSNValidator ssnNULL(NULL);
DoValidTest(“NULL Test”, ssnNULL, false);
SSNValidator ssnGood(“000-00-0000”);
DoValidTest(“Good Test”, ssnGood, true);
SSNValidator ssnBad(“0000a0000”);
DoValidTest(“Bad Test”, ssnBad, false);

return 0;
}

33_57986x ch26.qxd 1/26/05 4:25 PM Page 147

Technique 26: Doing Data Validation with Classes148

I recommend that you create generic test driv-
ers for all your validators, so when changes are
made to accommodate new formats, the driv-
ers will be prepared in advance to test them.
This will save a lot of time in the long run, and
will allow for automated testing.

As you can see by the output, the program first
checks the input arguments from the user. As we
expected, only the first input value was valid. All
the remaining entries were invalid. The remaining
tests simply validate that known conditions work
properly.

33_57986x ch26.qxd 1/26/05 4:25 PM Page 148

27
Building a Date
Class

One of the most common tasks that you will run into as a program-
mer is working with dates. Whether you are calculating when
something is bought or sold, or validating input from the user, your

application will probably need to support dates. The standard C library
contains various routines for working with dates, such as the time and
localtime functions. The problem, however, is that these routines do not
perform adequate validation — and for that matter, they are not easy to
use. It would be nice, therefore, to create a single class that implemented
all the date functionality that we wanted in our applications. By creating a
single class that can be easily ported from project to project, you will save
time in the development, design, and testing phases of the project.

Because dates are a fundamental building block of our applications, it
makes sense to create a single class that would manipulate them and vali-
date them. If you were to make a list of all of the basic functionality you
would like in such a class, you would probably have something like this:

� Validate dates

� Perform date math calculations

� Compute the day of the week

� Return day and month names

� Convert numeric dates to strings

Many other functions exist that would be useful, but these are the most
critical in any application. In this technique, we look at the ways you can
utilize a Date class in your own applications — and how you can imple-
ment the functionality needed to do everything on our feature list for a
Date class.

You can save huge amounts of time by creating classes that not only
validate input, but also manipulate it numerically. By creating a class
that allows you to add to, or subtract from, a date in your code
directly, you do accounting calculations and timing routines in a flash,
without any additional coding.

Technique

Save Time By
� Creating a generic Date

class

� Implementing date func-
tionality into your class

� Testing your class

34_57986x ch27.qxd 1/26/05 4:26 PM Page 149

Technique 27: Building a Date Class150

// See whether a given date is valid.
bool IsValid(int m, int d, int y);
// Compute the day of the week.
int DayOfWeek(int m, int d, int y);
// Convert to Julian format.
long ToJulian();
// Convert from a Julian format.
void FromJulian();
// Initialize to defaults.
void Init(void);
// Make a copy of this date.
void Copy(const Date& aCopy);

// Convert to a string.
const char *ToString();

public:

// Constructors and destructors
Date();
Date(int m, int d, int y);
Date(const Date& aCopy);
Date(long julian);
virtual ~Date();

// Operators.

// Assignment operator
Date operator=(const Date& date);
// Conversion to Julian date
operator long();
// Conversion to a string
operator const char *();

// Accessors
int Month() { return _month; };
int DayOfMonth() { return
_day_of_month; };
int DayOfWeek() { return
_day_of_week; };
int Year() { return _year; };
const char *AsString() { return
_string_date.c_str(); };
DateFormat Format() { return _format; };

void setMonth(int m);
void setDayOfMonth(int _day_of_month);
void setYear(int y);
void setFormat(const DateFormat& f);

// Operations

Creating the Date Class
Follow these steps to create your own personal Date
class:

1. In the code editor of your choice, create a new
file to hold the code for the Date class.

In this example, the file is named ch27.h,
although you can use whatever you choose.

2. Type the code from Listing 27-1 into your file.

Better yet, copy the code you find in the source
file on this book’s companion Web site. Change
the names of the constants and variables as you
choose.

LISTING 27-1: THE DATE CLASS DEFINITION

#ifndef CH27H_
#define CH27H_
#include <string>

const int MaxMonths = 12;
const int MaxYear = 9999;

typedef enum
{

MMDDYYYY = 0,
DDMMYYYY = 1,
YYYYMMDD = 2

} DateFormat;

class Date
{
private:

// Store dates in Julian format.
long _julian;
// The month of the year (0-11)
int _month;
// The day of the month (0-30)
int _day_of_month;
// The day of the week (0-6)
int _day_of_week;
// The year of the date (0-9999)
int _year;
// A string representation of the date
std::string _string_date;
// The format to use in the date
DateFormat _format;

34_57986x ch27.qxd 1/26/05 4:26 PM Page 150

Creating the Date Class 151

// Is a given year a leap year?
bool isLeapYear(int year) const;
// Is this date a leap year?
bool isLeapYear(void) const;
// Return the number of days in a given
month.
int numDaysInMonth(int month, int year
);
// Return the number of days in the cur-

rent month.
int numDaysInMonth(void);

// Some useful operators for manipula-
tion

Date operator+(int numDays);
Date operator+=(int numDays);
Date operator-(int numDays);
Date operator-=(int numDays);

};

#endif

3. Save your code in the code editor and close the
file.

The file you just created is the header and inter-
face file for the class. This is what the “public”
will see when they want to use our class. Our
next task, therefore, is to implement the function-
ality of the class itself.

4. In the code editor of your choice, create a new
file to hold the code for the implementation of
the Date class.

In this example, the file is named ch27.cpp,
although you can use whatever you choose.

5. Type the code from Listing 27-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site. Change the
names of the constants and variables as you
choose.

These are all the constants and definitions we
will use for our class. The next step is to add the
actual implementation.

LISTING 27-2: THE DATE CLASS SOURCE FILE

#include “ch27.h”

// Some information we need.
const char *MonthNames[] = {

“January”,
“February”,
“March”,
“April”,
“May”,
“June”,
“July”,
“August”,
“September”,
“October”,
“November”,
“December”

};

int MonthDays[] =
{

31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

(continued)

34_57986x ch27.qxd 1/26/05 4:26 PM Page 151

Technique 27: Building a Date Class152

case, we want to add all of the logic for manipulating
and defining dates. Let’s do that now.

1. Reopen the Date class source file (which we
called ch27.cpp). Add the code from Listing
27-3 to the file.

Implementing the Date
Functionality
After we have the class defined, it is time to imple-
ment the actual functionality for that class. In this

LISTING 27-2 (continued)
char *DayNames[] = {

“Sunday”,
“Monday”,
“Tuesday”,
“Wednesday”,
“Thursday”,
“Friday”,
“Saturday”

};

#define OCT5_1582 (2299160L) // “really” 15-Oct-1582
#define OCT14_1582 (2299169L) // “really” 4-Oct-1582
#define JAN1_1 (1721423L)

#define YEAR (365)
#define FOUR_YEARS (1461)
#define CENTURY (36524L)
#define FOUR_CENTURIES (146097L)

static int DaysSoFar[][13] =
{
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}
};

LISTING 27-3: THE DATE FUNCTIONALITY

void Date::Copy(const Date& aCopy)
{

_julian = aCopy._julian;
_month = aCopy._month;
_day_of_month = aCopy._day_of_month;
_day_of_week = aCopy._day_of_week;
_year = aCopy._year;
_format = aCopy._format;
_string_date = aCopy._string_date;

}

void Date::Init() � 1

34_57986x ch27.qxd 1/26/05 4:26 PM Page 152

Implementing the Date Functionality 153

{
_julian = 0;
_month = 1;
_day_of_month = 1;
_day_of_week = 0;
_year = 2004;
_format = MMDDYYYY;
_string_date = AsString();

}

int Date::DayOfWeek(int m, int d, int y)
{

_day_of_week = ((_julian + 2) % 7 + 1);
return day_of_week;

}

bool Date::IsValid(int m, int d, int y) � 2
{

// Check the year.
if (y < 0 || y > MaxYear)

return false;
// Do the month.
if (m < 1 || m > MaxMonths)

return false;
// Finally, do the day of the month. First, the easy check...
if (d < 1 || d > 31)

return false;
// Now, check the days per THIS month.
int daysPerMonth = MonthDays[m];
if (isLeapYear(y))

if (m == 2)
daysPerMonth ++;

if (d > daysPerMonth)
return false;

// Looks good.
return true;

}

long Date::ToJulian() � 3
{

int a;
int work_year=_year;
long j;
int lp;

// Correct for negative year (-1 = 1BC = year 0).

if (work_year < 0)
work_year++;

lp = !(work_year & 3); // lp = 1 if this is a leap year.
(continued)

34_57986x ch27.qxd 1/26/05 4:26 PM Page 153

Technique 27: Building a Date Class154

LISTING 27-3 (continued)

j =
((work_year-1) / 4) + // Plus ALL leap years...
DaysSoFar[lp][_month-1] +
_day_of_month +
(work_year * 365L) + // Days in years
JAN1_1 +
-366; // adjustments

// Deal with Gregorian calendar
if (j >= OCT14_1582)
{

a = (int)(work_year/100);
j = j+ 2 - a + a/4; // Skip days that didn’t exist.

}

_julian = j;
return _julian;

}

void Date::FromJulian() � 4
{

long z,y;
short m,d;
int lp;

z = _julian+1;
if (z >= OCT5_1582)
{

z -= JAN1_1;
z = z + (z/CENTURY) - (z/FOUR_CENTURIES) -2;
z += JAN1_1;

}

z = z - ((z-YEAR) / FOUR_YEARS); // Remove leap years before the current year.
y = z / YEAR;

d = (short) (z - (y * YEAR));

y = y - 4712; // This is our base year in 4713 B.C.
if (y < 1)

y--;

lp = !(y & 3); // lp = 1 if this is a leap year.

if (d==0)
{

y--;
d = (short) (YEAR + lp);

}

34_57986x ch27.qxd 1/26/05 4:26 PM Page 154

Implementing the Date Functionality 155

m = (short) (d/30); // This is a guess at the month.

while (DaysSoFar[lp][m] >=d)
m--; // Correct guess.

d = (short) (d - DaysSoFar[lp][m]);

_day_of_month = d;
_month = (short) (m+1);
if (_month > 12)
{

_month = 1;
y ++;

}
_year = (short) y;
_day_of_week = DayOfWeek(_month, _day_of_month, _year);

}

Date::Date()
{

Init();
ToString();

}

Date::Date(int m, int d, int y)
{

Init();
if (IsValid(m, d, y))
{

_day_of_month = d;
_month = m;
_year = y;
_julian = ToJulian();
ToString();
_day_of_week = DayOfWeek(_month, _day_of_month, _year);

}
}

Date::Date(const Date& aCopy)
{

Init();
Copy(aCopy);

}

Date::Date(long julian)
{

Init();
_julian = julian;
FromJulian();
ToString();

}
(continued)

34_57986x ch27.qxd 1/26/05 4:26 PM Page 155

Technique 27: Building a Date Class156

LISTING 27-3 (continued)
Date::~Date()
{

Init();
}

Date Date::operator=(const Date& date)
{

Copy(date);
return *this;

}

// Conversion to Julian date
Date::operator long()
{

return _julian;
}

// Conversion to a string
Date::operator const char *()
{

return _string_date.c_str();
}

void Date::setMonth(int m)
{

if (m < 0 || m > MaxMonths)
return;

_month = m;
}

void Date::setDayOfMonth(int d)
{

if (d < 1 || d > 31)
return;

// Now check the days per THIS month.
int daysPerMonth = MonthDays[_month];
if (isLeapYear(_year))

if (_month == 2)
daysPerMonth ++;

if (d > daysPerMonth)
return;

_day_of_month = d;
}

void Date::setYear(int y)
{

if (y < 0 || y > MaxYear)
return;

_year = y;
}

34_57986x ch27.qxd 1/26/05 4:26 PM Page 156

Implementing the Date Functionality 157

void Date::setFormat(const DateFormat& f)
{

_format = f;
}

bool Date::isLeapYear(void) const
{

return ((_year >= 1582) ?
(_year % 4 == 0 && _year % 100 != 0 || _year % 400 == 0):
(_year % 4 == 0));

}

bool Date::isLeapYear(int year) const
{

return ((year >= 1582) ?
(year % 4 == 0 && year % 100 != 0 || year % 400 == 0):
(year % 4 == 0));

}

// Return the number of days in a given month.
int Date::numDaysInMonth(int m, int y)
{

// Validate the input.

// Check the year.
if (y < 0 || y > MaxYear)

return -1;
// Do the month.
if (m < 1 || m > MaxMonths)

return -1;

int daysPerMonth = MonthDays[m];
if (isLeapYear(y))

if (m == 2)
daysPerMonth ++;

return daysPerMonth;
}

// Return the number of days in the current month.
int Date::numDaysInMonth(void)
{

int daysPerMonth = MonthDays[_month];
if (isLeapYear(_year))

if (_month == 2)
daysPerMonth ++;

return daysPerMonth;
}

Date Date::operator+(int numDays)
{

(continued)

34_57986x ch27.qxd 1/26/05 4:26 PM Page 157

Technique 27: Building a Date Class158

LISTING 27-3 (continued)
long j = _julian;
j += numDays;
Date d(j);
return d;

}

Date Date::operator+=(int numDays)
{

_julian += numDays;
FromJulian();
ToString();
return *this;

}

Date Date::operator-(int numDays)
{

long j = _julian;
j -= numDays;
Date d(j);
return d;

}

Date Date::operator-=(int numDays)
{

_julian -= numDays;
FromJulian();
ToString();
return *this;

}

const char *Date::ToString()
{

char szBuffer[256];

switch (_format)
{

case MMDDYYYY:
sprintf(szBuffer, “%02d/%02d/%02d”, _month, _day_of_month, _year);
break;

case DDMMYYYY:
sprintf(szBuffer, “%02d/%02d/%02d”, _day_of_month, _month, _year);
break;

case YYYYMMDD:
sprintf(szBuffer, “%02d/%02d/%02d”, _year, _month, _day_of_month);
break;

default:
sprintf(szBuffer, “%02d/%02d/%02d”, _month, _day_of_month, _year);
break;

}

_string_date = szBuffer;
return _string_date.c_str();

}

34_57986x ch27.qxd 1/26/05 4:26 PM Page 158

Testing the Date Class 159

Now, this is a lot of code to deal with. Not to
worry — the code breaks down into three sepa-
rate pieces:

� Initialization code (shown at � 1) either
sets or gets our individual member variables
and initializes them to reasonable defaults.

� Validation code (shown at � 2) checks to see
whether or not the input data is reasonable,
given the rules and the current settings.

� Algorithmic code (shown at � 3 and � 4)
does the actual date manipulation and
calculations.

2. Save the source-code file and close the code
editor.

Always break your classes into discrete initial-
ization, validation, and calculation pieces. This
saves you time by focusing your efforts on
what needs to be done, rather than worrying
about how to do it.

3. Compile the test code to make sure that you have
all of the code properly entered and correct.

Testing the Date Class
As with any other utility class, after you have the code
written for the class, you must be able to provide a
test driver for that class. The following steps show you
how to create a test driver that illustrates that the
code is working properly — and shows other program-
mers how to use the class in their own applications.

1. In the code editor of your choice, create a new
file to hold the code for the test driver.

In this example, the file is named ch27.cpp,
although you can use whatever you choose.

2. Type the code from Listing 27-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site. Change the
names of the constants and variables as you
choose.

LISTING 27-4: THE DATE TEST DRIVER CODE.
#include <stdio.h>
#include “date.h”

void DumpDate(Date& d)
{

printf(“Date:\n”);
printf(“As String: %s\n”, d.AsString());
printf(“Month: %d\n”, d.Month());
printf(“Day : %d\n”, d.DayOfMonth());
printf(“Day of Week: %d\n”, d.DayOfWeek());
printf(“Year: %d\n”, d.Year());
printf(“Leap Year: %s\n”, d.isLeapYear() ? “Yes” : “No”);
printf(“Number of days in this month: %d\n”, d.numDaysInMonth());

}

int main()
{

// Initialized date to no values.
Date d1;

(continued)

34_57986x ch27.qxd 1/26/05 4:26 PM Page 159

Technique 27: Building a Date Class160

$./a.exe
D1 as string: 01/01/2004 � 5
D2 as string: 12/31/2004
D2 as string: 01/01/2005
D2 as string: 12/31/2004
D3 as string: 12/21/2004 � 7
D4, day of week = 3
Date:
As String: 2004/12/31

3. Save the code as a file in your editor and close
the code editor.

4. Compile and run the application.

If you have done everything properly and the code is
working correctly, you should see output that looks
like this:

LISTING 27-4 (continued)
// Initialize to the end of the year to test edge cases.
Date d2(12,31,2004);

// Print out the dates as strings for testing.
printf(“D1 as string: %s\n”, d1.AsString());
printf(“D2 as string: %s\n”, d2.AsString());

// Test year wrap and the operator +=.
d2 += 1;
printf(“D2 as string: %s\n”, d2.AsString()); � 6

// Test backward year wrap and the operator -=.
d2 -= 1;
printf(“D2 as string: %s\n”, d2.AsString());

// Test the assignment operator.
Date d3 = d2;

// Check to see whether the class works properly for
// assigned objects.
d3 -= 10;
printf(“D3 as string: %s\n”, d3.AsString());

// Validate the day of the week.
Date d4 (7,27,2004);
printf(“D4, day of week = %d\n”, d4.DayOfWeek());

// Test the pieces of the date.
Date d5;

d5.setMonth(11);
d5.setDayOfMonth(31);
d5.setYear(2004);
d5.setFormat(YYYYMMDD);

DumpDate(d5);

return 0;
}

34_57986x ch27.qxd 1/26/05 4:26 PM Page 160

Some Final Thoughts on the Date Class 161

Month: 12
Day : 31
Day of Week: 0
Year: 2004
Leap Year: Yes
Number of days in this month: 31

There are some important things to take away from
this output. First, look at the line marked � 5 in the
output listing. This line is output for the date object
which is defined with the void constructor. As you
can see, the object is properly initialized with a valid
date. Next, let’s look at the line marked with � 6.
This line is output after we added one day to the
12/31/2004 date. Obviously, this forces the date to
wrap to the next year, which we can verify by looking
at the output, showing 01/01/2005. We can also
verify, by looking at a calendar, that the date shown at

� 7 really does fall on a Tuesday (the 3 in the
output). Finally, we run some simple tests to verify
that the number of days in the month is correct for
December, that the pieces of the date are parsed
properly, and that the leap year calculation is correct.

All of this output data allows us to validate that our
class works properly and that the functionality can
easily be moved from project to project. This will
save us a lot of time, and allow us to design our pro-
grams with the date functionality already built.

When you are testing a class, make sure that
you exercise all of the functionality in the ways
your class is most likely to be used — not just
the ways that make sense to you at the time.
Our tests verified that the date math, format-
ting, and accessor methods all worked properly.

Some Final Thoughts
on the Date Class
As you can see, our Date class is really very useful.
However, it could easily be made more useful. For
example, you could allow the user to pass in a string
to be parsed into its date components, thus solving
a common programming problem. Another possible
enhancement would be to initialize the default con-
structor to be the current date. Finally, it would be
nice to have the date strings, such as the month and
day names, within the class itself and accessible.
This would protect them from access by program-
mers from outside the class. In addition, it could
allow us to read them from a file, or get them from
some internal resource, to provide internationaliza-
tion without forcing the end user to know where the
data is stored.

If you store literal string information in a class,
make sure that the programmer can replace it
from outside the class. This will allow the
developers to put in their own descriptions,
change the text for internationalization, or just
modify the text to fit their needs.

34_57986x ch27.qxd 1/26/05 4:26 PM Page 161

Save Time By
� Using factory patterns

� Building a manager class

� Testing the manager
class

Overriding
Functionality with
Virtual Methods

One of the most common “patterns” of software development is the
factory pattern. It’s an approach to developing software that works
like a factory: You create objects from a single model of a particu-

lar object type, and the model defines what the objects can do. Generally,
the way this works is that you create a factory class that allocates, de-
allocates, and keeps track of a certain base class of objects. This factory
class really only understands how to manage the object type that forms a
base for all other objects in the class tree. However, through the magic of
virtual methods, it is able to manage all of the objects. Let’s take a look at
how this works. By creating a single factory, using virtual methods that
processes a variety of types of objects, we will save time by not having to
reimplement this processing each time we need it.

First, we have a class that manages a given base class of objects — it’s
called a factory. Its uses virtual methods to manage objects — that is, to
add new objects, remove them, return them to the user, and report on
which ones are in use and not in use.

Next, we have a set of derived classes. These override the functionality of
the base class by using virtual methods to accomplish different tasks. As an
example, consider the idea of a variety of different kinds of classes to read
various types of files. We would have a base class, which might be called a
FileProcessor class. Our manager would be a FileProcessorManager class.
The manager would create various FileProcessors, based on the file type
that was needed, creating them if necessary or returning one that was not
currently in use.

When you implement a common base class, set up an object pool to
manage the objects based on it. That way you can always keep track
easily of how they are created and destroyed.

28Technique

35_57986x ch28.qxd 1/26/05 4:26 PM Page 162

Creating a Factory Class 163

Creating a Factory Class
The first step toward managing and processing
objects is to create a factory class that works with a
generic base class. The following steps show you
how to create such a class that utilizes virtual meth-
ods to create, add, and delete objects. In this case,
we create a base class called Object from which all
of our managed objects will be derived.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the factory code.

In this example, the file is named ch28.cpp,
although you can use whatever you choose.

2. Type the code from Listing 28-1 into your file.

Better yet, copy the source file from this book’s
companion Web site and change the names of
the constants and variables as you choose.

LISTING 28-1: THE BASE-CLASS SOURCE CODE

#include <stdio.h>
#include <string>
#include <vector>

class Object
{
private:

std::string _name;
bool _inUse;

public:
Object(void)
{

_name = “Object”;
_inUse = false;

}
Object(const char *name)
{

_name = name;
_inUse = false;

}
Object(const Object& aCopy)
{

_name = aCopy._name;
_inUse = aCopy._inUse;

}
virtual ~Object()
{
}
virtual void MarkInUse(bool bFlag)
{

_inUse = bFlag;
}
virtual bool InUse(void)
{

return _inUse;
}

(continued)

35_57986x ch28.qxd 1/26/05 4:26 PM Page 163

Technique 28: Overriding Functionality with Virtual Methods164

LISTING 28-1 (continued)
virtual const char *Name(void)
{

return _name.c_str();
}
virtual void Report() = 0;

};

class MyObject1 : public Object
{
public:

MyObject1()
: Object (“MyObject1”)

{
}
virtual void Report()
{

printf(“I am a MyObject1 Object\n”);
}

};

class MyObject2 : public Object
{
public:

MyObject2()
: Object (“MyObject2”)

{
}
virtual void Report()
{

printf(“I am a MyObject2 Object\n”);
}

};

class MyObject3 : public Object
{
public:

MyObject3()
: Object (“MyObject3”)

{
}
virtual void Report()
{

printf(“I am a MyObject3 Object\n”);
}

};

class Factory
{
private:

std::vector< Object *> _objects;

35_57986x ch28.qxd 1/26/05 4:26 PM Page 164

Creating a Factory Class 165

public:
Factory()
{
}
// Method to add an object to the pool
virtual void Add(Object *obj)
{

obj->MarkInUse(true);
_objects.insert(_objects.end(), obj);

}
// Method to retrieve an object not in use
virtual Object *Get(void)
{

std::vector< Object *>::iterator iter;

for (iter = _objects.begin(); iter != _objects.end(); ++iter)
{

if ((*iter)->InUse() == false)
{

printf(“Found one\n”);

// Mark it in use
(*iter)->MarkInUse(true);
// And give it back
return (*iter);

}
}

// Didn’t find one.
return NULL;

}

virtual void Remove(Object *obj)
{

std::vector< Object *>::iterator iter;

for (iter = _objects.begin(); iter != _objects.end(); ++iter)
{

if ((*iter) == obj)
{

(*iter)->MarkInUse(false);
break;

}
}

}

virtual void Report() � 1
{

std::vector< Object *>::iterator iter;

(continued)

35_57986x ch28.qxd 1/26/05 4:26 PM Page 165

Technique 28: Overriding Functionality with Virtual Methods166

2. Type the code from Listing 28-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site and change the
names of the constants and variables as you
choose.

LISTING 28-2: THE TEST DRIVER FOR THE FACTORY OBJECT

int main()
{

// Implement an object factory object
Factory f;

// Add some objects to the factory
MyObject1 *obj1 = new MyObject1;
MyObject2 *obj2 = new MyObject2;
MyObject3 *obj3 = new MyObject3;

f.Add(obj1);
f.Add(obj2);
f.Add(obj3);

// Remove one to simulate the destruc-
tion of an object
f.Remove(obj1);

// Now try to get a new one back.
Object *pObject = f.Get();
printf(“I got back a %s object\n”,
pObject->Name());

3. Save the file to disk and close the code editor.

4. Compile the application on the operating system
of your choice, using your chosen compiler.

Always implement a method that can report on
the state of an object of each class. This allows
you to do quick memory dumps at any time,
via the factory for each base class. This class can
be used by a factory class to report status, and
can be overridden via virtual methods to
extend that status reporting for derived classes.

Testing the Factory
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.
The following steps show you how to create a simple
test driver to illustrate how the factory class inter-
acts with the derived objects via virtual methods.

1. In the code editor of your choice, open the
source file to hold the code for the test driver.

In this example, the file is named ch28.cpp,
although you can use whatever you choose.

LISTING 28-1 (continued)
for (iter = _objects.begin(); iter != _objects.end(); ++iter)
{

if ((*iter)->InUse() == true)
{

printf(“Object at %lx in use\n”, (*iter));
}
else
{

printf(“Object at %lx NOT in use\n”, (*iter));
}
(*iter)->Report();

}
}

};

35_57986x ch28.qxd 1/26/05 4:26 PM Page 166

Enhancing the Manager Class 167

// Generate a report to see what is in
use.
f.Report();

}

3. Save the file and close the code editor.

4. Compile the entire program and run it in the
operating system of your choice.

You should see the following output if you have
done everything right. Note that depending on
your operating system and hardware, the actual
numbers shown for addresses will vary.

$./a.exe
Found one
I got back a MyObject1 object
Object at a050230 in use
I am a MyObject1 Object
Object at a050008 in use
I am a MyObject2 Object
Object at a050638 in use
I am a MyObject3 Object

This output shows us that the manager is keeping
track of our various base Object-derived classes and
creating them only when necessary. As you can see,
the virtual methods permit us to create the proper
type for this particular derived class and to create
them as needed.

As you can see, the factory manager can handle all
sorts of different kinds of objects — as long as they
are derived from a common base class. In addition,
our virtual methods can be used to differentiate the
objects to let other programmers know what we
can do.

Enhancing the Manager Class
One way you might consider enhancing the manager
class is to extend it by letting it allocate its own
objects. As the code stands, the manager manages
only the objects that are added to its list. It cannot
create new ones as they are needed. If all of the
allocations were done in one place, tracking down
problems with memory leaks, allocation errors, and
usage patterns would be vastly simpler. This could
be done in a variety of ways, from registering a
“constructor” function that would be passed to the
manager, to adding code to create specific forms of
the objects. The latter case is easier, the former case
more extensible and flexible.

If you want another bit of programming fun, you can
add another good feature to add to the manager:
Implement a method that would delete all objects in
the class, notifying the objects if necessary. This
“clean” method could be called at program shut-
down, in order to guarantee that there are no mem-
ory leaks in the application. In addition, you could
use the Report method (shown in Listing 28-1 at � 1)
at various times in your application to ensure that
you are not leaving orphan objects in the system
that are not eventually de-allocated.

There is one other way to implement a man-
ager, which is worth a mention. You can create
a manager that is a friend class to all of the
classes it needs to manage. If you use this
technique, you should create a method within
the managed class that knows how to “clone”
itself. This would essentially be a method that
allocated a new object, called its copy construc-
tor with itself as an argument, and returned the
newly created object to the manager. With this
technique, the manager doesn’t need to worry
about how to create objects; all it has to do is
find the ones it manages in its list.

35_57986x ch28.qxd 1/26/05 4:26 PM Page 167

Save Time By
� Understanding mix-in

classes

� Implementing mix-in
classes

� Testing your code

Using Mix-In
Classes

Inheritance is an extremely powerful technique in C++. The problem
with inheritance, however, is that you must either give the end-user
access to all public methods of a class — or override them privately to

“hide” them from use by the end-user. C++ takes an all-or-nothing
approach to the derivation of classes with inheritance. This approach is
hardly an optimal technique, because removing the undesired functional-
ity from a class that contains many methods would require more work
than recreating the class from scratch. For example, if you are inheriting
from a class that contains a print method, and you do not want that
method exposed to the end-user, you must hide the method by creating a
new, private version of it. This is not too difficult when there is only one
such method, but when there are a dozen of them, it makes more sense
to create a new class.

Fortunately, C++ provides an alternative: the mix-in class. Here’s how it
works: The easiest way to limit the functionality you provide from a base
class is to use that class as a data member of the inherited class — and
to give the end-user access only to the methods you want them to use,
instead of providing all methods and removing the ones you don’t want
used. This approach is particularly useful when you have small classes
you want to initialize and restrict (so that only you have access to them),
or classes whose overall functionality is more than you feel comfortable
providing (or is too complicated for the end-user to deal with). The
embedded base class is a mix-in to the inherited class.

Mix-in classes are implemented as data members of the class that pro-
vides the overall functionality and are used to extend that functionality.
The advantages of the mix-in technique are obvious: It gives the user
access to the capabilities you want used, you can restrict what the users
have access to, and you can simplify the methods provided by providing
your own wrappers with defaults. When your mix-in class is embedded in
a class the user may instantiate, you control what methods in the mix-in
class are available. To do this, you simply write accessor methods that

29Technique

36_57986x ch29.qxd 1/26/05 4:27 PM Page 168

Implementing Mix-In Classes 169

allow the end-user access to the methods you want
them to be using in the mix-in class. This has several
advantages. First, you control what access the user
has to functionality. Second, if you change the way in
which the embedded mix-in class works, the end-
user is not impacted. Finally, you can adapt the func-
tionality of the mix-in class to your specific needs,
tailoring its behavior within your wrapper methods.
Because you do not have to write the entire func-
tionality provided by the mix-in, you save a lot of
time, and the usesr get a fully debugged system, sav-
ing them time.

Provide access to selected functionality in a class
by using that class as a mix-in. You can easily
extend your own classes and move information-
specific data into a class that handles that data
only. This is particularly important when work-
ing with classes that encapsulate data that
would be easily destroyed, corrupted, or over-
written if you provided direct access to the data
members.

Implementing Mix-In Classes
Assume you want to add the ability to save data in
one of your classes. You could add a base class
called Save that permits data to be written to a file.
This class would do all the work of managing the
output file, writing to it, and closing it. Then you
could create a mix-in class to do the save functional-
ity, and then illustrate how that functionality is used
in a derived class.

To implement a mix-in class, you simply do the fol-
lowing steps in your own existing class:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch29.cpp,
although you can use whatever you choose.

2. Type the code from Listing 29-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 29-1: THE MIX-IN CLASS

#include <stdio.h>
#include <string>

class Save
{

FILE *fp;
public:

Save(void)
{

fp = NULL;
}
Save(const char *strFileName)
{

fp = fopen(strFileName, “w”); � 1
}
virtual ~Save()
{

if (fp)
fclose(fp); � 2

}

void Write(const char *strOut) � 3
{

if (fp)
fprintf(fp, “%s\n”, strOut);

}
void Write(int i)
{

if (fp)
fprintf(fp, “%d\n”, i);

}
void Write(double d)
{

if (fp)
fprintf(fp, “%ld\n”, d);

}
FILE *getFilePointer()
{

return fp;
}

};
(continued)

36_57986x ch29.qxd 1/26/05 4:27 PM Page 169

Technique 29: Using Mix-In Classes170

Compiling and Testing
Your Mix-In Class
Let’s verify that the code works as illustrated and
allows you to save data within the MyClass objects.
To do this, we will compile and run the program and
view the output. The following steps show you how:

1. Compile the source code with the compiler of
your choice on the operating system of your
choice.

Note that we have implemented all of the file
handling functionality — the open (shown at � 1),
close (shown at � 2), and save functions of the
file — in the mix-in class Save. This class deals
with all the operating-system-specific work of
dealing with file pointers. Our main class in the
example, MyClass, simply works with the mix-in
class and assumes that it knows what to do for
various combinations of operating systems and
environments.

Always move all operating-system-specific
functionality for file systems, memory han-
dling, time functions, and the like, into mix-in
classes that you can embed in your code.
Doing so ensures that the code is easily
portable between different operating systems,
compilers, and environments.

2. Run the program in the operating system shell
of your choice.

If you have done everything properly, you should get
no output from the program itself. Instead, you see a
file which we defined in the MyClass class at � 4

(called test.txt) generated in the file system, resid-
ing in the directory in which you ran the program.
This file should contain the output shown in Listing
29-2.

LISTING 29-1 (continued)
class MyClass
{
private:

Save s;
public:

MyClass(void)
: s(“test.txt”) � 4

{
s.Write(“Start of MyClass”); � 5

}
MyClass(const char *strFileName)

: s(strFileName)
{

s.Write(“Start of MyClass”);
}
virtual ~MyClass()
{

s.Write(“End of My Class”); � 6
}
void Log(const char *strLog)
{

s.Write(strLog);
}

};

int main(int argc, char **argv)
{

MyClass mc;

for (int i=0; i<argc; ++i)
mc.Log(argv[i]);
return 0;

}

In the above listing, the Save functionality is
implemented in a mix-in class, which is used by
the MyClass class to give the end-user the ability
to save data from the MyClass member variables.
Note that the end-user has no access to the Save
functionality directly, but instead uses it through
the Log method, which utilizes the save functions
but does not directly expose them.

3. Save the source file in your code editor and
close the code editor.

36_57986x ch29.qxd 1/26/05 4:27 PM Page 170

Compiling and Testing Your Mix-In Class 171

LISTING 29-2: THE TEST.TXT OUTPUT FILE

Start of MyClass � 7
./a
End of My Class � 8

As you can see from the output, the program logs
some data of its own, indicating the beginning and
end of the class lifespan. In addition, it allows the
user to output the arguments to the program.

Because we did not provide any arguments, it simply
outputs the name of the executable file, which is the
first argument to all programs.

Notice that our class logs its own actions (see � 5

and � 6, these are shown in the output file at � 7

and � 8) as well as the actions of the class it is
called from. This handy characteristic provides you
with an essential debugging log from which you can
look at how the program is operating.

36_57986x ch29.qxd 1/26/05 4:27 PM Page 171

36_57986x ch29.qxd 1/26/05 4:27 PM Page 172

Part V

Arrays and Templates

37_57986X pt05.qxd 1/26/05 4:28 PM Page 173

37_57986X pt05.qxd 1/26/05 4:28 PM Page 174

30
Creating a Simple
Template Class

Because our classes can be reused over and over again in C++, we
want to create as general a class as we can so it can be used in the
broadest possible variety of applications. For example, it doesn’t

make much sense to create a class that can print out copyright informa-
tion for only a specific company, such as

(c) Copyright 2004 MySoftwareCompany Inc.

It would make a lot more sense to create a class that printed out a copy-
right symbol, added the company name from an initialization file, and
then added the year from passed-in arguments (or from the current year
as specified by the computer clock). Allowing data to be inserted from
external sources makes the class more generic, which in turn makes it
more usable across different applications.

This is the very heart of the C++ construct known as templates. A tem-
plate is, as its name implies, something that can be customized for spe-
cific forms of data. For example, consider a class that handled pointers to
given data types. The class would have the data type hard-coded into it,
and handle only that particular type of pointer. This class would be use-
ful if it handled a specific data type, such as a class named Foo. However,
the class would be even more useful if it handled all the various data
types that can be assigned to pointers. In C, we handled heterogeneous
arrays of pointers by using void pointers, which were pointers to blocks
of memory that did not know what kind of structure, data type, or class
the block was meant to be. Unfortunately, with C++, void pointers are
ineffective. For example, consider the code in Listing 30-1:

Technique

Save Time By
� Making classes reusable

by making them generic

� Comparing void pointers
to template classes

� Implementing template
classes

� Understanding your
output

38_57986x ch30.qxd 1/26/05 4:28 PM Page 175

Technique 30: Creating a Simple Template Class176

with no corresponding destructor call for the object.
Why? Because at run-time. the program does not
“know” what sort of object obj is in the delete_func
function, and therefore cannot call the destructor for
the object. In order for the function to “know” what
the object it receives is, we must pass it by type. If
we are writing a manager of pointers, it would cer-
tainly be useful to know what the data types were, so
that we could destroy them properly. In order to
avoid the problem of void pointers, we could simply
derive all objects from a common base type, such as
an Object type and then call that destructor for all
objects. The problem with this is that it not only
introduces overhead in creating the objects, and
requires extra space for the base class, it creates
problems with multiple inheritance. (For more on
multiple inheritance, see Technique 22.) There is
really no reason to introduce extra complications
when there are simpler approaches possible, and
the simpler approach, in this case, is to use C++ t
emplates. Templates will save you time and effort
by reducing the amount of code written and general-
izing solutions that can be used across multiple
projects.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch30.cpp,
although you can use whatever you choose.

2. Type the code from Listing 30-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 30-2: THE TEMPLATE APPROACH

#include <stdio.h>
#include <string.h>
#include <vector>

template <class A> � 5
class Manager
{

LISTING 30-1: WORKING WITH VOID POINTERS

#include <stdio.h>
#include <string.h>

void delete_func(void *obj)
{

if (obj)
delete obj;

}

class Foo
{

char *s;
public:

Foo(const char *strTemp)
{

printf(“Constructor for foo\n”);
s = new char[strlen(strTemp)+1];
strcpy(s, strTemp);

}
virtual ~Foo()
{

printf(“Destructor for foo\n”);
delete s;

}
};

int main()
{

Foo *f = new Foo(“This is a test”); � 1
func(f);

}

The above listing illustrates how a pointer can be
treated as “generic” — that is, having no type. In the
main program (shown at � 1), we create a new Foo
object using the standard constructor for the class.
This pointer is then passed to the func function,
which deletes the pointer, without knowing what
type it is. If the destructor for the class were called,
we would see two output lines, one for the construc-
tion of the class and one for the destruction.

If you were to compile this program and run it, you
would see output that said:

Constructor for foo

38_57986x ch30.qxd 1/26/05 4:28 PM Page 176

Technique 30: Creating a Simple Template Class 177

std::vector< A *> _objects; � 7
public:

Manager()
{
}
~Manager()
{

Clean();
}
void AddInstance(A *pObj)
{

_objects.insert(_objects.end(), pObj
);
}
void Clean()
{

std::vector< A *>::iterator iter;
for (iter = _objects.begin(); iter !=

_objects.end(); ++iter)
{

delete (*iter);
}
_objects.clear();

}
A *NewInstance()
{

A *pObject = new A;
AddInstance(pObject);
return pObject;

}
void DeleteInstance(A *obj)
{

std::vector< A *>::iterator iter;
for (iter = _objects.begin(); iter !=

_objects.end(); ++iter)
if ((*iter) == obj)
_objects.erase(iter);

delete obj;
}

};

class Foo
{

char *s;
public:

Foo (void)
{

printf(“Constructor for foo\n”);
const char *strTemp = “Hello world”;

s = new char[strlen(strTemp)+1];
strcpy(s, strTemp);

}
Foo(const char *strTemp)
{

printf(“Constructor for foo\n”);
s = new char[strlen(strTemp)+1];
strcpy(s, strTemp);

}
Foo(const Foo& aCopy)
{

s = new char[strlen(aCopy.s)+1];
strcpy(s, aCopy.s);

}
virtual ~Foo()
{

printf(“Destructor for foo\n”);
delete s;

}
const char *String()
{

return s;
}
void setString(const char *str)
{

if (s)
delete [] s;

s = new char[strlen(str)+1];
strcpy(s, str);

}
};

int main(void)
{

Manager<Foo> manager; � 6

Foo *f = manager.NewInstance(); � 2
Foo *f1 = manager.NewInstance();
Foo *f2 = manager.NewInstance();
Foo *f3 = manager.NewInstance();
manager.DeleteInstance(f); � 4
manager.Clean();
return 0;

}

3. Save the source file in your code editor and
close the code editor.

38_57986x ch30.qxd 1/26/05 4:28 PM Page 177

Technique 30: Creating a Simple Template Class178

keyword within the block. Everywhere that the entry
in the template (A, in our example) appears within
the block, it’s replaced with whatever the template
class is instantiated with (at � 6). In our main driver,
you will see the line:

Manager<Foo> manager;

This line is expanded by the compiler to replace the
A with Foo everywhere that it appears in the tem-
plate definition. Unlike macros, however, checking is
done at the time the instantiation is created, to
insure that the code generated is valid C++. For
example, had we omitted a copy constructor from
the Foo class, it would have generated an error in the
use of the Foo class within an STL vector class,
because all maneuvering in the vector is done by
copying objects from one place to another. You
would have seen an error at the line marked � 7.
The error would have said something about not find-
ing a copy constructor for the class, when the tem-
plate class vector was expanded by the compiler.
For this reason, the compiler first instantiates the
entire class, using the class supplied, then compiles
the result.

When you are implementing a template class,
put all the code inline in a header file. If you
don’t, many compilers will only appear to
compile the code — but will actually fail in the
link phase, since the template instantiation is a
one-phase operation. The compiler will not go
back and load the code from an external
source file.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

Note that when the program is run, if you have
done everything properly, you should see the
following output in the shell window:

$./a.exe
Constructor for foo � 3

Constructor for foo
Constructor for foo
Constructor for foo
Destructor for foo
Destructor for foo
Destructor for foo
Destructor for foo

The output shows us that the constructor is being
called from NewInstance (shown at � 2 and then
indicated in the output at � 3), but more impor-
tantly that the destructor is properly invoked when
we call the DeleteInstance method of the manager
(shown at � 4).

As you can see, the manager does understand the Foo
class type, even though we have not actually used
the Foo name anywhere in the manager definition.
We know this because the manager properly con-
structs and deletes the objects. How does it do this?
Essentially, the template keyword (shown at � 5 in
the code listing) does all of the work. When the com-
piler encounters the template keyword, it treats the
entire block (in this case, the entire class definition)
as if it were a giant “macro” (for lack of a better
word). Macros, as you might recall from the ‘C’ pre-
processor, substitute a given string for a specific

38_57986x ch30.qxd 1/26/05 4:28 PM Page 178

31
Extending a
Template Class

After you have created a base class that can be used as a template,
you can extend that template class by utilizing it in your applica-
tion. Extending a template class allows the functionality you have

defined in the template to be utilized in other ways. There are actually
four ways to utilize a template class in your own code. All of them will
save you time by allowing you to reuse existing code without having to
rewrite it, and to gain the expertise of the original template class writer
for your code.

� You can use the actual template class as a template object in your
code. To do so, simply use the class with a template argument of your
own choice. This is the approach when working with container classes
from the Standard Template Library, for example.

� You can use the class you’ve identified as a template as a member vari-
able in your own object. This means embedding an instance of the
template class with a template argument of your own choice in your
object.

� To use the template class as a base class for your own object, specify
the template argument up front and use it to identify the base class.

� You can use the templated class as a base class for your own inherited
class (either a templated class or a non-templated one), allowing the
end user to specify one or more template arguments to the class.

This technique looks at all these options and explores the flexibility and
power of each one.

If you choose to implement templates, be aware that they have a
high degree of overhead in the code, and they require that all their
code be available to the end-user. It’s best to implement small tem-
plate classes and provide them in header files for the end-user to use.

Technique

Save Time By
� Using template classes in

your code

� Testing the template
classes

� Using non-class template
arguments

39_57986x ch31.qxd 1/26/05 4:29 PM Page 179

Technique 31: Extending a Template Class180

{
printf(“Copy constructor called\n”);
_name = aCopy._name;
_pointer = new A(aCopy._pointer);

}
virtual ~Base()
{
delete _pointer;

}
A *Pointer()
{
return _pointer;

}
std::string Name()
{
return _name;

}
void setPointer(A *aPointer)
{
if (_pointer)

delete _pointer;
_pointer = new A(aPointer);

}
void setName(const char *strName)
{
_name = strName;

}
void Print()
{
printf(“Base:\n”);
printf(“Name = %s\n”, _name.c_str());
printf(“Pointer = \n”);
if (_pointer)

_pointer->Print();
else

printf(“Pointer is NULL\n”);
}

};

class Foo
{
private:

int i;
public:

Foo(void)
{

i = 0;
}
Foo (int iNum)
{

i = iNum;

Implementing Template
Classes in Code
It does no good to simply discuss the various ways in
which you can implement templated classes in your
code without concrete examples. Let’s look at a few of
the various ways in which we can utilize a templated
base class in our own applications. Here’s how:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch31.cpp,
although you can use whatever you choose.

2. Type the code from Listing 31-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 31-1: USING TEMPLATED CLASSES IN YOUR CODE

#include <stdio.h>
#include <string>

// The base template name
template < class A >
class Base
{

std::string _name;
A *_pointer;

public:
Base(void)
{

_name = “Nothing”;
_pointer = NULL;

}
Base(const char *strName, A *aPointer)
{
_name = strName;
if (aPointer)

_pointer = new A(aPointer);
else

_pointer = NULL;
}
Base(const Base& aCopy)

39_57986x ch31.qxd 1/26/05 4:29 PM Page 180

Implementing Template Classes in Code 181

}
Foo(const Foo& aCopy)
{

i = aCopy.i;
}
Foo (const Foo* aCopy)
{

i = aCopy->i;
}
virtual ~Foo()
{
}
int getNumber(void)
{

return i;
}
void setNumber(int num)
{

i = num;
}
void Print(void)
{

printf(“Foo: i = %d\n”, i);
}

};

// Case 1: Using base template as a member variable
class TemplateAsMember
{

Base<Foo> _fooEntry;
public:

TemplateAsMember(void)
: _fooEntry(“TemplateAsMember”, NULL)

{
}
TemplateAsMember(int intNum)

: _fooEntry(“TemplateAsMember”, new Foo(intNum))
{
}
void setNum(int iNum)
{

_fooEntry.Pointer()->setNumber (iNum);
}
int getNum(void)
{

return _fooEntry.Pointer()->getNumber();
}
int multiply(int iMult)
{

_fooEntry.Pointer()->setNumber (_fooEntry.Pointer()->getNumber() * iMult);
}
void Print()

(continued)

39_57986x ch31.qxd 1/26/05 4:29 PM Page 181

Technique 31: Extending a Template Class182

LISTING 31-1 (continued)
{
printf(“TemplateAsMember\n”);
_fooEntry.Print();

}
};

// Case 2: Using the base template as a base
class

class TemplateAsBase : public Base<Foo>
{
public:

TemplateAsBase(void)
: Base<Foo>(“TemplateAsBase”, NULL)

{
}
TemplateAsBase(const char *name, Foo
*pFoo)

: Base<Foo>(name, pFoo)
{
}
virtual ~TemplateAsBase(void)
{
}
void Print()
{

printf(“TemplateAsBase:\n”);
Base<Foo>::Print();

}

};
// Case 3: Using the base template as a base

class
// for another templated class
template < class A, class B >
class TemplateAsBaseTemplate : public Base<A>
{
private:

B *_anotherPointer;
public:

TemplateAsBaseTemplate(void)
: Base<Foo>(“TemplateAsBaseTemplate”,

NULL)
{
_anotherPointer = NULL;

}
TemplateAsBaseTemplate(A* anA, B* aB)

: Base<Foo>(“TemplateAsBaseTemplate”,
anA)

{
_anotherPointer = aB;

}

B* getBPointer()
{
return _anotherPointer;

}
void Print()
{

Base<A>::Print();
if (_anotherPointer)

_anotherPointer->Print();
else

printf(“Another pointer is NULL\n”);
}

};

class AnotherBase
{
private:

int x;
public:

AnotherBase()
{
x = 0;

}
AnotherBase(int i)
{
x = i;

}
virtual ~AnotherBase(void)
{
}
void Print()
{

printf(“AnotherBase: x = %d\n”, x);
}

};

In Listing 31-1, the code shows how each possible
case is addressed and used. We have implemented
two “normal” classes, called Foo and AnotherBase,
which are used as template arguments to designate
the template classes.

Testing the Template Classes
To check whether the code is really working, we
need to implement a test driver. The following steps
do so for the code in Listing 31-1:

39_57986x ch31.qxd 1/26/05 4:29 PM Page 182

Testing the Template Classes 183

1. In the code editor of your choice, reopen the
source file for the code you just created.

In this example, the file is named ch31.cpp,
although you can use whatever you choose.

2. Append the code from Listing 31-2 to your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 31-2: THE TEST DRIVER FOR THE TEMPLATED CLASS

EXAMPLE

int main()
{

printf(“Creating base\n”);
Base<Foo> fooBase;
printf(“Creating template as member\n”);
TemplateAsMember tempMem;
printf(“Creating template as base\n”);
TemplateAsBase tempBase;
printf(“Creating template as base tem-
plate\n”);
TemplateAsBaseTemplate<Foo,AnotherBase>
tempAsBT;

fooBase.Print();
tempMem.Print();
tempBase.Print();
tempAsBT.Print();

return 0;
}

3. Save the source file in your code editor and
close the code editor.

4. Compile the source code with the compiler of
your choice, on the operating system of your
choice.

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

Creating base
Void constructor called
Creating template as member
Creating base with name
[TemplateAsMember]
Creating template as base
Creating base with name [TemplateAsBase]
Creating template as base template
Creating base with name
[TemplateAsBaseTemplate]
Base:
Name = Nothing
Pointer =
Pointer is NULL � 1
TemplateAsMember
Base:
Name = TemplateAsMember
Pointer =
Pointer is NULL
TemplateAsBase:
Base:
Name = TemplateAsBase
Pointer =
Pointer is NULL
Base:
Name = TemplateAsBaseTemplate
Pointer =
Pointer is NULL
Another pointer is NULL

The output from this program shows us that each of
the various template instantiations works. As you
can see, in each case (see, for example, the line
marked � 1), the constructor was called and the
various member variables assigned proper default
values. Looking at the examples, it should be clear
that each of the various methods arrives at the same
conclusion.

Concrete classes that have been made into
templates as a specific form of a class are best
suited for extension. This is to say, if you have
a template class that accepts a particular type
of class for its argument, you are better off
extending your template class by creating a
form of it as a specific class — and then deriv-
ing from that specific class. The reason for this
is more human than technical: People usually
don’t think in terms of templates so much as
in terms of class names.

39_57986x ch31.qxd 1/26/05 4:29 PM Page 183

Technique 31: Extending a Template Class184

if (value > 0 && value < 10) � 2
_element = value;

}
A get()
{

return _element;
}

};

This code works for a class argument, so long as
that class can be compared to an integer. It can
also be used for a non-class argument, such as an
integer, long integer, or even a floating point
value.

With this class shown in Listing 31-3, there is no
reason that the template argument should be a
class. In fact, it would be implied that a numeric
element was used, since the value which is
passed into the set method is compared to an
integral value of 10 (see the line marked � 2).

3. Add the following code to your source file to
test the integer class. This code will test the
template class we just defined above.

int main(void)
{

LessThanTen<int> ten(3); � 5

printf(“The value is %d\n”,
ten.get());

ten.set(23); � 4

printf(“The value is now %d\n”,
ten.get());

return 0;
}

4. Save the source file in your code editor and
then close the code editor.

5. Compile the source code with the compiler of
your choice, on the operating system of your
choice.

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

Using Non-class Template
Arguments
Looking at the four choices in extending base
classes, you will probably notice a few things that
suggest particular approaches to the process.

To utilize methods in a base class being used as a
template, you must specify which version of the
class the template is to use. The reason is that you
could conceivably have a class that inherited from
multiple classes of the same template, with different
types associated with it. This is a good thing because
it allows you to segregate specific functionality into
separate classes.

Another thing worth noticing is that you may create
a templated class that does not require a class as its
argument. For example, we could create a template
with a numeric argument; the following steps show
you how:

1. In the code editor of your choice, create a new
file.

In this example, the file is named ch31a.cpp,
although you can use whatever you choose.

2. Type the code from Listing 31-3 into your file.

LISTING 31-3: A TEMPLATE CLASS WITH A NON-CLASS

ARGUMENT

template <class A>
class LessThanTen
{

A _element;

public:
LessThanTen(A entry)
{

set (entry);
}
LessThanTen(const LessThanTen& aCopy)
{

set(aCopy._element);
}
void set(A value) � 3
{

39_57986x ch31.qxd 1/26/05 4:29 PM Page 184

Using Non-class Template Arguments 185

$./a.exe
The value is 3
The value is now 3

As you can see from the output, the program indeed
does properly create a new class that is a templated
version of the LessThanTen class, using an integer as
its template argument. The resulting class contains a
method called set that takes an integer argument
(shown at � 3) that must be between 0 and 10. Since
our value (see � 4) is not within that range, it is not
assigned, and we see that the print statement fol-
lowing the assignment still contains the value 3.

Notice that the code works with an integer argument
(see the line marked with � 5), even though the
template specifies a class argument. For C++, inte-
gers, floating-point numbers, and the like can be con-
sidered first-class (that is, a basic type) arguments
for the purpose of templates. In fact (in this case at
least), any argument can be used, so long as the
code includes comparison operators greater-than
(>) and less-than (<) to ensure that the set method
works properly.

The ability to use either classes or basic types as
template arguments makes the template construct
extremely powerful in C++. Because you can write a
single class that manages number, character strings,
or class values and have it work seamlessly, you save
enormous amounts of time and duplicated work.

39_57986x ch31.qxd 1/26/05 4:29 PM Page 185

32Technique

Creating Templates
from Functions and
Methods

Although creating entire classes that are templates is useful, some-
times you just want a single function or method to accept a tem-
plate argument. For example, if you created a comparison function

that used a template for all types, you could then create (say) a minimum
function that would compare any two data types, including classes, as
long as you could tell one was of lesser magnitude than the other. This
technique shows how to save time by templatizing only a single function
(and later, a single method) of a class.

Implementing Function Templates
A function template, or method template, is simply a standalone function
(inside a class, in the case of a method) that can accept one or more tem-
plate arguments. Let’s take a look at how you would implement function
templates in your own code, by creating a generic function that will com-
pute the minimum of two values.

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch32.cpp, although you can use
whatever you choose.

2. Type the code from Listing 32-1 into your file.

Better yet, copy the code from the source file on this book’s compan-
ion Web site.

Save Time By
� Creating function

templates

� Creating method
templates

� Interpreting your output

40_57986x ch32.qxd 1/26/05 4:30 PM Page 186

Implementing Function Templates 187

LISTING 32-1: THE MIN TEMPLATE FUNCTION

#include <stdio.h>
#include <string>

template <class A>
A my_min(const A& val1, const A& val2) � 1
{

if (val1 == val2)
return val1;

if (val1 < val2)
return val1;

return val2;
}

bool operator==(const std::string& s1, const std::string& s2) � 5
{

int len = s1.length();
if (len != s2.length())

return false;

for (int i=0; i<len; ++i)
if (s1[i] != s2[i])

return false;

return true;
}

bool operator <(const std::string& s1, const std::string& s2 � 6
{

int len = s1.length();
if (len > s2.length())

len = s2.length();

for (int i=0; i<len; ++i)
if (s1[i] > s2[i])

return false;

return true;
}

int main(int argc, char **argv)
{

// First, try it for integers
int x1 = 100;
int x2 = 30;
int xmin = my_min(x1, x2); � 2

// Now, for floating-point numbers
float f1 = 12.40;
float f2 = 4.90;
float fmin = my_min(f1, f2);

(continued)

40_57986x ch32.qxd 1/26/05 4:30 PM Page 187

Technique 32: Creating Templates from Functions and Methods188

LISTING 32-1 (continued)
int xmin2 = my_min(x2, x1); � 3

printf(“Xmin = %d\n”, xmin);
printf(“Xmin2 = %d\n”, xmin2);
printf(“Fmin = %f\n”, fmin);

// Now that we have implemented the operators,
// try it for strings.
std::string s1 = “Hello world”;
std::string s2 = “Goodbye cruel world”;

if (s1 == s2)
printf(“Strings are equal\n”);

else
if (s1 < s2)

printf(“string %s is less\n”, s1.c_str());
else

printf(“String %s is less\n”, s2.c_str());

std::string smin = my_min(s1, s2); � 4
printf(“Min for strings returned: %s\n”, smin.c_str());

}

3. Save the source file in your code editor and
close the code editor.

Note that we have created a templated function
called my_min, shown at � 1 (it was not called
min, because that would conflict with a Standard
Template Library (STL) function of the same
name), which can be used with any data type
that supports the equal (=) and less-than (<)
operators.

In this case, the source code also implements
less-than and equal-to operations for the stan-
dard string class in the STL. After we have imple-
mented these operators, we can then instantiate
the template for the string class.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

$./a.exe
Xmin = 30
Xmin2 = 30
Fmin = 4.900000
String Goodbye cruel world is less
Min for strings returned: Goodbye cruel

world

Let’s look at this carefully, and see what is going on.
We are calling the minimum function, my_min, in
three locations, shown at the lines marked with � 2,

� 3, and � 4. The first line computes the min for
two integers, the second for two floating point num-
bers, and the third for two strings.

Although integers and floating point numbers have
their own comparison operators (less than, greater
than, and so forth) built into the language, strings do
not. Therefore, we implement the comparison func-
tions that will be called by my_min at the lines
marked � 5 and � 6. After all of this is done, the
compiler generates the proper versions of these
functions and you see the minimum calculation out-
put shown above.

40_57986x ch32.qxd 1/26/05 4:30 PM Page 188

Creating Method Templates 189

In this example, the template is automatically
generated. Unlike a template class, function
templates don’t require the programmer to
specify the class or type that the template is
being implemented for. This saves a lot of
time; you don’t have to track down where the
template was instantiated. The linker is also
smart enough, with most modern C++ com-
pilers, to link only in one copy of a given tem-
plate. This means that if you have multiple
calls to a specific templated function in your
program, only one will be in the final exe-
cutable. If your linker is not that smart, you
have to force the implementation of a given
template in your code.

Creating Method Templates
Similarly, you can also create methods of classes
that are themselves templates, even though the
class as a whole might not be. You might want to do
this as a way to avoid writing a lot of the same code
over and over, such as creating a set of assignment
methods for different data types.

When you find yourself writing the same
method over and over, but specifying a differ-
ent data type (such as a set method or an
assignment operator) for each one, immedi-
ately think about creating a template method
for that operation. This can save you a lot of
time.

The following steps show you how to create a
method template:

1. In the code editor of your choice, reopen the
source file for the code that you just created.

In this example, the file is named ch32.cpp,
although you can use whatever you choose.

2. Add the code from Listing 32-2 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 32-2: A CLASS WITH A TEMPLATED METHOD

class Foo
{
private:

std::string _name;
int _value;

public:
Foo(void)
{
_name = “Nothing”;
_value = 0;

}
Foo(const char *strName, int iValue)
{
_name = strName;
_value = iValue;

}
Foo(const Foo& aCopy)
{
_name = aCopy._name;
_value = aCopy._value;

}
Foo operator=(const Foo& aCopy)
{
_name = aCopy._name;
_value = aCopy._value;
return *this;

}
// Templatized method to add values
template < class A >
void Add(const A& aValue)
{

_value += aValue;
}
// Templatized method to multiply values
template < class A >
void Multiply(const A& aValue) � 7
{
_value = _value * aValue;

}

// Method to dump the values
void Print()
{

printf(“Name: [%s]\n”, _name.c_str()
);

printf(“Value: %d\n”, _value);
}

};
(continued)

40_57986x ch32.qxd 1/26/05 4:30 PM Page 189

Technique 32: Creating Templates from Functions and Methods190

if (s1 == s2)
printf(“Strings are equal\n”);

else
if (s1 < s2)

printf(“string %s is less\n”,
s1.c_str());

else
printf(“String %s is less\n”,

s2.c_str());

std::string smin = my_min(s1, s2);
printf(“Min for strings returned: %s\n”,
smin.c_str());

Foo f(“MyFoo”, 10);
f.Add(12.0);
f.Print();
f.Multiply(-1);
f.Print();
f.Multiply(std::string(“12”));
f.Print();

}

Note that as with template functions, the pro-
grammer does not in any way create an instance
of the templated member function. The compiler
will create instances as needed, by matching up
the possible template arguments with the avail-
able templates. Naturally, this will only work if
the template class definition is available, so once
again, the template methods must be in-line
defined methods. Because there is no “natural”
way in which to multiply a string by an integer,
we define a global operator which accepts an
integer value and a string, and returns the con-
verted string multiplied by the integer. After this
operator is defined, we can then pass in a string
to the templated method. (If the operator was
not defined, you get a compile error when the
template is expanded and the integer multiplica-
tion by the input argument is attempted.) There
is a quite a bit going on here, obviously.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

LISTING 32-2 (continued)
int operator*(int iValue, std::string s)
{

// Convert string to an integer
int iMult = atoi(s.c_str());
// Do the multiplication
int iResult = iValue * iMult;
// Return it
return iResult;

}

The above listing shows a class, Foo, which
contains a templated method called Multiply
(shown at � 7). This method will allow you to
multiply various types of data and assign the
result to a member variable within the class.
Notice also the operator* function that is
defined even to multiply our value by a string.

3. Change the main function of the source file to
be as shown in Listing 32-3:

LISTING 32-3: THE TEST DRIVER FOR THE TEMPLATED METHOD

int main(int argc, char **argv)
{

// First, try it for integers
int x1 = 100;
int x2 = 30;
int xmin = my_min(x1, x2);

// Now, for floating point numbers
float f1 = 12.40;
float f2 = 4.90;
float fmin = my_min(f1, f2);

int xmin2 = my_min(x2, x1);

printf(“Xmin = %d\n”, xmin);
printf(“Xmin2 = %d\n”, xmin2);
printf(“Fmin = %f\n”, fmin);

// Now that we have implemented the oper
// ators, try it for strings.
std::string s1 = “Hello world”;
std::string s2 = “Goodbye cruel world”;

40_57986x ch32.qxd 1/26/05 4:30 PM Page 190

Creating Method Templates 191

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

$./a.exe
Xmin = 30
Xmin2 = 30
Fmin = 4.900000
String Goodbye cruel world is less
Min for strings returned: Goodbye cruel

world
Name: [MyFoo] � 8
Value: 22
Name: [MyFoo]
Value: -22
Name: [MyFoo]
Value: -264

The initial part of our output is from the first part of
this technique and has not changed. The second
part, beginning with the line marked � 8, shows the
result of our templated method. As you can see, we
first assign the member variable value the value 10.
We then add 12 to it, resulting in the output of 22.
Now, we start using the Multiple method. First, we
multiply by an integer value of –1, resulting in the
output of –22. Then we multiply by a string value
of 12, which is converted to an integer using the
operator* function we defined, which results in
–264 — the value that is printed out.

Note that the string is evaluated to its integer value,
12, and the result multiplied by the current value of
–22. This results in a total of –264, which is the value
displayed on the console window.

40_57986x ch32.qxd 1/26/05 4:30 PM Page 191

33Technique

Working with
Arrays

The Standard Template Library (STL) provides access to a number of
different forms of storage classes. One of these is the vector class,
which allows the programmer to store arbitrary arrays of objects.

Unfortunately, the vector class also requires that you “pull in” (link)
the entire STL to use it. This can cause significant overhead in your
application and can consume large amounts of memory. Because the
vector class is a templated class, it copies large chunks of code each
time it’s used. Although this is normally insignificant for large-scale
applications — and well worth the expense of memory and size — it can
be quite costly when your applications are smaller or have to operate in
more restricted memory areas, as with embedded applications. For this
reason, it makes sense to get handy with not only the vector class but also
with implementing your own simple array classes that can use restricted
memory. This technique shows you how to use vector classes — and
techniques for working with various algorithms with the vector class.
The next technique, Technique 34, shows you how to use array classes
with limited overhead.

Using the Vector Class
The vector class is amazingly powerful and, after you get the hang of it,
very easy to use in your own code. Let’s look at an example of working with
vectors. We will examine how to add data to a vector, step through (iterate)
the values in the array, and print out the data in the array. Here’s how:

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch33.cpp, although you can use
whatever you choose.

2. Type the code from Listing 33-1 into your file.

Better yet, copy the code from the source file on this book’s compan-
ion Web site.

Save Time By
� Understanding the

vector class

� Implementing array
classes

� Working with various
algorithms with the
vector class

41_57986x ch33.qxd 1/26/05 4:30 PM Page 192

Using the Vector Class 193

LISTING 33-1: WORKING WITH VECTORS

#include <stdio.h>
#include <string>
#include <vector>
#include <iostream>

using namespace std;

template < class A >
void print_array(vector<A> array)
{

vector<A>::iterator iter;

for (iter = array.begin(); iter != array.end(); ++iter)
cout << (*iter) << “\n”;

}

void reverse_array(const vector<string>& arrayIn, vector<string>& arrayOut)
{

vector<string>::const_iterator iter;

for (iter = arrayIn.begin(); iter != arrayIn.end(); ++iter)
{

arrayOut.insert(arrayOut.begin(), (*iter));
}

}

int main(int argc, char **argv)
{

vector<string> stringArray;

// First, add all of the arguments to the
// array that were passed into the application.
for (int i=0; i<argc; ++i) � 1

stringArray.insert(stringArray.end(), argv[i]);

// Print them out using an iterator
vector<string>::iterator iter;
for (iter = stringArray.begin(); iter != stringArray.end();

++iter)
{

// This isn’t necessary, but illustrates how to get
// the actual item stored in an array element. Note that
// the copy constructor will be invoked on this line.
string s = (*iter); � 2

cout << “Element: “ << s << “\n”;
}

(continued)

41_57986x ch33.qxd 1/26/05 4:30 PM Page 193

Technique 33: Working with Arrays194

LISTING 33-1 (continued)
// Now, we want to remove any element in the array which is the number
// 3
for (iter = stringArray.begin(); iter != stringArray.end();

iter ++)
{

if ((*iter) == “3”)
{

cout << “Erasing element “ << (*iter) << “\n”;
stringArray.erase(iter); � 3

}
}

// Display the results for the user
printf(“Array after removal\n”);
print_array(stringArray);

// Next, reverse the array
vector<string> outArray;
reverse_array(stringArray, outArray); � 4
printf(“Array after reversal\n”);
print_array(outArray);

return 0;
}

3. Save the source file in your code editor and
close the code editor.

This source code utilizes the power and function-
ality of the Standard Template Library to do sim-
ple array manipulations, including adding new
data to an array, reversing the elements in an
array, and iterating over the elements in an array.

4. Compile the source code with the compiler of
your choice, on the operating system of your
choice.

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

$./a.exe 1 2 3 4
Element: ./a
Element: 1
Element: 2
Element: 3

Element: 4
Erasing element 3
Array after removal
./a
1
2
4
Array after reversal
4
2
1
./a

As you can see, the program reads in the arguments
from the command line, places them into an array
(shown at the line marked � 1), then prints out the
array by iterating over each element and printing
out the data contained at that array element (shown
at � 2). Next, the program removes all values of 3
from the array, illustrating how you can delete from
an array (shown at � 3) and leave the rest of the

41_57986x ch33.qxd 1/26/05 4:30 PM Page 194

Using the Vector Class 195

elements in order. Finally, the values in the array
are reversed, by copying them into a new array in
reverse order (shown at � 4) and the result is
printed out once more.

This example illustrates how easy it is to work with
the vector class in the C++ STL — and the result is
very powerful. Unfortunately, the class is also quite

large. On my system, the resulting executable file
takes up over 400KB for this simple little program.
This illustrates how the STL pulls in a lot of code
when you utilize it. Admittedly, in today’s world,
400 KB is not that large, but it’s a lot for such a small
program.

41_57986x ch33.qxd 1/26/05 4:30 PM Page 195

34Technique

Implementing Your
Own Array Class

After you have learned how to use the STL vector class (see
Technique 33), it is very instructive to see how you might imple-
ment the same sort of class yourself — but with more limited over-

head. Here’s a look at implementing a simple vector class that not only
stores strings, but can also insert, delete, and iterate.

Creating the String Array Class
As we saw in Technique 33, the overhead in using the Standard Template
Library (STL) is rather high when you want to add only a single array to
your program. If you are using multiple array classes, you might as well
use the STL, because that way you only have to pay the price (in terms of
memory and application size) once. Each array class beyond the first
uses negligible space in your application. Let’s create a simple string
array class that illustrates how easy it is to create array classes for your
application that work with specific data types. The following steps show
you how:

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch34.cpp, although you can use
whatever you choose.

2. Type the code from Listing 34-1 into your file.

Better yet, copy the code from the source file on this book’s companion
Web site.

