
by John Paul Mueller

FrontPage® 2003
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page iii

C1.jpg

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page ii

FrontPage® 2003
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page i

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page ii

by John Paul Mueller

FrontPage® 2003
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page iii

FrontPage® 2003 All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail:
brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. FrontPage is a registered
trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004112198

ISBN: 0-7645-7531-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RT/RQ/QU/IN

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page iv

www.wiley.com

About the Author
John Paul Mueller is a freelance author and technical editor. He has writing
in his blood, having produced 64 books and over 300 articles to date. The
topics range from networking to artificial intelligence and from database man-
agement to heads down programming. Some of his current books include sev-
eral C# developer guides, an accessible programming guide, a book on .NET
security, and books on both Amazon Web Services and Google Web Services.
His technical editing skills have helped over 35 authors refine the content of
their manuscripts. John has provided technical editing services to both Data
Based Advisor and Coast Compute magazines. He’s also contributed articles to
magazines including InformIT, SQL Server Professional, Visual C++ Developer,
Hard Core Visual Basic, asp.netPRO, and Visual Basic Developer. He’s currently
the editor of the .NET electronic newsletter for Pinnacle Publishing (http://
www.freeenewsletters.com/).

When John isn’t working at the computer, you can find him in his workshop.
He’s an avid woodworker and candlemaker. On any given afternoon you can
find him working at a lathe or putting the finishing touches on a bookcase.
One of his newest craft projects is glycerin soapmaking, which comes in pretty
handy for gift baskets. You can reach John on the Internet at JMueller@mwt.
net. John is also setting up a Web site at: http://www.mwt.net/~jmueller/,
feel free to take a look and make suggestions on how he can improve it. One of
his current projects is creating book FAQ sheets that should help you find the
book information you need much faster.

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page v

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page vi

Dedication
This book is dedicated to Jif, the latest addition to our family and a new
guardian of the apples.

Acknowledgments
Thanks to my wife, Rebecca, for working with me to get this book completed.
I really don’t know what I would have done without her help in researching
and compiling some of the information that appears in this book. She also did
a fine job of proofreading my rough draft and page-proofing the final result.

David Clark deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material you see here. I really appre-
ciated the time he devoted to working with the various FrontPage elements,
especially the accessibility issues. David also provided a number of insights
as I discussed the book with him over e-mail during the writing process.

Eva Beattie contributed significantly to the book by reading and commenting
on every chapter. She helped me develop a better understanding of the uses
for FrontPage, and provided input on how best to approach specific problems.
Bill Salkin also provided invaluable assistance with some of the chapters. He
helped me understand some of the business and training goals better from an
Information Technology (IT) perspective. I would also like to thank the other
people who read specific sections of the book and provided their expertise in
just those areas. Several people commented on areas such as accessibility and
the usefulness of specific techniques in the office environment.

Matt Wagner, my agent, deserves credit for helping me get the contract in the
first place, and taking care of all the details that most authors don’t really
consider. I always appreciate his help. It’s good to know that someone wants
to help.

Finally, I would like to thank Terri Varveris, Christopher Morris, Barry Childs-
Helton, and the rest of the production staff at Wiley for their assistance in
bringing this book to print. It’s always nice to work with such a great group
of professionals.

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Christopher Morris

Acquisitions Editor: Terri Varveris

Senior Copy Editor: Barry Childs-Helton

Technical Editor: David Clark

Editorial Manager: Kevin Kirschner

Permissions Editor: Laura Moss

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Production

Project Coordinator: Courtney MacIntyre

Layout and Graphics: Andrea Dahl,
Lauren Goddard, Denny Hager,
Joyce Haughey, Stephanie D. Jumper,
Michael Kruzil, Lynsey Osborn,
Jacque Roth, Julie Trippetti

Proofreaders: Laura Albert, John Greenough,
Betty Kish, Brian H. Walls

Indexer: Richard T. Evans

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

00a_575317_ffirs.qxd 9/24/04 7:31 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Book I: Essential Concepts...9
Chapter 1: Introducing FrontPage 2003 ...11
Chapter 2: Getting Started...21
Chapter 3: Creating Your First Web Page ..43

Book II: Basic Pages...63
Chapter 1: Designing Pages with Controls ..65
Chapter 2: Working with Forms..79
Chapter 3: Working with Tables..93
Chapter 4: Working with Frames ..107
Chapter 5: Designing with Templates ..123
Chapter 6: Working with FrontPage Themes ..141

Book III: Webs ...157
Chapter 1: Working with an Existing Web Site..159
Chapter 2: Creating a New Web ..177
Chapter 3: Using FrontPage Views ...195
Chapter 4: Creating Navigational Views ..213
Chapter 5: Using FrontPage Reports Efficiently ...233

Book IV: Advanced Design...249
Chapter 1: Using Cascading Style Sheets ..251
Chapter 2: Working with Clip Art ...267
Chapter 3: Adding Multimedia and Components ...287
Chapter 4: Inserting Office Objects..307
Chapter 5: Using Smart Tag Plug-ins ..323
Chapter 6: Creating Dynamic Web Sites ..333
Chapter 7: Developing with Security in Mind ...353

Book V: Databases..369
Chapter 1: Creating Interactive Web Pages with Excel..371
Chapter 2: Creating Interactive Web Pages with Access...389
Chapter 3: Developing Applications with SQL Server ...411

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page ix

Book VI: XML and XSLT ..429
Chapter 1: Working with XML ...431
Chapter 2: Developing an Interpretation with XSLT...453
Chapter 3: Creating Dynamic XML Pages ..467

Book VII: Scripting ...483
Chapter 1: Extending a Page with Scripting..485
Chapter 2: Creating Your First Scripted Page ...507
Chapter 3: Working with Cookies ...521
Chapter 4: Performing Common Scripted Tasks ..535

Book VIII: VBA Programming551
Chapter 1: Getting to Know VBA ..553
Chapter 2: Your First VBA Program ...567
Chapter 3: Storing and Modifying Information ...583
Chapter 4: Creating Structured Programs...597
Chapter 5: Trapping Errors and Squashing Bugs ...613
Chapter 6: Working with Classes, Arrays, and Collections625
Chapter 7: Working with FrontPage Objects...641

Book IX: Advanced Programming661
Chapter 1: Using Active Server Pages..663
Chapter 2: Using PHP...677
Chapter 3: Working with Web Services..693
Chapter 4: Enhancing FrontPage with Visual Studio .NET ..717

Index ...729

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page x

Table of Contents
Introduction..1

Conventions Used in This Book ...1
What You Should Read ..2
What You Don’t Have to Read ..3
Foolish Assumptions ...3
How This Book Is Organized...4

Book I: Essential Concepts ..4
Book II: Basic Pages..4
Book III: Webs..4
Book IV: Advanced Design...5
Book V: Databases..5
Book VI: XML and XSLT..5
Book VII: Scripting...5
Book VIII: VBA Programming ..6
Book IX: Advanced Programming...6
On the accompanying Web site ..7

Icons Used in This Book..7
Where to Go from Here..7

Book I: Essential Concepts ...9

Chapter 1: Introducing FrontPage 2003 .11
Understanding FrontPage ...11
Important Changes for FrontPage 2003...14

Better design tools ...14
Improved user support..15
Updated graphics ...16
Enhanced coding support ...16
Better data handling ..17
Easier Web content publication ...17

Essential Web-Page Concepts...18
Maintaining a focus ..18
Using organization effectively...18
Keeping it simple ..19

Chapter 2: Getting Started .21
Using the IDE...21

Working with folders..22
Viewing documents..23
Using the Remote Web Site view ..25
Using the Reports view..27

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xi

FrontPage 2003 All-in-One Desk Reference For Dummiesxii

Navigating through your site ..29
Discovering links ..30
Creating a task list ..34

Getting Help ..36
Accessing general help topics ..36
Obtaining updates ..38
Repairing an installation..38
Determining your FrontPage version...38

Customizing Toolbars..39
Creating a new toolbar...40
Changing an existing toolbar ..40
Modifying the toolbar options..41

Chapter 3: Creating Your First Web Page .43
Understanding Good Web Page Design ...44
Defining Page Properties...44

Understanding a new Web page ...45
Assigning standard properties ...46
Assigning page-specific properties ..48
Defining standard special effects ...51

Working with Text ..52
Defining normal text...52
Adding headings ...54
Defining terms and acronyms...54

Working with Hyperlinks...55
Setting the base location ...56
Pointing to the same page...56
Pointing to different pages ..57
Describing your links ...58

Working with Lists..58
Viewing the Results..60

Using Design view...60
Using Split view ..60
Using Code view ...60
Using Preview view ..62
Timing the page download..62

Book II: Basic Pages ...63

Chapter 1: Designing Pages with Controls .65
Using Controls Efficiently..65

Working with properties..66
Understanding events..66
Adding comments ..66

Using Labels..68
Working with Inputs...68

Using textboxes ..68
Using pushbuttons ...71

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xii

Table of Contents xiii

Using checkboxes...72
Using option buttons ...72

Creating Decorative Elements ..73
Inserting a break...73
Using the horizontal rule...73
Adding the date and time ..75
Defining special characters...75

Adding Banners ..76

Chapter 2: Working with Forms .79
Creating a Simple Form ...79

Displaying the Form toolbar ...79
Adding and configuring input controls..80
Associating the input control with a label ..82

Working with Alternative Inputs ..83
Creating a drop-down list ..83
Defining a text area...85

Sending Data ...86
Understanding the default form settings ..86
Sending data to e-mail the FrontPage way ..87
Sending data to e-mail the standard way ..88
Sending data to a server..88
Deciding whether to GET or POST data ..89

Making Forms Accessible..90

Chapter 3: Working with Tables .93
Defining a Table ..93

Setting the table properties ..94
Setting the cell properties...97

Adding a Caption..98
Making Tables Accessible ...98
Using Layout Tables and Cells..99

Adding the layout ...99
Modifying the layout settings ...100
Creating new cells ..104
Adding a header and footer ..105

Chapter 4: Working with Frames .107
Reasons to Use Frames ...107
Creating a Web Page with Frames..108

Defining the main page ..108
Customizing frame properties ..110
Adding pages to the frameset ...111
Using the No Frames view...113

Organizing Frames ...114
Adding and splitting frames..114
Deleting frames...115
Combining actions ...115

Using an Inline Frame ..116

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xiii

FrontPage 2003 All-in-One Desk Reference For Dummiesxiv

Making Frames Accessible..118
Understanding the standard frame fixes...119
Avoiding frame display issues ..120
Using the <object> tag ...120

Chapter 5: Designing with Templates .123
Reasons to Use a Template ...123
Designing with the Page Templates ...124

Using the general pages...125
Using the frames pages..129
Using the style sheets ..131

Obtaining Additional Templates ..133
Using an Existing Page as a Template..134

Defining a page as a template ...134
Using the template page locally ...134
Adding the template to FrontPage ...135

Using Web Site Templates ...137
Defining a new site ...138
Choosing site within a site or separate site....................................138
Using secure communication ...139

Chapter 6: Working with FrontPage Themes .141
Defining a Unique Look with Themes..141
Using the Standard Themes..143

Adding a theme to a Web page ...143
Applying a theme to selected files ...145
Applying a theme to a whole Web site...146

Creating Your Own Theme..146
Modifying theme colors...148
Modifying theme graphics...148
Modifying theme text ...152
Saving the new theme..154
Sharing a theme with others...154
Removing themes you don’t want..156

Book III: Webs ..157

Chapter 1: Working with an Existing Web Site 159
Cleaning Up Before You Import the Site..159
Importing the Site ..161

Creating the Web ..161
Deleting a Web ..162
Performing the initial setup ..163
Setting the home page ...163
Configuring the FrontPage Server Extensions165
Verifying site hyperlinks ..167

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xiv

Table of Contents xv

Defining Site Properties...169
Creating Required Views ...170

Defining a navigational view ...170
Defining hyperlinks ..172
Creating initial update tasks ...174

Chapter 2: Creating a New Web .177
Understanding Webs..177

Creating a new Web..178
Creating a new subsite...181

Using Local or Remote Connections..182
Using local connections...182
Selecting a remote Web site connection type.................................183
Synchronizing a local Web site copy ...185
Optimizing uploaded content ...186
Setting publishing guidelines..188

Selecting a Web Template ...189
Using standard Web templates ...189
Using wizard Web templates...189
Defining your own Web template ...191

Chapter 3: Using FrontPage Views .195
Understanding Views...195
Using the Page View...196

Interacting with the Navigation view...197
Adding data with the Office Clipboard ..198
Using the Grid and Ruler ...200
Creating your own accessible frames..202
Creating your own layouts ..205

Using the Folders View..206
Sorting files ...207
Publishing files..207

Using the Reports View ...208
Ensuring the reports work as intended...208
Configuring the reports ...210

Using the Tasks View ...211

Chapter 4: Creating Navigational Views .213
Understanding the Benefits of the Navigation View................................214
Creating a New Navigation Bar...215

Adding Back and Next links ..216
Creating linkage to the home page...218
Developing automatic page links ...219
Working with a Custom Link Bar ..222
Using the Table of Contents component ...222
Defining a top-ten list ...225
Using the Visual InterDev Navigation Bar Component..................226

Adding New (Top-Level) Pages...227

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xv

FrontPage 2003 All-in-One Desk Reference For Dummiesxvi

Organizing the Navigation View ...228
Adding a Custom Link Bar...228
Defining new top-level page ..229

Changing the Site Settings...230

Chapter 5: Using FrontPage Reports Efficiently233
Understanding the Reports ..233

Accessing the reports ..234
Modifying the report content ...235
Printing a report ...236
Verifying hyperlinks ...237

Using the Site Summary ..238
Working with Files..239

Using the various Files reports...239
Controlling the report settings ...241

Working with Shared Content...241
Fixing Problems..242

Taking care of unlinked files ...242
Bringing slow pages up to speed..243
Tracking the missing link(s)..243
Fixing component errors ...243

Designing Workflow ...244
Using the Checkout Status report ..244
Special setup for the Checkout Status report.................................245

Developing Usage Statistics..246
Using the Usage reports ..246
Displaying reports in graphic form..247

Book IV: Advanced Design ...249

Chapter 1: Using Cascading Style Sheets .251
Understanding Cascading Style Sheets ...252
Creating a Simple CSS Page...254

Using the predefined styles...254
Defining your own style...255
Making a style available to others..258
Correcting the predefined styles..259

Linking CSS to a Web Page ..260
Using external style sheets ...260
Defining an embedded style sheet ...261

Using the Style Toolbar ...262
Designing Efficient Styles ..264
Using CSS for Accessibility Needs..265

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xvi

Table of Contents xvii

Chapter 2: Working with Clip Art .267
Using the Drawing and Drawing Canvas Toolbars...................................267

Adding VML support..268
Creating a canvas ...268
Configuring the canvas ..269
Adding a drawing..271

Defining Layers for Organization ...272
Understanding why layers are useful ..272
Creating a new layer...273
Using the Positioning toolbar ...274
Using CSS with layers...276

Adding Images to a Web Page...276
Using Clip Art..277

Finding clip art to use with FrontPage...277
Viewing image properties..279
Using the Clip Art Organizer ...280
Using the Pictures toolbar ..282

Describing an Image...282
Creating an Image Map ..284
Using Images from Other Sources..285

Chapter 3: Adding Multimedia and Components 287
Understanding Multimedia Use Issues ..288
Animated GIFs, the Easiest Multimedia...289
Adding Audio ..291

Using background sounds...292
Using a hyperlink..292
Using an interactive button...293

Adding Video ..294
Creating a smaller video..294
Adding video as a picture..296
Using an <object> tag...297
Other video options ...299

Working with Web Components ...299
Using standard page components..300
Using included-content components ...303
Using MSN and MSNBC components ...303

Working with Macromedia Flash..304

Chapter 4: Inserting Office Objects .307
Working with Word Objects ..307

Copying and pasting information...308
Relying on hyperlinks ..310
Creating a direct document conversion ..311

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xvii

FrontPage 2003 All-in-One Desk Reference For Dummiesxviii

Developing Data Views with Excel ...314
Copying Excel data...314
Using the Web components ..314
Other techniques..320

Creating Report Views with Access ...320
Dragging and dropping — or not..321
Copying and pasting ..321

Chapter 5: Using Smart Tag Plug-ins .323
Understanding the Smart Tag Plug-ins ..323
Seeing Smart Tags on Your Web Page..324

Creating the Smart Tag Web-page entries325
Using the Stocks and Funds Smart Tag plug-in...............................328
Using the Name Smart Tag plug-in ...328
Using the Address and Places Smart Tag plug-in329
Using the Time and Date Smart Tag plug-in....................................330
Using the Telephone Smart Tag plug-in...331

Disabling Smart Tags on Your Site ...331
Getting More Smart Tags...331

Chapter 6: Creating Dynamic Web Sites .333
Changing Content and Knowing Why..334
Using Shared Borders ..335

Understanding how Shared Borders work336
Attaching a Shared Border to specific Web pages336
Creating a Shared Border ..337
Viewing the _borders Folder...339

Using Active Server Pages in FrontPage ...340
Advantages of the ASP scripting approach.....................................340
Creating a simple ASP page...341
Understanding the ASP issues ..345

Developing Simple Dynamic Pages ..346
Creating a Dynamic Web Template ..346
Providing editable regions ..347
Adding a Dynamic Web Template

to an existing page..350
Performing updates..350

Using the Dynamic Web Template Toolbar...351

Chapter 7: Developing with Security in Mind 353
Considering the Security Issues...354

Monitoring cracker activities..354
Checking for viruses ..355
Considering internal threats ...356
Understanding security fails without monitoring357

Creating a Security Plan ..357

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xviii

Table of Contents xix

Checking Inputs..358
Considering the input data length ...358
Defining data types ..360
Enforcing specific data inputs ..363
Recognizing data patterns...364

Tracking Security Problems..366

Book V: Databases ..369

Chapter 1: Creating Interactive Web Pages with Excel 371
Defining Excel as a Database ..372

Understanding Excel database functionality372
Working with FrontPage data..375
Developing simple tables ..376

Creating Links to an Excel Worksheet ...376
Defining a new connection ..377
Using an existing connection..379
Modifying a connection ...380

Viewing Excel Data...381
Creating an ActiveX control connection ...382
Using the Office Spreadsheet control ..384
Using the Office Chart control ..384
Using the Office PivotTable control ...386

Chapter 2: Creating Interactive Web Pages with Access 389
Developing Links to Access ..389

Choosing between ASP and ASP.NET...390
Creating a new connection using the Database Results Wizard....391
Selecting an existing connection..400

Designing Simple Data Views..402
Creating a Search Form ...405
Designing Relational Data Views ..406

Creating a simple data view ..406
Developing Access views using the PivotTable control407

Chapter 3: Developing Applications with SQL Server 411
Understanding the SQL Server Advantage ...411

The small-business perspective ...412
Developing secure applications ...412

Developing Links to SQL Server...413
Using the Northwind database connection413
Creating a new connection..415
Choosing an external connection...423
Selecting an existing connection..425

Creating Relational Data Views ..426
Correcting a security problem..426
Developing SQL Server views using the PivotTable control.........427

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xix

FrontPage 2003 All-in-One Desk Reference For Dummiesxx

Book VI: XML and XSLT ...429

Chapter 1: Working with XML .431
Using XML Effectively ..432
Using XML in FrontPage ..433

Working with processing instructions...433
Working with elements ..434
Working with values...435
Working with attributes...436
Adding comments ..437
Understanding the concept of nodes ..438

Simple Techniques for Displaying XML...440
XML Notepad ..442
XMLFox ..443
XMLwriter 2...443
XMLSpy..443

Using the XML View Toolbar ..443
Creating the document ..444
Organizing and checking the document..444

Creating XML Data from Existing Sources ..446
Modifying the document encoding ..446
Creating XML output with Office 2003...447

Chapter 2: Developing an Interpretation with XSLT 453
Understanding How XSLT Affects XML..454
Creating a Basic XSLT File ...454
Selecting Data ...456

Obtaining a value..458
Obtaining an attribute ...458
Adding text ..459
Using functions ...460

Making Decisions ...460
Using <xsl:if> ...460
Using <xsl:choose>...461

Performing a Task More Than Once ..462
Creating a View of XML with XSLT ...463

Chapter 3: Creating Dynamic XML Pages .467
Developing an XML Data Source ..467

Considering the security issues of XML data468
Working with Web services ...468
Working with local sources ...471

Performing XML Updates ..475
Using Office 2003 applications..476
Using databases..476

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xx

Table of Contents xxi

Automating the Process ..476
Understanding process automation ..477
Relying on script updates ...477
Using ASP...481

Book VII: Scripting..483

Chapter 1: Extending a Page with Scripting .485
Understanding How Scripting Can Help..486
Using the <script> Tag ...488

Placing scripts in the body ...488
Placing scripts in the header ..490

Understanding Scripting Languages..491
Working with Page Objects ...493

Using properties ...493
Using methods ..495
Using events..496

Creating Variables ..497
Making Decisions ...498
Performing Repetitive Tasks with Loops ..500

Using the for loop...500
Using the while loop ..501

Using the <noscript> Tag...502

Chapter 2: Creating Your First Scripted Page .507
Understanding How Scripts Work..507
Using the Code View Toolbar ...509

Working with the Code View toolbar options.................................509
Defining code snippets ..511

Creating a Simple Script ..513
Associating a Function with a Button..515

Working with events...515
Using the DHTML Effects toolbar...517

Providing Inputs to a Function ...519
Providing Outputs from a Function ...519

Chapter 3: Working with Cookies .521
Using Cookies to Help Users...521

Uses for cookies ...522
Understanding cookie issues ..522
Adding a privacy statement ..523

Creating a Cookie ...528
Reading a Cookie..529
Enforcing Cookie Expiration ...531

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xxi

FrontPage 2003 All-in-One Desk Reference For Dummiesxxii

Chapter 4: Performing Common Scripted Tasks 535
Determining the User’s Browser Type...536

Handling browser compatibility issues ...537
Performing the required detection ..538

Redirecting Users Based on Need..542
Providing Form Feedback ...544

Understanding how FrontPage uses scripting................................544
Defining manual code ..546

Debugging Your Script...548
Fixing syntax errors ...548
Fixing logic errors...549

Book VIII: VBA Programming551

Chapter 1: Getting to Know VBA .553
Starting the Visual Basic Editor..554

Right-clicking everything...556
Working with special entries...556

Using the Properties Window...557
Understanding property types ...557
Getting help with properties...558

Using the Code Window ..559
Opening an existing Code window...559
Creating a new Code window..560
Typing text in the Code window...560
Finding more Code window features ...561
Getting help with code...561

Using the Immediate Window...561
Creating a variable in the Immediate window561
Creating a one-line program..562

Using Object Browser..563
Browsing objects ..563
Looking for names and features in Object Browser.......................564
Cutting and pasting in Object Bowser ...565
Getting help in Object Browser ..565

Chapter 2: Your First VBA Program .567
Deciding What to Do..568
Steps to Create a VBA Program..568

Step 1: Design the program ...568
Step 2: Implement the design..569
Step 3: Test, test, test...570
Step 4: Swat the bugs ...571

Writing Your First Sub..572
Writing Your First Function...574

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xxii

Table of Contents xxiii

Getting the Scoop on Scope..576
Understanding the purpose of scope ..576
Defining the effects of scope...577

Three Ways to Run Your Program..578
Using the Macro dialog box ..578
Using the quick launch methods..579
Accessing the program from other VBA code581

Chapter 3: Storing and Modifying Information583
Understanding Variables and Constants...583

Making the declaration..583
Knowing which storage type to use...584

Defining the Data Types ..585
Using strings for text..586
Using numbers for calculations..589
Using Boolean values to make decisions ..593
Using currency values for money calculations594
Using date and time values ...595
Working with variant data ...596

Working with Operators ..596

Chapter 4: Creating Structured Programs .597
Exercising Control with Structures..597
Making a Decision with the If...Then Statement.......................................598

Using the If...Then statement ..599
Using the If...Then...Else statement..599
Using the If...Then...ElseIf statement..601

Making a Choice Using the Select Case Statement602
Using the Select Case statement ..602
Using the Case Else clause ..603

Performing a Task More than Once Using Loops.....................................604
Using the Do While...Loop statement ..604
Using the Do...Loop While statement ..606
Using the Do Until...Loop statement ..606
Using the Do...Loop Until statement ..607
Using the For...Next statement..607
Using the For Each...Next statement..608

Redirecting the Flow Using GoTo...609
Using the GoTo statement correctly ..610
Avoiding misuse of the GoTo statement..612

Chapter 5: Trapping Errors and Squashing Bugs 613
Knowing the Enemy ...613

Understanding syntax errors ..614
Understanding compile errors..615
Understanding run-time errors...616
Understanding semantic errors..617

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xxiii

FrontPage 2003 All-in-One Desk Reference For Dummiesxxiv

Time for a Bug Hunt...617
Executing a break ...618
Taking individual steps..619
Viewing the data tips ...619
Using the Immediate window to your advantage...........................620

Using the Locals Window..621
Using the Watch Window ..622

Adding a new watch expression...622
Using the Add Watch window...622

Chapter 6: Working with Classes, Arrays, and Collections625
Coding Considerations for Classes ..626

Working with classes ...626
Understanding the class types ...628
Using the With statement ..628

Using Arrays for Structured Storage..630
Understanding array usage ...630
Understanding the array types...632

Using Collections to Create Data Sets ...634
Understanding collection usage...634
Creating collections that use keys ...636
Accessing collection items..638

Chapter 7: Working with FrontPage Objects .641
Understanding FrontPage Objects...641

Using the Application object ..642
Using the FrontPageEditor (Page) objects644
Understanding the Themes collection ..647
Understanding the Webs collection...649
Understanding the WebWindows collection...................................651

Working with FrontPage Documents ...653
Automating Web-site creation ..654
Designing a basic template application...657

Book IX: Advanced Programming................................661

Chapter 1: Using Active Server Pages .663
Understanding How ASP Works ...663

Adding directives ...664
Defining script elements..665

Creating a Simple ASP Page ..667
Defining a simple display ..667
Processing GET input information ..668
Processing POST input information ..671
Working with session data ..672

Using Server Variables...675

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xxiv

Table of Contents xxv

Chapter 2: Using PHP .677
Understanding PHP..677
Getting Set Up with PHP..678

Downloading PHP...679
Installing PHP..680
Creating an IIS setup for PHP ..680

Creating a Simple PHP Page..681
Displaying a hello message ...682
Getting the PHP status information ...683
Using general programming techniques ...684

Working with Forms...689
Avoiding potential problems...689
Processing a request..690

Chapter 3: Working with Web Services .693
Understanding Web Services..694
Working with SOAP ..694

Understanding the SOAP package..695
Understanding the XML envelope..696
Understanding the HTTP transport ...696
Considering SOAP message fault tolerance697
Using WSDL to request data ...698

Creating a Connection to Amazon.com...700
Using a URL to contact Amazon ...701
Creating a Web page to interact with Amazon704
Relying on XSLT to transform Amazon data706

Creating a Connection to Google ...708
Making the call..709
Translating the request ...711
Displaying the data on-screen ..713

Locating Other Web Services ...715

Chapter 4: Enhancing FrontPage with Visual Studio .NET717
Creating FrontPage Extensions ..717
Creating a FrontPage Extension ...718

Creating the project ...719
Writing the code ...721

Configuring and Using the Extension ..726
Installing the extension ...727
Testing the extension...728

Index..729

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xxv

FrontPage 2003 All-in-One Desk Reference For Dummiesxxvi

00b_575317_ftoc.qxd 9/24/04 7:31 PM Page xxvi

Introduction

FrontPage 2003 All-in-One Desk Reference For Dummies is your gateway to
everything FrontPage. Through this book, you discover everything that

FrontPage can do. From basic HTM pages to complex pages with Cascading
Style Sheets (CSS), this book covers it all. The latest version of FrontPage
includes better database connectivity, access to a lot of great new themes,
and better ways to organize your information on-screen. In fact, this book
even helps you discover methods you can use to create your own themes
and organizational aids, so you don’t have to do things the Microsoft way.

FrontPage is an exciting way to create great-looking Web sites. However, it’s
even better than you might think. It would be easy to say that FrontPage cre-
ates and manages Web pages, but it does so much more. Sure, I’ll show you
around the FrontPage way of doing things, but then I get into scripting and
working with VBA as a way to improve productivity. You’ll see that FrontPage
works with PHP (an open-source, server-side scripting language), and you
can even use it to work directly with Web services. As I said — and this book
shows why — FrontPage is really the tool of choice for many Web sites!

Because Web sites are very serious undertakings, this book won’t just tell
you about all the great features that FrontPage provides. You’ll also discover
new techniques that make your work more efficient, help you create secure
Web sites, and ensure that everyone who visits can appreciate your efforts.
Accessibility issues are always important — and you’ll see them discussed
in some detail throughout the book.

FrontPage 2003 All-in-One Desk Reference For Dummies is a reference book.
You don’t have to read it in any particular order, and you can skip anything
that you don’t find interesting. Readers who really don’t want to use VBA to
enhance FrontPage don’t have to read that section — skip to another sec-
tion that shows (for example) the new security techniques that FrontPage
helps you implement.

Conventions Used in This Book
I always try to show you the fastest way to accomplish any task. In many
cases, this means using a menu command such as Tools➪Macro➪Visual
Basic Editor.

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 1

FrontPage 2003 All-in-One Desk Reference For Dummies2

I’m assuming you’ve worked with Windows long enough to know how the
keyboard and mouse work. You should also know how to use menus and
other basic Windows features.

Whenever possible, I use shortcut keys to help you access a command faster.
For example, you can open a new file by pressing Ctrl+O.

This book also uses special type to emphasize some information. You’ll always
see entries you need to type in bold. All code, Web site URLs, folder names,
and on-screen messages appear in monofont type. Whenever I define a new
word, you’ll see that word in italics.

When a chapter begins, I assume you’re in FrontPage working with your
example Web site (unless I’ve specified otherwise). All the commands in
that chapter are for FrontPage until I specifically move the discussion to
another application. I also specifically tell you when it’s time to move back
to FrontPage.

What You Should Read
As with many reference books, it’s easy to get a bit overwhelmed if you don’t
already know much about FrontPage. Anyone who hasn’t used FrontPage
before or worked with a Web site should read the first three books in this
volume to get a handle on what FrontPage provides. After you complete the
first three books, feel free to move on to other interesting topics.

Intermediate readers can probably browse Book I or perhaps skip it com-
pletely and refer to it as needed. Book II also presents basic principles,
but you’ll want to at least scan it so you can see any unique features that
FrontPage provides that you didn’t know about. However, by Book III, you
should find a lot of useful FrontPage-specific information that will make your
job a lot easier.

Expert readers will likely want to check some of the unique topics in the book
first. For example, some people are under the impression that FrontPage
doesn’t provide much in the way of XML support. They might be surprised
at how much you can do with XML in FrontPage. Of course, for truly unique
topics, take a look at Book IX: For example, discovering that you can build
pages using ASP or PHP with equal ease in FrontPage is a great way to begin
extending this product to do more than ever before.

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 2

Introduction 3

What You Don’t Have to Read
Most of the chapters contain some advanced material that interests only
some readers. If you happen to see a specialized topic (say, writing informa-
tion to the Windows Registry) that doesn’t connect to your situation, feel
free to skip it. The specialized topics usually reside in sidebars that are easy
to spot.

You can also skip any material marked with a Technical Stuff icon. This mate-
rial is helpful, but you don’t have to know it to use FrontPage. I include this
material because I find it helpful in my development efforts and hope you
will too.

Don’t assume that you have to read any of the more complex topics to use
FrontPage efficiently. I know many people who have never written a line of
VBA code, never added scripting to their Web pages, or never delved into
the mysterious world of FrontPage extensions — and they have perfectly
usable Web sites. In fact, simple is often better because you save time and
effort in maintenance and there are fewer compatibility issues to confront.
The idea here is straightforward: Do what works.

Foolish Assumptions
You might find it difficult to believe that I have assumed anything about you —
after all, I haven’t even met you yet! — but I have made a few assumptions.
Although most assumptions are indeed foolish, these assumptions provide a
starting point for the book.

I’m assuming you’ve worked with Windows long enough to know how the
keyboard and mouse work. You should also know how to use menus and
other basic Windows features. Some portions of the book work with Web
pages, Visual Studio .NET, and XML; you need to know at least a little about
these technologies to use those sections. You don’t have to be an expert in
any of these areas, but more knowledge is better.

You don’t need to know anything about FrontPage to use this book. I pur-
posely include sections that describe FrontPage in detail so you can use this
book at any skill level.

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 3

FrontPage 2003 All-in-One Desk Reference For Dummies4

How This Book Is Organized
This is a book of books. In fact, there are nine books in this single book. Each
book contains chapters related to that book’s topic, just as you would find
in a separate book anywhere. The book topics run from basic to advanced;
each one’s title cues you as to whether or not you need to read that book.
(For example, an advanced FrontPage developer probably won’t spend much
time in Book II because it describes how to create basic pages.) Of course, a
little review for the old hands — or a look ahead for the newcomers — can’t
hurt. Feel free to explore.

This book also contains a wealth of source code. You can find the source
code for this book on this book’s companion Web site at

www.dummies.com/go/frontpage2003

Book I: Essential Concepts
This book helps you understand FrontPage from a usage perspective. Spend
time here when you want to kick the tires so to speak and see what FrontPage
can do. By the time you complete the three chapters in this book, you’ll have
had experience with many of the menu commands and features of FrontPage.
In fact, you’ll have created your first Web page.

Book II: Basic Pages
Many developers become overwhelmed in the course of building a Web site
because they haven’t been exposed to all the possible ways to create Web
pages. This book shows a multitude of page types. You probably won’t use
them all — and won’t need more than one technique for most Web sites.
However, it’s always a good idea to have a wealth of tools at your disposal;
you never know when one of those tools will help you create just the right
presentation on a particular Web page. This book is all about design options.

Book III: Webs
Check this book for management techniques. FrontPage helps you save time
by helping you manage your Web site efficiently. You have more than one
view of each Web site you can use to see it from different angles. Various
reports help you recognize and diagnose problems before anyone else even
sees them. The goal is to provide you with the tools you need to keep all the
pages on your Web site updated and usable — without tearing your hair out
in frustration over checking every page individually.

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 4

Introduction 5

Book IV: Advanced Design
Many Web sites today are extremely flexible and dynamic. The information
changes as new information becomes available. Technologies such as
Cascading Style Sheets (CSS) help users have things their way. Sure, the
information is the same, but the use of a different CSS page can make a big
difference in how the user sees it. CSS is an essential accessibility aid.
Advanced design means adding Office objects directly into the Web pages —
and choosing Smart Tags that help users work with data in more than one
way. In addition, every book on advanced design should include security —
always a hot topic, and even hotter today. By the time you complete this
book, you know how to create some terrific-looking, secure Web sites with
plenty of pizzazz.

Book V: Databases
FrontPage provides good database support. You can access most database
types using a number of technologies — including Open Database
Connectivity (ODBC). This book shows how to work with three kinds of data-
bases: Excel, Access, and SQL Server. The principles you discover here help
you work with any database you encounter as you build your Web site.

Creating a connection isn’t the end of working with databases — it’s only the
beginning. The various chapters also describe presentation. The examples
demonstrate various kinds of presentation, including the use of pivot tables
to combine and analyze data in new ways.

Book VI: XML and XSLT
The eXtensible Markup Language (XML) is a great technology because it lets
people store information as text without losing the formatting and content
associated with the information. In fact, many people view XML as the best
way for businesses to exchange information and to present certain kinds of
information (such as magazine articles) on Web sites.

XML isn’t all that readable, however — so that’s where eXtensible Style
Language Transformation (XSLT) comes into play. This technology takes
the XML you provide and transforms it into a legible Web page. In fact, you
can use a number of XSLT files to create different views of the same data.
Although this book isn’t a complete XML or XSLT reference, it does demon-
strate how you can use both technologies effectively in FrontPage.

Book VII: Scripting
Scripting lets you work with user input and perform other tasks on a Web
page. For example, many of the special effects you see on Web sites — such

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 5

FrontPage 2003 All-in-One Desk Reference For Dummies6

as data fields that change when you hover the mouse pointer over them —
rely on scripting. This book demonstrates how you can use scripting in
FrontPage to create special effects, work with user data, save and restore
user settings, and modify the Web-page interface to meet specific user needs.

Book VIII: VBA Programming
Visual Basic for Applications (VBA) isn’t specific to FrontPage. In fact, many
applications use this language to provide scripting support. Because this
book is all about enhancing FrontPage so it can do more for you, faster, and
with less effort on your part, VBA can play a part in that enhancement. You
don’t use VBA on a Web page but rather within FrontPage to put the fun back
into Web-page development.

Book IX: Advanced Programming
This book is truly for the advanced reader. It discusses four topics of special
interest. The first is using FrontPage to work with Active Server Pages (ASP).
The client-side scripting described in Book VII goes only so far in meeting
user and business needs. Sometimes you need server-side scripting to pro-
vide better database support and a higher level of security — or simply to
ensure that your users have full access to your Web site, even when client-
side scripting isn’t an option.

For those who have to work with platforms other than Microsoft Windows, it’s
possible to create PHP Hypertext Processor (PHP) scripts with FrontPage.
Like ASP, PHP is a server-side scripting solution; unlike ASP, it works on a lot
of platforms — and won’t cost you a cent to install. FrontPage provides only
minimal support for PHP, so this server-side scripting technique isn’t for
everyone.

The big news of the day is Web services even though some people feel the
promise of Web services hasn’t yet been met. This book demonstrates how
to work with two public Web services that already exist — Amazon Web
Services and Google Web Services — and tells you where to find others. The
promise of Web services is still emerging; it’s one of the best-kept secrets in
computing today.

The final chapter in this book answers the question of what to do when VBA
can’t meet a specific FrontPage-extension need. This chapter demonstrates a
technique for using Visual Studio .NET to build extensions to the FrontPage
environment. By using this technique, you can move well beyond simple
additions to FrontPage — you can create an entirely new interface.

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 6

Introduction 7

On the accompanying Web site
This book contains a lot of code and you might not want to type it.
Fortunately, you can find the source code for this book on the Dummies.com
site at www.dummies.com/go/frontpage2003. The source code is organ-
ized by book and chapter; I always tell you about the example files in the
text. The best way to work with a chapter is to download all the source code
for it at once and work with it through the chapter.

Icons Used in This Book
Tips are nice because they help you save time or perform some task without
a lot of extra work. The tips in this book are timesaving techniques or point-
ers to resources that can help you get maximum benefit from FrontPage.

I don’t want to sound like an angry parent or some kind of maniac, but you
should avoid doing anything marked with a Warning icon. Otherwise, you
could find that your program melts down and takes your data with it.

Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words — or they could
contain the solution you need to get a Web site up and running. Skip these
bits of information whenever you like. They’ll be there if you need them later.

If you don’t get anything else out of a particular chapter or section, remem-
ber the material marked by this icon. This material usually contains an
essential process or bit of material that you must know to create great Web
sites or use FrontPage efficiently.

Where to Go from Here
It’s time to start your FrontPage adventure! I recommend that anyone who
has only a passing knowledge of FrontPage go right to Book I, Chapter 1.
This chapter contains essential, get-started information that you need to use
FrontPage.

Anyone who already knows FrontPage might want to skip to one of the chap-
ters in Book III. The examples are more complex than those in the previous
books, and you’ll still get to see some more of what FrontPage can do before
you get into the detailed examples in the books that follow.

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 7

FrontPage 2003 All-in-One Desk Reference For Dummies8

00c_575317_cintro.qxd 9/24/04 7:24 PM Page 8

Book I

Essential Concepts

01_575317 pp01.qxd 9/24/04 7:26 PM Page 9

Contents at a Glance
Chapter 1: Introducing FrontPage 2003..11

Chapter 2: Getting Started ..21

Chapter 3: Creating Your First Web Page ..43

01_575317 pp01.qxd 9/24/04 7:26 PM Page 10

Chapter 1: Introducing
FrontPage 2003

In This Chapter
� How you can use FrontPage 2003

� Understanding FrontPage 2003 changes

� Using FrontPage 2003 to Create Web Pages

You can develop Web sites using nothing more than a plain text editor.
For many years, that’s all some people used. The reason that FrontPage

and other products like it are so popular is that they save time and effort.
FrontPage 2003 saves time by providing hints about the special information
used to create a Web page. It also helps you organize your Web pages so
they make sense and even provides reports on Web page usage. In fact, I’ll
go so far as to say that FrontPage makes creating Web pages fun.

Before you can create the next great Web site, however, it’s important to
discover just what FrontPage can do. Some people think that creating a Web
page is hard because of all the special tags and formatting required. FrontPage
removes the need to remember all these special tags. You still have to know
what task the tag performs, but FrontPage helps you get past weird tags and
into the information you want to present. Consequently, FrontPage is a tool
that reduces work and lets you become more creative.

Understanding FrontPage
FrontPage is a part of Microsoft Office, even though it’s sold separately.
As shown in Figure 1-1, FrontPage shares the look and functionality of other
Office 2003 products. In addition, FrontPage also supports many of the new
features that you’ll find in other Office 2003 products such as the ability
to work directly with XML files. You can also write special extensions for
FrontPage using products such as Visual Studio .NET. All the new interface
features are also present, such as the new help system that makes it easier
to find precisely what you want. It’s not important to understand all the fea-
tures that FrontPage provides right now; this section simply provides a quick
overview of what FrontPage can do.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 11

Understanding FrontPage12

Even with all these new additions, FrontPage is still a design tool for Web
pages. Yes, you can use it to write content, much as you would use a word
processor. However, the goal is to organize the content so you can present
it to other people in a way that makes communication easy. FrontPage isn’t
just about presenting information; it’s about making that information easy
to understand.

You’ll also use FrontPage to manage your Web site. Management means every-
thing from moving content from your local system to a Web server to ensur-
ing the graphic images you create are updated properly. FrontPage makes it
easy to see how your Web site is arranged and how each page plays a role in
communicating the information you want to provide. For example, the Navi-
gational view shown in Figure 1-2 shows how your pages are arranged. In this
case, the home page (the one with the house icon) appears at the top. A folder
named Newsletter (shown with a navigational bar icon) holds a single Web
page. To get to this Web page, the user would click a link on the home page.

FrontPage includes a number of other management views. These views are
often linked to still other views so you can drill down into your Web site and
see precisely how the various pages interact. For example, when you click an
entry in the Navigational view, you can click the Hyperlink view and see all
the links on that page. Figure 1-3 shows the list of hyperlinks for the home
page in Figure 1-2. Clicking any of these hyperlinks shows you that page.

Figure 1-1:
Rely on
the new
FrontPage
2003
features
to make
Web page
development
easier.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 12

Book I
Chapter 1

Introducing
FrontPage

2003
Understanding FrontPage 13

Figure 1-3:
Use
interrelated
views to
see your
Web site
in depth.

Figure 1-2:
Use
FrontPage
views to
see the
organization
of your
Web site.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 13

Important Changes for FrontPage 200314

When you get past the communication and management needs for a Web
site, you must consider the maintenance requirements. A Web site ages —
sometimes the owner doesn’t realize that a feature that worked yesterday
no longer works today. For example, your favorite Web site might move. If
you have a link to this Web site on your Web page, that link won’t work any-
more and the Web site’s users will complain. FrontPage includes tools that
help you maintain your Web site. You can ask FrontPage to check all the links
on your Web site to ensure they still work. FrontPage can also perform other
maintenance tasks, such as ensuring that your Web site meets accessibility
requirements and optimizing pages so they load fast.

Sometimes FrontPage can’t perform a task for you automatically. In that
case, you can add the task to a list of tasks that FrontPage manages for you.
As you accomplish tasks, they come off the list. If you keep your Web-site
tasks separate from other task lists you maintain, it’s easier to stay focused
on your Web site when you maintain it. Fortunately, even when you do need
to perform a task manually, you can create a macro to make the task easier
and faster to perform.

FrontPage may appear complex. If you break the product features into small
pieces, however, you find that you can create a Web site right away, updating
it later as you discover more FrontPage features. It’s important to concentrate
on the main goal for using FrontPage— communicating with other people.

Important Changes for FrontPage 2003
Microsoft tries to improve FrontPage with every new version. FrontPage 2003
is no exception to that rule; some of the changes are so significant that it’s
worth a closer look at what they can do for you. The following sections focus
on a selection of features that help you create great-looking Web sites fast.

Better design tools
The tools you use to create a Web page are very important. FrontPage 2003
includes new design and layout features that help you work quickly. The new
layout is larger, so you spend less time scrolling. In addition, the layout tools
use special techniques to make your page look precisely the way you want it
to rather than the way HTML dictates. If you want to see a picture on the right
side of the page, that’s where FrontPage puts it.

Design means being able to look at your Web page in several ways. FrontPage
provides a number of tools to help in this respect. For example, you can use
image tracing to convert a graphic image into a Web-page design. You use a
graphics tool to create an image you like, and then convert that image into
something a browser can understand. You can also layer your Web page’s
elements so you can peel them back later and concentrate on just the ele-
ments you’re working with at the moment.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 14

Book I
Chapter 1

Introducing
FrontPage

2003
Important Changes for FrontPage 2003 15

FrontPage also gives you plenty of layout help in the form of themes —
structures you can use when you lay out the information you want to pre-
sent. Using themes, you can easily create a series of Web pages that all have
the same look, which adds continuity to your Web site. The user ends up
looking at the content rather than at some extra or misplaced element on
the page.

Sometimes an important change appears in a small package. The new
FrontPage editor is an example, and it’s much smarter than the one in
previous versions. It includes new features such as Smart Search and
Replace. Imagine for a moment that you’ve made the same mistake on
just about every page on your Web site. Instead of replacing the text by
hand, you can make the change once and let the smart-search-and-replace
feature make the change in every other location.

The editor has other types of improvements too. For example, you can get
FrontPage to intelligently edit any kind of text file. (Intelligent editing means
that FrontPage highlights keywords and provides other forms of help such
as IntelliSense — a technology that interprets what you type and suggests
what to type next.) For example, you can load an XML or script file and edit
it without using another editor. The IntelliSense feature even helps you make
changes to many text files so you don’t have to remember arcane coding
syntax.

The same editor can optimize your HTML, so it loads faster and presents fewer
compatibility problems. FrontPage can do some optimization automatically —
for example, it can remove unnecessary white space, empty tags, and even
empty styles from the page. In some cases, you can also use FrontPage to
remove or change other features. The basic requirement is that you must
define the feature as a specific kind of HTML tag.

Improved user support
Nothing’s worse than going to a Web site and finding that the designer had a
huge monitor with great resolution. The only problem — you don’t have the
designer’s setup, so you can’t see the site very well. FrontPage helps you get
around this problem by showing you (as designer) what the user’s browser
sees, at multiple resolutions. The result is that you can detect potential prob-
lems with your Web page design before the user has to deal with them.

FrontPage also provides accessibility support, including support for the U.S.
government’s Section 508 requirements. Accessibility support makes it pos-
sible for anyone with special needs to access your site. For example, some-
one who has vision problems can rely on nonvisual aids to interpret and
understand your site. By making your site accessible, you open the door
to sharing information with a much broader range of users.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 15

Important Changes for FrontPage 200316

Updated graphics
One of the more interesting additions to FrontPage is the capability to use
Macromedia Flash. This means your Web page can include movies, anima-
tions, and other glittering effects. FrontPage helps you create a pleasing
Macromedia Flash presentation by making it easy to change features such
as the repeat rate for graphics or how long an animation will loop (replay
itself).

FrontPage has improved graphics handling overall. For example, you can
now define which editor to use for a particular kind of graphic. (The integra-
tion between FrontPage and the selected editor is better, although not neces-
sarily seamless.) FrontPage also helps you understand how it works with a
particular graphic file type when you import it into the environment. This
support helps you make better decisions on how images are presented and
saved.

Enhanced coding support
Not every Web page requires code. In fact, it’s better to avoid using code
unless you actually need it; code usually adds to the complexity of the Web
page and can reduce compatibility. However, when you do need to use code,
FrontPage makes it a lot easier to create good code that runs with a range of
browsers. In fact, many new coding features come in the form of “canned”
code that Microsoft has created for you. For example, you can use the new
server Behaviors feature to improve the interactivity of your site. A behavior
can make the Web page perform a task, such as changing a specified graphic
when the user passes a mouse pointer over it. The coding support also
includes code snippets and smart buttons that you don’t have to program.

Some coding support comes in the form of editor aids. For example,
FrontPage now includes IntelliSense support. IntelliSense watches what
you type, guesses what you’ll type next, and provides help with that par-
ticular input. In many cases, you can ask IntelliSense to complete the input
for you so you don’t have to type the entire line. The result is that you get
the text typed faster and more accurately. You’ll also find a number of other
helpful features such as line numbers, preset indentation, and automatic
tag completion.

Front Page actually supports several levels of coding. Don’t worry too much
about committing these levels to memory or being able to rattle off precisely
what they do. The first level is the code you can add to a Web page to make
it work better. A script can help users make decisions on what kind of infor-
mation to send back to you or can make the page friendlier. The second level
is special code you can use to make Web-page content change automatically.
The Web page could be connected to your database or another source of
information. The code would change the content to reflect new information

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 16

Book I
Chapter 1

Introducing
FrontPage

2003
Important Changes for FrontPage 2003 17

you add to these sources. The third level of code is macros you can create
to make FrontPage easier to use. A macro is a small program created by stor-
ing the keystrokes you use to perform a task. FrontPage plays the recording
to perform the task automatically for you. The fourth level of code encom-
passes special extensions you create for FrontPage. The extensions could
do anything from adding a new feature to FrontPage to making it easier to
add special features to your Web site.

Better data handling
It’s important to present data quickly and clearly in today’s Web environ-
ment. Users no longer tolerate old or inflexible data displays. With this in
mind, FrontPage makes it easy to present data from a number of sources.
For example, you can present data from any data source that conforms to
Object Linking and Embedding-DataBase (OLE-DB) requirements, which
includes products such as SQL Server and Access. You can also create
OLE-DB data sources from products such as Excel, use any type of XML file
(including URLs that return XML as output), or use Windows SharePoint
Services data.

Another new feature is the Web Part. Imagine setting up a master view that
manipulates details on-screen. For example, the user could select a particu-
lar geographical region and see all the details change to match that region.
The addition of this feature means you can now set up a Web page to behave
dynamically according to a specific set of rules — for example, you can add
new behaviors that depend on the options a user selects.

Finally, FrontPage 2003 makes it possible to create specific data views. The
underlying data is the same; only the presentation changes. You can already
perform this task using standards-based technologies such as eXtensible
Stylesheet Language Transformations (XSLT), but FrontPage makes it easier
to create the required views. The presentation of data is essential — it defines
your ability to communicate with the users of your site in a meaningful way.

Easier Web content publication
Previous versions of FrontPage often made it difficult to move the Web pages
you created from your hard drive to the Web site. In addition, these earlier
versions depended on functionality provided by Internet Information Server
(IIS). FrontPage 2003 corrects this problem, at least to an extent. You do get
better performance if you use IIS, but now you have the option of using other
remote sites.

Remote site support is especially important for people who use hosted sites
where you might not have much control over the server. To address this
issue, FrontPage supports standard File Transfer Protocol (FTP) and Web-
based Distributed Authoring and Versioning (WebDAV) uploads.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 17

Essential Web-Page Concepts18

Users familiar with WebDAV know it provides file locking — groups of
people can collaboratively edit content without overwriting each other’s
work. FrontPage also provides support for Macromedia Dreamweaver
LCK (locking) files. This means you can work in a mixed environment
with Macromedia Dreamweaver users.

Essential Web-Page Concepts
Before you get started creating Web pages, consider a few essential concepts:

✦ Keeping your Web site focused

✦ Organizing your Web site for maximum efficiency

✦ Keeping the design simple but effective

The following sections provide helpful hints you can use to make your Web
site work better from the start.

Maintaining a focus
It’s easy to get sidetracked by all the glittering displays and fancy graphics
of many Web sites. After you look at enough Web sites, it’s even easy to
forget the real purpose behind a Web page.

The most important concept about Web pages is that they let you exchange
information with other people. In simple terms, a Web page is all about com-
munication — your communication. When a Web page fails to communicate,
then it has failed to accomplish the most basic task it can perform.

FrontPage can solve many of the difficult technical issues for you. When
you decide that you want to highlight certain words in red (for example),
FrontPage provides the tools needed to perform that task. However,
FrontPage isn’t creative — you’re the creative element. It’s important to
separate creativity — the need to communicate — from the tool that helps
you present the information. Some people think FrontPage will solve their
communication problems, but it can’t. It helps you solve the technical issues,
but it’s still up to you to present the information. Of course, presenting
the information — saying something important — is the easy part of the
task for most people.

Using organization effectively
One essential issue to think about is the communication factor behind
Web development. When you create a Web page, consider what message
that page is presenting — which means organizing the Web page to ensure
it works well. FrontPage makes it easy to create a design you can control

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 18

Book I
Chapter 1

Introducing
FrontPage

2003
Essential Web-Page Concepts 19

closely, deciding on the page for each message and then looking at all the
messages your Web site presents. That’s one reason to use the Navigational
view shown in Figure 1-2.

Organization isn’t a matter of just keeping your ideas focused. Every Web
page you design should have a single focus — one idea you want it to present.
Careful organization also makes it easier to create large Web sites that are
easy to maintain. FrontPage helps you organize your ideas by using a combi-
nation of folders and individual Web pages. It also helps you maintain all the
support elements for the Web page (such as graphics and sounds) that you
want to use.

Keeping it simple
Many Web sites are so complex that they become hard to use. You can avoid
hiding the message you want to present by keeping your design and its oper-
ation simple. For example, don’t use graphics unless they serve a purpose.
Of course, you can decorate your pages by making graphics part of the mes-
sage. Some Web sites add too many graphics that detract from the message
the page is supposed to present (and make it slow to load).

Keep scripts and other gizmos to a minimum — many users have shut off
support for them because of the security problems on the Internet. It doesn’t
pay to have a fancy Web page that no one can view because the message is
hidden by the gizmos. The best page is one that everyone can use, no matter
which browser they choose.

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 19

Book I: Essential Concepts20

02__575317 bk01ch01.qxd 9/24/04 7:29 PM Page 20

Chapter 2: Getting Started

In This Chapter
� Using the Integrated Development Environment (IDE)

� Locating help

� Modifying the work environment

� Working faster with keyboard shortcuts

Before you can begin creating Web pages, you need to explore the
FrontPage interface. The tools that FrontPage provides are easily

accessible; you just need to figure out where they are. Sometimes it’s
interesting just to click something to see what happens, but it’s better
to see how things work in a logical order. In the first part of this chapter,
you explore the FrontPage interface — the Integrated Development
Environment (IDE).

The people at Microsoft make assumptions about you when they configure
FrontPage during installation. Some of these assumptions are probably cor-
rect, but even Microsoft can’t guess everything about you. It’s important to
discover how to change your working environment. The first step is to look
through the help provided with FrontPage to see what’s possible. You can
make some changes immediately. For example, using keyboard shortcuts
greatly reduces the time to accomplish a task. You can also customize your
toolbars to make them friendlier. After all, this copy of FrontPage is yours,
so you need to make it work your way.

Using the IDE
The IDE is the part of FrontPage that you see. Whenever you start FrontPage,
you’ll see one or more windows that contain information about your Web
site and the FrontPage environment. The combination of all these windows
is the FrontPage IDE. You probably won’t need to use all these windows
immediately — you might never need some of them — but you can access
the ones you do need by clicking their tabs at the bottom of the IDE. These
tabs include

✦ Folders

✦ Remote Web site

✦ Reports

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 21

Using the IDE22

✦ Navigation

✦ Hyperlinks

✦ Tasks

The following sections describe these various windows and tell you what
they can do for you.

Working with folders
FrontPage has two folder views that you can use. These folder views have
about the same purpose as the two windows you see when you use Windows
Explorer. The Folder List, shown in Figure 2-1, acts the same as the left pane
in Windows Explorer. You use the Folder List to select a folder you want to
view in Folders view (on the right side of the page). The Folder List can also
show individual files.

You don’t have to keep both of these views visible. To remove the Folder
List from view, click the Close box in the upper-right corner of the window.
Use the View➪Folder List command to display the Folder List window again.
The Folders view is always accessible using the tabs at the bottom of the
window. You can also use the View➪Folders command to display it.

Figure 2-1:
Use the two
folder views
to make it
easier to
locate files.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 22

Book I
Chapter 2

Getting Started

Using the IDE 23

The two folder views let you open documents, create new documents, delete
documents you don’t need anymore, and rearrange your Web site. FrontPage
provides other methods for performing these tasks as well, but this is the
method that many people find most comfortable. You can display a list of
the actions you can perform in either of the folder views, using one of two
methods:

✦ Right-click any clean area. FrontPage displays a context menu (similar
to the one in Figure 2-2), listing actions you can choose.

✦ Right-click any object in either folder view. A context menu appears
and shows you what you can do with (or to) the object.

Go ahead; it’s a lot of fun!

Viewing documents
Seeing your documents listed in one of the folder views is a good start but
doesn’t allow you to do anything with them. To view a document in FrontPage,
double-click its entry in one of the folder views. FrontPage opens the docu-
ment, using a text view or a special view (depending on the file type and the
settings you made to the application). Figure 2-3 shows a typical specialty
view for working with HTML pages.

Look at the top of the Web page shown in Figure 2-3. The welcome.html tab
is the current document. Whenever you open a document, FrontPage adds a
tab for it so you can access it easily. To get back to the folder view you saw
earlier, click Web Site.

In some cases, you won’t want to take the time to look for a file in one of the
folder views — or you might need to open a file that isn’t in one of the folders.
To open a file without using the folder view, use the File➪Open command or
click the Open button on the Standard toolbar. Select the file you want to open
in the Open File dialog box and then click Open. You can also double-click the
file in Windows Explorer in most cases. As long as the file is associated with
FrontPage, you can open it in Windows Explorer.

Figure 2-2:
Right-click
various
objects to
see what
you can do.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 23

Using the IDE24

The best way to determine how FrontPage will react to a specific file type is
to check the file type’s settings in the Options dialog box. Use the Tools➪
Options command to open this dialog box. Select the Configure Editors tab
to see the list of options shown in Figure 2-4.

Figure 2-4 shows that FrontPage can open HTML files using the special
viewer shown in Figure 2-3. This setting shown is the default — the one
FrontPage uses if you don’t make a specific choice. FrontPage can also

Figure 2-4:
Change how
FrontPage
reacts to
documents
using the
Configure
Editors tab.

Figure 2-3:
Use special
FrontPage
views like
this one
to edit
documents
whenever
possible.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 24

Book I
Chapter 2

Getting Started

Using the IDE 25

open the HTML file as text or use an external editor (Notepad, in this case).
You can use this dialog box to add new file extensions, new editors, change
the order of the editors in the FrontPage list of preferences, or remove
options you don’t need.

To open a document using one of the FrontPage alternatives, right-click it
in one of the folder views. Select the Open With command from the context
menu, and you’ll see a list of options for opening the file as shown in Figure
2-5. Notice that the first three options match the options that you saw in
Figure 2-4. Windows provides the remaining two options as registry settings
for those applications.

Using the Remote Web Site view
The Remote Web Site view shows how your local copies of a Web site’s files
compare with the published versions of those files on a private or public Web
site. You use this view to move files that you’ve worked on locally to a remote
site. This view also makes it possible to download files that appear on the
remote site to your local machine. Figure 2-6 shows a typical example of a
Remote Web Site view (don’t worry about its details right now).

You can use the Remote Web Site view to transfer and update files. In gen-
eral, you click specific arrows in the view:

✦ To move a file from your local machine to the Web site: Select the file
in the Local Web Site pane (normally on the left side of the display) and
click the right arrow between the two panes.

✦ To move a file from the Web site to your local machine: Click the file in
the Remote Web Site pane (usually on the right side of the display) and
then click the left arrow.

Figure 2-5:
Select one
of the
options on
this list to
open the
target file.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 25

Using the IDE26

✦ To update the oldest file: Select the newest of the two files and click the
double arrow.

✦ To update the entire site: Select one of the Publish All Changed Pages
options and then click Publish Web Site.

It’s also possible to use this view to rename and delete files as well as arrange
the files in various ways. For example, you could arrange the files by status
so that you can easily see which files you need to update. To perform any
of these tasks, right-click in the appropriate window and choose one of the
options shown in Figure 2-7. When you want to delete or rename a file, you
must right-click that file.

Publish from local site

Synchronize selected files

Publish from remote site

Figure 2-6:
Use the
Remote
Web Site
View to
synchronize
local and
remote
sites.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 26

Book I
Chapter 2

Getting Started

Using the IDE 27

Using the Reports view
The Reports view contains information about your Web site in report format.
The first report you see is the Site Summary shown in Figure 2-8. The Site
Summary provides statistics about your Web site, such as the number of
pictures your site contains or how many broken hyperlinks you need to fix
to make the site usable.

Figure 2-8:
Discover
interesting
facts about
your Web
site using
the Reports
view.

Figure 2-7:
Rearrange,
delete, or
rename files
as needed
using the
context
menu
options.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 27

Using the IDE28

Many entries on the Site Summary have links you can use to see other, more
detailed reports. For example, click All Files and you’ll see a complete list of
all the files on your Web site. The listing includes important information such
as the last time you updated the information in the file. This view also con-
tains any comments you made about the file. This view is helpful when you
want to locate files that require work.

After you click one of the links on the Site Summary, however, you’ll find
that there isn’t any obvious way to get back to it. To go to one of the other
reports — including the Site Summary — click the report title in the upper-
left corner of the window. You’ll see a list of reports grouped by type, as
shown in Figure 2-9.

The title menu contains a total of 32 reports. Many of these reports also
appear on the Site Summary, but not all of them, so always look through
the title menu when you need a report that doesn’t appear on the Site
Summary. For example, if you want to see a report on theme usage, choose
Shared Content➪Themes from the title menu.

Not all reports are useful for every Web site. Some reports, such as those on
the Usage menu, require that you use a FrontPage-friendly server application
such as Internet Information Server (IIS). This server has special support for
FrontPage built into it. Consequently, you can use FrontPage to build a Web
site on a hosted server (one over which you have no control), but you can’t
use FrontPage to obtain usage reports in this environment unless the host is
using IIS and allows you to access the FrontPage extensions.

No matter what kind of Web site you use, some reports are very useful. For
example, the Slow Pages report helps you locate performance problems on
your site. To access this report, choose Problems➪Slow Pages from the title
menu.

Another useful report is the Review Status report. It’s important to review
Web pages periodically to ensure they are updated and display data in the
way you expect. The Review Status report helps you keep track of which
pages have received reviews lately. You can access the Review Status report
by choosing Workflow➪Review Status from the title menu.

Figure 2-9:
Select
one of the
reports
using the
title menu.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 28

Book I
Chapter 2

Getting Started

Using the IDE 29

Sometimes two FrontPage reports look as if they should deliver similar infor-
mation, but each report has a different purpose. For example, you might think
the Older Files report would tell you which files contain old content. However,
this report simply tells you which files haven’t changed for a given time. A
page that has received a change recently can still contain old content. Even
though older content can still be valuable, the Older Files report does help
you locate files that might require additional review and support. You can
access the Older Files report by selecting Files➪Older Files from the title
menu.

Navigating through your site
Creating a picture of your site layout is important because a graphical repre-
sentation can help you locate problems quickly. For example, a page might
contain too many destinations. To help people find what they need, you can
consolidate some of those destinations on other pages. The Navigation view
is important because it’s the first step in understanding the layout of your
Web site. To fully appreciate this view, you’ll normally want to get rid of some
on-screen clutter (such as the Folder List). Figure 2-10 shows a typical exam-
ple of the Navigation view.

Figure 2-10:
Use a
graphic
view of your
site to see
problems
such as
too many
destinations.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 29

Using the IDE30

You can perform many of the same tasks with the Navigation view that you
can with either of the folder views. For example, you can create new docu-
ments, delete documents you don’t need, and open documents for editing.

Discovering links
The first task every Web site performs is to present information. The second
task is to provide links to other sites with related information. The reason the
Internet works as well as it does is that many pages have connections to other
pages. You can start at one location and end up in an entirely different loca-
tion on the Internet as you read information. For this reason, it’s important
to know about the links on your Web site so you can define the message the
links present to other people. The links you present add to the message that
the content on your Web site provides. Figure 2-11 shows a typical view of
Web site links.

To display links for a particular page, locate that page on the Navigation tab
shown in Figure 2-10 and click Hyperlinks. The view in Figure 2-11 shows what
you’ll typically see. The page you selected is on the left side of the display.
The linked pages appear to the right, ordered as they appear on the page.

Figure 2-11:
Use links to
add to the
information
your
Web site
presents.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 30

Book I
Chapter 2

Getting Started

Using the IDE 31

Figure 2-11 shows two kinds of hyperlinks. Every type of hyperlink uses a dif-
ferent icon so you can identify it easily. In this case, most of the hyperlinks
are for other Web pages. Near the bottom of the screenshot you see a mailto
hyperlink that lets someone send e-mail immediately to the person whose
address appears in the hyperlink.

Whenever you select a hyperlink, the arrow pointing to that hyperlink changes
color. This feature helps you accurately select hyperlinks on a crowded dis-
play. The following sections describe other tasks you can perform with this
view.

Displaying additional information
The initial display shows limited information. To add to the information you
see, right-click any blank area of the window. You see the context menu shown
in Figure 2-12. Select the Show Page Titles option when you want to see the
page title rather than the filename in the Hyperlinks view. Select Hyperlinks
to Pictures to see the picture hyperlinks as well as those used to access other
Web sites. Even though the icon is the same for both page and picture hyper-
links because it’s the same kind of hyperlink, FrontPage uses a different arrow
color for picture hyperlinks. Select the Repeated Hyperlinks option to display
hyperlinks that appear more than once on the page — FrontPage normally
displays just the first occurrence of a link.

Selecting a hyperlink view
The normal display shows the page you selected as the center of the hyperlink
universe. You change this view by right-clicking one of the links and selecting
Move to Center from the context menu. Doing so changes the view (as shown
in Figure 2-13).

Now the display shows all pages associated with this link, including the orig-
inal link. The new page appears on the right side of the display; all the parent
links appear on the left side of the display. This technique works best for child
pages that appear on more than one page — a typical example of which is a
stylesheet (a special file that defines the formatting for a Web page). The list

Figure 2-12:
Add
information
as needed
to the
Hyperlinks
view.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 31

Using the IDE32

shows Web pages that reference the stylesheet. You can select a different
parent page from the list by right-clicking and choosing Move to Center
from the context menu.

Verifying a hyperlink
Another special task you can perform with this view is to verify hyperlinks
(that is, check for broken links left because a page moved or doesn’t exist
anymore). To verify a hyperlink, right-click the hyperlink and choose Verify
Hyperlink from the context menu. FrontPage displays an error message if
the hyperlink doesn’t exist. (No special success message appears for valid
hyperlinks — the FrontPage presentation doesn’t change in any way.)

Opening documents and hyperlinks
As with most other FrontPage views, you can open documents shown in this
view by double-clicking them. Unlike other views, however, you can also open
hyperlinks by double-clicking them. The page appears in FrontPage as a stan-
dard Web page. You can view the code and see how the page appears on
screen. This technique works even on pages you didn’t create that are
simply linked to your Web page.

Figure 2-13:
Display all
of the links
for a child
page by
centering on
that page.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 32

Book I
Chapter 2

Getting Started

Using the IDE 33

As a handy learning aid, you can open pages that you’ve linked to in order
to see how another developer creates special effects or handles user input.
Opening the link in FrontPage allows you to see the code with the special
highlighting that FrontPage provides. The highlighted text makes it easier
to understand the code that someone else wrote.

Setting document properties
The Hyperlinks view offers information not found in the other views. It helps
you see a fuller view of a particular page by showing the connections it has
to other documents. Describing documents and placing them into a particu-
lar workgroup is important. The documentation process tells you how a page
fits within the Web site as a whole. To set the properties of a page based on
the Hyperlink view, right-click the page and select Properties from the con-
text menu. You see the Properties dialog box shown in Figure 2-14.

The three tabs in this dialog box let you set the page title, write a summary,
and select workgroups. The title is the content of the <title> tag that you
place in the document. The summary is FrontPage-specific and doesn’t appear
anywhere within the Web page. You can write notes to yourself about the page
and tell why you created it.

The Workgroup tab shown in Figure 2-15 is special. Use this tab to assign
a page to a particular workgroup in your organization. Optionally you can
assign a specific person to manage the page and define a status for it.

Copying documents
You can quickly start a new page, in some cases, by copying an existing page.
The various views help you decide whether an existing page will fulfill a new
task. The Hyperlinks view is especially handy because it helps you see the

Figure 2-14:
Document
a page
using the
Properties
dialog box.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 33

Using the IDE34

information a page contains in context of the pages it references. You create
a copy of a page in this view by right-clicking a page and selecting New from
Existing Page on the context menu. FrontPage opens a new document based
on the existing document. The new document doesn’t become permanent
until you save it to your project.

Creating a task list
Managing tasks for your Web site is vital — otherwise you might forget to
add a change or create new content. A developer is normally very busy; it’s
worth your while to prioritize tasks to ensure you get the most important
tasks completed quickly — and FrontPage can help. It provides a task man-
ager you can use to keep your Web-site-development tasks separate from
the other tasks you perform. Figure 2-16 shows a typical Task view.

You can sort the tasks in a number of ways — for example, by status so you
know immediately which tasks aren’t complete. To sort the tasks, right-click
an open area of the window and select one of the Arrange menu options
shown in Figure 2-17.

To add a new task, right-click an open area of the window and select Add
Task from the context menu. FrontPage displays the New Task dialog box
shown in Figure 2-18. Always provide a Task Name field entry; nameless
tasks get lost. Make sure the name is descriptive so you can determine what
to do quickly. Assign the task a priority (so you can decide which tasks to
perform fast); you don’t always have to provide a description if you write a
complete task name. The Description field should include amplifying infor-
mation, such as where to find resources to perform the task.

Figure 2-15:
Define a
status for
a page in a
workgroup.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 34

Book I
Chapter 2

Getting Started

Using the IDE 35

Figure 2-18:
Create
descriptive
tasks so
you quickly
remember
what to do.

Figure 2-17:
Sort your
task list to
locate items
quickly.

Figure 2-16:
Use tasks to
keep your
Web site
updated.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 35

Getting Help36

Sometimes you need to edit a task to include additional details or change
the task name so it’s clearer. To edit a task, right-click the task entry and
select Edit Task from the context menu. Likewise, when you complete a
task, right-click the task entry and select Mark Complete from the context
menu. FrontPage changes the icon from red to green. You can see completed
tasks until you delete them by checking the Show History option shown in
Figure 2-17.

Getting Help
FrontPage provides several forms of help — all of which demonstrate meth-
ods for performing tasks or answering questions about FrontPage and asso-
ciated products. The following sections describe various kinds of user-level
help that FrontPage provides.

Accessing general help topics
In most cases, FrontPage doesn’t provide context-sensitive or dialog-box-
level help. To access help, press F1 or choose the Help➪Microsoft Office
FrontPage Help command. FrontPage displays help in the Task Pane on
the right side of the display, as shown in Figure 2-19.

Figure 2-19:
Look for
help in the
Task Pane
on the right
side of the
display.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 36

Book I
Chapter 2

Getting Started

Getting Help 37

This initial help page provides several methods of accessing the special help
you need. Here’s how each method works:

✦ Type one or more search words in the Search For field and click Start
Searching (the green arrow). Front Page displays a list of topics that
match your search criteria. Click the link that matches the help topic
you want to find. FrontPage displays the help topic on-screen in a sepa-
rate window. This technique is best when you know the help topic you
want or can choose from a relatively small list of help options. Figure 2-20
shows a typical example of a specific help topic.

✦ Click Table of Contents in the Task Pane. FrontPage displays a hierar-
chical list of help topics in the Task Pane, from which you select a sub-
ject. FrontPage displays the topics associated with that subject. Continue
selecting topics until you reach the specific topic. FrontPage displays a
full-page view of the help topic (like the one in Figure 2-20) when you
find the topic you want. This search technique is best when you don’t
know precisely what you’re looking for and want to browse the help
topics.

✦ Select one of the See Also options. These options also appear on many
of the help topic pages. The See Also options help you locate related
content after you find a main help topic.

Figure 2-20:
Click Show
All to see all
of the help
topics on a
help page.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 37

Getting Help38

Obtaining updates
Microsoft constantly provides bug fixes, patches, and other updates
for FrontPage. To ensure you have the latest updates, choose the Help➪
Check for Updates command. FrontPage checks for updates online and
helps you install them. Sometimes this command won’t work if you don’t
have the correct features installed on your system. You can also check
for Office updates at

http://office.microsoft.com/officeupdate/default.aspx

Repairing an installation
No human creation, software included, is perfect; a FrontPage installation
can fail in a number of ways. The three most common types of failure are

✦ The FrontPage installation fails to work.

✦ Problems show up in the way various features work.

✦ You make changes to FrontPage settings that don’t work as you intended.

In many cases, you can reverse problems by selecting a special command. For
example, when you make color choice changes, you can click Reset Colors
to return FrontPage to its default color settings. However, sometimes these
choices aren’t available or won’t work because other errors have occurred.

To reverse changes or repair problems, you use the Help➪Detect and Repair
command, which displays the Detect and Repair dialog box. This dialog box
contains two options. Select one of them and click Start to begin the repair
process:

✦ One option tells FrontPage to restore all of its shortcuts as it repairs the
installation.

✦ The other option tells FrontPage to remove any custom settings you
might have made and return the installation to its default setup.

Determining your FrontPage version
Before you update FrontPage, you often need to know the precise version
you’re using. That way you can ensure you have recent updates installed.
In addition, the Microsoft support staff will need this number to help you
with any problems you report when you use newsgroup or telephone
support.

Product names aren’t the same thing as version numbers. For example,
FrontPage 2003 is a name — it’s not a specific version number.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 38

Book I
Chapter 2

Getting Started

Customizing Toolbars 39

To obtain the specific version number, choose the Help➪About command.
You see the About Microsoft Office FrontPage dialog box. Look at the top-
most line of text in the dialog box. This line contains the product name and
the actual version number in parentheses. The version number consists of
three parts, separated by periods. Reading left to right, these are the major
version number, the minor version number, and the build number.

You can obtain even more information by clicking System Information.
FrontPage displays the System Information application, which polls your
system for the information and then displays it on-screen. You can view
various categories of information and provide them to Microsoft support
or as input for peer support on a newsgroup.

Customizing Toolbars
The toolbars that FrontPage provides meet the needs of most people in a
general way. Many people who use the toolbars consistently find that they
could provide some additional features or might require rearrangement for
optimal use. Fortunately, FrontPage makes it quite easy to change the tool-
bars to meet your specific needs. You can even create new toolbars that
Microsoft didn’t think to include.

To make any change to a toolbar, right-click the toolbar area and choose
Customize from the context menu. FrontPage displays the Customize dialog
box (shown in Figure 2-21). This dialog box helps you perform the tasks
described in the following sections.

Figure 2-21:
Customize
the
FrontPage
toolbar to
make it
easier to
perform
tasks.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 39

Customizing Toolbars40

Creating a new toolbar
Creating custom toolbars is an efficient way to hold any special commands
you want to use. It also comes in handy when you want to create a custom
layout. Using a custom toolbar maintains the default toolbars in their default
state so other users don’t get confused.

To add a new toolbar, select the Toolbars tab in the Customize dialog box.
Click New and you’ll see a New Toolbar dialog box. Type the name of the
new toolbar and click OK. FrontPage displays the new toolbar. Customize
the new toolbar by choosing specific commands. For example, you might
want to create a custom toolbar for any macros you create or group com-
mands that you use a lot onto a single toolbar.

Changing an existing toolbar
An existing toolbar might not have all the commands you want — or you
might have a new toolbar that you want to customize. In both cases, you
need to add or remove commands. To change a toolbar, select the Commands
tab of the Customize dialog box. You’ll see a list of commands that FrontPage
supports, including any custom macros that your organization may have
created (as shown in Figure 2-22).

Locate the command you want to add to the toolbar and drag it to the tool-
bar. The same technique works with menus. Some commands appear as icons;
others as word buttons, depending on the way Microsoft created the com-
mand. You can modify the command settings to change its appearance on
the toolbar or menu. These changes don’t affect the command itself, just
the instance of the command on the toolbar or menu.

Figure 2-22:
Select
commands
from the
list that
FrontPage
provides.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 40

Book I
Chapter 2

Getting Started

Customizing Toolbars 41

To modify a single button on a toolbar or an entry on a menu, right-click the
button or entry. You see a context menu like the one shown in Figure 2-23.
Use the Reset option to change the button or entry to its default configura-
tion. The Name field contains the text that appears in the menu entry or
toolbar button. Add an ampersand in front of the letter that you want to
underline (use as an accelerator). The menu also lets you add an image to
commands that might not have one. Use the Begin a Group option to create
a vertical line on toolbars and a horizontal line on menus.

One of the most important selections appears near the bottom of the list.
The Default Style setting option displays the button using the settings that
Microsoft chose when designing FrontPage. The other three settings choose
an image, text, or both text and image for the menu entry or toolbar button.

Modifying the toolbar options
Some toolbar and menu options affect FrontPage as a whole. These options
appear on the Options tab of the Customize dialog box, as shown in Figure
2-24. For example, you can tell FrontPage to display the standard toolbar
(the one that includes the File Open button) and the formatting toolbar on
two lines. This configuration helps when you have a small display or you
want to see all the options in a larger format.

One new feature that I dislike about Office is the default setting that hides
the menus. I like to see the whole menu whenever I open it because I don’t
use the same features every day. When Office hides the menu, I forget some

Figure 2-23:
Modify
buttons to
make them
fit your
needs.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 41

Customizing Toolbars42

of the options that are there and end up making more work for myself. The
Options tab helps by letting me tell FrontPage to always show full menus.

You might have noticed that the standard toolbar icons are very small,
making them hard to see when your eyes are tired. Use the Large Icons
option to make the icons bigger so you don’t suffer as much eyestrain.
This feature is also handy when you want to create a presentation or
teach others to use FrontPage.

ScreenTips provide helpful information on the purpose of a button on a tool-
bar, so it’s usually a good idea to activate them using the Show ScreenTips
on Toolbars option. If you find constant pop-up text annoying, you can just
as easily turn off this feature. It’s also possible to show the shortcut key for
a particular command as part of the ScreenTip.

Figure 2-24:
Set global
options as
needed to
make the
toolbars and
menus easy
to see.

Using keyboard shortcuts
Some people like to keep their hands on the
keyboard rather than make extensive use of a
mouse. Moving your hands from the keyboard
to the mouse takes time — some people are
fluent enough at typing that they prefer to use
keyboard shortcuts rather than click their way
to the menu commands. Most FrontPage menu

commands have keyboard shortcuts associated
with them. The keyboard combination appears
to the right of the command when you look
at the menu. (For example, to open an existing
document, you press Ctrl+O.) Unfortunately, it’s
not easy to modify existing keyboard shortcuts
or add new ones.

03_575317 bk01ch02.qxd 9/24/04 7:30 PM Page 42

Chapter 3: Creating Your
First Web Page

In This Chapter
� Creating a well-designed Web site

� Changing the properties of a page

� Defining text elements

� Defining hyperlinks

� Checking your work for errors

� Determining the page download time

Creating a Web page is pretty exciting. You mix equal parts knowledge,
art, communication, and fun to create something unique. The first time

you put a Web page together and see it in your browser is the best. It doesn’t
have to be a perfect page — the point of creating your first page is under-
standing how your tools work and what you can do with them. (Besides,
there’s that fun aspect to consider.)

After you get past the initial excitement of seeing a few words and images
in a browser, you want to add other features. The most common feature is
the hyperlink, which lets Web page users access content related to the infor-
mation on your Web page. Eventually, you want to add lists to make it easier
to find pieces of information. To ensure that you don’t make your page too
large, you can check to see how long it takes to download the page. After all,
not everyone has a high-speed connection.

FrontPage also makes it easy to view your Web page in various ways. Each
view has its own uses:

✦ Design: This view lets you drag items from a toolbox and drop them on
the page so you can see the results of a change quickly.

✦ Code: When you need a little better control over the appearance of an
item, use this view to fine-tune the code that controls the look of your
page.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 43

Understanding Good Web Page Design44

✦ Split: When the Code view isn’t enough — and you really need to see the
changes as you make them — use this view.

✦ Preview: Use this view when you want to see how the page appears in
the browser — to see what your visitor sees.

You can download the sample page that appears in this chapter from the
book’s companion Web site. Please refer to this book’s Introduction for
instructions on accessing the site.

Understanding Good Web Page Design
As with all the best Web pages, yours should contain everything a user needs
to understand your message. Part of the communication process is in the
words you type, but part of it’s also subliminal. For example, the layout you
use is important because a good layout helps people find information quickly.
A glitzy layout makes your Web page look commercial, but it can also hide
some of the information you want people to see. Commercial Web sites use
glitz to impress and excite the people who visit. A simple layout may look
home-grown, but it also makes people feel comfortable with your page and
helps them find information quickly. The layout you choose depends on how
you want people to feel about your site.

Try to present a focused message on your Web page. When you think of other
messages you’d like to present, write them down and use other Web pages
to discuss them. Connect all these pages so you start with general messages
and work your way into specific information. The idea is to set a goal for each
Web page, write it down, and then remain focused on that goal as you build
the page.

As part of your Web page design, consider people who have special needs.
The addition of pop-up text to describe part of your page in more detail
might not seem like much, but screen-reader applications for the blind use
that same text to describe your page to someone unable to see it. Likewise,
careful use of color helps someone who has color blindness.

Good design also means playing with your page. Don’t settle for the first
design you create. Keep the fun factor in play by trying different fonts, color
combinations, and other features. You use properties — specialized HTML
words — to control the appearance of your Web page.

Defining Page Properties
Before you can add content to a Web page, you need to create that Web page
and assign properties to it. These properties describe the Web page to the
browser so it knows how to display the page on-screen. To add a new Web

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 44

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Defining Page Properties 45

page to FrontPage, right-click in any clear area of the Folders view and choose
New➪Blank Page from the context menu. When the file defines the first Web
page in a Web site, FrontPage names it Default.htm, but you can rename
the file if desired.

The reason you want to retain Default.htm when working with Internet
Information Server (IIS) is that the Web server looks for this name when
directing users to your site. When a user types just the path as the URL,
IIS loads this page as the default page. Other Web servers use other names
for the default page. (For example, Apache normally uses index.html.) Check
with the Webmaster to ensure that you’re using the correct filename.

Understanding a new Web page
When you create a new Web page, you actually create a series of text entries
called tags. The browser doesn’t display the tag; instead, it uses the tag to
interpret what to display on the Web page. The tag itself is special text that
begins with an angle bracket, <, contains a keyword such as html, and ends
with an angle bracket >. Most tags come in pairs — an opening and a closing
tag. The closing tag includes a slash before the keyword. When FrontPage
creates the Web Page for you, it uses tags as shown in the code in Listing 3-1.

Listing 3-1: A New Web Page

<html>

<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=windows-1252”>
<title>New Page 1</title>
</head>

<body>

</body>

</html>

The <html> tag pair shows the beginning and the ending of the document.
The browser ignores any text that appears outside this area. The <html> tag
tells the browser this is a Web page and not some other kind of document.

The <head> tag pair appears within the <html> tag pair but before anything
else. This tag pair contains special instructions for the browser. You see the
effects of the tags in this section of the document, but you don’t see the actual
text.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 45

Defining Page Properties46

FrontPage automatically adds two tags to the <head> area. The first is a
<meta> tag. You’ll see many kinds of <meta> tags; this one tells the browser
that the document contains both text and HTML (tags) that use the windows-
1252 character set. Don’t worry about setting this tag manually; you can
change it by using special FrontPage features.

The <title> tag also appears in the <head> area. This tag tells the browser
what title to display in the title bar. Any descriptive text you type between
the <title> and </title> tags then appears in the browser’s title bar when
it displays the page.

The <body> tag pair defines the beginning and end of the content of the Web
page. This is the information you do see when you load the page into your
browser. The <body> area can contain text and tags. The tags define the
appearance of the text or provide some other form of user-related function-
ality, such as telling the browser what to do when a user clicks a button on
your Web page.

Assigning standard properties
After you add the new Web page, right-click its entry in the Folders view and
select Properties from the context menu. You see the Properties dialog box,
as shown in Figure 3-1.

As a minimum, type a title for your Web page using the Title field on the
General tab. Any title is fine as long as it’s descriptive. For example, My
Home Page is descriptive, yet it isn’t complex.

Figure 3-1:
Add
properties
to your Web
page before
you open it.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 46

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Defining Page Properties 47

You can also type a summary, a description, of the Web page on the Summary
tab. Use specific terms to describe the Web page. An example of such a sum-
mary would look like this:

This is the home page for my Web site. It provides links to
all the detailed information I want to provide.

The idea is to describe the Web page so you remember why you created it
and can focus on the purpose for that Web page.

Finally, when more than one person has to be able to work on the Web page,
you should associate the Web page with a workgroup, using the options on
the Workgroup tab, as shown in Figure 3-2.

The term workgroup is a bit of a mistake because it limits what people think
about doing with this tab. For example, the Available Categories field on the
Workgroup tab can categorize the Web page any way you want, not just as
workgroup areas. For example, you can categorize the Web page by type so
you know which pages have a lot of graphics and which have a lot of links.
Select a category by checking its entry in the list. You can assign more than
one category to a Web page, which allows you to keep better track of precisely
how the Web page is used by letting you look at it in more than one way. To
add new categories, follow these steps:

1. Click the Categories button.

2. Type a name in the New Category field of the Master Category List
dialog box, and then click Add.

3. Click OK to close the Master Category List dialog box.

Figure 3-2:
Use the
Workgroup
tab to
assign this
page to any
co-creators.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 47

Defining Page Properties48

Initially, the Assigned To field won’t have any name. To add a new name, follow
these steps:

1. Click the Names button.

The Usernames Master List dialog box opens.

2. Type a name in the New Username field of the Usernames Master List
dialog box.

3. Click Add.

4. Click OK to close the Usernames Master List dialog box.

5. Select a name from the Assigned to drop-down list to assign the new
page to someone you work with.

The Review Status field reflects the current state of the Web page. Options
such as Code Review tell you where the Web page is in the development
process. You add new status types to the list by following these steps:

1. Click the Statuses button.

The Review Status Master List dialog box opens.

2. Type the new status in the New Review Status field of the Review
Status Master List dialog box.

3. Click OK to close the Review Status Master List dialog box.

Click OK when you finish configuring the Web page to close the Properties
dialog box.

Assigning page-specific properties
After you assign general properties, you need to open the Web page so you
can assign specific properties. When you double-click the new Web page in
the Folders view, FrontPage displays it for you. Normally, FrontPage opens
the Web page in Design view. However, if FrontPage opens the page to another
view, click Design at the bottom of the window to access the Design view. To
start assigning page-specific properties, right-click the page and then select
Page Properties from the context menu. You see a Page Properties dialog box,
as shown in Figure 3-3.

Notice that FrontPage fills in the Title field for you based on your previous
entries. Unlike the summary you created earlier for your own use, the Page
description field contains a summary of the page for users who want to visit
your site. Make the summary inviting and tell the user what the page contains.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 48

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Defining Page Properties 49

The Keywords field contains words that describe the page to search engines.
These words define the keywords that others may type into the search
engine to locate your Web page, so the choice of keywords is very impor-
tant. (Search engines do use other criteria for finding your page, such as
the page’s content, but keywords are very important.)

When you type the keywords, use specific terms. For example, if you have a
hobby, don’t use hobby as a keyword. Focus instead on the activity, such as
ceramics or poetry. Use single words. The search engine won’t see writing
poetry as a single term — it will see two separate ideas.

Filling out the Page description and Keywords fields is another part of the
design process. Adding this information should help you focus on the mes-
sage that this Web page delivers. Make sure you focus on the Web page and
not your Web site as a whole. Each Web page should stand on its own as well
as direct people to other locations on your Web site.

Many of the settings you make during this setup phase of the Web page
affect a special kind of entry called a meta tag. A meta tag appears in the
heading of the Web page; you don’t normally see it as output. In most cases,
the meta tag affects the Web page appearance overall, provides documenta-
tion for other developers, or provides information to search engines. You
add special meta tags on the Custom tab shown in Figure 3-4.

Figure 3-3:
Add page-
specific
properties
to define
the page
for users.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 49

Defining Page Properties50

Notice that Figure 3-4 shows two meta tags defined in other areas of this
chapter. Developers use many kinds of meta tags, but here are two that
you should consider adding to all your Web pages:

✦ The author meta tag: This one identifies who created the page — it’s for
documentation.

✦ The title meta tag: This one acts as input made available to search
engines. The search engine uses this information to provide a descrip-
tive title for your page when people look for pages like yours.

You’ll discover other meta tags as the book progresses. To add a new meta
tag, follow these steps:

1. Click the Add button in the User Variables section.

You see a User Meta Variable dialog box.

2. Type the name of the meta tag, such as author or title, in the Name
field.

3. Type the value of the meta tag in the Value field.

4. Click OK to complete the meta tag.

The final page-specific property you should always set appears on the
Language tab of the Page Properties dialog box. Most Web pages use a
specific language as the basis for the content they contain. To ensure that
search engines can mark your page appropriately, select a language in the
Mark Current Document As field. Search engines such as Google can even
use this information to offer translations to users who want to view your
Web page in another language.

Figure 3-4:
Use meta
tags to
document
your Web
page.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 50

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Defining Page Properties 51

Defining standard special effects
Some people like to add background sound to their Web pages. The sound
plays while someone views the site. To add a sound to a Web page, select
the General tab of the Page Properties dialog box shown in Figure 3-3. The
Background Sound area contains several fields that define the sound for
your Web site. The Location field tells the browser where to locate the sound
you want to play. The Loop field defines how many times the sound plays
(or whether it plays forever). Avoid using sounds when you think someone
will visit your Web site from a busy environment or one where quiet is essen-
tial (such as an office). Limit the number of times the sound plays to avoid
annoying people who might otherwise like your site but don’t like the par-
ticular sound you chose.

Adding special formatting to your page can make it look more professional
and easier to use in some cases. These options appear on the Formatting tab
shown in Figure 3-5.

The type of formatting you choose depends on what you’re using it for. Here
are the general types available on the tab:

✦ Background image: Check Background picture and add a URL for the
image to make it appear on the Web page. Select Make it a Watermark
if you want the background image to appear light as a subtle addition
to the page that won’t interfere with the text. Avoid using background
images that make the text hard to read. Images with muted colors and
low contrast tend to make the best background images.

Figure 3-5:
Add special
formatting
to dress up
a page.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 51

Working with Text52

✦ Coloration: The Background and Text color selections change the back-
ground and foreground colors of the information you present. The
Hyperlink selection changes the color of the hyperlinks the user hasn’t
seen yet, and the Visited Hyperlink selection defines the color of the
hyperlinks the user has seen. The Active Hyperlink selection is used
only when the user’s mouse hovers over the hyperlink. Avoid setting
background and foreground colors that would cause problems for some-
one who is colorblind. The wrong settings can actually make your page
nearly invisible to people who have this problem. Avoid changing the
hyperlink colors at all unless you want to create a highly stylized Web
site.

✦ Advanced settings: These special settings in the Margins area help you
set the viewing area for your document. Margins on a Web page work
much like the margins in a word-processed document — you set the left,
right, top, and bottom margins to help meet specific needs (legibility,
efficient use of screen space, and so on).

Use these settings carefully. Some users will want to change the size of
the text on the page so they can see it easily. Adding margins tends to
make your text harder to enlarge without reducing the viewing area to
a point where the user can’t see anything.

Working with Text
Text defines the main form of content for many Web pages. Because text
is relatively easy to add, it’s also the first kind of content that many people
create. Not all text is created equal. Just as a book has paragraphs and head-
ers, Web pages also use paragraphs and headers to organize ideas.

Defining normal text
What’s normal? Well, it depends. Normal or paragraph text comes in several
forms. The simplest form appears within a paragraph tag pair that looks like
this: <p>Some text</p>. FrontPage automatically adds these tags for you,
but it’s important to know the tags are there. The beginning paragraph tag,
<p>, and the ending paragraph tag, </p> tell the browser where the para-
graph starts and finishes.

To start another paragraph, simply press Enter. In the background, FrontPage
creates another tag pair to hold a paragraph. Any text you type appears within
the tag pair automatically.

You add colors and other features to the text by highlighting the words you
want to change and selecting the text formatting features you want to use.
For example, you can change the text font, color, and style by highlighting

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 52

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Working with Text 53

the words you want to change and selecting the changes from the Formatting
toolbar.

As you define the content of your Web page, you might decide to change
one or more elements. The easiest way to do so is to place the cursor within
the text element you want to change and select the tag you want to modify
from the Quick Tag Selector at the top of the Design window. Figure 3-6 shows
a typical example of how this feature works.

Notice the hierarchy shown in the Quick Tag Selector. It begins with the
<body> tag that contains all the content displayed on-screen, moves on to
the <p> that contains the entire paragraph, and finally goes to the tag
that defines the formatting of a particular word. To change the character-
istics of the selected tag, choose Tag Properties from the context menu.

Quick Tag Selector

Selected Tag

Modification Options

Figure 3-6:
Select tags
using the
Quick Tag
Selector at
the top of
the design
window.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 53

Working with Text54

The properties dialog box varies by the kind of tag you select. For example,
if you select Tag Properties for a tag, you’ll see the Font dialog box
shown in Figure 3-7. This dialog box helps you change everything about the
font, including its size and color. You can also choose special effects, such as
strikethrough, overline, and underline.

To change the characteristics of your font, you don’t have to write any code
by hand. Selecting options in the Properties dialog box changes the settings
and the code for that particular tag.

Adding headings
Headings work just like regular text in some respects. The only difference is
that you use the heading tags in place of the paragraph tag. A heading tag
consists of the letter h, followed by the heading level as a number, so a first
level heading uses the <h1> tag.

To add a heading to your page, start with a blank line. Select one of the head-
ing levels from the Style list on the Formatting toolbar. FrontPage automati-
cally changes the paragraph tag to a heading tag.

Defining terms and acronyms
FrontPage doesn’t define every tag you need, but it does provide a method
for adding tags. When you add special terms to the content of your Web
page, you want to define those terms so other people don’t get frustrated

Figure 3-7:
Change the
font settings
to meet
specific
needs.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 54

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Working with Hyperlinks 55

reading the information you provide. Three of the most important tags you
can add to FrontPage are those that allow acronyms (<acronym>), abbrevia-
tions (<abbr>), and definitions (<dfn>).

To add a new tag, follow these steps:

1. Place the cursor where you want the content to go.

2. Select the Insert HTML option from the Quick Tag Selector context
menu.

You see a Quick Tag Editor dialog box.

3. Type the tag that you want to add.

For example, when you want to add an abbreviation such as CPU to your
Web page, you type

<abbr title=”Central Processing Unit”>CPU</abbr>

4. Press Enter.

FrontPage adds the tag to your page.

Now any user who passes the mouse cursor over the abbreviation CPU on
your Web page sees the definition you provided as pop-up text. All three
tags use the same format.

The beginning <abbr> tag contains a special entry named title, which
is an attribute or an argument depending on whom you talk to. The title
argument defines the abbreviation. The term is between the beginning
and ending <abbr> tags. Finally, the </abbr> tag tells the browser that
the abbreviation has ended.

Not every browser understands every tag. When a browser sees a tag it
doesn’t understand, it ignores the tag and displays the content. Almost
every browser understands the <acronym> and <dfn> tags, but only a few
understand the <abbr> tag. To ensure that everyone can see the abbrevia-
tions you define, use the <acronym> tag even if what you’re showing isn’t
(strictly speaking) an acronym.

Working with Hyperlinks
Hyperlinks are sets of instructions that create connections between Web pages
on your Web site — as well as with pages on other sites. A hyperlink uses the
special <a> tag to create a connection between pages or even different areas
on the same page. For example, you can create a navigation bar at the top of
your page that quickly takes users to the area they want.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 55

Working with Hyperlinks56

To work with all browsers, a hyperlink must include the protocol you want
to use, the name of the computer that contains the information, the path to
the information on that computer, and finally the name of the file. For exam-
ple, in the hyperlink http://www.mysite.com/myfolder/myfile.htm, the
protocol is http (HyperText Transport Protocol), the name of the computer
is www.mysite.com, the path is myfolder, and the filename is myfile.htm.

Setting the base location
Browsers locate hyperlinks using a URL you provide. Typing a complete
URL every time you access something on the same Web page can get annoy-
ing after a while, so browsers recognize a special configuration setting called
the base location. When a browser sees an incomplete URL in a hyperlink,
it adds the base location to the URL to make the hyperlink complete. For
example, if the base location is http://www.mysite.com/ and the URL in
the hyperlink is mypage.htm, then the complete URL is http://www.mysite.
com/mypage.htm.

Customarily, you set only one base location per page; most developers use
the current Web site and folder as the base location. That way, creating a
hyperlink for the current site is a matter of simply typing the filename —
the browser fills in the rest of the URL. To set a base location for a page,
right-click the page and select Page Properties from the context menu. You
see the Page Properties dialog box shown in Figure 3-3. Type the partial
URL in the Base Location field and then click OK — presto, new link.

Pointing to the same page
The first kind of hyperlink that many developers create is one that points to
a different location on the same page. To create this kind of hyperlink, you
need to make two entries. The first entry is the anchor — the location you
want the user to end up at when they click the hyperlink. FrontPage calls
this kind of hyperlink a bookmark.

To add the bookmark, follow these steps:

1. Highlight the text you want to use as an anchor.

2. Choose the Insert➪Bookmark command.

You’ll see a Bookmark dialog box.

3. Type the name you want to use for the anchor and click OK.

The second step is to add the hyperlink. Here’s how:

4. Go to another area in the same document and select the text you want
to use for the hyperlink.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 56

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Working with Hyperlinks 57

5. Choose the Insert➪Hyperlink command.

You see the Insert Hyperlink dialog box shown in Figure 3-8.

6. Select the Place in this Document option.

7. Highlight the bookmark you want to use and click OK.

FrontPage creates the hyperlink for you.

Pointing to different pages
FrontPage provides a number of ways to create a link to a second page. The
easiest method for creating links to pages on your Web site is to drag the
page from the Folder List and drop it on the page. FrontPage automatically
creates a hyperlink for you.

A second technique is as follows:

1. Go to the site you want to link to using your browser.

2. Highlight a word describing the location you want to link to and
choose the Insert➪Hyperlink command.

3. Select the Existing File or Web Page and Browsed Pages options.

You see the Insert Hyperlink dialog box shown in Figure 3-9.

4. Select the link you want to add from the list and click OK.

This technique ensures you add the correct hyperlink the first time.

Other options for creating hyperlinks include adding links to documents
you’ve opened recently or you can create a new document. When you know
the URL you want to add and don’t want to browse to it first, you can type
it into the Address field and add it directly.

Figure 3-8:
Select the
bookmark
you want to
use for the
hyperlink.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 57

Working with Lists58

A special kind of hyperlink lets people who visit your site send you e-mail.
To add this kind of hyperlink, start by selecting text you want to use for
the hyperlink. Open the Insert Hyperlink dialog box and select the E-mail
Address option. Type your e-mail address in the E-mail Address field and
a topic of discussion in the Subject field.

Always provide a topic of discussion when you place an e-mail hyperlink
on your Web site. Including a topic of discussion offers two advantages:

✦ It helps you discover what other sites the user visited.

✦ It means you won’t receive mystery e-mails that lack a subject. You can
tell right away when a message is one of yours.

Describing your links
A hyperlink should include a few simple words to tell advanced users where
the link goes. Users with a little less experience might require additional
information. You can use the title attribute to define the hyperlink better.

To add the title attribute to an existing link, place the cursor within
the hyperlink on-screen and select the Edit Tag option from the Quick Tag
Selector. You see a Quick Tag Editor dialog box. Add the title attribute
like this: <a href=”#anchor” title=”This link takes you to the
anchor location on this page.”>. A user who hovers a mouse pointer
over the link immediately sees your explanatory text.

Working with Lists
Lists help you organize short pieces of information. Web pages support two
kinds of lists: numbered and bulleted. You use numbered lists to lay out pro-
cedures (say, how to make toast or juggle beanbags) or to rank information

Figure 3-9:
Use your
browser
to locate
existing
pages.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 58

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Working with Lists 59

(such as a top-ten list of odd movies, from least to most odd). Use bulleted
lists for short pieces of unranked information, such as a list of links to your
favorite Web sites or reasons why you like to go to the mall.

To add a numbered list to a page, start a new blank line. Click Numbering
on the Formatting toolbar.

Likewise, to add a bulleted list, start a new blank line and click Bullets on
the Formatting toolbar. Figure 3-10 shows the location of the Numbering
and Bullets buttons as well as typical examples of each list type.

Lists use two sets of tags to define the presentation. The tag pair
defines a numbered list, and the tag pair defines a bulleted list.
Within the list are the individual list elements, each defined with the
 tag pair.

Font sizeFontStyle

Numbering

Bullets

Figure 3-10:
Use lists to
make your
page easier
to read.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 59

Viewing the Results60

Viewing the Results
The Design view works well for many, if not most, tasks that simple Web pages
carry out. You never need to look at any other view if you plan to create pages
that have simple text and few pictures. Other views are helpful when you need
to create complex pages or want to see the effects of your changes without
opening a browser. You select a particular view by clicking the options at the
bottom of the design window in FrontPage.

Using Design view
Design view helps you create new text and graphic elements on a Web page.
You also use it to create various tags using the techniques described in this
chapter. FrontPage does most of the work for you in the background, so you
don’t need to know a lot about the tags, just that they exist. This view is per-
fect for creating the initial page. When you want to start adding complex fea-
tures such as scripts, you need to work with either the Code view or the
Split view. Use the Preview view when you want to see what the page looks
like without starting a browser to view it.

Using Split view
The Split view divides the screen to show both the Design view and the Code
view (as shown in Figure 3-11). You use this view to watch the effects of a
change you make in the code appear immediately in Design view. To use this
view, you must know the tags that Web pages rely on to display and format
information.

One of the most interesting uses of this view is to see how FrontPage creates
code for you. Observing the code creation process helps you discover new
tags.

Using Code view
The Code view shows you the code without any graphic presentation. You
use this view when you want to work exclusively with code. For example,
you use this view to write scripts or add special attributes to existing tags.

FrontPage includes a number of helpful features for the Code view. The most
important feature is IntelliSense. Figure 3-12 shows how IntelliSense looks
when you modify a tag. The list of things you can do with an <h1> tag appears
immediately when you press the spacebar. In this case, you can tell the
browser to align the text differently, give it a particular style, or add pop-up
text, among other things.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 60

Book I
Chapter 3

Creating Your
FirstW

eb
Page

Viewing the Results 61

Figure 3-12:
Expect help
writing code
from
IntelliSense
when you
work on
Web pages.

Figure 3-11:
Use the Split
view to see
your Web
page as
code and
graphic
elements.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 61

Viewing the Results62

Using Preview view
It’s easy to confuse the Design view and the Preview view at first because
they look the same in many cases. The Design view does show you graphic
elements, but doesn’t always present them in the same way that a user
would see them. The Preview view shows the page as it appears to an
Internet Explorer user. When you want to see the page as it looks in other
browsers, such as Mozilla or Opera, you need to view the page using that
browser.

The Preview view also displays special elements you create for a Web page.
For example, you must use the Preview view to see definitions you create
for entries on the page. The Preview view also shows how pictures actually
appear on the Web page and helps you check the help text you provide for
hyperlinks.

You also use the Preview view to size the content of a page. Select one of
the page size options available on the View➪Page Size menu to see how
the page will look to someone with a browser that uses that size display.
In some cases, you find that you need to move elements around or make
some elements smaller so users can see the page as you intended.

Timing the page download
Some Web pages become so large that you can get a cup of coffee and read
War and Peace while you wait for them to download. Unfortunately, most
users won’t wait very long for a page to download. They’ll click Stop on their
browser to see whatever they can immediately. Most developers assume that
most users have enough patience to wait a mere ten seconds or less for the
page to download. Sometimes that’s true, but if the page isn’t interesting
enough without all the bells and whistles, the user will leave for another site.

To ensure you keep your audience captivated so they don’t vote with their
virtual feet and jump to another site, you need to know how much time it
takes to download your page. FrontPage makes this easy by telling you the
download time when you’re in Design or Split view. The Estimated Time to
Download indicator in the status bar tells you how many seconds the page
requires to download at a given speed.

The default download speed is a high-speed modem running at 56 Kbps.
Nearly everyone in the United States has a modem that runs at this speed.
When you expect a lot of visitors from other countries, you might have to
time the download at 28.8 Kbps to ensure it doesn’t take too long. In other
cases, you might want to use a higher download speed. A game Web site can
usually assume the user has a new machine with a high-speed Internet con-
nection, so using a higher download speed is fine.

04_575317 bk01ch03.qxd 9/24/04 7:29 PM Page 62

Book II

Basic Pages

05_575317 pp02.qxd 9/24/04 7:26 PM Page 63

Contents at a Glance
Chapter 1: Designing Pages with Controls..65

Chapter 2: Working with Forms ..79

Chapter 3: Working with Tables ..93

Chapter 4: Working with Frames ..107

Chapter 5: Designing with Templates..123

Chapter 6: Working with FrontPage Themes..141

05_575317 pp02.qxd 9/24/04 7:26 PM Page 64

Chapter 1: Designing
Pages with Controls

In This Chapter
� Understanding when to use controls

� Using labels with standard or read-only textbox controls

� Adding inputs to an application

� Specifying decorative on-screen elements

� Creating applications with banners

As you work with Web pages, you discover many kinds of controls. The
controls in this chapter are all simple user-interface elements — they

all help the user understand and interact with your application in some way.
You rely on user-interface controls all the time in FrontPage (and other appli-
cations) — toolbars, on-screen buttons to click, and such — so you already
know what a control looks like (and implies) from a user perspective.

Developing a great Web page means, in this case, using FrontPage controls
well. You use such controls as labels, inputs, and decorative elements to
create a complete experience for the user — and they allow the communica-
tion to be two-way. Even so, you don’t always have to create an application
when you use these controls. Sometimes they serve as a means of organiz-
ing your Web-page data — and that is the focus of this chapter.

Using Controls Efficiently
Placing a control on-screen is easy. Using the control efficiently is a little more
difficult because the part you see isn’t the whole picture. To perform useful
work, controls include a number of “unseen” features that you must config-
ure for maximum efficiency. For example, a textbox control (the rectangular
box that receives input in most applications) has a size attribute that defines
the length of the textbox on-screen. Likewise, controls have events (things
that a user can do) associated with them; for example, a pushbutton control
has a click event associated with it. Differences in attributes make controls
useful in their specific ways, but they also mean you must define the effect
of a control before the user can interact with it.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 65

Using Controls Efficiently66

Working with properties
When you look at a Web control in the Code view, you see a tag with some
attributes associated with it. The control uses its attributes in specific ways;
most developers call these properties. A property defines some aspect of the
control. For example, the property can affect the appearance of the control
(such as its size or color), or how it reacts to user input (such as when a
user assigns a name to the control).

Although FrontPage provides access to most properties from Design view,
the only way to see all properties available for a particular control is to view
them in Split or Code view. When working with controls, the Split view is
actually better; you see the graphic and code representation at the same
time. The effects of a property change are immediately visible.

Understanding events
Events always happen as the result of some action on the part of the user,
the operating system, or the browser. When a user clicks a pushbutton, an
event occurs. The browser registers the user’s action and tells your Web
page about it. You can choose to do something about the event, or you can
ignore it. The event still happens, but if you want your Web page to do some-
thing about the event before anything happens in response, you have to tell
it so. That’s where the IntelliSense feature of FrontPage comes in handy.

IntelliSense makes it easy to differentiate between control properties and
events. Figure 1-1 shows a label control and a partial list of the properties
and events associated with it. Note that properties use an icon that differs
from the one used by events.

Adding comments
As Web pages become more complex, developers find it hard to remember
what exact purpose a control serves, or why a particular control appears in a
certain position. Comments — notes that serve as internal documentation —
provide reminders to the developer and describe how the Web page works
(handy for other developers). To create a comment, choose Code view and
type <!--, then type the comment, and finally --> to end the comment.
Here’s a typical comment:

<!-- This comment was inserted from Code view. -->

Comments you enter manually into Code view normally won’t appear in
Design view. If you want the comment to appear in Design view, you must
tell FrontPage to make it visible by adding special information to the com-
ment. This comment appears in Design, Code, and Split views, but not in
Preview view because the browser won’t display the comment.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 66

Book II
Chapter 1

Designing Pages
w

ith
Controls

Using Controls Efficiently 67

<!--webbot
bot=”PurpleText”
PREVIEW=”This comment was inserted from Code view.” -->

The first line tells FrontPage to use a webbot, a special kind of control. The
second line tells what kind of webbot to use. The code uses the PurpleText
webbot, in this case. The reason it’s called a PurpleText webbot is that the
comment text actually appears in purple when you see it in Design view. The
third line contains the comment. FrontPage displays this text in all three views.

A comment can say anything you want, but the best comments provide
detailed information. For example, saying that a particular control is a push-
button isn’t helpful — anyone viewing the code can see that. On the other
hand, a comment that says a pushbutton displays a little red light
on the form is more helpful because that information might not be appar-
ent from the code.

Use the Insert➪Comment command to insert a comment from Design view.
When you see the Comment window, type the comment and click OK to add it
to the Web page. A comment added in Design view using the Comment window
automatically uses the PurpleText webbot so you can see it in all three views.

EventProperty

Figure 1-1:
Add
properties
to your Web
page before
you open it.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 67

Using Labels68

Using Labels
A label is a piece of text that contains output information or identifies the
purpose of another control. Labels are normally short — you shouldn’t use
them as a replacement for paragraph text. For example, Your Name is good
content for a label associated with a textbox used to type your name. The
label is associated with the textbox, so the two work as a team to help users
understand what to do.

One example of output information is the result you get back from a calcula-
tion. Some developers avoid using labels for output because the developer
can make textboxes read-only (so the user can’t type anything in them).
Here’s an example of a simple label.

<label>This is a label </label>

This is a standalone label that isn’t associated with any other control on-
screen. The <label> tag appears as a pair with the text that you want to
appear in the label between the tags. When you create a standalone label,
you should also add the title attribute to provide additional information
to the user without affecting the control (for example, without making the
textbox read-only). The label contains the output information, and can
change, but the title tells what the information means to the user (so it
doesn’t change). For example, if you add a title attribute for the stand-
alone label given here, it looks like this:

title=”This is an example of a standalone label”

Working with Inputs
Input controls receive data from the user. For example, a textbox receives
text input. The user could type a name or other piece of information that
can’t be described in some other way. All input controls rely on the <input>
tag. Unlike other tags, you must define which kind of <input> tag you want
to use, so this tag always includes the type attribute. For example, you define
a textbox using the <input type=”textbox”> tag.

Using textboxes
You use textbox controls as on-screen places to hold a single line of text, gen-
erally as a means of getting input from a user: The user types a value (such
as a name) in the textbox. However, you can also make textboxes read-only
by using the readonly attribute. The user can’t type any information into a
read-only text box, but it’s useful for sending information to users in a form
that they can easily copy and paste into other documents.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 68

Book II
Chapter 1

Designing Pages
w

ith
Controls

Working with Inputs 69

A simple textbox includes just the <input type=”textbox”> tag. A textbox
this simple, however, is usually inadequate for two reasons:

✦ It doesn’t tell the user how to use it.

✦ You can’t easily get information from it.

A more complete textbox is needed for most applications. One that fills the
bill includes the elements shown here:

<p><label for=”MyText”>

Associated Label</label>

<input type=”text”

name=”MyText”
id=”MyTe[DMC1]xt”
size=”20”
maxlength=”25”
tabindex=”1”
value=”Simple Text”
title=”This is an example of a simple textbox.”
accesskey=”A”></p>

This code snippet shows some typical features of a no-frills textbox. Here
are some ways to ensure that your textbox gets the job done:

✦ Always associate a label with the textbox so the user knows what
the information in the textbox represents.

✦ Use the for attribute and the name of the textbox to make the
association.

✦ Type a short value for the label that represents the content of the
textbox.

This label uses a new tag called a to underline the first letter of the
label text. The style attribute tells how to decorate the text. The example
adds an underline for the first letter of the label to tell the user which Alt key
combination to press to access the textbox. To make this feature work prop-
erly, you must also define an accesskey attribute for the textbox. Figure 1-2
shows how the affects Web-page output in the Preview view.

In addition to the required tag elements, the textbox should include a name
attribute for identification. The user doesn’t see this attribute, but the browser
uses name to send information that the user types to you; you also need it
when you create scripts that involve the textbox.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 69

Working with Inputs70

The size attribute determines the number of characters the user sees
on-screen. This attribute doesn’t control the number of characters the
user can type, so someone can send as many characters as they want to
you. When you want to control the amount of text the user types into the
textbox, use the maxlength attribute. Setting a maximum input length can
help you avoid a few of the security problems that Web-site developers face,
while ensuring that you get just the amount of information you want.

Many users rely on the Tab key to move from field to field on a Web site.
Normally a browser uses the order in which items appear in the Web-page
code to determine the tab order — the order by which the user selects inputs
using the Tab key. Use the tabindex attribute to change the normal tab
order.

Always assign a value to the textbox if possible so the user has some idea of
what to type. The value attribute defines the text the user sees in the textbox.
You also use the value attribute to discover the content of a textbox in a
script and the browser uses the value attribute to send information to you
after a user fills out a form.

The label associated with a form suggests what you need as input. When you
add a title attribute to a textbox, the textbox produces a pop-up with addi-
tional information when a user hovers the mouse over it. In addition, users
with special needs require the title attribute content; that way they under-
stand what information you want them to provide. For example, screen read-
ers use this attribute to describe the textbox to a blind user.

Figure 1-2:
Use the
 tag
to add
decoration
to text
elements.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 70

Book II
Chapter 1

Designing Pages
w

ith
Controls

Working with Inputs 71

Sometimes you need a textbox that displays password characters (such as
asterisks) rather than the actual text a user types. To display password char-
acters on-screen, set the type attribute to password, rather than text. The
password textbox acts like a standard textbox in all other ways.

Using pushbuttons
Pushbutton controls let the user signal a need of some kind. The need could
be as simple as resetting the form so the user can fill out the information from
scratch. The <input> tag as shown here is basic to a pushbutton control:

<p><input type=”submit”
name=”Submit”
title=”Send the data. Alt+S”
accesskey=”S”>

<input type=”reset”
name=”Reset”
title=”Reset the data. Alt+R”
accesskey=”R”>

<input type=button
name=”ClickMe”
value=”Click Me”
title=”This button isn’t functional. Alt+C”
accesskey=”C”></p>

User needs are diverse, so pushbuttons have to be versatile. In fact, Web pages
support three kinds of pushbuttons, all of which rely on the <input> tag:

✦ The submit pushbutton sends data on a Web page to the server. Notice
that you don’t define a value attribute because this button has a default
caption. This pushbutton also has a default action, so it’s functional even
if you don’t assign a script to it.

✦ The reset pushbutton returns the contents of a form to its default
state. Doing so allows a user to start from scratch easily after making a
series of mistakes. As with the submit button, you don’t have to provide
a value attribute and this pushbutton has a default action.

✦ The generic pushbutton doesn’t have a default action. You use this
one for any task that the submit and reset pushbuttons can’t fulfill.
This type of pushbutton doesn’t have a caption, so you must provide
a value attribute to add text to it.

Notice that none of these pushbuttons has a label associated with it because
the text appears directly on the pushbutton face. Although there isn’t any
recognized convention for assigning access keys to pushbuttons, I normally
use the first letter of the pushbutton caption. Because you can’t underline a
letter in the pushbutton caption, you should include any access-key combi-
nation in the pop-up text defined by the title attribute.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 71

Working with Inputs72

Using checkboxes
You use checkbox controls to define the answer to a yes or no, on or off, or
some other Boolean question. Checkboxes are easier to fill out than textboxes
because the user doesn’t have to figure out what input to provide. In addition,
checkboxes are safer from a security perspective because the user can’t send
a virus as input to your question. To make the purpose of a checkbox clear,
you must provide an associated label as shown here.

<p><label for=”MyCheckbox”>

My Checkbox</label>

<input type=”checkbox”
name=”MyCheckbox”
id=”MyCheckbox”
title=”This is a typical checkbox.”
accesskey=”M”
checked></p>

A checkbox requires very little configuration. You provide checkbox for the
type attribute, along with a name, title, and accesskey — the same attrib-
utes every other control uses. The unique attribute is checked. Add this to
the checkbox when you want it to appear checked by default.

Using option buttons
Option buttons (also called radio buttons) are controls that provide all the
security and ease-of-use benefits of checkboxes, but also allow a wider vari-
ety of responses. You define one option button for each possible input. The
user selects between the options; only one option is selected at any given
time, and only the selected option runs. You must provide one associated
label for each option button, as shown here.

<p><label for=”Option1”>Option

1</label>

<input type=”radio”
id=”Option1”
name=”OptionSet”
value=”Option 1”
title=”The first option”
accesskey=”1”
checked>

<label for=”Option2”>Option

2</label>

<input type=”radio”
id=”Option2”
name=”OptionSet”

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 72

Book II
Chapter 1

Designing Pages
w

ith
Controls

Creating Decorative Elements 73

value=”Option 2”
title=”The second option”
accesskey=”2”></p>

The for attribute of a label is normally the same as the name attribute of
the associated control. In this case, the for attribute is the same as the id
attribute of the control because the name attribute is used to associate the
option buttons in a group. Two option buttons are in this group; you can
select either of them, but not both. When you want to create more than one
option button group on a Web page, you must use a different name for each
group.

The value attribute doesn’t appear on the display, but the browser does use
it to send data selections. You can also access this information with a script.
You must assign a different value attribute to every option button in a group;
doing so ensures that you know which option button the user selected.

Creating Decorative Elements
It’s helpful to add decorative elements to a Web page to further divide informa-
tion into groups. A simple break or horizontal rule can signify the end of one
kind of data and the beginning of a new type of data. You can also add a time
and date to a page to track your last edit. Finally, you can use special charac-
ters to create special effects or present information in other languages.

Inserting a break
Web pages use breaks to finish one line of information and start on another
line. Unlike a <p> tag, the
 (break) tag doesn’t add an extra space. You
can use the break tag to create groups of information, such as a series of
option buttons. A
 tag normally appears as a single tag, and doesn’t
include any formatting (although you can include formatting if you want).
Here’s a mix of paragraphs and breaks:

<p>Start of text
text after a break</p>
<p>Another line
with a break.</p>

When you view this text on-screen, you don’t see either the <p> or the

tags, but you see their effect. Figure 1-3 shows the results of the previous
code. Notice how the Split view shows you the precise location of the break
in both the Design and the Code windows.

Using the horizontal rule
A horizontal rule is simply a line that extends across the screen. You use this
visual effect to separate various kinds of data. For example, you can separate
heading levels with a horizontal rule or provide a horizontal rule between

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 73

Creating Decorative Elements74

groups of data. This is one of the few decorative tags you can present alone
or with special attributes. Here’s an example of a horizontal rule:

<hr align=”center”
noshade
size=”3”
width=”60%”>

The align attribute tells where to place the horizontal rule. You choose left,
center, or right placement. The default places the horizontal rule on the left
side of the Web page.

Most browsers present a horizontal rule using the same 3D shading used for
other on-screen elements. You can tell the browser to present the horizontal
rule as a flat line by using the noshade attribute.

The default settings for a horizontal rule presents a thin, one-pixel line,
across the entire Web page. You adjust these settings using the size and
width attributes. The size attribute affects the thickness of the line; the
width attribute affects the amount of space used for the horizontal rule on
the Web page. You normally express the width attribute as a percentage;
that way the horizontal rule maintains a specific presentation when the
user resizes the page.

Figure 1-3:
Use breaks
to move
data to the
next line.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 74

Book II
Chapter 1

Designing Pages
w

ith
Controls

Creating Decorative Elements 75

Adding the date and time
Users often want to know the date you last updated your Web site. It’s not
always easy to remember to change the date, so you can ask FrontPage to
perform this task for you. FrontPage uses a webbot to perform this task, as
shown here.

<!--webbot bot=”Timestamp”
S-Type=”EDITED”
S-Format=”%d %B %Y %I:%M %p” -->

The bot attribute defines the kind of webbot — a Timestamp. The S-Type
attribute tells what kind of timestamp to create. The EDITED type defines
the timestamp as one where you manually updated the page. You can also
choose to show automatic updates. Finally, the S-Format attribute defines
how the date and time appear. Fortunately, you don’t have to remember all
of the odd formatting strings. To insert the date and time on your Web page,
choose Insert➪Date and Time. You see the Date and Time dialog box shown
in Figure 1-4.

The Display options tell when to update the timestamp, whether during
a manual or an automatic update. Use the Date Format and Time Format
options to choose a format for that part of the timestamp. You can also
choose to leave out the time or date.

Defining special characters
You might not need special characters very often, but most developers need
them at some point. A special character could be a copyright symbol, a draw-
ing character, or a special language symbol. Developers currently use two
different techniques to create special characters. FrontPage supports the
first method directly by supplying the special characters — but you have
to type the second method yourself. Here are the two types of special char-
acter entries:

(c) Copyright, first method
© Copyright, second method

Figure 1-4:
Add the
date and
time to
show your
last update.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 75

Adding Banners76

The problem with the first method is that it assumes the users have the font
you selected installed on their machines. When you choose a common font,
chances are good that a user will have the required font, but some users are
going to see something other than the intended symbol. To add a special
symbol using this technique, choose Insert➪Symbol. When you see the
Symbol dialog box shown in Figure 1-5, select the character you want to
use and then click Insert. FrontPage adds the symbol for you. Click Close
to close the Symbol dialog box.

The second technique is the official standards-recognized approach, but using
this technique requires more effort on your part. The International Standards
Organization (ISO) 8859-1 chart at http://home.online.no/~pethesse/
charcodes.html contains most of the symbols you need. Locate the symbol
you want to add in the chart and type the special symbol number. For exam-
ple, you type © to display a copyright symbol.

Adding Banners
A banner is text that can include a decorative element. It acts as a heading or
title for your Web page. You can add a banner to your Web site in a number
of ways. The easiest method is to create a level-1 header (<h1> tag) and type
some text between the beginning and end of the tag. Many Web sites use this
approach because it’s easy and guaranteed to work with all browsers — the
problem is that it isn’t very automatic. You must type a new banner for every
page you create.

A second approach is to create a standard graphic that appears on every
page. This method relieves you of having to come up with a new banner
for every page — and it tends to tie together all the Web pages on a site.
However, if you choose to change the graphic, you must change it on every
page individually.

Figure 1-5:
Insert
special
symbols by
carefully
selecting a
common
font.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 76

Book II
Chapter 1

Designing Pages
w

ith
Controls

Adding Banners 77

FrontPage has a way around these issues. You add yet another in a series of
webbot tags to your code to make the header changes automatic. Here’s an
example of a webbot tag for a text banner.

<!--webbot bot=”Navigation”
S-Type=”banner”
S-Orientation=”horizontal”
S-Rendering=”text” -->

The bot attribute specifies a Navigation webbot. The S-Type attribute
specifies this is a banner, while the S-Orientation attribute tells you that
the banner appears horizontally and the S-Rendering attribute tells you
this is a text banner. What the webbot doesn’t tell you is where the text
for the banner comes from. FrontPage creates this text automatically when
you place the page within the navigational structure of a Web site. The text
is the <title> tag, which means that all pages automatically get the right
banner.

To use this technique, choose Insert➪Page Banner. You see the Page Banner
Properties dialog box. Then select either the Picture or Text option and click
OK. FrontPage adds the webbot into your Web page at the point you select.

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 77

Book II: Basic Pages78

06_575317 bk02ch01.qxd 9/24/04 7:28 PM Page 78

Chapter 2: Working with Forms

In This Chapter
� Designing a form

� Adding inputs to a form

� Creating an application to send data

� Creating accessible forms

Most people have used a paper form at one time or another. A form
on a Web page performs essentially the same task as any other form

you use. The online form gathers all the controls that represent various kinds
of information and defines where the information will go once the user com-
pletes the form. Unlike paper forms with printed submission instructions,
the form on a Web site provides explicit destination details and performs
the submission automatically — which means Web page forms are a little
less error-prone than the paper variety.

Creating a Simple Form
A form is simply a method of grouping controls, but it does require a spe-
cial tag. Whether you code a form by hand or use design view, all forms rely
on the <form> tag to hold everything together. The easiest way to add a
form tag to your application is to choose Insert➪Form➪Form. FrontPage
automatically creates a form with a Submit and a Reset push-button, which
is all you need to use the examples in this chapter.

Displaying the Form toolbar
Normally, to display a toolbar, you just right-click the toolbar area and choose
one of the toolbars from the list. Microsoft includes all the common toolbars
you need in this list, but the Form toolbar doesn’t appear in the list. Working
with forms, however, is made easier by using controls on the Form toolbar.
To make this toolbar appear on screen, follow these steps:

1. Select Insert➪Form.

You see a list of form controls, at the top of which is a series of dots.

2. Hover the mouse pointer over the dots.

A message appears: Drag to make this menu float.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 79

Creating a Simple Form80

3. Drag the menu to the Design area.

The Form toolbar appears. Figure 2-1 shows this toolbar and explains
the purpose of each control.

Adding and configuring input controls
Typing the code to create an <input> tag by hand isn’t a lot of fun. Fortu-
nately, FrontPage provides the controls on the Form toolbar to make things
easier. This section discusses a textbox, but you can use the same techniques
to add and configure any other control.

Unless you want the textbox to perform a special task, you can usually rely
on the features provided in Design view to add the textbox to the form. To
create a textbox input control in Design view, follow these steps:

1. Add a new line to your form or placing the cursor next to an existing
control.

For details on adding a new line, see Book 2, Chapter 1.

2. Click Textbox on the Form toolbar.

FrontPage creates a new textbox with the default settings. In many cases,
you’ll want to change these settings (for example, by setting the textbox
to a specific size or ensuring that the user can type in only a certain
number of characters).

3. Select the newly created textbox in Design view.

Doing so begins the process of configuring the new textbox control.

4. Choose Tag Properties from the <Input> tag entry on the Quick Tag
Selector.

The Text Box Properties dialog box appears, as shown in Figure 2-2.

Textbox

Text Area

File Upload

Option Button Drop-Down Box

Advanced Button

Label

Checkbox

Group Box

PushButton

Picture

Figure 2-1:
Use the
Form toolbar
to access
controls
from the
Design
view.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 80

Book II
Chapter 2

W
orking w

ith Form
s

Creating a Simple Form 81

5. In the Text Box Properties dialog box, type a name for the textbox in
the Name field and provide a default value in the Initial Value field.

For more about why naming a textbox is important, see Book 2, Chapter 1.

6. Change the size of the textbox to match the number of characters you
expect most people to type by changing the Size field.

Notice that you can change the type of <input> tag to password by set-
ting the Password Field option to Yes. Also, you can optionally set the
Tab Order field to control the tabbing order of the form. The Submit
button Tab Order field is normally set to 0 so it’s the first selected con-
trol. The textbox works at this point, but it isn’t complete.

7. Click Validate.

The Text Box Validation dialog box appears, as shown in Figure 2-3.
The most important validation feature shown in this dialog box is
Data Length, which you configure in the next step.

8. Check Required and type a maximum character count in Max Length.

This particular change is also the most browser-friendly change you can
make. The other changes in the Text Box Validation dialog box might not
work with all browsers, but you should try them with your setup to see
whether they will.

You might have noticed that there aren’t any settings in the dialog boxes
shown in Figure 2-2 or 2-3 for the accesskey or title attributes. Why?
Simple — the Design view doesn’t include these settings.

The easiest way to add these settings in Design view is to select Edit Tag
from the <Input> tag entry on the Quick Tag Selector. When you see the
Quick Tag Editor, type the accesskey and title settings into the editor
and then press Enter. You’ll also need to perform this step on any controls
(such as the Submit and Reset buttons) that FrontPage creates for you
automatically.

Figure 2-2:
Configure
the textbox
so it meets
your needs.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 81

Creating a Simple Form82

Associating the input control with a label
It’s essential to create labels to identify controls that need them. You also
want to associate the label with the control. Fortunately, FrontPage makes
this task very easy in Design view.

Begin by placing the cursor on the left side of the control (such as a textbox)
that you want to identify and type the label text. Highlight the label text and
the associated control. Click Label on the Form toolbar and FrontPage cre-
ates the label for you. It also automatically associates the label with the con-
trol you highlighted.