Save Time By
� Implementing array

classes with limited over-
head

� Using a vector class
that stores strings

� Interpreting the output

42_57986x ch34.qxd 1/26/05 4:31 PM Page 196

Creating the String Array Class 197

LISTING 34-1: CREATING YOUR OWN STRING ARRAY CLASS

#include <stdio.h>
#include <string>

using namespace std;

class MyStringArray
{

string *_strings;
int _numstrings;
int _chunksize;
int _numused;
void expand()
{

// Allocate a new block
string *newBlock = new string[_num-

strings + _chunksize];
_numstrings += _chunksize;
for (int i=0; i<_numused; ++i)

newBlock[i] = _strings[i];
// Delete the old array
delete [] _strings;
// Re-assign the pointer
_strings = newBlock;

}
public:

MyStringArray(void)
{

_chunksize = 10;
_strings = new string[_chunksize];
for (int i=0; i<_chunksize; ++i)

_strings[i] = “”;
_numstrings = _chunksize;
_numused = 0;

}
MyStringArray(int nSize)
{

_chunksize = 10;
if (nSize <= _chunksize)
{

_strings = new string[_chunksize
];

_numstrings = _chunksize;
}
else
{

_strings = new string[nSize];
_numstrings = nSize;

}
_numused = 0;

}
virtual ~MyStringArray(void)
{

delete [] _strings;
}
// Insert at start
void insert_string(const string& s)
{

// See if it will fit.
if (_numused == _numstrings)

expand();
// It will now fit, move everything up
for (int i=_numused; i>=0; --i)

_strings[i] = _strings[i-1];
// Put in the new one
_strings[0] = s;
_numused ++;

}
void append_string(const string& s)
{

// See if it will fit.
if (_numused == _numstrings)

expand();
// Put in the new one
_strings[_numused] = s;
_numused ++;

}
string remove_at(int idx)
{

if (idx < 0 || idx >= _numused)
return string(“”);

// Save this one
string ret_string = _strings[idx];
// And copy all the others after it

back
for (int i=idx; i<_numused; ++i)

_strings[i] = _strings[i+1];
_numused--;
return ret_string;

}
string get_at(int idx)
{

if (idx < 0 || idx >= _numused)
return string(“”);

return _strings[idx];
}
int size()

(continued)

42_57986x ch34.qxd 1/26/05 4:31 PM Page 197

Technique 34: Implementing Your Own Array Class198

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

$./a.exe 1 2 3 4 5 6 7
Appending ./a � 2
Appending 1
Appending 2
Appending 3
Appending 4
Appending 5
Appending 6
Appending 7
Initial String Array:
String 0 = [./a] � 3
String 1 = [1]
String 2 = [2]
String 3 = [3]
String 4 = [4]
String 5 = [5]
String 6 = [6]
String 7 = [7]
Removed string 5
Final String Array:
String 0 = [./a]
String 1 = [1]
String 2 = [2]
String 3 = [3]
String 4 = [4]
String 5 = [6]
String 6 = [7]

The output from this program is as expected: We
append each of the input arguments to our array,
watching it grow as we do so. This is illustrated begin-
ning at the lines marked � 1 in the code and � 2 in
the output. Next, we print out the array, expecting to
see all of the values displayed (see � 3 in the out-
put). As expected, we see all eight data values. Next,
the code removes the fifth data element, as shown at

� 4 in the code listing. We then print out the array
once more, to show that the value was removed and
the other data values remain.

LISTING 34-1 (continued)
{

return _numused;
}

};

int main(int argc, char **argv)
{

MyStringArray s(5);
for (int i=0; i<argc; ++i)
{

printf(“Appending %s\n”, argv[i]);
s.append_string(argv[i]); � 1

}
printf(“Initial String Array:\n”);
for (int j=0; j<s.size(); ++j)

printf(“String %d = [%s]\n”, j,
s.get_at(j).c_str());
if (s.size() > 5)
{

string str = s.remove_at(5); � 4
printf(“Removed string %s\n”,

str.c_str());
}
printf(“Final String Array:\n”);
for (int i=0; i<s.size(); ++i)

printf(“String %d = [%s]\n”, i,
s.get_at(i).c_str());

}

This source code utilizes our simple array func-
tionality to add, remove, and iterate over strings
in an open-ended array structure.

Now, our code is not quite as polished as the STL
vector class, but it should work just as well. More
importantly, when the code is compiled on my
system, it produces an executable of less than
100 KB (rather than the 400KB executable of our
previous example), the majority of which is the
STL string class.

3. Save the source file in your code editor and
close the code editor.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

42_57986x ch34.qxd 1/26/05 4:31 PM Page 198

Creating the String Array Class 199

Implementing your own array class can save you
considerable time in trying to reduce code size, and
allows you to use your code in places where it might
not otherwise fit due to memory constraints.

As you can see from this output, we can create our
own array class that implements the majority of the
functionality of the STL vector class at a fraction of
the memory and speed needed.

If memory or speed is an issue, stay away
from the Standard Template Library and its
array classes; roll your own. You will see
marked speed increases, vastly less memory
consumption, and greater ease of debugging.
If you are not as concerned about memory
usage, use the STL: It is already debugged and
(no offense) probably better documented than
your own classes. In addition, STL code is ver-
satile: Versions of the STL have been ported to
nearly all compilers and operating systems.

42_57986x ch34.qxd 1/26/05 4:31 PM Page 199

35Technique

Working with
Vector Algorithms

The real power of the Standard Template Library lies not in its abil-
ity to simply store and retrieve data in templated form. Rather, it
lies in the built-in algorithms you can use on the various storage

facilities in the STL. Although the container classes do an excellent job of
holding onto the data you put into them, the templated algorithms allow
you to work with that data, sorting it, searching it, and converting it into
other forms.

When you need to search, process, or remove specific items from a
group, strongly consider the STL storage classes rather than creating
your own classes to do the same work. You can manipulate any of
them with well-proven and debugged algorithms.

The STL includes algorithm functions for iterating over collections, find-
ing specific entries, removing specific entries, and sorting the entries in
collections — to name but a few. In this technique, we look at the ways to
manipulate data efficiently in a collection, using the algorithms available
for vectors. In this technique, we will examine ways in which to sort,
search and remove items in an STL container. These algorithms are avail-
able for any of the STL container classes, using the same names in each
case. Although we will focus on the vector class in this technique, the
same algorithms will work with stacks, maps, queues, and all of the rest
of the STL containers. Using these algorithms will save you time in doing
the most likely tasks required of applications today.

Working with Vector Algorithms
If you are presented with an array, or vector, of data, certain functions
are almost always going to be requested by the user. The ability to sort
the data according to its value is one of them. Another requirement is
almost certainly going to be the ability to find a given data value in the
vector. Finally, inserting and removing data are essential for any array.
Let’s take a look at techniques for doing all of these tasks, using the STL
vector class and the STL algorithms. Here’s how:

Save Time By
� Using the STL’s built-in

algorithms

� Using vector algorithms

� Interpreting output

43_57986x ch35.qxd 1/26/05 4:27 PM Page 200

Working with Vector Algorithms 201

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch35.cpp,
although you can use whatever you choose.

2. Type the code from Listing 35-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 35-1: USING THE STL ALGORITHMS WITH THE VECTOR CLASS

#include <stdio.h>
#include <string>
#include <vector>
#include <algorithm>

bool contains_c(const std::string& s)
{

for (int i=0; i<s.length(); ++i)
if (s[i] == ‘c’)

return true;
return false;

}
int main(int argc, char **argv)
{

// First, create a vector out of all
// of the input strings

std::vector< std::string > elements;
for (int i=0; i<argc; ++i) � 1

elements.insert(elements.end(), argv[i]);

// Print out the elements.
printf(“Original list:\n”);
std::vector< std::string >::iterator iter;
for (iter = elements.begin(); iter != elements.end(); ++iter)

printf(“Element %s\n”, (*iter).c_str());

// Now, sort the elements.
std::sort(elements.begin(), elements.end()); � 2

// Print them out again.
printf(“Sorted list:\n”);
for (iter = elements.begin(); iter != elements.end(); ++iter)

printf(“Element %s\n”, (*iter).c_str());

(continued)

43_57986x ch35.qxd 1/26/05 4:27 PM Page 201

Technique 35: Working with Vector Algorithms202

LISTING 35-1 (continued)
// Find a specific element, if it exists.
std::vector< std::string >::iterator ptr_iter;

ptr_iter = std::find(elements.begin(), elements.end(), “Hello”); � 3
if (ptr_iter != elements.end())

printf(“Found the element %s\n”, (*ptr_iter).c_str());
else

printf(“Didn’t find the requested element\n”);

// If we found it, remove it from the list.
if (ptr_iter != elements.end())

elements.erase(ptr_iter);

// And relist them.
printf(“Altered list:\n”);
for (iter = elements.begin(); iter != elements.end(); ++iter)

printf(“Element %s\n”, (*iter).c_str());

// See how many times “Why” is in the list.
int cnt = std::count(elements.begin(), elements.end(), “Why”);
printf(“Found %d entries with the name \’Why\’\n”, cnt);

// Remove entries only if they contain the letter ‘c’
std::remove_if(elements.begin(), elements.end(), contains_c);
printf(“Final list:\n”);
for (iter = elements.begin(); iter != elements.end(); ++iter)

printf(“Element %s\n”, (*iter).c_str());

return 0;
}

3. Save the source file in your code editor and
close the code editor.

This source code utilizes the power and function-
ality of the Standard Template Library to do sim-
ple array manipulations. Adding items, removing
them, counting the number that match a given
string, searching, and sorting the array are all
illustrated.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

When the program is run, if you have done every-
thing properly, you should see the output shown in
Listing 35-2 in the shell window.

43_57986x ch35.qxd 1/26/05 4:27 PM Page 202

Working with Vector Algorithms 203

LISTING 35-2: OUTPUT FROM THE VECTOR ALGORITHM PROGRAM

$./a.exe Hello Goodbye Why What Iditarod
Alpha Why Me Accord

Original list:
Element ./a
Element Hello
Element Goodbye
Element Why
Element What
Element Iditarod
Element Alpha
Element Why
Element Me
Element Accord
Sorted list:
Element ./a
Element Accord
Element Alpha
Element Goodbye
Element Hello
Element Iditarod
Element Me
Element What
Element Why
Element Why
Found the element Hello
Altered list:
Element ./a
Element Accord
Element Alpha
Element Goodbye
Element Iditarod
Element Me
Element What
Element Why
Element Why
Found 2 entries with the name ‘Why’
Final list:
Element ./a
Element Alpha
Element Goodbye
Element Iditarod
Element Me
Element What
Element Why
Element Why
Element Why

The output breaks down into several steps, matching
the program steps. First, we input the data from the
command line and store it into the original list, as it is
marked in the output. This occurs at the line � 1 in
the code listing. Next, we sort the list, using the STL
sort algorithm (shown at � 2 in the code listing).
This single line of code sorts the entire array, com-
paring each element to the next and swapping them
into place. The data is then output with the header
sorted list. Our next task is to locate a specific string,
in this case “Hello”, within the array (see � 3). If it
is found, that element is removed and the array is
printed out once more, using the title altered list. Our
next task is to count the number of times a given
string (“Why”) appears in the list and print out that
value. Finally, we remove all the items beginning
with the letter c and print the list. All of this takes
place in but a handful of lines of code, illustrating
just how powerful and time saving the STL algo-
rithms can be.

As you can see, with a minimum of code, we accom-
plished a rather large amount of functionality. For
this reason alone, you should strongly consider
using the STL vector class in your own code.

The vector class implements numerous algo-
rithms for sorting, searching, and manipulation.
You can write a single function with multiple
algorithms to process large amounts of data —
or even selected portions of data — simply by
using iterators and the algorithm functions.

43_57986x ch35.qxd 1/26/05 4:27 PM Page 203

36Technique

Deleting an Array
of Elements

Using the delete function with arrays can be one of the most confus-
ing constructs in C++. When do you need to delete a single ele-
ment, as opposed to an entire array of elements? What happens if

you don’t use the proper deletion method with the proper allocation
method? Deleting a single element, when you allocate an array of ele-
ments, results in the failure of destructors to be called. Not deleting an
element you allocate results in memory leaks and potential system
crashes. In general, the correct deletion method must be matched with
the proper invocation of the new method. Failure to do this matchup will
result in memory leaks that are very hard to trace — which will eventu-
ally crash your application with enough use. If you do the work up front
of matching correct allocations and de-allocations, you will save a lot of
time during the debugging and maintenance process.

Always match up the allocation with the deletion of elements in your
application. When in doubt, use the delete array operations (delete
[] array) rather than the “normal” deletion operation (delete
array) to make sure your arrays are properly deleted. Even for non-
class elements, failure to delete arrays properly can cause memory
leaks. Note, however, that calling delete [] when you have allo-
cated a pointer with new <Type> will cause a crash.

Examining Allocations
of Arrays and Pointers
The only real way to understand exactly how allocations and de-
allocations work is to look at an example of working with allocating
single objects, with and without pointers, in either single objects or
arrays of objects. Let’s do that right now, with a short example program.

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch36.cpp, although you can use
whatever you choose.

Save Time By
� Using the delete

function with arrays

� Deleting a single element
from an array

� Deleting an entire array

� Matching deletion meth-
ods with the appropriate
allocation methods

� Interpreting output

44_57986x ch36.qxd 1/26/05 4:26 PM Page 204

Examining Allocations of Arrays and Pointers 205

2. Type the code from Listing 36-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 36-1: ALLOCATING OBJECTS WITH AND

WITHOUT POINTERS

#include <stdio.h>
#include <vector>

class NoPointer
{

int x;
public:

NoPointer()
{

printf(“NoPointer: Void Constructor
called\n”);

x = 0;
}
NoPointer(int num)
{

printf(“NoPointer: Full constructor
called\n”);

x = num;
}
NoPointer(const NoPointer& aCopy)
{

printf(“NoPointer: Copy constructor
called\n”);

x = aCopy.x;
}
virtual ~NoPointer()
{

printf(“NoPointer: Destructor
called\n”);
}

NoPointer operator=(const NoPointer&
aCopy)
{

printf(“NoPointer: operator=
called\n”);

x = aCopy.x;
return *this;

}
void setX(int num)
{

x = num;
}
int getX (void)
{

return x;
}

};

class PointerClass
{

char *ptr;
public:

PointerClass()
{

printf(“PointerClass: Void Constructor
called\n”);
ptr = NULL;

}
PointerClass(const char *str)
{

printf(“PointerClass: Full constructor
called\n”);
ptr = new char[strlen(str)+1]; � 1
strcpy(ptr, str);

}
PointerClass(const PointerClass& aCopy)
{

printf(“PointerClass: Copy constructor
called\n”);
if (aCopy.ptr)
{
ptr = new char[strlen(aCopy.ptr)+1];

strcpy(ptr, aCopy.ptr);
}
else

ptr = NULL;
}
virtual ~PointerClass()
{

printf(“PointerClass: Destructor
called\n”);
delete [] ptr; � 2

}

PointerClass operator=(const
PointerClass& aCopy)
{

printf(“PointerClass: operator=
called\n”);
if (aCopy.ptr)
{
ptr = new char[strlen(aCopy.ptr)+1];

strcpy(ptr, aCopy.ptr);
}
else

ptr = NULL;
(continued)

44_57986x ch36.qxd 1/26/05 4:26 PM Page 205

Technique 36: Deleting an Array of Elements206

// Delete them.
printf(“Deleting npa2\n”);
delete [] npa2;
printf(“Deleting pca2\n”);
delete [] pca2;

// See what happens with a vector.
printf(“Creating vector of
PointerClass\n”);
std::vector< PointerClass > *pcv = new
std::vector<PointerClass>;

for (int i=0; i<5; ++i)
{

PointerClass pc;
pcv->insert(pcv->end(), pc);

}

printf(“Deleting vector of
PointerClass\n”);
delete pcv;

}

As you can see from the above code listing, we
have created two different sorts of classes. The
first class, NoPointer, is a simple class that con-
tains only basic member variables, with no point-
ers stored in the member data of the class. The
second class, PointerClass, contains pointer
data that is allocated when an instance of the
class is constructed and de-allocated when the
instance is freed. If you look at line � 1, you will
see how the ptr member variable is allocated in
the constructor for the PointerClass. That ptr
member variable should be de-allocated at line

� 2 if all goes well in the class.

3. Save the source file in your code editor and
close the code editor.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

LISTING 36-1 (continued)
return *this;

}
void setPtr(const char *str)
{

if (str)
{
str = new char[strlen(str)+1];

strcpy(ptr, str);
}
else

ptr = NULL;
}
const char *getPtr (void)
{

return ptr;
}

};

int main()
{

// Just create one of each to see what
happens.

printf(“Creating np\n”);
NoPointer *np = new NoPointer(5);
printf(“Creating pc\n”);
PointerClass *pc = new
PointerClass(“Hello”);
printf(“Deleting np\n”);
delete np;
printf(“Deleting pc\n”);
delete pc;

// Now, create an array of them.
printf(“Creating npa\n”);
NoPointer *npa = new NoPointer[5]; � 3
printf(“Creating pca\n”);
PointerClass *pca =
new PointerClass[5]; � 4

// Delete them.
printf(“Deleting npa\n”);
delete npa;
printf(“Deleting pca\n”);
delete pca;

// Now, do it the right way.
printf(“Creating npa2\n”);
NoPointer *npa2 = new NoPointer[5];
printf(“Creating pca2\n”);
PointerClass *pca2 = new PointerClass[5];

44_57986x ch36.qxd 1/26/05 4:26 PM Page 206

Examining Allocations of Arrays and Pointers 207

When the program is run, if you have done every-
thing properly, you should see the output shown in
Listing 36-2 in the shell window.

LISTING 36-2: THE OUTPUT FROM THE ALLOCATION EXAMPLE

$./a.exe
Creating np
NoPointer: Full constructor called
Creating pc
PointerClass: Full constructor called
Deleting np
NoPointer: Destructor called
Deleting pc
PointerClass: Destructor called
Creating npa � 7
NoPointer: Void Constructor called
NoPointer: Void Constructor called
NoPointer: Void Constructor called
NoPointer: Void Constructor called
NoPointer: Void Constructor called
Creating pca
PointerClass: Void Constructor called
PointerClass: Void Constructor called
PointerClass: Void Constructor called
PointerClass: Void Constructor called
PointerClass: Void Constructor called
Deleting npa � 5
NoPointer: Destructor called
Deleting pca � 6
PointerClass: Destructor called
Creating npa2
NoPointer: Void Constructor called
NoPointer: Void Constructor called
NoPointer: Void Constructor called
NoPointer: Void Constructor called
NoPointer: Void Constructor called
Creating pca2
PointerClass: Void Constructor called
PointerClass: Void Constructor called
PointerClass: Void Constructor called
PointerClass: Void Constructor called
PointerClass: Void Constructor called
Deleting npa2
NoPointer: Destructor called
NoPointer: Destructor called
NoPointer: Destructor called
NoPointer: Destructor called
NoPointer: Destructor called

Deleting pca2
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
Creating vector of PointerClass
PointerClass: Void Constructor called
PointerClass: Copy constructor called
PointerClass: Destructor called
PointerClass: Void Constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Void Constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Void Constructor called
PointerClass: Copy constructor called
PointerClass: Destructor called
PointerClass: Void Constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Copy constructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
Deleting vector of PointerClass
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called
PointerClass: Destructor called

The important part of this output is shown in the
lines marked with � 5 and � 6 As you can see, we
are de-allocating the pointers that we allocated in
the code at lines marked � 3 and � 4. In both cases,
we have allocated an array of objects. If you look at

44_57986x ch36.qxd 1/26/05 4:26 PM Page 207

Technique 36: Deleting an Array of Elements208

Always place debugging print statements in
your constructors and destructor to verify that
you have called each the proper number of
times and in the proper manner.

the output, you will see that the constructor for the
class is called multiple times (see lines starting with

� 7) but that the destructor is called only once.
This introduces an immediate memory leak in the
application.

44_57986x ch36.qxd 1/26/05 4:26 PM Page 208

37Technique

Save Time By
� Understanding the vari-

ous ways to create arrays
of objects

� Declaring arrays on the
stack

� Creating objects on the
heap

� Using STL container
classes to create arrays

� Interpreting your output

Creating Arrays
of Objects

C++ offers three different ways to create arrays of objects, using the
language constructs and the Standard Template Library (STL):

� Declaring arrays on the stack: This method, using the [] construct,
creates a static array that exists from the point at which it is allocated.
You create a static array by writing

object-type array[num-elements];

where object-type is the class of the object you wish to create an
array of, and the number of elements in the array is represented by the
num-elements parameter. The advantage to this approach is that the
array size is known at compile time, and the program will be loaded
with the proper amount of memory. The problem with this approach is
that the array exists only as long as the array is in scope. When the
array variable goes out of scope, the array is destroyed.

� Creating objects on the heap: This approach has the advantage
of allowing you to control exactly when the array is created or
destroyed — but a disadvantage is that it will not automatically
“clean up” (de-allocate) after you. If you fail to de-allocate an array
(or if you de-allocate it in the wrong way), you create a memory leak
in your program. You create an object on the heap by writing

object-type object;

� Using STL container classes to create arrays: (We could quibble over
whether the various container classes in the STL constitute separate
methods of creating arrays, but for the sake of this technique, we’ll
just consider the use of all of the various container classes as a single
approach.) The advantage of this method is that it does not create the
objects until they are actually inserted into the container class — and
it automatically destroys those objects when the container class goes
out of scope. Containers can be dynamically created on the stack so
you can control the scope of objects in the container as well. Two dis-
advantages to this method: The increase in overhead is significant, and

45_57986x ch37.qxd 1/26/05 4:26 PM Page 209

Technique 37: Creating Arrays of Objects210

the container classes require you to implement a
number of methods in your classes — such as
copy constructors, assignment operators, and
virtual destructors — to avoid memory leaks.
You create an STL container class by writing:

vector<object-type> array;

This technique looks at the various advantages and
disadvantages of creating objects in these three dif-
ferent ways. By understanding how you can most
easily create an array of objects in your code, you
will save time when writing, debugging, and optimiz-
ing your code.

The following steps take you through all three
techniques for object-array allocation in a single
example:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch37.cpp,
although you can use whatever you choose.

2. Type the code from Listing 37-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 37-1: CREATING AN ARRAY OF OBJECTS

#include <stdio.h>
#include <string>
#include <vector>

class Foo
{

std::string _str;
public:

Foo(void)
{

printf(“Foo: Void constructor\n”);
_str = “”;

}
Foo (const char *s)
{

printf(“Foo: Full constructor
[%s]\n”, s);

_str = s;
}
Foo(const Foo& aCopy)
{

printf(“Foo: Copy constructor\n”);
_str = aCopy._str;

}
virtual ~Foo()
{

printf(“Foo: Destructor\n”);
}
Foo operator=(const Foo& aCopy)
{

_str = aCopy._str;
return *this;

}
std::string String()
{

return _str;
}
void setString(const char *str)
{

_str = str;
}

};

int main()
{

printf(“Creating array via new\n”);
Foo *f = new Foo[2](“Hello”); � 1
printf(“Creating array on heap\n”);
Foo f1[3]; � 2

// Create a vector
printf(“Creating vector of foo\n”);
std::vector<Foo> fooVector; � 3

printf(“Adding objects to vector\n”);
Foo f2;
Foo f3;
Foo f4;
fooVector.insert(fooVector.end(), f2);
fooVector.insert(fooVector.end(), f3);
fooVector.insert(fooVector.end(), f4);

printf(“Deleting array on heap\n”);
delete [] f;

}

45_57986x ch37.qxd 1/26/05 4:26 PM Page 210

Technique 37: Creating Arrays of Objects 211

Looking at the above code listing, you can see
that there are three different arrays defined in
the program. At � 1, we allocate an array from
the stack, using the new operator. At � 2, we
allocate an array on the heap, using the standard
array syntax of C++. Finally, at � 3, we see how
the Standard Template Library vector class is
used to define an array of objects.

3. Save the source file in your code editor and
close the code editor.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

When the program is run, if you have done
everything properly, you should see the output
shown in Listing 37-2 in the shell window.

LISTING 37-2: OUTPUT FROM THE ARRAY-ALLOCATION PROGRAM

$./a.exe
Creating array via new � 4
Foo: Full constructor [Hello]
Foo: Full constructor [Hello]
Creating array on heap � 5
Foo: Void constructor
Foo: Void constructor
Foo: Void constructor
Creating vector of foo � 6
Adding objects to vector
Foo: Void constructor
Foo: Void constructor
Foo: Void constructor
Foo: Copy constructor
Foo: Copy constructor
Foo: Copy constructor
Foo: Destructor
Foo: Copy constructor
Foo: Copy constructor
Foo: Copy constructor
Foo: Destructor
Foo: Destructor
Deleting array on heap � 7
Foo: Destructor
Foo: Destructor
Foo: Destructor
Foo: Destructor
Foo: Destructor
Foo: Destructor
Foo: Destructor

Foo: Destructor
Foo: Destructor � 8
Foo: Destructor
Foo: Destructor

As you can see, the static array is created at the
point at which the compiler finds the code for it. The
dynamic array is created at the point at which the
new operator is used to allocate it, and the vector
array does not begin to allocate space for the
objects until they are inserted into the vector.
Take a look at a breakdown of the lines shown in
Listing 37-2:

� � 4 This line shows the point at which the array
is allocated with new. As you can see, two con-
structor calls are made, indicating that two
objects were created and put into the array. Note
that because we gave the new operator a con-
structor argument, it calls the full constructor for
the class.

� � 5 This line shows where we allocated a block
of objects on the heap, using standard C++ array
syntax. Note that the void constructor is used
for these objects, initializing all three of them
(one for each array element).

� � 6 This line shows where we used the Standard
Template Library vector class to store objects.
No objects were created in this call. We then allo-
cate several objects on the heap and add them to
the vector. Notice that the objects are copied
into the vector using the copy constructor to
create new instances of the class.

� � 7 Here we delete the array that we allocated
with the new call. There should be two objects
deleted in this process and the output shows
that there are, in fact, two objects destroyed.

� � 8 This line shows the final destruction of the
objects that were allocated in the array on the
heap.

If you count the total number of destructor calls at
the end of the output listing, you will see that there
are 11 of them. This might not seem obvious from
the fact that we allocated only eight objects in the

45_57986x ch37.qxd 1/26/05 4:26 PM Page 211

Technique 37: Creating Arrays of Objects212

One important thing to notice in the code is that we
always use the delete [] method for de-allocating
arrays of objects. If you replace the delete []
method with a simple delete call, you will find that
the code does not call the destructor for each mem-
ber of the array, and that memory leaks can easily
occur. This risk of memory leakage is particularly
important if you store pointers to objects in your
array, and access them through any sort of base
class.

main program (two in the new array, three in the heap
array, and three in the vector). However, because
the copy constructor was invoked three times, three
additional objects were created, making a total of 11.

If you take a look at the output from the pro-
gram (in Listing 37-2), you see that the vec-
tor class does significant manipulation of the
data in the vector — that’s to store it efficiently
and make room for new objects. Therefore, if
your objects require a lot of overhead for their
creation and destruction, the vector class is
not a good choice for a container. You would
be better off pre-allocating a large number of
the objects — and using that array, whether
static or dynamic, to store your information.

45_57986x ch37.qxd 1/26/05 4:26 PM Page 212

38
Working with
Arrays of Object
Pointers

Although simple arrays of objects are easy to work with, arrays of
pointers that indicate objects are slightly more complicated to
handle. The syntax for creating and deleting these arrays is a little

more difficult; heterogeneous arrays of pointers that point to a common
base object require a bit more work — and this technique guides you
through what must be done. C++ allows you to store pointers to all
related classes — that is, those derived from a common base — in a sin-
gle array, while keeping track of their types and sizes. This can save you
a lot of time, by allowing you to place all of the related objects in a single
array while processing them differently using their derived types.

You can save a lot of time by storing all objects that derive from a
common base in a single array for access — as long as you have a
way to access the objects consistently. If you do so, you must use a
virtual destructor in the base class to insure that all de-allocations are
done properly. If you do not do this, the destructors for the derived
classes will not be called, and potential memory leaks can occur.

Creating an Array of Heterogeneous Objects
If you are working with a batch of different classes, all derived from a sin-
gle base class, it can be advantageous to store them all in one place. For
one thing, you only have one array to work with. For another, because
the objects are all related, it is likely that you will be doing the same pro-
cessing on them all at the same time. Let’s look at an example of creating
a heterogeneous array that stores multiple classes of objects.

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch38.cpp, although you can use
whatever you choose.

2. Type the code from Listing 38-1 into your file.

Better yet, copy the code from the source file on this book’s compan-
ion Web site.

Technique

Save Time By
� Understanding arrays of

object pointers

� Implementing arrays of
object pointers

� Interpreting output

46_57986x ch38.qxd 1/26/05 4:25 PM Page 213

Technique 38: Working with Arrays of Object Pointers214

LISTING 38-1: CREATING AN ARRAY OF OBJECT POINTERS

#include <stdio.h>
#include <string.h>

class Base
{

char *ptr;
public:

Base(void)
{

ptr = NULL;
}
Base(const char *str)
{

setString(str);
}
virtual ~Base()
{

printf(“Base::~Base called\n”);
delete ptr;

}
void setString(const char *str)
{

ptr = new char[strlen(str)+1];
strcpy(ptr, str);

}
const char *getString()
{

return ptr;
}

};

class Derived : public Base
{
private:

int _num;
public:

Derived(void)
: Base(“DerivedVoid”)

{
_num = 0;

}
Derived(int nVal)

: Base(“DerivedFull”)
{
_num = nVal;

}
virtual ~Derived()
{

printf(“Derived::~Derived called\n”);
}

void setVal(int nVal)
{

_num = nVal;
}
int getVal (void)
{

return _num;
}

};

const int NumElements = 3;

int main(void)
{

Base **bArray = new Base*[10]; � 1

for (int i=0; i<NumElements; ++i)
bArray[i] = new Derived(i); � 2

// Print them out
for (int j=0; j<NumElements; ++j)

printf(“Object %s - %d\n”, bArray[j]-
>getString(), ((Derived *)bArray[j])-
>getVal());

// Delete them
for (int i=0; i<NumElements; ++i)

delete bArray[i];

delete [] bArray;
return 0;

}

The above code listing illustrates how we create
an array of pointers and store data in that array.
As you can see at � 1, allocating an array of
pointers is no different than allocating any other
sort of array in C++. The difference here is that
while the array space is allocated, no actual
objects are created. This is because we are allo-
cating space for pointers to the objects, not
objects themselves. The actual allocation of
objects and the space they consume is illus-
trated at the line marked � 2. Note that even
though we have an array of Base pointers, we
can create and store Derived pointers in the
array, since they are a derived form of Base.

46_57986x ch38.qxd 1/26/05 4:25 PM Page 214

Creating an Array of Heterogeneous Objects 215

3. Save the source file in your code editor and
close the code editor.

4. Compile the source code with the compiler of
your choice on the operating system of your
choice.

When the program is run, if you have done every-
thing properly, you should see the following output
in the shell window:

$./a.exe
Object DerivedFull - 0
Object DerivedFull - 1
Object DerivedFull - 2
Derived::~Derived called
Base::~Base called
Derived::~Derived called
Base::~Base called
Derived::~Derived called
Base::~Base called

The output here illustrates that the array of pointers
is created as we expected. The string stored in the
Base class was created from the Derived constructor,
which is what we anticipated. The destruction of the
objects does chain upward to call both the Base
class and Derived class destructors. In short, this
code works exactly as advertised.

The ability to work with an array of heterogeneous
pointers is quite powerful in C++, because it means
that you need not know what sort of object you are
working with. Had we created virtual methods for
getting and setting the values in the Base class, we
would not even have to cast the object in the printf
in the main function.

46_57986x ch38.qxd 1/26/05 4:25 PM Page 215

39Technique

Implementing a
Spreadsheet

One of the most famous (or perhaps infamous) applications to help
make the personal computer popular was the spreadsheet —
nothing more than a grid of cells arranged in rows and columns —

in other words, a two-dimensional array. Spreadsheets have more func-
tionality than simple arrays (for example, you can build in formulae), but
at its heart, a spreadsheet is an array of rows and columns. This tech-
nique uses the Standard Template Library (STL) to set up and implement
a spreadsheet shell. The result can easily be used to create a real spread-
sheet implementation. Spreadsheets are common elements of applica-
tions these days, from doing presentations of data to what-if analysis. By
having a generic spreadsheet class that you can drop into your next proj-
ect, you will find that you save a lot of time in both the design and imple-
mentation phase of the project.

The implementation shown here isn’t designed to work with or inter-
pret formulae, but it will do everything else. If you want a complete
spreadsheet that can handle formulae, all you need to do is incorpo-
rate a simple expression parser.

The basics of the spreadsheet are three elements: the column (or cell), the
row, and the sheet itself. Each column contains a piece of data and the
information for formatting that piece of data for display. The column con-
tains methods to copy itself, clear itself out, and modify the data or for-
matting information in itself. The row is simply an array of columns that
makes up a single row of the spreadsheet. The Row class needs to be able
to modify any existing column in the row, as well as add new columns
and remove columns. A row should be able to return the contents of any
given column within that row so that the end user can modify the con-
tents directly.

Finally, the Spreadsheet class will contain an array of rows. This array
knows nothing about the individual columns in the sheet, nor does it
know anything about formatting or data. This data encapsulation is con-
sistent with the object-oriented paradigm, certainly, but is also important
in terms of being able to easily modify the basic layers of the system with
minimal change to the upper layers.

Save Time By
� Creating a simple spread-

sheet implementation

� Creating the Column
class

� Creating the Row class

� Creating the
Spreadsheet class

� Testing your spreadsheet

47_57986x ch39.qxd 1/26/05 4:24 PM Page 216

Creating the Column Class 217

When you’re implementing a complex system,
you can save immense time by breaking it
down into the most discrete simple compo-
nents you can make. This way, when change is
needed later on, the amount of required effort
is smaller and the ripple effect throughout the
system is minimal.

Creating the Column Class
The first element of the spreadsheet is the column.
Let’s build a simple class that maintains information
about the column, and contains methods to work
with that information. Here’s how:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch39.cpp,
although you can use whatever you choose.

2. Type the code from Listing 39-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 39-1: THE COLUMN CLASS

#include <stdio.h>
#include <string>
#include <vector>

class Column
{

std::string _format;
std::string _value;

public:
Column(void)
{

_format = “%s”;
_value = “”;

}
Column(const char *format, const char
*value)
{

_format = format;
_value = value;

}

Column(const Column& aCopy)
{

_format = aCopy._format;
_value = aCopy._value;

}
virtual ~Column()
{
}
Column operator=(const Column& aCopy)
{

_format = aCopy._format;
_value = aCopy._value;
return *this;

}
Column operator=(const char *value)
{

_value = value;
return *this;

}

void setValue(const char *value)
{

_value = value;
}
std::string getValue(void)
{

return _value;
}
void setFormat(const char *format)
{

_format = format;
}
std::string getFormat(void)
{

return _format;
}
virtual std::string getFormattedString
(void) const � 1
{

char szBuffer[100];
sprintf(szBuffer, _format.c_str(),
_value.c_str());
std::string sRet = szBuffer;
return sRet;

}
};

47_57986x ch39.qxd 1/26/05 4:24 PM Page 217

Technique 39: Implementing a Spreadsheet218

Row(unsigned int numColumns)
{

for (int i=0; i<numColumns; ++i)
{

Column c;
_columns.insert(_columns.end(),

c);
}

}
Row(const Row& aCopy)
{

Copy(aCopy);
}
Row operator=(const Row& aCopy)
{

Copy(aCopy);
}
Column& operator[](int idx) � 3
{

if (idx < 0 || idx > _columns.
size()-1)

throw “Row: Index out
of range”; � 2

return _columns[idx];
}

int NumColumns(void)
{

return _columns.size();
}
void Clear()
{

std::vector< Column >::iterator
iter;

for (iter = _columns.begin();
iter != _columns.end(); ++iter)

(*iter).setValue(“”);
}
void Print() const
{

std::vector< Column >::const_
iterator iter;

for (iter = _columns.begin();
iter != _columns.end(); ++iter)

printf(“%s “,
(*iter).getFormattedString().c_str());

printf(“\n”);
}

};

This code implements the most basic element of
the spreadsheet system, the column. As you can
see, we implement a complete class by adding
methods for the constructors, destructors,
assignment operators, and accessor methods.
It also implements a virtual method (shown at

� 1) for returning the contents of the column in
a formatted manner. Doing so allows other col-
umn types to be defined later on down the line, if
you so desire.

3. Save your file in your code editor.

The next step is to implement the Row class that will
hold an array of columns.

Creating the Row Class
After we have created a Column class, the next thing to
do is to create a Row class that contains the columns
we wish to store in the spreadsheet. You can think of
the Column class as the data for a single cell, and the
Row class as a list of cells for a given row.

1. Append the code from Listing 39-2 to the end of
your file.

LISTING 39-2: THE ROW CLASS

class Row
{

std::vector< Column > _columns;

void Copy(const Row& aCopy)
{

std::vector< Column >::const_
iterator iter;

for (iter = aCopy._columns.begin();
iter != aCopy._columns.end();
++iter)
_columns.insert(_columns.end(),
(*iter));

}
public:

Row(void)
{
}

47_57986x ch39.qxd 1/26/05 4:24 PM Page 218

Creating the Spreadsheet Class 219

Note that the Row class does not do anything
with the columns, except to store them and give
the end-user access to the ones they want. Note
also that we use exception handling (shown at

� 2) to deal with the exceptional cases of array
indices out of bounds. There are no good defaults
possible here, so we just assume that it is a fatal
error to ask for an invalid column number.

One thing that could be changed here is that the
Row class does not handle resizing. Instead, the
Row class simply assumes that the array of
columns is always being instantiated from
scratch. To properly resize a row, you would
need to create a new array of columns of the
right size, and then copy the existing columns
into that row.

2. Save your file.

The final step of the process of implementing the
class is to put together the actual Spreadsheet class.
The next section shows how.

Creating the Spreadsheet Class
Finally, we come to the important part for the end-
user: the Spreadsheet class itself. A spreadsheet, of
course, is simply a list of the rows that make up the
sheet, which in turn is a list of the columns that
make up each row. Our spreadsheet will always be
“square” — that is, it will contain an equal number of
columns in each row.

1. Append the code from Listing 39-3 to the end of
your file.

LISTING 39-3: THE SPREADSHEET CLASS

class Spreadsheet
{

int _cols;
std::vector< Row > _rows;
std::string _name;

void _BuildSheet(int nRows, int nCols)
{

// If there is anything already
here, remove it.

_rows.erase(_rows.begin(),
_rows.end());
// Now, add in the rows.
for (int i=0; i<nRows; ++i)
{

Row row(nCols);
_rows.insert(_rows.end(),

row);
}

}
void _InternalSetRows(const unsigned

int nRows)
{

_BuildSheet(nRows, _cols);
}
void _InternalSetCols(const unsigned

int nCols)
{

// Save the number of rows, so we
can rebuild it.

int nRowCount = _rows.size();
// Set the number of columns.
_cols = nCols;
// Now rebuild the rows.
_BuildSheet(nRowCount, nCols);

}
void Copy(const Spreadsheet& aCopy)
{

_InternalSetCols(aCopy.
NumColumns());

std::vector< Row >::const_iterator
iter;

for (iter = aCopy._rows.begin();
iter != aCopy._rows.end(); ++iter)

_rows.insert(_rows.end(),
(*iter));

_name = aCopy._name;
}

public:
Spreadsheet(void)
{
}
Spreadsheet(const char *name)
{

_name = name;
}
Spreadsheet(const char *name, unsigned
int nRows, unsigned int nCols)

{
(continued)

47_57986x ch39.qxd 1/26/05 4:24 PM Page 219

Technique 39: Implementing a Spreadsheet220

{
_InternalSetRows(nRows);

}

int NumColumns() const
{

return _cols;
}
int NumRows() const
{

return _rows.size();
}
void setName(const char *name)
{

_name = name;
}
std::string getName(void) const
{

return _name;
}

void Print() const
{

std::vector< Row >::const_iterator
iter;

printf(“Sheet: %s\n”, _name.c_str()
);

for (iter = _rows.begin(); iter !=
_rows.end(); ++iter)

{
(*iter).Print();

}
}

void Clear()
{

std::vector< Row >::iterator iter;
for (iter = _rows.begin(); iter !=
_rows.end(); ++iter)

(*iter).Clear();
}

};

As I mentioned earlier in this technique, the
spreadsheet is really just a holder of rows, which
in turn are a holder of columns. The Column class
is the only one that “understands” what the data
being stored looks like, or how it is formatted, or
how it will be displayed. The Spreadsheet class

LISTING 39-3 (continued)
_name = name;
_InternalSetCols(nCols);
_InternalSetRows(nRows);

}
Spreadsheet(const Spreadsheet& aCopy)
{

Copy(aCopy);
}
Spreadsheet operator=(const
Spreadsheet& aCopy)

{
Copy(aCopy);
return *this;

}
Row& operator[](int idx) � 4
{

if (idx < 0 || idx > _rows.
size()-1)

throw “Spreadsheet: Index out of
range”;

return _rows[idx];
}
Spreadsheet operator()(int r1, int c1,
int r2, int c2)

{
Spreadsheet ret;

// Assign the pieces.
ret.setNumColumns(c2-c1+1);
ret.setNumRows(r2-r1+1);

// Now copy over the chunk they want.
try
{

for (int r = r1; r <= r2; ++r)
for (int c = c1; c <= c2;
++c)

ret[r-r1][c-c1] =
(*this)[r][c];

}
catch (...)
{

throw “Spreadsheet: Index out of
range”;

}
return ret;

}
void setNumColumns(int nCols)
{

_InternalSetCols(nCols);
}
void setNumRows(int nRows)

47_57986x ch39.qxd 1/26/05 4:24 PM Page 220

Testing Your Spreadsheet 221

provides access to the individual rows in the
sheet, without any knowledge of how the
columns are stored in each row.

2. Save the source file in the source-code editor
and close the editor application.

Testing Your Spreadsheet
To see that the code is really working, implement a
test driver for the code. The following steps show
you how:

1. In the code editor of your choice, reopen the
source file for the code that you just created.

In this example, the file is named ch39.cpp,
although you can use whatever you choose.

2. Append the code from Listing 39-4 to the end of
your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 39-4: THE SPREADSHEET TEST DRIVER

int main(int argc, char **argv)
{

Spreadsheet s1(“Sheet1”, 10, 10);

// Initialize the spreadsheet.
for (int i=0; i<s1.NumRows(); ++i)

for (int j=0; j<s1.NumColumns();
++j)

{
s1[i][j] = “*”;
s1[i][j].setFormat(“%6s”);

}

// Set some values.
s1[5][4] = “Hello”; � 5
s1[0][0] = “Begin”;

// Display it so that the user can see
it.
s1.Print();

// Get a slice of the spreadsheet.
Spreadsheet s2 = s1(0,0,3,3);
s2.setName(“Sheet 2”);
s2.Print();

// Change a column, so we know that it
works.

s2[2][2] = “!”;
s2.Print();

// Now, clear out the original sheet and
display it.

s1.Clear();
s1.Print();

}

When the program is run, if you have done every-
thing properly, you should see the output from
Listing 39-5 in the shell window.

LISTING 39-5: THE OUTPUT FROM THE SPREADSHEET TEST DRIVER APPLICATION

Sheet: Sheet1
Begin * * * * * * * * *

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * Hello * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

(continued)

47_57986x ch39.qxd 1/26/05 4:24 PM Page 221

Technique 39: Implementing a Spreadsheet222

see, the data values that we set in our test driver
show up where they’re supposed to.

You can’t truly implement a two-dimensional
array in C++, since there is no operator [][].
However, if you look at the code, you can see
a way to implement an operator that returns
another class that implements the same opera-
tor. The spreadsheet class implements an
operator [] (shown by the � 4 in Listing 39-3)
which returns the row requested by the index.
The row class then implements the opera-
tor[] (shown by the � 3 line in Listing 39-2)
to return the column requested by the index.
That’s why [row][col] = value works.

The output shown indicates the state of the spread-
sheet at the time it is displayed. An asterisk (*) is
shown in any cell that contains no data, while cells
that do contain data are shown with the data value.
For example, you will see the string Hello in the cen-
ter of Sheet1, which was placed there at � 5 in the
code listing for the main driver. Likewise, the top left
corner of Sheet1 contains the string Begin, which
was placed there at the following line in the driver
program.

We could easily use this spreadsheet class to store
data, display it for the user, or manipulate data that
is contained in a row/column definition.

The asterisks are simply placeholders to show
where the actual column data should be. As you can

LISTING 39-5 (continued)
Sheet: Sheet 2
Begin * * *

* * * *
* * * *
* * * *

Sheet: Sheet 2
Begin * * *

* * * *
* * ! *
* * * *

Sheet: Sheet1

47_57986x ch39.qxd 1/26/05 4:24 PM Page 222

Part VI

Input and Output

48_57986X pt06.qxd 1/26/05 4:24 PM Page 223

48_57986X pt06.qxd 1/26/05 4:24 PM Page 224

40
Using the Standard
Streams to Format
Data

If you’ve been programming in C++ for a long time, you’re probably
used to outputting data with the printf, fprintf, and sprintf func-
tions that date back to the C programming days. It is now time to take

the plunge into using the stream components of the standard C++ library,
because these components will save you lots of time and heartache. The
stream components support input, output, and formatting for data in C++
applications. Like the printf, fprintf, and sprintf functions, streams
exist to write to the console, to files, and to format data into strings.
Unlike the aforementioned functions, streams are type-safe and extensi-
ble, which saves you time by reducing the amount of code you need to
write and the amount of debugging you need to do to find problems in
output.

The stream components save time by being type-safe, well written,
and comprehensive. If you use streams instead of more specific out-
put functions, you will find that your code is smaller, easier to under-
stand, and more portable.

Although most programmers are aware that you can input and output
data through the stream classes, most are unaware that the stream
classes have a wealth of formatting functionality built into them.

In this technique, I show you how to work with the formatting functional-
ity of the stream classes, how to extract data from a stream, and how to
output columns and change floating point precision for data.

Working with Streams
In order to understand just how a stream component can be used in your
application to save time and effort, let’s take a look at a simple example
of a stream being used in an application. In this case, we will create some
data in our program, and then output that data to the user. In addition,
we will examine how to extend the stream class by creating our own out-
put control.

Technique

Save Time By
� Understanding stream

classes

� Formatting data with
stream classes

� Understanding your
output

49_57986x ch40.qxd 1/26/05 4:23 PM Page 225

Technique 40: Using the Standard Streams to Format Data226

vector<A>::iterator iter;
for (iter = dVector.begin(); iter !=
dVector.end(); ++iter)

{
out.width(8);
out << (*iter);

}
out << endl;
return out;

}

int main(int argc, char **argv)
{

double dArray[20];
int nCount = 0;

// See whether they gave us any on the
command line.

if (argc > 2)
{

for (int i=1; i<argc; ++i)
{

stringstream str;
double number;

str.setf(ios::fixed,
std::ios_base::floatfield);
str.width(0);
str.precision(4);
str << argv[i];
str >> number;
dArray[nCount] = number;
nCount++;

}
}
else
{

// Prompt the user for input.
bool bDone = false;
while (!bDone)
{

char szBuffer[80];
cout << “Enter a number (or a
dash (*) to quit): “;

memset(szBuffer, 0, 80);
cin >> szBuffer;
if (szBuffer[0] == ‘*’)

bDone = true;
else
{

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch40.cpp,
although you can use whatever you choose.

2. Type the code from Listing 40-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 40-1: USING STREAMS

#include <stdio.h>
#include <iostream>
#include <sstream>
#include <vector>

using namespace std;

void PrintDoubleRow(int numElements, double
*dArray, ostream& out)

{
// First, set up some elements of the

ostream.

// Set the output floating point preci-
sion to 2 decimal places.

out.precision(4);
// Only show the decimal point if it is

not a whole number.
out << showpoint;

for (int i=0; i<numElements; ++i)
{

// Set each column to be 8 spaces.
out.width(8);
// Output the float.
out << dArray[i];

}

out << endl;
}

template < class A > � 4
ostream& operator<<(ostream& out,

vector< A >& dVector)
{

49_57986x ch40.qxd 1/26/05 4:23 PM Page 226

Working with Streams 227

stringstream str;
double number;

str.setf(ios::fixed,
std::ios_base::float-
field);

str.width(0);
str.precision(4);
str << szBuffer;
str >> number;
dArray[nCount] = number;
nCount++;

}
}

}
PrintDoubleRow(nCount, dArray,
cout); � 1

// Now display it as a vector.
vector< double > dVector; � 2
for (int i=0; i<nCount; ++i)

dVector.insert(dVector.end(),
dArray[i]);

cout << “Vector: “ << endl;
cout << dVector << endl; � 3

}

Let’s take a look at what is going on here. First,
we create a standard array of double values and
put data received from the user into the array.
That array is then printed out using the standard
stream class (see � 1). Next, we are creating an
“array” using the Standard Template Library
vector class (see � 2). We then print that vec-
tor out using a stream shown at � 3. But wait,
how does this work? Vectors are not among the
standard supported types for streams. If you
look at the templated function marked with � 4,
you will see that we have created an overloaded
operator that takes a vector object and outputs
it to a stream. The compiler will match up our
overloaded operator along with the streaming of
the vector, and make sure that it all works prop-
erly. Note also the use of the width and precision
methods of the stream class to set the output
width of each column in the vector properly, and
only output the right number of decimal points.

3. Save the source-code file in the code editor and
close the editor application.

4. Compile the application in your favorite com-
piler, on your favorite operating system.

If you have done everything right, when you run the
application with the following command-line input:

1 2 3 4

you should see the following output from the appli-
cation on the console window:

$./a.exe 1 2 3 4
1.000 2.000 3.000 4.000

Vector:
1.000 2.000 3.000 4.000

As you can see, the output is the same for both the
array and vector classes. We can also see that the
width of the columns is fixed at eight characters, as
we specified in the width method of the stream.
Finally, note that the number of decimal points is
fixed at three for each entry, once again as specified
in the precision method.

Alternatively, you can enter the data at the prompt.
To do so, run the program with no input arguments,
and then enter the values when prompted from the
user. In this case, you should see the following out-
put from the program in the console window:

$./a.exe
Enter a number (or a dash (*) to quit): 1
Enter a number (or a dash (*) to quit): 2
Enter a number (or a dash (*) to quit): 3
Enter a number (or a dash (*) to quit): 4
Enter a number (or a dash (*) to quit): *

1.000 2.000 3.000 4.000
Vector:

1.000 2.000 3.000 4.000

The output from the program is the same, the only
difference is how the data got into the system. Note
again that the width of the columns is still fixed
and the number of decimal points is still what we
specified.

49_57986x ch40.qxd 1/26/05 4:23 PM Page 227

41Technique

Reading In and
Processing Files

Processing files in C++ is really the same as processing any other
sort of input or output. Unlike similar functions in C, however, the
file-processing functions in C++ allow you to use the same code for

processing data — from either the keyboard or a file. This generality
makes it considerably easier to write code that is easy to test, run, and
maintain. And, of course, when code is faster to write and easier to test,
it saves you time in the project.

If you use stream classes instead of C-style file functions to access
data, you will find the code quicker to write and test — and errors
easier to trap. See Technique 40 for more on using stream classes.

This technique shows you how to use the file-stream classes to read in —
and process — a simple preferences file. I also tell you how this method
compares to the old style of doing things, so that you can easily drop in
this code wherever you are using the older C-style functions.

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch41.cpp, although you can use
whatever you choose.

2. Type the code from Listing 41-1 into your file.

Better yet, copy the code from the source file on this book’s compan-
ion Web site.

LISTING 41-1: THE FILE-READING CLASS

#include <stdio.h>
#include <string.h>

#include <fstream>
#include <ios>
#include <iostream>
#include <string>
#include <vector>

Save Time By
� Reading in files with

stream classes

� Processing files with
stream classes

� Creating a test file

� Interpreting your output

50_57986x ch41.qxd 1/26/05 4:23 PM Page 228

Reading In and Processing Files 229

using namespace std;
// The old fashioned way

class Entry
{
private:

char *strName;
char *strValue;

void Init()
{

strName = NULL;
strValue = NULL;

}
public:

Entry()
{

Init();
}
Entry(const char *name, const char *value)
{

Init();
setName(name);
setValue (value);

}
Entry(const Entry& aCopy)
{

Init();
setName(aCopy.strName);
setValue(aCopy.strValue);

}
~Entry()
{

if (strName)
delete [] strName;

if (strValue)
delete [] strValue;

}
Entry operator=(const Entry& aCopy)
{

setName(aCopy.strName);
setValue(aCopy.strValue);
return *this;

}
void setName(const char *name)
{

if (strName)
delete [] strName;

strName = new char[strlen(name)+1];
strcpy(strName, name);

}
void setValue(const char *value)

(continued)

50_57986x ch41.qxd 1/26/05 4:23 PM Page 229

Technique 41: Reading In and Processing Files230

szValue[strlen(szValue)-1]
= 0;

Entry e(szName, szValue);
if (nPos < nMaxEntries)
{

array[nPos] = e;
nPos ++;

}
}

}

*numFound = nPos;

fclose(fp);

return true;
}

The code in Listing 41-1 does things the old-
fashioned way (C-style), using file-based func-
tions. Trying it with streams creates reusable
operators along the way. That’s next.

3. Now, append the code in Listing 41-2 to the
source file using your favorite source-code
editor.

LISTING 41-2: USING STREAMS FOR FILE READING

// Various operators used by the
application.

ifstream& operator<<(string& sIn, ifstream&
in) � 3

{
while (!in.eof())
{

char c;
in.get(c);
if (in.fail())

return in;
sIn += c;
if (c == ‘\n’)

return in;
}

return in;
}

LISTING 41-1 (continued)
{

if (strValue)
delete [] strValue;

strValue = new char[strlen
(value)+1];

strcpy(strValue, value);
}

const char *getName(void)
{

return strName;
}
const char *getValue(void)
{

return strValue;
}

};

bool OpenFileAndReadOld(const char
strFileName, Entry array, int
nMaxEntries, int *numFound)

{
FILE *fp = fopen (strFileName, “r”);
if (fp == NULL)

return false;
int nPos = 0;
while (!feof(fp))
{

char szBuffer[257]; � 1
memset(szBuffer, 0, 256);
if (fgets(szBuffer, 256, fp) ==

NULL)
break;

// Look for the position of the ‘=’
sign.

char *str = strstr(szBuffer, “=”);
if (str)
{

// First, get the name.
char szName[256];
memset(szName, 0, 256);
strncpy(szName, szBuffer,
strlen(szBuffer)-strlen(str));

// Now, get the value.
char szValue[256];
memset(szValue, 0, 256);
strncpy(szValue, str+1,
strlen(str)-1);

if (szValue[strlen(szValue)-1]
== ‘\n’)

50_57986x ch41.qxd 1/26/05 4:23 PM Page 230

Reading In and Processing Files 231

string operator-(string& sIn,
char cIn) � 4

{
string sOut = “”;
for (int i=0; i<sIn.length(); ++i)

if (sIn[i] != cIn)
sOut += sIn[i];

return sOut;
}

bool OpenFileAndReadNew(const char
*szFileName, std::vector< Entry >&
entries)

{
ifstream in;
in.open(szFileName);

if (in.fail())
{

printf(“Unable to open file %s\n”,
szFileName);

return false;
}

// Process the file
while (!in.eof())
{

// Get an input line
string sLine = “”;
sLine << in; � 2

// Skip comments
if (sLine.length() && sLine[0]

== ‘#’) continue;

// Remove all carriage returns and
line feeds

sLine = sLine - ‘\n’;
sLine = sLine - ‘\r’;

// Now, extract the pieces
int ePos = sLine.find_first_of

(‘=’, 0);
if (ePos != string::npos)
{

// Copy the name
string name =
sLine.substr(0,ePos);

string value =
sLine.substr(ePos+1);

Entry e(name.c_str(),
value.c_str());

entries.insert(entries.end(),
e);

}
}

in.close();
return true;

}

As you can see, the code is much easier to
understand and maintain in the stream version.
Readability is important in coding because it
takes less time for the maintenance programmer
to read and understand your objective. The
stream versions of the code form their own
description of what we are trying to do, improv-
ing on the confusing C-style functions. More
importantly, if we want to test the functions from
the keyboard, it is trivial to pass in the standard
input object instead of a file. The code can cope
with both types of input.

To understand just how simple the stream ver-
sion is compared to the older version, take a
look at two similar segments of the code. The
line marked � 1 in the original listing shows
how we read a line in from the input source. The
corresponding line in the updated stream ver-
sion is marked � 2. Note that the stream version
is not only smaller and easier to read, but also it
handles problems the original code did not. For
example, the string class can handle an almost
infinite number of characters, whereas the buffer
used in the original code is fixed in size.
Likewise, the stream version automatically
enters the number of characters into the string
class, which makes checking for blank lines sim-
ple. Finally, checking for substrings in stream
classes is considerably easier than using the
clunky old strstr function that required you
to check for NULL returns and end of string
comparisons.

4. Save the source code as a file in the code
editor.

50_57986x ch41.qxd 1/26/05 4:23 PM Page 231

Technique 41: Reading In and Processing Files232

printf(“Old Way:\n”);
if (OpenFileAndReadOld(argv[1],
entries1, 50, &num) == false)

{
printf(“Error processing file %s\n”,
argv[1]);

exit(1);
}
for (int i=0; i<num; ++i)
{

cout << “Entry “ << i << endl;
cout << “Name: “ <<
entries1[i].getName() << endl;
cout << “Value: “ <<
entries1[i].getValue() << endl;

}

printf(“New Way:\n”);
std::vector< Entry > entries2;
if (OpenFileAndReadNew(argv[1],
entries2) == false)

{
printf(“Error processing file %s\n”,
argv[1]);
exit(1);

}
std::vector< Entry >::iterator iter;
int nPos = 0;
for (iter = entries2.begin();
iter != entries2.end(); ++iter)
{

cout << “Entry “ << nPos << endl;
cout << “Name: “ <<
(*iter).getName() << endl;
cout << “Value: “ <<
(*iter).getValue() << endl;
nPos ++;

}
}

This simple program just allows us to read in a
test file in two different ways, using both the old-
style C functions and the new-style stream func-
tions. We then print out the values to compare
them. Note that the old-style function requires
that we use a fixed-size array, while the stream
version uses the newer vector class to allow for
an almost-infinite number of entries.

3. Save the source-code file and close the source
editor application.

Notice the operators that are defined in this
block of code (shown at the lines marked � 3

and � 4). These provide a standard way to
retrieve a single line of a file into a string
object — and a fast, efficient way to remove a
character from a string. The nicest thing about
C++ operators is that they can be defined
externally to the class they manipulate, so they
don’t require that the original classes be modi-
fied. This is a good way to extend functionality
without derivation or modification.

Testing the File-Reading Code
After you have created the file-reading functionality,
you should create a test driver that not only ensures
that your code is correct, but also shows people
how to use your code.

The following steps show you how to create a
test driver that illustrates how the two methods
for inputting data (OpenAndReadFileOld and
OpenAndReadFileNew) are used — and what the
output of each will be.

1. In the code editor of your choice, reopen
the existing file to hold the code for your test
program.

In this example, I named the test program
ch 41.cpp.

2. Append the code from Listing 41-3 into your
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 41-3: THE FILE-READ TEST DRIVER

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage ch5_3 filename\n”);
exit(1);

}

Entry entries1[50];
int num = 0;

50_57986x ch41.qxd 1/26/05 4:23 PM Page 232

Creating the Test File 233

Creating the Test File
In order to use the test driver, we need some input
data for the driver to process. Let’s create a simple
test file that contains data that we can read in to
compare the old-and new-style functions of input
and output.

1. In the code editor of your choice, create a text
file for testing the application.

In this case, I used the name test.txt for the
test file.

2. Type the following text into the test file:

Config1=A config string
Config2=100
Config3=Another line

This is a comment
Config4=A.$5

3. Save the test file and close the code-editor
application.

4. Compile and run the program with your
favorite compiler and operating system.

If you have done everything properly, you should
see the following output from the program on your
console window:

$./a.exe test.txt
Old Way: � 5
Entry 0
Name: Config1
Value: A config string
Entry 1
Name: Config2

Value: 100
Entry 2
Name: Config3
Value: Another line
Entry 3
Name: Config4
Value: A.$5
New Way: � 6
Entry 0
Name: Config1
Value: A config string
Entry 1
Name: Config2
Value: 100
Entry 2
Name: Config3
Value: Another line
Entry 3
Name: Config4
Value: A.$5

As you can see by the output of our program, both
the old and new ways of processing the data work
the same. All of the entries shown under the Old Way
output line were read in using the old-style C func-
tions, while the output shown under the New Way out-
put line were read in using the new-style streams. By
using this simple program, therefore, we can easily
convert old-style applications to the new-style func-
tions quickly and easily, saving time and effort.

No functional difference exists between the old-style
C functions and the new-style C++ streams. To see
this, compare the lines shown at � 5 and at � 6.
Leaving out the additional operators that can be
reused anywhere, however, makes the new-style
code that handles streams considerably smaller and
easier to read; by comparison, the old-style code is
cumbersome and confusing.

50_57986x ch41.qxd 1/26/05 4:23 PM Page 233

42
Save Time By
� Understanding standard

delimited files

� Creating generic classes
for reading or loading
standard delimited files
into your application

� Testing your output

Technique

How to Read
Delimited Files

There are a lot of ways to store data in file systems. One of the most
popular is a standard delimited file, in which the individual fields of
the records are separated by known delimiters. There are numer-

ous examples of this, from comma separated values (CSV) to XML files
to fixed-size records that include null bytes. The capability to load delim-
ited data into your application is very valuable — and it makes your
application considerably easier to use.

Extracting the input and output of data formats into separate classes
will not only make the classes more reusable across applications, it
will also save you lots of time when trying to load known formats into
new applications.

This technique builds some generic classes that aid loading and parsing
delimited files. I have to make a few assumptions here, although each of
these assumptions is fairly easy to adapt if you need to change the logic.
The assumptions are as follows:

� The files contain only delimiters that separate fields. That is, no fields
in the file contain delimiters.

� The records exist one per line. This is really just a convenience; it
would be easy enough to check for an end-of-record signature other
than the end-of-line character.

� The fields can vary in size.

Reading Delimited Files
Because the need to read delimited files is such a common problem in
the software development world, it makes sense to build a generic
method for reading them. By doing this, we save a lot of time because we
are able to move the code to read the files from project to project. For
example, you can create a generic class that can be used to read any sort
of delimited files and test it with a variety of input.

51_57986x ch42.qxd 1/26/05 4:22 PM Page 234

Reading Delimited Files 235

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch42.cpp,
although you can use whatever you choose.

2. Type the code from Listing 42-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 42-1: READING A DELIMITED FILE

#include <stdio.h>
#include <string>
#include <vector>
#include <iostream>
#include <fstream>

// Avoid having to type out std:: for all
// STL classes.
using namespace std;

// This class manages a list of delimiters.
class Delimiters � 1
{
private:

// Array of possible delimiters. Use a
vector,

// since the characters could include
NULL byte

// or other characters that string can’t
handle.

vector< char > _delimiters;

protected:
virtual void Copy (const Delimiters&

aCopy)
{

vector<char>::const_iterator iter;
for (iter =
aCopy._delimiters.begin(); iter !=
aCopy._delimiters.end(); ++iter)

_delimiters.insert(_delimiters.
end(), (*iter));

}
public:

Delimiters(void)
{
}
Delimiters(const char *delimiterList)
{

for (int i=0;
i<strlen(delimiterList); ++i)

{
_delimiters.insert(_delimiters.

end(), delimiterList[i]);
}

}
Delimiters(const Delimiters& aCopy)
{

Copy (aCopy);
}
Delimiters operator=(const Delimiters&
aCopy)

{
Copy(aCopy);

}
virtual ~Delimiters(void)
{
}

// Clear out the entire list.
virtual void Clear()
{

_delimiters.erase(_delimiters.
begin(), _delimiters.end());

}
// Add a delimiter to the list.
virtual void Add(char c)
{

_delimiters.insert(_delimiters.
end(), c);

}
// See whether a given character is in

the list.
virtual bool Contains(char c)
{

vector<char>::const_iterator iter;
for (iter = _delimiters.begin();
iter != _delimiters.end(); ++iter)

if (c == (*iter))
return true;

return false;
}
// Remove a given delimiter.
virtual bool Remove(char c)
{

vector<char>::iterator iter;
for (iter = _delimiters.begin();
iter != _delimiters.end(); ++iter)

if (c == (*iter))
{

(continued)

51_57986x ch42.qxd 1/26/05 4:22 PM Page 235

Technique 42: How to Read Delimited Files236

LISTING 42-1 (continued)
_delimiters.erase(iter);
return true;

}
return false;

}

};

// This class manages the data for a given row of a
// delimited file.
class DelimitedRow � 2
{
private:

vector< string > _columns;
protected:

virtual void Copy(const DelimitedRow& aCopy)
{

vector<string>::const_iterator iter;
for (iter = aCopy._columns.begin(); iter != aCopy._columns.end(); ++iter)

_columns.insert(_columns.end(), (*iter));
}

public:
DelimitedRow(void)
{
}
DelimitedRow(const char *col)
{

Add(col);
}
virtual ~DelimitedRow()
{
}
virtual void Add(const char *col)
{

_columns.insert(_columns.end(), col);
}
int NumColumns(void)
{

return _columns.size();
}
string getColumn(int index)
{

if (index < 0 || index > NumColumns()-1)
return string(“”);

return _columns[index];
}

};

51_57986x ch42.qxd 1/26/05 4:22 PM Page 236

Reading Delimited Files 237

// This class will handle a single delimited file.
class DelimitedFileParser � 3
{
private:

string _fileName;
Delimiters _delim;
ifstream _in;
vector<DelimitedRow> _rows;

protected:
virtual void Copy(const DelimitedFileParser& aCopy)
{

_fileName = aCopy._fileName;
_delim = aCopy._delim;

vector<DelimitedRow>::const_iterator iter;
for (iter = aCopy._rows.begin(); iter != aCopy._rows.end(); ++iter)

_rows.insert(_rows.end(), (*iter));
}
virtual void _ParseLine(string sIn)
{

// Given a delimiter list, and an input string, parse through
// the string.
DelimitedRow row;
string sCol = “”;
for (int i=0; i<sIn.length(); ++i)
{

if (_delim.Contains(sIn[i]))
{

row.Add(sCol.c_str());
sCol = “”;

}
else

sCol += sIn[i];
}
row.Add(sCol.c_str());
_rows.insert(_rows.end(), row);

}

public:
DelimitedFileParser(void)
{
}
DelimitedFileParser(const char *fileName, const char *delimiters)

: _delim(delimiters)
{

Open(fileName);
}
DelimitedFileParser(const DelimitedFileParser& aCopy)
{

Copy (aCopy);
}

(continued)

51_57986x ch42.qxd 1/26/05 4:22 PM Page 237

Technique 42: How to Read Delimited Files238

NumRows())
throw “getRow: index out of
range”;

return _rows[index];
}

};

This code implements a generic parser and con-
tainer of delimited files. By specifying the delim-
iter between fields, the end-of-record indicator,
and the source filename, you can then use this
class to read in and retrieve all of the individual
fields in the file.

As you can see from the code, the entire applica-
tion is made up of three classes, each of which
manages a specific part of the process. The
process has three parts: file management (shown
at � 3), data storage (shown at � 2), and delim-
iter management (shown at � 1).

3. Save the source file in the source-code editor
and close the editor application.

Always separate the individual components of
a process into separate classes. That way you
can easily modify one piece of the process
without affecting the rest of the system. More
importantly, you can reuse smaller compo-
nents in other applications without having to
pull in the entire system.

Testing the Code
After you have created the functionality, you should
create a test driver that not only ensures that your
code is correct, but also shows people how to use
your code.

The following steps show you how to create a test
driver that illustrates how the file parser is used —
and what the output will be.

1. In the code editor of your choice, reopen
the existing file to hold the code for your test
program.

LISTING 42-1 (continued)
virtual ~DelimitedFileParser()
{

_in.close();
}
virtual bool Open(const char
*fileName)

{
_fileName = fileName;
_in.open(_fileName.c_str());
return !_in.fail();

}
virtual bool Parse()
{

// Make sure the file is open.
if (_in.fail())
{

return false;
}

while (!_in.eof())
{

string sIn = “”;

while (!_in.eof())
{

// Get an input line.
char c;
_in.get(c);
if (_in.fail())

break;
if (c != ‘\r’ && c !=
‘\n’)

sIn += c;
if (c == ‘\n’)

break;
}
// Parse it.
if (sIn.length())

_ParseLine(sIn);

}

return true;
}
int NumRows()
{

return _rows.size();
}
DelimitedRow getRow(int index)
{

if (index < 0 || index >=

51_57986x ch42.qxd 1/26/05 4:22 PM Page 238

Testing the Code 239

In this example, I named the test program
ch42.cpp.

2. Append the code from Listing 42-2 into your
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 42-2: THE DELIMITER TEST DRIVER

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage ch5_2
<delimitedFile>\n”);

exit(1);
}

DelimitedFileParser fileParser(argv[1],
“:”);

fileParser.Parse();

printf(“%d Rows found\n”,
fileParser.NumRows());

for (int i=0; i<fileParser.NumRows();
++i)

{
DelimitedRow row =
fileParser.getRow(i);

printf(“Row: %d\n”, i);
for (int j=0; j<row.NumColumns();
++j)

printf(“Column %d = [%s]\n”, j,
row.getColumn(j).c_str());

}

}

3. Save the source-code file and close the code-
editor application.

4. Create a test file for testing the application in
the text editor of your choice.

This file is used for input to the application and
contains the delimited records.

In this case, I used the name
test_delimited.txt for the test file.