To ensure that the user knows which access key to use, highlight the letter
in the label and click Underline on the Formatting toolbar. Unfortunately,
FrontPage still relies on the <u> (underline) tag to perform this task.

Figure 2-3:
Improve the
security of
your Web
page by
including
validation.

Changing <u>s to s
Using the tag makes it easier to add
multiple effects to text and enhances accessi-
bility as well. You can easily change the <u>
tag to the more flexible tag by select-
ing Edit Tag from the <u> entry on the Quick Tag
Selector. Type in place of the <u> in the
Quick Tag Editor dialog box. Press Enter. The
<u> entry on the Quick Tag Selector changes
to a entry.

To underline the letter again, select Tag Prop-
erties from the new entry on the Quick
Tag Selector. You see the Modify Style dialog
box. Choose Format➪Font. You see a Font dialog
box. Select Underline and click OK twice. The
letter is now underlined using a tag.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 82

Book II
Chapter 2

W
orking w

ith Form
s

Working with Alternative Inputs 83

Working with Alternative Inputs
You create most simple inputs for a Web page using the <input> tag. However,
these aren’t the only inputs available. Web pages can also use a number of
alternative input types including drop-down boxes and text areas. These
inputs don’t rely on the <input> tag.

Creating a drop-down list
The drop-down list is one replacement for option buttons. The biggest bene-
fit of using a drop-down list control is that it requires less screen space; you
can use it where space is at a premium. Its biggest disadvantage is that (more
often than not) the user can’t see all options at one time.

Basic configuration of a drop-down list
To add a drop-down list to your form, create an empty space or place the
cursor where you want the drop-down list to appear. Then follow these steps
to make some basic configurations:

1. Click Drop-Down List on the Form toolbar.

Although FrontPage creates a blank drop-down list for you at this point,
this control has absolutely no functionality unless you configure it.

2. Start configuring the drop-down list by selecting the control on screen
and choosing Tag Properties from the <select> tag entry on the Quick
Tag Selector.

You see a Drop-Down List Properties dialog box similar to the one shown
in Figure 2-4 (this one is already filled out).

Figure 2-4:
Configure a
drop-down
list by
adding a
name and
options.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 83

Working with Alternative Inputs84

3. Add a name to the drop-down list so you can access it easily from any
scripts you create or use.

Adding a name also makes it easier to see any selections the user makes
when the browser sends data. Two more tasks complete this step:

• Determine whether you want to allow multiple selections.

• Provide a Tab Order value if you want to control tabbing.

4. Type a value into the Height field to specify how many options the
user can see without using this drop-down list.

Use a value of 1 to create a drop-down list box and a number that
matches the number of options you provide for a standard list box.

5. Click Add to start adding options to the drop-down list box.

You see the Add Choice dialog box.

6. Type the text you want the user to see in the Choice field.

This field can contain spaces if necessary.

7. If the selection contains multiple words, click Specify Value and type
a single word value in the Specify Value field.

8. Specify whether this option first appears on-screen as selected.

You do so by setting the Initial State to Selected or Not Selected. After
you’ve made your choice, click OK.

Make sure that at least one value in the list appears on-screen as
selected when the box appears.

Beyond basic configuration of a drop-down list
You change the options for a drop-down list by using the other pushbuttons
in the Drop-Down List Properties dialog box. Use the following procedure to
perform an advanced drop-down list configuration.

1. Use the Modify button to change features of the selected option.

The Remove button deletes an option from the list. Select either Move
Up or Move Down when you need to change the position of the selection
option in the list.

2. Change the validation options for the drop-down list by clicking
Validate in the Drop-Down List Properties dialog box.

Doing so makes your form more secure.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 84

Book II
Chapter 2

W
orking w

ith Form
s

Working with Alternative Inputs 85

3. Check Data Required and type a friendly error message in the Display
Name field.

Choosing this option ensures that the user must select one of the items
in the list before the browser accepts the form.

Two finishing touches complete your drop-down list. First, make sure you
set the title and accesskey attributes to ensure the user gets all the infor-
mation needed to use your control. Second, associate a label with the con-
trol to identify its purpose.

Defining a text area
Sometimes a textbox doesn’t provide enough room to display output or
accept some types of input. For example, if you want a user to describe a
specific problem, you use a text area to ensure that the user has enough
space to write. A text area always has at least two lines — and can extend
across the entire Web page if necessary. You can add a scrollbar to make it
easy to look at text that doesn’t fit within the viewing area. To add a text
area to your form, follow these steps:

1. Place the cursor on a new line and click Text Area on the Form
toolbar.

FrontPage adds the control to the form.

2. Select the Text Properties from the <textarea> tag on the Quick Tag
Selector.

You see a TextArea Box Properties dialog box.

3. Configure the text area by adding a name to the Name field and some
text to the Initial Value field.

4. Size the text area by defining values for the Width in Characters and
Number of Lines fields.

5. Be sure to add the usual title and accesskey values by editing the
tag code.

Although it might sound like you should use a text area instead of a textbox
for every need, the text area is a lot harder to secure. You should define the
maximum length of the field if possible, but making this change isn’t always
possible. To add a maximum length, click Validate in the TextArea Box
Properties dialog box. You see the Text Box Validation dialog box. Check
Required and type the maximum number of characters in the Max Length
field.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 85

Sending Data86

Sending Data
Generally, you want the user to send data to you when you create a form.
A form has several configuration settings that determine how the browser
sends the data and where the information is sent. FrontPage provides a
default form setup that works well for testing, but you need to create a
specific setup before you use the form on a production site (a site that
people are actually using for business).

Understanding the default form settings
The <form> tag can appear by itself, but some additional information is
required to make the form useful. Here’s the default FrontPage <form> tag.

<form method=”POST” action=”--WEBBOT-SELF--”>
<!--webbot bot=”SaveResults”

U-File=”0181/_private/form_results.csv”
S-Format=”TEXT/CSV”
S-Label-Fields=”TRUE” -->

This form uses the POST method, which means that none of the data appears
as part of the URL in the Address field of the browser. A developer can also
choose the destination of the data using the action attribute. In this case,
the action attribute relies on a webbot to define the remote location. The
bot attribute defines this as a SaveResults webbot.

The U-File attribute determines the location of the data on your system.
In this case, the data is going to a special folder on the host machine and
is named form_results.csv. The server saves the data in a Comma-
Separated Value (CSV) file.

You can read this (or any) CSV file with a text editor, but it’s easier to work
with when you open it in an application designed to read such files. Excel is
a good application to use for the task, but you can also import the file into
most database applications, including Access and SQL Server.

The S-Label-Fields attribute tells the server to save the field names at
the top of the list so Excel (or a database manager) knows what field names to
use. It pays to include the field values to make it easier to troubleshoot a form
that you create.

You must open the example form in a browser to test it — with the result
that the Preview view in FrontPage will fail. When you test the example form,
try changing all three of the entries. Click Reset and you’ll notice the entries
automatically change back to their default values. When you click Submit,
you see a confirmation appear on-screen. You didn’t create this confirma-
tion, it’s supplied as part of FrontPage. Open the CSV file and you’ll see the
values sent from the form.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 86

Book II
Chapter 2

W
orking w

ith Form
s

Sending Data 87

Sending data to e-mail the FrontPage way
If you have a hosted Web page, one where you don’t have access to the
server, you might think it’s impossible to use forms. Not true: You can use
forms on a hosted site. Simply send the output to your e-mail address. To
change a FrontPage form to use e-mail as the output destination, choose
Tag Properties from the <form> tag on the Quick Tag Selector. You see the
Form Properties dialog box shown in Figure 2-5.

To set this form up for e-mail delivery, follow these steps:

1. Clear the File Name field and type your e-mail address in the E-mail
Address field.

2. Type a name in the Form Name field.

This entry is important because it appears as part of the e-mail message
in most cases.

3. After you complete the basic setup, click Options.

You see the Saving Results dialog box.

4. Select the E-mail Results tab.

5. Select a format for the e-mail.

For example, you can send the data as text or as an HTML page. The XML
option is best if you plan to put the data into a database or spreadsheet
and the application supports XML. Otherwise, you can use one of the
text database options.

6. Type a subject in the E-mail Message Header field or choose the Form
Field Name option.

The latter option places the name that you typed in the Form Name field
earlier into the subject of the e-mail message.

Figure 2-5:
Change the
destination
of a form as
needed.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 87

Sending Data88

7. Provide a value for the Reply-To Line field.

In most cases, the default option of using the Form Field Name is fine.

8. Click OK twice.

FrontPage sets the form up to use e-mail with a webbot.

You’ll find this example in the SendEmail.htm file of the source code on this
book’s companion Web site.

Sending data to e-mail the standard way
Unfortunately, FrontPage-generated Web pages that send a message using
e-mail might not work with every hosted site. When this problem occurs,
you can easily transform the page to use standardized transmission tech-
niques. The SendEmail2.htm file (available on this book’s companion Web
site — refer to the Introduction for more information) contains the code for
this technique. To make this technique work, you must remove the form-
related webbot entries. Change the FrontPage-generated code so it looks
like this:

<form action=”mailto:JMueller@mwt.net?subject=Sample Email”
method=”post”
name=”EmailResponseForm”
enctype=”text/plain”>

The action attribute points to my e-mail address and it includes a subject
of Sample Email. The method the form uses is still POST, rather than GET.
The name of the form is EmailResponseForm. The enctype attribute is
very important because this technique only works well as text. You can
try other encoding methods, but they don’t work as well.

When you click Submit, your browser warns you that it’s sending the form
using e-mail. After you click OK, the browser displays the recipient of the
message and the message subject. Finally, it sends the form as an e-mail
message. The recipient receives the data in fieldname and value pairs; a
script can easily convert these into usable information.

Sending data to a server
Sending a form to a file or e-mail address means that you must work with
it in some way. FrontPage also makes it possible to send the data directly
to a location on your server that’s designed to store the data automatically.
The two choices, in this case, are using a database for storage or letting the
output from the current page act as input to a script. FrontPage even includes
special handlers for discussion and registration forms. All such methods do
something automatically with the data.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 88

Book II
Chapter 2

W
orking w

ith Form
s

Sending Data 89

To use the database object, select Send to Database in the Form Properties
dialog box. Click Options. You see the Options for Saving Results to Database
dialog box. In most cases, you need to create a new database to hold the data
from this form, so click Create Database. When FrontPage finds a copy of
SQL Server, it automatically sets up all the required tables for you and tells
you about their location. Once you set up a database, click Update Database
to add any modifications you make to the form to the database automatically.

You have three options when working with scripts: a custom page written
in languages such as Active Server Pages (ASP), the discussion handler, and
the registration handler. When working with a script, click Options and you
see the Options for Custom Form Handler dialog box. Type a custom action
string in the Action field, a posting method in the Method field, and the tech-
nique used to transfer the data in the Encoding Type field.

When working with discussion or registration forms, you must provide some
configuration information by clicking Options. You provide a name and loca-
tion for the discussion in the Options for Discussion Form Handler dialog
box. You provide a Web server name, username, and password when work-
ing with the Options for Registration Form Handler dialog box.

Deciding whether to GET or POST data
As mentioned earlier, using the POST method ensures that none of the data
submitted with a form appears as part of the URL in the Address field of the
browser. In many cases, it doesn’t matter whether you use the GET or POST
method for a form. Both techniques send data to the server. Any server-side
coding must know what to expect from the form, so the techniques aren’t
interchangeable, but the results are the same.

Many developers prefer the POST method because the browser’s Address field
remains clean and it’s less likely that the user will modify the contents of the
data sent to the server. Unfortunately, the POST technique really doesn’t keep
the data much safer — a determined cracker can still access it. The POST tech-
nique is best used on sites where you want to maintain some level of data
hiding.

Some Web sites actually encourage use of the GET method because they
want users to maintain the list of values they sent to the server. For example,
search pages often rely on the values stored as part of a URL to return the
user to the same place without having the fill out the search form again. In
fact, some users rely on this behavior to modify the URL to obtain more pre-
cise results — or even create a list of URLs on a custom Web page.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 89

Making Forms Accessible90

Making Forms Accessible
It’s relatively easy to make a form accessible when you create the controls
by hand because you can see the title attribute needed to display pop-up
text. You can easily see where to place an underline to make the label text
associated with a control match the accesskey attribute of that control.
When you make the accesskey value equal to (say) the letter A, then you
must underline an A in the label text as well.

As you might imagine, using the Design view makes creating a Web page
faster and easier. You don’t have to worry about the functional control code
for the most part, but these accessibility elements are easy to forget when
you don’t see the code that FrontPage produces. One way to overcome this
problem is to work in Split view.

When you see that FrontPage doesn’t provide access to a feature you need
to code for the Web page, you can add it manually using the Code window
displayed in Split view. This technique is actually best — and easiest —
because you get the benefit of automated design, yet retain control over the
final code. Unfortunately, using Split view means you don’t see as much of
the Design window and might not get the full view of your Web page while
you’re working out its details.

Fortunately, FrontPage offers some automation for accessibility issues.
Choose Tools➪Accessibility and you see the Accessibility dialog box. Click
Check and you see the results as shown in Figure 2-6. Note that Figure 2-6
shows the dialog box after running the test — the action items in your dialog
box could differ.

Figure 2-6:
Test your
Web page
for acces-
sibility
before
making it
public.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 90

Book II
Chapter 2

W
orking w

ith Form
s

Making Forms Accessible 91

Using the default setup, the example page (SampleForm.htm) generates
six accessibility errors. Create a checklist for yourself by clicking Generate
HTML Report to make finding the problems easier. The report for the exam-
ple page appears in AccessibilityReport.htm. You should consider this
test the minimum you can do to ensure your page is accessible. Real-world
testing with users is better.

Make sure you test the page with accessibility devices and software whenever
possible. Microsoft supplies accessibility software as part of the Windows
Accessibility Options. Turn the screen reader on as you check the page. Close
your eyes so you have to hear the words, rather than view them as part of
the complete environment. Ask yourself whether you can understand the
page based on what the screen reader provided — many Web pages can’t
pass this simple test.

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 91

Book II: Basic Pages92

07_575317 bk02ch02.qxd 9/24/04 7:27 PM Page 92

Chapter 3: Working with Tables

In This Chapter
� Creating a table

� Creating a table caption

� Designing accessible tables

� Working with layout tables and cells

When you present data to other people, you want to make it as easy as
possible for them to understand it. Many kinds of data work best in

tabular form. Placing such data in paragraphs hides the information; using
a list makes the presentation look messy (you end up adding highlighting
and other elements to differentiate the data types). A table separates the
data elements and makes them easy to use. The rows and columns make
the data look neat and easy to understand.

Web-page tables fulfill the same purpose as tables you create on a piece of
paper. The advantage to a Web page table is that you can move things around
as you build your presentation, without having to erase. When a column no
longer fulfills a purpose, you can remove it. Sometimes you might want to
rearrange the information so that someone visiting your Web page sees the
most important information first. Old data is easy to remove — simply delete
the row.

Using tables also makes it easier to move information from a local database
to your Web site. Your database manager also uses rows and columns to store
information, so tables allow you to create an exact representation. In fact,
some Database Management Systems (DBMSs) actually include features to
output data as HTML tables — which makes them easy to incorporate directly
into your Web site without adding much code.

Defining a Table
Tables consist of rows and columns. The columns define the kinds of data
you want to present. For example, if you want to display a table of associ-
ates, you could create a series of columns that include the person’s name,
address, affiliation, and anything else you feel is important. Database devel-
opers recognize table columns as fields. The rows contain individual instances

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 93

Defining a Table94

of all the data defined by the columns. In the table-of-associates example, you
could create a single row for each associate in your list. Database developers
recognize table rows as records.

The first step in defining a table is to decide what kind of information it con-
tains so you can describe the columns to FrontPage. When working with a
database, you already know the column names — they are the same as the
fields in the database.

Tables you develop from scratch should include one column for each kind of
data you want to present. Place each data element in a separate column so
it’s easy to see. For example, don’t place the entire address of an associate in
one column; include separate columns for address, city, state, and ZIP code.
You might even provide more than one address column in case an associate
has more address information than you can fit into one line.

After you decide what your table will look like, click Insert Table on the
Standard toolbar. You see a grid as shown in Figure 3-1. Select the number
of cells that you want your table to include. Don’t worry if you can’t select
enough cells at first — it’s easy to resize the table later. You normally want
to create two rows for your table. The first row contains the headers, while
the second row contains the first record. (The data rows increase as you add
information to the table.) Click the last cell in the selection. FrontPage creates
a new table at the current cursor position.

Setting the table properties
After you create a table, you want to set the table properties so the table
works well with your data. To set the table properties, right-click the table
and choose Table Properties from the context menu. You see the Table
Properties dialog box shown in Figure 3-2.

Insert Table

Table Size Indicator

Insert Layer

Selected Cell

Figure 3-1:
Select the
number of
rows and
columns
you want in
the initial
table.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 94

Book II
Chapter 3

W
orking w

ith
Tables

Defining a Table 95

These settings apply to the table as a whole, not to the individual cells. The
Layout Tools options refer to a special kind of table setup discussed in the
“Using Layout Tables and Cells” section of this chapter. You use these tools
to modify some table properties using Design view, rather than with the set-
tings in the Table Properties dialog box or hand coding.

Use the Size options to modify the number of rows and columns in your
table. As your data grows, so does the table.

The Layout options are a little hard to understand until you work with them
for a while. When FrontPage creates your table, it encloses the table in a
<div> tag. The <div> tag lets you group things together so the entire table
is a unit. The Alignment field controls where items in the <div> tag appear.
When you set this value to Left, all the elements appear on the left side of
the display.

Within the <div> tag is a <table> tag that defines the actual table. The
<table> tag encloses all of the table elements. The Float field controls the
alignment of the table. When you set this value to Default, the alignment of
the table is the same as the alignment of the other elements in the <div>
tag, which is controlled by the Alignment field. Setting this field to any other
value controls the alignment of the table independently of the other <div>
tag elements.

Figure 3-2:
Set the table
properties
to match
your data
needs.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 95

Defining a Table96

Unless you set the column size to a specific value, the table automatically
sizes the individual cells as needed to hold the data you provide. The Cell
Padding field defines the number of pixels that appear on all sides of a data
entry so it doesn’t appear squashed within the confines of the table. The Cell
Spacing field controls the size of the lines between cells. A larger number
produces a larger grid without changing the actual room allowed around
each data value.

Use the Specify Width and Specify Height values to control the actual size
of the table. For example, you might not want the table to take up the entire
width of the Web page, so you can set a certain size for it. Although it’s uncom-
mon to control the height of a table, you can do it using FrontPage. The best
idea is to set the width of the table as a percentage of the viewing area. Using
this technique ensures your page looks right even when the user has a rela-
tively small viewing area.

The Borders options control the appearance of the border — the line around
the outside of the table. You can make the border thick by changing the size.
Make the border thick to create a dramatic look. When you set the Color
property to Automatic, a thick border takes on a 3D appearance. Check
Collapse Table Border to remove the extra space between the border and
the table grid.

When your Web page is up and running, it has to work seamlessly with
the users’ browsers or the table won’t display properly. Some Border and
Background options work only if you set browser compatibility to work
with Internet Explorer only. For example, you can’t set the Dark Border and
Light Border properties if you don’t have the compatibility set for Internet
Explorer 5.0. To change browser compatibility, follow these steps:

1. Choose Tools➪Browser Compatibility.

You see the Browser Compatibility dialog box.

2. Click Change.

You see the Page Options dialog box.

3. Set the Browsers field to Microsoft Internet Explorer Only.

4. Select 4.0 Browsers and Later in the Browser Versions field.

5. Click OK to close the Page Options dialog box.

6. Click Close to close the Browser Compatibility dialog box.

The Background options affect the area behind the text. You can set a back-
ground color or add an image. When using an image, make sure the image is
light enough that it won’t affect the user’s ability to see the text. FrontPage
doesn’t provide the watermark feature in this case, so the user sees pre-
cisely what the picture contains.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 96

Book II
Chapter 3

W
orking w

ith
Tables

Defining a Table 97

Setting the cell properties
Tables also have properties for rows, and individual cells. You set all these
properties using the cell properties that FrontPage provides. To select an
entire row or a column, move the cursor near the border until the shape
changes to an arrow and click. FrontPage selects the entire row or column.
You can also drag the mouse along the row or column to select it.

The first change you always make to a table is to add column headings. Select
the first row, right-click the table, and choose Cell Properties from the con-
text menu. When you see the Cell Properties dialog box shown in Figure 3-3,
check the Header Cell option. Click OK to close the dialog box. FrontPage
creates a column header row.

The header row differs from the data row by the tag used for the individual
cells. A row begins with the <tr> tag. A header row uses the <th> tag for
each cell within the row, while a data row uses the <td> tag.

Positioning data within the cells is important to the appearance of the table —
not the content — so (in most cases) you can use the default alignment
options so the text appears as it would in a book. Remember, however, that
tables don’t have to contain just text. Developers place links, pictures, and
other elements in those cells. Sometimes these data elements do require
special alignment that you control by using the Horizontal Alignment and
Vertical Alignment fields. For example, pictures normally look best when
centered in the cell.

Web browsers assume that you want to space the cells in a table evenly,
unless a particular column has a significant amount of data to display. In
some cases, you want to ensure that a column receives a specific amount

Figure 3-3:
Create a
column
header row
by setting
the cell
properties.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 97

Adding a Caption98

of space, as when, for example, the column contains long words that you
don’t want to appear on more than one line. Use the Specify Height and
Specific Width options to control cell spacing.

Generally, how you specify column height and width should fit the type(s) of
item you want to use. You have two methods available:

✦ Use a specific number for items that require only a certain amount of
space (such as graphics that can’t shrink or grow).

✦ Use percentages for items that should receive a larger percentage of the
space (for example, columns containing a lot of text).

As with the table options, you can specify border and background settings
for an individual cell. Most of the special effects, such as the use of individ-
ual light and dark border colors, are Internet Explorer specific, which means
they aren’t active unless you change the browser compatibility settings.

Adding a Caption
Many developers use the <caption> tag to create a caption for a table;
you can still add this tag manually in FrontPage. A better and easier
approach, however, is to create a heading for the table within the <div>
tag that Microsoft provides. To create a caption using a header and the
<div> tag, follow these steps:

1. Place the cursor on the right side of the table.

You see just the <div> tag on the Quick Tag Selector.

2. Choose one of the heading levels from the Style list on the Format
toolbar.

Most developers find that a heading level 3 or 4 works well as a table cap-
tion. FrontPage now creates a header for the table. The alignment of the
header depends on the layout settings you use for the table.

3. Type the table caption.

Making Tables Accessible
Tables require a little extra work to make them accessible to a broad range
of people. Most of the required additions appear within the <table> tag. To
make the essential changes, place the cursor anywhere within the table and
choose Edit Tag from the <table> tag entry on the Quick Tag Selector. You
see the Quick Tag Editor.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 98

Book II
Chapter 3

W
orking w

ith
Tables
Using Layout Tables and Cells 99

The example table used for the discussion in previous sections already
contains a number of attributes within the <table> tag. To these attributes,
you need to add a summary and a title attribute. The summary attribute
describes the content of the table. (Screen readers provide this information
to users who can’t see your table.) Make the summary attribute relatively
short, but descriptive.

The title attribute provides additional information in the form of a pop-up
that everyone can use. Make this attribute descriptive enough to answer the
questions that most users are likely to have about why the table is important,
rather than what’s in it.

Using Layout Tables and Cells
Creating Web pages that display items in order in a straight line gets your mes-
sage across. This simple structure is very easy to maintain and you don’t have
to worry as much about accessibility issues. However, sometimes you want
to add a special layout to a Web page to help organize the information in an
aesthetically pleasing way. You might have groups of information about one
focused topic that you want to present, or you might want to provide navi-
gational aids in a separate section of the page. Some developers like to use
graphics to convey part of their message and want to see the graphics mixed
with the text.

No matter what reason you have for displaying information in a form other
than the usual straightforward layout, FrontPage makes the task easier with
Layout Tables and Cells. You use this feature to create cells that hold bits
and pieces of information, and organize the layout of a particular page around
a table made up of those cells. Some Web pages you see online use this fea-
ture to good effect.

Using this feature also reduces the accessibility of your Web page. When
you choose to use this technique, you also choose to keep some people
from using your Web page, which is why you want to avoid using it unless
necessary.

Adding the layout
Always add the layout to your Web page as the first element after you define
the Web page properties. It’s very hard to add a layout to a Web page after
you have data in place. In addition, adding the layout before you add content
means you can plan the content format better and get the full benefits of
using a layout.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 99

Using Layout Tables and Cells100

The Layout Tables and Cells feature simplifies adding a layout to your Web
page. Just follow these steps:

1. Choose Table➪Layout Tables and Cells.

You see the Layout Tables and Cells Task Pane shown in Figure 3-4.
(Normally the Task Pane appears on the right side of the display —
the screen shot shows the Layout Tables and Cells Task Pane floating
free so you can see it better.)

2. Examine the standard layouts.

When you hover the mouse pointer over each standard layout at the
bottom of the Task Pane, FrontPage tells you about the layout’s elements:

• The first entry in the table tells FrontPage not to use any layout at all.

• The second entry is a full-page layout, which appears not to have any
features.

• The third entry consists of a corner for a logo, the header, the left
side for links, and the body area. (Many Web pages use layouts based
on this setting, as does the example given here. You can choose any
layout that works with your data.)

3. Click the layout that suits your purpose.

FrontPage adds the layout to your current Web page. Figure 3-5 shows
the example layout, which includes four major measurements (two rows
and two columns); you see four sizing labels.

4. Click a sizing label.

A context menu appears. You get two options for changing the size of
the row or column:

• You can set the row or column so it automatically stretches to
accommodate the content you add.

• You can add a column-spacer image that imposes a fixed width on
the column.

To display the sizing labels whenever you need them, click the <table>
tag on the Quick Tag Selector.

Modifying the layout settings
Before you begin adding data to the new layout, set up the layout to accept
the data correctly. You need to tweak these settings as you work on the Web
page design, but getting the basic setup in place helps you standardize your
pages so they all have a similar appearance.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 100

Book II
Chapter 3

W
orking w

ith
Tables
Using Layout Tables and Cells 101

Figure 3-5:
Use the
layout
features to
customize
the
appearance
on your
Web page.

Figure 3-4:
Select a
layout for
your Web
page.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 101

Using Layout Tables and Cells102

Begin by setting the page size using the Height and Width fields in the Layout
Tables and Cells window. (I normally use a standard-size display area based
on a screen 800 pixels wide by 600 pixels high.) The browser takes up some
of this space, so you have to size your Web page accordingly. In general, this
means setting the Height field to 423 and the Width field to 774 to accommo-
date a standard Internet Explorer display. These settings assume the user
displays all three toolbars and the status bar, but doesn’t use the Explorer
Bar. It also assumes the user has a standard-size font installed. The default
FrontPage settings assume the user has one of the standard Explorer Bars
installed, which is the major difference between my suggested settings and
the FrontPage default settings.

The example actually uses smaller Height and Width settings to accommo-
date the 18 pixel margins. To ensure the page fits on one screen, you must
account for the size of the margins, borders, and other features you add to
your page (assuming seeing everything in one screen matters). Consequently,
the example works with a width of 738 (774 – 18 pixels for the left border –
18 pixels for the right border) and a height of 387 (423 – 18 pixels for the top
border – 18 pixels for the bottom border).

The next step is to set the margins for your Web page. Adding a margin makes
it easier for the user to see the content and ensures that none of the content
flows off the ends of the viewing area. To modify the margins, click Set Page
Margins in the Layout Tables and Cells window. You see the Page Properties
dialog box shown in Figure 3-6.

Notice that all these measurements are in pixels — it’s more accurate than
any other measurement you can use when you’re using a computer to lay
out a page. A good rule to use for converting pixels to inches is to define 1
inch of screen space as 72 pixels. So, when you want to set a 1⁄2-inch margin,
set the number of pixels to 36. Although you can’t create precise, universal
measurements on a Web page — in part because pixel size can vary from

Adding the column spacer image
The column spacer image (essentially a trans-
parent picture) is a special file that FrontPage
adds for you. It ensures that the spacing you
specify for a particular page element stays that
size, even when the user resizes the browser
window. Previous editions of FrontPage don’t
include this feature — the Web page author
actually had to create a transparent image

by hand and place it on the page. The problem
is significant enough that you can find Web
pages such as the one at FrontLook.com
(www.frontlook.com/newsletters/tip
3-9.asp) that explain how to create a
column spacer image for previous versions of
FrontPage.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 102

Book II
Chapter 3

W
orking w

ith
Tables
Using Layout Tables and Cells 103

one user’s monitor to the next — this measurement is close enough to cover
most cases. The example uses 1⁄4-inch margins, so I set the border fields to
18 pixels.

After you set the page size and margins, you set the column and rows sizes.
For the layout used in the example, you normally want to set the corner size
first because it normally contains a company logo or other form of identifica-
tion. The other areas take up the remaining space.

To set the size of the corner, follow these steps:

1. Choose Set Column Width from the sizing label marked 93 in Figure 3-5.

You see the Column Properties dialog box.

2. Type the width of your logo into the Column Width field and click OK.

3. Next, select Set Row Height from the sizing label marked 52 in
Figure 3-5.

You see the Row Properties dialog box.

4. Type the height of the logo into the Row Height field and click OK.

To ensure that you don’t waste the remaining space, make sure you set the
size of the remaining column and row to take up the rest of the space. For
example, when you set aside a 72-pixel-by-72 pixel logo area on a 774 by 423
pixel page, you need to set the remaining column to use 702 pixels (774 – 72)
and the remaining row to use 351 pixels (423 – 72). When you use a more com-
plicated layout, you’ll need to set the column and row sizes for other cells
within the layout.

Figure 3-6:
Set page
margins to
help users
see your
Web page
content.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 103

Using Layout Tables and Cells104

Creating new cells
The basic four-cell layout (refer to Figure 3-5) provides space for a logo in
the upper left corner, a heading of some sort at the top, links on the left
side, and the content you want to provide (body area). You might want to
provide additional layout for a picture or other content on your Web site,
which means adding cells to the existing layout.

The example discussed in this section adds a picture square in the upper-left
corner of the body area. Unfortunately, that would mean the layout has a rec-
tangular area cut out of the square cell that makes up the body area. To wrap
content around the cut-out area, you need to create to more cells. The first
such cell appears to the right of the picture cell; the second appears below
both of those cells.

The easiest way to approach this problem is to create the upper and lower
areas first:

1. Click Insert Layout Table in the Layout Tables and Cells window.

FrontPage creates a new layout table consisting of a single cell.

2. Right-click the new table and select Table Properties from the context
menu.

You see the Table Properties dialog box.

3. Set the Row property to 2 (for upper and lower areas), the Specify
Width field to match the current body area width, and the Specify
Height field to match the current body area height.

4. Click OK.

FrontPage creates the new upper and lower areas. You should size the
two new areas to match the picture height and the remaining content
area.

Now create the right and left areas of the upper section:

1. Place the cursor in the upper section and Click Insert Layout Table in
the Layout Tables and Cells window.

FrontPage adds another single-cell layout table.

2. Right-click the new layout table and select Table Properties.

You see the Table Properties dialog box.

3. This time set the Columns field to 2, the Width field to 720, and the
Height field to the picture height.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 104

Book II
Chapter 3

W
orking w

ith
Tables
Using Layout Tables and Cells 105

4. Size the first column to accept the picture and the second column to
take up the remaining content area.

Figure 3-7 shows a typical view of all the example page’s features, with
the various sections labeled.

Adding a header and footer
A header provides content at the top of a cell, while a footer provides con-
tent at the bottom of a cell. The header and footer aren’t the same as a Page
Banner. A Page Banner is a webbot that appears within a specific cell in your
Web page and is based on the title of the page. You must make the page part
of the navigation for the Web site to make the Page Banner work. A header
and footer accept whatever text you type.

To add a header, footer, or both to a cell, follow these steps:

1. Select the cell and choose Cell Formatting in the Layout Tables and
Cells window.

The Task Pane switches to the Cell Formatting window.

2. Click Cell Header and Footer.

The window changes to show the header and footer for this cell.

Figure 3-7:
Creating a
complex
setup is
relatively
easy.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 105

Using Layout Tables and Cells106

3. Check Show Header or Show Footer as needed.

You see the header or footer added to the cell.

4. Set the new header or footer Background Color, Border Width, and
Border Color options as needed.

5. Type the header or footer in the new areas that FrontPage created.

Figure 3-7 shows a header and footer added to the links area of the page.

08_575317 bk02ch03.qxd 9/24/04 7:28 PM Page 106

Chapter 4: Working with Frames

In This Chapter
� Using frames effectively

� Designing with frames

� Changing a frame layout

� Designing with inline frames

� Developing frames with accessibility in mind

Frames are one of the oldest Web technologies for organizing informa-
tion on-screen. They work because the idea behind them is very simple.

A main page acts as a container or frameset for a number of child pages or
frames. The main page controls the organization of each frame and each
child controls the content for an area of the display. Visually, you can’t
really differentiate frames from other forms of page organization, but the
actual code for a frame is simpler than using techniques such as tables.

Developers often find frames far more convenient to use than other methods;
for example, frames are easier to create and modify than tables. FrontPage pro-
vides special features that makes using frames a drag-and-drop experience —
seldom do you need to resort to writing a lot of code by hand. In short, frames
make it easy to create great-looking Web pages in a very short time and main-
tain those pages with relative ease, especially with the features that FrontPage
provides.

However, not everyone is happy about using frames. Many public Web sites
have stopped using frames because they present some user challenges (for
example, they can confuse screen readers and cause script errors). Although
frames are probably acceptable for a corporate Web site, avoid using them
on a public site unless you take precautions to make them user-friendly.

Reasons to Use Frames
The main reason to use frames is to organize data using a technique that is
more flexible and less error-prone than complex techniques such as tables. A
series of frames can present information in a way that makes each element
completely independent of every other element. For example, when the con-
tent you provide in a frame is too large, the frame automatically creates a
scrollbar so you can move around and see everything the developer provides.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 107

Creating a Web Page with Frames108

Because frames are an older technology, most browsers support them. Unlike
some organizational techniques, they don’t tend to present you with weird
results. Each frame stays put within the frameset; you don’t need to tweak
the content to fit as you would if you were using tables.

FrontPage makes frames easy to use by providing templates — structures
you can use to display the data consistently. Normally, you don’t even have
to worry about creating the frame-specific code (even though it’s wise to know
about the tags used to create frames so you can make small modifications
and repairs as needed). All you really need are the FrontPageWeb pages —
standard pages without extra coding — used to house the content of the
frameset.

Creating a Web Page with Frames
You must create two types of pages when working with frames. The type of
page you create depends on what you want your Web page to do:

✦ One page type uses the <frameset> tag as a container for individual
frames. Each frame relies on a <frame> tag to reference the Web page
that contains the content you want to appear in that location.

✦ The other page type is a standard Web page. All it contains is, well, the
content you want to display within the frame.

Defining the main page
Always create the main page — the one with the frameset — first; all other
design decisions rely on your frameset selections. To create a main page,
follow these steps:

1. Use File➪New to display the New window in the Task Pane.

2. Click More Page Templates in the New Page section of the New window.

You see the Page Templates dialog box.

3. Click Frames Pages.

You see a list of frame-page templates, as shown in Figure 4-1. This is a
list of main pages with framesets, not the content pages you create later.

4. Select the template you want to use and click OK to create the page.
(The example uses the Banner and Contents template.)

FrontPage creates the new page for you. Figure 4-2 shows how the new
template appears.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 108

Book II
Chapter 4

W
orking w

ith
Fram

es
Creating a Web Page with Frames 109

Before you go any further, save the new page. Set the page properties and per-
form any required initial configuration. Special configuration items appear
on the Frames tab of the Page Properties dialog box (which you access by
right-clicking the page and selecting Page Properties from the context menu).

Figure 4-2:
Add new
pages to
the frames
in the
template.

Figure 4-1:
Select a
template
that reflects
the organi-
zation you
want to use.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 109

Creating a Web Page with Frames110

Set the Frame Spacing property to the number of pixels you want to separate
individual frames. (Generally, you can use a value of 96 pixels for each inch
of screen space; although, this value isn’t necessarily accurate on every
machine.) Clear the Show Borders check box if you don’t want users to
see borders between frames.

Customizing frame properties
The template you use makes certain assumptions about the design of your
Web page. For example, Microsoft had to define a generic frame size. You
might find that these settings don’t meet your needs. In addition, you should
define some frame properties to ensure users can completely enjoy your
efforts. To customize the frame settings, right-click the frame you want to
modify and choose Frame Properties from the context menu. You see the
Frame Properties dialog box shown in Figure 4-3.

Depending on which frame you select, some features might not be available
because they have no effect on the frame’s functionality. (Unavailable features
appear grayed out in the resulting dialog box.) For example, when you select
the banner frame in a three-frame setup, it doesn’t provide a Column Width
property setting because the frame fills the entire column.

The first adjustment you make is to ensure the frame is large enough to
accommodate the content you provide by setting the Column Width and
Height fields in the Frame Size area. Setting the values to a percentage
ensures the page scales well when viewed in a smaller browser. However,
using a precise number of pixels ensures critical content won’t get squeezed
in an area that’s too small. Use the Width and Height fields in the Margins
area to control the spacing of the field content. These settings are always
expressed in pixels.

Figure 4-3:
Change
the frame
properties
to meet
specific
needs.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 110

Book II
Chapter 4

W
orking w

ith
Fram

es
Creating a Web Page with Frames 111

As a minimum, you should provide a description of the frame in the Title
field so users of assistive technology know what purpose the frame serves.
When a short description doesn’t provide enough information, make sure
you create a description on a separate (simple, non-frame) Web page and
place the URL in the Long Description field.

Some browsers support resizable frames. When you check Resizable in
Browser, the user normally has a chance to resize the frame as needed to
see content. To ensure that the user can see content even if the resizing fea-
ture doesn’t work, make sure you select either If Needed or Always in the
Show Scrollbars field. The only time you don’t want to select this option is
when the size of the content is fixed (for example, when you display a logo).

Adding pages to the frameset
After you perform the initial configuration steps, you can begin adding pages
to the frames that this main page provides. You must create new pages for
these frames unless you have the required content already defined. To use
existing content, click Set Initial Page in Design view.

One important difference between the Design view and the Preview view for
frames is that Preview view doesn’t allow access to any of the buttons.

When FrontPage displays an Insert Hyperlink dialog box, select the existing
Web page you want to use and click OK. You see the page added to the
selected frame.

To create a new page for the frame, click New Page. FrontPage displays a new
page directly in the selected frame of the main page. You might find this con-
fusing at first, but the technique works very well because you see the page
as it appears in the frame, rather than as an individual entity (where design
can become difficult). To save this new page so you can configure it before
you add content, click Save. FrontPage displays a special Save As dialog box,
as shown in Figure 4-4.

This dialog box has several special features that are worth noting. Here is a
summary of the most important features:

✦ When the Base Location property, located on the General tab of the Page
Properties dialog box, is configured correctly, FrontPage knows exactly
where to save the new frame page.

✦ The picture on the right side of the dialog box shows which frame you’re
saving. When you save multiple frames, the picture shows the current
page.

✦ FrontPage displays the Save As dialog box once for each new page you
save. Use the picture to ensure that you save the correct elements and
have given them the right names.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 111

Creating a Web Page with Frames112

Configuring a frame page is a little different from configuring other Web
pages. The following steps show why:

1. Set the file properties as usual (right-click the file in the Folder List
and select Properties).

2. Configure the Web page by right-clicking its frame in the main page,
and then select Page Properties.

You see the same Page Properties dialog box as you normally see when
configuring a Web page with one important change — the Default Target
Frame property now contains Contents as its value (FrontPage sets this
value for you automatically).

3. Finish configuring the Page Properties dialog box as you normally do.

Add any new pages to your main page by using this same technique.

The size of a frame can vary in response to the browser settings that a user
selects. The frameset automatically resizes the frames unless you specify a
particular size — and you should do so. Although users often expect a con-
tent frame to include scrollbars when the browser uses a small page size,
scrollbars don’t work well in some areas (such as the banner for the page).
Sometimes the user expects a vertical scrollbar but not a horizontal scroll-
bar (or vice versa); for example, when the user views a list of links, a vertical
scrollbar is quite acceptable. Test the page using various browsers’ sizes to
ensure that your frame usage meets user expectations.

Figure 4-4:
Save and
configure
frame pages
as you
create them.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 112

Book II
Chapter 4

W
orking w

ith
Fram

es
Creating a Web Page with Frames 113

Using the No Frames view
Not every browser supports frames and even those that do usually provide
some means of turning off frame support. The reasons vary, but it usually
comes down to a matter of a user’s personal choice or need. The <noframes>
tag offers a way to address this problem by presenting a non-framed page to
view your Web site. You can see the content of the <noframes> tag in the No
Frames view. (The No Frames view tab appears between the Split and Code
view tabs at the bottom of the window when you work with a Web page that
relies on frames.) Unfortunately, the Microsoft-provided response — This
page uses frames, but your browser doesn’t support them. — has
all the tact and pizzazz of a slap in the face; the user can’t even view the con-
tent on your site.

Depending on what you want to do, you can use the No Frames view to create
alternatives to the frames that you normally provide. The easiest solution is to
create a new presentation that includes a header, a simple message, and a list
of the links to the frames normally found on your site. In this presentation, you
should provide an explanation of what each link provides. To add the links to
the page, drag the file entry from the Folder List and drop it where you want
the link to appear. Figure 4-5 shows one approach to this problem.

Figure 4-5:
Create a
friendly
and useful
view for
browsers
that don’t
support
frames.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 113

Organizing Frames114

Another approach to the problem of not having frames is to create a no-
frames version of the content page — and then use a script to redirect users
to that area. This approach has the advantage of letting you add a special,
no-frames hyperlink to the content page that directs a user to the frameless
version of the content. The only problem is that not everyone turns on
scripting support — which means you must structure the page so it also
provides a link that the user can click.

To use the dual page approach, follow these steps:

1. Right-click the current content page and select Copy from the context
menu.

2. Right-click the folder in which the content page appears and select
Paste from the context menu.

FrontPage creates a copy of the page.

3. Rename the file so it reflects the no frame content.

Now you can add a link to that page on the original content page and also
use it in the <noframe> tag area. Follow these steps every time you change
the content page to ensure that your no-frames page content remains syn-
chronized with the original content page.

Organizing Frames
The Page Templates dialog box contains a number of setups (refer to Figure
4-1). Most developers find a setup they like or at least one that contains
most of what they need. Fortunately, you can customize the frame setup to
meet specific needs. For example, you might want a separate frame for a
logo or an area to use for notices. In some cases, a frame might outgrow its
original use and you see a need to split it so you can redefine two separate
uses for the content.

Normally you want to modify the organization of a page before you add
frame content. Modifying a frame after adding content can prove difficult
because the original content can end up in the wrong location. Normally
hand-coding techniques resolve errors of this sort: You move the reference
from one <frame> tag to another to correct the problem.

Adding and splitting frames
You always have at least one frame on a frames page. During the design
phase, you might decide that you need additional frames, or that some
frames are wrongly placed. Adding a new frame is a matter of choosing a
frame to split to obtain the additional space.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 114

Book II
Chapter 4

W
orking w

ith
Fram

es
Organizing Frames 115

For example, you might decide that you want separate areas for a banner
and a logo on a page. Splitting an existing banner frame would achieve your
goal. To add a new frame or split an existing frame, follow these steps:

1. Select the host frame.

2. Use Frame➪Split Frame to display the Split Frame dialog box.

3. Choose the Split Into Columns (vertical split) or Split Into Rows (hori-
zontal split) option and click OK.

FrontPage splits the frame.

Deleting frames
When you see a frame you no longer need, you can delete it. To perform
this task, select the frame you want to remove and choose Frame➪Delete.
FrontPage removes the frame you selected.

Remember that frames provides structure, not content. When you acciden-
tally delete a frame you need, you don’t have to worry that the content is
also gone; the content resides in a separate file. To return the frame to its
former state, choose a frame to split and then configure the new frame to
display the existing Web page.

Combining actions
Sometimes you can’t accomplish a goal without combining delete and split
actions unless you want to code the changes by hand. For example, you
might want to add a navigation frame between the banner frame and the
content frame of a three frame setup. To perform this task, you must first
delete the existing links or content frame, split the remaining frame horizon-
tally, and then split the lower frame vertically. Figure 4-6 shows a unique
page setup based on a series of combined actions.

After you create a complex page design that you intend to use for your Web
site, save the frame’s place but don’t place any actual frames within it. Instead,
use this blank frame page as a template to create the other pages on your site.
To perform this task, follow these steps:

1. Choose File➪New.

The New window appears in the Task Pane.

2. Choose From Existing Page in the New Page area.

FrontPage displays a New from Existing Page dialog box.

3. Specify a location for the new frame-page template file.

FrontPage copies that file as a new frame page you can fill out.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 115

Using an Inline Frame116

Using an Inline Frame
Inline frames (or IFrames) are different from standard frames. Avoid confus-
ing frames and IFrames because they use different tags and accomplish dif-
ferent purposes. The IFrame relies on the <iframe> tag to perform its work.
An IFrame lets you include content from another Web page or other resource
such as a graphic in the current page. The included content is “inline” with
(in other words, part of) the existing content on the page so all the content
appears as a single entity even though the content exists on multiple pages.
The current page doesn’t act as a frameset — it usually includes content of
its own.

It’s best to avoid using IFrames whenever possible because it isn’t standard-
ized and many browsers don’t support it. A browser that supports standard
frames doesn’t necessarily provide support for IFrames. You can achieve
effects similar to the <iframe> tag by using the <object> tag. See the
“Using the <object> tag” section for details.

Despite compatibility concerns, you may find that your Web site has an
appropriate use for IFrames. If so, you can define an IFrame page by follow-
ing these steps:

Figure 4-6:
Combine
splits and
deletes to
create
unique page
setups.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 116

Book II
Chapter 4

W
orking w

ith
Fram

es
Using an Inline Frame 117

1. Create a new blank page by right-clicking the host folder in the Folder
List and choosing New➪Blank Page from the context menu.

FrontPage creates the new blank page.

2. Define file and page properties as you normally would.

3. Add an IFrame to the page by choosing Insert➪Inline Frame.

FrontPage displays an IFrame on the page.

4. Use a combination of IFrames to create pages that are similar to those
you create using standard frames.

Figure 4-7 shows an example of a typical three-pane view.

Configuring an IFrame is similar to configuring a standard frame, but there
are differences. To configure an existing IFrame, follow these steps:

1. Right-click an existing IFrame and select Inline Frame Properties from
the context menu.

You see the Inline Frame Properties dialog box shown in Figure 4-8.

2. As a minimum, provide the IFrame’s name, purpose, and location.

Type a descriptive name for the IFrame in the Name field, a description
of the page purpose in the Title field, and the location of the file in the
Alternate Text field.

Figure 4-7:
You can
design page
layouts with
the IFrame
that mimic
standard
frame
setups.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 117

Making Frames Accessible118

When a user accesses an IFrame page with a browser that lacks the proper
support, the page displays the content of the Alternate Text field, which is
the same content provided for standard frames. In this case, the difference is
that you can’t really provide a nice display because of the way the IFrame
works. You can provide the location of the content by adding text like this to
the Alternate Text field:

View the Banner separately.

Making Frames Accessible
You use frames to organize information, but a great presentation isn’t worth
much if you can’t get people to visit your site. Many users hate frames
because they won’t work with their browser or because a frame organization
presents too much information at once. The use of multiple pages within a
single host page creates a host of problems — even for people who don’t
normally use accessibility aids — such as these:

✦ You generally have to use scripting to provide the Back button function-
ality found in most browsers — using multiple pages breaks the normal
Back button functionality.

✦ Frames are less compatible with older browsers than are tables.

✦ It’s impossible to get the current state (settings and condition) of a
frameset because the multiple pages change the state — this means any
scripts you create that use the current state of the frame will break.

Figure 4-8:
Configure
the IFrame
to ensure
that your
users know
how to work
with it.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 118

Book II
Chapter 4

W
orking w

ith
Fram

es
Making Frames Accessible 119

✦ Opening a new frame in a browser can disorient or at least annoy users.

✦ Placing content designed for a single page in multiple individual frames
makes it difficult (even impossible) for accessibility devices and software
such as screen readers to work properly when they access your page.

It pays to check for browser compatibility issues as you work with various
technologies on your Web site. Because browsers are constantly changing,
you need a good resource that is updated often. The Webmonkey reference
chart at http://hotwired.lycos.com/webmonkey/reference/browser_
chart/index.html provides a good resource that is updated often.

Understanding the standard frame fixes
Fortunately, you can make frames friendlier to everyone by making a few
simple changes. The most important change is to provide a title attribute
for every frame so someone using a screen reader can identify the frame and
use it properly.

Another way to make frames friendlier is to provide alternative, frame-free
content. Use the <noframes> tag to define a location for an alternative page
like this:

<noframes>

View just the content of the page without frames.

</noframes >

This technique lets someone view a properly designed content page without
using frames. Now, a good basic design for a page contains the essential
elements — including content, disclosures, notices, and any company-
specific information — in the page itself, not in the other frames. Those
contain nonessential (but nice-to-have) information such as links, special
notes, tips, a table of contents, or anything else that isn’t directly related to
the essential content. Keeping the non-frame design synchronized with the
framed setup is easy because both use the same content frame.

Use the alt and longdesc attributes to describe each of the frames so the
user can discover their purpose and arrangement with other frames. The
alt attribute is short and provides a self-contained description for simple
frames. To add this attribute, provide a description such as the following:

alt=”This frame contains a series of links to other locations
with helpful information. It appears on the lower left
side of the frameset.”

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 119

Making Frames Accessible120

The longdesc attribute points to a separate page with a detailed description
of complex pages. To add this attribute, create a Web page with the descrip-
tion, and then point to it like this: longdesc=”Description.htm”.

You could also provide a table of contents of frames in a <noframes> tag. A
user with a browser that doesn’t support frames will see the list of individual
links, making it possible to select the individual frames within a frameset.
Although this arrangement isn’t as visually appealing as using frames, the
user still gains access to all of the information and you don’t have to main-
tain two sets of pages.

Avoiding frame display issues
Graphics can present special problems in frames because FrontPage lets you
place the graphic directly in the frame, which can cause accessibility tools to
malfunction and can increase compatibility problems with some browsers.
The frame ends up with code like this:

<frame name=”MyPicture” src=”MyPicture.gif” title=”This is a
picture of the author.”>.

Instead, always create a Web page for the image and then use the Web page
as the frame source like this:

<frame name=”MyPicture” src=”MyPicture.htm” title=”This is a
picture of the author.”>.

This approach lets you describe the image so users who can’t see it can still
understand what the graphic represents.

It might be tempting to create a no-frames version of a Web page that uses
pop-up windows. The original window would contain the content and the
pop-ups would contain the extra information. Resist the temptation; a screen
reader won’t know that the page has changed in response to a pop-up, and
the user will receive confusing information. In addition, the use of pop-ups
makes it hard for the user to know which window to access.

Using the <object> tag
A number of non-frame choices exist. One of these easiest solutions is to
use an <object> tag to hold the information. The <object> tag has several
advantages. You can make the page look just like it has frames, but you can
also move the <object> tag around and create other presentations. Here is
a typical example of an <object> tag alternative that you can see in the
NoFrame.htm file on this book’s companion Web site.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 120

Book II
Chapter 4

W
orking w

ith
Fram

es
Making Frames Accessible 121

<p>
<object data=”NoFrameNav.htm” width=”200” height=”200”>

Go to the <A href=”NoFrameNav.htm”
title=”Other page content you might want to view.”>

other content for this page.

</object>
</p>

To use the <object> tag, follow these general steps:

1. Create the frames as you normally would and provide them as part of
the data attribute.

2. Create one <object> tag for each frame.

3. Size the frames using the width and height attributes.

Make sure you include these two attributes or you won’t see the frame
content. Figure 4-9 shows the output of this example.

You can discover other techniques for accessible frame usage at http://
webaim.org/techniques/frames/.

Figure 4-9:
Use an
<object> tag
to create a
frame-like
appearance.

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 121

Book II: Basic Pages122

09_575317 bk02ch04.qxd 9/24/04 7:25 PM Page 122

Chapter 5: Designing
with Templates

In This Chapter
� Using templates effectively

� Using templates to create Web pages

� Getting more templates

� Creating templates from existing Web pages

� Using templates to create Web sites

A template is a blueprint or pattern for designing Web pages. You use a
template to create pages that have the specific characteristics it holds.

The template provides structure, not content, in most cases. Using a tem-
plate saves time because you don’t have to recreate a design from scratch.
For example, if you create a generic search page, you can use that search
page to put its characteristics everywhere you need them on your Web site.
The specifics of the search page may change to meet specific needs, but the
structure — the template — remains the same.

FrontPage provides two kinds of templates. One helps you design Web pages;
the other helps you design entire Web sites. Even though these templates are
somewhat generic in design, they can help you get started quickly. After you
create specific designs, you can rely on those designs as templates for future
projects. The idea is to build the pieces of your Web site so you can reuse as
much of the design, code, and generic content as possible.

Templates aren’t the same as themes. It’s easy to confuse the two if you don’t
consider how FrontPage uses them. A template creates an actual site or page;
a theme adds decorative elements to an existing page. Themes are the second
step in many Web page designs — templates are the first step in the process.

Reasons to Use a Template
The biggest reason to use templates is to save time. Starting with a blank
page every time you create a new Web page is going to waste time. To bring
your projects in on time and within budget, you need to grab every potential
aid that results in real time savings. Templates provide a real time saving

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 123

Designing with the Page Templates124

and generally don’t have any negative features that would tend to reduce
their potential benefit. Here are some of the best reasons to use them:

✦ Templates ensure consistency. No one memorizes every piece of code
they create. Creating a template is like leaving yourself a note so you
don’t have to remember what you did the last time — everything is writ-
ten down so you can replicate a design easily. Consistency is especially
important as the number of users increase because any inconsistencies
increase training and support costs. Most companies do everything they
can to reduce both.

✦ Group projects benefit from templates because everyone starts with the
same design for their pages. The more precise a template becomes, the
less one page varies from another and the less time you spend reworking
pages so they conform to whatever standard your company sets.

✦ Looking at new templates can generate ideas for your Web site. An idea
that you used earlier (or that someone else created and you downloaded)
can lead to better Web sites. You can apply the idea for its intended pur-
pose or use it in a new application. Making tweaks to existing templates
is often more efficient than building the new idea from scratch.

✦ Sharing ideas can help both the group and the individual. Some people
develop templates and upload them for others to use freely; others charge
for the privilege of using an existing template. Both are examples of sharing
ideas between individuals who have no other connection. In the Microsoft
Office community, sharing templates can help everyone become more effi-
cient — and helps keep a great idea from getting lost because only one
person knows about it.

Designing with the Page Templates
The template you use most often is the page template. In fact, every example
in the book to this point relies on a page template. The Normal Page template
isn’t much to look at because it’s a blank page, but it’s a template — the
default template that many developers start using during their initial
FrontPage programming sessions.

As developers move on to more advanced programming techniques, they
also use the other templates that FrontPage has to offer. FrontPage provides
several types of templates:

✦ Templates that use frame technology to build Web pages. The resulting
pages can provide content outright or make use of other pages to pro-
vide content. Book II, Chapter 4 describes their use.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 124

Book II
Chapter 5

Designing w
ith

Tem
plates

Designing with the Page Templates 125

✦ Web-page templates that use no frames. These are for situations in
which frames would hamper the effectiveness of the Web page. (See
Book II, Chapter 4.)

✦ Style-sheet templates. A style sheet helps you create better Web pages
by placing the formatting information in a separate, generally accessible
area. The Web page uses the style sheet for formatting; the developer
uses it to hold just the content.

Using the general pages
When you right-click a folder and choose New➪Blank Page, FrontPage auto-
matically creates a page based on the Normal Page template. You use a blank
page when you begin a generic Web site or when the templates won’t do the
job. As the Web site grows, you begin using template pages to create a uni-
fied look so users know they’re still on your site because the look and feel
make the whole site feel like the same place.

Defining new pages using templates
Not every page has to start as a blank page, even when you create a new Web
site. FrontPage provides a number of starter pages for general use. For exam-
ple, you don’t have to create a guest-book page from scratch — FrontPage
provides one for you. To see the general templates that FrontPage provides,
use File➪New to display the New window in the Task Pane. Click More Page
Templates and FrontPage displays the Page Templates dialog box shown in
Figure 5-1.

Figure 5-1:
Choose a
template
that
provides
the basic
service
you need.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 125

Designing with the Page Templates126

FrontPage includes templates for many common uses such as registration
forms and tables of contents. You see the basic appearance of the template
in the Preview area of the dialog box. The Description area tells you about
the intended purpose of the template. Sometimes, you can change a tem-
plate from its intended purpose to a new purpose by carefully editing some
entries. Even though Microsoft says a template is for a specific purpose, you
can use it for practically anything you want — try various modifications
(read on for some suggestions). Have fun making your Web site perfect while
reducing the time you spend doing mundane chores by changing the tem-
plates to meet your needs.

Adding a new page as a Web task
You also see two options on the General tab of the Page Templates dialog
box: Just Add Web Task and Open in Current Frame. To add a new page as a
new Web task in the Task List, follow these steps:

1. Click Just Add Web Task and then click OK.

FrontPage displays the Save As dialog box.

2. Type a name for the new Web page in the File Name field.

3. After typing the name, add a title to the Web page by clicking Change
Title and typing the title in the Page Title field.

Adding a title ensures you can easily identify the Web page in Task view
when you look at your FrontPage Task List later.

4. Click Save.

FrontPage saves the new Web page to disk, closes it, and adds it as a
task to the Task List — reminding you to complete the page later (that’s
the task).

Displaying templates
In this dialog box, you don’t have to display the
templates as icons. Some people find it difficult
to read the template name information when
using the icon display. Click List in the Page
Templates dialog box to change the presenta-
tion to a list display. This display is the same as

a list display in Windows Explorer — the icons
appear along the left edge of the list and the
text flows out to the right from the icons. This
display makes long template names easier to
read. Click Large Icons to display the icons
again.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 126

Book II
Chapter 5

Designing w
ith

Tem
plates

Designing with the Page Templates 127

Now, when you want to return to the Web page, you can access it through
the Task List. To start the task, follow these steps:

1. Double-click its entry in the Task List.

You see the Task Details dialog box shown in Figure 5-2.

2. Click Start Task.

The page you created earlier opens.

3. Make any changes you want and then click Save.

FrontPage reminds you that this page appears on your Task List and
asks whether you want to mark the task as complete.

4. Click Yes or No to answer the question, or Cancel to do some more
editing.

If you click Yes, FrontPage marks the task completed. If you click No,
FrontPage saves your changes but keeps the page listed as a task. You
can access the page again through the Task List.

Adding a new page to an existing frame
The second option on the General tab of the Page Templates dialog box is
Open in Current Frame. Check this option when you want to add a page to
the currently selected frame. When you click OK in the Page Templates
dialog box, the page appears within the frame, rather than as an independ-
ent page.

Figure 5-2:
Open the
Task Details
dialog box
when you
want to start
a task.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 127

Designing with the Page Templates128

Working with embedded template files
Some templates also create additional files. For example, when you choose
the Photo Gallery template, FrontPage includes some sample images. You
choose whether to save these images so you can see them on-screen,
replace them with new images of your choosing, or simply delete them so
you can add images to display later on.

You should save the images the first time you create a Photo Gallery tem-
plate page because it shows how to place pictures when you edit the result-
ing page.

FrontPage asks where you want to store any extra files when you save the
page by displaying the Save Embedded Files dialog box shown in Figure 5-3.
This dialog box shows what the picture looks like in the Picture Preview
area. You can use the dialog box to change the names of any embedded files,
and choose whether FrontPage saves a new copy of the file or uses the exist-
ing copy.

When selecting a storage location for these files, make sure you place the
files in a location that’s consistent with the rest of your Web-site design.
Some developers place all the graphics for a site in a special Images folder,
while others store the graphics in the same folder as the Web page. Using a
centralized location makes it easier to update the pictures and lets you use
one copy of the image for every page that needs it. Storing the pictures with
the Web page makes it easier to locate all the files that go with a certain Web
page when you need to edit it.

Another feature of the Save Embedded Files dialog box appears when you
click the Picture File Type button. The Picture File Type dialog box displays
the current type of embedded image. You use this dialog box to convert the

Figure 5-3:
Save any
embedded
files for the
current Web
page.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 128

Book II
Chapter 5

Designing w
ith

Tem
plates

Designing with the Page Templates 129

picture to another file type to gain certain advantages such as color depth or
download speed. For example, selecting the JPEG type lets you decrease the
quality of the image — with an associated reduction in file size — making the
file faster to download.

Using the frames pages
Developers use frames within Web pages to help organize information. The
Frames Pages tab of the Page Templates dialog box contains a list of stan-
dard frame setups, as shown in Figure 5-4. (For more on frames, see Book II,
Chapter 4.)

The Preview and Description areas tell you about the selected frames
page. The Preview area shows how the page looks, while the description
provides some ideas of how to use the frames page. A frames page provides
organization, not content, so the ideas in the Description area are really just
suggestions.

You might think that the Open in Current Frame option is useful only when
working with Web pages. It’s possible to use this option in the Frames Pages
tab too. Use this feature to create complex layouts based on two or more of
the simple layouts that Microsoft provides. Some layouts are especially
useful as beginning frames. For example, it would be difficult to use the
Banner and Contents layout within another frame, but the Horizontal Split
layout works fine as an addition to an existing frame.

Figure 5-4:
Use frames
to organize
information
on a Web
page.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 129

Designing with the Page Templates130

Always begin your layout with the complex main frames page. You can then
add more frames pages as needed to complete a design.

The frame-within-a-frame layout technique is definitely different from split-
ting a frame. When you split a frame, the changes reside within a single Web
page (see the SplitFrame.htm file in the source code for this chapter for
details). The code that does the job looks like this:

<frameset rows=”64,*”>
<frame name=”banner” scrolling=”no” noresize

target=”contents”>
<frameset cols=”150,*”>
<frame name=”contents” target=”main”>
<frameset rows=”*,49%”>
<frame name=”main”>
<frame name=”main1”>
</frameset>
</frameset>
</frameset>

Notice that the code FrontPage creates doesn’t include any reference to an
external page. When you use the frame-within-a-frame technique, you actu-
ally create two Web pages, each with its own layout information. The first is
the initial main frames page, the second is the fames page you added to the
existing frames page. The code for this method looks like this:

<frameset rows=”64,*”>
<frame name=”banner” scrolling=”no” noresize

target=”contents”>
<frameset cols=”150,*”>
<frame name=”contents” target=”main”>
<frame name=”main” src=”HorizontalSplit.htm”>
</frameset>
</frameset>

The code for the main frames page is actually easier to understand in the
second case, but notice that it references another file, HorizontalSplit.htm,
which contains the additional layout information. The visual effect is the same
in both cases. To see how this technique works from a coding and visual per-
spective, see the FrameWithinAFrame.htm file in the source code for this
chapter.

The advantage of using this second technique is that you control each ele-
ment of the layout as a separate Web page. You can display subordinate Web
pages either individually or in the frames-within-frames collection. The dis-
advantage of using this technique is that you have more files to manage,
which often results in errors. If you modify the wrong file, changes that you
thought you made might not appear on-screen.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 130

Book II
Chapter 5

Designing w
ith

Tem
plates

Designing with the Page Templates 131

Using the style sheets
Style sheets don’t actually contain any content — they define the formatting
of the content of a Web page. By separating the content of a Web page from
the formatting, you make it possible for a user to display the Web page with
any formatting that meets a specific need. For example, the user might

Correcting the table formatting
in default templates

While working with the default templates, I
noticed a problem. The table formatting doesn’t
appear to work correctly. Changing the target
browser to another browser type doesn’t
appear to fix the problem in this case. This prob-
lem doesn’t affect the operation of the
stylesheet as a whole, so you don’t have to
make any changes if you don’t want to.
However, to see the colors of the table border
as Microsoft intended, you must modify the
style sheet code, as shown in bold.

table
{

table-border-color-light:
rgb(255,102,153);
table-border-color-dark:
rgb(102,51,153);
border-left-color:
rgb(255,102,153);
border-top-color:
rgb(255,102,153);
border-right-color:
rgb(102,51,153);
border-bottom-color:
rgb(102,51,153);

}
td
{

border-left-color:
rgb(102,51,153);

border-top-color:
rgb(102,51,153);
border-right-color:
rgb(255,102,153);
border-bottom-color:
rgb(255,102,153);

}
th
{

border-left-color:
rgb(102,51,153);
border-top-color:
rgb(102,51,153);
border-right-color:
rgb(255,102,153);
border-bottom-color:
rgb(255,102,153);

}
The problem is this: The table-border-
color-light style is supposed to mimic the
Light Border color setting found in the Table
Properties dialog box. Likewise, the table-
border-color-dark style is supposed to
mimic the Dark Border color setting. Neither of
these styles works as intended. To create the
3D look created with the Light Border and Dark
Border properties, you must define the border
colors manually as shown. The SweetsDemo.
css file on the companion Web site already
has this change in place so you can see how it
affects the presentation.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 131

Designing with the Page Templates132

require a larger font to make the page readable or a different color setup to
see the page details. A Web page can achieve different looks for the same
content by using a different style sheet.

Creating an initial style sheet can require more time than creating the con-
tent for the first Web page when you want to achieve a particular look. Using
the style sheet templates on the Style Sheets tab of the Page Templates
dialog box (as shown in Figure 5-5) can reduce development time.

One of the first problems you see when you select a style sheet is that the
Preview area is blank. Because a style sheet contains only formatting and no
content, FrontPage can’t display anything without creating a Web page to
display the information. Unfortunately, this is an issue that Microsoft chose
not to address.

The example code on the companion Web site includes the
StyleSheetCheck.htm file, along with a series of Cascading Style Sheet
(CSS) files that are unmodified versions of the Microsoft templates. Use the
following procedure to see how the various templates work:

1. Choose Format➪Style Sheet Links.

You see the Link Style Sheet dialog box.

2. Select the current style sheet and click Remove.

FrontPage removes the existing style sheet.

3. Click Add.

You see the Select Style Sheet dialog box.

Figure 5-5:
Use CSS to
separate
content
from
formatting
on your
Web page.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 132

Book II
Chapter 5

Designing w
ith

Tem
plates

Obtaining Additional Templates 133

4. Select the source-code folder, BK02CH05, in the Look In field.

You see a selection of CSS files. Each file shows the name of the tem-
plate, followed by the word Demo; when you want to see the Arcs tem-
plate that appears in Figure 5-5, select the ArcsDemo.css file.

5. Double-click the style sheet you want to use.

The style sheet’s name appears in the Link Style Sheet dialog box.

6. Click OK.

FrontPage changes the formatting of the sample Web page to match the
style sheet you selected.

Obtaining Additional Templates
The templates that you get with a default FrontPage installation are a good
starting point. These templates answer some basic needs that most develop-
ers have. You can further increase the productivity gains that templates
provide by downloading specialty templates from online sources. Getting
specialized templates reduces development time by reducing the number
of changes you have to make.

At first, I was going to concentrate strictly on Microsoft supplied templates
in this section — that was before I started seeing the wealth of templates
online. Many developers provide templates you can use within FrontPage.
The best place to get high-quality templates from someone you know is still
Microsoft. You can download them at

http://office.microsoft.com/templates/default.aspx?CTT=98

Not every template on this site is for FrontPage, however. Drill down through
the list of template categories to locate a template of the type you need. The
icon next to a template tells you which Office application can use it.

The Microsoft template Web site also includes other essential links. For
example, you can make suggestions for new templates. You’ll also find links
for the Office newsletter and other helpful sources of information.

The next best place to look for templates is on Microsoft’s Office
Marketplace at

http://office.microsoft.com/marketplace/default.aspx?CTT=98

The companies that appear on this site are reliable and have a business rela-
tionship with Microsoft, so you can be reasonably sure the products they
produce are of high quality and reliable. To locate templates, click the
Template link in the Creating Documents portion of the page.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 133

Using an Existing Page as a Template134

After you exhaust the Microsoft resources, you can begin looking at sites
that specialize in templates. For example, FrontPage Template World (www.
fpworld.com/) has templates for just about any need. If you don’t see what
you want, they’ll build a custom template for you. Another good place to look
is Classy Themes (www.classythemes.com/). This site also provides serv-
ices for Webmasters who want to serve client needs without investing a lot
of time creating templates and themes. The only problem with sites such as
these is that you end up paying a small fee for every template you download.

Using an Existing Page as a Template
No matter how hard you search online, you still create some pages by hand.
A few of these pages are so unique that you don’t gain any advantage by cre-
ating a template from them. Only when you can use the same basic design
more than once should you consider creating a template from it. Most com-
panies have a basic design they use for all Web pages, so that’s where you
can start creating your custom templates.

Defining a page as a template
When you create a page that you want to use as a template, you should con-
centrate more on the page layout than on the content. The idea is to repli-
cate the features that are common to all pages of that type. If you plan to
include some common content, it should appear in the template, but leave
out any unique content. For example, a company logo will likely appear on
every page, so you should include it with the template — but a page title is
unique, so leave that out.

Designing templates points out the need to plan your Web site. A plan doesn’t
necessarily describe content in detail, but it should contain enough informa-
tion to identify any common elements. Creating a mockup of several sample
pages helps. Grouping the pages according to type is also helpful. All these
discovery mechanisms help you create better templates. A good template
saves time by letting you concentrate on unique content for the pages you
create.

Using the template page locally
After you design a template page, you should test it locally to ensure it
works as planned. It’s unlikely that you’ll see any actual errors. The pur-
pose of local testing is to ensure that you add all common content — but
no unique material — to your template. To ensure that your template works
as planned, use it to design several pages for your Web site. Make notes as
you create the pages of anything you feel is common enough that you should
include it in the template.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 134

Book II
Chapter 5

Designing w
ith

Tem
plates

Using an Existing Page as a Template 135

To test a template locally, follow these steps:

1. Use File➪New to display the New window in the Task Pane.

2. Click From Existing Page.

FrontPage displays the New From Existing Page dialog box.

3. Locate the page you want to test as a template and click Create New.

FrontPage creates a new page based on the template.

The new page will look and act like a new page that you create using any
other template — the only difference is that the template is from a local
source.

For the purposes of an example, I modified a copy of the SplitFrame.htm
file, SplitFrame2.htm. The file now includes a banner at the top and uses
the Table of Contents template page on the left side. Try this design out and
you’ll see it always includes the added pages and graphics in the new page.

Adding the template to FrontPage
After you create a template and test it locally, you want to make it acces-
sible to others as a standard entry on the Page Templates dialog box. To
perform this task, you need to create a few additional files and set up a
folder in a specific location on your hard drive (or the hard drive used for
templates in your workgroup). The standard location for page templates on
a local system is \Program Files\Microsoft Office\Templates\1033\
PAGES11. Open this folder in Windows Explorer and you see a list of familiar
names — the same names that appear on the General tab of the Page
Templates dialog box.

To define your own entry, create a new folder in the PAGES11 folder (this
name will vary when you use older versions of FrontPage) by right-clicking
the right pane in Windows Explorer and choosing New➪Folder from the con-
text menu. The folder name begins with the name you want to use for the
template, followed by a period, followed by the tem (template) extension.
For example, to create a template called MyTemplate, you create a folder
named MyTemplate.tem. The name of the folder has to match the name of
the main Web page. (The example uses SplitFrame2.tem.)

Copy all the files required to create the template into this folder. For the
SplitFrame2.htm file, you also need the SplitFrameBanner.htm,
SplitFrameContents.htm, and the MyBanner.jpg files because all these
files appear as part of the template.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 135

Using an Existing Page as a Template136

At this point, you need a picture of the template. Even though Microsoft
doesn’t include this feature, trying to use the templates without a preview
image is difficult at best. Open the template in your browser and use a
screen capture program to create the picture. The picture appears in the
Preview area of the Page Templates dialog box after you save it to the tem-
plate folder. You need a graphics application that can produce a Device-
Independent Bitmap (DIB) file. A number of graphics applications, such as
PaintShop Pro (www.jasc.com/), can take screenshots of your template,
reduce the size of the image to 110 pixels wide by 124 high, and save it as
a DIB file. The name of the DIB file is very important — it must match the
name of the main Web page in the template, which means the example file
is named SplitFrame2.DIB.

The final piece needed to create a permanent template is an INF (informa-
tion) file. This file tells FrontPage what to display as a template name and
provides a description of the template that appears in the Description sec-
tion of the Page Templates dialog box. As with everything else, the name of
this file must match the name of the main Web page. Here are the contents of
the SplitFrame2.inf file.

[info]
_LCID=1033
_version=11.0.4819.0
title=Split Frame with Banner and Contents
description=This page contains the company banner, a table of

contents, and two areas for content.

The [info] entry identifies the kind of information in this section of the file.
Some INF files contain multiple sections, but this one contains only one.

The _LCID entry identifies the language reference number (locale) for this
template, which identifies the language. If you’re not sure what number to
use, just set this value to match other templates in your copy of FrontPage.
The number 1033 is for the United States. Many Web sites — such as the
International LCID (Locale Identifier) Code Chart at http://krafft.com/
scripts/deluxe-calendar/lcid_chart.htm — provide a list of LCIDs
you can use when you want to create a template in a language other than
the one your copy of FrontPage supports.

The _version number entry doesn’t affect the appearance of the template
or change how FrontPage interacts with it. The number used with the exam-
ple is for FrontPage 2003. Normally, I use the same version number as the
other templates in the version of FrontPage that I used to create the tem-
plate for documentation purposes. However, you can use any version num-
bering scheme that suits your needs.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 136

Book II
Chapter 5

Designing w
ith

Tem
plates

Using Web Site Templates 137

The title and description entries contain the title used to display the
template in the Page Templates dialog box. The title appears with the tem-
plate icon; the description appears in the Description area of the dialog box.

After you create the new template, test it. The procedure looks like this:

1. Close FrontPage (if you have it open) and then reopen FrontPage.

2. Select File➪New to display the New window in the Task Pane.

3. Click More Page Templates and you see the Page Templates dialog
box.

4. Select your new template.

Figure 5-6 shows the example template. Notice that all entries correctly
identify the template. When you select this template, it creates a framed
page with a banner and contents section.

Using Web Site Templates
Depending on how you use FrontPage, the Web site templates can prove
useful for a number of needs. Even a small company can often make use of
multiple Web sites — one to provide a public interface and another used by
one or more groups of employees. A temporary Web site can act as a focus
point for a project where some people are working off site. Generally,
though, you use Web-site templates less often than any other part of
FrontPage (unless you develop Web sites professionally).

Figure 5-6:
Create and
test new
templates
as needed
for your
Web site.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 137

Using Web Site Templates138

Defining a new site
To create a Web site using a template, use File➪New to display the New
window in the Task Pane. Click More Web Site Templates. You see the Web
Site Templates dialog box shown in Figure 5-7.

Select a template and you see a description of it in the Description area. The
description tells you the purpose of this Web-site template. Unlike those of
Web-page templates, the descriptions are usually very accurate; you won’t
have a lot of room for making changes unless you’re using a generic template
such as One Page Web Site or Empty Web Site.

Choosing site within a site or separate site
You can place the new Web site within an existing Web site by clicking Add
to Current Web Site. You access this new site by using the current site as a
starting point. The only problem with this approach is that there’s no sepa-
ration between the initial site and the new site. When you create a new Web
site this way, the content from both sites mingles; it’s hard to remove the
new site later.

A better option is to create a new subsite that uses the current site as a start-
ing point. To use this technique, follow these steps:

1. Type the URL for the current site in the Specify the Location of the
New Web Site field.

2. Add one or more levels of folders to hold the subsite.

Figure 5-7:
Use Web
site
templates
to create
permanent
or
temporary
Web sites.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 138

Book II
Chapter 5

Designing w
ith

Tem
plates

Using Web Site Templates 139

3. Click OK.

FrontPage creates the site in the new location. The site contains any
Web pages defined by the template, along with other support files.

This way of creating a separate site makes the Web server view it as a new
location or as a Web application. This means you can place restrictions on
this subsite that differ from those placed on other subsites in the same main
Web site. It’s also a lot easier to clean up the subsite when you finish using it,
so this is the best option for temporary Web sites you want to use for collab-
oration or other purposes.

FrontPage also treats subsites as separate applications. You can open the
subsite as a unique project and work with the files as if there weren’t any
other files to consider. Everything is separate from the main site; managing
the project is much easier.

Using secure communication
When a Web server provides the required support for Encrypted Connection
Required (SSL) capabilities, FrontPage enables them as an option. Check this
option when you want to create a secure connection with the user. The user
must access the site using HyperText Transport Protocol Secure (HTTPS),
rather than normal HTTP.

The advantage of a secure site is that others can’t monitor your communica-
tion to hunt for information they shouldn’t have. You use this option when
you want to obtain personal or sensitive information from the user. The dis-
advantage of this technique is that it’s much slower than using nonsecure
communication. The user waits longer, which means there’s a better chance
the user will get tired of waiting and move to another location.

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 139

Book II: Basic Pages140

10_575317 bk02ch05.qxd 9/24/04 7:27 PM Page 140

Chapter 6: Working with
FrontPage Themes

In This Chapter
� Creating unique Web pages with themes

� Designing Web pages with FrontPage themes

� Designing Web pages using custom themes

A theme defines a consistent appearance for the content of a Web page.
Unlike a template, it doesn’t define the structure or layout of the Web

page — but it doesn’t define the content either. You use a theme to deter-
mine the color scheme of the page and any background images. Themes act
as a unifying influence over the Web site, providing visual (and sometimes
aural) cues that define the look and feel of your Web site for the user. A
theme in FrontPage has the same purpose as themes you use in Windows.

FrontPage provides a number of themes you can use to create standard
looks on your Web site. These themes lack the pizzazz of a theme you create
for your own use, but they’re quick to implement and provide an aestheti-
cally pleasing appearance. You can also create and store themes that you
devise. In most cases, you start by experimenting with a Web page in
FrontPage to develop the theme, and then store the theme for use with
other Web pages.

Using themes can make the Web experience better for some visitors to your
site, but not everyone can use them. Make sure you use a theme that doesn’t
distract from the message you want to present and also addresses the needs
of all users. For example, a user with color blindness might not be able to
see your site if you use the wrong colors. Using themes can also interfere
with accessibility hardware and software, which means you lose potential
visitors because they can’t access your site.

Defining a Unique Look with Themes
A theme can improve the appearance of your Web site by adding a unifying
look to the display. A theme can work with the message you want to present,
giving the viewer a focused emotional impact or producing subtle changes in
the way a viewer sees the Web page. For example, using pastels in a Web-page

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 141

Defining a Unique Look with Themes142

design produces a muted overall feeling; using primary colors such as red and
blue produce a more energetic atmosphere. Consequently, the theme you
choose has to work with the message you want to present.

Normally, combining a theme with a layout helps ensure that every page has
the same basic structure. Combining a theme and layout with the message
you present gives the site a consistent emotional impact, while making it
easy to use and understand. The best way to experiment with themes is to
select one of the page templates that FrontPage provides and then change
the theme to see how it affects the page. Figure 6-1 shows a combination of
the Guest Book template with the Bars theme.

Themes also work well with layouts. When you combine a layout and a theme,
the entire page uses that theme. The use of tables to hold the various data
items doesn’t affect the theme appearance. For example, Figure 6-2 shows
a combination of the Centered Header and Centered Body layout and the
Modular theme when displayed in Preview view. (Note that the figure also
includes content so you can judge the effect of the theme.) The advantage of
this technique is that you define the page content. It’s relatively easy to turn a
layout, theme, and standard content into a template that you can use for all
your Web pages.

Figure 6-1:
Combine
layout and
themes to
produce a
unique look.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 142

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Using the Standard Themes 143

It’s a lot harder to use a theme with frames because the frame layout relies
on individual pages. To present a unified look, you must apply the theme to
every page presented in the frames page.

The lack of good theme support is another reason to avoid using frames
when you can.

Using the Standard Themes
Microsoft provides a wealth of themes you can use to customize your Web
pages. When you don’t find a theme you like, you can also obtain themes
from third parties (some of which charge a fee for the privilege of using their
theme). Unless you’re a professional artist with Web-design experience, it
probably pays to use these predefined themes to get an aesthetically pleas-
ing result. Even when you choose to create a custom theme, looking at these
other offerings can provide ideas to use in your own design.

Adding a theme to a Web page
Before you add a theme to an existing page, it pays to look at what the theme
has to offer. The only way to accomplish this task is to create a test page

Figure 6-2:
Use a layout
and theme
combination
when an
existing
template
doesn’t
provide the
appearance
you want.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 143

Using the Standard Themes144

that contains a series of design elements that let you see what the theme has
to offer. You want to use a test page that’s small enough to see in the Design
and Preview views, but offers a sampling of the design elements you use on a
production page (although not necessarily the order in which you use them).
Always concentrate on the design elements you actually use, and ignore the
elements you won’t use. The SimpleTheme.htm page provided with the
source code on this book’s companion Web site provides a list of standard
elements you can try.

You must add the SimpleTheme.htm page to your navigational structure to
see the effect of the theme on the banner.

To add a theme to your Web page, follow these steps:

1. Choose Format➪Theme.

You see the Theme window in the Task Pane.

2. Scroll through the Select a Theme list and click the theme you want
to use.

FrontPage changes the appearance of the Web page to match the theme.

3. Customize your theme by using one of these three options:

• Use the Vivid Colors option to modify the colors used for standard
styles of content such as headers and links.

• Use the Active Graphics options to intensify the colors of bullets,
banners, and other foreground images.

• Use the Background Picture option to add a background picture to
the display.

The various combinations create eight versions of the same theme, so a
single theme is more flexible than it first appears. Theme changes aren’t
automatic — you must apply them to every page that uses the theme on
your Web site. Whenever you change one option, you must reapply the
theme to a page by clicking the theme entry in the Select a Theme window
to see the effect of the change.

Look at the small picture provided with each theme in the Theme window.
The picture elements change to show the effect of a particular option. The
top line in the figure is the banner, followed by interactive buttons, headers,
regular text, navigational bar, regular hyperlink, and followed hyperlink.
Figure 6-3 shows a typical theme with all options enabled.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 144

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Using the Standard Themes 145

Applying a theme to selected files
After you decide on a particular theme and set of customizations, you
want to apply it to one or more other pages on your site to provide a unified
look. FrontPage doesn’t force you to open each file individually to apply the
theme — you can apply the theme to a group of files. To apply a theme to a
group of files, follow these steps:

1. Select the files you want to change in the Folder List.

2. Select the options you want to use with the theme.

3. Hover your mouse over the theme entry in the Select a Theme window
and click the button that appears on the right side of the theme entry.

You see a context menu.

Banner

Navigational Bar

Buttons

Regular Link

Followed
Link

Headers

Regular Text

Figure 6-3:
Select a
theme and
customize it
to present a
particular
view of your
content.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 145

Creating Your Own Theme146

4. Select Apply to Selected Page(s) from the context menu.

The display flashes; for a moment, nothing seems to happen.

5. Open one of the files you changed.

You see that FrontPage has applied the selected theme, using the speci-
fied options.

Applying a theme to a whole Web site
In many cases, you want to apply a theme to an entire Web site so it has a
unified appearance. Applying the theme to the whole site means you don’t
have to worry about the appearance of individual pages — they all use the
same theme automatically.

Exercise care when you use this approach; it affects every Web page on
your site except those that already have themes applied (older versions of
FrontPage occasionally apply themes to all pages, regardless of current
status). A whole-site theme change is nonreversible. Although, after you
make this change, you can apply other themes to the site or even tell
FrontPage not to use a theme, you can’t retrieve earlier customizations.

To apply a theme to an entire site, follow these steps:

1. Select the theme options you want to use.

2. Hover your mouse over the theme you want to use in the Select a
Theme window and click the button that appears to the right of the
theme.

You see a context menu.

3. Select Apply as Default Theme from the context menu.

FrontPage displays a warning about applying the theme.

4. Click Yes only if and when you’re sure you want to apply the theme.

The display flashes; the themes for any open pages change when
FrontPage is finished applying the new theme. FrontPage doesn’t display
a special message to tell you when the conversion is complete.

Applying the theme can require quite a bit of time when you have a large
Web site. Make sure you wait long enough for the change to occur.

Creating Your Own Theme
The themes provided with FrontPage are nice, but might not meet the specific
content needs for your Web page. Fortunately, you can further customize a
theme to meet special needs in FrontPage.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 146

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Creating Your Own Theme 147

To get a theme ready to customize, follow these steps:

1. Hover your mouse pointer over a theme entry.

2. Click the button that appears on the right side of the entry.

You see a context menu.

3. Select Customize from the list.

You see the Customize Theme dialog box shown in Figure 6-4.

The Preview area shows what the theme looks like. It provides a standard
Web page. However, this Web page is designed to show all the theme fea-
tures and might not be very representative of how you actually use the
theme on your Web page. Even so, the Preview area provides enough infor-
mation to start customizing a theme.

Notice the Save button is disabled in Figure 6-4. You can save modified
themes only under a different name. FrontPage-supplied themes are marked
as read-only; you can use them, but can’t modify them. When you save a
theme with changes under a different name, FrontPage enables the Save
button.

Figure 6-4:
Perform
special
theme
customiza-
tion as
needed.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 147

Creating Your Own Theme148

FrontPage provides the means to modify themes in the three ways that matter
most: color, text, and graphics. You can start with a blank theme and create
something completely different from what Microsoft provides, or you can rely
on Microsoft’s themes as a starting point and make specific changes.

Modifying theme colors
The theme colors define everything from the appearance of the headings
to the shade of the background. To change the colors, click Colors and you
see the Customize Theme dialog box shown in Figure 6-5.

FrontPage provides three methods of changing color. Each has its own
advantages:

✦ Choose one of the existing color schemes. The advantage of using this
method is that the colors are already set up to harmonize well together.
You don’t need to worry whether the colors will work together and not
present a conflicting message on-screen. The disadvantage is that the
number of choices are limited to those that Microsoft offers. This is the
best option for users who want a somewhat custom look, but don’t want
to spend a lot of time putting it together.

✦ Click the Color Wheel tab. You see a page with a color wheel. Move the
pointer to a particular area of the color wheel. FrontPage automatically
chooses harmonizing colors based on the area you choose. Use the
Brightness control to modify the overall contrast and intensity of the
colors. The advantage to this method is that you obtain an almost infi-
nite variety of base color choices. The disadvantage is that you can’t
control individual colors. This is, however, the best option for someone
who wants a completely custom look but also wants to ensure that the
colors harmonize well.

✦ Click the Custom tab. Select an item (such as Background) from the
Item list and choose a color for that item. The advantage of this method
is that you have precise control over the color of every element of the
display. The disadvantage is that you can choose some hideous color
options that clash and are hard to read — and FrontPage won’t stop you.
As you probably guessed, this is the best option for the trained eye of a
professional Web-page developer or artist.

Modifying theme graphics
Graphics of any type (pictures, background images, or other graphic ele-
ments) have a very big impact on the appearance of the page. Unlike the
subtle effects of color and text style, graphics are prominent — even small
changes show up, and the user is going to see them. Consequently, you need
to select new art with care to ensure the page has a well-defined appearance.
To change a graphic, click Graphics. You see the Customize Theme dialog
box shown in Figure 6-6.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 148

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Creating Your Own Theme 149

Figure 6-6:
Select
colors for
every
aspect of
the Web
page.

Figure 6-5:
Select
colors for
every
aspect of
the Web
page.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 149

Creating Your Own Theme150

FrontPage relies on a number of Joint Photographic Experts Group (JPEG)
images for its graphics. You can also use Graphics Interchange Format (GIF)
images for graphics you supply in a theme. (Missing from the FrontPage
arsenal are newer graphics formats, such as Portable Network Graphics
(PNG), which offer more functionality than either JPEG or GIF.) Both file
formats have advantages when used with specific kinds of images or to
perform specialized tasks.

The best rule to follow when you want to improve the speed of your Web
site’s download is to use GIF format when you want to display simple images
and JPEG for complex images. One of the best discussions of graphics for-
mats to use for specific circumstances appears on the Web Page Design site
at http://coe.sdsu.edu/eet/Articles/wpdgifjpg/start.htm.

The advantage of using JPEG (or JPG) images is that you can create a high-
quality image that compresses well with complex images. You can choose
the quality of the image, balancing how well the picture compresses against
how nice it looks on-screen. Unfortunately, the compression can come with
a loss of detail — the more you compress the image, the more the loss of
detail becomes apparent. You also lose a little detail every time you save a
JPEG image. A JPEG offers higher color resolution than the 256 colors pro-
vided by GIF, so you can provide subtle shading effects.

The GIF format is lossless — you don’t lose any information when you save
the image to disk. This format, however, uses interlaced display, which
makes the image appear (at first) in a rough, jagged form that at least loads
quickly. The resolution of the image improves from that point as the browser
loads more details from the Web site. Consequently, this format is especially
good when you expect to support large numbers of users with dial-up con-
nections. The GIF format also offers animation effects — you see them all the
time on Web sites.

Every FrontPage theme requires multiple graphics. Assigning a new image to
a graphic is a pretty quick process:

1. Select the feature from the Item list.

2. Click Browse.

You see an Open File dialog box.

3. Locate the image you want to use for that feature and click Open.

FrontPage modifies the specified item to use the new graphic element.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 150

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Creating Your Own Theme 151

Many graphic elements also include separate Normal Graphics and Active
Graphics settings. To select a different graphic for each setting, choose either
Normal Graphic or Active Graphic. Select the graphic for that setting. Repeat
the change for each other setting. Now, when you change from normal to
active graphics, the theme looks different because it uses a different image.

Some graphics elements, such as the Banner, also have a text element. You can
modify this portion of the graphic element by clicking Font. When the options
on this tab are enabled, the selected item has a text element. Figure 6-7 shows
the font changes you can make.

Each element has a different font associated with it, so you need to select
the element you want to change, such as Banner, from the Item list before
you make a change. To change the font for the selected element, begin by
choosing a typeface from the Font list. Select the style, size, horizontal, and
vertical alignment that you want for that element. Try various settings to see
what looks best on a mockup Web page.

Figure 6-7:
Define
the font
character-
istic for
images that
have text
components.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 151

Creating Your Own Theme152

Modifying theme text
The theme text is content that appears as text, formatted separately from
the graphics. For example, the banner is a graphic element; as such it isn’t
affected by general theme-text settings. A paragraph, on the other hand, is
general, non-graphic text; theme-text settings affect it.

Setting theme text
Setting the theme text is a pretty straightforward way to customize a theme.
To do so, follow these steps:

1. Click Text in the Customize Theme dialog box.

You see the Customize Theme dialog box shown in Figure 6-8.

2. In the Item list, select the text element you want to change.

The Preview pane shows the text elements you can choose.

3. Select a typeface from the Font list.

FrontPage changes the typeface used for that text element on-screen.

4. Change each text element individually.

This approach is necessary if (for example) you want to use the same
font for all elements in a theme.

Figure 6-8:
Modify non-
graphic text
as needed
to present
content
clearly.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 152

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Creating Your Own Theme 153

Modifying the theme-text font
Changing the typeface can have a major impact on the appearance of a par-
ticular theme — but you can add other enhancements to make the theme
look even better. To create unusual font effects, follow these steps:

1. Click More Font Styles to display the Style dialog box shown in
Figure 6-9.

The Style dialog box contains every style associated with this theme or
the layout you choose. You see a lot of nonstandard styles when the List
field is set to User-defined Styles. The standard HTML tags appear when
you select HTML Tags in the List field. Make sure you start with the cor-
rect selection in the List field to find the style you want to modify.

2. Select a style.

The Paragraph Preview and Character Preview areas change to match
the formatting provided by that style. Use these displays to determine
what changes you want to make and to see how changes you make affect
the style as a whole.

If you don’t see a style you want to modify, click New to create one. Use
Delete to remove any styles that you don’t want any longer.

3. Click Modify when you want to make changes to the style.

You see a Modify Style dialog box.

Figure 6-9:
Modify non-
graphic text
as needed
to present
content
clearly.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 153

Creating Your Own Theme154

4. Click Format to see a list of changes you can make.

These include the font (how the text appears), paragraph (line spacing
and indentation), border (lines around the text), numbering (includes
both bullets and numbers), and position (how other text interacts with
this style).

Saving the new theme
After you make a few changes to your new theme, you want to save it to disk
to ensure no changes are lost should an error occur with your system. To
save a new theme to disk, follow these steps:

1. Click Save As in the Customize Theme dialog box (refer to Figure 6-4).

FrontPage displays a Save Theme dialog box.

2. Type a descriptive name for your new theme.

You might want to use a specially formatted name when you plan to create
multiple themes for a single Web site. For example, you might want to use
a name such as MyCompanyContentsPage to ensure you can find the
theme quickly when you need it.

3. Click OK.

FrontPage saves the new theme for you.

Sharing a theme with others
The new theme you created doesn’t exist in the same location as other
FrontPage themes — other users can’t access it. Microsoft assumes that
any themes you create are for your personal use. When you work in a group,
however, other people need to use your themes or the Web site won’t have a
consistent look.

To share a theme with others, you must first locate it on the hard drive. The
themes you create are stored with all the other documents you create in the
following folder on your hard drive:

\Documents and Settings\<Your User Name>\Application Data\
Microsoft\Themes\

Each theme appears as a separate subfolder in the Themes folder and will
have the name you assigned to it. When you want everyone on the same
machine to use your theme, copy the theme folder to the following location:

\Program Files\Common Files\Microsoft Shared\THEMES11

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 154

Book II
Chapter 6

W
orking w

ith
FrontPage Them

es
Creating Your Own Theme 155

You can also move the theme to individual \Documents and Settings fold-
ers when you want to share with just one or two people.

This folder contains a minimum of three files: an ELM file, a PNG file, and an
INF file. Each has a distinctive purpose:

✦ The ELM file contains a description of your theme.

✦ The PNG file contains eight pictures of how your theme looks with eight
different setting combinations a user can make in the Select a Theme
window of the Task Pane.

✦ The INF file contains the settings for your theme.

These FrontPage-supplied files work fine for the most part, but you do need
to make a few small changes to the INF file before you can share the theme.
Open this file using any text editor (such as Notepad). Here is a modified
version of the standard text that FrontPage provides:

[info]
readonly=true
codepage=65001
version=1.00
format=2
title=My Sample Theme
refcount=0

[titles]
1033=My Sample Theme

Begin by changing the readonly entry to true. The default setting of false
lets anyone make changes to the theme or delete it. Changing this setting to
true ensures that someone can’t delete or modify the theme from within
FrontPage.

The second change is to add any entries needed to the [titles] section to
support other languages. The default setting consists of a language identifier
or LCID (1033 in this case) and the name of the theme in that language. When
you want to support other languages, you must provide an LCID for that lan-
guage and a descriptive name. For example, if you want to provide support
for Spanish (from Spain) you would add an entry like this to the [titles]
section (note that this translation might not be precise):

1034=Mi Tema De Muestra

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 155

Creating Your Own Theme156

Removing themes you don’t want
At some point, you’ll have a number of themes on your system that didn’t
quite make the grade. Yes, they’re nice themes (potentially, anyway), but
you’ve created better themes since you started and don’t really need those
old ones anymore. To remove a theme you don’t want, follow these steps:

1. Hover the mouse pointer over the theme in the Select a Theme
window of the Task Pane.

2. Click the button that appears to the right of the theme.

You see a context menu.

3. Select Delete from the list.

Note that you can delete themes you create. However, you cannot delete
the themes provided with FrontPage.

11_575317 bk02ch06.qxd 9/24/04 7:24 PM Page 156

Book III

Webs

12_575317 pp03.qxd 9/24/04 7:54 PM Page 157

Contents at a Glance
Chapter 1: Working with an Existing Web Site ..159

Chapter 2: Creating a New Web ..177

Chapter 3: Using FrontPage Views ..195

Chapter 4: Creating Navigational Views ..213

Chapter 5: Using FrontPage Reports Efficiently ..233

12_575317 pp03.qxd 9/24/04 7:54 PM Page 158

Chapter 1: Working with
an Existing Web Site

In This Chapter
� Getting ready to import the site

� Creating a new Web from an existing site

� Describing the site properties

� Providing site views

AWeb is the FrontPage term for an entire site. A simple Web is one in
which there’s a single Web site. However, a Web can include a main site

and a number of subsites. Each subsite is accessible as a separate Web site
and has its own characteristics. Think of a Web as the root of the tree that
defines your Web site, with leaves describing each destination Web page. In
FrontPage, the effect of a Web (that is, of a Web site) is to provide organiza-
tion and added functionality.

You can open a Web site and modify it without ever converting it to a Front-
Page Web. FrontPage still provides standard editing features for pages and
you can perform various configuration tasks. However, when you convert
a site to a Web, you gain the advantage of referencing the site as an entity.
That means you can import and export the site as a package. Before you can
convert an existing site to a Web, however, you need to clean it up. And after
you import it, you must perform some initial setup and maintenance tasks.

A Web can make use of features that a standard site doesn’t have, so you
perform some FrontPage-specific tasks with the new Web. These tasks
include defining the new Web properties and configuring it to use the spe-
cial views and reports that FrontPage provides. When you complete the
task, FrontPage can help you manage your Web site in ways that weren’t
possible before.

Cleaning Up Before You Import the Site
Your current Web site probably works fine. You know where everything’s
stored and you know why you organized the pages in a certain way. The
problem is that you haven’t documented your setup and your technique for
managing the site has changed as your knowledge increased. Even though

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 159

Cleaning Up Before You Import the Site160

your site works fine, you still need to perform some cleanup before you
import it into FrontPage. The goal of this cleanup process is to make it easier
to manage the site after it is in FrontPage.

Most Web sites have a few “dead” pages, which are pages that you could
access at one time but are no longer accessible. Perhaps the page contains
information that you’re saving for later use, much as someone stuffs an old
chair in the attic, hoping to use it again someday. FrontPage views all pages
on your site as usable and connected; you need to remove any dead pages.
You can even archive them in another location for future use. The point is to
clean them out of the site you want to import.

Another problem area is the use of folders instead of Web pages for organiza-
tional needs. When you create a navigational view of your site, FrontPage
looks at the direct connections between pages — it doesn’t see the actual
folders you create. A page with 30 hyperlinks has 30 connections — even if
those connections are to different folders on your Web site. Yes, you can
cure this trouble after you import the site into FrontPage, but it’s a lot easier
to clean it up before you import the site.

It’s also time to fix any known errors you have on your site, such as links
that no longer connect to any location. Links are one area where FrontPage
can help, but fixing known errors before you import the Web site saves time
later. FrontPage can’t help you fix other common errors (for example, broken
scripts), but this transitional time is a perfect opportunity to perform all
those consistency changes you plan to make as well.

A few Web sites I’ve seen have links to other areas of the same site that don’t
reside in the current folder. Make sure your entire site appears within the
same main folder on your system or your server. Don’t assume FrontPage
can find the redirected folder that provides access to your database pages
because it probably won’t.

The cleanup phase is also the time you gather any information you need
about your Web site. For example, if you use a hosted site, you want to know
precisely how to upload pages to the site so you can set up a remote Web
site in FrontPage. You also want to check your Web pages for any special
functionality they require. For example, a page that contains special plug-in
support will probably require additional import editing to ensure you see it
properly in FrontPage.

Developers who plan to use the remote Web-site feature of FrontPage should
also check the local and remote files. Yes, FrontPage will help you synchro-
nize the two sets of files, but FrontPage can create duplicates of files when a
local name differs from a remote name. A little work cleaning up such files
now can prevent a lot of confusion later when you try to make your local
files work with the files on the remote site. (FrontPage can also directly
manipulate files on the remote site, but this isn’t the best option when using

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 160

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Importing the Site 161

a hosted site — because the hosted site may view it as a security breach,
you might find that FrontPage works unreliably (crashes), or the connection
might be terminated by the hosted site. For more on the remote Web site fea-
ture, see Book I, Chapter 2, and Book III, Chapter 2.

In FrontPage, using two sets of files, local and a remote copies, has some sig-
nificant advantages; you might want to consider creating a local copy if you
don’t have one now. Having a local copy makes a connection to the remote
site unnecessary when you make changes. You could edit Web pages on your
laptop from any location and upload the changes you make later, when a
connection becomes available. A local copy also makes it easier to make
major changes to a Web site without disrupting the people using the older
version. You can test changes locally before you make them part of your pro-
duction Web site. For this reason and many others, consider creating a local
copy of your Web site as one of your cleanup tasks.

Importing the Site
Importing your site into FrontPage isn’t too difficult when you perform the
proper cleanup. The important starting tasks include creating the Web, per-
forming some setup tasks, and making sure that the hyperlinks work. It’s
also important to establish a connection with the remote Web site so you
can synchronize your local and remote files.

Creating the Web
Creating a Web begins when you choose the storage location for your files.
It’s important to differentiate the storage location from the usage location
when you edit your files locally. The local storage area is the one you want
to use when working with a hosted site. You edit the files locally and then
upload them to the remote location so everyone can see your work. Follow
these steps:

1. When you know where the storage location is, choose the File➪Open
Site command.

You see the Open Site dialog box.

2. If you’re working with local files, click My Computer. Locate the folder
that contains the files you want to use as a local Web and press Open.

or

If you’re working with a remote site, click My Network Places. Type
the URL of the remote site in the Site Name field and click Open.

In both cases, FrontPage opens the site for you. You see the files and
folders that make up your Web site.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 161

Importing the Site162

3. Right-click the main folder for your site and choose Convert to Web
from the context menu.

FrontPage displays a dialog box that warns that this change can affect
your links and even break some of them. This change can also affect any
changes you made with FrontPage earlier. For example, any themes you
applied to Web pages could become lost. In general, you have to per-
form some updates after you create a new Web.

4. Click Yes.

FrontPage converts the Web site to a Web.

The biggest change you notice immediately is the addition of a _private
folder that FrontPage uses to store some settings. Because you haven’t
added any settings, the _private folder is empty. You also notice the folder
icon has changed into a Web icon.

Deleting a Web
Anyone can make a mistake. When you find that you set up your Web in
the wrong location, don’t try to fix the error by using a program other than
FrontPage. Fixing the error outside FrontPage means that FrontPage will
retain the erroneous site indefinitely. (Even uninstalling and reinstalling
FrontPage doesn’t appear to help with this particular problem.)

Always remove Webs that you don’t need from within FrontPage to keep
your FrontPage setup clean. To remove a Web you no longer need or one
that you created by mistake, follow these steps:

1. Close the erroneous site by selecting the File➪Close Site command.

2. Select the File➪Open Site command.

3. Choose a location that’s one step above the Web location.

For example, if you have your Web on D:\MySite, open D:\ as the new
site. Click Open. You see a list of folders and files.

4. Right-click the folder that contains the Web and choose Convert to
Folder from the context menu.

FrontPage warns that some theme information is going to be broken.
In addition, people who don’t have access to the parent site will lose
access to the information on this Web. All settings you created for the
Web are also lost.

5. Click Yes.

FrontPage removes the Web.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 162

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Importing the Site 163

Performing the initial setup
After you create a Web, you configure it for use. The first step in this process
is to create the required comments and other information about the individ-
ual pages in the Web. This is also the time you create new statuses and cate-
gories for the Web site. Even though your Web site has operated for a long
time without this information, adding it will help manage the Web site and
make it more efficient.

To perform the configuration, follow these steps:

1. Right click each file in turn and choose Properties from the context
menu.

You see the Properties dialog box for that page.

2. Select the Summary tab and type a summary.

Describe the task this page performs in a sentence or two.

3. Select the Workgroup tab and assign the page to a category (often a
workgroup), a person within that workgroup, and give the page a
status.

When necessary, create new categories, add new names, and define new
status levels for your Web site. You perform these tasks one page at a
time when creating a new Web. When working with an existing site that
you import into FrontPage, you perform this configuration task on all
pages at once.

The initial setup gives you another opportunity to check individual pages
within the Web site. When you discover a page that you can’t summarize or
that no one maintains, you need to consider whether that page is still an
active part of your Web site. Although configuring all the pages before you
proceed with the next step might seem inefficient, it’s far from a waste of
time; it’s really important to the setup process.

Part of your initial setup is to check the page properties as well. These set-
tings should already appear in the Web site, but it pays to verify they’re con-
sistent and truly reflect the current page. To check the page properties, open
the page. Right-click the page and choose Page Properties from the context
menu. You see the Page Properties dialog box. Verify that the entries on each
tab are correct and consistent with your policies for the Web site.

Setting the home page
The final step in the initial setup is to define a home page. FrontPage uses
this entry as a starting point for many reports and views. For example, the
Navigation view uses the home page as a starting point. To create the home
page, right-click the page you want to use and choose Set as Home Page from
the context menu.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 163

Importing the Site164

It’s at this point something strange could happen. If you named your default
Web page anything other than what FrontPage thinks you should have named
it, FrontPage will rename it for you. FrontPage depends on its knowledge of the
server to choose a name for you. When your Web runs on IIS, FrontPage com-
monly uses Default.htm as the default name. Likewise, when running on a
UNIX server, FrontPage normally defaults to Index.htm. Only when you work
on a local hard drive — without any server connection — does FrontPage
leave your home-page name alone.

You can prevent this renaming on IIS (and possibly other Web servers) when
you have access to the server. Here’s how:

1. Select the Internet Information Services console entry found in the
Administrative Tools folder of the Control Panel.

You see the Internet Information Services console.

2. Right-click the server entry for the server that hosts your Web and
choose Properties.

You see the Server Properties dialog box.

3. Select WWW Service on the Internet Information Services tab and
click Edit.

You see the WWW Service Master Properties dialog box. This dialog box
contains settings that affect the entire Web site, and it’s the settings that
FrontPage depends on to make the file renaming decision.

4. Select the Documents tab.

5. Click Add in the Enable Default Document section.

You see the Add Default Document dialog box.

6. Type the name of the default document you want to use in the Default
Document Name field.

7. Click OK.

You see the new default document added to the list.

8. Click OK twice.

You have added a new default document to the server setup, but
FrontPage won’t know about it.

9. Close and then reopen FrontPage.

10. Set the home page.

FrontPage will likely to rename it for you despite the server change.
However, now you can rename the document to its original name, and it
will remain a home page because it appears as one of the default docu-
ment names that the server supports.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 164

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Importing the Site 165

Configuring the FrontPage Server Extensions
Use the FrontPage Server Extensions when you want full FrontPage inter-
action with the server and support for special features such as e-mail. A
new Web often requires server configuration when you choose to use the
FrontPage Server Extensions. The FrontPage Server Extensions are Internet
Information Server (IIS)-specific, so you don’t need to check this feature on a
hosted Web site where you can’t access the server. FrontPage relies on the
FrontPage Server Extensions to provide services such as using e-mail as a
destination for user feedback and to provide page management.

To change the FrontPage Server Extension settings, follow these steps:

1. Open the Internet Information Services console located in the
Administrative Tools folder of the Control Panel.

If you don’t see such a folder, you can’t administer the server and will
need to request changes through your network administrator.

The Internet Information Services console contains a single Microsoft
Management Console (MMC) snap-in named Internet Information
Service. Within this snap-in is a list of computers you can access.

If you don’t see the computer that contains the Web displayed, try this:

a. Right-click Internet Information Services and choose Connect from
the context menu.

You see the Connect to Computer dialog box.

b. Type the name of the computer that contains the Web you want to
change in the Computer Name field and click Connect.

The Internet Information Services snap-in displays the new computer.

2. Locate the folder that contains the Web you created.

3. Right-click the folder and choose Properties from the context menu.

You see a Web site Properties dialog box.

4. Click Server Extensions and you see a dialog box similar to the one
shown in Figure 1-1. (The title bar and a few other minor features
differ from site to site.)

To enable FrontPage to work with the Web server, you must check the
Enable Authoring check box. Clear this setting when authoring is complete,
the server is ready for production, or you don’t want any accidental
changes.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 165

Importing the Site166

When working in a group, make sure you select some form of version control
to ensure changes are recorded. FrontPage comes with built-in version con-
trol, and you can purchase third party version control packages for large
groups. A small setup with one or two developers probably doesn’t need
version control as much (although it’s still recommended).

The Performance field defines how FrontPage interacts with the Web server
and how the Web server allocates memory and other resources for the Web.
The default settings tune the Web for less than 100 pages, between 100 and
1,000 pages, and over 1,000 pages. You can use one of these settings or
create custom settings to match your server and Web configuration. To use a
custom setup, click the Settings button in the Performance area. You see the
Performance dialog box. These settings control the number of in-memory
documents, including support and image files you can use. The default
image file setting is very small. Change this setting when you have a lot of
images to display. You also find settings for the search index and the maxi-
mum size of any single document. Set these values as appropriate for your
Web. For example, a research site will definitely need a larger search index
than the 1MB the default setup provides.

The Client Scripting field defines the default scripting language for the Web.
You can set this value differently than IIS as a whole or other Webs that
FrontPage manages. The default setting is JavaScript. You can also choose
VBScript.

The Specify How Mail Should Be Sent setting is especially important when
you want to use e-mail for communication. FrontPage doesn’t make any
assumptions, so this setting isn’t configured. Each Web on your Web server

Figure 1-1:
Configure
the
FrontPage
Server
Extensions
to meet your
needs.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 166

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Importing the Site 167

can have different contact information. To configure e-mail, follow these
steps:

1. Click the Settings button in the Options area.

2. Type the e-mail address of the person who manages the Web in the
Web Server’s Mail Address field.

3. Type the e-mail address of the support person (the one who handles
problems for this Web) in the Contact Address field.

4. Add the Simple Mail Transfer Protocol (SMTP) server address in the
SMTP Mail Server field.

5. Finally, select values for the Mail Encoding (the way the mail is for-
matted) and Character Set fields if necessary.

Normally, the default values work fine — the only time you should change
these settings is when you have your server configured for one language
and you need to use another for this Web.

Check the Don’t Inherit Security Settings check box when you want to use
special settings for FrontPage developers. Normally, FrontPage inherits the
default settings for the site. When you use the Don’t Inherit Security Settings
option, you must set the permissions for each folder individually by right-
clicking it and choosing Properties to display the Properties dialog box,
which contains the various security options. In general, you won’t have to
set special settings when your Web site is secure. However, you want to
select all three check box options for public Web sites to ensure you get
the added security required. The logging feature is especially important
because it can help you discover unwanted intrusions. (The location of
the log depends on your custom Web site setup. For more on security, see
Book IV, Chapter 7.)

Verifying site hyperlinks
At this point, the Web is ready for initial use. However, you have moved pages
around, deleted those you don’t need, and performed a number of other tasks
that could cause broken links. Whenever you think you might have broken
links on a Web, it’s time to verify them. In many cases, FrontPage can help you
locate and fix the broken links. In other cases, FrontPage can locate the links,
but you must fix them yourself.

The first step is to see what FrontPage can do to address this problem.
Choose the Tools➪Recalculate Hyperlinks command. FrontPage displays
a message box telling you what tasks this command performs. Click Yes.
FrontPage begins checking and repairing hyperlinks. After a few minutes,
you see the display blink — FrontPage has completed the task but doesn’t
display a message saying so.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 167

Importing the Site168

Now that the links that FrontPage can fix are checked, you need to look for
broken links it can’t fix. Click Reports on the bottom of the Web Site tab. You
see a list of standard FrontPage reports. Click Broken Hyperlinks. FrontPage
offers to verify the hyperlinks on the Web site. Click Yes. FrontPage begins
looking for broken hyperlinks.

As shown in Figure 1-2, you can see the status of hyperlinks as FrontPage
checks them. Unverified hyperlinks have Unknown next to them; the hyper-
link that FrontPage is currently checking has Verifying next to it; good hyper-
links have OK next to them; and broken hyperlinks have Broken next to
them. The status bar shows the percentage of hyperlinks checked. This
check takes much longer than the hyperlink recalculation. Plan on waiting
for at least 15 to 20 minutes for a moderately sized Web (around 75 pages)
with a fast connection. When the process completes, the status bar tells you
how many links are broken.

Sort the hyperlinks by clicking the Status column. The broken hyperlinks
appear at the top of the list. To fix a broken hyperlink, right-click its entry
and choose Edit Hyperlink from the context menu. You see an Edit Hyperlink
dialog box. Type the new hyperlink in the Replace Hyperlink With field. You
can choose to replace the hyperlink in all affected pages by selecting the
Change in All Pages option. Click Replace. FrontPage makes the required
changes.

Figure 1-2:
Verify links
on your
Web site
to ensure
they aren’t
broken.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 168

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Defining Site Properties 169

Sometimes you don’t have a substitute hyperlink for the affected page. When
this occurs, click Edit Page in the Edit Hyperlink dialog box. FrontPage dis-
plays the affected page. Remove the hyperlink and repair any affected text or
graphics as needed. After you edit the affected page, the Status column will
contain Edited with a question mark. You’ll need to perform the broken link
check again to ensure all links work.

Defining Site Properties
A Web has special properties that define how it interacts with FrontPage. For
example, you can reduce potential coding problems in a workgroup setting
by ensuring everyone checks out documents for editing and back in when
the editing session is complete. The special features can help you perform
tasks more quickly and with fewer errors. To begin setting the site proper-
ties, choose the Tools➪Site Settings command. You see the Site Settings
dialog box shown in Figure 1-3.

The General tab contains the name of the Web, the name and version of the
server, and determines whether FrontPage users have to check documents
in and out. The options on this tab reflect your Web setup — the remote
options are available only when you have a local and remote set of files.
Choose the location where you’ll edit the files, not the location where the
files will go when you publish them.

If you’re working with a remote location, click the Options button. You see
the Remote Check Out Options dialog box. Type the name of the person per-
forming the edits in the Check Out Name field. Check Include My FTP Login
Name when more than one person could use the same editing name or you
check in using more than one identity. Always include the optional Check

Figure 1-3:
Change the
site settings
to enable
special
FrontPage
features.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 169

Creating Required Views170

Out Email Address field entry so others can contact you when you fail to
check a document in after editing it. Otherwise, other people who want to
edit the document will have to wait until they can contact you in some other
way (usually not nicely).

Creating Required Views
FrontPage relies on views to help you see the structure of your Web site.
The three important views for starting a new Web based on an existing Web
site are the Navigation, Hyperlinks, and Tasks views. Generally, you want to
create these views in order because each view builds upon the other. For
example, you must have a Navigation view to use the Hyperlinks view. Even
though you can create tasks before you build anything else, the Navigation
and Hyperlinks views provide needed input.

Defining a navigational view
The Navigation view shows the structure of your Web site — how various
pages connect and the resources they require. Creating a home page places
the first entry in the Navigation view. The home page acts as the base of the
tree that describes your Web site.

Not everything has to connect to the tree, but most items do. All Web pages
for your site should connect to the tree — make sure you figure out why a
page doesn’t connect. Graphics should always connect to a page unless
they’re a generic graphic such as a logo or picture that appears on more
than one page. Any Cascading Style Sheet (CSS) files will probably appear
separately from the rest of the Web site because they affect every page.

To add a new page to the Navigation view, drag it from the Folder List and
place it where it should appear in the hierarchy. You see a line link from the
home page to each top-level page as you add it. Drop the page when it con-
nects to the correct page in the hierarchy. Support files, such as graphics,
appear with the name of the file and a red circle with a slash through it to
show they’re support files and not Web pages.

It doesn’t take long, even with a complex Web site, to build a Navigation view
of your site using this technique. What you see when you get done might
horrify you. I know I was quite surprised when I finished the Navigation view
the first time. Figure 1-4 shows a typical example of what many people see
the first time. The home page really is working overtime to connect all the
pieces in this Web site.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 170

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Creating Required Views 171

At this point, FrontPage can help you design a more effective layout. If you
relied on folders to provide the only structure for your Web site in the past,
the Navigation view quickly shows the problem this layout strategy can
create. From a user perspective, a page with too many links and too little
organization presents a problem in finding information quickly. Reorganizing
your Web site to provide a better layout is a good first step in using
FrontPage effectively.

Figure 1-4 demonstrates another problem. The default Navigation view can’t
show the entire Web site at once. This problem will still exist even after a
Web reorganization. To see the entire Web at one time, select Size to Fit in
the Zoom field of the Navigation view. In most cases, you can’t read the text
for each page when you do this, but hovering the mouse over a block shows
its title. After you locate a particular area of the Web site, you can zoom to
that section to see the details.

In a few cases, it also helps you switch from a landscape to a portrait presen-
tation by clicking Portrait/Landscape in the Navigation view. Figure 1-5 shows
how this presentation differs for the example Web site from the typical land-
scape view.

Figure 1-4:
Creating a
Navigation
view dem-
onstrates
problems in
your layout.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 171

Creating Required Views172

To fix a site with organizational problems, you might need to create buffer
pages. Simply create a blank page as you normally would and add the links
to child pages — those that physically appear in a single folder on the Web
site. After the buffer page is complete, create a link from the main or other
parent page to this new buffer page. These pages essentially replace the fold-
ers as organizational aids from the user perspective. You still rely on folders
for physical page organization, but now the site is also easier to use because
the links are organized.

Defining hyperlinks
After you create a basic organization that works using the Navigation view,
use the Hyperlinks view to refine the layout. This view helps you look at the
links between pages from two perspectives: default and linked page. The
default perspective shows the actual links. This view often reflects the physi-
cal layout of your site by showing which links are related and where they fall
within the directory structure as shown in Figure 1-6.

Figure 1-5:
Use the
portrait
orientation
to gain a
different
perspective
of your
Web.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 172

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Creating Required Views 173

Unfortunately, FrontPage shows the links in the order in which they appear
on the page, so you often need to look through the list several times to see
problems in the links. In addition, FrontPage assumes you don’t want to see
repeated links, but that’s one problem you should look for at this stage of your
Web development. Fortunately, you can show repeated links by right-clicking
the design area and choosing Repeated Hyperlinks from the context menu.

Generally, a well designed Web page doesn’t have repeated links. When a site
includes repeated links, you must provide a means of bypassing them to
maintain accessibility.

To check your entire Web, you must go page-by-page and view the results in
the Hyperlinks view. The page you select in the Navigation view is the one
that appears in the center of the Hyperlinks view. You can also move from
area to area by right-clicking a link of interest and choosing Move to Center
from the context menu. Moving a linked page to center displays the linked
page perspective. This technique doesn’t guarantee that you’ll visit every
page on the Web, however, so you shouldn’t rely on it as an accurate means
of checking your site for errors.

Figure 1-6:
Check the
physical
layout of
links on your
site first.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 173

Creating Required Views174

Note that the standard view doesn’t show graphics links. In many cases, you
won’t need to check the graphics links immediately because you’ve already
verified that the link is valid using the Broken Hyperlinks report. You can dis-
play graphics links by right-clicking the design area and choosing Hyperlinks
to Pictures when necessary.

Sometimes, you want to see the actual page title in Hyperlinks view, rather
than the partial URL shown in Figure 1-6. Right-click the design area and
choose Show Page Titles to see the page title in place of the URL. In many
cases, this is a great way to verify each page has a properly constructed title
that meets any guidelines set by your organization.

Creating initial update tasks
As you work with the Web you create, you begin to compile a list of the
tasks it needs from time to time — everything from fixing broken links to
much-needed organization. For many developers, this list soon becomes
unmanageable.

FrontPage provides a Tasks view where you can create a list of updates to
perform on your site. You want to create tasks in such a way that you can
easily sort them by priority. It’s also better to create a task that you can
accomplish during one editing session, rather than a gruesome project guar-
anteed to last a week or more. Dividing tasks into small pieces so you can
easily manage them gives you a sense of accomplishment and makes the
project seem easier.

Consider the task of fixing broken links. Some links are essential because
users rely on them all the time. Pages that users visit frequently should
receive a higher priority than pages that users visit less often. Broken links
that have an update should exist in a different category than those you can’t
fix with a simple replacement.

I use special naming for tasks to make them easier to sort. For example, all
link-related tasks begin with the word Links; all organizational issues begin
with the word Organization. Using a keyword in this way can make title-
sorting a lot more efficient, as shown in Figure 1-7. Make sure you use the
same keywords consistently to ensure sorting actually provides a benefit.

To create a new task, right-click the Tasks view and choose Add Task from
the context menu. You can also choose the Edit➪Tasks➪Add Task command.
You see the New Task dialog box shown in Figure 1-8.

Begin by typing a title for the task. Make the title descriptive but short. The
Tasks view contains a limited amount of space for displaying the title, so you
need to exercise care in choosing a title. After you type the title, assign the
task to someone. When you work on a site alone, the person doing the work
is always going to be you.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 174

Book III
Chapter 1

W
orking w

ith an
Existing W

eb Site
Creating Required Views 175

Assign a priority to the task next. If you’re tempted to give everything a
high priority, you’re not alone — but doing so would defeat the purpose
of using priorities. In practical terms, there’s always a range: A few items are
high-priority; a few more are probably low-priority, with some tasks falling
into the medium range. I often base priority on the amount of time I have.
All high-priority items get accomplished because I specifically set time aside

Figure 1-8:
Provide a
descriptive,
but short,
title for the
new task.

Figure 1-7:
Sort tasks
in various
ways to see
how best to
accomplish
your work.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 175

Creating Required Views176

to do them. The medium priority items are likely to get accomplished, but
because there isn’t a specific time set aside for them, I might not accomplish
them all. All low-priority items are accomplished only when I have extra
time. They eventually get accomplished during slow periods but might end
up waiting a month or more before I have time.

Finally, write a description for the task. Add all the information you can pos-
sibly think of to ensure you have everything needed to accomplish the task
quickly. For example, if I’m working with broken links, I include the specific
links and where they appear on my site (easier than trying to find them in
the Broken Links report). In short, use the information from the various
reports to create tasks so you don’t have to create the report again.

13_575317 bk03ch01.qxd 9/24/04 7:55 PM Page 176

Chapter 2: Creating a New Web

In This Chapter
� Defining how Webs work

� Selecting local or remote Web connections

� Working with Web templates

Many people see the need for an application like FrontPage after creating
a basic Web site using Word or even a simple text editor. These tools

provide a good starting point but don’t offer the features that FrontPage pro-
vides for creating Web sites quickly. Consequently, the first experience many
users have with FrontPage is updating and fixing an existing Web site. Of
course, you won’t always have an existing Web site to use with FrontPage.
In some cases, you create a new Web site based on a specific need.

Creating a new Web (the FrontPage term for Web site) from scratch is easier
than working with an existing Web site for a number of reasons — the most
important of which is that you don’t have to rework anything you’ve already
created. You can create the Web without any preconceived ideas of how the
pages should fit together, so you get a better design from the outset.

One decision you make at the outset with a new Web site is where to store
the data. Some developers like to use a remote connection for all activity
because it lets them update everything immediately. In addition, the tech-
nique can work better with groups. Other developers like to store the data
locally and publish it to the remote site. This technique has the advantage
of letting you test everything before you make it public.

To make development easier, FrontPage also includes a number of templates
you can use. These templates make the process easier by creating a Web
site that conforms to good design principles at the outset. The templates
provide structure, and you provide the content to go with the structure.

Understanding Webs
Webs always provide structure for your Web site. However, when you create
a new site, a Web also provides a starting point in the design process. You
begin with the Web, add major design features such as themes, move on to
the home page, and then begin structuring the site as a whole. The Web pro-
vides the starting point you need to create a well-designed Web site that’s
feature rich from the very start.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 177

Understanding Webs178

The term Web normally refers to the starting point for an entire site. You
create a Web from a folder on your server. In some cases, a Web becomes so
complex that you want to split it into pieces. Each piece acts like a room in a
house. Even though the room is part of the house, you tend to focus on just
the features in the room while there. The two ways to split a Web are to create
other Webs (Webs within Webs) or create subsites. Using subsites is helpful
because FrontPage can help you create special looks.

Creating a new Web
Before you create a new Web, one that doesn’t rely on an existing Web site,
you need a folder. You can create a local folder using Windows Explorer or
FrontPage. It’s also possible to create a folder on a remote Web site using
FrontPage.

Don’t use the highest-level (root) folder of either a local drive or a Web site
as the location for a Web — always create a folder for the Web. Using this
technique helps you maintain security and makes it easier to remove the
Web should you need to get rid of it at some point.

Creating a local Web
A local Web is one that resides on your hard drive. You can do almost every-
thing with a local Web that you can do with a remote Web. The main differ-
ence is that people can’t see the information on a local Web because there
isn’t a Web server to send them the information. Use the following steps to
create a local Web:

1. Select the File➪Open Site command.

You see the Open Site dialog box.

2. Select My Computer.

You see a list of all the local drives and networked drives you can access.

3. Double-click a drive entry.

You see the folders for that drive, as shown in Figure 2-1.

4. Click Create New Folder.

You see the New Folder dialog box.

5. Type a name for your new Web (the example uses MyLocalWeb) and
click OK.

FrontPage automatically displays the new folder.

6. Click Open.

FrontPage displays an Add FrontPage Information to the Folder dialog
box telling you what changes FrontPage will make to open this folder as
a site.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 178

Book III
Chapter 2

Creating a
N

ew
W

eb
Understanding Webs 179

7. Click Yes.

FrontPage opens the new folder as a local Web. It adds at least two fold-
ers: _private and images.

The Web has special entries and a unique icon so you can easily recognize
it. To see this icon, right click the folder and choose Properties. Select the
Customize tab and you see the specialized icon as shown in Figure 2-2.

Figure 2-2:
Change the
appearance
of the Web
icon to meet
specific
needs.

Create New Folder

Figure 2-1:
Select a
location for
the new
Web on a
local drive.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 179

Understanding Webs180

After you create a local Web, you can start by selecting a theme and other
layout information for it. Add a home page and then start adding other con-
tent pages as needed. You can’t perform some steps, such as setting security
for the Web, because there isn’t a local server. You’ll also find that server-
side activities, such as server-side scripting, aren’t available. Even so, using
a local Web can save significant time because you can set everything up
before you upload it to public view.

Creating a Web on a server
A remote Web provides everything needed to create a site. The precise level
of control you obtain depends on the kind of server you use. Using Internet
Information Server (IIS) provides you with additional configuration options
as well as functionality. However, you can just as easily use other server
types, such as Apache, and still see webbots and other FrontPage features in
action. Make sure you install FrontPage extensions on such machines to get
the full benefits they can provide.

To create a new folder on a remote Web server using FrontPage, follow these
steps:

1. Open the Web site by choosing File➪Open Site.

You see the Open Site dialog box.

2. Type the Uniform Resource Locator (URL) for the site and click Open.

FrontPage displays the remote site. Now you need to create the folder.

3. Right-click the entry (usually the Web site URL folder) that will hold
the new Web and choose New➪Folder from the context menu.

You see a new folder.

4. Type a name for the folder (the example uses MyRemoteWeb) — this
is the name of your new Web, so name it carefully.

The new folder is just a folder until you make it a Web.

5. Right-click the new folder and choose Convert to Web from the con-
text menu.

FrontPage displays a message telling you what it needs to do to make
this folder a Web.

6. Click Yes.

FrontPage creates the new Web. The Web folder uses a different icon
than other folders in the list. In addition, you can’t see the contents of a
Web folder from within the current view.

To open the new Web, double-click its entry in FrontPage. You see a new
copy of FrontPage open that contains the new Web. The Web contains at

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 180

Book III
Chapter 2

Creating a
N

ew
W

eb
Understanding Webs 181

least two folders: _private and images. At this point, you can begin design-
ing your site.

Creating a new subsite
A subsite provides a separation from the current Web. You create a new ele-
ment based on a template, rather than by creating an empty folder. (See the
difference by looking at the MyRemoteWeb and NewWebSubsite folders in the
source code for this book, available on the companion Web site.) To create a
new subsite on an existing Web, follow these steps:

1. Right click a folder in the Folder List (including the URL folder) and
choose New➪Subsite from the context menu.

You see the Web Site Templates dialog box shown in Figure 2-3.

2. Begin by selecting one of the templates listed.

• All templates except the One Page Web Site option provide pages
designed for specific purposes. See the “Selecting a Web Template”
section later in this chapter for more information on the various
templates.

• You can choose the One Page Web Site option when you don’t need
any prebuilt infrastructure for the new subsite.

Wizard Template icon

Standard Template icon Includes Web site name

Figure 2-3:
Choose a
template for
your new
subsite.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 181

Using Local or Remote Connections182

Don’t check the Add to Current Web Site option when you want to
create a subsite. Checking this option will add the content of the tem-
plate to the current Web site rather than place the information in a
separate location. The information is added according to the template
specifications beginning at the root of the current Web site, so check-
ing this option can cause problems when you have already created
pages with the same name. FrontPage warns you before it overwrites
the files, but it’s still too easy to replace information you want for the
current Web when you check the Add to Current Web Site option.

FrontPage provides the unimaginative name subsite for the new site as
part of the Specify the Location of the New Web Site field.

3. Replace the word subsite with the name you want to use for the new
subsite.

4. Click Browse to choose a different location if the one you selected
won’t work.

5. To add security to the subsite, check the Encrypted Connection
Required (SSL) check box.

Secure Sockets Layer (SSL) is a standardized secure communication
technology.

Using Local or Remote Connections
FrontPage supports both local and remote connections with equal ease. The
standard assumption is that you create pages locally and upload them to a
remote site or you modify the pages directly on the remote site depending
on your needs. Some people also use FrontPage only for local connections.
Before you can do too much with a Web, you must decide how you plan to
use it, where the information must appear for other people to access it, and
how to create connectivity between local and remote sites when necessary.

Using local connections
It’s easy to assume that you always need a remote connection for FrontPage,
even when you use a local Web to create content. All templates and other
configuration items provided with FrontPage tend to enforce this idea. Many
people use FrontPage to create local collections of data, some use FrontPage
to create networked data sources, and still others create Web sites for intra-
nets that are never shared outside the company. All of these uses can rely on
a local connection that you modify directly and never upload anywhere.

Examples of local data collections include help files. Many Microsoft help
files are now collections of Web pages displayed in a special kind of browser
rather than standard Windows help documents built into an application as a
feature. You can create specialized help documents for applications you

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 182

Book III
Chapter 2

Creating a
N

ew
W

eb
Using Local or Remote Connections 183

create or simply define local collections of data in an easy to read format.
Many open-source and third-party document sets are now just collections
of Web pages. You download a series of Web pages and view them with a
browser like Internet Explorer. It’s even possible to create shortcuts for such
documents so you access them from the Start Menu just as you would any
other help file.

Another use of local Web pages is as a filing system. Instead of constantly
telling people where to find a piece of data on the company network, you
can create Web pages that contain hyperlinks to the required information. A
hyperlink, especially one used for local resources, need not point to a Web
page — it can point to any kind of information. Again, you could place a
shortcut in the Start Menu to open the starting page for such an information
resource in any browser. A second choice would be to create a company
Web site that doesn’t have any outside connection that you could use to
hold the document index.

A company Web site is also a valuable resource you can maintain with
FrontPage. In this case, you can send files directly to the network folder
that contains the Web site files. Obviously, you can also use the local to
remote connection that you would use for a remote Web site as well, but it’s
not necessary in this situation. The company Web site can hold anything
from a standard Web site with company data to a document directory to a
list of procedures. The Web site could contain listings of company standards
or help users print out standard company forms (or download the PDF
equivalent).

The point is that you shouldn’t assume that FrontPage is only for Web sites
and only for remote communication. FrontPage helps you work with all kinds
of data in a number of ways. Anything that you can reference or display on
screen can become a FrontPage project.

Selecting a remote Web site connection type
When you want to send data from a local source to a remote Web site, you
need to create a connection between the two, which requires you to select a
connection type. For example, many hosted sites require that you use a File
Transfer Protocol (FTP) setup. A company intranet could use a simple net-
work connection. Sometimes a remote site will support specialized commu-
nications such as a FrontPage or SharePoint Services connection. A few Web
sites support Web-based Distributed Authoring and Versioning (WebDAV).
Make sure you find out which connection your Web server supports before
you begin creating a remote connection.

To start the connection process, open the local site in FrontPage. Choose the
Remote Web Site tab. Unless you created a connection earlier, this tab is blank.
Click Remote Web Site Properties. You see the Remote Web Site Properties
dialog box shown in Figure 2-4.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 183

Using Local or Remote Connections184

The setup for each connection differs slightly. Each is explained in the fol-
lowing list:

✦ The FrontPage or SharePoint Services option relies on a Web server that
has FrontPage extensions installed and that is FrontPage compatible.
With this option, you provide a HyperText Transport Protocol (HTTP)
URL for the server. FrontPage also allows secure communication
through SSL.

✦ The WebDAV option requires a server that has WebDAV support, which
might be more common than you think. WebDAV is a standard-based
open connectivity option that you can find on servers of all types.
Discover more about WebDAV at http://www.webdav.org/. With this
option, you provide a HyperText Transport Protocol (HTTP) URL for the
server. FrontPage also allows secure communication through SSL.

✦ The FTP option uses a standard connection that most servers support.
This is a good option because FTP is generally faster than other tech-
nologies. The problem with FTP is that it isn’t very secure and you don’t
get as much feedback from it as you do with newer technologies. To use
an FTP connection, you need to provide an FTP URL and provide starting
directory on the FTP site. FrontPage also offers use of Passive FTP — a
technology where the server uses a different port every time you com-
municate with it. Using a different port each time enhances security by
making it harder for someone to listen to your conversation, but it’s not
that much of an advantage.

✦ The File System option relies on a network drive as a remote communica-
tion point. You don’t have to use a mapped drive to work with this option.

Figure 2-4:
Select a
remote
connection
type.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 184

Book III
Chapter 2

Creating a
N

ew
W

eb
Using Local or Remote Connections 185

FrontPage can also use Universal Naming Convention (UNC) paths such as
\\MyServer\MyDrive\MyFolder to create the connection.

After you choose a connection method and provide connection information
for it, click OK. FrontPage creates a connection between the local drive and
the remote site. When FrontPage can’t create the requested connection, it
displays an error message and gives you a chance to choose another con-
nection type. For example, you can’t use WebDAV to access a Web server
that has FrontPage Extensions or SharePoint Services installed. After you
create a successful connection, FrontPage displays the Remote Web Site
window shown in Figure 2-5.

Synchronizing a local Web site copy
When you create content locally and upload it to a Web, you need to perform
a synchronization process. This process generally moves content from the
local site to the remote site. It can also move content from the remote site
to the local site when necessary. For example, you might want to download
survey forms that users have filled out since the last update of the site. The
process of moving files is publishing. In effect, when you write the content
you want others to see locally and put it up on your Web site, you’ve pub-
lished it.

Figure 2-5:
Use this
display to
transfer
files.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 185

Using Local or Remote Connections186

To synchronize your Web site, select the Remote Web Site tab. You see the
window shown in Figure 2-5. Notice the window contains two panes. The pane
on the left is the local drive; the pane on the right is the remote Web site. The
local drive has a file not found on the remote Web site, so FrontPage marks it
as unmatched. Notes such as this one are your cue that you need to synchro-
nize content (assuming the content is approved).

Begin the synchronization process by selecting a direction using one of the
arrow buttons between the two panes. Choose Local to Remote when you
want to send content from your local drive to the remote Web site. Choose
Remote to Local when you want to download new information from the
remote Web site. Choose the Synchronize option when you want to transfer
data in both directions. Click the Publish Web Site button. FrontPage per-
forms the requested transfers. You can see the results of a transfer by click-
ing View Your Published Log File. FrontPage displays a list of actions that it
performed using a standard Web page.

Sometimes you don’t want to publish every change file on your site. When
this situation occurs, highlight the files you want to transfer, and then click
the directional arrow between the two sites that matches the action you
want to perform.

To verify changes made to the remote Web site, click View Your Remote Web
Site. FrontPage opens the default page on the site. You’ll need to click the
links of the pages that have changed to see them. It’s also possible to open
the remote Web site in FrontPage so you can see the changes directly. Click
Open Your Remote Web Site in FrontPage to see the remote Web site as a
whole. Check individual pages by double-clicking them in the Folder List or
Folders view.

Optimizing uploaded content
Your local copy of a Web page contains a lot of information you need but
others don’t. For example, you add comments to the local copy to ensure
you remember why you formatted text in a certain way. By and large, other
people don’t need to know this information, so removing the comment
makes sense when you publish the material.

Web pages don’t just contain comments though. When you add a time or
date stamp to a Web page, FrontPage creates a webbot to show where the
time or date stamp appears. Even though there isn’t anything secret about a
webbot, it does increase the size of the page, which means it requires more
time to download.

A good Web page developer also includes whitespace in the page code to
make it easier to edit. The whitespace actually makes the document bigger,
so removing it when you’re done editing the code decreases download time.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 186

Book III
Chapter 2

Creating a
N

ew
W

eb
Using Local or Remote Connections 187

Even though these changes might seem small, they do add up. You can usu-
ally shave a few seconds off the download time for even a simple page by
deflating the document before you publish it.

The problem is that you still need the comments to produce good Web
pages, so editing your current document isn’t a good idea. Fortunately,
FrontPage can automatically perform these optimizations for you. To add
optimizations to the publishing process, click Optimize Published HTML.
You see the Optimize HTML tab of the Remote Web Site Properties dialog
box shown in Figure 2-6.

Select optimizations based on how you want your Web page to look online.
The example saves space and keeps comments private by removing all
HTML comments regardless of how they are created. The page retains its
ease of reading (for people who use View➪Source in Internet Explorer to
look at your code) by keeping the whitespace intact. The example doesn’t
use a theme, nor does it have any browse-time webbots included, so these
options are disabled.

You can verify that an optimization took place in several ways. One way is to
open the remote site and compare the size of the file with the local file size.
The local file should be larger. This method lets you compare download
times as well so you can actually see the performance gain. The second tech-
nique is to click View Your Publish Log File. The log contains special entries
for any optimizations FrontPage performs on your behalf.

Figure 2-6:
Choose
optimization
options to
make your
site perform
better.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 187

Using Local or Remote Connections188

Setting publishing guidelines
FrontPage provides settings that help control the publication of new content
on a Web site. To view these settings, click Remote Web Site Properties and
choose the Publishing tab. You see the Remote Web Site Properties dialog
box shown in Figure 2-7.

The default settings send only changed pages to the remote Web site and per-
forms a comparison of the files to determine the direction of publication. The
default settings also create a log during publication, but these setting changes
don’t include subsites. You use the All Pages, Overwriting Pages Already on
Destination option when you suspect that an outsider might have changed
the page content — or when you want to refresh the content of your site so
the pages on your system match those online.

Normally, you don’t want to update subsites automatically. The reason is that
subsites are separate Webs so you should treat them as such. This option can
save time and effort when you’re the only one making updates and you want
to publish all new content at once. It’s also good to use this feature when
you’re setting up a new server (the server doesn’t have any of the data
loaded) or you want to refresh all content for every Web you maintain.

Select the User Source File Timestamp to Determine Changes Since Last
Publish option when data always flows from the local site to the remote site.
Using this option saves time because FrontPage doesn’t have to request

Figure 2-7:
Define a
publishing
strategy for
your site.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 188

Book III
Chapter 2

Creating a
N

ew
W

eb
Selecting a Web Template 189

information from the remote site when you use it. In fact, considering most
hosted pages won’t allow your Web pages to create data on the server, this
is a better option to choose for hosted sites.

There isn’t a good reason to clear the Log Changes During Publish option
because this feature helps you track changes to your Web. It shows precisely
what changes FrontPage made on your behalf so you can verify the changes
are correct. Without the log, you don’t have any way of checking these changes
except manually by verifying one Web page at a time. The only benefit you
obtain from clearing this option is to save a little disk space (a few thousand
bytes) and to reduce the time for uploading the files (a few milliseconds).

Selecting a Web Template
Web templates save you time by creating a setup based on standardized
instructions. The template Web sites include consistent features that you
can use to your advantage. All you need to do is add the custom content and
any unique pages — the template has already defined the standard pages
and their associated content for you. FrontPage supplies two template types:
those that rely on standard page setups and those that use a wizard to
create unique setups.

Don’t assume that you always need to use a template. The templates provide
a quick method of starting a Web site, but they certainly don’t fulfill every
need. When FrontPage or a third-party provider offers a template that meets
your needs, you can save a great deal of time by using it. Using the wrong
template, however, can actually increase the time required to create the Web
site. In short, templates are simply a tool — not a fix for every problem.

Using standard Web templates
A standard template doesn’t do anything special. You select the template
you want to use in the Web Site Templates dialog box shown in Figure 2-3.
Choose a name for the site, and then click OK. FrontPage copies static
(unchanging) pages from the template folder to the Web site you defined.
It sets the site up as a Web and that’s it. This type of template works well
because it’s simple and easy to understand.

Using wizard Web templates
Sometimes you can’t easily define a Web site based on the content of a few
static Web pages. FrontPage also provides wizard templates. These tem-
plates use a special icon as shown in Figure 2-3. The advantage of a wizard
template is that you can describe custom settings. The template produces

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 189

Selecting a Web Template190

content that better meets your needs. The disadvantage of using wizard tem-
plates is that they ask questions and less qualified uses have trouble answer-
ing. For example, try the Corporate Presence Wizard template. The following
steps lead you through the use of a wizard Web template:

1. Click Next to get past the welcome message.

The wizard asks which pages you want to include in the new Web site.
Instead of getting all the pages the template has to offer, you can choose
which pages to include. For example, you might not want to provide a
What’s New page on your site.

2. Check the page options you want to use and click Next.

The wizard asks which topics you want to discuss on the home page.
This page helps you customize the standard content for the Web site.
When using a standard template, you receive all the content the author
thinks you want, which means you might have to delete some items
before you can begin working on unique content.

3. Check the topics you want to discuss and click Next.

The page you see depends on which optional pages you selected. When
you choose the What’s New page, the wizard asks what content you’d
like to present on that page. Likewise, when setting the content for the
Products/Services page, the wizard will ask how many products and
services you plan to discuss. The wizard continues through each page
you selected until you describe content for each page. Finally, the wizard
asks what should appear at the top of each page. These common con-
tent items appear on every page of the new Web site.

4. Choose the items you want to appear on every page of the Web site
and click Next.

The wizard asks whether you’d like to add a special symbol to show
which pages are under construction.

5. Select Yes or No, and then click Next.

The wizard asks you to provide your company’s information, including
address. The wizard includes several of these dialog boxes.

6. Type your company name, address, and other identifying informa-
tion. Click Next after each dialog.

You see the final dialog box where the wizard offers to create a task list
of items you must complete.

7. Check the Show Tasks View After Web Site is Updated option if you
want the wizard to provide this service for you. Click Finish.

FrontPage creates the Web site for you.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 190

Book III
Chapter 2

Creating a
N

ew
W

eb
Selecting a Web Template 191

Defining your own Web template
As you create new Web sites and hone your development skills, you begin
building projects and combinations of Web pages that could prove useful as
the starting point for new projects. Fortunately, you can create your own
Web site templates and have them appear in the Web Site Templates dialog
box shown in Figure 2-3. All of these templates appear in the following folder,
in the drive that contains your FrontPage installation:

\Program Files\Microsoft Office\Templates\1033\WEBS11\

Creating an INF file
The first step in creating a new Web template is to gather all the files you want
to use for that template. Make sure you include all unique Web pages and the
support files they require. In other words, you need to set up a Web site with
all the required layouts and support features but without the unique content
a Web site will have. Don’t create a directory structure for the template —
place all the files into a single folder. The idea is to create as many of these
pieces as possible, without creating work for yourself by generated content
that you’ll have to change. After you complete this folder, copy it to the
\Program Files\Microsoft Office\Templates\1033\WEBS11\ folder
of your hard drive. Give the folder a name that ends with a TEM extension,
such as MyTemplate.tem.

A Web site template can have a number of support files other than those
required by the Web site itself. The most important file is the INF file. A
simple template requires a simple INF file. Here’s an example of an INF for a
simple Web site.

[info]
_LCID=1033
_version=11.0.4819.0
title=Simple Web Site
description=Define a new simple Web site.
theme=NONE

The [info] section marker is just one of several markers you can see inside
a Web site template information file. This section describes the template and
every template has it. The _LCID entry identifies the locale or language for
this particular template. The number 1033 indicates that this is a United
States English template. The title entry provides a short description of the
template. It appears directly beneath the template’s icon. The description
entry provides more details about the template. This information appears in
the Description section of the Web Site Templates dialog box. Finally, the
theme entry should reflect any theme you have attached to the template.
You must include this entry with a value of NONE if your template doesn’t use
a theme.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 191

Selecting a Web Template192

Adding a file list
Most Web site templates include a file structure of some type. This informa-
tion is lost when you place all the files in a single folder. To define a directory
structure for a template, you include the [FileList] section. This section
appears after the [info] section. Here’s a typical example of a [FileList]
section.

[FileList]
Default.htm=
SubPage1.htm=SubDir1/SubPage1.htm
SubPage2.htm=SubDir2/SubPage2.htm

To use this section properly, you need to list every page and resource your
template uses, including graphics files. When a file appears in the main
(root) folder of the Web, you list with an equals sign and nothing after-
ward as shown for Default.htm. A file that appears in another location
includes that location after the equals sign, as shown for SubPage1.htm
and SubPage2.htm. In this case, the template creates two subdirectories
with a single file in each one. (You can see the full example in the
SiteWithDirectory.tem folder of the source code for this chapter.)

Adding a project.map file
There’s one final piece to the puzzle for most standard templates. Some
FrontPage features rely on the appearance of a page in the Navigation view
to work. For example, you can’t create a banner without placing the page in
the Navigation view. The table of contents and other webbot features won’t
work either. The way you place pages in the Navigation view automatically is
by adding a structure=project.map entry to the [info] section of the
template. You then create a project.map file that lists the pages that should
appear in the Navigation view. Here’s an example of a project.map file.

1,SubPage1.htm,1st Test Page,1000
2,SubPage2.htm,2nd Test Page,1000
3,SubPage3.htm,3rd Test Page,1,1
4,SubPage4.htm,4th Test Page,2,1
5,SubPage5.htm,5th Test Page,1,2
6,SubPage6.htm,6th Test Page,1,3
7,NoWhere.htm,Contents,0

The coding process consists of four columns:

1. The first column is a sequential number for this navigational item.

2. The second column contains the filename of the Web page.

The Web page must exist in the root Web site folder or FrontPage ignores
it. This issue is the reason why you see so many FrontPage templates
with all their pages stuffed into the root folder rather than sorted into
subdirectories.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 192

Book III
Chapter 2

Creating a
N

ew
W

eb
Selecting a Web Template 193

3. The third column contains the name of the page as it appears in the
Navigation view.

This name also affects some webbots, such as the banner webbot. The
name you type is the name you see in the banner.

4. The fourth column contains one of several number patterns. You see
three kinds of numbers when working with this column in FrontPage:

• A value of 1000 places the page directly beneath the home page in
the hierarchy. Consequently, SubPage1.htm and SubPage2.htm are
directly beneath the home page.

• A two-number combination falls between one of these parent pages.
A value of 1,1 would indicate the first parent page, SubPage1.htm,
and the first item beneath that page. The 1,2 and 1,3 entries also fall
beneath the SubPage1.htm entry. A value of 2,1 places the page
beneath the second parent or SubPage2.htm.

• When you see a page with a 0, it appears at the same level as the
home page. Figure 2-8 shows the Navigation view produced by this
project.map file.

Figure 2-8:
Create up to
three levels
of hierarchy
with a
project.map
file.

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 193

Book III: Webs194

14_575317 bk03ch02.qxd 9/24/04 7:52 PM Page 194

Chapter 3: Using FrontPage Views

In This Chapter
� Using views efficiently

� Working with the Page view

� Working with the Folders view

� Working with the Reports view

� Working with the Tasks view

The Web is the basis for many FrontPage features and the presentations
provided by views permit you to work with Webs efficiently. Admittedly,

you can use other products to get many of the features that FrontPage pro-
vides. Sure, the webbots are a convenient way to perform certain tasks and
the support for themes creates nice-looking pages, but other products
manage to get the same results by other methods. However, FrontPage pro-
vides a number of unique views that help you see your Web site in interest-
ing ways.

These views help you create better Web sites by showing where changes are
needed or where you can improve a presentation. The statistics FrontPage
provides through its views help you understand which strategies work and
which don’t. Interactions between views create new forms of presentation
that can help you see new ways of working with content. In short, knowing
how to use FrontPage views makes you more efficient and enhances the Web
sites you design and maintain.

Understanding Views
A FrontPage view is both a structure and a filter — a way of looking at the Web
site as presented from a unique and consistent perspective. The Web site is
the same as before, but how you see it changes. The view you use defines and
selects the information you get from FrontPage. Consequently, use the view
that is correct for the task you want to perform. For example, when you want
to see the Web site as a whole, it might be tempting to use the Folders view,
but the Navigation view is actually better. The Navigation view presents the
Web site as the user would see it — moving from one page to the next —
while the Folders view simply displays a list of files you can change.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 195

Using the Page View196

Views also require interpretation. A view can show you information about
your Web site, but only you can act on the information the view provides.
When FrontPage tells you (for example) that something’s wrong, it doesn’t
always correctly identify the source of the error. Suppose a particular page
isn’t getting very many hits, and FrontPage tells you there’s a problem with
this page. If the content on the page is esoteric enough that only a few people
really care about it, then the low hit rate is expected. FrontPage doesn’t know
that.

Now, some developers would see a page with a low hit rate and immediately
assume a problem with the content — or that the page isn’t advertised prop-
erly. The problem (if it exists) could just as easily be a lack of accessibility
features or an errant script that causes errors in some users’ browsers.

The view can tell you that the page might have a problem, but it’s still up
to you to identify, locate, and fix the problem; the view is a great tool, but
it’s just a tool. As with any other tool, you can get the most value from a
FrontPage view when you apply a few handy principles:

✦ Know what the tool can do and (more important) what it can’t do. I
always find that part the most exciting; discovering new uses for a view
is a kind of adventure.

✦ Decide how to interpret the results you receive from the view.
Sometimes that means deciding that although the view has provided
you with correct information, it indicates only that everything is normal
and there really isn’t a problem.

✦ Create connections between views. One view can feed the information
provided by another so you wind up with a tool that does more than
either could do alone. The most pronounced use of combined views is
the Navigation view and the Hyperlinks view, but many other combina-
tions exist.

Using the Page View
The Page view is what you see when you open a file; it’s where you perform
many page-specific tasks using the standard tools. But this view also inter-
acts with other views, including a special version of the Navigation view.
Beyond that, the Microsoft Office Clipboard provides another means of inter-
acting not only with other views but also other applications such as Internet
Explorer, from Page view: You can transfer data seamlessly.

You also use the Page view to design the elements that appear in every other
FrontPage view. Creating (for example) your own frame and table layouts can

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 196

Book III
Chapter 3

Using FrontPage
View

s
Using the Page View 197

save time and effort and meet your specific needs. You can also create capa-
bilities that FrontPage doesn’t have —for example, if you’d rather not hassle
with the limitations of standard frames, you can create special frame layouts
that rely on the <OBJECT> tag instead.

Interacting with the Navigation view
Whenever you open a new Web page, FrontPage adds another tab to the left
pane (the Navigation Pane). The Navigation Pane and the Folders List share
screen space: You can select one or the other. You always see a landscape
view of the pages on your Web site when you use the Navigation Pane, as
shown in Figure 3-1.

The Navigation Pane lets you move links for pages from the navigational
organization of your Web site rather than the physical organization shown
in the Folders List. To move a link, just drag it from the Navigation Pane and
drop it where you want it to be on the current Web page.

Figure 3-1:
Use the
special
Navigation
Pane view
to add links
to a Web
page.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 197

Using the Page View198

The link FrontPage creates assumes you want to use the name of the page as
it appears in the Navigation Pane. It also assumes you want to place the link
on a separate line. To place the link on the same line as the current text,
follow these steps:

1. Place the cursor at the beginning of the link and press Backspace.

Alternatively, you can choose the Remove Tag option from the drop-down
list box of the <p> tag from the Quick Tag Selector.

2. Edit the tag text.

This isn’t quite as easy as getting rid of the extra space because of the
way that FrontPage inserts the new link. You have two options, one of
them risky:

• You can highlight the text and start typing the new information, but
often this act erases the link.

• To ensure that you keep the link, place the cursor on the link and
select Tag Properties for the <a> tag in the Quick Tag Selector. When
you see Edit Hyperlink dialog box, type your text in the Text to
Display field and then click OK.

FrontPage changes the text in the link.

After you place all the links you need on-screen, it helps to check them for
errors. Here’s the most efficient method:

1. Press and hold Ctrl, and then click a link.

FrontPage opens the Web page that the hyperlink indicates. If you don’t
see the Web page you expected, then there’s an error in the hyperlink.

2. If necessary, fix the hyperlink using one of these methods:

• Delete the incorrect link and drag the correct one to the Web page
from either the Folder List or Navigation Pane

• Select Edit Tag from the drop-down list for the <a> tag in the Quick
Tag Selector. You see the Quick Tag Editor. Type the correct URL
after the href attribute and then click OK.

Adding data with the Office Clipboard
Every time you press Copy on the toolbar or use the Edit➪Copy command,
the Office Clipboard collects the information. The Office Clipboard doesn’t
collect this information forever, it only collects it during the current session
(the time you remain logged on to your computer). In addition, when the
Office Clipboard gets too full, it automatically removes old content. The
Office Clipboard, despite its name, isn’t just for Office products — it collects
information you copy from other applications, too.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 198

Book III
Chapter 3

Using FrontPage
View

s
Using the Page View 199

Office Clipboard is an exceptionally useful FrontPage tool. You can use it to
create pages quickly by copying what the Office Clipboard holds and then
pasting it wherever needed on the current Web page. To view the Office
Clipboard (and edit what’s on it if necessary), choose the Edit➪Office
Clipboard command. Figure 3-2 shows some typical information you might
see on the Office Clipboard.

You can also use special key combinations to place data on the Office
Clipboard. For example, highlight a URL in the Address field of Internet
Explorer and press Ctrl+C. You see the URL added to the Office Clipboard.
Any application that can use the Clipboard can send information to
FrontPage using this technique. In fact, many dialog boxes that don’t look
like they provide any Clipboard support will let you select text and press
Ctrl+C to copy the information to the Office Clipboard.

E-mail message

Excel spreadsheet

Word text URL as text Image

Figure 3-2:
Place items
on the
Office
Clipboard
for use in
your Web
pages.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 199

Using the Page View200

FrontPage also has to be able to accept the data to use it. Generally, you
won’t run into a problem unless the data is esoteric and you wouldn’t nor-
mally use it with FrontPage. You can easily copy everything from spread-
sheets to standard text to FrontPage using the Office Clipboard. It’s even
possible to copy items that you might not ordinarily consider, such as e-mail
messages.

After you place the data on the Office Clipboard, you can use it within a Web
page. Place the cursor where you want the item to appear. Click the item
entry you want to paste within Office Clipboard. FrontPage places the infor-
mation in the position you selected on the current Web page. You can also
use the context menu shown in Figure 3-2 to paste the item on-screen.

Figure 3-2 shows another important context menu entry. When you no longer
need an item, you can delete it from the Office Clipboard by selecting the
Delete option of the context menu. The context menu entry affects just the
selected entry. To delete all of the items in the Office Clipboard (to save
system memory or simply to ensure no one else can use the items for secu-
rity reasons), click Clear All.

Note that FrontPage treats any URL you copy onto the Office Clipboard as
text, not as a URL. Copying the URL as text can have advantages when you
want to display the URL and not create a hyperlink. To create a hyperlink,
perform these steps:

1. Visit the site you want to add to the Web page using any browser with
a history feature.

2. In FrontPage, choose Insert➪Hyperlink.

You see the Insert Hyperlink dialog box.

3. Select the Browsed Pages option and locate the URL you visited.

4. Highlight the URL and click OK.

FrontPage adds the URL to the Web page.

Using the Grid and Ruler
Sometimes Web pages require accurate positioning to ensure that the data
appears correctly on-screen. The idea is to create spaces for positioning the
data, not to define specific font sizes or other display elements that could
hinder others from viewing your Web page. The Grid and Ruler features help
you create precise positioning. The Grid is a network of lines that appear
in Design view but not in Preview view. The Ruler appears in two places,
across the top and along the left side of the image. Use the View➪Ruler and
Grid➪Show Ruler command to display the Ruler and the View➪Ruler and
Grid➪Show Grid to display the Grid. Figure 3-3 shows a typical Design view
with the Grid and Ruler added.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 200

Book III
Chapter 3

Using FrontPage
View

s
Using the Page View 201

FrontPage actually supports two kinds of grids: the Display Grid (the one
you see in Figure 3-3) and the Snapping Grid. The Snapping Grid causes
items you place on a Web page to automatically align within precise incre-
ments. The Snapping Grid helps reduce the work required to create a perfect
presentation by causing on-screen elements to align automatically but also
makes it impossible to move items small distances other than the interval
you set for the Snapping Grid. To turn the Snapping Grid on, right-click the
Ruler and choose Snap to Grid from the context menu. Clear the context
menu item to turn the feature back off.

Figure 3-3 shows the default settings for the Grid and Ruler, which rely on
pixels as a unit of measure. Although using pixels as a unit of measurement
can help you keep the size limitations of the browser you’re targeting in
mind, most people don’t think in pixels. To make the measurements a little
easier to use, you can select other units including inches, centimeters, and
points (1⁄72 inch). To change the settings, right-click the Ruler and choose
Configure from the context menu. You see the Page Options dialog box.

The Ruler and Grid are designed to work together, so you set the unit of
measure the same for both items using the Ruler and Grid Units field. After
you select a unit of measure, you can select Display Grid and Snapping Grid
intervals using the Spacing field for each Grid. The value is in the unit of

Figure 3-3:
Create
precise
layouts
using the
Grid and
Ruler.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 201

Using the Page View202

measure you select. When you choose 50 and the unit of measure is pixels,
the grid uses a 50 pixel interval or spacing.

The Display Grid has additional features. You can choose a line type: solid
(the default), dashes, or dots. FrontPage also lets you choose a color for the
Display Grid. It often helps to choose a bright contrasting color so you can
see the Display Grid easily and position elements accurately.

Creating your own accessible frames
Frames generally cause problems for most people because they rely on tech-
nology that some browsers don’t support, and even when you do get browser
support, the page isn’t accessible. The use of frames makes it difficult for
many people to move around the Web site and causes a number of other
problems. Fortunately, there’s a good alternative in the form of the <OBJECT>
tag. With this tag, you can create layouts that simulate frames but without
some of the drawbacks. The only problem is that FrontPage doesn’t offer sup-
port for <OBJECT> tag frame substitutes, so create your own.

The example begins with a specialized Web page that relies on the <OBJECT>
tag in place of frames. The appearance is the same as a page with frames but
with fewer problems. Figure 3-4 shows that the layout is similar to the
Banner and Contents frame layout that FrontPage provides.

Figure 3-4:
Design
substitutes
for frames
using the
<OBJECT>
tag.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 202

Book III
Chapter 3

Using FrontPage
View

s
Using the Page View 203

Notice that the 0 on the ruler in Figure 3-4 is centered on the upper-left corner
of the banner frame. The 0 is called the origin, and you can set the origin on
an object on a page to make it easier to measure the position and size of
other objects in relation to the selected object. To set the origin, select the
object you want to use. Right-click the ruler and choose Set Origin from
Selection from the context menu. You can select any item on the page as the
origin. Return the origin to its original setting by right-clicking the ruler and
choosing Reset Origin from the context menu.

The template in Figure 3-4 is a standard Web page that has blanks for the
pages you want to insert within the frame area. You generally need to create
this code by hand because the Design view doesn’t offer much support for
the <OBJECT> tag. Listing 3-1 shows the code that creates the frame appear-
ance shown in Figure 3-4.

Listing 3-1: Creating a Frames Template with <Object> Tags

<body>
<!--”The banner frame.” -->
<object data=”” width=”550” height=”75”>

<A href=””
title=”Other page content you might want to view.”>
Other Content

</object>

<!--”The links frame.” -->
<object data=”” width=”100” height=”300”>

<A href=””
title=”Other page content you might want to view.”>
Other Content

</object>

<!--”The main content area.” -->
<object data=”” width=”450” height=”300”>

<A href=””
title=”Other page content you might want to view.”>
Other Content

</object>

</body>

In each case, the <OBJECT> tag includes all of the components needed to
support the page — it just doesn’t contain any content. The width and
height attributes define the size of each area on the page. Remember to
include a hyperlink within each <OBJECT> tag to support users who have
browsers that don’t work with the <OBJECT> tag. Even when a browser
doesn’t support the <OBJECT> tag, using the <OBJECT> tag makes the page
more accessible than using frames.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 203

Using the Page View204

After you create the template, create a folder with a name that has the TEM
extension, such as ObjectFrame.tem, to hold the template. You also need to
create an INF file for the template that has precisely the same name as the
template, such as ObjectFrame.INF. The INF file contains the following
entries:

[info]
_LCID=1033
_version=11.0.4628.0
title=Object Tag Frame Simulation
description=Creates a frame-like appearance that includes a

banner, links, and content frame.
noframesURL=
layout=

[R(75,300)F(“banner”,[C(100,450)F(“links”,”content”)])]

The _LCID entry identifies the language for the template. Use the _version
entry to define the template version. Normally, you want to use the same
version number as all other templates for the version of FrontPage that you
use to create the template. The title entry contains text that appears with
the frame template icon on the Frames Pages tab of the Page Templates
dialog box. The description property content appears in the Description
area of the Page Templates dialog box. The noframesURL entry defines the
location of the no frames content. Don’t add this entry for a template based
on the <OBJECT> tag. Finally, that odd bit of code for the layout entry
describes the layout of this frame.

The easiest way to look at the layout entry is to break apart the design you
create. Imagine you’re creating the frames by using the Frames➪Split Frame
command. The R(75,300) entry describes the first split, which is horizontal
when you look at the layout in Figure 3-4. The code in Listing 3-1 tells you
that this split is 75 pixels for the banner frame and 300 pixels for the remain-
ing two frames. The F(“banner” entry tells you that this first split is the
banner frame.

The [C(100,450) entry describes the second split. This split is vertical, not
horizontal, so you use a C rather than an R. The left pane is 100 pixels wide
in the code, and the right is 450 pixels, so these are the numbers you use in
the code. Finally, the F(“links”,”content”) entry defines the left pane as
the links pane and the right pane as contents.

After you finish these two files (the template and the INF file), you place the
entire folder in the \Program Files\Microsoft Office\Templates\
1033\FRAMES11 folder of your machine. The template appears on the
Frames Pages tab of the Page Templates dialog box.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 204

Book III
Chapter 3

Using FrontPage
View

s
Using the Page View 205

Creating your own layouts
Layouts are very convenient, and they don’t suffer some of the problems
that frames do. Most browsers can use layouts easily, and the accessibility
problems of using a well-defined layout aren’t quite as significant as using
frames (although, the problems do exist). FrontPage provides a number of
common layouts, but you might find that you want to use a custom layout
for the Web pages on your site. In addition, you can predefine some elements
that a standard layout doesn’t, such as the author of the document or other
preferences. The layout could even include predefined elements such as
your company logo.

Creating a layout is similar to creating a new frames page. You begin by
designing the layout you want to use, but carefully avoid adding any content
that isn’t common to all layouts. Figure 3-5 shows a layout you could create
to hold a company logo, a banner, a list of links, a new content section at the
top, and an existing content section at the bottom.

Figure 3-5:
Creating a
layout that
includes
new
content.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 205

Using the Folders View206

After you have a new layout designed, create a folder to hold it. This folder
must have the name of an existing layout. You could create a folder with a
unique name, but FrontPage won’t recognize it as a layout without adding
entries to the registry. Given that it’s unlikely that you use every layout
Microsoft provides, replacing an existing layout is far easier.

Look in the \Program Files\Microsoft Office\Templates\1033\
Layouts11 folder for an existing layout you don’t use and would like to
replace. Rename the existing folder to something like OLD_ CHLB_T so that
you can easily retrieve this layout if you need it later. Give the new folder
and the new layout you created the existing folder name. The example
replaces the CHLB_T layout, so the folder has the CHLB_T name and the
layout file has CHLB.HTM as a name.

The Layout Tables and Cells window of the Task Pane contains a Table Layout
area that shows pictures of the various layouts you can use. To create a pic-
ture for this area, you must get a screenshot of your layout in BMP (Windows
bitmap) format. (Alternatively, you can also draw the layout by hand.) Set the
layout border to 2 or 3 to get the best screenshot. The picture must be 58
pixels wide and 76 pixels high. You name it with the same name as the tem-
plate but with a BMP extension, so the example uses a filename of CHLB.BMP.
Add the BMP file to the folder.

The last piece is an INF file. The new INF file must have the same name as
the template and BMP file, so the example uses CHLB.INF. Here’s an example
INF file.

[info]
_LCID=1033
_version=11.0.4628.0
title=Corner, Header, Left, New Area, and Body
rtitle=Corner, Header, Left, New Area, and Body

The INF file begins with the usual entries including the [info] section head-
ing, the local (_LCID) entry, and the version information (_version). The
title entry contains the text you see when you hover the mouse over the
layout picture in the Layout Tables and Cells window. Some layouts have
companion layouts. The rtitle entry identifies the companion layout of the
current layout. Use the same text for the title and rtitle entries when
there isn’t any companion layout.

Using the Folders View
The Folders view is a more complete version of the information located in the
Folder List. It includes additional information such as the date the file was
last modified and any comments you associated with the file. In addition, the

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 206

Book III
Chapter 3

Using FrontPage
View

s
Using the Folders View 207

Folders view shows who is assigned to maintain the file, the file size, and its
type. The Folders view and the Folder List can interact to let you move files
from one area of the Web site to another. You use Folders view to perform
tasks such as creating new files and copying existing files.

Sorting files
The Folder List always displays the file according to filename, which makes
files easy to find when you need to create a link in a Web page or add a file to
the Task view. However, you don’t always want to see the files in name order.
In some cases, you might want to see the largest or the oldest file. The Folders
view lets you sort files by any of the criteria it supports

One of the sort criteria includes the Comments field. You can use the
Comments field of the Summary tab of the file Properties dialog box to pro-
vide specialized information about the file to make it easier to sort into
unique categories. For example, you could assign a file a priority and sort
them using this unique requirement. The Comments field can contain any
information you want. The important thing to consider is that FrontPage
sorts this field alphabetically, so choose the first words in the Comment field
carefully and consistently to assure good sorting results.

Publishing files
One task that Folders view can perform easily is publishing individual files.
After you finish a particularly important edit, you might want to publish the
file immediately. Before you can publish files, you must set up a remote con-
nection. To publish one or more files, begin by highlighting the files. Right-
click any of the highlighted files and choose Publish Selected Files from the
context menu. You see a Confirm Copy dialog box. FrontPage automatically
removes the dialog box when the copy process is complete.

The Folders view can also make it possible for you to exclude files from pub-
lication. Perhaps you have only started an edit on the file and don’t want to
publish it until the edit is complete. To exclude files from publication, begin
by highlighting the files. Right-click any of the selected files and choose
Don’t Publish from the context menu. FrontPage marks the highlighted files
with a special icon to show that it won’t publish them during the next pub-
lishing cycle.

After you finish editing the files, you must mark them as ready for publica-
tion. Highlight the affected files and choose Don’t Publish from the context
menu. FrontPage changes the icon back to the standard icon for that file.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 207

Using the Reports View208

Using the Reports View
The Reports view contains a number of specialized views of your Web site,
everything from broken links to the number of hits a particular Web page
receives. Most of these reports provide specialized uses that you already
know about or will discover as you perform specific tasks.

The intention of the Reports view is to help you see your Web site in differ-
ent ways so you can manage it better. Unfortunately, you can’t change the
reports that Microsoft provides or add new ones. Even so, you gain access
to a wealth of knowledge about your Web site and the server it runs on.

Ensuring the reports work as intended
Before you can collect some of the information that FrontPage 2003 can
deliver about your Web site, configure your server correctly. Currently, only
Windows XP provides full FrontPage 2002 Server Extension support out of
the box.

To add FrontPage 2002 Extensions support to Windows 2000 Server or
Windows 2000 Professional, you must download it from Microsoft’s Web
site and install it on the machine. The file you download is an executable —
simply double-click it and follow the instructions. (You shouldn’t have to
provide any information.) These extensions run on any Internet Information
Server (IIS) 4.0 or above setup. They may also run on other servers. See the
download site at http://www.microsoft.com/downloads/details.
aspx?displaylang=en&FamilyID=5CC0A845-1884-4A16-A8CB-
25D2F0815FA3 for more information.

After you download and install the server extensions, follow these steps:

1. Open the Internet Information Services console located in the
Administrative Tools folder of the Control Panel.

2. Right-click the Default Web Site entry and choose Properties from the
context menu.

You see the Default Web Site Properties dialog box.

3. Select the new Server Extensions 2002 tab, which was added by the
installation program.

4. Click Settings.

Interestingly enough, IIS opens a Web page that contains the settings
information as shown in Figure 3-6.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 208

Book III
Chapter 3

Using FrontPage
View

s
Using the Reports View 209

The first page you see is a Change Configuration Settings page.

5. Set the entries as you normally would for using FrontPage Extensions —
this part of the process hasn’t changed.

6. Click Submit.

You see the Virtual Server Administration page.

7. Click the Upgrade Virtual Server with FrontPage Server Extensions
2002 link.

You see the Upgrade Virtual Server with FrontPage Server Extensions
2002 page.

8. Make sure the administrator name is correct and click Submit.

You see the Server Administration page again. However, now it tells you
that the Default Web Site can use FrontPage Server Extensions 2002.

You still haven’t set the server to provide usage details, but the server
does have the required support.

9. Click the Set Installation Defaults link.

You see Usage Details settings shown in Figure 3-7.

Figure 3-6:
Define the
settings
for the
FrontPage
2002 Server
Extensions.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 209

Using the Reports View210

10. Make sure the Usage Processing Is field is set to On. Another setting
controls the server health report. Set both areas to collect data at the
interval you require.

For example, if you want to generate reports each week on Friday, it’s
probably best to collect the data on that day shortly before you get into
work so the statistics are as fresh as possible.

Configuring the reports
Microsoft configures the reports to provide the best results for the average
Web site. Your above average Web site probably requires configuration to
ensure the reports actually reflect what you need. For example, you might
not want to consider a Web page “old” when it reaches 30 days — perhaps
the data is already too old at 15 days.

To configure reports to properly reflect your Web site strategy, follow these
steps:

1. Choose Tools➪Options.

You see the Options dialog box.

Figure 3-7:
Set the
interval for
collecting
usage and
server
health
information.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 210

Book III
Chapter 3

Using FrontPage
View

s
Using the Tasks View 211

2. Select the Reports View tab.

This dialog box lets you choose how FrontPage calculates the reports
and sorts resources into various areas.

3. Configure the age of documents on your site.

The “Recent” Documents Are Less Than field defines what you consider
a new document. A document might be new for just a few days on a Web
site with rapidly changing information but might be new for weeks or
months on a Web site that sports historical information. Likewise,
describe an old document by changing the “Older” Files Are More Than
field. This value is always greater than the “Recent” Documents Are Less
Than field, and it should include a time interval for files that aren’t new
but aren’t old either.

4. Configure the page speed.

The page speed is a very important statistic because the next site is
always a click away. If your site takes too long to download, users are
going to go somewhere else. The problem is that you might have a high
speed connection and a great developer machine, so estimating a long
download is difficult. You set up reports that tell you when a page takes
too long to download by changing the “Show Pages” Take at Least and
the Assume Connection Speed Of fields. Most developers use a “Show
Pages” Take at Least time of 10 seconds or less. Shorter times are usu-
ally better because most users won’t wait long. A site that sells merchan-
dise requires a very fast download speed even when the user has an
older modem connection of 28.8 Kbps. A gaming Web site can probably
assume the user has a fast modem speed 56 Kbps as a minimum, and it
probably isn’t too much to assume even faster speeds.

5. Configure the usage reports.

The usage reports show a specific number of months. The FrontPage
selected average of 12 months works fine for many sites. However, you
might want to change this interval when your site works with data that
changes particularly fast or slow or needs more historical content than
the standard setting provides.

Using the Tasks View
The Tasks view helps you keep track of tasks you must perform on your Web
site. Keeping the tasks in one location makes it easier for you to track each
Web site you manage as an individual entity. In addition, using Tasks view
helps coordinate the efforts of a team.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 211

Using the Tasks View212

You know how to manually add tasks to the Tasks view, and you also know
that some FrontPage tasks automatically add entries to the Tasks view. For
example, when you create a new Web page, you can create it as a task rather
than an actual page. The problem with manually added tasks is that they
aren’t associated with any of the FrontPage resources. In other words, you
have to provide enough detail to know which files to open. On the other
hand, even though FrontPage created tasks are associated with a file, you
don’t have any control over how these tasks are created.

Fortunately, by using the Folder List you can create a combination of a
manual entry and one that’s associated with a particular resource. The file
can contain anything associated with your Web site, including graphics.
Simply drag the file from the Folder List to the Tasks view, and you see a New
Task dialog box. Enter the usual information, including a task title, priority,
and description. Click OK to add the task to Tasks view.

When you want to perform the task, right-click the entry and choose Start
Task from the context menu. When FrontPage provides support for the file,
you see it opened in FrontPage. Otherwise, FrontPage will open an external
program to perform the task.

Normally, after you edit a file, FrontPage asks whether the task is complete.
If so, you can click Yes in the dialog box, and FrontPage automatically marks
the task as complete in Tasks view. When you use an external program to
modify the file, FrontPage doesn’t know that you’ve edited the file, so you
need to manually manage the Tasks view.

15_575317 bk03ch03.qxd 9/24/04 7:53 PM Page 212

Chapter 4: Creating
Navigational Views

In This Chapter
� Using the Navigation view

� Adding navigational bars

� Creating new pages

� Organizing the navigational view

� Modifying the site settings

G etting from one place to another, whether it’s from your home to a
vacation spot or from one site to another on the Internet, often

requires a map. As long as you know where you’re going (and sometimes the
map tells you that, too), you can discover ways to get somewhere else. The
FrontPage Navigation view is more than a hierarchical display of the pages
on your Web site; it also provides a map you can use to move from one page
to another without actually opening the pages. A well-designed Navigation
view can help you locate Web pages that require change quickly — and help
you understand the flow of information on your site.

One especially handy feature the view provides is a navigation bar — an
on-screen collection of settings you use to create automatic links between
pages, based on their position in the Navigation view. (An upcoming section
of this chapter shows you how to create one.) The first several things you
need to know about the Navigation view are these:

✦ Sometimes it’s quicker to create a page directly in Navigation view
before you link it. That way, you get a clear look at how it fits into the
logical or mapped scheme of your Web site.

✦ The view is versatile, but what it does is up to you. Take a little time
to develop techniques for organizing the Navigation view so it works as
intended with your particular Web site.

✦ Always make the correct page and site settings part of your Navigation
view setup. Not every setting affects the Navigation view; some settings
are essential for creating a well-designed custom view of your Web site
and its linkages.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 213

Understanding the Benefits of the Navigation View214

Understanding the Benefits of the Navigation View
Some people would decide the Navigation view provides a means for organ-
izing their sites — and stop there. Yes, the Navigation view does provide this
feature, but if you’ve used it at all, you already know it does a lot more. In
fact, FrontPage makes great and extensive use of the Navigation view, so a
little time spent here pays big dividends in improved Web site functionality
and reduced development time.

Many FrontPage features won’t work unless you create a Navigation view.
For example, the Page Banner feature doesn’t work unless you add the page
to the Navigation view. The name of the page as it appears in Navigation
view is the name that you see in the Page Banner. Because FrontPage relies
on webbots to perform certain tasks, you need to provide the webbots with
the information they need by building a good Navigation view.

Every navigational feature also requires a complete Navigation view setup.
FrontPage supports various types of links to make your Web site easy to get
around:

✦ Back and Next links: These allow forward or backward navigation.

✦ Automatic page links: These you base on specific criteria (for example,
you can decide whether to include a link that goes automatically to the
home page).

✦ Custom links: These are configurable; you decide precisely what the
navigational aid should look like.

You can also choose features, such as the Table of Contents component, that
provide a view of your site that’s similar to the table of contents in a book.
The idea is to make it very fast for users to locate information on your site
based on category.

Layout is an essential part of the Navigation view but not just from an organi-
zational perspective. You use Navigation view to establish the user’s ease of
movement from page to page. Changing one item in the layout can make
a significant change in how the user sees navigation on a particular page.
FrontPage bases its control of movement on the Navigation view rather than
on the physical layout of your site.

The settings you make for the Navigation view also affect the way various
Web elements interact. For example, you don’t have to use the terms forward
or back for movement between pages — you could use next and previous
instead. FrontPage provides settings that modify these values, so you can
use any terms that make sense to the Web site user.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 214

Book III
Chapter 4

Creating
N

avigational View
s

Creating a New Navigation Bar 215

Creating a New Navigation Bar
FrontPage has a navigation bar for every occasion. Don’t confuse a naviga-
tion bar with the Navigation view — the navigation bar is a control for
moving between pages, but the Navigation view shows the connections
between pages. You use one or more of them to give the user a way to move
from one location to another on your site. For example, the navigation bar
across the top of the page might let the user move between top-level Web
pages such as the home page, general information about your company, how
to contact various people, and a link to a search engine or a site map. Along
the side of the page you can include a different type of navigation bar that
lets the user drill down into the data that the current page supports. These
scenarios represent just two of many navigation needs.

You always select a navigation bar using the same technique. The following
steps get you started.

1. Place the cursor where you want the navigation bar to appear on the
page; then choose Insert➪Navigation.

You see the Insert Web Component dialog box shown in Figure 4-1.

2. Select one of the navigation bars in the list. Click Next.

FrontPage asks you to select a bar style, as shown in Figure 4-2. The bar
styles include both graphic and text types. The text types are more
accessible and easier to use; the graphic styles have more visual appeal.

Figure 4-1:
Choose one
of the
navigation
bar types.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 215

Creating a New Navigation Bar216

3. Select a bar style and click Next.

FrontPage asks you to choose an orientation for the navigation bar. Main
selections normally appear across the top of the display; subordinate
links (which access content or other Web pages) appear along the side.

4. Choose an orientation and click Finish.

FrontPage asks you questions specific to the navigation bar you selected.

At this point, you need to provide navigation bar specific information. Of
course, the secret is to know which navigation bar to use, which is the topic
of the sections that follow.

Adding Back and Next links
The Back and Next links assume that you want the user to follow a specific
order. For example, the user might need to follow a procedure or fill out multi-
ple pages of forms. The order of the pages is normally important, so you want
the user to see them in order. You could even use this form of navigation link
to display a book online. Each link could represent a chapter or a portion of a
chapter. You use the Bar with Back and Next Links option located in the Link
Bars component type to produce this kind of navigation bar.

This navigation bar assumes that you create a beginning point that also acts
as a top-level page. A navigation bar controls movement from one leaf (con-
tent) page to the next.

After you get past the initial configuration described in the introduction to
this section, you see a Create New Link Bar dialog box. From there, follow
these steps to create this navigation bar:

Figure 4-2:
Select a bar
style that
matches
your current
page
design.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 216

Book III
Chapter 4

Creating
N

avigational View
s

Creating a New Navigation Bar 217

1. Type a name that describes the sequence of pages you want to create.

For example, you might type Supply Request Form when you create a
series of pages for a complex request form.

2. Click OK after you type the name.

You see a Link Bar Properties dialog box that has everything blanked out.

3. Add the current page to the navigation bar to ensure it’s part of the
navigation scheme and also appears as the first page on the list.

4. Click Add Link.

You see the Add Link to Bar dialog box.

5. Locate the Web page in the hierarchical folder list and then click OK.

You see the Web page URL added to the Links list. Figure 4-3 shows a
Link Bar Properties dialog box with several links included.

6. Add Additional Links options, if necessary.

To provide movement to upper levels of the Web site, you normally select
one or both Additional Links options. The Home Page option always takes
the user to the very beginning of the Web site. Use the Parent Page option
to let the user move up one level (to the parent of the current page).

7. Click OK.

For whatever reason, FrontPage normally displays an error message
stating, “[Edit the properties of this link bar to either rebuild it or
choose a different link bar that already exists in this web.]” on the Web
page at this point. Don’t worry — the links will work.

Figure 4-3:
Add links as
needed to
complete
the
navigation
bar.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 217

Creating a New Navigation Bar218

Creating a single page back and next link navigation bar is sort of like listen-
ing to the sound of one hand clapping. You can do it, but it doesn’t accom-
plish very much. To add more pages to the list, simply design the page, and
then add the Bar with Back and Next Links navigation bar to it. The steps are
about the same. However, this time FrontPage takes you directly to the Link
Bar Properties dialog box where you click Add Link again to add the new
page. In many cases, you won’t want to select either of the Additional Links
options for middle pages (just beginning and end pages) to ensure the user
completes the series. Continue adding Web pages until you add all the pages
in the series.

Let’s say you don’t want to spend the rest of your life adding these naviga-
tion bars one at a time. It’s possible to create a template or a special layout
that includes the navigation bar, or even simply to copy and paste the navi-
gation bar to another page. The only problem is that you haven’t created any
linkage between the new page and the navigation bar. To add the required
linkage, right-click the navigation bar entry and choose Link Bar Properties
from the context menu. You see the Link Bar Properties dialog box. Click
Add Link to add the new Web page to the list.

Creating linkage to the home page
Depending on how you set up the navigation for your site, you end up with
one or more isolated islands that are inaccessible from the home page. For
that matter, you might not have any navigation in place on the home page
because you created all of the topics you want to discuss first.

Creating linkage from the home page to all of the isolated islands you’ve
developed is a two-step process. First, you need to create a navigation bar
for the home page if you haven’t done so already. Second, you use the
Navigation view to connect the various islands to your home page.

To add the navigation bar, select the Bar Based on Navigation Structure
option of the Link Bars component type. You can use other suitable naviga-
tion bars such as the For This Web Site option of the Table of Contents com-
ponent type, but the Bar Based on Navigation Structure is the most common
type. After you select the usual options, you see a Link Bar Properties dialog
box similar to the one shown in Figure 4-4.

The figure on the left side shows how a particular selection works. In this
case, FrontPage supplies links for any child pages, including navigation bars,
that appear directly under the home page in the hierarchy. Some of the
options aren’t quite as comprehensive. For example, when you choose the
Global Level option, FrontPage selects only Web pages that appear at that
level, not navigation bars.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 218

Book III
Chapter 4

Creating
N

avigational View
s

Creating a New Navigation Bar 219

Developers normally add two bars to the home page. The first shows all of
the top-level or global pages for the Web site. This is a horizontal navigation
bar that appears at the top of the page. The second shows the content below
the current page. It appears as a vertical navigation bar along the right or
left side of the page (with left being the most common placement).

After you add the navigation bars, you want to create some linkage for them.
To perform this task, select the Web Site tab and then the Navigation view.
You see that the home page is sitting by itself. To the right of the home page
is a navigation bar and below this all the pages that you added to it. Connect
the navigation bar to the home page by dragging the navigation bar under it.
FrontPage shows a line between the two elements, as shown in Figure 4-5. You
perform the same organizational task for every navigation bar you design.

Developing automatic page links
Some navigation bars, such as the Bar with Back and Next Links style, require
some configuration on your part to use. Other navigation bars are a lot less
work. You drop them in place, and they display any new or existing links auto-
matically, depending on how you set the link up. The most common automatic
link is the Bar Based on Navigation Structure option of the Link Bars compo-
nent type.

Using this navigation structure lets you move elements around without
breaking anything because the links shown on the page depend on where the
page appears in the hierarchy. The down side of this method is that it’s not
as automatic as using a navigation method that relies on a navigation bar.
You use the Navigation view to initially place the page and maintain its posi-
tion afterward.

Figure 4-4:
Choose the
level you
want to use
for linking.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 219

Creating a New Navigation Bar220

Understanding the navigation types
The automatic links permit you to work at a number of levels as shown in
Figure 4-4. The Global Level and Child Pages Under Home options only work
with the home page. You can add them to any other page, but the effect isn’t
dynamic — you always end up at the top level.

Use the Parent Level setting to create a list of previous destinations for a leaf
or content Web Page. Using these links lets a user go up one level without
having to go all the way back to the home page in a Web site that has multi-
ple navigation levels.

Use the Same Level option when you want to move between pages at the same
hierarchical level. The pages must have the same parent. You won’t see links
for pages that have a different parent. By using a combination of the Same
Level option with the Parent Page and Home Page options checked, you can
create a very efficient means for moving around a specific area of a Web site.

Home or other top-level page

Leaf (content) pages

Navigation bar

Figure 4-5:
Choose the
level you
want to use
for linking.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 220

Book III
Chapter 4

Creating
N

avigational View
s

Creating a New Navigation Bar 221

The Back and Next option has the same effect as using the Bar with Back and
Next Links option located in the Link Bars component type but without the
navigation bar. This means the pages aren’t added automatically — you add
them using the Navigation view. However, it also means you can create multi-
ple levels of back and next pages. The navigation bar limits you to a single
level.

The Child Level option lets you display links for the children of the current
Web page. These links let users drill down to the next level of the Web site.

Modifying the link bar style
You might decide that you really don’t like the current setup for your page. It
might be better to display the links vertically, or you might want to use a dif-
ferent style of link. In addition, the initial setup doesn’t allow you to specify
the kind of links you receive. FrontPage assumes you want to use the stan-
dard link style. Fortunately, you can change the settings by right-clicking
the link bar entry and choosing Link Bar Properties from the context menu.
Select the Style tab, and you see a number of configuration options as shown
in Figure 4-6.

The Choose a Style area shows all of the styles you can use to display links.
The entries on the left are the standard setup, and the entries on the right
show what you can get when select the Use Vivid Colors and Use Active
Graphics options.

The Description tells you what this style is based on. Read the description
carefully to ensure the style you select matches or at least coordinates with

Figure 4-6:
Use these
settings to
modify the
appearance
of the links
on a page.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 221

Creating a New Navigation Bar222

the theme you select for a Web page. You can always ensure the style will
match the page theme by selecting the Use Page’s Theme style.

The Horizontal and Vertical options affect the placement of the link bar on
the Web page. Select the Use Vivid Colors option when you want the links to
appear in bright colors. Checking the Use Active Graphics option displays an
artistic view of the links rather than the flatter view provided by the stan-
dard option.

Working with a Custom Link Bar
Sometimes you don’t want a series of calculated or automatic links — you
want to define specific links and keep track of them wherever they might
appear on your Web site. A custom link bar, one created using the Bar with
Custom Links option in the Link Bars component, can accommodate links to
other pages. The pages don’t have to appear in any specific order or in any
specific place.

After you create the basic bar, you see the Link Bar Properties dialog box
shown in Figure 4-3. This dialog box might not contain any navigation bars,
or it could contain navigation bars that you created earlier. To create a
unique set of links, you need to create a new navigation bar by clicking
Create. FrontPage displays a Create New Link Bar dialog box. Type a name
for this navigation bar and click OK.

The interesting part of this type of navigation is the navigation bar doesn’t
appear attached to the rest of the hierarchy. The page you create links the
navigation bar to the home page. The link is within the page.

One problem that occurs, in this case, is that the navigation bar uses link
information for the title rather than the actual page title. This technique
gives you links that include “ ../MySupplyForm/SupplyForm1.htm”. To over-
come this problem, you rename the links in Navigation view by right-clicking
the page and choosing Rename from the context menu. Type a readable
name into the entry and press Enter.

Another way to rename links is to click Modify Link in the Link Bar Properties
dialog box. You see the Modify Link dialog box. Type a new name for the link
in the Text to Display field and click OK.

Using the Table of Contents component
The Table of Contents component can create two kinds of output. The first
style uses the current Web site as the basis for entries. The second style cre-
ates a table of contents based on the category that you assigned to the page.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 222

Book III
Chapter 4

Creating
N

avigational View
s

Creating a New Navigation Bar 223

Using the Web site style
Unlike other navigational aids, you don’t need to provide a bar style or orien-
tation when working with the Table of Contents component. Simply select
the table of content types and click Finish. You see the Table of Contents
Properties dialog box shown in Figure 4-7.

When working with a table of contents, you must define a starting point for
the entries. In many cases, you’ll use the home page as the starting point,
especially when you want to display the entire Web site. However, you can
start at any point on the Web site. The table of contents will start at that
point in the hierarchy and move to lower levels. You must also define the size
type you want to use for the entries. The default setting normally works fine.

The three options on the Table of Contents Properties dialog box are impor-
tant because they affect how the page looks and works. If you want your site
to have a book-like table of contents, then you need to clear the Show Each
Page Only Once option. FrontPage selects this option by default because
many developers only want a list of links — eliminating duplicate entries
makes the list easier for others to use.

Clear the Show Page with No Incoming Hyperlinks option when you want the
user to see only links to pages that appear as children of the current page.
You might not want to create a table of contents that contains every page
on your site. Another way to eliminate a page from the table of contents is
to right-click its entry in Navigation view and choose Included in Link Bars.
The page will change color (normally gray) to show it’s no longer selected.

The Recompute Table of Contents When Any Other Page is Edited option is
useful when you expect a lot of changes to your site and want to be sure
they all appear in the table of contents. The down-side of using this feature
is that it uses computing cycles that you could use for some other purpose.

Figure 4-7:
Define the
starting
point and
character-
istics of the
table of
contents.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 223

Creating a New Navigation Bar224

Your system could literally slow down for every page change that you save
to disk. When you work on a remote site, the slow down becomes even more
noticeable. The performance impact is the reason Microsoft probably turns
this feature off by default.

After you finish the table of contents, click OK. You see the table of contents
added to the Web page. Like any other navigation tool, you can edit your
choices after you create the table of contents. Right-click the table of con-
tents entry and choose Table of Contents Properties from the context menu.

Using the categories style
The Based on Page Category option of the Table of Contents component lets
you create a table of contents based on the workgroup assigned to manage
a page or status of that page. You don’t have to support all workgroups or
every possible status. The goal of this table of contents is to make it easier
for other members of your team to locate the files they need to work on.

This table of contents doesn’t require that you choose a bar style or orienta-
tion. Simply select it and click Finish in the Insert Web Component dialog
box. You see the Categories Properties dialog box shown in Figure 4-8.

Begin by selecting the categories you want to see in the table of contents. As
you select categories, they appear in the Selected Categories field at the top
of the dialog box.

Figure 4-8:
Choose the
categories
you want to
appear in
the table of
contents.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 224

Book III
Chapter 4

Creating
N

avigational View
s

Creating a New Navigation Bar 225

You can perform a few extra tricks with this table of contents. For example,
you can sort it by the document title or the date the document was last edited.
The table of contents can also contain the date the file was last edited and any
comments attached to the file, in addition to the normal document title.

When you finish selecting the document options, click OK. FrontPage adds
the table of contents to the Web page.

Defining a top-ten list
The top-ten list relies on statistics to create a list of links for people to visit.
For example, you can create a top-ten list of the pages people visited most
often on your site. You can also display external sites. There’s a top-ten list
for domains that make referrals to your site. Theoretically, you could com-
bine a number of these lists to create a utility page that can monitor your
Web site. To create a top-ten list, follow these steps:

1. Choose Insert➪Web Component.

The Insert Web Component dialog box opens.

2. Select one of the usage lists supported by the Top 10 List component.

FrontPage asks you to select a top-ten list style. The top-ten list styles
include options based on a particular need, such as the search strings
users enter most often or the browsers that most users have.

3. Click Finish.

You don’t need to provide style or orientation information. FrontPage
displays the Top 10 List Properties dialog box shown in Figure 4-9.

Click OK to display the default top-ten list.

Figure 4-9:
Select a
presentation
style for
your top-ten
list.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 225

Creating a New Navigation Bar226

You can modify the list title and style if you want. For example, when you use
the top-ten list for statistical displays, you’ll also want to check the Include
Date Usage Processing Was Last Run option. This option shows whether the
data is fresh and whether you need to verify the server settings to ensure
the usage processing is run often enough.

Using the Visual InterDev Navigation
Bar Component
To use this particular navigation bar, you must have Visual InterDev (the
Microsoft visual environment for software development) installed on your
server. Otherwise, a needed capability is missing, and FrontPage waits for
you to install it before it allows this navigation bar (which acts as a compo-
nent of Visual InterDev) to work. Using this component without having
Visual InterDev installed displays a placeholder,], on the Web page:

[FrontPage vinavbar Component]

You also see the following error message when you open the Page Properties
dialog box:

(1) Cannot open DLL “fp5Avnb.dll”(The specified procedure
could not be found.)

The odd thing is that the required DLL is already installed. It came aboard
with FrontPage, in the following folder:

\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\50\bots\vinavbar

It’s just sitting there, regardless of whether you’ve installed Visual InterDev.

The Visual InterDev Navigation Bar component has all the same features as
the Link Bars component. The advantage of using this component is that you
gain a little extra control over the interface settings; a single dialog box sets
up every kind of navigation bar it supports, and some developers feel it
works faster.

To use this component, select the Visual InterDev Navigation Bar entry in
the Additional Components component type in the Insert Web Component
dialog box. Click Finish. You see the Visual InterDev Navigation Bar
Component Properties dialog box shown in Figure 4-10.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 226

Book III
Chapter 4

Creating
N

avigational View
s

Adding New (Top-Level) Pages 227

Some of the terms used in Visual InterDev are (as you might expect) very
developer-oriented, but most of them match up to similar settings in the
Link Bars component of FrontPage. You do, however, have some additional
options. For example, you can choose text, graphics, or HTML rendering (the
method of displaying the information). Graphics give you the artistic render-
ing supported by the active graphics and vivid colors that the Link Bars
component provides as options. The Visual InterDev navigation bar sup-
ports a number of navigational features, as well as various ways to refine the
look of your page — for example, these:

✦ You can also use the navigation bar to create a banner.

✦ You can select the kind of output you want to create by specifying the
Type setting.

✦ When selecting output, you can choose to place the information in a
table; FrontPage will set it up for you automatically, in response to your
settings.

✦ You can impose a consistent look by applying the current FrontPage
theme.

One place where the Visual InterDev navigation bar doesn’t provide the
same capability as the Link Bars component is that it lacks support for
other themes. When you want to use a theme with the navigational com-
ponent, you’re limited to the one that the current page uses and can’t
mix themes for special effects.

Adding New (Top-Level) Pages
When you add a new page to the Navigation view, it’s subordinate to no
other pages on your site. Thus every page you create in Navigation view is
known as a top-level page — which FrontPage normally displays in a special

Figure 4-10:
Choose
setup
options
for the
navigation
bar you
want to
create.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 227

Organizing the Navigation View228

color that sets it apart from the leaf pages. To avoid confusing the user, nor-
mally you use top-level pages only for organizational needs.

Top-level pages are also handy, however, for a number of useful (but optional)
pages — say, a search page, a table of contents, or a top-ten list. The idea is
to create a global page that doesn’t really have a connection to anything else.
The user will want to access these pages from anywhere in your Web site, so
you place them at the top of the hierarchy.

To add a new page, right-click an open area in Navigation view and choose
New➪Top Page from the context menu. FrontPage adds the new page at the
top of the display. Notice that this page isn’t connected to anything, but you
can drag it anywhere you need it. Talk about convenient — the page won’t
even exist on the hard drive until you open it to edit it.

Organizing the Navigation View
You can base the navigation for your Web site on the entries you make in a
Web page, or you can design the navigation within Navigation view first and
then add the appropriate components. This second technique relies on the
Custom Link Bar rather than add the Custom Link Bar to a Web page and
design the site using the pages. Instead, you add the Custom Link Bar to the
Navigation view. That’s it. This technique lets you see the design as you
create it; you can organize material that might not be easy to place in a spe-
cific order.

The technique that uses Navigation view relies on a series of top-level or
node pages and leaf pages. The leaf pages contain the content you want the
user to see; the node pages identify the places you want to put the content.
The top-level pages contain Custom Link Bars to organize the information.
When you find a page in the wrong place, you move it to the node that it
does belong to. The connections between pages are completely fluid.

The first page you create, the home page, is always a top-level page. You
attach a Custom Link Bar to it, and then add other top-level pages and leaf
pages as needed to create the structure. The resulting layout lets users
move from area to area with ease, yet lets you maintain control over which
pages they see and at what time.

Adding a Custom Link Bar
You add Custom Link Bars as needed to separate the data elements. The
example uses the form of a book. Depending on the book, you use a Custom
Link Bar for the front matter and each of the chapters. Remember, though,
that you get only one level of detail below the Custom Link Bar, so you might
have to use a different structure for complex books.

16_575317 bk03ch04.qxd 9/24/04 7:54 PM Page 228

Book III
Chapter 4

Creating
N

avigational View
s

Organizing the Navigation View 229

The idea is to create a navigational structure where the leaf nodes are sec-
tions or individual pages in the book. The steps to add a Custom Link Bar
look like this:

1. Right-click a clear area in Navigation view.

A context menu appears.

2. Choose New➪Custom Link Bar from the context menu or click the
New Custom Link Bar button on the toolbar.

FrontPage displays a new Custom Link Bar at the top of the Navigation
view.

3. Drag the Custom Link Bar where you need it.

4. Right-click the new Custom Link Bar.

A context menu appears.

5. Choose Rename from the context menu.

FrontPage makes it possible to edit the title.

6. Give the Custom Link Bar a name that describes its organizational
function and press Enter.

FrontPage changes the name of the Custom Link Bar.

A top-level page can have as many Custom Link Bars as needed. Each link
bar separates groups of pages. For example, if you want to separate each
section of a book or online manual, you can use a Custom Link Bar to do it.
The absolute separation of content helps readers know when they’ve com-
pleted a section.

You don’t have to write a book to use a Custom Link Bar to separate data
into useful segments. A Custom Link Bar can separate all kinds of data. For
example, you could use one Custom Link Bar for each series of pages used to
create a form. The Custom Link Bar helps your users know they’ve com-
pleted all the pages of the form.

Defining new top-level page
The “Adding New Pages” section describes how to add new top-level pages.
This name is somewhat misleading. You can use a top-level page for any pur-
pose. Drag it under a Custom Link Bar, and it changes color to indicate use
as a leaf page.

You can use this flexibility to your advantage. Create the complete structure
of your Web site, move things around, and organize pages using Custom Link
Bars — all before you’ve actually created a single page. Figure 4-11 shows an
example of the complex layouts you can create using this technique.

16_575317 bk03ch04.qxd 9/24/04 7:55 PM Page 229

Changing the Site Settings230

Changing the Site Settings
FrontPage provides site settings that determine the text a user sees by
default when working with navigational elements. For example, the button
that takes the user to the home page says Home on it. (You might want to
use different text on some other Web pages.)

To change the default button text, follow these steps:

1. Right-click anywhere in the Navigation view.

A context menu appears.

2. Choose Site Settings from the context menu.

FrontPage displays the Site Settings dialog box.

3. Select the Navigation Tab.

Figure 4-11:
If you want
to to create
specialized
layouts,
organize
the page
directly.

16_575317 bk03ch04.qxd 9/24/04 7:55 PM Page 230

Book III
Chapter 4

Creating
N

avigational View
s

Changing the Site Settings 231

You see four fields: Home Page, Parent Page, Previous Page, and Next
Page.

4. Type the text that you want to use for each of these button types.

5. Click OK.

FrontPage automatically changes the captions for all buttons on your
Web site. (Make sure you click Refresh so your browser downloads the
new version of the page from the Web site.)

16_575317 bk03ch04.qxd 9/24/04 7:55 PM Page 231

Book III: Webs232

16_575317 bk03ch04.qxd 9/24/04 7:55 PM Page 232

Chapter 5: Using FrontPage
Reports Efficiently

In This Chapter
� Considering the ways to use the Reports view

� Making the best use of the Site Summary

� Creating reports about files

� Monitoring shared content via reports

� Fixing problems with the help of reports

� Managing workflow with (you guessed it) reports

� Setting up reports to monitor site usage

FrontPage provides a wealth of reports as part of the Reports view.
These reports help you monitor, manage, and fix your Web site. For

example, when importing a Web site into FrontPage, you know to use the
Broken Hyperlinks report to check for broken links on the site.

Good reports are valuable to everyone. Even if you’re creating a site for
your personal use on a hosted Web site, the FrontPage reporting feature
helps you review your site, check it for errors, and ensure it’s performing as
expected. For example, you might want to verify that all files on your site
have links — that they aren’t simply sitting on the server without any way
for the user to access them. The Unlinked Files report helps you obtain this
information.

In the end, reports are essential because they help you understand your
Web site better. As you get a clearer picture of the practical needs of the
Web site and the people who visit it, you can fine-tune your content and
presentation. This process ensures that your Web site grows as more people
come to realize its value. All this comes from using reports efficiently.

Understanding the Reports
FrontPage groups reports into a number of functional areas. Each area
includes a summary report and a number of detail reports. Here’s a list of
reports you can find in FrontPage, and their main uses in maintaining your
Web site:

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 233

Understanding the Reports234

✦ Site Summary: This is a list of the most common reports. When you
don’t see the report you want, be sure to check the report categories;
you’ll probably find one to fit the needs of your site.

✦ Files: These reports help you monitor the status of files on your site by
checking which files you changed recently, which files are old (and prob-
ably require update), and which files you recently added.

✦ Shared Content: These reports show which files or resources are used
by more than one Web page. For example, you can check the status of
themes and style sheets on your Web site. You can also check for
dynamic Web site and shared border use.

✦ Problems: These reports help identify trouble on your Web site when
you may not otherwise know it exists. They help you locate broken links,
unlinked files (those the user can’t access), slow pages, and component
errors.

✦ Workflow: These reports are designed for managing group work activi-
ties. They tell you the review status, category, and publication status of
all Web pages. You can also monitor Web-page assignments and deter-
mine who has a page checked out for editing.

✦ Usage: These reports tell you how visitors are using your Web site. You
can monitor the overall status of the Web site on a daily, weekly, or
monthly basis. It’s also easy to check which browser and operating sys-
tems your users have so you can tune your pages to meet their needs.

Accessing the reports
To access a particular report, click the drop-down list box in the upper-left
corner of Reports view, as shown in Figure 5-1. Click the report and
FrontPage shows it to you. Reports you can’t access are grayed out.

You might see a few reports in this chapter that don’t appear in your copy of
FrontPage — or you’ll find them disabled. Although many FrontPage reports
are available no matter which Web server you use (because they rely on
the local project), a few are not — unless you configure your server to use
FrontPage Extensions. That normally means using Microsoft Internet
Information Server (IIS), a separate server application. For example, you
can’t create a workflow report without the FrontPage Server Extensions
installed. In some cases, you have to go even further and ensure you have
FrontPage Extensions 2002 (the most current version) installed on the organi-
zation’s server. In such cases, you won’t get any usage information about
your Web site unless you make this configuration change.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 234

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Understanding the Reports 235

Modifying the report content
You can’t choose the content or the presentation of the report, but you can
choose the way FrontPage collects data for the report. To change the default
report settings, choose Tools➪Options. Select the Reports View tab. You see
the Options dialog box shown in Figure 5-2.

Each of these settings affects more than one report. The following settings
are typical examples:

✦ File Ages: Changing this setting affects all reports on the Files menu. For
example, setting the recent files setting higher means that FrontPage
considers a file as new for a long timeframe and means a file won’t
appear on a report for editing as often.

✦ Connection Speed: This setting changes the way FrontPage views the
page from a user perspective; it’s a way of accommodating FrontPage to
a variety of possible connection speeds. The report that is most affected
by this setting is the Slow Pages report on the Problems menu; you set it
one way if most of your users connect via DSL, another way for dial-up.
However, this setting also changes how FrontPage creates some statisti-
cal reports.

Figure 5-1:
Choose the
report you
want to see.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 235

Understanding the Reports236

✦ Number of Months Shown: This setting affects the density of a report.
When you create reports that use graphs, you want to see the data
points easily. A setting that’s too high here can have a negative impact
on your ability to interpret the report.

✦ Display Gridlines When Viewing Reports: This setting displays a grid
on the report. In some cases, this makes the report easier to read by
reducing the need to interpret where data intersects with a specific
value. You can also compare data with greater ease. Using gridlines can
also obscure precise data points (when a data point is near the grid line)
and reduce how well a user can see the display of trends. The gridline
can actually cause the viewer to see the data in segments rather than as
a continuous whole.

These aren’t the only settings at your disposal — these are just the global
settings. You also have individual settings that the other sections of this
chapter discuss as part of the individual reports.

Printing a report
You might have noticed that FrontPage disables all print options when you
view a report. It’s impossible to print any of the reports directly, which
seems a little counterintuitive given the need to share reports with other
people. FrontPage doesn’t offer a means to print the report, but you can
copy it. To copy the report, right-click anywhere in the report and choose
Copy Report from the context menu, which places a copy of the report on
the Clipboard.

The easiest way to print the report or make it generally available for some-
one to see is to create a new Web page and copy the report to it. Simply

Figure 5-2:
Select the
report
options for
the reports
you want
to create.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 236

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Understanding the Reports 237

place the cursor where you want the report to appear and click Paste. You
can see example reports in the source code for this chapter, which is avail-
able on the Wiley Web site. Interestingly enough, the only report you can’t
copy and paste is the Site Summary. This is an odd restriction because the
Site Summary contains a few statistics you can’t get elsewhere. After the
report is pasted into a Web page, you can print it from inside FrontPage or
use any other technique you normally use for printing Web pages.

Fortunately, you don’t have to stop with the simple printing offered by
FrontPage. Paste the report into Excel, and you suddenly have the means to
use the data as you would in any database. Charting the data is relatively
easy, too. Paste the report into Word, and you can format the data to meet
any word-processing need. You can also use the same data in products such
as Microsoft Publisher. It’s also easy to send the report to other people by
pasting it into an e-mail message. Pasting the report also works in most
applications that support some type of text formating (unfortunately, not
Notepad). Do not use Wordpad because it adds control characters!

Verifying hyperlinks
The Reports view includes a toolbar with four entries you can use anytime
FrontPage activates them as shown in Figure 5-3. The only button that’s
always active is Verify Hyperlinks. (Other sections in this chapter discuss
report specific options on the toolbar shown in Figure 5-3.) Click Verify
Hyperlinks when you want to check the status of hyperlinks on your Web
site.

Instead of immediately verifying all hyperlinks on your site, clicking Verify
Hyperlinks gives you choices: It displays the Verify Hyperlinks dialog box.
You choose to verify all hyperlinks or just the broken ones, and then click
Start. FrontPage performs the check and returns you to the Hyperlinks
report.

When you highlight one or more hyperlinks in the Hyperlinks report, you
can also choose to verify just the link you’ve highlighted. The Verify Selected
Hyperlink(s) option is available only when you highlight one or more entries
in the Hyperlinks report.

The Verify Hyperlinks dialog box also contains an option for continuing a
disrupted verification cycle. Choose Resume Verification and click Start to
resume the verification cycle. This option is active only when you stop a
verification cycle before it completes its job.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 237

Using the Site Summary238

Using the Site Summary
The Site Summary report is the best way to get a quick overview of your
Web site. It contains statistical information such as the number of graphics
files your Web site has. You can also learn the amount of space consumed by
your Web site as a whole and by specific file types such as slow pages.

The number of statistics you see depends on the configuration of your Web
site and the capabilities of the Web server. For example, you won’t see usage
statistic reports if your server doesn’t support them. In some cases, you
must perform a task before the data provided by the Site Summary is valid.

Edit Hyperlink (Active with Hyperlinks report)

Report Setting (Active with Files, Slow Pages, Categories, Visiting Users, Operating
Systems, Browsers, Referring Domains, Referring URLs, Search Strings reports)

Verify Hyperlinks (Always Active)

Chart Type (Active with Usage reports)

Figure 5-3:
Use the
toolbar
entries
(when
active) to
change
a report
quickly.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 238

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Working with Files 239

For example, the broken links entry isn’t valid until you validate the links. All
the report tells you when you create a new Web site is that FrontPage hasn’t
found any broken links.

Most entries have a link associated with them so you can discover more
about that topic. For example, click Style Sheet Links and you see the Style
Sheet Links report. This report tells you which files have style sheets associ-
ated with them — and which style sheets those are.

A few of the entries don’t have links. For example, FrontPage doesn’t provide
details statistics about the pictures on your site — all you can find out is
how many pictures (graphics files) you have. The only way to see specific
information about the graphics files is to choose the All Files report and sort
the information by type. The All Files report tells you the location of the file,
its size, the date it was last modified, and how many hits it has received
(when you have usage data available). You can also discover who is respon-
sible for the file and see any comments associated with the file.

Working with Files
Keeping track of your files is essential to the life of your Web site. Not only
do you want to ensure that the files are up-to-date and connected to other
files on your Web site, but you also want to ensure that you know precisely
what task each file performs. In general, that means adding comments to the
files and assigning them to someone to maintain. The Files menu contains
four report options, which allow you to keep track of your files:

✦ All Files

✦ Recently Added Files

✦ Recently Changed Files

✦ Older Files

These reports are discussed in the next section.

Using the various Files reports
When working with a new Web site, you want to use the All Files report to
look for files that you haven’t documented in some way. Sometimes, this
means opening the file to see what it contains. Make sure you understand
what task a file performs before you let it onto your Web site; there’s a differ-
ence between thoroughness and clutter. Of course, you don’t want to elimi-
nate essential files either, so it’s important to track down each file.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 239

Working with Files240

The All Files report demonstrates a failing with FrontPage. As you design Web
pages, FrontPage adds files for you. Some of these files support themes on
your site, and others support layouts and other needs. The problem is that
you can end up with a lot of clutter on your Web site as you experiment with
different settings because FrontPage doesn’t remove old files. Fortunately,
you can decipher the purpose of many files by looking at their location. For
example, the _themes/Bars/ folder contains the files needed by the Bars
theme. When you decide you don’t want to use this theme, you can remove
the associated folder.

Use the Recently Added Files report to see which files require additional
documentation and finishing content touches. This report can also alert you
to recent configuration changes made by other workgroup members. For
example, suppose a new entry in the _themes/ folder tells you that someone
changed a theme. Interestingly enough, you can also use this report to see
suspicious changes quickly. When you see a new file that no one in your
workgroup added, someone outside the group added it — and finding out
why — quickly — is a good idea.

Most developers use the Recently Changed Files report to see which older
files have updates. This is the list to check when you want to verify and
approve changes to the Web site before uploading them to the Web server.
You can also use this report to reduce publication time. Simply select all files
in this list, right-click the highlighted area, and choose Publish Selected Files
from the context menu. This report also provides a means of detecting unau-
thorized or suspicious changes. You should know why each file was changed
and who performed the work.

The Older Files report points out files that might require update. Generally,
when a file hasn’t received an update for a long time, the content becomes
outdated, and users lose interest. You keep a Web site interesting by updat-
ing older files as needed.

Of course, not every older file is outdated. Sometimes an older file contains
a table of useful-but-static information, such as a list of connector types for
an electronics Web site. To see the content of an older file quickly, right-click
the file and choose Preview in Browser from the context menu. FrontPage
opens the file in a browser. FrontPage normally tries to open all files using
the browser, but when the browser sees it can’t work with the file, it then
opens the file using the appropriate helper application. For example, if you
try to open an Excel file, the browser starts a copy of Excel so you can see
the file.

Another use for the Older Files report is to verify updates. Sometimes a pub-
lication cycle will fail with just one or two files. Perhaps someone has them
checked out for editing. This report can alert you to those failures so you
can fix them quickly.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 240

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Working with Shared Content 241

Controlling the report settings
Except for the All Files report, the reports on the Files menu include a spe-
cial Report Setting field on the Web Site toolbar that you can use to adjust
the timeframe for the report. In this field, you can choose the number of days
that FrontPage should use when creating the report. The Recently Added
Files and Recently Changed Files reports share the same setting. This adjust-
ment means you can tailor the output of these two reports without having to
open the Options dialog box to make the change.

Working with Shared Content
Shared content is resources required by more than one Web page. The
FrontPage reports tell you about four kinds of shared content:

✦ Dynamic Web pages

✦ Borders

✦ Cascading Style Sheets (CSS)

✦ Themes

Each of these resources has a separate report so that you can track them as
needed. The reports contain one or two columns of specialized information.
In all other respects, the reports look and act like the All Files report.

A dynamic Web template controls some of the content in a page that uses it.
The dynamic Web template includes editable regions the developer can edit
and fixed regions the developer can’t edit. You attach a dynamic Web tem-
plate to an existing Web page to create a consistent look across an entire
Web site. The template could include features such as a theme, company
logo, generic page content, and other Web page features. The associated
Dynamic Web Templates report shows which dynamic Web template a Web
page relies on for content.

Shared borders let you create a setup where every page has the same border
information, but the central content is different. The shared borders can
include anything you’d normally provide on a Web page. The difference is
that this information appears on the border of the affected pages. For exam-
ple, a border element might be a page heading, or you could create a stan-
dard list of links. The Shared Borders report shows which Web pages use the
Shared Borders feature. In addition, it tells which borders are in use (top,
right, left, or bottom). For example, you might want to ensure that all pages
use the top border so they all have the same banner information but that
only top-level pages have the left border, which contains the global links for
the Web site.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 241

Fixing Problems242

Developers use Cascading Style Sheets (CSS) to create a standard method of
formatting a Web page, such as the typeface and colors used for text. The for-
matting includes every tag-related feature you want to define. For example,
you create an <a> tag entry when you want all pages to have the same
hyperlink formatting. A Web site can use multiple CSS files to provide
custom formatting for various sections. The Style Sheet Links report tells
you which CSS files are assigned to each page. (For more about CSS, see
Book IV, Chapter 1.)

Themes also affect the appearance of each page through predefined setups.
In this case, FrontPage relies on a set of custom files, which are based on the
appearance of an existing Web page. The report shows which theme each
Web page on your site uses. In addition, the report tells you how the theme
is configured using separate columns for vivid colors, active graphics, and
background picture settings.

Fixing Problems
Some FrontPage reports help you locate and fix problems. You could possi-
bly use the reports for other purposes, but Web site maintenance is their
main function. The Problems menu doesn’t contain an overview report, but
you can see reports about various troublesome conditions not long after
they emerge:

✦ Unlinked files

✦ Slow pages

✦ Broken hyperlinks

✦ Component errors

These are discussed more fully in the next few sections.

Taking care of unlinked files
The Unlinked Files report helps you locate files that aren’t accessible by
the user — at least not directly. Not every unlinked file is a candidate for
removal. For example, you might have theme files that appear unlinked but
are actually used by one or more of the Web pages. The best way to use this
report is to sort it by the Links To column. Place all the entries with 0 at the
top to make them easy to find. Look for entries in the Links From column
that have a value of 0. When both columns are 0, the file doesn’t have any
links, and it might be isolated. After you discover the file isn’t used for any
purpose, remove it from your Web site.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 242

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Fixing Problems 243

Bringing slow pages up to speed
The Slow Pages report is affected by two settings: download speed and down-
load time. You use the Report Setting field on the toolbar (see Figure 5-3) to
change the number of seconds that the user requires to download the page.
Set the download speed using the Assume Connection Speed Of field on the
Reports View tab of the Options dialog box (refer to Figure 5-2). Using a set-
ting of 10 seconds ensures most people will wait to see your site. Higher set-
tings could mean that some users will leave your site in frustration. Lower
settings generally make it hard for you to provide all the content you want.
The idea is to discover which pages will cause problems by making the user
wait too long. You should consider redesigning or streamlining pages that
appear on the Slow Pages report. In some cases, you might have to divide the
page into two in order to meet the download time expectations of people who
visit your site.

Tracking the missing link(s)
The Hyperlinks report tells the status of each hyperlink on your Web site.
The focus of this report are the broken hyperlinks. When FrontPage can’t
verify a hyperlink, you have three options:

✦ Repair the broken link.

✦ Find an alternative link that provides the same information.

✦ Remove the hyperlink from your site.

To see the link, highlight its entry and click Edit Hyperlink on the toolbar.
Many hyperlinks fail because a Web site moves or changes the organization
of their content. In some cases, you might see a lot of broken links. When
this problem occurs, make sure you also check your connection to the
Internet to ensure FrontPage has the connection required to verify the link.

Fixing component errors
Component errors have a number of sources. You might not have the correct
component installed on your system, the component might not be installed
correctly, or the Web page can have a configuration error. No matter the
source of the error, the Component Errors report tells you about it. The
problem is that the error messages can be somewhat obscure or simply mis-
leading. All FrontPage provides is the error message that the component cre-
ates. You can narrow the problem down, sometimes, by viewing the Web
page. Make sure you understand how the component works before you
begin troubleshooting.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 243

Designing Workflow244

Designing Workflow
The Workflow menu contains a number of reports — all of which help you
manage your Web site, especially when working in a team environment. These
reports help you discover the status of your Web pages as described here.

✦ Review Status: This report describes where the document is in the edit-
ing process. Developers can use terms such as just started or manager
review to indicate the status of the Web page. You can change this set-
ting using the Review Status field on the Workgroup tab of the Web page
Properties dialog box.

✦ Assigned To: This report tells who is currently working on the document.
No one else should check the document out to work on it. You can change
this setting using the Assigned To field on the Workgroup tab of the Web
page Properties dialog box.

✦ Categories: This report tells which category the page belongs in.
FrontPage provides default categories such as expense report and in
process. You can also create custom categories as needed. You can
change this setting using the Available Categories field on the Workgroup
tab of the Web page Properties dialog box. The Report Setting field on
the toolbar selects which category you see in the report (or you can
choose to see all categories).

✦ Publish Status: This report contains a Publish column that defines
whether FrontPage is publishing the page with other pages on the Web
site during an update. You change this setting by right-clicking the file
entry and choosing Don’t Publish from the context menu. The Review
Status column of the report helps you to decide whether to publish the
file or not.

✦ Checkout Status: This report tells who has checked out a particular file
and when they checked it out. FrontPage includes a document manage-
ment system that helps members of a team manage the files on a Web
site. This report is part of that management system.

Most of these reports provide simple information about the Web page.
However, the Checkout Status report requires special interpretation and a
special setup. The following sections describe this report in more detail.

Using the Checkout Status report
The Checkout Status report contains a list of files, the title, the file type, and
the folder where the file is located. The special information in this report is
the file version number, which tells you how often the file has received edits.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 244

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Designing Workflow 245

When someone checks out the file, his name appears in the Checked Out
By column. The Locked Date column shows when the person checked out
the file.

Files can remain locked between FrontPage sessions. As long as a user has a
lock on a file, no one else can check it out to modify it. Closing a file isn’t suf-
ficient to check it in — you must right-click the file and choose Check In from
the context menu to perform this task. Files you’ve checked out appear in
most reports, the Folder List, and the Folders view with a check mark next
to them.

When you make an error editing a file, you can easily reverse all the changes
to that file when using the FrontPage checkout feature. Instead of checking
the file in after you make the edits, right-click the file entry and choose Undo
Check Out. FrontPage returns the file to its previous condition. You can’t use
this option after checking the file in because the edits become permanent at
that point.

Special setup for the Checkout Status report
Even if you have FrontPage Server Extensions installed, you can’t access the
Checkout Status report unless you also require the user to check files in and
out of the server. To set FrontPage to require the user to check documents
in and out, choose Tools➪Site Settings. You see the Site Settings dialog box
shown in Figure 5-4. Then you can check the Use Document Check-in and
Check-out options, and your setup is in progress.

Figure 5-4:
Set
FrontPage
to use
document
check-in
and check-
out.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 245

Developing Usage Statistics246

When you set up FrontPage for a remote connection using the settings on
the Remote Web Site view, you see two options for checking documents in
and out:

✦ Remote connection: Choose this option when everyone uploads
changes directly from their local hard drives to the remote site.

✦ Local connection: Select this option when everyone uses a local data
store for changes before sending them to the Web server.

Selecting the remote option enables the Options button. Here’s how you
use it:

1. Click Options to set the name you want to use to check-out the
documents.

You see the Remote Check Out Options dialog box.

2. Type the name you want to use in the Check Out Name field.

You may optionally provide the FTP login name and an e-mail address as
part of the document check-out.

3. Click OK to close the Remote Check Out Options dialog box.

The Prompt to Check Out File When Opening a Page option shown in the
Site Settings dialog box is a good safety feature to select. Choosing this
option helps ensure developers on your team check documents in and
out properly.

4. After you finish selecting any document check-in and check-out options,
click OK.

Now you can use the Checkout Status report.

Developing Usage Statistics
FrontPage provides usage statistics for your Web site based on a daily, weekly,
or monthly schedule. When a report doesn’t provide a specific time interval,
FrontPage generally collects the data on a monthly basis for the number of
months specified by the Number of Months Shown field on the Reports View
tab of the Options dialog box.

Using the Usage reports
The Usage Statistics menu begins with a Usage Summary report. Unlike most
reports that FrontPage provides, you can’t copy this report to the Clipboard
and paste it into another document for printing. The Usage Summary contains

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 246

Book III
Chapter 5

Using FrontPage
Reports Efficiently

Developing Usage Statistics 247

an overview of the statistics for your Web site and links to detail reports
where you can find additional information. The amount of information you
find in this report depends on your server configuration.

The Daily Summary, Weekly Summary, and Monthly Summary reports tell how
many hits your Web site has had, the number of individual visitors, and the
number of bytes downloaded. These summaries don’t include any details —
they just provide a quick overview so you can track the daily usage of your
site. You use these reports to follow general trends. For example, you can
determine whether more people are visiting your site on average and see
whether there are dips and peaks in your site’s popularity.

The Daily Page Hits, Weekly Page Hits, and Monthly Page Hits reports provide
detailed Web-page statistics. You use these reports to discover which Web
pages your visitors like best. In addition, these reports help you determine
which Web pages require updates to maintain their popularity — and which
you should consider removing or changing because they aren’t popular.

The Visiting User report is useless unless you require visitors to log onto
your Web server. Otherwise, visitors view your site anonymously. This
report displays lists of people who visit your site.

The Operating Systems and Browsers reports tell you about visitors to your
site even when you don’t require them to log in. Use these reports to tailor
your content to meet visitor needs. For example, when you see the majority
of your visitors use Windows 2000, you can make a few assumptions about
their setup and equipment. Likewise, the browser information tells you how
to format Web pages to ensure maximum compatibility.

The Referring Domains and Referring URLs reports tell you how users get to
your Web site from other places on the Internet. You can use these reports
to determine the effectiveness of advertising or other means of selling your
site. It also helps you determine the effectiveness of keywords used by
search engines to help visitors find your site.

Displaying reports in graphic form
FrontPage displays the initial Usage reports in tables. Reading row upon row
of statistics is helpful when you need specific bits of information but isn’t
particularly helpful when you’re looking for trends. Graphics are better for
displaying Web site trends.

To display the reports in graphic format, select a chart type from the drop-
down list on the toolbar shown in Figure 5-3. Click the button to display the
chart. Figure 5-5 shows typical results.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 247

Developing Usage Statistics248

To place this information in a written report, right-click the chart and select
Copy from the context menu. See the UsageReport.htm file provided with
the source code for this chapter on the Wiley Web site for an example of how
you can combine the graphic and tabular data on a single Web page.

Figure 5-5:
Display
Usage
report data
in graphic
format to
see trends.

17_575317 bk03ch05.qxd 9/24/04 7:52 PM Page 248

Book IV

Advanced Design

18_575317 pp04.qxd 9/24/04 7:55 PM Page 249

Contents at a Glance
Chapter 1: Using Cascading Style Sheets ..251

Chapter 2: Working with Clip Art..267

Chapter 3: Adding Multimedia and Components ..287

Chapter 4: Inserting Office Objects ..307

Chapter 5: Using Smart Tag Plug-ins ..323

Chapter 6: Creating Dynamic Web Sites ..333

Chapter 7: Developing with Security in Mind ..353

18_575317 pp04.qxd 9/24/04 7:55 PM Page 250

Chapter 1: Using Cascading
Style Sheets

In This Chapter
� Introducing Cascading Style Sheets

� Developing a CSS page

� Attaching CSS to an existing page

� Adding styles using the Style toolbar

� Creating styles that work well

� Developing CSS styles with accessibility in mind

Cascading Style Sheets (CSS) might sound like something very
complex — perhaps even a little fancy — but it’s a technology that

makes your online life easier, and your Web site a lot easier to use. Users
can even customize the appearance of your Web page under certain cir-
cumstances. Overall, CSS is one of the best things you can do for your Web
site — everyone wins. The secret of CSS is that this technology separates
the content of a Web page from the formatting. It’s actually a very simple
idea — makes you wonder why someone didn’t think of it sooner.

The Microsoft people thought CSS so important that they included special
features in FrontPage to make using CSS even easier. For example, you have
access to a special Style toolbar that lets you add CSS code to your Web page
in Design view, rather than coding it separately. In addition, FrontPage pro-
vides a number of CSS templates for you to use, or you can create your own.

The best part of CSS is that it makes your Web page accessible. Sure, you
might think that red lettering on a green background during the Christmas
season is a surefire way to attract attention — but in many cases, people
with color blindness won’t be able to see your site. Some people need large
letters; others don’t want any special formatting because they use a screen
reader (they can’t see the formatting even when it’s present).

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 251

Understanding Cascading Style Sheets252

Some Web sites have seen so many benefits from using CSS that they share
the wealth: They offer users some settings to change the appearance of their
pages. By providing five or six CSS files with the Web site, the owner is
saying that everyone should have the view he or she likes best and that
makes everyone happy.

Understanding Cascading Style Sheets
CSS is easy to understand in both concept and implementation. With CSS,
your Web page actually consists of two files, each with distinct contents
and purpose:

✦ The HyperText Markup Language (HTML) file: This is the same file
you’ve used since your first Web page; all it contains is content. The
HTML file still contains tags and meta information, but you don’t place
any formatting in this file at all — not even centering the header tags.

✦ The CSS file: This file contains only formatting information. You don’t
include any content, not even common elements, in a CSS file. Every
entry in the CSS file affects a tag directly or it creates a new style that
isn’t associated with a tag.

For example, you can provide formatting that you want to use with <H1> tags
in general, but you can also override that formatting by providing a special
style. One CSS file can provide formatting for many HTML files — perhaps all
of the HTML files on your Web site. Here’s an example of a very simple CSS
file that includes a tag style and a custom style.

H1
{

font-size: 200%;
color: black;
text-align: center;

}
.highlight-i
{

font-weight: bold;
color: red;
font-style: italic;

}

The H1 entry refers to the <H1> tag. The curly braces { } define the beginning
and end of the formatting information. Within the curly braces, you see a
font-size: entry that tells the browser how big to make the font, a color:

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 252

Book IV
Chapter 1

Using Cascading
Style Sheets

Understanding Cascading Style Sheets 253

entry that tells what color to make the text, and a text-align: entry that
tells how to position the text on-screen.

The .highlight-i entry is a special style that isn’t associated with any tag.
You can apply this style anywhere that you need to use italic type — it doesn’t
matter where the text appears. This style is cumulative with tag-specific for-
matting you define. When you apply this style to the <H1> tag, the browser
adds some new formatting, but doesn’t change any existing formatting unless
you specifically tell the browser to change the formatting. In this case, the
font-weight: entry tells the browser how to present the font (bold in this
case) and the font-style: entry tells the browser to make the font italic.
Notice that both the H1 and the .highlight-i entries have a color: entry.
When you apply the highlight-i style, it overrides the standard <H1> tag
color (black) and makes it red.

One of the biggest advantages that CSS offers the developer is that it’s a way
to create centralized formatting for your Web site. For example, when you
decide the background color of the page should change to pale blue from
pale yellow, you only make the change in one place — the CSS file. A single
change affects all the Web pages on your Web site — at least all the Web
pages that are linked to that CSS file.

FrontPage supports two types of CSS: external and embedded. The embed-
ded version makes the CSS part of the HTML file, so it doesn’t rely on a sepa-
rate CSS page. A Web page that relies on embedded CSS doesn’t share the
formatting even though the actual page is created in the same way. (See the
“Defining an embedded style sheet” section later in this chapter for more
information on this technique.) To create a CSS page that everyone can use
on all the Web pages on your site, however, you need an external CSS file.
This technique is exceptionally flexible and provides the full benefits that
CSS can offer, so it’s a major focus of this chapter.

To ensure that you can use CSS with FrontPage, you need to adjust the
authoring settings for your Web site. You can do it in two steps:

1. Choose the Tools➪Page Options command and select the Authoring
tab.

You see the Page Options dialog box shown in Figure 1-1.

2. Check the CSS 1.0 (Formatting) and the CSS 2.0 (Positioning) options,
and then click OK.

FrontPage is set up to use CSS.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 253

Creating a Simple CSS Page254

Creating a Simple CSS Page
FrontPage fully supports CSS. You have a choice of predefined CSS styles or
you can create a custom style. The predefined styles match the themes that
FrontPage supports, so you can create a theme appearance without actually
using a theme. After you create a CSS page, you can share it with other people.
The following sections tell you how to work with CSS pages. A special section
tells how you can augment the predefined CSS styles so they provide more
information to people who want to use them.

Using the predefined styles
Each of the predefined styles that FrontPage provides can give your Web
page a consistent look. You can modify these styles as needed to provide
specialized formatting required for personal or company needs. The
FrontPage-predefined CSS pages don’t actually exist on your site until after
you add them. The following steps help you select a predefined style:

1. Select the File➪New command.

You see the New window in the Task Page.

2. Click More Page Templates. Choose the Style Sheets tab.

You see the Page Templates dialog box shown in Figure 1-2. The Normal
Style Sheet is blank, so you don’t want to choose it unless you want to

Figure 1-1:
Configure
FrontPage
to support
CSS.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 254

Book IV
Chapter 1

Using Cascading
Style Sheets

Creating a Simple CSS Page 255

define your own style or you want to create a special style for people
who don’t want to see any formatting. Each of the predefined styles
includes a description that tells you about color and font choices.

3. Highlight one of the predefined styles. Click OK.

FrontPage displays the new style sheet.

4. Save the new page to your Web site.

FrontPage displays the new CSS page in the Folders List.

After you save the file, you’ll want to change its properties. Right-click the
entry in the Folder List and choose Properties. You see the file Properties
dialog box. As with HTML files, the Title field appears on the General tab and
the Comments field on the Summary tab.

When adding this file to a group project, you also want to define the work-
group settings located on the Workgroup tab.

Defining your own style
You might decide that none of the styles that FrontPage provides suit your
needs, which means you need to create your own style. To create your own
style, start by creating a blank CSS page using the technique described in the
“Using the predefined styles” section earlier in this chapter. The only differ-
ence is that (in this case) you select the Normal Style Sheet.

Figure 1-2:
Select one
of the
predefined
styles to use
on your
Web site.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 255

Creating a Simple CSS Page256

Working with standard tags
At this point, you’re facing a blank style sheet that has all the appeal of a
snowstorm in May. Before you do anything, you need to decide which styles
you want to create. In many cases, it pays to create all the HTML entries first
so you can create user-defined styles only as needed.

For the moment, sticking to basics is a good idea. To add a new style to the
CSS page, follow these steps:

1. Choose the Format➪Style command.

You see the Style dialog box (shown in Figure 1-3), with the following
features:

• The Styles list contains the common HTML tags that you use. For
example, it contains the h1 entry, which corresponds to the <H1> tag.

• The Paragraph Preview and Character Preview tags show how the
tag looks now.

• The Description pane tells you which actions you can perform
with the current selection when the style uses the default settings.
Otherwise, it tells you about the special settings for that selection.

2. To modify existing HTML tags, highlight the tag and click Modify.

You see the Modify Style dialog box, which tells you which tag you’re
working with, provides a style type, previews the style, and shows a
description of the style.

Figure 1-3:
Define
styles for
your custom
CSS page
as needed.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 256

Book IV
Chapter 1

Using Cascading
Style Sheets

Creating a Simple CSS Page 257

HTML tags normally don’t include a description unless you make changes
to the default settings. In this case, the Description field contains a list of
changes you made.

3. Click Format.

You see a list of formatting options, as shown in Figure 1-4.

4. Modify your tags as needed.

Let’s say you want to modify the font for the <H1> tag so it appears in
blue. You select the Font entry (from the list in Figure 1-4), and when the
Font dialog box appears, select Blue in the Color field. FrontPage then
changes the color in the field.

5. Click OK three times.

Your formatting modifications are now specified in the file; the CSS page
now contains this simple code (in this case, reflecting a color change to
blue):

h1 { color: #0000FF }

As you add more entries to the CSS file, FrontPage automatically adds
new text to the CSS page. You don’t need to worry about typing any code.
FrontPage adds the appropriate code for any changes you make.

Unfortunately, the code can become hard to read after a while unless you
format the entries at some point — say, when you make manual changes to
them. Manual changes don’t affect FrontPage’s ability to add changes auto-
matically in response to your formatting selections.

Figure 1-4:
Determine
which
formatting
options you
want to
change.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 257

Creating a Simple CSS Page258

Working with custom styles
After you define all settings for the default tags, you might decide that you
need to add some custom styles. For example, you might add an italic style
for some text in a paragraph or an underline style to underline the selection
letter of a field in a form. Special styles should address needs that standard
tags can’t — conditions that can’t be handled in other ways.

To create a custom style, follow these steps:

1. Select the User-Defined Style option in the List field of the Style dialog
box shown in Figure 1-3.

You see a list of styles you’ve modified — even standard tags.

2. Click New.

You see the New Style dialog box.

3. Name the style by adding a name in the Name field.

When naming the style, make sure you use something unique, but also
easy to read. For example, you might name a style for italic characters
on your Web page as char_italic.

4. Choose a style type.

When you want to modify the appearance of individual characters in a
paragraph, select the Character option in the Style Type field.

5. Finally, create the formatting for this new style and click OK.

FrontPage automatically precedes paragraph styles with a period and
character styles with the word span and a period. So the char_italic
style would actually appear as span.char_italic in the CSS page.

Making a style available to others
After you create a new style, you can make it available for other people to
use. The easiest way to do this is to place the CSS file in a central location on
your Web server, and then request that everyone link their Web pages to it.
Of course, this method assumes that everyone is working on the same Web
site and has access to all the required folders.

You can also add a new style sheet to FrontPage. The steps that do so look
like this:

1. Create a new folder in the Program Files folder of your hard drive.

The path to the new file should be

\Program Files\Microsoft Office\Templates\1033\CSS11

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 258

Book IV
Chapter 1

Using Cascading
Style Sheets

Creating a Simple CSS Page 259

The new folder should have the same name as your template, with a
TEM (for template) extension. The name of the example CSS file is
UniqueStyle.css, so the name of the template folder is
UniqueStyle.tem.

2. Inside the new folder, create a Device-Independent Bitmap (DIB) of
your style.

This is the file that people consult to see what it looks like. The best way
to perform this task is to create an example Web page that includes the
best features of your style, create a screenshot of the example, size the
image so it’s 110 by 124 pixels, and then save the screenshot as a DIB file
in the template folder. (Many graphics applications such as PaintShop
Pro can resize images and create DIB files.)

3. Create an INF file that describes your stylesheet.

The INF file used for the example contains the following code:
[info]
_LCID=1033
_version=11.0.4628.0
title=My Unique Style Sheet
description=Creates a stylesheet that includes six levels of
heading styles, a yellow background, an underline and
strikethrough style, and a special announcements style.

The [info] header is part of the INF file — it simply shows where the
information begins. The _LCID entry defines the locale (language) used
for this style sheet. Use the _version entry to define a version for this
style sheet. It’s normally a good idea to use the version of FrontPage you
used to create the style sheet. You see the title entry under the icon
for the style sheet in the Page Templates dialog box. The description
entry appears in the Description field of the Page Templates dialog box
when you select this style.

Correcting the predefined styles
You might have noticed that the predefined styles — except Normal — don’t
include a preview in the Page Templates dialog box. The lack of a preview
makes it difficult to select a style because the template names aren’t descrip-
tive and it’s hard to visualize what the styles look like based on the descrip-
tion. Microsoft didn’t provide DIB files with the style sheet templates, so
FrontPage has nothing to display.

Correcting this problem can be time-consuming, but it’s definitely worth the
effort when you plan to use more than one style in the Web sites you create.
You can correct the problem by following three general steps:

1. Create an example Web page that exemplifies the best features of the
style sheet.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 259

Linking CSS to a Web Page260

2. Create a DIB file based on a screenshot of that example Web page.

3. Place copies of the DIB files in each of the template folders located in
the following folder:

\Program Files\Microsoft Office\Templates\1033\CSS11

Voilà — you now have previews that help you choose a new style sheet
easily.

Linking CSS to a Web Page
You have a shiny new CSS page to use with your next Web project. Before the
CSS page will do anything, you need to link it to the Web page. Unfortunately,
you can’t do this until after you create the Web page. The linking process is
something you do as part of the Web page configuration. The following sec-
tions describe two kinds of CSS usage. The first is using standard external
style sheets. The second is using embedded style sheets.

Using external style sheets
The only way to use a style sheet you create as a separate file is to create an
external link to it. To add a style sheet to any Web page, follow these steps:

1. Select the Format➪Style Sheet Links command.

You see the Link Style Sheet dialog box, as shown in Figure 1-5. This
dialog box shows any style sheets you have linked to your Web page. In
this case, there aren’t any.

2. Click Add.

You see the Select Style Sheet dialog box.

Figure 1-5:
Add a style
sheet link to
the current
Web page.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 260

Book IV
Chapter 1

Using Cascading
Style Sheets

Linking CSS to a Web Page 261

3. Locate the style sheet you want to use and click OK.

FrontPage adds the style sheet to the Link Style Sheet dialog box.

4. Click OK.

You normally see the effects of the style sheet on your Web page. In
some cases, the changes the style sheet makes won’t show up unless
you have some text or other content on the page.

FrontPage uses standard means to add the style-sheet link to your Web page.
Look in Code view in the header area and you’ll notice a new tag that looks
like this:

<link rel=”stylesheet”
type=”text/css”
href=”PredefinedStyle.css”>

Each of these lines has a distinct function:

✦ The <link> tag creates a link between your Web page and the external
CSS page.

✦ The rel attribute tells you that this file is a style sheet.

✦ The type attribute tells you that the file contains a combination of text
and CSS entries.

✦ Finally, the href attribute defines the name and location of the CSS page.

Defining an embedded style sheet
Some developers use embedded CSS to ensure the formatting remains linked
to the page. The main benefit to this approach is that you don’t need two
files to use CSS on your Web page. For some developers, the use of a single
page for everything does make it easier to learn CSS. Using embedded CSS
makes it easier to see how everything fits together. So this method is effec-
tive for understanding how CSS works.

The disadvantages of this approach are numerous — so numerous that I
really hope you don’t use embedded CSS. Whatever apparent advantage that
technique might seem to offer, the developer actually loses. That’s because
one of the benefits of CSS is centralized management of formatting. Embedding
wipes out the advantage; now you have to change the formatting in every
page. In effect, CSS has been made no better than using HTML to specify for-
matting. The user loses out, as well: There’s no way to change the formatting
because it’s linked directly to the page. Instead of creating an environment in
which everyone can see content as they prefer, everyone still ends up using
the same formatting.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 261

Using the Style Toolbar262

To embed CSS directly in an HTML document, select the Format➪Style com-
mand. You see the Style dialog box shown in Figure 1-3. Create a style for an
HTML tag or a user-defined style just as you would for an external style sheet.
(For more on this, see the previous section, “Using external style sheets.”) The
only difference is that the styles appear as part of the HTML document, rather
than an external document. All the styles appear within the <style> tag, as
shown here.

<style>
<!--
h1 { color: #0000FF;

font-variant: small-caps;
text-indent:-10 }

-->
</style>

Notice the construction of this tag. When a browser doesn’t understand the
<style> tag, it just ignores it. However, the browser won’t ignore the style
definition because it isn’t a tag. To keep browsers that don’t understand
styles from reading the style information and getting confused, FrontPage
automatically identifies that information as a comment.

The <H1> tag formatting is straightforward. The color attribute shows that
this tag is blue. The font itself is in small caps, which means lowercase letters
are capitalized and shown in a smaller sized font. Finally, the text-indent
attribute is –10. This means the header is actually outdented. Here, because
I wanted most of the text indented on the first line, the <body> tag contains an
indent. For additional details on the embedded formatting for this Web page,
see the EmbeddedCSS.htm file supplied with the source code for this chapter
on the Wiley Web site.

Using the Style Toolbar
FrontPage automatically displays the Style toolbar when you perform certain
tasks, such as linking a Web page to a CSS page. You can also display the
Style toolbar by right-clicking the toolbar area and choosing Style from the
context menu. In both cases, you see the Style toolbar shown in Figure 1-6.

The Style toolbar works with the Style field of the Formatting toolbar. Both
let you add a formatting style to your Web page. The Style toolbar works
with actual tags, while the Style field works with individual characters or
paragraphs. Always use the Style field when you want to assign formatting
to characters using a character style. The Style toolbar is more convenient
for changing the style after you assign it.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 262

Book IV
Chapter 1

Using Cascading
Style Sheets

Using the Style Toolbar 263

To assign a character style to a range of text, highlight the text and select
the character style that you want from the Style field. All character styles
that you create using FrontPage begin with the word span for a good reason.
The formatting creates a tag, as shown here:

strikethrough

This tag includes the class attribute, which assigns the strikethrough style
to the text between the and tags. Every time you assign for-
matting to a group of characters using FrontPage, you see the tag
and associated class attribute.

When you view this text in the Style toolbar, you see just the class name in
the CSS Class field. You can change the style by choosing a different option
in the CSS Class field drop-down list. The reason you want to use this feature
is that the CSS Class field contains only custom styles, so you have fewer
styles to look through to locate the style you need.

The Style toolbar also contains an Object Identifier field. This field modifies
the id attribute of the tag you’re working with. Most tags don’t include an id
attribute by default, so typing a value in the Object Identifier field creates an
id attribute like this one:

<span class=”strikethrough”
id=”Strikethrough1”>strikethrough

Providing a meaningful id attribute for each of your formatting entries
makes it easier to locate them later. It’s best to use the name of the style fol-
lowed by a sequential number because every id must be unique. When you
want to locate all the entries that use that style, select the Edit➪Find com-
mand. You see the Find and Replace dialog box. Type the name of the style
in the Find What field and click Find Next. FrontPage will take you to each
entry that uses a style in turn. This technique helps you locate text that uses
a particular style quickly so you can make changes as needed.

Formatting Style Selection

Object Identifier (ID attribute)

CSS Class Selection Display Style Dialog Box

Figure 1-6:
Use the
Style toolbar
to work with
custom
styles.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 263

Designing Efficient Styles264

Because paragraphs already have a tag associated with them, you can simply
place the cursor in the paragraph and choose a style from the CSS Class field.
Using this technique enforces the idea that the paragraph won’t use the stan-
dard formatting — that the formatting is unique in some way. As with charac-
ter formatting, FrontPage assigns the style to the tag using the class attribute,
like this:

<p class=”announcement_header”>This is an Announcement</p>

You can assign special formatting to any tag by using the class attribute.
For example, you can create special headers. When a tag doesn’t have a
class attribute associated with it, it relies on the standard formatting you
provide or the default formatting used by the entire Web page.

Designing Efficient Styles
One of the problems with many style sheets is that the developer decided to
define every possible formatting element of the style, whether it made sense
or not. Solving this problem is the reason you want to define all your tags
first, and then consider the special styles. You should also work from the top
of the Web page down to the details. For example, define the overall appear-
ance of the page first by selecting styles for the <BODY> tag. When all page
elements use the same font, define it as part of the <BODY> tag rather than as
part of the individual elements.

Every time you make a selection at a top level that affects a lot of tags, you
reduce the number of lower-level tag changes. The reason you want to avoid
making more changes than necessary is to ensure that your CSS page works
efficiently. The browser requires less time to make one change than to make
twenty or thirty changes. The time you save might seem small when you’re
working on a local machine, but it can make a visible difference in the down-
load speed of the page when you’re using a dial-up connection.

A top-down design translates into other benefits. It’s relatively easy to create
a messy CSS page that no one can follow, much less want to use. By organiz-
ing your development efforts, however, you can keep your CSS entries in
order, too — which makes them easier to find. Place exceptions to rules at
the end of the CSS file so other people can understand the normal layout of
the Web page first and see the exceptions as needed.

Sometimes developers create a CSS page that’s almost completely composed
of exceptions. When this occurs, consider whether the original design was
well thought out, and consider redoing it. Sometimes you can make a few top-
level changes that make lower-level exceptions unnecessary.

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 264

Book IV
Chapter 1

Using Cascading
Style Sheets

Using CSS for Accessibility Needs 265

In some cases, you might find that odd effects crop up or certain pages don’t
work well when you add too many exceptions. For example, using italics to
identify special terms is one thing — adding an odd character as a special
effect is quite another. Exceptions to the rule should make your Web page
easier to read and use. When an exception doesn’t help the Web page user,
consider eliminating it.

Using CSS for Accessibility Needs
Using CSS makes your Web pages more accessible. When you provide multi-
ple styles that users can choose from, you ensure that the user can see your
Web page completely. Make sure you include styles with large fonts and at
least one without any special formatting at all. These special CSS files make
it possible for someone with special needs to use your Web page.

Many modern browsers make your job easier by including accessibility fea-
tures, some of which rely on CSS. When you create a Web page that uses CSS,
you give the user a chance to substitute his or her own style sheet, one that is
completely designed for his or her specific needs. For example, Internet
Explorer 6 provides this setting. To see the difference for yourself, add a
custom style sheet (use any style sheet you want) by using the following
steps:

1. Choose the Tools➪Internet Options command.

You see the Internet Options dialog box.

2. Select the General tab. Click Accessibility.

You see the Accessibility dialog box.

3. Check Format Documents Using My Style Sheet. Type the name of
your style sheet in the Style Sheet field or click Browse to locate the
file on your hard drive. Click OK.

Internet Explorer changes the formatting of the page to match the style
sheet you selected.

4. Click OK to close the Internet Options dialog box.

Internet Explorer makes the changes permanent (until you decide to
change the style sheet again).

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 265

Book IV: Advanced Design266

19_575317 bk04ch01.qxd 9/24/04 7:53 PM Page 266

Chapter 2: Working with Clip Art

In This Chapter
� Creating your own drawings

� Using layers to organize content

� Placing images on a Web page

� Working with the Clip Art Organizer

� Describing your images

� Defining an image map

� Getting pictures from other places

For many people, the visual experience of working with graphics puts
the fun into Web-page development. Adding graphic content opens new

methods of communication. Drawing images or using clip art adds pizzazz
your Web page would otherwise lack. In fact, some people would go so far
as to say that graphics are the best part of developing a Web page because
you can be creative in so many ways.

FrontPage provides a wealth of methods for working with graphics of vari-
ous types. You decide how the image appears on-screen and can provide
your own images whenever needed. Of course, you also have access to the
wealth of predrawn images included with FrontPage (and from other online
sources). It’s also possible to use special techniques to position the graph-
ics on-screen. Adding accessibility information to graphics ensures that
everyone can enjoy them. In addition, you can create graphics that perform
actions. Click in a certain location on the image and you go to another place
on the Web site.

Using the Drawing and Drawing Canvas Toolbars
Most of the drawings and pictures you see on Web sites appear in separate
files. The developer creates a link between the graphic image and the Web
page, using the tag. A number of new technologies are appearing on
the scene, however, and FrontPage includes support for one of them called
Vector Markup Language (VML). You really don’t need to know how this lan-
guage works to use it. In fact, when you look at the number of entries even a
simple VML drawing creates, you understand why you want to make changes
using Design view, rather than fussing with it by hand.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 267

Using the Drawing and Drawing Canvas Toolbars268

This technology has a lot of advantages. It’s fast and easy to use. In addition,
it helps you create Web page graphics very quickly and modify them directly
on the page. Despite all the advantages of using VML, it’s relatively new, so
not every browser supports this technology. Web site visitors who have
older-technology browsers won’t be able to see your drawings. It’s worth
weighing the convenience this technology provides against the needs of the
people who want to visit your site. Also, this technology can cause problems
with accessibility aids, so it might not be the best solution if you need to
support visitors with special needs. For example, someone who has special
visual needs won’t be able to see your drawing. A user who can’t see your
drawing will need a text description to participate on your site, making the
description exceptionally important.

Adding VML support
Before you can begin drawing directly on the Web page, VML support must
first be enabled. Here’s the drill:

1. Select the Tools➪Page Options command.

You see the Page Options dialog box.

2. Select the Authoring tab and check the VML Graphics option.

To ensure maximum compatibility, make sure you choose Both Internet
Explorer and Navigator in the Browser field and 4.0 Browsers and Later
in the Browser Versions field.

3. Click OK.

Creating a canvas
In FrontPage, a canvas is a designated drawing surface. You don’t always
have to create a canvas for a drawing, but using one can making working
with complex images a little easier. The canvas acts as a means of grouping
all the image elements together. You can also create a background for the
canvas and give it a border — effectively creating a frame for your drawing.

To create a new canvas, select the Insert➪Picture➪New Drawing command.
You see a new canvas added to the Web page, as shown in Figure 2-1. Change
the size of the canvas by using any of the eight sizing paddles, as shown in
the figure. The hashed outer block lets you move the canvas around on the
Web page.

Use the options on the Drawing Canvas toolbar to modify the canvas and,
optionally, any drawing elements it contains. FrontPage doesn’t display the
Drawing Canvas toolbar by default — right-click the toolbar and choose
Drawing Canvas to display it.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 268

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Using the Drawing and Drawing Canvas Toolbars 269

Configuring the canvas
Before you create a drawing, define some of the canvas elements. Right-click
the canvas and choose Format Drawing Canvas from the context menu. You
see the Format Drawing Canvas dialog box shown in Figure 2-2.

The dialog box contains several tabs, some of which won’t be active (depend-
ing on your settings). The tabs of interest include these:

✦ The Colors and Lines tab lets you add a background color and border to
the drawing canvas.

✦ The Transparency slide lets you set the opacity of the canvas. A value of
0 makes the canvas opaque, so you can’t see anything behind it. Set the
value higher to gradually let the user see items behind the canvas until
the canvas becomes almost completely invisible.

Drawing Canvas Toolbar

Resize Canvas

Drawing Toolbar

Move Canvas

Figure 2-1:
Add a
canvas
to make
working
with
drawing
easier.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 269

Using the Drawing and Drawing Canvas Toolbars270

✦ The Style setting is a little deceiving at first — it shows a series of solid
lines — but look down the list and you’ll see options for creating effects
such as ridges for the border of the canvas.

✦ The Dashed setting adjusts the line used to create the border of the
canvas — it can be solid, dotted, or a pattern.

✦ The Size tab shows the height and width of the canvas. You can also set
the scaling factor of the canvas — a process that shrinks or grows the
drawing as you move the canvas borders. To enable this option, click
Scale Drawing on the Drawing Canvas toolbar. The Lock Aspect Ratio
option tells FrontPage to maintain the drawing proportions as you scale
it using the canvas.

✦ The Layout tab defines how text and other resources surround the
canvas. You can tell FrontPage not to use any wrapping at all, or the text
can wrap on the right or left side of the canvas. This tab also contains
positioning information — where the canvas appears on the page relative
to other elements. You can choose between no positioning (the canvas
appears wherever you place it on-screen), absolute (the canvas appears in
a specific location even if you place it somewhere else), and relative (the
canvas appears in a position relative to the other elements on-screen).

✦ The Site tab is exceptionally important. Always provide a description of
the image on the canvas. Users with special needs require this informa-
tion to work with your Web page. All users can use this information
when the picture is missing or if it doesn’t download (the user might
have pressed Stop on the browser). Finally, search engines rely on
this information to help people find pictures on your Web site. The
“Describing an Image” section provides more details on this particular
tab and it’s purpose.

Figure 2-2:
Select
configura-
tion options
for the
drawing
canvas.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 270

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Using the Drawing and Drawing Canvas Toolbars 271

Adding a drawing
The Drawing toolbar contains a wealth of drawing tools you can use —
everything from simple lines to boxes to complex shapes. You can create
3D effects with many of the shapes. The AutoShapes menu on the Drawing
toolbar is the place to go if you have a basic shape in mind but lack draw-
ing skills to create something complex. The results you obtain using the
AutoShapes menu options can be quite interesting and professional-looking.
For example, the banner in Figure 2-3 consists of a canvas, a Horizontal
Scroll (found in the Stars and Banners collection), and a little text.
Everything else is configuration.

You don’t have to use a canvas with your drawing. The canvas provides a
way to group a series of elements together. When a drawing consists of no
more than a single element, no canvas is needed.

Figure 2-3:
Create great
results with
just a little
effort using
AutoShapes.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 271

Defining Layers for Organization272

For a single-element drawing, you can use an AutoShape. Configuring an
AutoShape without a canvas is similar to configuring a canvas:

1. Right-click the AutoShape you want to use.

A context menu appears.

2. Choose Format Text Box from the context menu.

You see the Format AutoShape dialog box which contains the same
tabs as the Format Drawing Canvas dialog box shown in Figure 2-2. The
important new addition is the Text Box tab that lets you set the internal
margins for the text box in the AutoShape.

3. Change the margins to help the AutoShape work better with various
shading, 3D, and text effects.

Figure 2-3 shows one of many possible Explosion 2 (located in the Stars
and Banners group) setups you can create. See the SimpleDrawing.htm
file located in the source code for this chapter on the Wiley Web site for
additional ideas.

Defining Layers for Organization
Layers provide the means to create groups of information that you can move
around the Web page as needed to create a certain effect. A layer relies on
the <div> tag, a standard that many browsers recognize, to perform its
work. The layer can have certain features, such as a border and internal
color, but its main purpose is to organize information and allow you more
flexibility in designing Web page content. The following sections describe
layers in more detail.

Understanding why layers are useful
Layers are useful because they use a common tag to enable you to create
very specific Web designs. You can move items around as needed, limit the
extent to which users can view them, and even change their shape. The idea
is to create a grouping of items that you can move and manipulate as a single
item. The group can share a common background and characteristics.

A layer can contain anything you can place on a Web page. For example,
when you want to create text you can move anywhere on the page, place a
standard heading or paragraph in a layer. The text appears just as it always
has, so if a browser doesn’t understand layers, the user still sees the infor-
mation you provide. The only difference is that the user sees the text as a
standard Web page would display it, rather than with any extra positioning
you provide. Here’s an example of the code for a layer:

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 272

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Defining Layers for Organization 273

<div style=”position: absolute;
top: 19px; left: 10px;
width: 147px; height: 36px; z-index: 1” id=”Heading”>

<h1>This is the Heading</h1>
</div>

The tags and attributes in the example break down this way:

✦ The <div> tag pair identifies the beginning and end of the layer.

✦ The style attribute tells you that this <div> sets the absolute position
of an item on the Web page.

✦ The top and left attributes set the upper-left corner of the layer, and
the width and height determine the size of the layer.

✦ The z-index attribute determines the order in which the browser dis-
plays this element. Layers with high z-index numbers appear in front
of those that have lower numbers because the browser draws lower-
numbered layers first.

✦ The id attribute is a special identifier for the layer.

Look at the next line:

<h1>This is the Heading</h1>

This is a standard header tag. A header tag normally appears before the con-
tent that it applies to, so the next line would contain content. The important
issue to remember is that some browsers don’t know how to interpret the
<div> tag, so you need to maintain the standard order of items in the Web
page so these browsers display the Web page in an appealing way (items in
the correct order and with proper headers). The Web page that can’t inter-
pret <div> tags won’t have all the pizzazz of one that uses layers, but the
user can still read it.

Creating a new layer
Adding a new layer to a Web page is a two-stage process. It involves creating
the page and then applying the formatting — both before you add any con-
tent to the page. The process looks like this:

1. Click Insert Layer on the Standard toolbar or select the Insert➪Layer
command.

FrontPage displays a new layer that you can size and position as needed
to hold the content you want to create.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 273

Defining Layers for Organization274

2. Prepare to configure the layer by right-clicking it and choosing Layer
Properties from the context menu.

You see the Layers window of the Task Pane, as shown in Figure 2-4. This
window displays all layers you have defined, along with their Z-index
values and current identifiers.

3. Change the new layer’s default identifier.

FrontPage assigns a value of Layer1 (where 1 is the next number in
sequence) to the layer, which isn’t helpful. Right-click the layer entry
and choose Modify ID from the context menu. When FrontPage changes
the ID column into an edit box, type the new identifier and press Enter.
You can change the visibility and Z-index of the layer by using the same
technique.

4. Format the layer’s positioning.

To do so, right-click the layer entry and choose Positioning from the
context menu. You see the Positioning dialog box, which offers different
ways to position and wrap data outside the current level. This dialog
box also helps you fine-tune the position and size of the layer. Finally,
you can use this dialog box to change the Z-index of the layer. (For more
about positioning, see the upcoming section.)

5. Format the layer’s border and shading.

Change the border and shading (background color) by right-clicking the
layer entry and choosing Borders and Shading from the context menu.
You see the Borders and Shading dialog box, which contains two tabs:
one for Borders, one for Shading.

• Use the Borders tab to choose a border color, width, and style. The
styles include solid and dashed borders, along with special effects
such as a ridged border. This tab also lets you adjust the padding or
margins inside the layer so the text doesn’t touch the edge (making it
hard to read). The Preview area shows what the borders look like as
you make changes.

• Use the entries on the Shading tab to adjust the background and fore-
ground (text) colors.

You can also assign a picture to the background. The Preview area
shows the results of any changes you make.