5. Type the following text into the test file:

Line 1:Column 2:This is a
test:100:200:300

Line 2:Column 2:This is another
test:200:300:400

6. Save the test file and close the code-editor
application.

7. Compile and run the program with your
favorite compiler and operating system.

If you have done everything properly, you should
see the following output from the program on your
console window:

$./a.exe test_delimited.txt
2 Rows found
Row: 0
Column 0 = [Line 1]
Column 1 = [Column 2]
Column 2 = [This is a test]
Column 3 = [100]
Column 4 = [200]
Column 5 = [300]
Row: 1
Column 0 = [Line 2]
Column 1 = [Column 2]
Column 2 = [This is another test]
Column 3 = [200]
Column 4 = [300]
Column 5 = [400]

As you can see from the output, the parser properly
determines that there are two records in the test file
that we gave it for input. Each of the input lines con-
tains five columns of data, separated by a colon (:)
character. By telling the parser that the delimiter is a
colon, it then breaks each line into individual
columns and returns that data to the user as a
DelimitedRow object in a vector of such objects.

This class can now be moved from project to proj-
ect, in any situation where we need to read in a
delimited file and use the individual components of
each record (or line) in the file. This saves us time in
implementing the functionality over and over, and
saves us effort because the code will already be
debugged.

51_57986x ch42.qxd 1/26/05 4:22 PM Page 239

43
Save Time By
� Comparing XML code to

C++ code

� Using XML to store and
restore data to and from
C++ classes

� Creating an XMLWriter
class

� Testing your XMLWriter
class

� Interpreting your output

Technique

Writing Your
Objects as XML

The current buzzword of the programming world is XML and XML
compatibility. XML, which stands for eXtended Markup Language,
is really just a variant of the SGML display language (from which

HTML was also derived) that has been optimized for data storage instead
of for display.

It’s no surprise that the capability to output data as XML code has
become very important in the programming world. Because the structure
of XML is so much like the structure of C++ — in terms of hierarchical
display and classes and attributes — you can easily use XML to store and
restore data to and from C++ classes.

The general format of an XML structure is as follows:

<xml>
<structure-name>

<element-name>
value

</element-name>
</structure-name>

</xml>

As you can see, it looks very much like a C++ class structure with a struc-
ture name as the name of the class and an element name as the name of
each piece of member data of that class. Here’s an example:

Class Foo
{

int x; // We can think of the semicolon as </int>
// And so forth

};

In the above class definition, we have an object name (class Foo), an ele-
ment (int), and a value for that element (x). This maps quite directly into
the XML general schema. The initial definition was a true XML object,
whereas this definition is a true C++ class. Yet you can see how one maps
to the other. We could write the above class as

52_57986x ch43.qxd 1/26/05 4:20 PM Page 240

Creating the XML Writer 241

<Foo>
<int> x </int>

</Foo>

and, as you can see, the two map quite well. By stor-
ing data in XML format, we make it possible to read
the data not only into C++ applications, but also into
any other applications that understand the XML for-
mat, such as databases. Storing data in a known,
standard format saves time by eliminating the need
to write translators for your data formats, and by
allowing you to use existing applications with your
data. In this example, we will look at how to write
out a C++ class in XML format, and then how to read
back in that XML data to a C++ class.

Creating the XML Writer
The first step in the process is to add the ability to
write out the data for our class in XML format. We
will call the element that does this processing an
XMLWriter object. Let’s look at a generic way to cre-
ate an XMLWriter that will save us time by allowing
us to apply this functionality to all objects in our
system.

1. In the code editor of your choice, create a new
file to hold the code for the definition of the
class.

In this example, the file is named ch43.cpp,
although you can use whatever you choose. This
file will contain the class definition for the
needed automation object.

2. Type the code from Listing 43-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 43-1: THE XML WRITER CLASS

#include <stdio.h>
#include <string>
#include <vector>
#include <fstream>

using namespace std;

// Class to manage the storage of the XML
data.

class XMLElement
{
private:

string _name;
string _value;
vector< XMLElement > _subElements;

protected:
virtual void Init()
{

_name = “”;
_value = “”;
_subElements.erase(

_subElements.begin(), _subElements.end()
);
}
virtual void Copy(const XMLElement&
aCopy)

{
setName(aCopy.getName().c_str());
setValue (aCopy.getValue().c_str()

);
vector< XMLElement >::const_
iterator iter;

for (iter =
aCopy._subElements.begin();

iter !=
aCopy._subElements.end();

++iter)
_subElements.insert

(_subElements.end(), (*iter));
}

public:
XMLElement(void)
{

Init();
}
XMLElement(const char *name, const
char *value)

{
setName(name);
setValue(value);

}
XMLElement(const char *name, int
value)

{
(continued)

52_57986x ch43.qxd 1/26/05 4:20 PM Page 241

Technique 43: Writing Your Objects as XML242

// Sub-element maintenance.
void addSubElement(const XMLElement&
anElement)

{
_subElements.insert(_subElements.

end(), anElement);
}
int numSubElements(void)
{

return _subElements.size();
}
XMLElement& getSubElement(int index)
{

if (index < 0 || index >=
numSubElements())

throw “getSubElement: index out
of range”;

return _subElements[index];
}

};

// Class to manage the output of XML data.
class XMLWriter
{
private:

ofstream _out;
public:

XMLWriter(void)
{
}
XMLWriter(const char *fileName)
{

_out.open(fileName);
if (_out.fail() == false)
{

_out << “<xml>” << endl;
}

}
XMLWriter(const XMLWriter& aCopy)
{
}
virtual ~XMLWriter()
{

if (_out.fail() == false)
{

_out << “</xml>” << endl;
}
_out.close();

}

LISTING 43-1 (continued)
setName(name);
char szBuffer[10];
sprintf(szBuffer, “%d”, value);
setValue(szBuffer);

}
XMLElement(const char *name, double
value)

{
setName(name);
char szBuffer[10];
sprintf(szBuffer, “%lf”, value);
setValue(szBuffer);

}

XMLElement(const XMLElement& aCopy)
{

Copy(aCopy);
}
virtual ~XMLElement()
{
}
XMLElement operator=(const XMLElement&
aCopy)

{
Copy(aCopy);
return *this;

}

// Accessors
void setName(const char *name)
{

_name = name;
}
void setValue(const char *value)
{

_value = value;
}
string getName(void) const
{

return _name;
}
string getValue(void) const
{

return _value;
}

52_57986x ch43.qxd 1/26/05 4:20 PM Page 242

Testing the XML Writer 243

void setFileName(const char *fileName)
{

_out.open(fileName);
if (_out.fail() == false)
{

_out << “<xml>” << endl;
}

}
virtual bool Write(XMLElement& aRoot)
{

if (_out.fail())
return false;

// First, process the element.
_out << “<” <<

aRoot.getName().c_str() << “>” << endl;

// If there is a value, output it.
if (aRoot.getValue().length()
!= 0)

_out << aRoot.getValue().c_str()
<< endl;

// Now, process all sub-elements.
for (int i=0;

i<aRoot.numSubElements(); ++i)
Write(aRoot.getSubElement(i));

// Finally, close the element.
_out << “</” <<

aRoot.getName().c_str() << “>” << endl;

}
};

This listing illustrates the basics of our XML
writing functionality. Each element of an XML
object will be stored in an XMLElement object.
The writer (XMLWriter class) then processes
each of these elements to output them in valid
XML format.

3. Save the source-code file and close your editor
application.

4. Compile the application with your favorite com-
piler, on your favorite operating system, to ver-
ify that you have made no errors.

Testing the XML Writer
After you create the class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates various types of data ele-
ments, and will illustrate how the class is intended
to be used.

1. In the code editor of your choice, reopen the
source file for your test program.

In this example, I named the test program
ch43.cpp.

2. Type the code from Listing 43-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 43-2: THE XMLWRITER TEST CODE

class XmlTest
{
private:

int iVal;
string sVal;
double dVal;

public:
XmlTest()
{

iVal = 100;
sVal = “Test”;
dVal = 123.45;

}
~XmlTest()
{
}
XMLElement getXML(void)
{

XMLElement e(“XmlTest”, “”);
e.addSubElement(
XMLElement(“iVal”, iVal));

e.addSubElement(
XMLElement(“sVal”, sVal.
c_str()));

e.addSubElement(
XMLElement(“dVal”, dVal));

return e;
(continued)

52_57986x ch43.qxd 1/26/05 4:20 PM Page 243

Technique 43: Writing Your Objects as XML244

void TestWriter2(void)
{

XmlSuperClass xsc;
XMLWriter writer(“test2.xml”);
XMLElement e = xsc.getXML();
writer.Write(e);

}

int main()
{

TestWriter1();
TestWriter2();
return 0;

}

3. Save the source-code file and close the editor
application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

If you have done everything properly, running the
application results in the creation of two files,
test.xml and test2.xml. If you look at the contents
of these files, you should see the following:

test.xml:
$ cat test.xml
<xml>
<Root>
<Sub-Element1>
123
<Sub-Sub-Element1>
345
</Sub-Sub-Element1>
</Sub-Element1>
<Sub-Element2>
234
<Sub-Sub-Element2>
456
</Sub-Sub-Element2>
</Sub-Element2>
</Root>
</xml>

LISTING 43-2 (continued)
}

};

class XmlSuperClass � 1
{

XmlTest xt; � 2
int count;

public:
XmlSuperClass()
{

count = 1;
}
~XmlSuperClass()
{
}
XMLElement getXML()
{

// First, do ourselves
XMLElement e(“XmlSuperClass”, “”);
e.addSubElement(
XMLElement(“count”, count));

// Now the sub-object
e.addSubElement(xt.getXML());

return e;
}

};
void TestWriter1(void)
{

XMLElement ele1(“Sub-Element1”, “123”);
XMLElement ele2(“Sub-Element2”, “234”);
XMLElement subele1(“Sub-Sub-Element1”,
“345”);
XMLElement subele2(“Sub-Sub-Element2”,
“456”);
XMLElement root(“Root”, “”);

ele1.addSubElement(subele1);
ele2.addSubElement(subele2);
root.addSubElement(ele1);
root.addSubElement(ele2);

XMLWriter writer(“test.xml”);
writer.Write(root);

}

52_57986x ch43.qxd 1/26/05 4:20 PM Page 244

Testing the XML Writer 245

test2.xml:
$ cat test2.xml
<xml>
<XmlSuperClass> � 3
<count>
1
</count>
<XmlTest> � 4
<iVal> � 5
100
</iVal>
<sVal>
Test
</sVal>
<dVal>
123.450000
</dVal>
</XmlTest>
</XmlSuperClass>
</xml>

If we look at the class hierarchy shown in the appli-
cation source code, we see that the main class,
XmlSuperClass (shown at � 1), contains both stan-
dard data elements (count, an integer) and embed-
ded objects (XmlTest, shown at � 2). In the XML
output, we see these elements at the lines marked

� 3 and � 4. Note how the embedded class con-
tains its own elements (shown at � 5 in the output
list) which are children of both the XmlTest and
XmlSuperClass classes.

The code shows that both cases work fine — the
simple case of using the XMLElement and XMLWriter
classes, and the embedded case of outputting an
entire C++ class with an embedded C++ object.

52_57986x ch43.qxd 1/26/05 4:20 PM Page 245

44
Save Time By
� Stripping leading and

trailing spaces from input

� Returning the modified
string back to your
application

� Testing your code

Technique

Removing White
Space from Input

Although it might not seem like a big deal, dealing with white space
in input from either files or the console can be a major pain in the
neck for C++ programmers. After all, white space isn’t empty; it

has to be accounted for. When you want to store a user name in your
database, for example, do you really want to store any leading and trail-
ing spaces, tabs, or other non-printing characters? If you do so, the users
will then have to remember to type those spaces in again whenever they
log in to your application. While this might be a useful security condition,
it seems unlikely that anyone would remember to add either leading or
trailing spaces to a user name or password in an application.

For this reason, if you give your code the capability to strip off leading
and trailing spaces from a given string with no fuss — and return that
string to the calling application — you save a lot of time and hassle. This
technique looks at creating that exact capability. The following steps
show you how:

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch44.cpp, although you can use
whatever you choose.

2. Type the code from Listing 44-1 into your file.

Better yet, copy the code from the source file on this book’s com-
panion Web site.

LISTING 44-1: THE WHITE SPACE REMOVAL CODE

#include <string>
#include <ctype.h>

// Nobody wants to have to type std:: for
// all of the STL functions.
using namespace std;

53_57986x ch44.qxd 1/26/05 4:19 PM Page 246

Removing White Space from Input 247

string strip_leading(const string& sIn)
{

string sOut;

// Skip over all leading spaces.
unsigned int nPos = 0;
while (nPos < sIn.length())
{

if (!isspace(sIn[nPos]))
break;

nPos ++;
}

// Now we have the starting position of
// the “real” string. Copy to the end...
while (nPos < sIn.length())
{

sOut += sIn[nPos];
nPos ++;

}

// ...and give back the new string,
// without modifying the input string.
return sOut;

}

string strip_trailing(const string& sIn)
{

string sOut; � 1

// Skip over all trailing spaces.
int nPos = sIn.length()-1;
while (nPos >= 0)
{

if (!isspace(sIn[nPos]))
break;

nPos --;
}

// Now we have the ending position of
// the “real” string. Copy from the
// beginning to that position...
for (int i=0; i<=nPos; ++i)

sOut += sIn[i];

// ...and give back the new string,
// without modifying the input string.
return sOut;

}

int main(int argc, char **argv)
{

if (argc > 2)
{

printf(“Removing Leading Spaces\n”);
for (int i = 1; i < argc; ++i)
{

printf(“Input String: [%s]\n”,
argv[i]);

string s = argv[i];
s = strip_leading(s);
printf(“Result String: [%s]\n”,
s.c_str());

}
printf(“Removing Trailing
Spaces\n”);

for (int i = 1; i < argc; ++i)
{

printf(“Input String: [%s]\n”,
argv[i]);

string s = argv[i];
s = strip_trailing(s);
printf(“Result String: [%s]\n”,
s.c_str());

}
printf(“Removing both leading and
trailing\n”);

for (int i = 1; i < argc; ++i)
{

printf(“Input String: [%s]\n”,
argv[i]);

string s = argv[i];
s = strip_trailing(strip_
leading(s));

printf(“Result String: [%s]\n”,
s.c_str());

}

}
else
{

(continued)

53_57986x ch44.qxd 1/26/05 4:19 PM Page 247

Technique 44: Removing White Space from Input248

3. Save the source-code file and close the editor
application.

4. Compile the application with your favorite com-
piler on your favorite operating system.

If you have done everything properly, and you run
the program with the following command-line
options, you should see the following output in your
console window:

$./a “ this is a test “ “ hello “
“ goodbye”

Removing Leading Spaces
Input String: [this is a test] � 2
Result String: [this is a test] � 3
Input String: [hello]
Result String: [hello]
Input String: [goodbye]
Result String: [goodbye]
Removing Trailing Spaces
Input String: [this is a test]
Result String: [this is a test] � 4
Input String: [hello]
Result String: [hello]
Input String: [goodbye]
Result String: [goodbye]
Removing both leading and trailing
Input String: [this is a test]
Result String: [this is a test] � 5
Input String: [hello]
Result String: [hello]
Input String: [goodbye]
Result String: [goodbye]

In the output, we see that each string is input into
the system, then the various white space characters
in the front and back of the string are removed. In
each case, the string is output to the user to view
how it is modified. For example, if we look at the
input line at � 2, we see that it contains both lead-
ing and trailing spaces. When the strip_leading
function is applied, we get the result shown at � 3,
which is the same string with no leading spaces.
When the strip_trailing function is applied, we get
the result shown at � 4, which is the same string
with no trailing spaces. Finally, we apply both of the

LISTING 44-1 (continued)
bool bDone = false;
while (!bDone)
{

char szBuffer[80];
printf(“Enter string to fix: “);
gets(szBuffer);
printf(“Input string: [%s]\n”,
szBuffer);

// Strip the trailing carriage
return.

if (strlen(szBuffer))
szBuffer[strlen(szBuffer)-1]
= 0;

if (!strlen(szBuffer))
bDone = true;

else
{

string s = szBuffer;
s = strip_leading(s);
printf(“After removing
leading: %s\n”, s.c_str());
s = strip_trailing(s);
printf(“After removing
trailing: %s\n”, s.c_str()
);

}
}

}

return 0;
}

Stripping any trailing white space from a string is
a simple endeavor. You just find the last white
space character and truncate the string at that
point. Stripping leading white space, on the other
hand, is a more complicated problem. As you can
see at the line marked � 1 in the source listing,
you must create a separate string to use for the
return value of the strip_leading function. This
string is then built-up by finding the first non-
blank character in the input string and then
copying everything from that point to the end of
the string into the output string. The output
string is then returned to the calling application
sans leading white space.

53_57986x ch44.qxd 1/26/05 4:19 PM Page 248

Removing White Space from Input 249

functions at the same time, and get the result shown
at � 5, which has neither leading nor trailing
spaces.

You can also test the application by typing in data
from the prompt by running the application with no
input arguments. Here is a sample of what the test
looks like in that form:

$./a.exe
Enter string to fix: this is a test
Input string: [this is a test]
After removing leading: this is a test
After removing trailing: this is a test
Enter string to fix:
Input string: []

As you can see, input from either the command line
or from user entries (whether from the keyboard or
a file) can contain white space. This white space
must be removed to look at the “real” strings in
many cases, and these functions will save you a lot
of time by doing it for you automatically.

53_57986x ch44.qxd 1/26/05 4:19 PM Page 249

45Technique

Creating a
Configuration File

Configuration files are a basic part of any application that needs to
be portable across various operating systems. Because of differ-
ences in binary formats and “endian” concerns (placement of the

most significant byte), configuration files are normally stored in text for-
mat. This is somewhat problematic, as it requires the application to be
able to load, parse, and work with the entries in a configuration file, while
interpreting the data that is stored there. Because the format is text, you
must worry about the user modifying the text files, changing them so
that they are no longer in a valid format, and the like. It would make
sense, therefore, if there were a standard interface to a configuration file,
and a standard format for using text-based configuration files. This would
allow you to use a standard format in all of your applications, saving you
time and effort.

This technique shows you how to develop a method for storing data in
the simplest possible fashion in a configuration file (text based), while
still allowing the users to store the kinds of data they need. A typical
entry in one of our configuration files would look like this:

This is a comment
Value = “ This is a test”

The first line of the entry is a comment field — ignored by the parser —
that tells any reader of the configuration file why the specific data is
stored in this key (and how it might be interpreted or modified). The sec-
ond line is the value itself, which is made up of two pieces:

� The keyword that we are defining, in this case Value.

� The complete string assigned to this value, with embedded and possi-
bly leading spaces. In this case, our value string is “ This is a
test”. Note that when read in, the string will contain leading spaces,
as the user wished. Note that the only reason that we store these
spaces is that they are contained in quotation marks, indicating the
user wished to keep them. If the spaces were simply on the leading
and trailing edges of strings in the entry without quotation marks, we
would remove them.

Save Time By
� Creating a standard inter-

face to a configuration
file

� Creating the
configuration-file
class

� Creating the test input file

� Testing the configuration-
file class

54_57986x ch45.qxd 1/26/05 4:19 PM Page 250

Creating the Configuration-File Class 251

The capability to configure applications is the
hallmark of a professional program. If you
build in the configuration options from the
start of the design (rather than hacking on
some configurations at the end of the process),
the result is a much more robust and extensi-
ble application. Even if you add new options
later on, the basis for the code will already be
there.

Creating the Configuration-File
Class
The configuration-file class encapsulates the read-
ing, parsing, and storing of the data in the text-based
configuration file. The following steps show you how
to build a stand-alone class that can simply be
moved from application to application, allowing you
to save time and have a consistent interface.

1. In the code editor of your choice, create a
new file to hold the definition for your
configuration-file class.

In this example, the file is named
ConfigurationFile.h, although you can use
whatever you choose.

2. Type the code from Listing 45-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 45-1: THE CONFIGURATION FILE’S HEADER FILE

#ifndef _CONFIGURATIONFILE_H_
#define _CONFIGURATIONFILE_H_

#include <string>
#include <vector>
#include <fstream>
#include <map>
#include <list>

using namespace std;

class ConfigurationFile
{
public:

ConfigurationFile(const char
*strFileName);
virtual ~ConfigurationFile(void);
bool read(void);

bool hasValue(const char *key);
string getValue(const char *key);
void setValue(const char *key, const
char *value);

protected:
virtual void get_token_and_value();
virtual char
eat_white_and_comments(bool traverse_
newlines=true);
virtual bool
advance_to_equal_sign_on_line();
virtual void makeLower
(string &instring);

protected:
fstream m_in;
string m_token;
string m_value;
string m_sConfigFile;
typedef pair <string, string>
String_Pair;
map<string, string> m_ConfigEntries;

};

#endif

This file contains the definition of the class; it
contains no code for manipulating the data. The
header file acts as the interface for other applica-
tions to use the class, as we will see. It is best to
separate your actual implementation code from
your definition, as this helps emphasize the
encapsulation concept of C++.

3. Save the source-code file.

4. In the code editor of your choice, create a new
file to hold the definition for the configuration-
file class.

54_57986x ch45.qxd 1/26/05 4:19 PM Page 251

Technique 45: Creating a Configuration File252

// The following function returns a
string with all-uppercase characters.

static string makeUpper(const string&
instring)

{
string temp=instring;
transform(temp.begin(), temp.end(),
temp.begin(), ::toupper);

return temp;
}

// The following function returns a
string with all-lowercase characters.

static string makeLower(const string&
instring)

{
string temp;
transform(temp.begin(), temp.end(),
temp.begin(), ::tolower);

return temp;
}

static bool contains(const string&
source, const char *find)

{
return (0!=strstr(source.
c_str(),find));

}

static string pad(const string&
instring, char padchar, int length)
{

string outstring = instring;

for (int i=(int)outstring.length();
i<length; ++i)

outstring += padchar;

return outstring;
}

// Trim the given characters from the
beginning and end of a string.

// the default is to trim whitespace.
If the string is empty or contains

// only the trim characters, an empty
string is returned.

static string trim(const string
&instring,

const string
&trimstring=string(“ \t\n”))

In this example, the file is named
ConfigurationFile.cpp, although you can use
whatever you choose.

5. Type the code from Listing 45-2 into your file.

LISTING 45-2: THE CONFIGURATION FILE SOURCE CODE.
#include “ConfigurationFile.h”
#include <errno.h>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <string>

template <class T>
bool from_string(T &t,

const std::string &s,
std::ios_base &

(*f)(std::ios_base&))
{

std::istringstream iss(s);
return !(iss>>f>>t).fail();

}

class StringUtil � 1
{
public:

StringUtil() {}
~StringUtil() {}

// Find the given string in the source
string and replace it with the

// “replace” string, everywhere
instances of that string exist.

static void findandreplace(string&
source, const string& find, const string&

replace)
{

size_t j;
for (;(j = source.find(find))
!= string::npos;)

{
source.replace(j,
find.length(), replace);

}
}

54_57986x ch45.qxd 1/26/05 4:19 PM Page 252

Creating the Configuration-File Class 253

{
if (trimstring.size()==0) return
instring;

string temp=””;
string::size_type begpos=instring.find_first_not_of (trimstring);
if (begpos==string::npos)
{

return temp;
}
else
{

string::size_type endpos=instring.find_last_not_of (trimstring);
temp=instring.substr(begpos,

endpos-begpos+1);
}
return temp;

}

// Convert the string to an int. Note that a string exception is thrown if
// it is invalid.
static int toInt(const string & myInString)
{

int i=0;
string inString = trim(myInString);

if(!from_string<int>(i, inString, std::dec))
{

string exceptionText = “StringUtils::toInt() - Not an integer: “ + inString;
throw exceptionText;

}

// Time to run some more checks.
for (unsigned int j=0; j < inString.length(); j++)
{

if (!isNumeric(inString[j]))
{

if (j==0 && inString[j] ==’-’)
{

continue;
}
else
{

string exceptionText = “StringUtils::toInt() - Not an integer: “ +
inString;

throw exceptionText;
}

}
}

(continued)

54_57986x ch45.qxd 1/26/05 4:19 PM Page 253

Technique 45: Creating a Configuration File254

LISTING 45-2 (continued)
return (i);

}

// Convert the string to an int. Note:
A string exception is thrown if
// it is invalid.
static float toFloat(const string & myInString)
{

float f=0;
string inString = trim(myInString);

if(!from_string<float>(f, inString, std::dec))
{

string exceptionText = “StringUtils::toFloat() - Not a float: “ + inString;
throw exceptionText;

}

// Now it runs some more checks.
int dec_count=0;
for (unsigned int j=0; j < inString.length(); j++)
{

if (!isNumeric(inString[j]))
{

if (j==0 && inString[j] ==’-’)
{

continue;
}
else if (inString[j]==’.’)
{

dec_count++;
if (dec_count > 1)
{

string exceptionText = “StringUtils::toFloat() - Not a float: “ +
inString;

throw exceptionText;
}
continue;

}
else
{

string exceptionText = “StringUtils::toFloat() - Not a float: “ + inString;
throw exceptionText;

}
}

}

return (f);
}

54_57986x ch45.qxd 1/26/05 4:19 PM Page 254

Creating the Configuration-File Class 255

// Returns true if the character is numeric.
static bool isNumeric(char c)
{

return (‘0’ <= c && c <= ‘9’);
}

// Replace environment variables in the string with their values.
// Note: environment variables must be of the form ${ENVVAR}.
static string substituteEnvVar(const string &myInString)
{

string outString=””;
char variable[512];

const char *s = myInString.c_str();
while(*s!=0)
{

if (*s==’$’ && *(s+1)==’{‘)
{
// When you’ve found beginning of variable, find the end.
strcpy(variable,s+2);
char *end = strchr (variable,’}’);
if (end)
{
*end=’\0’;
char *cp = (char *)getenv(variable);
if (cp)
outString += (char *) getenv(variable);

s = strchr(s,’}’);
}
else
{
outString += *s;

}

}
else
{

outString += *s;
}
s++;

}

return outString;

}

};

(continued)

54_57986x ch45.qxd 1/26/05 4:19 PM Page 255

Technique 45: Creating a Configuration File256

LISTING 45-2 (continued)
ConfigurationFile::ConfigurationFile(const char *strConfigFile) � 2
{

if (strConfigFile)
m_sConfigFile = strConfigFile;

}

ConfigurationFile::~ConfigurationFile()
{
}

bool ConfigurationFile::read() � 3
{

m_in.open(m_sConfigFile.
c_str(),ios::in);

if (m_in.fail())
{

return false;
}
while (!m_in.eof())
{

//--
// Get a token and value.
// This gives values to member vars: m_token and m_value.
//--
get_token_and_value();

if (m_token.length())
m_ConfigEntries.insert(String_

Pair(m_token, m_value));

}
m_in.close();

return true;

}

void ConfigurationFile::get_token_and_
value(void)

{
char token[1024];
char ch;
bool found_equal=false;

int i=0;
eat_white_and_comments();
while(!(m_in.get(ch)).fail())
{

if ((ch != ‘\t’))
{

54_57986x ch45.qxd 1/26/05 4:19 PM Page 256

Creating the Configuration-File Class 257

if ((ch == ‘=’) || (ch == ‘ ‘) || (ch == ‘\n’) || (ch == ‘\r’) ||
(ch == ‘\t’))

{
if (ch == ‘=’)found_equal=true;
break;

}
token[i++]=ch;

}
}

if (i==0)
{

// It didn’t find a token, in this case.
m_token=””;
m_value=””;
return;

}

// Null-terminate the token that was found.
token[i++]=’\0’;
m_token = token;
makeLower(m_token);

// Advance to the equal sign, if need be.
if (!found_equal)
{

if (!advance_to_equal_sign_on_line())
{

// The token had no value.
m_token=””;
m_value=””;
return;

}
}

// Get the token’s value.
i=0;
char c = eat_white_and_comments(false);

if (c != ‘\n’)
{

i=0;
while(!(m_in.get(ch)).fail())
{

if ((ch == ‘\t’) || (ch == ‘\r’) || (ch == ‘\n’) || (ch == ‘#’))
{

while (ch!=’\n’)
{

if (m_in.get(ch).fail()) break;
}

(continued)

54_57986x ch45.qxd 1/26/05 4:19 PM Page 257

Technique 45: Creating a Configuration File258

LISTING 45-2 (continued)
break;

}
else
{

token[i++]=ch;
}

}
}

if (i==0)
{

// This token had no value.
m_value=””;

}
else
{

token[i++]=’\0’;
m_value=token;

// Remove leading/trailing spaces.
m_value = StringUtil::trim(m_value);
// Strip leading and trailing quotes, if there are any.
if (m_value[0] == ‘“‘)

m_value = m_value.substr(1);
if (m_value[m_value.length() -1] == ‘“‘)

m_value = m_value.substr(0, m_value.length()-1);
}

}

bool
ConfigurationFile::advance_to_equal_sign_on_line()
{

char ch;
bool found_equal=false;

while (!(m_in.get(ch)).fail())
{

if ((ch==’\r’)||(ch==’\n’)) break;
if (ch == ‘=’)
{

found_equal=true;
break;

}
}

return found_equal;
}

char
ConfigurationFile::eat_white_and_comments

54_57986x ch45.qxd 1/26/05 4:19 PM Page 258

Creating the Configuration-File Class 259

(bool traverse_newlines)
{
char ch;
bool in_comment;

in_comment = false;
while (!(m_in.get(ch)).fail())
if (ch == ‘#’)
in_comment = true;

else if (ch == ‘\n’)
{
in_comment = false;
if (!traverse_newlines)
{

return(ch); // Stop eating.
}

}
else if ((!in_comment) && (ch != ‘ ‘) &&
(ch != ‘\t’) && (ch != ‘\r’))

{
m_in.putback(ch);
return 0;

}

return 0;
}

void ConfigurationFile::makeLower
(string &instring)

{
for(unsigned i=0; i < instring.size();
i++)

{
instring[i] = tolower(instring[i]);

}
}

bool ConfigurationFile::hasValue(const char
*key) � 4

{
bool bRet = false;
std::string sKey = key;
makeLower(sKey);
if (m_ConfigEntries.find(sKey.c_str()
) != m_ConfigEntries.end())
{

bRet = true;
}
return bRet;

}

string ConfigurationFile::getValue(const
char *key)

{
std::string sKey = key;
makeLower(sKey);
if (m_ConfigEntries.find(sKey.
c_str()) != m_ConfigEntries.end())
{

std::map<string, string>::iterator
iter;

iter =
m_ConfigEntries.find(sKey.c_str());

return (*iter).second;
}
return “”;

}

void ConfigurationFile::setValue(const char
*key, const char *value)

{
std::string sKey = key;
makeLower(sKey);

m_ConfigEntries[sKey] = value;
}

Our source code above breaks down into three
general pieces. First, we separate out all of the
utility routines that work with strings and char-
acters and place them in the StringUtil utility
class (shown at the line marked with � 1). Next,
we have the actual configuration-file class,
shown at the line marked with � 2. This class
manages the storage and processing of the file.
The processing is done in the read function,
shown at � 3, and the storage functions begin
with the line marked � 4. As you can see, the
routine simply reads in a line from the input file
and separates it into two pieces, divided by an
equal sign. Comments, which are lines that are
either blank or marked with a pound sign (‘#’)
are ignored. Everything to the left of the equal
sign is considered to be the “tag,” while every-
thing to the right of the equal sign is considered
to be the “value.” Tag and value pairs make up
the configuration data. The retrieval routines
work by allowing the user to see if a given tag is
defined, and if so to retrieve its value.

6. Save the source file in the source code editor.

54_57986x ch45.qxd 1/26/05 4:19 PM Page 259

Technique 45: Creating a Configuration File260

for (int i=2; i<argc; ++i)
{

if (!cf.hasValue(argv[i]))
{

printf(“Value %s NOT found in
configuration file\n”, argv[i]);

}
else
{

string s = cf.getValue
(argv[i]);

printf(“Key %s = [%s]\n”,
argv[i], s.c_str());

}
}

return 0;
}

3. Save the source-code file in the code editor.

4. In the code editor of your choice, create a new
text file to hold the actual configuration test file
for your test program.

In this example, I named the test input data file
input.cfg.

5. Type the following text into your file:

Color=Blue � 5

Name=Matt � 6

Address=” “
City=”Denver, CO” � 7

ZipCode=80232
#This is a comment

Testing the Configuration-File
Class
Now that everything’s set up, the following steps
show you how to put it all together and go for a test
drive:

Setting Up Your Test File
After you create any class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates how the class is intended to be
used:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch45.cpp.

2. Type the code from Listing 45-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 45-3: THE CONFIGURATION-FILE TEST CODE

#include <stdio.h>
#include “ConfigurationFile.h”

int main(int argc, char **argv)
{

if (argc < 3)
{

printf(“Usage: ch5_7 config-file-
name arg1 [arg2 ..]\n”);

printf(“Where: config-file-
name is the name of the configuration
file\n”);

printf(“ arg1 .. argn
are the values to print out\n”);

return -1;
}

ConfigurationFile cf(argv[1]);
if (cf.read() == false)
{

printf(“Unable to read configuration
file\n”);

return -2;
}

54_57986x ch45.qxd 1/26/05 4:19 PM Page 260

Testing the Configuration-File Class 261

1. Compile and run the source-code file (which
we called ch45_7.cpp) along with the
configuration-class file (which we called
ConfigurationFile.cpp) in your favorite com-
piler, on your favorite operating system.

2. Run the program.

If you have done everything right, you should see
the following output in your console window:

$./a.exe input.cfg Color Name City State
Key Color = [Blue]
Key Name = [Matt]
Key City = [Denver, CO]
Value State NOT found in configuration

file � 8

Looking at the input file, you can see that the values
of Color, Name, and City are all entries (on the left-
hand side of the equal sign). For those keys, the val-
ues are Blue, Matt, and Denver, CO. These items are
shown at the lines marked with � 5, � 6 and � 7.
The test driver simply reads the configuration file
using our configuration-file class and then displays
the various key and value pairs. The test driver then
exercises the full functionality of the retrieval code
by looking for a value (State) that is not in the con-
figuration file, and the code properly displays an
error as shown by the line marked with � 8. From
this output, and the test driver code, you can see
exactly how the configuration-file class was meant to
be used, making it excellent documentation for the
developer. You can also see from the listing that the
output is what we were expecting, which makes it a
good unit test. All in all, it shows just how you can
save time and effort by using a standardized configu-
ration format and using this class to read it.

54_57986x ch45.qxd 1/26/05 4:19 PM Page 261

54_57986x ch45.qxd 1/26/05 4:19 PM Page 262

Part VII

Using the Built-In
Functionality

55_57986X pt07.qxd 1/26/05 4:18 PM Page 263

55_57986X pt07.qxd 1/26/05 4:18 PM Page 264

46
Creating an
Internationalization
Class

Once upon a time, if you were programming in the United States,
you tailored your applications only for English-speaking
Americans. Your main concern was the code that implemented the

algorithms that were in your application; if you had an error message to
display, you’d write a message that vaguely expressed the error and the
user would just have to deal with it — no matter what language he spoke
or how confusing the error message was. Fortunately, those days of
usability-challenged code are over. Experts now create messages and
indicators for applications so users can best understand what is going
on. The error messages themselves are usually tailored to specific cus-
tomer bases. Most importantly, however, our code is no longer directed
only towards English-speaking Americans. Applications are distributed
around the world, and need to work in any language, with any alphabet
set. The capability to display messages in any language is known as
internationalization.

You can’t simply bolt an internationalization feature onto your program —
you have to design that capability in from the beginning. You can’t just
translate messages on the fly, either; you have to know up front what the
message is going to say. For this reason, creating a system that supports
internationalization is important.

The process of internationalization is really threefold:

1. Identify all of the text that needs to be displayed in the various lan-
guages. Place this text into a single file, along with identifiers that can
be used within the application to display the text.

2. Convert the text into a format that can be shipped easily with the
application.

3. Provide a method to access all this content.

Technique

Save Time By
� Understanding

internationalization

� Building language files

� Reading an international
file

� Creating a string reader

� Testing your code

56_57986x ch46.qxd 1/26/05 4:17 PM Page 265

Technique 46: Creating an Internationalization Class266

don’t want to store all possible languages in your
application because that would cause the memory
requirements to go through the roof. So we store our
languages in compressed-text format by squeezing
out the returns and spaces between the items of
data. These steps show you how:

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch46.cpp,
although you can use whatever you choose. This
file will contain the class definition for our
automation object.

2. Type the code from Listing 46-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

Only by doing all this can we save time when creat-
ing applications in multiple languages. If you write
applications with any sort of regional or interna-
tional appeal, eventually you must internationalize
them. By building in this support up front — and giv-
ing the application the capability to load those lit-
eral strings from external sources — you not only
save time later on, but also save huge amounts of
space in your application memory. This approach
also allows you to customize your error messages
and display prompts directed to different age and
regional groups. This is the procedure we will be
using in this technique to illustrate how to save time
and effort up front by creating a single way in which
to internationalize your applications.

Building the Language Files
Before you can display text, you need to be able
to build files that contain the language data. You

LISTING 46-1: THE STRINGENTRY CLASS

#include <stdio.h>
#include <string>
#include <vector>
#include <iostream>
#include <fstream>

using namespace std;

#define VERSION_STRING “Version 1.0.0”

class StringEntry
{
private:

unsigned long _id;
string _strEntry;
unsigned long _offset;
unsigned long _length;

protected:
void Init()
{

setID (0);
setString(“”);

56_57986x ch46.qxd 1/26/05 4:18 PM Page 266

Building the Language Files 267

setOffset(0);
setLength(0);

}
void Copy(const StringEntry& aCopy)
{

setID (aCopy.ID());
setString(aCopy.String());
setOffset(aCopy.Offset());
setLength (aCopy.Length());

}
public:

StringEntry(void)
{

Init();
}
StringEntry(unsigned long id, const char *strIn)
{

Init();
setID(id);
setString(strIn);
// For now, assign the length to just be the length
// of the string.
setLength(strlen(strIn));

}
StringEntry(const StringEntry& aCopy)
{

Copy(aCopy);
}
StringEntry operator=(const StringEntry& aCopy)
{

Copy(aCopy);
}

unsigned long ID() const
{

return _id;
}
string String() const
{

return _strEntry;
}
unsigned long Offset() const
{

return _offset;
}
unsigned long Length() const
{

return _length;
}

(continued)

56_57986x ch46.qxd 1/26/05 4:18 PM Page 267

Technique 46: Creating an Internationalization Class268

LISTING 46-1 (continued)
void setID(unsigned long id)
{

_id = id;
}
void setString(const char *strIn)
{

_strEntry = strIn;
}
void setString(const string& sIn)
{

_strEntry = sIn;
}
void setOffset(unsigned long offset)
{

_offset = offset;
}
void setLength(unsigned long length)
{

_length = length;
}

virtual void write(ofstream& out)
{

// Get the current output position.
setOffset(out.tellp());
// Write out the string.
const char *strOut = String().c_str();
out << strOut;

}

virtual void dump(ostream& out)
{

out << “StringEntry:” << endl;
out << “ID : “ << ID() << endl;
out << “String: [“ << String().c_str() << “]” << endl;
out << “Length: “ << Length() << endl;
out << “Offset: “ << Offset() << endl;

}

};

class StringWriter
{
private:

vector< StringEntry > _entries;
string _fileName;
string _outputFileName;

56_57986x ch46.qxd 1/26/05 4:18 PM Page 268

Building the Language Files 269

string get_line(ifstream& in)
{

string sOut = “”;
char cLastChar = 0;
while (!in.eof())
{

// Read in a character at a time. If we hit end of line,
// and the last character is NOT \, we are done.
char c;
in.get(c);
if (in.fail())

break;
if (c == ‘\n’)
{

// We found a return. See whether the last thing was a backslash.
if (cLastChar != ‘\\’)

break;
else
{

// Remove the backslash.
sOut = sOut.substr(0, sOut.length()-1);

}
}
sOut += c;
cLastChar = c;

}
return sOut;

}

virtual bool ProcessLine(const string& sIn)
{

// There has to be a colon (:).
int nColonPos = sIn.find_first_of(‘:’);
if (nColonPos == string::npos)

return false;

// Get the pieces.
string sNumber = sIn.substr(0, nColonPos);
string sValue = sIn.substr(nColonPos+1);

// Add it to our list.
StringEntry se(atol(sNumber.c_str()), sValue.c_str());
_entries.insert(_entries.end(), se);

return false;
}

(continued)

56_57986x ch46.qxd 1/26/05 4:18 PM Page 269

Technique 46: Creating an Internationalization Class270

LISTING 46-1 (continued)
virtual bool Load() � 1
{

// Try to open the input file.
ifstream in(_fileName.c_str());
if (in.fail())

return false;

// Read in the first line for version information.
string sLine = get_line(in);
if (strcmp(sLine.c_str(), VERSION_STRING))

return false;

for (int i=0; i<10; ++i)
{

if (in.fail())
break;

sLine = get_line(in);
// Ignore blank lines.
if (sLine.length() == 0)

continue;

// Ignore comments.
if (sLine[0] == ‘#’)

continue;

if (ProcessLine(sLine))
printf(“Invalid input: %s\n”, sLine.c_str ());

}
}

public:
StringWriter(void)
{
}
StringWriter(const char *inputFileName, const char *outputFileName)
{

_fileName = inputFileName;
_outputFileName = outputFileName;
Load();

}
virtual bool Save(void) � 2
{

// If there are no entries, abort.
if (_entries.size() == 0)

return false;

// Try to open the output file.
ofstream out(_outputFileName.c_str());
if (out.fail())

return false;

56_57986x ch46.qxd 1/26/05 4:18 PM Page 270

Building the Language Files 271

The code above breaks down into a storage class
(StringEntry), a writing class (StringWriter),
and a test driver that illustrates how to use the
code. The test driver expects two arguments: a
file that contains the string definitions and an
argument that specifies the name of the file to
create for an output file. The input file simply

consists of ID numbers (integer values) followed
by a colon and then the string to encode into the
output file. Each entry in the definition file is
read, parsed, and placed into a StringEntry
object. This all happens in the Load function
of the StringWriter class shown at � 1. After
the entire input file is parsed, it is written to the

// Okay, process each of them.
vector< StringEntry >::iterator iter;
for (iter = _entries.begin(); iter != _entries.end(); ++iter)
{

// Write out the entry.
(*iter).write(out);

}

// Now, process the index file.
string indexFileName = _outputFileName + “.idx”;
ofstream out2(indexFileName.c_str());
if (out2.fail())
{

printf(“Unable to open index file %s for output\n”, indexFileName.c_str());
return false;

}
for (iter = _entries.begin(); iter != _entries.end(); ++iter)
{

// Write out the entry.
out2 << (*iter).Offset() << “, “ << (*iter).Length() << “, “ << (*iter).ID() << endl;

}
return true;

}

};

int main(int argc, char **argv)
{

if (argc < 3)
{

printf(“Usage: StringEntry input-file output-file\n”);
printf(“Where: input-file is the file containing the string definitions\n”);
printf(“ output-file is the final generated file name\n”);
return(-1);

}
StringWriter s(argv[1], argv[2]);
if (s.Save() == false)

printf(“Error generating file\n”);

return 0;
}

56_57986x ch46.qxd 1/26/05 4:18 PM Page 271

Technique 46: Creating an Internationalization Class272

4. Run the application on the operating system of
your choice, using the input file as an argument
to the application.

If you have done everything correctly, you will see
the following output in the console window, and will
have two files created in the file system (called
my.eng and my.eng.idx):

$./a.exe test.in.eng my.eng

The my.eng file will look like this:
$ cat my.eng
HelloGoodbyeWhy me?EnglishFrench � 4

The my.eng.idx file will look like this:
$ cat my.eng.idx
0, 5 � 5
5, 7
12, 7
19, 7
26, 6

As you can see from the two outputs shown above,
after the writer is finished with the input text file, it
is no longer truly in readable format. The strings are
concatenated in a binary output format, with a sec-
ondary file containing indices that indicate where
each string starts and ends. For example, the input
file contains the string shown in the listing at � 3

This string is then written to the binary output file,
my.eng, at � 4 The index for this particular entry
is shown in the my.eng.idx file at � 5 The first
entry in the index indicates the position in the file
(0-based). As you can see, the string we are looking
at begins at the first position of the output file. The
second entry in the index indicates the length of the
string, in this case five. So, we go to position zero,
count off five characters and that will be our first
string. And, as you can see, that is in fact the string
Hello.

Reading the International File
After we have created the file and the index file for it,
the next step is to build a reader that reads the strings

output format in the Save method of the
StringWriter class, shown at � 2. The result of
running this program should be a language file
that can then be used by your application for
international uses.

3. Save the source code in your code editor.

Creating an Input Text File
After we have created the application to read the
text file and convert it into an international language
file, the next step is to test the application by creat-
ing a simple text file that contains strings we will use
in the final international language file. The following
steps show you how to do that by creating a very
small text file we can use for testing the application:

1. In the code editor of your choice, create a new
file to hold the text for the test language file we
will be using.

In this example, the file is named test.in.eng,
although you can use whatever name you
choose. This file will contain the strings we wish
to place in the output international language file.

2. Type the following text into your file, substitut-
ing your own values wherever you choose.

Better yet, copy the code from the source file on
this book’s companion Web site.

Version 1.0.0
This is a comment
This is another comment \
but it is very very long

1:Hello � 3

2:Goodbye
3:Why me?
4:English
5:French

3. Compile the source file with your favorite com-
piler, on your favorite operating system.

In this example, the source file was called
StringEntry.cpp; however, you may call it any-
thing you like.

56_57986x ch46.qxd 1/26/05 4:18 PM Page 272

Reading the International File 273

in the various languages. The reader uses a two-step
process to achieve this: First it reads in the index file
so that it knows where all the strings are in the file,
and then it loads a string to be read. The following
steps show you how to do this.

Strings take up a large amount of the memory
of an application and provide clues for hack-
ers. For example, error messages may indicate
where the processing for security is handled in
the code. By finding these strings in the pro-
gram executable file, the hacker can then
determine where to make patches to “crack”
your program to not require a license. When
extracting all of the text for a system into
external files, you should either encrypt the
text to make it secure, or at least have it
removed from the portion of the program that

it describes. This will save you a lot of time in
securing — as well as debugging — your appli-
cation, by eliminating at least one type of
problem from the released product.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch46_1.cpp,
although you can use whatever you choose. This
file will contain the class definition for our
automation object.

2. Type the code from Listing 46-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 46-2: THE STRINGREADER CLASS

#include <stdio.h>
#include <vector>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>

using namespace std;

class StringIndex
{
private:

unsigned long _offset;
unsigned long _length;
unsigned long _id;

protected:
virtual void Init()
{

setOffset(0);
setLength(0);
setID(0);

}
public:

StringIndex(void)
{

Init();
}
StringIndex(unsigned long offset, unsigned long length, unsigned id)

(continued)

56_57986x ch46.qxd 1/26/05 4:18 PM Page 273

Technique 46: Creating an Internationalization Class274

LISTING 46-2 (continued)
{

Init();
setOffset(offset);
setLength(length);
setID(id);

}
StringIndex(const StringIndex& aCopy)
{

setOffset(aCopy.getOffset());
setLength(aCopy.getLength());
setID (aCopy.getID());

}
virtual ~StringIndex()
{
}
StringIndex operator=(const StringIndex& aCopy)
{

setOffset(aCopy.getOffset());
setLength(aCopy.getLength());
setID (aCopy.getID());
return *this;

}

void setOffset(unsigned long offset)
{

_offset = offset;
}
void setLength(unsigned long length)
{

_length = length;
}
void setID(unsigned long id)
{

_id = id;
}
unsigned long getOffset(void) const
{

return _offset;
}
unsigned long getLength(void) const
{

return _length;
}
unsigned long getID(void) const
{

return _id;
}

56_57986x ch46.qxd 1/26/05 4:18 PM Page 274

Reading the International File 275

virtual void dump(void)
{

cout << “StringIndex: “ << endl;
cout << “Offset: “ << getOffset() << endl;
cout << “Length: “ << getLength() << endl;
cout << “ID : “ << getID() << endl;

}
};

class StringReader
{
private:

string _fileName;
vector< StringIndex > _indices;

protected:
virtual bool Load(void)
{

string indexFileName = _fileName + “.idx”;
ifstream in(indexFileName.c_str());
if (in.fail())

return false;

// Read in each line.
while (!in.eof())
{

string sIn = “”;

while (!in.eof())
{

// Get an input line.
char c;
in.get(c);
if (in.fail())

break;
if (c != ‘\r’ && c != ‘\n’)

sIn += c;
if (c == ‘\n’)

break;
}

if (sIn.length() == 0)
break;

// Okay, we have a line. Now, parse it.
istringstream iss(sIn.c_str());

(continued)

56_57986x ch46.qxd 1/26/05 4:18 PM Page 275

Technique 46: Creating an Internationalization Class276

LISTING 46-2 (continued)
char c;
long lLength = 0;
long lOffset = 0;
long lID = 0;
// Parse the line, eating the comma
iss >> lOffset >> c >> lLength >> c >> lID;

StringIndex si(lOffset, lLength, lID);
si.dump(); � 6
_indices.insert(_indices.end(), si);

}

return true;
}
virtual string _loadString(const StringIndex& si)
{

ifstream in(_fileName.c_str());
in.seekg(si.getOffset());
string retStr;
for (int i=0; i<si.getLength(); ++i)
{

char c;
in.get(c);
if (in.fail())

break;
retStr += c;

}
return retStr;

}
public:

StringReader(void)
{
}
StringReader(const char *fileName)
{

_fileName = fileName;
Load();

}
StringReader(const StringReader& aCopy)
{

_fileName = aCopy._fileName;
vector< StringIndex >::const_iterator iter;
for (iter = aCopy._indices.begin(); iter != aCopy._indices.end(); ++iter)

_indices.insert(_indices.end(), (*iter));
}
string getString(long id)

56_57986x ch46.qxd 1/26/05 4:18 PM Page 276

Testing the String Reader 277

{
// First, see if we have this id.
vector< StringIndex >::const_iterator iter;
for (iter = _indices.begin(); iter != _indices.end(); ++iter)

if ((*iter).getID() == id)
return _loadString((*iter));

return string(“”);
}

};

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch46a.cpp.

2. Type the code from Listing 46-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

3. Save the source code as a file in your editor
and close the editor application.

Testing the String Reader
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates how to read a language file,
and shows how the class is intended to be used:

LISTING 46-3: THE STRINGREADER TEST DRIVER

int main(int argc, char **argv)
{

if (argc < 3)
{

printf(“Usage: ch6_1 string-file-name id1 [id2, ..]\n”);
printf(“Where: string-file-name is the name of the compressed string file to use\n”);
printf(“ id1..etc are the ids to display\n”);
return -1;

}

StringReader sReader(argv[1]);

for (int i=2; i<argc; ++i)
{

int id = atoi(argv[i]);

string s = sReader.getString(id);
printf(“String %d: [%s]\n”, id, s.c_str());

}
return 0;

}

56_57986x ch46.qxd 1/26/05 4:18 PM Page 277

Technique 46: Creating an Internationalization Class278

You will also see the diagnostics, which are not
shown, for the application. If you do not wish to
view the diagnostics, comment out the dump
method call shown at line � 6 in Listing 46-2.

By looking at the output above, we can see that
when we read data back in from the language file,
using the indices we have defined in the program,
we get back the same strings that we put there in the
original language text file. This shows that the pro-
gram is working properly and that we are getting the
language data directly from the file — not from
strings embedded in the application.

3. Save the source-code file in the code editor.

4. Compile and run the source file with your
favorite compiler on your favorite operating
system.

If you have done everything right, running the appli-
cation with the arguments shown should produce
the following result on your console window:

$./a.exe my.eng 2 3 5 9
String 2: [Goodbye]
String 3: [Why me?]
String 5: [French]
String 9: []

56_57986x ch46.qxd 1/26/05 4:18 PM Page 278

47
Hashing Out
Translations

The hash table is one of the most valuable constructs in the
Standard Template Library. Hash tables are data structures that
contain two types of values, usually key-value pairs. A hash table is

used anytime you want to either replace one value with another, or map
a given key to a given value. (As you may imagine, it’s a commonly used
encryption tool.)

One of the most useful things that you can do with a hash table is to
store and look up existing values and replace them with new ones. For
example, in a translation application, it would be nice to be able to build
a dictionary of words and their resulting translations. The ability to
retrieve information based on a key-value pair can save a lot of time in an
application. For example, a search and replace feature could use this
functionality. Alternatively, you could use this functionality to implement
a command parser, with a mapping of strings to integer values. Using
hash tables can save you a lot of time in translating one type of input to
another in your applications. In this technique, we will look at that exact
problem and how to solve it in your application code.

Creating a Translator Class
We will use the hash table function to create a class that “translates” text
by replacing certain keywords in the text with other words. Imagine that
we want to replace all occurrences of the word computer with the word
pc, for example. This type of conversion is commonly referred to as a fil-
ter, because it takes input and filters it to a new output format. In this
section we will create the Translator class, which will store the text we
wish to replace, along with the text we wish to insert in the place of the
original.

Technique

Save Time By
� Understanding hash

tables

� Creating a translation
application with hash
tables

� Creating a translation-
text file

� Testing your application

57_57986x ch47.qxd 1/26/05 4:17 PM Page 279

Technique 47: Hashing Out Translations280

}
}

return true;
}

public:
Translator(void)
{
}
Translator(const char *fileName)
{

Clear();
setFileName(fileName);

}
Translator(const Translator& aCopy)
{

Clear();
setFileName(aCopy.getFileName());

}
Translator operator=(const Translator&
aCopy)

{
Clear();
setFileName(aCopy.getFileName());

}
void setFileName(const string&
sFileName)

{
_fileName = sFileName;
Load(_fileName.c_str());

}
string getFileName(void) const
{

return _fileName;
}
string replace(string in) � 3
{

map<string,string>::iterator iter;

iter = _dictionary.find(in);

if (iter != _dictionary.end())
{

return iter->second;
}
return in;

}
};

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch47, although
you can use whatever you choose.

2. Type the following code from Listing 47-1 into
your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 47-1: THE TRANSLATOR CLASS

#include <stdio.h>
#include <string>
#include <map>
#include <fstream>
#include <iostream>

using namespace std;

class Translator
{
private:

string _fileName;
map<string,string> _dictionary; � 2

protected:
void Clear()
{

_dictionary.erase(
_dictionary.begin(), _dictionary.end());
}
bool Load(const char *fileName) � 1
{

ifstream in(fileName);
if (in.fail())

return false;

// Just read in pairs of values.

while (!in.eof())
{

string word;
string replacement;
in >> word;
if (word.length())
{

in >> replacement;
_dictionary[word] = replace-

ment;

57_57986x ch47.qxd 1/26/05 4:17 PM Page 280

Testing the Translator Class 281

This code simply manages the translation opera-
tions. The code consists of three basic functions:

� The class manages an input file that contains
the mappings of old text to the new text we
wish to replace it with. (See � 1.)

This method takes a filename, attempts
to open it, and reads in the data pairs if the
open operation was successful.

� The class manages the storage of the mappings
in a hash table. (See � 2.)

This is done by the hash table, represented by
the Standard Template Library map class.

� The class replaces a given string with the string
desired in the final output. (Shown at � 3.)

Note that we simply pass in each string and
replace it if it is found in the hash table. If it is
not, we return the original string. This allows
the application to save time by not bothering
to check if the string needs to be replaced
or not.

3. Save the source code as a file in your code
editor.

This dictionary will do all the work of loading
data from a translation file and replacing individ-
ual words with specified translated words. For
example, consider the idea of replacing all occur-
rences of the word good with the word bad. If we
were given the input string good day, I am having
a good time at this goodly party, we would trans-
late this into bad day, I am having a bad time at
this goodly party. Note that we only replace full
matches, not text that appears anywhere in the
input string. The class now exists, the only thing
we need to do is use it.

Testing the Translator Class
After you create the dictionary, you should create a
test driver that not only ensures that your code is
correct, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates various kinds of input from the
user, and shows how the class is intended to be used:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch47.cpp.

2. Append the code from Listing 47-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 47-2: THE TRANSLATOR CLASS TEST DRIVER

int main()
{

Translator t(“translate.txt”); � 4
printf(“Enter some text to translate:
“);

string in;

bool bDone = false;
while (!bDone) � 5
{

char c;
cin.get(c);
if (c == ‘\n’)

bDone = true;
else

in += c;
}

printf(“Initial string: %s\n”,
in.c_str());

// Break it down into words.
string word;
for (int i=0; i<in.length(); ++i)
{

if (in[i] == ‘ ‘)
{

if (word.length()) � 6
{

string sOut = t.replace(
word);

cout << sOut << “ “;
}

(continued)

57_57986x ch47.qxd 1/26/05 4:17 PM Page 281

Technique 47: Hashing Out Translations282

4. Compile the source file, using your favorite
compiler on your favorite operating system.

5. In your code editor, create a translation-text
file.

This file will contain the pairs of words to be
used in the translation file; each pair consists of
a word and the translated version of that word. I
called mine translation.txt, but you can call it
whatever you like.

6. Put the following text into the translation.txt
file:

good bad
insult dis
talk jive

You can place any words you want in the file. The
first word will be replaced by the second word in
any sentence you input into the system.

7. Run the program on your favorite operating
system.

If you have done everything properly, you should
see output resembling this:

$./a.exe
Enter some text to translate:
Initial string: you are so good to
talk and not insult me

you are so bad to jive and not dis
me

LISTING 47-2 (continued)
word = “”;

}
else

word += in[i];
}
if (word.length()) � 7
{

string sOut = t.replace(word);
cout << sOut << “ “;

}

}

The code above simply reads input from the
keyboard, breaks it down into words, and then
calls the translator to replace any portions of
the string that need to be translated from our
input file. The translator operates on a file called
translate.txt, as shown at � 4. You can easily
change this filename, or even pass one in on the
command line, if you wish. Each line is read from
the keyboard, one character at a time, until a car-
riage return is encountered. (See � 5.) Finally, we
parse the input line until we encounter a space
(shown at � 6) or the end of the string (shown
at � 7). When this happens, we replace the
“word” we have parsed by calling the replace
method of the translator.

3. Save the source-code file in the editor and then
close the editor application.

57_57986x ch47.qxd 1/26/05 4:17 PM Page 282

48
Implementing
Virtual Files

These days, application data can be very large and can consume a
lot of your memory. Depending on your application footprint and
target operating system, loading the entire application file into

memory at one time may be impossible. Memory shortages are common
with embedded systems, and with hand-held devices, where only a lim-
ited amount of memory is available to share between numerous applica-
tions. There are a number of ways to handle such conditions, from
reading in only as much data as you can and not storing the remainder,
to limiting the data to chunks and forcing the user to select which chunk
they want. None of these solutions, however, is quite as elegant to either
the developer or the end-user as the virtual file. A virtual file is a window
into the file you are trying to process. It appears to end-users as if they’re
seeing the whole file at once — but they’re really seeing just one small
piece of it at a time. If you build virtual views of your files into your appli-
cation up front, you save time in the long run, because you won’t have to
go back and redesign your applications when the files become larger
than you were expecting.

The capability to provide a virtual window into a file not only conserves
memory, it also conserves speed. By loading only a small chunk of
the file at any given moment, you can load immense files in no time
and all, and page through them very quickly. This method is used by
many large text editors.

Creating a Virtual File Class
In order to manage virtual files, we will need two different classes. First,
we will need a single class that manages a given chunk of data from the
file. This class will manage the data in that chunk, as well as keep track of
where that particular piece of data was read from the file and how big it
is. After this, we need to have a manager that keeps track of all of those
chunks of data, allocating new objects to manage the individual pieces
that are read in, and deleting the pieces that are no longer used. Let’s cre-
ate a few classes to do that now.

Technique

Save Time By
� Understanding virtual

files

� Creating a virtual file
class

� Testing your class

58_57986x ch48.qxd 1/26/05 4:16 PM Page 283

Technique 48: Implementing Virtual Files284

2. Type the code given in Listing 48-1 into your
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch48.cpp,
although you can use whatever you choose. This
file will contain the class definition for our virtual
file manager objects.

LISTING 48-1: THE VIRTUAL FILE MANAGER CLASSES

#include <iostream>
#include <string>
#include <vector>
#include <fstream>

using namespace std;

class FileChunk � 1
{
private:

string _chunk;
long _offset;
long _length;
bool _inuse;
long _accesses;

protected:
void Clear()
{

_offset = -1;
_length = -1;
_chunk = “”;
_inuse = false;
_accesses = 0;

}
void Copy(const FileChunk& aCopy)
{

_offset = aCopy._offset;
_length = aCopy._length;
_chunk = aCopy._chunk;
_inuse = aCopy._inuse;

}
bool Read (ifstream& in, long pos, long length)
{

_offset = pos;
_chunk = “”;
_length = 0;

// Seek to the position in the stream.
in.seekg(pos);
if (in.fail())

return false;

58_57986x ch48.qxd 1/26/05 4:16 PM Page 284

Creating a Virtual File Class 285

// Read up to the end of the file or the last of the length
// bytes.
for (int i=0; i<length; ++i)
{

char c;
in.get(c);
if (in.fail())

break;
_length ++;
_chunk += c;

}
_inuse = true;

}
public:

FileChunk(void)
{

Clear();
}
FileChunk(ifstream& in, long pos, long length)
{

Clear();
Read(in, pos, length);

}
FileChunk(const FileChunk& aCopy)
{

Clear();
Copy(aCopy);

}
FileChunk operator=(const FileChunk& aCopy)
{

Clear();
Copy(aCopy);
return *this;

}

// Accessors
long Offset()
{

return _offset;
}
long Length()
{

return _length;
}
string& Chunk()
{

_accesses ++;
return _chunk;

}
bool InUse(void)
{

return _inuse;
(continued)

58_57986x ch48.qxd 1/26/05 4:16 PM Page 285

Technique 48: Implementing Virtual Files286

LISTING 48-1 (continued)
}
void setOffset(long offset)
{

_offset = _offset;
}
void setLength(long length)
{

_length = length;
}
void setChunk(const string& chunk)
{

_chunk = chunk;
}
long AccessCount(void)
{

return _accesses;
}
bool Load(ifstream& in, long offset, long length)
{

Clear();
return Read(in, offset, length);

}
};

const int kChunkSize = 128;

class FileChunkManager � 2
{
private:

int _numChunks;
FileChunk *_chunks;
ifstream _in;
string _fileName;

protected:
FileChunk *findChunk(long theOffset)
{

for (int i=0; i<_numChunks; ++i)
{

if (_chunks[i].InUse() == true)
{

long offset = _chunks[i].Offset();
long length = _chunks[i].Length();
if (theOffset >= offset && theOffset <= offset+length)

return &_chunks[i];
}

}
return NULL;

}
FileChunk *addChunk(long theOffset)

58_57986x ch48.qxd 1/26/05 4:16 PM Page 286

Creating a Virtual File Class 287

{
for (int i=0; i<_numChunks; ++i)
{

if (_chunks[i].InUse() == false)
{

if (_chunks[i].Load(_in, theOffset, kChunkSize))
return &_chunks[i];

}
}
return NULL;

}
FileChunk *getLeastRecentlyAccessed()
{

int idx = 0;
long access = _chunks[0].AccessCount();

for (int i=0; i<_numChunks; ++i)
{

if (_chunks[i].InUse() == true)
{

if (_chunks[i].AccessCount() < access)
{

idx = i;
access = _chunks[i].AccessCount();

}
}

}
return &_chunks[idx];

}

public:
FileChunkManager(void)
{

_numChunks = 0;
_chunks = NULL;

}
FileChunkManager(const char *fileName, int nMaxChunks)
{

_numChunks = nMaxChunks;
_chunks = new FileChunk[nMaxChunks];
_fileName = fileName;
_in.open(fileName);

}
FileChunkManager(const FileChunkManager& aCopy)
{

_numChunks = aCopy._numChunks;
_chunks = new FileChunk[_numChunks];
for (int i=0; i<_numChunks; ++i)

_chunks[i] = aCopy._chunks[i];
_fileName = aCopy._fileName;
_in.open(_fileName.c_str());

}
(continued)

58_57986x ch48.qxd 1/26/05 4:16 PM Page 287

Technique 48: Implementing Virtual Files288

LISTING 48-1 (continued)
virtual ~FileChunkManager(void)
{

delete [] _chunks;
}

char operator[](long offset)
{

// Find which chunk this offset is in.
FileChunk *chunk = findChunk(offset);
if (chunk == NULL)
{

// There are none. See whether we can add one.
chunk = addChunk(offset);

}
// If we have one, just get the data from it.
// Otherwise, we have to go dump one.
if (!chunk)
{

chunk = getLeastRecentlyAccessed();
chunk->Load(_in, offset, kChunkSize);

}

// Finally, extract the piece we need.
int pos = offset - chunk->Offset();
return chunk->Chunk()[pos];

}

// Dump the function to illustrate what is in the chunks.
void Dump(void)
{

for (int i=0; i<_numChunks; ++i)
{

printf(“Chunk %d: %s\n”, i, _chunks[i].InUse() ? “In Use” : “NOT Used”);
printf(“Offset: %ld\n”, _chunks[i].Offset());
printf(“Length: %ld\n”, _chunks[i].Length());
if (_chunks[i].InUse())

printf(“String: [%s]\n”, _chunks[i].Chunk().c_str());
}

}
};

the FileChunkManager class, shown at � 2, main-
tains an array of FileChunk objects, keeping track
of which ones are in use and what their offsets are.
When a block of the file is requested, the man-
ager object looks through its list to see if there is
a block that has that data in it and if so, requests
that particular text from that particular object.

3. Save the source file in the code editor.

The code above shows the two basic classes: the
FileChunk and FileChunkManager classes. The
FileChunk class, shown at � 1, manages a single
chunk of data in the file. This data includes the
offset within the file, the file object itself, and the
text from that location in the file. It also stores
the length of the chunk that was actually read in,
since some chunks at the end of the file could be
smaller than the full size block. The second class,

58_57986x ch48.qxd 1/26/05 4:16 PM Page 288

Testing the Virtual File Class 289

Testing the Virtual File Class
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates various kinds of input from the
user, and shows how the class is intended to be used:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program ch48.

2. Type the code shown in Listing 48-2 into your
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 48-2: THE VIRTUAL FILE CLASS TEST DRIVER

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage: ch6_3 filename\n”);
printf(“Where: filename is the file
to load\n”);

}

FileChunkManager fcm(argv[1], 5);
for (int i=0; i<4096; ++i)
{

char c = fcm[i];
}

fcm.Dump();

return 0;
}

3. Save the source-code file in your code editor
and close the editor application.

4. Compile the entire application with your
favorite compiler on your favorite operating
system.

5. Run the application.

You will need to pass in a filename for the program
to manage. For this example output, I used the
actual text file representing the program, ch48.cpp.

If you have done everything properly, you should
see the output shown in Listing 48-3 when you run
the application on a given program.

LISTING 48-3: OUTPUT FROM THE TEST DRIVER

Chunk 0: In Use
Offset: 3999
Length: 128
String: [

int pos = offset - chunk->Offset();
return chunk->Chunk()[pos];

}

// Dump function to illustrate what is
in the chunks.

]
Chunk 1: In Use � 3
Offset: 129
Length: 128
String: [ate:

string _chunk;
long _offset;
long _length;
bool _inuse;
long _accesses;

protected:
void Clear()
{

_offset = -1;]
Chunk 2: In Use
Offset: 258
Length: 128
String: [et = -1;

_length = -1;
_chunk = “”;
_inuse = false;
_accesses = 0;

}
void Copy(const FileChunk& aCopy)

(continued)

58_57986x ch48.qxd 1/26/05 4:16 PM Page 289

Technique 48: Implementing Virtual Files290

the chunk consists of a block of text 128 bytes long,
starting at position 129. This chunk is marked “In
Use,” indicating that the manager is still processing
from that chunk.

As you can see from the above output, the file is
read in chunks, and those chunks are not specifically
in position order. There are never more than 512
bytes in use at any given time, but it appears to the
user as if the entire file is available for use.

Improving Your Virtual
File Class
While the virtual file class is certainly useful as it
stands, there are a number of improvements that
could be made to it, such as these:

� The size of each chunk could be made
configurable.

� The simple algorithm that determines which
chunk to throw away when all available chunks
have been used could be enhanced.

� Several chunks of the file’s data could be pre-
loaded at startup to minimize the startup time
for reading pieces.

Always keep a list of possible improvements
along with your classes as you write them.
When you come back to the class — or some-
one else takes it over — it will have a built-in
to-do list that enhances it and raises its value.

LISTING 48-3 (continued)
{

_offset]
Chunk 3: In Use
Offset: 387
Length: 128
String: [offset = aCopy._offset;

_length = aCopy._length;
_chunk = aCopy._chunk;
_inuse = aCopy._inuse;

}
bool Read(ifstream& in]

Chunk 4: In Use
Offset: 516
Length: 128
String: [& in, long pos, long length)

{
_offset = pos;
_chunk = “”;
_length = 0;

// Seek to the position in the
stream

in.se]

The output above indicates how each chunk of the
file is read in and in what order. You can see how the
individual chunks were read in, such as the one
shown at the line marked with � 3. You can see that
the chunk consists of a block of text 128 bytes long,
starting at position 129. This chunk is marked “In
Use,” indicating that the manager is still processing
from that chunk.