Using the Positioning toolbar
The Positioning toolbar can help you fine-tune the size and position of a
number of layers quickly. FrontPage doesn’t display this toolbar automati-
cally; to display it, right-click the toolbar area and choose Positioning from
the context menu. You see the Positioning toolbar shown in Figure 2-5.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 274

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Defining Layers for Organization 275

The main feature of this toolbar is its series of entries that let you change
the size and position of a layer: You can define all four sides directly, use just
one corner to position the layer, or change the layer’s height and width.
Although FrontPage defaults to using the upper-left corner, you can use any
corner as a starting point for a measurement. You also don’t have to use the
default unit of measure (pixels) to adjust the layer settings. It’s perfectly
acceptable to use percentages, inches, centimeters, or any other unit of
measure that a Web page normally uses.

Figure 2-5:
Modify the
position and
size of an
existing
layer or
create a
new one.

Figure 2-4:
Configure
the layer
before you
use it.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 275

Adding Images to a Web Page276

Use percentages whenever possible for positioning. A percentage helps you
maintain the appearance of a Web page even when the user resizes the
window. For example, when a header takes up 50% of the page, setting the
Left field to 25% centers the header on-screen.

It’s easy to use the Positioning toolbar to create a layout from existing mate-
rial. Simply highlight the material you want to see within the layout, and then
click Absolute Positioning. FrontPage creates a new layout. The only differ-
ence between this layout and any other layout you create is that it doesn’t
have an identifier. Provide an identifier for the layout before you save it.

Use the Move Backward and Bring Forward buttons to change the Z-index of
a layer. Layers with high numbers appear in front of those that have lower
numbers because the browser draws lowered numbered layers first.

Using CSS with layers
Layers perform a very useful task in positioning your data on-screen, but for-
matting each layer on a Web page individually could become time-consuming.
In addition, individually formatting all those layers makes the resulting Web
page hard for other people to use. Layering can increase load time (because
there is more code to download) and can interfere with accessibility devices.
Unfortunately, FrontPage doesn’t provide a quick method of creating a style
for your layer.

The best way to create and format layers quickly is to use Cascading Style
Sheets (CSS). To perform this task, create a layer and format it the way you
want. Then select the Code view and copy the <div> tag formatting informa-
tion to a new style in a CSS page. Remove the formatting from the original
<div> tag and assign it the style you just created using the class attribute.

You can also create the CSS style using the Style dialog box entries. However,
using this method saves time because you see the layer as it actually appears
as you define the various entries. Moving the style information to a CSS page
afterward is fast and easy.

Adding Images to a Web Page
You can add images to a Web page in a number of ways. The easiest method
is to drag the image from the Folder List and drop it where you want the
image to appear on-screen. This action produces an tag that describes
the image within the Web page. Here’s a typical example of an tag:

<img border=”0” src=”home.gif”
width=”52” height=”46”></p>

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 276

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Using Clip Art 277

The most important attribute is src because it points to the image you want
to use. The border attribute defines the width of the border placed around
the image. The width and height attributes show the finished size of the
image. Always include these attributes because they tell the user what size
image to expect after the browser downloads it. The user can rely on this
information to time the download or choose to click Stop after the text
appears on screen. Sizing the image also reduces text movement as the
page loads.

Another technique to use is to copy the image from a graphics application and
then paste it onto the Web page. When you use this technique, FrontPage asks
you to provide a storage location for the image on the Web server (or on a
local storage device when you’re working on a local intranet). You can also use
the Clip Art window of the Task Pane — and many of the options on the Insert
Picture menu — to add an image to the current Web page. The “Using the Clip
Art Organizer” section of this chapter describes some of these other options.

Using Clip Art
Clip art is one of the better ways to add images to your Web page when
you’re short on time or don’t want to create your own images. FrontPage
comes with a library of generic clip art images that you can easily modify to
meet specific needs. In addition, you’ll find a lot of clip art for sale as part of
professional packages or available on the Internet. Using clip art helps you
create great-looking Web pages quickly and with little effort.

Finding clip art to use with FrontPage
Before you can use clip art on your Web page, you have to find it on your
hard drive. FrontPage makes this easy. If you’re working with AutoShapes,
you can get the most common entries from the drop-down list box of the
Drawing toolbar. To locate popular clip art, use the Insert➪Picture➪Clip
Art command to display the Clip Art window in the Task Pane, as shown in
Figure 2-6.

To search for a piece of clip art, type a keyword into the Search For field. Use
single words whenever possible to make the search easier.

Avoid using plurals as keywords. Doing so ensures that you find a piece of
art whose filename uses the singular version of the keyword (say, computer
as opposed to computers).

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 277

Using Clip Art278

You can narrow the search by selecting the collection you want to search
(for example, the Office Clip Art Collections separate clip art into categories
such as animals, buildings, and concepts) and the kind of media you want to
use. Which medium you use depends on the kind of clip art best suited to
your purpose — and on the presentation you want to create on the Web
page. For example, pictures generally use the Joint Photographic Experts
Group (JPEG) format because it provides excellent color — and you can
make complex images fit into relatively small files. Simple art often relies on
the Graphic Interchange Format (GIF) or Portable Network Graphic (PNG)
format. These formats allow the quick display of simple images (such as
logos or line art) that are easy to compress quickly to very small sizes.

After you define the clip art you need, click Go. FrontPage searches through
the clip art to locate the images you specify and displays a thumbnail of
them in the results window. You see a button when you hover the mouse
over the image. Click this button and you see a list of tasks you can perform
with the image, including pasting it on the current Web page.

One of the options on the menu is Find Similar Style. Select this option and
FrontPage will locate images with similar features, topics, or drawing style.
This search option is helpful when you want to find images with a similar
appearance, but isn’t particularly helpful if you need additional images with
the same subject, such as images that contain flowers or cats.

Figure 2-6:
Search for
the clip art
you need.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 278

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Using Clip Art 279

Viewing image properties
Before you paste the image onto your Web page, you should look at its prop-
erties to ensure that it fits your needs. Here’s how:

1. Select Preview/Properties from the image context menu.

You see the Preview/Properties dialog box shown in Figure 2-7. This
window tells you the size and resolution of the image, as well as the
image type, and the application used to open or edit the image.

2. If possible, change the keyword or caption to meet your needs.

When you’re working with the art that FrontPage supplies, you can’t
change the keywords or the caption. You do, however, have a couple of
ways to get around this problem:

• You can change the caption and keyword for any clip art you add to
the clip-art library from some other source.

• You can copy the image to your own personal clip art library using
the Copy to Collection option on the image context menu (refer to
Figure 2-7), selecting or creating a folder in the Copy to Collection
dialog box, and clicking OK. FrontPage copies the art to your per-
sonal collection. Now, when you view the image properties, you can
add or remove keywords and add a caption.

The caption appears in both the Preview Properties dialog box and on-
screen when you hover the mouse pointer over the image in the Clip Art
window of the Task Pane.

Figure 2-7:
Verify the
image you
select
meets your
needs.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 279

Using Clip Art280

Using the Clip Art Organizer
The Clip Art Organizer lets you work with images directly. You can add,
remove, document, and view images stored on your machine. To access the
Clip Art Organizer and use it to put your clip art in order, follow these steps:

1. Click Organize Clips in the Clip Art window of the Task Panel.

You see the Add Clips to Organizer dialog box.

2. Specify when the Organizer should scan your hard drive for images
to add.

If you want the Clip Art Organizer to do an automatic scan immediately,
click Now; click Later if now isn’t the time for the scan. If you click Now,
follow the rest of these steps.

3. Click Options.

Clip Art Organizer displays the Auto Import Settings dialog box.

4. Select the folders you want the Clip Art Organizer to check.

This introductory scan happens only once. Afterward, you can set up
the Clip Art Organizer for automatic scans by selecting File➪Add Clips
to Organizer➪Automatically.

After the Clip Art Organizer performs any updates, it displays the window
shown in Figure 2-8. The left pane contains a list of categories you can use
to organize the information. The right pane shows a list of images in the
selected collection. When you hover the mouse pointer over an image, you
see a button to click that displays the context menu shown in Figure 2-8.

The Clip Art Organizer lets you perform the same tasks as the Clip Art window
of the Task Pane in FrontPage. You can use it to manage not only images but
also entire collections of images. The following steps show how:

1. Right-click the collection you want to organize.

A context menu appears.

2. Choose Collection Properties from the context menu.

You see the Collection Properties dialog box. The main feature of this
dialog box is the capability you use in the next step.

3. Associate the collection with a specific directory on your hard drive.

When you have a specific location in which to store new images, you can
let the Clip Art Organizer perform automatic updates from just that folder,
adding images to any collection you specify.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 280

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Using Clip Art 281

You can also send the selected image to someone using e-mail. That process
looks like this:

1. Select File➪Send to Mail Recipient (As Attachment).

The Clip Art Organizer displays a new e-mail message with the image
attached.

2. Make sure the subject of the message is the same as the Caption prop-
erty for the image.

3. Provide a recipient and any description needed, and then click Send.

Your e-mail program sends the file.

One maintenance task to perform regularly is to compress your collection
files. Otherwise they can become quite large as you add and remove files. To
perform this task, select the Tools➪Compact command. A Compact dialog
box appears on-screen and automatically disappears when the compression
is complete.

Figure 2-8:
View,
organize,
categorize,
and
document
your clip art.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 281

Describing an Image282

Using the Pictures toolbar
The Pictures toolbar shown in Figure 2-9 provides a host of tools that make it
easy to manage images of any type on a Web page. To display this toolbar,
right-click the toolbar area and choose Pictures from the context menu. The
tools let you rotate and flip the image, as well as adjust both contrast and
brightness to obtain better picture quality. You can also crop the image to
select just the portion of interest.

Some image types, such as GIF, include a transparency color that lets the
background show through. This effect lets you create icons that look as they
would in a desktop application. Use the Set Transparent Color tool to set the
transparent color used on a particular Web page.

Use the Color menu selections to change the colors of an image in specific
ways. For example, you can change a color image to shades of gray using
the Grayscale option. The Washout option is especially effective in making
the graphic appear old or faded and lets you modify the image for use as a
background.

The Bevel tool adds a 3D bevel around the edge of the image. The effect makes
the picture stand out from the background. This particular effect uses part of
the image, so make sure that the area around the edge of the image is fairly
simple, showing fewer (or nonessential) details.

Describing an Image
It’s important to provide a written description of the images you display on a
Web site. Doing so may seem redundant, but several good reasons exist:

Rotate Left 90°

Rotate Right 90°

Flip Horizontal

More Contrast

More Brightness

Crop

Flip Vertical

Less Contrast

Less Brightness

Set Transparent Color

Color

Rectangular Hotspot

Polygonal Hotspot

Restore

Bevel

Circular Hotspot

Highlight Hotspots

Figure 2-9:
Use the
Pictures
toolbar
options to
manage
your
images.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 282

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Describing an Image 283

✦ Viewers with special needs require these descriptions when they use
accessibility aids.

✦ Some visitors to your Web site may click Stop on the browser before the
image download completes. The description gives them some idea of
what the material they didn’t download looks like.

✦ Search engines use this information, basing referrals to your Web site on
descriptions of the images it contains.

To anticipate these situations by describing the images on your Web site,
follow these steps:

1. Right-click the image and choose Picture Properties from the context
menu.

You see the Picture Properties dialog box.

2. Select the General tab.

Here you can specify how long a description to include.

3. Choose the description field that fits the complexity of your image.

The two fields correspond to the standard HTML attributes alt and
longdesc, as follows:

• Text: Use this field if the image is less complex. Its corresponding
attribute (alt) has a text value that appears as a small pop-up label
when a user hovers the mouse pointer over the image on-screen.

• Long Description: Use this field if the image has to be described in
some detail. It uses the longdesc attribute, which points to a Web
page that contains a complete text description of the image.

The process is pretty straightforward. Unfortunately, two limitations also
apply here:

✦ Using images to describe other images doesn’t work.

✦ Many browsers, including Internet Explorer, fail to implement the
longdesc attribute correctly, so the user can’t get to your description
unless you provide a little help. The best practice is to provide a short
description using the alt attribute, and then specify the longdesc
attribute, and finally add a special [D] (for description) link. The code
that does the job looks like this:

<img border=”0” src=”j0281904.gif”
longdesc=”RoseIsARose.htm”
alt=”This picture contains two yellow roses.”>

<a title=”A complete description of the rose picture.”
href=”RoseIsARose.htm”>[D]

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 283

Creating an Image Map284

Creating an Image Map
An image map is an on-screen drawing that contains hotspots — places the
user can click that work as links, directing the user to another location on
your Web site or the Internet. Image maps are among the more colorful ways
of creating links to other places. Most developers reserve them for global or
top-level links. Hotspots have to be well defined on-screen; they depend on
text or on distinct, self-contained graphic elements in the image you use.

To create an image map, follow these steps:

1. Select an image.

You can’t use the VML images that FrontPage can produce — image
maps always rely on actual graphics that reside in a file such as a JPEG
or GIF.

2. After you place the image on-screen, choose one of the hotspot tools
on the Picture toolbar shown in Figure 2-9.

3. Draw a square, circle, or polygon around the hotspot area — the part
of the image that defines where you want the user to click to go to a
particular Web site.

FrontPage opens the Insert Hyperlink dialog box.

4. Choose the location you want the user to go to.

5. Click Screen Tip to see the Set Hyperlink Screen Tip dialog box.

6. Type the description you want the user to see.

7. Click OK twice.

FrontPage creates the screen tip.

Repeat this process for every hotspot you want to create on the image map.

The image map relies on a series of specialized tags and attributes to create
its effect. Here’s an example of code that creates an image map; you can see
it as part of the ImageMap.htm file in the source code for this chapter on the
Wiley Web site:

<map name=”FPMap0”>
<area alt=”See the Clip Art Sample Web page.”

href=”ClipArtSample.htm”
shape=”rect”
coords=”31, 40, 126, 84”>

</map>
<img border=”0”

src=”ImageMap.gif” width=”442” height=”103”
usemap=”#FPMap0”>

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 284

Book IV
Chapter 2

W
orking w

ith
Clip

Art
Using Images from Other Sources 285

The image map is encapsulated within the <map> tag, which must have a
name attribute. Within the <map> tag is one or more <area> tags that define
the hotspots for the image map. The <area> tag attributes include the
description text, a pointer to the new Web page, the shape of the hotspot,
and the coordinates of the hotspot within the image.

Immediately after the <map> tag is an tag. This tag is normal in all
ways except for the addition of a usemap attribute, which points to the
image map this image should use.

Using Images from Other Sources
You can use images from a number of other sources. Any clip art that you
create for other purposes can appear on a Web page. In some cases, you
must convert the clip art to one of the commonly supported image formats
found on the Internet, but you can still make use of the image. It’s also possi-
ble to use photo CDs — the images are already in JPEG format in most cases.

Know your (copy)rights
One of the most important issues is ensuring
the image isn’t copyrighted by someone. When
you want to display a famous logo, a picture of
someone famous, or art that you received from
another Web site, you need to ensure you have
permission to use it. Normally, this means writ-
ing to the owner(s) of the image and getting
their permission in writing — unless permission
is granted on the Web site or within the soft-
ware package where you found the image.
Even when you buy an application that includes
clip art, you can’t assume you can display that
image on your Web site unless the owner gives
you permission to use it. Image libraries are
almost always marked for personal, non-
commercial use, and you need permission to
display that image in public.

Another way to locate free clip art is to use an
Internet search service such as Google. For
example, try the following link:

http://www.google.com/search?as_q
=Free+Clip+Art

Here you can discover all the sites that provide
free clip art. Exercise care, however, when
downloading clip art from free sites. Make sure
the site is reputable (asking about it on
Microsoft’s FrontPage newsgroup is a good
start) and that you aren’t getting “more” than
just the clip art (for example, a hidden virus or
spyware program). Many of the reputable sites,
such as Free Clip Art (http://www.free-
clip-art.com/), allow free downloads for
personal and educational uses, but you must
join a download service to use the images for
commercial uses.

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 285

Book IV: Advanced Design286

20_575317 bk04ch02.qxd 9/24/04 7:51 PM Page 286

Chapter 3: Adding Multimedia
and Components

In This Chapter
� Using multimedia effectively

� Adding animated GIFs to a Web page

� Creating pages with audio files

� Creating pages with video files

� Using Web components

� Designing with Macromedia Flash

Sometimes you want glitz, excitement, and noise to surround your Web
site. The Las Vegas appeal of glittering images is just too hard for some

developers to resist. In some cases, such an approach really can help your
Web site attract more attention, but misuse of these techniques can be
detrimental. (Imagine what would happen if every business Web site used
multimedia — the resulting cacophony would drive the Internet out of
offices everywhere because no one could get any work done.)

Fortunately, you can use measured approaches to multimedia. The animated
GIF has been around for a long time, and you still see new effects produced
by these simple files all the time. Careful use of audio and video — with req-
uisite controls for turning the multimedia off — can produce good effects,
but you have to use them carefully. FrontPage also provides a number of
components with multimedia effects that you can add to a Web page when
warranted.

By the time you add Macromedia Flash presentations, however, you’re into
full-fledged multimedia — and you need to consider whether your audience
really needs all the bells and whistles. When such a presentation is appro-
priate, you can create sights and sounds that will impress most people, and
get your message across in a new way while you’re at it.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 287

Understanding Multimedia Use Issues288

Understanding Multimedia Use Issues
Most people equate multimedia with some combination of moving pictures
(animation) and sound. Movies are a prime example of the form of multimedia
that many people consider standard. Theoretically, however, multimedia is
any form of presentation in which someone is using more than one sense to
receive your message — say, combine a tactile approach with something
visual, or sound with smell (science fiction, anyone?). Until someone comes
up with the smell-o-computer, though, you’re probably stuck with more
common forms of presentation.

The main reason multimedia is so attractive to most people is that it helps
get the message across — usually better than a single form of communica-
tion (such as words) can do. Combining multiple senses helps the viewer
better remember what your Web site has to say, making multimedia a very
effective way to communicate with others.

Some ideas are actually easier to communicate using multimedia techniques.
A 3D image of a home is better than a flat picture because the viewer can see
more of the house. When you combine that image with movement, the viewer
can rotate the house and see it from all angles, making the decision to buy
that much easier. Scientific and engineering disciplines of all types have long
known the value of seeing a multimedia presentation of a new design; some-
times tables of bland numbers and facts just don’t get the job done.

Even if you aren’t trying to sell something or you don’t want to present the
next picture of the DNA double helix, you can still use multimedia. A few
trendy developers have created presentations showing their children and
pets in multimedia form. The results say a lot more than pictures alone can.
The viewer can see the whole story.

But every technology has a downside. Before you get too excited about mul-
timedia, consider some of its limitations and the problems it can cause:

✦ Older browsers don’t work well with multimedia. They don’t under-
stand the commands and the host system probably doesn’t have the
required software installed even if the browser were able to comprehend
the Web page. The problem can be so significant that viewers might see
nothing more than a blank page and wonder why you wasted their time.

✦ Web pages that use multimedia don’t work well with a dial-up connec-
tion. Even when the user has a new machine with great software, on a
dial-up connection the multimedia presentation comes across in slow
motion with lots of skips. Sometimes it might be better if the user hadn’t

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 288

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Animated GIFs, the Easiest Multimedia 289

seen anything at all because the results of some failed multimedia pres-
entations are truly disturbing. (The message doesn’t get across, the
user’s machine appears to lock up, or other problems appear that dis-
rupt the user’s experience with your site.)

✦ Using multimedia in an office environment can bother everyone in
the area and disrupt productivity. Sometimes the message becomes so
inviting that bosses start to ban your site from their office screens. Then
you’ve actually lost an audience because your presentation is too good.

✦ Multimedia assumes that the viewer has all the required senses —
which leaves out a lot of people with special needs. You can overcome
some multimedia problems by adding accessibility cues — for example,
adding closed captioning to online movie presentations so those with
special hearing needs can still understand the presentation. Unfortu-
nately, these additions can become expensive to produce, and need
sufficient bandwidth to present. Consider whether the value of the
presentation exceeds the cost of producing it.

Animated GIFs, the Easiest Multimedia
The animated Graphics Interchange Format (GIF) file is the oldest form of
animation on the Internet; you’ve probably seen animated GIFs on more
than one Web site. All those little cartoon characters, twirling banners, and
exploding stars are probably animated GIFs.

It often helps to look at other people’s animated GIFs as you create your own;
their ideas might suggest new approaches for yours. A few quick steps in
Internet Explorer can verify that an image on a Web page is an animated GIF:

1. From Internet Explorer, right-click the image.

A context menu appears.

2. Choose Properties from the context menu.

You see the location and name of the image on the host system — any
image that has a file extension of GIF and has an animated effect is an
animated GIF.

3. To save the image to your hard drive for better viewing, right-click the
image and choose Save Picture As from the context menu.

You see a Save Picture dialog box.

4. Choose a location to which you want to save the image, and then click
Save to save the entire animation.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 289

Animated GIFs, the Easiest Multimedia290

An animated GIF contains a series of still images that the browser plays back
(like a flip book) at a speed determined by the developer. You can also add
special effects to GIFs and optimize them for size and playing speed.

One advantage of GIF animation is that most browsers support it. Tools for
creating animated GIFs are readily available — often for little or no cost.
Consequently, this is the form of animation that most developers experiment
with first.

FrontPage supports animated GIF files, but it doesn’t provide the tools
required to create an animated GIF. To create an animated GIF, you need a
drawing program to create the individual frames of the animation program
and a program to put them together into a single file.

One of the better products available on the market for creating animated GIF
files is the GIF Construction Set from Alchemy Mindworks, available at

www.mindworkshop.com/alchemy/gifcon.html

This product is shareware, so you can try it before you buy it. Figure 3-1
shows a typical editing session with this product. Unfortunately, space won’t
allow a complete step-by-step demonstration of the product, but the example
GIF in the \Animated GIF folder of the source code for this chapter found on
the Wiley Web site provides all the files you need to give the application a
good test drive.

Note the series of frames on the left side of the display. When your animation
is completed, the browser displays these frames one at a time, flip-book-style,
so the picture appears to be moving. Before you get to that point, however,
you have to add the frames — like this:

1. Choose Edit➪Insert Block➪Image.

2. Double-click an image.

You see the Edit Image dialog box shown on the right side of Figure 3-1.

3. Specify a display time for each frame in your animation.

In Figure 3-1, for example, the Control Block field is checked and the
Delay field is set to 1.

Placing an animated GIF on a Web page is like using any other image file. You
can copy and paste the file, drag and drop it from the Folder List, or add it
using the Clip Art window of the Task Pane. When you place the GIF on the
Web page, FrontPage creates an tag similar to this one:

<img border=”0”
src=”AnimatedTime.gif” width=”90” height=”90”
alt=”This is an animated GIF of a clock.”>

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 290

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Adding Audio 291

The use of an tag points to the success of the animated GIF. Even when
a browser doesn’t provide the required support (which is rare), the use of this
standard tag lets the user see the first frame of the animated GIF, so the Web
page doesn’t look bare. Consequently, always make the first frame of your ani-
mated GIF something that can stand alone so the user sees something useful
even when the animation isn’t available.

Adding Audio
People use audio files for a number of purposes. Some simply like to have
background music playing while someone views their site. Other developers
use sound as an additional means of communicating content. You’ll find
sound used as part of a presentation on some sites. No matter how you use
sound, it does offer an additional way to communicate with — or distract —
other people. The important thing to consider is that you should provide
audio content (as opposed to background music) as text so people who
can’t listen to the content can read it.

Figure 3-1:
With the GIF
Construc-
tion Set you
can create
a series of
frames and
tell the
browser
how to
display
them.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 291

Adding Audio292

You can add audio to your Web page in several ways: by adding automatic
background sounds, by providing a hyperlink that plays a sound, or by offer-
ing the user a button to control the sound. The first question you have to ask
is whether someone sitting in a cubicle in a corporate building somewhere
is likely to access your Web site. If the answer is yes, then you don’t want to
set the audio for your site to play automatically.

Using background sounds
You can add audio to your Web page and get a range of results — from the
really annoying (music plays over and over until the user takes a hammer
to the speakers) to the less annoying (a momentary fanfare accompanies a
splash screen). Here is one of the easiest ways to add a background sound
to your Web page:

1. Right-click the page and choose Page Properties from the context
menu.

You see the Page Properties dialog box.

2. Click Browse in the Background Sound section to locate a file you
want to play.

FrontPage assumes that you want to play this sound over and over
again, which is unbelievably annoying.

3. Clear the Forever option and choose a number between 1 and 3 in the
Loop field.

4. Click OK.

Using this technique creates a <bgsound> tag like the one shown here:

<bgsound src=”tada.wav” loop=”1”>

The src attribute tells the browser where to locate the sound. The loop
attribute tells how many times to play the sound. Use this technique only
when you know the Web site viewer can play sounds because the sound will
play at least once.

A sudden sound from the PC speakers in an office or other quiet environ-
ment can disrupt the work going on — and it isn’t wise to assume that your
users are listening through headphones.

Using a hyperlink
A better way to add audio to your Web page is to make it optional so the
viewer has a choice. Many people turn off background sounds by using

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 292

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Adding Audio 293

options their browsers provide. Giving your users a choice might be the
only way to ensure that anyone actually hears the audio you provide.

You find the Play Sounds in Web Pages option in the Multimedia section on
the Advanced tab of the Internet options dialog box for Internet Explorer 6.
This technique is the best option to use when your audio provides content;
the viewer can play the audio as often as necessary to get the message.
Provide a text version of the audio so office users and people in other quiet
locations don’t miss the content you’re providing. The easiest way to play
sound using this technique is to add a hyperlink like this.

<a title=”This sound file makes the Tada sound.”
href=”tada.wav”>Play a Sound File

In this case, the title attribute provides enough description that someone
can decide whether to play the sound. The href attribute points to a sound
file. When a user clicks Play a Sound File, the browser opens a helper utility
such as the Windows Media Player to output the sound.

Using an interactive button
Another way to add audio to your page is to attach it to an interactive button.
Choose Insert➪Interactive Button to display the Interactive Buttons dialog
box shown in Figure 3-2.

Figure 3-2:
Add a sound
to an
interactive
button to
give the
page a little
pizzazz.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 293

Adding Video294

When you have the dialog box on-screen, here’s how you do this technique:

1. Select one of the button styles from the Buttons list.

2. Type a caption for the button in the Text field.

3. Use the Browse button to locate the audio file you want to play.

4. Click OK.

FrontPage creates the button for you.

To add descriptive text to the button, highlight the button and select the
Split view. When you see an tag highlighted in the code portion of the
window, locate the alt attribute and change its text to describe the sound
that the button plays.

This technique relies on the use of scripts. Many people have disabled
scripts in their browsers because of threats posed by viruses and malicious
Web sites. Consequently, even though this technique does produce a better-
looking page, it won’t work with every browser. Of the three techniques
described here — background sound, hyperlink, and interactive button —
the hyperlink is the most reliable means of providing audio for the users of
your Web page.

Adding Video
If your Web site has a good use for the equivalent of a movie, video presenta-
tions offer the advantages of moving pictures and sounds. Using Windows
Movie Maker, you can create movies from a variety of sources — including
still images, captured video, and video files located on your hard drive. With
just a little work, you can create all kinds of interesting visual effects, add
titles, and end up with a professional presentation. The only problem with
video on the Internet is that the files can become immense in a hurry.

Creating a smaller video
Depending on the application you use, most video-creation software pro-
vides settings you can use to reduce the size of the video so it matches the
capabilities of the user’s machine and connection (smaller pictures run more
seamlessly). Unfortunately, Windows Movie Maker hides these solutions.

When you save a movie locally, Windows Movie Maker assumes you want
the best possible resolution and sound features. Sometimes that assumption
is stupid; before you know it, a very simple slide presentation can consume
3GB or more of disk space. Here’s one way to avoid the waste when it comes
time to save your Windows Movie Maker movie:

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 294

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Adding Video 295

1. Click File➪Save Movie File to access the Save Movie Wizard.

2. When you get to the Movie Setting page of the Save Movie Wizard,
click Show More Choices.

A list of possible levels of resolution appears.

3. Select the Other Choices option.

Buried near the bottom of the list are the Internet options you should
choose if you want to conserve your hard-drive space. Figure 3-3 shows
some options you should consider, including a selection for users with
dial-up connections.

If your Web site is to support just one copy of the file, always choose the
option that serves the slowest connection you want to support. Choose mul-
tiple download rates only when you have space to support them — and
remember that you must also provide the user with the same range of rates
to choose from. Don’t try to detect the user’s connection speed; any tech-
nique you use is going to be error-prone. Letting the user choose is the most
practical approach — after all, the user might not want to use up all avail-
able bandwidth to watch your movie.

Figure 3-3:
Select video
options
that are
appropriate
for Internet
users.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 295

Adding Video296

Adding video as a picture
As with audio, you can set up your video to run when the user loads the
page. Unless the user is expecting this reaction, however, you can be sure
that some — perhaps most — people are going to complain, especially if the
video is long. Not only does your 3GB movie require considerable time to
download, but it consumes that much space on the user’s machine. That’s
right: Internet Explorer downloads the whole file onto the user’s machine
and keeps it there until it’s automatically deleted or the user manually
erases it. Suddenly the user’s 30GB hard drive has shrunk. (By default,
Internet Explorer uses 10% of the entire hard drive to store Web content.)

When you do let the users know about the size of the file in advance — and
you’re sure they’re expecting the monster file about to hit their hard drives
(and don’t mind) — you can go on with the show in one of two ways:

✦ Choose Insert➪Picture➪Video command to add the video to your Web
page.

Note that this option isn’t always available — you must set the Authoring
tab of the Page Options dialog box to allow complete FrontPage function-
ality and the browser must be set for Internet Explorer versions 5.0 and
above.

✦ If you have to reduce the chances of someone downloading a video they
really don’t want to see, you can configure the entry a little differently:

1. Right-click the picture entry on the Web page.

A context menu appears.

2. Choose Picture Properties from the context menu.

You see the Video tab of the Picture Properties dialog box.

3. Select the On Mouse Over option.

Now the user will have to hover the mouse pointer over the image to
start the video — which is still a decision the user can make about
downloading the file.

This second technique relies on the tag with some special attributes
added. Here are entries for both types of video:

This tag includes two new attributes. The first is the dynsrc attribute,
which replaces the src attribute for a standard tag — dynsrc tells

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 296

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Adding Video 297

the name and location of the video file. The second new attribute is start,
which defines how the browser should start the video.

Using an <object> tag
It’s possible to use an <object> tag to display a video file. In this case, you’re
using a special kind of program called an ActiveX control — a proprietary
script that works only on Windows machines. The technique shown in this
section works with most versions of Windows other than XP because it relies
on an older version of Windows Media Player. You can also use the newer ver-
sion found in Windows XP when you need added capability.

To add an ActiveX control to your Web page, follow these steps:

1. Choose the Insert➪Web Component command.

You see the Insert Web Component dialog box.

2. Select the Advanced Controls option in the Component Type list and
ActiveX Control in the Choose a Control list.

3. Click Next.

After a few moments, you see a list of controls like the one shown in
Figure 3-4.

4. Select the ActiveMovieControl Object shown highlighted in Figure 3-4.

5. Click Finish.

FrontPage adds an <object> tag for the control to the Web page.

Figure 3-4:
Choose the
ActiveX
control you
want to add
to the Web
page.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 297

Adding Video298

Here’s the essential code for the <object> tag used for this example (the
actual tag contains more code):

<object width=”200” height=”225”
classid=”CLSID:05589FA1-C356-11CE-BF01-00AA0055595A”
id=”Control1>

<param name=”filename” value=”TimeFlies.avi”>
</object>

The width and height attributes control the size of the window. The classid
is a special number that identifies an object on your machine when you run
Windows. This number tells Windows which object to load and determines
what kind of object Windows creates.

When you want to use the newer version of the Windows Media Player on
Windows XP machines, use the following classid value:

CLSID:22D6F312-B0F6-11D0-94AB-0080C74C7E95

The <param> tag defines a special property for the Windows Media Player
object — the name and location of the file you want to play. Windows Media
Player has many other properties you can define, but this is the only
required property.

Each property you want to define appears as part of a <param> tag. After you
define the initial <object> tag, look at Design view and you see the object.
Right-click the object and choose ActiveX Control Properties. FrontPage dis-
plays the Option dialog box shown in Figure 3-5.

Figure 3-5:
Set any
required
special
options
for the
Windows
Media
Player
object.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 298

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Working with Web Components 299

The advantage of this technique is that you have control over every aspect of
the video playback. In addition, the user gains access to controls the other
methods don’t even support. (Figure 3-5 shows some of these controls.)
The user can also right-click the control on-screen and make other changes
depending on how you set up the video playback. Using the <object> tag
method is the most versatile approach when you can guarantee the user has
Windows installed.

One other issue with this approach is that you have to use Audio Video
Interleaved (AVI) files, not Windows Media Video (WMV) files. Unfortunately,
current versions of Microsoft’s products don’t produce anything but WMV
files, so you need a converter such as Fx Video Converter to create the AVI
file. You can download this product at the following location:

www.brothersoft.com/Fx_Video_Converter_Download_20561.html

The vendor markets this product as shareware; you can try it before you
buy it.

Other video options
You have two other options for displaying a standard video on-screen. They
are similar to options used to include audio:

✦ You can create a hyperlink. This technique is similar to the one for audio
(in the “Using a hyperlink” section of the chapter). Its advantage is that
anyone can use the result; you don’t have to worry about browser com-
patibility. The only issue is whether the user has the player required for
your particular video format. In addition, the user can play the video as
many times as needed and you can provide multiple links for various con-
nection speeds.

✦ You can use an interactive button. The advantage of this technique is
that it provides choice and a nice presentation; you can select buttons
to match your current theme. To use this technique, follow the steps for
an audio file in the “Using an interactive button” section of the chapter.

Working with Web Components
FrontPage provides a number of Web components that you can use to
enhance the appearance of your Web page. You’ve already seen the benefits
of one of these components — the interactive button. It’s also possible to

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 299

Working with Web Components300

add marquees, maps, and other features to your Web page to provide addi-
tional benefits to the user. However, as with most multimedia, you have to
carefully weigh the benefits of the feature against the compatibility and
accessibility problems it can cause.

Using standard page components
The standard page components add effects you’ve seen on a number of sites.
For example, FrontPage provides a marquee component that scrolls text
across the screen, a hit counter that records the number of visitors, and a
search component that helps people locate information on the current site.

Scrolling text with the marquee component
The marquee component displays whatever text you want to see, using spe-
cial effects such as scrolling. The marquee normally appears at the top of
the page and provides some form of advertising for it. However, nothing
stops you from placing this component in other areas of the page.

To use the marquee component, follow these steps:

1. Display the Insert Web Component dialog box using the Insert➪Web
Component command.

2. Select Dynamic Effects and then choose Marquee.

3. Click Finish.

You see the Marquee Properties dialog box.

4. Type the text you want to see in the Text field.

5. If you like, choose special effects for displaying the text.

For example, you can choose a display speed by modifying the Amount
field or change the time between display cycles using the Delay field.

6. Click OK.

FrontPage creates the marquee.

You can’t see the marquee in Design view. To get a better feel for how this
component works, view it in Preview view. The marquee component actually
relies on the <marquee> tag. When a browser doesn’t support this tag, the
user sees the text you provided without the special effects. Consequently,
this component doesn’t have any accessibility or compatibility limitations
that would prevent a user from viewing your site.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 300

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Working with Web Components 301

Finding resources with the Web search component
The Web search component makes it possible for the user to locate informa-
tion on your site quickly. To use this component, follow these steps:

1. Select Insert➪Web Component.

You see the Insert Web Component dialog box.

2. Select the Web Search and then the Current Web entries.

3. Click finish.

You see the Search Form Properties dialog box.

4. Configure the Search.

The Search Form Properties dialog box contains a list of prompts the
search will use. Change these as needed for your Web site. The Search
Results tab has more interesting settings. You use these settings to con-
trol the appearance of the results. For example, you can choose to dis-
play the score (the closeness of the match), the file date and time, and
the file size as part of the results. FrontPage doesn’t add these items by
default.

5. After you choose the settings you want to use, click OK.

At this point, FrontPage creates the search entry on the Web page. This is
another webbot, so you won’t see a lot of code within the page you create.
The webbot includes both client and server elements, so it won’t work on a
Web server that lacks FrontPage extensions. Here’s a typical entry for this
component:

<!--webbot bot=”Search” S-Index=”All”
S-Fields=”TimeStamp,DocumentK,Weight”
S-Text=”Search for:” I-Size=”20”
S-Submit=”Start Search” S-Clear=”Reset”
S-TimestampFormat=”%m/%d/%Y” TAG=”BODY” -->

The functions of the entry’s attributes break down like this:

✦ The bot attribute shows that this is a Search webbot.

✦ The S-Index attribute tells you that this webbot will search everything.

✦ The S-Fields attribute defines the output, which includes a timestamp,
the document name, document size, and the score the document
received in matching the search terms (higher is better).

✦ The S-Text attribute defines the text used to request a keyword.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 301

Working with Web Components302

✦ The I-Size attribute defines the width of the input field.

✦ The S-Submit and S-Clear attributes define the button captions.

✦ The S-Timestamp attribute defines the format of the time output.

Keeping track of visitors
The hit counter is a visual display of the number of visitors who have seen
your site. None of the hit counters I’ve ever tried are accurate, but they’re
fun to watch. The FrontPage hit counter tells you the (approximate) number
of visits to your Web page — but remember, if the same visitor comes back
to the Web page 50 times in a day, the hit counter will show 50 hits. Consider
the hit counter as a way to get a rough idea of how many people are viewing
the page, but don’t count on it for hard statistics.

To use the hit counter, follow these steps:

1. Select the Insert➪Web Component command.

You see the Insert Web Component dialog box.

2. Choose the Hit Counter entry in the Component Type list.

You see a number of hit counter types in the Choose a Counter Style list.

3. Select one of the counter styles and click Finish.

You see the Hit Counter Properties dialog box. The dialog box shows
you the hit counter styles again.

At the bottom of the Hit Counter Properties dialog box you see two options.
The Reset Counter To option defines the number that FrontPage uses to
reset the counter after you configure the page. Generally, you want to use
the default value when you create a new page, but will want to set this
option to the last number of visitors when you update a page. The Fixed
Number of Digits option keeps the size of the hit counter within a certain
range. When the hit counter reaches the specified number of digits, it auto-
matically resets to 0. Unless your page is short on space, you want to keep
this option cleared.

This is a server-side webbot component; it depends on the server’s capabili-
ties, and won’t work on a Web server that lacks FrontPage extensions. Here’s
a typical hit-counter entry.

<!--webbot bot=”HitCounter” i-image=”0” I-ResetValue=”0”
B-Reset=”FALSE” I-Digits=”0” U-Custom -->

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 302

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Working with Web Components 303

The bot attribute identifies this webbot as a hit counter. The i-image attrib-
ute defines which of the presentations you chose. For example, the hit counter
with yellow letters and a black background is i-image 0. The I-ResetValue
and B-Reset attributes determine whether the counter is reset and what
value it is reset to. The I-Digits attribute defaults to 0 when you want the
counter to keep growing. Assigning it a value other than 0 puts that many
digits on-screen. Finally, the U-Custom attribute has an entry only when you
use a custom picture for your hit counter.

Using included-content components
Included-content components provide information about a specific aspect of
the Web page. To see the whole list of included-content components, use the
Insert➪Web Component command to display the Insert Web Component
dialog box and choose the Included Content entry from the Component Type
list. The components in the list offer various capabilities, including these:

✦ Substitution: You can use this component to display the Web page’s
author, its last date of modification, who performed the modification,
and the page URL.

✦ Page: This component displays the content from another page. You
can use this feature to create generic content and then display it on the
pages that require it without using frames or other methods that have
accessibility and compatibility problems. FrontPage actually substitutes
the content for the Page webbot. Interestingly enough, when you view
the page, you see nothing but the webbot comment and the actual code
from the other page. When you need to replace the page content based
on a schedule, such as day of the week, use the page based on schedule
included-content component. In addition to the Web page, you also pro-
vide the time and date the Web page should include this content.

✦ Schedule: This component lets you display a picture based on the time
and date. You can choose to include an alternative picture that Web
server displays at other times.

You already use one form of included content on many pages — the page
banner — which is the same page banner you get when you use the Insert➪
Page Banner command. As with every other kind of included content, this
one relies on a webbot to perform its work.

Using MSN and MSNBC components
The MSN and MSNBC components help you include the functionality provided
by these online resources on your Web page. For example, you can create a
search of the Web using MSN. It’s also possible to display the latest headlines.
All these resources appear as part of the MSN Mapping Components, MSN

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 303

Working with Macromedia Flash304

Components, and MSNBC Components you access from the Insert Web
Component dialog box using the Insert➪Web Component command. You
can see all these components demonstrated in the MSN_MSNBC.htm file pro-
vided as part of the source code for this chapter on the Wiley Web site.

When you’re working with the MSN Mapping Components, you have a choice
between inserting a map or simply creating a link to it. The insertion option
is the best choice when you want to show someone how to get somewhere
(say, to your business or home) and don’t mind a longer download. The link-
ing option is the best choice when you need to provide instructions for a
number of destinations and download time is a factor. In both cases, you
need to provide either a precise address or a place name. When you provide
a place name of a popular location, such as Wal-Mart, make sure you include
a city name as part of the destination (Wal-Mart Milwaukee). After you find a
location, click Next and you see a map of the location you want. Then just
click Finish to add it to your Web page.

Use the Stock Quote component listed as part of the MSN Components to
display the latest information on stocks you own. Likewise, use the Search
the Web with MSN component to find resources on the Internet. In both
cases, you just select the component and click Finish in the Insert Web
Component dialog box. Both components create a search interface where
you enter a stock symbol or keywords.

Most of the MSNBC components don’t actually display any information on
your screen; instead, they provide pointers to the information the user needs.
The only component that requires any input is the Weather Forecast from
MSNBC — and all it needs is a ZIP code or city name. It’s also the only compo-
nent that displays any information — a quick overview of the weather for the
location of choice.

Working with Macromedia Flash
Unlike older versions of the product, FrontPage 2003 provides special support
for Macromedia Flash files. You can create presentations with Macromedia
Flash and insert them directly into your Web pages using the Insert➪Picture➪
Movie in Flash Format command. You see the Select File dialog box. Choose
the movie you want to present on your Web site and click Insert. FrontPage
creates a square where the Macromedia Flash movie plays.

Macromedia Flash relies on a relatively complex <object> tag to do its
work. The user must have the appropriate software installed before the
movie will play. Here’s a typical example of a Macromedia Flash <object>
tag entry.

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 304

Book IV
Chapter 3

Adding M
ultim

edia
and Com

ponents
Working with Macromedia Flash 305

<object classid=”clsid:D27CDB6E-AE6D-11CF-96B8-444553540000”
id=”obj1” codebase=”Download Location”
border=”0” width=”160” height=”160”>

<param name=”movie” value=”shell.swf”>
<param name=”quality” value=”High”>
<embed src=”shell.swf”

pluginspage=”Download Location”
type=”application/x-shockwave-flash” name=”obj1”
width=”160” height=”160”>

</object>

The <object> tag begins with all the usual entries, including the classid,
which is a unique number that identifies the movie player. The codebase
points to a location on the Macromedia site where the browser automati-
cally looks for the component, downloads it, and installs it as needed (pro-
vided the user doesn’t object and the machine’s security settings permit
the download).

This object has two parameters. The first is the name and location of the
movie. The second defines the quality of the presentation. A lower presenta-
tion value requires fewer resources on the user’s machine — and that can
reduce the download time.

The <embed> tag further describes the movie and its requirements. The src
attribute should match the movie parameter information. A browser relies
on the type attribute to determine which object to use to play the embed-
ded resource. Finally, the pluginspage attribute tells where to download
browser plug-in support for this embedded resource (the movie).

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 305

Book IV: Advanced Design306

21_575317 bk04ch03.qxd 9/24/04 7:54 PM Page 306

Chapter 4: Inserting Office Objects

In This Chapter
� Adding Word objects

� Getting down to business with Excel data views

� Developing reports with Access

Although you can use various FrontPage Web components to add con-
tent, you don’t have to create every piece of information on your Web

page that way. You can work directly with applications such as Microsoft
Office. Using Office products to create the content saves time — if you need
(for example) spreadsheet data and you use Excel, you’re already using the
correct tool to accomplish the task. Using FrontPage to create some of the
graphs and reports you need is possible, but sometimes other applications
can produce the same information faster and a lot better.

This chapter specifically discusses how you can use Office applications with
FrontPage — which has some special capabilities to make that easier. Nothing
stops you, however, from creating something in a non-Microsoft application
and using it on your Web site. The important task is to discover which tech-
niques work with your particular application.

Of course, getting the data onto a Web page doesn’t necessarily mean the user
can see it. You also need to consider compatibility, usability, and accessibility
as you create a bridge between your favorite application and FrontPage. For
example, why use tabular data if the user really needs a chart or graph? The
goal is to communicate your ideas as well as possible.

Working with Word Objects
Microsoft Word can create effective data presentations that border on
desktop-publishing quality. Word documents can have all the required for-
matting and fonts — along with embedded objects such as graphics — and
you can control the appearance of various document elements. Of course,
not all this formatting can transfer directly to a Web page, but you can use a
number of Word techniques to create a document that looks like a natural
part of the Web site.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 307

Working with Word Objects308

Copying and pasting information
It might seem like an odd way to do things, but you can simply copy and
paste information from Word into your FrontPage document. When you copy
and paste the document, FrontPage does more than simply place a text entry
in the page. It can also create an embedded Cascading Style Sheet (CSS) that
defines the formatting for the document.

Use this technique as early as possible in the Web-page design process.
When FrontPage has an element with the same tag name as the text you
want to paste from Word, it won’t create that embedded CSS element. For
example, if you copy a paragraph from Word that’s formatted as Heading 1,
you’ll notice that FrontPage uses the <H1> tag for it. If the existing Web page
already has an <H1> tag, FrontPage tends to ignore the Heading 1 formatting
you applied to the paragraph you’re bringing in from Word; you don’t get a
complete transfer. Listing 4-1, a typical example of Word data pasted into a
newly created Web page, shows what you get instead.

Listing 4-1: Pasting a Word Document

<html>
<head>

<style>
<!--
h3

{margin-top:12.0pt;
margin-right:0in;
margin-bottom:3.0pt;
margin-left:0in;
page-break-after:avoid;
text-autospace:none;
font-size:13.0pt;
font-family:Arial}

p.MsoNormal
{mso-style-parent:””;
margin-top:0in;
margin-right:0in;
margin-bottom:12.0pt;
margin-left:0in;
text-autospace:none;
font-size:12.0pt;
font-family:Arial;
}

p.CodeList
{margin-bottom:.0001pt;
text-autospace:none;
font-size:10.0pt;
font-family:”Courier New”;
margin-left:0in; margin-right:0in;

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 308

Book IV
Chapter 4

Inserting Office
Objects

Working with Word Objects 309

margin-top:0in}
-->

</style>
</head>
<body>

<h3>Example of a Pasted Document</h3>
<p class=”MsoNormal”>The heading and text...</p>
<p class=”CodeList”>Here is some text...</p>

</body>
</html>

Except for the <html>, <head>, and <body> tags, FrontPage created all the
entries in Listing 4-1 as part of the paste operation. Of course, I pasted the
document immediately after creating the Web page. If you try this process
after creating a few Web page elements, you find the FrontPage doesn’t do
nearly as well at transferring the style information from Word even though
the text is still there.

You should make one change to the automatic entries. Notice the h3 style in
Listing 4-1 doesn’t have a qualifier — a special Word addition that makes the
text unique such as the p.MsoNormal style. The lack of a qualifier means that
every <H3> tag you add will use the Word formatting even if that’s not what
you want. Changing the FrontPage-supplied h3 style means making two
changes. First, change the h3 style entry to something like h3.MsoHeading3
to associate it with word. Second, change the heading entry to match like this.

<h3 class=”MsoHeading3”>Example of a Pasted Document</h3>

Using this technique means that your Web content stays separate from your
Word content. You could choose to use the same styles, but it’s better to
have the flexibility that separate styles provide.

If a direct paste won’t accomplish what you want, choose the Edit➪Paste
Special command to display the Convert Text dialog box shown in Figure 4-1.

Figure 4-1:
Choose a
technique
for pasting
text into
FrontPage.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 309

Working with Word Objects310

The Convert Text dialog box contains options for pasting the text in other
ways. The default setting is to use formatted paragraphs. You can also paste
the text as a single formatted paragraph, as unformatted paragraphs with line
breaks, as one giant unformatted paragraph, or without any conversion at all.

Pasting text as an unconverted paragraph creates straight text without
any special characters or formatting, so the results tend to be the least
appealing — you could get the same results by typing the text straight into
FrontPage, so the only reason to use this option is to save the typing time.

Relying on hyperlinks
Hyperlinks might seem an old technology, but they’re extremely reliable and
compatible — no problem making a hyperlink accessible. In fact, the only
limitation on the use of a hyperlink to access a Word document is that the
other party might not own Word. When you can be sure that your users have
Word installed on their systems, consider using a hyperlink to display the
data (instead of placing the data directly in FrontPage).

One important consideration when you use this technique is to ensure that
the user has a way back to the Web page. You can accomplish this task by
including a hyperlink in the Word document. Use the Insert➪Hyperlink com-
mand to add the hyperlink to the document. The effect you get by using this
technique is a cross between an Internet Explorer page and a Word editing
session, as shown in Figure 4-2.

You can make the Word document look more like a Web page if you save it
with Web Layout View selected (use either the Web Layout View button in
the lower-left corner or choose the View➪Web Layout command). A good
alternative is to save the document in Print Layout View. Both views let the
user see the document in an output view. The user can still choose to use
another view because all the Word menus (except Window) are available.

Make sure you save the document with a password, set the file for read-only
mode, or disable Web publishing on your Web server when you don’t want
the user to make changes to the document. It’s easy to set up the document
for editing when you install some Internet Information Server (IIS) features
such as Web Publishing or some types of Microsoft software (such as
SharePoint Services).

Users who want to modify your document can generally make a local copy
by using the File➪Save As command. The password-protection technique is,
however, the only method available to protect the document from changes —
local as well as remote. To set a password on a Word document, follow these
steps:

1. Choose Tools➪Options.

You see the Options dialog box.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 310

Book IV
Chapter 4

Inserting Office
Objects

Working with Word Objects 311

2. Select the Security tab.

3. Type a password in the Password to Modify field and click OK.

Utilities exist that can break the Word password system. In practice, the
password technique only deters the casual user — not someone who’s
really determined to modify your document.

Creating a direct document conversion
Another good solution for displaying your Word document on a Web site is
direct conversion. Why edit your Word document in FrontPage? Well, Word
is great for adding formatting features and dressing up the Web page, but
FrontPage offers a host of Web-editing features that Word doesn’t support —
such as banners, themes, and Web-page management. Consequently, you can
put the content together in Word, dress up the text, and then use FrontPage
to add the finishing touches.

Depending on the version of Word you own, you have several good options.
You can save the document as an HTM file, which allows you to edit it in
Word. Most versions of Word also support conversion to an HTML format,
which means you can add changes in FrontPage. Finally, you can save the
document in XML format if you’re using Word 2003.

Figure 4-2:
View Word
documents
directly in
Internet
Explorer by
using a
hyperlink.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 311

Working with Word Objects312

The default XML file relies on the Word Markup Language (WordML), which
makes it hard to edit in FrontPage. However, the document does retain all
the data, formatting, and other features you normally associate with Word.
You access all these options by using the File➪Save as Web Page command
in Office 2003.

The HTML format is the one you should use for modifying the file in
FrontPage. However, when you try to open the file, it automatically opens in
Word, not in FrontPage, even when you try to open it in the Folder List. This
happens because of a special entry that Word adds to the HTM file. To open
the file in FrontPage, right-click the file and choose Open With➪FrontPage
(Open as HTML) from the context menu. FrontPage opens the document. To
let FrontPage open the document the next time, make any change to the doc-
ument and save it.

Adding viewer links to your Web page
At least some of the users visiting your site
won’t have access to one or more of the Office
products. Fortunately, such users don’t have to
own Office products (such as Word) to view the
documents you create; a free viewer is avail-
able online. To help your users get hold of it, you
can give your Web page a link to the download
area for Microsoft Office Viewers at

http://www.microsoft.com/
office/000/viewers.asp

The user can download the appropriate viewer
from the site to see the content you provide.
The site includes links for Word, PowerPoint,
Excel, Access, and Visio.

You might think there’s a problem with some of
the viewers. For example, the Word viewer
seems to support only Word 97 and 2000. That’s
only because the DOC file format hasn’t had a
major change in years; this older viewer can
open your Word 2003 files just fine. Some for-
matting features have a slightly different
appearance, but the user can see the docu-
ment just fine. The Access viewer does support

the newer Access 2003 files — a good thing
because the newer files aren’t backward-
compatible.

Although the standard Web site provides view-
ers that work in most situations, you also want
to look for viewers at the Microsoft Download
Center at the following location:

http://www.microsoft.com/
downloads/search.aspx?
categoryid=9

For example, this site has a link for a special
PowerPoint 2003 viewer, which you can down-
load at

http://www.microsoft.com/
downloads/details.aspx?
FamilyID=428d5727-43ab-
4f24-90b7-a94784af71a4

When you use newer versions of Office prod-
ucts, always look for the newest viewers you
can find. The idea is to ensure that your users
can see your content as easily as possible.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 312

Book IV
Chapter 4

Inserting Office
Objects

Working with Word Objects 313

You also need to consider some of the artifacts that Word adds to the HTML
document. Word creates the HTML document with the idea that you’ll edit in
Word. The problem is the document contains a wealth of information that
shouldn’t appear on a public Web site. All the information that appears
within the document Properties dialog box also appears in the HTML docu-
ment, as shown in Figure 4-3. A cracker could use this information to con-
duct an attack on your company using social engineering techniques (asking
users, usually deceptively, for information such as their passwords).

The ExampleWordDocument.htm file provided with the source code for this
chapter on the Wiley Web site shows just how much information anyone can
find on the Web page. (Use Code view to look at the document.) The informa-
tion also includes any custom properties you attach to the document — and
could include information such as department heads’ names and telephone
numbers. All these artifacts can cause problems for your company by reveal-
ing information no outsiders should know.

Figure 4-3:
Creating an
HTML file
with Word
leaves
artifacts
in place.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 313

Developing Data Views with Excel314

Developing Data Views with Excel
Excel is the application that has the most potential for Web development, in
many respects, because you can use it to perform data analysis and create
charts for users to see. Sure, the formatting capabilities of Word and the data
storage features of Access are assets, but Excel is the visual aid that really
shines. This is the one place where Microsoft added a lot of functionality to
FrontPage to provide the required support.

Copying Excel data
In many cases, you can create the data you want in Excel and simply copy
and paste it into your Web page. When working with a worksheet, FrontPage
creates a new table to hold the data. Charts and graphs rely on images that
FrontPage creates on the fly. Generally, what you see in Excel is what
FrontPage reproduces on-screen.

The only problem with the copy-and-paste approach is that FrontPage doesn’t
always do a very good job creating the worksheet data as a table. Unlike Word
data, the Excel data doesn’t rely on CSS — so you end up with entry after
entry of formatting information. Every cell has separate formatting informa-
tion, making it nearly impossible for anyone to view the data when they can’t
use the formatting you selected. One way around this problem is to create
your own stylesheet and edit the table entries to match.

One of the new features of FrontPage 2003 that make it easier to work with
Excel charts you paste is the Picture Actions icon shown in Figure 4-4. This
icon appears in the upper-left or lower-right corner of the chart after you
paste it into the Web page (or after you modify the picture settings to match
the size of your Web page). Click the icon and you see a context menu con-
taining several options, one of which is Resample Picture to Match Size. You
can resample the image to clean up problems such as jagged fonts and image
attributes. This new feature makes it easy to create great-looking charts that
actually fit on the Web page.

Using the Web components
You have additional options at your disposal when you install the Web
Components feature of Microsoft Office. These options appear as part of the
Office Shared Features support when using Office 2003. Use these options to
create interactive pages for Access and Excel. (Unfortunately, there isn’t any
support for other Office products such as Word.) Install these options before
you try to use the FrontPage Web components discussed in this section.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 314

Book IV
Chapter 4

Inserting Office
Objects

Developing Data Views with Excel 315

Excel users have three special components available for creating connec-
tions to FrontPage. To access these components, choose the Insert➪Web
Component command. You see the Insert Web Component dialog box. All
three of these components appear as part of the Spreadsheets and Charts
component, as shown in Figure 4-5. Only the Office Spreadsheet and Office
Chart control are directly usable in FrontPage; the Office PivotTable option
requires database support.

Figure 4-5:
Create a
connection
between
FrontPage
and Excel
using Web
components.

Figure 4-4:
Resample
a chart to
provide
a better
appearance.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 315

Developing Data Views with Excel316

Creating a spreadsheet for your Web page
The components described in this section also rely on complex connections.
The easiest way to create a spreadsheet from existing data is to save it in
Excel as XML data. To save the data in XML format and add the spreadsheet
to the Web page, follow these steps:

1. Choose the File➪Save As Web Page command.

You see the Save As dialog box.

2. Select the XML Spreadsheet (*.xml) option in the Save as Type field
and then click Save.

Excel creates the output file, ready to add as a spreadsheet to the cur-
rent Web page.

3. Choose the Office Spreadsheet control from the Insert Web Component
dialog box and click Finish.

You see a blank spreadsheet appear on-screen, ready to contain any data
you add.

4. Right-click the new spreadsheet and choose ActiveX Control Properties
from context menu.

You see the ActiveX Control Properties dialog box.

5. Select the Import tag and type the location and name of the XML file
in the URL field.

You can tell the Web page to automatically update its information by
checking Refresh Data from URL at Runtime.

6. Click Import to import the data and then click OK to complete the
modifications.

You see the spreadsheet data in the spreadsheet object.

You can almost immediately see some unique advantages to this method of
creating a spreadsheet link on your Web page, as shown in Figure 4-6:

✦ It’s easy to add new information — just type it in.

✦ You can sort the existing fields by selecting a column and clicking Sort
Ascending or Sort Descending. You just click AutoFilter when you want
to see a subset of the values.

✦ You can refresh the display by clicking Refresh All.

✦ When you finish making changes, you can export the data by clicking
Export to Microsoft Office Excel. Excel opens with the spreadsheet
loaded.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 316

Book IV
Chapter 4

Inserting Office
Objects

Developing Data Views with Excel 317

✦ To access other possible operations, you just click Commands and
Options to display the Commands and Options dialog box. Here you can
(for example) format the cells and modify the method the spreadsheet
uses to perform calculations.

Of course, it isn’t possible to get this much functionality without paying a
price. In this case, the Office Spreadsheet control relies on an <object> tag
of such complexity that you should use Design View to modify its features.
The feature also runs into problems if you’re working with older versions of
Office, so you can count on using this technique only for users who have
Excel 2003 installed.

Sort Ascending

AutoFilter

Export to Microsoft Office Excel

Sort Descending

Refresh All

Commands and Options

Figure 4-6:
Using a
Web
component
has distinct
advantages.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 317

Developing Data Views with Excel318

Creating a chart
You might have noticed that Excel won’t export chart data as XML, so it
might seem that you can’t use the Office Chart control to display a chart
on-screen. Because the charts you create in Excel are based on the data you
define, it’s possible to use the XML data to re-create your chart on a Web
page using the Office Chart control. The important task to perform before
you try to use the Office Chart control is to create a spreadsheet using the
Office Spreadsheet control.

Sometimes you don’t want to display a spreadsheet — all you want is the
chart showing on-screen. You still need the spreadsheet to create the chart,
but you can make the spreadsheet invisible to the viewer. Here’s how to get
this result:

1. Right-click the spreadsheet and choose ActiveX Control Properties.

FrontPage displays the ActiveX Control Properties dialog box.

2. Select the Object Tag tab and set the Height and Width properties to 0.

3. Click OK.

Although nothing will change in Design view, Preview view shows the
spreadsheet has disappeared.

4. Verify this result by using your browser to view the chart on the Web
page.

Now you have an “invisible” spreadsheet to use as a data source.

5. Choose the Office Chart control from the Insert Web Component
dialog box and then click Finish.

You see the Commands and Options dialog box shown in Figure 4-7.

6. Choose the Data from the Following Web Page Item and select a
source from the list box.

The source should be the Web page for which you’ve created the “invisi-
ble” spreadsheet.

7. Click Ranges.

You can use a number of methods to configure the spreadsheet informa-
tion, but the easiest method is to copy the ranges of cells that you used
for the existing chart. Make sure you copy just those ranges and not the
page-name information. For example, if your series value in Excel is

=’Simple Chart Data’!B4:B8

you can get the same range via the Office Chart control if you type
B4:B8.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 318

Book IV
Chapter 4

Inserting Office
Objects

Developing Data Views with Excel 319

After you describe what data to use, you need to define how to use it. Click
the Type tab and you see a list of chart and graph types. Choose one of the
options and click the Close box. FrontPage displays the new chart or graph
on-screen.

The Office Chart control is a little confusing to use because it has two differ-
ent dialog boxes with different tabs and options that use the same name. In
addition, you must select the control for editing so it has a hashed border
before you can access the dialog boxes. Here’s how: With the control
selected for editing, right-click and choose Data from the context menu to
change the data source information. Right-click the control and select
Commands and Options from the context menu when you want to change
the configuration of the control — how it displays the data. You see another
version of the Commands and Options dialog box, as shown in Figure 4-8.

Figure 4-8:
Choose
display
options for
your chart
or graph.

Figure 4-7:
Define a
data source
and data
range for
your chart
or graph.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 319

Creating Report Views with Access320

Unfortunately, neither of the Commands and Options dialog boxes lets you
change the <object> tag information. You can, however, modify the <object>
tag indirectly, by changing ActiveX control properties — and it takes only a
few steps:

1. Right-click the control when it isn’t selected for editing.

You can tell this is the case because there’s no hashing around the
border. After you select the control, a context menu appears.

2. Choose ActiveX Control Properties from the context menu.

You see the ActiveX Control Properties dialog box. Figure 4-8, for exam-
ple, shows one of the more interesting configuration options for a chart
or graph — using a 3-D chart or graph to change the view with sliders. In
this case, you see the effects of changes you make immediately. You can
also choose a perspective view or an orthographic view of the chart.
When you have the chart the way you like it, FrontPage changes what’s
in the <object> tag to reflect your choices.

If you get the chart or graph too far out of balance to use, click Default
and FrontPage changes the settings to their original values.

3. Click other areas of the chart and repeat this process to change
other tags.

The tabs change in the Commands and Options dialog boxes to match
the configuration needs of each element. For example, when you click
the Series axis, you see tabs for changing the format (the font, in this
case), the line used to mark the axis, the positioning of the axis ticks,
and the axis scale. The General tab contains a Select field where you
can choose which chart element you want to modify.

Other techniques
Excel provides a number of other techniques that offer access to spread-
sheet information. For example, you can use a hyperlink (as described in the
“Relying on hyperlinks” section of the chapter). You can also use direct doc-
ument translation (as described in the “Creating a direct document conver-
sion” section of the chapter). In addition, third-party vendors make a wealth
of products to help FrontPage access your Excel data. You aren’t limited to a
particular method of displaying your data on-screen.

Creating Report Views with Access
Ironically, Access is one of the least accessible Office applications because
exercising good control over a database normally means writing application

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 320

Book IV
Chapter 4

Inserting Office
Objects

Creating Report Views with Access 321

code. You still have a number of ways to work with Access, though. In many
cases, you can gain the information you need for a Web site by exercising
options you use with other Office products, moving the data to another
Office product first, or employing a few unique methods.

Dragging and dropping — or not
By far, the easiest way to create a view of an Access database is to drag a data-
base element (such as a query) from the Access database to the Web page in
FrontPage and drop it there. This method always produces a table that con-
tains all the results that the element produces. For example, a query produces
a table containing all the information that it normally returns. Likewise, if you
select an entire database, you see the whole database on the Web page.

This technique doesn’t work especially well with reports. Sometimes you get
a report — but more often than not, all you get is an error message. Here’s
the most reliable way to get reports onto your Web page:

1. Highlight the report in Access.

2. Choose the command appropriate to your source application:

• For Word: Choose Tools➪Office Links➪Publish It with Microsoft
Office Word.

• For Excel: Choose Tools➪Office Links➪Analyze It with Microsoft
Office Excel.

In either case, you can use the techniques in the other sections of this
chapter to work with the resulting data.

Copying and pasting
The copy-and-paste technique works slightly differently with Access from
the way it does with other Office products: You select entire rows of data.
When you want all the rows in a table, simply select the rows you want and
copy them. Paste the data into FrontPage and you see a tabular result similar
to the one you see when you use the drag-and-drop technique. The differ-
ence is that you see only the rows you selected.

Create queries when you want just a subset of the data or you want to
see the output from multiple tables. Using queries lets you select just the
columns you want to see on the Web site. In some cases, it pays to create a
temporary query to get the precise results you want. Remember that you

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 321

Creating Report Views with Access322

can select only rows, so each row has to contain just the data you want to
see on the Web page. Editing the information in FrontPage is difficult, to say
the least.

It’s also possible to copy a single record from a form. Select the entire record
and click Copy in Access. Unfortunately, the data isn’t formatted as it appears
in Access — it appears as a table. The table contains the same elements as
the form data, so this technique is useful when you want to display the data
provided by a form. In this case, however, you may want to select Edit➪Paste
Special and choose one of the unformatted options. Doing so enables you to
get just the data.

22_575317 bk04ch04.qxd 9/24/04 7:56 PM Page 322

Chapter 5: Using Smart
Tag Plug-ins

In This Chapter
� Developing Web pages with Smart Tags

� Adding Smart Tags to a Web page

� Preventing use of Smart Tags on your site

� Getting other Smart Tags

Smart Tags, a feature that appears in newer Office products, associate an
action with a particular piece of information. In some cases, the Smart

Tag automates a task, but in others it helps transform the data or lets you
perform interesting tasks with the data, such as looking the information up
online. For example, you could type a stock symbol into a document. In most
cases, the Office product recognizes the stock symbol, associates a Smart
Tag with it, and lets you look up information about the stock symbol online.

For example, when you add a picture to a Web page and then resize it,
FrontPage displays a Picture Actions Smart Tag that lets you resample the
image from the original source to create an image with a better appearance.
Resampling removes the jagged edges that resizing can produce. More impor-
tant, the Picture Actions Smart Tag associates the resampling action with
the data, which gives it an intelligence of sorts because you can interact
with the data in a different way.

Don’t confuse Smart Tags with HTML tags. Smart Tags appear in all
Office 2003 applications, even those that have nothing to do with Web
design. Even though Smart Tags and HTML tags are both called tags,
the functionality and purpose of each tag is completely different.

Understanding the Smart Tag Plug-ins
FrontPage directly supports only two Smart Tags, even though you can
install the full set of Office Smart Tags. The first is the Picture Actions
Smart Tag used for graphics. The second is the Paste Options Smart Tag
shown in Figure 5-1. This Smart Tag lets you choose a method for pasting
text from another application into your Web page. Sometimes you want the
formatting used by the other application, or want to format the information
using a CSS file you’ve created.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 323

Seeing Smart Tags on Your Web Page324

After you get past these two automatic Smart Tags, FrontPage needs a little
extra information from you before it can use Smart Tags in your Web pages —
configuration, confirmation of required features, that sort of thing. You won’t
actually see the effect of the Smart Tags in Design view — and sometimes even
Preview view balks at working with them — but the Smart Tags do show up
in your browser.

Some Smart Tags only work when you have the required Office features
installed. For example, the Date Smart Tag appears only when you have
Schedule Plus installed (this option appears as part of the Microsoft Office
Outlook installation). Otherwise Word still inserts the tag, but you don’t see
it. Smart Tags also need the Smart Tag Plugins feature installed (choose
Office Tools➪Smart Tag Plugins to access it) before your Web page can make
use of them.

Seeing Smart Tags on Your Web Page
By itself, FrontPage doesn’t provide support for adding Smart Tags to your
Web page; you have to add them specifically to the coding. In fact, you
can’t even see Smart Tags in Design view because of the way you add them.
However, you can see the effect of Smart Tags in Preview view and in your

Figure 5-1:
Determine
how you
want to
paste the
text into
FrontPage.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 324

Book IV
Chapter 5

Using Sm
art Tag

Plug-ins
Seeing Smart Tags on Your Web Page 325

browser. If you know that your users will have the correct support installed on
their systems, then adding Smart Tags to your Web page makes sense because
they can extend the functionality of your Web page considerably. You can find
the examples in this section in the SmartTags.htm file supplied on this book’s
companion Web site as part of the source code for this chapter.

Creating the Smart Tag Web-page entries
Using any type of Smart Tag requires special entries in the coding of your
Web page. Most of these entries appear within the <head> tag, rather than
the <body> tag, which is why you can’t see them in Design view. Four types
of entry are necessary:

✦ Namespaces

✦ Smart Tag descriptions

✦ Designation of the processing object

✦ Styles

The following subsections describe each type of entry.

Setting up the namespace entry
The first set of entries actually appears in the <head> tag like this:

<html xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:st1=”urn:schemas-microsoft-com:office:smarttags”
xmlns:st2=”urn:schemas:contacts”>

These entries define three namespaces. Namespaces are identifiers for a
resource you want to use. The parts of a namespace entry perform the fol-
lowing functions:

✦ The first namespace (which begins with xmlns:o) is reserved for
Microsoft Office.

✦ The second is a general namespace for Smart Tags (note the st).

✦ The third namespace is a special entry for contact information.

✦ Within the second and third namespaces, the Uniform Resource Name
(urn) portion tells the browser that this is identification information.

✦ The remainder of the namespace is a declaration of the identifier, which
are schemas (organized listings of data) in this case. A schema defines
how the data is put together.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 325

Seeing Smart Tags on Your Web Page326

Describing the Smart Tags
With the namespaces established, the next step is to describe the Smart Tags
you want to use. Every Smart Tag requires at least one entry; the descriptions
tell the Browser how to react to each Smart Tag entry. Here are descriptions
for all the Smart Tags that Microsoft Office supports natively:

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”stockticker”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”PersonName”/>

<o:SmartTagType
namespaceuri=”urn:schemas:contacts” name=”Sn”/>

<o:SmartTagType
namespaceuri=”urn:schemas:contacts” name=”GivenName”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”Street”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”address”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”place”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”City”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”State”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”PostalCode”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”time”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”date”/>

<o:SmartTagType
namespaceuri=”urn:schemas-microsoft-com:office:smarttags”
name=”phone”/>

Each entry in the list includes three items:

✦ Identifier. This first item tells the browser that this is an entry for a Smart
Tag, based on the Microsoft Office namespace. The o: preceding each
entry ties it to the Microsoft Office declaration in the <head> tag.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 326

Book IV
Chapter 5

Using Sm
art Tag

Plug-ins
Seeing Smart Tags on Your Web Page 327

✦ Location for the definition for this Smart Tag. This entry uses a URN,
just as the entries in the <head> tag do.

✦ Human-readable name for the Smart Tag.

The SmartTagType entries are based on information the vendor provides,
the content of an XML file where the Smart Tag file is stored, or on a Registry
entry. All Microsoft Office Smart Tag files appear in the following folder on
your machine:

\Program Files\Common Files\Microsoft Shared\Smart Tag

The Registry entries for the Smart Tags appear in another directory:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart
Tag\Recognizers

Identifying the processing object
A special object processes all this information for Internet Explorer. You
must add the following <object> tag within the <head> tag immediately
after the Smart Tag declarations to identify that object and activate Smart
Tag processing on a Web Page.

<object classid=”clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D”
id=IETag></object>

Notice that the <object> tag doesn’t include any parameters or arguments.
You can’t interact with this object in any way. The id value you assign (in
this case, IETag) is important because you use it to identify the object to
the browser.

Adding styles to content via Smart Tags
The final generic step is to add some styles to identify the actual content for
the Smart Tags to the browser. This is one situation in which embedded
styles are essential. In addition, this is one of the few cases in which a style
doesn’t affect the appearance of the content — the style affects the behavior
of the content. Here are the two styles that work with Smart Tags.

<style>
st1\:*{behavior:url(#IETag) }
st2\:*{behavior:url(#IETag) }

</style>

Notice the two styles point to a behavior URL that has the same identifier
as the object: IETag. The style behavior URL and the object identifier must
match or the Web page won’t work.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 327

Seeing Smart Tags on Your Web Page328

Don’t expect a Smart Tag you use on a Web page to have the full functional-
ity that it has in a Microsoft Office document. The Smart Tag knows it’s being
used in a Web environment — so it limits context-menu choices to only those
that are appropriate for a Web venue. Even so, Smart Tags can reduce the
work a user has to perform to accomplish tasks, so they can help improve
the user’s experience of your Web site.

Using the Stocks and Funds Smart Tag plug-in
The Stocks and Funds Smart Tag detects a symbol that stands for stocks, and
then provides the user with access to (and information about) that symbol.
To get it to work, however, you provide a special tag in addition to all the
generic entries needed to support Smart Tags. The special tag looks like this:

<st1:stockticker w:st=”on”>MSFT</st1:stockticker>

When placed in the stockticker tags, the stock symbol MSFT acts as input
for the Smart Tag. When you hover the mouse pointer over the purple line that
appears under the stock symbol, you see an i in a circle and a square, as
shown in Figure 5-2. Click the i and you see a context menu.

This example shows some of the power of Smart Tags on your Web page.
The entry appears as text, and yet the user can do three things with it —
get a stock quote, obtain a company report, or get the latest news about
the company in question.

Using the Name Smart Tag plug-in
The Name Smart Tag is affected by the Microsoft Office options you have
installed. It can do everything from help you set up an appointment with
the person to creating e-mail or addressing an envelope. Here’s the code
you add to create a Name Smart Tag entry:

<st1:PersonName w:st=”on”>
<st2:GivenName w:st=”on”>George</st2:GivenName>
<st2:Sn w:st=”on”>Smith</st2:Sn>

</st1:PersonName>

Figure 5-2:
Use Smart
Tags to
provide
the user
with data
manipulation
options.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 328

Book IV
Chapter 5

Using Sm
art Tag

Plug-ins
Seeing Smart Tags on Your Web Page 329

The problem with the Name Smart Tag is that it’s affected by the number of
Microsoft Office features you have installed. I purposely limited the installa-
tion on the test machine to see how few options a user could end up with —
and Figure 5-3 shows the results of the test.

When you reduce the number of Microsoft Office features on your machine,
the Name Smart Tag becomes almost useless.

Even though this Smart Tag doesn’t turn off completely (as some do when
you don’t have the proper Microsoft Office support installed), you could
easily replace the Smart Tag with a simple link — and a wider range of users
would actually be able to use it. A good practical developer’s rule is to work
with the Web page using the same conditions your users will; Smart Tags are
an especially apt illustration. It’s easy to create a Web page that doesn’t offer
much functionality; the question is, How much is enough?

Using the Address and Places Smart Tag plug-in
One of my favorite Smart Tags is the Address and Places Smart Tag. You can
use this Smart Tag to provide the very practical assistance of driving instruc-
tions and a map as the user needs them, as shown in Figure 5-4. The interest-
ing part about this Smart Tag is that you get at least this minimal support
without having any Microsoft Office features installed (except FrontPage).

Figure 5-4:
Some Smart
Tags are
useful even
without
Microsoft
Office
support.

Figure 5-3:
Decide in
advance
how much
Smart Tag
functionality
the user
receives.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 329

Seeing Smart Tags on Your Web Page330

The code for creating an Address and Places Smart Tag is a little more com-
plex. Here’s the code you normally need:

<h3>An Address</h3>
<p>

<st1:Street w:st=”on”>
<st1:address w:st=”on”>

1313 Mockingbird Lane
</st1:address>

</st1:Street>
</p>
<h3>A Place</h3>
<p>

<st1:place w:st=”on”>
<st1:City w:st=”on”>Indianapolis</st1:City>,
<st1:State w:st=”on”>IN</st1:State>
<st1:PostalCode w:st=”on”>46290</st1:PostalCode>

</st1:place>
</p>

Notice that you need both a <Street> and an <address> tag to create
an address. Likewise, to describe a place, you need a number of tags —
including the <place> tag. The remaining elements describe a particular
city, state, and postal zone. These tags are dual so you can create lists
of related entries. A <Street> tag (for example) can contain multiple
<address> tags.

Using the Time and Date Smart Tag plug-in
The Time and Date Smart Tags won’t work unless you have the correct
Microsoft Office features installed — most notably, the Schedule Plus
plug-in. The tags let you set up meetings or perform other tasks based on
the time or date you enter. Here’s the code that creates a Time Smart Tag.

<st1:time Hour=”12” Minute=”22” w:st=”on”>12:22 pm</st1:time>

Notice that this tag includes special attributes: Hour and Minute. Because
time-display formats can vary from place to place, be sure to give your Smart
Tag a time value that your users can easily recognize. The Date Smart Tag
works about the same as the Time Smart Tag, as shown here:

<st1:date Month=”4” Day=”29” Year=”2004” w:st=”on”>
29 April 2004

</st1:date>

As with the Time Smart Tag, you must provide an absolute date using the
Month, Day, and Year attributes. The actual order of the attributes is unim-
portant as long as you provide all three entries.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 330

Book IV
Chapter 5

Using Sm
art Tag

Plug-ins
Getting More Smart Tags 331

Using the Telephone Smart Tag plug-in
The Telephone Smart Tag is one of those that won’t work unless you have
certain Microsoft Office features installed. Generally, installing Schedule Plus
is enough to activate this tag. There aren’t any other special requirements
for this tag, as shown here:

<st1:phone w:st=”on”>(317)572-3201</st1:phone>

Disabling Smart Tags on Your Site
Some people don’t like Smart Tags and what they represent. They don’t want
their site content to appear as part of a Smart Tag and have no desire to share
their information using Smart Tag technology. It’s true that Smart Tags have
a lot to offer, but developers can also abuse them by overusing them or by cre-
ating virus-infected Smart Tags on the Web sites from which they receive
data. Fortunately, it’s relatively easy to prevent someone from using the con-
tent on your site as part of a Smart Tag solution. All you have to do is
include the following meta tag at the beginning of every Web page.

<meta name=”MSSmartTagsPreventParsing” content=”TRUE”>

The name attribute defines the kind of information this meta tag contains —
a request that Smart Tags not parse the page. The content attribute defines
all content as off limits. Adding this meta tag doesn’t have any effect on the
Smart Tags you add to your Web page.

The purpose of this tag is to disable any Smart Tag support added to a
browser. A browser with Smart Tag support could visit your site and
automatically add your Smart Tags to keywords. The addition wouldn’t
affect your site, but it would affect how the user sees the site from a usage
perspective — and that’s what a lot of people are concerned about.

Getting More Smart Tags
A number of third-party vendors provide additional Smart Tags. You can
view — and sometimes download — these Smart Tags at

http://office.microsoft.com/marketplace/PortalProviderPreview
.aspx?AssetID=EY010504821033

Microsoft also produces some special Smart Tags (such as the euro-
conversion Smart Tag, handy for international transactions) that you find at

www.microsoft.com/downloads/details.aspx?FamilyID=5879FD92-
6119-4B59-9A62-A7164AC67F40&displaylang=EN

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 331

Getting More Smart Tags332

But Microsoft isn’t the only source. Here are some great places to get more
Smart Tags:

✦ ActiveDocs (www.activedocs.com/?from=msomp) helps you create your
own custom Smart Tags for classes of information you want tracked. This
means you can create additional Smart Tags that FrontPage recognizes
automatically or that you can add to a Web page as needed to provide
support to the end user.

✦ DataPortal (www.nereosoft.net/ms/dataportal.asp) helps you
create Smart Tags for managing your database applications. For example,
you could create a Smart Tag in which all the user needs to do to inter-
act with a database is type the database name. The keyword triggers a
response that helps the user get database connectivity without having
to know anything about the connection itself. The emphasis is on the
data.

✦ LexisNexis (http://support.lexisnexis.com/lndownload/) pro-
vides a Smart Tag for developers who work with the legal community.
For example, the Case Name Smart Tag can search for a case name, legal
reviews, and verdict information based on a case keyword typed by the
user. Another place to look for Smart Tags for the legal profession is
WestCiteLink (www.westlaw.com/citelink).

✦ ProWrite (www.nereosoft.net/ms/) has a Smart Tag that lets you print
Avery labels from contact information. You can use this feature to let
someone print a label for your company from a Web page when mail
contact is required for a transaction. For that matter, you can use the
same technique to create labels for items you want to deliver to a cus-
tomer, basing the transaction on Web-site form data.

✦ WorldLingo (www.worldlingo.com/microsoft/smart_tag.html) pro-
vides Smart Tags that help you translate text. You can also obtain quotes
for translating large documents, uncover business practices in other
countries, and get country-specific data.

These are just a few of the Smart Tags you can obtain. News sites such as
MSNBC and travel sites such as Expedia also provide Smart Tags that help
you perform tasks with their services. The idea is to provide the Smart Tags
that users of your Web site can use best.

23_575317 bk04ch05.qxd 9/24/04 7:56 PM Page 332

Chapter 6: Creating
Dynamic Web Sites

In This Chapter
� Using dynamic content

� Creating shared borders

� Developing Active Server Pages

� Creating a simple dynamic page

� Designing Web pages with the Dynamic Web Template Toolbar

Many of the Web sites you see on the Internet are static — the content
won’t change unless someone specifically changes it. When the Web-

page developer gets busy, the content can stay static for a very long time.
No surprise that the Internet is filled with static content gone bad. In many
cases, the information, the links, everything about the Web site is too old —
out of date, nonfunctional, an online ghost town. Creating a dynamic Web
site can partially solve this problem. Obviously, content has to come from
somewhere, but the techniques shown in this chapter make it a lot easier
to keep your Web site up to date and fresh.

Fortunately, FrontPage provides special features for making your dynamic
Web site work. You still have to do a little more work than you would for a
static Web site, but not nearly as much as it takes to create a dynamic Web
site by hand.

Part of the appeal of dynamic Web sites comes from shared borders — a fea-
ture that gives several Web pages the same border: A new link placed on the
left side of one page automatically appears on all other pages, which means
all pages get the same update. You use this technique to create changing
content for all your pages at once. Even a small change like this can make
a big difference to users because they know you maintain your site.

Microsoft has created a number of strategies for creating dynamic content.
One of those strategies is to rely on a scripting language known as Active
Server Pages (ASP) to create the Web page. For a completed ASP page, some
content remains the same, but other content changes in response to a par-
ticular, specified need. FrontPage 2003 can now create ASP directly, which
means you don’t have to rely on that old text editor anymore.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 333

Changing Content and Knowing Why334

Changing Content and Knowing Why
The need for change varies by Web site, but all Web sites experience change,
or no one visits them. People expect you to add new content as your Web
site grows — at the very least, to move things around and present a few new
ideas. For a business, however, change is essential. No one wants to see last
week’s sales figures — only today’s figures are important for the majority of
your viewers. Sometimes a Web site that’s behind the times can even cause
problems. Imagine that you have last year’s prices for your products listed
on the Web site. Anyone buying from the Web site would expect to pay last
year’s prices.

Unfortunately, trying to find the time to update your Web site can be difficult.
That’s why you need to plan and manage the changes you make to your Web
site — and have some of them appear automatically as the result of other
activities you perform. The idea is to get the software to do as much of the
work as possible for you. The software can’t do all the work, but you might
be surprised at how much work a properly designed site can do.

Updates are important, but so is performing the update correctly. FrontPage
gives you four kinds of possible updates:

✦ Manual: You perform all required updates without using software.
However, you can still save by using cut-and-paste techniques to incor-
porate standardized features. Using themes and other layout aids also
reduces time. Changing content is accommodated by making configura-
tion modifications in Design view in many cases.

✦ Automatic file updates: FrontPage performs updates as part of a prede-
fined configuration requirement. For example, using shared borders
ensures that common content automatically appears within files when
the developer opens the file for an update.

✦ Template updates: The developer creates a template that acts as a
repository for common data. Creating a custom FrontPage template,
as described in Book II, Chapter 5, can save considerable time when
you have a lot of common data on each Web page. FrontPage displays
the common data and associated fields for new content when the
developer creates a new page. In addition, any template changes
appear when the developer reopens the file for an edit.

✦ Script generation: An application creates input based on client, server,
database, or environmental needs. The script can create the entire page,
as in the case of Active Server Pages (ASP), and then reside on the server
to generate responses (webbots), or reside on the client to perform local
processing (JavaScript).

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 334

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using Shared Borders 335

Combining one or more of these techniques lets you update your Web site
quickly. The techniques you choose depend on the resources you have, the
expectations and capabilities of clients, and the configuration of your Web
server. A hosted site has the greatest limitations, especially when the site
doesn’t have FrontPage Extensions installed. However, even with a hosted
site, you have access to client-side webbots, templates, themes, and tech-
nologies such as shared borders.

Companies that run their own Web sites and have the required support have
almost unlimited resources for making changes to their Web sites. Many
FrontPage techniques rely on server-side webbots that require you have
FrontPage Extensions installed. Some FrontPage 2003 features require that
you have SharePoint Services installed. The added integration (such as
access to company databases) provided by SharePoint Services is new for
FrontPage 2003.

Using Shared Borders
The FrontPage Shared Borders feature is a series of special HTML pages to
be shared by all pages on a particular Web site. You can use any or all the
borders that appear at the top, left, right, and bottom of the page, as shown
in Figure 6-1.

Figure 6-1:
Use Shared
Borders to
display
common
content on
the fringes
of a Web
page.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 335

Using Shared Borders336

Understanding how Shared Borders work
The Shared Borders feature doesn’t work the same as other techniques for
displaying shared content. When you view a page with shared borders in
FrontPage, all you see is the code for the page because the border code is
stored in the _borders folder. There aren’t any entries for tables or frames,
as in older techniques. The only modification is a <meta> tag in the header,
like this one:

<meta name=”Microsoft Border” content=”tlrb”>

The name attribute tells you that this is a special — and shared — border
feature that is handled by the server. The content attribute tells you that
this page has top, left, right, and bottom (tlrb) borders. This codeless fea-
ture makes shared borders different from other shared content strategies.

Unfortunately, the actual output still relies on a table. If you look at the page
on your Web site with a text editor, you’ll see the tables and content you pro-
vided because FrontPage adds them to the file as you save it. To see the table
code, display the page in your browser, right-click the page, and choose View
Source from the context menu. The browser opens, using a text editor such
as Notepad to display the page’s source code.

The way FrontPage implements this particular feature means you must open
the file and save it if you want to see how your changes to the shared border
files actually look. Tests show that the changes aren’t completely automatic,
but they are faster than making the changes by hand.

Attaching a Shared Border to specific Web pages
FrontPage provides two methods for working with shared borders — you
can attach them to all pages on your Web site or only to specific pages. It’s
also possible to combine these methods. For example, you might decide that
you want all pages to have the same shared border as a title but only some
pages to have a right, left, or bottom shared border.

Shared borders present shared content, but the content need not be the
same for every page. For example, you can insert a banner onto a shared
border. What appears on the banner depends on the current page’s position
within the navigational structure of the Web site. Consequently, the shared
border is the same for every page because every page contains a banner —
but the content of the banner changes to match the specific page.

You can use other components to achieve the same effect. For example, if
you insert a table of contents into the right border, then every page that has
the right border selected will contain a table of contents — but the table of
contents will change to meet the needs of the selected page.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 336

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using Shared Borders 337

Even with shared borders, the content of the page need not be static.

Of course, the real benefit of shared pages is that the changes you make in
just one location affect all the pages on your Web site that use shared bor-
ders. Consequently, you can change the dynamic content of the shared border,
and every Web page is doubly affected — first by the shared border change,
and second by the dynamic content you add.

Creating a Shared Border
Shared borders can appear on any page, but they work best on pages that
have no other layout elements (such as tables or frames). To create a shared
border, follow these steps:

1. Choose Format➪Shared Borders.

You see the Shared Borders dialog box shown in Figure 6-2.

2. In the Shared Borders dialog box, choose Apply To.

Here’s where you select the scope of the change you want to make. You
have two available options, each with its quirks:

• All Pages: This setting changes every page on your Web site. When
you choose this option, FrontPage enables the Include Navigation
Buttons for the Top, Right, and Left options — and the only way you
can opt to include navigation buttons is to choose the corresponding
shared border. (For the All Pages option, the default setting uses no
shared borders.)

Include only navigation buttons on a shared border. Otherwise you
see the same navigation aids in every location. In practice, it’s better
to insert the navigation buttons as separate components rather than
insert them here.

Figure 6-2:
Choose
the shared
borders you
want for all
pages or
just for this
page.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 337

Using Shared Borders338

• Current Page: This affects only the current page. When you select
Current Page, FrontPage offers to let you Reset Borders for Current
Page to Web Default. If you put a check mark next to that option,
FrontPage resets the border options to the defaults that you set
using the All Pages option. (This option defaults to not using any
shared borders.)

Make sure you set Apply To option correctly or you’ll make changes
that could cause problems for your Web site later. These changes are
independent of each other, so make just one kind of change at a time.
When you want to change the settings for all pages, make the changes
and then click OK. Don’t make changes for all pages and then tweak
the current page unless you click OK between those operations.

3. Set the properties of each shared border by clicking Border Properties.

You see the Border Properties dialog box shown in Figure 6-3. Select
the border you want to configure using the Border drop-down list box.
Select a background color using the Color option. Choose a background
image using the Picture option. (You can choose both of those options if
you want.)

4. After you configure the shared borders, click OK.

You see the shared borders added to the current page.

When you select options for all pages, FrontPage also changes all pages, a
process that goes on in the background. Depending on the size of your Web
site, you might see the background hourglass icon for quite some time —
the bigger the site, the longer the time. It’s usually best to let FrontPage
complete this task before you move on to other tasks even though you
can begin editing the current page.

At this point, you can change the content of the shared borders. Remember
that any change you make to the shared borders of the current page affects
the shared borders of every other page on the Web site. Consequently, you
don’t want to include page specific information in your changes.

Figure 6-3:
Configure
the shared
borders
before you
use them.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 338

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using Shared Borders 339

Viewing the _borders Folder
Modifying the content of a shared border is easy enough using any of the
pages you create using a shared border, but it’s actually easier when you
open the pages individually. You find the shared border pages: bottom.htm,
left.htm, right.htm, and top.htm in the _borders folder located directly
under the root folder for your Web site, as shown in Figure 6-4.

FrontPage automatically provides some features on these Web pages for
you — for example, a title — but as a rule, don’t change the page properties
for these pages. The user will never see them directly anyway — and chang-
ing some properties (but not others) can have unexpected results. To modify
one of the shared borders, double-click the entry as usual.

Notice that the _borders folder can also have other entries. In this case,
the Web site includes guestlog.htm. This page contains entries from the
guest log page for the Web site. The title includes a pointer to the location
of the guest log so you can find it easily.

Oddly, the default FrontPage setup doesn’t allow you to access this folder
using a browser. You can access individual pages within the folder as long
as you know the name of the page, but you can’t view the folder itself, even
if your default settings allow directory browsing.

Figure 6-4:
Locate
the border
files in the
_borders
folder of
your Web
site.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 339

Using Active Server Pages in FrontPage340

Normally, my test server has Directory Browsing enabled on the Home
Directory tab of the Properties dialog box for the test folders. You access
this setting by using the Internet Information Services console found in the
Administrative Tools folder of the Control Panel. Enabling directory browsing
makes it easier to locate files that a user wouldn’t normally need to access —
in particular, so you can see how they react in your test browser. The view of
the file you see in FrontPage isn’t always the one that your users’ browsers
will show, so it’s important to test any changes you make at several levels.

Using Active Server Pages in FrontPage
ASP (Active Server Pages) is one of the easier ways to create dynamic content
for your Web site. ASP relies on server-side scripts to present information to
the viewer when you use Internet Information Server (IIS) or any other Web
server that supports ASP. Microsoft tried a number of other approaches to
creating dynamic content for a Web site, such as Internet Server Application
Programming Interface (ISAPI), but these efforts failed because they were
too difficult to use and maintain. The biggest benefit of using ASP is that it’s
relatively simple to use, and you can make changes without restarting the
Web server.

Advantages of the ASP scripting approach
ASP isn’t just a scripting language. It actually relies on a combination of script-
ing and straight HTML coding. In this respect, ASP is similar to open-source
languages such as PHP Hypertext Processor (PHP). Anything that isn’t going
to change can use the same HTML that you have always used, so you can
start simply with ASP and not worry too much about a huge learning curve.
ASP is pretty easy to pick up as you go along, whenever you need new fea-
tures for your Web page.

For a lot of people, any mention of scripting brings visions of hours spent in
frustration trying to get complex code working. ASP can become complex,
but you really can perform a lot of tasks in it without writing a lot of code. In
many cases, simplicity is better than creating something complex because
it’s easier to maintain. For example, you can create a page that does nothing
more than simple value replacements based on content you have stored on
your Web server.

True, some scripts that start simple don’t scale up well to larger projects,
but you can create complex designs with ASP, some of which can start
simple and then evolve. The time you spend working with ASP today won’t
become a losing proposition later. You can add new features to your Web site
as needed to meet changing user needs. As a result of this flexibility, many
complex Web sites rely on ASP as their means of displaying content on-
screen.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 340

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using Active Server Pages in FrontPage 341

ASP also has a relatively long history (at least when you consider how fast
most computer techniques come and go). As more people use ASP, Microsoft
makes additional features available. The product has matured; you face
fewer of the problems that come with raw new technology (such as mys-
terious unexplained bugs or difficulty getting your applications working).
And then there’s compatibility with other Microsoft technology; many
developers prefer using ASP because it integrates so well with IIS.

The essential strategy is to use only the features you need with a project so
you can build your knowledge of ASP slowly, as you have time to work with it.

Every copy of IIS comes with ASP support built in; in effect, you always get
ASP with your copy of Windows. The availability of ASP support means you
can build an ASP application on your Web server and use it on any other IIS
Web server. Sometimes you need to make small tweaks when you use spe-
cific object names (such as the name of the server), but there’s one other
great advantage: ASP is free, and you don’t have to install anything to get it.

Creating a simple ASP page
This chapter won’t tell you everything there is to know about ASP. The main
focus of this chapter is to show you can use ASP with FrontPage. ASP.NET
For Dummies by Bill Hatfield (Wiley) provides a full explanation of all the
ASP.NET nuances. The example is relatively simple so that everyone can use it
without knowing a lot about ASP. The example does show some ASP features
though so you can see that FrontPage is a true ASP development environment.

Creating the file
Working with ASP in FrontPage isn’t as straightforward as it could be in some
respects. The problem is that FrontPage assumes every Web page you create
has an HTM extension — ASP requires use of the ASP extension. To create
other kinds of files, you must change the extension. Here’s how:

1. Right-click the folder you want to use in the Folder List.

A context menu appears.

2. Choose New➪Blank Page from the context menu.

You see a new blank page created in the Folder List with the name high-
lighted so you can rename it.

3. Type the name of the page with an ASP extension rather than an HTM
extension.

FrontPage creates a new ASP page. The new ASP page has a different
icon than a standard HTM page, so you can readily identify it. The
SimpleASP.ASP file included with the source code for this chapter on
the Wiley Web site shows how this type of page appears in FrontPage.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 341

Using Active Server Pages in FrontPage342

This is a situation where creating your own templates really pays off. (See
Book II, Chapter 5, for details.) You can create a blank ASP page that includes
the basic information these pages require. It’s also possible to create ASP
pages with some content already defined. Be sure to include a preview of
the page as it appears to the end user rather than the script view you see
when working with the page.

Designing the page
Design the ASP page as you would any HTML page. You can create blanks on
the page that ASP automatically fills in for you (using script to do so). The
page can also accept input and modify the data that the user provides. As
you design your Web page, think about the data you want to see displayed
on the page rather than the technique used to display it.

Make sure you provide a means to read content as well as write it back out
to the page. Normally, you use a form and form controls to gain access to the
information the user provides. However, you can easily use other techniques
to interact with the user. When you want to display information — rather
than obtain information from the user — you can rely on paragraph tags.

An ASP script can also interact with objects, so you can use standard
FrontPage objects or create objects using the <object> tag. Use this alter-
native carefully because it adds complexity to the Web page design and the
scripting you need to perform. This option also provides a lot of flexibility,
and you can perform tasks, such as create interactive video, that simply
isn’t possible using any other technique.

Adding script elements
After you design your page, you make it dynamic by adding script elements
to it. A script element need not be complex or hard to understand. All you
need is the right keywords. Microsoft provides a complete reference of ASP
keywords at

http://msdn.microsoft.com/library/en-us/iissdk/iis/iis_web_pages.asp

Some of the most common keywords include those that request information
from the client or the server. Here’s an example of a server request.

<% Response.Write(Request.ServerVariables(“SERVER_NAME”))%>

Every ASP script appears within the <% %> characters. This script tells
the server to write some information to the client. You use the Response.
Write() script command to write anything that ASP can write to the client.
The information this code writes is a server variable — the server name.
Use the Request.ServerVariables() command to discover information

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 342

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using Active Server Pages in FrontPage 343

about the server. To discover all the keywords your server understands, ask
for each keyword in turn, like this:

<% for each Value in Request.ServerVariables %>
<% if not Request.ServerVariables(Value) = “” then %>

<p>
<%= Value %>
:
<%= Request.ServerVariables(Value) %>

</p>
<% end if %>

<% next %>

This code tells IIS that you want to look at each value provided with the
Request.ServerVariables collection. A collection is a set of information
that you can access using the server. The next statement tells IIS to ignore
any server variable that is blank. This line is necessary because when some-
one accesses your Web page in anonymous mode, many of the possible
server variables are blank.

The variable Value has received a server variable name as part of the
<% for each Value in Request.ServerVariables %> statement. The
code can send this value as part of the response using the <%= Value %>
statement. The equal sign in this statement takes the place of the Response.
Write() script command. Notice how the code uses a special character,
the nonbreaking space () to provide a space between the value
name and the actual value. The code also uses Value as input to the
Request.ServerVariables() script command, which prints out the
value contained in that server variable.

Notice that the <% if %> statement ends with an <% end if %> statement,
and the <% for each %> statement ends with a <% next %> statement. You
always tells ASP where a statement begins and ends so ASP knows when to
start and stop a series of commands. Figure 6-5 shows an example of some
typical server variable values.

Some of this information is pretty interesting. For example, the REMOTE_ADDR
server variable tells you the client address so you can keep track of which
client is requesting information. The PATH_TRANSLATED server variable
shows the actual path to this script on my server. Sometimes you need to
know this information so you can access files on the server’s hard drive.
Move down the list and you can get a look at some information about the
server. The SERVER_SOFTWARE server variable tells you which operating
system and Web server the server is running so you can address any com-
patibility needs.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 343

Using Active Server Pages in FrontPage344

A script doesn’t necessarily output information. It can interact with the user
in other ways. For example, depending on what the user types into a form,
you could redirect the client to another Web site or another location on your
Web site. Here’s an example that shows a combination of a form and an ASP
script that redirects the user to another location:

<h2>Form and Response Processing</h2>
<form method=”GET” name=”SendMeTo” action=”SimpleASP.ASP”>

<p>
<label for=”MyGoTo”>Go To URL: </label>
<input type=”text” name=”GoTo” size=”40”

value=”http://www.mwt.net/~jmueller/”
id=”MyGoTo”
title=”Type the URL of a Web site.”>

</p>
<p>

<input type=”submit” value=”Submit” name=”B1”>
<input type=”reset” value=”Reset” name=”B2”>

</p>
</form>

<%
if not Request.QueryString(“GoTo”) = “” then

Figure 6-5:
Discover
information
about your
Web site
using ASP
scripts.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 344

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using Active Server Pages in FrontPage 345

Response.Redirect(Request.QueryString(“GoTo”))
end if

%>

The form contains a label, a textbox, and two buttons. When the user types a
URL into the textbox and clicks Submit, the page sends the information back
to the server as part of the query string. You see this kind of interaction take
place all the time on the Internet.

The difference is the script. The script begins by checking the query string
for a value named GoTo. Notice this is the name of the textbox. Using the
Request.QueryString() function, the code retrieves this value. If it’s
blank, then this is either the first time the page is displayed, or the user
didn’t type anything in the textbox. When the user does supply a URL, the
code uses the Response.Redirect() function to redirect the user to the
new location. It’s a simple, but very helpful script that you see used all the
time on the Internet.

This section can’t describe all the features ASP provides. (You can see a few
additional features in the SimpleASP.ASP file included with the source code
for this Chapter on the Wiley Web site.) The important point is that you don’t
have to rely exclusively on HTML pages to create your Web site when work-
ing with FrontPage — you have a number of other useful options.

Understanding the ASP issues
Even though it works well, FrontPage isn’t the perfect environment for creat-
ing ASP pages. You do receive some advantages over some environments you
might have used in the past. For example, FrontPage properly color-codes
the ASP script code so you can easily see it. If you don’t get this functional-
ity, choose the Tools➪Page Options command. You see the Page Options
dialog box. There you simply choose the Authoring tab, check the Active
Server Pages option, and click OK. Presto — full access to ASP functionality
in FrontPage.

FrontPage 2003 also provides full database-integration features for ASP and
ASP.NET developer. You create the connection using one of the wizards
available in the Insert➪Database menu. The wizard writes the code for you,
but the resulting code still suffers from the same limitations as code that a
human programmer would write:

✦ Because ASP is a server-side script, you lose some advantages that
FrontPage 2003 normally provides, such as IntelliSense. You can
still write the script and it still appears in the correct format, but the
IntelliSense feature doesn’t work because FrontPage doesn’t know what
to do with the script code you create.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 345

Developing Simple Dynamic Pages346

✦ You lose use of the Preview view. The HTML elements appear in Preview
view but not the results of any ASP code you create. Consequently, you
can’t use Preview view to test the output of your page — you must use a
browser and possibly more than one browser depending on your client
requirements.

Developing Simple Dynamic Pages
One of the best additions to FrontPage 2003 is Dynamic Web Templates — a
replacement for the Shared Borders technology used in older versions of
FrontPage. (You can still use the technology in newer versions of FrontPage,
but this technology will produce better results when you need to support
changing content.) Dynamic Web Templates, or DWT files, provide a special
means of creating content where some information changes based on the
template and other information changes based on the individual page. You
begin by creating the DWT file, which is a special form of HTML page. Some
areas of the HTML page are editable; others aren’t. For example, you might
include a company logo or list of standard links. Using this technique lets
you change all the common areas of a Web page by making a single change.
It also reduces the chance that someone using the Dynamic Web Template
will change a common area.

Creating a Dynamic Web Template
You won’t find a menu option or any other FrontPage feature for creating a
Dynamic Web Template. Microsoft suggests you create a standard HTML file,
then use the File➪Save As command to save it as a Dynamic Web Template.
This technique leaves an extra file on your hard drive, so it’s not the best
method to use. For a method that doesn’t leave any extra files lying around,
follow these steps:

1. Right-click the folder where you want the Dynamic Web Template to
appear.

A context menu appears.

2. Choose New➪Blank Page from the context menu.

3. Name the file and add a DWT extension to it rather than the normal
HTM extension.

4. Add all the normal properties to the DWT file, including a title and
summary.

Don’t add a base location for the page because you don’t know where
the attached page will appear on the Web site. This is one of the items
you have to fill out for each individual page.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 346

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Developing Simple Dynamic Pages 347

5. Add examples of all the content you want to see on the page.

When working with common content, make sure the entries are in final
form. For example, any logo or common links should contain the real
information you want to see on the Web site. On the other hand, provide
blank or example entries for content that appears on individual pages.
You could type instructions (or some indicator as simple as The Header)
on the page. The idea is to provide the Dynamic Web Template user
some idea of what content to provide.

Providing editable regions
After you finish creating the Web page, you define editable regions for the
user. An editable region is an area where the Dynamic Web Template user
can make changes. When a page lacks editable regions, the user can’t make
any changes.

It may seem that a page without editable regions is pretty much useless
because the user can’t make any changes to it. However, a page without
editable regions is useful for certain kinds of information. For example, you
might need to provide licensing or other terms as part of a subsite. You
can’t really point to a central location for the page when a subsite is sup-
posed to remain independent, so using a Dynamic Web Template provides
a means to create standardized terms on all subsites. In addition, a single
change in the template also affects the subsites, so licensing terms don’t
get outdated.

To create an editable region, follow these steps:

1. Highlight the area you want the user to edit on your Dynamic Web
Template.

2. Right-click the DWT page and choose Manage Editable Regions from
the context menu.

You see the Editable Regions dialog box shown in Figure 6-6.

3. Type a name for the region you highlighted and click Add.

4. Click Close.

You see the editable region added to the Design view. The editable
region appears as a box around the text with the name of the editable
region displayed near the top-left corner. Figure 6-7 shows a typical
example of editable regions. The selected editable region appears
highlighted — other editable regions appear on-screen but are
grayed out.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 347

Developing Simple Dynamic Pages348

From a coding perspective, editable regions appear as special comments.
Here’s a typical example of an editable region.

<!-- #BeginEditable “BookTitle” -->
the book

<!-- #EndEditable -->

Figure 6-7:
View
editable
regions in
Design
view.

Figure 6-6:
Create
editable
regions so
the user
can make
changes.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 348

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Developing Simple Dynamic Pages 349

The #BeginEditable comment starts the editable region. It always includes
the name of the editable region as part of the comment. The #EndEditable
comment completes the editable region. You always end the current editable
region before starting a new one.

The Editable Regions dialog box also provides options for renaming, remov-
ing, and going to editable regions. To use it to rename an editable region,
follow these steps:

1. Right-click an existing editable region.

A context menu appears.

2. Select Manage Editable Regions from the context menu.

You see the Editable Regions dialog box.

3. Create, remove, or go to an editable region:

• To create a New region: Type a new name for the editable region
and click Rename. Note that the Rename button replaces the Add
button shown in Figure 6-6.

• To remove an editable region: Select it in the Other Regions on this
Page list of the Editable Regions dialog box and click Remove.

• To go to an editable region: Select its entry in the Other Regions on
this Page list and click Go To.

4. Make sure you add editable regions in Code view as well.

For example, you want the user to change both the keywords and
description for the Web page in most cases. When you don’t add
editable regions for these entries, FrontPage refuses to let the user
change them.

FrontPage automatically adds the doctitle editable region to ensure that
the user can at least change the document title, but you must add entries for
every other change you want to make. Here are typical editable regions for
the keywords and description.

<!-- #BeginEditable “Keywords” -->
<meta name=”keywords” content=”Dynamic Web Template”>
<!-- #EndEditable -->
<!-- #BeginEditable “Description” -->
<meta name=”description”

content=”This template file contains settings used to
control the appearance of another Web page.”>

<!-- #EndEditable -->

You must add these entries manually because you make them in Code view
and there isn’t any way to add them elsewhere. The Editable Regions dialog
box won’t highlight the Add button in this case. Make sure you assign unique

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 349

Developing Simple Dynamic Pages350

names to these editable regions. In addition, FrontPage doesn’t catch changes
to the heading, so you need to manually update your pages in this area when
you don’t make changes in other areas.

Adding a Dynamic Web Template
to an existing page
You can create a page based on a Dynamic Web Template in several ways.
The first technique is also the easiest. Right-click the DWT file in the Folders
List and choose New from Dynamic Web Template from the context menu.
FrontPage creates a new Web page based on the Dynamic Web Template. It
automatically opens the file so you can make required changes and perform
any required editing. Remember to change the page properties as needed to
ensure you document the Web page and its purpose.

Another way to add a Dynamic Web Template is to create a new Web page as
usual, and then follow these steps:

1. Choose Format➪Dynamic Web Template➪Attach Dynamic Web
Template.

You see the Attach Dynamic Web Template dialog box.

2. Locate the Dynamic Web Template you want to use and then click
Open.

FrontPage automatically adds all required information to your existing
Web page. You see a dialog box confirming the change.

3. Click Close.

Performing updates
You perform updates to pages attached to Dynamic Web Templates in a
number of ways. The most common technique is to perform the update
when you save the page. After you make changes to the DWT file and click
Save to save it, FrontPage detects any pages attached to the DWT file. When
it detects attached pages, FrontPage displays a dialog box asking whether
you want to update the page. Click Yes to perform the update. You can also
choose the Format➪Dynamic Web Template➪Update Attached Pages com-
mand to update the pages as needed.

When you open a page that relies on the Dynamic Web Template, use the
Format➪Dynamic Web Template➪Update Selected Page command to update
it. Normally, you don’t want to use this approach because it’s better to per-
form updates on all pages at one time. Using this technique leaves some
pages without updates and could cause problems on your Web site. The
command is useful as a double check to ensure a change was made and has
taken effect.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 350

Book IV
Chapter 6

Creating Dynam
ic

W
eb Sites

Using the Dynamic Web Template Toolbar 351

Using the Dynamic Web Template Toolbar
FrontPage provides the Dynamic Web Template toolbar to make working
with DWT files easier. This toolbar doesn’t appear by default. To display it,
right-click the toolbar area and choose Dynamic Web Template. FrontPage
displays the toolbar, as shown in Figure 6-8.

Manage Editable Regions

Regions

Show Region Labels

Update Attached Pages

Figure 6-8:
Use this
toolbar to
manage
your
Dynamic
Web
Template.

Heading off trouble with the
Dynamic Web Template

When you add a Dynamic Web Template to an
existing page, FrontPage overwrites any con-
tent that doesn’t appear in an editable area. For
example, you might set the author meta tag
to George Smith in the original page, like this:

<meta name=”author”
content=”George Smith”>

After you add the template, the author name
could change to Amy Cookwhen the author
meta tag doesn’t appear as an editable region
in the Dynamic Web Template. These subtle
changes are often difficult to detect and can
cause problems when you build part of the
page content before applying the Dynamic Web
Template. The easiest way to cure this problem
is to apply the Dynamic Web Template as early in
the Web page development process as possible.

One change that FrontPage makes to the Code
view of Web page that use Dynamic Web
Templates is the addition of highlighted code.
(The background color is normally yellow.) This
code doesn’t appear in an editable region in the
template. You can change the code, but doing
so isn’t a good idea because the next update to
the template will overwrite your changes. When
you make a change in one of these areas,
FrontPage displays a Dynamic Web Template
Alert dialog box. You can choose to lose the
edits you made or keep them. The dialog box
warns these changes will disappear during the
next update unless you detach the page from
the Dynamic Web Template. Select the Detach
from Dynamic Web Template option to keep the
changes you make permanent.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 351

Using the Dynamic Web Template Toolbar352

The Dynamic Web Template toolbar contains only four entries by default.
Here’s a description of the purpose of each entry.

✦ Regions: Contains a list of editable regions on the Dynamic Web Template.
Select one of the entries, and FrontPage takes you to that editable region.
You can use this feature to locate editable regions quickly so you can edit
them. The list won’t include any special editable regions, such as those
that appear in the document header.

✦ Manage Editable Regions: Displays the Editable Regions dialog box.
This dialog box lets you add, remove, rename, and locate all the editable
regions in your Dynamic Web Template.

✦ Update Attached Pages: Lets you update the attached pages without
using the menu option.

✦ Show Region Labels: Shows or hides the region labels displayed for the
editable regions. You normally want to display the labels to make it easier
to find an editable region of interest. Hide the labels when you want to
verify the layout and ensure it meets specific needs.

24_575317 bk04ch06.qxd 9/24/04 7:57 PM Page 352

Chapter 7: Developing
with Security in Mind

In This Chapter
� Defining security requirements

� Developing a security plan

� Securing Web page inputs

� Tracking security problems

Security is one of the few computer issues that everyone has heard
about — the other evening, it made the evening news. It’s an issue that

many people discuss because there’s a lot at stake: The data you create and
the information you store are at risk without good security. Even your per-
sonal identification could be at risk — identity theft has become more than
just a trivial problem encountered by a few people. At the very least, you
need to consider what happens when a cracker steals your server and uses
it to attack someone else. The blame will rest on you because you’re easy
to find.

You see a number of confusing terms on the Internet about computer experts
who either cause or fix security problems. The correct term in the industry
for someone who causes security problems is cracker. Crackers usually break
into systems to look for data, install special nefarious applications, or per-
form other misdeeds. A hacker (the white-hat variety, at least) is someone
who fixes security problems or at least finds their cause. In many cases,
hackers work for security companies and locate potential security holes
before crackers do. Many hackers who identify themselves openly as such
love to work with computers at a low level to help people — and struggle
to overcome the stigma created by those who cause problems.

FrontPage provides a number of methods you can use to improve the secu-
rity of your Web page. In fact, you can thwart the efforts of casual crackers
quite easily — but as a cracker’s experience improves, the fortifications you
set up using FrontPage won’t be enough to keep the cracker out. You use
monitoring and the services of white-hat hackers to keep advanced crackers
at bay. By building security tiers for your system, you can prevent — or
quickly detect — most security problems.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 353

Considering the Security Issues354

Considering the Security Issues
Security isn’t just about creating robust applications or restricting user
activity. Great security relies on a number of techniques. The fundamental
word to use with security is active. Passive security — building fortifications
against outside invaders — simply doesn’t work. Any fortification you build
is easily overcome by smart crackers. The active developer is the one who
wins the day.

Monitoring cracker activities
Knowing your enemies is an important part of keeping them at bay. It’s easy to
say that you should check your system for signs of cracker activity; it’s quite
difficult to know where to look. Unless you check every file on your system
every day against a known good standard, you can’t even be sure that your
hard drive is safe, much less the data loaded from the hard drive into system
memory. The basics, however, you can implement right away:

✦ Study up. The best way to start monitoring cracker activities is to track
the exploits crackers are using through trade-press articles. Because
cracker exploits are big news, you can monitor them through the major
news magazines online such as eWeek (http://eletters.eweek.com/),
InfoWorld (www.infoworld.com/), and ComputerWorld (www.computer
world.com/). Your local newspaper isn’t a good source of information
because it normally doesn’t track all the current cracker exploits — and
only lightly covers those it does.

✦ Be actively aware of your Web site. Make sure you visit the site to see
how it works. Administrators often get so wrapped up in producing new
content that they don’t visit the site they create and are unaware of
problems with it until a user notifies them. Changes in performance,
unexpected content, modified URLs, hidden content, and other prob-
lems are all clues that someone has gotten past your security.

✦ Look at the logs of your system. When you notice unusual activity by one
or more parties, you should suspect potential cracker activity. Someone
visiting a Web page with fairly static content is a sign of activity other
than simple viewing, especially when that Web page provides data fields
or other interaction. A cracker entering a script within the data fields of
a form and then submitting it is a common way of gaining access to the
server.

✦ Keep track of the user accounts on your server. A cracker often begins
working with a server by using a current user account, but many crackers
use such an account as a steppingstone for creating their own accounts.
In many cases, the cracker doesn’t create just one account, but several —
with varying levels of access — to ensure continued access should you
discover one account.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 354

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Considering the Security Issues 355

Sometimes your best bet is to employ the services of a good-guy hacker to
test your site security. Security firms that employ hackers to test security
from the outside can usually tell you which techniques a cracker is likely to
employ to gain access to your site. This isn’t a one-time check. Sealing the
cracks in your security that hackers and crackers know about today won’t
prevent new security cracks from appearing tomorrow.

Crackers sometimes use odd methods of gaining access to your system.
More than one cracker has appeared within the offices of a company as a
janitor in order to look for passwords conveniently posted near monitors
or in other common places on a desk. Dumpster-diving is another common
technique. The piece of paper you throw away today could provide a cracker
with access to your system tomorrow — a technique that also works with
home users. The cracker commonly looks for a bill from the Web-hosting
company for services rendered. The bill commonly contains account infor-
mation the cracker needs to gain access to your system.

Some people also assume that some passwords are secure. The fact is that
once a cracker has an account name, guessing the password isn’t all that dif-
ficult. Even if you have mangled passwords that contain letters, numbers,
and special characters — such as Az2@jiL^)99 — a cracker can use any of a
number of special applications to figure the password out. Your only practi-
cal defense is to change your password regularly (at least once a month).
This technique costs the cracker time discovering your new password.

Checking for viruses
Every Web server should have at least one virus-checking application to
monitor the system for infestations. Of course, the virus checker doesn’t
have much value if you don’t keep it updated with new virus signatures; in
this area, too, good security is an ongoing process. In addition, you should
ensure that the virus checker is set up to monitor the Web server and asso-
ciated files, as well as the other parts of the server. Keeping the Web server
separated from the company network or adding multiple layers of firewalls
also helps.

Assuming you’ve already performed all the usual checks, it helps that you
look for the unusual, too. For example, when users complain about system
slowdowns, you normally check system performance by using System
Monitor (located in the Performance console in the Administrative Tools
folder of the Control Panel). When you do detect a performance problem,
the next step is to analyze and consider its cause. In some cases, the slow-
down is the symptom of a virus at work. A virus, like any other application,
uses system resources that you can measure. Changes in available hard-
drive space, memory, and processing speed can all indicate the presence
of a virus that your virus-checking software hasn’t detected.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 355

Considering the Security Issues356

Some viruses today are designed to disable virus checking. When you see
the virus checker isn’t running or doesn’t appear to do any useful work, it’s
time to suspect a virus on your system. Also check for other errors on your
Web site. For example, verify that your Web applications all run as expected.
Use FrontPage to make the checks easier by running through the files on your
Web site quickly.

Considering internal threats
Many organizations consider internal threats a greater problem than any-
thing that occurs outside a company. Part of the problem is the organization
most companies use. No one is looking at internal user activities because it’s
assumed that the threat of job loss is enough to deter most criminal activity.
In addition, the internal user already has some level of access to the Web
server — you can’t block the user completely and expect any progress on
the Web site. Finally, most fortifications — including virus checkers and fire-
walls — point to outside sources of danger. It’s actually better to create a
wall around every machine in the organization to ensure that a problem on
one doesn’t spread to others.

You can use FrontPage to monitor internal as well as external threats. For
example, FrontPage always shows the last person to edit a file on the system.
The Folders view shows this information in the Modified By column. Look
for editing patterns. First, look for edits from users who probably shouldn’t
modify the file in question. Verify they actually made the change and deter-
mine why the change was made (when necessary). Second, look at the
Modified Date column to determine when the user made the change. A late-
night change could indicate the user is overworked, but it could also show
changes that could cause problems for your company. Whenever someone
begins acting out of character, you need to consider why his or her pattern
of working with the Web site has changed.

Make sure you remove accounts for old employees immediately after they
leave the company. Ex-employees have a distinct advantage over most crack-
ers because they already have an account (the one you failed to remove) and
knowledge of your network layout. Many of the worst security breaches were
made by disgruntled ex-employees, not by outsiders who had no knowledge
of the company and its procedures.

When you let an employee go, make sure everyone in the company knows
about it. The idea is to prevent the ex-employee from gaining access through
social-engineering attacks — attempts to get remaining employees to reveal
sensitive information (including current user names and passwords) by
impersonating a network administrator or faking an emergency.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 356

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Creating a Security Plan 357

Understanding security fails without monitoring
It’s worth repeating: Security isn’t a task you perform once or twice and
consider done. It’s a task you perform continuously — updating and patch-
ing software, making sure your virus and firewall protection is up to date,
and maintaining protection both internally and externally. Even so, imple-
menting these strategies usually isn’t enough.

Only through continuous system monitoring can you hope to achieve a high
level of security — and even then you have to prepare for the day when some-
one gets through your defenses. Nothing you can do will ultimately prevent
a determined cracker with the proper resources from breaking through and
potentially doing some damage. You can, however, make your security tight
enough to discourage the cracker — and you can even detect the cracker
early enough to prevent significant damage.

Some developers, after considering all the requirements for good security,
throw up their hands and declare it a lost cause. But a secure environment
in which to work isn’t all there is to good security. Good security also helps
reduce a number of other problems:

✦ Secure applications are more robust, so they fail less often and are usu-
ally easier to use.

✦ Developing a secure application also means paying attention to details
that could result in improved performance as well.

✦ Developing a secure environment means building good applications,
updating your system as needed, and monitoring the system for poten-
tial problems. All these steps also improve reliability and performance.

Creating a Security Plan
Even if you have a personal Web site that you think no one would ever want to
bother, it’s important to have some type of security plan in place. The reason
for creating a security plan is to ensure you handle security needs consistently
and that you have a procedure in place when someone does manage to break
into your site. A security plan also provides a means of creating a task list,
things you must do to secure the site, so you can track security needs as they
become apparent. A good security plan contains the following elements as a
minimum:

✦ Develop specific security areas such as system patching, virus-checker
signature updates, file checking, performance checking, user-account
checking, and Web-log verification.

✦ Make the security plan organization-specific. Think about the worst things
that could happen to your system, such as the release of customer infor-
mation, and add a security check for that item.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 357

Checking Inputs358

✦ Define who’s responsible for particular security areas. Don’t assign
groups to security; make one person ultimately responsible to ensure
that the task is performed.

✦ Implement a contact list that includes local authorities so you don’t have
to look for the information when a security breach occurs. Define which
list members to contact to handle specific kinds of security breach.

✦ Provide a security training schedule and plan. Even if you have a two-
person organization, both people should know their roles for maintain-
ing system security.

✦ Create an emergency plan that assigns specific jobs to people in your
organization. An emergency plan reduces confusion when an attack does
occur and ensures that all requirements are handled.

Even a great security plan is worthless if you don’t update it. Plan to review
your security plan every time someone on the security team leaves the com-
pany. Assign someone to the vacant position immediately — and make the
review one of the first tasks for the new employee — to ensure that your secu-
rity plan continues to work. You should also plan to do regular reviews. Many
companies review security annually, but you might want to review your secu-
rity plan more often when you have a lot of sensitive data to protect.

Checking Inputs
FrontPage provides a number of methods to improve the security of your
system. Some of these methods rely on common HTML additions that you
should add for other reasons. For example, checking input lengths helps
prevent crackers from sending a script to your server. However, it also cues
you in to problems the form user might have so that you can offer assistance
through a help system. Other techniques help you ensure both the accuracy
and security of the data. For example, checking for data input patterns helps
ensure the information the user provides is accurate, but it also reduces the
chance of a cracker entering the wrong information just to see how the server
will react. Only a few techniques are security-specific. Asking a user for name
and password — normally done only on secure Web sites — is one of the few
exceptions.

Considering the input data length
The easiest defense to implement against crackers is one that many develop-
ers fail to use: Define specific input lengths for the data fields on any form you
create. By limiting the size of the data input, you limit the things a cracker
can do.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 358

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Checking Inputs 359

For example, it’s relatively difficult to create a script that fits within the
14 characters allowed for a typical telephone number (some are longer,
depending on where you want to call). Even name and address fields can
have specific limits. To ensure maximum compatibility, you can use the
HTML approach shown here for a textbox.

<input type=”text” name=”LengthCheck”
size=”20” maxlength=”20”>

The maxlength attribute defines the maximum length of this field. Every
browser that supports forms also supports and honors this limitation. When
you combine this field with a POST (rather than a GET) submission method,
only the most determined cracker can circumvent the length limitation.

Sometimes you don’t want the user to submit the form with a blank field,
so you define a minimum and maximum field length. The advantage of this
approach is better control. The disadvantage is that it’s less compatible
because it relies on scripting. To use this technique, follow these steps:

1. Right-click the field and choose Form Field Properties from the con-
text menu.

You see the Control Properties dialog box.

2. Click Validate.

You see the Control Validation dialog box shown in Figure 7-1 (this one is
text box specific).

3. Check Required in the Data Length group, type the minimum and
maximum field lengths, and click OK twice.

FrontPage adds minimum and maximum field length checks.

Figure 7-1:
Select text
length
validation
to ensure
the user
provides
required
input.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 359

Checking Inputs360

When you view the results of adding the validation to the form, you still see
the maxlength attribute, so all browsers will check the maximum length.
However, the minimum length check relies on a webbot as shown here:

<!--webbot bot=”Validation” B-Value-Required=”TRUE”
I-Minimum-Length=”5” I-Maximum-Length=”20” -->

The Validation webbot depends on the I-Minimum-Length and I-Maximum-
Length attributes to define the acceptable input sizes for the field. This is
a client-side webbot, so it works even when your Web server doesn’t sport
FrontPage Extensions. Look in the resulting Web page using a text editor and
you see a script that checks for three conditions.

✦ Has the user entered a value? If not, the check fails and the script dis-
plays an error message.

✦ Does the input have the minimum number of characters? If this check
fails, the script displays a different error message.

✦ Is the maximum number of characters exceeded? If so, the check fails
and the script displays yet another error message.

When all three checks succeed, the Web server accepts the form.

Because the validation script performs a second check of the submission
data — maximum length — it’s even less likely that someone will provide
a value that exceeds the maximum length. The first check (the maxlength
attribute) merely prevents a user from typing any more characters in the
field once the maximum length is reached. The second check (the script)
actually checks the incoming data to ensure that it doesn’t exceed the maxi-
mum length. You get two checks instead of one.

Defining data types
In most cases, you can define a maximum length for the input a user will
provide and in some cases you can define a minimum length as well. These
limits will reduce the chance of getting a virus or a break-in on your Web
server, but they aren’t always convenient. For example, you might want the
user to provide an opinion that could exceed the limits you set. When this
problem occurs, you can set a high limit and further reduce the chance of
problems by defining a data type. In fact, defining a data type also comes in
handy for ensuring the user provides the right kind of data, such as when
you need numeric input.

Unfortunately, you can’t add any attributes to an HTML tag to check for data
type, so you need to use a script. To add a data type checking script to your
Web page, follow these steps:

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 360

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Checking Inputs 361

1. Right-click the control and choose Form Field Properties from the
context menu.

2. Click Verify.

You see the control Validation dialog box shown in Figure 7-1.

3. Choose one of the options from the Data Type field.

These options include

• Text: The user can enter specific kinds of text such as letters, spaces,
digits, and special characters. You define the characters the user can
input.

• Integer: The user can enter only integer values — a whole number
without any decimal part.

• Number: The user can enter an integer or a real number (one that
has a decimal part).

Whenever you set a data type constraint, make sure you include a default
value for the field that shows what you expect the user to provide. Include
a default value that is the most common value or a default value that you
never expect the user to provide. The benefit of the first approach is that
you save the user time and effort. However, some users will simply leave the
default value even when another value is better. Using the sample you never
expect the user to provide makes it possible to check for changes to ensure
the user has input a proper value.

Working with text
The Text data type provides the most flexibility in allowing the user to enter
information on a Web page. When you select this option, FrontPage changes
the control Validation dialog box as shown in Figure 7-2. Notice that the Text
Format options are enabled and that the form specifies a maximum field
length to ensure the user doesn’t input too much data.

The user can type any letter or add a space in this case. However, the user
can’t type sentences because the field won’t allow it. To allow sentences
that end with a period, question mark, or exclamation point, you select
Other and type these values into the associated field. The user can’t type
any numbers in this case because they aren’t allowed either. Make sure you
test out a constraint before you make it active to ensure the user can type
needed information without exposing your Web site to bad input.

As another example, you might want to allow the user to input a telephone
number. In this case, you select Digits and Other. Type the common addi-
tions for telephone numbers, including (,), and -, in the Other field. This
technique ensures that the user can type only telephone-like information,
but doesn’t assure you get a telephone number. A user could simply type

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 361

Checking Inputs362

0123456789 and the field would accept it. In short, you can keep the data
clean using this technique, but it doesn’t ensure that the user provides valid
information.

Working with numbers
Numbers are more flexible than integers because you can enter decimal values
such as 1.1. When you select Number as the data type, FrontPage enables the
Numeric Format options as shown in Figure 7-3. These options define which
characters are allowed in a specific position within the input. Using the cur-
rent settings, a value of 5,000.0 is acceptable, but 5.000,0 isn’t (the Web page
would display an error). The special characters are also positional. The user
can’t type a number such as 50,00.0 because the comma isn’t in the right
place. The formatting you choose doesn’t affect the user’s ability to enter
the number without formatting — typing 5000.0 is acceptable in all cases.

Figure 7-3:
Define the
style of
numeric
input you
can accept.

Figure 7-2:
Use the text
data type for
maximum
flexibility.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 362

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Checking Inputs 363

When working with numbers, you should either set a minimum and maxi-
mum field length, or better yet, define the acceptable numeric range. Figure
7-3 also shows how to set the Data Value options. In this case, the field will
accept values between 0 and 5,000.

Working with integers
Integers are very restricted when compared to the other data types, but
that’s what makes them so useful from a security perspective. Use Integer
whenever you expect the user to input a value such as 1 and don’t want any
other kinds of values. For example, you might ask the user how many tele-
phones she owns. No one can own 1.5 telephones, so eliminate this value as
a possible response by using the Integer data type.

As with the Number type, FrontPage enables the Grouping options. However,
it doesn’t enable the Decimal options because the user can’t type a decimal
with this data type. You also want to provide a valid range of inputs with an
Integer to ensure you maintain full control over the input.