58_57986x ch48.qxd 1/26/05 4:16 PM Page 290

49
Using Iterators for
Your Collections

Collections are at the heart of the Standard Template Library (STL).
They form the basis for the reusability of all reuse in your classes —
and allow you to treat large groups of data in both ordered and

unordered fashions. Without collections, coding would be a lot more of a
problem — we’d have to write up our own arrays, linked lists, and the
like. You can certainly still write your own array classes or even use
static arrays, but these classes would not have the years of testing and
usage collections have, which means more bugs, more design problems,
and an overall slower development process. By using the classes in the
STL for containers, you save time by not having to develop your own
classes, and by not having to debug code you have just written to imple-
ment your own container.

To interface with collections of any sort, the STL offers a generic tool
called the iterator. Iterators are very useful, very simple tools that allow
you to get at any piece of a collection, manipulate it, and print out the
values of the container’s data elements. Pretty handy, but iterators are
capable of much more than this — as demonstrated in this technique.
An iterator, as its name implies, allows you to “iterate over” (or move
through) a collection of data. For example, when writing standard C++
arrays, we might produce some code that looks like this:

int array[20];
for (int i=0; i<20; ++i)

printf(“Array element %d = %d\n”, i, array[i]);

This code works for a normal array, because all of the elements in the
array are guaranteed to be contiguous in member. With the STL contain-
ers, that guarantee does not exist. The STL containers manage buckets of
data, which may be scattered around in memory. With an iterator class,
however, we can treat our STL collections just as if they were like the
code above.

If you are using collections in your applications, make sure you define
an iterator that has access to those collections. That iterator will give
you a standardized way of working with the data without requiring
you to do a lot of extra work.

Technique

Save Time By
� Using collections

� Understanding iterators

� Manipulating collections
with iterators

� Interpreting your output

59_57986x ch49.qxd 1/26/05 4:15 PM Page 291

Technique 49: Using Iterators for Your Collections292

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch49.cpp,
although you can use whatever you choose. This
file will contain the class definition for the
needed automation object.

2. Type the code from Listing 49-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

In this technique I show you an example of using
container collections in the STL and how to use iter-
ators with those collections. I explore several differ-
ent types of collections, from vectors (arrays) to
maps and linked lists. In all cases, we can iterate
over these collections using the same kinds of itera-
tors. I explain how to move forward and backward
through the collections, as well as how to insert and
remove things from the various container types.
Finally, I examine some of the cooler things about
iterators, such as swapping elements and using iter-
ators on files. The following steps get you started:

LISTING 49-1: ITERATING OVER THE COLLECTION CLASSES IN THE STL
#include <iostream>
#include <string>
#include <vector>
#include <map>
#include <list>
#include <fstream>
#include <algorithm>
#include <iterator>
#include <set>

using namespace std;

int main(int argc, char **argv)
{

// Add a bunch of items to each type.
char *names[] = {

“Matt”,
“Sarah”,
“Rachel”,
“Jenny”,
“Lee”,
“Kim”,
NULL

};

// First, do the vector.
vector< string > nameArray;
for (int i=0; names[i]; ++i)
{

nameArray.insert(nameArray.end(), names[i]);
}

59_57986x ch49.qxd 1/26/05 4:15 PM Page 292

Using Iterators for Your Collections 293

// Next, load the map.
map< char, string > nameMap;
for (int i=0; names[i]; ++i)

nameMap[names[i][0]] = names[i];

// The linked list is next.
list< string > nameList;
for (int i=0; names[i]; ++i)
{

nameList.insert(nameList.end(), names[i]);
}

// Sets are popular.
set<string, greater<string> > nameSet;
for (int i=0; names[i]; ++i)
{

// Try inserting them twice to see what happens.
nameSet.insert(nameSet.end(), names[i]);
nameSet.insert(nameSet.end(), names[i]);

}

// Now, iterate over them.
for (int i=0; i<nameArray.size(); ++i)

printf(“Array[%d] = %s\n”, i, nameArray[i].c_str());

map<char, string>::iterator iter;
int idx = 0;
for (iter = nameMap.begin(); iter != nameMap.end(); ++iter) � 1
{

printf(“Map Entry[%d]:\n”, idx);
printf(“Key : %c\n”, (*iter).first);
printf(“Value : %s\n”, (*iter).second.c_str());
idx ++;

}

printf(“Set:\n”);
set<string, greater<string> >::iterator set_iter;
for (set_iter = nameSet.begin(); set_iter != nameSet.end(); ++set_iter)
{

printf(“Set Entry: %s\n”, (*set_iter).c_str());
}

printf(“Original List:\n”);
list<string>::iterator list_iter;
for (list_iter = nameList.begin(); list_iter != nameList.end(); ++list_iter)
{

printf(“List Entry: %s\n”, (*list_iter).c_str());
}

(continued)

59_57986x ch49.qxd 1/26/05 4:15 PM Page 293

Technique 49: Using Iterators for Your Collections294

LISTING 49-1 (continued)
// Iterators can be used to remove items.
for (list_iter = nameList.begin(); list_iter != nameList.end(); ++list_iter)
{

if ((*list_iter) == “Matt”)
{

// Note, once we delete something, the iterator is no longer
// valid.
nameList.erase(list_iter);
break;

}
}

printf(“Final List:\n”);
for (list_iter = nameList.begin(); list_iter != nameList.end(); ++list_iter)
{

printf(“List Entry: %s\n”, (*list_iter).c_str());
}

// You can also iterate in reverse. � 2
printf(“In reverse\n”);
list<string>::reverse_iterator riter;
for (riter = nameList.rbegin(); riter != nameList.rend(); ++riter)
{

printf(“List Entry: %s\n”, (*riter).c_str());
}

// Iterators can be used to swap two elements.
iter_swap (nameList.begin(), --nameList.end());
printf(“Swapped:\n”);
for (list_iter = nameList.begin(); list_iter != nameList.end(); ++list_iter)
{

printf(“List Entry: %s\n”, (*list_iter).c_str());
}

// Finally, you can iterate over streams.
ifstream in(“ch6_4.cpp”);
istream_iterator<string> cinPos(in); � 3

for (int i=0; i<10; ++i)
{

if (cinPos != istream_iterator<string>())
{

cout << *cinPos++;
}
cout << endl;

}
cout << endl;

return 0;
}

59_57986x ch49.qxd 1/26/05 4:15 PM Page 294

Using Iterators for Your Collections 295

The code above shows the various ways in which
we can iterate over the collection classes in the
STL. For example, at � 1, you see the iteration
over a map collection. Maps are normally
accessed by referring to given elements in them,
but, as you can see here, they can also be listed
in order using iterators. Line � 2 shows how we
can iterate over a collection in reverse — that is,
by starting at the end and working our way back
to the beginning — simply by changing the type
of iterator we use. Note that even though we are
going backwards through the container objects,
we still increment the iterator. This means that
we could write a single block of code to iterate
over a collection and then select the iterator we
wish to use for direction without having to
change any of the code.

3. Save the source-code file in your editor and
close the editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the program on your favorite operating
system.

If you have done everything properly, you should
see the output shown in Listing 49-2 in your console
window.

LISTING 49-2: OUTPUT FROM THE ITERATOR TEST

Array[0] = Matt
Array[1] = Sarah
Array[2] = Rachel
Array[3] = Jenny
Array[4] = Lee
Array[5] = Kim
Map Entry[0]:
Key : J
Value : Jenny
Map Entry[1]:
Key : K
Value : Kim
Map Entry[2]:
Key : L
Value : Lee
Map Entry[3]:

Key : M
Value : Matt
Map Entry[4]:
Key : R
Value : Rachel
Map Entry[5]:
Key : S
Value : Sarah
Set:
Set Entry: Sarah
Set Entry: Rachel
Set Entry: Matt
Set Entry: Lee
Set Entry: Kim
Set Entry: Jenny
Original List:
List Entry: Matt
List Entry: Sarah
List Entry: Rachel
List Entry: Jenny
List Entry: Lee
List Entry: Kim
Final List: � 4
List Entry: Sarah
List Entry: Rachel
List Entry: Jenny
List Entry: Lee
List Entry: Kim
In reverse
List Entry: Kim
List Entry: Lee
List Entry: Jenny
List Entry: Rachel
List Entry: Sarah
Swapped: � 5
List Entry: Kim
List Entry: Rachel
List Entry: Jenny
List Entry: Lee
List Entry: Sarah
#include
<iostream>
#include
<string>
#include
<vector>
#include
<map>
#include
<list>

59_57986x ch49.qxd 1/26/05 4:15 PM Page 295

Technique 49: Using Iterators for Your Collections296

The output shown in Listing 49-2 shows that our
test program is running properly. We can see,
from � 4, that the entry Matt was removed from
the list. Likewise, we can see from � 5 that the
Rachel and Lee entries in the list were swapped.
This indicates that our code works properly.

As you can see, the iterator is an extremely powerful
tool. Not only can it be used on all sorts of various
collections, but it also allows you to treat a stream
as simply a collection of data (shown in Listing 49-1
at � 3). (Of course, when you think about it, that’s
exactly what a stream is.) The stream is passed to
the stream iterator, which then allows us to step
through the file one character at a time jumping to
whatever position they wish in the file by increment-
ing or decrementing the iterator.

Be careful with iterators
Here are a couple of important caveats when you’re using
iterators:

� If you remove items from the collection using an itera-
tor, you cannot assume that the iterator you used
remains usable afterwards. Iterators maintain internal
state, so they are “pointing at” an invalid item in the
container. After you have removed items, close the
iterator and reset an iterator for the collection again.

� Iterators come in two forms, const and non-const.
Use const iterators for constant collections, to ensure
that no data is modified.

59_57986x ch49.qxd 1/26/05 4:15 PM Page 296

50
Overriding the
Allocator for a
Collection Class

One of the real strengths of the Standard Template Library (STL) is
that you can configure classes to fit your specific needs. For exam-
ple, you can put any class you need in a given template, so long as

the class follows certain basic rules. Or you can change the way in which
memory is allocated for the collection — you could allocate memory
from a static heap for a given collection, for example, or perhaps make
the memory persistent through the allocation mechanism (that is, not
allow memory to be moved around on the system). These two examples,
specifically, would allow you to utilize the STL in an embedded system.
Whatever you can dream up for your system to use, the STL can handle.

The purpose of memory allocators is to provide the container classes with
a class-independent way of getting memory to use for storage of objects.
For example, when I define an array in standard C++, such as this:

int array[20];

I request 20 words of storage from the compiler. Likewise, I can dynami-
cally allocate a block of memory, like this:

int *array = new int[20];

In this case, I have dynamically requested the same 20 words of storage,
but this time from the operating system itself, rather than from the com-
piler. Within the STL, however, the problem is more complicated. How do
we allocate blocks of memory when we don’t know exactly how big those
blocks will be? This is what allocators do for us; they allow us to allocate
blocks of memory within the STL containers.

The capability to replace the way memory is allocated can be very
important if you are working in a memory-constrained environment, or
one in which memory is allocated in a special way. This capability spares
you from having to change the underlying code to make your classes
work. By implementing custom allocators in your applications, you can
trace allocations, look for errors in your code, and switch things out
speedily should the occasion arise. This technique takes a look at the

Technique

Save Time By
� Exploring memory

allocators

� Using memory allocators

� Implementing a memory
allocator with an existing
framework of classes

� Interpreting output

60_57986x ch50.qxd 1/26/05 4:15 PM Page 297

Technique 50: Overriding the Allocator for a Collection Class298

will allow us to override the default memory allocator
for a container class. This will show you how the
allocation process works, and allow you to have a
template from which you can create your own allo-
cators, should the need arise. Understanding this
process will save you enormous time in figuring out
memory allocators, which are not particularly well
documented in the STL documentation.

1. In the code editor of your choice, create a new
file to hold the code for the header file of the
technique.

In this example, the file is named ch50.h, although
you can use whatever you choose. This file will
contain the class definition for your allocator.

2. Type the code from Listing 50-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

basics of implementing your own allocator for the
STL — and using it with the existing framework of
classes. Because we can change the allocator for the
STL container classes, we can configure them to
work in different environments, such as embedded
systems, different operating systems, or even hand-
held devices that allocate memory in a completely
different way. By understanding how to change the
allocation of memory, you will save time in debug-
ging complicated memory, errors, or in porting your
code from system to system.

Creating a Custom
Memory Allocator
In order to explore the way in which memory is allo-
cated in the STL, let’s create a simple skeleton that

LISTING 50-1: THE ALLOCATOR CLASS DEFINITION FILE

#ifndef _ALLOCATOR_H_
#define _ALLOCATOR_H_

#include <limits>
#include <iostream>

using namespace std;

template <class T>
class MyAlloc {

public:
// Type the definitions.
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;

template <class U>
struct rebind {

typedef MyAlloc<U> other;
};

60_57986x ch50.qxd 1/26/05 4:15 PM Page 298

Creating a Custom Memory Allocator 299

// Return the address of values.
T* address (T& value) const {

return &value;
}

/* Constructors and destructor
* have nothing to do because the allocator has no state.
*/
MyAlloc() throw()
{
}
MyAlloc(const MyAlloc&) throw()
{
}

template <class U>
MyAlloc (const MyAlloc<U>&) throw()
{
}

~MyAlloc() throw() {
}

// Return maximum number of elements that can be allocated.
size_t max_size () const throw()
{

return numeric_limits<std::size_t>::max() / sizeof(T);
}

// Allocate but don’t initialize num elements of type T.
T* allocate (size_t num, const void* = 0) � 1
{

// Print message and allocate memory with global new.
cerr << “allocate “ << num << “ element(s)”

<< “ of size “ << sizeof(T) << std::endl;
T* ret = (T*)(::operator new(num*sizeof(T)));
cerr << “ allocated at: “ << (void*)ret << std::endl;
return ret;

}

// Initialize elements of allocated storage p with value value.
void construct (T* p, const T& value) � 2
{

// Initialize memory with placement new.
new((void*)p)T(value);

}

// Destroy elements of initialized storage p.
void destroy (T* p) � 3
{

// Destroy objects by calling their destructor.
p->~T();

}
(continued)

60_57986x ch50.qxd 1/26/05 4:15 PM Page 299

Technique 50: Overriding the Allocator for a Collection Class300

LISTING 50-1 (continued)
// Deallocate storage p of deleted elements.
void deallocate (T* p, size_t num) � 4
{

// Print message and deallocate memory with global delete.
cerr << “deallocate “ << num << “ element(s)”

<< “ of size “ << sizeof(T)
<< “ at: “ << (void*)p << std::endl;

::operator delete((void*)p);
}

};

// Return that all specializations of this allocator are interchangeable.
template <class T1, class T2>
bool operator== (const MyAlloc<T1>&,

const MyAlloc<T2>&) throw() {
return true;

}
template <class T1, class T2>
bool operator!= (const MyAlloc<T1>&,

const MyAlloc<T2>&) throw()
{

return false;
}

#endif

because it could be reused in the container
later on. Instead, it simply invokes the
destructor directly for the class.

� deallocate, shown at � 4. This method frees
up the allocated block that was allocated in
the allocate method. Once again, we added
some diagnostics here.

3. Save and close the source file in the editor.

4. In the code editor, create a new file to hold the
code for the source file of the technique.

In this example, the file is named ch50.cpp,
although you can use whatever you choose.
This file will contain the test code for using the
allocator.

5. Type the code from Listing 50-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

The listing above does not actually do anything;
it simply implements the class definition for our
allocator. We have overriden four methods that
really matter here:

� allocate, shown at � 1. This method is
called to specifically allocate a block of mem-
ory. In our case, we simply return a block
of memory while printing some diagnostic
information.

� construct, shown at � 2. This method is
called to create a new object given a block of
memory. Fortunately, C++ allows for a special-
ized version of the new operator, called the in-
place new that allows you to construct an
object within a pre-allocated block. This
allows us to use the block allocated by the
allocate method.

� destroy, shown at � 3. This method is not
intended to de-allocate the block of memory,

60_57986x ch50.qxd 1/26/05 4:15 PM Page 300

Creating a Custom Memory Allocator 301

LISTING 50-2: THE TEST DRIVER FOR THE CUSTOM ALLOCATOR

#include <vector>
#include “Allocator.h”

class MyBuffer
{
private:

char *_buffer;
int _length;

virtual void Init()
{

setBuffer(NULL);
setLength(0);

}
virtual void Message(const char *msg)
{

cout << “MyBuffer: “ << msg << endl;
}

public:
MyBuffer(void)
{

Message(“Void Constructor”);
Init();

}
MyBuffer(int length, const char
*inBuffer)

{
Message(“Full Constructor”);
setLength(length);
setBuffer(inBuffer);

}
MyBuffer(const MyBuffer& aCopy)
{

Message(“Copy Constructor”);
setLength (aCopy.getLength());
setBuffer(aCopy.getBuffer());

}
virtual ~MyBuffer(void)
{

Message(“Destructor”);
if (_buffer)

delete [] _buffer;
}

MyBuffer operator=(const MyBuffer&
aCopy)

{
Message(“operator=”);
setLength (aCopy.getLength());

setBuffer(aCopy.getBuffer());
return *this;

}
virtual void setLength(int length)
{

_length = length;
}
virtual void setBuffer(const char
*buffer)

{
if (buffer)
{

_buffer = new
char[strlen(buffer)+1];

memcpy(_buffer, buffer,
strlen(buffer));

}
else

_buffer = NULL;
}
virtual int getLength(void) const
{

return _length;
}
virtual const char *getBuffer(void)
const

{
return _buffer;

}
};

int main()
{

std::vector<MyBuffer, MyAlloc<MyBuffer>
> myVector;

const char *s1 = “Hello world”;
const char *s2 = “Goodbye cruel world”;
const char *s3 = “Hello again world”;

MyBuffer m1(strlen(s1), s1);
MyBuffer m2(strlen(s2), s2);
MyBuffer m3(strlen(s3), s3);

myVector.insert(myVector.end(), m1);
myVector.insert(myVector.end(), m2);
myVector.insert(myVector.end(), m3);

}

60_57986x ch50.qxd 1/26/05 4:15 PM Page 301

Technique 50: Overriding the Allocator for a Collection Class302

The display shows the allocator doing its job,
telling us just when everything is being allocated
and destroyed. The messages we placed in the
constructor are printed out (seen at � 5) from
the construction in our main program. The allo-
cator memory allocation is shown at � 6. This
corresponds to the call to insert in the vector
called myVector in the main function. As each item
is placed into the array, a new object is allocated
by the allocate method and then the object is
copied into that block, as shown at � 7. Finally,
the vector goes out of scope and the deallocate
method is called, as shown at � 8. This calls the
destructors for the class, as shown in the output.

Always build a debugging version of allocation
(with diagnostic printouts) for your programs
so you can track memory leaks (and overall
memory usage).

Our test driver simply exercises some of the
more basic constructs of a container, creating a
few new objects and adding them to a vector.
The vector is destroyed when it goes out of
scope. We added some diagnostic print messages
to illustrate when the various pieces of code in
the MyBuffer class are called.

6. Save the source file in the editor and close the
editor application.

7. Compile the application with the compiler of
your choice on your favorite operating system.

If you have done everything right, you should get
something similar to the output shown in Listing 50-3
when you run the program in your console window.

LISTING 50-3: OUTPUT FROM THE TEST DRIVER

$./a.exe
MyBuffer: Full Constructor � 5
MyBuffer: Full Constructor
MyBuffer: Full Constructor
allocate 1 element(s) of size 12 � 6
allocated at: 0xa050768
MyBuffer: Copy Constructor
allocate 2 element(s) of size 12
allocated at: 0xa050788
MyBuffer: Copy Constructor
MyBuffer: Copy Constructor
MyBuffer: Destructor
deallocate 1 element(s) of size 12 at:

0xa050768
allocate 4 element(s) of size 12
allocated at: 0xa0507d0
MyBuffer: Copy Constructor � 7
MyBuffer: Copy Constructor
MyBuffer: Copy Constructor
MyBuffer: Destructor
MyBuffer: Destructor
deallocate 2 element(s) of size 12 at:

0xa050788 � 8
MyBuffer: Destructor
MyBuffer: Destructor
MyBuffer: Destructor
MyBuffer: Destructor
MyBuffer: Destructor
MyBuffer: Destructor
deallocate 4 element(s) of size 12 at:

0xa0507d0

60_57986x ch50.qxd 1/26/05 4:15 PM Page 302

51
Using the auto_ptr
Class to Avoid
Memory Leaks

There are numerous products on the market for detecting and
resolving memory leaks. And in this book, I have included several
techniques for discovering memory leaks as well. However, the

best way to handle memory leaks is to not have them in the first place.
Defensive programming techniques can avoid memory-leak problems and
save you immense amounts of time and trouble in the long-run.

Rather than try to find and fix problems as they occur, you’d be bet-
ter off utilizing techniques that avoid the problem in the first place.
This way you have more time to spend on solving problems directly
related to user interaction and needs and less time to worry about
trivial problems that must be fixed before you can get to those issues.

One of the most insidious memory leak issues is that of pointers that
are overwritten or failed to de-allocate. If a pointer is not de-allocated, a
memory leak will occur. If enough memory leaks occur, your program will
not be able to allocate new memory and will likely crash. With overwrit-
ten pointers, the memory that they point at is not the same memory that
was allocated. As a result, the original memory is not de-allocated, which
causes the memory leak problem. Alternatively, the overwritten pointer
may point at something important in memory, and when it is dereferenced
and used to modify that memory, it will cause a program crash. The STL
provides a wonderful tool for avoiding this particular problem: the
auto_ptr class. This class ensures that a pointer is always deleted when
its work is done, even if it has been copied over, ignored, or transferred
to an orphan object. This technique explores how to use the auto_ptr
class to avoid problems in your own code.

Using the auto_ptr Class
The auto_ptr class makes code cleaner by removing the need to check for
allocations and de-allocations of objects all over your code. Let’s look at
the steps necessary to use the auto_ptr class in your own code. Essentially,
there is only one real “step” involved, which is to wrap an allocated pointer
in an auto_ptr template object. We will see how the object is allocated and
then freed when the auto_ptr template object goes out of scope.

Technique

Save Time By
� Preventing memory leaks

caused by overwritten
pointers

� Introducing the auto_ptr
class

� Implementing the
auto_ptr class

� Interpreting the output

61_57986x ch51.qxd 1/26/05 4:14 PM Page 303

Technique 51: Using the auto_ptr Class to Avoid Memory Leaks304

}
static void report()
{

cout << “Tracker Class:” << endl;
cout << “Allocations: “ << _alloca-
tions << endl;

cout << “Frees: “ << _frees << endl;
}

};

int Tracker::_allocations = 0;
int Tracker::_frees = 0;

void func1()
{

Tracker t1;
Tracker *t2 = new Tracker();
Tracker t3 = *t2;
Tracker t4 = t1;

t2 = new Tracker(); � 1
}

void func2() � 2
{

Tracker t1;
auto_ptr<Tracker> t2(new Tracker);
Tracker t3 = *t2;
Tracker t4 = t1;

t2.reset(new Tracker);
}

void call_an_exception_function()
{

throw 1;
}

void func3() � 3
{

Tracker *t = new Tracker;

call_an_exception_function();

delete t;
}

void func4()
{

auto_ptr<Tracker> t(new Tracker); � 4

1. In the code editor of your choice, create a new
file to hold the code for the technique.

In this example, the file is named ch51.cpp,
although you can use whatever you choose. This
file will contain the source code for our classes.

2. Type the code from Listing 51-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 51-1: USING THE AUTO_PTR CLASS WITH YOUR OWN

FUNCTIONS

#include <iostream>
#include <memory>

using namespace std;

class Tracker
{
private:

static int _allocations;
static int _frees;

public:
Tracker(void)
{

_allocations ++;
}
Tracker(const Tracker& aCopy)
{

_allocations ++;
}
~Tracker()
{

_frees ++;
}

static int Allocations()
{

return _allocations;
}
static int Frees()
{

return _frees;
}
static void reset()
{

_allocations = 0;
_frees = 0;

61_57986x ch51.qxd 1/26/05 4:14 PM Page 304

Using the auto_ptr Class 305

call_an_exception_function();
}

int main(void)
{

cout << “Running function 1:” << endl;
func1();
Tracker::report(); � 5
Tracker::reset(); � 6

cout << endl;
cout << “Running function 2:” << endl;
func2();
Tracker::report();
Tracker::reset();

cout << endl;
cout << “Running function 3:” << endl;
try
{

func3();
}
catch (...)
{
}

Tracker::report();
Tracker::reset();

cout << endl;
cout << “Running function 4:” << endl;
try
{

func4();
}
catch (...)
{
}

Tracker::report();

}

Our test code illustrates two separate ways in
which memory can be leaked:

� You can forget to de-allocate a pointer,
as shown in the func1 function at � 1.
In this case, we are simply allocating a new

object and never freeing the object, which cre-
ates a memory leak. The function called func2,
labeled � 2, shows the same code using an
auto_ptr class rather than a plain allocation.

� You can allocate and free an object, but
because the function calls something that
throws an exception, the de-allocation line will
never be run and a memory leak will occur.
This more subtle memory leak is shown in
function func3 at � 3. Function func4 shows
the same basic code using an auto_ptr tem-
plate instead, as shown in the line marked � 4.

3. Save the source code in your editor and close
the editor application.

4. Compile the application using your favorite
compiler on your favorite operating system.

5. Run the application in the console window.

If you have done everything right, the application
should give you the output shown in Listing 51-2.

LISTING 51-2: OUTPUT FROM THE AUTO_PTR TEST PROGRAM

$./a.exe
Running function 1:
Tracker Class:
Allocations: 5
Frees: 3

Running function 2:
Tracker Class:
Allocations: 5
Frees: 5

Running function 3:
Tracker Class:
Allocations: 1
Frees: 0

Running function 4:
Tracker Class:
Allocations: 1
Frees: 1

61_57986x ch51.qxd 1/26/05 4:14 PM Page 305

Technique 51: Using the auto_ptr Class to Avoid Memory Leaks306

As you can see from the output, the class Tracker
tracks how many times the various constructors are
called, and how many times the destructor is called
in each run. The report is done via the Tracker
class report method, as shown in Listing 51-1 at � 5.
Note that we reset the count each time, using the
reset function as shown at � 6. In an ideal situation,
with no memory leaks, the numbers for allocations
and frees should be the same. For functions func1
and func3, the allocation and free numbers are not
the same, indicating a memory leak. For functions
func2 and func4, the auto_ptr cases, the allocations
and frees match up, indicating that there was no
memory leak.

The functions we invoke here (func1, func2, func3,
and func4) show the various ways in which memory
can be leaked in an application. As you can see, the
“normal” way of doing things results in numerous
insidious memory leaks that are hard to track down.
Compare the auto_ptr cases, which, even with
exceptional events, always free their memory.

Rules for using the auto_ptr class
There are no free lunches in the programming world, and
the auto_ptr class is no exception to that rule. There are
certain times you should not use an auto_ptr, and certain
rules you must understand — such as the following:

� You cannot use auto_ptrs in standard template
collections such as the STL. Because the STL does
not follow the standard rules for copying objects,
auto_ptrs will not be destroyed properly. The
designers of the STL made this choice and actually
created templates that would not compile with
auto_ptrs.

� If you copy an auto_ptr, you must not use the orig-
inal again, as the pointer is transferred from one
object to the other.

� The copy constructor for an auto_ptr is completely
different than the copy constructor for a normal
object or pointer. Do not treat them equivalently.
Auto_ptr copy constructors transfer control of the
pointer they contain, they do not make copies of it.

Other than that, the class is really a godsend for program-
mers. When you are working with pointers, use the
auto_ptr class early and often in your programming
applications.

61_57986x ch51.qxd 1/26/05 4:14 PM Page 306

52
Avoiding Memory
Overwrites

Memory overwrites are a bane of the C++ programmer. A memory
overwrite occurs when you write to an area outside an allocated
block. This is bad, since you are writing to a block of memory

that you may or may not own, but certainly did not intend to modify. For
example, if we have a C++ statement that says

char line[10];

and we then write something that says

line[11] = ‘a’;

we have overwritten a valid part of memory and might cause problems in
the application later on. Unfortunately, memory overwrites like this are
somewhat hard to track down without specialized tools and software.
Alternatively, of course, you can simply avoid writing outside the valid
bounds of an array or allocated block, but that is a bit easier said than
done. The real problem here is that when we write to position 11 of the
ten-block array, we have overwritten something in memory. That some-
thing could be another variable, it could be the return address for a func-
tion, or it could be a pointer that was previously allocated. None of these
are good things. You need to stay within the memory allotment that you
have requested for a memory block.

This technique looks at a way to use the C++ coding concepts to protect
the data we are working with from being overwritten. This is a basic con-
cept of encapsulation in C++: If you have data, you need to make sure that
the data is used properly. That means not assigning values outside a valid
range; it also means not overwriting bounds that have been established.

Creating a Memory Safe Buffer Class
The most common memory overwrite case occurs when strings are
copied and assigned values. This error, which typically shows up with
the use of the C functions strcpy and memcpy, occurs because the func-
tions do not “know” how big a string is, so they cannot protect against

Technique

Save Time By
� Understanding memory

overwrites

� Preventing memory
overwrites in arrays and
allocated blocks

� Protecting your data

� Interpreting the output

62_57986x ch52.qxd 1/26/05 4:14 PM Page 307

Technique 52: Avoiding Memory Overwrites308

1. In the code editor of your choice, create a new
file to hold the code for the technique.

In this example, the file is named ch52.cpp,
although you can use whatever you choose. This
file will contain the source code for our classes.

2. Type the code from Listing 52-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

the string boundaries being overwritten. In order to
fix this problem, we will create a class that under-
stands its own boundaries and only allows the cor-
rect number of characters to be written to or copied
into the object. In this way, we will create a generic
buffer class that can be safely used to store strings
in all of your applications, saving you time in imple-
menting the class and in debugging memory over-
writes. Here’s how:

LISTING 52-1: THE BUFFER CLASS

#include <iostream>
#include <fstream>

using namespace std;

class Buffer
{
private:

char *_buffer;
long _length;

virtual void Init()
{

_buffer = NULL;
_length = 0;

}
virtual void Clear()
{

if (_buffer)
delete [] _buffer;

Init();
}

public:
Buffer(void)
{

Init();
}
Buffer(const char *buffer, int length)
{

Init();
SetBuffer(buffer, length);

}
Buffer (int length)
{

_buffer = new char[length];
_length = length;
set(0);

}
Buffer(const Buffer& aCopy)

62_57986x ch52.qxd 1/26/05 4:14 PM Page 308

Creating a Memory Safe Buffer Class 309

{
Init();
SetBuffer(aCopy._buffer, aCopy._length);

}
virtual ~Buffer()
{

if (_buffer)
delete [] _buffer;

}
Buffer operator=(const Buffer& aCopy)
{

Clear();
SetBuffer(aCopy._buffer, aCopy._length);
return *this;

}
Buffer operator=(const char *buffer)
{

Clear();
SetBuffer(buffer, strlen(buffer));
return *this;

}
char& operator[](int index)
{

if (index < 0 || index >= _length)
throw “Buffer: Index out of range”; � 4

return _buffer[index];
}
Buffer operator()(int st, int end)
{

// Validate the pieces.
if (st < 0 || st >= _length)

throw “Buffer: Start index out of range”;
if (end < 0 || end >= _length)

throw “Buffer: End index out of range”;
Buffer b(_buffer+st, end-st+1);
return b;

}

void set(char c)
{

for (int i=0; i<_length; ++i)
_buffer[i] = c;

}

virtual void SetBuffer(const char *buffer, int length)
{

_buffer = new char[length];
for (int i=0; i<length; ++i)

_buffer[i] = buffer[i];
_length = length;

}
void empty()

(continued)

62_57986x ch52.qxd 1/26/05 4:14 PM Page 309

Technique 52: Avoiding Memory Overwrites310

LISTING 52-1 (continued)
{

set(0);
}
int Length() const
{

return _length;
}

};

ostream& operator <<(ostream& out, Buffer &b)
{

for (int i=0; i<b.Length(); ++i)
out << b[i];

return out;
}

void func1() � 1
{

char *buffer = new char[10];
strcpy(buffer, “This is a really long string”);
cout << “Func1: [1]” << buffer << endl;
memset(buffer, 0, 11);
cout << “Func1: [2]” << buffer << endl;
strcpy(buffer, “This is a short string”);
buffer[12] = 0;
cout << “Func1: [3]” << buffer << endl;

}

void func2() � 2
{

Buffer b(10);
try
{

b = “This is a really long string”;
cout << “Func2: [1]” << b << endl;
b.set(0);
cout << “Func2: [2]” << b << endl;
b[12] = 0;
cout << “Func2: [3]” << b << endl;

}
catch (...) � 3
{

printf(“Exception caught\n”);
}

}

int main()
{

func1();
func2();

}

62_57986x ch52.qxd 1/26/05 4:14 PM Page 310

Creating a Memory Safe Buffer Class 311

The two functions shown above illustrate the
memory overwrite problem, first as addressed
by the standard C++ allocation of arrays (func1,
shown at � 1) and then using our Buffer class to
handle the problem (func2, shown at � 2). In
each case, we allocate a character buffer of ten
characters. In the func1 case, we then copy a
string that is much longer than ten characters
into the buffer. This causes a memory overwrite
and could easily crash your program. However,
because standard C++ has no way of detecting
this, you will not see the problem immediately. In
the second case, func2, we are using our Buffer
class, which detects the problem as soon as you
try to copy the larger string into the small allo-
cated buffer and report it.

3. Save the source code in your code editor and
close the editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the application in the console window.

If you have done everything right, you should see
something similar to this output from the application:

$./a.exe
Func1: [1]This is a re1
Func1: [2]
Func1: [3]This is a sh
Func2: [1]This is a really long string
Func2: [2]
Func2: [3]

Note that you may see different output on different
operating systems, depending on how the error
occurs and whether or not it is visible. For func1,
we see that the string does not get set to what we
expect it to. You might see the string “This is a really
long string” which would be even worse. In the func2
case, however, we never assign the strings that are
too long, because an exception is thrown and the
code properly handles it.

As you can see, in the “pure” C-style access code
(shown at � 1), there are no checks to see whether
the programmer overwrites the buffer that is allo-
cated. Obviously, in your own code it would not be
quite as straightforward to find the problem. There
do not appear to be any problems with the code
here; everything prints out and continues process-
ing properly. However, damage has been done to
structures in memory — and these might or might
not show up as program crashes. Worse, you might
give the user incorrect output upon which they may
make invalid decisions.

In the second case, C++ style (shown at � 2), you can
see that the code protects against overwrites and
throws an exception (shown at the line marked � 4

and caught at the line marked � 3) when an invalid
write occurs. This allows the programmer to imme-
diately find where the problem happened and to fix
it quickly and easily.

62_57986x ch52.qxd 1/26/05 4:14 PM Page 311

Throwing, Catching,
and Re-throwing
Exceptions

C++’s exception handling ability is a feature that differentiates it from
virtually all older programming systems. As with Java, C#, and other
modern programming languages, C++ offers the ability to jump out

of the middle of a block of code when an exceptional event occurs.

The concept of an exception handling is really quite simple. In older pro-
gramming languages, when errors occurred, an error code was sent to
the calling application, which could — and often did — simply ignore it.
Exception handling changes this. It forces the application developer to
consider in advance what could go wrong in the lower-level code, and to
provide routines to contend with any errors that crop up. Now when an
error — that is, an exception — occurs, the program passes control to the
appropriate predefined routine. Error handling ensures that errors aren’t
ignored; they’re dealt with.

This technique takes a closer look at throwing and catching exceptions.
First, we examine throwing an exception and logging it in a generic fashion.
Logging errors is important because it allows you to provide a complete
debugging log that can be used to see what went wrong when a problem
occurs. This will save you time and effort in debugging your application,
and results in better code for the end-user.

Throwing and Logging Exceptions
In order to best understand how to use exception handling in your own
applications, let’s look at a simple example of throwing exceptions in
which those exceptions are logged to an output error file that can be used
for debugging purposes. To do this, we will need two different types of
classes.

� We need a class to hold the information about what went wrong. This
class will contain the line number where the error occurred and infor-
mation detailing the nature of the error.

� We need a class that will manage the process of catching the exception
and logging the information into an error log.

Save Time By
� Understanding exception

handling

� Throwing and logging
exceptions

� Dealing with unhandled
exceptions

� Re-throwing exceptions

� Understanding structured
exception handling

53Technique

63_57986x ch53.qxd 1/26/05 4:13 PM Page 312

Throwing and Logging Exceptions 313

The following steps show you how this is done:

1. In the code editor of your choice, create a new
file to hold the code for the technique.

In this example, the file is named ch53.cpp,
although you can use whatever you choose. This
file will contain the source code for our classes.

2. Type the code from Listing 53-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 53-1: THE EXCEPTION HANDLING CLASSES

#include <iostream>
#include <string>
#include <fstream>
#include <stdio.h>

using namespace std;

class ExceptionClass � 1
{

string _message;
string _file;
long _line;

public:
ExceptionClass(void)
{

_message = “Unknown Exception”;
}
ExceptionClass(const char *msg, const char *fileName, long lineNo)
{

_message = msg;
_file = fileName;
_line = lineNo;

}
ExceptionClass(const ExceptionClass& aCopy)
{

_message = aCopy._message;
_file = aCopy._file;
_line = aCopy._line;

}

void setMessage(const char *msg, const char *fileName, long lineNo)
{

_message = msg;
_file = fileName;
_line = lineNo;

}
(continued)

63_57986x ch53.qxd 1/26/05 4:13 PM Page 313

Technique 53: Throwing, Catching, and Re-throwing Exceptions314

LISTING 53-1 (continued)
virtual string Report(void) const
{

string out;
out = “Exception reported in file “;
out += _file.c_str();
out += “ at line “;
out += _line;
return out;

}
virtual ostream& Report(ostream& out) const
{

out << “Exception reported in file “ << _file.c_str() << “ at line “ << _line << endl;
out << _message.c_str() << endl;
return out;

}
};

class ExceptionCatcher � 2
{
private:

string _message;
ofstream _logFile;
string _fileName;

public:
ExceptionCatcher(void)
{

string msg = “Startup”;
LogMessage(msg);

}
ExceptionCatcher(const char *fileName)

: _logFile(fileName)
{

string msg = “Startup”;
msg += “ [“;
msg += fileName;
msg += “]”;
LogMessage(msg);

}
ExceptionCatcher(const ExceptionCatcher& aCopy)

: _logFile (aCopy._fileName.c_str())
{

_fileName = aCopy._fileName;
_message = aCopy._message;
string msg = “Startup”;
msg += “ [“;
msg += _fileName;
msg += “]”;
LogMessage(msg);

63_57986x ch53.qxd 1/26/05 4:13 PM Page 314

Throwing and Logging Exceptions 315

}
ExceptionCatcher(const ExceptionClass& exception)
{

_message = exception.Report();
}
virtual ~ExceptionCatcher()
{

string msg = “Shutdown”;
LogMessage(msg);

}
virtual void LogMessage(string msg)
{

if (!_logFile.fail())
_logFile << msg.c_str() << endl;

}
virtual void LogMessage(const ExceptionClass& exception)
{

if (!_logFile.fail())
{

exception.Report(_logFile);
}

}
};

void process_option(int x)
{

if (x < 2 || x > 8)
throw “Invalid Input to process_option”;

int z = 10 / x;

cout << “Properly processed option “ << x << endl;
}

int func1(int x)
throw(ExceptionClass)
{

ExceptionClass ec;
try
{

switch (x)
{

case 0:
cout << “You selected the first option” << endl;
break;

case 1:
cout << “You selected the second option” << endl;
break;

case 2:
process_option(x);

(continued)

63_57986x ch53.qxd 1/26/05 4:13 PM Page 315

Technique 53: Throwing, Catching, and Re-throwing Exceptions316

LISTING 53-1 (continued)
default:

ec.setMessage(“Invalid Option”, __FILE__, __LINE__);
throw ec;

}

}
catch (const char *msg)
{

string sErr = “Unknown Error: “;
sErr += msg;
ec.setMessage(sErr.c_str(), __FILE__, __LINE__);
throw ec;

}

return 0;
}

int main(int argc, char **argv)
{

if (argc < 2)
{

cout << “Usage: ch6_9 <inputs>” << endl;
cout << “Where: inputs is a series of numbers” << endl;
return -1;

}

ExceptionCatcher catcher(“errors.log”);

// Process the inputs.
for (int i=1; i<argc; ++i)
{

int iVal = atoi(argv[i]);
try
{

func1(iVal);
}
catch (ExceptionClass& ec) � 3
{

ec.Report(cout);
catcher.LogMessage(ec);

}

catch (...)
{

cout << “Caught an exception” << endl;
}

}

return 0;
}

63_57986x ch53.qxd 1/26/05 4:13 PM Page 316

Dealing with Unhandled Exceptions 317

The purpose of this code is to illustrate how to
handle an error, log the error to an output file,
and then utilize the information in that file to see
what really went wrong. Our test driver simply
allows the user to enter several options from
the command line and then passes them to a
selector function that decides what to do based
on that input. If the input is within range, it is
processed. Otherwise, an exception object is
built indicating what problem occurred and
where. In this case, our error object will show
all times in which the user entered a value out-
side the valid range. To do this, we use the
ExceptionClass class, shown at � 1. This class
simply holds the error information, and allows
the application to retrieve it. It also provides a
reporting function to format the information in a
user readable way and to print it out. The second
class, the ExceptionCatcher (shown at � 2) just
takes the information from the ExceptionClass
object and prints it to the file specified in its con-
structor. Note that when an error occurs, it is
propagated up to the main program, and caught
at � 3.

3. Save the source code in your code editor and
then close the editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the application in the console window.

If you have done everything right, you should see
the following output from the application:

$./a.exe 1 2 3
You selected the second option
Properly processed option 2
Exception reported in file ch53.cpp at

line 138
Invalid Option
Exception reported in file ch53.cpp at

line 138
Invalid Option

Note that the filename shown will vary
depending on the program name you have
chosen and the operating system you are
working on.

In addition, you will have a file in your file system
called errors.log. This file should contain the fol-
lowing entries in it:

$ cat errors.log
Startup [errors.log]
Exception reported in file ch53.cpp at

line 138
Invalid Option
Exception reported in file ch53.cpp at

line 138
Invalid Option
Shutdown

The output above indicates that there were errors
detected in the program, which is to be expected
because we gave the input invalid values. For the
values that were understood, the message Properly
processed option followed by the option number is
displayed. For all other values, an exception is gen-
erated and the error Invalid Option is displayed.

Dealing with Unhandled
Exceptions
Exception handling is a good thing, but sometimes
an exception type pops up that you were not expect-
ing. This is particularly problematic when you’re
working with third-party libraries that either change
over time or poorly document the exception types
they throw. There is obviously nothing you can do
about an exception type that you know nothing
about — but you can at least stop your program
from behaving badly when one is thrown.

The following steps show you an example of an
exception that isn’t handled properly (a divide-
by-zero error) and how you can use the built-in

63_57986x ch53.qxd 1/26/05 4:13 PM Page 317

Technique 53: Throwing, Catching, and Re-throwing Exceptions318

1. In the code editor of your choice, reopen the
source file to hold the code for the technique.

In this example, the file is named ch53.cpp,
although you can use whatever you choose.

2. Add the code from Listing 53-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

set_terminate function to deal with it before it can
lead to memory leaks and the like in your applica-
tion. The set_terminate function defines a user-
implemented function that will be called before
the program exits. This function can be used to
de-allocate any allocated blocks of memory or to
close any open files or to do any other last minute
handling that needs to be done to make your pro-
gram shut down cleanly.

LISTING 53-2: USING SET_TERMINATE IN YOUR APPLICATION

int *gAllocatedBuffer = NULL;

void term_func()
{

cout << “term_func() was called by terminate().\n”;

// Do our global cleanup here.
delete [] gAllocatedBuffer;

// We MUST call exit, because the terminate routine will abort
// otherwise.
exit(-1);

}

int func2(void)
{

set_terminate(term_func);
try
{

int i = 10;
int j = 0;
int x = 0;

if (j != 0)
x = i / j; � 4

else
throw “Error: Division by Zero!”;

}
catch (ExceptionClass& ec)
{

cout << “Exception Caught” << endl;
}

}

63_57986x ch53.qxd 1/26/05 4:13 PM Page 318

Re-throwing Exceptions 319

Also, remember to add a call to func2 in your
main function so that we can look at the output
of the program. After you do this, you will see
that when the func2 function is invoked, it
causes a divide-by-zero error (shown at � 4

in Listing 53-2), which would normally crash
the program without freeing the allocated
gAllocatedBuffer memory block back to the
operating system. Instead, we check for the
error, throw an exception that is caught by the
compiler-generated code, and then call the termi-
nation function.

Note that we are throwing an exception that con-
tains a character string, but catching only the
exceptions of type ExceptionClass. The two will
not match — which means the code for catching
the exception will be bypassed.

3. Save the source code in your code editor and
then close the editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the application in the console window.

If you have done everything right, you should see
the following output from the application:

$./a.exe 1 2 3
You selected the second option
Properly processed option 2
Exception reported in file ch6_9.cpp at

line 138
Invalid Option
Exception reported in file ch6_9.cpp at

line 138
Invalid Option
term_func() was called by terminate().

Note that the term_func was called because an
unhandled exception was generated by the code and
never caught by the application code. If we did not
install our own termination function, the program
would simply exit and you would never see the
term_func function call in the output.

Re-throwing Exceptions
One of the most annoying things about traditional
error handling in C and C++ is that it forces you to
lose a lot of lower-level information. For example, if
you call a function to read a record, which in turn
calls a function to move to the record in the file,
which in turn calls a function to seek to the offset in
the file (which causes an error), some potentially
useful lower-level information (the fact that the off-
set was invalid) is lost at the top level. All you know
is that the function to read a record failed, and possi-
bly that it failed in the move routine. You still have
to sit down with a debugger and step all the way
down into the lowest-level functionality to see what
really happened in the code. We can fix this by
chaining errors from the lowest level to the upper-
most level of an application. This chaining effect is
accomplished by rethrowing exceptions.

Exception handling is a sure way to make sure
that an error is handled in an application. If
you design your application (from the ground
up) to use exception handling, you save time
later on by simplifying the debugging and
maintenance phase of the system.

With exception handling, however, you can pass the
information up the chain so the highest-level func-
tion can report all the data for a given error from the
bottom level to the top.

In order to pass information from a lower level of the
application to a higher one, you must catch excep-
tions, append to them and rethrow them. In the fol-
lowing list, I show you exactly how you do that, from
generating the initial exception to catching it and
adding to it to pass it to a higher level.

63_57986x ch53.qxd 1/26/05 4:13 PM Page 319

Technique 53: Throwing, Catching, and Re-throwing Exceptions320

LISTING 53-3: PASSING EXCEPTIONS TO A HIGHER LEVEL

int read_file(long offset)
throw(string)

{
if (offset < 0 || offset >= 100)

throw string(“read_file: Invalid offset”); � 5
return 0;

}

int read_record(long record)
throw(string)

{
if (record < 0 || record > 10)

throw string(“read_record: invalid record number”);
long offset = record * 10;
try
{

read_file(offset);
}
catch (string msg)
{

string sMsg = “record_record: unable to go to offset\n”; � 6
sMsg += msg;
throw sMsg;

}
return 0;

}

int func3(long recno)
{

try
{

read_record(recno);
}
catch (string s)
{

cout << “func 3: Error in read:” << endl;
cout << s.c_str() << endl; � 7

}
catch (...)
{

cout << “func 3: Unknown error in read:” << endl;
}
cout << “End of func3\n”;

}

2. Add the code from Listing 53-3 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

1. In the code editor of your choice, reopen the
source file to hold the code for the technique.

In this example, the file is named ch53.cpp,
although you can use whatever you choose.

63_57986x ch53.qxd 1/26/05 4:13 PM Page 320

Re-throwing Exceptions 321

In this example, we first catch an error at the
lowest level, the read_file function, and gener-
ate an exception that is thrown to the
read_record function, as shown at � 5. This
error is then caught in the read_record function,
but the fact that the read_record function fails
trying to read the data is added and the error is
then rethrown, as shown at � 6. The error is
then caught at a higher level, in the func3 func-
tion (as shown at � 7), and the results are dis-
played for the user.

3. In the main function, modify the code to call
our new function, adding a call to func3 wher-
ever you would like in the code, as follows:

//func2();

cout << “Func3 [1]” << endl;
func3(2);
cout << “Func3 [2]” << endl;

func3(10);
cout << “Func3 [3]” << endl;
func3(20);

Note that the func2 call has been commented
out, because it exits the program. This is easy to
overlook; if your program never hits the func3
calls, it’s probably because you forgot to com-
ment out this line.

4. Save the source code as a file in your code edi-
tor and then close the editor application.

5. Compile the application using your favorite
compiler on your favorite operating system.

6. Run the application in the console window.

If you have done everything right, you should see the
output from the application as shown in Listing 53-4.

LISTING 53-4: UPDATED OUTPUT FROM THE EXCEPTION HANDLING PROGRAM

$./a.exe 1 2 3
You selected the second option
Properly processed option 2
Exception reported in file ch6_9.cpp at line 138
Invalid Option
Exception reported in file ch6_9.cpp at line 138
Invalid Option
Func3 [1]
End of func3
Func3 [2]
func 3: Error in read: � 8
record_record: unable to go to offset
read_file: Invalid offset
End of func3
Func3 [3]
func 3: Error in read:
read_record: invalid record number
End of func3

63_57986x ch53.qxd 1/26/05 4:13 PM Page 321

Technique 53: Throwing, Catching, and Re-throwing Exceptions322

As you can see from the line marked with � 8 in the
above output listing, the function func3 generates
the entire error string, rather than a simple notation
that an error occurred. From this, we can see how
much more useful it is to see the entire history of
what went wrong rather than simply that an error
occurred.

Some caveats about exception handling
While exception handling is a wonderful thing and deals
with many of the problems that are inherent in our C++
programs today, there are a few issues you should be
aware of before you leap into using it everywhere.

� Exception handling is not cheap; it costs you speed
and processing power. Every time you throw an
exception, the entire stack must be unwound, all
proper destructors called, and the proper handler
found and called.

� Exception handling can result in unintended memory
leaks if an exception is thrown at the wrong moment.
For example, consider the following:

void func(char *strIn)
{

char *buffer = new char[80];
if (strIn == NULL)
throw “Bad input”;

// Process input

delete [] buffer;
}

If you call this function with a NULL pointer, it causes
a memory leak because the buffer array is never
de-allocated.

� Never use an exception type whose copy construc-
tor could throw an exception. This includes strings,
and some STL container classes. Always make sure
that the copy constructor is exception-safe before
using it. If you do not follow this rule, you will cause
problems with recursive error handling.

� Some C++ compilers cause the exception object to be
deleted twice. Make sure that any exception class you
write is safe: Clear out all pointers in the destructor.

63_57986x ch53.qxd 1/26/05 4:13 PM Page 322

54
Enforcing Return
Codes

Failing to handle errors is the single biggest reason for program
failure — and that’s what creates the need for debugging and main-
tenance. If you eliminate the source of failures, you will give yourself

more time for developing better classes of applications and better fea-
tures for your users. In this technique, I show you how to combine return
codes with exception handling to avoid these failures.

In C++, methods and functions can return a status code that says whether
the function succeeded, failed, or was left in some in-between state. For
example, we might have a function that returns a status code indicating
where the method is in processing data. The status code returned may
look something like this:

int get_status(void)
{

switch (current_status)
{

case NotProcessing:
return –1;

case InProcessing:
return 1;

case ProcessingComplete:
return 0;

}
return –99;

}

Now, in this example, if the function returns a value of –99, obviously
something very bad is going on — because we have no idea what state
the object might have reached. Normally, if the status code were –99, we
would want to stop processing immediately — and possibly exit the pro-
gram. Unfortunately, there is no way for the developer of the function to
force the developer using the function to check the return status code to
make sure that they know something has gone wrong. Wouldn’t it be nice
if there was a way to ensure that the programmer looked at the return
code to see if it was invalid or not?

Technique

Save Time By
� Understanding the limita-

tions of return codes for
handling errors

� Combining return codes
with exception handling
to catch errors

� Interpreting the output

64_57986x ch54.qxd 1/26/05 4:13 PM Page 323

Technique 54: Enforcing Return Codes324

is some overhead involved here, due to the exception-
handling addition, but that overhead is mitigated by
the fact that the exceptions will not be thrown if the
error is properly checked.

1. In the code editor of your choice, create a new
file to hold the code for the technique.

In this example, the file is named ch54.cpp,
although you can use whatever you choose. This
file will contain the source code for our classes.

2. Type the code from Listing 54-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

As it turns out, you can make sure that the devel-
oper checked the return codes. By using the follow-
ing steps, you can force the return code to be
checked; if the code isn’t checked, you can throw an
exception. This is really the best of all possible
worlds. Exception handling is a very sure way to
force the developer to handle errors, but it also has
a large overhead in terms of processing speed and
CPU usage. Return codes, on the other hand, have
low overhead, but you can’t really be sure that the
developer will ever look at them. By combining the
two approaches, you can be absolutely sure that
errors are handled, which eliminates most of the
run-time problems that crop up for end-users. There

LISTING 54-1: THE RETURN CODE CLASS

#include <iostream>
#include <string>

using namespace std;

template < class T >
class RetValue
{

T _value; � 1
bool _checked; � 2

public:
RetValue(void)
{

_checked = false;
}
RetValue(const T& t)
{

_value = t;
_checked = false;

}
RetValue(const RetValue& aCopy)
{

_value = aCopy._value;
_checked = false;

}
virtual ~RetValue(void)
{

if (!_checked)
throw “Error: Return value not checked!!”; � 3

64_57986x ch54.qxd 1/26/05 4:13 PM Page 324

Enforcing Return Codes 325

}
bool operator==(const T& t) � 7
{

_checked = true;
return t == _value;

}
bool operator!=(const T& t)
{

_checked = true;
return t != _value;

}
bool operator <(const T& t)
{

_checked = true;
return _value < t;

}
bool operator <=(const T& t)
{

_checked = true;
return _value <= t;

}
bool operator >(const T& t)
{

_checked = true;
return _value > t;

}
bool operator >=(const T& t)
{

_checked = true;
return _value >= t;

}
operator T()
{

_checked = true;
return _value;

}
bool operator!()
{

_checked = true;
return !_value;

}
T operator&(const T& t)
{

_checked = true;
return _value & t;

}
T operator|(const T& t)
{

_checked = true;
return _value | t;

}
bool IsChecked()

(continued)

64_57986x ch54.qxd 1/26/05 4:13 PM Page 325

Technique 54: Enforcing Return Codes326

LISTING 54-1 (continued)
{

return _checked;
}
T& Value()
{

return _value;
}

};

RetValue<int> func(int iValue)
{

if (iValue == 34)
return RetValue<int>(1);

if (iValue == 35)
return RetValue<int>(2);

return RetValue<int>(0);
}

RetValue<int> func2(int iValue)
{

RetValue<int> ret = func(iValue);
if (ret)

return ret;

return RetValue<int>(0);
}

class MyReturnValue
{

string _message;
public:

MyReturnValue(void)
{

_message = “”;
}
MyReturnValue(const char *msg)
{

_message = msg;
}
MyReturnValue(const MyReturnValue& aCopy)
{

_message = aCopy._message;
}
MyReturnValue operator=(const MyReturnValue& aCopy)
{

_message = aCopy._message;
return *this;

}
string Message(void)
{

return _message;

64_57986x ch54.qxd 1/26/05 4:13 PM Page 326

Enforcing Return Codes 327

}
string operator=(const string& msg)
{

_message = msg;
return _message;

}
bool operator==(const MyReturnValue& aValue)
{

return _message == aValue._message;
}
bool operator<(const MyReturnValue& aValue)
{

return _message < aValue._message;
}

};

int main()
{

try
{

if (!func(34)) � 4
printf(“Success!!\n”);

if (func(35) & 2) � 5
printf(“Error 35\n”);

RetValue<int> t1 = 5;
int x = 5;
int y = 3;
printf(“5 == 5? %s\n”, t1 == x ? “Yes” : “No”);
printf(“5 == 3? %s\n”, t1 == y ? “Yes” : “No”);
int iVal = t1;

printf(“Calling func2\n”);
func2(34); � 6

}
catch (...)
{

printf(“Exception!\n”);
}

try
{

RetValue<MyReturnValue> rv1 = MyReturnValue(“This is a test”);
MyReturnValue rv = rv1;
string s = rv.Message();
printf(“Return Value: %s\n”, s.c_str());

}
catch (...)
{

printf(“Exception in MyReturnValue\n”);
}

return 0;
}

64_57986x ch54.qxd 1/26/05 4:13 PM Page 327

Technique 54: Enforcing Return Codes328

template object, such as func2, is called, as shown
at � 6, and the return value is not checked, there
will be an exception generated.

As you can see, if the user does not choose to check
a return value, the destructor for the class throws an
exception when the object goes out of scope. This
forces the application developer to deal with the
problem, one way or the other. If the developer does
not handle the exception, it terminates the program.
If the developer does handle the exception, he will
immediately realize where the return code was not
handled.

What’s especially handy about this technique is that
it also illustrates how you can override virtually
every possible comparison operation for an object
(such as the operator== shown at � 7). By checking
the various operations, we know whether the user
did something like this:

if (method_with_return_code() ==
BadReturn)

{
}

instead of something like this:

int myRet = method_with_return_code();

In the first case, the user is actually checking to see
if the value was equal to something. In the second
case, they are assigning the value to another vari-
able that might never be checked. By looking at how
the user accesses our return value, we can know
whether they really checked the return code or not.
This is where the overloaded operators come in; we
set the checked flag in the overloaded operator and
therefore we know whether the result was really
looked at.

In addition, you have to worry about things like
passing return codes up the chain from low-level
methods to higher level ones. If the user makes a
copy of the object to add a result or check the

The base class here, RetValue, implements a
templated return code class that can accept any
sort of data to use as the “real” return code for
functions and methods. This code is stored in the
class as a member variable, as shown at � 1.
Below that is another member variable called
checked, which is used to see whether or not the
return code has ever been compared to anything.
(See � 2.) The user can trigger this by compar-
ing the value of the return code using any of the
standard boolean operators (such as equal, not
equal, less than, greater than, and so forth). After
any of these operators is used, the return code
knows that the developer using the return code
has checked it in some way, and allows the pro-
gram to continue. If the return code object goes
out of scope without the error being checked, an
exception will be thrown, as shown at � 3.
Because the class is templated, you can store
anything you want in the class member data. We
illustrate this by creating our own class, called
MyReturnValue and returning it from a function.

3. Save the source code in your code editor and
then close the editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the application in the console window.

If you have done everything right, you should see
the following output from the application:

$./a.exe
Error 35
5 == 5? Yes
5 == 3? No
Calling func2
Exception!
Return Value: This is a test

The output from this little test program shows that
when we check an error, such as the not (!) operator
comparison at � 4 or the logical and (&) operator
at � 5, there is no exception generated by the code.
However, if a function that returns a RetValue

64_57986x ch54.qxd 1/26/05 4:13 PM Page 328

Enforcing Return Codes 329

current result, we want to know about it. They might
then pass a copy of the object to a higher level call-
ing routine. The copy constructor for the class is a
bit different from others you may have seen or
coded; it does not simply assign all of the member
variables to be the same as the object it copies.
Instead, it copies the value of the return code, and
then makes sure that the flag indicating that the
return value was checked is reset to unchecked,

because otherwise the user could simply copy the
object into another return code and never look at
the “real” status value.

Make sure that the errors you return to the
user are as descriptive as possible, including as
much information as you can. After all, you
want your users to be able to actually do
something about the trouble.

64_57986x ch54.qxd 1/26/05 4:13 PM Page 329

Save Time By
� Using wildcard charac-

ters to search

� Implementing a class that
uses wildcard characters

� Testing your wildcard
class

Using Wildcards

If you have ever searched for files on a computer, you have probably
used wildcards. Wildcards, in this sense, are characters used in search
strings that stand not for themselves but for a broad range of charac-

ters. The idea of finding all of the files that match a given pattern is
rather common in the computer world. So is the idea of searching files
for strings that match wildcard patterns. For example, if you must find a
file but can’t quite recall the name of that file — all you remember is that
it began with the word convert or conversion or something similar —
using a wildcard would be a great solution. Searching for the word con-
vert only pulls up files that began with that specific word. Searching for
conv*, on the other hand, gives you a much broader selection of files. The
asterisk (*) wildcard character represents any group of zero or more
characters. This means the resulting list from your search would include
files that began with conv and then ended in any group of zero or more
characters, such as

Convert
Conversion
Conversation

and the like.

Because they match zero or more characters, asterisks are useful wild-
cards, but they have their limitations. Using the asterisk, the pattern A*B
matches AB, AbasdhB, and AbB. It does not match ABC nor AajhaBajksjB.

Wildcards represent a powerful capability that finds all the words that
match a given root. Even better, wildcards also allow you to match words
when you aren’t quite sure of the spelling. For example, what if you’re
looking for the word conscious, but you can’t recall how to spell it —
does it have an s in the middle or not? Wildcards allow you to search for
the term anyway; you just search for con?cious. The question mark (?)
wildcard represents any single character (or none at all); the pattern A?B

55Technique

65_57986x ch55.qxd 1/26/05 4:12 PM Page 330

Creating the Wildcard Matching Class 331

matches both AB and AbB. So the expression con?cious
matches the word conscious whether or not it
included an s in that position.

Often users want to be able to use wildcards
to filter data. If you give them this capability,
you can save yourself a lot of time in support-
ing them. Appropriately used, wildcards can
help make life a bit easier for everyone.

The question-mark and asterisk characters are com-
mon wildcards — but not the only ones. In the SQL
language, for example, you use a percent sign (%)
instead of an asterisk to match multiple characters.
For this reason, when you design a class that per-
mits wildcards in search strings, you should allow
that information to be configurable. The purpose of
this technique is to show you how to create a class
that performs matching with wildcards. This class
can be used to quickly and easily add pattern match-
ing functionality to your application, which saves
you time and effort in developing quality software
that users really want.

Creating the Wildcard
Matching Class
In order to best utilize wildcard matching in your
application, you should encapsulate the functional-
ity for matching strings into a single class. That class
will handle both the jobs of storing the match char-
acters (such as an asterisk or question mark) and
determining if the two strings match. Let’s develop
such a class and a test driver to illustrate how it is
used. Here’s how:

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch55.cpp,
although you can use whatever you choose.

2. Type the code from Listing 55-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 55-1: THE MATCH CLASS

#include <iostream>
#include <string>

using namespace std;

class Match
{
private:

char _MatchMultiple;
char _MatchSingle;
string _pattern;
string _candidate;

protected:

bool match(const char *pat, const char *str)
{

if (*pat == ‘\0’)
return !*str;

else
if (*pat == _MatchMultiple)

return match(pat+1, str) || (*str && match(pat, str+1));
(continued)

65_57986x ch55.qxd 1/26/05 4:12 PM Page 331

Technique 55: Using Wildcards332

LISTING 55-1 (continued)
else

if (*pat == _MatchSingle)
return *str && (match(pat+1, str+1) || match(pat+1, str));

return (*str == *pat) && match(pat+1, str+1);
}

public:
Match(void)
{

_MatchMultiple = ‘*’;
_MatchSingle = ‘?’;

}
Match(const char *pat, const char *str)
{

_MatchMultiple = ‘*’;
_MatchSingle = ‘?’;
_pattern = pat;
_candidate = str;

}
Match(const Match& aCopy)
{

_MatchMultiple = aCopy._MatchMultiple;
_MatchSingle = aCopy._MatchSingle;
_pattern = aCopy._pattern;
_candidate = aCopy._candidate;

}
Match operator=(const Match& aCopy)
{

_MatchMultiple = aCopy._MatchMultiple;
_MatchSingle = aCopy._MatchSingle;
_pattern = aCopy._pattern;
_candidate = aCopy._candidate;
return *this;

}

char Multiple(void)
{

return _MatchMultiple;
}
char Single(void)
{

return _MatchSingle;
}
void setMultiple(char mult)
{

_MatchMultiple = mult;
}
void setSingle(char single)
{

_MatchSingle = single;
}

65_57986x ch55.qxd 1/26/05 4:12 PM Page 332

Testing the Wildcard Matching Class 333

The purpose of this class is to see whether or not
two strings match, including wildcards if neces-
sary. To accomplish this, we need the following:

� A multiple character wildcard

� A single character wildcard

� An input pattern string

� The candidate match string

For example, if we wanted to allow the user to
match the string Colour as well as Color so that
we could check for British spellings, we would
use the following:

� Multiple character wildcard: An asterisk (*)

� Single character wildcard: A question mark (?)

� Input match string: Colo*r

� Candidate match string: Either Color or
Colour

The result of this should be a positive match. To
do this, we built a class that contained member
variables for the match characters and strings,
and routines to access those match elements. In

addition, the class contains a single method,
called matches, which indicates if the input and
candidate strings match.

3. Save the source code in the code editor.

Testing the Wildcard
Matching Class
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following steps show you how to create a test
driver to illustrate various kinds of input from the
user, and show how the class is intended to be used.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch6_12.cpp.

void setPattern(const char *pattern)
{

_pattern = pattern;
}
void setCandidate(const char *candidate)
{

_candidate = candidate;
}
string getPattern(void)
{

return _pattern;
}
string getCandidate(void)
{

return _candidate;
}
bool matches()
{

return match(_pattern.c_str(), _candidate.c_str());
}

};

65_57986x ch55.qxd 1/26/05 4:12 PM Page 333

Technique 55: Using Wildcards334

if (m.matches())
printf(“match\n”);

else
printf(“no match\n”);

}
}

}

The test driver simply gets two strings from the
user and uses wildcard matching to see if they
match. The pattern string may contain optional
wildcards, although the string to match may not.
By utilizing the Match class that we developed in
Listing 55-1, we check to see if the two strings are
wildcard matches of each other.

3. Save the source code in the editor and close
the editor application.

4. Compile the application, using your favorite
compiler on your favorite operating system.

5. Run the application on your favorite operating
system.

If you have done everything right, you should see
the following session on your console window:

$./a.exe
Enter the pattern: A*B
Enter the string: AB
match
Enter the pattern: A*B
Enter the string: AajkjB
match
Enter the pattern: A*B
Enter the string: ABC
no match
Enter the pattern: A?B
Enter the string: AbaB
no match
Enter the pattern:

As you can see, the matching class works as
advertised.

2. Type the code from Listing 55-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 55-2: THE WILDCARD MATCHING TEST DRIVER

string get_a_line(istream& in)
{

string retStr;

while (!in.fail())
{

char c;
in.get(c);
if (in.fail())

break;
if (c != ‘\r’ && c != ‘\n’)

retStr += c;
if (c == ‘\n’)

break;
}
return retStr;

}

int main(int argc, char **argv)
{

char szPattern[80];
char szString [80];
bool done = false;

while (!done)
{

cout << “Enter the pattern: “;
string sPattern = get_a_line(cin);
if (!sPattern.length())

done = true;
else
{

cout << “Enter the string: “;
string sString = get_a_line(cin

);

Match m(sPattern.c_str(),
sString.c_str());

65_57986x ch55.qxd 1/26/05 4:12 PM Page 334

Part VIII

Utilities

66_57986X pt08.qxd 1/26/05 4:12 PM Page 335

66_57986X pt08.qxd 1/26/05 4:12 PM Page 336

56
Encoding and
Decoding Data
for the Web

The World Wide Web has brought with it a host of new opportunities
and a host of new problems. Most applications these days need to
be Web-enabled to work directly with Web browsers or Web appli-

cations. No matter what kind of application you’re developing, odds are
that the application will have to interact with the Web or with remote
systems that use Web protocols.

The biggest issue in interfacing with the Internet is that of encoding.
Encoding is the process of translating characters that cannot be directly
used by a system into characters that can. For the World Wide Web, for
example, characters such as the ampersand (&), greater- and less- than
signs (> and <), and others cannot be directly used. We need to change
them into a form that the Web can use. The Web identifies addresses with
a Uniform Resource Locator, better known as a URL. One of the rules of
working with URLs is that they cannot contain characters such as spaces
and slashes, because including them would break many existing browser
applications and operating systems. Browsers assume that spaces and
slashes indicate breaks in a URL, which is the standard format for Web
addresses. There is no way to change the browser, so we must change
the string.

The problem is that the C++ library offers no standard way to encode and
decode URL strings. The technique for encoding and decoding is well
known, but it is new enough that it has not yet made it into the STL or
standard C++ library. For this reason, we end up reimplementing the code
in each and every application that we write that needs the functionality.
This is contrary to the C++ principle of “write once, reuse many times.”

Saving time is often about anticipating the needs of your application and
planning for them in advance. By planning to Web-enable your code —
regardless of whether you expect your application to support the Web
(initially, at least) — you save a lot of time in the long-run. It makes
sense, then, to create a single, reusable class that will do the encoding
and decoding work, one you can insert as needed in the applications you
develop. That’s what this technique is all about.