Enforcing specific data inputs
The best way to ensure the user provides only the data you want is to limit
the responses to those that you expect by using a drop-down list box, check-
boxes, or option buttons. All these techniques have one thing in common:
They limit the number of choices the user has, as a way of preventing unex-
pected input. Each of these approaches offers advantages:

✦ Option buttons allow only one choice out of the options provided, so
they’re very explicit; a cracker would have a hard time passing a script
or other unexpected input as part of an option-button field. The option
button has a single validation feature; you can require the user to make
a choice. However, when you set one of the options as the default option,
the user makes a choice automatically, so validation isn’t required.

✦ Checkboxes let the user choose one or more choices from a list of selec-
tions, so you can get more than one value as input, but only the values
you expect. You don’t have any validation options with a checkbox
because none are needed — the user can’t make an invalid selection.
Both checkboxes and option buttons let the user see all available choices,
so they let the user make a choice quickly. Unfortunately, both options
also require considerable room, so they aren’t the best options when
you need to display a lot of options.

✦ The drop-down list box provides a wealth of options (as shown in Figure
7-4), so you need to set it up carefully. You create two or more options as
part of the initial setup. (Theoretically, you can create just one option, but
then you should probably use a checkbox instead.)

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 363

Checking Inputs364

A drop-down list box can act as an option button or as a checkbox-type
selector. Setting Allow Multiple Selections to Yes creates a checkbox-
type selector.

You control two aspects of validation with a drop-down list box. The first is
Data Required. This option forces the user to make a choice. The second is
Disallow First Choice. Use this option when the first selection is an indicator
of what the user should do, rather than an actual option.

Recognizing data patterns
Data patterns reflect the way data is formed. For example, when you see
(555) 555-1212, you know that it’s a type of telephone number. The pattern
defines the kind of data displayed. Of course, people use many other forms of
telephone numbers, and not every telephone number is 7 digits long with an
optional 3-digit area code. People who live somewhere other than the United
States could have any number of digits in the telephone number. The point is
that every telephone number has some kind of pattern that you can detect.

FrontPage doesn’t have a native capability for data-pattern recognition.
However, you can still use data patterns on a Web page without resorting
to scripting. The secret is to break down the pattern into something
FrontPage can work with and that won’t confuse the user.

Creating a data pattern for phone numbers
In the case of a United States telephone number, you can break the problem
down into three groups: the area code, the prefix, and the suffix.

To create the data pattern, create three text boxes, each with a specific
length. The area code might be optional, so you could set the length to 3
but not specify a minimum length. The prefix — the three-digit number

Figure 7-4:
Create
various
effects
using the
Drop-Down
Box options.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 364

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Checking Inputs 365

that identifies a dialing area — is always required, so you can set the mini-
mum and maximum length to 3. Likewise, the suffix (the actual telephone
number) is always four digits, so you can give it a maximum and minimum
length of 4. All three values are digits, so you can choose that text constraint
to control the user’s input.

Using hidden input to unify the phone number
The only problem with this approach is that you now have three numbers
sent to the server as input. At some point, you must combine the individual
elements so you can use them as a telephone number. One of the methods
you can use to perform this task is to create a hidden input on the page. To
create hidden input, follow these steps:

1. Right-click the page and choose Form Properties.

2. Click Advanced and you see the Advanced Form Properties dialog box.

3. Click Add.

FrontPage asks you for the name of a hidden input.

4. Type the name in the Name field and a default value in the Value field.

5. Click OK.

FrontPage adds the hidden input. You won’t see this hidden input any-
where except in Code view. (But then, that’s the idea.)

After you create the hidden input, add a script to support it. Place this script
in the header of the page. It doesn’t have to be complicated. Here’s a typical
example:

<script language=javascript>
function GetTelephone()
{

// Update the hidden input so it contains the telephone
// number.
MyForm.txtCombinedTelephone.value =

“(“ + MyForm.txtAreaCode.value +
“)” + MyForm.txtPrefix.value +
“-” + MyForm.txtSuffix.value;

}
</script>

This script takes the values of the three fields the user can see and adds
them to the hidden input. Each of these inputs appears on the MyForm form,
so that’s the first piece of information used to access the input. You supply
the name of the input next, followed by the value property, which is a means
of accessing the value of the input. The code also adds special formatting
characters. The resulting output looks like a standard telephone number,
(555)555-1212.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 365

Tracking Security Problems366

To get the final form of the input, create a connection between the area code,
prefix, and suffix inputs and the script so the hidden input is updated. Here’s
one of the tags used in the example:

<input type=”text” name=”AreaCode” size=”3” id=”txtAreaCode”
value=”555” maxlength=”3” onchange=”GetTelephone()”>

FrontPage makes all but one of the entries for you automatically. You add
the onchange attribute. Whenever the user changes the field, the Web
server calls the GetTelephone() script to update the hidden input.

Tracking Security Problems
Assume that someone is going to break your application and overcome all
your defenses — because, in the real world, someone almost certainly will.
Patching your system does help. Building robust applications really does
reduce the chance that someone will find the tiny chink in your application
armor. However, the best defense against crackers is monitoring — keeping
an eye on your system, knowing how it works, and keeping track of inconsis-
tencies. Careful monitoring helps you locate and deter crackers.

FrontPage can help you achieve this goal. The various reports not only help
you monitor the Web site, they also help you create a view of system secu-
rity. For example, you can check the Recently Added Files report to see which
files have been uploaded to the Web site. When you see a new file by George
added to the advertising section of the Web site — and you happen to know
that George works in accounting — that’s a cue that you need to perform
additional investigation. In fact, any new or updated file is suspect. Make
sure you check the validity of each file.

Another report that provides clues is the Hyperlinks report. Look for unveri-
fied hyperlinks. Sometimes a cracker will send users on your site to another
location — one with content of dubious value. A hyperlink that you didn’t or
can’t verify always requires checking anyway to ensure the Web page will
work as anticipated.

Sometimes a cracker will try to plant software on your system using a modi-
fied component. The cracker hopes you won’t notice the change; after all,
the component is “supposed to” be on the system. Often the modified com-
ponents display errors that you can detect by using the Component Errors
report. When a component suddenly experiences errors after working
correctly for a long time, that’s a signal to check it as a possible source
of infection.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 366

Book IV
Chapter 7

Developing w
ith

Security in M
ind

Tracking Security Problems 367

You can use FrontPage to monitor certain kinds of cracker activity, but the
protection afforded by FrontPage isn’t complete. You also need to choose
other monitoring aids. For example, FrontPage doesn’t monitor or protect
the files on your server’s hard drive, so you need to use other applications
to perform this task. The idea is that FrontPage provides one more tool in a
complete security toolbox. Use an array of tools to cross check areas of your
system for possible entry.

But other Windows tools exist, and should be used. For example, when you
suspect a user account is compromised, add an audit check to it. The user
sees nothing, but the Event Log contains entries that show when the user
logs in and out. By monitoring these times and verifying them with your
users, you can often detect crackers at work.

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 367

Book IV: Advanced Design368

25_575317 bk04ch07.qxd 9/24/04 7:51 PM Page 368

Book V

Databases

26_575317 pp05.qxd 9/24/04 8:08 PM Page 369

Contents at a Glance
Chapter 1: Creating Interactive Web Pages with Excel ..371

Chapter 2: Creating Interactive Web Pages with Access ..389

Chapter 3: Developing Applications with SQL Server ..411

26_575317 pp05.qxd 9/24/04 8:08 PM Page 370

Chapter 1: Creating Interactive
Web Pages with Excel

In This Chapter
� Working with Excel as a database

� Defining a connection to Excel

� Using various controls with Excel data

Databases have many things in common. Although freeform databases
exist, most databases are organized in some way. The most common

organization is the the kind found in relational databases, which relies on
records and fields arranged as tables of data. These tables are often related
to each other in some way by using common fields. For example, an invoice
database could relate an order table and an items table using the customer ID.
Using Excel, you can create a specialized kind of database called the flat-file
database. A flat-file database is actually less capable than a relational data-
base because it does not allow you to create multiple tables and relate them
in some way. For example, a relational database might contain two tables, one
for the customer identification and another for customer orders and relate
them through a customer ID number. However, flat-file databases are very
easy to understand and use for tasks that don’t require multiple tables.

As in a relational database, Excel’s flat-file databases allow you to create
relatively simple tables consisting of records (rows) and fields (columns).
These tables can contain multiple data types and allow you to perform tasks
such as sorting the data. Unlike relational databases, however, an Excel flat-
file database lacks flexibility. For example, although you can create complex
relations between multiple Excel tables, you must provide code to perform
the task, rather than rely on Excel to do it for you. True relational databases
can create multiple relations between tables automatically.

Excel does stand out in an area that most relational databases don’t, how-
ever: data analysis. Using Excel, you can not only create tables of data, but
also manipulate that data in various ways. You can perform a what-if analysis
to see what happens when you change one data element in a certain way,
solve complex problems with the careful use of formulas, and create differ-
ent views of the data based on specific input criteria. So, although Excel
doesn’t offer a perfect database, it does have special features.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 371

Defining Excel as a Database372

FrontPage includes features that help you make the best use of Excel —
as both a database and an analysis tool. In fact, Excel provides capabil-
ities that can handle the data that FrontPage generates automatically — for
example, compiling the output of forms that users submit on your Web site.
Consequently, it’s a good idea to know how to combine FrontPage and Excel
into a cohesive whole.

Defining Excel as a Database
Most people see Excel as a spreadsheet. It does work best in that capacity.
However, Excel also has powerful database capabilities. Microsoft has built
more database features into Excel with each version of the product. Early
versions of Excel could define a simple kind of database — columns headed
with names, and record entries to fill the columns with data — but why stop
there? Newer versions of Excel include a wealth of commands for importing,
exporting, and manipulating data in various ways. You find all those entries
on the Data menu shown in Figure 1-1.

Understanding Excel database functionality
Database functionality is a measure of what a database management system
(DBMS) can do for you. Excel provides a number of standard flat-file database
tools. You can sort the data and filter it. Filtering is especially important with
long lists of data because it helps you see just the important information and
disregard everything else without actually changing the data.

Figure 1-1:
Excel 2003
provides a
broad range
of data-
manipulation
options.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 372

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Defining Excel as a Database 373

Excel 2003 includes a number of other interesting features, such as the abil-
ity to group information, as shown in Figure 1-2. Grouping is a feature you
won’t find in any database, yet it’s consistent with database analysis features
that Excel provides. A group can include any set of like data. For example,
you could group a list of books by author. You can also outline data. An out-
line helps you organize data in a top-down fashion so you only see the level
of detail you actually need. For example, a sales report could show just the
totals, or it could show the information used to create the totals to any level
of detail supported by the spreadsheet.

Analysis is the primary feature of using Excel as a database. You can create
lists that make it easier to sort and filter the data. Pivot tables make creating
special reports easier because you can see the data results as a table. Excel
2003 can export data as eXtensible Markup Language (XML), so you can view
it directly within a Web page and modify the data views using techniques
such as eXtensible Style Language Transformation (XSLT).

It’s also possible to import data for use in a database from a surprising
number of sources using Excel 2003. For example, you can head to a Web
site, select a table, and import it into your existing worksheet. To import a
table from a Web site, select Data➪Import External Data➪New Web Query.
Type the URL for the Web site containing the table in the Address field. You
see the Web page and associated tables. Select the table and click Import.
You can see an example of an imported Web page table on the Web Page
Table tab of the SampleData.xls file found in the source code for this chap-
ter on the Wiley Web site.

Some Web services, such as the one provided by Amazon.com, even provide
enough information so you can make a query and import it into Excel as a
database. To try out this Web service feature for yourself, follow these steps:

1. Select Data➪Import External Data➪New Web Query.

You see the New Web Query dialog box.

2. Type this into the Address field and click Go:
http://xml.amazon.com/onca/xml3?t=webservices-20&dev-t=Your-Developer-

Token&AuthorSearch=John%20Mueller&mode=books&type=lite&page=1&f=xml

Excel queries Amazon for the data.

3. When you see the document appear in the window, click Import.

You see the Import Data dialog box.

4. Select a location for the data and click OK.

Figure 1-3 shows typical results from this query. You can also see the results
on the Amazon Web Services Query tab of the SampleData.xls file found in
the source code for this chapter on the Wiley Web site. Now that you have
the data in Excel, you can easily create a link to it in FrontPage.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 373

Defining Excel as a Database374

Figure 1-3:
Import Web
services
data into
Excel, then
display it in
FrontPage.

Figure 1-2:
Use groups
and outlines
to organize
Excel data.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 374

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Defining Excel as a Database 375

The query you created, in this case, includes several variables that are
unique to Amazon Web Services. The most important argument, in this case,
is AuthorSearch. This entry tells which author to search for. If you really
want to work with Amazon Web Services, you should download the required
kit from http://www.amazon.com/gp/aws/landing.html/ref=sd_str_
as_ws/. My book, Mining Amazon Web Services also contains a wealth of
information about this topic.

Working with FrontPage data
FrontPage stores data in a Comma Separated Value (CSV) file. The default
settings for a FrontPage form place the data a user creates in the _private
folder that appears directly below the main folder for your Web site. For
example, the output from any forms you create will appear in the _private
folder by default in the form_results.csv file. The examples in this chap-
ter use the SecurityCheckOut.csv file provided with the source code for
this chapter on the Wiley Web site.

You should use the _private folder to store Web page data for security rea-
sons because this folder isn’t accessible to outside parties. A cracker can’t
come along and use a browser to view the data you receive from other visi-
tors to your site. You change the default output by right-clicking the form
and choosing Form Properties from the context menu. You see the Form
Properties dialog box shown in Figure 1-4.

Modify the File Name field to point to a new file. The file always has a CSV
extension. You use a separate file for each form on your site so that it’s easy
to retrieve the data and analyze it. Excel offers great analysis features, but
you can use a database such as Access, MySQL, or SQL Server when you
want traditional storage capabilities.

Figure 1-4:
Create a
different file
for each
form on your
Web site.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 375

Creating Links to an Excel Worksheet376

Normally, you view the CSV file as text in FrontPage by double-clicking the
file. However, FrontPage lacks analysis capability and it’s very hard to per-
form tasks such as sorting the data. A better option is to use Excel to view,
edit, and manage the data as needed, even when you eventually display it
on a Web page. To open the file in Excel, right-click the file in the Folder List
and choose Open With➪Microsoft Office Excel from the context menu. Excel
opens the file and displays it as a table. You can now use any Excel feature to
work with the data.

Developing simple tables
You can either create your data in Excel or import data from another
application — but Excel won’t recognize your data as a table unless you
follow some specific rules:

✦ The first row of data always contains the field names. The actual data
doesn’t start until the second row. When you fail to observe this first
rule, you find that manipulating the data is much harder and some fea-
tures won’t work.

✦ You have to provide data entries for every field of every row. An
empty (or null) entry can cause problems with some Excel features. If
you put a nonentry (such as N/A or 0) in some fields, Excel is at least
satisfied that there’s something in there, and keeps working.

✦ The spreadsheet must contain a named range of cells that act as the
database. Make sure you include the field names in the range. To create
a named range, select the cells you want to use as the database and click
the Name Box field of the Formula toolbar. Type the name you want to
use for the named range and press Enter. The named range can’t include
any spaces or special characters.

✦ A database table is always “square” — every row has the same
number of columns. You can’t create a table that has some optional
entries in some fields and not in others. Make sure every field contains
just one value and every record contains entries for every field. The
SampleData.xls file provided with the source code for this chapter on
the Wiley Web site shows how to create a simple table on the Simple
Table tab.

Creating Links to an Excel Worksheet
You can create links to Excel using a number of techniques. How you go
about it depends on the output you expect Excel to provide — and the level
of interactivity the user requires. The most straightforward linking mecha-
nism relies on creating a database link. This technique works with a number
of Microsoft database products, including Excel, Access, and SQL Server.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 376

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Creating Links to an Excel Worksheet 377

Defining a new connection
You must create a new connection at least once while using FrontPage. A
new connection can use any Excel file. The following steps describe how to
create an Excel link:

1. Choose the Insert➪Database➪Results command.

You see the Database Results Wizard dialog box shown in Figure 1-5.
FrontPage provides support for both ASP and ASP.NET scripts when
working with database connections. Only use the ASP.NET option when
you have the .NET Framework installed on the server. Excel only sup-
ports two connection modes. You can use an existing database connec-
tion or you can create a new database connection.

2. Choose Use a New Database Connection and then click Create.

FrontPage displays the Database tab of the Site Settings dialog box.

3. Click Add.

You see the New Database Connection dialog box shown in Figure 1-6.

Figure 1-6:
Create a
new
connection
to the Excel
spread-
sheet.

Figure 1-5:
Select a
scripting
type and
connection
mode.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 377

Creating Links to an Excel Worksheet378

4. Type the connection name in the Name field. Choose File or Folder in
Current Web Site. Click Browse.

You see the Database Files in Current Web Site dialog box. FrontPage
assumes you want to use an Access database.

5. Change the file view by selecting Microsoft Excel Driver (*.xls) in the
File of Type field. Select the file you want to use. Click OK.

FrontPage displays the URL to the Excel spreadsheet in the New Database
Connection dialog box. This field appears directly beneath the Custom
Definition option in Figure 1-6.

6. Click OK.

FrontPage adds the new connection to the Database tab of the Site
Settings dialog box.

You should verify this connection to ensure that it works as anticipated.
In some cases, you need to provide a username and password or modify
other settings to make the connection work.

7. Click Verify.

FrontPage validates the connection and places a green checkmark next
to it.

8. Click OK.

You see the Database Results Wizard dialog box. FrontPage automati-
cally changes the selection to Use an Existing Database Connection and
selects the connection you just created.

9. Select Use an Existing Database Connection if FrontPage hasn’t already
done so. Choose the connection you want to use. Click Next.

FrontPage requests information about the record source you want
to use.

10. Select Record Source. Choose a named range from the list of named
ranges presented under the Record Source option. Click Next.

FrontPage displays a list of fields for the named range, as shown in
Figure 1-7. If you don’t see the list of fields or the list is incorrect, stop.
Click Cancel.

11. Verify that the named range is correct in your Excel spreadsheet.

To do so, choose Insert➪Database➪Results to display the Database
Results Wizard, and start again at Step 9 in this procedure. FrontPage
assumes you want to use all fields in the named range. If you don’t, then
click Edit List to change the fields that FrontPage displays. Click More
Options when you want to filter or sort the data as it comes from Excel.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 378

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Creating Links to an Excel Worksheet 379

12. Click Next.

FrontPage asks how you want to display the data. You can choose from a
table, a list, or a drop-down list. When using a list or drop-down list, you
can select only one field from those chosen from the named range.

13. Select a presentation format (the example uses the table) and click
Next.

FrontPage asks how you want to group the records. You can choose to
display all of the records together or split them into group of specific
record numbers. Using the grouping option for larger tables does make
it easier for the user to locate data, but it also splits up the presentation.

14. Choose a presentation and click Finish.

FrontPage adds the view to the current Web page. At this point, FrontPage
will tell you to save the file and change the extension to ASP or ASPX (if
you haven’t done so already) so the table works as expected.

After you create the new table and save the resulting page with either an ASP
or ASPX extension (depending on whether you used ASP or ASP.NET), you
can view it using a standard browser. The Preview view won’t work because
FrontPage doesn’t provide ASP support in this view.

Using an existing connection
When you already use an Excel spreadsheet on an existing page, you create a
link to the existing connection, rather than create a new one. Use an existing
connection whenever possible to reduce clutter, improve performance,
decrease memory requirements, and lessen the chance of connecting to an
old spreadsheet. To use an existing connection, choose Insert➪Database➪
Results to display the Database Results Wizard and follow Steps 9 through 14
of the “Defining a new connection” section of the chapter.

Figure 1-7:
Define the
way you
want to
use the
database
information.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 379

Creating Links to an Excel Worksheet380

Modifying a connection
You can modify the database connection at any time. To start the process,
right-click the table entry anywhere and choose Database Results Properties.
FrontPage warns you that you’ll reenter the Database Results Wizard and will
have to make all the same entries you did before.

What actually happens is that you see the Database Results Wizard with all
the selections you made earlier in place. All you need to do is follow the
same steps as before and make changes to these previous entries.

One of the more common changes you make is when you click More Options
after selecting the fields you want to view. You see the More Options dialog
box shown in Figure 1-8.

Customizing the Web page output is what you do to ensure that your user
sees just the required information and doesn’t have to wait around for
nonessential information. Here are five changes you can make:

✦ Criteria: Creates a filter for the results. To add a filter, click Criteria. You
see the Criteria dialog box. Click Add. Select a field to use for the filter
in the Field Name field. Choose an evaluation, such as equals, from the
Comparison field. Finally, type the actual criterion in the Value field. The
Value field entry must appear in the associated field or provide a com-
parison value that ASP can make. For example, you could look for all
fields with values less than 10.

✦ Ordering: Modifies the order in which items are sorted on the page.
To make a change, click Ordering. You see the Ordering dialog box.
Highlight the first sort field and click Add. (You can add as many fields
as needed.) Remove fields by highlighting the field name and clicking
Remove. Click Change Sort to alternate between an ascending or
descending sort order for a particular field.

Figure 1-8:
Customize
the output of
the Web
page to
match
specific
criteria.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 380

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Viewing Excel Data 381

✦ Limit Number of Returned Records: Determines the maximum number
of returned records. No matter how well you define the connection and
database query, the result set can be huge. Online connections aren’t
well suited to downloading huge amounts of data, so you set this field to
a reasonable number of records. You don’t necessarily want to send all
the data to the user — just the most recent data.

✦ Message to Display if No Records are Returned: Defines what to dis-
play when a query doesn’t return any records (although, you should test
for this problem). The generic message that FrontPage provides will
work, in many cases, but you might want to provide a special message
that tells the user what to do about the problem. For example, the mes-
sage could include the e-mail address of the administrator responsible
for providing the data.

✦ Defaults: This entry works only when you have SharePoint Services
installed on the server. You see the Defaults dialog box which lets you
set the entries for a search form. This dialog box also lets you define the
entries a user can provide when setting up a table into which the user
can enter data.

Viewing Excel Data
FrontPage provides a number of Web components that help you access Excel
data directly. You use these components to access and modify data in the
Excel spreadsheet. The features that the user sees depend on how the Web
component is configured. To access the Web component, follow these steps:

1. Choose Insert➪Web Component.

You see the Insert Web Component dialog box.

2. Choose Spreadsheets and Charts in the Component Type list.

You see the list of controls shown in Figure 1-9.

3. Make selections that fit your users’ needs.

When opening a Web page in FrontPage that contains Web components that
access a data source such as Excel, you might see a message asking whether
it’s OK to open the file using your credentials (name and password). This fea-
ture helps you recognize any unauthorized attempts to access a data source
on an untrusted site. You can click Yes for local servers and servers you
trust with complete safety. FrontPage normally displays one message for
every Web component that relies on a data source. Consequently, you see a
minimum of two messages when you have a spreadsheet and chart on the
same Web page.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 381

Viewing Excel Data382

The advantage of using the display technique in this section is that the user
has complete control over the data — at least locally. The user can change
spreadsheet data, for example, directly on the Web page. Using this tech-
nique, the user can create what-if scenarios and save them to the local
machine. Although the user can’t change the remote data, the local changes
can provide input for meetings or discussions between client and vendor.

Creating an ActiveX control connection
Both the Office Spreadsheet and the Office PivotTable controls rely on data-
base connections you create. It’s also possible to create a connection for the
Office Chart control. You can interact with the Office Spreadsheet control
using other techniques, such as importing the data, but you want to create
a database connection to provide full spreadsheet support. The following
steps describe how to create a connection for both the Office Spreadsheet
and Office PivotTable controls:

1. Right-click the control and choose ActiveX Control Properties from
the context menu.

You see the ActiveX Control Properties dialog box.

2. Select the Data Source tab. Click Edit.

You see the Select Data Source dialog box. When you see the data source
you want to use in this dialog box, select it and click Open. Proceed to
step 9.

3. Highlight Connect to New Data Source.odc and click Open.

You see the Data Connection Wizard dialog box. This wizard lets you
connect to a vast array of data sources. For example, you can create a

Figure 1-9:
Choose
a Web
component
for
interacting
with Excel.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 382

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Viewing Excel Data 383

connection to MySQL using an Open Database Connectivity (ODBC) con-
nection when you have the correct drivers installed on your system. For
MySQL, use the MyODBC software found at

http://dev.mysql.com/downloads/connector/odbc/3.51.html

The default drivers include support for all Office applications, SQL
Server, Microsoft Business Services, dBASE, and Oracle.

4. Select ODBC DSN and click Next.

FrontPage displays a list of ODBC drivers and predefined Data Source
Names (DSNs). When you see the connection you need defined as a DSN,
select the connection and follow the prompts provided by that ODBC
driver. Proceed to Step 6.

5. Select Excel Files and click Next.

You see a Select Workbook dialog box. ODBC assumes you want to create
a local connection or a connection to a networked drive. However, a Web
component requires an Internet connection.

6. Locate the workbook and click OK.

You see the Select Database and Table dialog box shown in Figure 1-10.
This dialog box helps you select the content for the Web component.
Clear Connect to a Specific Table when you want to display the entire
spreadsheet. Otherwise, the list of tables includes entire tabs within the
spreadsheet, named ranges, and other special features such as pivot
tables.

7. Select a table or clear Connect to a Specific Table. Click Next.

You see the Save Data Connection dialog box.

Figure 1-10:
Determine
whether you
want a
single table
or the entire
spread-
sheet.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 383

Viewing Excel Data384

8. Type a description in the Description field. Type special terms you
can use for searches in the Search Keywords field. Click Finish.

You see the Select Data Source dialog box.

9. Choose the connection, unless it’s already selected. Click Open.

When the connection refers to the whole spreadsheet, you see a Select
Table dialog box. Select a table and click OK. You see the Data Source
tab of the ActiveX Controls dialog box. The Command Text or SQL field
content of this dialog box is normally incorrect, so you have to create
the correct SQL command.

10. Type a particular SQL command in the Command Text or SQL field and
then click OK.

For example, the sample database uses a command of SELECT
“SampleSalesReport”.* FROM “SampleSalesReport”. When you’ve
entered the command, FrontPage displays the data on-screen.

The SQL command portion of the configuration is indispensable. Normally the
SQL command is for selecting an entire table or a named range within that
table — and the SELECT command specifies what to choose. In the case of the
sample, you select the entire named range using “SampleSalesReport”.*.
You could select specific fields by including just the field name. For example,
“SampleSalesReport”.”Region” selects just the Region field. The FROM
portion of the command tells where to obtain the information. In this case,
FrontPage obtains it from the named range, SampleSalesReport.

Using the Office Spreadsheet control
The Office Spreadsheet control displays an actual spreadsheet on the Web
page. (You configure it using the process described in the “Creating a con-
nection” section of this chapter.) Adding the connection automatically dis-
plays the data from the table you select. You can create as many connections
as needed to show all the tables in a spreadsheet. Each entry appears on a
separate tab.

Using the Office Chart control
The Office Chart control normally relies on the data located in an Office
Spreadsheet or an Office PivotTable control. However, you can create a
direct connection to a database too. When you initially create the control,
you see the Data Source tab of the Commands and Options dialog box. You
can also display this dialog box by right-clicking the control and choosing
Data from the context menu. Select the Data from a Database Table or Query
option and click Connection. (Use the instructions in the “Creating a connec-
tion” section to create a connection to the table and close the Commands

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 384

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Viewing Excel Data 385

and Options dialog box.) The Office Chart control doesn’t appear to contain
any information, but it does have blanks into which you can drag and drop
selected fields.

To add fields to the Office Chart control, right-click the control and choose
Field List from the context menu. You see a Chart Field List dialog box, as
shown in Figure 1-11. This figure also shows the areas where you drag and
drop the fields. Each of these areas appears as a grayed-out square.

Creating the chart isn’t difficult, but you have to plan it out. Here’s the drill:

1. Define the X-axis data by selecting a field.

The example uses the Region field to define the X-axis data.

2. Drag your chosen field from the Chart Field List dialog box to the
Office Chart control, and drop it there.

When you add the field, FrontPage assumes you want to use all possible
entries.

3. For each entry you want, click the arrow next to the entry.

You see a list of regions. Choose only the regions you want to see on-
screen. They will form your X-axis.

Figure 1-11:
Select fields
you want to
use for the
chart.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 385

Viewing Excel Data386

4. Add the Y-axis field.

Drag the field from the Chart Field List dialog box to the Office Chart
control. Again, choose only the entries you want to use.

5. Add the data to the chart.

At this point, you should finally see a display of the data.

6. Adjust the chart type and the two axis selections as needed to create
the display you want.

Figure 1-12 shows typical results, including a list of regions for the cur-
rent table.

Using the Office PivotTable control
The Office PivotTable control requires that you create a connection to the
database before you do anything else. (Use the process described in the
“Creating a connection” section to perform this task.) After you have a con-
nection in place, you’ll notice that nothing happens — the Office PivotTable
control is still blank.

Figure 1-12:
Define
special
effects and
conditions
for your
chart.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 386

Book V
Chapter 1

Creating Interactive
W

eb Pages
w

ith
Excel

Viewing Excel Data 387

To display data within the control, you must adds fields to it. Adding fields
to a pivot table is a straightforward process:

1. Right-click the control and choose Fields from the context menu that
appears.

You see the PivotTable Field List dialog box.

2. Drag and drop the fields from the PivotTable Field List dialog box to
the Office PivotTable control, as shown in Figure 1-13.

3. Close the PivotTable Field List dialog box after you add all required
fields.

The totals that appear aren’t calculated for the table. To add totals to
the Office PivotTable control, you must define the type of calculation to
perform. The next steps do so.

4. Right-click any cell that contains data.

5. Select Autocalc from the context menu.

You see a list of possible calculations for the totals.

Figure 1-13:
Drag and
drop the
needed
fields on the
pivot table
as needed.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 387

Viewing Excel Data388

6. Select one of the Autocalc menu options.

The example uses the Sum option. FrontPage calculates the totals,
which adds a second line to each of the cells.

7. To hide the extra information, click the - (minus) sign next to each of
the field entries.

FrontPage hides the additional information. Figure 1-14 shows typical
output for the Office PivotTable control.

8. Click the arrows next to the Month and Region entries.

You see a list of entries for each field. You can choose to display all or
just some of the fields on the Web page — making it easier for the user
to see the data elements.

Figure 1-14:
PivotTable
output looks
like this.

27_575317 bk05ch01.qxd 9/24/04 8:07 PM Page 388

Chapter 2: Creating Interactive
Web Pages with Access

In This Chapter
� Creating links to Access data

� Developing simple data views

� Working with search forms

� Developing views with more than one table

Many Web designers today store page content in databases to ease
the process of updating their Web sites. With databases, it’s easy to

create an application that keeps the database content up to date automati-
cally. Microsoft Access provides most of the relational capabilities that data-
base developers require to create complex applications. It lacks some of the
robust features of high-end databases, though, so many developers rely on
Access to create local databases that only a few people use. Most develop-
ers agree that Access handles 10 users just fine, but you might not get good
results when you go beyond that number. Even so, Access is often a perfect
solution for a small business or a workgroup within a company.

One of the best parts about using Access is that it’s a full-fledged relational
solution; you don’t have to use flat-file techniques (as you would with a
spreadsheet). Access can create multiple indexes, multiple table setups,
handle queries, and perform data manipulations with scripts.

It’s also relatively easy to create reports with Access, which allows you to
look at the data in its final form, and makes it unnecessary to modify the
final data on the Web page or behind the scenes as part of a server-side
script. The same data can act as input for multiple reports — and you can
use multiple formats, from simple to complex and from friendly to formal.
The idea is to present a view of the data that your user can understand and
appreciate.

Developing Links to Access
As with most Database Management Systems (DBMS), you must create a
link to the Access database to use it on a Web page. Although Access pro-
vides better display capabilities locally than many high end DBMS, you can’t

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 389

Developing Links to Access390

use those capabilities in any way on a Web page. (The local display capabili-
ties are provided by design because Microsoft recognizes that some small
businesses will use Access directly without any other means of displaying
data.)

Choosing between ASP and ASP.NET
Before you can choose a connection type, you need to consider a connection
strategy. FrontPage provides ASP and ASP.NET support for Access so you can
choose the correct technology for your particular setup. While ASP offers ease
of use and compatibility as features, ASP.NET tends to provide better process-
ing speed and greater flexibility.

ASP.NET adds several layers of complexity to your Web site solution. The
first layer is the .NET Framework. You download the .NET Framework from
the Microsoft site at

http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-
f589-4842-8157-034d1e7cf3a3

After you install the .NET Framework, you can run any .NET application,
including those created for ASP.NET. This download provides only the .NET
Framework, however — not the entire .NET development package.

When you want to develop simple ASP.NET applications, but don’t want to
buy the entire .NET development package, you can rely on a combination of
FrontPage and a free development tool from Microsoft called Web Matrix,
available at the following location:

http://www.asp.net/webmatrix/default.aspx

This tool provides much of what you need to create simple ASP.NET applica-
tions. Microsoft originally envisioned Web Matrix as an ASP.NET training
tool, but it provides more functionality than many people need.

The second layer of complexity when using ASP.NET is that it can rely on mul-
tiple files to accomplish a task. Microsoft chose to separate the presentation
of the Web page from the code with ASP.NET. The actual code is compiled —
that way you gain a definite speed advantage over ASP. However, if you’re a
developer who must make changes to the Web page, the use of multiple files
complicates matters because you have to look in more than one place to find
what you need. The use of multiple files also makes applications harder to
distribute and deploy.

When you develop applications for more than one party, ASP.NET isn’t nec-
essarily the best choice. Many companies have taken a hands-off approach
to anything .NET, so your .NET application might not be very welcome with

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 390

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Developing Links to Access 391

some companies. In this case, you want the most compatible solution, which
is ASP. Every Internet Information Server (IIS) setup and many third party
servers can run ASP pages, while ASP.NET requires special handling.

Along with higher processing speed, ASP.NET does provide more functional-
ity. Even with the limited ASP.NET support that FrontPage provides, you can
see a definite difference in two areas:

✦ Presentation of data: For example, you can make every other line a dif-
ferent color to ensure the user can track a single record entry without
problem.

✦ Usability: For example, ASP.NET provides a broader range of control
types. Even when ASP and ASP.NET have similar controls, the ASP.NET
version tends to provide better functionality and performance.

Creating a new connection using
the Database Results Wizard
The most common way to create a new connection to Access is to use the
Database Results Wizard. You access the wizard by choosing the Insert➪
Database➪Results command. The Database Results Wizard dialog box
shown in Figure 2-1 has options for creating new or using existing connec-
tions to your database. The dialog box also has options that let you choose
between ASP and ASP.NET as the language for the Web page. Always provide
an ASP file extension when working with ASP.

You must have the .NET Framework installed to use ASP.NET. Download the
.NET Framework at

http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-
f589-4842-8157-034d1e7cf3a3

Figure 2-1:
Create a
new or use
an existing
connection.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 391

Developing Links to Access392

This version of the product lets you run any .NET application, including
those found on ASP.NET pages. When working with ASP.NET, it’s also impor-
tant to give your Web pages an Active Server Pages eXtended (ASPX) file
extension, rather than the ASP file extension used by standard ASP pages.

To begin the process of creating a link, follow these steps:

1. Choose Use New Database Connection and click Create.

You see the Database tab of the Site Properties dialog box. This tab con-
tains a list of the connections you define.

2. Click Add.

You see the New Database Connection dialog box shown in Figure 2-2. It
includes three general options for creating a link using Access: direct
file, data source, or custom. The Network Connection to Database
Server option requires SharePoint Services to use.

3. After choosing how you want to create a link, type a name for the con-
nection in the Name field.

After you create the new connection, you must select it for use. Use the
steps in the “Selecting an existing connection” section (later in this chapter)
to select the connection after using one of the following procedures to create
the connection.

Defining a file link
The file-link connection works best when the Access database appears
within the Web site. You can store the database in the _private folder to
keep it safe from prying eyes, but the database must appear somewhere on
the Web site to make this connection work properly. The file link is the easi-
est type to create and maintain. It doesn’t require any odd connection argu-
ments, and you don’t have to worry about providing details that only a
database administrator could love. Here’s the drill for creating a file link:

Figure 2-2:
Choose one
of the
connection
types for
your Access
database.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 392

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Developing Links to Access 393

1. Choose File or Folder in Current Web Site in the New Database
Connection dialog box and click Browse.

You see the Database Files in Current Web Site dialog box.

2. Locate the file you want to use, highlight it, and click OK.

FrontPage displays the database connection information in the text box
beneath the Custom Definition entry shown in Figure 2-2.

3. Adjust any advanced settings and click OK.

FrontPage adds the new connection to the Database tab of the Site
Settings dialog box. To ensure that the connection works, you must
verify it at this point.

4. Click Verify.

When the connection works, FrontPage changes the question-mark icon
(next to the connection entry) to a check-mark icon.

5. Click OK.

FrontPage displays the Database Results Wizards dialog box. It automati-
cally selects Use an Existing Database Connection and modifies the con-
nection entry to the settings of the new connection you created. Proceed
with the instructions in the “Selecting an existing connection” section of
the chapter.

Defining a data source link
Use the data source link connection method when you need to create a con-
nection to a database that resides somewhere other than the Web site. The
database could even reside on another server. This connection provides
enough flexibility that you can define some of the complex criteria used for
connections such as timeout values and default passwords. To use this con-
nection type, you must have access to the Data Sources (ODBC) applet in
the Administrative Tools folder of the Control Panel (the precise location of
this applet varies with the version of Windows you use). Open Database
Connectivity (ODBC) is an older, but widely used, Microsoft technology for
creating connections to databases of all types. The following steps show
how to create a connection using a data source link and starts by using the
Data Sources (ODBC) applet to define the connection properties:

1. Double-click the Data Sources (ODBC) applet in the Administrative
Tools folder of the Control Panel.

You see the ODBC Data Source Administrator dialog box.

2. Select the System DSN tab, and then click Add.

You see a Create New Data Source dialog box that lists a number of data-
base drivers. A Data Source Name (DSN) is a label attached to a set of

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 393

Developing Links to Access394

instructions for connecting to a database. The use of a label makes it
easy to reference the ODBC instructions.

3. Highlight the Microsoft Access Driver (*.mdb) entry and click Finish.

You see the ODBC Microsoft Access Setup dialog box shown in Figure 2-3.
Note that every ODBC driver uses a different dialog box. The settings are
similar to the one shown in Figure 2-3 but specifically designed to meet
the needs of a particular DBMS.

4. Type a name for the data source.

Use a short name that’s easy to remember and doesn’t contain any
spaces or special characters.

5. Type a description in the description field.

Make sure you provide enough information that you can identify the
connection later.

6. Click Select.

You see a Select Database dialog box.

7. Locate the database you want to use. Click OK.

The Access ODBC driver adds the database to the Database group. The
database connection is usable at this point.

8. Click OK to add this connection to the ODBC Data Source
Administrator (if desired).

Figure 2-3:
Configure a
System DSN
connection
to access
the
database.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 394

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Developing Links to Access 395

Note, however, that the Access ODBC driver provides a number of other con-
figuration options you might want to try. For example, modifying the Buffer
Size field can improve performance when the buffer matches a multiple of
the database record size. It’s also possible to cure some connection prob-
lems by modifying the Page Timeout value. Click Advanced when you want
to set connection properties such as login name and password. Microsoft
provides more information about the ODBC Data Source Administrator at

http://msdn.microsoft.com/library/en-us/odbc/htm/dasdkodbcdatasourceadmin.asp

Use the following steps to create a FrontPage connection for the DSN link:

1. Choose System Data Source On Web Server in the New Database
Connection dialog box. Click Browse.

You see the System Data Sources On Web Server dialog box. This dialog
box should contain the connection created earlier in this section.
Everything FrontPage needs to create the connection appears in the
DSN you created.

2. Choose the DSN you want to use and click OK.

FrontPage displays the database connection information in the text box
beneath the Custom Definition entry shown in Figure 2-2.

Don’t click Advanced with this type of connection — rely on the informa-
tion contained in the DSN instead.

3. Click OK.

FrontPage displays the new connection on the Database tab of the Site
Properties dialog box.

4. Click Verify.

FrontPage checks the connection to the database. If this connection
fails, don’t modify the FrontPage settings — check the DSN settings on
the server instead.

5. Click OK.

FrontPage displays the Database Results Wizards dialog box. It automati-
cally selects Use an Existing Database Connection and modifies the con-
nection entry to the new connection you created. Proceed with the
instructions in the “Selecting an existing connection” section of the
chapter.

Creating a custom connection
The custom connection works best when using a Local Area Network (LAN)
connection for a company intranet. (When working with local databases, use

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 395

Developing Links to Access396

a file link or data source link.) You use a custom link to define special parame-
ters for the database. In general, a custom connection can help you create spe-
cialized setups and use more database types than the standard connections
do, but they’re also a lot harder to set up. To use this connection type, you
must have access to the Data Sources (ODBC) applet in the Administrative
Tools folder of the Control Panel. The following steps show how to create a
custom connection, using the Data Sources (ODBC) applet to define the con-
nection properties.

1. Double-click the Data Sources (ODBC) applet in the Administrative
Tools folder of the Control Panel.

You see the ODBC Data Source Administrator dialog box.

2. Select the File DSN tab. Click Add.

You see a Create New Data Source dialog box that lists a number of data-
base drivers. A Data Source Name (DSN) is a label attached to a set of
instructions for connecting to a database. The use of a label makes it
easy to reference the ODBC instructions.

3. Highlight the Microsoft Access Driver (*.mdb) entry and click Next.

The Create New Data Source wizard asks you to provide a filename for
the data source.

4. Click Browse. Choose a location for the file DSN, type a name in the
File Name field, and click Save.

The Create New Data Source wizard places the file path and name in the
field provided.

5. Click Next.

You see a summary of the connection information.

6. Click Finish.

You see an ODBC Microsoft Access Setup dialog box that looks similar to
the one shown in Figure 2-3. The main difference is that the Data Source
Name and Description fields are disabled because you can’t provide this
information as part of a file DSN.

7. Click Select.

You see a Select Database dialog box.

8. Locate the database you want to use. Click OK.

The Access ODBC driver adds the database to the Database group.

File DSNs have a lot of advantages over other types of DSNs. They reside in a
file, so you can move them to other locations with ease. The contents of the
file are simple text, so you can modify a file DSN whenever necessary using a

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 396

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Developing Links to Access 397

simple text editor such as Notepad. It’s also possible to modify the content
of a file DSN using a script. For that matter, after you know what the DBMS is
looking for, you can conceivably generate a file from scratch using a script.
You can see a sample file DSN in the AccessFileDSN.dsn file provided with
the source code for this chapter on this book’s companion Web site.

Now that you have a file DSN to use, it’s time to add the connection to
FrontPage. The following steps show how:

1. Copy the file DSN from the \Program Files\Common Files\ODBC\
Data Sources folder on your server to a folder within your Web site.

You can use the _private folder to protect the file from prying eyes
when necessary.

2. Choose Custom Definition in the New Database Connection dialog
box, and then click Browse.

You see the Connection Files in Current Web Site dialog box. Notice that
this dialog box allows you to look only on the current Web site for the
DSN file.

3. Locate the DSN file you want to use and click OK.

FrontPage displays the database connection information in the text box
beneath the Custom Definition entry shown in Figure 2-2. Don’t click
Advanced with this type of connection — rely on the information con-
tained in the DSN instead.

4. Click OK.

FrontPage displays the new connection on the Database tab of the Site
Properties dialog box.

5. Click Verify.

FrontPage checks the connection to the database. If this connection
fails, don’t modify the FrontPage settings — check the DSN settings in
the DSN file instead.

6. Click OK.

FrontPage displays the Database Results Wizards dialog box. It automati-
cally selects Use an Existing Database Connection and modifies the con-
nection entry to the new connection you created. Proceed with the
instructions in the “Selecting an existing connection” section of this
chapter.

Adding advanced properties to the connection
Normally, when working with a file connection, you set any advanced prop-
erties yourself — that’s because the other connection types can incorporate
these properties as part of the DSN setup. You can, however, use the

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 397

Developing Links to Access398

advanced properties with any connection. Sometimes, a DSN must maintain
a set of properties for existing applications; using advanced connection
properties in this situation makes sense as an exception to the rule.

To access the advanced connection properties, click Advanced in the
New Database Connection dialog box. You see the Advanced Connection
Properties dialog box shown in Figure 2-4. One of the problems of using
this technique is instantly shown: The dialog box doesn’t contain any param-
eters you can change, except the common parameters that every database
accepts. These common parameters include the username and password,
and the connection and command timeout values. The timeout values are
especially important. Make sure you set them high enough to ensure that
clients aren’t disconnected too early (before they get the data they need) —
but also short enough so the connection or command doesn’t continue to
consume system resources.

Fortunately, there are only a few Access parameters that you want to change
for a connection. You can find a fairly complete list of ODBC parameters at

http://msdn.microsoft.com/library/en-us/odbc/htm/odbcjetaccesssqlconfigdata-
source.asp

Although Microsoft doesn’t provide full documentation on this topic, the fol-
lowing list describes a few common parameters you can use to improve con-
nection performance or provide other functionality:

✦ ExtendedAnsiSql: Enables extended ANSI SQL support in Access. Set
this value to true (1) when you perform complex queries that could ben-
efit from the extended ANSI SQL command set. When performing simple
queries, such as a record request, set this value to false (0) to save
memory and processing cycles.

Figure 2-4:
Modify the
means of
connecting
to the
database
through
properties.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 398

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Developing Links to Access 399

✦ MaxBufferSize: Defines the size (in KB) of the buffer that Access uses to
transfer data — you can use any value divisible by 256. (To improve per-
formance, use large values for a database with big records.) This setting
comes at the cost of higher memory usage, however, so you also need to
consider system constraints such as available memory.

✦ MaxScanRows: Limits the number of rows that Access scans to deter-
mine the data type of a column based on its content. This parameter
accepts any value between 0 and 16. Using a value of 0 means Access
scans all rows, which can take a considerable amount of time. This set-
ting is important only when you want to upload text data; you normally
don’t set it when using Access for data display.

✦ PageTimeout: Limits the time a page stays in the buffer without being
used. The setting is in tenths of a second; the default value of 5 is 0.5
seconds. Because Internet connections are slower than those on your
network, setting this value higher can often improve performance: A
commonly used page isn’t loaded and unloaded from the buffer as often,
making the server more efficient.

✦ ReadOnly: Places the database in a read-only state. Setting this value to
true (1) results in better performance on most Web sites because Access
can optimize record fetches. In addition, using a read-only connection
reduces security risks associated with the connection.

✦ SafeTransactions: Creates a safe environment for transferring data
between the client and server. Normally you set this value to false (0)
to reduce the overhead of record fetches when the database is in a read-
only state. However, when the client actually uploads data to the server,
you want to set this value to true (1) to ensure that the data arrives
from the client in good condition.

✦ Threads: Defines the number of threads Access uses to process requests.
Each request requires one thread, so using three threads (the default)
means Access can process three requests at a time. Using more threads
improves performance — especially when a Web site is used by a number
of people, each of whom might make multiple requests. Adding threads
uses more memory and additional processing cycles, so balancing
system resources with user needs is important.

Tailoring these settings to your system is one clear route to greater efficiency.
Here’s how to change these parameters:

1. After you select one or more properties for the connection, in the
Advanced Connection Properties dialog box, click Add.

You see the Add Parameter dialog box.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 399

Developing Links to Access400

2. Type the name of the parameter in the Name field and the value in the
Value field.

Remember to use 1 for true and 0 for false.

3. Click OK.

FrontPage adds the parameter to the Advanced Connection Properties
dialog box.

4. When you finish adding properties, click OK.

FrontPage displays the New Database Connection dialog box.

5. Continue creating the connection.

Just in case you’re wondering where FrontPage stores all this connection
information, look at the Global.asa file in the root folder of the Web site.
This is a plain text file you can open in FrontPage. In some cases, you can
create a script to read or manipulate the Global.asa file. Make sure you
exercise extreme caution if you create such a script; even a small error can
cause all the database connections on your Web site to fail.

Selecting an existing connection
When you already use an Access database on an existing page, you create
a link to the existing connection, rather than create a new one. Use an exist-
ing connection whenever possible to reduce clutter, improve performance,
decrease memory requirements, and lessen the chance of connecting to
an old spreadsheet. The following steps show how to use an existing
connection.

1. Select Use an Existing Database Connection if FrontPage hasn’t already
done so. Choose the connection you want to use. Click Next.

FrontPage requests information about the record source you want to
use. A record source can include an entire table, a query that you’ve
defined, or a custom SQL statement.

2. Select Record Source (individual tables or predefined queries) or
Custom Query (complex queries using multiple tables). You have two
possible approaches:

• When using Record Source, choose a table from the list of tables pre-
sented under the Record Source option.

• When using a Custom Query, click Edit, type the SQL Statement that
you want to use, click Verify to check the accuracy of the query, and
click OK to create the query.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 400

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Developing Links to Access 401

3. Click Next.

FrontPage displays a list of fields for the query, as shown in Figure 2-5.
FrontPage assumes you want to use all of the fields in the query. You
have two options:

• Click Edit List to change the fields FrontPage displays.

• Click More Options when you want to filter or sort the data as it
comes from Access.

4. Click Next.

FrontPage asks how you want to display the data. You can choose from a
table, a list, or a drop-down list. When using a list or drop-down list, you
can select only one field from those chosen from the named range.

5. Select a presentation format (the example uses the table) and click
Next.

FrontPage asks how you want to group the records. You can choose to
display all of the records together or split them into groups of specific
record numbers. Use the grouping option for larger tables to make it
easier for the user to locate data, but also splits up the presentation.

6. Choose a record grouping method and click Finish.

FrontPage adds the view to the current Web page. At this point, FrontPage
will tell you to save the file and change the extension to ASP or ASPX (if
you haven’t done so already) so the table works as expected.

Figure 2-5:
Define the
way you
want to use
the
database
information.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 401

Designing Simple Data Views402

Designing Simple Data Views
After you create a connection to the database, you want to create a view of
the data. The formats FrontPage provides by default are adequate, but might
not reflect the style you want to see on your Web site. (On the other hand, it
might be all you need in some cases if you simply want to display the infor-
mation as a table.) You can perform some simple changes to make the data
appear differently or perform major surgery to create a unique presentation.
The connection is just a starting point — a way for you to get the data on the
page and then do something with it.

FrontPage makes some assumptions about the data you obtain from the
database. First, the column names are the same as the field names in the
database. The field names work only when you use a single word or you
use spaces between words. Many database administrators use underlines
between words, however, because it makes the field easier to work with in
code. For example, a date field to use the last update for an entry might
appear as Last_Update. A column entry like this is hardly usable, so the
first change you make is to change the column names so they look nicer
and work better. Simply place the cursor in the column name area of the
table that FrontPage creates and make the changes you want.

Look at the order of the columns on-screen. FrontPage normally places them
in the same order they appear in the database. In effect, you have two ways
to change the order:

✦ Click Edit List in the Database Results Wizard when you create the con-
nection. The Displayed Fields dialog box lets you move items up or
down in the list to change the presentation order.

✦ Use Split view to move the fields around after you create the page.
Here’s how:

1. Highlight the header you want to move in the Design view portion
and then locate that entry in the Code view.

2. Move the entire <th> tag to the new position.

3. Highlight the data-field entry in Design view and then locate that
entry in Code view.

4. Move the entire <td> tag to the new position.

The <td> tag includes a DatabaseResultColumn webbot that you
move with the <td> tag. Exercise care in moving the <td> tag to
ensure you don’t damage the webbot entry.

Figure 2-6 shows a table that displays all entries and includes modifications
to both column names and column order. This figure also shows the Code
view of the webbot entry.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 402

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Designing Simple Data Views 403

After you get the columns rearranged, you might find that some columns
have special formatting requirements. Before you make any changes to the
cell or column, modify the data format as required. Right-click any of the
webbot entries (third row of the table) and choose Database Column Value
Properties from the context menu. You see the Database Column Value
dialog box shown in Figure 2-7.

Figure 2-7:
Change the
data format
before
making
other
changes.

Figure 2-6:
Modify the
column
headings
and order
as needed.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 403

Designing Simple Data Views404

The entries help you display the data from your database as HTML. In fact,
you can store URLs or other information in the database and use it to create
a hyperlink with the table.

When you select Display as Hyperlink, it doesn’t necessarily mean the data
is a hyperlink. It could simply be data that you want to use to create a hyper-
link. The Web page produced by the SimpleDataView.asp file of the source
code for this chapter on the Wiley Web site is a good example. This sample
database contains words, acronyms, and their associated definition.

I’ve also added a linking mechanism so you can see the same work in both
Acronym Finder and Webopedia — two good online sources for words. To
make a change of this sort, follow these steps:

1. Check Display as Hyperlink and then click Hyperlink Parameters.

You see the Hyperlink Parameters dialog box shown in Figure 2-8.

2. Create the acronym by placing the basic URL in the Path field.

The path includes an entry for the acronym.

3. Place the acronym value in the Query String field.

4. Click Add, select the field you want to use, and then click OK.

In some cases, you must make changes to the resulting URL in Code
view, but using the editor is a good start.

Figure 2-8:
Create
hyperlinks
from data
you provide
using a
database.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 404

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Creating a Search Form 405

Creating a Search Form
You might find that you don’t know what to expect as a query from the user,
so building a specific query isn’t possible. In some cases, the database might
be too large to display on one Web page and some users will need access to
the entire database to perform their work. To provide good access to the
database when either of these problems occur, you need a search form.

Begin creating the search form by using the Insert➪Database command and
following the steps provided in the “Creating a new connection using the
Database Results Wizard” section of the chapter. When you come to the
column selection screen shown in Figure 2-5, follow these steps:

1. Click More Options.

You see the More Options dialog box.

2. Click Criteria to display the Criteria dialog box shown in Figure 2-9.

This dialog box contains the criteria used to choose records from the
database. Notice that it includes an option for displaying the criteria as
a search form.

3. Click Add.

You see the Add Criteria dialog box.

4. Choose a field you want to use to create a search in the Field Name
field.

5. Select an entry from the Comparison field.

This field controls how the search is performed. When you select Equals
as the comparison, the input the user provides must precisely match the
information in the database, so this search option usually isn’t very useful.
A better selection in most cases is Contains. When you select Contains,
the search phrase can appear anywhere in the database field, making
the user’s search a lot easier because the user needs to remember only
part of the information.

Figure 2-9:
Define the
search
criteria for
the search
form you
create.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 405

Designing Relational Data Views406

6. Select a value name.

It normally helps to choose something similar to the field name, but not
precisely the same.

7. Click OK to close the Criteria dialog box.

At this point, FrontPage enables the Defaults button.

8. Click Defaults to define default values for any of the criteria you
create.

You must combine a default value with a criteria when you use this fea-
ture to reduce the number of entries that FrontPage returns from the
database without using a search form. When using a search form, the
default values are optional.

After you create the connection, FrontPage displays both a table and a search
form. The search form labels will have the same name as the variable you cre-
ated. Make sure you modify the label text as needed to make the purpose of
the data entry field clear.

Designing Relational Data Views
Databases seldom rely on a single table to accomplish a task. Normally a
database has two or more tables that have a relationship to each other. This
fact means you’ll probably want to use multiple tables in FrontPage as well.

To create a relational data view in FrontPage, you must begin by creating a
query in Access. Because FrontPage allows you to choose only one data
source when you create a connection, it’s easier and faster to create the
query you need within Access and then test it in that environment.

Creating a simple data view
Creating a data view connection using multiple tables in FrontPage is the
same as working with a single table. You begin by using the Insert➪Database
command and following the steps provided in the “Creating a new connec-
tion using the Database Results Wizard” section of the chapter. The major
difference is that you select a query when working with multiple tables,
rather than using a single table. When you complete the setup, you end up
with a single table that contains the data from however many tables you
used to create the query. As far as the user is concerned, all the data came
from a single table.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 406

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Designing Relational Data Views 407

Developing Access views using
the PivotTable control
You normally use the PivotTable control with Excel because the amount
of data is limited and Excel is normally used to analyze data. However, the
PivotTable control also works with Access. In some cases, you can use the
PivotTable control to analyze Access data so long as you limit the number
of records so the analysis doesn’t take the rest of someone’s life to perform.
Use the following steps to create the PivotTable control with Access data:

1. Choose the Insert➪Web Component command.

You see the Insert Web Component dialog box.

2. Select the Spreadsheets and Charts entry in the Component Type list
and Office PivotTable in the Choose a Control list. Click Finish.

FrontPage creates the PivotTable. At this point, the PivotTable won’t
contain any data.

3. Right-click the control and choose ActiveX Control Properties.

You see the ActiveX Control Properties dialog box.

4. Choose the Data Source tab. Select Connection and click Edit.

You see the Select Data Source dialog box.

5. Click New Source.

FrontPage starts the Data Connection Wizard.

6. Select ODBC DSN and click Next.

The wizard asks you to select a data connection product or an existing
Data Source Name (DSN). When you have Office 2003 installed, you see
two entries for Access. Make sure you choose the MS Access Database
entry, rather than the MS Access 97 Database entry when present or
your connection won’t work. Access 97 and Access 2003 use signifi-
cantly different database engines, so the two connection types aren’t
compatible. (The example assumes that you’re creating a new connec-
tion to an Access 2003 database.)

7. Choose an appropriate data source and click Next.

The wizard displays a dialog box in which you can select an existing
database.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 407

Designing Relational Data Views408

8. Select the database and click OK.

The wizard asks you to choose a table or query from the database. Avoid
choosing entire tables when you can because they contain too much
data. In addition, avoid queries that return a large number of records.
The PivotTable will fail to perform as expected when you overload it.

9. Select a table or query from the list and click Next.

The wizard asks you to provide a name and description for the connec-
tion. You can also provide search terms to make the connection easier
to find.

10. Type a name and description for the connection. Optionally add any
search terms you want to use. Click Finish.

FrontPage displays a dialog box you use to open the new connection.

11. Select the connection and click Open. Click OK.

FrontPage updates the PivotTable control so you can add fields to it.

12. Click on the control so you see the hatched lines appear around it.

The control is in edit mode.

13. Right-click the control and choose Field List from the content menu.

You see a list of fields you can use to work with the PivotTable control.

14. Select the fields you want to use and close the PivotTable Field List
dialog box.

At this point, the control contains data, but no totals.

15. Right-click within the data area. Select AutoCalc.

You see a number of options for calculating a result from the data. Even
when the data is text, you should have the option of counting members
based on the criteria used to create the PivotTable.

16. Select one of the options on the AutoCalc menu.

FrontPage adds totals based on the calculation you selected.

At this point, the PivotTable is ready to use. One of the important things to
remember about using a PivotTable control is that you aren’t limited as to
what criteria you use. For example, Figure 2-10 shows the output of this
example. (In this case, I choose to tally the number of word entries that were
modified at a given time, based on whether they had an acronym.)

The goal is to discover something about your data that you didn’t know
before by analyzing it. Sometimes, a PivotTable won’t provide useful informa-
tion, but in other cases it will. Only by playing with the data in various ways
do you discover relationships you didn’t know about before.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 408

Book V
Chapter 2

Creating Interactive
W

eb Pages
w

ith
Access

Designing Relational Data Views 409

Figure 2-10:
Use the
PivotTable
to calculate
any statistic
you need.

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 409

Book V: Databases410

28_575317 bk05ch02.qxd 9/24/04 9:02 PM Page 410

Chapter 3: Developing Applications
with SQL Server

In This Chapter
� Using SQL Server to full advantage

� Creating links to SQL Server data

� Developing relational data views

SQL Server is Microsoft’s high-end database. It’s designed for medium
to large sized businesses and stores a lot of data without problems.

Compared to database products such as Access and MySQL, you get a lot
more in the way of management features with SQL Server and this product
also supports a lot of users. Consequently, you probably won’t see some-
one’s personal contact list or record collection stored in SQL Server unless
it’s part of an application designed for company use.

FrontPage also provides more than a modicum of support for SQL Server. In
fact, SQL Server is the best-supported database in FrontPage. You can even
access the Microsoft test database, Northwind. This database is important
because many examples in the Microsoft documentation rely on it. The
Northwind database also appears in many books because authors want a
database that everyone can use. In fact, you’ll use the Northwind database
for all the examples in this chapter. Because you’ll normally use SQL Server
for complex connections, this chapter concentrates on views, rather than
on individual tables.

You can perform all the usual database activities with FrontPage. For exam-
ple, you can create a connection using any of several standard techniques
that you would also use with Excel or Access. FrontPage adds other connec-
tion methods as well, making SQL Server exceptionally easy to use.

Understanding the SQL Server Advantage
There isn’t any doubt that SQL Server works well for large projects. It’s
designed to let you create databases for immense data stores. In fact, you
can create scenarios where a database spans across multiple servers. SQL
Server is definitely the right solution for medium-to-large businesses. (Even
the cost tends to keep small businesses away.)

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 411

Understanding the SQL Server Advantage412

The small-business perspective
Fortunately, SQL Server isn’t just about immense data stores. If that were all
it had to offer, then most businesses wouldn’t be very interested in using it.
For some situations, SQL Server is the most appropriate selection, no matter
what size business you own. For that matter, some types of home-user devel-
opment projects could benefit from using SQL Server, despite the significant
cost.

SQL Server also provides development tools that Access and other smaller
database products don’t include. For example, you can create a diagram of
the data organization you want to create. A pictorial view is often helpful in
developing connections between complex data. SQL Server also offers access
to stored procedures and better security than products such as Access. You
can create user-defined data types when necessary — which means you can
handle situations where the standard data types won’t meet a specific need.

All these features come into play when you’re working with FrontPage. A
small business using SQL Server to develop a Web site has better access to
the data using a number of techniques that aren’t available when working
with other DBMS. For example, FrontPage offers additional connection
options and helps protect your data better.

Developing secure applications
A number of features that FrontPage provides warn of possible security
problems. For example, when you add a search form to your Web page,
FrontPage warns that a cracker could possibly use the search form to gain
access to the database. This problem is especially significant with less
secure databases where you can’t control access very well.

Fortunately, FrontPage does provide good security. You can use many of
the less secure FrontPage features and still ensure your application remains
safe as long as you perform some specific setups. One of the first security
updates is to set SQL Server to use Windows security (rather than its own
built-in security) to ensure that a user checks in properly before using the
Web application — and is properly verified without requiring too many
inputs.

You should also limit the length of search inputs, ensure the data is of the
correct type, and limit the kinds of data a user can input. For example,
when you let the user make a text query, don’t allow the user to input
special characters.

Finally, you should set up the Web server to provide a secure connection.
This step is essential because the Web server will use an anonymous con-
nection otherwise and potentially open your server up to cracker exploits.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 412

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 413

If you can’t create a secure connection because your Web site is open to the
general public, make sure your Web site relies on firewalls and places the
various servers in places where crackers can’t get to your internal network.

The SQL Server advantage is that you can create a secure environment that
is both robust and easy to configure. SQL Server provides settings based on
individual accounts, letting you assign rights to the various tables, queries,
and reports according to individual needs. In short, SQL Server is the option
to use when you require maximum security and maximum flexibility.

Developing Links to SQL Server
Before you can access data within SQL Server, you must create a connection
to it. The linking process can occur in a number of ways:

✦ A special link provides access to the Northwind database — a special
database used by Microsoft (and by many third parties) for demonstra-
tion purposes.

✦ You have access to advanced Microsoft technologies such as Object
Linking and Embedding for Databases (OLE-DB). (This connection type
isn’t available in other environments.)

✦ You have access to all the standard connection technologies, such as
Open Database Connectivity (ODBC).

Missing from the SQL Server repertoire is direct file connection. Unlike other
DBMSs, SQL Server won’t let you create a direct connection to a file — but
this lack is actually a safety and security feature. Giving someone access
to a file containing data for a large application — one used by hundreds
or thousands of people — breaks every security rule for large-database
implementation.

Using the Northwind database connection
Some developers would question the purpose and usability of the Northwind
database outside of Microsoft examples. The Northwind database is rela-
tively complex, so it makes a good platform to create test applications and
for you to perform “proof of concept” modifications to FrontPage. Because
this database is well established and is provided with every copy of SQL
server, you can create a test application and send it to other developers for
comment or analysis. Best of all, the Northwind database provides common
data you can use for testing where the results are the same every time and
on every platform. Consequently, you should consider the Northwind data-
base for testing, as well as for creating, examples.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 413

Developing Links to SQL Server414

To create a connection to the Northwind database, follow these steps:

1. Choose Insert➪Database➪Results.

You see the Database Results Wizard dialog box shown in Figure 3-1.
Notice the Use a Sample Database Connection (Northwind) option.
Select this option only when you have SQL Server installed in a location
that FrontPage can access.

2. Choose the Use a Sample Database Connection (Northwind) option
and click Next.

FrontPage asks which record source you want to use (the example uses
Employees). Note that you can interact with the Northwind database as
you would any other database on your system. The point is that this
database contains test data and you don’t have to create a connection
to it — FrontPage already knows where to find it. Consequently, you
can use a single table, create a special query on the server, or create a
custom query within FrontPage. The flexibility that this connection
offers lets you test a variety of scenarios.

3. After you select a query, table, or create a custom query, click Next.

FrontPage displays a list of fields associated with the record source you
chose. You can modify this list by clicking Edit List. Make sure the fields
appear in the order that you want to use them. If you want to select cri-
teria for ordering the data — or to create special features such as search
forms — click More Options.

4. After you define the way you want to use the data fields, click Next.

FrontPage asks how you want to display the data. You can choose a
simple list, a table, or a drop-down list. It’s also possible to configure the

Figure 3-1:
Select the
Northwind
database
option for
testing
purposes.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 414

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 415

various displays. For example, you can choose whether the table includes
a border or force the table to take up the entire width of the display.

5. Choose a manner of presentation and click Next.

The final display asks whether you want to display all the data at once
or just a few records at a time. Configure the options to match your dis-
play requirements. Generally, you want to break long lists into pieces the
user can see with greater ease.

6. Click Finish and you see the table displayed on-screen.

Creating a new connection
Before you can create your first database Web page (one that connects to
something other than Northwind, that is), you need to create a connection.
Unlike some other database choices, you can’t access SQL Server through a
file connection because of the way SQL Server is set up. You do, however,
have a number of options that other database sources don’t support.

To create a new connection to SQL Server, use the Database Results Wizard.
Here’s how:

1. Access the wizard by choosing the Insert➪Database➪Results.

The Database Results Wizard dialog box shown in Figure 3-1, appears,
offering options for creating new or using existing connections to your
database. You can also choose between ASP and ASP.NET as the lan-
guage for the Web page. To use ASP.NET, you must have the .NET
Framework installed — and you can download that at

http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-
f589-4842-8157-034d1e7cf3a3

This version of the product lets you run any .NET application, including
those found on ASP.NET pages. When working with ASP.NET, be sure to
give your Web pages an Active Server Pages eXtended (ASPX) file exten-
sion, not the ASP file extension used by standard ASP pages.

2. Create a new link by choosing Use New Database Connection and then
clicking Create.

You see the Database tab of the Site Properties dialog box. This tab con-
tains a list of the connections you define.

3. Click Add.

You see the New Database Connection dialog box shown in Figure 3-2. It
includes three options for creating a link using SQL Server:

• Data source

• Network

• Custom

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 415

Developing Links to SQL Server416

These options are discussed in the next few sections.

4. Whichever option you choose, type a name for the connection in the
Name field.

After you create the new connection, you must select it for use. After using
one of the following procedures to create the connection, use the steps in
the “Selecting an existing connection” section later in this chapter to select
it for use.

Using a data source on the Web server
Creating a connection using a data source on the Web server is a two-part
process:

1. You create the connection on the Web server using the Data Sources
(ODBC) applet in the Administrative Tools folder of the Control Panel.

2. You access this connection using FrontPage.

The next sections describe these two steps in detail.

Creating the connection on the Web server
Using Open Database Connectivity (ODBC) provides better compatibility with
other applications than newer solutions. In addition, ODBC is the option of
choice with some Database Management Systems (DBMSs) because this older
Microsoft technology works with a wide range of products. However, because
it’s an older (and slower) connection strategy, you should consider using
other techniques — such as a direct network connection — when speed is
important. Use the following steps to create the ODBC connection on the
Web server:

1. Double-click the Data Sources (ODBC) applet in the Administrative
Tools folder of the Control Panel.

You see the ODBC Data Source Administrator dialog box.

Figure 3-2:
Choose
one of the
connection
types for
your Access
database.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 416

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 417

2. Select the System DSN tab. Click Add.

You see a Create New Data Source dialog box that lists a number of data-
base drivers. A Data Source Name (DSN) is a label attached to a set of
instructions for connecting to a database. The use of a label makes it
easy to reference the ODBC instructions.

3. Highlight the SQL Server entry and click Finish.

You see the Create a New Data Source to SQL Server dialog box shown in
Figure 3-3. Note that every ODBC driver uses a different dialog box, so
the dialog box shown here won’t match the one used for other DBMS.
Each DBMS requires a configuration dialog box selected for its specific
needs.

4. Type a name for the data source.

Use a short name that’s easy to remember and doesn’t contain any
space or special characters.

5. Type a description in the description field.

Make sure you provide enough information that you can identify the
connection later.

6. Select a server from the Server drop-down list box and then click
Next.

The wizard asks what security settings you want to use when connecting
to SQL Server.

Generally, the Windows NT authentication is safer, and you should con-
sider using it. However, if you want your Web site to provide secure
access to the database without opening the server as well, you can use
SQL Server authentication. Doing so ensures that the user inputs the

Figure 3-3:
Define a
SQL Server
data source
using this
wizard.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 417

Developing Links to SQL Server418

correct information on-screen. Make sure you use an HTTPS (secure)
connection when performing this task.

7. Select a connection option and then click Next.

The wizard asks you to select a default database and configuration
options for that table, as shown in Figure 3-4. This dialog box normally
chooses the master database as the default, and it’s easy to miss the
required changes. Make sure you select the correct default database as
a minimum.

8. Check Change the Default Database to, select a database from the
drop-down list box, and then click Next.

You see settings that change the language used for the SQL Server mes-
sages, string encryption, character translation, regional settings, and
logging options. None of these settings require changes when you’re
using the Northwind database (as the example does in Figure 3-4).
However, you may need to change them when you’re working with real
data on your Web site.

String encryption is especially helpful in enhancing the security of your
database.

9. Modify any required SQL Server messages, string encryption, charac-
ter translation, regional settings, and logging options as needed. Click
Finish.

You see the ODBC Microsoft SQL Server Setup dialog box, which con-
tains a summary of the settings you defined. This dialog box also lets
you test the connection.

Figure 3-4:
Specify the
default
database
and
connection
options.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 418

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 419

10. Click Test Data Source.

You see either a success message or an error message. When you see an
error message, fix any connection problems and test the connection
again.

11. Click OK twice.

The ODBC Data Source Administrator adds the new connection to the
DSN tab.

Accessing the connection
The database connection is usable at this point. Use the following steps to
create a FrontPage connection for the DSN link.

1. Choose System Data Source On Web Server in the New Database
Connection dialog box. Click Browse.

You see the System Data Sources On Web Server dialog box. This dialog
box should contain the connection created earlier in this section.
Everything FrontPage needs to create the connection appears in the
DSN you created.

2. Choose the DSN you want to use and click OK.

FrontPage displays the database connection information in the text box
beneath the Custom Definition entry shown in Figure 3-2.

3. Click OK.

FrontPage displays the new connection on the Database tab of the Site
Properties dialog box.

4. Click Verify.

FrontPage checks the connection to the database. If this connection
fails, don’t modify the FrontPage settings — check the DSN settings on
the server instead.

5. Click OK.

FrontPage displays the Database Results Wizards dialog box. It auto-
matically selects Use an Existing Database Connection and modifies the
connection entry to the new connection you created. Proceed with the
instructions in the “Selecting an existing connection” section of the
chapter.

Using a network connection
A network connection helps you create a link to your SQL Server database
without resorting to an ODBC configuration. The network connection doesn’t

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 419

Developing Links to SQL Server420

rely on your having access to the Data Sources (ODBC) applet. All you need
is access to the server computer that contains SQL Server — and to the SQL
Server application. This connection requires the least amount of work and
offers better performance (due to differences in the driver used and other
low-level details) in some cases. Use these steps to create such a network
connection:

1. Choose Network Connection to Database Server in the New Database
Connection dialog box. Click Browse.

You see the Network Database Connection dialog box.

2. Choose a database driver (either SQL Server or Oracle) and type its
name in the Server Name field.

3. Type the name of the database in the Database Name field and click OK.

FrontPage displays the database connection information in the text box
beneath the Custom Definition entry, shown in Figure 3-2 (the example
uses Northwind).

4. Click OK again.

FrontPage displays the new connection on the Database tab of the Site
Properties dialog box.

5. Click Verify.

FrontPage checks the connection to the database. If this connection
fails, don’t modify the FrontPage settings — check the DSN settings on
the server instead.

6. Click OK.

FrontPage displays the Database Results Wizards dialog box. It auto-
matically selects Use an Existing Database Connection and modifies
the connection entry to the new connection you created. Proceed with
the instructions in the “Selecting an existing connection” section of the
chapter.

Defining a custom connection
Like many other databases, SQL Server can use a file-based DSN connection
when the developer needs to create a custom connection that could change
at some point in the application setup. The custom connection works best
when using a Local Area Network (LAN) connection for a company intranet.
In general, a custom connection can help you create specialized setups and
use more database types than the standard connections do, but they’re also
a lot harder to set up.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 420

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 421

One potential problem in using a file DSN with SQL Server is that the connec-
tion can fail when you attempt to select a query (view) as a record source.
Just why the connection fails is something that Microsoft hasn’t discussed.

The connection always works with tables, but table connections are nearly
useless if you’re working with the complex setups that SQL Server manages
best. You can normally overcome this problem by creating a custom query
that uses the view as input. For example, to perform this task with the
Customer and Suppliers by City query, use SELECT * FROM “Customer
and Suppliers by City” as the custom query.

To use this connection type, you must have access to the Data Sources
(ODBC) applet in the Administrative Tools folder of the Control Panel.

Defining the connection properties
The following steps show how to create a custom connection. They start by
using the Data Sources (ODBC) applet to define the connection properties.

1. Double-click the Data Sources (ODBC) applet in the Administrative
Tools folder of the Control Panel.

You see the ODBC Data Source Administrator dialog box.

2. Select the File DSN tab. Click Add.

You see a Create New Data Source dialog box that lists a number of data-
base drivers. A Data Source Name (DSN) is a label attached to a set of
instructions for connecting to a database. The use of a label makes it
easy to reference the ODBC instructions.

3. Highlight the SQL Server entry and click Next.

The Create New Data Source wizard asks you to provide a filename for
the data source.

4. Click Browse. Choose a location for the file DSN, type a name in the
File Name field, and click Save.

The Create New Data Source wizard places the file path and name in the
field provided.

5. Click Next.

You see a summary of the connection information.

6. Click Finish.

You see a Create a New Data Source to SQL Server dialog box that looks
similar to the one shown in Figure 3-3. The main difference is that the
Data Source Name field is disabled because you can’t provide this infor-
mation as part of a file DSN.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 421

Developing Links to SQL Server422

7. Type a description for the connection in the Description field. Select
your server from the Server field. Click Next.

The wizard asks what security settings you want to use when connecting
to SQL Server.

8. Select a connection option and then click Next.

The wizard asks you to select a default database and configuration
options for that table, as shown in Figure 3-4. This dialog box normally
chooses the master database as the default; it’s easy to miss the required
changes. Make sure you select the correct default database as a minimum.

9. Check Change the Default Database to, select a database from the
drop-down list box, and click Next.

You see settings that change the language used for the SQL Server mes-
sages, string encryption, character translation, regional settings, and
logging options. (The example uses the Northwind database, as shown
in Figure 3-4.)

10. Modify any required SQL Server messages, string encryption, charac-
ter translation, regional settings, and logging options as needed. Click
Finish.

You see the ODBC Microsoft SQL Server Setup dialog box, which con-
tains a summary of the settings you defined. This dialog box also lets
you test the connection.

11. Click Test Data Source.

You see a success or error message. When you see an error message, fix
any connection problems and test the connection again.

12. Click OK twice.

The ODBC Data Source Administrator adds the new connection to the
DSN tab.

Adding the DSN connection
When you have a file DSN set up and ready to use, it’s time to add the con-
nection to FrontPage. The following steps show how:

1. Copy the file DSN from the \Program Files\Common Files\ODBC\
Data Sources folder on your server to a folder within your Web site.

You can use the _private folder to protect the file from prying eyes
when necessary.

2. Choose Custom Definition in the New Database Connection dialog
box. Click Browse.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 422

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 423

You see the Connection Files in Current Web Site dialog box. Notice that
this dialog box allows you to look only on the current Web site for the
DSN file.

3. Locate the DSN file you want to use and click OK.

FrontPage displays the database connection information in the text box
beneath the Custom Definition entry shown in Figure 3-2.

4. Click OK.

FrontPage displays the new connection on the Database tab of the Site
Properties dialog box.

5. Click Verify.

FrontPage checks the connection to the database. If this connection
fails, don’t modify the FrontPage settings — check the DSN settings in
the DSN file instead.

6. Click OK.

FrontPage displays the Database Results Wizard dialog box. It then auto-
matically selects Use an Existing Database Connection and modifies the
connection entry to the new connection you created. Proceed with the
instructions in the “Selecting an existing connection” section of the
chapter.

Choosing an external connection
An external connection lets you connect directly to the database without
creating a DSN or even a special connection first. Instead of working through
several processes to obtain data from SQL Server or Oracle, you go directly
to the source in a single process. The advantage of this technique is that it’s
very fast and easy. The disadvantage is that you don’t save the connection
information — which means you have to recreate it for every connection. In
some respects, this technique is also wasteful of system resources, but the
additional disk space required is minimal. The following steps show how to
create an external connection:

1. Choose the Insert➪Database➪Results command.

You see the Database Results Wizard dialog box shown in Figure 3-1.

2. Select Connect to an External Database and click Next.

FrontPage asks you to supply the database type (Oracle or SQL Server),
server name, and database name. You must also supply a username and
password when you set the system to use SQL Server security or the
server isn’t set to require a username and password.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 423

Developing Links to SQL Server424

3. Type the required information and click Next.

FrontPage displays list of record sources you can use or you can create
a custom query. When creating a custom query, you must type a SQL
statement to retrieve data from the server.

4. Select Record Source (individual tables or predefined queries) or
Custom Query (complex queries using multiple tables):

• When using Record Source, choose a table or view from the list pre-
sented under the Record Source option.

• When using a Custom Query, click Edit, type the SQL Statement that
you want to use, click Verify to check the accuracy of the query, and
click OK to create the query.

5. Click Next.

FrontPage displays a list of fields for the table or query, as shown in
Figure 3-5. FrontPage assumes you want to use all of the fields in the
query. You have two options:

• Click Edit List to change the fields FrontPage displays.

• Click More Options when you want to filter or sort the data as it
comes from Access.

6. Click Next.

FrontPage asks how you want to display the data. You can choose from a
table, a list, or a drop-down list. When using a list or drop-down list, you
can select only one field from those chosen from the named range.

Figure 3-5:
Define the
way you
want to use
the
database
information.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 424

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Developing Links to SQL Server 425

7. Select a presentation format (the example uses the table) and click
Next.

FrontPage asks how you want to group the records. You can choose to dis-
play all of the records together or split them into groups of specific record
numbers. Use the grouping option for larger tables; doing so makes it
easier for the user to locate data, but also splits up the presentation.

8. Choose a record grouping method and click Finish.

FrontPage adds the view to the current Web page. At this point, FrontPage
will tell you to save the file and change the extension to ASP or ASPX (if
you haven’t done so already) so the table works as expected.

Selecting an existing connection
SQL Server developers usually create just a few connections and then reuse
them in a number of views. Use an existing connection whenever possible to
reduce clutter, improve performance, decrease memory requirements, and
lessen the chance of connecting to an old database. Even when you create a
new view, FrontPage returns you to the Database Results Wizard dialog box
with the Use an Existing Database Connection option selected and the new
connection displayed in the associated drop-down list box. The following
steps show how to use an existing connection.

1. Select Use an Existing Database Connection if FrontPage hasn’t already
done so. Choose the connection you want to use. Click Next.

FrontPage requests information about the record source you want to
use. A record source can include an entire table, a query that you’ve
defined, or a custom SQL statement.

2. Select Record Source or Custom Query. When using Record Source,
choose a table or view from the list presented under the Record
Source option. When using a Custom Query, click Edit, type the SQL
Statement that you want to use, click Verify to check the accuracy of
the query, and click OK to create the query. Click Next.

FrontPage displays a list of fields for the table or query, as shown in
Figure 3-5.

3. Click Next.

FrontPage asks how you want to display the data. You can choose from a
table, a list, or a drop-down list.

4. Select a presentation format (the example uses the table) and click
Next.

FrontPage asks how you want to group the records. You can choose to
display all of the records together or split them into groups of specific
record numbers.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 425

Creating Relational Data Views426

5. Choose a record grouping method and click Finish.

FrontPage adds the view to the current Web page.

Creating Relational Data Views
SQL Server is an industrial strength database designed to work with large
data sets. Developers who use SQL Server seldom rely on a single table to
accomplish a task. Normally, a database has two or more tables that have a
relationship to each other — so you’ll probably want to use multiple tables
in FrontPage as well. FrontPage always lists multiple table relations in SQL
Server as a view.

To create a relational data view in FrontPage, you must begin by creating a
query in SQL Server. These queries appear in the Views folder for the data-
base in Enterprise Manager. You use Query Analyzer to check the view
before working with it in FrontPage to ensure you can easily locate the
source of any problems.

Correcting a security problem
One problem you might encounter when working with SQL Server is that the
database won’t display error messages correctly or at all. A typical error
message looks like this:

The operation failed. If this continues, please contact your server administrator.

A number of problems could cause this error to appear, but the most common
problem is security. You can fix this problem by using a number of the follow-
ing techniques (in order of preference):

✦ Set directory security on the Directory Security tab of the directory
Properties dialog box in the Internet Information Services console so
that anonymous access is disabled.

✦ Create the DSN so that it uses SQL Server security and then supply a
default name and password to access the data.

✦ Create an external connection using FrontPage.

✦ Supply a name and password in the Advanced Connection Properties
dialog box within FrontPage.

✦ Add the anonymous user account to SQL Server with significant restric-
tions on the acts the anonymous user can perform.

✦ Create a custom script to make the connection manually.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 426

Book V
Chapter 3

Developing
Applications w

ith
SQL Server

Creating Relational Data Views 427

Developing SQL Server views
using the PivotTable control
Unlike Office applications, the analysis tools provided with SQL Server are a
little limited unless you buy an add-on product. This limitation is inconsis-
tent with the purpose Microsoft had in mind when designing SQL Server —
as a database that handles large amounts of information, which normally
requires robust analysis tools.

In some cases, you can use the PivotTable control to analyze SQL Server
data so long as you limit the number of records so the analysis doesn’t take
the rest of someone’s life to perform. Use the following steps to create the
PivotTable control with SQL Server data:

1. Choose the Insert➪Web Component command.

You see the Insert Web Component dialog box.

2. Select the Spreadsheets and Charts entry in the Component Type list
and Office PivotTable in the Choose a Control list. Click Finish.

FrontPage creates the PivotTable. At this point, the PivotTable won’t
contain any data.

3. Right-click the control and choose ActiveX Control Properties.

You see the ActiveX Control Properties dialog box.

4. Choose the Data Source tab. Select Connection and click Edit.

You see the Select Data Source dialog box.

5. Select New SQL Server Connection.odc and click Open.

FrontPage starts the Data Connection Wizard. The beginning dialog box
lets you choose a server and credential option. The most secure connec-
tion method is Use Windows Authentication. However, on a public Web
site where users log on anonymously, you might have to rely on the Use
the Following User Name and Password option.

6. Type the server name in the Server Name field and choose a log on
credential option. Click Next.

You see the Select Database and Table dialog box. This dialog box lists
all of the options for connection with SQL Server on the server you
choose.

7. Select a database from the drop-down list (the example uses
Northwind).

FrontPage populates the Connect to a Specific Table list.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 427

Creating Relational Data Views428

8. Choose a table (the example uses Summary of Sales by Quarter) and
click Next.

You see the Save Data Connection and Finish dialog box. Use the file-
name, description, and keyword entries in this dialog box to identify the
connection.

9. Type a filename, description, and key words, and then click Finish.

FrontPage fills in the Connection and Use Data From fields of the Data
Source tab of the ActiveX Control Properties dialog box.

10. Click OK.

FrontPage updates the PivotTable control so you can add fields to it.

11. Click on the control so you see the hatched lines appear around it.

The control is in edit mode.

12. Right-click the control and choose Field List from the content menu.

You see a list of fields you can use to work with the PivotTable control.

13. Select the fields you want to use and close the Pivot Table Field List
dialog box.

At this point, the control contains data, but no totals.

14. Right-click within the data area. Select AutoCalc.

You see a number of options for calculating a result from the data. Even
when the data is text, you should have the option of counting members
based on the criteria used to create the PivotTable.

15. Select one of the options on the AutoCalc menu.

FrontPage adds totals based on the calculation you selected.

At this point, the PivotTable is ready to use. One of the important things to
remember about using a PivotTable control is that you aren’t limited as to
what criteria you use. The goal is to discover something about your data
that you didn’t know before you analyzed it. Sometimes a PivotTable won’t
provide that kind of useful information, but in other cases it will. Only by
playing with the data in various ways do you discover relationships you
didn’t know about before.

29_575317 bk05ch03.qxd 9/24/04 8:09 PM Page 428

Book VI

XML and XSLT

30_575317 pp06.qxd 9/24/04 8:07 PM Page 429

Contents at a Glance
Chapter 1: Working with XML..431

Chapter 2: Developing an Interpretation with XSLT..453

Chapter 3: Creating Dynamic XML Pages ..467

30_575317 pp06.qxd 9/24/04 8:07 PM Page 430

Chapter 1: Working with XML

In This Chapter
� Working with XML

� Creating an XML document

� Showing the content of an XML document

� Working with the XML Toolbar

� Getting XML from existing sources

Many applications — even some that have nothing to do with the
Internet — use eXtensible Markup Language (XML) as a way to save

information. For example, Microsoft Office applications use XML as a means
of saving data in an easily transferable format. Visual Studio uses XML to
save settings, as do technologies such as ASP.NET. You might be seeing a
translated form of XML when you view your favorite magazine or other writ-
ing online. In fact, these days it’s hard to use a computer at all without run-
ning into some use of XML. That’s because XML is so flexible and easy to
understand.

The easiest way to think of XML is as a specially formatted kind of text that
includes both data and tags that define data elements. XML looks like HTML
in some respects, but it isn’t limited to the tags that someone else decided
you should use — you can create your own tags as needed. In addition, XML
is better organized than HTML, so it’s easier to read and understand. This
chapter assumes that you know what XML is and are mainly interested in
discovering how to work with it using FrontPage.

FrontPage includes a number of features for working with XML documents.
You can view XML documents within FrontPage with highlighting and other
clues in place that make working with XML a lot easier than using a text
editor or other less capable editor. In addition, FrontPage provides a special
XML Toolbar that makes working with XML faster because you don’t have to
rely on the menu system to perform other tasks. Finally, FrontPage provides
import features so you can take XML from any location and use it as part of
your Web page.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 431

Using XML Effectively432

This chapter doesn’t include an exhaustive list of XML features, but it does
discuss the most common. When you have questions about current XML
usage, always refer to the XML standard. You can find it at

http://www.w3.org/TR/REC-xml.

The document that defines the standard can be a little confusing to read,
however, so use the annotated version to answer questions about the inter-
pretation of the standard. You can find this version at

http://www.xml.com/axml/axml.html

Using XML Effectively
XML is a standard for combining data with context, such as a Word processor
does by combining the text you type (data) with formatting (context). The
context can include everything from the arrangement of the data to tech-
niques for formatting it. The idea is to preserve the data and the information
you use when you’re working with the data. Nothing in the XML standard
limits the interpretation of XML — the standard leaves the interpretation up
to whoever is applying the standard (that is, the implementer). Many other
standards define how to interpret XML, but XML itself doesn’t define anything
but the basic requirements for the document — in particular, the format of
the data within the document.

One of the reasons that XML is so popular is that its documents appear in
plain text. Every computer can read and understand text. In fact, text is the
common format for all computers, even computers too old to perform useful
work today. Given enough time, anyone can read and understand an XML
document by using a simple text editor such as Notepad. You have other
means of reading XML at your disposal, but you don’t have to use any spe-
cial application.

Many applications now produce XML output. By discovering the interpreta-
tion of the XML document, you can create your own presentations on a Web
site. The presentation doesn’t have to precisely match the presentation of
the document in the application that creates it. Because XML is freeform,
you transform it to meet whatever needs you might have.

You can also create documents of your own. Effective use of XML requires
that you define the structure of the content you want to create. A document
could include formatting or structure information, or even both. You decide
how someone should interpret the content of the XML document. As long as
your document follows the XML rules, you won’t experience any difficulty in
storing the information you need in the way you want. These rules are dis-
cussed in the next section.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 432

Book VI
Chapter 1

W
orking w

ith XM
L

Using XML in FrontPage 433

Using XML in FrontPage
XML doesn’t have very many rules to consider — but the few it does have
are absolute. When a document you create follows all the rules, applications
designed to work with XML see it as well formed. A well-formed XML docu-
ment includes specific features that clue the reader (the application parsing,
working with, the content) in on the content of the document and tell it how
to display the information.

Working with processing instructions
Every XML document begins with a processing instruction. The processing
instruction tells an application designed to work with XML what to do with
the document. You must begin the XML document with this processing
instruction or the reader won’t interpret it correctly. Here’s a typical exam-
ple of this processing instruction:

<?xml version=”1.0” encoding=”utf-8” ?>

A processing instruction always appears within a combination of angle
brackets and question marks like this: <? ?>. This processing instruction
defines the document as an XML document. It has two attributes:

✦ The version attribute identifies the version of XML used for this docu-
ment. (All XML documents currently use version 1.0, but that could
change in the future.)

✦ The encoding attribute defines the character set used for the docu-
ment. In this case, the document uses 8-bit Unicode Transformation
Format (UTF-8), which is essentially plain text.

An XML document can have other processing instructions unique to the doc-
ument — these appear only when needed to change the interpretation of the
document. Normally, you won’t see these other processing instructions
unless a special transformation instruction creates a particular presentation
for your document. Then you may see additional special processing instruc-
tions in word processed or other complex documents. The only standard
processing instruction is the XML header that appears at the beginning of
every XML document. Other processing instructions are application and
document specific, so you need to consult the documentation provided by
the vendor or other party who created the document schema for descrip-
tions of other processing instructions.

Most processing instructions are titled after the application that uses them.
For example, the required XML processing instruction refers to all XML

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 433

Using XML in FrontPage434

applications. When you want to add a special processing instruction for your
particular application, name the processing instruction appropriately, so
other applications won’t misinterpret it. For example, a processing instruc-
tion for MyApp might look like this.

<?myapp dosomething=”different” ?>

In this case, the special processing instruction is directed toward MyApp.
No other application will do anything with the processing instruction. The
dosomething entry defines the special instruction type. The different
value tells the application how to do it, or what value to use. Processing
instructions are quite powerful — but they’re only useful when you have an
application that will do something with them.

Working with elements
An element is a single piece of information within the XML document. It pro-
vides a name for the information within the document. The name could
define everything from the format of the information to the kind of informa-
tion contained within the element. An element doesn’t even need to contain
information — it can simply serve as a means for organizing the information
within the document. Here’s the simplest form of element you can create.

<PersonalData />

An element always appears within angle brackets. You must include a
beginning and ending bracket for all elements. This element has a name
of PersonalData. The element must end with a slash, as shown. This is a
special form of element — known as an empty element because it doesn’t
include any data. You can also create elements in tag pairs, as shown here:

<Name>John</Name>

The angle brackets < > define the opening and closing of the element with
(respectively) a start tag and end tag. The start tag and end tag have the
same name; you can tell them apart because an end tag always includes the
slash as shown. You use the first kind of element as an organizational aid or
as a means of storing data as attributes. The second kind of element con-
tains data between the start tag and end tag.

Elements can also contain other elements. You might decide to create an
address book consisting of person records. (The actual tags you use depend
on what you define — XML is completely open to your needs.) Listing 1-1
shows your first XML document.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 434

Book VI
Chapter 1

W
orking w

ith XM
L

Using XML in FrontPage 435

Listing 1-1: Simple XML document consisting of elements

<?xml version=”1.0” encoding=”utf-8” ?>
<AddressBook>

<Person>
<Name></Name>
<Address>

<AddressLine></AddressLine>
<AddressLine></AddressLine>

</Address>
<City></City>
<State></State>
<ZIP_Code></ZIP_Code>
<Telephone></Telephone>
<PersonalData />

</Person>
</AddressBook>

This XML document is functional. It includes the processing instruction that
identifies it as an XML document. The document contains a series of elements
that use the required formatting. In fact, the only thing missing from this XML
document is some data. It doesn’t contain any information. (Details, details.)

Notice that the element name is a single word. When you want to use more
than one word for the element name, combine the words together. An ele-
ment name can’t contain a space. Some developers use an underline as a
separator between words. For example, Personal_Data is an acceptable
element name.

Working with values
Values — data in the form of words or numbers — are the most common form
of information added to an XML document. The information you add is always
in text form, but can describe anything, including pictures and sounds. For
example, you could include a URL to a picture that the application reading the
document will retrieve and display on-screen. Generally, all values in the docu-
ment are data that you want to send; a value always appears within an ele-
ment. For example, here’s an element with a value included:

<Name>George Smith</Name>

The association of the element with the data tells you about the kind of
information provided by the value. You know by looking at the code that
George Smith is a name. A value can contain spaces and some other special
characters. When you can’t produce a special character conveniently, use
the same techniques you use in an HTML document. For example, you can

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 435

Using XML in FrontPage436

create an ellipsis (the three dots used to show the omission of additional con-
tent) by adding the … character code. You can find a list of additional
character codes at http://home.online.no/~pethesse/charcodes.html.

Some special characters that you can produce with the keyboard — for
example, an angle bracket — do pose a problem: The application reading the
XML document won’t know how to interpret the resulting text. For example,
<Equation>5 < 10</Equation> creates a problem because of the less-than
sign that looks too much like a left angle bracket. You have two ways to cor-
rect this problem. The first is to replace the less-than sign with the <
HTML character code. You can also place the information in a special coding
construct called a CDATA (or character data section) like this:

<Equation>
<![CDATA[5 < 10]]>

</Equation>

A CDATA section always begins with <![CDATA[and ends with]]>. You
place your data within the square brackets, as shown in the code. Although
this second method of handling special characters looks harder to use than
HTML character codes, it has distinct advantages.

✦ Helps other people understand that the data contains special characters.

✦ Makes it possible to include longer pieces of text without having to
replace every special character individually.

✦ Reduces the chance that a special character will appear in the XML doc-
ument without conversion.

✦ Many viewers display a CDATA section in a special color, making it easier
to locate information with special characters.

Working with attributes
You use attributes to describe either an element or the data it contains (or
sometimes both). Although an attribute can be considered data of a sort, it’s
not the essential information in the XML document. For example, you might
want to tell the viewer that some text is underlined, so you add a special
attribute that says the text is underlined. The attribute is important data,
but it isn’t the text within the element — the information the viewer is most
concerned about seeing.

Attributes always appear as a name and value pair. The name defines the
attribute type, while the value defines the attribute status. Here’s a typical
example of an element that contains both a value and attributes.

<Number Location=”Home”>(555)555-1212</Number>

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 436

Book VI
Chapter 1

W
orking w

ith XM
L

Using XML in FrontPage 437

The element name is Number, and it contains a telephone number — in
this case, the data that the viewer is most interested in seeing. However,
the viewer doesn’t know what kind of telephone number it is without the
Location attribute. The Location attribute describes where the viewer
can call with the associated telephone number — this is the person’s home
telephone number and not their office telephone number. The value of Home
shows that this is a home telephone number.

You can use attributes only in start tags and empty elements. An attribute
doesn’t have to relate to any specific data. For example, you can use one or
more attributes to define document settings. The attributes could include
anything from the document author to the margin settings used to display
the document.

A series of attributes can also define complex data, but this use is less
common. As a rule, you can use attributes or elements with equal ease as
long as the document’s user understands its construction. Here’s an example
of a position on a chart described with both attributes and elements. First,
the attribute version:

<Position X=”15” Y=”20” Z=”18” />

Notice that this form relies on a single element. Second, the element version:

<Position>
<X>15</X>
<Y>20</Y>
<Z>18</Z>

</Position>

Both versions of the code say essentially the same thing — the XML points
to a position on a chart where the X-axis value is 15, the Y-axis value is 20,
and the Z-axis value is 18. The attribute form is more compact, but harder to
interpret and less flexible. You couldn’t add an attribute to the X-axis, for
example, because the X-axis value is already an attribute. The version of the
code that uses elements is bulkier — which could pose transmission prob-
lems when you have a lot of data — but it’s also the form that most people
expect.

Adding comments
Comments are notes you make to yourself in the code or provide as docu-
mentation for other people. These comments will not appear in the final
XML output. The application that processes your XML code ignores any
comments you include; the comment isn’t treated as data. Comments are

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 437

Using XML in FrontPage438

essentially nonentities within XML; you can put them nearly anywhere in the
document. Here’s an example of a comment:

<!-- This is a list of my personal names and addresses -->

A comment always begins with <!-- and ends with -->. You can place any
text you want within the comment. Even additions such as angle brackets
that normally cause problems don’t cause a problem within a comment.

The only character combination to avoid when you’re writing a comment
is the series of characters that denote the end of the comment — until, of
course, you get to the end.

Understanding the concept of nodes
Look again at Listing 1-1. Notice the <AddressBook> element. The document
contains only one such element — and it holds all the other elements in the
document. This special element is known as a root node. Just as every XML
document must begin with an XML processing instruction, an XML docu-
ment must also have a root node — a container for other elements in the
document.

The <Address> element is also special. Notice that it contains a series of
<AddressLine> elements. The <Address> element is also called a parent
node. Like the root node, a parent node doesn’t necessarily contain any data,
but it does act as a container for other elements that do contain data. In
most cases, parent nodes serve to organize data to make it easier to access,
but they can serve other purposes, too.

The <AddressLine> elements are child nodes. You can view them as children
of the <Address> element. In some cases, you also see child nodes referred
to as leaf nodes when they are the last element in a hierarchy (as is the case
for the <AddressLine> elements).

Not every piece of information in even a simple XML document is a node and
you need to recognize the difference to interpret the document correctly.
Listing 1-2 shows the complete version of the sample XML document found
in the First.XML file in the source code for this chapter (on this book’s
companion Web site).

Listing 1-2: Example XML Showing Standard Features

<?xml version=”1.0” encoding=”utf-8” ?>
<!-- This is a list of my personal names and addresses -->
<AddressBook Version=”1.0”>

<!-- Each person record contains the person’s name and
address, as well as one or more telephone numbers. A

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 438

Book VI
Chapter 1

W
orking w

ith XM
L

Using XML in FrontPage 439

person record can also include special notes and
other

personal data. -->
<Person>

<Name>George Smith</Name>
<Address>

<AddressLine>1234 West Street</AddressLine>
<AddressLine>Suite 20</AddressLine>

</Address>
<City>Somewhere</City>
<State>WI</State>
<ZIP_Code>54001</ZIP_Code>
<Telephone>

<Number Location=”Home”>(555)555-1212</Number>
</Telephone>
<PersonalData>

<Note Type=”TimeToCall” Hour=”PM”>
8:30

</Note>
<Note Type=”SpouseName”>

Nancy
</Note>

</PersonalData>
</Person>
<Person>

<Name>Amy Wright</Name>
<Address>

<AddressLine>99 Lear Street</AddressLine>
</Address>
<City>Edge</City>
<State>CA</State>
<ZIP_Code>99122</ZIP_Code>
<Telephone>

<Number Location=”Office”>(555)555-1234</Number>
<Number Location=”Home”>(555)555-9876</Number>

</Telephone>
<PersonalData />

</Person>
</AddressBook>

The XML processing instruction isn’t a node. In fact, none of the processing
instructions you add to a document are nodes because they don’t contain
viewable data. For this same reason, comments also aren’t nodes. Only ele-
ments are nodes. Even empty elements are still leaf nodes because they
convey the lack of data or null data. The empty set is an important kind of
data that tells the viewer the data doesn’t exist, rather than you simply
didn’t add it.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 439

Simple Techniques for Displaying XML440

Simple Techniques for Displaying XML
The easiest way to view XML is as plain text — from the command prompt.
Several other possibilities also exist:

✦ Use a text editor: XML is simple text; any editor that can display text
can also display XML. Unfortunately, if the XML document is color-coded
to reveal its features, this technique isn’t particularly helpful (most text
editors won’t highlight the XML code using color). Even so, you can usu-
ally make small changes — or view short XML documents — with little
difficulty if you use a text editor (such as Notepad) for the purpose.

✦ Use your browser: Most modern browsers, such as Internet Explorer,
provide special features for seeing XML, as shown in Figure 1-1. The
advantage of using this technique is that you see the XML using high-
lighted text. In addition, click any of the minus signs to collapse a sec-
tion of the XML so you get just an overview of the document. Click a
plus sign to expand a collapsed section of the document. This option
works anywhere, even on Web sites that don’t give you direct access to
the document. (Unfortunately, however, you can’t edit a document using
a browser.)

Figure 1-1:
Use Internet
Explorer to
view XML
documents
anywhere.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 440

Book VI
Chapter 1

W
orking w

ith XM
L

Simple Techniques for Displaying XML 441

✦ Open your XML document directly in FrontPage: This approach is
shown in Figure 1-2. Unlike Internet Explorer, you can’t collapse or
expand various levels of the document, so you have to page back and
forth within the document as you view it. However, the advantage of this
technique is that you can edit the document, and FrontPage provides
some features for working with XML that you don’t get with Internet
Explorer, such as verification. See the “Organizing and checking the doc-
ument” section of this chapter for details.

✦ Use a third-party editor specifically designed for working with XML:
You can find a number of these products online, but you only really use
them when you want to perform complex tasks with XML. FrontPage is
perfectly suitable for working with simple XML documents and discover-
ing how you want to work with XML.

If you do want to go the third-party route, you have a range of options. Each
has its own attractions and limitations, as the following sections show —
starting with the simplest of the XML viewers available.

Figure 1-2:
Edit, format,
and verify
your XML
document
using
FrontPage.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 441

Simple Techniques for Displaying XML442

XML Notepad
You might want to start with an older Microsoft product called XML Notepad.
Although Microsoft doesn’t support this program any longer, you can down-
load it from SnapFiles at

http://www.snapfiles.com/get/xmlnotepad.html

This editor has several advantages over FrontPage as an XML viewer, as
shown in Figure 1-3. You can see the nodes in a Windows Explorer-like tree
view with the content of the element shown in the right pane. The use of
special icons makes using this editor particularly easy even for large docu-
ments. You can also expand and collapse the nodes as needed. The only
problem with XML Notepad is that it supports only basic XML constructs —
you need a better editor when working with complex documents. In addi-
tion, XML Notepad doesn’t work with XML support files, so you might find it
limited as you explore XML in greater depth.

Figure 1-3:
Experiment
with XML
editors
using XML
Notepad.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 442

Book VI
Chapter 1

W
orking w

ith XM
L

Using the XML View Toolbar 443

XMLFox
Another good free option is XMLFox (http://www.xmlfox.com/). The
left side of the XMLFox display is yet another version of the standard tree
display — this one sports special symbols and colors. The unique feature
of this product is that it uses a tabular view of the XML data, which works
pretty well with some types of complex XML files. XMLFox includes some
advanced capabilities that support even complex XML documents. The dis-
advantage of this product is that you must download several Microsoft prod-
ucts to use it including the .NET Framework. One drawback: Download time
can become expensive.

XMLwriter 2
Some people prefer not to use a tree view. FrontPage supports XML without
using a tree view — and so do other products. One of the better alternatives
is XMLwriter 2 (http://www.xmlwriter.net/). This is a try-before-you-buy
(shareware) product. (I won’t say that this product is shareware in the
strictest sense because the trial period limits use to 30 days.) Unlike many
other XML editors on the market, XMLwriter 2 also uses a Notepad-style doc-
ument display for editing. This product automatically assumes you want to
use color-coding for keywords. You’ll also find the use of automation nice.
For example, when you type an opening tag, XMLwriter 2 automatically cre-
ates a closing tag for you. The IDE also features an XML checker. Simply
right-click the document and select Validate XML File from the context menu.
Any errors appear in a TODO list at the bottom of the IDE.

XMLSpy
At some point, you might need an XML editor that provides automatic gener-
ation of complex data because writing complex XML documents by hand is a
time consuming and error prone process. One of the most popular high-end
XML editors on the market today is XMLSpy (http://www.xmlspy.com/).
You can download a limited time evaluation copy of the product from the
Altova Web site. After the evaluation period ends, you must either remove
XMLSpy from your system or buy a copy. The feature that makes XMLSpy so
useful is the extreme automation it provides. In addition, XMLSpy provides
support for the full range of XML features, including most of the features for
add-on standards and file types. You can use this product to create and
manage entire XML projects.

Using the XML View Toolbar
If you’re looking at your XML document directly in FrontPage, you’re using
some direct XML functionality that doesn’t rely on a particular server setup.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 443

Using the XML View Toolbar444

You can rely on this functionality even when you use a server without Internet
Information Server (IIS) or FrontPage Extensions installed. The next few sec-
tions discuss FrontPage’s XML features in detail.

Creating the document
FrontPage doesn’t provide a means for creating an XML file directly. Before
you can work with an XML file, you must either create it externally, or create
another file type with FrontPage and rename it. The best way to create a new
XML file directly in FrontPage is to right-click the folder you want to use for
storage and select New➪Text File from the context menu. FrontPage creates
the new file. Give the file a name with an XML extension and you’re ready to
create an XML document. Using the text file option ensures the file is blank
when you open it.

After you create the file, you can add properties to it just as you do for any
other FrontPage file. Right-click the file and choose Properties from the con-
text menu. These entries appear in Folders view. Unlike HTML files, XML files
don’t require you to provide properties within the file — you can’t use meta
tags or other means of identification within an XML file.

It pays to create a page template for XML files when you plan to work with
them regularly. Creating an XML page template lets you use the New window
of the Task Pane.

Organizing and checking the document
After you create your XML document, it’s important to organize it and check
it for errors. The XML View toolbar provides two buttons for this task, as
shown in Figure 1-4. FrontPage doesn’t display this toolbar by default. You
display the toolbar by right-clicking in the toolbar area and choose XML
View from the context menu.

Figure 1-4:
Manage
XML
documents
using the
XML View
toolbar.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 444

Book VI
Chapter 1

W
orking w

ith XM
L

Using the XML View Toolbar 445

Formatting the document automatically
The XML View toolbar contains two buttons. Each offers a different approach
to formatting your XML document:

✦ Reformat XML: Click this button to format the XML tags in a document
according to the options you set on the Code Formatting tab of the Page
Options dialog box. This feature is especially useful when you obtain the
XML document from another source. The XML standard doesn’t specify
any form of formatting for the XML document, so some automated soft-
ware leaves any white space out, making the document extremely diffi-
cult to read.

✦ Verify Well-Formed XML: Click this button when you want to check the
document for errors. This check also ensures the nesting of the XML
document is correct so a reader can understand the document properly.
When the check passes, FrontPage displays a dialog box to tell you the
document is well formed and well nested. Otherwise . . .

Dealing with XML errors in FrontPage
Suppose you used the Verify Well-Formed XML button but the document
turned out other than well formed or well nested. If that happens, you see
an XML Validation dialog box, listing any errors that FrontPage finds. Then
you click Go To Error and FrontPage takes you to the location of the error it
found in the document.

When you’re working with a nesting error, FrontPage takes you to the first
location of a mismatch, which might not be the location of the problem end
tag. Make sure you look several lines above and below the error to verify
there are no errors in the other lines of XML code. Otherwise, you might end
up chasing several errors when only one exists in the document. For exam-
ple, look at the following code.

<Note Type=”SpouseName”>
Nancy

</PersonalData>
</Note>

FrontPage stops at the </PersonalData> end tag as the error. Even though
this is the first location of an error, the actual error is on the next line with
the </Note> end tag. Simply move the </Note> end tag up one line to fix the
error.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 445

Creating XML Data from Existing Sources446

Creating XML Data from Existing Sources
Sometimes you want to work with XML data from other sources. For exam-
ple, you might want to present an Office document on-screen as XML so that
you can create multiple views of the information. Many applications output
XML data today because it’s such a convenient method of exchanging data
with other platforms and other applications. The next few sections discuss
working with XML from other sources.

In some cases, application vendors won’t actually tell you that their applica-
tions output data in XML format — or that bit of information is deeply buried
in the documentation and hard to find. For example, many people don’t real-
ize that Visual Studio outputs a lot of its data in XML format. Knowing this
information can help you create unique data presentations and help build
a data store of information from other sources that you could access with
common applications such as a browser.

Modifying the document encoding
One problem you could encounter when using data from another application
is that the encoding is incompatible with another application or platform.
Fortunately, FrontPage makes document encoding easy to change. You can
change the document encoding with a few quick steps:

1. Right-click the XML document and choose Encoding from the context
menu.

You see the Text File Encoding dialog box shown in Figure 1-5.

Figure 1-5:
Modify the
encoding for
a document
as need
to view it
in other
applications.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 446

Book VI
Chapter 1

W
orking w

ith XM
L

Creating XML Data from Existing Sources 447

2. Choose what to do next from the upper and lower sections of the
dialog box.

You have two options you can choose while the dialog box is open:

• Load a document using a specific encoding.

• Save the document with a specific encoding that’s different from the
original.

Don’t attempt to perform both tasks without closing the dialog box first
or you’ll experience errors.

3. If necessary, change the encoding of the document so it’s readable.

The “Now you read it, now you don’t” sidebar shows how; refer to
Figure 1-6.

Creating XML output with Office 2003
Microsoft has made it pretty plain that Office 2003 sports some fancy new
XML features. The problem is most users don’t fully understand these fea-
tures. This section relies on Word, but the process is about the same for
other Office 2003 products.

The example in this section exports an outline you create in Word to XML
format so you can exchange it with other people. When you want to export
your document, you need to decide how to export it to FrontPage. For exam-
ple, you need to decide whether you want the full Word functionality, or
just the formatted data. When you use the XML Document (*.xml) option
for saving the document, what you really get is WordML (Word Markup
Language), which is a type of XML, but probably not what you expected.
You can see such a document in the MyBookWordML.XML file provided in
the source code for this chapter on this book’s companion Web site. The
XML document includes everything you add to your Word document, includ-
ing properties such as the author name.

Creating an XSD file
To save just the data from your Word file, you need to create a document
that has XML data in it. A Word document doesn’t include any XML data —
Word views the data as formatted text. To create the XML data, you must tag
the information so Word associates each piece of information in the docu-
ment with a tag in the XML document. You can use an existing XML docu-
ment as a source for a schema or you can create a new eXtensible Schema
Definition (XSD) file. An XSD file defines the order and presentation of the
information in an XML file.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 447

Creating XML Data from Existing Sources448

You already know a lot of about XSD files because they rely on XML. An
XSD file is merely a description of how you want your XML document to
appear. Listing 1-3 shows an XSD file. You can also find this code in the
MySimpleBookDefinition.XSD file found in the source code for this chap-
ter on this book’s companion Web site.

Listing 1-3: XSD File for a Word Outline

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.mysite.com”
xmlns=”http://www.mysite.com”
elementFormDefault=”qualified”>

<xs:element name=”MyBook”>
<xs:complexType mixed=”true”>

<xs:sequence>
<xs:element name=”TitleArea” minOccurs=”1”

maxOccurs=”1”>
<xs:complexType mixed=”true”>

<xs:sequence>
<xs:element name=”Title” type=”xs:string”

minOccurs=”1” maxOccurs=”1” />
<xs:element name=”Heading1Area”

maxOccurs=”unbounded”>
<xs:complexType mixed=”true”>

<xs:sequence>
<xs:element name=”Heading1”

type=”xs:string”
minOccurs=”1”
maxOccurs=”1” />

<xs:element name=”Heading2”
type=”xs:string”
minOccurs=”0”
maxOccurs=”unbounded”
/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 448

Book VI
Chapter 1

W
orking w

ith XM
L

Creating XML Data from Existing Sources 449

The XSD file begins with an XML processing instruction, just like any other
XML document. So, even though the file has an XSD extension, it’s still just
XML in disguise.

The next tag is what makes an XSD file different from a standard XML file,
and you’ll run into this difference with every other XML variation. The
xs:schema tag actually contains two elements xs (a namespace) and schema
(a tag name). A namespace is a reference to a location that contains rules for
working with a particular kind of data. In this case, the rules define how to
work with XSD data, but you see namespaces used for many other kinds of
XML implementations.

The next part of the tag, xmlns:xs=”http://www.w3.org/2001/
XMLSchema”, is an attribute, just like any other XML attribute. This attribute
begins with another special namespace, xmlns, which provides a pointer to
the namespace for this particular XSD file. The xs portion defines where to
find a definition for XSD rules. Try it out and you’ll discover that the URL
really does take you to a Web site that tells you about XSD. You can find
additional information about XSD at http://www.w3.org/TR/2001/
PR-xmlschema-0-20010330/primer.html.

The targetNamespace attribute defines which namespace to use to resolve
all local definitions. You always set this to the local namespace.

The xmlns attribute describes a unique location for this XSD file. You should
use a location on your own Web site to ensure the namespace is unique. The
URL doesn’t have to point anywhere, but you can use a real URL that points
to a description of your namespace. Whether you create such a URL or not
depends on how the XSD file is used — XSD files for public use should proba-
bly have a real URL with a description of this XSD file.

The elementFormDefault attribute tells whether locally defined complex
data types are namespace qualified. Always set this attribute to qualified.
You set it to unqualified in special circumstances that most developers won’t
need.

After you define all of the required references, you begin creating a definition
for an outline. The outline defines a book, so the first element type is MyBook.
Whenever you describe a document, break it down into pieces beginning with
the largest or most complex element and moving down to the smallest or
least complex piece. Every piece of the document is called an element and
you use the <xs:element> tag to describe it. The name attribute defines the
kind of element.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 449

Creating XML Data from Existing Sources450

A page of a book isn’t simple — it contains many elements, so it’s a complex
type. The <xs:complextType> tag says that this is a complex type that con-
tains a mix of other types. There are many ways to create complex types, but
an outline is really a sequence that begins with the book title, so the XSD file
uses the <xs:sequence> tag to define the book as a sequence of elements.

The second xs:element tag describes the TitleArea, which is essentially a
container for holding the title and everything that comes after it. A book
only has one title, so the TitleArea has two attributes that restrict the title
area to one and only one occurrence using a combination of the minOccurs
and maxOccurs attributes.

The TitleArea is a complex type that consists of another sequence. First,
the user has to define a Title. This is a simple type. Notice the type attrib-
ute is a string. The user provides a string that describes the title. The Title
can appear only once, and then the user has to add headings to describe the
content of the outline. So, the second element of the sequence is another
complex type, Heading1Area.

An outline can contain any number of headings, so the Heading1Area ele-
ment is unbounded. When you set the maxOccurs attribute to unbounded,
the element can occur any number of times. The Heading1Area element is
a complex type that must contain at least one Heading1 element and any
number of Heading2 elements (the next level of the outline). The Heading1
and Heading2 elements are simple types that consist of strings. Notice that
the Heading2 element has a minOccurs value of 0, which means that you
don’t have to include a Heading2 element within the Heading1Area element.

Adding the XSD file to Word
After you create an XSD file that describes your document (an outline in this
case), you add it to the Word document. You then tag the various document
elements and save just the data to an XML file. FrontPage can read this data
and you can use it as part of a Web site page. The following steps tell you
how to perform these tasks:

1. Open the document in Word. Select the XML Structure window from
the Task Pane.

You see the nearly blank XML Structure window with a Templates and
Add-Ins link.

2. Click Templates and Add-ins.

You see the XML Schema tab of the Templates and Add-ins dialog box.

3. Click Add Schema.

You see an Add Schema dialog box.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 450

Book VI
Chapter 1

W
orking w

ith XM
L

Creating XML Data from Existing Sources 451

4. Locate the XSD file you created and click Open.

You see a schema settings dialog box.

5. Type a name for the schema in the Alias field and click OK.

Word automatically adds the new schema to the Available XML Schemas
list on the XML Schema tab of the Templates and Add-ins dialog box. It
also checks this option so the current document uses it.

6. Click OK.

The XML Structure dialog box changes to show the first element type you
can add to the document. This is MyBook in the case of the example. The
schema will reflect whatever top level (root) element you choose for your
document.

7. Click the top level element (MyBook for purposes of the example).

Word asks whether you want to add the element to the whole document.

8. Click Add to Entire Document.

Word tags the entire document with the top level element.

9. Highlight each document area in turn and choose the correct element
from the element list.

You see an outline of XML elements similar to the one shown in Figure 1-6
built as you tag elements.

Figure 1-6:
Create an
XML version
of your
outline
using tags.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 451

Creating XML Data from Existing Sources452

10. Choose the File➪Save As command.

You see the Save As dialog box.

11. Select XML Document (*.xml) in the Save As Type field. Check Save
Data Only. Click Save.

Word saves just the XML data.

When you open the document in FrontPage, click Reformat XML in the XML
View toolbar. You’ll see a properly formatted and nested version of the Word
document in XML form. This XML document contains just the data without
any other Word information, so you can safely send it to someone else or use
it as part of a Web site display.

31_575317 bk06ch01.qxd 9/24/04 9:01 PM Page 452

Chapter 2: Developing an
Interpretation with XSLT

In This Chapter
� Working with XSLT

� Defining an XSLT document

� Choosing data from an XML document

� Deciding how to interpret XML data

� Performing tasks more than one time

� Creating XML data views using XSLT

Viewing XML by itself is only the beginning. Yes, you can eventually deci-
pher the meaning of even the most complex document, but computers

are supposed to make life easier, right? XML might make data exchange
easier, but it doesn’t do much to make the data easier to work with. That’s
why eXtensible Style Language Transformation (XSLT) is such an important
technology. This complex-sounding phrase describes a process that accepts
XML as input, transforms it to human-readable form, and styles it for easy
reading. In essence, XSLT is a special XML file with its own language. This
chapter discusses how XSLT affects XML input.

XSLT can perform translation tasks beyond what it can do with XML. (For
example, some developers create a text description of simple applications
and use XSLT to write the required code.) In fact, XSLT can transform any
text input into any other text input — but it doesn’t do anything by itself.
You use XSLT to create a particular kind of output based on an input docu-
ment; XSLT affects that input but doesn’t generate any data.

Like any scripting language, XSLT includes features for selecting data, making
decisions, and performing tasks multiple times. The chapter describes many
of the basic XSLT constructs — enough so you can perform many transforma-
tion tasks. When you decide you want to work with some of the more obscure
XSLT features, check the reference at

http://www.zvon.org/xxl/XSLTreference/Output/index.html

You can also look at the standard at http://www.w3.org/TR/xslt.

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 453

Understanding How XSLT Affects XML454

The FrontPage offers two ways to connect with XSLT. Each uses XML with a
different degree of complexity:

✦ You can create single views of an XML data source, just as you would for
any Web page.

✦ You can create multiple views of the same data. This capability com-
bines XSLT with XML, and differentiates XSLT from static page-creation
techniques. You can present the same data in multiple ways, making
XSLT extremely flexible and user-friendly.

Understanding How XSLT Affects XML
XSLT is a means of transforming — rather than creating — data. XSLT output
doesn’t necessarily even appear on-screen, but it’s easy to create XSLT that
accepts XML as input and creates standard text as output. Given enough
time, you could take XML and convert it directly into a Word document —
or even into a database file. The most important thing to remember about
XSLT is that it accepts any text input and creates any text output. With the
addition of a few specialized techniques, you can even create binary output,
such as an application, sound file, or graphics file, if you want.

Given the current widespread use of HTML in Web pages, it follows that the
most common current use of XSLT is to transform XML input into an HTML
page. It’s important to consider the whole process when you view this par-
ticular use of XSLT:

First, a user creates Web-page content using any of various applications
(including specialized database applications).

The application outputs this content as XML, so there’s little chance of
getting poorly constructed XML or having gaps in the content.

XSLT accepts this XML as input and outputs an HTML page. Consequently,
content changes no longer affect the design of the Web page and vice
versa.

Changes are made independently, so you don’t see odd effects because
someone didn’t know the right series of HTML tags to use. Everyone can
concentrate on the job they know best.

Creating a Basic XSLT File
FrontPage provides good support for XSLT files. In fact, you’ll find that even
IntelliSense works well with XSLT files — and that using IntelliSense makes
the task of writing XSLT code significantly easier. Like many other file types,
FrontPage doesn’t provide a direct method for creating XSLT files. To create

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 454

Book VI
Chapter 2

Developing an
Interpretation

w
ith

XSLT
Creating a Basic XSLT File 455

an XSLT file, right-click the folder where you want the file to appear and
select New➪Text File from the context menu. Give the file name an XSLT
extension.

An XSLT file is an odd amalgamation of XML and other elements. In this
chapter, you combine XML and HTML to create an XSLT file — and the
output can consist of any kind of text (in addition to the XSLT statements).
Listing 2-1 shows a typical example of a starting XSLT file for converting an
XML document into a Web page.

Listing 2-1: Defining a Basic XSLT File

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=’1.0’
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>
<xsl:output method=”html” indent=”yes” />
<xsl:template match=”/AddressBook”>

<HTML>
<HEAD>

<TITLE>Personal Address List</TITLE>
</HEAD>

<BODY>
<H1>Personal Address List</H1>

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Like every other XML document you create, an XSLT document begins with
an XML processing instruction. The <xsl:stylesheet> tag defines the
entire document as a version-1.0 XSLT file — and provides the URL where
you can find instructions for processing such a file.

The <xsl:output> tag defines the kind of output this XSLT file creates.
The method attribute tells you that this XSLT file creates HTML output. The
indent attribute indicates that the output should contain indentation to
make it easier to read.

The first tag that actually handles an incoming XML file is the <xsl:tem-
plate> tag. In this case, the match attribute indicates the XSLT file will
process all children of the <AddressBook> tag, which is the root node of the
First.XML file used for demonstration purposes. You can find this file in the
source code for this chapter on this book’s companion Web site. To process
the whole XML file, including the root node, you use the <xsl:template
match=”/”> tag.

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 455

Selecting Data456

The remainder of this sample contains an essentially empty HTML page. You
could easily create a page template using this setup and add it to the New
window of the Task Pane.

To view the output of this XSLT file, you must attach it to an XML file. This
requires the addition of another processing instruction to the XML file so
the browser or other reader knows to use the XSLT file for process. (You can
also accomplish this task using a script and other means, but the processing
instruction is the fastest and easiest method.) Here’s the code you need to
add (in bold):

<?xml version=”1.0” encoding=”utf-8” ?>
<?xml-stylesheet type=”text/xsl” href=”First.XSLT”?>
<AddressBook Version=”1.0”>

The XML-Stylesheet processing instruction must appear after the XML pro-
cessing instruction, but before the root node. The type attribute defines the
content of the XSLT file. In this case, the file contains both text and eXtensible
Style Language (XSL) content. The href attribute tells where to locate the
XSLT file. In this case, the file appears in the same folder as the XML file in the
First.XSLT file.

Selecting Data
Before you can do anything with the XML input provided to your XSLT file,
you have to select the data. An element provides a means of selection, and
you can read both attributes and values for any given element. The selection
strategy relies on the hierarchy of elements from the very beginning of the
XML document to the lowest leaf. Think of it in the same way as you do your
hard drive because you use the same technique to access the various nodes.
Consider this XML segment:

<A>

<C />

To access the <C> node, you refer to it as A/B/C, as you would for a folder on
a hard drive. Note that you use a forward slash instead of a backward slash
as you would for a hard drive, but the principle is the same.

XSLT complicates matters somewhat by letting you define a starting position
using the <xsl:template> tag, as shown in Figure 2-1. You set the starting
position using the match attribute. So, if you create an XSLT document with

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 456

Book VI
Chapter 2

Developing an
Interpretation

w
ith

XSLT
Selecting Data 457

a tag like this: <xsl:template match=”/A”>, you can select the <C> node
using B/C.

A simple list of nodes without any data doesn’t do much but sit there — so
Listing 2-2 shows the sample XML document used as input for the examples
in this chapter. The listing includes two records that contain nonuniform
data so you can see how XSLT reacts in various circumstances. You can also
find this file in the First.XML file located in the source code for this chapter
on this book’s companion Web site.

Listing 2-2: Input XML Document

<?xml version=”1.0” encoding=”utf-8” ?>
<?xml-stylesheet type=”text/xsl” href=”First.XSLT”?>
<AddressBook Version=”1.0”>

<Person>
<Name>George Smith</Name>
<Address>

<AddressLine>1234 West Street</AddressLine>
<AddressLine>Suite 20</AddressLine>

</Address>
<City>Somewhere</City>
<State>WI</State>
<ZIP_Code>54001</ZIP_Code>
<Telephone>

<Number Location=”Home”>(555)555-1212</Number>
</Telephone>
<PersonalData>

<Note Type=”TimeToCall” Hour=”PM”>
8:30

</Note>
<Note Type=”SpouseName”>

Nancy
</Note>

</PersonalData>
</Person>
<Person>

<Name>Amy Wright</Name>
<Address>

<AddressLine>99 Lear Street</AddressLine>
</Address>
<City>Edge</City>
<State>CA</State>
<ZIP_Code>99122</ZIP_Code>
<Telephone>

<Number Location=”Office”>(555)555-1234</Number>
<Number Location=”Home”>(555)555-9876</Number>

</Telephone>
<PersonalData />

</Person>
</AddressBook>

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 457

Selecting Data458

The file begins with two processing instructions. The first is the standard
XML processing instruction and the second is the XML-Stylesheet processing
instruction that connects the input file to the XSLT file. (See the “Creating a
Basic XSLT File” section earlier in this chapter for more about this second
processing instruction.) The root node for this file is <AddressBook>, and it
contains two child records named <Person>. Each <Person> node has simi-
lar children, each record is also unique and presents special processing chal-
lenges (as you find in any input XML file). The code in Listing 2-1 shows that
the example begins processing with the <AddressBook> node.

Obtaining a value
Selecting a node isn’t enough. You must indicate the information you want
from the node. The most common data taken from XML documents is the
node value. To access the node value, you use the <xsl:value-of> element
like this:

<xsl:value-of select=”Person/Name” />

In this case, XSLT selects the <Name> node and returns the value of this node.
Look again at Listing 2-2. The first <Name> node contains George Smith, while
the second contains Amy Wright. An <xsl:value-of> element can only select
the first of these two nodes. The “Performing a Task More Than Once” section,
later in this chapter, tells how you can use repetition to read each of the nodes
in turn.

Obtaining an attribute
Sometimes you need to display attribute values. For example, when the XML
input includes several kinds of the same information, you need to differenti-
ate the information in some way. A telephone number might be for home,
office, or mobile use, so you need to display that information on-screen. The
example in Listing 2-2 differentiates this information using an attribute for
the <Number> node named Location. To display an attribute on-screen, you
access the element first, and then use a special symbol to access the attrib-
ute, like this:

<xsl:value-of select=”Person/Telephone/Number/@Location” />

You use the same selection method for defining the element location as you do
when getting a value. Accessing the attribute means adding the @ (at) symbol
in front of the attribute name. This code tells XSLT to access the Location
attribute in the <Number> node and obtain its value. When an element has
multiple attributes, you can select each attribute by name. You must use a
separate <xsl:value-of> element for each selection, as shown here:

<xsl:value-of select=”Person/PersonalData/Note/@Type” />
<xsl:value-of select=”Person/PersonalData/Note/@Hour” />

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 458

Book VI
Chapter 2

Developing an
Interpretation

w
ith

XSLT
Selecting Data 459

Adding text
You add text using any of several techniques. The first technique is to place
it between standard HTML tags or make it part of an HTML tag. Listing 2-1
shows numerous examples of how you can use HTML tags to your advantage
within an XSLT document. However, HTML tags aren’t always usable because
you create complex mixes of XML and HTML data as output. For example,
you might want to display a person’s name and their telephone number
using the data from Listing 2-2. When you want to combine text, HTML, and
XML to produce output, you use the <xsl:text> tag, as shown here:

<p>
<xsl:value-of select=”Person/Name” />

<xsl:value-of select=”Person/Telephone/Number/@Location” />
<xsl:text> Telephone Number: </xsl:text>
<xsl:value-of select=”Person/Telephone/Number” />
</p>

This example combines all three elements to produce the output shown in
Figure 2-1. No one looking at this output would know that the information
comes from so many sources. Notice how the example uses an opening and
closing <xsl:text> tag. An important concept to remember when working
with XSLT in this way is that you must use character codes for some charac-
ters such as the angle brackets.