Technique

Save Time By
� Interfacing with the

Internet

� Encoding and decoding
URLs for use on the
Internet

� Creating a URL Codec
class

� Testing that class

67_57986x ch56.qxd 1/26/05 4:11 PM Page 337

Technique 56: Encoding and Decoding Data for the Web338

else if ((number >= 10) && (number
<= 15))

return (‘A’ + number - 10);
else

return (‘X’);
}

// Convert an ASCII string into a hex
digit.

char atoh (unsigned char character)
{

if ((character >= ‘0’) && (character
<= ‘9’))

return (character - ‘0’);
else if ((character >= ‘A’) &&
(character <= ‘F’))

return (character - ‘A’ + 10);
else if ((character >= ‘a’) &&
(character <= ‘f’))

return (character - ‘a’ + 10);
else

return (0);
}

public:
URLCodec(void)
{

_url = “”;
}
URLCodec(const char *strIn)
{

_url = strIn;
}
URLCodec(const URLCodec& aCopy)
{

_url = aCopy._url;
}
URLCodec operator=(const URLCodec&
aCopy)

{
_url = aCopy._url;
return *this;

}

void setURL (const char *strIn)
{

_url = strIn;
}
void setURL (const string& sIn)
{

Creating the URL Codec Class
In the technical world, a “codec” is a compressor/
decompressor, normally used for compressing audio
or video formats into a smaller size. However, the
concept is very applicable to what we are doing with
text because we are working with streams of data
that are similar to video and audio formats. For the
purposes of this technique, we are going to create a
simple class that understands how to encode a string
so that it can be used with existing Web browsers.
Each character in the string will be examined, and if
it is not in a valid format for the Web, will be encoded
to use the proper syntax. Here’s how it works:

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch56.cpp,
although you can use whatever you choose. This
file will contain the class definition for our
automation object.

2. Type the code in Listing 56-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 56-1: DATA ENCODING AND DECODING

#include <string>
#include <iostream>

using namespace std;

class URLCodec
{

string _url;
protected:

// Convert a hex string to an ASCII rep-
resentation.

char htoa (int number)
{

if ((number >= 0) && (number <= 9))
return (‘0’ + number);

67_57986x ch56.qxd 1/26/05 4:11 PM Page 338

Creating the URL Codec Class 339

_url = sIn;
}
string getURL (void)
{

return _url;
}

string encode() � 1
{

int index;
string encoded;

// Make a copy of the string.
encoded = _url;

// Scan the input string backward.
index = encoded.length();
while (index--)
{

// Check for special characters.
if (!isalnum((unsigned
char)encoded[index])) � 2

{
unsigned char special;
char insert;

special = (unsigned char)
encoded[index];

encoded.erase (index, 1);
insert = htoa (special %
16);

encoded.insert (index,
&insert, 1);

insert = htoa (special /
16);

encoded.insert (index,
&insert, 1);

insert = ‘%’;
encoded.insert (index,
&insert, 1);

}
}

return (encoded);
}

string encode_no_xml() � 3
{

int index;
string encoded;

// Make a copy of the string.
encoded = _url;

// Scan the input string backward.
index = encoded.length();
while (index--)
{

// Check for special characters.
if ((!isalnum((unsigned
char)encoded[index])) &&

(encoded[index] != ‘ ‘) &&
(encoded[index] != ‘<’) &&
(encoded[index] != ‘>’) &&
(encoded[index] != ‘_’) &&
(encoded[index] != ‘\n’) &&
(encoded[index] != ‘/’) &&
(encoded[index] != ‘“‘) &&
(encoded[index] != ‘\’’))

{
unsigned char special;
char insert;

special = (unsigned char)
encoded[index];

encoded.erase (index, 1);
insert = htoa (special %
16);

encoded.insert (index,
&insert, 1);

insert = htoa (special /
16);

encoded.insert (index,
&insert, 1);

insert = ‘%’;
encoded.insert (index,
&insert, 1);

}
}

return (encoded);
}

string decode() � 4
{

int index;
string decoded;

// Make a copy of the string.
decoded = _url;

(continued)

67_57986x ch56.qxd 1/26/05 4:11 PM Page 339

Technique 56: Encoding and Decoding Data for the Web340

If you are working with standard URLs for the
Web, use the first version. If you are working
with Java applets or .Net applications running on
the Web that are expecting valid XML characters,
use the second. In any case, you may use the
decode method, shown at � 4, to decode the
characters into a human-readable string.

3. Save the source code in the code editor.

Testing the URL Codec Class
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following steps show you how to create a test
driver that illustrates various kinds of input from the
user, and shows how the class is intended to be
used.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch56.cpp.

2. Type the code from Listing 56-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 56-2: THE URL CODEC TEST DRIVER

int main(int argc, char **argv)
{

if (argc < 2)
{

cout << “Usage: ch7_1 url1 [url2
url3]” << endl;

cout << “Where: url[n] is the url
you wish to see encoded/decoded”
<< endl;

return -1;
}

LISTING 56-1 (continued)
// Scan input string forwards
index = 0;
while (index < decoded.length())
{

// Check for encoded characters.
if (decoded[index] == ‘%’)
{

unsigned char special;

special = (unsigned char)
atoh(decoded[index+1]) *
16;

special += (unsigned char)
atoh(decoded[index+2]);

decoded.erase (index, 3);
decoded.insert (index, (char
*)&special, 1);

}
index++;

}

return (decoded);
}

};

This class will handle the encoding and decoding
of URLs, as well as storing a generic URL string.
Each character in the string is examined, starting
at the rear of the string and working backwards,
so that we can properly interpret characters as
we need to.

There are two forms of the encode method
shown here:

� The first, shown at the line marked � 1,
encodes all characters for the string in stan-
dard URL format. This is done at the loop,
shown by the line marked � 2. Each charac-
ter is checked to see if it is in the valid
alphanumeric order, and if not, it is replaced
by its hex equivalent.

� The second, shown at the line marked with

� 3, does the same thing, but does not
encode XML characters that some applica-
tions for the Web will need.

67_57986x ch56.qxd 1/26/05 4:11 PM Page 340

Testing the URL Codec Class 341

for (int i=1; i<argc; ++i)
{

URLCodec url(argv[i]);

// First, try decoding it.
string enc = url.encode(); � 5
string dec = url.decode();
cout << “Input String: “ << argv[i]
<< endl;

cout << “Encoded: “ << enc.c_str()
<< endl;

cout << “Decoded: “ << dec.c_str()
<< endl;

// Now try decoding the result.
URLCodec enc_url(enc.c_str());
string enc1 = url.encode();
string dec1 = url.decode();
cout << “Input String: “ <<
enc_url.getURL().c_str() << endl;

cout << “Encoded: “ << enc1.c_str()
<< endl;

cout << “Decoded: “ << dec1.c_str()
<< endl;

}

return 0;
}

The test driver code above simply allows you to
test out the functionality of the encode and
decode methods of the URLCodec class. If you
enter a string from the command line to the
application, it will print out the encoded and
decoded versions of the string. There is nothing
really magical about this application. As you can
see from the listing, the code first tries to encode
the string you give it (shown at � 5) and then
decodes the result of that encoding to see if they
are the same. The second block of code then
encodes the result and decodes it to ensure that
the code is working properly. When all is said
and done, you should see the same input and
output to the console.

3. Save the source-code file in the editor and close
the editor application.

4. Compile the source file with your favorite com-
piler, on your favorite operating system.

5. Run the application on your favorite operating
system.

If you have done everything right, you can produce a
session similar to the one shown in Listing 56-3 on
your console window.

LISTING 56-3: OUTPUT FROM THE TEST DRIVER

$./a.exe “http://this is a bad url”
“http://localhost/c:/x*.xml”

Input String: http://this is a bad url
Encoded: http%3A%2F%2Fthis%20is%

20a%20bad%20url
Decoded: http://this is a bad url
Input String: http%3A%2F%2Fthis%20is%20a%

20bad%20url
Encoded: http%3A%2F%2Fthis%20is%20

a%20bad%20url
Decoded: http://this is a bad url
Input String: http://localhost/c:/x*.xml
Encoded: http%3A%2F%2Flocalhost%2Fc%3A%

2Fx%2A%2Exml
Decoded: http://localhost/c:/x*.xml
Input String: http%3A%2F%2Flocalhost%2Fc%3A%

2Fx%2A%2Exml
Encoded: http%3A%2F%2Flocalhost%2Fc%3A%

2Fx%2A%2Exml
Decoded: http://localhost/c:/x*.xml

Note that input strings on the command line must be
enclosed in quotes; otherwise, they will be parsed
into separate words on the space breaks.

As you can see, the input is properly converted into
the encoded version of the URL string that can be
used by Web browsers or servers. The decoded ver-
sion is what you would expect it to be, in a form that
can be used by any application.

67_57986x ch56.qxd 1/26/05 4:11 PM Page 341

Technique 56: Encoding and Decoding Data for the Web342

does not need to be encoded or decoded, you
will have wasted a small amount of time. But if
the data does need encoding/decoding, you
will have saved a lot of time that would other-
wise be spent figuring out why your data
looks strange and breaks things.

Whenever you are exchanging data with a
Web-based application, encode the data you
send; expect the data you get back to be
encoded from the application, too. Prepare
your code to deal with encoding and decoding
this information. If it turns out that the data

67_57986x ch56.qxd 1/26/05 4:11 PM Page 342

57
Encrypting and
Decrypting Strings

It would be very nice if we could all trust everyone around us not to
view or access our private information. Unfortunately, not everyone is
quite as trustworthy as you or I. The fact of the matter is that sensitive

information, such as passwords, user names, and credit card numbers,
simply should not be stored in a readily readable fashion. If we fail to
hide the information in some way, we can be very sure that the informa-
tion will find its way to every cracker on the Internet and be used in all
sorts of evil and insidious ways. Hiding information is a task normally
accomplished by encryption — translating data from a human-readable
format to a non-human-readable format. There are almost as many ways
to encrypt data as there are to create it in the first place. Serious encryp-
tion methods, such as the RSS or Blowfish encryption algorithms are
very complex; they would take pages and pages to explain (and in the
end, they’d still be about as hard to understand).

This technique looks at two very simple — but effective — methods of
encrypting data from prying eyes: the Rot13 algorithm and the XOR algo-
rithm (XOR stands for “Exclusive Or”). Both methods can defeat casual
snoopers, but they’re not foolproof; I wouldn’t recommend using either
method for industrial-strength applications. It is difficult, if not impossi-
ble, to add encryption to an application after it’s been written. In order to
make a secure system, encryption should be included as early in the
process as possible. By adding these algorithms at the design phase, you
will save time and effort and create a more secure system.

Selecting an encryption method is almost as sensitive an issue as
selecting a programmer’s editor or compiler. You can save a lot of
time by selecting a standard algorithm that provides the level of
security your system needs. If you are writing a simple in-house
application, XOR encryption is probably more than secure enough.
On the other hand, if you are writing a medical-storage application
(that is, one that allows access to a database of patient information)
that allows access via the Internet, choose a much stronger method,
such as the Blowfish algorithm.

Technique

Save Time By
� Protecting data with

encryption

� Understanding and
implementing the Rot13
algorithm

� Understanding and
implementing the XOR
algorithm

� Interpreting output

68_57986x ch57.qxd 1/26/05 4:10 PM Page 343

Technique 57: Encrypting and Decrypting Strings344

for (int i=0; i<(int)strIn.size();
++i)

{
char ch = strIn[i];
// the following assumes that

‘a’ + 25 == ‘z’ and
‘A’ + 25 == ‘Z’, etc. � 1

if((ch >= ‘N’ && ch <= ‘Z’) ||
(ch >= ‘n’ && ch <= ‘z’))

ch -= 13;
else if((ch >= ‘A’ && ch <=
‘M’) || (ch >= ‘a’ && ch <=
‘m’))

ch += 13;
sOut += ch;

}

return sOut;
}

public:
Rot13Encryption(void)
{
}
Rot13Encryption(const char *strIn)
{

if (strIn)
{

_encrypt = rot13(strIn);
}

}
Rot13Encryption(const Rot13Encryption&
aCopy)

{
_encrypt = aCopy._encrypt;

}
Rot13Encryption operator=(const
Rot13Encryption& aCopy)

{
_encrypt = aCopy._encrypt;
return *this;

}
string operator=(const char *strIn)
{

if (strIn)
{

_encrypt = rot13(strIn);
}
return _encrypt;

}
const char *operator<<(const char
*strIn)

{

Implementing the Rot13
Algorithm
The Rot13 algorithm is really a very simple way of
encoding data that makes that data difficult to read,
but is almost trivial to decode. The algorithm, as the
name suggests, simply rotates characters 13 places
in the alphabet. Therefore, an A becomes an N and
so forth. The algorithm wraps around, so anything
past Z goes back to A. The following steps show
you how to create a simple class that can both
encode and decode Rot13 strings. This class is cer-
tainly not industrial-strength encryption, but it will
make it difficult for the average person to read your
strings.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch57.cpp,
although you can use whatever you choose. This
file will contain the class definition for your
automation object.

2. Type the code from Listing 57-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 57-1: THE ROT13 ALGORITHM CODE

#include <string>
#include <iostream>

using namespace std;

class Rot13Encryption
{
private:

string _encrypt;
protected:

string rot13(const string& strIn)
{

string sOut = “”;

68_57986x ch57.qxd 1/26/05 4:10 PM Page 344

Testing the Rot13 Algorithm 345

if (strIn)
{

_encrypt = rot13(strIn);
}
return _encrypt.c_str();

}
string String(void) const
{

return _encrypt;
}

};

ostream& operator<<(ostream& out, const
Rot13Encryption& r13)

{
out << r13.String().c_str();
return out;

}
}

The code in the above listing implements a sim-
ple Rot13 algorithm. The bulk of the work is done
in the Rot13 function, which simply rotates char-
acters 13 positions in the alphabet. If you look at
the code at � 1, you can see how this works. As
the comment in this function specifies, it
assumes that the alphabet is contiguous for the
character set you are working with. This means
that this code will not work on older EBCDIC sys-
tems, nor will it work with non-English character
sets. Unfortunately, this is true of most text-
based encryption algorithms. The other methods
of the class, such as the operator << method,
are utility functions that can be used to convert
the encrypted string for output, or to stream it to
an output file.

3. Save the source file in your text editor.

This class will handle the Rot13 algorithm. This
algorithm works by simply rotating data about in
the alphabet. The string is then unreadable by
humans, which is the entire point of encryption.

Testing the Rot13 Algorithm
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following list shows you how to create a test
driver that illustrates various kinds of input from the
user, and shows how the class is intended to be
used.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch57.cpp.

2. Type the code from Listing 57-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 57-2: TESTING THE ROT13 ENCRYPTION CLASS

int main(int argc, char **argv)
{

Rot13Encryption r13(“This is a test”);
cout << r13.String().c_str() << endl;
cout <<
Rot13Encryption(r13.String().c_str())
<< endl;

return 0;
}

3. Compile the source file, using your favorite
compiler on your favorite operating system.

4. Run the application in the console.

If you have done everything properly, you should
see the following output on the console window:

Guvf vf n grfg � 2
This is a test

68_57986x ch57.qxd 1/26/05 4:10 PM Page 345

Technique 57: Encrypting and Decrypting Strings346

2. Append the code from Listing 57-3 into your
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 57-3: THE XORENCRYPTION CLASS

class XOREncryption
{
private:

char *_encrypt;
int _length;
string _key;

protected:
char *do_xor(const char *sIn, int
length, const string& key) � 3

{
int idx = 0;
char *strOut = new char[length];

if (!key.length())
return strOut;

for (int i=0; i<length; ++i)
{

char c = (sIn[i] ^ key[idx]);
strOut[i] = c;

idx ++;
if (idx >= key.length())

idx = 0;
}
return strOut;

}
public:

XOREncryption(void)
{

_encrypt = NULL;
}
XOREncryption(const char *strIn, int
length, const char *keyIn)

{
if (keyIn)

_key = keyIn;
if (strIn)
{

_length = length;
_encrypt = do_xor(strIn,

The first output (shown at � 2) is the rotated ver-
sion of the string. It remains human-readable, at
least up to a point, because the substituted charac-
ters are all in the alphabet), but it certainly provides
no clue to the semantic content of the text it is
encrypting. Thus the purpose of encryption is
preserved.

Encryption is intended to hide the purpose of
the text from the user, not to make the text
vanish or compress. Note that the string used
is embedded in the application; this particular
program does not accept any input from the
user. It is a very simple test driver.

Unfortunately, Rot13 is one of the most common
algorithms in use; hackers know it like the backs of
their hands. We need a slightly better approach.

Implementing the
XOR Algorithm
The next encryption algorithm we examine is the
XOR algorithm. XOR stands for Exclusive OR, which
means that it uses the mathematical “exclusive or”
operator in order to convert text. One property of
the exclusive or operation is that a character that is
exclusively or’d with another character can be
returned to its original state by or’ing it again with
the same character. This means that an encryption
password can be used to both encode and decode a
string using XOR. In this technique, we build a simple
class that implements the XOR algorithm and pro-
vides methods for encoding and decoding strings.

1. In the code editor of your choice, reopen the
source file to hold the code for the source file
of the technique.

In this example, the file is named ch57.cpp,
although you can use whatever you choose.

68_57986x ch57.qxd 1/26/05 4:10 PM Page 346

Testing the XOR Algorithm 347

length, _key);
}

}
XOREncryption(const XOREncryption&
aCopy)

{
_encrypt = new char [aCopy._length

];
memcpy (_encrypt, aCopy._encrypt,
aCopy._length);

_key = aCopy._key;
_length = aCopy._length;

}
XOREncryption operator=(const
XOREncryption& aCopy)

{
_encrypt = new char [aCopy._length

];
memcpy (_encrypt, aCopy._encrypt,
aCopy._length);

_key = aCopy._key;
_length = aCopy._length;
return *this;

}
~XOREncryption(void)
{

delete _encrypt;
}
const char *operator=(const char *strIn
)
{

if (_encrypt)
delete _encrypt;

if (strIn)
{

_encrypt = do_xor(strIn,
strlen(strIn), _key);

}
return _encrypt;

}
const char *operator<<(const char
*strIn)

{
if (strIn)
{

_encrypt = do_xor(strIn,
strlen(strIn), _key);

}

return _encrypt;
}
const char *String(void) const
{

return _encrypt;
}
int Length(void) const
{

return _length;
}

};

The code in this class implements a simple XOR
algorithm. The main functionality of the class is
shown in the do_xor method, shown at � 3. As
you can see, the method takes the input encryp-
tion key and XORs it with the string that is pro-
vided by the user. The class requires two strings,
one that is a “key” used for encrypting or
decrypting strings. The second string is the
input string to be encrypted or decrypted.
Running the algorithm with the same inputs
twice results in the original string.

3. Save the source file in your text editor.

Testing the XOR Algorithm
The following steps show you how to create a test
driver that illustrates various kinds of input from the
user, and show how the class is intended to be used:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch57.cpp.

2. Type the code from Listing 57-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

68_57986x ch57.qxd 1/26/05 4:10 PM Page 347

Technique 57: Encrypting and Decrypting Strings348

Note that the above output includes the Rot13
encryption that we developed earlier in this tech-
nique for comparison. The strings are all hard-coded
into the application, and your output might vary
depending on the font and terminal type you are
using. The output for the XOREncryption class is
shown at � 5 and � 6. Our original string is This is
a test and the two lines following it show how that
line is first encrypted and then decrypted using the
same key. In this case, our “key” is the string
C++Test.

The XOREncryption class does not use a
string to hold the encrypted version of the
input (see � 4 in Listing 57-4), nor does it
return the value as a string object. This is
because the string class holds only alpha-
numeric data. The xor operation can result
in non-alphanumeric values, and at times can
cause the string class to return only a por-
tion of the original string.

Never use a string object to store character
buffers that might contain nulls or control
characters. String classes assume that the null
character terminates the string and will not
store any characters past the null.

LISTING 57-4: TESTING THE XORENCRYPTION CLASS

int main(int argc, char **argv)
{

Rot13Encryption r13(“This is a test”);
cout << r13.String().c_str() << endl;
cout <<
Rot13Encryption(r13.String().c_str())
<< endl;

XOREncryption x1(“This is a test”,
strlen(“This is a test”), “C++Test”);

cout << x1.String() << endl;
XOREncryption x2(x1.String(),
x1.Length(), “C++Test”); � 4

cout << x2.String() << endl;
return 0;

}

3. Compile the source file, using your favorite
compiler on your favorite operating system.

4. Run the application in the console.

If you have done everything properly, you should
see the following output on the console window:

$./a.exe
Guvf vf n grfg
This is a test
_CB’E_cJ_ � 5
This is a test � 6

68_57986x ch57.qxd 1/26/05 4:10 PM Page 348

58
Converting the Case
of a String

In the good old days of C programming, converting the case of a string
was a simple matter. You just called the strupr function and the string
was instantly converted to uppercase. Similarly, if you called the

strlwr function, the string was converted to lowercase. Have things
really changed all that much since then? Well, in some ways, things have
changed a lot. For example, the following code is not permissible:

string myString = “Hello world”
strupr(myString);

This code will not compile, since the strupr function does not accept a
string argument. Nor can you write the following code and expect it to
work:

strupr(myString.c_str());

This code will not compile either; the strupr function cannot accept a
const character pointer — which is what the c_str method returns. So
how do you write code to convert modern string objects to upper- and
lowercase? You could use the brute-force technique, like this:

for (int i=0; i<myString.length(); ++i)
myString[i] = toupper(myString[i]);

This code certainly does work, but it is not very elegant and it does not
anticipate all circumstances. It assumes, for example, that the string
characters are in contiguous order in memory — which is a bad assump-
tion to make about any Standard Template Library (STL) collection. The
entire purpose of the STL is to provide the developer with a way in which
to access containers (strings are just containers of characters) without
any assumptions about how they are organized in memory. The better
choice, of course, is to use an iterator (see Technique 49 for more on iter-
ators). However, the STL provides an even better approach to the whole
thing, which is the transform function found in the algorithms of the STL.
The transform function allows you to operate in a container-independent

Technique

Save Time By
� Using modern techniques

to convert the case of
input strings

� Using the Standard
Template Library’s
transform function

� Interpreting output

69_57986x ch58.qxd 1/26/05 4:10 PM Page 349

Technique 58: Converting the Case of a String350

2. Type the code from Listing 58-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 58-1: CONVERSION CODE FOR THE STL STRING CLASS

#include <string>
#include <algorithm>
#include <iostream>
#include <vector>
#include <ctype.h>

using namespace std;

// A function for converting a string to
// lowercase.
string convert_to_lowercase(const string&

sIn)
{

// First, save a pointer to the
function.
int (*pf)(int)=tolower;

// Next, convert the string.
string sOut = sIn;
transform(sOut.begin(), sOut.end(),
sOut.begin(), pf);

return sOut;
}

// A function for converting a string to
// uppercase.
string convert_to_uppercase(const string&

sIn)
{

// First, save a pointer to the
function.
int (*pf)(int)=toupper;

// Next, convert the string.
string sOut = sIn;
transform(sOut.begin(), sOut.end(),
sOut.begin(), pf);

return sOut;
}

way to modify the individual elements of a container
through a conversion function. This saves time
because the algorithm has already been written,
debugged, and optimized. It also saves time because
you can easily extend your conversion functions
without rewriting the basic algorithm.

Always make sure that you are using the most
efficient code for your application up front.
Rather than trying to implement your own
algorithms to work with the Standard
Template Library, choose to use the ones in
the <algorithm> include file as they have
been optimized for working with the STL
collections.

Implementing the transform
Function to Convert Strings
The transform algorithm of the Standard Template
Library uses a function created by the user of the
algorithm to convert each element of a container in
some way. The following steps show you how to cre-
ate a simple transform function to convert the case
of a string, to either upper- or lowercase. By looking
at the technique and how the code is implemented,
you will be able to see how to extend the functional-
ity for your own uses in the future. In order to imple-
ment this function, we will need to implement a class
which does the work of our transformation. The
transform algorithm accepts two iterators and an
object to do its work. Let’s take a look at exactly how
this is implemented in your own code.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch58.cpp,
although you can use whatever you choose. This
file will contain the class definition for your
automation object.

69_57986x ch58.qxd 1/26/05 4:10 PM Page 350

Testing the String Conversions 351

string strip_leading (const string& sIn)
{

// Find the first non-white-space
character.

int iPos = 0;
while (iPos < sIn.length() && isspace
(sIn[iPos]))

iPos ++;
// Copy the rest of it.
string sOut;
for (int i=iPos; i<sIn.length(); ++i)

sOut += sIn[i];

return sOut;
}

string strip_trailing (const string& sIn)
{

// Find the last non-white-space
character.

int iPos = sIn.length()-1;
while (iPos >= 0 && isspace(sIn[iPos]
))

iPos --;
// Copy the rest of it.
string sOut;
for (int i=0; i<=iPos; ++i)

sOut += sIn[i];

return sOut;
}

// This is a utility class that will convert
// a string to lowercase.
class StringConvertToLowerCase � 1
{
public:

string operator()(string s)
{

return convert_to_lower_case(s);
}

};

// This is a utility class that will strip
// leading AND trailing white space.
class StringStripSpace
{

public:
string operator()(string s)
{

return strip_leading(strip_
trailing(s));

}
};

This code implements all of the various possible
transforms for the string class, and throws in sev-
eral bonus methods for manipulating the strings
(such as stripping the leading and trailing charac-
ters). In all cases, we will use the transform method
to actually modify the strings or arrays. As the test
driver in this technique illustrates, a single string is
no more difficult to convert than is an entire string
array. The important functionality here is the class
we will be using to convert strings to lowercase,
which is the StringConvertToLowerCase class shown
at � 1. The transform function uses this class to
convert strings. As you can see, all of the work is
done in a single method, the operator() method.
This method is called by the transform algorithm to
do its work, as we will see shortly.

Testing the String Conversions
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.

The following list shows you how to create a test
driver that illustrates various kinds of input from the
user, and shows how the class is intended to be
used.

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch58.cpp.

69_57986x ch58.qxd 1/26/05 4:10 PM Page 351

Technique 58: Converting the Case of a String352

vector<string>::iterator iter;
for (iter = stringArray.begin(); iter
!= stringArray.end(); ++iter)

cout << “String: “ <<
(*iter).c_str() << endl;

cout << endl << “Individual String
Whitespace Strip Test: “ << endl;

string whiteSpace = “ This is a test
“;

string sNoWhite = strip_leading(
whiteSpace);

cout << “Stripped String: [“ <<
sNoWhite.c_str() << “]” << endl;

sNoWhite = strip_trailing(whiteSpace);
cout << “Stripped String: [“ <<
sNoWhite.c_str() << “]” << endl;

transform(stringArray.begin(),
stringArray.end(),
stringArray.begin(),

StringStripSpace());
cout << endl << “Array of Strings
Whitespace Strip Test: “ << endl;

for (iter = stringArray.begin(); iter
!= stringArray.end(); ++iter)

cout << “String: [“ <<
(*iter).c_str() << “]” << endl;

return 0;
}

3. Save the source code in your code editor and
close the editor application.

4. Compile the source code with your favorite
compiler, on your favorite operating system.

5. Run the program on your favorite operating
system.

If you have done everything right, you should see
the output shown in Listing 58-3 in the console
window.

2. Type the code from Listing 58-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 58-2: THE STRING CONVERSION TEST DRIVER

int main(int argc, char **argv)
{

vector<string> stringArray;
if (argc < 2)
{

cout << “Usage: ch7_3 string1
[string2 string3...]” << endl;

cout << “Where: string[n] is the
string to convert” << endl;

return -1;
}

// First, do them individually.
cout << “Individual Conversions: “ <<
endl;

for (int i=1; i<argc; ++i)
{

cout << “Input String: “ << argv[i]
<< endl;

string sLower =
convert_to_lower_case(argv[i]);

cout << “Lowercase String: “ <<
sLower.c_str() << endl;

string sUpper =
convert_to_upper_case(argv[i]);

cout << “Uppercase String: “ <<
sUpper.c_str() << endl;

stringArray.insert(
stringArray.end(), argv[i]); � 4

}

// Now do the whole array.
transform(stringArray.begin(),
stringArray.end(),
stringArray.begin(),

StringConvertToLowerCase());

// Print them out.
cout << endl << “Array Conversions: “ <<
endl;

69_57986x ch58.qxd 1/26/05 4:10 PM Page 352

Testing the String Conversions 353

LISTING 58-3: OUTPUT FROM THE STRING CONVERSION TEST

$./a.exe “ This is a test” “This is
another test “ “ Final Test “ � 2

Individual Conversions: � 3
Input String: This is a test
Lowercase String: this is a test
Uppercase String: THIS IS A TEST
Input String: This is another test
Lowercase String: this is another test
Uppercase String: THIS IS ANOTHER TEST
Input String: Final Test
Lowercase String: final test
Uppercase String: FINAL TEST

Array Conversions:
String: this is a test � 5
String: this is another test
String: final test

Individual String Whitespace Strip Test:
Stripped String: [This is a test]
Stripped String: [This is a test]

Array of Strings Whitespace Strip Test:
String: [this is a test]
String: [this is another test]
String: [final test]

The first line of the output is simply the executable
name and the arguments to the program (shown
at � 2). As you can see, we are passing in three
arguments. The various transformations are then
run on each of these arguments. First, we use the
individual utility functions (as shown at � 3) to
convert each of the input strings. This simply shows
that the functions are working properly. The strings
are then added to an array (shown at � 4 in Listing
58-2). The transform functions are then applied, con-
verting each string to lowercase (shown in the output
at � 5). Finally, just to show how the transformation
can be applied to any string, we use the white space
removal functions to change the strings to have no
leading or trailing white space.

Keep a library of utility classes around for all of
your projects and you will find that you use
them automatically — saving time and energy
in solving little problems.

69_57986x ch58.qxd 1/26/05 4:10 PM Page 353

59
Save Time By
� Understanding interfaces

� Understanding
serialization

� Implementing a serializa-
tion interface

� Testing the interface

Technique

Implementing a
Serialization
Interface

Implementing interfaces can save you loads of time when you are doing
the same thing over and over in your application, or even across appli-
cations. In addition, it collects all of the code for a given task in one

place, making it quick and easy to change the format of output files or
the algorithm used for the functionality of the interface.

If you have ever used Java as a programming language, you’re probably
already accustomed to interfaces. Simply put, an interface is a base class
from which you can inherit that provides a given service. The C++ lan-
guage supports interfaces, although they are slightly different in terms of
syntax. Unlike a typical base class, interfaces are less concrete and do
not generally allow the application to build upon them, but rather to use
them to provide a specific service. In C++, an interface is a pure virtual
base class that contains multiple pure virtual methods. A pure virtual
method, unlike a regular virtual method, must be overridden by a
derived class. For example, an interface might allow your class to print
itself out, or save itself to a file, or even allocate its memory from some
specialized form of hardware space. This technique shows how to imple-
ment an important concept — serialization — as an interface. The most
important thing about interfaces, and the way in which they will save you
the majority of time, is that if you inherit from an interface, you can pass
your object to any function or method that works with objects that
implement that interface. So, if you have a function that is used to save
all sorts of objects, you can pass your object to the function so long as it
implements the Save interface.

Essentially, serialization is the capability of an object to write itself to
some form of persistent storage. The code that does the job tends to be
the same from class to class; the data being written is what changes.
Accordingly, serialization lends itself perfectly to the process of creating
an interface.

There are two basic steps to implementing an interface in your class:

70_57986x ch59.qxd 1/26/05 4:09 PM Page 354

Implementing the Serialization Interface 355

� You must create the actual interface class and
identify all areas in which you need input from
the derived class. At this stage, you’re imple-
menting all the functionality for the interface
class — creating it as if it were a main class for
your application.

� After you’ve created the interface class, you set
up your derived class to inherit from it (and to
implement any virtual functions the interface
requires).

Implementing the Serialization
Interface
The most popular interface is the serialization
interface. This interface, used by many of the popu-
lar class libraries, such as MFC, allows an object to
be written to persistent storage (such as a file) so
long as it implements a consistent interface. In this
example, we will explore how to create a serializa-
tion interface and apply that interface to a given
class or classes.

1. In the code editor of your choice, create a new
file to hold the code for the interface definition
of the technique.

In this example, the file is named ch59.h,
although you can use whatever you choose. This
file will contain the class definition for your seri-
alization object.

2. Type the code from Listing 59-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 59-1: THE SERIALIZATION INTERFACE CODE

#ifndef _SERIALIZE_H_
#define _SERIALIZE_H_

#include <string>
#include <vector>

#include <iostream>
#include <fstream>

using namespace std;

class SerializeEntry
{

string _name;
string _value;

public:
SerializeEntry(void)
{
}
SerializeEntry(const char *name, const
char *value)

{
setName(name);
setValue(value);

}
SerializeEntry(const char *name, int
iValue)

{
setName(name);
setValue(iValue);

}
SerializeEntry(const char *name, double
dValue)

{
setName(name);
setValue(dValue);

}

SerializeEntry(const SerializeEntry&
aCopy)

{
setName(aCopy.getName().c_str());
setValue(aCopy.getValue().c_str()

);
}
SerializeEntry operator=(const
SerializeEntry& aCopy)

{
setName(aCopy.getName().c_str());
setValue(aCopy.getValue().c_str()

);
return *this;

}

(continued)

70_57986x ch59.qxd 1/26/05 4:09 PM Page 355

Technique 59: Implementing a Serialization Interface356

return “None”;
}

public:
Serialization(void)
{

_majorVersion = 0;
_minorVersion = 0;

}
Serialization(long major,
long minor) � 2

{
_majorVersion = major;
_minorVersion = minor;

}
Serialization(const Serialization&
aCopy)

{
_majorVersion = aCopy._majorVersion;
_minorVersion = aCopy._minorVersion;

}
Serialization operator=(const
Serialization& aCopy)

{
_majorVersion = aCopy._majorVersion;
_minorVersion = aCopy._minorVersion;
return *this;

}

// Accessors
void setMajorVersion(long major)
{

_majorVersion = major;
}
long getMajorVersion(void)
{

return _majorVersion;
}
void setMinorVersion(long minor)
{

_minorVersion = minor;
}
long getMinorVersion(void)
{

return _minorVersion;
}

// Functionality
bool write(const char *strFileName) � 1
{

LISTING 59-1 (continued)
void setName(const char *name)
{

if (name)
_name = name;

else
_name = “”;

}
void setValue(const char *value)
{

if (value)
_value = value;

else
_value = “”;

}
void setValue(int iValue)
{

char szBuffer[20];
sprintf(szBuffer, “%d”, iValue);
setValue (szBuffer);

}
void setValue(double dValue)
{

char szBuffer[20];
sprintf(szBuffer, “%lf”, dValue);
setValue (szBuffer);

}
string getName(void) const
{

return _name;
}
string getValue(void) const
{

return _value;
}

};

class Serialization
{
private:

long _majorVersion;
long _minorVersion;

protected:
virtual bool getEntries(vector<
SerializeEntry >& entries)

{
return true;

}
virtual string getClassName()
{

70_57986x ch59.qxd 1/26/05 4:09 PM Page 356

Implementing the Serialization Interface 357

// Note the call to the virtual
method. This must

// be overridden in the derived
class code.

vector< SerializeEntry > entries;
getEntries(entries); � 3

if (entries.size() == 0)
return false;

// Try opening the output file.
ofstream out(strFileName,
ofstream::out | ofstream::app);

if (out.fail())
return false;

// Write out the class name.
out << “<” << getClassName() << “>”
<< endl;

// Write out the version informa-
tion.

out << “\t<VERSION>” <<
_majorVersion << “:” <<
_minorVersion << “</VERSION>” <<
endl;

vector< SerializeEntry >::iterator
iter;

for (iter = entries.begin(); iter
!= entries.end(); ++iter)

{
out << “\t<” <<
(*iter).getName().c_str() <<
“>” << endl;

out << “\t\t” <<
(*iter).getValue().c_str() <<
endl;

out << “\t</” <<
(*iter).getName().c_str() <<
“>” << endl;

}

out << “</” << getClassName() << “>”
<< endl;

return true;
}

};

#endif

This code saves a given class to an output
stream in standard XML format. It would be sim-
ple enough, of course, to modify the class to out-
put in some other format, but for simplicity we
will use XML. The important member of the class
is the write method, shown at � 1. This method
writes out the members of a class in XML format,
using the member variables of the class to deter-
mine the output file and version information.
Note that the class keeps track of its own version
information so that you can use it to determine
whether a persistent version of the class is of the
proper version for your application. The version
information is defined in the constructor, as
shown at � 2.

Take a look at the write method; it appears that
the code does everything you would expect a
serialization object to do. The important part
of the function is shown at � 3, which is a call
to a virtual method called getEntries. This
method, which must be overridden by any class
that uses this interface, returns the individual
member variables of the class as a string array.
After this method is created for your class, the
rest of the functionality of the serialization
interface will work no matter what the content
of the derived classes.

3. Save the source file and close the file in the
code editor.

As you can see, the serialization class does most of
the work by itself. It requires the implementation of
only two virtual methods:

� The getElements method returns all internal ele-
ments of the class that you want saved.

� The getClassName method returns the name of
the class to use as the root of the XML tree that
receives the element data we write out.

70_57986x ch59.qxd 1/26/05 4:09 PM Page 357

Technique 59: Implementing a Serialization Interface358

LISTING 59-2: TESTING THE SERIALIZATION INTERFACE

#include “serialize.h”

class MyClass : public Serialization
{
private:

int _iValue;
string _sValue;
double _dValue;

protected:
virtual bool getEntries(vector
< SerializeEntry >& entries) � 4
{

entries.insert(entries.end(),
SerializeEntry(“iValue”,
_iValue)); � 5

entries.insert(entries.end(),
SerializeEntry(“sValue”,
_sValue.c_str()));

entries.insert(entries.end(),
SerializeEntry(“dValue”, _dValue
));

}
virtual string getClassName(void)
{

return “MyClass”;
}

public:
MyClass(void)

: Serialization(1,0) � 6
{

_iValue = 0;
_dValue = 0.0;
_sValue = “”;

}
MyClass(int iVal, double dVal, const
char *sVal)

: Serialization(1,0)
{

_iValue = iVal;
_dValue = dVal;
_sValue = sVal;

}
virtual ~MyClass()
{

Save();
}
virtual void Save()
{

In addition, you can specify major and minor ver-
sions for the serialized file, so that if you wish to
import existing serialized files, you will later on be
able to import data created by older versions of the
source code and properly default missing values if
new ones have been added in the meantime.

If you are persistently storing data for a class,
make sure that you store version information
with the data, so you can always know exactly
when the data was written and what might be
missing or superfluous. As classes change over
time, member variables are added or removed.
The data stored in a serialized version of older
classes, therefore, may have additional or miss-
ing data. If you know what version of the class
created the serialized data, you will know what
data to map into your current member vari-
able set.

Testing the Serialization
Interface
After we have defined the serialization interface,
the next step is to implement that interface for a real
class. This allows you to see how the serialization
process is used and how much time the interface
concept will save in future class implementations.
Let’s take a look at creating a class with members
that need to be stored persistently.

1. In the code editor, create a new file to hold the
code for the test class of the technique.

In this example, the file is named ch59.cpp,
although you can use whatever you choose. This
file will contain the test code for the technique.

2. Type the code from Listing 59-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

70_57986x ch59.qxd 1/26/05 4:09 PM Page 358

Testing the Serialization Interface 359

write(“MyClass.xml”);
}

};

int main()
{

MyClass m1(1,2.0,”One”);

return 0;
}

This class simply implements a collection of
data, with a string value, an integer value, and a
floating point (double) value. The important
work takes place in the getEntries virtual func-
tion, which builds an array of elements to output
for serialization. This method, shown at � 4,
overrides the serialization interface method
and will be used for output. After this method is
overridden, the remainder of the code works as
expected within the interface. Note the use of the
SerializeEntry class (shown at � 5) to hold
the data for each element. Because this class can
be derived to utilize other data types, the inter-
face concept works even into the future.

3. Save the source code as a file in your editor
and close the editor application.

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the program on your favorite operating
system.

If you have done everything right, the program will
create an output file called MyClass.xml in your oper-
ating system’s file system. This file should contain
the following output after the application is run:

$ cat MyClass.xml
<MyClass>

<VERSION>1:0</VERSION>
<iValue>

1
</iValue>
<sValue>

One
</sValue>
<dValue>

2.000000
</dValue>

</MyClass>

In the output, you can see that all of the data ele-
ments specified in the MyClass class have been out-
put via the serialization interface. This shows that
our code works as we specified. Also note that the
version information, which we specified in the con-
structor for the MyClass class (shown at � 6), is out-
put in the persistent file, so that we can utilize it if
we add new members to the MyClass class.

As you can see, the serialization class did exactly
what it was supposed to do. In addition, note that
the code for the serialization class has virtually no
relation to the class from which it is called. This
lack of specialization allows us to easily reuse the
class as an interface to as many other classes as we
want — allowing each of them to serialize the data
efficiently.

Also note that if you were suddenly instructed to
change the output to a format other than XML, the
code needs adjustment in only one place. This saves
you time, avoids mistakes, and is in keeping with the
best strengths of object-oriented programming.

70_57986x ch59.qxd 1/26/05 4:09 PM Page 359

60
Save Time By
� Understanding buffer

overflow errors

� Preventing buffer over-
flow errors from being
exploited as a security
risk

� Creating a Buffer class
that deals with these
errors

� Testing your class

Technique

Creating a Generic
Buffer Class

Buffer overlows occur in a majority of C or C++ programs. Imagine,
for a moment, reading data from an input file. The typical C or C++
code might look something like this:

char szBuffer[80];
int nPos = 0;
while (!eof(fp))
{

szBuffer[nPos] = fgetc(fp);
if (szBuffer[nPos] == ‘|’)

break;
nPos++;

}

This routine is supposed to read in a string from the file, reading until it
hits a pipe (|) character or the end of the file. But what happens if the
string is longer than 80 characters? Well, in that case, the routine contin-
ues to read in the string information, overwriting the memory locations
that follow the szBuffer variable. We refer to this problem as a buffer
overflow. What information is stored in those memory locations? Well,
that’s hard to say: Maybe there is nothing important there — or maybe
an important return address for a function is being overwritten. In the
former case, you might never see a problem. In the latter case, the pro-
gram could easily crash, exposing a serious vulnerability to the outside
world.

Problems like this, known as buffer overflow, are really quite widespread
in the software-development world — but unless they’re causing major
issues (or haven’t been discovered yet), programmers tend to overlook
them. Even so, buffer overflow is considered the number-one security
problem in software today. Depending on the application, a buffer over-
flow can crash the application, or simply destroy some vital part of the
security wall that prevents an outside user from modifying data within a
program. So why are we not doing something about it?

71_57986x ch60.qxd 1/26/05 4:08 PM Page 360

Creating the Buffer Class 361

The simple answers look pretty silly: This is the way
that we’ve always written code, the problem is not
that serious, and we aren’t going to change now.
Actually the problem is reasonably easy to fix — and
there is no excuse not to do so. This technique
shows you how. By eliminating security risks, you
will provide a safer application and minimize the
amount of time you spend issuing security patches
and dealing with customer support nightmares,
which will save you a lot of time.

Imagine, for example, rewriting the routine just given
so it looks like this:

Buffer szBuffer(80); � 1
int nPos = 0;
try
{

while (!eof(fp))
{

szBuffer[nPos] = fgetc(fp);
if (szBuffer[nPos] == ‘|’)

break;
nPos++;

}
}
catch (BufferException& exc)
{
printf(“Buffer Overflow!”);
}
return 0;

Now, this code cannot crash the program. Unlike the
earlier code, which used a static array, this program
uses a Buffer class (see � 1) to manage the buffer.
The Buffer class would check to see that the underly-
ing buffer was not overwritten, and prevent memory
from getting stomped on. If either condition were to
occur, the program would throw an exception — and
recover gracefully.

Catching problems before they occur and
spread to odd parts of the program will save
you time and frustration later on down the
line. If you build your programs as defensively
as possible, you will limit the time you have to
spend debugging them.

This solution allows programs to behave in that
ideal fashion of dealing with problems all by them-
selves. Perhaps it is not possible to recover com-
pletely from an error like this, but at least the
program could exit in a safe manner, shutting down
all connections and not allowing the operating sys-
tem to be compromised. This is what software secu-
rity is all about. The issue, then, is to create a class
that implements that generic buffer and protects
your data. That is the aim of this technique.

Creating the Buffer Class
The solution we are going to implement for buffer
overflows is to create a class that protects the data
buffer by allowing access to valid areas of the buffer
only. This class overrides the operators that provide
access to the individual characters of the buffer, and
makes sure that all assignments, copies, and manip-
ulations work only on valid sections of the buffer.
Let’s create that class now.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch60.cpp,
although you can use whatever you choose. This
file will contain the class definition for your
automation object.

2. Type the code in Listing 60-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 60-1: THE BUFFER CLASS

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <string>

using namespace std;

class BufferException � 4
{

(continued)

71_57986x ch60.qxd 1/26/05 4:08 PM Page 361

Technique 60: Creating a Generic Buffer Class362

if (m_Buffer)
delete m_Buffer;

m_Buffer = NULL;
m_Size = 0;

}
virtual void copy(const Buffer& aBuffer
)

{
m_Buffer = new char[aBuffer.Size()
];

memcpy(m_Buffer, aBuffer._Buffer(),
aBuffer.Size());

m_Size = aBuffer.Size();
}
virtual void allocate(int nSize)
{

m_Buffer = new char[nSize];
memset(m_Buffer, 0, nSize);
m_Size = nSize;

}

const char *_Buffer(void) const
{

return m_Buffer;
}

public:
// Void constructor. No memory is allo-

cated or available.
Buffer(void)

: m_Buffer(NULL), m_Size(0)
{

// Clear everything.
clear();

}
// This is a standard constructor.
Buffer(int nSize)

: m_Buffer(NULL), m_Size(0)
{

clear();
allocate(nSize);

}
// Copy the constructor.
Buffer(const Buffer& aBuffer)

: m_Buffer(NULL), m_Size(0)
{

clear();
copy(aBuffer);

}

LISTING 60-1 (continued)
private:

string _errMsg;
public:

BufferException(void) � 5
{

_errMsg = “”;
}
BufferException(const char *msg)
{

_errMsg = msg;
}
BufferException(const BufferException&
aCopy)

{
_errMsg = aCopy._errMsg;

}
const char *Message()
{

return _errMsg.c_str();
}
void setMessage(const char *msg)
{

_errMsg = msg;
}

};

class Buffer
{
private:

// $Member: m_Buffer - This is the
actual area of allocated memory.

char *m_Buffer;
// $Member: m_Size - This is the size of

the allocated memory.
int m_Size;

protected:
virtual void print_buffer(const char
*strPrefix)

{
printf(“%s: [“, strPrefix);
for (int i=0; i<m_Size; ++i)

printf(“%c”, m_Buffer[i]);
printf(“]\n”);

}

virtual void clear()
{

71_57986x ch60.qxd 1/26/05 4:08 PM Page 362

Creating the Buffer Class 363

virtual ~Buffer()
{

clear();
}

// Operators
Buffer &operator=(const Buffer& aBuffer)
{

clear();
copy(aBuffer);
return *this;

}
Buffer &operator=(const char *strBuffer)
{

// If they are assigning us NULL,
just clear

// everything out and get out of
here.

clear();
if (strBuffer == NULL)

return *this;

// Otherwise, we need to set up this
object

// as the passed-in string.
allocate((int)strlen(strBuffer)+1
);

memcpy(m_Buffer, strBuffer,
strlen(strBuffer));

return *this;
}
char& operator[](int nPos) � 2
{

if (nPos < 0 || nPos > m_Size-1)
throw BufferException(“Buffer:
Array index out of range”);

return m_Buffer[nPos];
}
operator const char*() � 3
{

// Just give them back the entire
buffer.

return m_Buffer;
}
const char *c_str(void)
{

return m_Buffer;
}

// Here come the accessor functions.
int Size() const
{

return m_Size;
}

// These are memory-based functions.
void Set(char c)
{

for (int i=0; i<m_Size-1; ++i)
m_Buffer[i] = c;

}
void Clear(void)
{

Set(0);
}

Buffer operator()(int nStart,
int nLength) � 4

{
// Do some validation
if (nStart < 0 || nStart > m_Size-1

)
{

throw BufferException(“Buffer:
Array index out of range”);

}
if (nLength < 0 || nLength >
m_Size-1 || nStart+nLength >
m_Size-1)

{
throw BufferException(“Buffer:
Length out of range”);

}

Buffer b(nLength+1);
for (int i=0; i<nLength; ++i)

b[i] = m_Buffer[i+nStart];

return b;
}

};

In the code in the listing above, certain elements
make it an important step up from the standard
C++ character array. First of all, observe the way
in which the characters are retrieved using the

71_57986x ch60.qxd 1/26/05 4:08 PM Page 363

Technique 60: Creating a Generic Buffer Class364

2. Type the code from Listing 60-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 60-2: THE TEST DRIVER FOR THE BUFFER CLASS

int main(int argc, char* argv[])
{

Buffer b1(20);
Buffer b2;

b2 = b1;
b1 = “This is a test”; � 6
printf(“The buffer is: %s\n”, (const
char *)b1);

b1[2] = ‘a’;
printf(“The buffer is: %s\n”, (const
char *)b1);

try
{

b1[-1] = ‘a’; � 7
}
catch (BufferException& exc)
{

printf(“Caught the error: %s\n”,
exc.Message());

}

// Test the “sub-buffer” function.
Buffer b3;

b3 = b1(0,4); � 8
printf(“The new buffer is: [“);
for (int i=0; i<b3.Size(); ++i)

printf(“%c”, b3[i]);
printf(“]\n”);

return 0;
}

The above code simply exercises some of the
important functionality of the Buffer class. First,
we check to see that the assignment operators
work as they are supposed to. This is shown
at� 6 in Listing 60-2. Next, we test to see whether
the indexing logic works properly, as shown
at � 7. If it is working properly, we would expect
to see the exception thrown and printed out on

indexing operator ([]). The operator[], shown
at � 2, carefully checks to see whether the index
requested is within a valid range. If it is not, it
will throw an exception. Similarly, the sub-string
operator() (shown at � 4) checks to make sure
that all of the characters are in the valid range.
Unlike the character array, the Buffer class
allows you to extract small segments of itself, but
protects against those segments being invalid.
Because the returned value is a Buffer object,
this method is safe from overruns. You might
notice the conversion operator, shown at the line
marked � 3; it appears to provide a way for the
programmer to destroy the string. In fact,
because it returns a constant pointer to the
buffer, the programmer cannot directly change it
without casting the string, a fact that the com-
piler will be happy to note. The overall idea is
that we are preventing the programmer from
doing something that will cause problems with-
out thinking about it more than once.

3. Save the source code in the code editor.

Notice that we create our own Exception
class (shown at the line marked with � 5) to
return errors from the Buffer class. It’s a good
idea to have your own forms of exceptions,
rather than using the basic types; that way the
programmer can deal with system errors in
ways that are different from programmatic
solutions.

Testing the Buffer Class
After you create a class, you should create a test
driver that not only ensures your code is correct,
but also shows people how to use your code. The
following steps show you how:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch60.cpp.

71_57986x ch60.qxd 1/26/05 4:08 PM Page 364

Testing the Buffer Class 365

the console. Finally, we test the sub-string func-
tions, by extracting a piece of the buffer and
making it into a new Buffer object (shown at

� 8). If the operator is working correctly, we
should see the new buffer be the first four charac-
ters of the original string. Let’s test it out and see.

3. Save the source file in the code editor and
close the editor application.

4. Compile the source file with your favorite com-
piler on your favorite operating system.

5. Run the application on your favorite operating
system.

If you’ve done everything right, you should see a
session similar to this one on your console window:

$./a.exe
The buffer is: This is a test
The buffer is: Thas is a test
Caught the error: Buffer: Array index out

of range
The new buffer is: [Thas]

As you can see, the output is exactly what we
expected. The error was generated and caught, and
the exception information was printed to the con-
sole. The sub-string was the characters we expected
as well, indicating that both the original assignment
and the sub-string operators are correct. By using
this class, we can therefore expect to save a lot of
time in debugging our applications and in develop-
ing applications, because a lot of the functionality
exposed makes it quicker to check input data.

As you can see, this code offers greater safety. It
sure beats allowing the buffers to be overrun and
the memory to be stomped on.

71_57986x ch60.qxd 1/26/05 4:08 PM Page 365

61
Save Time By
� Adding code to allow

users to specify search
paths to files

� Creating a multiple-
search-path class

� Testing your class

Technique

Opening a File
Using Multiple
Paths

It happens quite often when designing computer software: You ask a
user to specify a file to open in your application, and then permit him
to choose that file by “browsing” to the correct path. Unfortunately,

there is no good way to utilize the underlying operating system to find
specific files, especially if you want your application to be portable
across various operating systems. It makes more sense, therefore, to
build a method for actually looking across all search paths that might
exist when you open a file automatically, without worrying about where
they are, or how to get at them.

This technique does the job by building a utility class that manages mul-
tiple paths for searching files, using that class to find and read whichever
file the user specifies. No magic here — just a handy way to utilize the
built-in functionality of the C++ Standard Library functions to avoid the
problems of using the operating system to find files, since this process is
different for each operating system. There is nothing magical about
searching various search paths and opening files, but combining the two
into a single object provides some power and flexibility that you can uti-
lize in numerous applications — with little effort on your own part. That,
of course, is the entire point to building utility classes in C++: You get a
lot of bang for your buck.

The new utility class is responsible for three things:

� It stores the various paths used for searching and ensures that those
paths are all valid.

� It uses the input search paths to find a given file when the user speci-
fies one.

� It opens the chosen file and returns a stream-object reference to the
programmer for use in manipulating the file. The user can then find
out where the file is — and read the file from the stream object as
needed. The user may not know, or care, where the file they requested
is actually located, so long as it can be found along one of the various
search paths.

72_57986x ch61.qxd 1/26/05 4:08 PM Page 366

Creating the Multiple-Search-Path Class 367

If you are storing various configuration files for
your system, it’s unlikely that the user will
store all the files in one place. For example, if
your program has a set of configuration files,
a set of definition files, a set of output report
files, and so on, the user will probably want
them stored in different locations. It’s also
likely that the user will sometimes forget
which ones go where and put them in the
wrong places. Rather than making the users
do the work of finding all the files, you should
define a set of possible search paths for the
user. This approach saves time for the user,
spares the programmer some grief, makes
your application better received, and makes
life a bit easier for all concerned. If you require
that the user find each file, rather than search
for it yourself in the most likely places, you
make life harder for the user. If you make life
harder for the user, they will use someone
else’s program.

Creating the Multiple-
Search-Path Class
A utility class that allows the user to find a file by
using multiple search paths simply makes good
sense. The following steps create such a class, called
MultiPathFile:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch61.cpp,
although you can use whatever you choose.

2. Type the code from Listing 61-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 61-1: THE MULTIPLE-SEARCH-PATH UTILITY CLASS

#include <string>
#include <vector>
#include <fstream>
#include <iostream>
#include <sys/stat.h>

using namespace std;

class DirectoryList
{
private:

vector< string > _entries;
public:

DirectoryList(void)
{
}
DirectoryList(const char *strDir)
{

_entries.insert(_entries.end(),
strDir);

}
DirectoryList(const DirectoryList&
aCopy)

{
vector<string>::const_iterator
iter;

for (iter =
aCopy._entries.begin(); iter !=
aCopy._entries.end(); ++iter)

_entries.insert(
_entries.end(), (*iter));

}

bool is_dir(const char *strDir) � 1
{

struct stat st;

if (stat(strDir, &st)
== 0) � 3

{
if (st.st_mode & S_IFDIR)

return true;
}

(continued)

72_57986x ch61.qxd 1/26/05 4:08 PM Page 367

Technique 61: Opening a File Using Multiple Paths368

class MultiPathFile
{
private:

DirectoryList _pathList;
ifstream _in;
string _path;

public:
MultiPathFile(void)

: _path(“”)
{
}
MultiPathFile(const DirectoryList&
aPathList)

: _pathList(aPathList),
_path(“”)

{
}
MultiPathFile(const char *strDir)

: _pathList(strDir),
_path(“”)

{
}

void addPath(const char *strDir)
{

if (_pathList.is_dir(strDir))
_pathList.addEntry(strDir);

else
printf(“Invalid path:
[%s]\n”, strDir);

}
void removePath(const char *strDir)
{

_pathList.removeEntry(strDir);
}

bool open(const char *strFileName) � 2
{

for (int i=0;
i<_pathList.count(); ++i)

{
string sDir =
_pathList.getEntry(i);

string sFullPath = sDir +
strFileName;

_in.open(sFullPath.c_str(),
ios::in);

LISTING 61-1 (continued)
return false;

}

void addEntry(const char *strDir)
{

_entries.insert(_entries.end(),
strDir);

}
void removeEntry(const char *strDir)
{

vector<string>::iterator iter;
for (iter = _entries.begin();
iter != _entries.end(); ++iter)

{
if ((*iter) == strDir)
{

_entries.erase(iter);
}

}
}
int count(void) const
{

return _entries.size();
}

DirectoryList operator+=(const char
*strDir)

{
_entries.insert(_entries.end(),

strDir);
return *this;

}
DirectoryList operator-=(const char
*strDir)

{
removeEntry(strDir);
return *this;

}

string getEntry(int idx)
{

if (idx < 0 || idx > count()-1)
throw “DirectoryList: Array
Index out of range”;

return _entries[idx];
}

};

72_57986x ch61.qxd 1/26/05 4:08 PM Page 368

Testing the Multiple-Search-Path Class 369

if (!_in.fail())
{

_path = sDir;
return true;

}
_in.clear();

}

return false;
}

void close()
{

_in.close();
}

ifstream& file(void)
{

return _in;
}

string CurrentPath(void)
{

return _path;
}

};

3. Save the source code in the code-editor
application.

The code above breaks down into two classes:

� The DirectoryList class: This class simply
maintains a list of various directories in the sys-
tem and allows the programmer to have a single,
consistent way to access directory names. There
is nothing really surprising in this class; it is just
a wrapper around the Standard Template Library
(STL) vector class that does a bit of extra check-
ing to see if a given name is a directory. (See the
is_dir method, shown at � 1.)

� The MultiPathFile class: This is really an
extended version of the basic file classes sup-
plied by the STL. It maintains a list of directories
to search by using the DirectoryList class to

hold the various directories. When an open
request is received via the open method, as
shown at � 2, the class iterates through the var-
ious directories in its list and tries to open the
file in each one. If the file is found in a given
directory, it stores the directory path where the
file was found and returns a handle allowing the
programmer to access the file.

These two classes (DirectoryList and
MultiPathFile) do all of the work of managing the
search paths and then utilizing those search paths
to open and manipulate the file. Notice the use of
stat (a standard C function) shown at the line
marked � 3 to check whether an input path is valid
and is a directory.

Note that you will need to add search paths to the
system using the path delimiter (which is the for-
ward or backward slash, depending on the operating
system you’re working with) appended to the end of
the path. That is, you have to enter c:/windows/
rather than simply c:/windows, because the system
will not append the delimiter for you. This could eas-
ily be fixed, but would require even more code in
what is already a fairly long listing.

Testing the Multiple-Search-
Path Class
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.
The following steps tell you how:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch61.cpp.

72_57986x ch61.qxd 1/26/05 4:08 PM Page 369

Technique 61: Opening a File Using Multiple Paths370

getchar();
switch (option)
{

case 1: � 4
printf(“Enter search
path to add: “);

memset(szPath, 0,
sizeof(szPath));

gets(szPath);
if (strlen(szPath))

paths.addPath(
szPath);

break;
case 2: � 5

printf(“Enter file to
open: “);

memset(szFile, 0,
sizeof(szFile));

gets(szFile);
if (strlen(szFile))

if (!paths.open(
szFile))

printf(“Error
finding file
%s\n”,
szFile);

else
{

printf(“File
found at:
[%s]\n”,
paths.Curren
tPath().c_st
r());

display_file(
paths.file()
); � 7

}
break;

case 3: � 6
bDone = true;
break;

default:
printf(“Invalid
Option\n”);

break;
}

}

return 0;
}

2. Type the code from Listing 61-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 61-2: THE MULTIPLE-SEARCH-PATH TEST PROGRAM

void display_file(ifstream& in)
{

// Display the first 100 characters
cout << endl;
for (int i=0; i<100; ++i)
{

char c;
in.get(c);
if (!in.fail())

cout << c;
else

break;
}
cout << endl;

}

int main(int argc, char **argv)
{

MultiPathFile paths;

// First, add in all the paths
for (int i=1; i<argc; ++i)
{

paths.addPath(argv[i]);
}

// Now ask them what they want to do.
bool bDone = false;
while (!bDone)
{

char szPath[256];
char szFile[256];

printf(“Options:\n”);
printf(“(1) Add a new search
path\n”);

printf(“(2) Open a file\n”);
printf(“(3) Exit the
program\n\n”);

printf(“What do you want to do?
“);

int option = 0;
scanf(“%d”, &option);

72_57986x ch61.qxd 1/26/05 4:08 PM Page 370

Testing the Multiple-Search-Path Class 371

The above code tests the multiple search paths
to open files. When run, the program allows the
user to add various search paths to their list of
directories to use, then allows them to search for
the file using those paths. If the user wants to add
a new search path, he enters ‘1’ at the prompt,
which falls into the code at � 4. This code gets a
path name from the user and adds it to the search
path list. If the user wants to find a file, he enters
‘2’ at the prompt, and the program prompts for
the filename to search for (see � 5). If it is found,
it will be printed out along with the path that it
was found in. Finally, entering ‘3’ at the prompt ter-
minates the loop and exits the program (see � 6).

3. Save the source code in your code editor and
then close the editor application.

4. Compile the application using your favorite
compiler on your favorite operating system.

5. Run the application in the console window of
your favorite operating system.

If you have done everything right, you should see a
session that looks something like this:

$./a.exe
Options:
(1) Add a new search path
(2) Open a file
(3) Exit the program

What do you want to do? 1
Enter search path to add: c:/matt/ � 8
Options:
(1) Add a new search path
(2) Open a file
(3) Exit the program

What do you want to do? 1
Enter search path to add: c:/work/ � 9
Options:
(1) Add a new search path
(2) Open a file
(3) Exit the program

What do you want to do? 1
Enter search path to add: c:/windows/ � 10
Options:
(1) Add a new search path
(2) Open a file
(3) Exit the program

What do you want to do? 2
Enter file to open: DATECL.h � 11
File found at: [c:/work/] � 12

/*
*+---

*| Header.......: DATE
Options:
(1) Add a new search path
(2) Open a file
(3) Exit the program

What do you want to do? 3

As you can see, the utility class went through the list
of paths I gave it (shown at lines � 8, � 9, and � 10),
found the one that matched the filename that was
input (shown at � 11), opened the file, and allowed
me to read it. In addition, it returned the path to
where the file was found (shown at � 12); I can
output that data to the user of the application.
The file is displayed via the display_file call in
Listing 61-2 at line � 7.

Improving the class
The class as it stands is very useful, but would benefit from
a capability that saves the paths to some form of persistent
storage and then reads them back from the storage file at
program startup. The user would only have to enter the
paths once. In addition, the program does not use relative
file paths for some operating systems (such as ~ in Unix),
because of the way in which the open is done. This could
be improved as well.

72_57986x ch61.qxd 1/26/05 4:08 PM Page 371

72_57986x ch61.qxd 1/26/05 4:08 PM Page 372

Part IX

Debugging C++
Applications

73_57986X pt09.qxd 1/26/05 4:07 PM Page 373

73_57986X pt09.qxd 1/26/05 4:07 PM Page 374

62
Building Tracing
into Your
Applications

If you have ever tried to debug an application that you didn’t write, you
know that the biggest challenge is simply figuring out how the program
got into its present state to begin with. Quite often, while the individual

components of a system are well documented, the overall flow of the sys-
tem is not. There is no real way for you to know how the program got from
the initial entry point to the point at which the problem occurred without
stepping through each and every line in the debugger. Given the number
of levels in the average production-quality C++ program, it can take hours
to get from the beginning of the program to the problem spot. Wouldn’t it
be nice if you could just look through the source code for potential prob-
lems and trace through the code path that you knew the system was tak-
ing to get from point A (an entry point into the system) to point B (where
the problem occurs)? Of course it would.

In general, what prevents us from having the data we need to trace from
one point in the program to the core of the system is a lack of informa-
tion about the path that is taken. Most debuggers can show you a call
stack of how you got somewhere, but that stack goes away when you
stop running the program. Worse, because the call stack shows you
absolutely everything that goes on, you will often find yourself chasing
problems in the system libraries and language code, rather than the
more likely problems in your own code. What you really need to know is
the path through your code that was used, not every call into the alloca-
tion libraries or string functions. This means we need a way to trace
through our own code only, and show where we are at any given time.

Of course, the obvious solution here is simply to build a tracing capability
into our applications. Okay, how do you go about this? The easiest way is
to create a C++ class that can “report” where we are in the program, and
to then have that class talk to a “manager” process that can print out a
complete trace tree, showing how we got there. That, in a nutshell, is the
purpose of this technique.

Technique

Save Time By
� Understanding the

benefits of building
tracing into your
applications

� Creating a flow trace
class

� Testing the flow trace
class

� Building in tracing after
the fact

� Testing your code

74_57986x ch62.qxd 1/26/05 4:07 PM Page 375

Technique 62: Building Tracing into Your Applications376

1. In the code editor of your choice, create a new
file to hold the code for the definition of the
source file.

In this example, the file is named ch62.cpp,
although you can use whatever you choose.

2. Type the code from Listing 62-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

Implementing the
Flow Trace Class
First, we need to implement the definition of the flow
trace class. The flow trace class allows us to track
what happens in the program, and to quickly and
easily display a list of all of the functions that were
called from the point the process was begun to when
the problem occurred.

LISTING 62-1: THE FLOW TRACE CLASS DEFINITION

#include <string>
#include <stack>
#include <vector>

class debugFlowTracer
{
private:

std::string m_sFlowName;
std::vector< debugFlowTracer > m_activefunctionStack;
bool m_bRemoved;

protected:
virtual void AddFlow();
virtual void RemoveFlow();

public:
debugFlowTracer(void)
{

m_sFlowName = “Unknown”;
m_bRemoved = false;
AddFlow();

}

debugFlowTracer(const char *strFlow)
{

m_sFlowName = strFlow;
m_bRemoved = false;
AddFlow();

}
debugFlowTracer(const debugFlowTracer& aCopy)
{

m_sFlowName = aCopy.m_sFlowName;
std::vector< debugFlowTracer >::const_iterator iter;
for (iter = aCopy.m_activefunctionStack.begin(); iter !=

aCopy.m_activefunctionStack.end(); ++iter)
m_activefunctionStack.insert(m_activefunctionStack.end(), (*iter));

}

74_57986x ch62.qxd 1/26/05 4:07 PM Page 376

Implementing the Flow Trace Class 377

~debugFlowTracer(void)
{

if (!m_bRemoved)
RemoveFlow();

m_bRemoved = true;
}

std::string Name()
{

return m_sFlowName;
}

void AddSubFlow(debugFlowTracer& cSubFlow)
{

// Just push it on top of the active function stack.
m_activefunctionStack.insert(m_activefunctionStack.end(), cSubFlow);

}
void PrintStack(int iLevel)
{

std::vector< debugFlowTracer >::iterator iter;
for (iter = m_activefunctionStack.begin(); iter != m_activefunctionStack.end(); ++iter)
{

for (int i=0; i<iLevel; ++i)
putchar (‘\t’);

printf(“%s\n”, (*iter).Name().c_str());
(*iter).PrintStack(iLevel+1);

}
}

};

This listing could be easily generated by the flow
trace object.

3. Save the source code as a file in the code editor
of your choice.

4. Append the code from Listing 62-2 to your file.

This will contain the debugFlowTracerManager
class.

Better yet, copy the code from the source file on
this book’s companion Web site.

The flow trace object (debugFlowTrace) contains
a name that you can use for defining specific
entry points into the system — such as when the
user starts using a feature such as saving a file. It
also contains a list of sub-flows, which are simply
the functions that are entered when the flow
begins. If you start in function one, call function
two and four, in which function two calls function
three, you would have a trace that looked like
this:

Function One
Function Two
Function Three

Function Four

74_57986x ch62.qxd 1/26/05 4:07 PM Page 377

Technique 62: Building Tracing into Your Applications378

LISTING 62-2: THE FLOW TRACE CLASS AND MANAGER IMPLEMENTATION

class debugFlowTracerManager
{
private:

std::stack< debugFlowTracer> m_functionStack;
static debugFlowTracerManager *m_Instance;

public:
static debugFlowTracerManager *Instance() � 1
{

if (m_Instance == NULL)
m_Instance = new debugFlowTracerManager();

return m_Instance;
}
void addFlow(debugFlowTracer& cFlow)
{

m_functionStack.push(cFlow);
}
void removeFlow(debugFlowTracer& cFlow)
{

if (m_functionStack.empty())
return;

// Get the top element.
debugFlowTracer t = m_functionStack.top();

// Remove it.
m_functionStack.pop();

// If there is anything left, add it.
if (m_functionStack.empty())
{

printf(“Flow [%s]:\n”, t.Name().c_str());
t.PrintStack(0);

}
else

m_functionStack.top().AddSubFlow(t);

}

private:
debugFlowTracerManager()
{
}
debugFlowTracerManager(const debugFlowTracerManager& aCopy)
{
}
virtual ~debugFlowTracerManager(void)
{
}

};

74_57986x ch62.qxd 1/26/05 4:07 PM Page 378

Testing the Flow Trace System 379

The purpose of the debugFlowTracerManager class is
to keep track of the various flows within the system.
Because a flow can really start and end anywhere in
the source code of the application, we need a single
place to store all of them. This allows us to print
them out at the point that gives us the best view of
how the processing went. The flow manager con-
tains a single method, Instance (shown at � 1), to
return an instance of the class. Otherwise, you will
notice that the constructors are all private, so that
users cannot create an instance of the class. This
ensures that there is only a single object of this class
in any given application.