Figure 2-1:
Combining
HTML, XML,
and text
produces
useful
output from
XML input.

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 459

Making Decisions460

Using functions
XSLT provides a number of built-in functions. A function is a special entry
that references code to perform work. For example, you might want to know
how long an entry is so that you can process it correctly. To determine an
entry’s length use the string-length() function, as shown here:

<xsl:text>The telephone number is </xsl:text>
<xsl:value-of

select=”string-length(Person/Telephone/Number)” />
<xsl:text> digits long.</xsl:text>

Using the example XML shown in Listing 2-2, this XSLT code displays a
string, “The telephone number is 13 digits long.” The string-length()
function processes the node by counting the number of characters in the
value before turning the result over to XSLT, which then displays the func-
tion results. Notice how the function appears within the double quotes with
the rest of the text for the select attribute. Functions always appear with
the data as a single entity. You can discover other useful functions at

http://www.zvon.org/xxl/XSLTreference/Output/xpathFunctionIndex.html

I also include many useful functions as part of the examples in this chapter.

Making Decisions
Sometimes you don’t know whether the data you need is available or has
a certain value until the XSLT starts processing the data. In other cases,
the processing differs depending on the kind of data the XML contains.
Both situations require that the XSLT make a decision based on the input.
The decision-making features of XSLT are simple, but essential for creating
complex output from XML input. The next sections discuss some of these
decision-making features.

Using <xsl:if>
You use the <xsl:if> element when the decision is a simple yes or no. For
example, you might want to know whether someone has an office telephone
number listed in the database. When the entry has an office telephone
number, you display one message; otherwise, you display another message.

An <xsl:if> element makes a Boolean (yes/no or true/false) decision, so
you have to create code that produces a Boolean result. In many cases, this
means using both operators and functions. An operator is a comparison
symbol between two values. (For example, when you want to compare the
value of A with B, you use the equal sign like this: A = B.) To determine

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 460

Book VI
Chapter 2

Developing an
Interpretation

w
ith

XSLT
Making Decisions 461

whether a person has an office telephone number on file, you make a com-
parison with the Location attribute of the <Number> node — like this:

<xsl:if test=”string(Person/Telephone/Number/@Location)
!= ‘Office’”>

<xsl:text>No Office Phone</xsl:text>

</xsl:if>

The example begins with the <xsl:if> element. It contains only one attrib-
ute, test, which defines what information to compare. In this case, the code
uses the string() function to convert the Location attribute to a string (a
series of characters) and then compares it with the word Office. The code
relies on the != (or not equal) operator. When the Location attribute is not
equal to Office, then XSLT outputs the text No Office Phone.

Notice how the word Office appears within single quotes. Placing Office
within single quotes tells XSLT that this is a value and not something else
like an element. Whenever you want to use a value in XSLT, enclose it within
single quotes.

Using <xsl:choose>
Sometimes a simple <xsl:if> element won’t work because it can only
handle yes and no questions. The <xsl:choose> element lets you look for
one of several possible answers and handle situations where none of the
answers is present in the data. You combine the <xsl:choose> element with
the <xsl:when> and <xsl:otherwise> elements to test for specific value or
attribute data in an element. The <xsl:otherwise> element doesn’t actu-
ally test for a value — you use it as a way to do something when none of the
<xsl:when> element tests pass. Here’s a typical example of an
<xsl:choose> element in action:

<xsl:choose>
<xsl:when test=”string(Person/PersonalData/Note/@Type) =
‘TimeToCall’”>
<xsl:text>Best Calling Time: </xsl:text>
<xsl:value-of select=”Person/PersonalData/Note” />
<xsl:value-of select=”Person/PersonalData/Note/@Hour”/>

</xsl:when>
<xsl:when test=”string(Person/PersonalData/Note/@Type) =
‘SpouseName’”>
<xsl:text>Spouse Name: </xsl:text>
<xsl:value-of select=”Person/PersonalData/Note” />

</xsl:when>
<xsl:otherwise>

<xsl:text>Note Type Not Recognized</xsl:text>
</xsl:otherwise>

</xsl:choose>

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 461

Performing a Task More Than Once462

The code checks notes for specific types. The example data in Listing 2-2
contains two types of notes: TimeToCall and SpouseName. The first
<xsl:when> element tests for the TimeToCall attribute value. When this
value is present, the code displays a message with the best time to call.
Notice how this example combines text with both a value and an attribute.
The second <xsl:when> element tests for the SpouseName attribute value
and displays an appropriate message when it’s present. Finally, the
<xsl:otherwise> element is chosen when none of the <xsl:when> ele-
ments are triggered and displays a generic message.

Performing a Task More Than Once
It’s common to find multiple copies of some types of XML data in the input —
and you’ll also have to process multiple records. You usually don’t know how
many duplicate elements or records you need to process, so having a way to
perform the same process over and over is important. Processing in a loop
(multiple times) is a common programming task. As with decision-making,
XSLT takes a very simple approach to loop processing.

The only loop processing that XSLT provides is the <xsl:for-each> ele-
ment. This loop-processing element keeps performing a given set of tasks as
long as there are elements with the appropriate name. When it runs out of
duplicate elements, the <xsl:for-each> loop automatically exits and XSLT
begins with the next statement. Here’s an example of the <xsl:for-each>
element in use:

<!-- Process all of the telephone numbers. -->
<xsl:for-each select=”Telephone/Number”>

<!-- Display a telephone number and its length. -->
<xsl:value-of select=”@Location” />
<xsl:text> Telephone Number: </xsl:text>
<xsl:value-of select=”.” />

<xsl:text>The telephone number is </xsl:text>
<xsl:value-of select=”string-length(.)” />
<xsl:text> digits long.</xsl:text>

</xsl:for-each>

Look again at Listing 2-2. Notice that the <Telephone> element is parent to
one or more <Number> elements. To process multiple <Number> elements,
the <xsl:for-each> uses the select attribute to choose the Telephone/
Number element.

The selection process incurs another problem: Now that the <Number> ele-
ment is selected, you must find a way to refer to its value. Normally you
would select the <Number> element as needed — but it’s already selected, so
you can’t select it again. Here’s where you use the . (period) to choose the

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 462

Book VI
Chapter 2

Developing an
Interpretation

w
ith

XSLT
Creating a View of XML with XSLT 463

current element. The example code shows how you use the . to select the
current element in a number of situations. You still choose attributes using
the @ sign as usual. For example, to display the Location attribute, you
select @Location in the code.

Creating a View of XML with XSLT
Knowing about all the XSLT elements is a nice place to start, but putting
them together into a view is better. The important idea is to create a view
that displays the data in a way that benefits the user. You don’t have to use
every piece of information in the XML file — in fact, you can leave unimpor-
tant information out of the view. Listing 2-3 shows a complete XSLT file you
can use to display the XML file presented in Listing 2-2.

Listing 2-3: Defining a Simple View with XSLT

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=’1.0’
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>
<xsl:output method=”html” indent=”yes” />
<xsl:template match=”/AddressBook”>

<HTML>
<HEAD>

<TITLE>Personal Address List</TITLE>
</HEAD>

<BODY>
<H1>Personal Address List</H1>

<!-- Process all of the people in a loop. -->
<xsl:for-each select=”Person”>

<!-- Display each record in a separate paragraph. -->
<p>

<!-- Get the person’s name -->
<xsl:value-of select=”Name” />

<!-- Display the address information. -->
<xsl:text>Address: </xsl:text>
<xsl:value-of select=”Address” />

<xsl:value-of select=”City” />
<xsl:text>, </xsl:text>
<xsl:value-of select=”State” />
<xsl:text> </xsl:text>

(continued)

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 463

Creating a View of XML with XSLT464

Listing 2-3 (continued)

<xsl:value-of select=”ZIP_Code” />

<!-- Test to see whether the person has an office
telephone. -->

<xsl:if test=”string(Telephone/Number/@Location) !=
‘Office’”>
<xsl:text>No Office Phone</xsl:text>

</xsl:if>

<!-- Process all of the telephone numbers. -->
<xsl:for-each select=”Telephone/Number”>

<!-- Display a telephone number and its length. -->
<xsl:value-of select=”@Location” />
<xsl:text> Telephone Number: </xsl:text>
<xsl:value-of select=”.” />

<xsl:text>The telephone number is </xsl:text>
<xsl:value-of select=”string-length(.)” />
<xsl:text> digits long.</xsl:text>

</xsl:for-each>

<!-- Test for certain types of personal data and act on
it. -->

<xsl:for-each select=”PersonalData/Note”>
<xsl:choose>

<xsl:when test=”string(@Type) = ‘TimeToCall’”>
<xsl:text>Best Calling Time: </xsl:text>
<xsl:value-of select=”.” />
<xsl:value-of select=”@Hour” />

</xsl:when>
<xsl:when test=”string(@Type) = ‘SpouseName’”>

<xsl:text>Spouse Name: </xsl:text>
<xsl:value-of select=”.” />

</xsl:when>
<xsl:otherwise>

<xsl:text>Note Type Not Recognized</xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>
</p>

<!-- End of person processing. -->
</xsl:for-each>

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 464

Book VI
Chapter 2

Developing an
Interpretation

w
ith

XSLT
Creating a View of XML with XSLT 465

This may look like a lot of code, but all these elements appear somewhere
in the chapter. No mysteries here. The important idea is to look at each tag
individually, comment on what it does, and move on to the next tag. After
you look at the information for a while, you begin to understand how every-
thing works together to create a comprehensive view of the data shown in
Figure 2-2.

The code begins by creating the HTML document head and body. The head-
ing includes a title, just like the one you might include on any Web page. The
code displays a heading for the data — no surprises here.

Processing the data comes next. The <AddressBook> node contains multiple
<Person> nodes, each of which contains data you want to see on-screen.
The code creates a loop for processing each person individually and places
this data within an HTML <p> tag.

Displaying the person’s name and address comes first. All you need is a com-
bination <xsl:value-of> and <xsl:text> elements to perform this task.
Notice that the code takes a shortcut with the <Address> node. Each
<Address> node contains one or more <AddressLine> nodes. You can dis-
play all the <AddressLine> nodes at once by using the <Address> node as
input to the <xsl:value-of> element. The two <AddressLine> nodes for
the first record appear on a single line with a space between them.

Figure 2-2:
See the
XSLT output
as a
comprehen-
sive view
of the XML
data.

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 465

Creating a View of XML with XSLT466

Processing the telephone numbers comes next. The first task is to check
whether the first entry in the database contains an office number. Using this
technique assumes that the XML file will always contain the office telephone
number first. You can’t always make this kind of assumption, but it works in
this case. After the code looks for an office telephone number and reports on
it, the code processes each of the telephone numbers in turn by displaying
the location, telephone number, and number of digits in the telephone
number.

The code finishes by processing the notes. Some records don’t contain a
note, so the <xsl:for-each> element simply moves to the next statement.
Whenever a record lacks a feature required to trigger a given response, XSLT
simply skips that code, so you should create your XSLT document with this
kind of processing in mind.

The code ends by completing the HTML document first and the XSLT docu-
ment second. Always follow this sequence when you create an XSLT docu-
ment to ensure it works as anticipated. (For example, when you leave off the
</HTML> tag, your browser reports an error instead of displaying the data.)

32_575317 bk06ch02.qxd 9/24/04 8:08 PM Page 466

Chapter 3: Creating Dynamic
XML Pages

In This Chapter
� Using XML as a data source

� Updating an XML data source

� Performing XML tasks automatically

Interactive, reactive, ever-changing Web sites that constantly reflect
changes in personal, corporate, and viewer needs are somewhat rare

today. Although these dynamic Web sites are becoming more common,
you’re certainly on the bleeding edge of technology when you implement
this technique on your own Web site. FrontPage 2003 makes that task easier,
especially when you use eXtensible Markup Language (XML) data sources.
XML makes working with the data easier.

Using various XML technologies, it’s possible to create Web pages that don’t
exist anywhere but the client’s or server’s memory. Unlike standard Web
pages, these pages don’t exist on the machine’s hard drive — the server cre-
ates them as needed based on the XML data. The same data can appear in
multiple forms depending on a user’s needs. A huge database that provides
more information than the typical user will ever need (or want) can meet
the needs of an entire company. Each user probably needs different combi-
nations of data, but no one user will need the entire database — which is
why the capability of XML to create unique views is so valuable.

Developing an XML Data Source
XML files contain data you can organize into records for display on-screen.
It’s unlikely that you’ll create such files by hand and will rely instead on
application to do the work for you. Consequently, the application you use
acts as a database management system (DBMS); the output is the database it
provides. Accessing this database requires use of some type of data source.
You create a connection to an XML data source so you can display the infor-
mation on-screen.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 467

Developing an XML Data Source468

Some data-source techniques require the use of scripts. In other cases, you
have to create the reference in other ways. For example, you might create an
object to display the data on-screen. Such objects can include application
interfaces — it’s possible, for example, to display XML data within an Excel
spreadsheet object on your Web site. You could also create a report out of
the same database, using Word. There are many possible techniques — and
this section discusses a few of the unique options.

Considering the security issues of XML data
One word of warning about using an XML data source: Remember that XML
is text, plain and simple. Anyone who can access the XML data source can
read it and possibly modify it. Consequently, you need to protect XML data
sources as much as possible and keep sensitive data, such as someone’s
social security number or credit card information, out of XML files.

Several vendors are currently working on ways to make XML more secure,
but the bottom line is that XML can have unexpected and hidden security
liabilities. For example, in many cases, all you need to do to view XML data is
to right-click the browser display and choose View Source from the context
menu.

Amazingly, you see the raw XML, in most cases, rather than the interpreted
output presented on-screen. Someone could see the entire content of a data
record, rather than the small piece you want them to see. Assuming that the
data is hidden because you can’t see it when you open the page is one way
to create a major security leak.

Always consider the risk of any information you decide to display on a Web
page — both hidden and visible data. Sometimes the risk seems minimal, but
it really isn’t. A contact telephone number, leaving the wrong names in a file,
or other forms of “soft” security problems that XML effectively hides from
view can cause all kinds of problems. For example, with the right set of names,
a cracker can employ a social-engineering attack on your network. All the
cracker needs to do is find someone at your company who has the right
information, drop the name, and use it to gain access. Then even a simple
sentence — such as, “Hey, Joe tells me there’s a problem with your account,
but I need your password to fix it.” — can result in a security breach.

Working with Web services
Many people are beginning to look at Web services (a way of using programs
that reside on someone else’s machine through an Internet connection) as a
means of making data available in an easy-to-use format over the Internet.
More than a few public Web services are available and you should use them
as starting places (examples, as means of testing a client technology, and so
on) for creating your own private Web services. The most tested, accessible,

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 468

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Developing an XML Data Source 469

and well-known Web services include those from Amazon (http://www.
amazon.com/gp/aws/landing.html), Google (http://www.google.com/
apis/), and eBay (http://developer.ebay.com/DevProgram/). This sec-
tion provides a quick overview of how Amazon transmits data using XML,
but the same principles apply to other Web services.

One of the first tasks you must perform is to gain access to the XML data. In
most cases, you must get a license to work with the vendor data, even when
this data appears on a public Web site. For example, you need a developer
token (identifier) to use Amazon Web Services. You obtain this token by fill-
ing out a form and agreeing to the terms of use for the Web service.

After you get the required token, you can make a request for the information
you need. For example, to request information from Amazon, you use a URL
similar to this one:

http://xml.amazon.com/onca/xml3?t=webservices-20&dev-t=Your-
Developer-Token&AuthorSearch=John%20Mueller&mode=books&
type=lite&page=1&f=xml

The URL accepts a number of input arguments, just like the arguments you
might see after filling out a form on a Web site. Each of these arguments tells
Amazon Web Services something about the information you want. For exam-
ple, the t argument contains your Amazon Associates identifier, so you
receive credit for any sales you make, and the dev-t argument contains your
developer token. (You can get a closer look at these arguments when you
download the developer kit that Amazon provides.)

For this discussion, the two most important arguments are AuthorSearch,
which determines what to look for, and f, which determines what format
Amazon uses to return the information. This search returns a list of my
books in XML format, as shown in Figure 3-1.

The reason I decided to use the Amazon Web Service as an example is that
it provides a special feature: You can replace the f argument with a URL for
an eXtensible Style Language Transformations (XSLT) file. The URL must
point to a publicly accessible file. The rest of the information remains the
same, so you can make an XSLT request using a URL such as this one:

http://xml.amazon.com/onca/xml3?t=webservices-20&dev-t=Your-
Developer-
Token&AuthorSearch=John%20Mueller&mode=books&type=
lite&page=1&f=http://www.mycompany.com/MyTransform.xsl

Even though the information is the same, you receive a Web page in return,
rather than the XML you received earlier (as shown in Figure 3-2). Not many
Web services provide this feature, but it’s a nice addition because you get
the benefits of XML data and XSLT transformation without having to rely on
any code.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 469

Developing an XML Data Source470

Figure 3-2:
Some Web
services
include
integrated
transforma-
tion
services.

Figure 3-1:
All Web
services
return the
data you
need in XML
format.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 470

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Developing an XML Data Source 471

Working with local sources
Local sources of XML data can include everything from an Office document
to the latest copy of your database. The advantage of local sources is that
they’re under your control, so you determine when to perform an update.
The form of the data is also under your control. You can choose to use pure
text for the XML data source, or you can include HTML tags with the data so
the information is automatically formatted on-screen. The point is that if you
have some data in an XML document, you can create a Web page from that
data when you use some type of transformation technology such as XSLT
or scripts.

Using built-in XML functionality
Many applications provide the means to create XML output today and some
even include the ability to use macros to create all of the required data manip-
ulation, including attaching an XSLT file. For example, you can create a VBA
macro in any Office product to save the data on disk — with all required infor-
mation (the information you need to use the data, the information the host
application requires, and so on) in place. All the user needs to do is click a
button that you attach to a toolbar (or access the macro via Tools➪Macro➪
Macros).

The example in this section uses a tagged outline that you see in the
OriginalOutline.doc file found in the source code for this chapter on the
companion Web site. The object is to automate the process for outputting
this document as it changes so the user doesn’t have to remember to per-
form the task. Listing 3-1 shows such a macro for Word 2003.

Listing 3-1: Creating XML Output Using Word

Public Sub DoXMLSave()
Dim XMLDoc As DOMDocument50
Dim XSLTProc As IXMLDOMProcessingInstruction
Dim NewData As IXMLDOMNode

‘ Make sure to save only the data.
ThisDocument.XMLSaveDataOnly = True

‘ Save the document.
ThisDocument.SaveAs _

ThisDocument.Path + “\Temp.xml”, _
WdSaveFormat.wdFormatXML

‘ Load the resulting document.
Set XMLDoc = New DOMDocument50
XMLDoc.Load ThisDocument.Path + “\Temp.xml”

(continued)

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 471

Developing an XML Data Source472

Listing 3-1 (continued)

‘ Add the XSLT processing instruction.
Set XSLTProc = _

XMLDoc.createProcessingInstruction(_
“xml-stylesheet”, _
“type=’text/xsl’ href=’MyBookDataOnly.XSL’”)

XMLDoc.InsertBefore XSLTProc, XMLDoc.ChildNodes(1)

‘ Create the new data node.
Set NewData = XMLDoc.createElement(“MyBook”)

‘ Add the data nodes from the current entry.
NewData.appendChild XMLDoc.ChildNodes(2).ChildNodes(0)

‘ Remove the old data node.
XMLDoc.RemoveChild XMLDoc.ChildNodes(2)

‘ Add the new data node.
XMLDoc.appendChild NewData

‘ Save the document to disk.
XMLDoc.Save ThisDocument.Path + “\MyBookDataOnly.xml”

‘ Close the document so the user doesn’t reuse it.
ThisDocument.Close

End Sub

This short macro performs three essential tasks: It creates the original XML
output, adds XSLT processing instructions, and removes the namespace so
the file displays correctly using XSLT. (If you haven’t already worked with
VBA, Book 8 contains most of the essentials needed to understand this code.)

Before you begin typing code, you need to add the Microsoft XML, v5.0 library
that comes with Office 2003 to the project. You can do so in just two steps:

1. Choose Tools➪References in the Visual Basic Editor.

The References dialog box appears, as shown in Figure 3-3.

2. Check the Microsoft XML, v5.0 entry in the list and click OK.

The code begins by saving the XML document. It sets the
XMLSaveDataOnly property to True to ensure that the output doesn’t
use WordML (or any other Office derivatives).

The output is the same output you could obtain using the File➪Save As com-
mand with the XML Document (*.xml) option selected in the Save As Type
field of the Save As dialog box. The name of this file is Temp.xml because it
isn’t in the final format yet. The file lacks a link to the XSLT file — and it also
includes the namespace reference you provided as part of the XSD information

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 472

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Developing an XML Data Source 473

for tagging the document (see Listing 1-3 in Chapter 1 for details on the XSD
file mentioned in this chapter).

All the Office products insist on adding a namespace to the XML output,
which makes it extremely difficult to translate the file using XSLT. The only
way to get rid of the namespace information in the XML file is to redesign the
XSD file so only the first node has any namespace information attached to it
and then use the script to remove the namespace from this first node.

To modify the content of this XSD document, the code creates a new XML
document, the DOMDocument50 object. This object is a copy of the contents
of the XML file, but it resides in memory so you can modify the information
easily. The object lets you access the various nodes, attributes, values, and
other XML information individually.

Now that the code has a document to work with, it uses the resulting
XMLDoc object to create a new processing instruction using the
createProcessingInstruction() method. The processing instruction
will contain the linkage to the XSLT document. Remember that the first
processing instruction in an XML file is the XML processing instruction —
the second processing instruction contains the XSLT link. Consequently,
the code uses the InsertBefore() method to add the new processing
instruction before the data nodes of the XML file.

Figure 3-3:
Manage
XML
documents
using the
XML View
toolbar.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 473

Developing an XML Data Source474

The code begins by creating a new <MyBook> node, one that lacks the name-
space information that Word automatically adds. The next step is to add all
the child nodes from the original <MyBook> node to the new node using the
append Child() method. Finally, the code removes the existing <MyBook>
node from the document and adds the new <MyBook> node.

After the stored-in-memory version of the XML document is correct, the
code saves it to disk using the Save() method. Notice that the code saves it
as MyBookDataOnly.xml to avoid conflicts with the open Temp.xml docu-
ment. The final step is to close Temp.xml to ensure the user doesn’t acciden-
tally use it for some other task.

Using a script
One problem you might face is that your data source doesn’t provide a means
of loading and viewing the XML it outputs. Sure, you can output an XML docu-
ment, but the document doesn’t contain the required XSLT linkage. When this
problem occurs, you can create a Web page that relies on JavaScript to per-
form the task for you. Book 7 contains a lot of information about using
JavaScript if you haven’t used it in the past. Listing 3-2 shows a technique
for loading an XML document and viewing it using JavaScript.

Listing 3-2: Viewing an XML Document Using JavaScript

<html>
<head>
<script lang=”JavaScript”>

function OnLoad(XML_File, XSL_File)
{

// Create an XML document object and load the data from
// the XML file into it.
var XMLData =

new ActiveXObject(“Msxml2.DOMDocument.5.0”);
XMLData.async=false;
XMLData.load(XML_File);

// Create an XSLT document and load the transform into
// it.
var XSLTData =

new ActiveXObject(“Msxml2.DOMDocument.5.0”);
XSLTData.async = false;
XSLTData.load(XSL_File);

// Display the output on-screen.
document.write(XMLData.transformNode(XSLTData));

}
</script>

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 474

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Performing XML Updates 475

</head>

<body onload=’OnLoad(“First.XML”, “First.XSLT”)’>

</body>

</html>

This listing contains everything needed to load and display an XML document.
All the developer needs to do is ensure the XML file remains updated to
ensure the Web page works as intended. Notice that the Web page doesn’t
even include any data — just an empty body. The data resides in the XML file
and the presentation resides in the XSLT file. The Web page serves as a means
of connecting the two.

When a user selects the Web page, the page executes the onload event, which
calls the OnLoad() JavaScript function. The OnLoad() function requires two
inputs. The first input is the XML file you want to use, while the second input
contains the name of the XSLT file. These two inputs will accept any URL the
Web page user can access.

The JavaScript code begins by creating a Microsoft XML, v5.0 object. This
document holds XML data in memory, so you can change it as needed. Given
the nature of the application, most versions of Microsoft XML work fine, so
you can change the version number as needed to meet specific needs.

The first task is to load the XML file. Make sure you set the async property
to false so the code doesn’t try to do anything until after the file is com-
pletely loaded. The load() method loads the XML file into memory. Loading
the XSLT file into memory is the same process.

Now that the code has both files in memory, it can use the document.write()
method to send the results of any operation performed on the XML to the dis-
play. The code uses the transformNode() method to transform the XML
input file using the XSLT file. The resulting HTML appears on-screen.

Performing XML Updates
An XML data source used to create a dynamic Web page isn’t all that helpful
if you don’t have some means to update it. Generally, you want to create the
data and make it immediately available for use by Web site users. Of course,
company requirements may dictate that someone sign off on the content
before making it public. The idea is to create a rapid exchange of data
between the person creating the data and the person viewing the data to
ensure the user gets the most current information possible.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 475

Automating the Process476

Using Office 2003 applications
Office 2003 provides a level of automation and XML support that greatly
exceeds the capabilities of previous versions of the product. Using these
automation features, it’s possible to attach VBA macros to various activities
the user performs with an Office 2003 application. One of those activities, for
example, is closing a file after editing it. The simple act of exporting the doc-
ument to an XML file after the edit can provide a means to create a dynamic
update for a Web site.

The biggest problem with Office 2003, however, is ensuring the Microsoft
extras, such as namespaces, don’t prevent the end user from actually seeing
the data. In some cases, a perfectly usable XSLT file will fail to perform a
required transformation because of one of these little additions. Generally,
you should look at both the XSLT file and the source data when looking for
errors.

Using databases
Databases provide an extremely flexible means of storing and managing XML
data. You can use database information directly as a single source of XML
data or you can use the database to store and organize data from other
applications. Businesses often combine both functions. For example, you
could create a database to store XML versions of Word documents that you
want to make available on a Web site.

The benefits of using databases to store and manage XML data are many. For
one thing, you don’t have myriad XML documents floating around on the hard
drive from unknown sources. The very idea of a database is to store data in a
form that is easily recognized and accessed. Another benefit of using data-
bases is speed. You can often get the required XML documents faster from
the database than you can by searching for them on the local drive.

A problem with databases is that they almost make things too easy. Some
data will sit around for a long time before someone updates it or removes it
from the system. For this reason, you need to perform data aging (removing
old data that isn’t current) based on the time that the user originally created
the information. Generally, you can perform this task using stored proce-
dures or other scripted mechanisms provided by the database manager.

Automating the Process
Automating XML updates is a key factor in creating dynamic Web sites. The
problem with many Web sites isn’t the design or the intent of the developer,
but the ability of the developer and other contributors to keep the Web site

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 476

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Automating the Process 477

updated. Manual updates do work, but it pays to automate the update process
whenever possible. In most cases, this means tying content to the Web page
by generating the Web page as requested, rather than maintaining a static
copy of the information on the Web site.

Understanding process automation
The primary benefit of automating the update process through scripts, Active
Server Pages (ASP), or other means is that the user always gets fresh content.
In addition, there’s less chance that an update will go unmade as long as the
contributors keep the data source updated. Because it’s likely the data source
is used for other purposes, the chances are smaller that an update won’t get
made on time.

The drawbacks of automation include performance degradation of the server.
Whenever you ask the computer to do more, it must allocate processing
cycles, memory, and other resources to the task. Dividing your computer’s
facilities among many resources always results in performance loss. In addi-
tion, there’s a tendency for people to forget how things work. One day the
automation fails to work and no one really knows how the process works any
longer. Unless you maintain very good notes and other documentation, an
error in the automation can result in loss of data — or at least several days
of downtime. Even with good documentation, downtime for an automated
process is usually greater than a corresponding manual process.

Scripting updates generally fall into two categories, depending on whether
they service the client side or the server side:

✦ Client-side scripting: The client issues a request, receives the data in
XML format, and processes the data in some way. The advantage of this
method is that you see a smaller performance hit on the server. The dis-
advantage is that you must have a smart client — such as a desktop
system, notebook, or Pocket PC.

✦ Server-side processing: The server makes a request for the client,
processes the information, and sends the resulting Web page to the
client. The advantage of this method is that security is improved (the
client can’t access the full data) and you send less data, which improves
network performance. In addition, this method supports all clients —
including cellular telephones. The disadvantage is that the server’s per-
formance suffers, and the application is far more complex because you
have more failure points (including those on the server).

Relying on script updates
The kind of scripting discussed in this section is client-side scripting — the
kind you find in an application or a local Web page. When working with a

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 477

Automating the Process478

Web page, the client can have a local copy installed as an application or
download a copy from the server. In all cases, the client makes a request,
processes it, and displays the result on-screen. Listing 3-3 shows a request
that obtains data from Amazon.com. You must have an Amazon developer
account to work with Amazon data, but sign-up is relatively easy (see the
“Working with Web services” section for details). This code appears in the
AmazonClientScript.HTM file in the source code for this chapter on this
book’s companion Web site.

Listing 3-3: Getting XML Data from Amazon

function GetData(XslFile)
{

// Convert the author name to use %20 instead of spaces.
var AuthName = SubmissionForm.AuthorSearch.value;
AuthName = ReplaceCharacter(AuthName, ‘ ‘, ‘%20’);

// Build a string that will hold the complete URL.
var XmlFile = “http://xml.amazon.com/onca/xml3?” +

“t=” + SubmissionForm.t.value + “&” +
“dev-t=” + SubmissionForm.devt.value + “&” +
“AuthorSearch=” + AuthName + “&” +
“mode=” + SubmissionForm.mode.value + “&” +
“type=” + SubmissionForm.type.value + “&” +
“page=” + SubmissionForm.page.value + “&” +
“f=” + SubmissionForm.f.value;

// Create an XML document object and load the data from
// the Amazon Web Service into it.
var XMLData = new ActiveXObject(“Msxml2.DOMDocument.5.0”);
XMLData.async=false;
XMLData.load(XmlFile);

// Create an XSLT document and load the transform into it.
var XSLTData =

new ActiveXObject(“Msxml2.DOMDocument.5.0”);
XSLTData.async = false;
XSLTData.load(XslFile);

// Display the output on-screen.
document.write(XMLData.transformNode(XSLTData));

}

Here’s the sequence of the actual events that correspond to this code:

1. The code begins by getting by the author’s name from the Web-page
form.

2. The code replaces any spaces in the author’s name with %20.

Doing so ensures that Amazon receives the entire request (otherwise
the server could mistake a space for the end of the request).

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 478

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Automating the Process 479

3. Your next step is to create a request string so the code has something to
work on.

The “Working with Web services” section of this chapter describes how
this string works. Essentially, you tell Amazon about yourself and what
information you want it to return. The data is in XML format, as shown
in Figure 3-1.

4. When the code has a request to use, it creates a local XML document to
hold the information.

Be sure to set the async property to false. (Other examples in this
chapter might work if you don’t do that — but this one won’t.) The code
executes the next line of instructions long before the request returns
data, so you must set the async property to false.

5. The code loads the XML response from Amazon.

6. The code loads a local XSLT file to interpret the data just received.

It uses the same process as it does for the XML file, but loading the infor-
mation locally is much faster.

7. Finally, the code outputs the resulting HTML file.

It does so via the document.write() method, using the results of the
XMLData.transformNode() method to create the output.

Listing 3-4 shows the XSLT file used for this example. You can also see this
code in the AmazonTransform.XSL file supplied as part of the source code
for this chapter on this book’s companion Web site.

Listing 3-4: Defining an XSLT File for Amazon Data

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<html>
<head>

<title>XSLT Transformation Example</title>
</head>
<body>

<!-- Display a heading. -->
<h1 align=”center”>

Translated Amazon Web Server Results
</h1>

<!-- Displays the arguments used for the call. -->
<table align=”center” border=”1” width=”60%”>

(continued)

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 479

Automating the Process480

Listing 3-4 (continued)

<caption>Search Result Arugments</caption>
<tbody>

<tr>
<th>Name</th>
<th>Value</th>

</tr>
<xsl:for-each select=”ProductInfo/Request/Args/Arg”>

<tr>
<td><xsl:value-of select=”@name”/></td>
<td><xsl:value-of select=”@value”/></td>

</tr>
</xsl:for-each>

</tbody>
</table>

<!-- Display the search result values. -->
<table align=”center” border=”1” width=”100%”>

<caption>Books Returned from Query</caption>
<tbody>

<tr>
<th>Book Title</th>
<th>ISBN</th>
<th>Release Date</th>
<th>Publisher</th>

</tr>
<xsl:for-each select=”ProductInfo/Details”>

<tr>
<td><xsl:value-of select=”ProductName”/></td>
<td><xsl:value-of select=”Asin”/></td>
<td><xsl:value-of select=”ReleaseDate”/></td>
<td><xsl:value-of select=”Manufacturer”/></td>

</tr>
</xsl:for-each>

</tbody>
</table>

</body>
</html>
</xsl:template>
</xsl:stylesheet>

This example of an XSLT file is a little more complex than previous examples.
In this case, I wanted to use standard formatting, so I created a reference to
the correct standardized formatting at the following site:

http://www.w3.org/1999/XSL/Format

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 480

Book VI
Chapter 3

Creating Dynam
ic

XM
L Pages

Automating the Process 481

You don’t have to perform this step unless you want to use standardized
formatting.

The code begins by displaying a standard header. In this case, the data in
XML is complex enough that multiple displays work better than stuffing
everything into a single listing, table, or other display element — so the code
creates two tables:

✦ The first table lists the arguments used to request information from
Amazon: These arguments appear in a series of ProductInfo/
Request/Args/Arg nodes. Each node contains a pair of attributes, name
and value. The code relies on a <xsl:for-each> element to go through
the list of arguments and create a single table entry for each pair.

✦ The second table displays the actual data: Included are book title, ISBN,
release date, and publisher. Unlike the argument data, this information
actually appears as a collection of element values. The ProductInfo/
Details nodes contain a lot of other information, but the example limits
the data to what the user needs to see, as shown in Figure 3-2.

Using ASP
Microsoft created Active Server Pages (ASP) as a means for defining a Web
page with a combination of HTML and script so that a developer could
include features like server information as part of the Web page. Working
with ASP is like working with any other scripting language. You get many of
the same benefits — and problems — as you would if you were working with
a scripting language in a browser or local machine. For example, you can
make changes to an ASP file and test them immediately — no waiting around
to compile the file and get it placed on the server. However, the downside of
ASP is that the debugging resources are less available — and you do place
your source code on the server, which means anyone with access (including
crackers) can see it.

An advantage of using ASP is that you can secure the information you work
with better and ASP has access to many of the server resources. The end
user sees a Web page that could appear on disk in any format. There isn’t
any clue that the source data is actually XML or that more data could exist.
Listing 3-5 shows a typical ASP example. You can find the complete example
in the ViewXMLData.ASP file found in the source code for this chapter on
this book’s companion Web site.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 481

Automating the Process482

Listing 3-5: Loading and Displaying XML with ASP

<%@LANGUAGE=”JavaScript”%>
<%

// Create an XML document object and load the data from
// the XML file into it.
var XMLData = new ActiveXObject(“MSXML2.DOMDocument.4.0”);
XMLData.async = false;
XMLData.load(“http://winserver/0181/BK06CH03/Second.XML”);

// Create an XSLT document and load the transform into it.
var XSLTData =

new ActiveXObject(“MSXML2.DOMDocument.4.0”);
XSLTData.async = false;
XSLTData.load(

“http://winserver/0181/BK06CH03/First.XSLT”);

// Display the output on screen.
Response.Write(XMLData.transformNode(XSLTData));

%>

The code is relatively straightforward. It begins by creating an XML docu-
ment and loading the Second.XML file into it. Make sure you set the async
property to false to ensure the document completes loading before the
code continues. Notice that unlike a browser version of the JavaScript, you
must provide a full URL for the XML file or ASP won’t find it.

The second step is to create another XML document to hold the XSLT file.
The code uses the load() method to obtain a copy of the XSLT file. Notice
Again that you must provide a full URL to the source information.

The final step is to generate the HTML page using the Response.
Write() method. To do so, the code relies on the output of the XMLData.
transformNode() as a source for the full HTML for the Web page. However,
remember that XSLT is very flexible, as is XML. You could generate part of
the output within the ASP file and use one or more data transformations to
generate the other part.

33_575317 bk06ch03.qxd 9/24/04 8:26 PM Page 482

Book VII

Scripting

34_575317 pp07.qxd 9/24/04 9:01 PM Page 483

Contents at a Glance
Chapter 1: Extending a Page with Scripting ..485

Chapter 2: Creating Your First Scripted Page ..507

Chapter 3: Working with Cookies..521

Chapter 4: Performing Common Scripted Tasks..535

34_575317 pp07.qxd 9/24/04 9:01 PM Page 484

Chapter 1: Extending a Page
with Scripting

In This Chapter
� Using scripts effectively

� Developing scripts using the <Script> tag

� Using page objects and variables

� Deciding on a course of action

� Using loops to repeat tasks

� Working with browsers that don’t support scripts

Some people hear the term script and instantly think it refers to tasks
that only developers perform. However, scripting languages are

designed to be simple enough that anyone can automate tasks. Scripting
need not be a difficult undertaking — it’s simply a way for you to perform
tasks faster.

Scripts reside within a special <Script> tag in your Web page so the browser
knows to treat them appropriately: Browsers that support scripting read them
as scripts, and browsers that don’t ignore the script code. Most modern
browsers include script functionality, but this special tag also provides sup-
port for situations where the user turns off scripting support. Finally, the tag
offers a way to indicate a special course of action when a browser doesn’t
support scripts through the use of a <NoScript> tag.

Scripting lets you access page objects — interactive on-screen features such
as the textboxes on a form. Page objects help you obtain access to data,
change the information displayed on-screen, and interact with both the user
and the browser. In addition to working with objects, your script can use
local variables, modify the variable value, and then do something with the
result. In some cases, the resulting data requires that your application make
a decision. For example, you might perform an action, such as displaying a
message box, when a number (perhaps user input) is below a value. Finally,
scripting supports looping, which helps you perform the same task more
than once (especially useful for repetitive procedures).

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 485

Understanding How Scripting Can Help486

Understanding How Scripting Can Help
Anyone who can write a simple series of steps for someone to perform can
also write a script. Writing a script is like writing a note to a friend that lists
steps to perform while you’re gone on vacation. You provide the steps
required to water the plants, feed the cat, or take in the mail. In some cases,
the steps are more complex because the person also needs to turn on the
lights and enable the security system in addition to the previous steps.
Scripting is simply a series of steps you write for the computer to perform.
Often, these steps are the same steps you perform to accomplish the task
manually.

Scripting can help you accomplish specific goals. It’s important to balance
your needs with the needs of the user — and those of the application — so
everything works as intended. Here are some goals you can accomplish with
scripts (but could also accomplish using other technologies such as CSS):

✦ Enhance performance: Exchanging data between a client and server
requires passing that information over a slow connection. The interac-
tivity results in a performance loss because of the time required to send
and receive the information. Using scripts lets you perform some tasks
locally, which reduces the amount of network traffic and enhances over-
all performance. You can also use scripts to enhance client or server
performance by moving more of the processing to the other machine.

✦ Increase flexibility: Most static Web pages are inflexible because they
can’t react to existing conditions or user input. Scripts enhance flexibil-
ity by making it possible for pages to react to the environment, the
browser, user input, or server setup. The goal is to accomplish a given
task with the least amount of work and in the fastest possible time, with-
out any loss of user-interface capabilities.

✦ Reduce security risks: You can use scripts to check for certain types of
data, environment, browser, or user-security risks. For example, you can
use scripts to reduce the risk that someone will successfully send a
virus instead of the requested data.

✦ Create special effects: Although special effects are essentially eye candy
that won’t perform any useful work, most developers and users alike
still find them fun (or at least interesting). For example, adding a
mouseover effect (which changes the appearance of a button when the
mouse pointer touches it) is interesting, but not necessarily helpful. You
can accomplish some of the same goals using unscripted options such
as tooltips, but special effects add pizzazz that your page might not oth-
erwise have.

✦ Handle special user needs: Users often have special needs that you can
handle using scripts. For example, someone who needs a plain page (one

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 486

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Understanding How Scripting Can Help 487

without formatting so a screen reader can describe it) could choose a dif-
ferent CSS page using an option on your form. The request would auto-
matically download the new page from your Web site, and a cookie would
tell the browser to use the same CSS page during subsequent visits.

Finally, scripting actually adds a new dimension to Web-page design — it
helps you provide a better environment for the user and accomplish tasks
that manual techniques can’t normally handle. Here’s a list of special tasks
you must accomplish with scripts:

✦ Automate tasks: The whole idea behind using scripts is to automate
tasks so that you don’t have to perform them manually. Task automation
is an important time saver and reduces support costs, in many cases,
because the automation reduces the number of steps the user has to
perform.

✦ Access special objects: Many tasks require the use of special objects. For
example, when you want to display a chart on-screen, you need access to
a special object that displays the chart. Although you don’t have to use
scripting if you want to display static data using a page object, adding a
script lets the user change the object and work with it — and that means
you don’t have to create multiple static displays to satisfy everyone’s
needs.

✦ Transform data: The raw data a user or server provides normally
requires some kind of manipulation. For example, a user might enter a
temperature in Fahrenheit and expect to receive the output in Celsius. A
server might provide data in XML format that the client has to transform
into a Web page using XSLT — scripting can provide a means of combin-
ing the two processes.

✦ Make requests: Requests come in a number of formats. Some requests
don’t require scripts, such as a request made using a form. In other
cases, you do need to create a script to make a request, such as gaining
access to data provided by a Web server using the Simple Object Access
Protocol (SOAP). The kind of request you want to make determines the
technique used to make it.

✦ Add user aids: Some user’s aids (such as context-sensitive help) are
incredibly difficult to add to a Web page without scripts. In some cases,
such as an interactive user guide, you can’t really create all of the
required user interface elements without scripting. For example, I
recently visited a Web site that shows how to install a new component
on a machine. The step-by-step instructions are animated so you can see
precisely how the parts fit together. You can also ask questions as part
of the step. Such user aids would be very difficult to implement without
scripts.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 487

Using the <script> Tag488

Using the <script> Tag
All scripts that reside on a Web page rely on the <script> tag. Like many
tags, the <script> tag has two components, the opening and closing tags.
You always work with the <script> tag using Code view — even when the
script appears in the body area of the Web page, there isn’t any visual com-
ponent to a script so you won’t see it in Design view. For this reason, using
the Split view usually isn’t worthwhile when working with scripts because
the Code view provides more screen space for the editor.

Depending on your FrontPage and Internet settings, some scripts might not
work properly (or at all) from Preview view. Although you can perform some
testing with Preview view, always check your scripts using an actual browser
to ensure you see what the user sees.

You can (theoretically) place a script anywhere within the Web page —
including outside the <html> tag. However, most developers choose to place
scripts within the <body> or <head> tags to ensure that the browser can find
the script — and to make it easier for other developers to understand the
page functionality. The next two sections discuss the differences between
these two placements in detail.

Placing scripts in the body
Scripts that are within the <body> tag normally execute immediately as the
page is opened or when the user performs an action. A body script is also
normally short and interface-related. None of these conventions are set in
stone, however; you can work with any kind of script within the <body> tag.

An example of a script that executes within the body of the Web page is one
that displays a message or performs some type of configuration based on
the users’ browsers. Here’s a simple example of a script that displays a mes-
sage when you load the Web page:

<script language=”javascript”>
alert(“Hello World!”);

</script>

This script appears within the <script> tag. It uses a special function,
alert(), to display a message box on-screen with the text, Hello World!.
When the user clicks OK, the message box disappears and the browser dis-
plays whatever appears after the script on-screen.

Unfortunately, the script executes only once and without the user’s permis-
sion or under user control. Whenever possible, you should request user
action to execute a script to ensure the user wants to perform that task. You

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 488

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Using the <script> Tag 489

can attach a script to a control on the page by using an event. An event
occurs whenever the environment changes or the user performs a specific
act such as clicking a button. Here’s a script that executes when the user
clicks a button on the page.

<input type=”button”
id=”btnClickMe”
value=”Click Me”
onclick=”alert(‘You clicked Click Me!’)”>

This script relies on the same alert() function to display a dialog box on-
screen. The message is different this time. Notice that the script actually
appears as part of the <input> tag. The onclick attribute is an event and
you use the equals sign to attach the script to this event. The browser “fires”
the onclick event every time the user clicks the button.

FrontPage makes it relatively easy to find events for a particular tag. It uses
a special icon in IntelliSense so you can detect which entries are events and
which are properties. Figure 1-1 shows the onclick event entry highlighted.
Notice that it uses a lightning bolt as an icon.

Figure 1-1:
Determine
which
entries are
events by
looking at
the icon.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 489

Using the <script> Tag490

Placing scripts in the header
Developers normally place complex scripts in the <head> tag of the Web
page. This standard programming practice makes it easier for other develop-
ers to find the script and also reduces the clutter in the <body> tag of the
Web page. Nothing prevents you from placing complex scripts in other pages
in the Web page, but using the current convention means that your script is
less likely to cause problems in the future.

Placing a script in the <head> tag requires performing a little additional
work because it forces you to associate the script with an event and to pro-
vide a means of identifying the script. Listing 1-1 shows a Web page that
places the script in the header.

Listing 1-1: Defining a Script in the Header

<html>

<head>
<script language=”javascript”>

function DisplayMessage(Message)
{

alert(Message);
}

</script>
</head>

<body>
<input type=”button”

id=”btnClickMeToo”
value=”Click Me Too”
onclick=”DisplayMessage(‘You Clicked Me Too!’)”>

</body>

</html>

Notice the script appears in the <head> tag and it relies on the usual
<script> tag as a container. In this case, you use the keyword function to
define a special piece of code within the <head> tag. The identification I’ve
come up with for this function is DisplayMessage. The DisplayMessage()
function accepts a message as an input. It displays a dialog box on-screen
with the alert() function using the Message argument as input.

Having the script in place doesn’t accomplish anything; you must tie the
script to an event or call it as part of another function. In this case, the Web
page has a button defined as part of an <input> tag. Notice the use of the

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 490

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Understanding Scripting Languages 491

onclick attribute to attach the DisplayMessage() function to the button.
When a user clicks the Click Me Too button, the browser executes the
DisplayMessage() function with the message shown.

You might wonder why I added the Message argument to the
DisplayMessage() function when it would have been easier to simply
add the message to the script. This addition makes it possible to use the
DisplayMessage() function for any number of buttons and any number of
messages. Using this technique makes it possible to use the code for another
Web page without rewriting it — the DisplayMessage() function has
greater flexibility because I added the Message argument.

Understanding Scripting Languages
Developers have created a number of scripting languages — and you’re free
to use any language you want, as long as your browser supports it (either
natively or through an add-on). The two most common scripting languages
are Visual Basic Script (VBScript) and JavaScript. Of these two, JavaScript is
the most popular language because it has the best support from browsers. In
fact, you can consider JavaScript the language of choice simply because it’s
the most popular and compatible. For these reasons, all scripting examples
in this book rely on JavaScript, rather than on a mix of languages. In fact, you
can see a list of browsers that support JavaScript at

http://hotwired.lycos.com/webmonkey/reference/browser_chart/
index.html

Don’t confuse JavaScript and Java. Even though the two languages have simi-
lar names, they have nothing in common — and equating them will only
cause you grief. JavaScript is an open language that is also called European
Computer Manufacturers’ Association Script (ECMAScript) or JScript
(Microsoft’s name). Java, on the other hand, is a semi-open language
designed and maintained by Sun (http://java.sun.com/). You can find
standards for the ECMAScript language at

http://www.ecma-international.org/publications/standards/
Stnindex.htm

Although the basic implementation of a scripting language remains the same
in most browsers, you’ll notice some differences between browsers. Browser
vendors normally add special features to their scripting-language implemen-
tations to make their browsers stand out from the crowd. Even though these
additions make each browser special, they can also cause problems by intro-
ducing compatibility problems. Don’t assume that following the standards

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 491

Understanding Scripting Languages492

ensures success: Many browsers were written before the standards arrived —
and some vendors chose to ignore the standards even after they arrived. The
best way to ensure that your Web page will work as expected is to test your
scripts using as many different browsers as you can.

Because there are so many scripting languages available and FrontPage sup-
ports a number of them, you need to define which scripting language you
use on your Web page, using the language or lang attribute as shown here:

<script language=”javascript”>
alert(“Hello World!”);

</script>

An advantage of using the language attribute is that FrontPage provides
IntelliSense support for this attribute (as shown in Figure 1-2). Using the
language attribute reduces typing time and makes it easier to choose a lan-
guage when you’re unfamiliar with the options.

Figure 1-2:
Select the
language
you want to
use from the
options
presented.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 492

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Working with Page Objects 493

Working with Page Objects
Most scripting languages rely on the concept of objects to make it easier to
work with the browser, user, and Web page. Think of an object as you would
any real-world object. When you see an apple, you recognize a color, shape,
whether it’s shiny, and so on. You know that you can eat the apple, use it for
applesauce, or target it with an arrow (hopefully not on someone’s head).
The apple automatically produces an odor and will eventually rot, at which
point you’ll see the skin color change (among other things). You can visual-
ize computer objects using properties, interact with them using methods,
and notice automatic changes in them through events.

Although JavaScript objects aren’t precisely the same as objects used by
other languages, they’re close enough that you can read the following sec-
tions and understand how objects work in most scripting languages.
Understanding how various objects work is essential to writing good scripts.

Using properties
Properties define the characteristics of the object. A pushbutton has a value
property that defines the text on the button face. This same property defines
text for other common controls such as textboxes. Many properties affect the
physical appearance of an object. For example, the bgColor property defines
the background color. A few properties tell you about the condition of the
object. The isDisabled property tells whether the object is usable — a user
sees a disabled object, but can’t interact with it (as when an option is grayed
out on-screen).

Working with properties means interpreting or changing the state or appear-
ance of the associated object. You read a property to interpret its content
and write a value to it to change it. When you make an illegal change, the
object raises an error that the browser displays for you. In some cases, a
property is read-only or write-only, which means you can only perform that
task with the property.

You work with properties through the object hierarchy. The hierarchy begins
with a window. Within the window is a document (among other objects,
properties, methods, and events). The document contains a number of
items, including any forms you create. A form can contain a pushbutton or
other control. At each of these levels, you can interact with objects by speci-
fying properties. Here’s an example of a script that works with objects at var-
ious levels in the object hierarchy.

<script language=”javascript”>
// Display the browser name and version.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 493

Working with Page Objects494

alert(“You’re using:\r\n” +
window.clientInformation.appName +
“\r\nVersion: “ +
window.clientInformation.appVersion);

// Make the background color red.
window.document.bgColor = “red”;

// Change the button caption.
window.document.MyForm.btnTest.value = “Hello”;

</script>

This example works with four objects: window, document, MyForm, and
btnTest. The window object contains a clientInformation property,
which is actually a complex property because it contains other properties.
The example uses the alert() function to display the appName and
appVersion properties of the clientInformation property.

Notice, also, the use of the special \r\n character sequence. This character
sequence is called an escaped character set because it represents special
control characters. The \r entry tells the browser to insert a carriage return
(a return to the beginning of the line). The \n entry tells the browser to add
a newline (linefeed) character that advances the cursor to the next line.
Together, they display the various pieces of information on separate lines of
the dialog box displayed with the alert() function (as shown in Figure 1-3).

Objects, Controls, and Components
Some object-related terms might seem confus-
ing at first because some people use them
without explaining what they mean. The term
object refers to any encapsulation of code and
data that you work with using properties, meth-
ods, and events. When an object has a visual
interface and it provides special user interac-
tion functionality, developers call it a control.
For example, a pushbutton is a control. Some
objects work in the background (without visual
interfaces) and provide special services —
developers call them components. A database
connection is an example of a component
because it lacks a visual interface, yet provides
a valuable service to the user.

Some objects cross boundaries, so it’s hard to
classify them. For example, some developers
say an Excel spreadsheet is a control because
it provides a visual interface and also interacts
with the user. On the other hand, many devel-
opers would call it a component because it pro-
vides low-level services to the user. Generally,
it doesn’t matter whether an object is a control
or a component — you use the same tech-
niques to interact with both. Whenever you see
a confusing mix of object, control, and compo-
nent references, always remember that every
control — and every component — is an object.
Objects are the technology that you should think
about when writing code for your scripts.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 494

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Working with Page Objects 495

The next entry uses the document object. Notice the document object appears
as part of the window object. The code changes the bgColor (background
color) property to red.

Within the document object is a form named MyForm. The MyForm object
contains a pushbutton named btnTest. The pushbutton has a value prop-
erty that changes the caption. The code sets this property to Hello.

Using methods
Methods define activities you can perform with an object. A window has cer-
tain characteristics that allow you to perform specific tasks. For example, the
alert() function that appears in several listings is actually a method that
belongs to the window object. The use of method and function as terms for
the same feature can be confusing; here’s an example that illustrates both:

<script>
// Using alert as a function.
alert(“This is a function”);

// Using alert as a method.
window.alert(“This is a method.”);

</script>

The first version of alert() is the function form. It appears as a separate
entity without any object association. The second version uses the dot syntax
associated with objects. This form tells you that alert() is a method that is
part of the window object. Although both forms of alert() produce the same
result, it’s important to consider the source of the functionality.

IntelliSense displays method entries in the list of object elements with a
purple cube. When you select a method for your script, IntelliSense also dis-
plays the arguments for that method so you know what to type. For example,
when you use the window.alert() method, IntelliSense tells you that it
requires a message as an input argument. Arguments define how you want

Figure 1-3:
Use control
characters
to format
the content
in a dialog
box.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 495

Working with Page Objects496

the method to perform a task or what you want it to use as information. In
this case, the window.alert() method accepts a single input argument that
contains the sequence of characters (a string) you want to display on-screen.

Unfortunately, IntelliSense doesn’t display output information for a method.
Some methods, such as window.confirm(), don’t work well without this
knowledge — after all, the point of using the method is to obtain information
from the user. The window.confirm() method asks the user to confirm an
action before your script performs it. FrontPage doesn’t document scripting
functions. To discover the output arguments that methods support, use
online sources such as Gecko DOM Reference at

http://www.mozilla.org/docs/dom/domref/dom_shortIX.html

or the JScript Language Tour at

http://msdn.microsoft.com/library/en-us/jscript7/html/statement.asp

Using events
Events define self-generating activities on the part of the object. Events occur
due to internal needs, changes in the environment or application, or activi-
ties on the part of the user. When a user clicks a button, the button gener-
ates an event. You can choose to ignore the event (the default action) or you
can do something about it.

You can track a number of events associated with every control or major
object (such as the <body> tag) on a Web page. The event you choose
depends on what action you want to track. For example, it makes sense to
track user clicks when you’re working with a button, but you might want to
use the onchange event when you’re working with a textbox: In this case,
the focus event is changing the content of the textbox.

Working with events is a two-part process. First, you create a connection
between the event and the code that you want to use to handle the event.
Second, you create the event handling code. In some cases, you can combine
the two steps, as the example in the “Placing scripts in the body” section of
the chapter shows. To use the more traditional approach, begin with a call to
a method, as shown here:

<p><input type=”text” id=”txtInput”
value=”Change Me!”
onchange=”txtInput_Change()”></p>

<p><input type=”button” id=”btnTest”
value=”Test” disabled
onclick=”btnTest_Click()”></p>

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 496

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Creating Variables 497

This code shows two <input> tags. In the first tag, the onchange attribute
attaches the txtInput_Change() function to the textbox. Whenever a user
changes the content of the textbox, the textbox will call the txtInput_
Change() function to handle the event. Likewise, the button in the second
tag has the btnTest_Click() function attached to the onclick event.
Whenever the user clicks the Test button, the button calls the btnTest_
Click() function.

Notice the names of the functions. You can call the functions anything you
like and, in some cases, you won’t want to use this naming convention, but
combining the control id value with the event name is common practice for
naming event handlers. Using this technique makes it easier for other people
to understand your code and you to make modifications later. (The one time
you definitely don’t want to use this naming convention is when one event
handler works with more than one control.)

After you associate an event with a function, you create the code to handle
the event. You can use any code needed to interact with the user. Here are
the two event handlers for this example — they simply display a dialog box:

<script language=”javascript”>
function txtInput_Change()
{

// Tell the user something changed.
alert(“The test button changed!”);

}
function btnTest_Click()
{

// Register the click event.
alert(“The text box says “ + MyForm.txtInput.value);

// Make a change.
MyForm.txtInput.value =

“Type some new text and press Tab!”;
}

</script>

Creating Variables
A variable is like an empty box — you can place something in it until you
need it later. Script variables can contain any kind of data including objects
you create. Depending on the script language, you might have to follow cer-
tain rules when using variables. Fortunately, using variables with JavaScript

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 497

Making Decisions498

is easy because JavaScript has relaxed variable rules. Here’s an example of
using a variable:

<script language=”javascript”>
function btnPrompt_Click()
{

// Holds the output of the prompt.
var Output

// Display a prompt.
Output = prompt(“Type a string:”, “Default String”);

// Display the result.
alert(Output);

}
</script>

You declare a variable using the special var keyword. A variable can have
any name, but you need to start it with a letter or one of the few special sym-
bols that JavaScript allows. The best principle is to begin all variable names
with a letter of the alphabet to avoid problems later.

A variable has the special value of null when you first create it. A null
value means empty — the box doesn’t contain anything. You can display a
null value on-screen and JavaScript won’t complain. However, JavaScript
will complain if you try to perform a useful task with a null value because
there isn’t any value to work with.

The example assigns the output of the prompt() function to Output. The
prompt() function displays a message to the user and provides a default
string (when you supply one). The user can type a new string or accept
the default. When the user clicks OK, Output receives the string from the
prompt() function. On the other hand, when the user clicks Cancel,
JavaScript places a null value in Output to show that the user didn’t enter
any information.

Making Decisions
Sometimes you have to make a decision when you’re writing a script. For
example, you might want the script to react differently to various kinds of
user input. In many cases, you won’t know what specific browser functional-
ity or settings to expect, so you have to create a decision-making feature to
handle the unknowns in your Web-page application.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 498

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Making Decisions 499

JavaScript relies on the if statement to make decisions. The decision is
based on a Boolean (true or false) value that you enclose in parentheses.
When the Boolean value is true, then JavaScript executes the statement that
follows. An optional else clause lets you choose between two courses of
action — one that occurs when an evaluation is true and another when it’s
false. Here are examples of both forms of if statements:

<script>
// Determine whether the button is enabled. If not,
// enable it.
if (window.document.MyForm.btnTest.isDisabled)

window.document.MyForm.btnTest.disabled = false;

// The window object has many other interesting functions,
// such as a form of alert you can use to confirm actions.
if (window.confirm(“Are you sure?”))
{

window.alert(“You’re sure.”);
window.document.MyForm.btnTest.value = “Sure”;

}
else
{

window.alert(“You aren’t sure.”);
window.document.MyForm.btnTest.value = “Not Sure”;

}
</script>

In the first case, the code makes a simple decision — when the button is dis-
abled, enable it. Otherwise the code doesn’t need to do anything because
the button is already enabled. The isDisabled property in this example is
special because it provides a Boolean output and it’s read-only. Controls
often provide these status properties. To change the status of the button,
you modify the state of the disabled property by setting it to true or
false. (These are Boolean values when used without double quotes.)

The second example requires the else clause, in many cases, because the
dialog box displayed by the window.confirm() method contains two but-
tons: OK and Cancel (the script engine adds these buttons automatically).
The method returns true when the user clicks OK or false when the user
clicks Cancel. Using the else clause lets you react to either event.

Notice how the second example uses curly braces { }to enclose multiple
statements. When you want a single decision to apply to multiple actions,
use curly braces to enclose the actions. Otherwise you can simply follow the
decision immediately with the executable statement, as shown in the first
example.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 499

Performing Repetitive Tasks with Loops500

Performing Repetitive Tasks with Loops
Sometimes you need to perform a task more than one time. For example, you
might want to retrieve information from a database. You use the same series
of steps to retrieve every record, so it’s easier to write the required code
once and simply tell the computer to perform the coded steps more than
once. Repeating a task multiple times is called looping.

Using the for loop
Use a for loop when you know precisely how many times you want to per-
form a task before the loop begins. A for loop begins by defining three
expressions: the beginning value of a counter variable, the value the counter
must obtain to end the loop, and the method to use to change the counter
variable. Here’s an example of the for loop:

function btnForLoop_Click()
{

// Get the number of times to perform the loop.
var Perform =

parseInt(prompt(“Times to Perform Loop”, “5”));

// Perform the loop the desired number of times.
for (Counter = 1; Counter <= Perform; Counter++)
{

// Display a message box.
alert(“Hello “ + Counter + “ time.”);

// Change the output text box.
txtLoopValue.value = Counter;

}
}

The code begins by obtaining the number of times the user wants to perform
the loop using the prompt() function. The output of the prompt() function
is a string, and you can’t easily create a comparison using a string value —
numeric values work better. This example uses the parseInt() function to
convert the string input from the prompt() function into a number.

When the user types something other than a number, the parseInt() func-
tion outputs 0, which means the loop won’t execute. This is a safety feature;
the user can’t type an unusable value or enter a virus and still get the loop to
work. The conversion process enhances security by making it impossible to
enter anything but a number.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 500

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Performing Repetitive Tasks with Loops 501

The for loop begins by assigning a value of 1 to the Counter variable. The
next step is to compare Counter to Perform. When Counter is less than or
equal to Perform, JavaScript executes the code within the curly braces. In
this case, the code simply displays a dialog box with the current Counter
value and places this value in a textbox. The final step is to increment
Counter. The Counter++ statement tells JavaScript to add 1 to the value of
Counter, which increments it. The loop begins again with the comparison —
JavaScript only performs the assignment step the first time. When Counter
is greater than Perform, the loop ends.

Using the while loop
Use a while loop when you aren’t sure how many times a loop will execute.
A while loop could detect the end of a database, environmental conditions,
or an action on the part of the user. A while loop simply checks for a condi-
tion. When the condition is met, the while loop ends. Here’s an example of
the while loop:

function btnWhileLoop_Click()
{

// Create a loop variable.
var Counter = 1;

// Get the number of times to perform the loop.
var Perform =

parseInt(prompt(“Times to Perform Loop”, “5”));

// Perform the loop the desired number of times.
while (Counter <= Perform)
{

// Display a message box.
alert(“Hello “ + Counter + “ time.”);

// Change the output text box.
txtLoopValue.value = Counter;

// Increment the counter.
Counter++;

}
}

The code begins by creating Counter. In this case, Counter is simply part of
a condition, not necessarily a counter variable. The code obtains the number
of times the user wants to perform the loop and places this value in Perform.

The while loop begins by checking the loop’s condition. When Counter is
less than or equal to Perform, JavaScript executes the code contained within

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 501

Using the <noscript> Tag502

the curly braces. In this case, the code displays a dialog box showing the cur-
rent counter value and updates a textbox on-screen. Because a while loop
doesn’t include a counting mechanism, you must increment the counter as
a separate step. Otherwise the loop becomes endless — it keeps executing
because the ending condition never occurs.

Using the <noscript> Tag
Scripts aren’t always a usable option. Sometimes users turn off scripting sup-
port for their browsers because they have had bad experiences with poorly-
written scripts (or even viruses) in the past. In addition, many users turn
scripting support off because it causes other applications and browser add-ins
to malfunction. Consequently, you can’t assume that a user has scripting sup-
port on a public Web site and need to provide an alternative in the form of a
<noscript> tag. A browser only displays the content of the <noscript> tag
when it doesn’t have scripting support or scripting support isn’t turned on.

When you have access to a Web server, you can usually use a combination
of client-side and server-side scripting to provide alternatives for the user.
The server-side script lets the user interact with your site, albeit at a greatly
reduced speed. Listing 1-2 shows an example of how you can implement this
technique using an Active Server Pages (ASP) script on Internet Information
Server (IIS). (Note that some nonfocal code was removed in the interest of
brevity — see the DoMath.asp file in the source code for this chapter on this
book’s companion Web site for details.)

Listing 1-2: Using a <NoScript> Tag with ASP

<%@ Language = “JavaScript” %>
<% Response.Buffer = true %>

<html>
<head>

<title>Accessible Friendly Script Demonstration</title>
<script language=javascript>

function DoAdd()
{

var Value1 = parseInt(TheForm.InValue1.value);
var Value2 = parseInt(TheForm.InValue2.value);
TheForm.Output.value = Value1 + Value2;

}
</script>

</head>
<body>

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 502

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Using the <noscript> Tag 503

<form method=get id=TheForm>
<H1 align=”center”>Math Demonstration</H1>
<INPUT type=text id=”InValue1”

<%if (Request.QueryString(“Input1”).Count > 0)
{

Response.Write(“value=”)
Response.Write(Request.QueryString(“Input1”)(1))

}
else

Response.Write(“value=0”)%>
name=Input1>

<LABEL> Input Value 1</LABEL>

... The Second Input ...
<INPUT type=text id=”Output”

<%if ((Request.QueryString(“Input1”).Count > 0) &&
(Request.QueryString(“Input2”).Count > 0))
{

var Value1 =
parseInt(Request.QueryString(“Input1”)(1));

var Value2 =
parseInt(Request.QueryString(“Input2”)(1));

var Sum = Value1 + Value2;
Response.Write(“value=”);
Response.Write(Sum);

}
else

Response.Write(“value=0”)%>
readonly >

<LABEL> Output Value</LABEL>

<BUTTON onclick=DoAdd() id=AddNumbers>Add</BUTTON>

<NOSCRIPT>

<p>
Your browser doesn’t support scripts.
Use this button instead.

</p>
<BUTTON type=submit id=NoScriptAdd>

No Script Add
</BUTTON>

</NOSCRIPT>
</form>
</body>
</html>

This page combines a number of scripting and ASP elements to create a cohe-
sive application. The DoAdd() script is JavaScript that the server sends to
the client. The client executes this code when it has scripting enabled. The
script creates two variables — Value1 and Value2 — adds them together,
and places the result in a textbox named Output.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 503

Using the <noscript> Tag504

The page also includes some ASP script which always appears between the
<% and %> entries. One of the entries reads the query string from the URL
and uses the information to update the values for the Input1 and Input2
textboxes. Notice that the ASP script looks very much like the JavaScript dis-
cussed in the chapter. It makes a decision based on whether the query string
exists. If it doesn’t, then the code sets the value of the textbox to 0.

Figure 1-4 shows how the query string appears as part of the Address field in
a browser. The ?Input1=1&Input2=2 portion of the URL is the query string.
It includes two entries: Input1 and Input2. Notice that these values equal
the values of the textboxes. The Request.QueryString() method obtains
these values from the URL so that you can use them in your code.

The <button> tag produces the same result as the <input type=”button”>
tag — it’s just a little shorter. Some people prefer it because it’s a little clearer
and more accessible as well. Notice that the <button> tag has the onclick
event attached to the DoAdd() function, but this function only works when
the user has scripting enabled.

Figure 1-4:
Process the
user request
locally or
remotely
depending
on browser
capabilities.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 504

Book VII
Chapter 1

Extending a Page
w

ith Scripting
Using the <noscript> Tag 505

The <noscript> tag comes next. The content of this tag appears only when
a browser lacks scripting support. In this case, the code displays a message
and as second button as shown in Figure 1-4. The user clicks No Script Add
to submit the information in the Input1 and Input2 textboxes to the server
instead of processing the information locally. The server processes this
information as part of the script for the Output textbox and sends the infor-
mation as a new page to the user.

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 505

Book VII: Scripting506

35_575317 bk07ch01.qxd 9/24/04 9:00 PM Page 506

Chapter 2: Creating Your
First Scripted Page

In This Chapter
� Understanding what scripts do

� Working with the Code View toolbar

� Writing a simple script

� Attaching a function to a button

� Adding inputs and outputs to a function

Writing scripts is part science and part art. To write a script, you must
meet certain minimum requirements, such as defining the scripting

language and providing the required connections between HTML and the
code. The order of tasks is often dictated as much by personal preference as
by the needs of the script. You also have technique choices to make; some
objects and functions overlap in functionality, so you can write code that
performs the same task in more than one way.

FrontPage provides some special features that make working with code a lot
easier. For example, the Code View toolbar helps you write code faster by
providing quick typing features and code-location methods. You also have
access to the Dynamic HyperText Markup Language or DHTML Effects tool-
bar, which contains buttons that allow you to associate specific effects with
your code.

Although the helpful features of FrontPage make writing scripts easier, good
script design is essential. One way you can improve your scripts is by using
input and output arguments efficiently. Careful use of input and output argu-
ments can reduce the total amount of work you have to perform.

Understanding How Scripts Work
JavaScript is an interpreted language. It appears as text in your Web-page
file. When the Web page arrives at the client, the client’s browser sees the
<script> tag and passes the information to a local script handler. The local
script handler processes the text within the <script> tag, performs any
required actions, and passes the results back to the browser as needed.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 507

Understanding How Scripts Work508

For Windows users, the script handler is the same one you can access using
either the CScript (for scripts executed at the command line) or WScript (for
scripts executed in Windows) utilities. These two utilities are provided with
Windows and reside in the \Windows\System32 folder of your machine —
you can use them to execute scripts that you place in script files from your
desktop. Because the context (the execution environment) is different, the
CScript and WScript utilities have access to different objects than the
browser, but the basic engine is the same. To see this fact for yourself, open
a command window and type CScript. Then press Enter and you’ll see the
name of the scripting host, along with version information. (Windows XP
users will likely notice that they’re using Windows Script Host Version 5.6.)

After you look at the version information CScript provides, create a new Web
page. Type the following code in this Web page, save it, and view it with your
browser.

<html>

<head>
<title>First Script</title>

</head>

<body>

<h1>First Script Example</h1>

<script language=”javascript”>
// Create a string to hold the version information.
var SE = “”;

// Ask the scripting engine about its name and version.
SE += ScriptEngine() + “ Version “;
SE += ScriptEngineMajorVersion() + “.”;
SE += ScriptEngineMinorVersion() + “.”;
SE += ScriptEngineBuildVersion();

// Write the result to screen.
document.write(SE);

</script>

</body>
</html>

Congratulations! You’ve not only proven that the browser script engine is
the same one used for everything else in Windows, but you’ve also written
your first script. The example code asks the script engine its name and ver-
sion information. It may not amaze you too much that the browser reports
the same version information as CScript — after all, they use the same

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 508

Book VII
Chapter 2

Creating Your First
Scripted Page

Using the Code View Toolbar 509

engine to do their work. In fact, you can create a text file with a .JS extension
(for JavaScript), using the script shown in this section — and use CScript
to execute it. The only difference is that you must replace the document.
write(SE); method with the WScript.Echo(SE); method to display the
information. A copy of this script appears in the CScriptVersion.JS file
found in the source code for this chapter on this book’s companion Web site.

The idea behind this method of working with scripts is that any application
that supports the scripting engine has the same access to the scripting
engine features. The browser you use doesn’t actually have to process the
script because there’s already another application to perform the task.

Any updates, patches, or virus fixes you apply to the scripting engine also
affect your browser, making it safer to run scripts from sites that you trust.

Using the Code View Toolbar
One of the handiest scripting features of FrontPage is the Code View toolbar
shown in Figure 2-1. This toolbar is active only in Code view. To display the
toolbar, right-click the toolbar area and choose Code View from the context
menu. The next few sections elaborate on the features of this toolbar.

Working with the Code View toolbar options
The Code View toolbar provides a number of options that make it easier to
work with code in FrontPage. For example, the Options drop-down list box

List Members

Complete Word

Go to Function
Toggle

Bookmark

Previous
Bookmark

Select Tag

Select Block

Insert Start Tag

Insert Comment

Parameter
Info

List Code
Snippets

Function
Lookup

Next
Bookmark

Find Machine Tag

Clear Bookmarks Find Machine Brace

Insert End Tag

Microsoft Script Editor

Figure 2-1:
Simplify
your script
coding tasks
by making
using of this
toolbar.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 509

Using the Code View Toolbar510

contains a list of coding options (such as word wrap and line numbers).
Click any option to turn its feature on or off. The following list describes the
other features in detail:

✦ Microsoft Script Editor: Starts the Microsoft Script Editor when
installed on your machine. The Microsoft Script Editor includes a
number of features including a debugger that isn’t included with
FrontPage. Unfortunately, it lacks IntelliSense support, so you need to
rely on the included help file to write code. Fortunately, the help file
includes detailed JavaScript and VBScript information, including the
functions missing from the FrontPage help.

✦ Insert Comment: Adds a standard HTML comment to your code, but it
isn’t a FrontPage comment of the sort that appears in the Design view.
You can’t add this special type comment by adding a double slash (//)
as you would for a scripting comment.

✦ Insert End Tag: Creates a starting tag and places the cursor in the middle
so you can type the tag type.

✦ Insert Start Tag: Creates an ending tag and places the cursor after the
slash so you can type the tag type.

✦ Find Matching Brace: Locates the brace (curly bracket) in your script
that matches the one you selected. Using this feature can help you
locate statements that have missing braces, or braces that show up in
the wrong place.

✦ Select Block: Selects the block of code between two braces, using the
selected brace as a starting point.

✦ Find Matching Tag: Locates the ending tag for a start tag, or vice versa.
This feature is helpful when you have a lot of code between tags and want
to move between the beginning and end quickly. This feature is especially
useful with <object> tags because they contain a lot of entries.

✦ Select Tag: Selects an entire tag, including all code between the start
and end tag.

✦ Clear Bookmarks: Removes all bookmarks from a document — impor-
tant when you finish editing the document and want to deploy it on your
Web site.

Because bookmarks reside on your local system, you don’t need to
worry about whether they’ll use additional space on the server.

✦ Previous Bookmark: Locates the previous bookmark in the document.

✦ Next Bookmark: Locates the next bookmark in the document.

✦ Toggle Bookmark: Adds or removes an individual bookmark in the doc-
ument. The bookmark refers to the entire line and your cursor appears
at the beginning of the line when you select the bookmark. When you
enable the Line Numbers option, FrontPage also displays a teal square

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 510

Book VII
Chapter 2

Creating Your First
Scripted Page

Using the Code View Toolbar 511

next to any line that has a bookmark . (To enable this feature, choose
Line Numbers from the Options drop-down list box.)

✦ Function Lookup: Displays the selected function. Simply choose one of
the functions in the drop-down list and FrontPage shows it to you. This
list includes only functions on the current page.

✦ Go To Function: Locates any function referenced within the page. To use
this feature, place the cursor on a function call. When the function call
appears on the same page, click this button to move to the cursor to the
function code.

✦ List Code Snippets: Displays a list of standard code snippets —
predefined pieces of code — you can use to add code quickly. Simply
select a code snippet from the list and FrontPage types the code for you.
This feature is explained in more detail in the “Defining code snippets”
section later in this chapter.

✦ Complete Word: Displays a list of keywords that could complete the cur-
rent word. For example, when you type the letter A, you see all functions,
methods, and properties that begin with the letter A. The list generally
isn’t complete — it only contains the keywords that FrontPage tracks
directly.

✦ Parameter Info: Displays the list of arguments for the current method or
function.

✦ List Members: Displays a list of properties, methods, and events associ-
ated with the current object. When you don’t select a specific object,
FrontPage takes context into account: You see a list of all members for
the window object.

Defining code snippets
Code snippets are small pieces of code you access using the List Code
Snippets button shown in Figure 2-1. The list appears at the current cursor
position as shown in Figure 2-2. Simply click the code snippet you want to
use and FrontPage types the associated code.

Using code snippets saves time because you can create a large amount of
code quickly. FrontPage comes with some very common code snippets
defined. For example, you can add a document type declaration to your page
by using a code snippet (document type declarations tell which set of HTML
rules a page uses to define tags).

The code snippets are completely customizable. A good candidate for a code
snippet is any piece of code that you use consistently in many of the Web
pages you create (such as the author meta tag). Double-click Customize List
and you see the Code Snippets tab of the Page Options dialog box, shown in
Figure 2-3. You can also access this dialog box by choosing the Tools➪Page
Options command.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 511

Using the Code View Toolbar512

Figure 2-3:
Define code
snippets as
you need
them.

Figure 2-2:
Create code
quickly
using code
snippets.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 512

Book VII
Chapter 2

Creating Your First
Scripted Page

Creating a Simple Script 513

To add a new code snippet, click Add in the Page Options dialog box. You
see the Add Code Snippet dialog box. Type a keyword, description, and the
code for the snippet. (A keyword is a short phrase you can use to identify the
code snippet. Make sure you select something that is easy to remember
because all you see is the keyword in the code snippet list.) The description
should provide enough details about the code snippet that you remember its
purpose without having to open the code all the time. However, don’t make
the description so long that you feel like you’re reading a book every time
you review it. The code can be anything from a single line of code to a com-
plete function — define whatever you feel is common and consistent enough
to make a good code snippet.

The list of code snippets can quickly get too long. You may want to remove
some of them to keep your list of code snippets from becoming hard to navi-
gate. To remove an existing code snippet, highlight its entry in the Page
Options dialog box and click Remove.

Use this feature with care. FrontPage doesn’t ask whether you want to remove
the code snippet — it’s simply gone.

Sometimes a code snippet won’t work as planned, so you need to edit it. To
change a code snippet, select its entry on the Page Options dialog box and
click Modify.

One of the most common changes is to ensure that the cursor ends up in
the right place after FrontPage types the code for you: Simply place the pipe
symbol (|) where you think the cursor should go after FrontPage types the
code. Remember to remove any existing pipe symbols from the code before
you complete the edit.

Creating a Simple Script
One of the most common scripts that developers begin writing is the inline
script — one that doesn’t rely on any special resources to execute. The type of
scripts that you’re likeliest to write does some simple but vital tasks — such as
detecting client settings (so you can compensate for browser-compatibility
problems) or otherwise ensuring that your application will run properly. For
example, just knowing whether a user has Internet Explorer or Opera is a big
help — but you also need to consider specific program versions in some cases.
Fortunately, this very common script is also a relatively simple script. Here
are some steps to get you started:

1. Create a new Web page and add all the usual settings to it.

2. Select Code view.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 513

Creating a Simple Script514

3. Place the cursor beneath any headers you might have created and
click List Code Snippets on the Code View toolbar.

You see a list of code snippets.

4. Double-click the scriptj entry.

FrontPage creates a JavaScript code block for you.

5. Type the following code in the JavaScript code block:
// Check for plug-ins. Display a message when there aren’t
// any plug-ins to list.
if (window.clientInformation.plugins.length == 0)

document.writeln(“No Plug-ins”);

// When plug-ins exist, list each one in turn.
for (Counter = 0;

Counter < window.clientInformation.plugins.length;
Counter++)

{
document.writeln(

window.clientInformation.plugins[Counter])
}

6. Save the document.

7. Look at the document in your browser.

The browser displays either a list of plug-ins or the No Plug-ins message.

The script in this example demonstrates one way to work with objects that
can have any number of entries. In this case, a client can have more than one
plug-in installed. The plug-in information appears in a collection. Think of a
collection as a box that contains any number of similar items. All the items
are of the same type, but they contain unique content. A baseball card col-
lection consists of baseball cards, but it’s unlikely that every card will have
information about the same player.

JavaScript looks at collections as arrays. An array is a single memory structure
grouping many values, where each value can be accessed using the same vari-
able name, but with a number, called an index, singling out that particular
value from the group. Arrays work much like apartments in a building. Every
apartment has the same address. So, to look for John Smith you begin by look-
ing for the building. After you find the building (the name of the array), you
look for John Smith’s apartment. The window.clientInformation.plug-
ins[Counter]) entry performs the same task as locating a particular apart-
ment. It tells JavaScript to look for a particular item in the plugins array,
which is actually a collection.

Notice how the code also uses the window.clientInformation.plug-
ins.length property in two different ways. The first use is to determine
whether there are any plug-ins. A length of 0 in a collection means there are

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 514

Book VII
Chapter 2

Creating Your First
Scripted Page

Associating a Function with a Button 515

no items in the collection, or no plug-ins in this case. The second is to deter-
mine how many plug-ins to process as part of the for loop.

Associating a Function with a Button
One of the most important scripting tasks is associating a function with an
event. You have access to a number of events for just about every object
that a browser can access. (I can’t think of an object that doesn’t include
events, but I’m sure there must be one.) Generally, the choice of which event
to use is relatively easy to figure out. For example, you use the onclick
event when you want to track the user’s clicks on a particular object and
most user interface objects support this event. The first control that devel-
opers work with, in most cases, is a pushbutton — and the most common
event handled by functions for pushbuttons is onclick.

Working with events
Whenever you create a function, it’s important to plan thoroughly before you
actually write any code. The world is filled with bad code written because
someone got very excited about doing something and didn’t fully outline
what it was they wanted to do. Because many functions replicate tasks you
want to do, it pays to write the steps down as you would do them. For exam-
ple, when you want to add two numbers, you follow these steps:

1. Discover the value of the first number.

2. Discover the value of the second number.

3. Add the two numbers together.

4. Look at the result.

A function works the same way. You need to obtain two numbers from
somewhere — normally a form containing two text boxes. JavaScript adds
the two numbers together. It then places the result in a third text box, where
the user looks at the result. The process JavaScript uses is the same as the
process you use. The only difference is that you don’t have to perform the
work — you let JavaScript do the work for you.

There’s one missing piece: Something has to tell JavaScript to perform the
addition. Generally, the developer creates an Add pushbutton and associates
the onclick event with the function that actually performs the task. The fol-
lowing steps show how to create the required code:

1. Create a blank Web page and add all the usual settings to it.

2. Select Design view.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 515

Associating a Function with a Button516

3. Add a form to the Web page. Remove the Submit and Reset buttons.
Add three text boxes (txtInput1, txtInput2, and txtOutput) and
one pushbutton (btnAdd) for the form.

Your form should look like the one shown in Figure 2-4. You might want
to configure txtOutput so that it’s read-only. The example also includes
default values for txtInput1 and txtInput2.

4. Select the Add button. Choose the Split view.

FrontPage displays the code for btnAdd highlighted in the Code view
portion of the Split view.

5. Place the cursor at the end of the highlighted area but before the
angle bracket (>), and type the following line:

onclick=”btnAdd_Click()”

The code you added will execute the btnAdd_Click() function when
the user clicks Add.

6. Select Code view.

7. Place the cursor on a blank line in the <head> tag area (but before the
</head> tag) and click List Code Snippets on the Code View toolbar.

You see a list of code snippets.

8. Double-click the scriptj entry.

FrontPage creates a JavaScript code block for you.

9. Type the following code in the JavaScript code block:
function btnAdd_Click()
{

// Get the input values.
var Input1 = parseInt(AddForm.txtInput1.value);
var Input2 = parseInt(AddForm.txtInput2.value);

// Perform the addition.
var Output = Input1 + Input2;

// Display the results on-screen.
AddForm.txtOutput.value = Output;

}

10. Save the document.

11. Test the document in your browser.

You can add any two numbers together.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 516

Book VII
Chapter 2

Creating Your First
Scripted Page

Associating a Function with a Button 517

Using the DHTML Effects toolbar
Another way to respond to events is to create a special effect for them. The
special effect isn’t (strictly speaking) productive code; it doesn’t actually
perform useful work. What special effects do is provide visual cues or other
attractive functionality. For example, you can tell FrontPage to display a par-
ticular special effect when the user hovers the mouse over a control. The
special effect could be a font or other formatting change. Generally, you
should avoid such special effects because not all browsers support them
and they can cause accessibility problems.

FrontPage makes it easy to add special effects to your Web page using the
DHTML Effects toolbar shown in Figure 2-5. This toolbar is only active in
Design view. To see this toolbar, right-click the toolbar area and choose
DHTML Effects from the context menu.

Figure 2-4:
Create the
form
elements
required to
add two
numbers.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 517

Associating a Function with a Button518

Unlike most toolbars, this toolbar requires you to access its fields in a spe-
cific order from left to right when adding a special effect. The following steps
discuss how to use the DHTML Effects toolbar to add a special effect:

1. Select a control you want to add a special effect to in the Design view.

FrontPage enables the On field of the DHTML Effects toolbar. The On
field lets you select the event that will handle the special effect. The
most common event to use to trigger a special effect is mouseover.

2. Choose one of the events to add a special effect to in the On field.

FrontPage enables the Apply field of the DHTML Effects toolbar. This
field lets you decide on the kind of special effect to add. The most
common special effect is formatting.

3. Define the kind of special effect you want to add using the Apply field.

FrontPage enables the Effect field (the only one without a label in Fig-
ure 2-5). The effect setup you choose depends on the content of the
Apply field. When working with formatting as the special effect, you
can change the font, border, and shading settings.

4. Select the effect setting you want to change from the Effect field.

FrontPage makes the change immediately for simple effects. It displays a
dialog box you use to make changes for complex effects. For example,
when you choose the Choose Border option, FrontPage displays the
Borders and Shading dialog box so you can change the border and shad-
ing options.

5. Make any required changes to the effect settings.

FrontPage highlights the field in a special color to show it has a special
effect attached to it.

Some people get distracted by the highlighting that FrontPage uses to iden-
tify fields with DHTML effects attached. If you want to give them a break,
click Highlight Dynamic HTML Effects on the DHTML Effects toolbar to
remove the highlighting. This button toggles the highlighting on and off.

Figure 2-5:
Add special
effects to
the controls
on a form
for added
interest.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 518

Book VII
Chapter 2

Creating Your First
Scripted Page

Providing Outputs from a Function 519

To remove DHTML effects from a control, click Remove Effect on the DHTML
Effects toolbar. FrontPage removes all DHTML effects for the control, so you
should use it with care. Another alternative is to remove the individual webbot
and dynamicanimation entries required to implement the DHTML effect.

Providing Inputs to a Function
You can make functions more generic — and reduce the time you spend
coding them — by using inputs. Most developers use inputs in various ways
to reduce coding chores; if you use them appropriately, you have to look for
errors only once, rather than each time you create a new function.

Defining an input is a matter of adding a variable name to the function decla-
ration. You use the variable within the code to identify the caller or any
other information you want to pass along. Here’s an example of a function
with a single input.

function General_Click(ClickType)
{

// Display the button the user clicked.
alert(“You clicked the “ + ClickType + “ button.”);

}

You create the function as you normally do using the procedure in the
“Working with events” section of the chapter. All this function does is display
the pushbutton that the user clicked. Any pushbutton that calls this event
handler can count on the same handling — but the information differs by
button because you use the ClickType variable to hold the button name.

Providing Outputs from a Function
Event-handler functions normally don’t require outputs, but generic func-
tions do. You can place common code that you need for more than one task
in a function that is called by other functions. Generic functions further
decrease the amount of coding you perform, and reduce the number of
potential errors to find. Here’s an example of an event handler calling a
generic function:

function Output_Click(Source)
{

// Call the external function.
var TheOutput = TestIt(Source);

// Display the result.
alert(TheOutput);

}

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 519

Providing Outputs from a Function520

function TestIt(Source)
{

// Create a string from the input value.
var ReturnValue =

“You clicked the “ + Source + “ button.”;

// Return the new string.
return ReturnValue;

}

You create this setup as you would any other event handler. Adding the
generic function is a matter of writing the additional code. Notice that you
must declare input arguments as variables within the parentheses of the
function declaration — but there’s only one output argument, so it doesn’t
require such a declaration.

To return a value to the caller, use the return keyword and supply the value
you want to return. A return value can be anything from a string to an object.
As with input arguments, JavaScript doesn’t place a limit on what you can
use as an output argument, so long as it’s a legal JavaScript variable.

36_575317 bk07ch02.qxd 9/24/04 8:00 PM Page 520

Chapter 3: Working with Cookies

In This Chapter
� Using cookies effectively

� Creating cookies

� Getting information from a cookie

� Ensuring that the cookie expires

No, we’re not going to talk about the fresh-from-the-oven variety of
cookies in this chapter — cookies also come in browser form. A

cookie is a piece of information you leave on a user’s machine for later use.
It can contain any information that you normally place in a variable. In fact,
you’ll likely use a variable to hold the information until after you store it in
the cookie — then, when you retrieve the information from the cookie later,
you’ll place it in a variable.

Most developers use cookies to store user settings or information that
relates to a specific user. For example, if the user likes an orange back-
ground and green text when visiting your site, you can store those settings
using a cookie. Developers also use cookies for serious reasons. A cookie
could keep track of a user’s progress on the Web site while shopping. Many
shopping-cart applications rely on cookies.

Scripts make cookies easy to create, manage, and remove. In fact, you can
set cookies to expire so they remove themselves automatically. This lets you
use cookies without cluttering the user’s machine forever. In addition, you
can make sure the information in the cookie isn’t too old — if you change
the information storage requirements on your site, an old cookie could
cause problems.

Using Cookies to Help Users
Some people would have you believe that cookies are inherently evil
because they’ve seen them misused — for example, some companies track
their users’ movement on the Internet by checking cookie data. In fact, you
might know of someone who thinks that cookies are a form of virus — they
aren’t. Other people see cookies as a panacea for every possible data-storage
woe the user might have. Technically, cookies aren’t good or evil — they’re

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 521

Using Cookies to Help Users522

simply a method of storing data on the user’s machine — and whether you
use them depends on your storage needs. Keeping storage requirements in
mind helps you reduce cookie use to just the essentials — and also helps
you build a strong case with the user for allowing them.

Uses for cookies
Cookies are extremely useful. You can store any data you work with on the
Web page in a cookie. There aren’t any limitations on what you can store so
you can even save intermediate or hidden results of calculations. Depending
on the user’s operating system, browser, system settings, and other vari-
ables, however, you have a limit on the amount of data you can store. For
example, saving a copy of War and Peace is out of the question. Here are a
few types of data that Web sites store in cookies:

✦ User settings

✦ Browser settings

✦ Date of last visit

✦ Form entries

Understanding cookie issues
There’s no doubt that cookies make life easier for developers. Most Web
sites try to emphasize the benefits of cookies for users, but the real benefi-
ciary is the developer: Using cookies makes writing scripts a lot easier and
safer by providing permanent storage in a location that the developer can’t
otherwise access. This technique avoids issues of privacy and sidesteps
other security issues that many developers are unwilling to cope with. The
user can’t come back later and say that the developer “stole” information or
stored it in an unsafe location because the developer never actually has con-
trol over the physical file.

Cookies also benefit companies and service providers. The user’s machine
stores all the data. Consequently, the company or service provider that
owns the Web site doesn’t have to allocate additional resources for storing
the information.

However, the user does benefit to an extent from cookies — just how much
depends on how the developer uses the cookie:

✦ Storing Web-site settings in a cookie: Most users agree that this use
saves time because the user doesn’t have to reconfigure the Web site
with every visit.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 522

Book VII
Chapter 3

W
orking w

ith
Cookies

Using Cookies to Help Users 523

✦ Storing shopping-cart settings: Many users will also agree that this use,
while not directly helpful to the user, is at least a necessary evil to allow
the purchase of goods online.

✦ Placing a target for ads on the user’s machine: Possible, but don’t do it.
I don’t know of a single user who has any positive thoughts whatsoever
about adware that places cookies on their system. Many users go out of
their way to delete such cookies, and don’t much like whoever places
them.

This third type of cookie — the one created by adware — is the reason that
many users are so incredibly leery of enabling cookies on their machines.
The consensus is that these cookies are used by their developers for less-
than-honorable reasons. Every page the adware appears on is also a page
where the user is tracked. It doesn’t take long for the adware company to
discover users’ Web-surfing habits and make assumptions about those
users. These assumptions become target-marketing data that they in turn
sell to someone else — generally marketers of goods that the user doesn’t
want or need. Such a use of cookies is incredibly tacky (to say the least). If
you value your users’ goodwill, avoid doing it — or allowing anyone else to
do it via your Web site.

Adding a privacy statement
Many users are becoming quite savvy about cookies and their uses. They
want to know that you respect their privacy and that you have a privacy
policy in place to protect their interests. A privacy policy states how you use
the information gathered in cookies — and how you intend to protect the
user’s right to privacy.

Fortunately, adding a privacy policy to your Web page isn’t too hard; there
are a number of tools you can use to do it. In addition, the privacy policy is
standardized in such a way that users can set their browsers to scan the
policy and ensure that cookie use is protected.

The most common way to publish and use a privacy policy is by using a
standard known as Platform for Privacy Preferences (P3P). The World Wide
Web Consortium (W3C) sponsors this technique and you can read about the
six easy steps for implementing P3P on your Web site at

http://www.w3.org/P3P/details.html

The P3P standard (http://www.w3.org/TR/P3P/) also contains a wealth of
information you should review.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 523

Using Cookies to Help Users524

FrontPage doesn’t provide P3P or any other privacy support, so you need a
third-party tool to add a privacy policy to your Web site. The example in this
section uses the IBM P3P generator, available at

http://www.alphaworks.ibm.com/tech/p3peditor

The W3C site lists several other generators — I chose this particular genera-
tor because it comes with a 90-day free trial. Your code might turn out differ-
ent from mine if you use another generator for your code.

Your privacy statement will consist of several files, including at least one P3P
file that you create by using the P3P generator and an XML reference file. A
good generator will also help you create a generic privacy summary that you
can use as a concise answer to queries from the user, and a compact policy
statement you can use in the response headers of pages that contain cookies.
Where you store privacy information depends on whether you own the
server that hosts your Web page:

✦ If you own the server: You can place the privacy information in the
\w3c folder of your Web site. It’s also possible to create linkage between
the privacy information and your Web page by using a <link> tag, simi-
lar to the one shown here:

<link rel=”P3Pv1”
href=”http://www.mwt.net/~jmueller/p3p.xml”>

Adding the compact policy statement is relatively easy if you own the
server.

✦ If you don’t own the server: This is the situation for many people,
including small business owners. Internet Explorer 6 has several levels
of cookie protection built in. The highest level will likely reject your pri-
vacy information because Internet Explorer relies exclusively on the
compact policy statement supplied as part of the response headers. (A
response header is text that appears at the beginning of a response to a
request that tells the requestor about the Web page, such as whether
the requestor was able to process the request properly and what data
types the sender supports.) Listing 3-1 shows one way you can add a
compact policy statement if you don’t own the server, plus some test
code you can use to verify the results.

Listing 3-1: Adding a Compact Policy to a Web Page

<html>
<head>
<meta http-equiv=’P3P’

content=’policyref=” p3p.xml”,
CP=”NOI DSP COR NID CURa OUR NOR NAV INT TST”’>

<title>Privacy Demonstration</title>

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 524

Book VII
Chapter 3

W
orking w

ith
Cookies

Using Cookies to Help Users 525

<script>
function SetCookie()
{

var UserCookie; // Stores the user name.

// Create the username cookie.
UserCookie = “UserName=” + escape(InputVal.value);

// Add the cookie to the document.
document.cookie = UserCookie;

// Tell the user the cookie was saved.
alert(“The cookies were saved.”);

}

function ReadCookie()
{

var ACookie; // Holds the document cookie.
var Parsed; // Holds the split cookies.
var Name; // The user name.

// Get the cookie.
ACookie = unescape(document.cookie);

// Split the cookie elements.
Parsed = ACookie.split(“=”);

// Get the user name.
Name = Parsed[1];

// Display the name.
alert(“Your name is: “ + Name);

}
... Additional Web Page Code ...

The <meta> tag at the beginning of the code is the essential addition to your
application. The http-equiv attribute tells the server what kind of response
header to add. Some servers don’t honor this attribute, so this solution might
not work completely in all cases. The content attribute tells the client where
to locate the privacy policy for your Web site. Finally, the CP attribute defines
the compact policy for your server. Most tools, such as the IBM P3P Policy
Editor shown in Figure 3-1, tell you what these codes mean and generate a
text file containing them for you.

The test code consists of two functions attached to buttons on the example
form. The first creates a cookie and attaches it to the document. The second
retrieves the cookie stored in the document and displays the results on-
screen. (For more about how these functions work, see the “Creating a
Cookie” and “Reading a Cookie” sections of the chapter.)

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 525

Using Cookies to Help Users526

This is just enough code to create an error with Internet Explorer 6 if the
compact policy statement isn’t accepted. The reasons a user rejects a com-
pact policy are many. For example, the user can reject a compact policy that
includes features such as storing user information. All of the rejection crite-
ria is based on the user’s privacy setting. It’s a potential problem: If you want
users to use the high privacy setting, you must have a compact policy in
place and Internet Explorer 6 must accept it. To check your current privacy
setting, choose the Tools➪Internet options command. Select the Privacy tab.
You see the Internet Options dialog box shown in Figure 3-2. Notice the
explanation of each privacy setting next to the slider.

Even if Internet Explorer 6 decides it won’t accept the compact policy, having
a privacy policy in place and set up — using the information provided in this
section — lets the user rely on the medium-high privacy setting. Although,
the medium-high setting isn’t quite as comfortable (strict, secure, whatever
comfort word you would use) as the high setting, it’s much better than the
low setting your Web site would require if it didn’t have a privacy policy.

The most important consideration for this section is what the privacy policy
actually does for the user. The Privacy Report can help you get a line on that:

1. Select View➪Privacy Report in Internet Explorer.

You see the Privacy Report dialog box.

Figure 3-1:
Generate a
compact
policy for
Web pages
that have
cookies.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 526

Book VII
Chapter 3

W
orking w

ith
Cookies

Using Cookies to Help Users 527

2. Highlight your Web site URL and click Summary.

You see a Privacy Policy dialog box similar to the one shown in Figure 3-3.
This policy contains links where the user can ask additional questions,
learn more about your privacy policy, and request a solution for disputes.

The idea is to make using cookies as easy and palatable for the user as possi-
ble and to protect the user’s rights.

Figure 3-3:
Creating a
privacy
policy lets
the user
know more
about you.

Figure 3-2:
Increasing
the privacy
setting
rejects
cookies
from
dubious
sources.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 527

Creating a Cookie528

Creating a Cookie
Cookies come in a number of varieties. The type you choose depends on
your application needs. As a rule, you want to create a temporary cookie
whenever possible. A temporary cookie is removed from the user’s system
when they end their current session, so that none of the data remains on the
system. When working with user settings or other data that must survive
between sessions, use a permanent cookie. A permanent cookie actually
appears within a file on the user’s system, generally in a central location and
it requires expiration data. The “Enforcing Cookie Expiration” section dis-
cusses permanent cookies in more detail; Listing 3-2 shows how to create a
temporary cookie.

Listing 3-2: Creating a Temporary Cookie

function SaveCookie()
{

// Determine whether the user has cookies enabled.
if (clientInformation.cookieEnabled)
{

// Normally you don’t display a message, but it’s
// good for testing.
alert(“Saving Cookie”);

// Save the user’s name.
document.cookie =

“UserName=” + escape(txtUserName.value) + “;”;

// Save the user’s background color preference.
document.cookie =

“bgColor=” + escape(document.bgColor);
}

}

A cookie consists (so to speak) of two crumbs: a name and a value. Although
both of these are values in the technical sense — each is usually a string of
characters — they have different functions:

✦ Name: This is the identifier you use for the cookie. Listing 3-2 shows two
cookie names: UserName and bgColor. Always choose a name that iden-
tifies the purpose of the cookie so you can retrieve and understand its
purpose later.

✦ Value: Strictly speaking, this is the information you want to save. You
can retrieve any variable or object property you want to save as a value.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 528

Book VII
Chapter 3

W
orking w

ith
Cookies

Reading a Cookie 529

Unlike many properties, the document.cookie property is a collection.
Every time you supply a new name-and-value pair, JavaScript creates a new
entry for it in the collection. Consequently, when the code assigns the
UserName value and then the bgColor value to the document.cookie prop-
erty, JavaScript actually creates two entries — one for each value.

Reading a Cookie
After you save a cookie, the values it contains are available for use in other
functions of your Web page. It doesn’t matter what kind of cookie you create,
the reading process is the same. The type of cookie only affects how long
you can read the values. Listing 3-3 shows typical code for reading a cookie.

Listing 3-3: Reading a Cookie

function GetCookie()
{

if (clientInformation.cookieEnabled)
{

// When there aren’t any cookie values, ask
// for new entries.
if (document.cookie.length == 0)
{

// Get the user name.
txtUserName.value =

prompt(“Please type your user name”);

// Get a background color.
document.bgColor =

prompt(“Type a background color name”);
}
else
{

// Get the cookie values.
var aCookies = document.cookie.split(“; “);

// Process each of the cookie values.
for (Counter = 0;

Counter < aCookies.length;
Counter++)

{
// Divide the cookie into a name and value
// pair.
var aCrumb = aCookies[Counter].split(“=”);

// Determine the cookie type.
(continued)

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 529

Reading a Cookie530

Listing 3-3 (continued)

switch (aCrumb[0])
{

case “UserName”:
txtUserName.value = unescape(aCrumb[1]);
break;

case “bgColor”:
document.bgColor = unescape(aCrumb[1]);
break;

}
}

}

// Display a personalized greeting.
txtGreeting.innerText = “Hello “ +

txtUserName.value + “, glad to see you!”;
}
else
{

// Provide a greeting for users who don’t have
// cookies enabled.
txtGreeting.innerText =

“Hello stranger, glad to see you!”;
}

}

This code considers three possible situations. First, the user has cookie sup-
port, but hasn’t visited the site before, so there aren’t any cookies to read.
Second, the user has visited the site before and there are cookies to read.
Third, the user’s browser doesn’t have cookie support.

The first if statement checks the clientInformation.cookieEnabled
property to determine whether the user has cookie support enabled. If not,
then the code executes the else clause of this if statement to display a
generic greeting. The code doesn’t change the background color because
there isn’t any way to determine the user’s preference.

This feature illustrates an important concept — always provide an alterna-
tive for the user who doesn’t want to use cookies, even if that alternative is
inconvenient for you. Most Web sites either work with cookies or they don’t
work at all — a poor way to treat the user. Sometimes you can’t provide the
requested functionality with cookies, but there’s usually an alternative, even
when using shopping carts. Simply display a message asking the user to call
your customer support line to make the order over the telephone. Using this
technique can mean you don’t lose a sale.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 530

Book VII
Chapter 3

W
orking w

ith
Cookies

Enforcing Cookie Expiration 531

The next step is to determine whether the user has any cookies for your site.
When the document.cookie.length property is 0, then there aren’t any
cookies to process and you can assume this is a first-time user. The code
prompts for values to store in the cookies, but you can obtain the cookie
data using any other technique you want. Notice that the code doesn’t store
the data in variables, it uses form entries to store the information. This is a
common practice because the form entries are global to the entire Web page.

The else clause executes when the user has cookie support enabled and
there are cookies to process. The code uses the special split() method
to divide the cookie entries. The split() method creates an array that
JavaScript stores in aCookies. The array contains one entry for each cookie.

Now that the cookies are split, the code uses the aCookies.length property
to determine how many cookies there are and processes each cookie in turn
using a for loop. To process a cookie, you must break it into crumbs (a crumb
is a name-and-value pair). The code uses the split() method again to per-
form this task, placing the resulting name-and-value pair in the aCrumb array.

The name crumb always appears in array element 0, so the code can use a
switch statement to process it. A switch is an extended version of the if
statement. Every case entry acts as an if statement; thus the code asks
whether the name is equal to UserName first and bgColor second. If the
name doesn’t match either value, nothing happens.

When the name does match one of the target values, JavaScript follows the
code between the case entry and the break entry. For example, when work-
ing with the UserName crumb, the code places the value — which always
appears in aCrumb element 1 — into the txtUserName.value property.

You might have noticed the use of the escape() and unescape() functions
in the example. Always escape the values you save to a cookie — that is, use
the escape() function to ensure that any control characters are converted
into a form that the text file can accept. Likewise, unescape the values when
you retrieve them from the cookies, using the unescape() function to
ensure that control-character data is restored.

Enforcing Cookie Expiration
Temporary cookies work fine for many tasks, in particular those required for
shopping-cart applications. However, user settings and other permanent
data require the use of a permanent cookie. If the data doesn’t last between
sessions, there’s little use in saving it. Remember, however, that users don’t

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 531

Enforcing Cookie Expiration532

want the data to stay on their machines forever. After all, some users might
not visit your site again. To ensure that the data is permanent and yet doesn’t
remain forever, you create an expiration date. Listing 3-4 shows how to create
a cookie with an expiration date.

Listing 3-4: Saving a Permanent Cookie

function btnSave_Click()
{

var UserCookie; // Stores the user name.
var TheDate = new Date(); // Date object.
var Expire; // Expiration date.

// Build an expiration date. Begin by getting the day.
// of the week.
switch (TheDate.getUTCDay() + 2)
{
case 1:

Expire = “Sun, “;
break;

... Other Days of the Week ...
case 7:

Expire = “Sat, “;
break;

}

// Add the date.
Expire = Expire + (TheDate.getUTCDate() + 1);

// Add the month.
switch (TheDate.getUTCMonth() + 1)
{
case 1:

Expire = Expire + “ Jan “;
break;

... Other Months ...
case 12:

Expire = Expire + “ Dec “;
break;

}

// Add the year.
Expire = Expire + TheDate.getUTCFullYear() + “ “;

// Add the time.
Expire = Expire + TheDate.getUTCHours() + “:” +

TheDate.getUTCMinutes() + “:” +
TheDate.getUTCSeconds() + “ UTC”;

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 532

Book VII
Chapter 3

W
orking w

ith
Cookies

Enforcing Cookie Expiration 533

// Create the username cookie.
UserCookie = “UserName=” +

escape(prompt(“Type your name”)) +
“; expires=” + Expire + “;”;

// Add the cookie to the document.
document.cookie = UserCookie;

// Tell the user the cookie was saved.
alert(“The cookies were saved and will expire on: “ +

Expire + “.”);
}

The actual cookie-creation process is the same as what happens in
Listing 3-2 — defining the date just takes a little more work. You must
create a Universal Time Code (UTC) date for your cookie. The date must
appear in a very specific format. The code in Listing 3-4 shows how to
create such a date, which looks like this in its final form:

Sat, 5 Jun 2004 18:44:53 UTC

To begin the process, the code creates a Date object, TheDate. This object
provides access to a number of date and time functions, including the UTC
functions shown in the code. For example, the getUTCDay() function retrieves
the day of the week as a number between 0 and 6. Because the date must con-
tain the day as a name, the code uses a switch to convert it to text form.

One of the problems with working with time functions is that you can’t
retrieve the time directly; you must use the method shown. The getTime()
method returns the number of milliseconds since midnight on January 1,
1970, a really huge number that isn’t particularly helpful in this case.

Notice that adding an expiration is simply adding another cookie to the doc-
ument. The expiration date relies on the keyword expires, which you can’t
use for any other purpose. When JavaScript sees this keyword, it reads the
date supplied and acts according to specific rules. When the date is in the
past, JavaScript erases the cookies immediately. On the other hand, when
the date is in the future, JavaScript creates a file on disk that holds the infor-
mation. The precise location varies, but when you use Windows 2000 or
Windows XP, the cookie appears in the \Documents and Settings\<Your
Login Name>\Cookies folder. The cookie has your name and the folder in
which the associated Web page appears, along with a TXT extension. You
can easily open the file and see what it contains by using Notepad.

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 533

Book VII: Scripting534

37_575317 bk07ch03.qxd 9/24/04 8:08 PM Page 534

Chapter 4: Performing Common
Scripted Tasks

In This Chapter
� Programming around a user’s browser type

� Sending users to another page

� Getting user feedback

� Removing errors from your script

This chapter discusses some of the common tasks you can perform with
scripts, but it isn’t intended to limit you in any way. You’ll see how to

discover the user’s browser type, send users to another page, provide the
user with feedback, and debug your script. While there are limits to what
you can do with a script, most developers find that scripts let them perform
a vast array of tasks — more than any one book can contain. No, you don’t
want to write a word processor using a script language, even though such a
feat is theoretically possible, but you can provide a better user interface by
detecting the user’s browser type and accommodating that browser as
needed.

Along with providing you with some code to perform common tasks, this
chapter also points out the need to build a library of common code (every-
thing from snippets to complete functions). By creating your functions care-
fully, you can reduce the need to write them again later. The use of input and
output arguments tends to isolate the code, which makes it easier to move
blocks of code from place to place by using cut-and-paste. The overall goal
is to create one source of common code that is ready to use and free of
error. Such a library saves an incredible amount of time by reducing devel-
opment tasks and lets you concentrate on design tasks.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 535

Determining the User’s Browser Type536

Determining the User’s Browser Type
Determining the user’s browser type can be one of the more important tasks
you perform using a script. Most browsers support most standard HTML
tags so long as you avoid any odd attributes. In fact, if you’re willing to
create a completely plain page without any aesthetically pleasing features
whatsoever, every browser will work with it just fine — at least most of the

Using Server-Side Includes
You can use a code library in one of two ways.
First, you can copy and paste the information
you need into your pages. Of course, this
means that every time you want to enhance a
function you have to open each page that uses
it and make the change. Second, you can rely
on a Server-Side Include (SSI) to create a con-
nection between the current page and a file
that contains all your functions. Using this tech-
nique means you only make one change to
enhance the usability of your functions — but
your server must provide the required support.

To test the SSI method on your server, create
a standard HTML file with an SHTM or SHTML
extension based on your server. For example,
when working with Internet Information Server
(IIS), use the SHTM extension because the
HTML files on that server normally rely on the
HTM extension. The “S” in the extension tells
the server that there’s a special instruction in
the file it needs to address. The server doesn’t
process the whole file as it would for Active
Server Pages (ASP) or other server-side
scripts — it just processes the special SSI
commands you provide.

After you create the SHTM file, try creating an
SSI command in it. For example, here’s an SSI
command to display the current date:

<html>
<head>

<title>SSI Example</title>
</head>
<body>

<h1>Using Server-side
Includes</h1>
<p>

Current Date:
<!--#config timefmt=”%A,

%d %B %Y” -->
<!--#echo

var=”DATE_LOCAL” -->
</p>

</body>
</html>

This simple script displays the local date on-
screen. If you see the date when you test this
page, your server supports SSI and you can use
a very simple technique for including your
library of JavaScript functions on any Web page.
Simply add the include command anywhere
in the document (sooner is better) like this:

<!--#include file=”MyLib.js”
-->

This code places the MyLib.js file within the
current Web page. You can use all the functions
contained within MyLib.js even though they
don’t appear within the Web page. You can find
an example of this technique in the UseSSI.
shtm file located in the source code for this
chapter on this book’s companion Web site.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 536

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Determining the User’s Browser Type 537

time. The compatibility issues for someone who runs a public Web site can
be daunting (to say the least) because most developers, companies, and
even users aren’t satisfied with a plain Web page.

Handling browser compatibility issues
The compatibility issues are many. The fact that no one Web resource dis-
cusses them all makes matters more difficult. Given the many versions of
browsers that people use, the problem only gets worse. In fact, look at the
Webmonkey chart at

http://hotwired.lycos.com/webmonkey/reference/browser_chart/index.html

to see just how bad things can get — and this chart is only an overview. It
also provides links to charts that show the capabilities of Macintosh, Linux,
and other browsers. When you start considering specific tags and attributes,
the problems become far more significant.

Some Web sites work around the problems of browser compatibility by
blocking browsers they don’t support and suggesting that the viewer down-
load the correct browser. A less severe solution is to include messages that
tell the user the page is “best displayed” using a particular browser and pro-
viding a link for downloading that browser. Most users have a negative opin-
ion of these approaches, no matter how well intended, unless you happen to
support the browsers they already use (in which case, they won’t care).

Instead of avoiding compatibility issues, many Web sites simply ignore them.
The Web-page developer uses whatever tool feels comfortable for testing
and ignores other potential solutions. When the page works, great; when it
doesn’t, too bad for the user. Such pages tend to ignore user requests for
help.

A few Web pages admirably try to service every potential browser, with mixed
results. The code required for such a Web site becomes very complex — the
more site features, the harder it is to test. At some point, the pages become a
marathon download with dubious results.

The Web sites that seem to get the best results are either private or have a
very targeted message. A private Web site is normally controlled by a com-
pany that can also tell users to choose from a specific list of browsers, which
keeps compatibility issues under control. Targeted message Web sites don’t
have to control the browser used because the user population is likely to rely
on a specific browser. For example, on a public Web site on .NET, programming
issues can nearly guarantee that the user has a newer version of Internet
Explorer installed — and is likely to have many of its features enabled for use
with the programming environment.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 537

Determining the User’s Browser Type538

The best way to avoid problems when working with a public Web site that
has a general message is to avoid gizmos such as scripts that display graphic
features depending on the user’s cursor position (many buttons use scripts in
this way). Here are some other guidelines to follow:

✦ Use accessibility-friendly development techniques.

✦ Rely on Cascading Style Sheets (CSS) to ensure that if a user’s browser
doesn’t understand CSS, it can still display the information. Make sure
the CSS file is separate from the Web page so the user can substitute
another CSS file as needed.

✦ Use JavaScript as the scripting language whenever possible. Always pro-
vide a scripting alternative for browsers that don’t have scripting enabled
or don’t support it.

Using these techniques can reasonably ensure that your Web page will sup-
port a range of browsers — Internet Explorer 3.0 and later, Netscape 4.5 and
later, Opera 3.6 and later, all versions of Mozilla, and all versions of Firebird.

Make sure you also set the compatibility options on the Authoring tab of the
Page Options dialog box in FrontPage so you can avoid special features that
work in one version of a browser and not another.

Performing the required detection
Even if you’re excessively careful in creating your Web page, users still send
reports of compatibility problems. Unfortunately, in most cases, a quick fix
for compatibility problems isn’t an option after you’ve spent months putting
a complex Web site together. Therefore you need to detect the browser ver-
sion affected by the problem, and overcome it for that version of that
browser. In addition, you have to include code to tell users with excessively
old browsers to upgrade.

Handling browsers lacking scripting support
Sometimes the user has scripting disabled, which prevents you from detect-
ing the browser type. In such a situation, the page could work just fine —
even without scripting support enabled — unless you use scripting in ways
other than detecting the browser. It’s still important to give the user who
lacks scripting support a way to voice concerns about the compatibility of
your Web site. As a minimum, you should provide a <noscript> tag entry
similar to the one shown here:

<noscript>
<p>Your browser doesn’t support scripting, so I can’t
detect the browser type to ensure my site will work
properly. Please contact me with any problems at my <a

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 538

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Determining the User’s Browser Type 539

href=”mailto:JMueller@mwt.net?subject=Browser Problems”>
email address. Make sure you include your browser name
and version.</p>

</noscript>

Detecting the correct version
One of the problems with browser version reporting is that the browser
won’t provide an actual version number in many cases. For example,
Internet Explorer 6 will tell you that it’s actually version 4 unless you know
how to parse the version information for the correct number. To see the
problem for yourself, try this script code:

alert(clientInformation.appName + “\r\n” +
clientInformation.appVersion + “\r\n” +
parseInt(clientInformation.appVersion));

When you try this code with a product such as Internet Explorer 6, you won’t
see what you expected. (Figure 4-1 shows the output of this script.) The
reason for this “error” is that many Web developers use faulty code for check-
ing version information; they look for a specific version, instead of that ver-
sion and newer. Consequently, vendors began to report the version number
that they think the developers expect, rather than the actual version number.
Internet Explorer 6 is mostly Internet Explorer-4-compatible, so checking for
Internet Explorer 4 is fine in most cases. Of course, when you multiply these
oddities by the number of available browser types, the difficulty of verifying
the user’s browser version becomes obvious — which tells you why some
developers simply ignore the problem.

Using version detection functions
When you want to check for browser versions, you can reduce the complex-
ity of the code you create by incorporating some of the logic into functions.
For example, the three functions shown in Listing 4-1 make the resulting
check code easier to read.

Figure 4-1:
The client’s
version
number isn’t
always the
actual
version
number.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 539

Determining the User’s Browser Type540

Listing 4-1: Simple Functions for Detecting Browsers

function isBrowser(Name)
{

// Check for the browser name.
if (clientInformation.appName.indexOf(Name) != -1)

return true;
else

return false;
}

function isVersion(Version)
{

// Get the version number.
var ClientVersion =

parseInt(clientInformation.appVersion);

// Perform the comparison.
if (Version <= ClientVersion)

return true;
else

return false;
}

function isIE6()
{

// Check for the version information in the
// appVersion property.
if (clientInformation.appVersion.indexOf(“MSIE 6.0”)

!= -1)
return true;

else
return false;

}

The first function checks for the existence of a browser name within the
appName property. The code uses a technique where it looks for the browser
name you supply anywhere within the appName property with the indexOf()
method. This method returns the position where a search string appears
within the target string. Vendors change the location of the browser name
between browser versions, so this is the only way to be sure that you’ve
located the correct information.

Note that there are actually two property collections you can use to retrieve
this information. The code shows the clientInformation property collec-
tion, but you can also rely on the netscape property collection. Most
browsers support both, but the lack of consistency in this area can cause
problems.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 540

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Determining the User’s Browser Type 541

The second function, isVersion(), returns true when the version number
you supply is less than or equal to that of the actual client version. The prob-
lem is that you can’t check for Internet Explorer 6 directly if you’re using this
technique; the version number that Microsoft provides is 4. However, this
check tells you that the browser is at least above a certain level.

The third function shows how to work around the Internet Explorer 6 ver-
sion problem. By checking for the code string within the appVersion prop-
erty, you can detect this specific version. Because various versions of
Internet Explorer add new features (such as XML support in Version 5) and
lack other features (such as Java support in Version 6), you often need a
specific version number to work with this product. Although this function
specifically checks for Internet Explorer 6, you can modify it to check for
Internet Explorer 5.5 by using MSIE 5.5 — and Internet Explorer 5.0 by
checking for MSIE 5.0.

Version bugs and errors
You might think that after you have obtained a product name and version
number, your version-detection problems are over. Not quite: Sometimes
application bugs can interfere with detection. For example, according to the
JavaScript Testing site (at http://segal.org/macjavabugs/enabled/),
some versions of the Macintosh report that it lacks Java support even
when such support is installed. Supposedly the clientInformation.
javaEnabled() method always reports the Java status, but in this case, it
doesn’t.

Another problem with Java detection is in Internet Explorer 6. The
clientInformation.javaEnabled() method always returns true when
the user enables Java-applet scripting in the Security Settings dialog box
for the current zone. You get a return value of true even when Java isn’t
installed on the target machine (and there’s no hope of running an applet).
Consequently, the best you can do is display a message telling the user that
applets might not run, using code like this:

// Check for Internet Explorer.
if (isBrowser(“Explorer”))
{

// Display the browser type.
document.write(“<p>You’re using Internet Explorer</p>”);

// Check for the correct version number.
if (!isVersion(3))

document.write(
“<p>Your browser is too old, please” +
“ upgrade!</p>”);

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 541

Redirecting Users Based on Need542

// Microsoft shipped IE6 without Java support.
else if (isIE6())

if (clientInformation.javaEnabled())
document.write(

“<p>Your browser might not support Java “ +
“applets.</p>”);

else
document.write(

“<p>Your browser doesn’t support Java.</p>”);
}

Some prerelease versions of Mozilla are still floating around. These versions
read as Netscape because the clientInformation.appName property
returns that value. The appVersion property returns a value of 5.0, which
means it could easily pass the version -4.5 check required for most compati-
bility checks. The only way to detect Mozilla, in this case, is to check for the
string Navigator in the Netscape check using code like this:

// Check for Navigator.
else if (isBrowser(“Navigator”))
{

// Display the browser type.
document.write(“<p>You’re using Navigator</p>”);

// Check for the correct version number.
if (!isVersion(4.5))

document.write(
“<p>Your browser is too old, please “ +
“upgrade!</p>”);

if (clientInformation.userAgent.indexOf(“Navigator”)
== -1)
document.write(

“<p>You’re using an older version of Mozilla, “ +
“ time to upgrade.</p>”);

}

In this case, the code uses the indexOf() method to check for the Navigator
string in the userAgent property. Lack of this string tells you that your user’s
browser is Mozilla, not Navigator.

Redirecting Users Based on Need
Redirection is the process of sending a user to another page — whether to a
different location on your Web site or to an entirely different Web site. One
common use for redirection is to send a user to a new Web site when you
change domains; another is to compensate for moved pages.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 542

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Redirecting Users Based on Need 543

Some developers also use redirection for statistical checks. For example, you
might want to support someone else’s site, but also know how many users
linked to that site from your site. A redirection lets you capture this informa-
tion before sending the user on to the new Web site.

You have access to three techniques for redirecting the user. Two of these
techniques are automatic and one isn’t. Here are the options:

✦ Scripting: This is the preferred automatic method when you know the
user will have scripting support enabled; it offers the greatest flexibility.

✦ Meta refresh tag: This is the preferred automatic method when you
don’t know whether the user has scripting support enabled. The only
problem with this approach is that it’s hard to detect whether the user
has turned off support for the meta refresh tag.

✦ Standard link: You can incorporate the manual method of including a
link the user clicks to get to the redirected page. Although it’s not nearly
as nice, this method always works.

It’s actually possible to include all three redirection techniques, just in case
one of them fails, in a single page. Listing 4-2 shows an example of how to
accomplish this task.

Listing 4-2: Redirecting the User

<html>
<head>

<title>Redirection Example</title>
<META HTTP-EQUIV=Refresh

CONTENT=”10; URL=http://www.mwt.net/~jmueller/”>
</head>
<body>

<noscript>
<p>

Click this link to redirect to

John’s Web Site
.

</p>
</noscript>
<script language=”javascript”>

window.document.location =
“http://www.mwt.net/~jmueller”;

</script>
</body>
</html>

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 543

Providing Form Feedback544

This page can perform the redirection task in any of three ways:

✦ The browser checks for scripting capability. When the browser has
scripting capability, JavaScript sends the user to a new page by changing
the window.document.location property. (Of course, you need to per-
form any statistical updates before you change this property.) The script
change happens automatically; on a fast Web site, the user might not
even see the intermediate page.

✦ When the browser determines there isn’t any scripting support, it dis-
plays the manual link in the <noscript> tag. The user can choose to
click this link and go to the redirected site at any time.

✦ The meta refresh tag starts a 10-second timer when the browser loads
the page. You adjust the time interval by modifying the number directly
after the CONTENT attribute. The URL portion of the CONTENT attribute
defines where the user is redirected when the time interval expires.

Providing Form Feedback
You have many options for creating feedback forms using FrontPage. The
simplest feedback form doesn’t require any code at all. Methods of process-
ing forms without using code can range from using server-side scripts to
sending the data in raw form to an e-mail address. It’s a technique everyone
can use, but it lacks automation — and the user can submit incorrect data
even with a well-designed form. Because of this, you should consider the no-
scripting option for maximum compatibility whenever possible.

Understanding how FrontPage uses scripting
FrontPage also creates forms with a lot of built-in JavaScript. You don’t
create the code, FrontPage creates it for you. Such forms have a variety of
processing options, everything from using a simple file or e-mail for storage
to full-blown database solutions. To use this technique, you create a form
and configure it using the Form Properties dialog box shown in Figure 4-2.

After you create a form and tell FrontPage to create code that handles the
storage details, you add one or more controls to the form. The Properties
dialog box for the control includes a Validation button that you click to dis-
play the a validation dialog box, similar to the Text Box Validation box
shown in Figure 4-3.

All these configuration entries add JavaScript to your Web page that you
won’t even see unless you open the page and use the View Source command
to display it. It’s educational to create a form that has a single field on it so

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 544

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Providing Form Feedback 545

you can control the amount of information you see. Try various configura-
tion settings to see what code FrontPage adds for you. In every case, you
add new JavaScript to the page by using simple configuration settings.
Figure 4-4 shows what you see when you view the Feedback.htm file sup-
plied in the source code for this chapter on this book’s companion Web site.

The purpose of this exercise is to discover more about what FrontPage is
doing behind the scenes on your behalf. In some cases, you might find that
you can perform a check faster or easier using a manual check. When browser
compatibility is an issue, you can write variations of the FrontPage provided
code to ensure your Web page supports as many browsers as possible.

Figure 4-3:
Here you
define
validation
criteria for
each control
to keep your
Web site
safe.

Figure 4-2:
Choose a
data storage
technique
that suits
your needs.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 545

Providing Form Feedback546

Defining manual code
You can add scripts to forms for various reasons, but one of the most impor-
tant ones is validation. Look again at the validation criteria you can choose
in Figure 4-3 and you’ll notice it’s all very generic — there’s no way to create
specific or complex validation criteria. For example, it’s impossible to block
certain nonexistent ZIP codes from the list of entries a user can make. For
example, if you want to create a complex validation, you can’t tell FrontPage
that when the state field is California, the area code field must begin with
a number such as 619. It might be important to conduct such a check to
ensure that the information you receive from the user is accurate — but it’s
not an option in this case.

The natural place to create a connection between your script and the form
is to use the onsubmit event. Unfortunately, FrontPage automatically over-
writes the event entry when it creates code based on your configuration set-
tings. Any event handler you attach to the onsubmit event is going to fail
because it won’t get called. FrontPage has broken the required connection
between the Submit button and the event handler.

Figure 4-4:
Evaluate
the code
FrontPage
creates
for you.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 546

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Providing Form Feedback 547

The best method around this problem is to attach the event handler to
another event. For example, to submit the form, the user has to click Submit.
You can attach the necessary form-handling code to the Submit button like
this:

onclick=”return CheckSpecialKeyword()”

The addition of return to the calling syntax means the browser processes
the return value. When this value is false, processing ends and the
onsubmit event never occurs. Listing 4-3 shows how to construct a simple
function for comparing two fields as a unit.

Listing 4-3: Adding Special Form Checking

function CheckSpecialKeyword()
{

// Verify the name.
if (FrontPage_Form1.txtName.value == “George”)

// When the name is correct, verify the keyword.
if (FrontPage_Form1.txtKeyword.value == “Special”)
{

// Display a success message for a correct
// combination and return true so processing
// continues.
alert(“The input is correct.”);
return true;

}
else
{

// Return an error message and stop processing.
alert(“You provided an incorrect keyword”);
return false;

}
else
{

// Return an error message and stop processing.
alert(“The name “ +

FrontPage_Form1.txtName.value +
“ isn’t recognized”);

return false;
}

}

Every possible return path must return a Boolean value, as shown in the
example code. Only when the two fields match specific values will the func-
tion return true, so you have control over the content of one field that’s
based on the content of another.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 547

Debugging Your Script548

Debugging Your Script
Debugging is the process of removing errors from your code. A script, like
any other code, can contain errors. The two major types of script errors you
need to consider are those in the syntax and those in the logic.

Fixing syntax errors
A syntax error occurs when you write code incorrectly. For example, you might
forget to include a closing parenthesis or brace. Because scripts are inter-
preted by a local application when you load the Web page and perform tasks
with it, you can see syntax errors as they occur. The browser tells you about
the error — and where it appears on your Web page — so you can find it easily
and fix it. The information commonly includes the precise error and its loca-
tion, as shown in Figure 4-5. Notice that the Error dialog box tells you what is
missing and which line to look on. All you need to do is open FrontPage, go to
that line, and locate the missing information. In a few cases, you’ll need to look
at the lines above and below the error; a single command can extend over sev-
eral lines.

To ensure that you see syntax errors, you must set the browser to display
them. For example, when you’re working with Internet Explorer, open the
Internet Options dialog box (Tools➪Internet Options) and select the
Advanced tab. Then you simply clear the Disable Script Debugging option,
put a check next to Display a Notification About Every Script Error, and
restart Internet Explorer after making these changes.

Sometimes a syntax error won’t show up right away or it might not be obvi-
ous. For example, while working on the code for Listing 4-3, I originally used
MyForm.txtName.value as the method of obtaining the Name field value.
However, I kept getting a MyForm Is Undefined error message from the

Figure 4-5:
The
browser
usually
provides
specific
information
about
syntax
errors.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 548

Book VII
Chapter 4

Perform
ing Com

m
on

Scripted Tasks
Debugging Your Script 549

browser. It wasn’t until I looked at the actual browser code on the Web
site (using Notepad) that I noticed FrontPage had renamed the form to
FrontPage_Form1. In this case, my original code was correct from within
FrontPage, but was incorrect in reality because FrontPage makes changes
when it automatically generates script code. The code in Listing 4-3 is cor-
rect because it matches the results FrontPage produces.

Fixing logic errors
A logic error occurs when you write the code with correct syntax, but it
doesn’t produce the correct results. For example, you might write an if
statement correctly, but fail to provide the correct expression — which gives
you the wrong results when the user writes the code. Logic errors require a
little more work to fix. To correct a logic error, normally you’d use a debug-
ger (a special program that lets you look at how the code is interpreted by
the machine). Unfortunately, FrontPage doesn’t come with a debugger, so
you have to use the Microsoft Script Editor or another product designed to
debug scripts (such as Visual Studio).