Testing the Flow Trace System
After you create a class, you should create a test
driver that not only ensures your code is correct,
but also shows people how to use your code. The
following steps tell you how:

1. Append the code from Listing 62-3 into your
source file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 62-3: THE FLOW TRACE TEST PROGRAM

void func_3()
{

debugFlowTracer flow(“func_3”);
}

void func_2()
{

debugFlowTracer flow(“func_2”);
func_3();

}

void func_1()
{

debugFlowTracer flow(“func_1”);
func_2();

}

int main(int argc, char* argv[])
{

debugFlowTracer mainFlow(“main”);
func_1();
func_2();
func_3();
return 0;

}

The test driver is constructed to illustrate the way
in which the flow manager works. Note that we
simply define a debugFlowTracer object in each of
the functions in the code, and then use the func-
tions as we would normally. The debugFlowTracer

debugFlowTracerManager *debugFlowTracerManager::m_Instance = NULL;

void debugFlowTracer::AddFlow()
{

debugFlowTracerManager::Instance()->addFlow(*this); � 2
}

void debugFlowTracer::RemoveFlow()
{

debugFlowTracerManager::Instance()->removeFlow(*this);
}

74_57986x ch62.qxd 1/26/05 4:07 PM Page 379

Technique 62: Building Tracing into Your Applications380

object attaches itself to the the instance of the
manager (shown back in Listing 62-2 at � 2) and
adds itself as a flow when it is created. The man-
ager keeps track of all of the flows, printing them
out for diagnostic purposes as they are created.

2. Save the source code in the source-code editor
and close the source-editor application.

3. Compile the application using your favorite
compiler on your favorite operating system.

4. Run the application on your favorite operating
system.

If you have done everything properly, you should
see the following output in the console window of
your operating system:

$./a
Flow [main]:
Flow [func_1]:
Flow [func_2]:
Flow [func_3]:
Flow [func_2]:
func_3 � 3
Flow [func_3]:

As you can see, the program indicates what flows are
running in the application, and how it got from one
point to another. The names of the flows are printed
within the square brackets as they are created. When
a flow goes out of scope (when the function ends) the
sub-flows (calls within that function) are printed out.
You can see that in our case, only one of the functions
called calls another function. This is shown in the
listing at the line marked with � 3, indicating where
func2 called func3. This gives us a good example of
tracing and shows us how func3 was called through-
out the program.

Adding in Tracing
After the Fact
One of the more annoying things in the software world
is being told to add something to your application

after it has been designed, coded, and released.
After all, you say, if it was up to you, the code would
have been in there in the first place. Why should you
pay for the mistakes of the developers before you?
The answer is, because that’s the way the world
works. Someone comes along, writes a bunch of
ugly, unmaintainable code, and then moves on to do
it again someplace else. You get to move in and fix
the disaster that was left behind.

Fortunately, this isn’t really one of those times. It is
possible to add in flow tracing after the fact, even
automating the process. Let’s create a simple little
application that will do just that.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch62a.cpp,
although you can use whatever you choose.

2. Type the code from Listing 62-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

A word of warning
Before you use the insertion program, here are a few things
you need to know about it:

� Consider it a jumping-off point for your own cre-
ations. It is not intended to be used in a production
environment. Using it that way is likely to confuse the
program; its interaction with complex programs may
require you to update the output. (That is why it
does not overwrite your original source.)

� It does not handle all cases. Inline code in a class will
not be detected and updated.

� The code will sometimes detect a function or
method when one does not exist. For example, the
code will sometimes make this mistake in a macro.

The insertion program will insert tracing objects in most,
but not all, of your application functions with the exceptions
listed in the notes above. Use it in good health.

74_57986x ch62.qxd 1/26/05 4:07 PM Page 380

Adding in Tracing After the Fact 381

LISTING 62-4: A UTILITY PROGRAM TO INSERT TRACING INTO AN EXISTING FILE

#include <string>
#include <ctype.h>

void eat_line(FILE *fp, std::string& real_line)

{
// Just read to the end of the line.
while (!feof(fp))
{

char c = fgetc(fp);
real_line += c;
if (c == ‘\n’)

break;
}

}

void eat_comment_block(FILE *fp, std::string& real_line)
{

char sLastChar = 0;

// Find the matching comment-close character.
while (!feof(fp))
{

char c = fgetc(fp);
real_line += c;
if (c == ‘/’ && sLastChar == ‘*’)

break;
sLastChar = c;

}
}

std::string get_line(FILE *fp, std::string& real_line)
{

std::string sLine = “”;
char sLastChar = 0;
while (!feof(fp))
{

// Get an input character.
char c = fgetc(fp);

real_line += c;

// Check for pre-processor lines.
if (c == ‘#’ && (sLastChar == 0 || sLastChar == ‘\n’))
{

eat_line(fp, real_line);
continue;

}
(continued)

74_57986x ch62.qxd 1/26/05 4:07 PM Page 381

Technique 62: Building Tracing into Your Applications382

LISTING 62-4 (continued)
// Check for comments.
if (c == ‘/’)
{

sLastChar = c;
c = fgetc(fp);
real_line += c;

if (c == ‘/’)
{

eat_line(fp, real_line);
sLastChar = 0;
continue;

}
else

if (c == ‘*’)
{

eat_comment_block(fp, real_line);
sLastChar = 0;
continue;

}
else
{

sLine += sLastChar;
}

}

// Need to skip over stuff in quotes.

if (c != ‘\r’ && c != ‘\n’)
{

// Here it gets weird. If the last character was
// a parenthesis, we don’t want to allow white space.
if (sLastChar != ‘)’ || !isspace(c))

sLine += c;
else

continue;
}

// A line terminates with a {, a }, or a ; character.
if (c == ‘;’ || c == ‘{‘ || c == ‘}’)

break;

sLastChar = c;
}

74_57986x ch62.qxd 1/26/05 4:07 PM Page 382

Adding in Tracing After the Fact 383

return sLine;
}

std::string parse_function_name(std::string& sLine)
{

std::string sName = “”;

// First, find the opening parenthesis.
int sPos = (int)sLine.find(‘(‘);

// Skip over everything that is a space before that.
for (int i=sPos-1; i>=0; --i)

if (!isspace(sLine[i]))
{

sPos = i;
break;

}

// Now everything backward from that is the name, until
// we hit either the beginning of the line or white space.
int sStartPos = 0;
for (int i=sPos; i>=0; --i)
{

if (isspace(sLine[i]))
break;

sStartPos = i;
}

sName = sLine.substr(sStartPos, sPos-sStartPos+1);

return sName;
}

void ProcessFile(FILE *fp, FILE *ofp)
{

std::string real_line;

while (!feof(fp))
{

real_line = “”;

std::string sLine = get_line(fp, real_line);

// Check for functions/methods.
(continued)

74_57986x ch62.qxd 1/26/05 4:07 PM Page 383

Technique 62: Building Tracing into Your Applications384

LISTING 62-4 (continued)
// Output the “real” line, and then (if we need to) the
// information we need to embed.
fprintf(ofp, “%s”, real_line.c_str());
if (sLine[sLine.length()-1] == ‘{‘ && � 4

sLine[sLine.length()-2] == ‘)’)
{

std::string sName = parse_function_name(sLine); � 5
fprintf(ofp, “\n\tdebugFlowTracer flow(\”%s\”);\n”, sName.c_str());

}

}
}

int main(int argc, char* argv[])
{

if (argc < 2)
{

printf(“Usage: cppparser filename [filename...]\n”);
exit(1);

}
for (int i=1; i<argc; ++i)
{

FILE *fp = fopen(argv[i], “r”);
if (fp == NULL)
{

printf(“Error: Unable to process file %s\n”, argv[i]);
continue;

}

std::string sOut = std::string(argv[i]) + “.tmp”;
FILE *ofp = fopen(sOut.c_str(), “w”);
if (ofp == NULL)
{

printf(“Error: Unable to create output file %s\n”, sOut.c_str());
continue;

}

// Process this file
ProcessFile(fp, ofp);

// Finish it up
fclose(fp);
fclose(ofp);

}

return 0;

74_57986x ch62.qxd 1/26/05 4:07 PM Page 384

Adding in Tracing After the Fact 385

There is nothing magical about Listing 62-4. The
code takes an input file and writes it out to an
output temporary file, appending certain infor-
mation in the file as it parses the text within the
input file. In our case, the code is looking for
opening braces (shown at � 4) to indicate the
beginning of a function. When one is encountered,
it parses the function name (shown at � 5) and
writes a debugFlowTracer object definition into
the output file. This creates an automated sys-
tem for inserting flow tracing into an existing
source file.

3. Save the source code in the source-code editor.

4. Create a new file in the source-file editor to use
as a test input to the insertion program.

This file simply acts as test input for the pro-
gram; it doesn’t really have to do anything on its
own. For now, just create a file that contains
some functions and some class methods.

In this example, the file is named temp.cpp,
although you can use whatever you choose.

5. Type the code from Listing 62-5 into your
new file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 62-5: A TEMPORARY PROGRAM TO ILLUSTRATE TRACE

INSERTION INTO AN EXISTING FILE

#include <stdio.h>
#include <string>
#include <iostream>

int func1()
{

printf(“This is a test\n”);
}

void func2()
{

printf(“This is another test\n”);
}

class Foo
{
public:

Foo();
virtual ~Foo();

};

Foo::Foo(void)
{
}

Foo::~Foo(void)
{
}

int main()
{

Foo x;
}

Don’t spend any time studying the code in
Listing 62-5; its sole purpose is to provide an
input file to test out the parser. If it works prop-
erly, we will see an output file which contains
debugFlowTracer objects in func1, func2, and
the constructor and destructors for the Foo
object and the main function.

6. Compile the insertion program with your
favorite compiler on your favorite operating
system.

7. Run the program on your favorite operating
system.

If you have done everything right, you should see
a file called temp.cpp.tmp created that contains the
following text in it:

#include <stdio.h>
#include <string>
#include <iostream>

int func1()
{

debugFlowTracer flow(“func1”); � 6

74_57986x ch62.qxd 1/26/05 4:07 PM Page 385

Technique 62: Building Tracing into Your Applications386

}

Foo::~Foo(void)
{

debugFlowTracer flow(“Foo::~Foo”);

}

int main()
{

debugFlowTracer flow(“main”);

Foo x;
}

Note that the program properly inserted all of the
flow-tracing objects into the existing file. The lines
marked � 6 and � 7, for example, show you that
the output is exactly what we wanted and expected.

printf(“This is a test\n”);
}

void func2()
{

debugFlowTracer flow(“func2”);

printf(“This is another test\n”);
}

class Foo
{
public:

Foo();
virtual ~Foo();

};

Foo::Foo(void)
{

debugFlowTracer flow(“Foo::Foo”);� 7

74_57986x ch62.qxd 1/26/05 4:07 PM Page 386

63
Creating Debugging
Macros and Classes

When you are debugging an application, having a set of techniques
and tools that you can drop into an application will aid you in the
process of finding and eliminating bugs. These techniques break

down into two general categories:

� Macros used to debug techniques

� Classes used in your application to debug the code itself

This technique looks at the sorts of things you can do to build up your
own toolbox of debugging techniques and find the ones that work for
you. As with most programming, there is no “right” or “wrong” way to
debug a problem. There are techniques that work better for some people
than others, and it is up to you to discover the ones you like best — and
that work most efficiently. By having a library of macros that you can
immediately drop into your application, you will save time developing
and debugging code.

When it comes to debugging, one size definitely does not fit all. The
number of kinds of techniques that people swear by is limited only
by the number of programmers using them. To save time for yourself
and your application development, you should pick the techniques
that work for you and stick with them.

The assert Macro
The first technique we will look at is the assert macro. The assert macro
is a simply defined C++ standard macro that evaluates a single argument.
If that argument is true, the code continues processing. If the argument is
false, the program prints out a diagnostic error message and terminates
abruptly. The catch is that the assert macro is only defined when the
program is not being compiled in optimized mode. An assert is turned
“on” when it is checking values and printing out error messages. Asserts

Technique

Save Time By
� Debugging with the

assert macro

� Debugging with a logging
class

� Debugging with DBC
(Design by Contract)

� Testing your code

75_57986x ch63.qxd 1/26/05 4:06 PM Page 387

Technique 63: Creating Debugging Macros and Classes388

int retVal = 200 / divisor;
return retVal;

}

int main(int argc, char **argv)
{

func(3);
func(11);
return 0;

}

In the listing above, our function (func) accepts an
integer value. We expect the input value to be in
the range of one to ten, inclusive. Values outside
of that range will cause a division-by-zero error
in the function, so we want to make sure that the
user doesn’t supply such a value. The assert
statement (shown at the line marked � 1) traps
for such a condition and exits the program if the
value input is outside the specified range.

3. Save the file in the source-code editor and close
the editor application.

4. Compile the source-code file with your favorite
compiler on your favorite operating system.

5. Run the program on the console window of
your favorite operating system.

If you have done everything correctly, you should
see the following output on the console window:

$./a.exe
assertion “v1to10 >= 1 && v1to10 <= 10”

failed: file “ch8_1a.cpp”, line 7
Aborted (core dumped)

The output indicates that the assert function trig-
gered and the program exited. The actual text you
see will be dependent on your operating system,
compiler, and function library, but it will look similar
to this. The important aspect is that the assert macro
tells you what file and line the error occurred on and
the assertion statement that failed. This will provide
you valuable debugging information for determining
how the program failed.

are turned off when they do nothing. In program-
ming parlance, we say that the program is in “debug
mode” for assert to work, and in “release mode” if
asserts are turned off. Let’s look at an example of
how to use the assert macro in your own code.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch63.cpp,
although you can use whatever you choose. This
file will contain the class definition for your
automation object.

2. Type the code in Listing 63-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 63-1: USING THE ASSERT MACRO

#include <assert.h>
#include <string.h>
#include <stdlib.h>

int func(int v1to10)
{

assert(v1to10 >= 1 && v1to10 <= 10); � 1

int divisor = 0;

switch (v1to10)
{

case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:

divisor = v1to10 * 2;
break;

}

75_57986x ch63.qxd 1/26/05 4:06 PM Page 388

Logging 389

If you compile the source code with optimization on,
you will see only the core-dumped message (or your
operating system’s equivalent of a divide-by-zero
error) displayed.

The assert macro is useful during the initial
development phase of an application, but it
fails to catch run-time errors when the applica-
tion is released to the user. For this reason, you
should never count on assert statements to
catch all possible errors.

Logging
The next logical type of debugging technique is the
logging approach. Logging is the writing of data per-
sistently in your application in order to facilitate
debugging and maintenance. Much like a black box
on a crashed airliner, logging records the steps the
program took so you can understand how it got into
the state it’s in. Unlike some other techniques, log-
ging can be used in either development mode or
user-release mode. You can even turn it on or off at
run-time — and even during program execution — to
see exactly what is going on. The following steps
show you how to implement a logging class.

When you can turn your logging capability on
or off at will, you can zero in on a problem
much more quickly — which allows you to fil-
ter out extraneous program information and
see only what’s pertinent to the problem. In
this way, logging will save you a lot of time
when you’re trying to debug a program
defect.

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch63a.cpp,
although you can use whatever you choose. This
file will contain the class definition for your
automation object.

2. Type the code in Listing 63-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 63-2: A LOGGING CLASS

#include <iostream>
#include <string>
#include <stdlib.h>
#include <stdarg.h>
#include <fstream>

using namespace std;

class Logger
{

bool _bOn;
bool _bForceFlush;
string _sMessage;
string _sFileName;
ofstream _file;

public:
Logger(void)
{

_bOn = false;
_bForceFlush = false;

}
Logger(const char *strFileName) � 2
{

_sFileName = strFileName;
_bOn = false;
_bForceFlush = false;

}
Logger(const Logger& aCopy)
{

_sFileName = aCopy._sFileName;
_bForceFlush = aCopy._bForceFlush;
setOn(aCopy._bOn);

}
virtual ~Logger()
{

Flush();
if (_bOn)

_file.close();
}

void setOn(bool flag)
(continued)

75_57986x ch63.qxd 1/26/05 4:06 PM Page 389

Technique 63: Creating Debugging Macros and Classes390

}
void Flush(void)
{

if (_bOn)
_file << _sMessage << endl;

_sMessage = “”;
}

};

The Logger class can be used to do a more
extensive information capture within an applica-
tion. You can log virtually anything you want,
regardless of whether the program is compiled in
a debug (development) or release (production)
mode. Logging can be turned on or off, even at
run-time, allowing you to configure your system
whenever you want without recompiling the pro-
gram. The Logger class accepts a filename in
which it will write all of its output (see � 2), and
writes out strings using either a simple string for-
mat (see � 3) or a more complicated formatted
output (see � 4). This makes the logging class
ideal for inserting into your program and keeping
track of important events for either debugging or
customer support purposes.

3. Save the source file in your code editor.

Testing the Logger Class
After you create a class, you should create a test
driver that not only ensures your code is correct,
but also shows people how to use your code. The
following steps show you how:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch63a.cpp.

2. Type the code from Listing 63-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 63-2 (continued)
{

_bOn = flag;
if (_bOn)
{

_file.open(_sFileName.c_str());
}

}
bool getOn(void)
{

return _bOn;
}
void setForceFlush(bool flag)
{

_bForceFlush = flag;
}
bool getForceFlush(void)
{

return _bForceFlush;
}
void setFileName (const char
*strFileName)
{

_sFileName = strFileName;
}
string getFileName (void)
{

return _sFileName;
}

void Log(const char *strMessage) � 3
{

_sMessage += strMessage;
_sMessage += ‘\n’;
if (_bForceFlush)

Flush();
}
void LogString(const char *fmt, ...) � 4
{

char szBuffer[256];
va_list marker;

va_start(marker, fmt); /*
Initialize variable arguments. */

vsprintf(szBuffer, fmt, marker);

_sMessage += szBuffer;
_sMessage += ‘\n’;
if (_bForceFlush)

Flush();

75_57986x ch63.qxd 1/26/05 4:06 PM Page 390

Testing the Logger Class 391

LISTING 63-3: THE LOGGER CLASS TEST DRIVER

int main(int argc, char **argv)
{

Logger log(“log.txt”);

// Make the log write things out as it encounters strings,
// to avoid crashes wiping out the log.
log.setForceFlush(true);

// First, see whether the code told us to log anything.
for (int i=0; i<argc; ++i)
{

if (!strcmp(argv[i], “-log”))
{

log.setOn(true);
break;

}
}

log.Log(“Program Startup Arguments”);
for (int i=0; i<argc; ++i)
{

log.LogString(“Input Argument %d = %s”, i, argv[i]);

// Prompt for a string, modify it, and then write it out.
while (1)
{

printf(“Enter command: “);
char szBuffer[80];
memset(szBuffer, 0, 80);
if (gets(szBuffer) == NULL)

break;

log.LogString(“Input String: %s”, szBuffer);
if (!strlen(szBuffer))
{

break;
}

string s = “”;
for (int i=strlen(szBuffer)-1; i>=0; --i)

s += szBuffer[i];

log.LogString(“Output String: %s”, s.c_str());

}

log.Log(“Finished with application\n”);
return 0;

}

75_57986x ch63.qxd 1/26/05 4:06 PM Page 391

Technique 63: Creating Debugging Macros and Classes392

As you can see from the above listing, the log file
contains all of the arguments, as well as the input
and output strings from our session with the com-
mand prompts. The input strings are what we typed
into the program, and the output strings are the
expected reversed text.

As you can see, the application properly logged
everything that was coming in and going out. Now, if
we had a problem with the code (such as an occa-
sional too-short output string), we could consult the
log to look at what the user entered, and figure out
why it didn’t work in the debugger.

Design by Contract
The final technique that we will look at for use in the
debugging of C++ applications is actually one that you
build in at the initial coding time, although you can
add it after the fact. This technique — called Design
by Contract — was primarily created by the Eiffel
programming language. In the Design by Contract
(DBC) methodology, there are three important parts
of any piece of code:

� Preconditions: These are conditions you take for
granted before you can proceed with a process.
For example, if you are trying to read from a file,
it is important that the file be open first. If you
are reading bytes from the file, and it is open,
then you must specify a positive number of
bytes, because reading a negative number of
bytes makes no sense and could therefore lead to
problems. Specifying a positive number of bytes,
therefore, is a precondition for the process. A
precondition is simply an assumption that you
have made while you are coding the process.
By documenting these assumptions in the code
itself, you make life easier for the user of the
code, as well as for the maintainer of the code.

� Validity checks: These are simply “sanity
checks” for your object. For example, your
object might contain a value that represents a
person’s age. If that age value is negative, bad
things are going to happen when you try to com-
pute that person’s year of birth. This should

The above code listing is a simple program that
accepts a certain number of input arguments,
prints them out, and then prompts the user for
some commands. It could do just about anything
with either the input arguments or the com-
mands, but that really isn’t important for our
purposes. Just to modify the string for output,
we reverse the characters in the output string.
We log the input arguments, as well as the input
string and output strings in the command loop.
This indicates any potential problems with spe-
cific strings.

3. Save the source file in your code editor and
close the editor application.

4. Compile the source file with your favorite com-
piler on your favorite operating system.

5. Run the application.

If you have done everything properly, you should
see the following output on your command console:

$./a -log
Enter command: Hello world
Enter command: Goodbye cruel world
Enter command: Hell o again
Enter command:

$ cat log.txt
Program Startup Arguments

Input Argument 0 = ./a

Input Argument 1 = -log

Input String: Hello world

Output String: dlrow olleH

Input String: Goodbye cruel world

Output String: dlrow leurc eybdooG

Input String: Hell o again

Output String: niaga o lleH

Input String:

Finished with application

75_57986x ch63.qxd 1/26/05 4:06 PM Page 392

Design by Contract 393

never happen, of course, but it could happen due
to programming errors, memory overwrites, or
persistent storage errors. By checking the validity
of an object each time that you work with it, you
insure that the system is always in a known state.

� Post-conditions: These are conditions that must
be logically true after your process has completed.
For example, if you are setting the length of a
buffer in an object, the post-condition ensures
that the length is zero or a positive number.
(Negative lengths make no sense and indicate
an immediate processing error.) Another good
example: A post-condition can check an assump-
tion that a file has been opened — and valid val-
ues read in — at the end of a given process. If the
file is not open, or there are no valid values in the
output list, you know that something you didn’t
anticipate happened during processing. For this
reason, you check these assumptions in the post-
condition block of your process.

The purpose of Design by Contract is to eliminate
the source of errors before they crop up, which
streamlines the development process by making
error checking easier and debugging less intrusive.
This will save you a lot of time in the long-run by
making your programs more robust up front.

Documentation is a valuable asset in under-
standing code, but it does nothing to fix prob-
lems encountered while running the code. If
you document the assumptions that your code
makes while you’re writing it, you not only
save those assumptions in one place, but also
remind yourself to make the code check for
those assumptions at run-time.

So how does it all work? Most DBC (Design by
Contract) process controls are implemented via C++
macros. The following steps show you how this
could be implemented in your own application:

1. In the code editor of your choice, create a new
file to hold the code for the source file of the
technique.

In this example, the file is named ch63b.cpp,
although you can use whatever you choose. This
file will contain the class definition for your
automation object.

2. Type the code in Listing 63-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 63-4: THE DESIGN BY CONTRACT EXAMPLE

#include <iostream>
#include <stdlib.h>
#include <string.h>

void abort_program(const char *file, long line , const char *expression)
{

printf(“File: %s Line: %ld Expression Failed: %s\n”, file, line, expression);
exit(1);

}

class DBCObject
{

long _magicNo;
public:

DBCObject(long magic)
{

_magicNo = magic;
}

(continued)

75_57986x ch63.qxd 1/26/05 4:06 PM Page 393

Technique 63: Creating Debugging Macros and Classes394

LISTING 63-4 (continued)
#ifdef _DEBUG

virtual bool IsValid() const = 0;
#endif

long Magic(void) const
{

return _magicNo;
}
void setMagicNo(long magic)
{

_magicNo = magic;
}

};

#ifdef _DEBUG
#define DBC_ASSERT(bool_expression) if (!(bool_expression)) abort_program(__FILE__, __LINE__,

#bool_expression)
#define IS_VALID(obj) DBC_ASSERT((obj) != NULL && (obj)->IsValid())
#define REQUIRE(bool_expression) DBC_ASSERT(bool_expression)
#define ENSURE(bool_expression) DBC_ASSERT(bool_expression)

#else

// When your code is built in release mode, the _DEBUG flag would not be defined, thus there
will be no overhead

// in the final release from these checks.

#define DBC_ASSERT(ignore) ((void) 1)
#define IS_VALID(ignore) ((void) 1)
#define REQUIRE(ignore) ((void) 1)
#define ENSURE(ignore) ((void) 1)

#endif

class MyClass : public DBCObject
{
private:

char *_buffer;
int _bufLen;

protected:
void Init()
{

_buffer=NULL;
_bufLen = 0;

}

#ifdef _DEBUG
bool IsValid() const
{

// Condition: Buffer not null.
if (getBuffer() == NULL)

return false;

75_57986x ch63.qxd 1/26/05 4:06 PM Page 394

Design by Contract 395

// Condition: Length > 0.
if (getLength() <= 0)

return false;
// Condition: magic number correct.
if (Magic() != 123456)

return false;

// All conditions are correct, so it’s okay to continue.
return true;

}
#endif

public:
MyClass(void)

: DBCObject(123456)
{

Init();
}
MyClass(const char *strIn)

: DBCObject(123456)
{

// Precondition: strIn not NULL.
REQUIRE(strIn != NULL);

Init();
setBuffer(strIn);

// Post-condition: buffer not NULL.
ENSURE(getBuffer() != NULL);
// Post-condition: buffer length not 0.
ENSURE(getLength() != 0);

}
MyClass(const MyClass& aCopy)

: DBCObject(123456)
{

// Precondition: aCopy is valid.
IS_VALID(&aCopy);
// Precondition: aCopy._buffer not NULL.
REQUIRE(aCopy.getBuffer() != NULL);
// Precondition: aCopy._bufLen not 0.
REQUIRE(aCopy.getLength() != 0);

// Set the pieces.
setBuffer(aCopy._buffer);
setLength(aCopy._bufLen);

// Post-condition: buffer not NULL.
ENSURE(getBuffer() != NULL);
// Post-condition: buffer length not 0.
ENSURE(getLength() != 0);

(continued)

75_57986x ch63.qxd 1/26/05 4:06 PM Page 395

Technique 63: Creating Debugging Macros and Classes396

LISTING 63-4 (continued)
}
MyClass operator=(const MyClass& aCopy)
{

// Precondition: aCopy is valid.
IS_VALID(&aCopy);
// Precondition: aCopy._buffer not NULL.
REQUIRE(aCopy.getBuffer() != NULL);
// Precondition: aCopy._bufLen not 0.
REQUIRE(aCopy.getLength() != 0);

// Set the pieces.
setBuffer(aCopy._buffer);
setLength(aCopy._bufLen);

// Post-condition: buffer not NULL.
ENSURE(getBuffer() != NULL);
// Post-condition: buffer length not 0.
ENSURE(getLength() != 0);

// Return the current object.
return *this;

}

virtual ~MyClass()
{

// Precondition: Magic number must be correct.
REQUIRE(Magic() == 123456); � 5
// Pre-condition: length >= 0.
REQUIRE(getLength() >= 0);
// Pre-condition: If length, buffer NOT NULL.
if (getLength())

REQUIRE (getBuffer() != NULL);

// All looks okay; delete the buffer.
if (buffer != NULL) delete [] _buffer;

_buffer = NULL;
// Clear the length.
_bufLen = 0;

// Post-condition: The magic number is still correct.
ENSURE(Magic() == 123456);
// Post-condition: Buffer NULL.
ENSURE(getBuffer() == NULL);
// Post-condition: Length 0.
ENSURE(getLength() == 0); � 6

}

75_57986x ch63.qxd 1/26/05 4:06 PM Page 396

Design by Contract 397

In Listing 63-4, we use the pre- and post-conditions
to insure that valid values are set in our object at
all times. Note, for example, in the destructor for
the class that our precondition is that the magic
number stored in the class be set to the correct
values (123456, shown at � 5) and that at the end
of the class the length be zero (shown at � 6).
If either of these conditions is false, the program
prints an error message and exits.

As you can see, the code does copious checking
to make sure that the object data is always in a
consistent state, that the input to the various
methods is valid, and that the output from the
object processes is valid as well. In the following
steps, a very simple test of the code shows
exactly how this all works.

3. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch63b.cpp.

4. Type the following code into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

int main(int argc, char **argv)
{

// Program Conditions.
REQUIRE (argc > 1);
REQUIRE (argv[1] != NULL);

void setBuffer(const char *strIn)
{

// Precondition: strIn not NULL.
REQUIRE(strIn != NULL);

if (strIn != NULL)
{

_buffer = new char[strlen(strIn) + 1];
strcpy (_buffer, strIn);

}
}
void setLength (int length)
{

// Pre-condition: Length > 0.
REQUIRE (length > 0);

_bufLen = length;
}

int getLength(void) const
{

// No conditions.
return _bufLen;

}
const char *getBuffer(void) const
{

// No conditions.
return _buffer;

}
};

75_57986x ch63.qxd 1/26/05 4:06 PM Page 397

Technique 63: Creating Debugging Macros and Classes398

9. Modify the code as follows. Replace the exist-
ing code in the MyClass constructor with the
listing below.

MyClass(const char *strIn)
: DBCObject(123456)

{
// Precondition: strIn not

NULL.
REQUIRE(strIn != NULL);

Init();
setBuffer(strIn);
setLength (strlen(strIn));

// Post-condition: buffer not
NULL.

ENSURE(getBuffer() != NULL);
// Post-condition: buffer

length not 0.
ENSURE(getLength() != 0);

}

10. Save the source file in your code editor, and
then close the editor application.

11. Compile the source file with your favorite com-
piler on your favorite operating system.

12. Run the application.

If you have done everything properly, you should
see the following output on your command console:

$./a.exe

As you can see, there are no errors reported. That
significant lack means all the contracts in the code
have been satisfied — and the code should
encounter no problems when run with the tests
we’ve created.

Of course, to keep this happy arrangement going,
you have to exercise some care: Every time you
encounter a problem in the system, make sure that
you add a test to account for that problem. That is
the final piece of the Design by Contract method of
debugging and maintenance.

// Empty object.
MyClass mc1;

// Object defined from command
line.
MyClass mc2(argv[1]);
// Make a copy of it.
MyClass mc3 = mc2;

}

5. Save the source file in your code editor and
close the editor application.

6. Compile the source file with your favorite com-
piler on your favorite operating system.

7. Run the application.

If you have done everything properly, you
should see the following output on your com-
mand console:

$./a.exe
File: ch8_1c.cpp Line: 204 Expression

Failed: argc > 1

Okay, it’s fairly obvious what happened here: We
told the system to check for the number of argu-
ments to the application, and required that there
be some arguments, but they weren’t there. Let’s
supply one and see what happens.

$./a.exe Hello
File: ch8_1c.cpp Line: 99 Expression

Failed: getLength() != 0

Oops! What happened here? We supplied an
argument — and the code failed anyway. Looking
at the line that failed, we can see that it was the
post-condition of the constructor for the class.
Aha! We never set the length of the buffer in the
constructor, setting only the buffer itself. Let’s
fix that by adding some to the constructor.

8. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch8_2c.cpp.

75_57986x ch63.qxd 1/26/05 4:06 PM Page 398

64
Debugging
Overloaded
Methods

When you are debugging a program, there is nothing quite as frus-
trating as discovering that all the work you spent tracking down a
particular problem was wasted because the method you thought

was being called in a C++ class was, in fact, not the code being executed at
all. Figuring out which method is being called can be an annoying problem,
and careful observation is often needed to see what is really happening,
as we will see in this programming technique.

An overloaded method is a method that has the same name as another
method in the same class, but contains a different number or type of
arguments. (The list of arguments and the return type combine to form a
signature for the method.)

When you have a class that contains overloaded methods, it is essential
that you know which one is being called in each case. Because the num-
ber of arguments can be the same for different overloaded methods
(only the type of the arguments is different), it can be difficult to tell
which method is being called in your application source code. Let’s take
a look at a class that contains overloaded methods with problems. We
will create a class that contains several overloaded methods in this tech-
nique, and differentiate them only by the type of argument they accept.
You will see that it is not always easy to tell which method is being called
in your program. Here’s how:

1. In the code editor of your choice, create a new file to hold the code
for the implementation of the source file.

In this example, the file is named ch64.cpp, although you can use
whatever you choose.

2. Type the code from Listing 64-1 into your file.

Or better yet, copy the code from the source file on this book’s
companion Web site.

Technique

Save Time By
� Debugging overloaded

methods

� Adding logging to an
application

� Handling errors

76_57986x ch64.qxd 1/26/05 4:05 PM Page 399

Technique 64: Debugging Overloaded Methods400

void print(MyClass& mc)
{

cout << “Dump: “ << endl;
cout << “-----------------------” <<
endl;

cout << “X = “ << mc.getX() << endl;
cout << “-----------------------” <<
endl;

}

int main(int argc, char **argv)
{

MyClass mc(3);
print(mc);
mc = 2.0;
print(mc);
mc = 5;
print(mc);
mc = “6.34”; � 7
print(mc);

}

The class shown in our little test program above
has three methods that have the same name,
setX. These methods take three different types
of arguments: The first method, shown at � 1,
takes an integer value; the second method, shown
at � 2, takes a floating point (double) value; the
final version of the method takes a string as its
argument, as shown at � 3. In addition, the func-
tion has three overloaded assignment operators
(operator=, shown at lines � 4, � 5, and � 6).
The test driver assigns an object of the MyClass
type some various values, 2.0, 5, and “6.34”.
You would expect that the result of the output
in the print statements would be the values
assigned at each stage. As we will see, however,
the last assignment statement (shown at � 7)
does not work properly. Take a moment and look
at the code and see if you can figure out why.

3. Save the source code in your source-code editor
and close the source-code editor application.

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the resulting program on your favorite
operating system.

LISTING 64-1: CLASS WITH OVERLOADED METHODS

#include <iostream>

using namespace std;

class MyClass
{

int _x;
public:

MyClass(void)
{

_x = 0;
}
MyClass(int x)
{

_x = x;
}
MyClass(const MyClass& aCopy)
{

_x = aCopy._x;
}
MyClass operator=(int x) � 4
{

setX(x);
return *this;

}
MyClass operator=(double d) � 5
{

setX(d);
return *this;

}
MyClass operator=(const char *str) � 6
{

setX(str);
return *this;

}
void setX(int x) � 1
{

_x = x;
}
void setX(double d) � 2
{

_x = (int)d;
}
void setX(const char *str) � 3
{

int x = atoi(str);
}
int getX(void)
{

return _x;
}

};

76_57986x ch64.qxd 1/26/05 4:05 PM Page 400

Adding Logging to the Application 401

If you have done everything right, you should see
the following output in the console window of your
favorite operating system:

$./a.exe
Dump:

X = 3

Dump:

X = 2

Dump:

X = 5

Dump:

X = 5

Now, something here is obviously not right. We
assigned the values to be 3, 2, 5, and 6.34. We should
not be seeing the values of 5 in the last two positions.
The third position is correct because that was the
value assigned just before that print statement. But
the fourth position follows an assignment to the
string value “6.34”. After that is assigned, the value
should no longer be 5. So what is going on here?

If we tracked through the code to see what’s going on,
we’d eventually discover that the problem is in the
assignment operator that accepts a string. However,
tracing something this specific could take quite a
while, because there are numerous ways that this
particular bit of code could have been accessed. It’s
relatively easy to spot the incorrect value when you
are looking at the output from the program in this
form, because we know what the expected output
is and we have a limited number of lines. Imagine,
however, having to ransack hundreds of output state-
ments and thousands of lines of code — not nearly so
easy. So how do we make this task easier to debug?

The next section shows you how.

Adding Logging to
the Application
To fix this problem, the best way to handle overloaded
methods is to note problems as we encounter them.
To do so, we can add some specialized logging to our
application to track down which method is failing —
and what’s going on. The following steps do that:

1. Reopen the source file for this technique.

In this example, I called the source file ch64.cpp.

2. Change the MyClass definition from its existing
form to the code shown in Listing 64-2.

LISTING 64-2: THE MODIFIED MYCLASS LISTING

#define LOG(x) (cout << (x) << endl)

class MyClass
{

int _x;
public:

MyClass(void)
{

setX(0);
LOG (“Null Constructor: Setting _x
to 0”);

}
MyClass(int x)
{

setX(x);
LOG (“Int Constructor: Setting _x
to x”);

}
MyClass(const MyClass& aCopy)
{

setX(aCopy._x);
LOG (“Copy Constructor: Setting _x
to x”);

}
MyClass operator=(int x)
{

LOG(“Assignment Operator int”);
LOG(x);
setX(x);
return *this;

}
(continued)

76_57986x ch64.qxd 1/26/05 4:05 PM Page 401

Technique 64: Debugging Overloaded Methods402

LISTING 64-2 (continued)
MyClass operator=(double d)
{

LOG(“Assignment Operator double”);
LOG(d);
setX(d);
return *this;

}
MyClass operator=(const char *str)
{

LOG(“Assignment Operator str”); � 8
LOG(str); � 9
setX(str);
return *this;

}
void setX(int x)
{

LOG(“setX double”);
_x = x;
LOG(_x);

}
void setX(double d)
{

LOG(“setX double”);
_x = (int)d;
LOG(_x);

}
void setX(const char *str)
{

LOG(“setX str”);
int x = atoi(str);
LOG(_x);

}
int getX(void)
{

return _x;
}

};

The code above is substantially the same as the
original listing, but it now contains logging state-
ments that can be used in a debug environment
to output details about what is going on in the
program. As you can see, we have added a LOG
statement to each of the methods, so that we
are printing out each call and change within the
code. For example, in the operator= method that
accepts a string argument, we have added lines

� 8 and � 9, logging the name of the method
and the value we are changing. Let’s see what

good this does for us in determining the source
of the problem.

3. Compile the source file with your favorite com-
piler, on your favorite operating system.

4. Run the resulting program on your favorite
operating system.

If you have done everything right, you should see the
following output from the program on the console
window:

$./a.exe
setX double
3
Int Constructor: Setting _x to x
Dump:

X = 3

Assignment Operator double
2
setX double
2
setX double
2
Copy Constructor: Setting _x to x
Dump:

X = 2

Assignment Operator int
5
setX double
5
setX double
5
Copy Constructor: Setting _x to x
Dump:

X = 5

Assignment Operator str
6.34
setX str
5 � 10
setX double
5
Copy Constructor: Setting _x to x
Dump:

X = 5

76_57986x ch64.qxd 1/26/05 4:05 PM Page 402

Adding Logging to the Application 403

Now, looking at the output from this code makes it
pretty obvious where the problem lies — but we can
do one more thing to make it even more obvious. We
can add asserts to our setX functions to verify that
what we expect on output is what we really get. We
haven’t fixed anything yet, but we now know that
the reason the value isn’t being set is because the
operator= that accepts a string is sending the proper
value to the setX that accepts a string, but the value
is not being changed (as shown at � 10 in the out-
put listing above). The assert will tell us exactly
when the value is not changed.

Suppose we modified the setX that accepted a string
to read like this:

void setX(const char *str)
{

LOG(“setX str”);
int x = atoi(str); � 11
LOG(_x);
assert(_x == x);

}

This modification adds a post-condition to the setX
method that asserts that the value of the variable x
is equal to the value of the variable x.

Wait a minute — we’re expecting the output to be
the same as the integer value of the string that was
input — correct? In this case, the code would fail
because the output is not correct; we’d have our cul-
prit. The combination of logging and asserts — built
into the overloaded methods — makes the problem
easy to find. It also points out a serious problem
with overloaded methods: They complicate debug-
ging and maintenance. After we recognize that the
problem is a local variable assigned in the method
instead of the class member variable x, we can fix
the problem by removing the local x variable shown
at � 11 above.

You don’t have to use the features of the lan-
guage just because they exist. Sometimes it’s
better not to.

The program will work properly now. What you’ve
seen in this technique is how to trace through the
overloaded methods in a class, logging information
and assuring that the values coming out of the
method are what you expect them to be.

76_57986x ch64.qxd 1/26/05 4:05 PM Page 403

76_57986x ch64.qxd 1/26/05 4:05 PM Page 404

Part X

The Scary (or Fun!) Stuff

77_57986X pt10.qxd 1/26/05 4:05 PM Page 405

77_57986X pt10.qxd 1/26/05 4:05 PM Page 406

65
Optimizing
Your Code

The final stage in any development process is to optimize the code
to make it run better, faster, and more efficiently. Of course, in an
ideal world, you would be optimizing the code as you went along,

but for most applications this simply isn’t possible. Instead, developers
first get all of the functionality in place, test it, and then optimize it. This
technique explores some methods you can use in the post-development
phase to optimize your code. While it will never beat developing opti-
mized code in the first place, post-development optimization can still
identify and fix many bottlenecks in the code, and give a boost to code
that runs just a little too slow.

Making Functions Inline
The first optimization technique that you can use is to make your func-
tions inline code versions. Inline functions and methods are those that
are defined at the same time they are implemented, in the class header.
An inline function can be considerably faster than its non-inline brethren,
but that speed comes at a cost. Inline functions make your program big-
ger, and can sometimes even make it slower, because they add overhead
to the code. An inline function is expanded in place wherever it is called,
much like a macro. This can cause the code to grow significantly,
because there are many copies of the same code in the program. It could
slow loading and executing of the program down, if there are enough of
the copies to make the program very large in size. However, in many
cases, you can speed up your code significantly by making accessor func-
tions inline. The reason is that the compiler can optimize the code in
place, so that procedures that use inline functions are more optimal than
they would be with regular function calls. Accessor functions, which pro-
vide read and write access to individual data members, are excellent tar-
gets for inlining because they are very small and can be optimized
readily.

Technique

� Making functions inline

� Avoding temporary
objects

� Passing by reference

� Postponing variable
declarations

� Choosing initialization
over assigment

78_57986x ch65.qxd 1/26/05 4:04 PM Page 407

Technique 65: Optimizing Your Code408

Avoiding Temporary Objects
If there is a single optimization technique that you
should most seriously look at in C++, it’s to avoid
having to create and delete temporary objects.
Every time you pass an object by value, you make a
temporary copy of that object. Every time that you
write code that casts a basic data type to an object,
you create a temporary object. If you want to opti-
mize your code, look through it and remove all tem-
porary object creations. Let’s take a look at an
example of code that really overdoes it with tempo-
raries, to get an idea of what the problem really is.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch65.cpp,
although you can use whatever you choose.

2. Type the code from Listing 65-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 65-1: TEMPORARY OBJECTS

#include <iostream>
#include <stdlib.h>
#include <time.h>

using namespace std;

class Integer
{

int _iVal;
public:

Integer()
{

cout << “Void constructor” << endl;
_iVal = 0;

}
Integer(int iVal)
{

Take a look at the following class:

class Foo
{

string _str;
public:

Foo(const char *str)
{

_str = str;
}
string getString(void);

};

string Foo::getString(void)
{

return _str;
}
}

We can improve the efficiency of this method by
inlining the method, like this:

string getString(void)
{

return str;
}

Although many modern compilers do this
optimization for you automatically, it’s always
up to you to write the best possible code.
Don’t rely on the compiler to fix it up.

The rules for inlining are very simple:

� Always inline a simple accessor.

� Never inline a large method, as the amount of
code added to your program far outweighs the
savings from the inline.

� Inline only when the savings from the function
overhead are small compared to the overall sav-
ings. In other words, inlining functions that call
other functions is generally wasteful.

78_57986x ch65.qxd 1/26/05 4:04 PM Page 408

Avoiding Temporary Objects 409

cout << “Normal constructor” <<
endl;

_iVal = iVal;
}
Integer(const Integer& aCopy)
{

cout << “Copy constructor” << endl;
_iVal = aCopy._iVal;

}
~Integer()
{

cout << “Destructor” << endl;
}
int getInt() const
{

return _iVal;
}
void setInt(int iVal)
{

_iVal = iVal;
}
Integer operator+= (const Integer& i1)
{

setInt(i1.getInt() + getInt());
return *this;

}
};

Integer operator+(const Integer& i1, const
Integer& i2) � 3

{
Integer out; � 1

out.setInt(i1.getInt() + i2.getInt());
return out; � 2

}

Integer operator-(const Integer& i1, const
Integer& i2) � 4

{
return Integer(i1.getInt() -
i2.getInt());

}

void func(Integer i1)
{

cout << “Integer Value: “ << i1.getInt()
<< endl;

}

int main(void)
{

Integer i1(5), i2(3);
Integer i3;

cout << “Test plus: “ << endl;
i3 = i1 + i2;
cout << “Result: “ << i3.getInt() <<
endl;

cout << “Test minus: “ << endl;
Integer i4 = i3 - i2;
cout << “Result: “ << i4.getInt() <<
endl;

cout << “Calling function” << endl;
func(i4);

}

If we look at the operator+ function that works
with the Integer class, you will see that the func-
tion accepts two Integer objects by reference.
No objects are created here. However, within the
object, we create a temporary object that is cre-
ated locally (see � 1). This object is then used
to set the pieces of the integer from the two
Integer objects passed into the function, before
being returned to the calling program at � 2.
The result is then assigned to the result variable
in the main program (see � 3). How many tem-
porary objects are being created here? Let’s run
the program and find out.

3. Save the source file in the code editor and then
close the editor application.

4. Compile the source-code file with your favorite
compiler on your favorite operating system.

5. Run the program on the console window of
your favorite operating system.

78_57986x ch65.qxd 1/26/05 4:04 PM Page 409

Technique 65: Optimizing Your Code410

“copy” the memory into the object the result is
assigned to, it will save you a lot of time and over-
head if you use this optimization. Also notice that
if you pass an object by value, rather than by
reference — as we do in the func function — a copy
is made of the object and the various constructors
and destructors called. If you are going to pass an
object into a function, always pass it by reference.
If you do not plan to change the object within that
function, pass a constant reference.

Passing Objects by Reference
One of the problems with C++ is that not all of it can
be implemented within any single class. That means
you either end up with stand-alone functions or
other objects that must receive objects in their
methods. For example, consider what happens when
you pass a stream to a function to output data:

int print_my_data(ostream& out)
{

out << “Dump of my data” << endl
// Code to dump the data

}

In this simple example, we are passing a stream
object to a function. Note that the stream is passed
by reference, using the ampersand, rather than by
value, which would make a copy of the object. Why
do we do it this way? Well, suppose you tried to
write the code another way, such as this:

int print_my_data(ostream out)
{

cout << “Dump of my data” << endl;
}
int main()
{

print_my_data(cout);
}

If you have done everything correctly, you should
see the following output on the console window:

$./a.exe
Normal constructor
Normal constructor
Void constructor
Test plus:
Void constructor
Destructor
Result: 8
Test minus:
Normal constructor
Result: 5
Calling function
Copy constructor
Integer Value: 5
Destructor
Destructor
Destructor
Destructor
Destructor

The output shows each time an Integer object is
being created and destroyed. Take a look at the
print statements, especially those between the Test
plus: statement and the Test minus: statement.
There is a temporary object created here, and then
destroyed.

Look at the difference between the addition operator
(shown in Listing 65-1 at the line marked � 3) and
the subtraction operator (shown in Listing 65-1 at
the line marked � 4); notice that the addition opera-
tor has some overhead: a void constructor and a
destructor call. The subtraction call, on the other
hand, has no such constructor call. The only con-
struction is the object in the main function that is
being created to hold the result. How does this hap-
pen? The answer is, the compiler is optimized to
understand that a returned object that is assigned
can be created in the actual space that was allo-
cated. Because the compiler can optimize an object
that is constructed in a return statement, and just

78_57986x ch65.qxd 1/26/05 4:04 PM Page 410

Passing Objects by Reference 411

You would get a compile error, because the ostream
class copy constructor is private. Creating a private
constructor is one way to avoid having copies made
of your objects, but an easier one is to pass the
object by reference. This avoids the overhead of a
temporary object, avoids the call to the copy con-
structor and destructor, and avoids the problems
with having objects that are modified in the function.
Let’s look at an example of what I am talking about
here.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch65a.cpp,
although you can use whatever you choose.

2. Type the code from Listing 65-2 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 65-2: PASSING BY REFERENCE

#include <iostream>
#include <stdlib.h>
#include <time.h>

using namespace std;

class Integer
{

int _iVal;
public:

Integer()
{

cout << “Void constructor” << endl;
_iVal = 0;

}
Integer(int iVal)
{

cout << “Normal constructor” <<
endl;

_iVal = iVal;
}
Integer(const Integer& aCopy)
{

cout << “Copy constructor” << endl;
_iVal = aCopy._iVal;

}

~Integer()
{

cout << “Destructor” << endl;
}
int getInt() const
{

return _iVal;
}
void setInt(int iVal)
{

_iVal = iVal;
}

};

void func1(Integer i1) � 5
{

i1.setInt(12);
}
void func2(Integer& i2) � 6
{

i2.setInt(12);
}
int main()
{

Integer i;

func1(i);
cout << “After func1, value = “ <<
i.getInt() << endl;
func2(i);
cout << “After func2, value = “ <<
i.getInt() << endl;

}

The two functions in this listing both attempt to
change the value of the integer value stored in an
object passed to them. In the first case (shown at

� 5), the object is passed by value (the entire
object is copied before sending it to the func-
tion). In the second case (shown at � 6), the
object is passed by reference (the address of the
object is passed to the function). You would nor-
mally expect the two functions to have the same
result because they do the same thing. As we will
see when we run the program, however, the two
have very different ending results.

3. Save the source file in the code editor and then
close the editor application.

78_57986x ch65.qxd 1/26/05 4:04 PM Page 411

Technique 65: Optimizing Your Code412

For example, consider the following function:

int func(char *ptr)
{

char *newPtr = new char[200];
if (ptr == NULL)
{

delete newPtr;
return –1;

}

// Do something with the newPtr
variable

return 0;
}

The code shows no reason to initialize or define the
newPtr variable before we check the input. If this was
some class variable that was too large to instantiate
efficiently, you’d be wasting a lot of time and mem-
ory by defining this variable without knowing
whether you’d be using it.

In general, here are the steps you should always fol-
low to optimize the instantiation of variables in a
function or method:

1. First, do any input data validation.

If the data requires that you exit the function, do
so before you create any variables locally.

2. Pass the data to existing classes as appropriate.

If the data you are using must be passed into a
constructor or other method of a class, break the
constructor for that class into two parts, valida-
tion and initialization.

For example, consider the following code for a
class that tries to open a file:

int open_the_file(const char *strName)
{

// See whether the input character
string is valid.

if (strName==NULL || strName[0]==0)
return –1;

4. Compile the source code file with your favorite
compiler on your favorite operating system.

5. Run the program on the console window of
your favorite operating system.

If you have done everything correctly, you
should see the following output on the console
window:

$./a.exe
Void constructor
Copy constructor
Destructor
After func1, value = 0 � 7

After func2, value = 12 � 8

Destructor

This code shows that passing a value by refer-
ence avoids the overhead of creating a tempo-
rary object. More importantly, this approach
avoids the problem of making changes that
aren’t reflected in the original object. Notice that
the func1 function does not change the value of
the integer variable (shown at � 7 in the out-
put). This is because the function accepts its
argument by value, which makes a copy of the
original object and modifies that copy, rather
than the object itself. The func2 function, shown
at � 8 in the output, passes its object by refer-
ence, which means that the original object is
modified, and the result is reflected in the calling
routine.

Postponing Variable
Declarations
If you have ever programmed in a language other
than C++, you are probably already used to the
process of defining a variable before you use it. This
was the way to program in C, FORTRAN, and BASIC,
so most programmers kept that approach when they
moved to the object-oriented C++ language. Doing so
is a mistake, however, because it creates potentially
unnecessary overhead in the code.

78_57986x ch65.qxd 1/26/05 4:04 PM Page 412

Choosing Initialization Instead of Assignment 413

// Construct the object.
fileHandle fh(strName);
// This will check to see if the

file already exists.
if (!fh.Exists())

return –1;
// Now, we can do the “expensive”

operation of
// opening and reading the file.
if (fh.Open() == false)

return –1;
// Read the file...

}

In this example, we first check all input for
validity. If it isn’t valid, there is no cost to the
fileHandle object being created. If the input is
valid, we then pass the validation onto that
object. First, we simply set the filename into the
object and see whether that file exists. Then we
try to open the file — which will buffer the data
for it and do the overhead (that is, getting the
operating system to open the file). Only then, if
all those things work, do we actually read the file,
which costs the most time.

Choosing Initialization
Instead of Assignment
The final optimization technique to look at is initial-
izing data (rather than assigning data in construc-
tors for classes). Under normal circumstances, the
member data for a class is first constructed (using
default constructors), and then assigned values
based on input to the constructor (or defaults pro-
vided by the programmer). The problem with this
approach is that the initialization is really done
twice — first in the constructor and then in the
assignment. This is wasteful, and leads to program
slowdowns.

To see how to make this improvement, follow these
steps:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch65b.cpp,
although you can use whatever you choose.

2. Type the code from Listing 65-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 65-3: INITIALIZING VERSUS ASSIGNING

#include <iostream>
#include <string>

using namespace std;

class Point
{
private:

int _x;
int _y;

public:
Point(void)
{

cout << “Point: void constructor
called” << endl;

_x = 0;
_y = 0;

}
Point(int x, int y)
{

cout << “Point: full constructor
called” << endl;

_x = x;
_y = y;

}
Point(const Point& p)
{

cout << “Point: copy constructor
called” << endl;

(continued)

78_57986x ch65.qxd 1/26/05 4:04 PM Page 413

Technique 65: Optimizing Your Code414

return _p2;
}

};

int main()
{

// First, create some points.
Point p1(0,0);
Point p2(10,10);

// Now create some lines.
cout << “Line 1: “ << endl;
Line l1(0,0, 10, 10);
cout << “Line 2: “ << endl;
Line l2(p1, p2);

}

In this case, we are using a very simple set of
classes that implement a point and a line. Notice
that in the Line class, there are two separate
constructors. One takes four data values, indicat-
ing the starting and ending x and y coordinates
(see � 9). The second takes two point objects to
define the same coordinates, as shown in � 10.
The difference in the two constructors is how the
data is assigned to the internal member variables
in the two cases. In the first case, the two points
in the Line class are initialized within the initial-
ization line of the constructor code. In the sec-
ond case, the two points are initialized by
assignment within the constructor body. As we
will see when the program runs, these two
choices have very different results.

3. Save the source file in the code editor and then
close the editor application.

4. Compile the source-code file with your favorite
compiler on your favorite operating system.

5. Run the program on the console window of
your favorite operating system.

LISTING 65-3 (continued)
_x = p._x;
_y = p._y;

}
Point& operator=(const Point& p)
{

cout << “Point: operator= called” <<
endl;

_x = p._x;
_y = p._y;
return *this;

}
int& X()
{

return _x;
}
int& Y()
{

return _y;
}

};

class Line
{

Point _p1;
Point _p2;

public:
Line(void)
{
}
Line(int x1, int x2, int y1,
int y2) � 9

: _p1(x1,y1), � 10
_p2(x2,y2)

{
}
Line(const Point& p1, const Point &p2)
{

_p1 = p1;
_p2 = p2;

}
Point& TopLeft()
{

return _p1;
}
Point& BottomRight()
{

78_57986x ch65.qxd 1/26/05 4:04 PM Page 414

Choosing Initialization Instead of Assignment 415

If you have done everything correctly, you should
see the following output on the console window:

$./a.exe
Point: full constructor called
Point: full constructor called
Line 1: � 11
Point: full constructor called
Point: full constructor called
Line 2: � 12
Point: void constructor called
Point: void constructor called
Point: operator= called
Point: operator= called

Notice that in the first case (shown at � 11), we con-
struct the two points as a part of constructing the
line. This is as expected because the Line object
contains two point objects. However, those two
objects are constructed using the full constructor
for the Point class, using the data values we passed
in. This means there is no additional overhead for
creating the points. In the second case, shown at

� 12, however, we not only have the two Point
objects being created, but also the overhead of two
assignment statements. This means that twice as
much work is being done. If you initialize things
using the initialization process in C++ constructors,
you avoid the overhead of the assignments.

78_57986x ch65.qxd 1/26/05 4:04 PM Page 415

66
Save Time By
� Learning how the code

operates

� Improving the readability
of your code by docu-
menting the data flow

� Adding an undo system

� Testing your code

Technique

Documenting the
Data Flow

Beginning programmers are often afraid to make adjustments to
existing code for fear of destroying the code’s functionality.
Existing code is simply part of life in the programming world, and

you can’t be afraid to just dig in and make changes to the code base.
Other than to offer simple encouragement, I can’t really give you any
advice on how to work with existing code; however, I can give you ideas
on how to make your code easier to work with.

If you want to save a lot of time for yourself and all of the programmers
who come after you, document the flow of data through the system. Most
programmers document how the code works, or how you interface to the
objects in the system. This is a nice thing, but the problems that crop up
in coding are normally related to data, not code. In this technique, we are
going to explore the most important part of the programming system, the
data flow.

Learning How Code Operates
If you really want to know how the code in a system operates, just watch
how it manipulates data. The surest way to do so is to keep track of all
changes in a system. Although we normally think of an object-oriented
system as having member variables and methods to access those vari-
ables, there is really no reason to do things this way. We can simply
implement a system that stores the data in properties and then accesses
those properties through standard methods of the property manipula-
tion class rather than through the parent class. The following steps show
you this exact process, implementing a property holding class and pro-
viding methods to track the changes to the data as it goes through the
system.

79_57986x ch66.qxd 1/26/05 4:02 PM Page 416

Learning How Code Operates 417

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
the source file.

In this example, the file is named ch66.cpp,
although you can use whatever you choose.

2. Type the code from Listing 66-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 66-1: IMPLEMENTING PROPERTIES AS A CLASS

#include <map>
#include <string>
#include <iostream>
#include <stack>
#include <stdlib.h>

using namespace std;

class State
{

string _name;
string _value;

public:
State(void)
{

_name = “”;
_value = “”;

}
State(const char *name, const char
*value)

{
setName(name);
setValue(value);

}
State(const State& aCopy)
{

setName(aCopy.getName());
setValue(aCopy.getValue());

}
void setName(const char *n)
{

_name = n;
}
void setName(const string& n)
{

_name = n;
}
string getName(void) const
{

return _name;
}
void setValue(const char *v)
{

_value = v;
}
void setValue(const string& v)
{

_value = v;
}
string getValue(void) const
{

return _value;
}

};

class Properties � 1
{

map<string, string> _props;
stack<State> _previous; � 2

public:
Properties(void)
{
}
Properties(const Properties& aCopy)
{

map<string, string>::iterator iter;
for (iter = _props.begin(); iter !=
_props.end(); ++iter)

_props[(*iter).first] =
(*iter).second;

}
virtual ~Properties()
{
}

void setProperty(const char *name, int
value)

{
// First, see if its there
if (_props.find(name) !=
_props.end())

{
State sold(name, _props[name].
c_str()); � 3

(continued)

79_57986x ch66.qxd 1/26/05 4:02 PM Page 417

Technique 66: Documenting the Data Flow418

// Pop off the last change
State s = _previous.top();
_previous.pop();

// Apply it
_props[s.getName()] = s.

getValue();
}

Here, because we’re tracking all changes to the
object anyway, undoing one of those changes is
trivial. Adding this sort of code to the system at
the outset — rather than trying to build it in
later — makes for a very robust system that’s
also easy to debug.

4. Save the source code in your code editor.

Testing the Properties Class
After you create a class, you should create a test
driver that not only ensures your code is correct,
but also shows people how to use your code. The
following steps tell you how:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch66.cpp.

2. Type the code from Listing 66-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 66-2: THE PROPERTY TEST PROGRAM

int main()
{

Properties p;

p.setProperty(“x”, 12); � 4
cout << “x = “ << p.getProperty
(“x”).c_str() << endl;

LISTING 66-1 (continued)
_previous.push(sold);

}
else
{

State sold(name, “”);
_previous.push(sold);

}
char szBuffer[20];
sprintf(szBuffer, “%d”, value);
_props[name] = szBuffer;

}
string getProperty(const char *name)
{

return _props[name];
}

}

Okay, there’s nothing particularly special about
this code — it simply allows you to add new
properties to an object, modify them as you see
fit, and retrieve them. It also keeps track of all of
the changes to a given object, which would allow
you to log those changes, or even implement an
undo system. To give you an idea of how simple
it would be to add functionality to a system
based on this object, the next step adds an
undo method for the Properties object. The
Properties class, shown at � 1, keeps track of a
list of properties for other objects. Within the
class, the State class (shown at � 2) is used to
maintain a list of the various values for each
property. When a value is changed, a new State
object is created with the old value and stored
(see � 3). This will allow us to implement undo
very simply.

3. Add the following code to the class listing:

void undo()
{

if (_previous.empty())
return;

79_57986x ch66.qxd 1/26/05 4:02 PM Page 418

Testing the Properties Class 419

p.setProperty(“x”, 13); � 5
cout << “x = “ <<
p.getProperty(“x”).c_str() << endl;

p.undo(); � 6
cout << “x = “ <<
p.getProperty(“x”).c_str() << endl;

}

The test program simply creates a Properties
object and adds a new property called x to it
(shown at � 4). We print out the value of that
property, then change it � 5. The value is then
printed out again to verify the change. At this
point, we undo the last change for the Properties
object by using the undo method at � 6. We would
then expect the value of x to be its previous
value, 12, rather than the current value of 13.

3. Save the source code in the source-code editor
and close the editor application.

4. Compile the source code with your favorite
compiler on your favorite operating system.

5. Run the program on your favorite operating
system console.

If you have done everything properly, you should
see the following output from the program on the
console window:

$./a.exe
x = 12
x = 13
x = 12

As we expected, the value of x changes from the last
set value, 13, to its previous setting of 12 due to the
undo function call. The undo functionality, besides
being useful in a program by itself, also shows you
how to track changes to data within the program.
This ability will make it very simple to debug appli-
cations by seeing exactly how things changed over
time.

As you can see, the system properly stores the infor-
mation for the properties and easily implements the
undo system. This type of object could easily be
dropped into a “regular” object to replace the entire
member variable list.

Tracking and documenting the data flow
within an application is the single most impor-
tant thing you can do for programmers, main-
tainers, debuggers, and customer support
personnel. Data flow is what the user cares
about and the QA department uses to validate
your system. By making it easy to see what
changes and when it happens, you save your-
self immense amounts of time later on in the
development process.

79_57986x ch66.qxd 1/26/05 4:02 PM Page 419

67Technique

Creating a Simple
Locking Mechanism

From time to time, programmers must “lock out” the functionality of a
given application. There are many possible reasons for this neces-
sity: If you’re running a multithreaded application, for example, you

need to keep multiple threads from hitting the same function at the same
time. Or perhaps you’re writing an application in which a resource (such
as a hardware device) can be accessed only at certain times.

“Locking” a program means denying the program access into a given
block of code until a certain condition occurs. Not unlike a finite-state
machine, a lock mechanism can force a system into certain transitions
(movements from one state to another) only when they are ready to
happen — which ensures a predictable outcome and avoids unforeseen
circumstances. Locking mechanisms save time for the developer by
reducing hard to reproduce errors and problems that can only be tested
in multi-user environments.

There are many ways to implement locking in an application. Most oper-
ating systems provide heavyweight critical-section handlers that can be
used to lock only small pieces of code at the hardware level. These mech-
anisms, however, are intended only for serious multithreading; they impose
too much overhead in terms of processing time, memory required, and
code required, for the average application to utilize. What is really needed
is a more lightweight system — with little or no overhead — that you can
use to lock global resources within your application code at run-time.
Filling that need is the purpose of this technique.

Portability is one big advantage of implementing and employing your
own locking mechanism instead of a system-level lock. Using your
own locking mechanism allows your code to port easily from system
to system without requiring extensive rewrites (often necessary when
you use a new compiler or operating system). Even if you choose to
use the underlying system support to lock your application, you
should wrap that functionality in your own class so it’s the only place
you have to make changes when you move to a new operating sys-
tem, compiler, or version of the library code.

Save Time By
� “Locking” functionality in

an application

� Creating a locking
mechanism

� Testing the locking
mechanism

80_57986x ch67.qxd 1/26/05 4:01 PM Page 420

Creating the Locking Mechanism 421

Creating the Locking
Mechanism
Giving your code the appropriate locking functional-
ity is pretty straightforward. The following steps
show how to create a class that does the job:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
source file.

In this example, the file is named ch67.cpp,
although you can use whatever you choose.

2. Type the code in Listing 67-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 67-1: THE SIMPLE LOCKING-MECHANISM CLASS

#include <string>
#include <vector>

using namespace std;

class LockException
{

string _msg;
public:

LockException(void)
{

_msg = “Lock Exception”;
}
LockException(const char *msg)
{

_msg = “Lock Exception: “;
_msg += msg;

}
LockException(const LockException&
aCopy)

{
_msg = aCopy._msg;

}
const char *Message(void)
{

return _msg.c_str();
}
void setMessage(const char *msg)

{
_msg = msg;

}
};

class Lock
{
private:

static bool _bLock; � 1
bool _isLocked;

public:
Lock(void)
{

_isLocked = false;
}
Lock(const Lock& aCopy)
{

_isLocked = aCopy._isLocked;
}
virtual ~Lock()
{

unLock();
}
bool setLock()
{

if (!_isLocked)
{

if (_bLock == false)
{

_bLock = true;
return true;

}
}
return false;

}
bool isLocked(void)
{

return _bLock;
}
void unLock(void)
{

if (_isLocked)
{

if (_bLock == true)
{

_bLock = false;
}

}
}

};
bool Lock::_bLock=false; � 2

80_57986x ch67.qxd 1/26/05 4:01 PM Page 421

Technique 67: Creating a Simple Locking Mechanism422

data members is not always a good idea — doing
so makes inheritance from the base class harder
to implement — but such an approach can also
solve some pretty thorny problems.

3. Save the source file and close the code editor.

Testing the Locking Mechanism
In order to illustrate how the locking code works and
why it works, you should create a test driver that
shows how to use the code and what the expected
results will be. The following steps show you how.

1. In the code editor of your choice, reopen
the existing file to hold the code for your test
program.

In this example, I named the test program
ch67.cpp.

2. Type the code from Listing 67-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

The above listing consists of two classes: the
Lock class, which implements the actual locking
mechanism, and the LockException class, which
implements an exception holder for any locking
errors. The Lock class works by maintaining a
single global variable (bLock, shown at � 1) that
is used to see whether or not the lock is active.
All instances of the Lock class use the same vari-
able to track their locking states, so the Lock
class is really useful only for a single lock in your
application. The Lock class just checks to see
whether or not the variable is set; if so, it will not
allow another lock to be implemented. The
destructor clears the lock (shown at line marked

� 2) so that a lock cannot be maintained indefi-
nitely. Alternatively, the user can set and clear
the lock manually, by using the setLock and
unLock methods.

You will notice that the code uses a single static
Boolean data member (shown at line marked
with � 2) to maintain its state. This is necessary
because the Lock class must be accessible
across different objects; otherwise the entire
purpose of the class is defeated. Using static

LISTING 67-2: THE LOCK TEST DRIVER

Lock gLock;

void func1()
{

Lock l1;

if (l1.isLocked())
throw LockException(“Unable to acquire lock\n”);

else
printf(“Able to acquire lock\n”);

}

void func2()
{

if (gLock.isLocked() == false)
gLock.setLock();

else
gLock.unLock();

}

80_57986x ch67.qxd 1/26/05 4:01 PM Page 422

Testing the Locking Mechanism 423

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage: ch7_7 [lock | unlock]\n”);
printf(“Where: lock indicates that the program should first set the global lock and\n”);
printf(“ unlock indicates that the program should not first set the global
lock\n”);

}

if (!strcmp (argv[1], “unlock”))
{

// Note that in this order, the two functions will work properly.
try
{

func1();
}
catch (LockException& exc)
{

printf(“unlock: Exception trying to lock: %s\n”, exc.Message());
}

func2();
}
else

if (!strcmp (argv[1], “lock”))
{

func2(); � 3
try
{

func1(); � 4
}
catch (LockException& exc)
{

printf(“lock: Exception trying to lock: %s\n”, exc.Message());
}

}
else

printf(“Unknown argument %s\n”, argv[1]);

return 0;

}

80_57986x ch67.qxd 1/26/05 4:01 PM Page 423

Technique 67: Creating a Simple Locking Mechanism424

The test driver code simply exercises the various
locking functions. If you pass in a command line
argument, it will either lock (pass in lock) or
unlock (pass in unlock) the global lock object. If
a lock is requested, and cannot be granted, it
throws an exception that should be displayed on
the console.

3. Save the source file in the code editor and close
the editor application.

4. Compile and link the application on your
favorite operating system, using your compiler
of choice.

If you have done everything right, you should see the
following output appear on your shell window:

$./a.exe
Usage: ch7_7 [lock | unlock]
Where: lock indicates that the program

should first set the global lock and
unlock indicates that the program

should not first set the global lock

$./a.exe lock � 5

lock: Exception trying to lock: Lock
Exception: Unable to acquire lock

$./a.exe unlock � 6

Able to acquire lock

Note that the three possible scenarios for running
the program are shown in the output:

� If you invoke the program with no arguments, it
prints out the usage of the program and exits.

� If you attempt to set the lock, the program first
sets a lock (as shown at � 3) and then sets a
local lock within a function (shown at � 4).
Because the global lock is still in operation, the
lock in func2 fails and throws an exception.