When you suspect that you have a logic error, load the Web page in a browser.
Perform any setup that reproduces the error. At this point, you have two
options: Start the debugger immediately or start it when the browser reaches
the first line of executable code. Here’s how:

✦ To start the debugger immediately, select the View➪Script Debugger➪
Open command.

When your browser lacks this command, it means that an error has
occurred and you need to restart it, the system can’t run scripts, or you
don’t have a script debugger installed on your system.

✦ To start the debugger after it reaches the next line of code, select the
View➪Script Debugger➪Break at Next Statement command.

With either approach (if you’re working with Microsoft Script Editor),
you see a debugger display similar to the one shown in Figure 4-6.

The second of these options is generally better unless an error prevents the
browser from seeing the code you want to debug.

In Figure 4-6, the display shows the current line of code. You can use com-
mands to display the contents of variables, move one line of code at a time to
see results, and perform other coding checks to locate the error. Sometimes
just seeing your code execute is enough to find logic errors. Once you get into
the Microsoft Script Editor, debugging JavaScript is very much like working
with any other code. (There’s more about debugging with Microsoft Script
Editor in Chapter 5 of Book 8.)

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 549

Debugging Your Script550

Figure 4-6:
Use
Microsoft
Script Editor
to locate
logic errors.

38_575317 bk07ch04.qxd 9/24/04 8:06 PM Page 550

Book VIII

VBA Programming

39_575317 pp08.qxd 9/24/04 9:04 PM Page 551

Contents at a Glance
Chapter 1: Getting to Know VBA ..553

Chapter 2: Your First VBA Program ..567

Chapter 3: Storing and Modifying Information..583

Chapter 4: Creating Structured Programs ..597

Chapter 5: Trapping Errors and Squashing Bugs ..613

Chapter 6: Working with Classes, Arrays, and Collections ..625

Chapter 7: Working with FrontPage Objects ..641

39_575317 pp08.qxd 9/24/04 9:04 PM Page 552

Chapter 1: Getting to Know VBA

In This Chapter
� Using the Visual Basic editor

� Working with Project Explorer

� Working with the Properties window

� Interacting with the Code window

� Issuing commands using the Immediate window

� Viewing objects using the Object Browser

FrontPage offers more than one programming arena. Developers can
create applications within Web pages using various techniques. In addi-

tion to Web page programming, you can also create applications that auto-
mate FrontPage itself. For example, you can write code that automates the
tasks you normally perform to create a new Web page. The code can even
make entries, such as the author meta tag, on the Web page for you so that
you can concentrate on other issues. The language used to perform FrontPage
automation is Visual Basic for Applications (VBA).

VBA is the standard macro language for all Office products. In fact, forms of
VBA appear in a number of third-party products such as Corel Draw! and
IMSI TurboCAD. However, don’t think you can write a macro in FrontPage
and simply move it to another product. Although the VBA language is con-
sistent from product to product, the objects you interact with differ. For
example, when you’re working with Excel, you concentrate on the use of
spreadsheet objects. FrontPage has special objects too, such as the
MetaTags object used to control the meta tags in a document.

You don’t actually create the VBA macros for FrontPage by using the
FrontPage editor. A special Visual Basic Editor helps you create macro
code for speeding up the development process. Consequently, you need
to know how to use this editor before you can begin creating your own
macros.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 553

Starting the Visual Basic Editor554

Starting the Visual Basic Editor
The first step in creating a VBA macro for FrontPage is starting the Visual
Basic Editor. You start the Visual Basic Editor by choosing Tools➪Macro➪
Visual Basic Editor. When you execute this command, you see the display
shown in Figure 1-1.

Some windows might not be open when you initially start the Visual Basic
Editor — you can open them using the options on the View menu.

ToolboxProject Window Standard Toolbar Code Window Form Window

Debug Toolbar

Properties Window Immediate Window Locals Window

Figure 1-1:
The Visual
Basic Editor
is an editor
for writing
VBA
applications.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 554

Book VIII
Chapter 1

Getting to
Know

VBA
Starting the Visual Basic Editor 555

Unlike many other Office products, FrontPage lacks a macro security control
(the ability to stop macros from running when you don’t know the source),
which means you can run any macros you create at any time. The security
control isn’t required from one perspective — you can’t tell any FrontPage
macro to run automatically like you can in Word, so there isn’t a threat of
someone inserting a hostile or inappropriate macro into a document and
causing damage to your system. However, macros you obtain from other
people can contain malevolent code, so you should always exercise care
when running macros in FrontPage.

Project Explorer appears in the Project window. You use it to interact with
the objects that make up a project. A project is an individual file used to
hold your program, or at least pieces of it. The project resides within the
FrontPage environment, so when you open FrontPage you also open your
project. Project Explorer works much like the left pane of Windows Explorer
does. Normally, you see just the top-level objects like the FrontPage objects
shown in Figure 1-2.

Project Explorer doesn’t display any documents, as it would if you were
working with other Office products such as Word or Excel. The reason for
this difference is that you can’t create FrontPage documents that include
macros. Aside from that difference, however, you use Project Explorer the
same way with any kind of application.

Figure 1-2 does show some of the special objects a project can contain —
forms, modules, and class modules. Each type of special object has a dis-
tinct purpose:

✦ Forms: These contain user interface elements and help you interact with
the user.

✦ Modules: These contain the nonvisual code for your application. For
example, you can use a module to store a special calculation.

Figure 1-2:
Use Project
Explorer to
work with
project
objects.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 555

Starting the Visual Basic Editor556

✦ Class modules: These contain new objects that you want to build. You
could use a class module to create a new data type.

To select an object so you can see and change its properties, highlight it in
Project Explorer. To open the object so you can modify it, double-click the
object.

Right-clicking everything
Project Explorer has a number of hidden talents, which you can find by right-
clicking objects to see what you can do with them. For example, right-click
the Microsoft_FrontPage entry at the top of Figure 1-2 to see the context
menu shown in Figure 1-3.

It’s amazing to see what’s hidden on this menu. Don’t worry about using all
the menu entries now. Each menu entry appears at least once (and probably
more often) in this book. The important thing to remember now is that most
objects have a context menu that you can access by right-clicking or by
using the Context Menu key (on a Windows keyboard, it’s just to the right of
the key with the Windows logo).

Working with special entries
Because you can obtain data used in FrontPage from other Office applica-
tions, you might need to work with Word or Excel when creating a macro.
Nothing prevents you from creating a FrontPage macro that interacts with
other applications that support VBA.

Sometimes, when you work with another product, you see a special entry in
Project Explorer. For example, when you work with a Word document, you
might see a References folder, which contains any references that the Word
document makes. Normally the folder lists the templates that the document
relies upon for formatting.

Figure 1-3:
Right-click
VBA objects
to display
contextual
menus.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 556

Book VIII
Chapter 1

Getting to
Know

VBA
Using the Properties Window 557

In many cases, you can’t modify the objects in the special folders. This is
the case with the References folder used by Word document objects. The
References folder is there for information only. To modify the referenced
template, you need to find its object in Project Explorer. In this book, I don’t
discuss special objects because you normally don’t need to work with them.

Using the Properties Window
When you look at an actual object such as an apple, you can see some of its
properties — say, whether it’s red, green, or yellow (or, for that matter, rotten).
Most objects that you click in the Visual Basic Editor have properties — sets of
specifications that describe the elements of the object. For VBA objects, prop-
erties control how they appear on-screen — for example, a button can have a
caption (the text that users see when they look at the button). The following
sections provide details about the Properties window (refer to Figure 1-1).

Understanding property types
A property must describe the object. When you look at an object, you natu-
rally assume something about the information provided by a particular prop-
erty. For example, when describing the color of an apple, you expect to use
red, yellow, or green. Likewise, VBA object properties have specific types;
here are some common examples:

✦ Text: This is one of the most common property types. The Caption
property of a form is one way text is used. The text appears at the top
of the form when the user opens it.

✦ Logical or Boolean values: This property type determines a logical con-
dition for the object, usually True or False. For example, if a control
has a Visible property and this property is set to True, the control
appears on-screen. Set this property to False, and the control won’t
appear on-screen, even though it still exists as part of the application.

✦ Numeric values: Properties that use these specify how or where an
object appears on-screen. For example, to describe where to place a
control on-screen, set the Top and Left properties to specific numeric
values. These values tell how many pixels are between the top and left
corner of the screen and the top-left corner of the control.

✦ Associated controls: Sometimes a property can display a drop-down list
box from which you can choose the correct value. Other properties dis-
play dialog boxes, such as the one for color shown in Figure 1-4.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 557

Using the Properties Window558

Getting help with properties
Don’t expect to memorize every property for every object that VBA applica-
tions can create. Not even the gurus can do that. To tell what a particular
property will do for your application, just highlight the property, press F1,
and VBA displays a Help window similar to the one shown in Figure 1-5 (in
most cases).

Figure 1-5:
Help
documents
the
properties
that VBA
supports.

Figure 1-4:
Some
properties
display a
dialog box
to select the
correct
value.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 558

Book VIII
Chapter 1

Getting to
Know

VBA
Using the Code Window 559

Such help screens tell you about the property and how it’s used — and they
provide you with links for additional information. The additional information
is especially important when you start changing the property values in your
application code. For example, click the Example link and the help system
shows how to write code that uses that property.

Click the See Also link in help screens for more information about a topic —
for example, the objects, properties, methods, and events associated with
the topic. In some cases, you also get recommended ways to work with an
object, property, method, or event.

Using the Code Window
The Code window is where you write your application code. It works like
any other editor you’ve used, except you type in a special language: VBA.
Figure 1-6 shows a typical example of a code window, with some code
already loaded.

Opening an existing Code window
Sometimes you won’t be able to complete an application in one sitting and
have to save it so you can work on it later. When you name and save the file

Figure 1-6:
Use the
Code
window to
modify your
program.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 559

Using the Code Window560

containing your code, it becomes an existing Code window. To open an exist-
ing code window, find the module that you want to open in Project Explorer.
Then double-click the module entry: The IDE displays the Code window with
your code loaded.

The Code window also appears when you perform other tasks. For example,
if you double-click one of the controls on a form, the Code window appears
so you can add code to the default event handler (special code that responds
to a specific event). VBA calls the event handler every time the specified
event occurs.

Creating a new Code window
When you start a new module within an existing document or template, open
a new Code window by using either Insert➪Module or Insert➪Class Module.
After you save this module or class module, it appears listed in Project
Explorer with the other modules and class modules in your project.

Typing text in the Code window
When you type code, VBA checks what you type. If you make a major error
(such as typing a word that VBA doesn’t understand), you see an error mes-
sage explaining what went wrong (see Figure 1-7). If the error message
seems baffling, click the Help button for additional information.

Figure 1-7:
VBA
displays
an error
message
when the
code isn’t
correct.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 560

Book VIII
Chapter 1

Getting to
Know

VBA
Using the Immediate Window 561

While you type the code for your application, VBA also formats it. For exam-
ple, if you type a keyword in lowercase letters, VBA changes it so it appears
as shown in the help file. Keywords also appear in a different color so you
can easily identify them. This book contains examples of the common VBA
keywords.

Finding more Code window features
Like other objects in VBA, the Code window has a context menu. When you
right-click the Code window, you see a list of optional actions you can per-
form. For example, you can obtain a list of properties and methods that
apply to the object you’re currently using in the window.

Getting help with code
Because it’s hard to remember precisely how to use every function and
method that VBA supports, use the VBA help feature. For any keyword that
you type in the Code window, highlight the keyword, press F1, and VBA will
look for help on the word you selected.

Make sure that you select the entire keyword, or VBA might not find the
information you need. Double-click the keyword to ensure that you highlight
the entire word.

Using the Immediate Window
Although you can use the Immediate window for debugging applications,
this window can actually help you learn about VBA without writing reams
of code. You can execute statements one at a time. Use View➪Immediate
Window to display the Immediate window. This window normally appears at
the bottom of the IDE, and it won’t contain any information until you type
something in it.

Creating a variable in the Immediate window
Most developers spend their days using the Immediate window checking their
applications for errors. You can use the Immediate window to ask VBA about
the value of a variable, for example. (A variable acts as a storage container for
a value such as Hello World.) This feature is always available in the Visual
Basic Editor, even if you aren’t using VBA for anything at the moment. To try
out this feature, type MyVal = “Hello World” (don’t forget the double quotes)
in the Immediate window and then press Enter. Now type ? MyVal and then
press Enter. Figure 1-8 shows the output of this little experiment.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 561

Using the Immediate Window562

You asked VBA to create a variable named MyVal and assign it a value of
Hello World. The next step is to ask VBA what MyVal contains by using
the ? operator. Figure 1-8 shows that MyVal actually does contain Hello
World.

Creating a one-line program
Experimenting with the Immediate window is one of the fastest ways to learn
how to use VBA because you get instant results. You can also copy successful
experiments from the Immediate window to the Clipboard, and then paste
them into the Code window. Using this method ensures that your code con-
tains fewer errors than if you were to type it directly into the Code window.

If you read the preceding section, “Creating a variable in the Immediate
window” and followed along, then you created a variable named MyVal.
The variable still exists in memory unless you closed the VBA Editor. You
can use this variable for a little experiment — your first program. Type
MsgBox MyVal into the Immediate window and then press Enter. You see
a message box like the one shown in Figure 1-9.

Congratulations! You just completed your first VBA application. The code
you typed asked VBA to use the MsgBox function to display the text in the
MyVal variable. Click OK to clear the message box.

Figure 1-9:
The
MsgBox
function
produces a
message
box like this.

Figure 1-8:
Use the
Immediate
window to
check the
value of a
variable.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 562

Book VIII
Chapter 1

Getting to
Know

VBA
Using Object Browser 563

Using Object Browser
VBA provides access to a lot of objects, more than you’ll use for any one pro-
gram. With all the objects that you have at your disposal, you might forget
the name of one or more of them at some time. Object Browser helps you
find the objects you need. In fact, you can use it to find new objects that
could be useful for your next project. Use the View➪Object Browser com-
mand to display Object Browser, as shown in Figure 1-10. Normally, at that
point, you need to filter the information in some way.

Browsing objects
Object Browser contains a list of the contents of all projects and libraries
loaded for the Visual Basic Editor. You can view the list of projects and
libraries using the Project/Library drop-down list box. When you start
Object Browser, this list box reads <All Libraries>, which means that
you’re viewing everything that VBA has to offer — usually too much for
someone to make sense of it all.

Projects and libraries are different, but you don’t usually have to worry about
them when you use the objects they contain. A project is the VBA code con-
tained in one of the files that you load into the application. In most cases, you
use a project to store the code you create. A library is external code contained
in a Dynamic Link Library (DLL) file. The DLL contains support routines used
by the application or VBA. This code is normally written by a developer, using
a language such as Visual Basic or Visual C++. You can’t easily edit the code in
a DLL.

Figure 1-10:
View the
objects that
VBA makes
available
via Object
Browser.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 563

Using Object Browser564

The projects and libraries list might look complicated at first, but you can
narrow the list down to a few types of entries. Of course, you always see
your project templates. In addition to project templates, you find the follow-
ing libraries in the list:

✦ Application: This library has the name of the application, such as
FrontPage or FrontPage Editor, and also includes the features that the
application provides for VBA users. For example, the FrontPage library
has an Application object that contains a list of application-related
properties, events, and methods such as the ActiveDocument property
used to work with the current document.

✦ Office: This library lists the objects that Microsoft Office supports.
For example, this is where you find the objects used to support Office
Assistant. Of course, if you’re using an application other than Microsoft
Office, you won’t see this library. Your application might provide
another alternative.

✦ Stdole: This library contains some of the Object Linking and Embedding
(OLE) features that you use in the application. For example, when you
embed a picture into a FrontPage document, this library provides the
required support. You can use this library in your VBA applications, too,
but the Office- or application-related library usually provides access to
objects that are easier and faster to use.

✦ VBA: This library contains special utility objects that VBA developers
need. For example, it contains the MsgBox function (which I demonstrate
earlier in this chapter, in the “Using the Immediate window” section).

Whenever you want to browse the libraries for a specific object, limit the
amount of material that you have to search by using the options in the
Project/Library drop-down list box (filtering the content). This technique is
also helpful when you perform searches.

Looking for names and features in Object Browser
When you almost remember the name of a method or other programming
feature that you want to use, the search feature of Object Browser can make
your life easier. Simply type the text you want to look for in the Search Text
field (the empty box beneath All Libraries) and then click the Search button
(the one with a symbol that looks like binoculars) in Object Browser. The
Search Results field (shown in Figure 1-11) shows what happens when you
look for MsgBox.

Whenever you choose (highlight) one of the entries in the Search Results
field, the bottom two panes change to show the entry you’ve chosen. This
feature helps you locate specific information about the search result and
see it in context with other methods, properties, and events. Notice that
the bottom pane tells you more about the selection item. In this case, it
tells you how to use the MsgBox function.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 564

Book VIII
Chapter 1

Getting to
Know

VBA
Using Object Browser 565

Cutting and pasting in Object Bowser
Whenever you find a method, property, or event that you want to use in Object
Browser, you can copy the information to the Clipboard by clicking the Copy to
Clipboard button (the one with a symbol that looks like two documents) and
then pasting directly into your application code. Using this feature means not
only that you type less code, but also that you have fewer errors to consider.

Getting help in Object Browser
Sometimes the information at the bottom of Object Browser display isn’t
enough to tell you about the element that you’re viewing. When this hap-
pens, highlight the element you want to know more about, and then press
F1: VBA displays the help screen for that element.

Project/Library

Go Back

Go Forward

Copy to Clipboard

View Definition

Search

Help Hide Search ResultsSearch Text

Figure 1-11:
Search for
the method
that you
want to use.

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 565

Book VIII: VBA Programming566

40_575317 bk08ch01.qxd 9/24/04 9:05 PM Page 566

Chapter 2: Your First VBA Program

In This Chapter
� Developing an application plan

� Creating a VBA program

� Developing a sub

� Developing a function

� Deciding the scope of variables

� Running your application

� Accessing your program from other VBA code

Writing code in the Immediate window (as described in Chapter 1) gives
you instant feedback, but it’s not very permanent — the resulting pro-

gram lasts only as long as you have the VBA Editor open. This chapter shows
you how to move from the Immediate window into the Code window, which
is where you create programs of a lasting nature — the kind that you can use
to perform the same task more than once. Because of the time required to
write the code, it only pays to create an application that you can use more
than once. The benefit of writing a program is that you can perform a repeti-
tive task quickly.

Good programs rely on structure to reduce errors, improve reliability, make
the code easier to reuse, and enhance your ability to use the code in more
than one place. The obvious structuring element is physical. By using physi-
cal structure, you can divide your program into small pieces that are easy to
write and understand.

Another form of structure includes the concept of privacy. You need to con-
sider who can see your program and how they can use it. Scope, which is a
set of limits imposed on program access, is important because you want to
make some parts of your application completely private (for efficiency) and
other parts completely public (for usability).

After you finish your application, you want to run it in FrontPage. Fortunately,
FrontPage provides a number of ways to accomplish this task and you can
choose the method that suits your needs. Some applications run in the back-
ground and don’t require much user interaction, while others run in the fore-
ground and interact with the user a lot.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 567

Deciding What to Do568

Deciding What to Do
Whenever you decide to create a program, start with a plan. A program is a
built thing; just as a builder needs a plan to construct a house, you need a
plan to construct your program. You could easily tell whether a builder
decided to build a house without using a plan, and it’s just as easy to deter-
mine when someone writes a program without using a plan. The program’s
users can see the application isn’t well designed because it doesn’t work as
anticipated. The plan you use doesn’t have to be complicated, but you do
need to think about these questions:

✦ What will the program do?

✦ How will the program accomplish its task?

✦ When will the program run?

✦ Who will use the program?

✦ Why is the program important?

Professional developers use a number of complex and hair-raising methods
to answer these questions. You work on much smaller programs, and you
can normally answer the questions quite easily. Don’t make this more com-
plicated than necessary. For example, you might answer the first question
by saying that the program will count the number of words in a document.

The reason you want to go through this process is to ensure that you’ve
given plenty of thought to the program you want to create. It’s easier to
answer the functional questions before you write any code than it is to fix
the code later. Writing down your answers also helps you keep the program
on task so it doesn’t become something you didn’t intend. This is a common
problem for everyone; even developers with a lot of experience write pro-
grams that quickly grow beyond the original intent.

Steps to Create a VBA Program
Writing a program usually involves four steps. In this section, I tell you about
the four steps while you create your first permanent program — one that
you can run as often as you like.

Step 1: Design the program
In the “Deciding What to Do” section of the chapter, I tell you how to plan
your program as well as what questions you should ask in preparation for
writing the program. This step is actually part of the design phase, but most
developers make it a separate step. Thinking through your application
before you commit something to paper is important.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 568

Book VIII
Chapter 2

Your First VBA
Program

Steps to Create a VBA Program 569

After you plan your application, you can use any of a number of techniques
to design the program. The best way to design most simple applications is to
use a method called pseudo-coding, a method in which you write down a list
of steps in your own words that say what you want VBA to do.

Using pseudo-code is a good way to think about how you want to write the
code without getting too concerned about coding issues. This example dis-
plays a dialog box. The pseudo-code could be as easy as

Display the message box.
See which button the user clicked.
End the program.

You can also add pseudo-code as comments to the VBA code that you
write. Using your pseudo-code as a basis for comments helps you include
the thought process used to design the program in your code. Never write
a program that is devoid of comments — situations change, and if you need
to modify your code later, having the original idea written down is a valu-
able starting point.

Step 2: Implement the design
The wording for this step is just a fancy way of saying that you need to write
some code. Before you can write some code, you need to open the Visual
Basic Editor by using the Tools➪Macro➪Visual Basic Editor command.

The first thing to do is create a Code window. To do that, use the Insert➪
Module command. The Visual Basic editor creates a blank Code window
where you can type your program. A blank Code window can be a scary
experience, but you don’t need to worry because you already have some
text (the code snippet created in step 1) to put into it. The Code window
includes a container in which to store the code called a Sub (for sub-
procedure) and the pseudo-code. Add a ‘ (single-quote) character in front
of each pseudo-code statement to ensure that VBA knows that this is
pseudo-code. (Single-quote characters designate comments in VBA.)

You could actually run the Sub you’ve created, but it wouldn’t do anything.
To make this example do something, add code to it that VBA understands.
This means converting the English statements such as Display the message
box. into VBA. To display a message box, use the MsgBox function that I
describe in Chapter 1.

The MsgBox function is capable of doing more than the Chapter 1 example
shows. First, it can return a Result that shows which button the user
selected. The Result variable holds the selection information so that you
can use it in other ways. You can also tell MsgBox which buttons to display

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 569

Steps to Create a VBA Program570

and to provide a title. Here’s a more advanced version of the MsgBox func-
tion from Chapter 1 — type it directly beneath the ‘ Display the message
box. comment.

Result = MsgBox(“Click a Button”, vbYesNoCancel, “A Message”)

This code tells VBA to display a message box with “Click a Button” as
the text and “A Message” on the title bar. The message box includes the
Yes, No, and Cancel buttons. After VBA displays the message box, it waits for
the user to make a decision. When the user clicks one of the three buttons,
VBA stores the choice in the Result variable. (That’s a lot for one piece of
text to do!)

The pseudo-code says that the code must detect which button the user
clicked. You can use another message box to display the information like this:

MsgBox Result

This is the same technique that I use in Chapter 1. The only difference is that
the information contained in Result relies on a user selection. You don’t
know which button the user will select in advance, but this code works no
matter which button the user clicks.

The final piece of pseudo-code says that VBA should end the program. You
do this with the End Sub statement. Whenever VBA runs out of instructions
to process, it ends the program. Figure 2-1 shows what your code should
look like now. Make sure you save the code, at this point, using the
File➪Save command.

Step 3: Test, test, test
It’s time to run the application for the first time. The easiest way to run an
application is to click the Run Sub/User Form button on the toolbar (it’s the
one that looks like the Play button on a VCR). Click the button to see the first
message box.

Figure 2-1:
Writing
code is easy
when you
use pseudo-
code to
describe
it first.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 570

Book VIII
Chapter 2

Your First VBA
Program

Steps to Create a VBA Program 571

The message box contains the title, message, and buttons that you asked
VBA to display in the code. Checking the contents of the message box to
verify that it contains everything you thought it would contain is one example
of testing. If you want to ensure that your program always works the way you
originally designed it, you need to test as many of its features as possible.

Click Yes to see the next message box. Look at the code again. Notice that
this message box contains the result (the return value) of the MsgBox func-
tion. The number 6 in this situation isn’t very useful to humans, but it’s quite
usable for the computer. A program converts this number to something that
humans can understand. For now, you know that clicking Yes produces a
number 6.

When you click OK, the program ends, and you don’t see any other message
boxes. This condition verifies that the last step of the pseudo-code is
complete.

Don’t assume the testing process is over; there are two other buttons on the
initial message box. Unless you test those buttons, you won’t know that they
work. Run the program again, but try the No button the second time and the
Cancel button the third time.

The return value displayed in the second message box should change for
each button. Clicking No should produce a value of 7, and clicking Cancel
should produce a value of 2. If you don’t see these values, your program has
an error. Professionals call a programming error a bug.

Step 4: Swat the bugs
Bugs can appear when you test your program. Planning and writing your code
carefully reduces the number of bugs, but everyone makes mistakes (as often
as not, these result from misunderstanding how a function works). Testing
your programs helps you find the bugs. After you find the bugs, you have to
look at your code and discover the coding errors that created the bugs.

Not every bug is even your fault — it could be an error in the documentation
for the function. Microsoft is well known for committing mistakes of this sort
and then telling everyone that it really meant to do that. (Microsoft is fond of
calling this an undocumented feature.) You might find that a bug isn’t actu-
ally in your program but somewhere in VBA itself. Microsoft might tell you
about these errors, but it often leaves them as a surprise for you to discover.

Microsoft won’t knock on your door to tell you that it made a mistake.
You have to search for these errors on your own at a central Web site that
Microsoft has set up. The Microsoft Knowledge Base is a special kind of
search engine that helps you find information about problems with VBA
and the associated fix. You can find the Microsoft Knowledge Base at
http://search.support.microsoft.com/search/default.aspx.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 571

Writing Your First Sub572

Writing Your First Sub
One of the first tasks that many developers want to perform is to gain access
to document statistics. Knowing document statistics can point out common
document issues, such as old documents that require editing. The statistics
can also help categorize the document by size or the author who last edited
the document. Consequently, many developers choose some type of statisti-
cal program as their first programming effort, just like the first sub dis-
cussed in this section.

FrontPage uses several unique methods to create document statistics. All of
these statistics begin with the Application object. You don’t actually have
to reference the Application object unless you specifically want to work
with it because the Application object is the default object. The next level
down is the WebWindows object, which contains information about the cur-
rent Web. Below the WebWindows object is the PageWindows object, which
contains specific information about an open document. Next you reference
the ActiveDocument — normally the same as the open document, unless
you’re using frames or other technologies that let you work with multiple
documents. Listing 2-1 shows how these various objects work together to let
you access document statistics.

Listing 2-1: Using a Sub to Retrieve Document Information

Sub GetSummary()
‘ Create a title based on the Web.
Title = “File Located At: “ + _

WebWindows(0).Web.RootFolder

‘ The information is located in the active document.
With WebWindows(0).PageWindows(0).ActiveDocument

‘ Get the document name.
Results = “Name: “ + .nameProp

‘ Get the document title.
Results = Results + vbCrLf + “Title: “ + .Title

‘ Add the last modification date.
Results = Results + vbCrLf + _

“Last Modification: “ + .fileModifiedDate
End With

‘ Display the results.
MsgBox Results, , Title

End Sub

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 572

Book VIII
Chapter 2

Your First VBA
Program

Writing Your First Sub 573

The code begins by getting the URL for the Web. To access this information, the
code requests information about the first open WebWindow. FrontPage could
have more than one WebWindow open. When this happens, you access each
WebWindow using its specific number. The first WebWindow is WebWindows(0),
the second is WebWindows(1), and so on. The number in parentheses lets you
access one member of a collection of WebWindows. The Web object within
the WebWindow tells you about that Web. In this case, the code accesses the
RootFolder property, which contains the location of this Web on the server,
and places that value in the Title variable.

Notice the underscore character (_) at the end of the first line of code. Use
the underscore to continue the code on the next line when a line of code
becomes too long. Failure to include the underscore normally results in an
error message because VBA treats each line of code as a separate instruc-
tion unless you include the underscore.

The next statement tells VBA that you want to perform a number of tasks
using the WebWindows(0).PageWindows(0).ActiveDocument object.
You know that WebWindows(0) is the first WebWindow. The WebWindow con-
tains a collection of PageWindows, which are open documents. As with the
WebWindows collection, you access an individual PageWindow using a
number. In this case, the code accesses the first open document or
PageWindow.

You can also use the document name to access the PageWindow object. For
example, when the document is named Temp.htm, you can access it using
WebWindows(0).PageWindows(“Temp.htm”).

Now that the code has told VBA which object to work with, it places the
values of individual properties in the Results variable. The first property is
nameProp, which contains the name of the document without the file exten-
sion. This first entry consists of two strings: “Name: “ and .nameProp.
Notice how the code uses the plus sign (+) to add the two strings together.
This process is also called concatenation.

The next line accesses the document’s Title property. Notice that the code
adds the vbCrLf constant to the string this time. The vbCrLf constant tells
VBA to add a carriage return (place the cursor at the beginning of the line)
and a line feed (place the cursor on the next line) to the string. These special
characters are called control characters because they control some aspect of
the output (in this case, the placement of the cursor).

The final line of code displays the results of all the code so far. It uses the
MsgBox function to display the information. The output includes the string
that the code created with document properties, along with the special title
it created. In this case, the code doesn’t provide a special button setup, so it

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 573

Writing Your First Function574

simply skips that MsgBox argument by leaving it blank. (You still have to add
the comma to make the code skip the argument. When VBA sees the blank
space, it uses the default value for that argument.) To use this example, you
must open a document — any document you can access with FrontPage will
do. Figure 2-2 shows typical output from this example.

Writing Your First Function
The example in the “Writing Your First Sub” section (Listing 2-1) is nice, but
you might want to use more than one piece of information. VBA users com-
monly rely on functions to perform repetitive tasks. That’s what the example
in this section shows.

Listing 2-2 uses a Sub named GetSummary2 to call the GetDocProperty func-
tion multiple times. In every case, a special variable stores the result. At the
end of the program, GetSummary2 displays all the information that the pro-
gram has accumulated. (In this case, I’m assuming you have open four
FrontPage-accessible documents of any type.)

Listing 2-2: Using a Function to Retrieve Document Information

Sub GetSummary2()
‘ Create a title based on the Web.
Title = “Files Located At: “ + _

WebWindows(0).Web.RootFolder

‘ Get the statistics for the first window.
Output = GetDocProperty(0)

‘ Get the statistics for the second window.
Output = Output + vbCrLf + vbCrLf + GetDocProperty(1)

‘ Get the statistics for the third window.

Figure 2-2:
Use
properties
to discover
information
about
documents.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 574

Book VIII
Chapter 2

Your First VBA
Program

Writing Your First Function 575

Output = Output + vbCrLf + vbCrLf + GetDocProperty(2)

‘ Get the statistics for the fourth window.
Output = Output + vbCrLf + vbCrLf + GetDocProperty(3)

‘ Display the results.
MsgBox Output, , Title

End Sub

Function GetDocProperty(WinNumber As Integer) As String
‘ The information is located in the active document.
With WebWindows(0).PageWindows(WinNumber).ActiveDocument

‘ Get the document name.
Results = “Name: “ + .nameProp

‘ Get the document title.
Results = Results + vbCrLf + “Title: “ + .Title

‘ Add the last modification date.
Results = Results + vbCrLf + _

“Last Modification: “ + .fileModifiedDate
End With

‘ Return the results.
GetDocProperty = Results

End Function

Listing 2-2 begins with GetSummary2. The Sub contains code for tasks that
aren’t repeated, such as getting the location of the Web and displaying the
results on-screen. GetSummary2() calls GetDocProperty() for each of the
tasks that are repeated. In this case, the code calls GetDocProperty() once
for each open document. Notice that GetSummary2() places the result of
each call in a variable. It also supplies the number of the window that it’s
interested in to GetDocProperty().

The GetDocProperty function introduces several new ideas. The first idea is a
return value. Functions can return a value to the caller. The second idea is the
use of an argument. An argument is input to a Sub or Function. In this case,
WinNumber is the input to the WebWindows(0).PageWindows(WinNumber)
collection.

The actual code within the GetDocProperty function looks the same as the
example in the “Writing Your First Sub” section; in this case, the code makes
the function equal to Results. This is how you return a value to the caller.
Figure 2-3 shows the output of this example.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 575

Getting the Scoop on Scope576

Getting the Scoop on Scope
You might think the concept of scope is confusing and difficult to understand
because it seems complex. Actually, scope is simply the range of what a pro-
gram can see and how much it lets others know. When you look at the MsgBox
function, you care about the inputs that you provide and the output that the
function produces. These are the public (visible) elements of the MsgBox func-
tion. As a user, you don’t have to care what happens inside the MsgBox func-
tion, even though that information is important to the MsgBox function itself.
These inner workings — the ones you can’t see — are the private (invisible)
elements of the MsgBox function.

There are two reasons that scope is important to you as a VBA user. First,
if every part of a program could see every other part of a program, chaos
would result — there would be too much information to track. Second, pro-
grams have to protect their data to ensure that it doesn’t get damaged in
some way. In short, you want to make some parts of your program visible so
people can use them, but other parts invisible so they remain protected.

Understanding the purpose of scope
Scope relies on two keywords: Public and Private. You can use them to
define the scope of variables or classes. Scope has an effect on just about
every kind of programming element you use in this book, so it’s important
to understand how it works. The heart of the matter is the two keywords:

✦ Public: This keyword tells VBA that it should allow other program ele-
ments to see the affected elements.

Figure 2-3:
Use
functions
to return
multiple
results.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 576

Book VIII
Chapter 2

Your First VBA
Program

Getting the Scoop on Scope 577

✦ Private: This keyword tells VBA that it should hide the affected ele-
ment from other programming elements.

Defining the effects of scope
The best way to learn about scope is to begin working with it. You can exper-
iment with simple uses of scope to see how a change in scope affects your
programs. The most important rule is that scope only affects everything out-
side the current block of code. (A block is defined by a sub, function, or
other structural element.)

Making a module private by adding Option Private Module at the begin-
ning of the module means that everything in that module is invisible to the
outside world. Even if the module contains a Public Sub, only the other
elements inside the module can see it — the Public Sub is invisible to
everything outside the module. Likewise, when declaring a Private Sub,
everything within the current module can still see it, but nothing outside the
current module can.

Listing 2-3 demonstrates some of the basic elements of scope. Other exam-
ples in the book refine this concept, but this is a good starting point.

Listing 2-3: Using Global Variables

‘ Declare a private global variable.
Private MyGlobalVariable As String

Public Sub GlobalTest()
‘ Set the value of the global variable.
MyGlobalVariable = “Hello”

‘ Display the value.
MsgBox MyGlobalVariable

‘ Call the GlobalTest2 Sub
GlobalTest2

‘ Display the value on return from the call.
MsgBox MyGlobalVariable

End Sub

Private Sub GlobalTest2()
‘ Show that the global variable is truly global.
MsgBox MyGlobalVariable

‘ Change the value of the global variable.
MyGlobalVariable = “Goodbye”

End Sub

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 577

Three Ways to Run Your Program578

Notice that MyGlobalVariable is private. You can’t access this global vari-
able outside the current module. However, both of the sub-procedures in
this module can access the global variable.

As another example, GlobalTest is a public Sub, but GlobalTest2 is pri-
vate. You can verify the use of scope, in this case, by opening the Macro
dialog box (Tools➪Macro➪Macros): You see GlobalTest listed, but
GlobalTest2 won’t appear in the list.

Type and run the example code in Listing 2-3 to see how the two Sub ele-
ments affect each other. You should see three dialog boxes:

✦ The first dialog box reads Hello because GlobalTest sets the value of
MyGlobalVariable.

✦ The second dialog box also reads Hello because MyGlobalVariable
is truly global. Even though the value of this variable was set in
GlobalTest, GlobalTest2 can read it.

✦ The third dialog box reads Goodbye because GlobalTest2 has set
MyGlobalVariable to another value.

Three Ways to Run Your Program
Running your program from within the Visual Basic Editor is fine when you
want to test it. However, the goal is to run it from the application and not
have to open the Visual Basic Editor first. You have a lot of choices for run-
ning any VBA program — more than most people want to remember. VBA
provides three common methods for running applications, but most VBA
users never need to think beyond the first method, which is using the Macro
dialog box.

Using the Macro dialog box
The Macro dialog box is the most common way to run a VBA program. Every
time that you create a new Sub, it appears in the list of macros you can run.
You don’t have to do anything special. You can always access every program
you create by using this method, which is why it’s the most popular method.
Here’s a hands-on tour of what this dialog box can do:

1. Choose Tools➪Macro➪Macros.

The Macro dialog box appears, as shown in Figure 2-4 (the SayHello
macro from the “Step 2: Implement the design” section of this chapter).

2. Run a macro by highlighting it and then clicking the Run button.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 578

Book VIII
Chapter 2

Your First VBA
Program

Three Ways to Run Your Program 579

You should see the same two dialog box sequences that appear during a
test of the program (as described earlier in this chapter).

3. Try out this dialog box on other tasks.

• To edit a macro: Highlight the macro name and then click the Edit
button; the application opens the Visual Basic editor. The Code
window displays the code associated with the program that you
highlighted.

• To remove an old macro: Click the Delete button.

• To create a new named macro: In the Macro Name field near the top
of the Macro dialog box (shown in Figure 2-4) type a new macro
name (such as SayGoodbye); the Macro dialog box enables the
Create button and disables everything else. This field normally con-
tains the name of whichever macro you’ve highlighted in the list.

Using the quick launch methods
It isn’t always convenient or efficient to open the Macro dialog box to run
the programs that you design. If you use the same program several times
a day, opening the Macro dialog box every time becomes a waste of time.
What you need is a quick launch method — a way to start the program that
doesn’t require you to open the Macro dialog box.

FrontPage lacks some of the amenities that other Office products provide.
For example, when you’re working with Excel or Word, you can assign a
hotkey combination to a macro. It’s important to remember this particular
option when you run FrontPage macros from other Office products because
the hotkey option — accessed using the Options button in the Macro dialog
box (not shown in Figure 2-4) — gives you a method of quick activation for
products that support it.

Figure 2-4:
Use the
Macro
dialog box
to access
the
programs
you create.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 579

Three Ways to Run Your Program580

Defining a toolbar button
The best method for activating your macro in FrontPage is to add it to a tool-
bar as a special button. Using this method means that all you have to
remember is to look at the toolbar.

Many people place custom buttons on the same toolbars that the applica-
tion uses for other purposes. This is fine if you don’t mind seeing the toolbar
grow longer and longer till it disappears off the right side of the screen. It’s
better to create a custom toolbar so that you can show or hide the buttons
associated with your programs when you need them.

To add a VBA program to a toolbar, you can begin by creating a custom tool-
bar for the task or you can select an existing toolbar. (The “Customizing
Toolbars” section found in Chapter 2 of Book 1 discusses the techniques you
use to add a custom toolbar to FrontPage and then add buttons to it.) When
you’re working with macros, you add the button by using the Macros entry
in the Categories list found on the Commands tab of the Customize dialog
box (shown in Figure 2-5).

After you add the button to the toolbar, assign a macro to it by right-clicking
the button and choosing Assign Macro from the context menu. You see the
Macro dialog box. Select a macro, click OK, and you’re ready to go.

Defining a menu entry
You might use a program often enough to attach it to a regular program ele-
ment but not often enough to take up space on a toolbar. In this case, you
can use a menu to hold the quick-launch option. You use the same set of

Figure 2-5:
Add macros
as toolbar
buttons or
as menu
entries.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 580

Book VIII
Chapter 2

Your First VBA
Program

Three Ways to Run Your Program 581

steps shown in the “Defining a Toolbar Button” section to perform this task.
The only difference is that you drag the custom button or custom menu item
to the menu you want to use (instead of to a toolbar).

Accessing the program from other VBA code
Never write a piece of code twice when you can write it once and use it many
different times. Saving time is one of the reasons to use VBA; saving time writ-
ing VBA code is a good way to increase that benefit. The first idea that you
have to understand is that you can call (tell VBA to execute) any VBA pro-
gram you created in another program. Here’s a simple example that you can
add to the Code window:

Sub SayHello2()
‘ Show that we’re using the SayHello2 program.
MsgBox “We’re in SayHello2!”

‘ Call SayHello
SayHello
End Sub

Notice how this sample uses pseudo-code to describe what happens when
you run the program. Remember that pseudo-code is a list of steps the pro-
gram must perform written in a form that you can understand. The first task
is to prove that you executed the SayHello2 program by displaying a mes-
sage box that contains a message that doesn’t appear in SayHello. The
second task is to call SayHello. Make sure you save your program at this
point.

When you run this program, it displays three message boxes. The first one
reads, We’re in SayHello2! The second and third message boxes look
just like the ones you’ve seen for the SayHello program used throughout
this chapter.

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 581

Book VIII: VBA Programming582

41_575317 bk08ch02.qxd 9/24/04 9:05 PM Page 582

Chapter 3: Storing and
Modifying Information

In This Chapter
� Working with variables and constants

� Understanding data types

� Using operators

This chapter refines the concept of a variable by describing VBA variable
types and how to modify their content. Understand, however, that com-

puters don’t see information the same way we do — ways of representing
information that seem obvious to us are invisible to the computer.

As far as the computer is concerned, everything is a series of bits that it has
to move around. Data types were invented, sometimes by trial and error, to
make the bits easier for humans to understand. For example, when you see
the letter C on the display, all the computer “sees” is a series of eight bits
that form a special number. Interpretation of this number as the letter C is
for your benefit. Understanding the machine’s perspective (that everything
is a series of bits) makes this chapter easier to understand.

Understanding Variables and Constants
VBA provides many levels of data interpretation. Some data interpretations
help you make your program reliable, others make it run faster, still others
provide accuracy, and a few make the data easier to interpret. One of the
two big distinctions is between variables and constants. You can modify a
variable anytime that the program can access it. A constant, however, retains
the same value all the time.

Making the declaration
You use different methods to mark variables and constants in your program.
Variables have a scope and a data type; constants have only a scope. (See
the “Defining the Data Types” section later in this chapter for descriptions
of data types and how to use them.) You must declare variables, specifying
both scope and data type so VBA knows how to work with them. Listing 3-1
shows some examples of variable and constant declarations.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 583

Understanding Variables and Constants584

Listing 3-1: Variable and Constant Declarations with Scope

Option Explicit

‘ This variable is visible to other modules.
Public MyPublicVariable As String
‘ This variable is visible only to this module.
Private MyPrivateVariable As String
‘ Using Dim is the same as making the variable private.
Dim MyDimVariable As String

‘ This constant is visible to other modules.
Public Const MyPublicConstant = “Hello”
‘ This constant is visible only to this module.
Private Const MyPrivateConstant = “Hello”

Public Sub DataDeclarations()
‘ Only this Sub can see this variable.
Dim MyDimSubVariable As String

‘ Only this Sub can see this constant.
Const MySubConstant = “Hello”

End Sub

The variable declarations rely on the keywords Public and Private for
scope as well as a data type keyword following the variable name to define
the data type. In Listing 3-1, all the variables are strings (or text). True, you
could use the Dim keyword to make a variable private, but I don’t recom-
mend it. Using the word Private is clearer, and clarity is highly useful as a
coding habit.

The two kinds of constant declarations also rely on the keywords Public or
Private for scope. Notice that you include the keyword Const to mark the
value as a constant. The constant has a name and a value assigned to it.
However, notice that it doesn’t have a data type because you can’t assign
one to a constant. VBA stores constants as a series of bits, using the type of
the information that you provide. Because you can never change the value of
a constant, the question of data type isn’t important.

Variables or constants defined within a Sub or Function are private to that
Sub or Function. Consequently, VBA requires that you use the Dim keyword,
instead of the Public, Private, or Const keywords, in this case. Notice that
the constant still includes the Const keyword but lacks a Private or Public
keyword for the same reason.

Knowing which storage type to use
At first, it might seem like you should always use variables so that you can
always access the data and change it. Variables do provide flexibility that

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 584

Book VIII
Chapter 3

Storing and
M

odifying
Inform

ation
Defining the Data Types 585

constants don’t provide, and you can use them more often than not to store
your data. However, constants also have distinct advantages including

✦ Speed: Using constants can make your application faster. Constants
require less memory, and VBA can optimize your program to perform
better when you use them.

✦ Reliability: Constants have a reliable value. If a constant has a specific
value when the program starts, it stays the same until the program ends.

✦ Ease of reading: Most VBA users rely on constants to make their pro-
grams easier to read. The vbCrLf constant (in the examples in Chapter 2)
is the same no matter how many programs you create. Every developer
who sees this constant knows that using it is like pressing Enter: VBA
adds a carriage-return-and-line-feed combination.

There are other ways constants can take the place of variables. For example,
the Object Browser makes it easy to work with constants: Highlight a con-
stant in the Object Browser and you see its associated value, as shown in
Figure 3-1. An entry at the bottom of the Object Browser tells you that the
highlighted entry is a public constant with a value of “Hello”.

Defining the Data Types
A data type is a method of defining the data to make it easier to work with
in a program. The computer still sees the data as a series of bits, but VBA
works with different data types in different ways. The computer can see the

Figure 3-1:
Use
constants
to provide
quick
access to
standard
values in
the Object
Browser.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 585

Defining the Data Types586

binary value, 1000001b, but it doesn’t recognize it as anything but a binary
value. VBA, on the other hand, can see this binary value as the number 65 or
the letter A depending on the data type that you assign to the value. The data
type is important in understanding the value and working with it. Using a data
type also ensures that the program follows certain rules. Otherwise, the data
could become corrupted because the program could mishandle it. VBA sup-
ports a number of standard data types — including Byte, Boolean, Integer,
Long, Currency, Decimal, Single, Double, Date, String, Object, and
Variant — which are discussed in greater detail in the next few sections.

Using strings for text
This data type is one that you’ve already seen in the message box examples:
the string. When you create a message box, you use a string as input. The
string is the most useful and most-often used data type in VBA.

A string, like the text you’re reading now, is a sequence of characters. The
characters aren’t always printable, but can include control characters that
determine how the text appears on-screen. A string can also include special
characters, such as punctuation — including relatively specialized marks
such as circumflexes, or umlauts. Although a string can contain all these ele-
ments, the main content of a string is always text.

Using character codes
Strings can contain a number of elements. In previous examples, I show you
strings that contain control character constants such as vbCrLf. This con-
stant actually contains two control characters: a carriage return and a line
feed. The result of using both control characters together is the same as
pressing Enter on the keyboard.

Strings can also use a special function, Chr(), to create special characters.
You can combine this function with the Character Map utility (normally
available on the Start➪Programs➪Accessories menu) to produce any char-
acter that you need for your program. Figure 3-2 shows a typical Character
Map display.

When you hover the mouse pointer over a character, the balloon help dis-
plays the Unicode character number in hexadecimal or base 16. A base 16
number uses the numbers 0 through 9 and the letters A through F to repre-
sent values. For example, the number 10 in base 10 (decimal) appears as the
letter A in hexadecimal. Likewise, the number 16 in decimal is 10h (hexadeci-
mal). (VBA uses h for hexadecimal numbers and b for binary numbers—it’s
important to know how to use the h and the b suffix when writing programs
that require hexadecimal and binary numbers.) Computers use hexadecimal
because it works better with the binary values a computer can produce.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 586

Book VIII
Chapter 3

Storing and
M

odifying
Inform

ation
Defining the Data Types 587

Selecting the character displays the Unicode number in the lower-left corner
of the Character Map dialog box and displays the character in a larger size.
Listing 3-2 shows Chr() function in use.

Listing 3-2: Creating Special Characters

Public Sub ShowCharacter()
‘ Declare the string.
Dim MyChar As String

‘ Tell what type of character the code displays.
MyChar = “Latin Capital Letter A with Circumflex: “

‘ Add the character.
MyChar = MyChar + Chr(&HC2)

‘Display the result.
MsgBox MyChar, , “Special Character”

End Sub

When run, this program displays a capital letter A with a circumflex. Notice
how the code uses the Chr() function. The hexadecimal value from Character
Map appears as &HC2. The &H denotes a hexadecimal value, and the C2 is the
number of the character.

Getting the data you need
Strings can contain more information than you need or contain it in a form
that you can’t use. You might use a string to provide storage for several
pieces of information that you need to send to another location. When the

Figure 3-2:
Character
Map
displays all
the printable
characters
available for
a particular
font.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 587

Defining the Data Types588

string arrives at its destination, the receiving program unpacks the individ-
ual data elements from the string.

All these actions rely on some form of parsing — removing and interpreting
sub-elements from a storage element such as a string. You can create a single
string that contains Hello World and separate it into two pieces, Hello and
World, by using parsing. A program could store these separate elements and
use them for various purposes.

The three functions that you use to extract information from a string are
Left(), Right(), and Mid(). As their names suggest, you use the first to
extract the left side of the string, the second to extract the right side, and
the third to extract the middle. These three functions require location infor-
mation and input on where to start and stop extracting information. You use
the InStr() and InStrRev() functions to find this information. Listing 3-3
shows some of the techniques that you can use to parse a string.

Listing 3-3: Finding Information in Strings Using Parsing

Public Sub ParseString()
‘ Create a string with elements the program can parse.
Dim MyStr As String

‘ Create an output string.
Dim Output As String

‘ Fill the input string with data.
MyStr = “A String To Parse”

‘ Display the whole string.
Output = “The whole string is: “ + MyStr

‘ Obtain the first word.
Output = Output + vbCrLf + “The First Word: “ + _

Left(MyStr, InStr(1, MyStr, “ “))

‘ Obtain the last word.
Output = Output + vbCrLf + “The Last Word: “ + _

Right(MyStr, Len(MyStr) - InStrRev(MyStr, “ “))

‘ Obtain the word String.
Output = Output + vbCrLf + “The Word String: “ + _

Trim(Mid(MyStr, _
InStr(1, MyStr, “String”), _
Len(MyStr) - InStr(1, MyStr, “To”)))

‘ Output the result.
MsgBox Output, , “Parsing a String”

End Sub

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 588

Book VIII
Chapter 3

Storing and
M

odifying
Inform

ation
Defining the Data Types 589

The code begins by creating two variables: one to hold the input data and a
second to hold the output data. The input string has a simple phrase that
code can parse (“A String to Parse”). The parsing happens as three tasks:

1. The first parsing task is easy — locate the first word in the phrase. To
perform this task, the Left function retrieves text starting at the first
character and continuing until the first space. The InStr() function
returns the position of the first space as a number.

2. The second parsing task is more complicated. The Right function returns
the right end of the string. The InStrRev() function returns the number
of characters from the beginning of the string to the last space. The Len
function returns a value of 17 (the length of the string), and InStrRev()
returns 12 (the number of characters from the beginning of the string to
the last space). After InStrRev() is subtracted from Len, the result is 5.
Parse (the last word in the string) contains 5 characters. The Right()
function returns Parse.

3. The third parsing task is to look for the word String in MyStr. The exam-
ple code shows that you can perform nesting as needed. The nesting
begins with the Trim() function, which removes any extra characters.
The Mid() function requires three arguments for this example:

• The string you want to work with.

• The starting position.

Notice this code also uses the InStr() function, but it searches for
String, not a space.

• The length of the string.

Subtracting from the length of the string (17) the position of To within
the string (10) is 7 characters. The 7 characters include the word String
and the space that follows, which is the reason for using the Trim()
function.

Using numbers for calculations
Numbers form the basis for a lot of the information computers store. You use
numbers to perform tasks in a spreadsheet, to express quantities in a data-
base, and to show the current page in a document. Programs also use num-
bers to count loops, to determine the position of characters in a string, and
to check the truth value of a statement. And VBA uses numbers to determine
which character to display on-screen or how to interact with your code.

Understanding the numeric types
You look at a number as a single entity — a number is simply a number. The
computer views numbers in several different ways because the processor

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 589

Defining the Data Types590

actually works with different kinds of numbers in different ways. (In fact, at
one time, the math coprocessor used to work with money and numbers with
decimal points with separate chips within the computer.) The four basic
number types include

✦ Integer: This is a number without a decimal. An integer can hold any
whole number, such as 5, but not a number with a decimal, such as 5.0.
Although these two numbers are the same, the first is an integer, and
the second isn’t.

✦ Real: A real number is (for all practical purposes) one that contains
a decimal point. The decimal portion doesn’t have to contain a value.
The number 5.0 is a perfectly acceptable real number. A real number
is stored in a completely different format than an integer. (The storage
technique only matters to the processor — you don’t need to know it
to use VBA.)

✦ Currency: Financial calculations usually require special accuracy. Even
a small error can cause problems. The Currency numeric type stores
numbers with extreme precision, but at an equally large cost in both
processing time and memory use.

✦ Decimal: Computers normally store information by using a base-2
(binary) format. You use a base-10 (decimal) format for working with
numbers. Small errors can occur when converting from one numbering
system to the other — and these can accumulate into huge errors. The
decimal numeric system stores numbers in a simulated base-10 format,
which eliminates many computing errors. However, this system requires
more memory and processing time than any other numeric type.

Computers also determine a numeric type based on the amount of memory
that the data requires. VBA supports three integer types, including Byte (1
byte of storage), Integer (2 bytes of storage), and Long (4 bytes of storage).
The extra memory stores larger numbers: 0 to 255 for Byte; –32,768 to
32,767 for Integer; and –2,147,483,648 to 2,147,483,647 for Long. Listing 3-4
demonstrates various data types.

Listing 3-4: Demonstrating the Differences in Data Type Ranges

Public Sub DataRange()
‘ Declare the numeric variables.
Dim MyInt As Integer
Dim MySgl As Single
Dim MyDbl As Double
Dim MyCur As Currency
Dim MyDec As Variant

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 590

Book VIII
Chapter 3

Storing and
M

odifying
Inform

ation
Defining the Data Types 591

‘ Define values for each variable.
MyInt = 30 + 0.00010001000111
MySgl = 30 + 0.00010001000111
MyDbl = 30 + 0.00010001000111
MyCur = 30 + 0.00010001000111
MyDec = CDec(30 + 0.00010001000111)

‘ Display the actual content.
MsgBox “Integer:” + TwoTab + CStr(MyInt) + _

vbCrLf + “Single:” + TwoTab + CStr(MySgl) + _
vbCrLf + “Double:” + TwoTab + CStr(MyDbl) + _
vbCrLf + “Currency:” + vbTab + CStr(MyCur) + _
vbCrLf + “Decimal:” + TwoTab + CStr(MyDec), _
vbOKOnly, _
“VBA Data Types”

End Sub

The first few variable types use standard declarations. However, notice that
you can’t declare the decimal data type directly — you must declare it as a
Variant in VBA. (See the “Working with variant data” section for more infor-
mation about the Variant type.) The code assigns each variable the same
value. Notice that the code must use the CDec function to insert a decimal
value into the Variant because VBA doesn’t include a decimal data type.

The application output demonstrates something interesting about the
numeric data types. Each type silently dropped any decimal data it couldn’t
hold. This is just one of many reasons to carefully consider the numeric data
type you use.

Performing conversions between numbers and strings
Most display features, such as the MsgBox function and forms, require strings,
even for numbers. When you work with numeric data, you must convert the
data to a string to display it. Listing 3-5 demonstrates some of the essential
string-to-number and number-to-string conversion functions.

Listing 3-5: Converting Between Numbers and Strings

Public Sub NumberConvert()
‘ Create some variables for use in conversion.
Dim MyInt As Integer
Dim MySgl As Single
Dim MyStr As String

‘ Conversion between Integer and Single is direct
‘ with no data loss.
MyInt = 30

(continued)

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 591

Defining the Data Types592

Listing 3-5 (continued)

MySgl = MyInt
MsgBox “MyInt = “ + CStr(MyInt) + vbCrLf + “MySgl = “ _

+ CStr(MySgl), , “Current Data Values”

‘ Conversion between Single and Integer is also direct
‘ but incurs data loss.
MySgl = 35.01
MyInt = MySgl
MsgBox “MyInt = “ + CStr(MyInt) + vbCrLf + “MySgl = “ _

+ CStr(MySgl), , “Current Data Values”

‘ Conversion between a String and a Single or an
‘ Integer can rely on use of a special function. The
‘ conversion can also incur data loss.
MyStr = “40.05”
MyInt = CInt(MyStr)
MySgl = CSng(MyStr)
MsgBox “MyInt = “ + CStr(MyInt) + vbCrLf + “MySgl = “ _

+ CStr(MySgl), , “Current Data Values”

‘ Conversion between a Single or Integer and a String
‘ can rely on use of a special function when making a
‘ direct conversion. The conversion doesn’t incur any
‘ data loss.
MyInt = 45
MySgl = 45.05
MyStr = MyInt
MsgBox MyStr, , “Current Data Values”

‘ You must use a special function in mixed data
‘ situations.
MyStr = “MyInt = “ + CStr(MyInt) + _

vbCrLf + “MySgl = “ + CStr(MySgl)
MsgBox MyStr, , “Current Data Values”

End Sub

The code begins by declaring an Integer, a Single (a real number), and a
String. Although the code relies on these three data types, the principles
shown apply to any of the data types. Notice that you can perform direct
conversion between numeric types without relying on a function. An integer
value can always convert to a real number without data loss. Be careful
about going the other way, though — you can run into problems with data
loss. The conversion process drops the decimal value but uses proper
rounding (any decimal less than 0.5 rounds down), as do the CInt and
CLng functions.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 592

Book VIII
Chapter 3

Storing and
M

odifying
Inform

ation
Defining the Data Types 593

Conversion from a string to a numeric value might not require the special
functions shown in the code. Use the conversion functions, as shown, (CInt
for Integer conversion and CSng for Single conversion) to ensure that VBA
converts the data correctly. Try changing the source code so that it reads
MyInt = MyStr — it works as normal, in this case, but this behavior isn’t
guaranteed.

The code also shows that you can assign a numeric value directly to a string
as long as that’s the only assignment you make (you don’t assign any other
values). Always use the correct conversion function when you work with
mixed data types.

Using Boolean values to make decisions
The Boolean type is the easiest to use and understand; it’s like a light switch.
This type is used to indicate yes or no, true or false, and on or off. You
can use this type to work with any two-state information. Listing 3-6 shows
several conversion techniques that you can use with Boolean values.

Listing 3-6: Making Decisions with Boolean Values

Public Sub BooleanCheck()
‘ Create a Boolean data type.
Dim MyBool As Boolean

‘ Set MyBool to True
MyBool = True

‘ Display the native value.
MsgBox “MyBool = “ + CStr(MyBool), , “Native Value”

‘ Display the numeric value.
MsgBox “MyBool = “ + CStr(CInt(MyBool)), , _

“Numeric Value”

‘ Make MyBool equal to a number. Only the number
‘ 0 is False; everything else is True.
MyBool = CBool(0)
MsgBox “MyBool = “ + CStr(MyBool), , _

“Converted Numeric Value”
End Sub

The code begins by declaring a Boolean variable and setting its value. As
with numeric variables, you can assign a Boolean variable directly to a
string as long as that’s the only thing you do. When working in a mixed data
type environment, such as the one shown in the code, you must use the
appropriate function (such as CStr) to perform the conversion.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 593

Defining the Data Types594

The Boolean type isn’t numeric — it’s logical . . . simply a decision value.
You can convert it to a number, as shown in the example code. The value is
always -1 for True values and 0 for False values.

VBA also lets you convert a numeric value to a Boolean type by using the
CBool function shown in the code. Any value that you store in the Boolean,
other than 0, equates to True. Converting the Boolean back to a number
still shows -1 for True values and 0 for False.

Using currency values for money calculations
Money usually requires special handling on a computer because rounding can
introduce significant errors. Even small incremental errors can result in large
errors if they accumulate over time. The Currency data type provides special
handling for money calculations but at a slight performance hit because the
Currency data type requires additional memory and processing cycles.

Along with the Currency data type, VBA provides a number of special func-
tions for calculating common monetary values. These are the same special
functions available to you in your Excel spreadsheet. For example, you still
have access to the Pmt() function. When you’re working with monetary
values in a VBA program, the main concern is to use the Currency data type
as needed. Listing 3-7 shows how the Currency data type and the Pmt()
function work together.

Listing 3-7: Working with Monetary Values

Public Sub ShowPayment()
‘ Create the required variables. All non-monetary
‘ values use the Double type to ensure accuracy. The
‘ monetary values use the Currency data type.
Dim Rate As Double
Dim Periods As Double
Dim PresentValue As Currency
Dim FutureValue As Currency

‘Calculate the monthly payment on a mortgage.
Rate = 0.005 ‘ 6 Percent divided by 12 Months
Periods = 60 ‘ 5 years
PresentValue = 120000 ‘ $120,000.00 loan
MsgBox CStr(Pmt(Rate, Periods, PresentValue)), , _

“Mortgage Output”

‘ Calculate the monthly payments required to build
‘ a savings account to 120000
Rate = 0.0025 ‘ 3 Percent divided by 12 Months
Periods = 240 ‘ 20 years
PresentValue = -5000 ‘ $5,000 current savings.
FutureValue = 120000 ‘ $120,000.00 savings in 20 years

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 594

Book VIII
Chapter 3

Storing and
M

odifying
Inform

ation
Defining the Data Types 595

MsgBox CStr(Pmt(Rate, Periods, PresentValue, _
FutureValue)), , “Savings Output”

End Sub

The code shows two examples. The first determines the minimum that you
would need to pay each month on a 5-year loan of $120,000 compounded at
a 6-percent interest rate. The second shows how much you would need to
pay into a savings account each month to have saved $120,000 in 20 years
if you start with $5,000 in the account, and the bank gives you a 3-percent
interest rate. Running the example shows that the mortgage payment is
$2,319.94 per month and that the savings rate is $337.79 per month.

Using date and time values
Tracking time and date in your program can be important. Sometimes, it’s
simply a matter of knowing the last time you updated a Web page with new
information, but time and date serve other purposes as well. For example,
you could create statistical information about your Web pages by using
FrontPage macros and storing them in a local file or even a database for
later analysis.

Both date and time variables rely on the Date data type, which contains both
date and time information. You can separate the information as needed. You
can also assign date and time to the variable independently, by using the
Date and Time functions, or together, by using the Now function. Listing 3-8
demonstrates various time functions. Notice that you can control individual
elements, making it easy to change just what you need.

Listing 3-8: Keeping Track of the Time

Public Sub ShowTime()
‘ Create a time variable.
Dim MyTime As Date

‘ Obtain the current time.
MyTime = Time

‘ Display the hours, minutes, and seconds.
MsgBox “The current time is: “ + _

vbCrLf + “Hours: “ + CStr(Hour(MyTime)) + _
vbCrLf + “Minutes: “ + CStr(Minute(MyTime)) + _
vbCrLf + “Seconds: “ + CStr(Second(MyTime)), , _
“Current Time”

End Sub

VBA provides access to the whole time value by using the Time function.
You can also use the Hour, Minute, and Second functions for specific infor-
mation. Not shown in the example is how you can set the current time by
using Time on a line by itself and supplying a time value such as Time =

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 595

Working with Operators596

#1:0:0# (for 1:00 a.m.). In this case, Time acts as a property, rather than a
statement, and accepts input in any valid format, such as #1 PM# for 1:00
p.m. (or 1300 in military time). Notice that time and date values always
appear within the # symbols rather than the double quotes used for strings.

Working with variant data
The “Understanding the numeric types” section demonstrates one use of the
Variant data type. However, a Variant can hold any data type, including
objects. A program can use a Variant when VBA doesn’t provide direct sup-
port for a particular data type (such as the Decimal type), or when the type
of information that the user will provide is unknown when you write the pro-
gram. In short, a Variant is the universal data type for VBA.

Working with Operators
Operators determine how VBA works with two variables and what result the
combination produces. The examples in this chapter use operators to add
numbers and concatenate (add) strings. In both cases, your code uses the +
operator to perform the task. However, the result differs. When using num-
bers, the result is a summation, such as 1 + 2 = 3. When using strings, the
result is a concatenation, such as Hello + World = Hello World. VBA
groups operators into four areas:

✦ Arithmetic: Operators that perform math operations such as addition
(+), subtraction (-), division (/), and multiplication (*)

✦ Comparison: Operators such as less-than (<), greater-than (>), and
equals (=) that compare two values and produce a Boolean result

✦ Concatenation: Operators such as & and + used to add two strings
together

✦ Logical: Operators such as Not, And, Or, and Xor used to perform
Boolean operations on two variables

VBA also assigns operators a precedence, or order of use. When your code
contains the equation MyVal = 1 + 2 * 3, VBA performs the multiplica-
tion first and then the addition — resulting in a value of 7 — because multi-
plication has a higher precedence than addition. However, the equation
MyVal = (1 + 2) * 3 has a result of 9 because parentheses have a higher
precedence than multiplication. The rules that VBA uses for precedence are
the same rules you learned in math class.

42_575317 bk08ch03.qxd 9/24/04 9:08 PM Page 596

Chapter 4: Creating Structured
Programs

In This Chapter
� Developing applications using structures

� Using the If...Then statement

� Using the Select...Case statement

� Using loop statements

� Changing the application flow with GoTo

Structures help organize your VBA code so it can perform more tasks
more efficiently. Special statements can help organize the code so it

accomplishes tasks based on decisions or performs the same task multiple
times. This chapter shows how to use special statements to make decisions,
perform tasks more than once, or redirect control to another area of the
program.

These statements also improve program flexibility. A program that uses the
right statements can perform a wider variety of tasks and take outside con-
ditions into account, such as the day of the week or the current state of the
computer. Statements that control program flow are essential to writing pro-
grams that need less input from you and perform more tasks automatically.
For example, VBA can help you create FrontPage documents that automati-
cally reflect special events such as a document template change (you might
want to include a comment or other feature that a document template change
normally doesn’t affect).

Exercising Control with Structures
Few programs use all the statements in the program file all the time. You
might want the program to perform one task when you click Yes and another
task when you click No. The statements for both tasks appear in the code, but
the program executes only one set of statements.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 597

Making a Decision with the If...Then Statement598

To control program execution, the developer adds special statements —
such as the If...Then statement — that show the beginning and end of
each task and also decide which task to execute. You may think that letting
the computer decide which task to execute would cause the developer to
lose control of the program. However, the developer hasn’t lost control of
the program because the decision-making process is predefined as part of
the program design.

Most developers refer to the combination of beginning and ending state-
ments for a task as a control structure because it adds control to a program.
The If...Then statement and its accompanying End If statement combine
to form an If...Then control structure.

Because the program contains more than one task, it has more than one
path of execution. When you add control structures, the number of execu-
tion paths increases exponentially. For example, a program with one control
structure has two paths of execution, but a program with two control struc-
tures has four paths. As you can imagine, the task of debugging the applica-
tion becomes harder when you add control structures, so designing your
program carefully is important.

You can also nest control structures. A program might require multiple deci-
sion points to address a specific need. For example, the program might need
to decide whether you requested an apple or an orange. When you select an
apple, the program then might have to decide between a yellow, green, or
red apple. The program can’t make the second decision without the first, so
the second decision is nested within the first.

Making a Decision with the If...Then Statement
Most programs require decision-making code. When you need to make the
same decision every time that you perform a task, and the outcome of the
decision is always the same, then making the decision is something you can
tell VBA to do for you using the If...Then statement.

All forms of If...Then statements can use any expression that equates to a
Boolean value, including a variable of the Boolean data type. The term expres-
sion refers to any equation or variable that VBA can interpret as a means of
determining when it should perform the tasks within the If...Then structure.
For example, the expression 2 > 1 is true, so VBA would perform the tasks
within the If...Then structure. You can also use variables for these expres-
sions, such as A = B.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 598

Book VIII
Chapter 4

Creating Structured
Program

s
Making a Decision with the If...Then Statement 599

Using the If...Then statement
The If...Then statement is the simplest form of decision-making code. This
statement tells VBA to perform a task if a condition is true. If the condition
isn’t true, VBA ignores the statements within the If...Then structure.

The example in this section uses an If...Then statement to check which
document is open. When the correct document (in this case, one with a title
you specify) is open, it displays a success message. The code in Listing 4-1
shows how a simple If...Then statement works.

Listing 4-1: Using an If...Then Statement for Decisions

Public Sub TestIf()
‘ Determine whether the test page is open.
If ActiveDocument.Title = “Macro Test Page” Then

‘ Display a success message when the page is open.
MsgBox “The test page is open!”, vbInformation, _

“Page Type Success”
End If

End Sub

The code begins by obtaining the ActiveDocument.Title property value. It
compares this value to the “Macro Test Page” string. When the two values
compare successfully, the page is correct — and the code displays a success
message.

Notice that the MsgBox() function includes the vbInformation constant
in this case. This constant differs from other constants such as vbOKOnly
because it changes the icon displayed in the message box, rather than affect-
ing the buttons. The icon you choose affects not only the message box dis-
play, but also the sound Windows plays when it displays the message box
on-screen. The change in sound reflects the display of a specific kind of mes-
sage box.

Using the If...Then...Else statement
The If...Then...Else statement makes one of two choices. If the expres-
sion controlling the statement is true, VBA executes the first set of state-
ments. On the other hand, if the expression is false, VBA executes the
second set of statements.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 599

Making a Decision with the If...Then Statement600

The example in this section uses such a statement to display one message
when the user has the correct Web page open and another message when
the user has the wrong Web page open. Listing 4-2 shows the code that you
need to make these two checks.

Listing 4-2: Using the If...Then...Else Statement for Comparisons

Public Sub TestIfElse()
‘ Determine whether the test page is open.
If ActiveDocument.Title = “Macro Test Page” Then

‘ Display a success message when the page is open.
MsgBox “The test page is open!”, vbInformation, _

“Page Type Success”
Else

‘ Display an error message otherwise.
MsgBox “Open the test page!”, _

vbExclamation Or vbRetryCancel, _
“Page Type Error”

End If
End Sub

The code begins by checking for the correct Web page title. If the title matches
the “Macro Test Page” string, the code displays the success message. In an
production application (one that you would use in a working environment),
the code would perform a task based on the content of the page you selected.

When the user opens the wrong page, the code displays an error message.
Looking for a particular action on the part of the user and displaying an
error message when the action is incorrect is a very common task. In cases
where an error message is necessary, a message box that simply displays the
OK button is probably not enough. Such a box suggests that either there
isn’t any other course of action (the failure is bad enough that the applica-
tion can’t recover) or the developer was too lazy to include another course
of action.

Generally, it’s better to allow the user to retry the action (if appropriate), or to
indicate that the user should not try again. Giving the user the opportunity to
choose is important because you can’t be there to help the user make a choice
based on the current situation. The MsgBox() function in this example shows
how to change both the icon used to display the message box and the kind of
buttons that VBA displays. The user sees the error message, hears the error
tone, and has the opportunity to retry the task or simply do something else.
Figure 4-1 shows the error-message dialog box created in this case.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 600

Book VIII
Chapter 4

Creating Structured
Program

s
Making a Decision with the If...Then Statement 601

Using the If...Then...ElseIf statement
When making multiple comparisons, you can use the If...Then...ElseIf
statement to make the code easier to read. Using this format can also reduce
the number of decisions that VBA must make, which ensures that your code
runs as quickly as possible. Listing 4-3 shows how to use the
If...Then...ElseIf statement.

Listing 4-3: Using the If...Then...ElseIf Statement for Comparisons

Public Sub CheckGenerator()
‘ Create a variable to check the page generator.
Dim Generator As String

‘ Fill the variable with input from the Web page.
Generator = _
ActivePageWindow.File.MetaTags(“Generator”)

‘ Check for the latest generator.
If Generator = “Microsoft FrontPage 6.0” Then

‘ Display a success message.
MsgBox “The code generator is current.”

ElseIf Generator = “Microsoft FrontPage Express 2.0” Then

‘ Display an update message.
MsgBox “Time for an update!”

Else

‘ The generator isn’t one we own.
MsgBox “Unknown generator, check this file!”

End If
End Sub

Figure 4-1:
Choose
icons and
buttons
consistent
with the
purpose
of the
message
box.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 601

Making a Choice Using the Select Case Statement602

The code begins by creating a variable to hold the name of the code generator
(a programmer term for the application used to create the Web page) used
to create the Web page. Notice the method used to get the information. The
ActivePageWindow.File.MetaTags collection contains all of the tags for
the selected Web page. The “Generator” string is an index into the collec-
tion — it chooses one of the meta tags from the collection. You can use the
same technique to access any meta tag properties you define for a Web page.
The index always appears as part of the name attribute, as shown here.

<meta name=”GENERATOR” content=”Microsoft FrontPage 6.0”>

After the code obtains the name of the generator, it uses this value to detect
the application name. In this case, the code checks for three values: the name
of the current version of FrontPage, one of the older versions of FrontPage,
and unknown generators. The fact that Generator doesn’t match one of the
predefined values doesn’t mean the code generator is unknown, simply that
you haven’t checked for that particular code generator.

Making a Choice Using the Select Case Statement
You can use the If...Then...Else or If...Then...ElseIf statements
to meet all decision-making needs. However, using these statements can
quickly make your code hard to read if you’re telling it to make a lot of deci-
sions in rapid succession. These statements have to be used when you per-
form complex expression-checking procedures. VBA provides the Select
Case statement as an easier-to-read choice when you’re making a single
selection from a list of choices. If you know that a variable contains one of
several choices and all you need to check is the choice, using the Select
Case statement makes sense.

Using the Select Case statement
The Select Case structure begins with the Select Case statement and
ends with an End Case statement. You provide a variable that the Select
Case statement can use for selection. Within the Select Case structure are
Case clauses, or values that the Select Case structure uses for compari-
son. When the value of a clause matches the value of the input variable, the
Select Case structure performs all tasks required by that clause.

The example in this section is a different version of the If...Then...ElseIf
statement shown in Listing 4-3. The example shows how the Select Case
statement makes the code easier to read and reduces the amount of typing
you have to do. Listing 4-4 shows the code needed to make the choices.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 602

Book VIII
Chapter 4

Creating Structured
Program

s
Making a Choice Using the Select Case Statement 603

Listing 4-4: Using a Select Case Statement for Multiple Decisions

Public Sub CheckGenerator2()
‘ Determine the generator version.
Select Case ActivePageWindow.File.MetaTags(“Generator”)

Case “Microsoft FrontPage 6.0”
‘ Display a success message.
MsgBox “The code generator is current.”

Case “Microsoft FrontPage Express 2.0”
‘ Display an update message.
MsgBox “Time for an update!”

End Select
End Sub

The code checks each kind of code generator without having to review it as
part of an If...Then...ElseIf statement. You provide the source of the
information only one time and VBA executes only the case that matches the
correct code generator. The way the code is written makes it easy to locate
a particular case quickly when you need to make changes.

This technique can be more memory efficient and faster too. The code
in Listing 4-3 creates a variable to hold the data. The reason for this step
is that otherwise VBA would have to waste time reevaluating the
ActivePageWindow.File.MetaTags(“Generator”) property for every
code generator. It’s faster to place the information in a local variable and let
VBA work with it. Unfortunately, the local variable consumes memory and
your computer doesn’t have an unlimited supply. The Select Case state-
ment eliminates this requirement.

Using the Case Else clause
A Select Case statement should normally contain the optional Case Else
clause to ensure you handle all cases, even those you don’t expect when you
write the program. Adding this clause requires little time and adds an impor-
tant error-trapping feature to your program. You could easily change the pro-
gram from the previous section to include a Select Case statement like the
one shown in Listing 4-5.

Listing 4-5: Handling Unforeseen Decisions with Case Else

Public Sub CheckGenerator2()
‘ Determine the generator version.
Select Case ActivePageWindow.File.MetaTags(“Generator”)

Case “Microsoft FrontPage 6.0”
‘ Display a success message.

(continued)

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 603

Performing a Task More than Once Using Loops604

Listing 4-5 (continued)

MsgBox “The code generator is current.”

Case “Microsoft FrontPage Express 2.0”
‘ Display an update message.
MsgBox “Time for an update!”

Case Else
‘ The generator isn’t one we own.
MsgBox “Unknown generator, check this file!”

End Select
End Sub

The older version of the code could cause problems when the Web page
doesn’t have one of the required entries. This version provides an error mes-
sage telling you that the code generator is unrecognized. It exits before the
code has a chance to create an error condition.

Performing a Task More than Once Using Loops
Many tasks that you perform require more than one check, change, or data
manipulation. You don’t change just one table entry in a Web page; you
change all the affected entries. Likewise, you normally don’t review just one
property in the document, you review all of them. You need a method for
reading and writing data multiple times in FrontPage.

Loops provide a method for performing tasks more than one time. You can
use loops to save code writing time. Simply write the code to perform the
repetitive task once and then tell VBA to perform the task multiple times.

When using loops, you decide how the code determines when to stop. You
can tell the loop to execute a specific number of times or to continue execut-
ing until the program meets a certain condition.

Using the Do While...Loop statement
A Do While...Loop statement keeps performing a task until a certain con-
dition is true. The loop checks the expression first and then executes the
code within the structure if the expression is true. You use this loop to per-
form processing zero or more times. A Do While...Loop works especially
well if you can’t determine the number of times that the loop should execute
when you design your program.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 604

Book VIII
Chapter 4

Creating Structured
Program

s
Performing a Task More than Once Using Loops 605

One example of a situation where you won’t know how many times to per-
form a task is a property that contains a collection of items. For example,
the Application.Themes property contains a Themes collection of
individual Theme objects. Listing 4-6 shows a typical example of using
a Do While...Loop statement to process this kind of collection.

Listing 4-6: Listing Themes Using a Do While...Loop Statement

Public Sub DoWhileDemo()
Dim Counter As Integer ‘ Loop counter.
Dim Output As String ‘ Output data.

‘ Set the initial counter value.
Counter = 0

‘ Keep processing until all themes as listed.
Do While Counter < Application.Themes.Count And _

Counter < 20

‘ Get the theme name.
Output = Output + _

Application.Themes(Counter).Name + _
vbCrLf

‘ Update the counter.
Counter = Counter + 1

Loop

‘ Display the results.
MsgBox Output, , “Themes on This System”

End Sub

When it’s working with collections, a Do While...Loop statement generally
relies on a counter to detect the end of the processing cycle. The code begins
by setting Counter to a known value so the Do While...Loop expression
can perform an initial comparison. In this case, the expression consists of
two clauses:

✦ The first clause tells VBA to keep performing this task until Counter
is equal to Application.Themes.Count. The Application.Themes.
Count property contains the total number of items in the collection.
Consequently, if there are 50 themes installed on the machine, the loop
would execute 50 times.

✦ The second clause tells VBA to perform this task a maximum of 20 times.
When there really are 50 FrontPage themes installed on the system, this
clause tells VBA to process only 20 of them. Of course, if there are only
19 themes installed, you see all 19 of them.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 605

Performing a Task More than Once Using Loops606

To access an individual Theme object, the code uses a numeric index. You
specify an index by providing a counter variable in parentheses behind the
collection name like this: Application.Themes(Counter). After the code
accesses the individual Theme object, it places the value of the Name property
into Output. The technique shown in Listing 4-6 works only with collections
that have number indexes — some collections rely on string indexes and
require a different kind of processing (see the “Using the For Each...Next
statement” section of this chapter).

The code adds the current theme name to a list of previous theme names by
concatenating the Name property to the current value of Output, as shown
in the code. It adds the vbCrLf constant to the string so that each theme
name appears on a separate line in the output.

Notice that the next task the code performs is to add 1 to Counter. When you
use a counter in a Do While...Loop expression, you must update it during
every cycle or the loop will execute forever. This is called a continuous loop or
an endless loop. VBA won’t tell you about this kind of error — you must know
that you have to add the update expression to the loop. As far as VBA is con-
cerned, executing the task forever is a perfectly splendid idea.

Fortunately, there’s a way out of the continuous loop problem. Simply press
Ctrl+Break (using the actual Break key on your keyboard) and VBA will ask
whether you want to stop the program. Some developers consider Ctrl+C
and Ctrl+Break as equivalent — and they are, in some cases — but not so in
this one. Always press Ctrl+Break to stop a VBA program.

The final step in this example is to display the output. You see a list of themes
installed on your system. The list varies depending on the custom themes you
create and the FrontPage features you install.

Using the Do...Loop While statement
The Do...Loop While statement works the same as the Do While...Loop
statement. The difference is that this statement always executes once because
the expression that verifies a need to loop appears at the end of the structure.
Even if the expression is false, this statement still executes at least one time.
You can use this statement when you want to ensure that a task is always com-
pleted at least one time.

Using the Do Until...Loop statement
The Do Until...Loop statement continues processing information until the
expression is false. You can view the Do While...Loop statement as a
loop that continues while a task is incomplete. The Do Until...Loop state-
ment continues until the task is finished. The subtle difference between the

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 606

Book VIII
Chapter 4

Creating Structured
Program

s
Performing a Task More than Once Using Loops 607

two statements points out something interesting — they rely on your per-
spective of the task to complete. These two statement types are completely
interchangeable. The big difference is how you define the expression used to
signal the end of the looping sequence.

Using the Do...Loop Until statement
The Do...Loop Until statement is the counterpart of the Do Until...Loop
statement. This statement examines the expression at the end of the loop, so
it always executes at least once, even if the expression is false.

Using the For...Next statement
The For...Next statement is very handy for performing a task a specific
number of times. As long as you can determine how many times to do some-
thing in advance, this is the best looping option to use because there’s less
chance of creating an infinite loop. You can create absurdly large loops, but
they eventually end.

In many cases, the For...Next statement is interchangeable with the Do
While...Loop statement when working with FrontPage. Listing 4-7 illus-
trates this versatility.

Listing 4-7: Listing Themes Using a For...Next Statement

Public Sub ForNextDemo()
Dim Counter As Integer ‘ Loop counter.
Dim Output As String ‘ Output data.

‘ Keep processing until all themes as listed.
For Counter = 0 To Application.Themes.Count - 1

‘ Get the theme name.
Output = Output + _

Application.Themes(Counter).Name + _
vbCrLf

‘ Check for 20 themes.
If Counter = 19 Then

‘ If there are 20 themes, then exit.
Exit For

End If

Next

‘ Display the results.
MsgBox Output, , “Themes on This System”

End Sub

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 607

Performing a Task More than Once Using Loops608

This example performs the same task as Listing 4-6. The difference is in how
it performs the task. To begin, notice that the code doesn’t have to set the
initial value of Counter because the For...Next expression performs that
task. The For...Next expression also ensures that Counter is updated so
you don’t have to worry about updating Counter manually. However, the
essential task of updating Output is still the same as in Listing 4-6.

The Do While...Loop statement allows you to define two clauses for the
expression, but this isn’t possible using a For...Next statement. To over-
come this problem, you use an If...Then statement to check for the
second condition.

Remember that Counter starts with 0, so when you want to check for 20
items, you actually need to look for a Counter value of 19 to compensate
for item 0.

The code uses the special Exit For statement to exit the For...Next state-
ment early. You can use this particular feature in any loop when you think
you might need to end the loop early. Always place the Exit For statement
within a conditional statement, as shown, or the loop will exit before the first
loop is completed. Whenever VBA executes a Exit For statement, the loop
ends immediately.

Using the For Each...Next statement
The For Each...Next statement is similar to the For...Next statement
in operation. However, this statement doesn’t rely on an external counter. It
uses an object index as a counter. The advantage of using this statement is
that you don’t have to figure out how many times to perform the loop — the
object provides this information. The disadvantage of using this statement is
that you lose a little control over how the loop executes because the counter
is no longer under your control.

Unlike many other Office products, FrontPage relies heavily on a wealth of
collections that require use of the For Each...Next statement because
they use string, rather than numeric, indexes. Because of the emphasis on
string indexes, the For Each...Next statement is the most useful looping
tool for FrontPage users. Listing 4-8 shows a typical example of how to use it.

Listing 4-8: Processing Collections that Use String Indexes

Public Sub CheckAllTags()
Dim AllTags As MetaTags ‘ Holds all the tags.
Dim ThisTag As Variant ‘ Holds just one tag.
Dim Output As String ‘ Contains the output.

‘ Get all of the meta tags.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 608

Book VIII
Chapter 4

Creating Structured
Program

s
Redirecting the Flow Using GoTo 609

Set AllTags = ActivePageWindow.File.MetaTags

‘ Use a for each loop to process them.
For Each ThisTag In AllTags

Output = Output + ThisTag
Output = Output + vbTab + AllTags(ThisTag) + vbCrLf

Next

‘ Display the results.
MsgBox Output, , “Meta Tags in Current Page”

End Sub

The code begins by obtaining a copy of all the meta tags from the
ActivePageWindow.File.MetaTags property. The main reason to per-
form this extra step is to enhance application performance — so VBA
doesn’t have to go get a copy of the tags every time you create a local
copy of a processing loop.

Notice that the code has no loop counter; it doesn’t even show an index
because the index is implied. The For Each...Next expression places a
single meta tag into ThisTag during each loop. It processes every meta tag
one and only one time. The result, in this case, is a string that contains the
meta tag name — not its value, which is added to the output.

To obtain the meta tag value, the code uses an index with AllTags. The index
works because it’s the name of the meta tag you want, not a numeric value.
The final step is to display a dialog box containing the list of meta tag names
and their associated values. Make sure you have a Web page that contains
meta tags open when you run this example or you’ll receive an error message.

Redirecting the Flow Using GoTo
You might run into situations where the existing program flow won’t work,
and you have to disrupt it to move somewhere else in the code. The GoTo
statement provides a means of redirecting program flow. Used carefully, the
GoTo statement can help you overcome specific programming problems.

Unfortunately, the GoTo statement has caused more problems (such as creat-
ing hard-to-understand code and hiding programming errors) than any other
programming statement because it has a great potential for misuse. Novice
programmers find it easier to use the GoTo statement to overcome program-
ming errors rather than to fix these problems. Always use the GoTo statement
with extreme care. Designing your code to flow well before you write it — and
fixing errors as you find them — are both easier than reading code with mis-
used GoTo statements.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 609

Redirecting the Flow Using GoTo610

Using the GoTo statement correctly
The GoTo statement does provide an essential service: It helps you redirect
program flow. Before you use the GoTo statement, however, ask yourself
whether there’s some other way to perform the redirection, such as using a
loop. Listing 4-9 shows an example of correct GoTo usage.

Listing 4-9: Using the GoTo Statement

Public Sub CorrectingErrors()

Dim TheInput As String ‘ User input value.

‘ Restart point after an error.
Restart:

‘ Include error handling.
On Error GoTo HandleError

‘ Get a number from the user.
TheInput = InputBox(“Type a number between 0 and 9”, _

“Numeric Input”, “0”)

‘ Determine whether the test page is open.
If CInt(TheInput) >= 0 And CInt(TheInput) <= 9 Then

‘ Display a success message when the page is open.
MsgBox “You Entered: “ + TheInput, vbInformation, _

“Success!”
Else

‘ Display an error message otherwise.
If MsgBox(“Incorrect Number, Use 0 Through 9”, _

vbExclamation Or vbRetryCancel, _
“Error”) = vbRetry Then

‘ Try the operation again.
GoTo Restart

End If
End If

‘ Exit the Sub when successful.
Exit Sub

‘ Take care of any errors.
HandleError:

‘ Reset the error.
Err.Clear

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 610

Book VIII
Chapter 4

Creating Structured
Program

s
Redirecting the Flow Using GoTo 611

‘ Display an error message.
If MsgBox(“Incorrect Non-Numeric Input!”, _

vbExclamation Or vbRetryCancel, _
“Error”) = vbRetry Then

‘ Try the operation again.
GoTo Restart

End If
End Sub

This example shows several new techniques, including two techniques for
trapping errors. Notice that the code begins by creating a label. A label is
a word followed by a colon. The GoTo statement relies on labels to know
where to restart the application code.

The InputBox() function displays a dialog box with a space where the user
can type information. In this case, TheInput receives the value the user
typed in the dialog box. Of course, there isn’t any way to know whether the
user typed the correct value at this point. The InputBox() function merely
provides a way for the user to enter a value.

The code begins this check by converting TheInput to an integer using the
CInt() function. When the user enters a number between 0 and 9, the code
displays a success message. However, when the user enters a number out-
side that range, the code displays an error message, saying the number is
incorrect. When the user clicks Retry, the code uses a GoTo statement to
redirect program flow to the Restart label to give the user another chance
to type the correct value.

This first error check assumes the user typed a number, just the wrong
number. When the user types something unexpected, VBA raises a type mis-
match error when it comes to the CInt() function. For example, the string
value “Hello World” is perfectly acceptable to the InputBox() function,
but doesn’t work with the CInt() function because the data type is wrong.
The On Error Goto statement (another form of GoTo statement) handles
this problem by redirecting the user to the HandleError label. The user is
informed that non-numeric input is unacceptable. When the user clicks
Retry, the code again redirects the user to the Restart label. The goal of
this code is to keep working with the user to obtain the correct information.

The code also contains an Exit Sub statement before the HandleError
label. This statement tells VBA to exit without executing the error-handling
code when the user provides the correct input.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 611

Redirecting the Flow Using GoTo612

Avoiding misuse of the GoTo statement
Many programmers misused the GoTo statement so severely in the past that
most books tell you not to use it at all. Misuse of the GoTo statement leads to
buggy code that is hard to read. In addition, GoTo statements can hide poor
program design. However, the GoTo statement can also accomplish useful
work, so the goal is to avoid misuse of the GoTo statement and concentrate
on useful tasks. Here are some ways to avoid misusing the GoTo statement:

✦ Loops: Never use a GoTo statement as a loop replacement. The state-
ments used for loops signal others about your intent. In addition, stan-
dard loop statements contain features that keep bugs, such as endless
loops, to a minimum.

✦ Exits: Avoid using a GoTo statement as a means of exiting a program. You
can always use the End statement for that task.

✦ Program-flow problems: If you detect problems with the flow of your
program, check your pseudo-code and design documents again. Make
sure you implement the design correctly. The design might require
change as well. Don’t assume that the design is always correct, espe-
cially if this is a first attempt.

43_575317 bk08ch04.qxd 9/24/04 9:09 PM Page 612

Chapter 5: Trapping Errors
and Squashing Bugs

In This Chapter
� Understanding the various types of bugs

� Figuring out how to track down bugs

� Getting to know the Locals window

� Getting to know the Watch window

Even the best programmer in the world makes mistakes. It’s part of the
human condition. Don’t be surprised when a bug creeps into your well-

designed and -implemented VBA program. Bugs are the gremlins of the com-
puter industry — they’re insidious and evil.

Fortunately, you can hunt down bugs and squash them. You can also prevent
bugs from occurring in the first place by coding your VBA program carefully.
The goal of this chapter is to help you understand what you can do to pre-
vent bugs in your VBA program and what to do when they get in anyway.

You won’t figure out how to write perfect programs because no one does. As
a result, you use error trapping to detect bugs and do something about them
before they can cause problems. In the cases where you can’t detect the
bug, you use error handling to fix the problem the bug causes and help your
VBA program recover. This chapter covers the fine points of dealing with
bugs. Debugging scripts is covered in Book VII, Chapter 4.

Knowing the Enemy
Users look at bugs as nonentities devoid of any characteristics. All a user
knows is that a bug causes the program to crash and lose data. You can’t
afford to have that perspective. Bugs have personalities, in that they vary by

✦ Type

✦ Cause

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 613

Knowing the Enemy614

✦ Effect

✦ Severity

✦ Other factors that you include in your personal classification system

Locating a bug means knowing about its personality so that you can find it
quickly. It helps to classify the bug by type. Each bug type has a different
prevention and troubleshooting method. You can classify bugs into the fol-
lowing four types:

✦ Syntax

✦ Compile

✦ Run-time

✦ Semantic

The best way to find bugs is to know your coding style. Keeping notes helps
you understand patterns in your programming so that you can correct tech-
niques that lead to bugs. More importantly, understanding your personal
style helps you develop techniques for finding bugs based on past mistakes.
Knowing what you did in the past helps you locate and squash bugs today.

Understanding syntax errors
Syntax errors are the easiest errors to avoid but are also some of the hardest
errors to find. A syntax error can include a spelling mistake, misuse of punc-
tuation, or a misuse of a language element. When you forget to include an
End If for an If...Then statement, it’s a syntax error.

Typos are a common syntax error. They’re especially hard to find when you
make them in variable names. For example, VBA views MySpecialVariable
and MySpecialVaraible as two different variables, but you might miss the
typing error. Adding Option Explicit to the beginning of every module,
form, and class module that you create eases this problem. You can rely on
VBA to find most variable typos when you add this simple statement to your
code. In fact, this statement should become a standard part of every pro-
gram you create. (See the “Understanding compile errors” section for details
on using Option Explicit.)

You can easily miss some of the subtle aids to locating syntax errors if
you don’t view carefully enough tasks that the Integrated Development
Environment (IDE) performs. The balloon help shown in Figure 5-1 for the
MsgBox function provides a cue that you could miss. VBA displays the bal-
loon help shown in the figure only when it recognizes the function name that

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 614

Book VIII
Chapter 5

Trapping Errors and
Squashing Bugs

Knowing the Enemy 615

you type. When you don’t see the balloon help, it’s a cue that VBA doesn’t
recognize the function name, and you need to look at your code. Unfortunately,
this feature works only where VBA normally displays balloon help — it doesn’t
work when you type property names.

No matter what you do, a few syntax errors can slip by and cause bugs in
your program. You can look at the errors for hours and not actually see them
because you’ve worked with the code for so long. Asking someone else to
look at your code often helps, but make sure that you ask someone with the
same or better programming skills that you have to ensure that they under-
stand your code.

Syntax errors also include errors in logic (the construction of expressions
in your program). You can create a loop that processes the loop structure
statements once too often or not often enough. An If...Then statement
can use an expression that works most of the time but isn’t quite right, so
it doesn’t produce the correct result all of the time. Code with logic errors
runs because VBA doesn’t know that the expression is incorrect. The only
way to find this kind of syntax error is to debug the program. See the “Time
for a Bug Hunt” section for details.

Understanding compile errors
The VBA compiler is actually a syntax checker. Unlike compilers used by
other languages, the VBA compiler doesn’t turn your code into a free-standing
module that you can execute outside the Office environment. Instead, VBA
uses the compiler to look for errors that prevent the program from running
properly. You might create an If...Then statement and not include the cor-
responding End If statement. The compiler runs constantly, so VBA finds
some mistakes almost immediately after you make them.

VBA uses the compiler to find many of the syntax errors that you make and
displays error messages similar to the one shown in Figure 5-2. You can try
this feature in the following way. Open a new project, create a Sub (the name

Figure 5-1:
Balloon help
helps locate
syntax
errors in
your code.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 615

Knowing the Enemy616

isn’t important), and type MsgBox(). Then press Enter. VBA displays the
message box shown in Figure 5-2. When you use parentheses after MsgBox,
VBA expects that you want to include a result variable to hold the result,
such as MyResult = MsgBox(“My Prompt”). You should also notice that
the errant line of code appears in a highlight color, which is normally red.

Missing elements are another type of syntax error that VBA finds with rela-
tive ease. When you fail to include an End If for an If...Then statement,
VBA always finds it and displays an error message similar to the one shown
in Figure 5-2. However, VBA won’t find this error, in most cases, until you
try to run the program. In addition, it doesn’t show the errant If...Then
statement — VBA normally highlights the End Sub or End Function state-
ment instead, thus making this error a little harder to find.

The compiler also finds many of the punctuation errors that you can make
in your code. When a line of code becomes too long, and you try to move to
the next line without adding a continuation character, the compiler notices
the error and tells you about it. The complier also notes missing periods
between elements of a statement or missing parentheses from function calls
(when needed).

When you add Option Explicit to your code (see Listing 5-1), the com-
piler checks variables for a number of problems such as correct declaration.
If you try to, say, assign a string value to an integer, VBA initially allows you
to make this error when you type the code. However, when you try to run
the code, the compiler sees the type mismatch and tells you about it. The
compiler can detect many variable errors that would go unnoticed other-
wise, making your code less likely to contain errors.

Understanding run-time errors
Run-time errors happen when something outside your program is incorrect.
A disk access request can fail, or you can type the wrong information. Your
VBA code is correct, but the program still fails because of this external error.
Run-time errors are the reason why many large companies such as Microsoft

Figure 5-2:
VBA finds
some syntax
errors.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 616

Book VIII
Chapter 5

Trapping Errors and
Squashing Bugs

Time for a Bug Hunt 617

run beta programs. (A beta program is a vendor-sponsored version of a pro-
gram distributed before the developers have finished it for the purpose of
testing and evaluation.) Sending beta programs to a large base of users can
help you find run-time errors that depend on a particular machine configura-
tion or a specific kind of user entry technique.

You can trap run-time errors or change the program flow to ensure that they
don’t happen. Refer to Chapter 4 for two essential techniques for changing
program flow to avoid run-time errors using the GoTo statement. Error trap-
ping helps your program overcome errors that you can’t predict when you
write a program.

Understanding semantic errors
A particularly difficult error to find and understand is the semantic error,
which is an error that happens when the VBA code and logic are correct, but
the meaning behind the code isn’t what you intended. For example, you could
use a Do...Until loop in place of a Do...While loop. Even if the code is cor-
rect and you use the correct logic, the code won’t produce the result that you
expected because the meaning of a Do...Until loop is different from a
Do...While loop.

The meaning that you assign to your code has to match the words that you
use to write the code. Just like a good book uses precise terms, a good pro-
gram relies on precise statements to ensure that VBA understands what you
want to do. The best way to avoid semantic errors is to plan your application
carefully, use pseudo-code to pre-write the design, and then convert the
pseudo-code to VBA code. When you skip steps in the process, you can intro-
duce semantic errors because you won’t communicate your ideas well to VBA.

Introducing semantic errors in subtle ways is easy. Writing an equation the
wrong way can result in output errors. When you use the wrong equation to
determine the next step in a loop, the problem becomes worse because the
error looks like a syntax or runtime error. The steps between loops or the
expression used to make a decision are very important. The most common
error is leaving the parentheses out of an equation. VBA interprets 1 + 2 * 3
as 7, but (1 + 2) * 3 as 9. The missing parentheses are easy to miss when you
frantically search for an error.

Time for a Bug Hunt
Because the VBA IDE provides a special tool called a debugger, you never
have to hunt bugs alone. The debugger is a built-in feature that you access

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 617

Time for a Bug Hunt618

by using a special Debug toolbar. Figure 5-3 shows the Debug toolbar. Add it
to your IDE by right-clicking the toolbar area and then choosing Debug from
the list of available toolbars.

Executing a break
Whenever you open your program in the VBA IDE and execute it from there,
the program is in debug mode. Using debug mode lets you stop the program
and see what it’s doing at any particular moment. Not only can stopping the
program help you find bugs, but it can also help you discover more about
VBA and how to use it. You could use this feature to view other people’s
code to see how they perform programming tasks.

Before you can stop execution of your program, you need to tell VBA where
to stop. A stop within a VBA program is a breakpoint. To add a breakpoint to
your code, highlight the stopping point and then click the Toggle Breakpoint
button on the Debug toolbar. When you click the Run Sub/User Form button,
VBA automatically stops at the point that you selected.

When your program has a natural stop, such as in a form or at an InputBox
statement, you can also click the Break button on the Debug toolbar to stop
the program and view it in the debugger. The Break button differs from the
Reset button because the Break button only pauses execution. Clicking the
Reset button always completely stops the program, and to start it again, you
have to restart it from the beginning.

Another way to execute a break is to use the Debug.Assert method. You
can use any Boolean expression with this method. If the expression is true,
program execution continues as normal. However, if the expression is false,
the program breaks so that you can examine the value. This form of break is

Break

Toggle Breakpoint

Step Over

Locals Window

Watch
Window

Call Stack

Run Sub/User Form

Reset Step Into

Step Out Immediate Window

Quick Watch

Figure 5-3:
Use the
Debug
toolbar to
access
debugger
features.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 618

Book VIII
Chapter 5

Trapping Errors and
Squashing Bugs

Time for a Bug Hunt 619

helpful when you know that a program should have variables with a certain
range of values.

Whenever you execute a break, the program is temporarily stopped. Click
the Run Sub/User Form button to start the program from the current stop-
ping point. As far as the program is concerned, it never stopped.

Taking individual steps
Whenever you execute a break in a running program, the debugger enables
the Step Into, Step Over, and Step Out buttons. You use these three buttons
to take individual steps within the program — to execute one line of code at
a time. The reason why you want to do this is to see the effect of each state-
ment on the program data. When you think that a statement changes a string
in a certain way, you can prove it to yourself by viewing the effect of that
particular statement.

You use the Step Over button, in most cases, because you want to see the
effects of statements in the current Sub or Function. Clicking the Step Over
button moves from line to line in the current code. The code still executes in
any Function or Sub called from the current Function or Sub, but you
don’t see it. The code executes in the background.

When you suspect that the called Function or Sub has an error, use the Step
Into button to go into that Function or Sub from the current location. The
IDE moves the cursor from the current position to the called Function or
Sub so that you can see the code while it executes. You still view one line at
a time when using this button. The difference is that you see the called code
in addition to the Function or Sub of interest.

When you debug a called Function or Sub, you might decide that there
really isn’t an error in that section of the code. Instead of stepping through
one statement at a time until you return to the calling code, you can use the
Step Out button to return immediately. VBA still executes all the code in the
called function — it just happens in real time rather than one line at a time.

Viewing the data tips
When you execute a program break, you can view the current value of vari-
ables in several ways. The easiest way is to use the data tips feature shown
in Figure 5-4. (See the “Using the Locals Window” and “Using the Watch
Window” sections for other techniques.) To see this view, simply hover the
mouse pointer over any variable — and that includes objects.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 619

Time for a Bug Hunt620

Using the Immediate window to your advantage
The Immediate window is a valuable debugging tool. You can display the
Immediate window by clicking the Immediate Window button on the Debug
toolbar (refer to Figure 5-3). Chapter 1 shows that you can actually create a
mini-program by using it. The Immediate window can perform simple assign-
ments, and you can use it to determine the value of a variable.

The Immediate window can also act as an output screen. The most common
way to do so is by using the Debug.Print method. Listing 5-1 contains some
code that shows how to use this valuable debugging method.

Listing 5-1: Using the Debug Object

‘ Ensure all variables are defined properly.
Option Explicit

Public Sub UseDebug()
‘ The variable that receives the input.
Dim InNumber As Byte

‘ Ask the user for some input.
InNumber = InputBox(“Type a number between 1 and “ + _

“10.”, “Numberic Input”, “1”)

‘ Print the value of InNumber to the Immediate window.
Debug.Print “InNumber = “ + CStr(InNumber)

‘ Stop program execution if InNumber is not in the
‘ correct range.
Debug.Assert (InNumber >= 1) And (InNumber <= 10)

‘ Display the result.
MsgBox “The Number You Typed: “ + CStr(InNumber), _

vbOKOnly Or vbInformation, _
“Successful Input”

End Sub

Figure 5-4:
Rely on
data tips
whenever
possible to
see the
value of a
variable.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 620

Book VIII
Chapter 5

Trapping Errors and
Squashing Bugs

Using the Locals Window 621

Notice how this sample uses the Debug.Print and the Debug.Assert meth-
ods in combination. The Debug.Print method outputs the current values to
the Immediate window, and the Debug.Assert method checks for a specific
input range. When the range is incorrect, the program breaks, and you can
see the errant value in the Immediate window.

Using the Locals Window
The Locals window shows all the variables that the current code segment
can see. This means you can see variables defined within the current Sub
or Function as well as global variables. You display the Locals window by
clicking the Locals Window button on the toolbar. Figure 5-5 shows a typical
example of the Locals window.

The Locals window displays three kinds of information: variable name, value,
and data type. The display begins with MakeDecisions, which is the name of
the module in this case. This entry contains all the global variables that the
current code can see.

The next entry is AllTags, which is an object of type MetaTags. The Locals
window helps you see all of the properties for this object. For example, the
Count property has a value of 8.

You can use property values to determine whether the object is behaving as
you anticipated.

You can also see local variables here. The first entry is ThisTag, which is of
type Variant/String. Even though the data type declared in the code is
Variant, the actual data type is String. The code also includes a variable
declared as type String, Output.

Figure 5-5:
Use the
Locals
window to
see visible
variables.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 621

Using the Watch Window622

Using the Watch Window
The Watch window works similarly to the Locals window, but it has a different
purpose: The Locals window shows variables in their raw format, and only the
variables you can see locally. You might want to see other variables, or you
can use a function to change a variable before you view it. The Watch window
helps you perform tasks like these, but it requires a little more work to use.
You can display the Watch window by clicking the Watch Window button on
the toolbar. Figure 5-6 shows a typical example of the Watch window.

Notice that this window adds a Context field. This field tells you where a
variable is defined. Because you can use variables from any location, know-
ing where they come from is important.

Adding a new watch expression
The easiest way to add a watch expression is to highlight the expression in
your code and then drag it to the Watch window. VBA automatically enters
all the correct information for you — you don’t need to do anything else but
look at the value. You can also highlight the expression and click the Quick
Watch button on the toolbar. When you use this method, you see a Quick
Watch dialog box that tells you about the new watch expression. Click Add
to add the new watch or Cancel to change your mind.

Using the Add Watch window
A watch expression might be more complex than a single variable or even an
expression in your code. Look at the second expression in Figure 5-6. This
expression doesn’t come from the code — I created it by using the Add Watch
window. The Add Watch dialog box (see Figure 5-7) gives you full control over
the expression. To display the Add Watch dialog box, highlight any expression
in your code, right-click the highlight, and then choose Add Watch from the
context menu that appears.

Figure 5-6:
The Watch
window
tracks
variables
and
expressions.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 622

Book VIII
Chapter 5

Trapping Errors and
Squashing Bugs

Using the Watch Window 623

You can modify an expression by changing the content of the Expression
field. For example, in Figure 5-6, I highlighted the AllTags.Count entry in
the code and added the CStr part of the expression. You can also use this
dialog box to change the context of a watch expression. It might help to
have access to global variables in every procedure, not just the current pro-
cedure. A common local variable could also appear in more than one Sub or
Function.

Notice the three options in the Watch Type group. VBA assumes you want
to create a watch expression. That’s what you get when you create a quick
watch or use the drag-and-drop method. You can also set a watch to cause
the program to break when the value is true or when it changes. Creating a
break condition is one of various handy ways to use the Watch window.

Figure 5-7:
Use the Add
Watch
dialog box
to modify
expressions
or create
new ones.

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 623

Book VIII: VBA Programming624

44_575317 bk08ch05.qxd 9/24/04 9:06 PM Page 624

Chapter 6: Working with Classes,
Arrays, and Collections

In This Chapter
� Understanding how classes work

� Using arrays within a program

� Using collections within a program

Before you can perform any complex tasks with VBA, it’s important to
get a handle on classes, arrays, and collections. Classes act as blueprints

for creating objects. An object contains a combination of code and data that
defines a particular kind of application feature. For example, forms — and all
the controls they contain — are objects. The Clipboard also requires use of
an object. In short, objects are an essential part of working with VBA because
they reduce the amount of code you have to write. In many cases, FrontPage
creates the required objects for you; in other cases, you have to tell VBA to
create an object (such as a pushbutton) by using a particular class to define
what you want.

Arrays and collections are also useful. Many variables you create store a
single data element. When you create an integer, it holds a single number.
Placing a new number within the integer removes the old value. However, the
real world doesn’t work this way (for example, a computer can have more
than one disk drive; installing a new drive doesn’t turn the old one into some-
thing else). Your contact database contains more than one name, just as a
mailbox can contain more than one piece of mail. You need a method of stor-
ing more than one piece of information in a single variable so you can model
the real world in your programs. VBA provides two ways to do so: arrays and
collections.

Arrays provide a way for your programs to store more than one item in a
single container. Think of the array as a large box with a bunch of small
boxes inside. Each small box can store a single value. You decide how many
small boxes the array can hold when you create the array. Use arrays when
you need to store a number of related items of the same data type.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 625

Coding Considerations for Classes626

Collections, on the other hand, always relate to objects. In most cases, a
main object contains one or more sub-objects. For example, a FrontPage
Application object contains a Themes collection, which is made up of indi-
vidual Theme objects. The Application can contain one or more Themes.
FrontPage is packed with object collections that you can access from VBA.

Coding Considerations for Classes
A class is a description of an object: It’s the blueprint that VBA uses to build a
particular type of object when you request one. The class isn’t the object; it’s
merely the building instructions for the object. This is important to remem-
ber because many information sources confuse objects and classes. To better
understand how objects work, first you have to keep them separate.

You might want to think of a class as a substitute for a Function or a Sub, but
classes are separate. A Function or Sub always describes a procedure — a
list of steps. A class describes a thing. You can visualize a file because it’s a
thing. That’s why VBA uses classes to describe the file system and objects to
work with individual file system elements such as a drive. Although you might
read that objects are substitutes for procedures, the two kinds of program-
ming have definite places in your programmer’s toolbox. Make sure that you
work with both as needed.

You can also create your own classes, but this is outside the scope of this
book. For more information on creating classes, check out VBA For Dummies,
4th edition, by John Mueller (published by Wiley).

Working with classes
To build an object, you tell VBA to instantiate (create an instance of) the
object. All the code required to build the object appears in the class. Here’s
a simple example of the two-step process used to instantiate an object.

‘ Create a reference to the file system.
Dim MyFileSystem As Object

‘ Create a reference for the target drive.
Dim MyDrive As Object

‘ Fill these two objects with data so they show the
‘ available space on drive C.
Set MyFileSystem = CreateObject(“Scripting.FileSystemObject”)
Set MyDrive = MyFileSystem.GetDrive(“C”)

VBA creates the MyFileSystem object, based on the blueprint provided by
the FileSystemObject class. Likewise VBA creates the MyDrive object,
based on the Drive class.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 626

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Coding Considerations for Classes 627

Telling VBA that you want to create these two objects by using the Dim state-
ment is not the same as instantiating them. The Set statement instantiates
the object. You Set an object equal to the blueprint contained within a class.

You can instantiate objects by using a number of techniques — the example
shows two of them. In the first case, the CreateObject() function instanti-
ates the object based on a string you provide that contains the class name. In
the second case, MyDrive is instantiated based on an existing class descrip-
tion contained within the MyFileSystem object. The GetDrive method tells
VBA which Drive object to use within the MyFileSystem object.

A third method (not shown in the example) is to use the New keyword and
the name of the class. To use this third technique, you must provide a refer-
ence to the file that contains the class code. For example, to add a reference
for the FileSystemObject class, choose the Tools➪References command.
You see the References dialog box shown in Figure 6-1. Check the Microsoft
Scripting Runtime entry, as shown in the dialog box and click OK.

After you add a new reference, you can view the classes it contains by using
the Object Browser. You can now use the New keyword to instantiate the
FileSystemObject class, as shown here:

‘ Create a reference to the file system.
Dim MyFileSystem As FileSystemObject

‘ Create a reference for the target drive.
Dim MyDrive As Drive

‘ Fill these two objects with data so they show the
‘ available space on drive C.
Set MyFileSystem = New FileSystemObject
Set MyDrive = MyFileSystem.GetDrive(“C”)

Figure 6-1:
Add
references
as needed
to access
classes
within VBA.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 627

Coding Considerations for Classes628

Notice that you can now use specific object names when you create the vari-
ables; you don’t have to know the actual name of the class. Using a reference
also makes your application substantially easier to debug. The downside of
using a reference is that VBA tends to load the entire Dynamic Link Library
(DLL) that contains the class code for the object you want to create.

Loading the entire DLL can use up additional memory and resources, so you
need to weigh the relative benefits: Which is more important — code that’s
easier to read and debug, or a higher demand placed on system resources?

Understanding the class types
Classes come in two varieties: components and controls. A component
is a class that describes an object without a user interface. The
FileSystemObject class is a component. It shows VBA how to create an
object that lacks a user interface. You usually create components with VBA.
(All the examples in this chapter show how to create components.)

A control is a class that describes an object that includes a user interface or
affects the user interface. The CommandButton class is a control because it
includes a user interface. Don’t assume that every control provides a view-
able piece of the user interface. When you use the Timer class, it’s still a
control (even if it doesn’t have a user interface) because it interacts with
the user and affects the user interface. It’s very hard to create controls with
VBA. You should use another language, such as Visual Basic (not VBA),
Visual C++, or Visual C#, when you want to create special controls for your
VBA program.

Using the With statement
VBA provides an interesting feature that makes it easier to write code for an
object. The With statement tells VBA that you plan to perform a number of
tasks by using the same object. After referencing an object with the With
statement, every dotted statement within the structure applies to that object.
Using this technique reduces the amount of code you have to type — and it
can reduce the chance of typos. Listing 6-1 shows an example of the With
statement in use.

Listing 6-1: Using the With Statement

Public Sub UsingWith()
‘ Create a reference to the file system.
Dim MyFileSystem As FileSystemObject

‘ Create a reference for the target drive.
Dim MyDrive As Drive

‘ Output string.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 628

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Coding Considerations for Classes 629

Dim Output As String

‘ Fill these two objects with data so they show the
‘ available space on drive C.
Set MyFileSystem = New FileSystemObject
Set MyDrive = MyFileSystem.GetDrive(“C”)

With MyDrive

‘ Get the drive statistics.
Output = “Space: “ + CStr(.AvailableSpace) + _

vbCrLf + “Drive Letter: “ + .DriveLetter + _
vbCrLf + “Drive Type: “ + CStr(.DriveType) + + _
vbCrLf “File System: “ + .FileSystem + vbCrLf + _
“Free Space: “ + CStr(.FreeSpace) + vbCrLf + _
“Is Ready: “ + IIf(.IsReady, “Yes”, “No”) + _
vbCrLf + “Path: “ + .Path + vbCrLf + _
“Serial Number: “ + CStr(.SerialNumber) + vbCrLf + _
“Share Name: “ + .ShareName + vbCrLf + _
“Total Size: “ + CStr(.TotalSize) + vbCrLf + _
“Volume Name: “ + .VolumeName + vbCrLf

‘ You can next With statements.
With .RootFolder

‘ Get the Root Folder statistics
Output = Output + _

vbCrLf + “Root Folder Statistics” _
+ vbCrLf + “Name: “ + .Name + vbCrLf + _
“Size:” + CStr(.Size)

End With
End With

‘ Display the results.
MsgBox Output, , “Drive C Statistics”

End Sub

This code shows many, but not all, the statistics you can obtain from a Drive
object. The With statement makes the code shorter. (Imagine typing Drive
that many times without using the With statement.)

Notice that many of these statistics are numbers, so you have to convert
them to a string before displaying them. The DriveType property is actually
an enumeration, which converts to a number. To convert this number to
human-readable text, you create a switch statement.

The IsReady property is a Boolean value. The IIf() function is a special
method of creating an If...Then...Else statement inline with the rest
of the code. In this case, the code converts the IsReady property from a
Boolean value to one of two strings, Yes or No, depending on whether
IsReady is True or False.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 629

Using Arrays for Structured Storage630

The example also demonstrates that you can nest With statements (place
one With statement within another With statement). The MyDrive object
contains a RootFolder property with additional properties. To access these
properties, you normally type MyDrive.RootFolder first. By using a With
statement, all you need to type is the name of the property you want to
access.

Using Arrays for Structured Storage
An array is a list of items. When you write a list of tasks to perform for the
day, for example, you create an array. The piece of paper is a single con-
tainer that holds a number of strings, each of which is a task that you have
to perform. Likewise, you can create a similar “piece of paper” in your VBA
program — an array — and use that array to hold multiple items.

Understanding array usage
You can define arrays by using several techniques. However, all these tech-
niques use the same basic approach. Listing 6-2 contains an example that
demonstrates the essential array usage process.

Listing 6-2: Creating and Using an Array for String Data

‘ Tell VBA to start all arrays at 0.
Option Base 0

Public Sub SingleDimension()
‘ Define an output string.
Dim Output As String

‘ Define a variant to hold individual strings.
Dim IndividualString As Variant

‘ Define the array of strings.
Dim StringArray(5) As String

‘ Fill each array element with information.
StringArray(0) = “This”
StringArray(1) = “Is”
StringArray(2) = “An”
StringArray(3) = “Array”
StringArray(4) = “Of”
StringArray(5) = “Strings”

‘ Use the For Each...Next statement to get each array
‘ element and place it in a string.
For Each IndividualString In StringArray

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 630

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Using Arrays for Structured Storage 631

‘ Create a single output string with the array
‘ array elements.
Output = Output + IndividualString + “ “

Next

‘ Display the result.
MsgBox Trim(Output), _

vbInformation Or vbOKOnly, _
“Array Content”

End Sub

Notice that the code begins with an Option Base 0 statement. This state-
ment tells VBA whether you want to start counting array elements at 0 or 1.
The default setting is 0. Most programming languages use 0 as the starting
point, which is why Microsoft made 0 the default for VBA. However, older
versions of Visual Basic (including VBA) use 1 as the starting point. When
you want to ensure that your program works in every environment, include
the Option Base 0 statement.

The code for SingleDimension begins with some variable declarations.
Notice the StringArray declaration. When you want to create an array, you
follow the variable name with a pair of parentheses that contains the number
of elements. You can also create an empty array by leaving the number out,
but then you need to use the ReDim statement to set the number of elements
later. See the upcoming “Understanding the array types” section for details.

Because the array begins at 0 and not at 1, you can actually store six items in
an array defined as having five elements. The number you include in the dec-
laration is always the top element number of the array, not the actual number
of elements.

The code that follows fills each of these elements with a string. Notice the
use of numbers in the statement. This number is an index. The statement
StringArray(1) = “Is” places the word Is in the second array element
by using an index of 1. You can always access an individual element by using
its index.

This example shows how to use a For Each...Next statement to access
each array element in turn. Notice that you don’t need to use an index in this
situation because the For Each...Next statement keeps track of the index
for you. The IndividualString variable is a Variant — the only accept-
able type when using a For Each...Next statement. You don’t have to con-
vert IndividualString when you add it to Output because VBA tracks it
as a Variant/String. Check out this statement in the Debugger and you
can see how it works.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 631

Using Arrays for Structured Storage632

The final statement displays a message box containing the value of Output.
This message box presents the list of the strings originally added to the
array as a single string.

Understanding the array types
You can classify arrays in several ways. The first method is by the kind of
data that the array holds. A String array is different from an Integer array.
An array always keeps the array data type unique. Using a Variant data type
lets you mix data types within an array. You should use this technique care-
fully because it can (all too easily) lead to bugs that are difficult to debug.

A second method is to define the number of array dimensions. A dimension
is the number of directions in which the array holds information. A simple
list such as the one in the earlier “Understanding array usage” section is a
single-dimensional array. A table that consists of rows and columns is a two-
dimensional array. You can create arrays with any number of dimensions.
Listing 6-3 shows an example of a two-dimensional array that holds the
result of a calculation.

Listing 6-3: Creating and Using a Two-dimensional Array

Public Sub TwoDimension()
‘ Create variables to hold the array dimensions.
Dim Input1Value As Integer
Dim Input2Value As Integer

‘ Create an array to hold the calculation results.
Dim CalcResult() As Integer

‘ Create some loop variables for the calculation.
Dim Loop1 As Integer
Dim Loop2 As Integer

‘ Create an output string for the display.
Dim Output As String

‘ Obtain the array dimensions.
Input1Value = InputBox(“Type the first array dimension.”)
Input2Value = InputBox(“Type the second array dimension.”)

‘ Redimension the array.
ReDim CalcResult(Input1Value, Input2Value)

‘ Perform the calculation.
For Loop1 = 1 To Input1Value

For Loop2 = 1 To Input2Value
CalcResult(Loop1, Loop2) = Loop1 * Loop2

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 632

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Using Arrays for Structured Storage 633

Next
Next

‘ Create a heading.
Output = “Calculation Results” + vbCrLf + _

“In Tabular Format” + vbCrLf + vbCrLf

‘ Define the column heading values.
For Loop1 = 1 To Input2Value

Output = Output + vbTab + CStr(Loop1)
Next

‘ Define the rows.
For Loop1 = 1 To Input1Value

Output = Output + vbCrLf + CStr(Loop1)
For Loop2 = 1 To Input2Value

Output = Output + vbTab + _
CStr(CalcResult(Loop1, Loop2))

Next
Next

‘ Create a message box to show the result.
MsgBox Output, vbInformation Or vbOKOnly, “Results”

End Sub

The TwoDimension sub-procedure begins by declaring some variables.
Notice that it doesn’t define the number of elements in CalcResult — the
code tells VBA only that it’s an array.

The code displays two input dialog boxes using the InputBox() function.
Each input dialog box collects an array dimension. Normally the code would
include some type of error check to ensure that the user types a correct
value, but the code is left out, in this case, for the sake of clarity. The results
of the user input are places in Input1Value and Input2Value.

At this point, the code has the information needed to dimension the array
(make it a certain size), so it uses the ReDim statement to change the
CalcResult dimensions. Changing the dimensions erases the content of the
array unless you include the Preserve keyword. A double loop serves to
address the two dimensions of the CalcResult array. (The calculation is a
simple multiplication, but you can perform any task in the loop.)

After the array is filled with data, it’s time to create an output string. The
code uses simple assignment to create a heading, generates the row heading
using a single loop, and then uses a double loop to create the output infor-
mation. The final statement displays an output message box that contains a
table of the information.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 633

Using Collections to Create Data Sets634

Using Collections to Create Data Sets
You can view a collection as an advanced form of an array. Like an array, a
collection maintains a list of items in one package. Because these items are
related in more than a superficial way (for example, a group of worksheets in
the same workbook), many people refer to the list of items as a data set. Using
a collection is different from an array, however, and you might find that you
like using them better than arrays. A collection has some advantages — such
as not requiring the ReDim statement — but it’s a little more complicated to
use. This section explains these differences in detail and shows how to use
collections in a program.

Understanding collection usage
The easiest way to understand a collection is to create one of your own. You
can create collections and add them to a class that you create, or use them
by themselves. VBA doesn’t place restrictions on how you use collections.
Listing 6-4 creates a simple collection and then provides a means of adding,
removing, and listing elements in the collection.

Listing 6-4: Creating and Using a Simple Collection

Public Sub SimpleCollection()

Dim UserChoice As String ‘ Collection change.
Dim ChoiceStr As String ‘ Modification choices.
Dim MyCollection As Collection ‘ Create a collection.
Dim Item As String ‘ Collection item.
Dim Element As Variant ‘ A single item.
Dim Output As String ‘ A list of items.

‘ Define the modification choices.
ChoiceStr = “Select an option: “ + vbCrLf + _

“1. Add an Item” + vbCrLf + _
“2. Delete an Item” + vbCrLf + _
“3. Exit the Program”

‘ Create the collection.
Set MyCollection = New Collection

‘ Continue the loop until the user exits.
Do While Not UserChoice = “3”

‘ Display a dialog box containing the collection
‘ options.
UserChoice = InputBox(ChoiceStr, “Collection Choices”)

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 634

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Using Collections to Create Data Sets 635

‘ Use a select statement to process the input.
Select Case UserChoice

‘ Add an element.
Case “1”

Item = InputBox(“Type a new item:”, “New Item”)
MyCollection.Add Item

‘ Remove an element.
Case “2”

Item = InputBox(“Type the item number”, _
“Remove Item”)

MyCollection.Remove CInt(Item)
End Select

‘ Get a list of the items.
Output = “”
For Each Element In MyCollection

Output = Output + Element + vbCrLf
Next

‘ Display the list.
MsgBox Output, , “Collection Content”

Loop
End Sub

The example begins by creating a list of modification choices that let you
work with the collection. It also instantiates the collection. At this point, the
collection is ready to use, so the example defines a loop to continue process-
ing user choices until the user selects option 3, Exit the Program.

The application relies on simple input dialog boxes to obtain user input. You
could also create a custom form for the task, but using the InputBox() func-
tion works fine, in most cases, and reduces the application complexity. The
first input dialog box asks the user to specify a task to perform: (1) add an
item to the collection, (2) remove an item from the collection, or (3) exit the
program.

The Select Case statement looks for a particular string. Using this tech-
nique means that even if the user enters the incorrect value, nothing terrible
will happen. The application simply asks the user for the input again. This
is an example of coding the application so it’s naturally fault-tolerant. Of
course, a buffer overflow or other Microsoft-induced error could still derail
your application.

When the user selects option 1, the code displays an input dialog box that the
user can use to enter a new item. In this case, the new item can be any string.
The application treats numeric input as a string. The MyCollection.Add()
method adds the new item to the list.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 635

Using Collections to Create Data Sets636

When the user selects option 2, the code displays an Input dialog box that
requests the number of an item to remove. (This code should include error
trapping, but the example leaves it out for the sake of clarity.) The user must
provide a number within the range of collection item values. For example,
when the collection contains four items, the user can type a number between
1 and 4. The MyCollection.Remove() method removes the item from the list.

The code lists the items once per loop. Building the output string is a matter
of using a For Each...Next statement to concatenate the collection items
into a string. Notice that you don’t need to know anything about the collec-
tion to use this technique as long as the individual elements are strings.
Notice the code sets Output to a blank string before it rebuilds the string.
Because the application doesn’t exit between listings, Output will contain
the results of every loop if you don’t clear it before you rebuild the string.
A simple MsgBox() function displays the results.

Creating collections that use keys
You can normally create collections without keys (identifiers for each collec-
tion item), and they work fine. A collection that relies on user input is an
exception. It’s easier to get string input from users than to ask them to count
down a row of entries and provide a number. Database collections also pro-
vide an opportunity to use keyed entries. In fact, many predefined collec-
tions use keyed entries to make it easier to develop programs with them.
Listing 6-5 shows an updated version of Listing 6-4. In this case, the collec-
tion relies on keys for removing items.

Listing 6-5: Using Keyed Data with a Collection

Public Sub KeyedCollection()

Dim UserChoice As String ‘ Collection modification
choice.

Dim ChoiceStr As String ‘ Modification choices.
Dim MyCollection As Collection ‘ Create a collection.
Dim Item As String ‘ Selected collection

item.
Dim Element As Variant ‘ A single item.
Dim Output As String ‘ A list of items.

‘ Define the modification choices.
ChoiceStr = “Select an option: “ + vbCrLf + _

“1. Add an Item” + vbCrLf + _
“2. Delete an Item” + vbCrLf + _
“3. Exit the Program”

‘ Create the collection.
Set MyCollection = New Collection

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 636

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Using Collections to Create Data Sets 637

‘ Continue the loop until the user exits.
Do While Not UserChoice = “3”

‘ Display a dialog box containing the collection
options.

UserChoice = InputBox(ChoiceStr, “Collection Choices”)

‘ Use a select statement to process the input.
Select Case UserChoice

‘ Add an element.
Case “1”

Item = InputBox(“Type a new item:”, “New Item”)
MyCollection.Add Item, Item

‘ Remove an element.
Case “2”

Item = InputBox(“Type item name”, _
“Remove Item”)

‘ Check for a number or string.
If Val(Item) >= 1 And _

Val(Item) <= MyCollection.Count Then
MyCollection.Remove CInt(Item)

Else
MyCollection.Remove Item

End If
End Select

‘ Get a list of the items.
Output = “”
For Each Element In MyCollection

Output = Output + Element + vbCrLf
Next

‘ Display the list.
MsgBox Output, , “Collection Content”

Loop
End Sub

You might wonder where the difference is in the two examples. Look at the
MyCollection.Add() method entry. Notice that it includes Item as both the
value for the collection entry as well as the key. Adding this second argument
lets you access the collection using either a number or a string. Because the
code is so small, it’s almost always better to use keys when you’re working
with the user.

However, you don’t get the added flexibility free. The collection now con-
sumes twice as much memory for each entry as it did before. The item value
and its key require separate memory locations. In addition, there’s a small

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 637

Using Collections to Create Data Sets638

performance penalty for using this approach. Consequently, even though
this method is optimal for working with users, you should use a numeric
index when you’re creating collections for the application’s internal use.

Now that the collection is keyed, you can use either a number or a string to
remove a collection item. Look at code for option 2: The user still sees an
Input dialog box. However, the code now checks the value of Item using the
Val() function. The Val() function won’t cause an error when the user
inputs a string instead of a number. The Val() function outputs a 0 when
the user inputs a string. Because the index values are between 1 and the
number of collection elements, a value of 0 usually indicates a string key
value. You still have to use the CInt() function to convert the input value
because Val() outputs a Double, not an Integer.

Accessing collection items
VBA uses collections quite often. For example, the Drives collection contains
multiple Drive objects. You should notice something interesting about the
relationship between collections and objects. Microsoft usually uses an s at
the end of the name to denote a collection (such as the Drives collection).