� If you run the program to unlock, it succeeds as
expected and prints out the fact that it could
acquire a lock.

In the first run of the program (the lock case, shown
at the line marked � 5), we have first locked the
global lock in the function func2. This causes the call
to func1 to fail, because it cannot get access to the
lock.

In the second run of the program (shown at the line
marked � 6), we call the func1 function first so the
program can get the lock and continue. The lock
object goes out of scope and releases the lock before
the second function (func2) is called — so func2 can
also get access to the lock and successfully proceed.

This code illustrates another use of the static
data member in C++, besides the typical use
of keeping track of data within a class. Used
properly, static data members can be used to
communicate between functions, methods, or
instances of objects — even across thread
boundaries.

80_57986x ch67.qxd 1/26/05 4:01 PM Page 424

68Technique

Save Time By
� Protecting functionality

with guardian classes

� Creating a guardian class

� Testing your class

Creating and Using
Guardian Classes

Aguardian class, as its name implies, is a class that “guards” its con-
tents from the world of application developers. Guardian classes
are often used when memory is being allocated, or when a hard-

ware device needs to have specific inputs validated for it. Because a
memory allocation needs to be matched with a de-allocation, a guardian
class is the ideal solution: it wraps the transaction in a single class.
Guardian classes, as shown in this technique, can also be used to make
existing functionality memory-safe, exception-safe, and (most impor-
tantly) error-proof.

Consider, for a moment, the standard C-style function fopen. This function
is used with the C library to open a file for input, output, or both. The
fopen function has the following prototype:

FILE *fopen(
const char *filename,
const char *mode

);

The basic idea is that you pass in a file name and a “mode” parameter,
and the function opens the file in any operating system. The function
then returns to you a pointer to an internal structure used for working
with the file. At this point, you can perform basic file operations: You can
write to, read from, seek within, and close the file as needed.

Although they are not the least bit object-oriented in design, you can use
the fopen and related functions safely in your C++ code. Unfortunately, C-
style functions do not tend to have a great deal of error checking, nor are
they forgiving. If fopen fails, it returns a NULL pointer. If you then pass
this NULL pointer to another function expecting a FILE pointer, it crashes
the application. This is where guardian classes work best. In terms of
code stability and robustness, however, consider the following snippets
of code:

81_57986x ch68.qxd 1/26/05 4:01 PM Page 425

Technique 68: Creating and Using Guardian Classes426

(1) FILE *fp = fopen(NULL, NULL); � 1
(2) FILE *fp = fopen(“myfile.txt”,

“z”); � 2
(3) FILE *fp = fopen(“myfile.txt”,

“r”); � 3
fprintf(fp, “This is a test”);
fclose(fp);
(4) FILE *fp = fopen(“myfile.txt”,

“w”); � 4
try {

call_a_function_that_might_throw_excep-
tions();

}
catch(...)
{

printf(“Error in function\n”);
return –1;

}
fclose(fp);

All these functions suffer from various — and
serious — problems related to the file-handling
functions provided with C:

� Example (1 shown at � 1 crashes. The fopen
function does not understand how to deal with
NULL values in either the name or the mode
parameter.

� In example (2) shown at � 2, the mode parameter
may not be z. Mode parameters are well defined,
and must be one of a certain list of characters.
Typically, the list is r, w, and a. The behavior in
such a case is unknown — and will probably
result in the file not being opened.

� Example (3), shown at � 3, is a crash waiting to
happen: Because the programmer did not check
for the return value from fopen, the fprintf func-
tion call will crash — and so will the program —
if the file pointer is NULL .

� Example (4), shown at � 4 has a serious problem:
If the function call for call_a_function_that_
might_throw_exceptions throws an exception,
then the function will return without closing the
file — creating a memory leak and leaving a file
open (both on disk and in memory). At best, the
open file will not be written properly to disk; at
worst, it might be partially written and corrupted.

All these problems can — and should — be prevented.
There is no excuse for allowing a simple file-open
routine to cause your program to crash. Because the
file-handling functions are so fragile, you should
wrap them in a guardian class to ensure that the pro-
grammer cannot make mistakes, that no memory is
leaked, and that the functions are protected from
invalid values. This technique shows you how to set
up this essential safeguard.

Whenever you run across a piece of code that
is unsafe to use in any manner other than the
way specified by the programmer, wrapping
that code in a guardian class will save you a lot
of time trying to track down problems. If the
program simply crashes with no diagnostics,
you have to step through every single line in
the application to figure out what went wrong.
If (instead) you get into the habit of wrapping
any would-be leaks or crashes in a code that
insulates the underlying technology from the
possibility of error, you won’t see this kind of
error in your application.

Creating the File-Guardian
Class
The heart of this technique is the creation of a file-
guardian class called FileWrapper. To create it, fol-
low these steps:

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
source file.

In this example, the file is named ch68.cpp,
although you can use whatever you choose.

2. Type the code from Listing 68-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

81_57986x ch68.qxd 1/26/05 4:01 PM Page 426

Creating the File-Guardian Class 427

LISTING 68-1: THE GUARDIAN-CLASS SOURCE CODE

#include <stdio.h>
#include <string.h>

typedef enum
{

Read = 0,
Write = 1,
ReadWrite = 2,
Append = 3

} FileMode;

class FileWrapper
{

FILE *_fp;
char *_name;
FileMode _mode;

virtual void Init()
{

_fp = NULL;
_name = NULL;

}
virtual void Clear()
{

if (_fp)
{

printf(“File %s is now closed\n”, _name);
fclose(_fp);
_fp = NULL;

}
if (_name)

delete [] _name;
_name = NULL;

}

public:
FileWrapper(void)
{

Init();
}
FileWrapper(const char *name, const FileMode& mode)
{

Init();
setName(name);
setMode(mode);

}
FileWrapper(const FileWrapper& aCopy)

(continued)

81_57986x ch68.qxd 1/26/05 4:01 PM Page 427

Technique 68: Creating and Using Guardian Classes428

LISTING 68-1 (continued)
{

Init();
if (aCopy._name)

setName(aCopy._name);
if (aCopy._mode)

setMode(aCopy._mode);
}
FileWrapper operator=(const FileWrapper& aCopy)
{

Clear();
if (aCopy._name)

setName(aCopy._name);
if (aCopy._mode)

setMode(aCopy._mode);
}
virtual ~FileWrapper(void)
{

Clear();
}

virtual void setName(const char *name)
{

if (name)
{

_name = new char[strlen(name)+1];
strcpy(_name, name);

}
}
virtual void setMode(const FileMode& mode)
{

_mode = mode;
}

virtual bool open() � 6
if (_fp != NULL)
{

fclose(_fp);
_fp = NULL;

}
char *mode = NULL;
switch (_mode)
{

case Read:
mode = “r”;
break;

case Write:
mode = “w”;
break;

case ReadWrite:
mode = “r+”;
break;

81_57986x ch68.qxd 1/26/05 4:01 PM Page 428

Creating the File-Guardian Class 429

case Append:
mode = “a”;
break;

}
if (mode == NULL)

return false;

_fp = fopen(_name, mode);
if (!_fp)
{

printf(“Error opening file %s\n”, _name);
return false;

}
printf(“File %s is now open\n”, _name);

}
virtual char getc() � 7
{

if (_fp != NULL)
return fgetc(_fp);

return 0;
}
virtual bool eof()
{

if (_fp != NULL)
return feof(_fp);

return true;
}
virtual bool putc(char c) � 8
{

if (_fp != NULL)
return fputc(c, _fp) == c;

return false;
}
virtual bool puts(const char *s) � 5
{

if (_fp == NULL)
return false;

if (s == NULL)
return false;

return (fputs(s, _fp) != EOF);
}

virtual bool close()
{

if (_fp == NULL)
return false;

Clear();
return true;

}
};

81_57986x ch68.qxd 1/26/05 4:01 PM Page 429

Technique 68: Creating and Using Guardian Classes430

The code above doesn’t really do anything that
the standard C functions don’t already do for
you. The puts function, for example, does
exactly what the puts method (shown at � 5)
method does with one very important difference.
If the file is not open, or the string is NULL, the
puts method in the class above checks for the
error and returns an error code. The puts func-
tion, on the other hand, crashes the application
if either of those conditions is true.

Note also the open function, shown at the line
marked � 6. The mode problem cannot exist in
this class, as it did in the fopen function,
because we pass in an enumerated value that
must be one of a list of valid values. If it is not, an
error occurs.

3. Save the source code in the code editor.

Note that we have replaced the problematic “mode”
parameter of the open class with a safer, more secure
enumeration that we can validate. Also notice that
all the various read and write functions (shown at
lines � 7 and � 8) work, whether or not the file was
successfully opened.

Testing the File-Guardian Class
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.
The following steps tell you how:

1. In the code editor of your choice, reopen
the source file to hold the code for your test
program.

In this example, I named the test program
ch68.cpp.

2. Type the code from Listing 68-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 68-2: THE FILE-GUARDIAN TEST PROGRAM

int func2()
{

throw “This is bad!”;
}

int old_func()
{

FILE *fp = fopen(“anoldfile.out”, “w”);
if (fp == NULL)

return -1;

fprintf(fp, “This is a test\n”);
try
{

func2();
}
catch (...)
{

printf(“An error occurred\n”);
return -2;

}

printf(“Closing file\n”);
fclose(fp);
return 0;

}

int new_func()
{

FileWrapper out(“anewfile.out”, Write);
if (out.open() == false)

return -1;

out.puts(“This is a test\n”);
try
{

func2();
}
catch (...)
{

printf(“An error occurred\n”);
return -2;

}

out.close();
return 0;

}

81_57986x ch68.qxd 1/26/05 4:01 PM Page 430

Testing the File-Guardian Class 431

4. Compile the source code with your favorite
compiler, on your favorite operating system.

5. Run the program on your favorite operating
system’s console.

If you have done everything properly, you should
see the following output from the program on the
console window:

$./a.exe test.out this is a test of the
emergency broadcast system

File test.out is now open
An error occurred
File anewfile.out is now open
An error occurred
File anewfile.out is now closed
File test.out is now closed

As you can see, the new file was properly closed, as
was the test.out file. These files were both created
via the new functionality. The old-style file, however,
was never closed, because the exception was thrown
and the fclose statement was never executed.

You should also see two files created in your file sys-
tem, anewfile.out and anoldfile.out. If you look at
the contents of the files, you should see the following.

$ cat anewfile.out
This is a test

$cat anoldfile.out

The anewfile.out file has the text we expected. The
anoldfild.out file, on the other hand, is empty.

Depending on your operating system and set-
tings, you may or may not see text in the
anoldfile.out text file. This uncertainty
alone makes it worthwhile to close the files.
Some operating systems flush data as it is
written to them to the disk. Others keep it in
memory until the file is closed, or there is
enough data to write out a full buffer. You do
not want to rely on the operating system to
determine this, if the data being written is
important to you.

int main(int argc, char **argv)
{

if (argc < 2)
{

printf(“Usage: ch7_9 filename\n”);
return -1;

}

FileWrapper fw(argv[1], Write);

// Note that we do not check the
results.

fw.open(); � 9

// Write out all the arguments.
for (int i=2; i<argc; ++i)
{

fw.puts (argv[i]); � 10
}

// Note that we don’t call close.

// Now test the various functions.
old_func();
new_func();

return 0;
}

The test driver simply opens an output file
(shown at � 9 in Listing 68-2), writes out any
arguments from the command line to the file
(shown at � 10) and then finishes. In addition, it
uses two functions to illustrate how the old-style
and new-style functions are used. If you look at
the output, you will see that when the exception
is thrown the new-style file routines properly
close the file, whereas the old-style functions do
not. This is an important difference, especially if
you are writing to a file throughout your applica-
tion as in the case of a log file.

3. Save the source code in the code editor and
then close the editor application.

81_57986x ch68.qxd 1/26/05 4:01 PM Page 431

69Technique

Working with
Complex Numbers

The mathematical world deals with complex numbers all of the time.
A complex number is simply a combination of a “real” number (that
is, a floating-point value), and an “imaginary” number (i — the

square root of –1 — or a multiple of i). Complex numbers are usually
written out in the form x + yi, where x is the real number and y is the mul-
tiplier of the imaginary number.

You might not believe it, but some folks think they never need to know
anything about complex math — and never expect to use a complex num-
ber in your applications. Okay, complex numbers are rarely used in appli-
cations — but when they are needed (in scientific projects, for example),
they can be tricky to work with. Creating a class that deals with these
numbers in advance of working on such a project is to your advantage.
Understanding the fundamentals of complex mathematics can be tricky;
you just need a class that does the work for you so that you don’t have to
think about it.

If you attempt to become an expert in all the expert subject matter in
every application you work on, you will quickly find yourself not only
frustrated, but buried in work. Sometimes it’s best just to accept that oth-
ers know the science or business of the area better than you ever will. In
such cases, you save a lot of time by finding a good set of classes that do
the work of the expert subject matter — and then working on the rest of
the application. It is more important that you have an excellent suite of
tests to validate your classes than it is that you have the ability to write
them from the start. Save time and energy, and work on the test suite
rather than the class. This technique shows you how.

Save Time By
� Understanding complex

numbers

� Creating a complex
numbers class

� Testing your class

82_57986x ch69.qxd 1/26/05 4:00 PM Page 432

Implementing the Complex Class 433

Implementing the
Complex Class
Most versions of the Standard Template Library have
a complex template in the <complex> header file.
However, this is not universal — and using this tem-
plate means loading in the entire STL when you link
your application. If all you need is a complex-number
class, you’d be better off creating your own class.

First, we need to implement the definition of the
complex number class. The following steps show
you how.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
source file.

In this example, the file is named ch69.cpp,
although you can use whatever you choose.

2. Type the code from Listing 69-1 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 69-1: THE COMPLEX CLASS DEFINITION

#include <math.h>
#include <stdio.h>
#include <iostream>

using namespace std;

class Complex
{
private:

double real;
double imaginary;

protected:
// mathematical functionality

void add(const Complex &a, const Complex &b);
void subtract(const Complex &a, const Complex &b);

void multiply(const Complex &a, const Complex &b);
void negative();

public:
Complex();

Complex(double realValue, double imaginaryValue);
Complex(const Complex& aCopy);

Complex operator=(const Complex &a);

// accessor functions
double magnitude() const;

double get_real() const;
double get_imaginary() const;

};

82_57986x ch69.qxd 1/26/05 4:00 PM Page 433

Technique 69: Working with Complex Numbers434

operators, because they “live” outside of the
class definition itself.

3. Append the code from Listing 69-2 into your
file.

Better yet, copy the code from the source file on
this book’s companion Web site.

This listing is simply the class definition. In com-
plex terms, the x + yi part maps to the real and
the imaginary terms in the code. As you can see,
we support constructors and accessors to get
back the real and imaginary portions of the com-
plex number.

The next step is to do the actual implementation
of the class. This will not include any external

LISTING 69-2: THE COMPLEX CLASS IMPLEMENTATION

// constructors
Complex::Complex()
{

real = imaginary = 0;
}

Complex::Complex(double realValue, double imaginaryValue)
{

real = realValue;
imaginary = imaginaryValue;

}

// Copy constructor
Complex::Complex(const Complex& aCopy)
{

real = aCopy.real;
imaginary = aCopy.imaginary;

}

// accessor functions
double Complex::magnitude() const
{

return sqrt(pow(real,2) + pow(imaginary,2));
}

double Complex::get_real() const
{

return real;
}

double Complex::get_imaginary() const
{

return imaginary;
}

82_57986x ch69.qxd 1/26/05 4:00 PM Page 434

Implementing the Complex Class 435

void Complex::add(const Complex &a, const Complex &b) � 1
{

real = a.get_real() + b.get_real();
imaginary = a.get_imaginary() + b.get_imaginary();

}

void Complex::subtract(const Complex &a, const Complex &b) � 2
{

real = a.get_real() - b.get_real();
imaginary = a.get_imaginary() - b.get_imaginary();

}

void Complex::multiply(const Complex &a, const Complex &b) � 3
{

real = a.get_real()*b.get_real() - a.get_imaginary()*b.get_imaginary();
imaginary = a.get_real()*b.get_imaginary() + a.get_imaginary()*b.get_real();

}

void Complex::negative()
{

imaginary = -imaginary;
}

// assigns one complex number to another
Complex Complex::operator=(const Complex &a)
{

real = a.get_real();
imaginary = a.get_imaginary();

return *this;
}

The above listing is the implementation of the
code that we defined in the class definition. These
two listings could, and often are, split into two
files. The class definition is placed in a header
file, and the class implementation is placed in a
source file. For simplicity, we are placing them
all in the same file for this technique. The func-
tionality for the underlying complex variable
class is implemented in the add (shown at � 1),
subtract (shown at � 2) and multiply (shown
at � 3) methods that are protected methods of
the class. This is necessary so that we can over-
ride the operators +, –, and * later on.

Finally, we need to implement the utility func-
tions for this class — in particular, the external
operators that allow us to override the mathe-
matical operations, as well as the streaming
operator that allows us to output a complex
number simply. These functions are imple-
mented separately because they are not a part of
the class itself, but rather they are global func-
tions that can reside anywhere.

4. Append the code from Listing 69-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

82_57986x ch69.qxd 1/26/05 4:00 PM Page 435

Technique 69: Working with Complex Numbers436

If you provide a test suite with your class-
definition file, application programmers can
determine right away whether any changes
they’ve made to the class have broken things.
In addition, this arrangement gives the devel-
oper of the original code a simple way to run
regression tests (suites of tests which indicate
whether previous functionality is still working)
when problems occur.

1. In the code editor of your choice, re-open
the source file to hold the code for your test
program.

In this example, I named the test program
ch69.cpp.

2. Type the code from Listing 69-4 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

The operators simply construct new Complex
objects by using the components of the input
Complex object. For example, in the operator*
code, shown at � 4, the multiplication result is
computed by multiplying the two real parts of
the complex variables input, subtracting the two
imaginary parts multiplied together, and assign-
ing the result to the real portion of the returned
variable.

Testing the Complex
Number Class
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also show people how to use your code.
The following steps tell you how.

LISTING 69-3: THE COMPLEX VARIABLE UTILITY METHODS

Complex operator+(const Complex &a, const Complex &b)
{

Complex c(a.get_real() + b.get_real() , a.get_imaginary() + b.get_imaginary());

return c;
}

Complex operator-(const Complex &a, const Complex &b)
{

Complex c(a.get_real() - b.get_real() , a.get_imaginary() - b.get_imaginary());

return c;
}

Complex operator*(const Complex &a, const Complex &b) � 4
{

Complex c(a.get_real()*b.get_real() - a.get_imaginary()*b.get_imaginary(),
a.get_real()*b.get_imaginary() + a.get_imaginary()*b.get_real());

return c;
}

ostream& operator<<(ostream& out, const Complex& aComplex)
{

out << aComplex.get_real() << “+” << aComplex.get_imaginary() << “i”;
return out;

}

82_57986x ch69.qxd 1/26/05 4:00 PM Page 436

Testing the Complex Number Class 437

Listing 69-4 simply exercises the various compo-
nents of the Complex class functionality. We cre-
ate a few Complex objects at the block of lines
shown starting at � 5. Our next set of tests exer-
cises the mathematical operators to add, sub-
tract and multiply the Complex objects, as shown
in the block of lines starting at � 6. We then out-
put the results for each of the objects, using the
streaming operator (<<) to illustrate how the for-
matting is done, and check the results. This is
shown in the block starting at � 7. Finally, we
use the accessor routines to print out the real
and imaginary portions of each object.

3. Save the source code as a file in the code editor
and then close the editor application.

4. Compile the source code with your favorite
compiler, on your favorite operating system.

5. Run the program on your favorite operating
system’s console.

If you have done everything properly, you should
see the following output from the program on the
console window. Note that in this listing C3 is the
sum of C1 and C2, C4 is the product, and C5 is the
difference. We should see that reflected in the
output:

$./a
C1 2+1i
C2 3+3i
C3 5+4i
C4 3+9i
C5 1+2i

Real Imaginary
2 1
3 3
5 4
3 9
1 2

LISTING 69-4: THE COMPLEX-NUMBER TEST PROGRAM

int main(int argc, char **argv)
{

Complex c1(2.0, 1.0); � 5
Complex c2(3.0, 3.0);

Complex c3 = c1 + c2; � 6
Complex c4 = c1 * c2;
Complex c5 = c2 - c1;

cout << “C1 “ << c1 << endl; � 7
cout << “C2 “ << c2 << endl;
cout << “C3 “ << c3 << endl;
cout << “C4 “ << c4 << endl;
cout << “C5 “ << c5 << endl;

// Output the pieces
cout << endl;
cout << “Real” << “\t” << “Imaginary” << endl;
cout << c1.get_real() << “\t” << c1.get_imaginary() << endl;
cout << c2.get_real() << “\t” << c2.get_imaginary() << endl;
cout << c3.get_real() << “\t” << c3.get_imaginary() << endl;
cout << c4.get_real() << “\t” << c4.get_imaginary() << endl;
cout << c5.get_real() << “\t” << c5.get_imaginary() << endl;

return 0;
}

82_57986x ch69.qxd 1/26/05 4:00 PM Page 437

Technique 69: Working with Complex Numbers438

this class into our application and use it — because
it has no real ties to any other classes.

A class is useful in an inverse proportion to the
number of other classes it has to include.
Cumbersome is bad. If you create a class that
drags in an entire library of functionality just to
use a single function in that library, people will
avoid it. If (instead) you create a class that does
a single task — such as representing complex
numbers — and have that class stand alone,
people will tend to use it in their applications.

The components listed above are simply the objects
from our test driver. Because C1 is equal to 2 + 1i
and C2 is equal to 3 + 3i, we would expect that if we
added the two objects, we would get 5 + 4i, which is
exactly what is shown for the value of C3 (the sum of
C1 and C2). As we expected, we get the results we
should. Likewise, in the bottom listing of real and
imaginary, C3 is the third entry and has a real com-
ponent of 5 and an imaginary component of 4, as
expected.

As you can see, the output is what we would expect
from the Complex number class. We can now drop

82_57986x ch69.qxd 1/26/05 4:00 PM Page 438

70Technique

Save Time By
� Understanding the value

of converting numbers to
words

� Understanding the basic
logic of such a program

� Creating a conversion
class

� Testing your conversion
class

Converting
Numbers to Words

If you go into a bank and ask for a cashier’s check, your bank computer
system will print the check for the appropriate amount; look closely at
that check and you’ll see that it has the entire amount spelled out in

English. For example, if I got a cashier’s check for $1,200.60, the check
would read One thousand two hundred dollars and sixty cents. This is not
an unusual use for a software program, and the ability to translate num-
bers to words can be applied in many different types of applications,
from education to finance.

The design of the codesystem that performs this kind of translation is
very interesting. The process we go through for this is always done the
same way. We break the number — no matter how large — down into
hundreds, and then parse the results into English. For example, if you are
given the number 123,456, you look first at the 123 and append a thou-
sand to it — resulting in one hundred twenty-three thousand. Further,
within a block of hundreds, you will always look at numbers from one to
twenty, then multiples of ten, then multiples of a hundred. For example,
you will list the numbers from one to nineteen for a given hundred, then
it is twenty, twenty-one, thirty, thirty-one, and so forth.

A process that breaks something into smaller pieces — and then assem-
bles the pieces into larger components — should naturally make you
think about objects. In this case, you can see that there are objects for
the one-to-twenty conversion, the twenty-and-up conversion, and the
hundreds conversion. The thousands conversion is really just a variant
of the hundreds. All these cases have a common set of things to look at:

� the specific range of the value

� convert that range into a string

Let’s look at an example, because this is all rather confusing to explain
and much easier to show. If we start with the number 123,456 and want to
convert it to English, we would do the following:

83_57986x ch70.qxd 1/26/05 3:59 PM Page 439

Technique 70: Converting Numbers to Words440

1. First, we break the number down into the highest
unit, in this case thousands. So, the first part of
our given number produces the number 123,
with a unit of thousand.

2. Next, we split off the hundreds. So, we have one
hundred.

3. The next step is to look at the tens unit. If this
number were zero, we would skip it. In this case,
it is a two, so the number is twenty. An important
exception here is the number one. In this case,
we have to apply special English rules (i.e.
eleven, twelve, thirteen) and skip the ones digit.
So, because the second digit is a two, we now
have one hundred twenty.

4. Finally, we look at the ones digit. In our case, it is
a three, so we have one hundred twenty three.

5. Append the units from step 1: one hundred twenty
three thousand.

6. Repeat for the next block. If we are under a thou-
sand, we skip the units part. Put both blocks
together to produce: one hundred twenty three
thousand four hundred fifty six.

From an object-oriented design viewpoint, the process
shows that its cases have some elements in common
elements — as well as some elements that are discrete
for different cases. This suggests that we have a com-
mon base class, and then derived classes that manage
those discrete elements. Furthermore, we can build
some of the elements from the base classes to create
new extended classes, such as when we create thou-
sands from ones and tens.

This technique shows you how to convert numbers
into written English.

Always take a step back from the problem
when you are trying to do an object-oriented
design. Doing so gives you the opportunity to
see the problem from a big-picture perspec-
tive, which often allows you to break it down
into small components much more easily.
When you see all the pieces, you can also usu-
ally see the overlap between them — which
can be factored into your base classes.

You can save a lot of time in the long-run by
getting the design right from the beginning.
Understanding how all the pieces fit together
is essential to getting that design right.

Creating the Conversion Code
The first step toward implementing the system is to
create the base classes used to build the application.
The following steps show you how. The base classes
represent the number ranges we are going to use to
parse the existing number into digits and convert
those digits into words.

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
source file.

In this example, the file is named ch70.cpp,
although you can use whatever you choose.

2. Type the code from Listing 70-1 into your file.

Or better yet, copy the code from the source file
on this book’s companion Web site.

LISTING 70-1: THE CONVERSION BASE CLASSES: SOURCE CODE

#include <vector>
#include <string>
#include <iostream>

using namespace std;

class RangeEntry
{

long _lMin;
long _lMax;
long _lIncrement;

public:
RangeEntry(void)
{

_lMin = 0;
_lMax = 0;
_lIncrement = 1;

83_57986x ch70.qxd 1/26/05 3:59 PM Page 440

Creating the Conversion Code 441

}
RangeEntry(long min, long max, long inc=1)
{

_lMin = min;
_lMax = max;
_lIncrement = inc;

}
RangeEntry(const RangeEntry& aCopy)
{

_lMin = aCopy._lMin;
_lMax = aCopy._lMax;
_lIncrement = aCopy._lIncrement;

}

RangeEntry operator=(const RangeEntry& aCopy)
{

_lMin = aCopy._lMin;
_lMax = aCopy._lMax;
_lIncrement = aCopy._lIncrement;
return *this;

}

// Accessors
long Min()
{

return _lMin;
}
long Max()
{

return _lMax;
}
long Increment()
{

return _lIncrement;
}

bool InRange(long lVal)
{

if (lVal >= Min() && lVal <= Max())
return true;

return false;
}

virtual string getString(int iVal)
{

return “Unknown”;
}

};

class OnesRangeEntry : public RangeEntry
{

(continued)

83_57986x ch70.qxd 1/26/05 3:59 PM Page 441

Technique 70: Converting Numbers to Words442

LISTING 70-1 (continued)
public:

OnesRangeEntry(void)
: RangeEntry(0,19,1)

{
}

virtual string getString(int iVal)
{

switch (iVal)
{

case 1:
return string(“one”);

case 2:
return string(“two”);

case 3:
return string(“three”);

case 4:
return string(“four”);

case 5:
return string(“five”);

case 6:
return string(“six”);

case 7:
return string(“seven”);

case 8:
return string(“eight”);

case 9:
return string(“nine”);

case 10:
return string(“ten”);

case 11:
return string(“eleven”);

case 12:
return string(“twelve”);

case 13:
return string(“thirteen”);

case 14:
return string(“fourteen”);

case 15:
return string(“fifteen”);

case 16:
return string(“sixteen”);

case 17:
return string(“seventeen”);

case 18:
return string(“eighteen”);

case 19:
return string(“nineteen”);

}
return string(“”);

}
};

83_57986x ch70.qxd 1/26/05 3:59 PM Page 442

Creating the Conversion Code 443

class TensRangeEntry : public RangeEntry
{
public:

TensRangeEntry(void)
: RangeEntry(20,90,10)

{
}

virtual string getString(int iVal)
{

int iDigit = iVal / 10;
switch (iDigit)
{

case 1:
return string(“ten”);

case 2:
return string(“twenty”);

case 3:
return string(“thirty”);

case 4:
return string(“forty”);

case 5:
return string(“fifty”);

case 6:
return string(“sixty”);

case 7:
return string(“seventy”);

case 8:
return string(“eighty”);

case 9:
return string(“ninety”);

}
return string(“”);

}
};

class HundredsRangeEntry : public RangeEntry
{
public:

HundredsRangeEntry(void)
: RangeEntry(100,1000,100)

{
}

virtual string getString(int iVal)
{

OnesRangeEntry ore;

int iDigit = iVal / 100;

string s = ore.getString(iDigit);
s += “ hundred”;

(continued)

83_57986x ch70.qxd 1/26/05 3:59 PM Page 443

Technique 70: Converting Numbers to Words444

LISTING 70-1 (continued)
return s;

}
};

class ThousandsRangeEntry : public RangeEntry
{
public:

ThousandsRangeEntry(void)
: RangeEntry(1000,999999,1000) � 1

{
}

virtual string getString(int iVal)
{

HundredsRangeEntry hre;
TensRangeEntry tre;
OnesRangeEntry ore;

int iDigit = iVal / 1000;
int iNum = iDigit;
string s = “”;
if (hre.InRange(iDigit)) � 2
{

s += hre.getString(iDigit);
iDigit = iDigit - ((iDigit/100) * 100);

}

if (hre.InRange(iNum))
{

s += “ “;
s += tre.getString(iDigit);
iDigit = iDigit - ((iDigit/10) * 10);

}

if (ore.getString(iDigit).length())
s += “ “;

s += ore.getString(iDigit);
s += “ thousand”;

return s;
}

};

These base classes “know” how to convert a sin-
gle string into a series of words that describe a
number. However, because there are differences
for thousands, hundreds, and single digit values,
we need a set of classes to do each of these.
After we have created the three basic ones

(digits, hundreds, thousands), we can then parse
any number up to one million. If we wanted to
parse numbers over one million, of course, we
would need to add a new class, and so forth for
each further magnitude we want to handle.

83_57986x ch70.qxd 1/26/05 3:59 PM Page 444

Creating the Conversion Code 445

NumberToWords(void)
{

InitializeToDefaults();
}
virtual ~NumberToWords(void)
{

vector< RangeEntry *>::iterator
iter;

for (iter = _entries.begin();
iter != _entries.end(); ++iter)

delete (*iter);
}
string Convert(int iVal)
{

string sRet = “”;
while (iVal > 0) � 4
{

bool bFound = false;

vector< RangeEntry *>::itera-
tor iter;

for (iter =
_entries.begin(); iter !=
_entries.end(); ++iter)

{
if ((*iter)->InRange(
iVal))

{
if (sRet.length()

)
sRet += “ “;

sRet += (*iter)-
>getString(iVal
);

iVal = iVal - (
(iVal / (*iter)-
>Increment()) *
(*iter)-
>Increment());

bFound = true;
break;

}
}

if (!bFound)
iVal = 10;

}
return sRet;

}
};

The important thing is how the higher level
classes (thousand, for example) call the lower
level classes (hundred, ones) to process the
smaller numbers. For example, take a look at the
ThousandsRangeEntry class. The class contains a
range value that it processes, numbers between
1000 and 999999 (shown at � 1). Within the
getString method, which converts the number
into a human readable string, the class then uses
the hundred, ten, and one digit parsing classes to
do its work (see lines beginning at � 2). We
don’t duplicate a lot of code and we don’t have
to go searching through the code to see which
piece broke when there is an exception. For
example, if we wanted to properly hyphenate
output strings (thirty-five, instead of thirty five)
we would just modify the tens class.

3. Save the source code in your code editor.

The next step is to implement the processing
object that gathers up all the individual conver-
sions into the output text string.

4. Reopen the source file in the code editor.

5. Append the code from Listing 70-2 to the
source file.

LISTING 70-2: THE CONVERSION CLASS: SOURCE CODE

class NumberToWords
{
private:

vector< RangeEntry *> _entries;

protected:
virtual void InitializeToDefaults()
{

_entries.insert(_entries.end(),
new OnesRangeEntry()); � 3

_entries.insert(_entries.end(),
new TensRangeEntry());

_entries.insert(_entries.end(),
new HundredsRangeEntry());

_entries.insert(_entries.end(),
new ThousandsRangeEntry());

}

public:

83_57986x ch70.qxd 1/26/05 3:59 PM Page 445

Technique 70: Converting Numbers to Words446

The purpose of our little test driver is simply to show
that the class works with all of the exceptional cases
that exist for numeric conversions. For example, we
want examples of ones, tens, hundreds, and thou-
sands. We also want a simple example that requires
the code to check all of its conditions, such as 23.

3. Save the source code in the code editor and
then close the editor application.

4. Compile the source code with your favorite
compiler, on your favorite operating system.

5. Run the program on your favorite operating
system’s console.

If you have done everything properly, you should
see the following output from the program on the
console window:

$./a
String: one hundred twenty three
String: one
String: twenty three
String: eight hundred seven
String: one hundred twenty three thousand

four hundred fifty six

As you can see from the output listing, the code
works properly. All of the various scenarios are han-
dled correctly and the output is in expected English.
As mentioned previously, possible enhancements to
the application would be extending the classes to
process millions, billions, and so forth, or adding
hyphens, if desired.

The main parts of the NumberToWords class are the
entries (shown at � 3 in the Listing 70-2) and the
Convert method. The entries are simply extensions
of the base RangeEntry class that process given
ranges of the value being converted (the iVal
parameter). The number is broken down by the
increment of each range (thousands, hundreds, tens,
ones) and each entry is called to process that partic-
ular unit. This continues until the input value is
reduced to a value of zero. The loop to process the
value is shown at � 4.

Testing the Conversion Code
After you create a class, you should create a test
driver that not only ensures that your code is cor-
rect, but also shows people how to use your code.
The following steps show you how.

1. In the code editor of your choice, re-open
the source file to hold the code for your test
program.

In this example, I named the test program
ch70.cpp.

2. Type the code from Listing 70-3 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 70-3: THE NUMBER-CONVERSION TEST PROGRAM

int main()
{

NumberToWords nw;
string s1 = nw.Convert(123);
cout << “String: “ << s1 << endl;
string s2 = nw.Convert(1);
cout << “String: “ << s2 << endl;
string s3 = nw.Convert(23);
cout << “String: “ << s3 << endl;
string s4 = nw.Convert(807);
cout << “String: “ << s4 << endl;
string s5 = nw.Convert(123456);
cout << “String: “ << s5 << endl;

}

83_57986x ch70.qxd 1/26/05 3:59 PM Page 446

71
Reducing the
Complexity of Code

Programmers know the best program design is always simple. In fact,
among programmers, the KISS principle has become a cliché: “Keep
It Simple, Stupid.” To keep things simple, you have to follow three

basic principles when writing and maintaining code:

� Componentizing

� Restructuring

� Specializing

By following these few simple processes when you develop and debug
your code, you can drastically cut down on your maintenance time.
In this technique, we will look at these four pillars of programming
simplicity — and examine how to apply them.

A Sample Program
Imagine, for a moment, that you’re working on a program that parses
input files for words. This sort of program might be used to get a list of
words for a spell-checker or a stop list for an indexing program. In text
indexing, a stop list gives the program a list of words to ignore when
placing them in the index. The code for this type of program is shown in
Listing 71-1. Its obviously a very simple, stripped-down program, but it
illustrates the basic idea of what we’re trying to accomplish.

Technique

Save Time By
� Componentizing your

code

� Restructuring programs

� Specializing components

84_57986x ch71.qxd 1/26/05 3:58 PM Page 447

Technique 71: Reducing the Complexity of Code448

LISTING 71-1: THE ORIGINAL WORD-PARSER PROGRAM

#include <stdio.h>
#include <string.h>
#include <vector>

using namespace std;

void my_func(std::vector< char *>& words)
{

FILE *fp = fopen(“myfile.txt”, “r”);
if (fp == NULL)

return -1;

while (!feof(fp))
{

char szBuffer[81];
memset(szBuffer, 0, 80);
if (fgets(szBuffer, 80, fp) == NULL)

break;

// Parse the line
char szWord[80];
memset (szWord, 0, 80);
int pos = 0;

for (int i=0; i<(int)strlen(szBuffer); ++i) � 1
{

switch (szBuffer[i])
{

case ‘:’:
if (strlen(szWord))
{

char *str = new char[strlen(szWord)+1];
strcpy(str, szWord);
words.insert(words.end(), str);
szWord[0] = 0;
pos = 0;
memset (szWord, 0, 80);

}
break;

default:
szWord[pos] = szBuffer[i];
pos++;
break;

}
}

}

fclose(fp);
}

84_57986x ch71.qxd 1/26/05 3:58 PM Page 448

Componentizing 449

The code above is supposed to read lines in from a
file, parse them into words, and store the words in
an array. It is assumed that the lines have a specific
format: word1:word2:word3 followed by a carriage
return. Given an input like that, the assumption is
that the program will produce a list that contains
word1, word2, and word3. The code accomplishes this
by stepping through each character in the line, look-
ing for a colon (:) and taking whatever precedes it
as a word. You can see this code in the loop shown
at � 1.

This code generally works, except it has a rather
severe bug — it will skip words at the end of a line —
and anyway the real issue is that this code is hard to
maintain. If we add a new separator to the line (for
example), what happens? If someone comes along
and has no idea what the code does, is it at all intu-
itive? The first step to making things better is to sep-
arate it into components.

If we run the program with an input file that looks
like this

word1:word2:word3
line2:word2:word3
line3:word3:word4

the program will then parse the individual lines into

Line1:
word1
word2

Line2:
line2
word2

The problem is shown by the fact that the word3
from line 1 and word3 from line 2 are not shown.

Componentizing
Componentizing is my own term for the process of
splitting something up into components. In our
code, there are two major components, a file compo-
nent and a parser component. Components differ
from functions, methods, or classes. A component is
a single functional element — that is, a collection of
code that accomplishes a single task or deals with a
single area such as a file or parsing text.
Componentizing simplifies your code by reducing
the amount of cohesion between the various units of
a module, and by limiting the areas in which you
need to search for a given piece of functionality. If
we are looking for something that reads from or
writes to a file, we look in the file component. We
wouldn’t bother to look in the parser component,
because that has nothing to do with reading or writ-
ing from a file. We have not yet split our class into
components, we are merely identifying the different
units in the current code.

The next step toward making our code simpler is
to break it down into separate components. Let’s
identify and split out the pieces into their own com-
ponentized classes. Our new structure will contain
two separate classes. This is how you do it.

int main(int argc, char **argv)
{

std::vector< char *> words;
my_func(words);

std::vector< char *>::iterator iter;
for (iter = words.begin(); iter != words.end(); ++iter)

printf(“Word: %s\n”, (*iter));

return 0;
}

84_57986x ch71.qxd 1/26/05 3:58 PM Page 449

Technique 71: Reducing the Complexity of Code450

return s;
}
bool eof()
{

if (fp == NULL)
return true;

return feof(fp);
}

};

class Parser � 3
{
private:

char delimiter;
vector< string > words;

public:
Parser(void)
{

delimiter = ‘;’; // default
}
Parser(const char& delim)
{

delimiter = delim;
}

void clear()
{

words.erase(words.begin(),
words.end());

}

bool parse(const string& in)
{

string sWord = “”;

if (delimiter == 0)
return false;

if (in.length() == 0)
return false;

for (int i=0; i<(int)in.length(); ++i)
{

// End of word or string?

if (in[i] == delimiter)
{

words.insert(words.end(),
sWord);

sWord = “”;
}
else

1. In the code editor of your choice, create a new
file to hold the code for the implementation of
source file.

In this example, the file is named ch71.cpp,
although you can use whatever you choose.

2. Type the code from Listing 71-2 into your file.

Better yet, copy the code from the source file on
this book’s companion Web site.

LISTING 71-2: THE COMPONENTIZED SAMPLE PROGRAM

#include <stdio.h>
#include <string.h>
#include <vector>
#include <string>

using namespace std;

class ParserFile � 2
{
private:

FILE *fp;
public:

ParserFile(void)
{

fp = NULL;
}
ParserFile(const char *fileName)
{

if (fileName != NULL)
fp = fopen(fileName, “r”);

}
string getLine()
{

string s = “”;

if (fp == NULL)
return s;

char c = 0;

while (!feof(fp) && c != ‘\n’)
{

c = fgetc(fp);
if (c != ‘\n’ && c != ‘\r’ && c !=
EOF)
s += c;

}

84_57986x ch71.qxd 1/26/05 3:58 PM Page 450

Restructuring 451

Note that this code does not do anything different
from our original code listing. It has simply been
restructured to be more componentized. The logic
and functionality remain the same. The code to read
a file into individual lines has been moved into the
ParserFile class (shown at� 2). This class does
more error-checking for input, and has specific
methods to read the file and return individual lines,
but it is otherwise functionally equivalent to the pre-
vious example code. Likewise, the Parser class
(shown at � 3) still parses a given line, but is no
longer reliant on any file input to do its work. It is
now a simple parser class that takes in a string and
breaks it down into words, using a developer-supplied
delimiter, in place of our hard-coded colon of the
first example.

Looking at the main program, you can see how much
cleaner the interface is, and how much simpler it is
to read. It should also be considerably easier to
debug, because each piece of the code is in a sepa-
rate component, meaning that when a problem is
encountered, only that component needs to be
checked out.

Restructuring
Restructuring (also known as refactoring) is the
process of going back through code and eliminating
redundancy and duplicated effort. For example, let’s
consider the following snippet of code (not from our
example, just a generalized piece of code):

int ret = get_a_line();
if (ret == ERROR)

throw “Error in get_a_line!”; � 4
ret = get_words_from_line();
if (ret == ERROR)

throw “Error in get_words_from_line!”;
ret = process_words();
if (ret == ERROR)

throw “Error in process_words!”;

{
sWord += in[i];

}
}

if (sWord.length())
words.insert(words.end(), sWord);

return true;
}

int num()
{

return words.size();
}
string word(int idx)
{

string s = “”;
if (idx < 0 || idx >

(int)words.size()-1)
return s;

s = words[idx];
return s;

}
};

int main(int argc, char **argv)
{

ParserFile pf(“myfile.txt”);
Parser p(‘:’);

while (!pf.eof())
{

p.clear();

if (p.parse(pf.getLine()) == true)
{

printf(“Parsed:\n”);
for (int i=0; i<p.num(); ++i)

printf(“Word[%d] = %s\n”, i,
p.word(i).c_str());

}
}

return 0;
}

84_57986x ch71.qxd 1/26/05 3:58 PM Page 451

Technique 71: Reducing the Complexity of Code452

boundaries, when you can write a generalized rou-
tine that can handle any number of segments — of
any length each? Sounds great in theory . . .

One sad lesson — normally learned when debugging
programs — is that generalization is really a pain in
the neck. It causes vastly more problems than it
solves, and it never turns out that your code is gen-
eral enough to handle every single case that comes
its way. So you hack the code to make it work; it
ends up littered with special cases.

Take a look at an example of generalization and how
it can get you into trouble. Going back to our original
code, assume that your input file has very long
strings in it — not really a valid input file at all.
Suppose it looked something like this:

This is a really long sentence that doesn’t
happen to have a colon in it until it
reaches the very end like this: do you
think it will work?

If we run our first example program on this input file,
it will crash, because we will overwrite the end of
the word allocated space. This happens because we
generalized the input to handle any sort of file,
instead of making it specific to the kind of input we
were expecting. We could easily change our code to
handle a bigger string, but instead, we should follow
the rules of specialization:

� Make sure that input files are clearly marked as
valid input to the program: In nearly all cases,
your program-specific input should contain a
version and type identifier. We haven’t added
this to this simple example, but it would make
sense to modify the ParserFile class to read in a
beginning line containing version information.

� If your input is fixed-length, check the length
before you start loading the data: If you have an
input file that is supposed to contain words of no
more than 80 characters, then any time you have
not encountered a delimiter within 80 charac-
ters, you should abort the input process and
print out an error message for the user. If the
word length is not fixed, then you should never
use a fixed-length buffer to store it.

This code is prime territory for refactoring. Why?
Because the code contains multiple redundant state-
ments, namely the exception handling (throw lines,
such as the one shown at � 4) To do this, follow
these steps.

1. Examine the code for similar looking state-
ments or processes.

In our case, the code that is similar is the check
for the return code and the throwing of the
exception string.

2. Extract the redundant code and factor it into a
routine of its own.

In this case, we can factor the code into a single
routine:

void CheckAndThrowError(int retCode,
const char *name)

{
if (retCode == ERROR)

throw name;
}

3. Replace the existing code with the calls into the
refactored code.

CheckAndThrowError(get_a_line(),
“get_a_line”);

CheckAndThrowError(get_words_from_line(
),

“get_words_from_line”);
CheckAndThrowError(process_words(),

“process_words”);

4. If necessary, after the code is refactored, re-
examine it for other similarities.

In this example, we might consider logging the
error within the CheckAndThrowError function.
This isn’t really a refactoring case, but rather an
observation of what might make the code more
complete.

Specialization
Programmers have a habit of writing code that is
generalized to the extreme. Why write a routine that
can break down a string into four parts at particular

84_57986x ch71.qxd 1/26/05 3:58 PM Page 452

Specialization 453

We already fixed this one in the ParserFile class
by using a string in place of the fixed size buffer.

� Reject data in any format you do not under-
stand: This precept is a little easier to under-
stand with an example. Let’s suppose that you
are reading in a date from the command line or
in a graphical user interface. Dates have so many
formats that it is almost not worth enumerating
them all. However, if you are given a date that is
given as 1/1/04, there are numerous ways to
interpret it. For example, it could be in M/D/YY
format, and be January 1, 2004. Alternatively, it
could be in D/M/YY format — which would still

be January 1, 2004, but would change the inter-
pretation. There is no reason to keep the ambigu-
ity. Either force the user to enter in a single
format, or use a control that specifies the format.

This one really has no issue in our ParserFile
class, because we aren’t dealing with specific
data sizes.

If you follow these guidelines, you will cut down on
the number of bugs you receive — which makes it
easier to debug problems that you do encounter in
your application.

84_57986x ch71.qxd 1/26/05 3:58 PM Page 453

84_57986x ch71.qxd 1/26/05 3:58 PM Page 454

Symbols and
Numerics

& (ampersand), encoding
required for Web use, 337

* (asterisk)
with Match class, 333
as wildcard, 330, 333

#define statements
const statement compared

to, 45
constants for directly replac-

ing values, 77–78
using const instead of, 45–47

> (greater-than sign), encoding
required for Web use, 337

#include statements for header
files, 39, 40

< (less-than sign), encoding
required for Web use, 337

% (percent sign) as wildcard, 331
+ (plus operator), overloading,

120–122
+= (plus-equal operator), plus

operator implementation
and, 121

? (question mark)
with Match class, 333
as wildcard, 330–331, 333

32-bit operating systems, 54

A
abstraction

common base class for, 18
defined, 12
encapsulation for, 12
for extending functionality,

12–18

Index
mailing-list application

example, 12–18
virtual methods and, 12

accessor functions or methods
making inline, 407–408
for MyString class, 123

AgeProperty class, 139–140
algorithms

choosing the most efficient, 350
Date class, 153, 154, 159
discrete pieces in classes

for, 159
encapsulating, 7–10, 36
for encryption, 343
for encryption method,

encapsulating, 7–10
hiding from developers, 7–8
Rot13 encryption algorithm,

343, 344–346
STL advantages for, 200
for STL container classes, 200,

349–350
transform function, 349–353
updating encapsulated algo-

rithms, 10–11
vector algorithms, 200–203
for virtual files, 280, 290
XOR encryption algorithm,

343, 346–348
allocate method, overriding,

299, 300
American Heritage Dictionary, 12
ampersand (&), encoding

required for Web use, 337
anewfile.out file, 431
anoldfile.out file, 431
application development

breaking classes into discrete
pieces, 159

breaking complex system into
components, 217

building tracing into applica-
tions, 375–380

code updated by another
source and, 7

configuration capability as
hallmark, 251

creating general classes
and, 175

eliminating the source of
failures, 323

encapsulation and, 7–8, 11
enforcing return codes, 323–329
exception handling and, 319
exchanging data with Web-

based applications, 342
factory pattern for, 162
getting the design right, 440
hiding algorithms from

developers, 7–8
inserting tracing into an

existing file, 380–386
internationalization and,

265–266
keeping a library of utility

classes, 353
logging and, 389
memory trackers and, 135
optimizing code, 407–415
planning for Web-enabled

code, 337
providing test suite with

application file, 436
reducing the complexity of

code, 447–453
stepping back from

problems, 440
storing literal string informa-

tion in classes and, 161
validation classes and, 142, 149

arguments
class template arguments, 179,

182, 183
customizing MessageBox

function for, 102

85_57986X bindex.qxd 1/26/05 3:57 PM Page 455

C++ Timesaving Techniques For Dummies456

arguments (continued)
default, defining for functions

and methods, 101–106
immutable, functions with,

78–79
non-class template arguments,

184–185
in signatures for methods, 399
types for values passed to

functions, 90–91, 93–94
arrays

allocations and de-allocations,
204–208

Buffer class versus, 361,
363–364

compiler errors for, 47
delete operator with, 204
FileChunkManager class for

managing, 288
of heterogeneous objects,

213–215
iterating over, 291, 292–293
Matrix class allowing queries

for, 63–69
multiple array classes and the

STL, 196
MyStringArray class, 196–199
new operator and, 134–135
of object pointers, 213–215
of objects, 209–212
overriding operators and, 63
pre-processor and, 47
printing using streams,

226–227
sizeof function and, 55
for spreadsheets, 216–222
static, 209, 211, 361
two-dimensional, 222
vector algorithms for, 200–203
vector class (STL) for, 25,

192–195, 200–203, 209–212,
226–227

with and without pointers,
204–208

assert macro
“debug mode” for, 388
debugging and, 42, 44, 387–389
error handling with, 44

for exiting programs,
avoiding, 43

never counting on, 389
not defined in optimized mode,

387, 389
output from, 388
purpose of, 42, 44, 387
“release mode” and, 388
run-time and, 42, 389
testing in optimized environ-

ment, 44
turning asserts on and off,

387–388
using, 42–43, 388–389

assignment
initialization versus, 413–415
operators, extensibility and, 61
properties and invalid

assignments, 136–137
asterisk (*)

with Match class, 333
as wildcard, 330, 333

auto_ptr class
benefits of, 303
copying an auto_ptr, 306
rules for using, 306
STL collections and, 306
testing, 305–306
using with functions, 303–305

B
Bar class, 53, 54
Base class

array of object pointers for,
213–215

template class, 180–183
base classes

array of object pointers for,
213–215

for casting examples, 91–92, 94
common base class for

abstraction, 18
conversion into derived class

by compiler, 24
for converting numbers to

words, 440–444
defined, 12

factory class, 163–167
implementing a common base

class, 162
for interfaces, 354
for mailing-list application,

13–14
mix-in classes for limiting

functionality, 168
object pools of, 162
pure virtual base classes for

interfaces, 354
pure virtual method in, 12
saving functionality in, 24
serialization interface, 354–359
simple template, 176–178
stepping back from problems

and, 440
storing derived objects in an

array, 213
using templates as, 179
virtual destructors for, 22, 25
for virtual inheritance, 117–119
for virtual methods, 20
virtual table for, 21, 22

BaseMailingListEntry class, 13–14
Base1 and Base2 classes for

casting, 91–92, 94
basic types

defined, 59
extending, 59–62

Blowfish encryption algo-
rithm, 343

Borland’s C++ Builder, 2
Buffer class (example 1), 308–311
Buffer class (example 2)

BufferException class for,
362, 364

character arrays versus,
363–364

creating, 361–364
returned value, 364
static arrays versus, 361
testing, 364–365

buffer overflows
Buffer class for, 361
defined, 360
prevalence of, 360
reasons for not fixing, 361
security issues, 360, 361

85_57986X bindex.qxd 1/26/05 3:57 PM Page 456

Index 457

BufferException class, 362, 364
business rules

defined, 30
reusability of code and, 30, 31
separating from code, 30–36

C
C++ Builder (Borland), 2
C++ Timesaving Techniques For

Dummies (Telles, Matthew)
companion Web site, 2
conventions, 2–3
focus on saving time, 1, 2
goal of, 1
icons in margins, 4
organization, 3–4
using, 1–3

C++ versus C
error handling and, 319
file-handling functions and,

425–426
name resolution and, 85–86
pointers and, 175
reusability and, 85
struct construct and, 74
structures and, 73–74

calculation, discrete pieces in
classes for, 159

call stack from debuggers, 375
case

c_str method for converting,
349

implementing the transform
function to convert strings,
350–351

strup function in C for convert-
ing, 349

testing the string conversion,
351–353

casts
addressing compiler problems,

93–94
base classes for, 91–92, 94
casting away const-ness, 81
derived classes for, 92, 94
need for, 90–91

scoping member functions
versus, 93–95

temporary objects and, 408
test drivers, 93, 95
testing, 93, 94–95
using, 91–93

cDate class
described, 31
non-inline methods, 34–35
source-code listing, 32–34
testing, 35–36

ch01 through ch71 files. See com-
panion Web site for this book

chaining errors, 319–322
chaining return codes, 328–329
ChangeManagement class, 115
character pointers, new operator

and, 134–135
checked member variable, 328
class examples. See also

examples in this book
AgeProperty, 139–140
auto_ptr, 303–306
Bar, 53, 54
Base1, for casting examples,

91–92, 94
Base2, for casting examples,

91–92, 94
BaseMailingListEntry, 13–14
Buffer (example 1), 308–311
Buffer (example 2), 361–365
cDate, 31–36
ChangeManagement, 115
class with methods containing

default values, 103–106
CommandLineMailingListEntry,

16–17
Complete, 109–115
Complex, 433–438
ConfigurationFile

(example 1), 26–27
ConfigurationFile

(example 2), 251
for converting numbers to

words, 440–444
Date, 149–161
DBCObject, 393–398
debugFlowTracer, 376–377

debugFlowTracerManager,
377–379

DelimitedFileParser, 237–238
DelimitedRow, 236–237
Delimiters, 235–236
Derived, for casting examples,

92, 94
Derived, for sizeof function

examples, 52, 54
DirectoryList, 367–368, 369
enumeration class, 71–72
ExceptionCatcher class,

314–315, 316–317
ExceptionClass, 313–314,

315–316, 317
factory class, 163–167
FileChunk, 284–286
FileChunkManager, 286–288
FileHandler, 103–106
FileMailingListEntry, 14–15
FileWrapper guardian class,

426–431
Fruit, 20–22
Full, 52, 53
HundredsRangeEntry, 443–444
Integer, 411–412
IntProperty, 137–140
Lock, 421–424
LockException, 421–424
Logger, 389–392
Match, 331–334
Matrix, 63–69
MultiPathFile, 367–371
for multiple inheritance,

116–117
MyAlloc, 298–302
MyBuffer, 301–302
MyReturnValue, 324–329
MyString, 122–126
MyStringArray, 196–199
NoPointer, 205–206
NumberToWords, 440–446
OnesRangeEntry, 441–442
for overloaded methods,

400–401
Parser, 450–451
ParserFile, 450, 451
for passing objects by

reference, 411–412

85_57986X bindex.qxd 1/26/05 3:57 PM Page 457

C++ Timesaving Techniques For Dummies458

class examples (continued)
Point, 413–415
PointerClass, 205–206
Properties class for

ConfigurationFile class,
24–25

Properties class for docu-
menting data flow, 417–419

Range, 60–62
RangeEntry, 440–441
reading delimited files, 235–238
return code class, 324–329
RetValue, 324–329
SavePairs, 25–26, 28–29
for scope illustration, 83
SSNValidator, 142–148
StringCoding, 7–11
StringConvertToLowerCase,

350–353
StringEntry, 266–268, 271
StringReader, 273–277
StringUtil, 252–255, 259
StringWriter, 268–272
TensRangeEntry, 443
TestIntValue, 140–141
ThousandsRangeEntry, 444, 445
Tracker, 304–306
Translator, 279–282
URLCodec, 338–341
using namespaces, 87–88
vector (STL), 25, 192–195,

200–203, 209–212, 226–227
for virtual files, 283–290
for virtual inheritance, 117–119
XMLElement, 241–242
XMLSuperClass, 244, 245
XMLWriter, 241–245
XOREncryption, 346–348

classes. See also class examples;
templates; specific kinds

for arrays, with and without
pointers, 204–208

base, defined, 12
breaking into discrete

pieces, 159
complete class, 109–115
for configuration information,

24–29
constants in, 79–80

container classes in the STL,
179, 200

for copyright information, 175
customizing with polymor-

phism, 20
customizing with virtual

functions, 19–22
for data validation, 142–148
date class, 149–161
for encoding strings, 7–11
enumeration class, 71–72
as extensions of structure

component, 73
external operators for, 61
factory class, 162
friend class, 167
generic buffer class, 360–365
guardian classes, 425–431
for implementing properties,

137–141
inherited, defined, 12
initializing versus assigning

data for, 413–415
iterating over STL collection

classes, 292–296
memory safe buffer class,

307–311
with methods containing

default values, 103–106
minimizing code for, 31
mix-in classes, 24–26, 168–171
multiple inheritance, 23
name resolution problems in

libraries, 86
with overloaded methods,

400–401
overloading operators, 120–127
overriding functionality with

virtual methods, 162–167
passing objects by reference,

410–412
placing reusable classes in

namespaces, 89
properties, 136–141
return code class, 324–329
saving functionality in, 24
scope handled automatically

for, 82–83
sections of, 23

simple template, 176–178
storing literal string informa-

tion in, 161
string array class, 196–199
struct construct as, 73
structures versus, 76
with templated method,

189–191
templatizing a single function,

186–189
templatizing a single method,

189–191
testing, recommendations

for, 161
for throwing and logging

exceptions, 312–317
to-do list for improvements, 290
for tracing flow, 376–380
URLCodec class for, 338–342
usefulness and number of

classes included, 438
virtual inheritance, 116–119
v-table for virtual methods, 21,

22, 23
XML structure compared to,

240–241
clone method, 109, 113
code. See also source-code listings

minimizing for classes, 31
reducing complexity of, 447–453
separating rules and data

from, 30–36
collections

algorithms for, 350
arrays, 291, 292–293
auto_ptrs in STL collections,

306
avoiding assuming contiguous

order for strings, 349
benefits of, 291
constant, 296
generic STL iterator for, 291
iterating over STL collection

classes, 292–296
iterator needed for, 291
linked lists, 292, 293
maps, 292, 293, 295
non-contiguous elements in, 291

85_57986X bindex.qxd 1/26/05 3:57 PM Page 458

Index 459

overriding the allocator for,
297–302

removing items using iterators,
294, 296

reusability and, 291
reverse iteration, 294, 295
STL and, 291, 349
streams, 294, 296
swapping elements using

iterators, 294
testing iterators, 295–296

Column class for spreadsheet
creating, 217–218
methods in, 216, 218
stored data and, 221
virtual method in, 217, 218

comma separated values (CSV)
files, 234. See also delimited
files

command line input, handling,
12, 13

command parser, hash table
for, 279

command processor class, 99
command processor class test

driver, 99
CommandLineMailingListEntry

class, 16–17
companion Web site for this book

ch1_1a.cpp file on, 11
ch01.cpp file on, 10
ch02.cpp file on, 13
ch02.cpp file on, 17
ch03.cpp file on, 20
ch03.cpp file on, 21
ch04.cpp file on, 24
ch04.cpp file on, 27
ch05.cpp file on, 32
ch6_12.cpp file on, 333
ch06.cpp file on, 40
ch07.cpp file on, 42
ch07.cpp file on, 44
ch8_2c.cpp file on, 398
ch08.cpp file on, 46
ch09.cpp file on, 49
ch10.cpp file on, 52
ch11_1.cpp file on, 62
ch11.cpp file on, 60
ch12.cpp file on, 64, 68

ch13.cpp file on, 71
ch14.cpp file on, 74
ch15.cpp file on, 77
ch16.cpp file on, 83
ch17.cpp file on, 87, 88
ch18.cpp file on, 91, 93
ch19.cpp file on, 97, 99
ch20.cpp file on, 103
ch21.cpp file on, 110, 114
ch22.cpp file on, 118, 119
ch23.cpp file on, 122
ch24.cpp file on, 129, 133
ch25.cpp file on, 137, 140
ch26.cpp file on, 142, 146
ch27.cpp file on, 151, 152, 159
ch27.h file on, 150
ch28.cpp file on, 163, 166
ch29.cpp file on, 169
ch30.cpp file on, 176
ch31a.cpp file on, 184
ch31.cpp file on, 180, 183
ch32.cpp file on, 186, 189
ch33.cpp file on, 192
ch34.cpp file on, 196
ch35.cpp file on, 201
ch36.cpp file on, 204
ch37.cpp file on, 210
ch38.cpp file on, 213
ch39_4.cpp file on, 221
ch39.cpp file on, 217
ch40.cpp file on, 226
ch41.cpp file on, 228, 232
ch42.cpp file on, 235, 239
ch43.cpp file on, 241, 243
ch44_6.cpp file on, 246
ch45_7.cpp file on, 261
ch45.cpp file on, 260
ch46_1.cpp file on, 273
ch46a.cpp file on, 277
ch46.cpp file on, 266
ch47.cpp file on, 280, 281
ch48.cpp file on, 284, 289
ch49.cpp file on, 292
ch50.cpp file on, 300
ch50.h file on, 298
ch51.cpp file on, 304
ch52.cpp file on, 308
ch53.cpp file on, 313, 318, 320
ch54.cpp file on, 324

ch55.cpp file on, 331
ch56.cpp file on, 338, 340
ch57.cpp file on, 344, 345,

346, 347
ch58.cpp file on, 350, 351
ch59.cpp file on, 358
ch59.h file on, 355
ch60.cpp file on, 361, 364
ch61.cpp file on, 367, 369
ch62a.cpp file on, 380
ch62.cpp file on, 376
ch63a.cpp file on, 389, 390
ch63b.cpp file on, 393, 397
ch63.cpp file on, 388
ch64.cpp file on, 398, 401
ch65a.cpp file on, 411
ch65b.cpp file on, 413
ch65.cpp file on, 408
ch66.cpp file on, 417, 418
ch67.cpp file on, 421, 422
ch68.cpp file on, 426, 430
ch69.cpp file on, 433, 436
ch70.cpp file on, 440, 446
ch71.cpp file on, 450
ConfigurationFile.cpp file on,

251, 261
ConfigurationFile.h header

file on, 251
osdefines.h header file on, 40
sizeof program on, 53
URL for, 2

comparison operators,
overriding, 328

compiler errors and warnings
addressing immediately, 91
debugging aided by

eliminating, 91
#define versus const state-

ment and, 46–47
indicating casting is needed, 93
Matrix class operators and, 67
multiple inheritance error, 117
for namespace problems, 89

compilers. See also pre-processor
assert macro and optimized

mode, 387, 389
base class/derived class

conversion by, 24

85_57986X bindex.qxd 1/26/05 3:57 PM Page 459

C++ Timesaving Techniques For Dummies460

compilers (continued)
const keyword as indicator to,

78–79
default constructor called by, 26
#define versus const state-

ment and, 45–47
examples in this book and, 1, 3
exception handling and, 322
GNU C++ compiler, 2
inheritance implemented by,

23–24
inline functions and, 407, 408
instantiation for templates

by, 178
strup function with strings

and, 349
template keyword and, 178
typeface in this book for

output, 2
types for values passed to

functions and, 90–91, 93–94
warning level setting for, 47

Complete class
creating a template, 110–113
dirty flag, 110, 114
need for, 109
output from, 114
rules for, 109
source-code listing, 110–113
testing, 113–115

Complex class
defining, 433–434
implementing, 434–435
testing, 436–438
utility functions, 436

complex numbers
challenges for expertise in, 432
defined, 432
implementing a class for,

433–436
template for, 433
testing the class, 436–438
uses for, 432
written form for, 432

componentizing, 449–451
configuration files

basic functionality, 24
class for storing information,

24–29

configuration-file class
creation, 251–259

“endian” concerns for, 250
finding all files, 367
as hallmark of professional

programs, 251
header file for, 251
text format for, 250
typical entry for, 250

ConfigurationFile class
(example 1)

constructor issues for, 27–29
implementing, 24–26
Properties class for, 24–25
SavePairs class for, 25–26,

28–29
source code for, 26
testing, 27

ConfigurationFile class
(example 2)

defined in header file, 251
header file for, 251
read function, 256, 259
source code for, 251, 256
storage functions, 259
StringUtil utility class for,

252–255, 259
test file for, 260
testing, 260–261

ConfigurationFile.cpp file,
251–259, 261

ConfigurationFile.h header
file, 251

const iterators, 296
const keyword

casting away, 81
in classes, 79–80
with Copy constructor, 80
for differentiating methods, 81
as indication to compiler, 78–79
for methods and functions, 77
versatility of, 80

const statements
#define statement compared

to, 45
defining constants, 77–78
implementing constant

variables, 78–79

replacing #define values using,
77–78

as type-safe, 46
using instead of #define, 45–47

constants. See also const key-
word; const statements

basic integer variables
versus, 59

casting away const-ness, 81
in classes, 79–80
collections, 296
const keyword for, 77, 81
#define versus const state-

ment and, 46–47
defining, 77–78
for function with immutable

argument, 78–79
implementing constant

variables, 78–80
returning a const reference, 80
for SSN length and delimiter,

143, 146
testing the constant

application, 80–81
uses for, 77

construct method, overriding,
299, 300

constructors
array of object pointers

and, 215
for Complete class, 109
for ConfigurationFile class,

26, 28–29
const keyword with Copy

constructor, 80
copy constructor for

auto_ptr, 306
copy constructor for

RetValue, 329
default called by compiler, 26
delayed construction, 27–29
error handling for, 27–28
exception types and copy

constructor, 322
invoking, 26
for MyString class, 123
object pools and, 162
planning for disasters, 29
Point class, 414, 415

85_57986X bindex.qxd 1/26/05 3:57 PM Page 460

Index 461

print statements in, for
debugging, 208

required for Complete class, 111
scope and, 82
for structures, 76
templates and, 178
two pointers for same memory

block and, 28
type and destructor calls, 176
virtual inheritance and, 119

container classes (STL). See also
collections

algorithms with, 200, 349–350
creating, 210
creating arrays of objects

using, 209–212
overhead from using, 209–210
as templates, 179
transform function for modify-

ing elements, 349–350
uses for, 200

container collections.
See collections

control characters, string classes
and, 348

conventions in this book, 2–3
conversion. See also translation

base class/derived class, by
compiler, 24

of case for strings, 349–353
casts for, 81, 90–95
c_str method for converting

case, 349
hash tables for, 279
implementing operators for, 122
implementing the transform

function to convert strings,
350–351

of numbers to words, 439–446
strup function for converting

case, 349
testing the string case conver-

sion, 351–353
of types with casts, 90–95

converting numbers to words
common set of things to look

at, 439
components for, 439

creating the base classes,
440–444

HundredsRangeEntry class for,
443–444

need for, 439
NumberToWords class for,

445–446
OnesRangeEntry class for,

441–442
RangeEntry class for, 440–441
steps for, 439–440
TensRangeEntry class for, 443
testing the code, 446
ThousandsRangeEntry class for,

444, 445
copy constructor

for auto_ptr, 306
const keyword with, 80
exception types and, 322
for RetValue class, 329

copying
an auto_ptr, 306
strings, memory overwrites

from, 307–308
copyright information class, 175
crashing programs

assert macro and, 43, 44
from buffer overflows, 360
C-style file-handling functions

and, 425–426
eliminating the source of

failures, 323
intentionally, avoiding, 43

credit card numbers, encryption
for, 343

critical-section handlers in
operating systems, 420

c_str method, 349
CSV (comma separated values)

files, 234. See also delimited
files

cumbersomeness, avoiding, 438
customizing. See also templates

built-in functions, 102
classes with polymorphism, 20
classes with virtual functions,

19–22

memory allocation, 297–302
MessageBox function, 102
user-defined functions, 103–106

D
data. See also input and output

documenting flow of, 416–419
encoding and decoding for the

Web, 337–342
information-specific, classes

for handling, 169
inheriting functionality and,

23–29
initializing versus assigning,

413–415
protecting from memory over-

writes, 307–311
protecting with encapsulation,

7–11
separating from code, 30–36
undo functionality and, 419

data storage. See also storage
allocation

encapsulation benefits for, 11
hash tables for, 279
literal string information in

classes, 161
for matrix in Matrix class, 65
in XML format, 241–245

data types. See types
Date class

algorithmic code, 153, 154, 159
basic functionality, 149
creating the class, 150–152
defining, 150–151
enhancements recommended

for, 161
implementing date functional-

ity, 152–159
initialization code, 152, 159
need for, 149
source file, 151–152
testing, 159–161
validation code, 153, 159

date.cpp file, 34

85_57986X bindex.qxd 1/26/05 3:57 PM Page 461

C++ Timesaving Techniques For Dummies462

dates. See also Date class
cDate class for, 31–36
checks scattered throughout a

program, 30
Date class for, 149–161
hard-coded, 30
IsLeapYear method, 35
IsValidDate method, 35
leap year computations, 30–31
limitations of standard

routines for, 149
portability and, 31
rejecting confusing formats, 453
reusability of code and, 30, 31

DBC methodology. See Design by
Contract methodology

DBCObject class
implementing, 393–397
testing, 397–398

deallocate method
MyBuffer class call to, 302
overriding, 300

“debug mode” for assert
macro, 388

debugFlowTracer class
creating, 376–377
debugFlowTracerManager class

for, 377–379
testing, 379–380

debugFlowTracer objects, 385, 386
debugFlowTracerManager class

creating, 377–379
Instance method, 379
purpose of, 379

debugging. See also compiler
errors and warnings; testing;
tracing

assert macro definition and, 43
assert macro for, 42, 44,

387–389
avoiding versus fixing prob-

lems and, 303
building tracing into applica-

tions, 375–380
call stack from debuggers

and, 375
categories of techniques

for, 387
chaining errors and, 319

challenges for, 375
checking size of values

during, 54
choosing techniques for, 387
creating macros and classes

for, 387–398
date code and, 31
debugFlowTracer class for,

376–377
debugFlowTracerManager class

for, 377–379
Design by Contract for, 392–398
documenting data flow and, 419
eliminating compiler warnings

and, 91
encapsulation benefits for, 11
failing to handle errors and, 323
generalization of code and, 452
inserting tracing into an exist-

ing file, 380–386
logging data for, 389–392
logging errors and, 312
macro side effects and, 48, 49
no “right” or “wrong” way

for, 387
overloaded methods, 399–403
overloaded operators and, 121
physical errors versus logical

errors and, 31
print statements in construc-

tors and destructor for, 208
separating business rules from

code and, 31
specialization and, 452, 453
system flow and, 375
testing the flow trace system,

379–380
validation and time saved

in, 142
decode method, 339–340, 341
decoding. See also encoding;

encryption
decode method, 339–340, 341
library methods lacking for, 337
reusable class helpful for, 337
URLCodec class for, 338–342
for the Web, 337–342
when exchanging data with

Web-based applications, 342

defaults
arguments for methods and

functions, defining, 101–106
class with methods containing

default values, 103–106
constructor called by

compiler, 26
#define statements

const statement compared
to, 45

constants for directly replacing
values, 77–78

using const instead of, 45–47
delayed construction, 27–29
delete operator

with arrays, 204
calling correct operator for

delete, 135
handler for, 129–131
matching up with invocation

method, 84, 204
memory allocation problems

and, 128–129
output from memory tracking

program, 133–134
overloaded handler for, 131–132
overloading to track memory

allocation, 129–132
rules for handler implementa-

tion, 129
uses for, 128

delimited files
assumptions for examples, 234
defined, 234
generic method for reading,

234–238
output from reading, 239
testing the code for reading,

238–239
DelimitedFileParser class,

237–238
DelimitedRow class, 236–237
Delimiters class, 235–236
Derived class

array of object pointers for,
213–215

for casting examples, 92, 94
for sizeof function examples,

52, 54

85_57986X bindex.qxd 1/26/05 3:57 PM Page 462

Index 463

derived classes
array of object pointers for,

213–215
for casting examples, 92, 94
conversion into base class by

compiler, 24
factory pattern and, 162
for interfaces, 355
for sizeof function examples,

52, 54
storing derived objects in an

array, 213
test drivers for casting, 93, 95
virtual destructors for, 22, 25
virtual methods and, 162
v-table for, 23

derived structures, 75, 76
Design by Contract (DBC)

methodology
creation by Eiffel programming

language, 392
documenting assumptions

made by code, 393
implementing, 393–397
parts of code according to,

392–393
post-conditions for code, 393
preconditions for code,

392, 397
purpose of, 393
test program for, 397–398
validity checks for code,

392–393
destroy method, overriding,

299, 300
destructors. See also virtual

destructors
array of object pointers

and, 215
arrays of objects and, 211–212
clearing pointers for exception

object, 322
for Complete class, 109
deleting array elements

and, 204
object pools and, 162
planning for disasters, 29
print statements in, for

debugging, 208

required for Complete class, 111
scope and, 82
storing derived objects in an

array and, 213
templates and, 178
two pointers for same memory

block and, 28
type and, 176
virtual, 22, 25

diagnostics, dump method and, 278
dictionary, hash table for, 279
DirectoryList class

described, 369
path delimiter for, 369
source-code listing, 367–368

dirty flag
ChangeManagement class, 115
Complete class, 110, 114
uses for, 115

divide-by-zero error, 317–319
document class, 87–88
document concept, 86
documentation

for assumptions made by
code, 393

constants as self-
documentation, 77

of data flow, 416–419
STL, 199

documenting data flow
importance of, 419
learning how code operates,

416–418
need for, 416
Properties class for, 417–418
testing the Properties class,

418–419
do_xor method, 346, 347
dump method, 278

E
EBCDIC systems, ROT13Encryption

class and, 345
Eiffel programming language, DBC

created by, 392
embedded processors, new in

place operator and, 135

encapsulation
abstraction using, 12
for algorithms, 7–10, 36
benefits of, 7–8, 10, 11
creating and implementing and

encapsulated class, 7–10
defined, 7
encapsulated code as black

box, 11
for encryption method, 7–11
information-specific data

and, 169
for Matrix class array row, 64
protecting data with, 7–11
reusability and, 30, 31
for separating rules and data

from code, 30–36
in Spreadsheet class, 216
struct construct as beginning

of, 73
type validation and, 142
updates to an encapsulated

class, 10–11
Encode method of StringCoding

class, 9, 10–11
encode method of URLCodec class,

339, 340, 341
encoding. See also decoding;

encryption
defined, 337
Encode method of

StringCoding class, 9, 10–11
encode method of URLCodec

class, 339, 340
library methods lacking for, 337
required for special characters

on the Web, 337
reusable class helpful for, 337
URLCodec class for, 338–342
for the Web, 337–342
when exchanging data with

Web-based applications, 342
encryption. See also encoding

Blowfish encryption
algorithm, 343

defined, 343
encapsulated method for, 7–10
encrypting and decrypting

strings, 343–348

85_57986X bindex.qxd 1/26/05 3:57 PM Page 463

C++ Timesaving Techniques For Dummies464

encryption (continued)
information requiring, 343
Rot13 encryption algorithm,

343, 344–346
RSS encryption algorithm, 343
for text string files, 273
updating encapsulated

method, 10–11
XOR encryption algorithm,

343, 344–346
“endian” concerns for configura-

tion files, 250
enhancing

Date class, 161
keeping a to-do list for

classes, 290
manager class, 167
MultiPathFile class, 371
virtual file class, 290

enumerations
basic form, 70
defined, 70
implementing a class for, 71–72
for readability, 70, 71
as syntactical sugar, 70
testing the class, 72

error handling. See also error
messages; exception handling

for assert statements, 44
in C++ versus C, 319
chaining errors, 319–322
for construction, 27–28
enforcing return codes, 323–329
importance of, 323
inheritance from base class, 15
reusability and, 31
virtual methods for, 19

error messages. See also compiler
errors and warnings; error
handling; exception handling;
return codes or status codes

assert macro for, 42, 43
descriptive and informative,

265, 329
for ErrorBox function, 102
exceptions or logging errors

versus, 31

internationalization and,
265, 266

security issues, 273
ErrorBox function, 102
errors.log file, 317
examples in this book. See also

class examples; function
examples; method examples

compilers and, 1, 3
entering code by hand, 3
operating systems and, 1
typeface conventions, 2–3
using code from, 1

exception handling. See also error
handling; error messages;
exceptions

aborting the application
versus, 43

application development
and, 319

BufferException class for,
362, 364

caveats for, 322
chaining errors, 319–322
clearing all pointers in the

destructor, 322
dealing with un-handled

exceptions, 317–319
defined, 312
memory leaks from, 322
performance and, 322
restructuring, 452
re-throwing exceptions, 319–322
in Row class for spreadsheet,

218, 219
throwing and logging

exceptions, 312–317
ExceptionCatcher class

output from, 317
passing exceptions to a higher

level, 320–322
purpose of, 317
source-code listing,

314–315, 316
ExceptionClass class

dealing with un-handled
exceptions, 318–319

output from, 317

passing exceptions to a higher
level, 320–322

purpose of, 317
source-code listing, 313–314,

315–316
exceptions. See also exception

handling
custom forms versus basic

types, 364
defined, 312
error messages versus, 31
passing to a higher level,

319–322
re-throwing, 319–322
throwing and logging, 312–317
unhandled, dealing with,

317–319
exiting programs abnormally,

avoiding, 43
expertise, challenges of seek-

ing, 432
eXtended Markup Language.

See XML
extending

assignment operators and
extensibility, 61

basic types, 59–62
classes, pure virtual methods

and, 12
functionality using abstraction,

12–18
int type by Range class, 60–62
IntProperty class, 139–140
suitability of extension for tem-

plate classes, 183
template class, 179–185

external operators for classes, 61

F
factory class

creating, 163–166
defined, 162
derived classes, 162
enhancing the manager

class, 167
memory dumps and, 166

85_57986X bindex.qxd 1/26/05 3:57 PM Page 464

Index 465

methods reporting object state
for, 166

Report method, 165–166, 167
testing, 166–167

factory pattern, 162
fclose function, problems from,

426, 431
file processing. See processing

files
FileChunk class

data management by, 288
source-code listing, 284–286
testing, 289–290

FileChunkManager class
array management by, 288
source-code listing, 286–288
testing, 289–290

file-guardian class. See
FileWrapper guardian class

FileHandler class
creating, 103–105
fixing, 106
open methods, 104–105, 106
testing, 105
writing files, 105

FileMailingListEntry class, 14–15
files. See also processing files;

reading files
delimited, reading, 234–239
handling input from, 12–13
opening using multiple paths,

366–371
virtual files, 283–290

files, source-code. See companion
Web site for this book

FileWrapper guardian class
creating, 426–430
open function, 428–429, 430
puts function, 429, 430
testing, 430–431

First method, 13–14, 15
fixed-length input, checking,

452–453
fixed-size records, 234. See also

delimited files
floating-point values. See complex

numbers; numbers

flow
classes for tracing system flow,

376–380
documenting data flow, 416–419

fopen function, 425–426, 430
fprintf function

problems from, 426
stream components versus, 225

free function, 132
friend class, 167
Fruit class, 20–22
Full class, 52, 53
function examples

complex variable utility func-
tions, 435–436

ErrorBox, 102
fopen, 425–426, 430
Load, 270, 271
Matrix class manipulation

functions, 67–68
open, 428–429, 430
ProcessEntries, 17, 18
puts, 429, 430
read, 256, 259
set_terminate, 318–319
storage functions for

ConfigurationFile class, 259
strip_leading, 247, 248–249
strip_trailing, 247, 248–249
strup function (C language),

349
term_func, 318–319
transform, for converting

strings, 349–353
function pointers (C language),

96–97
function templates

automatic generation of, 189
defined, 186
implementing, 186–189
types and, 189

functionality
exercising all when testing

classes, 161
extending using abstraction,

12–18
inheriting data and, 23–29

mix-in classes for limiting, 168
saving in base classes, 24

functions. See also function
examples; member functions;
methods; specific kinds

auto_ptr class with, 303–306
chaining errors from, 319–322
complex variable utility

functions, 435–436
const keyword for, 77
for copying strings, memory

overwrites from, 307–308
customizing built-in

functions, 102
customizing user-defined

functions, 103–106
defining default arguments for,

101–106
enforcing return codes,

323–329
enumerations for integer value

input to, 72
free, 132
with immutable argument,

78–79
inline, 407–408
instantiation of variables and,

412–413
macro side effects and calls to,

49, 50
macros versus, 49–51
malloc, 132
memory safe buffer class for,

307–311
MessageBox, 101–102
passing objects by reference,

411–412
pure virtual functions,

12–15, 19
sizeof function, 52–55
STL algorithm functions, 200
templates, 186–189
values passed to, types and,

90–91, 93–94
virtual functions, 19–22, 23
for white space removal, 247,

248–249

85_57986X bindex.qxd 1/26/05 3:57 PM Page 465

C++ Timesaving Techniques For Dummies466

G
generalization of code, debugging

and, 452
generic method for reading

delimited files, 234–238
generic pointers, 175–176
get methods

for Complete class, 109, 112–113
for IntProperty class, 138,

139–140
for properties, 136

getClassName virtual method, 357
getElements virtual method, 357
global scope, 83
GNU C++ compiler, 2. See also

compilers
GNU organization Web site, 2
greater-than sign (>), encoding

required for Web use, 337
guardian classes

creating the file-guardian class,
426–430

defined, 425
testing the file-guardian class,

430–431
uses for, 425, 426
wrapping potentially unsafe

code in, 426

H
hackers, strings and, 273
hash tables

defined, 279
in the STL, 279, 281
Translator class using, 279–282
uses for, 279

header files
for Complex class definition,

433, 435
complex number template in

the STL, 433
for configuration-file class, 251
for MyAlloc class, 298–300
osdefines.h header file, 39–40

standard C++ files, problems
with, 39

template class implementation
and, 178, 179

test program, 40–41
verifying that OS must be

defined for, 41
heap, creating arrays using,

209–212
hiding. See also encapsulation

algorithms from developers,
7–8

implementation from users, 11
HundredsRangeEntry class, 443–444

I
icons in margins of this book, 4
identifying program-specific

input, 452
imaginary numbers, 432. See also

complex numbers
improving. See enhancing
#include statements for header

files, 39, 40
inheritance

compiler implementation of,
23–24

of data and functionality, 23–29
defined, 23
of error handling from base

class, 15
inherited classes defined, 12
interfaces and, 354
levels of, 23–24
mix-in classes and, 168
multiple inheritance, 23,

116–117, 176
of storage allocation from base

class, 15
virtual, 117–119

inherited classes, 12
initialization

assignment versus, 413–415
Date class code for, 152, 159
discrete pieces in classes

for, 159

of values for classes or
structures, 76

inline functions
defined, 407
for optimizing code, 407–408
overhead from, 407
rules for, 408
speed and, 407

input and output
creating a configuration file,

250–261
of data formats, extracting into

separate classes, 234
fixed-length, checking, 452–453
function input enumerations

for integer values, 72
identifying program-specific

input, 452
input text file for international-

ization, 272
reading delimited files, 234–239
reading in and processing files,

228–233
reading internationalization

files, 272–277
removing white space from

input, 246–249
using stream components to

format data, 225–227
writing objects as XML, 240–245

input.cfg file, 260
inserting tracing into an existing

file
caveats for insertion

programs, 380
debugFlowTracer objects,

385, 386
functionality, 385
need for, 380
source-code listing, 381–384
temp.cpp.tmp file as output,

385–386
temporary program to

illustrate, 385–386
testing the program, 385–386

Instance method, 379

85_57986X bindex.qxd 1/26/05 3:57 PM Page 466

Index 467

instantiation
of templates, header files

and, 178
templates versus macros

and, 178
testing for templated classes,

182–183
of variables, optimizing,

412–413
int type, Range class extending,

60–62
Integer class, 411–412
interfaces

base classes for, 354
defined, 354
serialization interface,

355–359
steps for implementing,

354–355
uses for, 354

internationalization
application development and,

265–266
building language files for,

266–272
creating input text file for, 272
defined, 265
need for, 265, 266
reading the international file,

272–277
StringEntry class for,

266–268, 271
StringReader class for, 273–277
StringWriter class for, 268–272
testing the string reader,

277–278
threefold process of, 265–266

Internet, the. See also companion
Web site for this book;
URLCodec class

encoding and decoding for the
Web, 337–342

GNU C++ compiler Web site, 2
planning for Web-enabled

code, 337
rules for URLs, 337

IntProperty class
extending, 139–140
get methods, 138, 139–140
implementing, 137–139
set methods, 138, 139–140
source-code listings, 137–139
testing, 140–141
using in another class, 139–140

IsLeapYear method, 35
IsValidDate method, 35
iterators

for arrays, 291, 292–293
caveats for, 296
const versus non-const, 296
defined, 291
generic STL iterator, 291
iterating over STL collection

classes, 292–296
for linked lists, 292, 293
for maps, 292, 293, 295
need for, 291
output from test, 295–296
power of, 296
removing items using, 294, 296
reverse iteration, 294, 295
for streams, 294, 296
swapping elements using, 294

J
jump tables, 23

K
KISS (Keep It Simple, Stupid)

principle, 31, 447

L
language files for

internationalization, 266–272
leading spaces. See white space
leap year computations, 30–31, 35
less-than sign (<), encoding

required for Web use, 337

libraries. See also STL (Standard
Template Library)

avoiding cumbersomeness, 438
encoding and decoding meth-

ods lacking in, 337
memory leaks in low-level

libraries, 131
name resolution problems in C,

85–86
name resolution problems with

classes, 86
of utility classes, 353

lifetime. See scope
linked lists, 292, 293
linking

method functions and, 189
to STL, vector class and, 192

Load function, 270, 271
loading

inline functions and, 407
pre-loading virtual file

chunks, 290
virtual files and speed for, 283

local scope, 83
localtime function, 149
Lock class

creating, 421–422
setLock and unLock

methods, 422
testing, 422–424

LockException class
creating, 421–422
testing, 422–424

locking a program
creating the locking mecha-

nism, 421–422
custom versus operating sys-

tem implementation, 420
defined, 420
need for, 420
portability and, 420
testing the locking mechanism,

422–424
ways of implementing, 420

Log method, 170

85_57986X bindex.qxd 1/26/05 3:57 PM Page 467

C++ Timesaving Techniques For Dummies468

Logger class
implementing, 389–390
output from, 390, 392
testing, 389–390
turning logging on and off, 390
uses for, 390

logging
actions, by mix-in classes,

170, 171
data, for debugging, 389–392
defined, 389
error messages versus logging

errors, 31
errors, debugging and, 312
exceptions, 312–317
implementing a logging class,

389–390
for overloaded methods,

401–403
testing the logging class,

390–392
turning on and off, 389, 390

logical errors, 31
log.txt and log2.txt files, 105
loop scope, 83
lowercase. See case

M
macros

assert macro, 42–44, 387–389
avoiding, reasons for, 48–49
code size increased by, 48
debugging functionality lack-

ing for side effects, 48, 49
determining errors when

using, 50–51
function calls and side effects

of, 49, 50
functions versus, 49–51
string macros, avoiding prob-

lems with, 49–51
as syntactical sugar, 51
templates as giant macros, 178
templates versus, 178
using appropriately, 51

mailing-list application
base class, 13–14
BaseMailingListEntry class,

13–14
CommandLineMailingListEntry

class, 16–17
FileMailingListEntry class,

14–15
handling input from a file, 12–13
handling input from the

command line, 12, 13
mailing-list entries, 12
in operation, 18
overview, 12–13
ProcessEntries function, 17, 18
steps for creating, 13–15
testing, 17–18

maintaining code
documenting data flow and, 419
failing to handle errors and, 323
hiding algorithms and, 8
separating rules and data from

code and, 30
malloc function, 132
Manager class, 176–178
managers. See also factory class

enhancing the manager
class, 167

friend class for, 167
for virtual files, 283–290

map class (STL), 281
maps, iterating over, 292, 293, 295
Match class

creating, 331–333
matches method, 334
purpose of, 333
testing, 333–334
wildcards, 333

matches method, 334
Matrix class

creating, 64–65
manipulation functions, 67–68
multidimensional array classes

modeled on, 65
operators, 65–66, 67–68
output from, 69
overriding operators and, 63

scalar multiplication, 66–68
source-code listing, 64–65
testing, 68–69

member functions
pointers to, 96–100
scoping versus casting, 93–95

member variables
checked, 328
using templates as, 179

member-function pointers
defined, 96–97
function pointers (C language)

versus, 96–97
implementing, 97–98
power of, 96
testing member pointer code,

99–100
updating code with, 99

memcpy function, memory over-
writes from, 307–308

memory
STL use and, 192, 195, 196, 199
virtual files for conserving, 283

memory allocation. See also
memory leaks; memory
tracking program

for arrays of object
pointers, 214

arrays of objects and, 209
for arrays, with and without

pointers, 204–208
avoiding assuming contiguous

order for strings, 349
avoiding overwrites, 307–311
customizing, 297–302
delete operator problems for,

128–129
deleting array elements

and, 204
embedded processors and, 135
free function for de-allocation,

132
guardian classes and, 425
malloc function for, 132
new operator problems for,

128–129

85_57986X bindex.qxd 1/26/05 3:57 PM Page 468

Index 469

overloading new and delete
operators to track, 129–135

set_terminate function
and, 318

testing production code with
memory-leak tool, 133

two pointers for same block, 28
using auto_ptr class, 303–306

memory allocators
creating a custom allocator,

298–300
methods overridden by,

299–300
for new and delete operators,

129–135
output from test driver, 302
overriding for STL collections,

297–302
purpose of, 297
STL complications for, 297
test driver for custom

allocator, 301–302
memory leaks. See also memory

allocation
auto_ptr class for avoiding,

303–306
avoiding versus fixing

problems, 303
deleting all manager class

objects at shutdown
and, 167

duration of, 82
exception handling and, 322
from failure to delete arrays

properly, 204, 208, 209, 212
in low-level libraries, 131
from macro side effects, 51
memory allocation by func-

tions and, 129
from not matching deletion

method with invocation
method, 84, 204, 212

object allocation by manager
class and, 167

from pointers, 212, 303
set methods for NULL pointers

and, 109

STL container class implemen-
tation and, 210

storing derived objects in an
array and, 213

storing pointers to objects in
arrays and, 212

testing production code with
memory-leak tool, 133

tracking memory allocation to
avoid, 128, 131, 134

memory overwrites
Buffer class for avoiding

(example 1), 308–311
Buffer class for avoiding

(example 2), 361–365
buffer overflows, 360
from copying strings, 307–308
defined, 307
difficulties tracking, 307
memory safe buffer class,

307–311
problems from, 307

memory safe buffer class, 307–311
memory tracking program

allocation report, 131
new and delete handlers,

129–131
output from, 133–134
overloaded new and delete

handlers, 131–132
rules for new and delete

handlers, 129
testing, 133–135

MessageBox function, 101–102
method examples. See also

examples in this book
accessor methods for MyString

class, 123
allocate, overriding, 299, 300
complex variable utility

methods, 435–436
construct, overriding, 299, 300
c_str, for converting

strings, 349
deallocate, overriding, 300
decode, 339–340, 341
destroy, overriding, 299, 300

do_xor, 346, 347
Encode (StringCoding class),

9, 10–11
encode (URLCodec class), 339,

340, 341
First, 13–14, 15
getClassName, 357
getElements, 357
Instance, 379
IsLeapYear, 35
IsValidDate, 35
Log, 170
matches, 334
Multiply method template,

189–191
myVector, 301, 302
Next, 13–14, 15
non-inline methods for cDate

class, 34–35
open (FileHandler class),

104–105, 106
OpenFile, 28
operator, 351
operator=, 402, 403
ProcessEntries, 17, 18
puts, 429, 430
Report, 165–166, 167
Save, 270, 272
setLock, 422
setX, 402, 403
undo, 418, 419
unLock, 422
write member method,

356–357
writing files, 105

method templates
creating, 189–190
defined, 186
testing, 190–191
uses for, 189

methods. See also functions;
member functions; method
examples; specific kinds

allocate, overriding, 299, 300
class with methods containing

default values, 103–106
complex variable utility

methods, 435–436

85_57986X bindex.qxd 1/26/05 3:57 PM Page 469

C++ Timesaving Techniques For Dummies470

methods (continued)
const keyword for, 77
construct, overriding, 299, 300
deallocate, overriding, 300
debugging overloaded meth-

ods, 399–403
defining default arguments for,

101–106
destroy, overriding, 299, 300
differentiating with const key-

word, 81
encapsulating, for encrypting

strings, 7–11
enforcing return codes, 323–329
inline, 407–408
minimizing in classes, 31
in mix-in classes, controlling

availability, 168–169
MyString class accessor meth-

ods, 123
non-static, working with, 104
for opening a file using multi-

ple paths, 366–371
overloaded, defined, 399
overridden by memory alloca-

tor, 299–300
pure virtual methods, 12–15,

19
for reading delimited files,

generic, 234–238
reporting object state for fac-

tory class, 166
required for Complete class,

109
scoping member functions ver-

sus casting, 93–95
self-cloning, 167
signatures for, 399
static, jump tables for, 23
templates, 186, 189–191
virtual methods, 19–22, 23
for writing files, 105

min macro side effects, 48–49
mix-in classes

compiling, 170
controlling available methods,

168–169

creating a single functional
class from, 24–26

implementing, 169–170
inheritance and, 168
logging by, 170, 171
overview, 168–169
testing, 170–171
using, 168–171

monospaced font in this book, 2–3
MultiPathFile class

creating, 367–369
described, 369
improving, 371
path delimiter for, 369
responsibilities of, 366
saving and reading paths, 371
testing, 369–371

multiple inheritance. See also
virtual inheritance

compiler errors for, 117
defined, 23
deriving all objects from com-

mon base class and, 176
example, 116–117

multiple operating systems,
handling, 39–41

multiple paths, opening a file
using, 366–371

Multiply method template
creating, 189–190
testing, 190–191

MyAlloc class
creating, 298–300
methods overridden by,

299–300
test driver, 301–302

MyBuffer class, 301–302
MyClass for overloaded methods

adding logging, 401–402
initial implementation, 399–401
operator= method, 402, 403
output from, 401, 402–403
setX method, 402, 403

MyClass test class for
serialization interface,
358–359

MyClass.xml file, 359

my.eng file, 272
my.eng.idx file, 272
my_min template function, 186–189
MyReturnValue class

output from, 328
source-code listing, 326–327

MyString class
accessor methods, 123
as complete class, 123
constructors, 123
implementing, 122–123
operators, 124–125
testing, 125–127

MyStringArray class
creating, 196–198
memory and speed and, 199
output from, 198

myVector method, 301, 302

N
name resolution. See also

namespaces
C++ versus C and, 85–86
namespaces and, 86
problems for classes in

libraries, 86
namespaces

basic format for defining, 86
class name collision avoided

by, 86
creating a namespace

application, 86–88
document class, 87–88
placing reusable classes in, 89
testing the application, 88–89
using in an application, 88
using namespace statement

for, 87
new in place operator, 135
new operator

for array allocation, 211
array operator, 134–135
calling correct delete operator

for, 135
character pointers and,

134–135

85_57986X bindex.qxd 1/26/05 3:57 PM Page 470

Index 471

handler for, 129–131
memory allocation problems

and, 128–129
new in place operator

versus, 135
output from memory tracking

program, 133–134
overloaded handler for,

131–132
overloading to track memory

allocation, 129–132
rules for handler

implementation, 129
uses for, 128

Next method, 13–14, 15
non-class template arguments,

184–185
non-const iterators, 296
non-static methods, 104
NoPointer class

creating, 204–206
output from, 207–208

nulls
memory leaks and set meth-

ods for NULL pointers, 109
string classes and, 348

numbers
complex, working with,

432–438
converting to words, 438–446
encrypting credit card

numbers, 343
enumerations, 70–72
Social Security Number

validation, 142–148
NumberToWords class

base classes for, 440–444
implementing, 445–446
testing, 446

O
Object base class

for factory class, 163–166
Report method, 165–166, 167
testing the factory, 166–167

object pools
for common base class, 162
new in place operator and, 135

object-array allocation
creating an array of objects,

210–211
output from the array alloca-

tion program, 211–212
ways of creating arrays of

objects, 209–210
objects

arrays of object pointers,
213–215

arrays of objects, 209–212
deriving all from common base

class, 176
methods reporting state of, 166
passing by reference, 410–412
passing by value, 408
scope handled automatically

for, 82–83
temporary, avoiding, 408–410
XMLElement objects, 243

OnesRangeEntry class, 441–442
open function, 428–429, 430
open methods (FileHandler

class), 104–105, 106
OpenAndReadFileNew method,

231, 232
OpenAndReadFileOld method,

230, 232
OpenFile method, 28
opening a file using multiple paths

configuration files and, 367
DirectoryList class for,

367–368, 369
improving the class for, 371
MultiPathFile class for,

367–371
operating systems and, 366
path delimiter for, 369
responsibilities of utility class

for, 366
operating systems

critical-section handlers, 420
examples in this book and, 1
locking by, 420
multiple, handling, 39–41

opening files and, 366
32-bit, 54

operator keyword, 122
operator method, 351
operator= method, 402, 403
operators

assignment operators and
extensibility, 61

complex variable utility
methods, 435–436

conversion operators, 122
enumerations and, 70
external operators for

classes, 61
Matrix class, 65–66, 67–68
overloaded, 120–127
overriding, arrays and, 63
polymorphism, 19
Range class, 61
for retrieving line of file into

string object, 231, 232
strings and xor operation, 348

optimization. See also overhead;
speed

in application development
process, 407

asserts not defined in opti-
mized mode, 387, 389

avoiding temporary objects,
408–410

initialization versus assign-
ment and, 413–415

inline functions for, 407–408
passing objects by reference,

410–412
post-development, 407
postponing variable

declarations, 412–413
testing asserts in optimized

environment, 44
of variable instantiation,

412–413
osdefines.h header file

creating, 39–40
source-code listing, 40
test program, 40–41
verifying that OS must be

defined for, 41

85_57986X bindex.qxd 1/26/05 3:57 PM Page 471

C++ Timesaving Techniques For Dummies472

output. See input and output
overhead. See also optimization;

speed
exception handling and, 322
from inline functions, 407
from STL use, 192, 195, 196,

199, 209
structures for minimizing, 74
for templates, 179
from temporary objects,

408–410
usefulness of classes and, 438
from vector class, 192, 195
for virtual versus non-virtual

methods, 21
overloaded methods

class with, 400–401
debugging, 399–403
defined, 399
logging, 401–403
signatures for, 399

overloaded operators
associated operators and,

121–122
benefits of, 120–121, 127
conversion operators, 122
creating only when

necessary, 121
debugging complicated by, 121
for memory allocation track-

ing, 129–135
MyString class for, 122–127
new and delete operators,

129–135
power of, 127
rules for creating, 121–122
side effects, avoiding, 121
standard usage and, 121
using, 122–125
for vector objects, 227

overriding classes
allocator for collections,

297–302
pure virtual methods and, 14
virtual methods and, 19, 21,

162–167
overriding methods for memory

allocator, 299–300

overriding operators
arrays and, 63
comparison operators, 328

overwriting memory. See memory
overwrites

P
Parser class, 450–451
ParserFile class, 450, 451,

452–453
passing

exceptions to a higher level,
320–322

objects by reference, 410–412
objects by value, 408
values to functions, types and,

90–91, 93–94
passwords

encryption for, 343
white space and, 246

path delimiter, 369
paths, opening a file using multi-

ple, 366–371
percent sign (%) as wildcard, 331
performance. See optimization;

overhead; speed
physical errors, 31
plus operator (+), overloading,

120–122
plus-equal operator (+=), plus

operator implementation
and, 121

Point class
constructors, 414, 415
implementing, 413–414
output from, 415

PointerClass class
creating, 204–206
output from, 207–208

pointers
allocating arrays with and

without, 204–208
allocation not verified by C++

before freeing, 132
arrays of object pointers,

213–215

auto_ptr class for avoiding
memory leaks, 303–306

in C++ versus C, 175
character, new operator and,

134–135
clearing in destructor for

exception object, 322
generic, 175–176
member-function pointers,

96–100
memory leaks from, 212, 303
for same memory block, 28
size of, 54
sizeof function with, 55
structures and, 76
void pointers, 175, 176

polymorphism
customizing a class with, 20
defined, 19

portability. See also reusability
custom locking mechanism

and, 420
opening files and, 366
separating rules and data from

code for, 31
post-conditions for code in

DBC, 393
postponing variable declarations,

412–413
precision method for

streams, 227
preconditions for code in DBC,

392, 397
pre-loading virtual file chunks, 290
pre-processor

assert statements and, 42–44
#define versus const state-

ment and, 45, 47
handling multiple operating

systems, 39–41
header files and, 39–41
macro code and, 48
macros and, 48–51
sizeof function and, 52–55
using const instead of #define,

45–47

85_57986X bindex.qxd 1/26/05 3:57 PM Page 472

Index 473

print statements for
debugging, 208

printf function, stream compo-
nents versus, 225

printing
arrays using streams, 226–227
virtual methods for, 19

ProcessEntries function, 17, 18
processing files

C++ versus C and, 425–426
creating the test file, 233
C-style file-handling function

problems, 425–426
data processing with same

code, 228
file-reading class, 228–230
opening using multiple paths,

366–371
reading delimited files, 234–239
reading internationalization

files, 272–277
testing file-reading code, 232
using streams for file reading,

230–233
virtual files and speed for, 283
word-parser program, 448–451,

452–453
Processor class, 98–99
Processor2 class, 99
Processor2 class test driver, 99
processors, new in place opera-

tor and embedded, 135
program-specific input,

identifying, 452
properties

in C# and Java, 136, 141
class for implementing,

137–139, 417–418
defined, 136
extending the implementation

class, 139–140
invalid assignments and,

136–137
read-only, 137
set and get methods for, 136
testing the implementation

class, 140–141, 418–419

Properties class (example 1)
for ConfigurationFile class,

24–25
virtual destructors in, 24, 25

Properties class (example 2)
for documenting data flow,

417–419
implementing, 417–418
testing, 418–419
undo method, 418, 419

protecting data
with encapsulation, 7–11
from memory overwrites,

307–311
pure virtual base classes for

interfaces, 354
pure virtual methods. See also

virtual methods
abstraction and, 12
code reuse through, 12
defined, 12
derived classes and, 354
First method, 13–14, 15
Next method, 13–14, 15
virtual methods versus, 19, 354

puts function, 429, 430

Q
question mark (?)

with Match class, 333
as wildcard, 330–331, 333

R
Range class

assignment operators in, 61
enumerations compared to, 71
implementing, 60–62
need for, 59–60
operators, 61
source-code listing, 60–61
testing, 62

RangeEntry class, 440–441
read function, 256, 259

readability
enumerations for, 70, 71
overloaded operators and, 121

read_file function, chaining
errors from, 321

reading files
creating the test file, 233
data processing with same

code, 228
delimited files, 234–239
file-reading class, 228–230
internationalization file,

272–277
opening a file using multiple

paths, 366–371
testing file-reading code, 232
using streams, 230–233
virtual files and speed for, 283
word-parser program, 448–451,

452–453
read-only properties, 137
read_record function, chaining

errors from, 321
reducing the complexity of code

basic principles, 447
by componentizing, 449–451
KISS principle for, 31, 447
by restructuring, 451–452
sample program, 447–449
by specialization, 452–453

redundant code, restructuring,
451–452

refactoring, 451–452
regression tests, 436
“release mode” for assert

macro, 388
removing

items using iterators, 294, 296
white space from input,

246–249
Report method, 165–166, 167
restructuring, 451–452
re-throwing exceptions

code example, 320–321
output using, 321–322
uses for, 319

85_57986X bindex.qxd 1/26/05 3:57 PM Page 473

C++ Timesaving Techniques For Dummies474

retrieving line of file into string
object, 232

return codes or status codes
chaining, 328–329
forcing checking of, 324–329
return code class, 324–329
in signatures for methods, 399
status codes defined, 323
typical example, 323

RetValue class
copy constructor, 329
output from, 328
overview, 328
source-code listing, 324–327

reusability. See also portability;
templates

for business rule code, 30, 31
C++ versus C and, 85
collections and, 291
for date code, 30, 31
encapsulation and, 30, 31
encoding and decoding class

for, 337
error handling and, 31
generic method for reading

delimited files and, 234
placing classes in namespaces

for, 89
pure virtual methods and, 12

reverse iteration, 294, 295
Rot13 encryption algorithm, 343,

344–346
ROT13Encryption class

algorithm described, 344
EBCDIC systems and, 345
implementing, 344–345
testing, 345–346

Row class for spreadsheet
creating, 218–219
exception handling in, 218, 219
functionality needed for, 216

RSS encryption algorithm, 343
rules

for auto_ptr class, 306
business rules, 30–36
for Complete class, 109
for delete handler

implementation, 129
for inline functions, 408

for new handler
implementation, 129

for overloaded operator cre-
ation, 121–122

of specialization, 452–453
for types, encapsulating within

a class, 142
for URLs, 337

run-time
assert macro and, 42, 389
turning logging on and off,

389, 390

S
Save method, 270, 272
Save mix-in class, 169–171
SavePairs class, 25–26, 28–29
scope

arrays of objects on the stack
and, 209

defined, 82
global, local, and loop, 83
handled automatically for

classes and objects, 82–83
scoping member functions ver-

sus casting, 93–95
scoping variables, 82–84
viewing visually, 83–84

searching
for files across multiple paths,

366–371
hash table for search and

replace, 279
wildcards for, 330–334

security
buffer overflows and, 360, 361
hiding algorithms and, 8
strings and, 273

separating rules and data from
code, 30–36

Serialization class
getClassName virtual

method, 357
getElements virtual

method, 357
source-code listing, 356–357
write member method, 356–357

serialization interface
implementing the serializa-

tion interface, 355–358
interface defined, 354
serialization defined, 354
steps for implementing an

interface, 354–355
testing the serialization

interface, 358–359
SerializeEntry class

source-code listing, 355–356
testing, 358–359

set methods
for Complete class, 109, 112
for IntProperty class, 138,

139–140
for properties, 136

setLock method, 422
set_terminate function

described, 318
divide-by-zero error and,

317–319
output from application, 319
using in applications, 318–319

setX method, 402, 403
SGML, XML as variant of, 240
side effects

of macros, 48–49, 50
of min macro, 48–49
of overloaded operators, 121

signatures for methods, 399
simplicity. See also reducing the

complexity of code
KISS principle for, 31, 447
usefulness of classes and, 438

sizeof function
arrays and, 55
evaluating results of, 54–55
with pointers, 55
pre-processor and, 52
uses for, 52
using, 52–54

Social Security Number validation
constants for SSN length and

delimiter, 143, 146
defining the Validator object

for, 142–143
testing, 146–148
validation module for, 143–146

85_57986X bindex.qxd 1/26/05 3:57 PM Page 474

Index 475

source-code files. See companion
Web site for this book

source-code listings
AgeProperty class, 139
allocating arrays with and

without pointers, 205–206
array of object pointers, 214
auto_ptr test program, 305
base class for casting, 91–92, 94
Base template class, 180–182
Base template class test

driver, 183
base-class inheritance, 118
BaseMailingListEntry class,

13–14
Buffer class (example 1),

308–310
Buffer class (example 2),

361–363
Buffer class test driver, 364
BufferException class, 362
cDate class implementation,

32–34
cDate class non-inline

methods, 35
cDate class test program, 36
ChangeManagement class, 115
Column class, 217
command processor class, 99
command processor class test

driver, 99
CommandLineMailingListEntry

class, 16–17
Complete class implementa-

tion, 110–113
Complete class test driver, 114
Complex class definition, 433
Complex class implementation,

434–435
Complex class test program, 437
Complex class variable

methods, 436
ConfigurationFile

class (example 1)
implementation, 26

ConfigurationFile
class (example 1) test
program, 27

ConfigurationFile class
(example 2) definition, 251

ConfigurationFile
class (example 2)
implementation, 256

ConfigurationFile
class (example 2) test
program, 260

ConfigurationFile.cpp file,
251–259

ConfigurationFile.h header
file, 251

const keyword to differentiate
methods, 81

constants and their
definitions, 78

constants in classes, 79–80
conventions in this book, 2–3
conversion base classes,

440–444
conversion code for STL string

class, 350–351
Date class definition, 150–151
Date class functionality,

152–158
Date class source file, 151–152
Date class test driver, 159–160
DBCObject class implementa-

tion, 393–397
DBCObject class test program,

397–398
debugFlowTracer class imple-

mentation, 376–377
debugFlowTracer class test pro-

gram, 379
debugFlowTracerManager class,

378–379
decode method, 339–340
DelimitedFileParser class,

237–238
DelimitedRow class, 236–237
Delimiters class, 235–236
derived class test drivers,

93, 95
derived classes for casting,

92, 94
Design by Contract example,

393–397

Design by Contract test pro-
gram, 397–398

DirectoryList class, 367–368
document class, 87–88
Encode method, 9, 10–11
ExceptionCatcher class,

314–315, 316
ExceptionClass class, 313–314,

315–316
factory class, 163–166
factory object test driver,

166–167
file read test driver, 232
FileHandler class

implementation, 103–104
FileHandler class test

driver, 105
FileMailingListEntry class,

14–15
file-reading class, 228–230
FileWrapper guardian class

implementation, 427–429
FileWrapper guardian class

test program, 430–431
First method, 13–14, 15
Fruit class, 20
function with immutable argu-

ment, 78
header file test program, 40–41
HundredsRangeEntry class,

443–444
inserting tracing into an

existing file, 381–384
IntProperty class

extension, 139
IntProperty class

implementation, 137–139
Lock class implementation, 421
Lock class test driver, 422–423
LockException class

implementation, 421
LockException class test

driver, 422–423
Logger class implementation,

389–390
Logger class test driver, 391
macro file, 49–51

85_57986X bindex.qxd 1/26/05 3:57 PM Page 475

C++ Timesaving Techniques For Dummies476

source-code listings (continued)
mailing-list application test

program, 17–18
Match class, 331–333
Match class test driver, 334
Matrix class implementation,

64–65
Matrix class manipulation

functions, 67–68
Matrix class operators, 66, 67
Matrix class test driver, 68
memory allocator test

driver, 133
mix-in class, 169–170
MultiPathFile class

implementation, 367–369
MultiPathFile class test

program, 370
multiple inheritance, 116
Multiply method template,

189–190
Multiply method template test

driver, 190
MyAlloc class definition,

298–300
MyAlloc class test driver, 301
MyBuffer class, 301
MyClass test class for seriali-

zation interface, 358–359
my_min template function,

187–188
MyReturnValue class, 326–327
MyString class accessor

methods, 123
MyString class

implementation, 123
MyString class operators,

124–125
MyString class test driver, 126
MyStringArray class, 197–198
new and delete handlers, 130
Next method, 13–14, 15
NumberToWords class

implementation, 445
NumberToWords class test

program, 446
Object base class, 163–166

object-array allocation
program, 210

OnesRangeEntry class, 441–442
OpenFile method, 28
osdefines.h header file, 40
overloaded methods, initial

implementation, 400–401
overloaded methods, logging

added, 401–402
overloaded new and delete

handlers, 132
Parser class, 450–451
ParserFile class, 450
passing objects by

reference, 411
Point class, 413–414
pointers to member functions,

97–98
printing arrays using streams,

226–227
ProcessEntries function, 17
Properties class for

ConfigurationFile class,
24–25

Properties class for docu-
menting data flow, 417–418

Properties class test program,
418–419

Range class implementation,
60–61

Range class test driver, 62
RangeEntry class, 440–441
reading delimited files,

235–238
RetValue class, 324–327
ROT13Encryption class

implementation, 344–345
ROT13Encryption class test

driver, 345
Row class, 218
Save mix-in class, 169–170
SavePairs class, 25, 29
for scope illustration, 83
Serialization class, 356–357
serialization interface test

driver, 358–359
SerializeEntry class, 355–356

set_terminate function, 318
simple template, 176–177
sizeof program, 53
Spreadsheet class

implementation, 219–220
Spreadsheet class test

driver, 221
SSNValidator class

implementation, 143,
144–145

SSNValidator class test driver,
146–147

StringCoding class
implementation, 8–9

StringCoding class update,
10–11

StringConvertToLowerCase
class implementation, 351

StringConvertToLowerCase
class test driver, 352

StringEntry class, 266–268
StringReader class, 273–277
StringUtil utility class,

252–255
StringWriter class, 268–271
structure implementation,

74–75
structure test harness, 75
temp.cpp file, 385
template class with non-class

argument, 184
templated class test driver, 183
templated classes in code,

180–182
temporary objects, 408–409
TensRangeEntry class, 443
test driver for constant

application, 80–81
test drivers for casting, 93, 95
TestIntValue class

implementation, 140
TestIntValue class test

driver, 149
ThousandsRangeEntry

class, 444
Tracker class, 304–305

85_57986X bindex.qxd 1/26/05 3:57 PM Page 476

Index 477

Translator class
implementation, 280

Translator class test driver,
281–282

URLCodec class implementation,
338–340

URLCodec class test driver,
340–341

using casts, 91–92
using code in your own

programs, 1
using constants, 46
using namespace statement, 87
using namespaces in an

application, 88
using streams for file reading,

230–231
using vector class, 193–194
using wrong namespace

class, 89
vector algorithm program,

201–202
white space removal code,

246–248
word-parser program

componentized, 450–451
word-parser program original,

448–449
XMLElement class, 241–242
XMLSuperClass class, 244
XMLWriter class, 241–243
XMLWriter class test driver,

243–244
XOREncryption class

implementation, 346–347
XOREncryption class test

driver, 348
specialization, 452–453
speed. See also optimization;

overhead
exception handling and, 322
inline functions and, 407
STL use and, 199
virtual files for conserving, 283

spelling out numbers.
See converting numbers
to words

splitting into components. See
componentizing

Spreadsheet class
Column class for, 216,

217–218, 221
creating, 219–221
data encapsulation in, 216
Row class for, 216, 218–219
testing, 221–222

spreadsheets
basic elements, 216
creating the column class,

217–218
creating the row class, 218–219
creating the spreadsheet class,

219–221
mimicking a two-dimensional

array, 222
overview, 216
shell from STL, 216
simple arrays versus, 216
testing, 221–222

sprintf function versus stream
components, 225

SSNValidator class
constants for SSN length and

delimiter, 143, 146
defining the Validator object,

142–143
Social Security Number

validation module, 143–146
testing, 146–148

stack, declaring arrays on,
209–212

Standard Template Library.
See STL

static arrays
buffer overflow and, 361
declaring on the stack, 209, 211

static data members, 424
static methods

calling as a default value, 104
jump tables for, 23

status codes. See return codes or
status codes

stdio.h header file (Windows),
39, 41

STL (Standard Template Library)
algorithm functions, 200
auto_ptr class, 303–306
benefits of, 199, 200
collections, 291–296
complex number template

in, 433
configurable classes as

strength of, 297
container classes, 179, 200,

209–212
creating arrays of objects

using, 209–212
documentation, 199
hash tables in, 279, 281
inserting classes in

templates, 297
iterating over collection

classes, 292–296
map class, 281
memory allocation complica-

tions for, 297
multiple array classes and, 196
overhead from using, 192, 195,

196, 199, 209
overriding the allocator for

collections, 297–302
Properties class use of, 25
for spreadsheet shell, 216
transform function, 349–353
using arrays from, creating

your own versus, 199
vector class, 25, 192–195,

200–203, 209–212
storage allocation. See also

data storage
inheritance from base class, 15
in Matrix class, 65
section of classes for, 23

storage classes. See container
classes (STL)

strcpy function, memory over-
writes from, 307–308

stream components
benefits of, 225
C-style functions versus, 225,

228, 231–232, 233

85_57986X bindex.qxd 1/26/05 3:58 PM Page 477

C++ Timesaving Techniques For Dummies478

stream components (continued)
file reading using, 230–231
file-reading class, 228–230
formatting data using, 225–227
functionality built into, 225
iterating over, 294, 296
passing objects to functions,

410–411
precision method, 227
testing file-reading code, 232
vectors with, 226–227
width method, 227

string array class
creating, 196–198
memory and speed and, 199
output from, 198

string macros, avoiding problems
with, 49–51

string objects, nulls or control
characters and, 348

StringCoding class
benefits of, 7–8
creating and implementing,

8–10
Encode method, 9, 10–11
output from, 10
source-code listing, 8–9
updating, 10–11

StringConvertToLowerCase class
creating, 350–351
operator method, 351
testing, 351–353

StringEntry class
creating, 266–268, 271
input text file for, 272

StringEntry.cpp file, 272
StringReader class

building, 271–277
testing, 277–278

strings
associated operators for,

121–122
avoiding assuming contiguous

order for, 349
as containers of characters, 349
control characters and string

classes, 348

converting case, 349–353
converting numbers to words,

439–446
encapsulated encryption

method for, 7–10
encoding and decoding for the

Web, 337–342
encrypting and decrypting,

343–348
encrypting text string files, 273
hackers and, 273
implementing the transform

function to convert case,
350–351

Match class for wildcard
searches, 331–334

memory overwrites from
copying, 307–308

MyString class for overloaded
operators, 122–127

MyStringArray class, 196–199
nulls and string classes, 348
retrieving line of file into string

object, 232
security issues, 273
size of, 54
storing literal information in

classes, 161
StringCoding class, 8–11
StringEntry class for interna-

tionalization, 266–268, 271
StringReader class for interna-

tionalization, 273–277
StringUtil utility class

for configuration files,
252–255, 259

StringWriter class for
internationalization,
268–272

testing the string case
conversion, 351–353

testing the string reader,
277–278

word-parser program, 447–451,
452–453

written by Logger class, 390
xor operation and, 348

StringUtil utility class,
252–255, 259

StringWriter class
building, 268–272
Load function, 270, 271
Save method, 270, 272

strip_leading function, 247,
248–249

strip_trailing function, 247,
248–249

struct construct
as beginning of

encapsulation, 73
in C++ versus C, 74
as a class with public

members, 73
defining, 74–75

structures
in C++ versus C, 73–74
classes versus, 76
constructors for, 76
derived, 75, 76
implementing, 74–75
initialization of data values

required for, 76
interpreting output, 75–76
limitations of, 74
overhead minimized by, 74
overriding classes, 73
pointers and, 76
test harness, 75
v-tables missing from, 74, 76

strup function (C language), 349
support, documenting data flow

and, 419
swapping elements using

iterators, 294
syntactical sugar

enumerations as, 70
macros as, 51

T
Telles, Matthew (C++ Timesaving

Techniques For Dummies), 1–4
temp.cpp file, 385
temp.cpp.tmp output file, 385–386

85_57986X bindex.qxd 1/26/05 3:58 PM Page 478

Index 479

template keyword, 178
templated functions

automatic generation of, 189
defined, 186
implementing, 186–189
types and, 189

templated methods
creating, 189–190
defined, 186
testing, 190–191
uses for, 189

templates. See also STL (Standard
Template Library)

auto_ptrs in STL collections,
306

benefits of, 110
class template arguments, 179,

182, 183
compilers and template key-

word, 178
Complete class, 110–113
for complex numbers in the

STL, 433
constructors and destructors

and, 178
creating a simple template

class, 175–178
defined, 175
extending a template class,

179–185
function templates, 186–189
as giant macros, 178
header files for implementing

classes, 178, 179
implementing classes in code,

180–182
macros versus, 178
method templates, 186, 189–191
non-class template arguments,

184–185
overhead for, 179
for printing arrays using

streams, 227–228
STL classes in, 297
suitability for extension, 183
testing template classes,

182–183

ways of using, 179
wrapping pointers in auto_ptr

template object, 303–305
temporary objects

avoiding, 408–410
code example overdoing,

408–409
output from code example, 410
processes creating, 408

TensRangeEntry class, 443
term_func function, 318–319
test_delimited.txt file, 239
test.in.eng file, 272
testing. See also debugging

asserts in optimized environ-
ment, 44

Buffer class, 364–365
casts, 93, 94–95
cDate class, 35–36
code for converting numbers

to words, 446
Complete class, 113–115
ConfigurationFile class

(example 1), 27
ConfigurationFile class

(example 2), 260–261
constant application, 80–81
creating generic test drivers

for validators, 148
Date class, 159–161
DBCObject class, 397–398
debugFlowTracer class, 379–380
delimited-file-reading code,

238–239
Design by Contract

methodology, 397–398
enumeration class, 72
exercising all functionality for

classes, 161
FileHandler class, 105
file-reading code, 232
FileWrapper guardian class,

430–431
inserting tracing into an

existing file, 385–386
IntProperty class, 140–141
iterators, 295–296

Logger class, 389–390
mailing-list application, 17–18
Match class, 333–334
Matrix class, 68–69
member pointer code, 99–100
memory tracking program,

133–135
mix-in classes, 170–171
Multiply method template,

190–191
MyAlloc class, 301–302
MyString class, 125–127
namespace application, 88–89
non-class template arguments,

184–185
osdefines.h header file, 40–41
Properties class, 418–419
providing test suite with appli-

cation file, 436
Range class, 62
regression tests, 436
ROT13Encryption class,

345–346
serialization interface,

358–359
Spreadsheet class, 221–222
SSNValidator class, 146–148
string case conversion,

351–353
StringReader class, 277–278
structures, 75–76
template classes, 182–183
Tracker class, 305–306
Translator class, 281–282
unit tests versus complete

tests, 115
URLCodec class, 340–341
validation versus, 115
virtual file class, 289–290
white space removal

application, 249
XMLWriter class, 243–245
XOREncryption class, 347–348

TestIntValue class, 140–141
test.out file, 431
test2.xml file, 244

85_57986X bindex.qxd 1/26/05 3:58 PM Page 479

C++ Timesaving Techniques For Dummies480

test.txt file
for file-reading code, 233
for mix-in classes, 170–171

test.xml file, 244
text format for configuration

files, 250
32-bit operating systems, 54
ThousandsRangeEntry class,

444, 445
throwing exceptions. See also

exception handling
classes for, 312–317
re-throwing, 319–322

time function limitations, 149
to-do list for class improvements,

290
tracing. See also logging

adding after the fact, 380–386
building into applications,

375–380
caveats for insertion

programs, 380
debugFlowTracer class for,

376–377
debugFlowTracerManager class

for, 377–379
need for, 375
testing the flow trace system,

379–380
Tracker class

creating, 304–305
testing, 305–306

trailing spaces. See white space
transform function

described, 349–350
implementing to convert

strings, 350–351
operator method called by, 351
StringConvertToLowerCase

class and, 351
testing the string conversion,

351–353
translate.txt file, 282
translation. See also conversion;

encryption
hash table uses for, 279
Translator class, 279–282

Translator class
creating, 279–281
testing, 281–282
translate.txt file for, 282

two-dimensional arrays, 222
typeface conventions in this

book, 2–3
types. See also constants

casting to an object, 408
const constructs as

type-safe, 46
converting with casts, 90–95
creating new types, 63–69
defining default arguments

and, 101–106
encapsulating types and

rules, 142
enumerations, 70–72
extending basic types, 59–62
for hiding implementation

from user, 11
identifying and validating for

applications, 142
pointers to member functions

and, 96–100
scoping variables, 82–84
sizeof function and, 52
stream components and, 225
structures, 73–76
as template arguments,

184–185
template functions and, 189
temporary objects and, 408
using namespaces, 85–89

U
undo method, 418, 419
unistd.h header file (Unix), 39
unit tests versus complete

tests, 115
unLock method of Lock class, 422
updating

benefits of encapsulation for, 10
encapsulated class, 10–11

uppercase. See case

URLCodec class
creating, 338–340
decode method, 339–340, 341
encode method, 339, 340, 341
testing, 340–341

URLs, rules for, 337
user name encryption, 343
using namespace statement, 87
utilities

caveats for insertion
programs, 380

complex variable utility
methods, 435–436

converting the case of a string,
349–353

encoding and decoding data
for the Web, 337–342

encrypting and decrypting
strings, 343–348

generic buffer class, 360–365
inserting tracing into an exist-

ing file, 380–386
keeping a library of utility

classes, 353
opening a file using multiple

paths, 366–371
serialization interface, 354–359

V
validation

classes for data validation,
142–148

Date class code for, 153, 159
discrete pieces in classes

for, 159
documenting data flow and, 419
for fixed-length input, 452–453
guardian classes and hardware

inputs, 425
missing from standard date

routines, 149
optimizing instantiation of

variables and, 412–413
Range class for, 60–62
testing versus, 115

85_57986X bindex.qxd 1/26/05 3:58 PM Page 480

Index 481

validity checks for code in
DBC, 392–393

of values, enumerations for, 71
validation classes. See also Date

class; SSNValidator class
application development and,

142, 149
defining the Validator object,

142–143
generic test drivers for

validators, 148
including numeric manipula-

tion in, 149
Social Security Number

validation module, 143–146
testing, 146–148

values. See also casts
class with methods containing

defaults, 103–106
enumerations for meaningful

names, 70
enumerations for validating, 71
hard-coded, 30
initializing for classes or

structures, 76
passed to functions, types and,

90–91, 93–94
passing by reference, 411–412
passing objects by, 408
replacing #define values using

constants, 77–78
variables

complex variable utility
methods, 435–436

constants versus basic integer
variables, 59

implementing constant
variables, 78–80

optimizing instantiation of,
412–413

postponing declarations,
412–413

scoping, 82–84
templates as member

variables, 179
verifying that value falls within

a range, 60–62

vector algorithms
benefits of, 200
output from the program, 203
program using, 201–202

vector class (STL)
algorithms, 200–203
arrays of objects using,

209–212
data manipulation in vector

by, 212
defining array of objects,

210, 211
overhead from, 192, 195, 209
overview, 25, 192
printing arrays using streams,

226–227
single function using multiple

algorithms, 203
using, 192–195

vectors. See arrays
virtual destructors. See also

destructors
for base classes, 22, 25
for Complete class, 109
described, 22
in Fruit class, 22
in Properties class, 24, 25
required for Complete class, 111

virtual files
algorithm, 280, 290
benefits of, 283
configurable chunk size for, 290
creating a virtual file class,

283–288
defined, 283
improving the virtual file

class, 290
memory and speed conserved

by, 283
pre-loading chunks, 290
testing the virtual file class,

289–290
virtual inheritance

correcting the code, 119
defined, 117
implementing, 118–119
virtual methods and, 119

virtual methods. See also pure
virtual methods

base class for, 20
in Column class for spread-

sheet, 217, 218
customizing a class with, 19–22
defined, 19
derived classes and, 23
factory pattern and, 162
getClassName, 357
getElements, 357
main driver for, 21
not allowed in structures, 74
overhead for, 21
overriding classes, 19, 21,

162–167
pure virtual methods versus,

19, 354
size of classes and, 54
testing, 21–22
using whenever possible, 19
virtual inheritance and, 119
v-table for, 21, 22, 23, 54

Visual Studio C++ compiler, 2
void pointers, 175, 176
v-tables

derived classes and, 23
missing from structures, 74, 76
section of classes for, 23
size of classes and, 54
for virtual methods, 21, 22, 23

W
Web. See companion Web site for

this book; Internet, the;
URLCodec class

white space
application accountability

for, 246
code for removing, 246–248
output from program for

removing, 248
passwords and, 246
removing from input, 246–249
testing the application, 249

width method for streams, 227

85_57986X bindex.qxd 1/26/05 3:58 PM Page 481

C++ Timesaving Techniques For Dummies482

wildcards
asterisk (*), 330
defined, 330
Match class for, 331–334
percent sign (%), 331
power of, 330–331
question mark (?), 330–331
uses for, 330–331

word-parser program
componentizing, 449–451
input file for, 449
source-code listing, 448–449
specialization, 452–453

words, converting numbers to.
See converting numbers to
words

World Wide Web. See companion
Web site for this book;
Internet, the; URLCodec class

wrapping
pointers in auto_ptr template

object, 303–305
potentially unsafe code in

guardian classes, 425–431
write member method, 356–357

X
XML (eXtended Markup

Language). See also delimited
files

class structure compared to,
240–241

creating the XMLWriter class,
241–243

delimited files using, 234
general format of structures,

240

importance of capability for
output as, 240

testing the XMLWriter class,
243–245

XMLElement class, 241–242, 245
XMLElement objects, 243
XMLSuperClass class, 244, 245
XMLWriter class

creating, 241–243
testing, 243–245
XMLElement objects, 243

XOR encryption algorithm, 343,
346–348

xor operation, strings and, 348
XOREncryption class

algorithm described, 346
do_xor method, 346, 347
implementing, 346–347
strings and xor operation, 348
testing, 347–348

85_57986X bindex.qxd 1/26/05 3:58 PM Page 482

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One For Dummies

0-7645-5680-0
�Knitting For Dummies

0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference For Dummies

0-7645-7347-0
�iPAQ For Dummies

0-7645-6769-1
�Mac OS X Panther Timesaving Techniques

For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference For
Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory For Dummies

0-7645-7495-7
�CD & DVD Recording For Dummies

0-7645-5956-7
�eBay For Dummies

0-7645-5654-1
�Fighting Spam For Dummies

0-7645-5965-6
�Genealogy Online For Dummies

0-7645-5964-8
�Google For Dummies

0-7645-4420-9

�Home Recording For Musicians For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference For
Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

86_57986x bob.qxd 1/26/05 3:56 PM Page 483

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk Reference
For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk Reference For

Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

86_57986x bob.qxd 1/26/05 3:56 PM Page 484

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT For Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

86_57986x bob.qxd 1/26/05 3:56 PM Page 485

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

86_57986x bob.qxd 1/26/05 3:56 PM Page 486

	C++ Timesaving Techniques For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	What’s Available on the Companion Web Site?
	Conventions Used in This Book
	Saving Time with This Book
	What’s In This Book
	Icons Used in This Book

	Part I: Streamlining the Means and Mechanics of OOP
	Technique 1: Protecting Your Data with Encapsulation
	Creating and Implementing an Encapsulated Class
	Making Updates to an Encapsulated Class

	Technique 2: Using Abstraction to Extend Functionality
	Creating a Mailing-List Application
	Testing the Mailing-List Application

	Technique 3: Customizing a Class with Virtual Functions
	Customizing a Class with Polymorphism
	Testing the Virtual Function Code
	Why Do the Destructors Work?

	Technique 4: Inheriting Data and Functionality
	Implementing a ConfigurationFile Class
	Testing the ConfigurationFile Class
	Delayed Construction

	Technique 5: Separating Rules and Data from Code
	The cDate Class
	Testing the cDate Class

	Part II: Working with the Pre-Processor
	Technique 6: Handling Multiple Operating Systems
	Creating the Header File
	Testing the Header File

	Technique 7: Mastering the Evils of Asserts
	The Assert Problem
	Fixing the Assert Problem

	Technique 8: Using const Instead of # define
	Using the const Construct
	Identifying the Errors
	Fixing the Errors

	Technique 9: Macros and Why Not to Use Them
	Initiating a Function with a String Macro — Almost
	Fixing What Went Wrong with the Macro
	Using Macros Appropriately

	Technique 10: Understanding sizeof
	Using the sizeof Function
	Evaluating the Results
	Using sizeof with Pointers

	Part III: Types
	Technique 11: Creating Your Own Basic Types
	Implementing the Range Class
	Testing the Range Class

	Technique 12: Creating Your Own Types
	Creating the Matrix Class
	Matrix Operations
	Multiplying a Matrix by a Scalar Value
	Multiplying a Matrix by Scalar Values, Take 2
	Testing the Matrix Class

	Technique 13: Using Enumerations
	Implementing the Enumeration Class
	Testing the Enumeration Class

	Technique 14: Creating and Using Structures
	Implementing Structures
	Interpreting the Output

	Technique 15: Understanding Constants
	Defining Constants
	Implementing Constant Variables
	Testing the Constant Application
	Using the const Keyword

	Technique 16: Scoping Your Variables
	Illustrating Scope
	Interpreting the Output

	Technique 17: Using Namespaces
	Creating a Namespace Application
	Testing the Namespace Application

	Technique 18: Fixing Breaks with Casts
	Using Casts
	Addressing the Compiler Problems
	Testing the Changes

	Technique 19: Using Pointers to Member Functions
	Implementing Member-Function Pointers
	Updating Your Code with Member-Function Pointers
	Testing the Member Pointer Code

	Technique 20: Defining Default Arguments for Your Functions and Methods
	Customizing the Functions We Didn’t Write
	Customizing Functions We Wrote Ourselves
	Testing the Default Code
	Fixing the Problem

	Part IV: Classes
	Technique 21: Creating a Complete Class
	Creating a Complete Class Template
	Testing the Complete Class

	Technique 22: Using Virtual Inheritance
	Implementing Virtual Inheritance
	Correcting the Code

	Technique 23: Creating Overloaded Operators
	Rules for Creating Overloaded Operators
	Using Conversion Operators
	Using Overloaded Operators
	Testing the MyString Class

	Technique 24: Defining Your Own new and delete Handlers
	Rules for Implementing new and delete Handlers
	Overloading new and delete Handlers
	Testing the Memory Allocation Tracker

	Technique 25: Implementing Properties
	Implementing Properties
	Testing the Property Class

	Technique 26: Doing Data Validation with Classes
	Implementing Data Validation with Classes
	Testing Your SSN Validator Class

	Technique 27: Building a Date Class
	Creating the Date Class
	Implementing the Date Functionality
	Testing the Date Class
	Some Final Thoughts on the Date Class

	Technique 28: Overriding Functionality with Virtual Methods
	Creating a Factory Class
	Testing the Factory
	Enhancing the Manager Class

	Technique 29: Using Mix-In Classes
	Implementing Mix-In Classes
	Compiling and Testing Your Mix-In Class

	Part V: Arrays and Templates
	Technique 30: Creating a Simple Template Class
	Technique 31: Extending a Template Class
	Implementing Template Classes in Code
	Testing the Template Classes
	Using Non-class Template Arguments

	Technique 32: Creating Templates from Functions and Methods
	Implementing Function Templates
	Creating Method Templates

	Technique 33: Working with Arrays
	Using the Vector Class

	Technique 34: Implementing Your Own Array Class
	Creating the String Array Class

	Technique 35: Working with Vector Algorithms
	Working with Vector Algorithms

	Technique 36: Deleting an Array of Elements
	Examining Allocations of Arrays and Pointers

	Technique 37: Creating Arrays of Objects
	Technique 38: Working with Arrays of Object Pointers
	Creating an Array of Heterogeneous Objects

	Technique 39: Implementing a Spreadsheet
	Creating the Column Class
	Creating the Row Class
	Creating the Spreadsheet Class
	Testing Your Spreadsheet

	Part VI: Input and Output
	Technique 40: Using the Standard Streams to Format Data
	Working with Streams

	Technique 41: Reading In and Processing Files
	Testing the File-Reading Code
	Creating the Test File

	Technique 42: How to Read Delimited Files
	Reading Delimited Files
	Testing the Code

	Technique 43: Writing Your Objects as XML
	Creating the XML Writer
	Testing the XML Writer

	Technique 44: Removing White Space from Input
	Technique 45: Creating a Configuration File
	Creating the Configuration-File Class
	Setting Up Your Test File
	Testing the Configuration-File Class

	Part VII: Using the Built-In Functionality
	Technique 46: Creating an Internationalization Class
	Building the Language Files
	Creating an Input Text File
	Reading the International File
	Testing the String Reader

	Technique 47: Hashing Out Translations
	Creating a Translator Class
	Testing the Translator Class

	Technique 48: Implementing Virtual Files
	Creating a Virtual File Class
	Testing the Virtual File Class
	Improving Your Virtual File Class

	Technique 49: Using Iterators for Your Collections
	Technique 50: Overriding the Allocator for a Collection Class
	Creating a Custom Memory Allocator

	Technique 51: Using the auto_ptr Class to Avoid Memory Leaks
	Using the auto_ptr Class

	Technique 52: Avoiding Memory Overwrites
	Creating a Memory Safe Buffer Class

	Technique 53: Throwing, Catching, and Re-throwing Exceptions
	Throwing and Logging Exceptions
	Dealing with Unhandled Exceptions
	Re-throwing Exceptions

	Technique 54: Enforcing Return Codes
	Technique 55: Using Wildcards
	Creating the Wildcard Matching Class
	Testing the Wildcard Matching Class

	Part VIII: Utilities
	Technique 56: Encoding and Decoding Data for the Web
	Creating the URL Codec Class
	Testing the URL Codec Class

	Technique 57: Encrypting and Decrypting Strings
	Implementing the Rot13 Algorithm
	Testing the Rot13 Algorithm
	Implementing the XOR Algorithm
	Testing the XOR Algorithm

	Technique 58: Converting the Case of a String
	Implementing the transform Function to Convert Strings
	Testing the String Conversions

	Technique 59: Implementing a Serialization Interface
	Implementing the Serialization Interface
	Testing the Serialization Interface

	Technique 60: Creating a Generic Buffer Class
	Creating the Buffer Class
	Testing the Buffer Class

	Technique 61: Opening a File Using Multiple Paths
	Creating the Multiple-Search-Path Class
	Testing the Multiple-Search-Path Class

	Part IX: Debugging C++ Applications
	Technique 62: Building Tracing into Your Applications
	Implementing the Flow Trace Class
	Testing the Flow Trace System
	Adding in Tracing After the Fact

	Technique 63: Creating Debugging Macros and Classes
	The assert Macro
	Logging
	Testing the Logger Class
	Design by Contract

	Technique 64: Debugging Overloaded Methods
	Adding Logging to the Application

	Part X: The Scary (or Fun!) Stuff
	Technique 65: Optimizing Your Code
	Making Functions Inline
	Avoiding Temporary Objects
	Passing Objects by Reference
	Postponing Variable Declarations
	Choosing Initialization Instead of Assignment

	Technique 66: Documenting the Data Flow
	Learning How Code Operates
	Testing the Properties Class

	Technique 67: Creating a Simple Locking Mechanism
	Creating the Locking Mechanism
	Testing the Locking Mechanism

	Technique 68: Creating and Using Guardian Classes
	Creating the File-Guardian Class
	Testing the File-Guardian Class

	Technique 69: Working with Complex Numbers
	Implementing the Complex Class
	Testing the Complex Number Class

	Technique 70: Converting Numbers to Words
	Creating the Conversion Code
	Testing the Conversion Code

	Technique 71: Reducing the Complexity of Code
	A Sample Program
	Componentizing
	Restructuring
	Specialization

	Index