The balloon help that you see when you type an object name normally con-
tains methods and properties for that object. It can also contain other objects
and collections. When you look through the list of items, anything plural is
normally a collection.

You see another clue when you double-click a property and then press F1
to display help. VBA help not only tells you that the item is a collection, but
usually it also displays a hierarchical chart to show where the collection fits
within the object hierarchy — and what types of items the collection can
contain.

The Debugger can also help you ferret out collections. The Watch window
shown in Figure 6-2 shows how the MyFileSystem object holds the Drives
collection, which contains multiple Drive objects (the first Drive object is
highlighted in the figure). You can click the plus signs next to each item to
see each drive and its current content. Look especially in the Type column
where you can see the data type used for each item in the collection.

Another place to acquaint yourself with collections is the Object Browser.
The Help file is useful only when you know what you’re looking for. The
Debugger is also problematic because you have to build something before
you can see what it contains. The Object Browser is different. When you
know what you need but not what to call it, you can select the library in
question and browse.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 638

Book VIII
Chapter 6

W
orking w

ith
Classes, Arrays,
and

Collections
Using Collections to Create Data Sets 639

Figure 6-3 shows the Scripting library used for the example in Listing 6-1. This
figure shows three collections and the objects that they contain: Drives,
Files, and Folders. When you find something interesting, highlight it, and
then press F1. When you know what you’re looking for, help can be useful.

Figure 6-3:
Browse
for the
collections
you need to
use in your
program.

Figure 6-2:
Use the
Debugger
to see
predefined
collections.

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 639

Book VIII: VBA Programming640

45_575317 bk08ch06.qxd 9/24/04 9:06 PM Page 640

Chapter 7: Working with
FrontPage Objects

In This Chapter
� Working with FrontPage-related objects

� Creating FrontPage documents

� Developing FrontPage templates with automation

� Using the FrontPageEditor objects

� Working with the Webs collection

The VBA programs you create for FrontPage are part of the application,
rather than the document. Consequently, all of the main FrontPage

objects are available to you any time you create a program, even when you
don’t have a document open. Although some objects (such as FPHTMLBody)
require a document connection, you can begin writing an application imme-
diately in FrontPage.

This chapter describes the various FrontPage-related objects that are avail-
able from VBA. You use these objects to create new document types, as well
as add to existing documents. You can also use VBA to enhance templates
and provide specialized formatting in your FrontPage documents.

Understanding FrontPage Objects
FrontPage provides a number of objects you can use to interact with the
program and documents. You can perform any task from creating new docu-
ments to listing the templates installed in the current machine using these
objects. However, because FrontPage doesn’t associate your program with
any particular document, you must provide additional code to check for
specific documents (such as checking the Web page title or verifying the file
is a Web page and not a CSS page) or write the code to work with any docu-
ment (such as a macro that inserts generic tags).

FrontPage works with several libraries. In addition to the standard Office,
VBA, and StdOLE (standard object linking and embedding) libraries, a mini-
mal FrontPage setup also includes the FrontPage, FrontPageEditor, and

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 641

Understanding FrontPage Objects642

Microsoft_FrontPage libraries. Each of these libraries works with major
FrontPage object groups. Microsoft groups the FrontPage objects into two
major categories: Page and FrontPage.

The Page objects affect individual documents directly. These objects appear
in the FrontPageEditor library. The Microsoft documentation says that these
objects work with Internet Explorer 4.0 or above, but you can make the ob-
jects work with other browser by employing careful testing. You can find a
detailed list of these objects at

http://msdn.microsoft.com/library/en-us/vbafpd10/html/fphowExplorePOM.asp

The FrontPage objects affect the application, the application environment,
and the user. For example, this is where you find the CommandBars collection
used to change the application toolbars. You can find a hierarchical chart of
these objects at

http://msdn.microsoft.com/library/en-us/vbafpw10/html/
fptocObjectModelApplication.asp

Using the Application object
You use the Application object to access most application features (such
as product name and version). This object also contains information about
the user such as the user name and organization. Finally, you use this object
to access information about the current document, including formatting and
content. Listing 7-1 shows some of the ways you can use the Application
object.

Listing 7-1: Using the Application Object

Public Sub GetAppStats()
‘ Contains the application information.
Dim Output As String

‘ Get the application statistics.
With Application

Output = Output + .UserName + vbCrLf
Output = Output + .OrganizationName + vbCrLf
Output = Output + .Name + vbCrLf
Output = Output + .Version + vbCrLf + vbCrLf

‘ Get some of the active document information.
With ActiveDocument

Output = Output + “Active Document” + vbCrLf
Output = Output + vbCrLf + .nameProp + vbCrLf
Output = Output + .DocumentHTML

End With

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 642

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Understanding FrontPage Objects 643

End With

‘ Display the output.
MsgBox Output, vbInformation, “Application Statistics”

End Sub

The code in this example begins by working with the Application object
properties. You can get the user’s name and organization to verify identity,
or at least configuration. This information is suspect because it depends on
the user entering the correct information during installation. In addition,
someone else may actually use the software to log in under the registered
user’s name. Bottom line: It’s one check you can perform, but it probably
shouldn’t be the only one.

The Name and Version properties identify the product you’re using to create
the document (such as FrontPage 2.0, Word 2003, or FrontPage 2003). This
information is always correct because the product generates it for you. You
can also get product specific information such as the product code.

The ActiveDocument object contains a number of interesting properties
and methods, many of which appear in the remaining examples in this chap-
ter. The nameProp property tells the active document name, while the
DocumentHTML property contains the complete HTML for the document.
Figure 7-1 shows the output for this program.

Figure 7-1:
Listing
application,
user, and
document
information.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 643

Understanding FrontPage Objects644

Using the FrontPageEditor (Page) objects
The FrontPageEditor objects or Page objects (Microsoft uses both terms
to refer to the same object class) are the most useful FrontPage elements:
You use these objects to create Web pages. Any element you can add to a
Web page is also accessible as a Page object.

Unfortunately, the documentation for this set of objects is a little skimpy,
even if you look online at

http://msdn.microsoft.com/library/en-us/vbafpd10/html/fphowFPSpecMethods.asp

The secret is to look at the associated Internet Explorer interface elements at

http://msdn.microsoft.com/workshop/browser/mshtml/reference/ifaces/interface.asp

For example, if you want information about the FPHTMLHeaderElement, look
at the IHTMLHeaderElement documentation instead. You can also use the
IHTMLHeaderElement object directly. All of the FPXXXX objects have IXXXX
twins, so you shouldn’t have problems with the documentation.

Ultimately, you can build any kind of Web page you want. The Web page can
use straight HTML tags or incorporate cascading style sheets (CSS). CSS is a
technique for separating the formatting information from the actual content
on Web pages; doing so makes them easier to use and more accessible to
users with special needs. Listing 7-2 shows one way to use these objects.

Listing 7-2: Automating Web-Page Creation

Public Sub ChangePage()

‘ Create the Web page elements.
With Application.ActiveDocument

‘ Create a heading.
Dim Heading As FPHTMLHeaderElement
Set Heading = .createElement(“H1”)
With Heading

.Id = “MainHeading”

.innerText = “Sample Web Page”

.Align = “Center”
End With

‘ Create some text.
Dim Greeting As FPHTMLParaElement
Set Greeting = .createElement(“P”)
With Greeting

.Id = “Greeting”

.innerText = “This is some sample text.”

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 644

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Understanding FrontPage Objects 645

End With

‘ Create a horizonal line.
Dim Separator As FPHTMLHRElement
Set Separator = .createElement(“HR”)
With Separator

.Id = “Separator”

.Size = “2”

.Width = “90%”
End With

‘ Create a combined element.
Dim Contact As FPHTMLParaElement
Dim EmailAddr As FPHTMLAnchorElement
Set Contact = .createElement(“P”)
Set EmailAddr = .createElement(“a”)
With EmailAddr

.Id = “EmailAddress”

.href = “mailto:JMueller@mwt.net”

.innerText = “John Mueller”
End With
With Contact

.Id = “Goodbye”

.insertAdjacentHTML “afterBegin”, _
“Please write “ + EmailAddr.outerHTML + _

“ for additional information.”
End With

‘ Change the Web page title.
.Title = “An Automated Web Page”

‘ Design the Web page content.
.body.insertAdjacentHTML “afterBegin”, _

Heading.outerHTML + Greeting.outerHTML + _
Separator.outerHTML + Contact.outerHTML

End With
End Sub

To use this macro, create a new Web page. Give it any name you want —
the example uses FrontPageObjects.htm. To show just what the macro
changes, the example purposely doesn’t include any formatting, setting
changes, or any other modifications you would normally make after creating
a new Web page. Open the new Web page and run the macro: It creates con-
tent for you automatically.

All objects in this section follow the same general steps in their creation:

1. The code defines the object.

Make sure you use the correct object type; otherwise your code will fail.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 645

Understanding FrontPage Objects646

2. The code calls the createElement method.

Here the string you provide is critical. For example, make sure you
supply H1 as input when you want to create a level-1 header.

3. After the code creates the element, it defines the necessary properties.

Make sure you include an Id property value at this point; this value
gives your object a reference name, making it easier to work with later.

Notice that you can combine elements. The Contact object contains text and
the EmailAddr object. You combine elements using the insertAdjacentHTML
method, which requires a location and the text value as input. The code uses
the EmailAddr.outerHTML property because it contains the full HTML tag for
the object.

As with all HTML documents, you can access the <head>, <title>, and
<body> tags from VBA. These essential tags give the HTML document struc-
ture. The example shows how to modify the <title> and <body> tag con-
tent. You set the Title property directly. The body property requires use of
the insertAdjacentHTML method. Only after the code sets the body prop-
erty does the content you’ve created appear in the FrontPage editor (as
shown in Figure 7-2).

Figure 7-2:
Automatic-
ally create
standard
Web page
content
using a
script.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 646

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Understanding FrontPage Objects 647

Figure 7-2 shows that the output of this program is well formed (complies
with all of the required Web standards) and complete (no missing tag ele-
ments). This technique can help you automate some of the more repetitive
page-creation tasks — and it’s especially helpful when each Web page fol-
lows the same basic format but can contain variable elements. Although VBA
is a more flexible way to create variable content than using templates, you
can get the best of both worlds by combining VBA and templates. For exam-
ple, a combination of VBA and a template could create a Web page based on
the person logged into the machine that includes special features such as
adding the person’s name as the author.

Understanding the Themes collection
FrontPage comes with a wealth of themes. Because you could have so many
themes to track, it’s important to know how to list them. Listing 7-3 shows
one way to perform this task, using the Themes collection. You’ll find a
second method of displaying the theme information as ThemeLister2() as
part of the source code for this chapter on this book’s companion Web site.

Listing 7-3: Accessing FrontPage Theme Information

Public Sub ThemeLister()
‘ Holds an individual theme.
Dim ThisTheme As Theme

‘ Holds the theme list.
Dim Output As String
Output = “”

‘ Display only 20 themes at a time.
Dim Counter As Integer
Counter = 1

‘ Get the theme list.
For Each ThisTheme In Application.Themes

Output = Output + “Label: “ + ThisTheme.Label
Output = Output + “ Name: “ + ThisTheme.Name
Output = Output + “ Format: “ + ThisTheme.Format + _

vbCrLf

‘ Stop after 20 items and display the list.
If Counter = 20 Then

‘ Reset the counter.
Counter = 1

‘ Display the theme information.
(continued)

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 647

Understanding FrontPage Objects648

Listing 7-3 (continued)

MsgBox Output, , “Themes Listing”

‘ Reset the output string.
Output = “”

Else

‘ Increment the counter.
Counter = Counter + 1

End If
Next

‘ Display the last few themes when necessary.
If Counter > 1 Then

MsgBox Output, , “Final Themes Listing”
End If

End Sub

This example begins by creating a single Theme object used to hold an indi-
vidual theme. The code places the output from Theme into Output, a string
used for displaying the information in a message box. Because there isn’t
any way to know how many themes a computer holds, the code also relies
on a counter to display 20 themes at a time.

After the code creates the essential objects, it builds a list of themes. You
might wonder why I didn’t use a For...Next loop, rather than the For
Each...Next loop shown. Attempting to use an index to access the individ-
ual Theme objects in the Themes collection causes FrontPage to crash in
some cases. The method shown always works.

Notice that the code gets the Label, Name, and Format properties from the
ThisTheme object. You might also want to view the Version or other prop-
erties, but these three properties are all you need in most cases.

The Format property contains the version of the theme, not the version
of FrontPage. Most recent themes use version 2.0. When you download a
FrontPage 98 theme, the version number is usually 0.0 or 1.0. Older themes
might not have the same functionality as newer themes provide. Make sure
you use version 2.0 or newer themes to ensure maximum browser and
FrontPage compatibility.

The Label and Name properties provide essentially the same information.
The Label property contains the friendly version of the name. Use the
Label property when you want to create lists for users and the Name prop-
erty when you want to create lists for selecting a specific theme for a Web

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 648

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Understanding FrontPage Objects 649

page. Combine both fields (keeping the Name field hidden) when you need to
ask the user which theme to select and then use that information to add the
theme to the current Web page.

The code uses an If...Then statement to check the value of Counter. When
Counter is less than 20, the code simply increments (adds one to) Counter.
However, when Counter reaches 20, it’s time to display the partial list of
themes. To perform this task, the code must perform three steps: reset
Counter (so it counts up to 20 again), display the partial list on-screen using
the MsgBox() function, and reset Output so it doesn’t contain the partial list
of themes any longer.

It’s possible that the themes list won’t be divisible by 20, so there’s a remain-
der when the loop exits. The final piece of code displays the final message
box containing the remaining themes when Counter is greater than 1. When
Counter equals 1, the application has just executed the code to display the
partial theme list and clear Output, so there’s nothing to display. Figure 7-3
shows typical output from this application.

Understanding the Webs collection
The Webs collection provides you with access to your Web site. The Web
site can be a remote location or a local hard drive. Any time you open a site
in FrontPage, you create a new WebEx object that FrontPage places in the
Web collection. However — as with any other collection you might use —
you can also add new Web sites to your FrontPage setup programmatically

Figure 7-3:
Listing
themes.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 649

Understanding FrontPage Objects650

by creating a new WebEx object (using the Webs.Add method). Listing 7-4
shows how you can create a new WebEx object and then garner statistics and
information from it.

Listing 7-4: Working with the Webs Collection

Public Sub DisplayWebs()
‘ Holds an individual Web object.
Dim AWeb As WebEx

‘ Holds an individual folder.
Dim AFolder As WebFolder

‘ Contains the output information.
Dim Output As String

‘ Define a Web object.
Application.Webs.Add “D:\My Web Site”
Application.Webs.Open “D:\OnlineSite”

‘ Display some statistics.
For Each AWeb In Application.Webs

‘ Get the site name.
Output = AWeb.Title + vbCrLf + vbCrLf

‘ Parse the folder list.
For Each AFolder In AWeb.AllFolders

Output = Output + AFolder.Name + vbCrLf
Next

‘ Display the results.
MsgBox Output, vbInformation, “Web Statistics”

Next
End Sub

This example begins with FrontPage as you initially open it. There are no
Web sites open, so the code begins by opening two Web sites. Notice that
one call uses the Add method, while the other uses the Open method. You
can use either method when you’re working with an existing Web. However,
if you’re converting a folder to a Web or establishing a new Web, your best
bet is to use the Add method. Note that you’ll need to change the locations
shown in the example code to match Web sites on your local system (unless
you add these folders to your machine).

After the code has opened some Web sites to work with, it uses the Webs col-
lection to access individual WebEx objects. In this case, the individual object
has a slightly different name from that of the collection it supports. Each

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 650

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Understanding FrontPage Objects 651

WebEx object contains information about the individual Web site, including a
list of files and folders. You can also apply themes and templates, search for
files or folders, and set viewing options (such as hiding specific files and
folders).The code uses the AllFolders collection to get a list of all the fold-
ers the Web site contains. Each WebFolder object contains information
about a single folder and any files (and other folders) it contains. You can
also use the RootFolder object or Folders collection to access folders
level by level (rather than all at once). In this case, the code records just the
folder name.

You can also open a remote site by using the Add or Open methods of the
Webs collection, using a statement such as

Application.Webs.Open “ftp://ftp.mysite.net/” ‘, “myname”, “mypassword”

A Web site would use just the URL. For example, you might use
Application.Webs.Open “http://winserver/0181” to access
a Web site.

Some earlier versions of FrontPage seem to ignore Add or Open method calls
that contain remote locations. Interestingly enough, all of the Microsoft exam-
ples show local drives as the location. In these earlier versions, FrontPage
considers a remote location as a combination of a local and a remote Web
site. Consequently, every time you open a remote location, you add two WebEx
objects to the Webs collection. The DisplayWebsNoOpen sub-procedure sup-
plied with the example code lets you test a remote Web site using display
code similar to the code shown in Listing 7-4.

Understanding the WebWindows collection
The WebWindows collection contains one WebWindowEx object entry for
every FrontPage window you have open. FrontPage associates every
window with a single Web site. Look again at Listing 7-4 and you’ll notice
that the code opens two Web sites, which means that FrontPage opened two
WebWindowEx objects. Every time you open a file located in the current Web
site or create a new file, FrontPage also creates a PageWindowEx object that
it places in the PageWindows collection. All these entries help you track the
status of the open Web sites FrontPage is managing.

Understanding the relationships among these various objects is essential
because you have to move from one to the next in a logical order. Listing 7-5
demonstrates how the various collections and objects interact. Because you
can use index values with the collections, you can access a particular object
quickly.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 651

Understanding FrontPage Objects652

Listing 7-5: Working with the Webs Collection

Public Sub ListWebWindows()
‘ Holds an individual Web window.
Dim AWindow As WebWindowEx

‘ Holds an individual Page window.
Dim APage As PageWindowEx

‘ Contains the output information.
Dim Output As String

‘ View each of the windows in turn.
For Each AWindow In Application.WebWindows

‘ Get the window information.
Output = Output + AWindow.Caption + vbCrLf

‘ Display the Web site associated with this window.
Output = Output + vbTab + AWindow.Web.Title + vbCrLf

‘ View each of the pages in turn.
For Each APage In AWindow.PageWindows

Output = Output + vbTab + APage.Caption + vbCrLf
Next

Next

‘ Display the results.
MsgBox Output, vbInformation, “Web Window Statistics”

End Sub

The code begins by creating the various objects needed for this example.
Notice that the names don’t precisely correspond to the usual naming con-
ventions for collections and associated objects.

The first level of access is the WebWindows collection. The code uses this
collection to get a single WebWindowEx object. A WebWindowEx object con-
tains all of the content for a single window.

After the code gets the WebWindowEx object, it uses the Web object to deter-
mine the name of the Web site associated with the window. You have full
access to all Web site information through the Web object and can follow this
object down to locate both folders and files.

The WebWindowEx object also contains the PageWindows collection. Every
open file tab in a window appears within this collection as a PageWindowsEx
object. The code uses the Caption property to get the name of the file. The
final step is to output this information. Figure 7-4 shows the results.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 652

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Working with FrontPage Documents 653

Figure 7-4 shows that I have two windows open, both of which have an open
Web site. Each of the windows also has two files open. The filenames for the
local drive include the file:/// protocol indicator to show that they’re
files, not some other type of object. The filenames for the remote site
include the HTTP protocol to show they’re located on a Web site.

It’s also important to know that the WebWindows collection deals only
with the local copy of a file when you work with remote sites that rely on a
Remote Web Site setup. Unlike the Webs collection, which includes entries
for both the local and remote WebEx object, the WebWindows collection con-
tains only the local Web object. Consequently, when you list the Web site
(including two open files), you see the output shown in Figure 7-5. The local
copy of the Web site is listed — the remote Web site isn’t.

Working with FrontPage Documents
Documents are at the center of FrontPage operation, just as they are for
any other application you use. The purpose of using an application is to
manipulate data in some way. Even utilities, such as a server monitor or a
network-security application, work with data. Consequently, getting the
data-manipulation capability (in the form of document control) from your
applications is important.

Figure 7-5:
Remote site
connections
only include
the local
file store.

Figure 7-4:
The
relationship
between
Web
windows,
pages, and
sites.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 653

Working with FrontPage Documents654

FrontPage documents are easier to work with than many documents because
they’re pure text: You can see any changes quickly and you don’t have to
worry about hidden elements. On the other hand, the FrontPage document
environment is more complicated than many other environments because
you have the concept of a complete Web site to consider. The Web site con-
tains multiple folders, files, and resources such as graphics and templates.
The following sections show how to automate Web site creation while keep-
ing the complexities of FrontPage usage in mind.

Automating Web-site creation
Preparing a new Web site for use is a time-consuming undertaking if you do
it regularly. Fortunately, in FrontPage this process is easy to automate so you
can perform the task in seconds, without missing a single setting, and with
extreme consistency. Listing 7-6 shows one technique for creating a Web site
automatically (and some of the settings you might want to change).

Listing 7-6: Creating a Web Site

Public Sub CreateWebSite()
‘ Contains the new Web site.
Dim NewSite As WebEx

‘ Contains the default Web page.
Dim WelcomePage As WebFile

‘ Create the new site.
Set NewSite = Application.Webs.Add(“C:\MyTempSite”)

‘ Configure the new site.
With NewSite

‘ Define the navigation key values.
.Properties(“vti_navbuttonprevlabel”) = “Previous”
.Properties(“vti_navbuttonhomelabel”) = “Go Home”
.Properties(“vti_navbuttonnextlabel”) = “Next”
.Properties(“vti_navbuttonuplabel”) = “Up a Level”

‘ Set the language and character set.
.Properties(“vti_defaultlanguage”) = “en-us”
.Properties(“vti_defaultcharset”) = “windows-1252”
.Properties(“vti_encoding”) = “utf8-nl”

‘ Apply the changes.
.Properties.ApplyChanges

‘ Refresh the site to match the new properties.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 654

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Working with FrontPage Documents 655

.Refresh

‘ Define a theme for the site.
.ApplyTheme (“Spring”)

‘ Add basic folders to the new site.
.RootFolder.Folders.Add “Graphics”
.RootFolder.Folders.Add “Products”
.RootFolder.Folders.Add “Contact Us”

‘ Add an initial Web page.
Set WelcomePage = .RootFolder.Files.Add(“Index.HTM”)
WelcomePage.Open

End With
End Sub

The code begins by creating several objects. It uses the Application.
Webs.Add method to create the NewSite object. This is a local object that
you can publish later, using the NewSite.Publish method. For now, it’s
easier to work with the Web site locally so data-transfer times don’t become
a problem — and so you can maintain some level of security over the new
site.

Setting up a new Web site means modifying properties. You can see these set-
tings by right-clicking anywhere in the FrontPage Web Site tab and selecting
Site Properties from the context menu. Modifying the properties in code is a
little more difficult because you have to discover the names that Microsoft
uses for the standard property entries. The example shows some standard
properties you can modify.

Microsoft doesn’t tell you much about the 32 properties that a Web site sup-
ports. The help file for the Properties property tells you about only one
property — and it isn’t even a default property. You can use the debugger to
learn the names of any default property supported by any FrontPage object.
In most cases, the vti properties are FrontPage Server Extension meta keys
(special words that identify FrontPage features). You can find a complete list
of these meta keys at the SharePoint Products and Technologies site:

http://msdn.microsoft.com/nhp/Default.asp?contentid=28001891

Look in the following folder, and you’ll see the vti values in alphabetical
order, as shown in Figure 7-6:

SharePoint Team Services SDK\RPC Protocol\FrontPage Server Extensions RPC
Methods\Meta Keys

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 655

Working with FrontPage Documents656

After the code changes the properties, it uses the Properties.ApplyChanges
method to make the changes permanent. It then calls the Refresh method to
synchronize the information between the program and the FrontPage applica-
tion. You must perform both steps to ensure you can see the changes your
program makes later.

Generally, you want the same theme used for an entire Web site so the pages
all look consistent. The ApplyTheme method lets you apply a theme to a Web
site before you create any pages for it. This step ensures that your Web site
has a consistent appearance from the start.

When you know you need to create certain folders for every Web site, it
pays to make them part of the setup routine. The code does so, using the
RootFolder.Folders.Add method to add the three standard folders to this
Web site.

Every Web site also needs an index — a default page. The code adds this
page using the RootFolder.Files.Add method. Because you’ll normally
start working on this page immediately, it pays to have the code open it for
you using the Open method. As a further refinement, you can automate the
process of creating this initial page by adding code to write some of the page

Figure 7-6:
The hidden
location of
the vti
values.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 656

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Working with FrontPage Documents 657

automatically. Listing 7-2 shows some techniques you can use to perform
this task; Figure 7-7 shows the state of the Web site at this point.

Notice that the Web page includes the character set and the theme requested
in Listing 7-6. These two additions will appear on every Web page, along with
any other defaults that you include. A seemingly small change when you
create your Web site can save you a lot of time as you develop the content.

Designing a basic template application
Templates can greatly reduce the work required to generate new Web pages
because they take care of the common coding for you. All you need to worry
about is the unique content of the page. Using templates also makes it easier
to maintain a consistent page appearance because every page starts with
the same content, layout, and functionality. Chapter 5 of Book 2 tells you all
about templates, so use that chapter to create a template for this example.

When you have a template ready to use, it’s time to make it work for you.
Listing 7-8 shows how to use VBA to automate template usage in FrontPage.

Figure 7-7:
The results
of automatic
site
creation.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 657

Working with FrontPage Documents658

Listing 7-8: Adding Template Functionality

Public Sub MakeStandardPage()
‘ Contains the target Web site.
Dim TheSite As WebEx

‘ Get the site.
If (Application.Webs.Count > 0) Then

If (Application.Webs(0).Title = “C:/MyTempSite”) Then
Set TheSite = Application.Webs(0)

Else
Set TheSite = Application.Webs.Add(“C:\MyTempSite”)

End If
Else

Set TheSite = Application.Webs.Open(“C:\MyTempSite”)
End If

‘ Set the Web site to use a template.
TheSite.ApplyTemplate TheSite.Title + _

“\Templates\Standard.tem”, True

‘ Contains the target folder.
Dim Target As WebFolder

‘ Get the target folder.
Set Target = TheSite.RootFolder.Folders(“Products”)

‘ Contains the Web page template.
Dim StdPage As WebFile

‘ Create the new page.
Set StdPage = TheSite.RootFolder.Files(“Standard.HTM”)
StdPage.Copy Target.Url + “\NewFile.HTM”, True, True

‘ Contains the new Web Page.
Dim NewPage As WebFile

‘ Open the page for editing.
Set NewPage = Target.Files(“NewFile.HTM”)
NewPage.Open

End Sub

The code begins by determining the status of the Web site. If the Web site isn’t
open, the code opens it; otherwise the code uses the existing copy. This code
is a little crude, but it gets the job done. Your programs will require similar
code to ensure they detect the FrontPage status and react accordingly.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 658

Book VIII
Chapter 7

W
orking w

ith
FrontPage Objects

Working with FrontPage Documents 659

Next, the code applies the new template to the Web site, using the
ApplyTemplate method. This method enables you to replace templates
as needed; it ensures that you can switch between document types. (For
example, you might use one template for product information and another
for contacts.)

You normally need to provide a location for the new file. The code assumes a
standard location, but you could select a location in code if you use a form.
The idea is to make the program flexible so you can use it for more than just
one file.

At this point, the code has to make a copy of the template file and place it in
the target location. The TheSite.RootFolder.Files(“Standard.HTM”)
property contains the location of the template. The code uses the StdPage.
Copy method to create a copy in the target location. (Notice that the code
renames the file to NewFile.HTM as part of the copying process.)

Finally the code assigns the new file to a WebFile object and uses the Open
method to open it for editing. You can add code here that helps customize
the object automatically — for example, you can ask the user a series of
questions that helps format the new file and add some content to it.

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 659

Book VIII: VBA Programming660

46_575317 bk08ch07.qxd 9/24/04 9:09 PM Page 660

Book IX

Advanced
Programming

47_575317 pp09.qxd 9/24/04 9:07 PM Page 661

Contents at a Glance
Chapter 1: Using Active Server Pages ..663

Chapter 2: Using PHP ..667

Chapter 3: Working with Web Services ..693

Chapter 4: Enhancing FrontPage with Visual Studio .NET..717

47_575317 pp09.qxd 9/24/04 9:07 PM Page 662

Chapter 1: Using Active
Server Pages

In This Chapter
� Working with ASP

� Developing with ASP

� Creating pages that use variables

Active Server Pages (ASP) is the name of a server-side scripting lan-
guage developed by Microsoft for use with Internet Information Server

(IIS). Microsoft originally designed ASP to replace Dynamic Link Libraries
(DLL); the idea was to make updates to an application faster and easier. IIS
still runs many applications as DLL, but ASP has proven immensely popular
because it’s easy to learn, fast, and relatively simple to update.

To use ASP, you create a file with an ASP extension on the server. As with all
scripting, ASP relies on special keywords. You mix the HTML you want the
viewer to see with these special keywords (which the server interprets) to
create a cohesive package. ASP can make decisions to match the client, the
server, the environment, or other conditions. The code also has access to
server variables so you can (for example) display the time at the server as
part of your Web page.

Understanding How ASP Works
ASP is a simple scripting language that mixes HTML code and script. The
server replaces the script with an interpretation in the form of HTML. For
example, when you include a request for the time, the output includes the
time as text, and does not include the original request you typed in the
code. You can discover more about ASP in Active Server Pages 2.0 For
Dummies by Bill Hatfield. Microsoft has also created a special form of ASP
for the managed code environment provided by the .NET Framework called
ASP.NET. You can see how ASP.NET differs in ASP.NET For Dummies by Bill
Hatfield.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 663

Understanding How ASP Works664

ASP provides a lot of functionality — too much to describe fully in a single
chapter. The following sections get you started and provide everything you
need to write simple scripts. It’s also important to know a scripting language
such as JavaScript (which I discuss in Book 7). You can find a complete ASP
reference at

http://msdn.microsoft.com/library/en-us/iissdk/iis/iis_web_pages.asp

Adding directives
You can create an ASP file that consists entirely of HTML and IIS will display it
without complaint. In fact, you generally start an ASP file by creating a blank
HTML file and adding any common HTML elements to it because the output
ASP provides is HTML. (However, an ASP page that doesn’t include any script
isn’t very useful.) Before you add any script to a page, you must add a direc-
tive that defines the script language you want to use. Directives tell IIS how to
react to the ASP file. Here’s an example of the language directive:

<%@Language = “JavaScript” %>

Advantages and Disadvantages
of Server-Side Scripting

Like all other scripting languages, ASP is inter-
preted when you request the page from the
server. You write text with special code words
that the server interprets and then sends as
HTML to your browser. Unlike a client-side
script, a server-side script doesn’t require any
special support from the browser, so you gain
a significant advantage because there are
fewer compatibility issues to consider.

ASP also lets you access the server directly. The
simplest form of access is through server vari-
ables that describe the server and provide
access to basic services such as the time.
However, you also can create complex scripts
that perform other kinds of access, such as
working with databases or interacting with other
servers. A server-side script can provide pow-
erful access to your company and its data that
isn’t easily available using a client-side script.

Security is another advantage of using ASP.
Unlike client-side scripts, server-side scripts
are fully under your control. It’s easier to create
a secure environment using ASP than it would
be using other technologies, so long as you
follow basic guidelines such as checking inputs
for data type and length.

The main disadvantage of all this processing
power is that the script runs on the server —
which means the server has to dedicate pro-
cessing cycles and resources to the script.
Thus using ASP incurs a performance penalty;
you can handle fewer users with the server. In
addition, running the code on your server could
create reliability problems because the code
can cause the server to crash. In short, you
don’t get server-side functionality free — you
pay a price in performance and reliability.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 664

Book IX
Chapter 1

Using Active
ServerPages

Understanding How ASP Works 665

All such standard directives begin with the @ (at) symbol to set them apart
from other types of instructions. The @ symbol is followed by a keyword,
which is Language in this case. The keyword is followed by an = (equals
sign) and the value you use want to use, which is “JavaScript” for this
example. Always include the language direction in your ASP file, even though
the value isn’t absolutely required, to ensure that IIS always knows which
language the page uses. Otherwise IIS uses the default language the
Administrator sets up, which might not be correct for your page.

Defining script elements
All ASP script appears within a set of <% %> delimiters. The <% delimiter begins
the script area and the %> ends the script area. IIS assumes that every piece of
information outside the <% %> delimiters is HTML and displays this informa-
tion directly in the user’s browser. Always make sure your script appears
within the delimiters. Listing 1-1 shows an example of an ASP file that contains
a mix of HTML and script.

Listing 1-1: Mixing HTML and Script

<%@Language = “JavaScript” %>
<html>
<head>

<title>First ASP</title>
</head>
<body>

<h1>First ASP Page</h1>
<p>Time:
<%

// Create a date object.
var Now = new Date();

// Months have to be handles specially.
var ThisMonth = Now.getMonth() + 1;

// Display the date.
Response.Write(ThisMonth + “/” +

Now.getDate() + “/” +
Now.getYear());

%>
</p>

</body>
</html>

This page contains all the HTML you would expect. In fact, if it didn’t begin
with the language directive, you could easily dismiss it as an ordinary HTML
page containing a few odd characters and a script. All of the required tags
are in place.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 665

Understanding How ASP Works666

The script outputs the server date, not the client date. Consequently, the
script points out an important difference between using JavaScript on the
client versus on the server: You can create scripts that output dates for both
client and server, as shown in Listing 1-2.

Listing 1-2: Client Versus Server Scripting

<%@Language = “JavaScript” %>
<html>
<head>

<title>First ASP</title>
</head>
<body>

<h1>First ASP Page</h1>
<p>Server Date:
<%

// Create a date object.
var Now = new Date();

// Months have to be handles specially.
var ThisMonth = Now.getMonth() + 1;

// Display the date.
Response.Write(ThisMonth + “/” +

Now.getDate() + “/” +
Now.getYear());

%>
</p>
<p>Client Date:
<script>

// Create a date object.
var Now = new Date();

// Months have to be handles specially.
var ThisMonth = Now.getMonth() + 1;

// Display the date.
document.write(ThisMonth + “/” +

Now.getDate() + “/” +
Now.getYear());

</script>
</p>

</body>
</html>

The client-side script appears in a <script> tag, not within the <% %> delim-
iters. You need two machines (a server and a client) to see this setup in
action. Set the client machine to a different date than the server. Display the

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 666

Book IX
Chapter 1

Using Active
ServerPages

Creating a Simple ASP Page 667

page and you’ll see that the server date matches the date on the server and
the client date matches the date on the client. The date you see depends on
where the script code is processed.

Also notice that except for the method used — Response.Write() versus
document.write() — the code is the same for the client as for the server.
Sometimes it’s possible to write blocks of client code and server code that
are practically interchangeable.

Creating a Simple ASP Page
One of the best ways to build your skill at working with ASP is to create pages
and try out various techniques. You can build a whole series of pages that dis-
play text (for example), and save them as example code later. The easiest ASP
page is the one that you build one step at a time, using the information you
know in ways that do something new. The sections that follow take informa-
tion you know about FrontPage and use it to build a simple ASP page.

Defining a simple display
Most developers create ASP pages according to how many HTML pages
they want to automate in some way. For example, the developer might want
to display the current date or perform calculations based on user input.
Starting with an HTML page that already contains a lot of the information
you need to present reduces the time spent coding and makes the develop-
ment process easier. To create a simple ASP page, right-click the folder you
want to use for storage and choose New➪Blank Page from the context menu.
FrontPage creates a new HTML page as usual. The only change from your
usual routine is to give this page an ASP, rather than an HTM, extension.

Use the usual tools to create a display in Design view. The example uses a
simple header, a label, and a text box, but you can use any tools you choose
to create the HTML element of your display. Leave blank areas for the script
generated information. For example, when you want to display the informa-
tion in a textbox, create the textbox, but leave the content blank.

After you create the HTML, you write the script in Code view. Most scripts
that you can create on the client also work fine on the server. The only time
you can’t move processing from the client to the server is when the process-
ing involves client specific information such as the client date.

There are no particular limits on where you can place a script when you’re
using ASP, as long as the script appears within the <% %> delimiters. For
example, you can place output from a script directly within a tag, as shown
in Listing 1-3. In this case, the script outputs a simple piece of text that
appears on-screen within the textbox.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 667

Creating a Simple ASP Page668

Listing 1-3: Writing Scripts Within a Tag

<%@Language = “JavaScript” %>
<html>
<head>

<title>Simple Information Display Within Tag</title>
</head>
<body>

<h1>Script Display Within a Tag</h1>
<form method=”POST” action=”--WEBBOT-SELF--”>

<!--webbot bot=”SaveResults”
U-File=”../_private/form_results.csv”
S-Format=”TEXT/CSV” S-Label-Fields=”TRUE” --

>
<p>

<label for=”txtMessage”>Message </label>
<input type=”text” name=”txtMessage” value=”

<%
Response.Write(“Hello World”);

%>
“ size=”20” id=”txtMessage” readonly>

</p>
</form>
<p> </p>

</body>
</html>

The HTML you create must follow the rules. Notice that this script appears
as part of the value attribute of the <input> tag. The HTML ends with the
first double quote, followed by the script, and begins again with the second
double quote. When you view this page from the client, the text output from
the script appears within the double quotes as it should.

The script itself uses the Response.Write() method to output the text
Hello World to the user. Use the Request object whenever you want to
view data coming into the server (or part of the server input mechanism)
and the Response object whenever you want to output information from the
server. For example, the server status information and the client request
information are both part of the Request object, while the output stream is
part of the Response object.

Processing GET input information
When you display a form on a Web page, you need to provide some means
for getting that information from the user’s machine to your server or you
won’t see the information the user provided. The two common techniques of
performing this task are called the GET method and the POST method. The
GET method requires the server to get the input data as part of the query

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 668

Book IX
Chapter 1

Using Active
ServerPages

Creating a Simple ASP Page 669

string the user provides while the POST method places this information in
the request header (text that tells the server what the user wants). To use
the GET method of input processing, you tell the browser to build a query
string. For example, a form might pass the string:

http://www.myform.com/GetMethod.asp?txtMessage=John&B1=Submit

In this case, the query string consists of two name-and-value pairs. The first
name is txtMessage and its associated value is John. The second name is
B1 and its associated value is Submit. Your code can process this query
string and do something interesting with it.

Generally, GET processing of data is less secure than using the POST method
because the GET method exposes the data through the query string. The
POST method doesn’t use a query string, so the data is less susceptible to
damage or intentional modification. However, the GET method is more useful
when you want someone to save the settings for the Web page as an Internet
Explorer shortcut. That’s because a shortcut won’t save the hidden POST
method settings.

Performing a GET or POST input setup
Before you begin writing any code, it’s important to perform a little extra
setup with the form you create. The following steps tell how to set up a form
so you can process incoming information using ASP:

1. Right-click the form you want to use to submit the data and choose
Form Properties from the context menu.

You see the Form Properties dialog box.

2. Choose the Send to Other option and select Custom ISAPI, NSAPI, CGI,
or ASP Script from the drop-down list associated with the Send to
Other option.

3. Click Options.

You see the Options for Custom Form Handler dialog box shown in
Figure 1-1.

Figure 1-1:
Set the form
submission
options.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 669

Creating a Simple ASP Page670

4. Type the name of the Web page used to handle the GET or POST input
in the Action field.

5. Choose GET or POST in the Method field, click OK, and click OK again
to close the Form Properties dialog box.

FrontPage changes the form options to allow for custom processing by
an ASP script.

Writing the GET script
After you configure the form to rely on custom processing and design the page
to contain all of the controls you want to use, it’s time to add some script. One
common task that developers use a script to perform is to accept input as a
query string that configures the entries on a form. Listing 1-4 shows how to
perform this task.

Listing 1-4: Configuring a Form Using Script and the GET Method

<form method=”GET” action=”GetMethod.asp” name=”MyForm”>
<p>

<label for=”txtMessage”>Message </label>
<input type=”text” name=”txtMessage” value=

<%
// Determine whether there is input to
// process.
if (Request.QueryString(“txtMessage”).Count == 0)

// If not, write a default string.
Response.Write(“\”Hello World\””);

else

// If so, write the supplied string.
Response.Write(“\”” +

Request.QueryString(“txtMessage”) +
“\””);

%>
size=”20” id=”txtMessage”>

</p>
<p>

<input type=”submit” value=”Submit” name=”B1”>
<input type=”reset” value=”Reset” name=”B2”>

</p>
</form>

This example has two modes of operation, depending on whether the user
provides a query string:

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 670

Book IX
Chapter 1

Using Active
ServerPages

Creating a Simple ASP Page 671

✦ When a user calls this page without providing a query string, the
Request.QueryString(“txtMessage”).Count property contains 0
and the code displays a default value.

Notice that this example streamlines the code so the entry doesn’t have
a lot of extra spaces in it. You output a double quote to the Web page by
using the \” escape code. The backslash tells JavaScript to interpret the
double quote literally, rather than as a string delimiter.

✦ When the user does provide a query string (such as after clicking Submit),
the Request.QueryString(“txtMessage”).Count property contains
a value greater than 0. The value is 1 for every query-string entry that
matches the index value you provide.

The code uses the Request.QueryString() method to obtain the query
string value supplied by the user and display it on-screen in place of the
normal default value. Saving the query-string values from a previous session
allows a user to return to a form with the previous values in place. This tech-
nique saves valuable user time on many Web sites.

Processing POST input information
Using the POST method doesn’t display any of the data the user is sending
as a query string, so it’s more secure than using the GET method. Someone
using special equipment could still see and modify the information, but the
casual user can’t modify it. However, the fact that the POST method doesn’t
rely on a query string also means you can’t use the same techniques as
you’d use with the GET method to access the form’s data.

After you configure the form using the technique found in the “Performing a
GET or POST input setup” section of this chapter, you can begin adding code.
Listing 1-5 shows the <form> portion of the code. This example performs
precisely the same task as the GET method in Listing 1-4. Comparing the two
listings will provide insights on how the GET and POST method differ.

Listing 1-5: Configuring a Form Using Script and the POST Method

<form method=”POST” action=”PostMethod.asp” name=”MyForm”>
<p>

<label for=”txtMessage”>Message </label>
<input type=”text” name=”txtMessage” value=

<%
// Determine whether there is input to process.
if (Request.Form(“txtMessage”).Count == 0)

(continued)

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 671

Creating a Simple ASP Page672

Listing 1-5 (continued)

// If not, write a default string.
Response.Write(“\”Hello World\””);

else

// If so, write the supplied string.
Response.Write(“\”” +

Request.Form(“txtMessage”) +
“\””);

%>
size=”20” id=”txtMessage”>

</p>
<p>

<input type=”submit” value=”Submit” name=”B1”>
<input type=”reset” value=”Reset” name=”B2”>

</p>
</form>

The first difference you notice when looking at Listing 1-5 is that the method
attribute of the <form> tag is set to POST, rather than GET. This simple change
affects how your browser sends the data to the server.

This example uses the Request.Form() method to obtain data using
“txtMessage” as the index. When the Request.Form(“txtMessage”).Count
property for this entry contains 0, the code provides a default value as input
to the textbox. Otherwise, it uses the Request.Form(“txtMessage”) method
to access the form value and display it on-screen.

Working with session data
Session data is information that you don’t display to the user but need to
perform tasks with ASP. For example, the timeout value, the time the server
will keep a connection open, is session data. ASP provides access to two
kinds of session data:

✦ Permanent values that IIS defines for you.

✦ Special values you define as part of the session.

Session variables are permanent for the entire session, so you can use them
to share information between pages. As a user moves from one location to
another, you can track their session variables and ensure that whatever envi-
ronment the user wants remains intact. One of two events will clear the ses-
sion variables:

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 672

Book IX
Chapter 1

Using Active
ServerPages

Creating a Simple ASP Page 673

✦ The user closes the browser window.

✦ The session times out because the client hasn’t sent a request within the
required timeframe. This timeframe varies based on the Web server and
the users that visit it — the Webmaster normally tunes the Web server
to meet specific user needs.

You access all session data using the Session object. The Session object
uses predefined properties for permanent values and the Collection prop-
erty for values you define. Listing 1-6 shows how to use both session data
types. The listing contains only the essential code — you can find the com-
plete listing in the folder for this chapter in this book’s companion Web site.

Listing 1-6: Using Session Variables

<h1>Using Session Variables</h1>
<h2>

<% Response.Write(“Session: “ + Session.SessionID); %>
</h2>
<h2>

<%
if (Session.Contents(“PrevValue”) == null)

Response.Write(“Previous Value: 0”);
else

Response.Write(“Previous Value: “ +
Session.Contents(“PrevValue”));

%>
</h2>
<form method=”POST” action=”Sessions.asp” name=”MyForm”>

<p>
</p>
<p>

<label for=”txtValue1”>Value 1: </label>
<input type=”text” name=”txtValue1” value=

<%
// Determine whether to process input.
if (Request.Form(“txtValue1”).Count == 0)

// If not, write a default string.
Response.Write(“\”1\””);

else

// If so, write the supplied string.
Response.Write(“\”” +

Request.Form(“txtValue1”) +
“\””);

%>
size=”20” id=”txtValue1”>

(continued)

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 673

Creating a Simple ASP Page674

Listing 1-6 (continued)

</p>
... Other input and output controls. ...
<p>

<label for=”txtOutput”>Output: </label>
<input type=”text” name=”txtOutput” value=

<%
// Determine whether to process input.
if ((Request.Form(“txtValue1”).Count > 0) &&

(Request.Form(“txtValue2”).Count > 0))
{

// Obtain the first value.
var Value1 =

parseInt(Request.Form(“txtValue1”));

// Obtain the second value.
var Value2 =

parseInt(Request.Form(“txtValue2”));

// Create the result.
var Output = Value1 + Value2;

// Display the result.
Response.Write(“\”” +

Output +
“\””);

// Save the result as a session variable.
Session.Contents(“PrevValue”) = Output;

}
else

Response.Write(“\”0\””);
%>
size=”20” id=”txtOutput” readonly>

The code begins by displaying the session identifier, which is a unique
number for each session. When the client makes its first request, IIS creates
a session identifier for that client — and the client keeps that number
throughout the session. You can use the session identifier provided by the
Session.SessionID property as a means for identifying a specific user.

The next task is to display the previous value of the calculation for this
form. Because this is a custom value, the code accesses it using the
Session.Contents(“PrevValue”) property. The PrevValue index identi-
fies the custom session variable — you can use any name desired, but the
name must be unique for the entire session or one value will overwrite
values with like names. When this value is absent, IIS returns null (or noth-
ing), so the code displays a default value of 0. Otherwise, it displays the
actual session variable value.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 674

Book IX
Chapter 1

Using Active
ServerPages

Using Server Variables 675

You can mix data-storage techniques in a single session. The example also
relies on the techniques used to access data saved using the POST method.
This data is only accessible to this form, not every form on the Web site as
session data is.

The txtOutput textbox performs a calculation rather than rely on user
input for the data. The code uses the parseInt() function to convert the
text data on the form into an integer value. It then adds these two values and
places them in Output. Next, the code displays Output on-screen. Finally,
the code saves the value as a session variable. Notice the technique used to
assign the value to the session variable using:

Session.Contents(“PrevValue”) = Output;

Using Server Variables
Server variables tell you about the server and the information the server
receives. For example, you can discover the server name by requesting the
SERVER_NAME variable. The ALL_HTTP server variable tells you what infor-
mation the client sent as part of its request.

You request a server variable using the Request.ServerVariables()
method. Provide the name of the server variable you want to access within
quotes as a method argument. Microsoft is constantly adding new server
variables, so you should check the list at http://msdn.microsoft.com/
library/en-us/iissdk/iis/servervariables.asp when you want to
discover new server variables. Listing 1-8 shows several of the common
server variables you use when processing user input.

Listing 1-8: Obtaining Server Variables

<body>
<h1>Server Variable List</h1>
<h2>ALL_HTTP</h2>
<p>
<%

Response.Write(Request.ServerVariables(“ALL_HTTP”));
%>
</p>
<h2>ALL_RAW</h2>
<p>
<%

Response.Write(Request.ServerVariables(“ALL_RAW”));
%>

(continued)

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 675

Using Server Variables676

Listing 1-8 (continued)

</p>
<h2>SERVER_NAME</h2>
<p>
<%

Response.Write(Request.ServerVariables(“SERVER_NAME”));
%>
</p>

</body>

Some server variables appear to repeat each other when you read about
them on the Microsoft Web site. For example, the descriptions of ALL_HTTP
and ALL_RAW sound similar, but they’re quite different. Although the client
information you receive from either is the same, Figure 1-2 shows that each
is formatted differently. The ALL_HTTP server variable returns the names of
the server variables and their associated information, while ALL_RAW returns
just the information.

The ALL_HTTP and ALL_RAW server variables return multiple pieces of infor-
mation, but this output is the exception rather than the rule. Most server vari-
ables return just one piece of information (such as the SERVER_NAME server
variable that returns just the name of the server, as shown in Figure 1-2).

Figure 1-2:
Try various
server
variables to
discover the
information
they return.

48_575317 bk09ch01.qxd 9/24/04 9:08 PM Page 676

Chapter 2: Using PHP

In This Chapter
� Working with PHP

� Performing a PHP setup

� Developing with PHP

� Creating pages that use forms

P HP stands for PHP Hypertext Processor. This is what’s known as a
recursive acronym, one that uses the acronym itself as part of the defi-

nition for the acronym. Confused? Don’t be. The name may be hard to
understand, but the language isn’t.

PHP is an open-source scripting language that’s similar to Active Server Pages
(ASP); it fulfills the same purpose for the Apache Web server, and for many
other Web-server products. This chapter uses PHP with Internet Information
Server (IIS) and discusses techniques for making it work in that environment.
When you use PHP with a Web server, PHP provides server-side processing
(working like ASP in that respect), not client-side processing (as JavaScript
does). Make sure you also check out PHP 5 For Dummies by Janet Valade for
detailed information about PHP.

Unlike ASP, PHP also works at the command line. You can create PHP appli-
cations that run at the command line, just as a JavaScript or VBScript appli-
cation does. However, unlike JavaScript, which is truly a generic scripting
language, the PHP focus is on Web pages. Even so, you can perform an
amazing number of tasks with PHP at the command line.

Understanding PHP
PHP is an interpreter that accepts a mix of HTML and script. You create a text
file with a PHP extension that the Web server passes to the PHP interpreter.
The interpreter passes a resulting HTML page back to the server, which the
server sends to the client. PHP is free — one reason it’s so popular — but
there are many other reasons, including these:

✦ Multiple platform support: PHP provides support for a number of plat-
forms — and for a number of Web servers on each platform. When you
write an application using PHP, you aren’t tied to a specific machine,

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 677

Getting Set Up with PHP678

which means your application is a lot more flexible. You can write a PHP
application on a Windows machine with IIS installed and run it on Linux
with Apache installed — as long as you don’t use platform-specific fea-
tures (of which there are only a few).

✦ Extensibility: A number of third parties have written extensions to PHP,
so it supports a wealth of interfaces. For example, you have complete
access to components and controls on your system through extensions.

✦ Fast productivity: PHP is designed to make you productive very quickly.
Knowing another programming language (such as JavaScript) definitely
helps, but you can still write basic scripts without investing years of
study.

✦ Specialized text and document handling: Unlike a lot of languages, PHP
provides great support for a number of document formats. For example,
PHP supplies a number of functions for working with Portable Document
Format (PDF) files. It also provides great eXtensible Markup Language
(XML) support. There are even functions for working with Shockwave
Flash files.

✦ Broad database support: It’s possible to interact with a number of
Database Management Systems (DBMS) using PHP. A single application
can include support for both SQL Server and MySQL (a free DBMS you
can use on any Windows system).

One of the goals of PHP is to get as much community support as possible.
When you look at any of the documentation online, you notice that people
comment on it, augment it, and even provide sample code for the function,
method, property, event, or object in question. This continual refinement
process makes it easier for everyone to participate in the development of
PHP and everyone can have a voice in creating new features. Contrast this
kind of development with languages that are strictly controlled by a vendor —
unless you’re a big customer, vendors seldom listen to requests for individual
additions.

Getting Set Up with PHP
The examples in this chapter show how to create PHP applications using
FrontPage. However, FrontPage doesn’t come with PHP support installed. In
fact, Microsoft doesn’t provide any instructions for working with PHP at all,
so this chapter is really a step beyond the “normal” uses for FrontPage. To
ensure that you can use PHP to its full potential with FrontPage, the follow-
ing sections provide setup tips and hints you can use to create a good PHP
installation — one that works well with IIS.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 678

Book IX
Chapter 2

Using PHP

Getting Set Up with PHP 679

Downloading PHP
Before you begin working with PHP, you download it from the PHP Web site
at http://www.php.net/downloads.php. Make sure you download the
Windows binaries and not the source code. The binaries are already com-
piled (made executable) and ready to use. To use the source code, you must
compile it first using any programming language product that the source
code file supports — if you download C source, for example, then you need a
C programming language product. You have two binary download choices:

✦ ZIP File: This is a 6.7 MB download that contains all the binaries for the
Windows platform. When you download this package, you have every-
thing that PHP has to offer for Windows; you won’t have to look for
other PHP elements in the future. (However, you might still have to
download support for particular extensions when you want to do some-
thing special. The PHP manual and online resources tell you when you
need to perform such a download and usually provide the URL for the
download site.)

✦ Installer: This 1 MB download includes only the Windows installer for the
Common Gateway Interface (CGI). The benefit of using this option is that
it does reduce the overall download time, (especially for dial-up connec-
tions) and you don’t have to waste as much space on your hard drive
installing the full package. However, you pay a performance penalty by
using CGI rather than Internet Server Application Programming Interface
(ISAPI), which is a new kind of interpreter available for PHP 4. In addition,
although this option performs some server setup for you, it doesn’t
install file-extension support, so you end up performing some manual
configuration.

The PHP binary installation files don’t include a manual. The best way to
work with PHP is to use the online manual at

http://www.php.net/manual/en/index.php

Using the online manual ensures that you always have the latest PHP infor-
mation, which improves the code you write and reduces errors (older docu-
mentation might have flaws). The links at the top of the page also provide
access to newsgroups and other PHP sites. A special link lets you report
bugs in PHP. As an alternative to using the online documentation, you can
download the manual at

http://www.php.net/docs.php

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 679

Getting Set Up with PHP680

Installing PHP
The installation procedure depends on which version of PHP you use and
what platform you want to use. The PHP developers want to ensure you
have the best possible installation instructions, so they provide a list of
them at

http://www.php.net/manual/en/installation.php

Make sure you use the correct instructions for your platform and the binary
file you downloaded.

IIS users run into a few problems that the installation instructions don’t high-
light very well (or at all). Generally, you’ll get a better installation when you
download the ZIP file and unpack it into a folder on your hard drive (such as
C:\PHP4). Here are a few other things to watch out for:

✦ Always copy one of the INI (initialization) files from the PHP folder to the
Windows folder. Name this file PHP.INI or the settings will fail.

✦ Use the ZIP-file approach when you’re working with IIS 6.0 (the one
found in Windows 2003). The Windows Installer approach doesn’t
work; IIS 6.0 has stronger security that the Windows Installer approach
doesn’t consider.

✦ Set the doc_root INI file setting, as described in the installation instruc-
tions, when you choose to use the CGI approach, but leave it blank when
using ISAPI.

✦ Always leave the asp_tags setting in the INI file set to off. Otherwise
your ASP scripts might not work properly.

Creating an IIS setup for PHP
The installation instructions don’t really help much with IIS configuration.
You can find additional IIS specific instructions at

http://www.php.net/manual/en/install.iis.php

However, these instructions are a little generic and you can get a better
installation by taking a few detours. The following steps provide a quick and
simple technique for configuring IIS to use PHP.

1. Open the Internet Information Services console (Control
Panel➪Administrative Tools➪Internet Information Services).

You see a list of Web servers, Web sites, folders, and files for your machine
and any remote machines you can access.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 680

Book IX
Chapter 2

Using PHP

Creating a Simple PHP Page 681

2. Right-click the Default Web Site or other Web site you want to use and
choose Properties from the context menu.

You see the Default Web Site Properties dialog box.

3. Select the Home Directory tab and click Configuration.

You see the Application Configuration dialog box. This dialog box helps
you configure IIS to use other file extensions so that you can display
information from other sources, such as PHP. The PHP setup actually
offers a number of options, but using the ISAPI setup offers the highest
performance.

4. Select the App Mappings tab and click Add.

You see the Add/Edit Application Extension Mapping dialog box. This
dialog box tells IIS to run a particular application when a client requests
a file with a certain file extension. PHP files normally use a PHP file
extension, so IIS should run the PHP ISAPI Dynamic Link Library (DLL)
to fulfill a PHP file request.

5. Click Browse.

You see an Open dialog box.

6. Select Dynamic Linked Library in the Files of Type field.

7. Highlight the PHP4ISAPI.DLL file (normally in the C:\PHP\SAPI
folder) and click Open.

Windows adds PHP4ISAPI.DLL to the Executable field of the Add/Edit
Application Extension Mapping dialog box.

8. Type PHP in the Extension field. Click OK.

Windows adds the PHP file extension to the App Mappings tab of the
Application Configuration dialog box.

9. Click OK twice to make the change permanent. Close the Internet
Information Services console.

10. Copy the PHP4TS.DLL and PHP4TS.LIB files located in the \PHP folder
to the Windows system folder.

On newer systems, the path to the system folder is \Windows\System32.

PHP is ready to use on your server.

Creating a Simple PHP Page
PHP is a very flexible language. You can perform an amazing number of tasks
with it, both at the command line and within a browser. Creating simple PHP
pages for experimentation purposes helps you understand PHP better and
still do useful work.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 681

Creating a Simple PHP Page682

Displaying a hello message
Remember that PHP works at the command line. One of the first tasks you
might want to perform is displaying a simple hello message at the command
line. This first example serves as a check to ensure PHP itself is working
before you try it with IIS. Here’s the simple hello-message code:

<?php
print(“Hello World”);
?>

The code begins with the special identifier for PHP script. Every PHP script
starts with <?php and ends with ?>.

Between this starting and ending point is an application statement. The
print() function accepts a string as input. The string is delimited (set
apart) with double quotes to show that it’s a string, and to indicate where
the string begins and ends. Every PHP statement ends with a semicolon.

You test this example at the command prompt. Simply type the code into a
text editor such as Notepad and save it to your PHP folder with a PHP exten-
sion such as FirstScript.php. Open a command-line prompt and type PHP
FirstScript.php. Then press Enter. Figure 2-1 shows an example of the output
you might see.

The code tells PHP what to do — display a hello message. However, that’s
not all the information that PHP supplies. The command prompt in Figure 2-1
shows three pieces of information:

Figure 2-1:
Use PHP
at the
command
prompt as
well as in
Web site
applications.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 682

Book IX
Chapter 2

Using PHP

Creating a Simple PHP Page 683

✦ The type of content that PHP has processed — in this case, either text
or HTML.

✦ The version of PHP used to process the file.

✦ The results of the command.

Getting the PHP status information
After you know that PHP is working, you can test it with IIS. The easiest way
to work with PHP in FrontPage is to begin with a Web page. Create a blank
Web page and add all the HTML elements you need to it. Don’t worry about
filling in any information that PHP provides immediately. All you want to do
at first is create the HTML code.

The next step is to save the file, close it, and change the file extension to
PHP. Now you’re ready to add the PHP code. Remember that PHP is simply
text, as with any other scripting language. Unfortunately, you won’t get
IntelliSense help when writing PHP code in FrontPage, but you can see it as
plain text, which is fine for most simple applications.

The example in this section shows a special feature of PHP — one that you
need to know about to troubleshoot problems. Listing 2-1 shows a special
function you can use on a Web page.

Listing 2-1: Diagnosing Problems by Checking PHP Status

<html>
<head>

<title>A Simple PHP Script</title>
</head>
<body>

<?php
print(phpinfo());
?>

</body>
</html>

The code in Listing 2-1 might not look like much, but the phpinfo() function
is very powerful. It tells you the status of your PHP installation — and proba-
bly provides more information than you’ll ever need. Figure 2-2 shows typi-
cal output from the code shown in Listing 2-1.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 683

Creating a Simple PHP Page684

This page goes on for quite a while. It tells you about the version of PHP run-
ning on your system, the PHP settings, and provides a list of any extensions
you have installed, along with the extension settings. You’ll find this overview
of PHP very helpful when you experience problems getting a particular fea-
ture to work.

One of the more important reasons to create this page, however, is to ensure
your IIS setup is working. When you run the code in the “Displaying a hello
message” section, you know that PHP is working, but this check ensures that
IIS can connect to PHP to process pages. When you experience an error dis-
playing this Web page, verify that you have created the correct file extension
entries and that the PHP4TS.DLL and PHP4TS.LIB files are in the Windows
system folder.

Using general programming techniques
PHP works like many scripting languages. Knowing a scripting language such
as JavaScript (demonstrated in Book 7) is a good start because everything
you know transfers directly to PHP. Listing 2-2 provides a sample of the vari-
ous PHP control structures at your disposal.

Figure 2-2:
Check the
PHP status
to help
resolve
problems.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 684

Book IX
Chapter 2

Using PHP

Creating a Simple PHP Page 685

Listing 2-2: Using PHP Control Structures

<html>
<head>

<title>
Basic Control Structures and Scripting Techniques

</title>
</head>
<body>

<h1>Making Decisions Using If</h1>
<?php

// Create a variable to hold the date.
$Today = getdate();

// Display the date information.
print(“The date information:
”);
print_r($Today);

// Use the date to make a decision.
if ($Today[weekday] == “Tuesday”)

print(“<p>It’s Tuesday meeting time!</p>”);
else

print(“<p>It isn’t Tuesday; back to work.</p>”);
?>

<h1>Using a While Loop</h1>
<?php

// Track the current count.
$Counter = 1;

// Perform this task five times.
while ($Counter <= 5)
{

// Perform a task based on the value of $Counter.
switch ($Counter)
{

case 1:
// Print a random number between 1 and 10.
print(“The first number is: “.rand(1, 10));
print(“
”);
break;

case 2:
// Print a random number between 1 and 10.
print(“The second number is: “.rand(1, 10);
print(“
”);
break;

case 3:
// Print a random number between 1 and 10.

(continued)

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 685

Creating a Simple PHP Page686

Listing 2-2 (continued)

print(“The third number is: “.rand(1, 10));
print(“
”);
break;

case 4:
// Print a random number between 1 and 10.
print(“The fourth number is: “.rand(1, 10));
print(“
”);
break;

case 5:
// Print a random number between 1 and 10.
print(“The fifth number is: “.rand(1, 10));
print(“
”);
break;

}

// Increment the counter.
$Counter++;

}
?>

<h1>Using a Do...While Loop</h1>
<?php

// Create a counter.
$Counter = 0;

// Perform a task at least once.
do
{

// Display the counter value.
echo(“Counter equals $Counter”);

// Check the continuation expression.
} while ($Counter > 0);

?>

<h1>Using a For Loop</h1>
<p>
<?php

// Create an array of words based on a string.
$StringArray = split(“ “, “This is a split string.”);

// Process the array one word at a time.
for ($Counter = 0;

$Counter < count($StringArray); $Counter++)
print($StringArray[$Counter].”
”);

?>
</p>

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 686

Book IX
Chapter 2

Using PHP

Creating a Simple PHP Page 687

<h1>Using a Foreach Loop</h1>
<p>
<?php

// Create an array of words based on a string.
$StringArray = split(“ “, “This is a split string.”);

// Process the array one word at a time.
foreach ($StringArray as $Value)

print($Value.”
”);
?>
</p>

</body>
</html>

The example demonstrates a number of PHP coding techniques. The first
task is to make a decision based on the day of the week. When you create a
date variable using the getdate() function, PHP actually creates an array of
date information. This array contains separate elements for the date, year,
month, and other date elements, as shown in Figure 2-3. Variable names
always begin with a $ (dollar sign) by convention.

Figure 2-3:
Use PHP
control
structures
to change
application
data flow.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 687

Creating a Simple PHP Page688

Notice that the code uses the print() function to display the string, but
relies on the print_r() function to print the $Today array. The print()
function displays general text, while the print_r() function is a special way
to print complex variables. When you use the print() function to show an
array, it displays the word array, but not the array content. The code also
adds HTML tags to the output. Generally, you’ll see better application per-
formance when you display the HTML directly, but sometimes it’s easier to
place some HTML tags within your code.

Figure 2-3 shows keys next to each array value. You use these keys to access
individual array values. For example, to access the day of the week, you use
the weekday key like this:

$Today[weekday]

The code compares this value to “Tuesday”. When the values match, the
code displays a message saying it’s time for a meeting. On all other days,
the message tells the user to get to work.

The next task in the list is to display five random strings and to identify each
number with a unique string. To perform the task, the code combines a
while statement with a switch statement. Each iteration of the while loop
updates the value of $Counter until the output is greater than 5 and the
loop ends. As the value of $Counter changes, the switch statement
matches different cases and outputs the appropriate strings.

The print() function within the switch statement displays the random
number produced with the rand() function. The rand() function accepts
two input values, the minimum random number and the maximum random
number that you want to see. PHP uses a unique concatenation (combining
two strings) technique. Simply place a dot (.) between the two values, as
shown here:

print(“The first number is: “.rand(1, 10));

What actually happens, in this case, is that PHP converts the output of the
rand() function to a string first. It then combines the string provided with
the random-number string to produce a single string that is input to the
print() function and displayed on-screen.

The next task is to demonstrate the operation of the do...while statement,
which always executes at least one time. In this case, the code purposely
sets $Counter to a value that is going to be false. When using a while state-
ment, the code wouldn’t execute even one time. However, the do...while
statement does execute the code once; the expression is evaluated after the
code executes.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 688

Book IX
Chapter 2

Using PHP

Working with Forms 689

Notice that this example shows a new way to output information to the dis-
play. The echo() function works like the print() function. However, you
can use it to output multiple strings instead of the single string that print()
supports. This example also shows another way to display the content of
variables. PHP sees the $Counter in the string as a variable, not as a string,
as shown in Figure 2-3. The output is Counter equals 0, rather that Counter
equals $Counter as you might expect. PHP lets you place variables directly
within strings for display on-screen.

PHP provides a wealth of string-handling functions. The next task is to split
a string into individual words and display each word on-screen. The code
actually shows two methods for performing this task. The first relies on a
for loop, while the second uses a foreach loop. As shown in Listing 2-2,
using a foreach loop can save coding time because you don’t need to pro-
vide a loop counter variable.

The code relies on the split() function to display the string into separate
words. You provide two inputs to the split() function. The first input is the
character that divides the string elements you want to separate, which is a
space in this case. You can use other characters (such as a slash to split
date elements) as needed. The second input is the string that you want to
split. The output from the split() function is an array of string elements
(words in this case).

Notice how the code sets up the for loop. You use the count() function to
determine the number of elements in an array. The code compares this value
to $Counter and ends the loop when all the array elements are processed.

Working with Forms
If you need complex forms that respond to a variety of user needs, PHP
makes them easy to create. As with other PHP applications, it’s important to
create the form first and then add the PHP code. Start by using an HTM file
extension for the file so that you gain access to the full form creation fea-
tures of FrontPage. After you create all the HTML elements — including all
form elements — you save and close the file, change the file extension to
.PHP, and reopen the file to add your PHP code.

Avoiding potential problems
FrontPage tends to add a lot of webbots and other special features to a form
that PHP won’t understand. This lack of FrontPage feature support is one of
the issues you’ll need to consider when deciding whether to use PHP for
your next project. When you use PHP for a project, a good general rule is

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 689

Working with Forms690

to avoid some of the FrontPage gizmos that could cause problems later. For
example, don’t count on using the Navigation view to set up a structure that
will appear in your automatic page links — this feature won’t work. You can
still set up a structure (for planning purposes) in Navigation view, but you
can’t use that view to automate some tasks.

Another problem when using PHP is that you can’t rely on the automatic
form-processing capability that FrontPage provides. Use the following steps
to set up a form for use with PHP.

1. Right-click the form and choose Form Properties from the context
menu.

You see the Form Properties dialog box.

2. Select Send to Other and choose the ISAPI, NSAPI, CGI, or ASP Script
option.

3. Click Options.

You see the Options for Custom Form Handler dialog box.

4. In the Action field, type the location and name of the page containing
the script that will process the form.

5. Select GET or POST in the Method field.

6. Click OK twice.

FrontPage sets up the form for use with PHP.

Processing a request
Form processing means accepting input from the user, doing something with
the input, and then sending some type of response. PHP offers functionality
similar to ASP in this case. You have full access to everything the client sends
and can act upon it as you see fit. Listing 2-3 shows a typical form processing
example.

Listing 2-3: Processing Form Data

<?php
// Process the request data.
// Get the txtName value.
if ($_REQUEST[“txtName”] == null)

$UserName = “Type Your Name”;
else

$UserName = $_REQUEST[“txtName”];
?>

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 690

Book IX
Chapter 2

Using PHP

Working with Forms 691

<html>
<head>

<title>PHP Form Processing</title>
</head>
<body>

<h1>Simple PHP Form Processing</h1>
<form method=”GET” action=”AForm.htm”>

<p>
<label for=”txtName”>Type Your Name: </label>
<input type=”text” name=”txtName” size=”20” value=

<?php
print(‘“‘.$UserName.’”’);

?>
id=”txtName”>

</p>
<p>

<label for=”txtReversed”>Your Name Reversed: </label>
<input type=”text” name=”txtReversed” size=”20” value=

<?php
if ($UserName <> “Type Your Name”)

print(‘“‘.strrev($UserName).’”’);
else

print(‘“”’);
?>

id=”txtReversed” readonly>
</p>
<p>

<input type=”submit” value=”Submit” name=”B1”>
<input type=”reset” value=”Reset” name=”B2”>

</p>
</form>

</body>
</html>

The form contains two textboxes and two pushbuttons. The txtName
textbox lets the user input a name. The txtReversed textbox shows the
name reversed after the user submits the form. The two standard pushbut-
tons submit and reset the form as needed.

The code begins with a PHP script that appears outside the Web page. As
with ASP, a PHP script can appear anywhere in the file. In this case, the PHP
script checks for a query string named txtName. When this value is null, it
means the user hasn’t submitted the form yet, so the code assigns a default
value to the variable. Otherwise, the user has submitted the form previously
and the code retrieves this value from the query string. The $_REQEST vari-
able is an array that PHP creates for you by default; it includes any and all
query string variables.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 691

Working with Forms692

You can insert PHP code within an HTML tag. The second piece of code
changes the value attribute of the txtName <input> tag. Because $UserName
always contains a value due to the earlier processing, the code simply prints
it. Notice how the code concatenates double quotes to each side of the value
to ensure that it displays properly. PHP lets you use either the single quote or
the double quote — interchangeably — for a delimiter, so the output can
include one or the other as needed.

The txtReversed <input> tag also has its value attribute changed. This
time the code changes the value based on the content of $UserName. When
$UserName contains the default value, the code simply displays a blank on-
screen. This action displays the form with a blank reversed name value until
such time as the user enters a name.

When the user does enter a name, the code uses the strrev() function to
reverse the character order. It then displays the text on-screen after concate-
nating the required double quotes.

49_575317 bk09ch02.qxd 9/24/04 9:04 PM Page 692

Chapter 3: Working
with Web Services

In This Chapter
� Working with Web services

� Using SOAP for communication

� Creating Amazon applications

� Creating Google applications

� Finding other Web services

Web services provide a means of sharing code between two applica-
tions, even when the parties involved don’t know each other. The

Web service is the part of the application that offers something to a client
application. For example, a Web service could help you search for informa-
tion on the Internet, or create an insurance quote after your application pro-
vides the required input. The one element that all Web services share is use
of the eXtensible Markup Language (XML) to exchange information. Book VI
tells you more about XML.

XML is a great technology, but it doesn’t provide quite enough structure to ful-
fill all Web-service requirements. A special form of XML is the Simple Object
Access Protocol (SOAP). This technology specifies a message format that Web
services can use and makes it easier to send and receive information.

Currently, there are three major public Web services that are hosted by
Internet vendors: Amazon Web Services, Google Web Services, and eBay
Web Services. Each Web service performs a specific task associated with
that vendor. For example, you can buy and sell goods using eBay Web
Services, look for information using Google Web Services, and purchase
new or used books using Amazon Web Services. A number of other public
Web services exist as well — more than many developers realize. This chap-
ter discusses two of the most popular solutions: Amazon Web Services and
Google Web Services.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 693

Understanding Web Services694

Understanding Web Services
Most Web services rely on a request-and-response strategy. The request
defines the kind of information you want to know and how detailed that
information will be. The Web service returns the information you request
(when it’s available) in a standardized format — the response — specified
by their database schema. A schema defines the organization of information
in a database. The Web service vendor tells you about the request format
and database schema as part of the documentation you receive when you
request access to the Web service.

Many vendors also allow your application to request the database schema
using a special format called Web Services Description Language (WSDL)
described in the “Using WSDL to request data” section of this chapter. The
use of WSDL is completely optional — the development environment nor-
mally uses WSDL to automate tasks, but FrontPage doesn’t provide this kind
of automation. Consequently, you almost never need to use WSDL with
FrontPage. WSDL is useful for verifying the database schema when you sus-
pect it has changed from the documented form and also helpful when work-
ing with development environments that access WSDL directly.

A Web service also performs some type of useful work. The useful work
might be something as simple as interpreting your request, calculating the
answer, and sending the result back. In many cases, the Web service accepts
your request (normally some search criteria), interacts with the database
through a search engine to obtain the information you requested, and sends
the information back to you. You can also perform other tasks using Web
services — for example, make a purchase or sell goods to others.

The final consideration for a Web service (at least from the Web-service
user’s perspective) is that it executes on the remote machine, not on your
machine. In short, you’re using resources on that other machine with the
permission of the machine’s owner. The remote machine can set require-
ments for using the Web service, as well as require you to perform specific
setup and security checks as part of your request. In most cases, you need
to obtain this permission by requesting it, usually as part of the Web ser-
vice’s documentation-download process.

Working with SOAP
SOAP is simply a specialized form of XML that creates a messaging system
between a requestor (client) and a Web service (server). This section
assumes that you already understand XML. To understand SOAP, you need
to consider the features that make up a SOAP message. A SOAP message
includes the following elements:

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 694

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Working with SOAP 695

✦ SOAP message

✦ XML envelope

✦ HyperText Transfer Protocol (HTTP) or Simple Mail Transfer Protocol
(SMTP) transport

Think about this system in the same way that you do a letter — with SOAP
providing the letter content, XML as the envelope to hold the letter, and
HTTP or SMTP as the mail carrier to deliver the letter. The most common
transport protocol in use today is HTTP, so that’s the technique described
in this section. Keep in mind, however, that theoretically SOAP can use any
of a number of transport protocols — and probably will in the future.

Understanding the SOAP package
A simple SOAP message consists of a package that contains both a header
and a body (sort of the same arrangement used by an HTML page). The
package is the root node required by all XML messages, so in that sense
SOAP messages aren’t any different from other XML messages. The package
normally contains these two elements (the header is optional):

✦ Header: Contains information that isn’t associated with the data itself.
For example, the header commonly contains a transaction ID when the
application needs one to identify a particular SOAP message.

✦ Body: Contains the data in XML format. When an error occurs, the
body contains fault information, rather than data. See the “Considering
SOAP message fault tolerance” section of this chapter for details on fault
messages.

SOAP is essentially a one-way data transfer protocol. While SOAP messages
often follow a request/response pattern, the messages themselves are indi-
vidual entities — this means they don’t rely on the immediate presence of a
server, nor do they expect a response when a request message contains all
of the required information. For example, some types of data entry may not
require a response because the user is inputting information and may not
care about a response.

The package in which a SOAP message travels, however, may provide more
than just a one-way transfer path. For example, when a developer encases a
SOAP message within an XML envelope, the request and response both use
the same HTTP transport connection between client and server. HTTP cre-
ates and maintains the connection, not SOAP. Consequently, the connection
follows the HTTP way of performing data transfer — using the same tech-
niques as a browser uses to request Web pages for display.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 695

Working with SOAP696

Understanding the XML envelope
All SOAP messages use XML encoding. SOAP follows the XML specification
and you can consider it a true superset of XML. In other words, it adds to the
functionality already in place within XML. Anyone familiar with XML will feel
comfortable with SOAP at the outset — all you really need to know is the
SOAP nuances. Although the examples in the SOAP specification don’t show
an XML connection (other than the formatting of the SOAP message), every
SOAP message contains an XML header.

Understanding the HTTP transport
The HTTP portion of a SOAP message looks much the same as any other
HTTP header — in fact, if you don’t look carefully, you might pass it by with-
out paying any attention. As with any HTTP transmission, there are two
types of headers — one for requests and another for responses.

An overview of the request header
As with any request header, the HTTP portion of a SOAP message will con-
tain an action (POST, in many cases), the HTTP version, a host name, and
some content length information. The Post action portion of the header will
contain the path for the SOAP listener. Also located within a request header
is a Content-Type entry of text/xml (meaning the message consists of a
combination of text and XML) and a charset entry (generally utf-8). A
charset (or character set) defines the way characters are encoded — how
many bits are used to represent each character. The utf-8 entry is impor-
tant right now because many SOAP toolkits don’t support utf-16 or other
character sets.

You’ll also find the unique SOAPAction entry in the HTTP request header. It
contains the Uniform Resource Identifier (URI) of the component used to
parse the SOAP request. If the SOAPAction entry is “”, then the server will
use the HTTP Request-URI entry to locate a listener instead. This is the only
SOAP-specific entry in the HTTP header — everything else could appear in
any HTTP-formatted message.

An overview of the response header
The response header portion of the HTTP wrapper for a SOAP message con-
tains all of the essentials as well. You’ll find the HTTP version, status, and con-
tent length as usual. There are two common status indicators for a response
header: 200 OK or 500 Internal Server Error. The SOAP specification
allows use of any value in the 200 series for a positive response, but a server
must return a status value of 500 for SOAP errors to indicate a server error.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 696

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Working with SOAP 697

Whenever a SOAP response header contains an error status, the SOAP mes-
sage must include a SOAP fault section. The “Considering SOAP message
fault tolerance” section of this chapter describes the fault portion of the
message. All you need to know now is that the HTTP header provides the
first indication of a SOAP fault that will require additional processing.

Considering SOAP message fault tolerance
Sometimes a SOAP request generates a fault message instead of the antici-
pated reply. Common sources of fault messages include these:

✦ The server may not have the means to answer your request.

✦ The request your application generated may be incomplete.

✦ Bad communication may prevent your message from arriving in the
same state as you sent it.

✦ Messages that the client produces that the server can’t process (the
documentation you receive might be incorrect).

✦ Errors on the server such as a missing application.

✦ SOAP version mismatches.

When a server returns a fault message, it doesn’t return any data. The mes-
sage contains only fault information. With this in mind, the client-side appli-
cations you create must be prepared to parse SOAP fault messages and
return the information in such a way that the user understands the meaning
of the fault.

The fault message resides within the body of the SOAP message. A fault
envelope will generally contain a faultcode and faultstring element that
tells you which error occurred. All of the other SOAP fault-message elements
are optional. The following list tells you how they’re used:

✦ faultcode: The faultcode contains the name of the error that
occurred. It can use a dot syntax to define a more precise error code.
The faultcode always begins with a classification — for example, a
SOAP-ENV error code followed by a MustUnderstand subcode, which
tells you that the server couldn’t understand the client request. Because
it’s possible to create a standard SOAP faultcode list for a particular
Web service, you can use these codes directly for processing purposes.

✦ faultstring: This is a human-readable form of the error specified by
the faultcode entry. This string should follow the same format as HTTP
error strings. You can see the HTTP error-string format in the HTTP
specification at http://www.normos.org/ietf/rfc/rfc2616.txt. A
good general rule to follow is to make the faultstring entry short and
easy to understand.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 697

Working with SOAP698

✦ faultactor: This element points to the source of a fault in a SOAP
transaction. It contains a Uniform Resource Identifier (URI) similar to the
one used for determining the destination of the header entry. According
to the specification, you must include this element if the application that
generates the fault message isn’t the ultimate destination for the SOAP
message.

✦ detail: You’ll use this element to hold detailed information about a
fault when available. For example, this is the element used to hold
server-side component return values. This element is SOAP message
body-specific, which means you can’t use it to detail errors that occur
in other areas like the SOAP message header. A detail entry acts as
an envelope for storing detail sub-elements, each of which includes a
tag containing namespace information and a string containing error-
message information.

Using WSDL to request data
WSDL (Web Services Description Language) is another kind of XML file that
provides a means for describing a Web service in detail. It tells you which
methods a Web service supports and the kind of data (arguments) to pro-
vide as input. The WSDL file also describes the output of each function and
some of the calling details, such as the URL to use for the SOAP message.

Most vendors supply WSDL so that the Integrated Development Environment
(IDE) you use can create the method and argument definitions needed. In
many cases, you can also view the WSDL file to fine tune and troubleshoot
the applications you write manually. Some WSDL files become quite com-
plex, however, so you should always rely on the documentation as your first
source of information. Use the WSDL to find problems such as changes in the
Web service that don’t appear in the documentation (for example, changes
in the arguments you provide when you call a method).

Some developers originally found WSDL less than helpful — and it doesn’t
work with every SOAP toolkit you can download. The SOAP samples help
developers who must create messages manually get the format correct.
However, when you use a product such as Visual Studio .NET, the IDE down-
loads the WSDL from the Web service site — and you won’t actually have to
worry about the construction of the SOAP message. Visual Studio .NET is
still using SOAP to communicate, but WSDL removes all of the SOAP details
from view.

You can find a wealth of resources about WSDL on the Internet. For starters . . .

✦ One of the more interesting offerings includes the ZVON reference at
http://www.zvon.org/xxl/WSDL1.1/Output/index.html

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 698

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Working with SOAP 699

✦ The W3C has a tutorial at http://www.w3schools.com/wsdl/default.
asp. Originally, Microsoft and IBM promoted WSDL on their Web sites, but
you can now find the specification on the W3C site at http://www.w3.
org/TR/wsdl. You can find the IBM view of Web Services at either of
these sites:

http://www-106.ibm.com/developerworks/webservices/
http://www.alphaworks.ibm.com/tech/webservicestoolkit

✦ A WSDL search engine (where you can find services that rely on both
SOAP and WSDL) appears at

http://www.salcentral.com/salnet/webserviceswsdl.asp

✦ Both major Web services described in this chapter provide WSDL access
to their products. Google and Amazon have had this support from the
beginning. eBay recently added such support to their Web service.
Figure 3-1 shows a typical example of a WSDL file. This particular
Amazon Web Services WSDL file, designed for American and Japanese
users, resides at

http://soap.amazon.com/schemas3/AmazonWebServices.wsdl

Figure 3-1:
Check the
WSDL file
when in
doubt
about Web
service
documenta-
tion.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 699

Creating a Connection to Amazon.com700

Figure 3-1 shows that a WSDL file really is just another form of XML. In this
case, the XML file begins with some WSDL-specific definitions. The next sec-
tion describes the database schema, including all the complex data types
that the database relies on. When you scroll down a little farther, you find all
the method definitions — the information you can request from Amazon. For
example, Figure 3-2 shows the AuthorRequest() method definition used for
the examples in the “Creating a Connection to Amazon.com” section of this
chapter.

The method declaration tells you the name of an argument, such as author,
and its data type, which is string in this case. Knowing these two pieces
of information helps you create the right kind of input values. Look at the
price argument entry. The presence of the minOccurs=”0” attribute and
value tells you that this particular argument isn’t required for a successful
call, but you can include it when desired.

Creating a Connection to Amazon.com
Amazon Web Services is one of the easiest public Web services to use. To
obtain access to this service, you must sign up for it at

http://www.amazon.com/gp/aws/landing.html/ref=sd_str_as_ws/

After you sign up for Amazon Web Services and download the Amazon Web
Services Kit, you can begin making direct queries from Amazon using noth-
ing more than a browser. In fact, Amazon Web Services uses a special tech-
nique called REpresentational State Transfer (REST) that lets you make the
query using a specially formatted URL.

Figure 3-2:
Look for
method
declarations
to
understand
what the
vendor
needs as
input.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 700

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Amazon.com 701

Using a URL to contact Amazon
FrontPage developers can experiment with Amazon Web Services using noth-
ing more than a browser and a specially formatted URL. The domain you con-
tact using the URL actually connects to the Web service. The Web service
reads the query string you provide, makes the appropriate request, and sends
an appropriate response. Here’s a typical Amazon Web Service request that
you can simply plug into the Address field of your browser after you download
and install the Amazon Web Services Kit (even though the URL appears on
several lines in the book, you type it as a single line in your browser).

http://xml.amazon.com/onca/xml3?t=webservices-20&dev-t=Your-Developer-
Token&AuthorSearch=John%20Mueller&mode=books&type=lite&page=1&f=xml

This URL may look complicated, but it’s relatively easy once you know what
the individual entries mean. The following list describes each entry in detail:

✦ http://xml.amazon.com/onca/xml3: This is the actual Web service
URL for XML queries — SOAP queries use a different URL. All of the argu-
ments — the description of the query — appear after the URL. You sepa-
rate each argument with an ampersand (&). The list of arguments is
separated from the URL by a question mark (?).

✦ t=webservices-20: This entry contains the associate number. You apply
to Amazon to become an associate. When you sell goods for Amazon,
Amazon gives you a percentage of the sale as an incentive. When you
don’t have an associate number, use the webservices-20 value shown.

✦ dev-t=Your-Developer-Token: This entry contains the developer
token of the requestor. Amazon issues this token to you when you sign
up for the Amazon Web Services kit. This token is your permission to
use the Web service; every request must include a developer token or
the Web service won’t honor it.

✦ AuthorSearch=John%20Mueller: This entry contains the kind of
search, in this case an author search, and the author’s name. Amazon
supports a number of request types, but the AuthorSearch is one of the
most common. Notice the query replaces the space in my name with a
%20. You can’t use spaces in queries, so you use this special character
combination instead. The %20 represents an escaped character. You
can use any of a number of techniques to convert a regular string to
an escaped string. The example in the “Relying on XSLT to transform
Amazon data” section, later in this chapter, shows one of the easiest and
most reliable ways to perform this task.

✦ mode=books: This entry tells the Web service to look for books. You can
also look for other product types such as CDs.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 701

Creating a Connection to Amazon.com702

✦ type=lite: This entry tells the Web service to provide only an overview
of the information. You can also tell it to provide the details by specify-
ing a heavy search.

✦ page=1: This entry tells the Web service to return the first page of
search results. If you want the second page, then you type page=2
instead. Amazon Web Services won’t return any information when you
request a page that doesn’t exist.

✦ f=xml: This entry defines the query format. In this case, we’re using
XML. The Amazon Web Services supports other formats. In some cases,
you can provide an eXtensible Style Language Transformation (XSLT)
filename on your Web site in place of this entry. However, the XSLT file
must be in a public place that Amazon Web Services can locate easily.

When you feel a bit more familiar with that long URL, try using it. Figure 3-3
shows typical results from this request. (Note that I replaced my developer
token with “Your-Developer-Token” wherever it appears in the figure.)

Figure 3-3:
Use your
browser to
test Amazon
Web
Service
queries.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 702

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Amazon.com 703

Look at the top of the results and you’ll see all the arguments used to make
the query. You’ll also find the total number of results returned by the search
(94) and the number of pages required to display those results (10). After
the general information, you’ll find a list of book entries. These entries
include information like the title, authors, publisher, release date, and price.

You can easily make mistakes in formatting your query string. The most
common mistake is not including enough arguments to perform the search.
In this case, you receive an error message such as, Your request has one
or more parameters missing. Please check and retry. The most
common missing argument is the developer token, but you should check all
required arguments.

Another common error is not making the search specific enough. It may
seem that you included enough information, but Amazon still returns an
error message: There are no exact matches for the search. When
this happens, make sure you specify a mode argument. Figure 3-4 shows a
typical error message, this one with a missing mode argument. In this case;
Amazon won’t point out the missing mode argument — , but the list of argu-
ments can help you spot specific problems in your request.

Figure 3-4:
Check for
missing
arguments
after
receiving
an error
message.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 703

Creating a Connection to Amazon.com704

Creating a Web page to interact with Amazon
Normally, you need some means of transforming the data shown in Figure 3-1
to human-readable form. When working with FrontPage, using XSLT provides
the best solution because it doesn’t require a lot of coding. However, Amazon
doesn’t know how you want to present the date they provide, so the XML you
receive doesn’t include any form of XSLT declaration. The XSLT declaration
normally takes the following form:

<?xml-stylesheet type=”text/xsl”
href=”amazon-seller-search-popup.xsl”?>

in the XML file. The href attribute tells where to find the XSLT file. Without
this information, the browser will never display anything but XML on-screen.
The situation isn’t hopeless — you have other options, such as writing a
script that performs the transformation process by using another technique.

The example in Listing 3-1 shows how you can download a response from
Amazon, store the information locally, and use XSLT to translate it. The
result is the same as you’d get by modifying the XML file to include the
required linkage information — but the process is far more automatic.

Listing 3-1: Translating Amazon Data Using XSLT and JavaScript

function GetData(XslFile)
{

// Convert the author name to use %20 instead of spaces.
var AuthName = SubmissionForm.AuthorSearch.value;
AuthName = escape(AuthName);

// Build a string that will hold the complete URL.
var XmlFile = “http://xml.amazon.com/onca/xml3?” +

“t=” + SubmissionForm.t.value + “&” +
“dev-t=” + SubmissionForm.devt.value + “&” +
“AuthorSearch=” + AuthName + “&” +
“mode=” + SubmissionForm.mode.value + “&” +
“type=” + SubmissionForm.type.value + “&” +
“page=” + SubmissionForm.page.value + “&” +
“f=” + SubmissionForm.f.value;

// Create an XML document object and load the data from
// the Amazon Web Service into it.
var XMLData = new ActiveXObject(“Msxml2.DOMDocument.5.0”);
XMLData.async=false;
XMLData.load(XmlFile);

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 704

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Amazon.com 705

// Create an XSLT document and load the transform into it.
var XSLTDat = new ActiveXObject(“Msxml2.DOMDocument.5.0”);
XSLTDat.async = false;
XSLTDat.load(XslFile);

// Display the output on screen.
document.write(XMLData.transformNode(XSLTDat));

}

The script relies on named text boxes on the Web page for input. The first
task the code performs is to URL-encode the AuthName value, using the
escape() function. You URL-encode values to ensure that they contain no
spaces or other special characters that could confuse the Web server. The
escape() function replaces such values with character combinations (such
as %20 for a space) that the Web server can understand. The code then com-
bines the various values with the XML site’s URL to create a request URL
(similar to the one described in the “Using a URL to contact Amazon”
section).

The next step is a little tricky and definitely Windows-specific. The code cre-
ates an instance of the Microsoft XML component. The ActiveXObject()
function performs this task. The Msxml2.DOMDocument.5.0 string identifies
the component. You might have to use Msxml2.DOMDocument.4.0 on older
machines — the last part of the string identifies the component version
number. Setting the async property to false is important because you don’t
want the call to load the XML to return until the browser actually receives
this file. Finally, the XMLData.load() function loads the response from
the Amazon Web Service. The code now has a local copy of the data from
Amazon.

At this point, the code has data to work with, but no XSLT file. The next step
loads the XSLT file defined by the XslFile variable. The coupling between
the XML response and the XSLT occurs in the XMLData.transformNode()
function call. This call produces output that the document.write() func-
tion then sends to the current page. The result is that you see the trans-
formed XML on-screen, as shown in Figure 3-5. The URL doesn’t change,
even though the content differs; you’re still theoretically on the same Web
page.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 705

Creating a Connection to Amazon.com706

Relying on XSLT to transform Amazon data
The XSLT file used to transform the Amazon data creates two tables: One
shows all parameters used to make the request (which normally you wouldn’t
include in a production system); the other shows the results of the search.
Amazon provides an amazing amount of information about the books; the
example shows only a few essentials to get you started. Listing 3-2 shows the
XSLT file for this example.

Listing 3-2: Creating a Transformed View of Amazon Data

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<xsl:template match=”/”>
<html>
<head>

<title>XSLT Transformation Example</title>
</head>
<body>

<!-- Display a heading. -->

Figure 3-5:
Use XSLT to
create a
Web page
containing
transformed
XML data.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 706

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Amazon.com 707

<h1>Translated Amazon Web Server Results</h1>

<!-- Displays the arguments used_u102 ?or the call. -->
<table align=”center” border=”1” width=”60%”>

<caption>Search Result Arugments</caption>
<tbody>

<tr>
<th>Name</th>
<th>Value</th>

</tr>
<xsl:for-each select=”ProductInfo/Request/Args/Arg”>

<tr>
<td><xsl:value-of select=”@name”/></td>
<td><xsl:value-of select=”@value”/></td>

</tr>
</xsl:for-each>

</tbody>
</table>

<!-- Display the search result values. -->
<table align=”center” border=”1” width=”100%”>

<caption>Books Returned from Query</caption>
<tbody>

<tr>
<th>Book Title</th>
<th>ISBN</th>
<th>Release Date</th>
<th>Publisher</th>

</tr>
<xsl:for-each select=”ProductInfo/Details”>

<tr>
<td><xsl:value-of select=”ProductName”/></td>
<td><xsl:value-of select=”Asin”/></td>
<td><xsl:value-of select=”ReleaseDate”/></td>
<td><xsl:value-of select=”Manufacturer”/></td>

</tr>
</xsl:for-each>

</tbody>
</table>

</body>
</html>
</xsl:template>
</xsl:stylesheet>

The code begins with the usual declarations. It then outputs the heading.
Notice that this is pure HTML and that the code isn’t doing anything but out-
putting this text. The code moves on to the body where it outputs a heading.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 707

Creating a Connection to Google708

The XSLT-specific code begins when the code starts creating a table. Notice
the head of the table is standard HTML, but that the next selection is an
<xsl:for-each> element. This statement tells the parser to look at all the
child elements of the ProductInfo/Request/Args/ node of the Amazon
response data. The system will process each <Arg> element in turn. The
next step is to use the <xsl:value-of> element to retrieve the name and
value attributes of each <Arg> element. Notice how the code uses the
attribute axis to ensure the parser retrieves the attribute values and not
the element values.

After the code processes all arguments, it moves on to the <Details> ele-
ment of the Amazon response data. The code uses the <xsl:for-each> ele-
ment again to select each of the books in turn. It uses the <xsl:value-of>
element to select each element value in turn. Notice that in this case, the
code doesn’t rely on an axis; it uses the selected element directly. The code
ends by completing the HTML page, and then completing both the template
and the stylesheet.

Creating a Connection to Google
Google is a little more complex to use than Amazon Web Services because
it relies on SOAP, rather than REST, to perform its work. Like Amazon, you
have to sign up for Google before you can use their Web service. Amazon and
Google Web Services represent the two most common alternatives to provid-
ing your own Web-service capabilities. Some custom Web-service-access solu-
tions are in use, but these are generally giving way to pure SOAP or pure REST
techniques. For example, eBay started as a custom solution, but has recently
added full SOAP support, similar to that of Google Web Services.

Even though Google Web Services uses a different access technique from
Amazon Web Services, the actual process is quite similar. In both cases, you
perform three tasks:

✦ Create code to access the Web service.

✦ Provide a means of translating the data so you can see it on-screen.

✦ Create an XSLT file to perform the transformation.

As with Amazon Web Services, you must download the Google Web Services
Kit to use Google Web Services. As part of the download process, you fill out
forms that tell Google that you’ll abide by their rules. After the request
process is complete, you receive a developer key for using Google Web
Service in your e-mail. You can download the kit at

http://www.google.com/apis/

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 708

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Google 709

Making the call
The first task is to call Google to obtain the data you need. In this case, you
create objects that let you perform a SOAP request. The code in Listing 3-3
is Microsoft-platform-specific, but the essential steps apply to any platform.
You must create some type of SOAP object, fill it with request data, and send
it to Google. In this case, the call performs an advanced Google search.

Listing 3-3: Using SOAP to Call Google

function CallGoogle()
{

// Create the SOAP client.
var SoapClient = new ActiveXObject(“MSSOAP.SoapClient30”);

// Initialize the SOAP client so it can access Google
// Web Services.
SoapClient.MSSoapInit(

“http://api.google.com/GoogleSearch.wsdl”,
“GoogleSearchService”,
“GoogleSearchPort”);

// Make a search request.
var ThisResult =

SoapClient.doGoogleSearch(
“Your-License-Key”,
SubmissionForm.SearchStr.value,
1,
10,
false,
“”,
false,
“”,
“”,
“”);

// Return the results.
return ThisResult;

}

The code begins by creating a SOAP client. When the client communicates
with the server, it ensures that the message traffic flows as anticipated and
that the request is formed correctly. The SoapClient.MSSoapInit() func-
tion creates a connection to the server. This step isn’t the same as sending
data to the server — all it does is create the connection. Make special note
of these tasks that the SoapClient.MSSoapInit() function performs:

✦ Downloads the most current copy of the Google WSDL file from the Web
site and uses it as a basis for making calls.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 709

Creating a Connection to Google710

✦ Creates a specific name for the task that the Web service call will perform
in the form of a Web service name.

✦ Specifies the port, the point of connection, to the Web service.

At this point, the code can make a request of Google Web Services. It per-
forms this task by sending all of the required arguments as part of the
SoapClient.doGoogleSearch(key, q, start, maxResults, filter,
restrict, safeSearch, lr, Ie, oe) function call. Here’s a list of the
arguments and their meanings:

✦ key: Every request you make requires the license key you obtained from
Google. When you make a request without the license key or using the
key found in the Google examples, you’ll receive an invalid authorization
key message.

The examples in this chapter use “Your-License-Key” as the sample
key. You must replace the sample key with a real key.

✦ q: This string argument contains the search request. Google accepts a
string of any length, but uses only up to ten arguments to perform the
search.

✦ start: This numeric argument contains the 0-based starting point for
the search. You must couple this starting point with the number of
results you request, with 10 results being the maximum. Consequently,
if you want to view the third set of results and you request 10 results for
each set, you would set this argument to 30.

✦ maxResults: Google lets you request a maximum of 10 results.

✦ filter: The documentation doesn’t make this particular argument very
clear. You provide true or false as the input values — not the values
described in the Automatic Filtering section of the Google Web API
Reference. Turning filtering on means that Google looks for results that
have the same title and snippet. The Web service returns only the first
result with a particular title and eliminates the others. In addition,
Google returns only the first two results from a particular Web host.

✦ restrict: This argument restricts the results you receive to a particular
country of origin. Don’t confuse this argument with a language restric-
tion. For example, when you select the United States as the country of
origin, you could still receive pages written in Spanish or German.
However, you won’t receive results from either Spain or Germany. The
Restricts section of the Google Web API Reference contains a chart of
country codes you must use for this argument.

✦ safeSearch: Generally, you can use this argument to ensure you don’t
receive any results with pornographic or other objectionable content.

✦ lr: Sometimes you need a result in a specific language. This argument
doesn’t restrict the country that you get a result from, but it does restrict
the language of the result. For example, you could tell Google that you

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 710

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Google 711

want results written only in Japanese. The Restricts section of the Google
Web API Reference contains a chart of country codes you must use for
this argument. As with most restrictions, this argument will create holes
in the result set and affect the start argument value.

✦ Ie and oe: These arguments are ignored. You still need to provide them as
part of the SOAP message, but leave the content blank (an empty string).

On return from the call, ThisResult contains the return data from Google in
the form of a SOAP message. This object isn’t an XML document. You must
retrieve the XML document by using the technique shown in Listing 3-4.

Translating the request
It’s important to remember that Google uses SOAP, not straight XML, to
respond to a request. Consequently, you can’t load the information directly
into an XML document to process it. Listing 3-4 shows how the code retrieves
just the body of the SOAP message — the part containing the XML data —
which it can then process using XSLT.

Listing 3-4: Translating Google Data Using XSLT and JavaScript

function GetData(XslFile)
{

// Get the search data.
var TheResult = CallGoogle();

// Place the resulting information in an XML document.
var ProcDoc = new ActiveXObject(“Msxml2.DOMDocument.4.0”);
ProcDoc.async = false;
ProcDoc.loadXML(TheResult.context.xml);

// Create an XSLT document and load the transform into it.
var XSLTData = new

ActiveXObject(“Msxml2.DOMDocument.4.0”);
XSLTData.async = false;
XSLTData.load(XslFile);

// Display the output on screen.
document.write(ProcDoc.transformNode(XSLTData));

}

Before the script can do anything, it must obtain the search results from
Google. When using Google Web Services, you must rely on SOAP to perform
this task. SOAP is extremely flexible, so you can use a number of techniques
to make a request with it. The “Making the call” section of the chapter shows
one such technique.

The next step is a little tricky and definitely Windows-specific: The code cre-
ates an instance of the Microsoft XML component. The ActiveXObject()

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 711

Creating a Connection to Google712

function performs this task. The Msxml2.DOMDocument.4.0 string identifies
the component. You might have to use Msxml2.DOMDocument.5.0 on newer
machines with Microsoft Office 2003 or another new product loaded — the
last part of the string identifies the component version number. Setting the
async property to false is important because you don’t want the call to
load the XML to return until the browser actually receives this file. Finally,
the ProcDoc.loadXML() function loads the response from Google Web
Services. Notice that the code uses the loadXML() function to load text for-
matted as XML, rather than XML from a file.

The code now has a local copy of the data from Google. This local copy will
disappear as soon as the function ends, so you don’t have to worry about
update requirements, but it’s important to understand that the copy resides
in memory on your machine somewhere.

At this point, the code has data to work with, but no XSLT file. The next step
loads the XSLT file defined by the XslFile variable. Notice that the code
uses the XSLTData.load() function because the XML appears in a file that
the application must load into memory. The coupling between the XML
response and the XSLT occurs in the XMLData.transformNode() function
call. This call produces output that the document.write() function then
sends to the current page. The result is that you see the transformed XML
on-screen, as shown in Figure 3-6. Notice that the URL doesn’t change, even
though the content differs; you’re still (theoretically) on the same Web page.

Figure 3-6:
Use XSLT to
transform
the Google
data.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 712

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Creating a Connection to Google 713

Displaying the data on-screen
Google Web Services can provide a lot of information about each site that
you obtain as part of a search request. Generally, all you need is the title,
description, link, and optionally the download size of the site to make a deci-
sion about it. Listing 3-5 shows how to display these various pieces of infor-
mation so they appear as shown in Figure 3-6.

Listing 3-5: Creating a Transformed View of Google Data

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:output method=”xml” indent=”yes”/>
<xsl:template match=”/return”>
<html>
<head>

<title>XSLT Transformation Example</title>
</head>
<body>

<!-- Display a heading. -->
<h1 align=”center”>Translated Google Web Services

Results</h1>

<!-- Display some common information. -->
<h2>Common Results</h2>
<label>

Search request:
<xsl:value-of select=”searchQuery”/>

</label>

... Other Common Results ...

<!-- Display the search result values. -->
<table align=”center” border=”1” width=”100%”>

<caption><h2>Results Returned from Query</h2></caption>
<tbody>

<tr>
<th>Site Title</th>
<th>Snippet</th>
<th>URL</th>
<th>Cached Size</th>

</tr>
<xsl:for-each select=”resultElements/item”>

<tr>
<td>

<xsl:value-of select=”title”
disable-output-escaping=”yes”/>

</td>
(continued)

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 713

Creating a Connection to Google714

Listing 3-5 (continued)

<td>
<xsl:value-of select=”snippet”

disable-output-escaping=”yes”/>
</td>
<td>

<xsl:text disable-output-escaping=”yes”>
<a href=’

</xsl:text>
<xsl:value-of select=”URL”/>
<xsl:text disable-output-escaping=”yes”>

‘>
</xsl:text>
<xsl:value-of select=”URL”/>
<xsl:text disable-output-escaping=”yes”>

</xsl:text>

</td>
<td><xsl:value-of select=”cachedSize”/></td>

</tr>
</xsl:for-each>

</tbody>
</table>

</body>
</html>
</xsl:template>
</xsl:stylesheet>

The code begins with the usual declarations. The <xsl:output method=
”xml” indent=”yes”/> tag is important because it determines the kind of
output the parser creates. You can also choose text as the output method
or tell the parser that you don’t want the output indented. Notice that the
code also matches the return element, using the <xsl:template match=
”/return”> tag. All the data appears within this element; you may as well
match the root node of the XML document.

The code then outputs the heading. Notice that this is pure HTML and that
the code isn’t doing anything but outputting this text. The code moves on to
the body where it outputs a heading.

The XSLT-specific code begins when the code outputs some of the common
information returned by Google. None of this information requires special han-
dling, so the code uses a simple <xsl:value-of select=”searchQuery”/>
tag to retrieve and display the information. The information is surrounded by
descriptive text and enclosed within a <label> to make it easier to see.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 714

Book IX
Chapter 3

W
orking w

ith
W

eb
Servives

Locating Other Web Services 715

Each return value requires special handling, so the code relies on a table.
Notice the head of the table is standard HTML, but that the next selection is
an <xsl:for-each> element. This statement tells the parser to look at all of
the children of the resultElements/item node. The system will process
each <item> element in turn. The next step is to use the <xsl:value-of>
element to retrieve the name and value attributes of each <item> element.
Because some of these entries contain the text version of the HTML tags —
such as > for the greater-than (>) symbol — you must include disable-
output-escaping=”yes” attribute with the <xsl:value-of> element.
Otherwise the code displays the > symbol but doesn’t create a tag. The code
ends by completing the HTML page, and then completing both the template
and the stylesheet.

Locating Other Web Services
You may find the Web services described in this chapter indispensable and
want to try Web services from other vendors. Public Web services are pop-
ping up in unexpected places; in time, standards organizations will set up
directories to make access easier. For now, here are some Web-service sites
to try:

✦ Microsoft MapPoint Web Service: http://www.microsoft.com/
mappoint/net/

✦ Web Services Finder: http://www.15seconds.com/WebService/

✦ The Flash-DB Web Services Directory: http://www.flash-db.com/
services/

The Web Services Finder is simply a search engine that helps you locate Web
services. Type in a task you want done and the search engine looks for a
Web service to perform the task.

The Flash-DB Web Services Directory is especially nice; many of these Web
services perform essential tasks and are exceptionally easy to use. For exam-
ple, you can provide a UPC symbol as input to one Web service and receive
produce information as a response. Another Web service lets you provide a
ZIP code as input and provides a location as output.

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 715

Book IX: Advanced Programming716

50_575317 bk09ch03.qxd 9/24/04 9:10 PM Page 716

Chapter 4: Enhancing FrontPage
with Visual Studio .NET

In This Chapter
� Understanding FrontPage extensions

� Writing a FrontPage extension

� Using the new FrontPage extension

You might never need a chapter that shows how to create FrontPage
extensions (added programs that make FrontPage more useful) using

Visual Studio .NET (Microsoft’s premier programming language product).
Given all the capabilities that FrontPage possesses, you can already create
Web applications that contain both simple and complex scripts. Using
FrontPage, you can process user data on the client or the server; using VBA,
you can automate tasks and even add features to FrontPage. In fact, careful
VBA programming even lets you interact with other Office applications.
Even so, you might eventually need another solution for reasons like these:

✦ VBA runs too slow

✦ You want to perform a task that VBA doesn’t support

✦ You want to protect your valuable source code from prying eyes

✦ Developers in your organization already know a .NET language

If that’s the case, one alternative solution is to enhance the capabilities of
FrontPage by adding extensions. This chapter assumes that you know how
to use Visual Studio .NET fairly well — that you’ve already created several
applications with it.

Creating FrontPage Extensions
The purpose of building a FrontPage extension is to do something that you
can’t do using standard techniques such as VBA or scripting. The following
list describes a few of the common issues you must consider for any
FrontPage extension:

✦ Easy interface: FrontPage provides an exceptionally easy interface
when working with Visual Studio .NET. For one thing, you really don’t
worry too much about individual documents — a FrontPage extension

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 717

Creating a FrontPage Extension718

can work with documents generically. FrontPage is so easy to use because
you don’t have to consider which document is loaded unless you really
want to work with a specific document.

✦ Generic extensions: When you’re working with some Office products, you
find that an extension becomes document-specific by default because you
attach the extension to the document through the Properties dialog box.
With Word, for example, you add two entries on the Custom tab: The first
defines the location of the DLL containing the extension; the second con-
tains the DLL name. These two entries load the extension DLL for that
document, but not for any other document you might have loaded. In
addition, you’re limited to just one extension per document, so the code
will have to cover all needs for that document.

✦ Document- and context-checking code is required: Not everything
about working with FrontPage makes life easier. For one thing, the
generic nature of extensions can backfire on you unless you perform a
lot of checking within the extension code. A user could (for example)
load an XML file and try to run an extension that you created for HTM
files. The result could be somewhat humorous or downright terrible,
depending on the features provided by your FrontPage extension.

✦ Extensive project setup is required: A FrontPage extension is different
from a Word or Excel extension; while creating it, you don’t attach the
extension to a document. Instead of using (for example) the Class Library
project — which is relatively simple to set up — you must use the Shared
Add-in project, which requires more effort. Consequently, although
FrontPage extensions are exceptionally easy to code, they also require
more time because the project requires more detailed definition.

Creating a FrontPage Extension
In addition to requiring more attention to detail, FrontPage extensions also
require specific .NET support on both the server and the client:

✦ You must have a copy of Visual Studio .NET — preferably Visual Studio
.NET 2003 — to work with the example in this section. Make sure you
have the .NET Framework 1.1 installed on your development system.

Although you don’t absolutely have to have all this support installed (an
older version of Visual Studio .NET or the .NET Framework will do), using
the latest version of all the required software provides a better chance of
success.

✦ The user must also have the .NET Framework 1.1 installed. In fact, the
user must have the same version of the .NET Framework you do, to

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 718

Book IX
Chapter 4

Enhancing
FrontPage w

ith
Visual Studio .N

ET
Creating a FrontPage Extension 719

ensure maximum compatibility. Users can download the .NET
Framework at

http://msdn.microsoft.com/library/default.asp?url=/downloads/list/
netdevframework.asp.

Creating the project
This example relies on the Shared Add-in project that appears in the
Extensibility Projects folder of the Visual Studio .NET New Projects dialog
box. This dialog box appears automatically when you open Visual Studio
.NET or you can display it using the File➪New➪Project command. The fol-
lowing steps tell you how to set up and configure a Shared Add-in project:

1. Type a name for the new extension in the Name field of the New
Project dialog box.

2. Select a location for the extension using the Location field. Click OK.

Visual Studio .NET displays the Welcome to the Extension Wizard page
of the Extensibility Wizard dialog box.

3. Click Next.

You see the Select a Programming Language page. This page offers you
the choice of using Visual Basic .NET, C#, or Visual C++ as the program-
ming language for the extension. (The example uses C# as the program-
ming language. However, the same principles demonstrated in this
chapter for C# work for the other languages as well.)

4. Choose a programming language. Click Next.

You see the Select an Application Host page shown in Figure 4-1. Notice
that you can create extensions for any of a number of applications or
create a generic extension that works with all of them.

Figure 4-1:
Choose
which
applications
to support
with your
extension.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 719

Creating a FrontPage Extension720

5. Check just the Microsoft FrontPage entry and clear all of the other
entries. Click Next.

You see the Enter a Name and Description page. This is where you
define the name that FrontPage displays after you load the extension. It
isn’t the name of the file. The example uses “Unique User ID Creator”
as the name and “This extension creates a unique ID based on
a user’s first name, last name, and a random number.” for
the description.

6. Type a name for the extension in the field labeled, “What is the name of
your Extension?” Then type a description in the field labeled, “What is
the description for your Extension?” Click Next.

You see the Choose Extension Options page.

7. Select the option that fits the needs of your extension:

• I would like my Extension to load when the host application
loads: Choose this option when you want the extension to load
immediately — especially if the extension provides a feature the
user is likely to need often.

• My Extension should be available to all users of the computer it
was installed on, not just the person who installs it: Choose this
option when you want the extension to affect all FrontPage users.
Always check this option when creating a generic extension that
everyone can use. Clear this option when you create an extension
that provides an administrator or advanced user feature that not
everyone needs. The example has both options checked.

8. Click Next.

You see the Summary page. This is the time to check all of the settings
to ensure the extension will have the features you want.

9. Click Finish.

Visual Studio .NET creates the new extension for you based on the set-
tings you selected.

The resulting project actually contains two applications, as shown in Fig-
ure 4-2. The UniqueID application contains the extension code required
to make your extension operational. This is the application you modify to
create the extension. The UniqueIDSetup application contains setup code
that will install the extension on other machines. Normally you won’t need
to modify this application; it already contains everything needed to install
the extension.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 720

Book IX
Chapter 4

Enhancing
FrontPage w

ith
Visual Studio .N

ET
Creating a FrontPage Extension 721

Writing the code
Visual Studio .NET creates a lot of the code you need. For example, it creates
a reference to the application that loads the extension you create, along with
the application instance (in case there’s more than one instance of the appli-
cation loaded on the user’s machine). You can find the object declarations
for the variables at the end of the Connect.cs file.

The generated code doesn’t include custom features needed to activate your
extension (such as a button or menu entry the user can select). You have to
define these objects yourself. The example defines one CommandBarButton
at the end of the coding area in the Connect.cs file, like this:

// Define a button to activate the add-on.
CommandBarButton ccbCreateID;

After you create a means of accessing the extension, you must create three
kinds of code for the extension. The required additions (outlined in the
upcoming subsections) are

✦ Startup routine

✦ Shutdown routine

✦ Event handlers that perform useful work

Developing a startup routine
The startup routine ensures your extension has all the required access to
the target application, and it places the button for your extension within the

Figure 4-2:
The Visual
Studio
Extension
Wizard
creates two
applications
for you.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 721

Creating a FrontPage Extension722

target application menu. You don’t necessarily place the extension entry on
the Tools menu (as shown here) — any menu is acceptable, so long as the
extension task works with that menu. For example, an extension that per-
forms formatting should appear on the Format menu, not the Tools menu.
Listing 4-1 shows the code required to perform this task.

Listing 4-1: Starting the Extension

public void OnStartupComplete(ref System.Array custom)
{

CommandBars AllCB; // All the command bars.
CommandBar ThisCB; // A single command bar.
Object MissingItem; // A missing item.

// Obtain the list of command bars.
AllCB =

(CommandBars)applicationObject.GetType().InvokeMember(
“CommandBars”, BindingFlags.GetProperty, null,
applicationObject, null);

// Get the Tools command bar.
ThisCB = AllCB[“Tools”];

// Determine whether the custom command already exists.
try
{

// If the button exists, reuse it.
ccbCreateID =

(CommandBarButton)
ThisCB.Controls[“Create Unique User ID”];

}
catch
{

// The button doesn’t exist, so create it. Begin by
// getting the missing item.
MissingItem = Missing.Value ;

// Create a new button. Assign a value to the caption
// and set the button to display only the caption.
ccbCreateID =

(CommandBarButton)
ThisCB.Controls.Add(1, MissingItem, MissingItem,

MissingItem, MissingItem);
ccbCreateID.Caption = “Create Unique User ID”;
ccbCreateID.Style = MsoButtonStyle.msoButtonCaption;

}

// Define a tag for the button to make it easier to find.
ccbCreateID.Tag = “Create Unique User ID”;

// Assign an action to the button. This step ensures that

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 722

Book IX
Chapter 4

Enhancing
FrontPage w

ith
Visual Studio .N

ET
Creating a FrontPage Extension 723

// FrontPage will load the extension DLL if it isn’t
// already loaded. Otherwise, clicking the button could
// fail. Use the program ID found in the GuidAttribute
// entry associated with this class.
ccbCreateID.OnAction = “!<UniqueID.Connect>”;

// Make the button visible.
ccbCreateID.Visible = true;

// Assign an event handler to the button.
ccbCreateID.Click +=

new _CommandBarButtonEvents_ClickEventHandler(
this.ccbCreateID_Click);

// You must release the COM objects used in the extension.
AllCB = null;
ThisCB = null;

}

The application begins by obtaining the list of command bars from the target
application. The very convoluted code is the result of working with COM in
this case. Taking the code apart makes it easier to understand:

✦ The AllCB object requires a data-type coercion of CommandBars since
the InvokeMember() returns a simple object.

✦ Visual Studio .NET provides applicationObject — a simple object —
making it possible to work with any number of applications using a
single extension.

✦ The GetType() method requests the type of applicationObject,
which is FrontPage in this case.

✦ The InvokeMember() method makes a request of FrontPage as defined
by the arguments that follow. The request type is BindingFlags.
GetProperty or a property value.

✦ The call specifically requests the CommandBars property and defines the
source of that property as applicationObject.

✦ Because AllCB is typed, you don’t have to jump through too many hoops
to use it. All you need to provide is an index to the menu you want to use
to hold the CommandBarButton object, ccbCreateID. This is a generic
utility, so the code places it on the FrontPage Tools menu.

The startup routine is called every time a copy of FrontPage starts. During the
first invocation (the first copy of FrontPage is started), the special button for
this utility doesn’t exist. However, during subsequent invocations, the button
does exist — so the code reuses the button, rather than creating a new one.
The code still requires a connection to that button, so it creates another refer-
ence to it.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 723

Creating a FrontPage Extension724

When the button doesn’t exist, FrontPage returns an error, but instead of dis-
playing an error message, the code creates the missing button. The secret, in
this case, is the System.Reflection.Missing.Value property. This value
represents the missing item and tells FrontPage that the code will supply it.
The code begins by adding a new control using the ThisCB.Controls.Add()
method (adding the button to the Tools menu). The code supplies the
MissingItem object as input for all of the values the Add() method needs.
Once the button is created, the code adds a Caption property value and tells
FrontPage how to display it (as just a caption). You can also create buttons
with icons or that use only icons.

The ccbCreateID.Tag is legitimately optional, but you’ll find that it’s easier
to locate the button later when you add it. Your code might need to add
other settings or disable the button when the user loads specific files. The
Tag property provides a handy way to locate the button as needed to per-
form these tasks.

Always assign an action to any button you create. Otherwise, FrontPage
won’t load the DLL when the user clicks the button. FrontPage won’t tell you
when it unloads your DLL and there isn’t any way to find out. In addition, the
user won’t receive the same response every time. Selecting a menu option
once might display an error message or crash FrontPage, but it might not do
anything at all the next time. Notice how the code assigns the program ID for
this DLL to the ccbCreateID.OnAction property so FrontPage can locate it
later in the Registry.

The next two lines of code let the user access the extension. First, the code
must make the extension visible by setting the ccbCreateID.Visible.
Second, the code assigns an event handler to the ccbCreateID.Click
event. The event handler must appear within the current class.

The final step is to release all COM objects you use to start up the extension.
In this case, the code has used both AllCB and ThisCB to access FrontPage
command bars, so it sets them to null. The reason you can’t wait for the
garbage collector to perform this task is that the garbage collector doesn’t
know these objects exist.

Developing a shutdown routine
Shutting an extension down is a lot easier than starting one up. For one
thing, you know that the menu item exists. Listing 4-2 shows the shutdown
code for this example.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 724

Book IX
Chapter 4

Enhancing
FrontPage w

ith
Visual Studio .N

ET
Creating a FrontPage Extension 725

Listing 4-2: Shutting the Extension Down

public void OnBeginShutdown(ref System.Array custom)
{

Object MissingItem; // A missing item.

// Create the missing item.
MissingItem = Missing.Value;

// Delete the command button created earlier.
ccbCreateID.Delete(MissingItem);

// Make sure you release the COM object before leaving the
// program.
ccbCreateID = null;

}

The code uses the System.Reflection.Missing.Value property again
to create the MissingItem object. This object represents anything that
FrontPage might be missing to complete the ccbCreateID.Delete()
method. The MissingItem object doesn’t actually represent anything —
it’s a placeholder.

After the code deletes the menu item the extension created in FrontPage, it
needs to release any COM objects still in use. In this case, the only COM
object still in use is ccbCreateID.

Make sure you perform this vital step or your extension could produce
memory leaks (nasty side effects that rob the machine of useful memory).

Performing a useful task
The code, to this point, has affected the extension. You also need the code to
initialize the extension — and to make FrontPage aware of it. The code in
this section is different because it interacts with the user. Listing 4-3 shows
the task-related code for this example.

Listing 4-3: Displaying a Dialog Box and Producing Output

private void ccbCreateID_Click(CommandBarButton
cmdBarbutton,ref bool cancel)

{
FrmUserID ThisID; // Dialog box for user information.
String Output; // The output value.

(continued)

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 725

Configuring and Using the Extension726

Listing 4-3 (continued)

// Initialize the dialog box.
ThisID = new FrmUserID();

// If the user clicks OK, process the information.
if (ThisID.ShowDialog() == DialogResult.OK)
{

// Define an output value.
Output = ThisID.txtLastName.Text.Substring(0, 1) +

ThisID.txtFirstName.Text +
DateTime.Now.Second.ToString();

// Display it as a message box.
MessageBox.Show(Output);

}
}

I added a simple form to the example. It contains an OK and Cancel button,
along with two fields where the user can enter data. The type of this form
is FrmUserID. The code creates an instance of this form and displays it to
the user.

When the user enters data and clicks OK, the code continues processing.
Otherwise it exits without producing a result. Because this is an anticipated
action, the code doesn’t need to do anything else.

The code processes the public textbox information from the form the user just
filled out, and adds the current seconds to it. The result is a string that con-
tains the first initial of the user’s last name, followed by the user’s first name,
and finishing with a random number. The code uses the MessageBox.Show()
method to display this information.

Configuring and Using the Extension
When you have a FrontPage extension created and ready to use, it’s time to
install and test it. Even though the Microsoft documentation says (in several
places) that you should be able to work with the extension immediately after
compiling it, in practice the extension doesn’t appear to work that way — an
installation is required.

Before you make any changes to your FrontPage extension, make sure you
uninstall it. Otherwise, you won’t see any of your changes when you test the
extension again. Always install, test, and then uninstall during the debugging
process. Even though this seems like a lot of extra work, the technique saves
time in the long run.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 726

Book IX
Chapter 4

Enhancing
FrontPage w

ith
Visual Studio .N

ET
Configuring and Using the Extension 727

Installing the extension
After you create and compile the code, it’s time to test it in FrontPage. First
you have to install the extension, just as the user does. The following steps
describe how to perform this task:

1. Double-click the installation program, Setup.exe, in one of the
following folders:

\UniqueID\UniqueIDSetup\Debug

\UniqueID\UniqueIDSetup\Release

You see the initial Welcome dialog box that includes the name of the
application.

2. Click Next.

You see the Select Installation Folder dialog box shown in Figure 4-3.
Notice that the dialog box lets the user choose an installation folder,
but defaults to an installation folder that includes your company name
(when you add one to Visual Studio .NET).

3. Click Next twice.

Setup creates the installation folder. It then installs and registers the
components you created.

Figure 4-3:
Visual
Studio .NET
personalizes
the
installation
program
for you.

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 727

Configuring and Using the Extension728

4. Click Close.

The dialog box closes and you’re ready to use the extension.

Testing the extension
Testing the extension requires several steps. Some of them are quite simple,
while others require some level of observation. Here are the testing steps to
try for this example:

1. Open FrontPage, look at the Tools menu.

You should see the Create Unique User ID entry that the extension pro-
vides. When you don’t see this entry, make sure you installed the exten-
sion by looking for its entry in the Add/Remove Programs applet of the
Control Panel. A missing entry could also mean a coding error (for exam-
ple, the Visible property wasn’t set to true).

2. Select the Tools➪Create Unique User ID option.

You see the Enter User Information dialog box.

3. Type values in the User’s First Name and User’s Last Name fields.
Click OK.

FrontPage displays a dialog box showing the first letter of the user’s last
name, the first name, and a random number.

4. Click OK.

The output dialog box disappears.

5. Select the Tools➪Create Unique User ID option.

You see the Enter User Information dialog box.

6. Click Cancel.

Nothing happens. Congratulations — your FrontPage extension works!

51_575317 bk09ch04.qxd 9/24/04 9:04 PM Page 728

Symbols and Numerics
& (ampersand), concatenation

operator, 596
<!--...--> (angle bracket...)

control comments, 66
XML comment delimiter, 438

<%...%> (angle bracket...), script
element delimiters, 665

<%...%> (angle bracket...), script
statement delimiters, 342–345, 665

<...> (angle bracket...), XML elements,
434–435

<?...?> (angle bracket...), XML
processing instructions, 433–434

* (asterisk), arithmetic multiplication
operator, 596

@ (at sign), ASP directives, 665
= (equal sign), comparison operator, 596
> greater-than operator, 596
< less-than operator, 596
- (minus sign), arithmetic subtraction

operator, 596
+ (plus sign)

arithmetic addition operator, 596
concatenation operator, 573, 596

/ (slash), arithmetic division
operator, 596

_ (underscore), continuation
character, 573

3D bevel, clip art, 282

A
<a>, anchor tag, 55
<abbr>, abbreviation tag, 55
Access

copying and pasting, 321–322
dragging and dropping, 321

interactive Web pages
ANSI SQL support, 398
ASP versus ASP.NET, 390–391
buffer size, specifying, 399
connection strategy, 390–391
connections, advanced properties,

397–400
connections, custom, 395–397
connections, Database Results

Wizard, 391–400
connections, new, 391–400
connections, selecting, 400–401
data source links, defining, 393–395
data views, 402–404
ExtendedAnsiSql parameter, 398
file links, defining, 392–393
MaxBufferSize parameter, 399
MaxScanRows parameter, 399
PageTimeout parameter, 399
PivotTable views, 407–409
read-only database access, 399
ReadOnly parameter, 399
relational data views, 406–409
row scans, limiting, 399
safe transaction environment, 399
SafeTransactions parameter, 399
search forms, 405–406
thread number, specifying, 399
Threads parameter, 399
timeout, specifying, 399

report views, 320–322
accessibility

CSS (Cascading Style Sheets), 265
forms, 90–91
frames, 118–119
tables, 98–99

accessing special objects, 487
<acronym>, acronym tag, 55
acronyms, tagging, 54–55
Active Server Pages (ASP). See ASP

(Active Server Pages).

IndexIndex

52_575317_bindex.qxd 9/24/04 9:10 PM Page 729

FrontPage 2003 All-in-One Desk Reference For Dummies730

ActiveDocs, 332
Add Watch window, 622–623
Address and Places plug-in, 329–330
addressing envelopes, 328–329
All Files report, 240
Amazon Web services

data transformation, 706–708
description, 694
online resources, 699, 700
Web page interaction, 704–706
XML, 469

Amazon.com database, 373–375
ampersand (&), concatenation

operator, 596
analyzing data

See Excel, database; PivotTable control;
what-if analysis

anchor tag, <a>, 55
anchors, 56–57
And operator, 596
angle bracket...

(<), less-than operator, 596
(<!--...-->), control comments, 66
(<!--...-->), XML comment

delimiter, 438
(<%...%>), script element

delimiters, 665
(<%...%>), script statement delimiters,

342–345
(<...>), XML elements, 434–435
(<?...?>), XML processing

instructions, 433–434
(>), greater-than operator, 596

animated GIFs, 289–291. See also video.
ANSI SQL support, 398
Application library, 564
Application object, 642–643
arguments, VBA, 575
arithmetic operators, 596
arrays

scripts, 514
VBA

definition, 625
structured storage, 630–632
types, 632–633

ASP (Active Server Pages)
<%...%>, script element delimiters,

342–345, 665
@ (at sign), ASP directives, 665
adding script elements, 342–345
advantages, 340–341
versus ASP.NET, 390–391
creating a page, 341–345, 667–675
creating the file, 341–342
defining a display, 667–668
designing a page, 342
directives, 664–665
GET method, 668–671
issues, 345–346
limitations, 345–346
overview, 663–664
POST method, 669–672
pros and cons, 664
script elements, 665–667
server variables, 675–676
server-side scripting, 664
session data, 672–675
session identifiers, 674
XML dynamic Web pages, 481–482

ASP.NET, versus ASP (Active Server
Pages), 390–391

ASP.NET For Dummies, 341
Assigned To field, naming, 48
Assigned To report, 244
associated controls properties, 557
asterisk (*), arithmetic multiplication

operator, 596
at sign (@), ASP directives, 665
attributes

XML documents, 436–437
XSLT, 458

audio
background sounds, 292
hyperlinks, 292–293
interactive buttons, 293–294
making optional, 292–293
scripts, 293–294
user control, 292–293

automatic page links, 219–222
automating tasks, scripting, 487
AutoShapes, 272

52_575317_bindex.qxd 9/24/04 9:10 PM Page 730

Index 731

B
Back links, 216–218
background, tables, 96
background images, creating, 51
background sounds, 292
banners, 76–77
beta programs, 617
body

scripts, 488–489
SOAP, 695

<body>, body tag, 46
bookmarks

scripts, 510–511
Web pages, 56–57

books and publications
ASP.NET For Dummies, 341
VBA For Dummies, 626

Boolean data type, 593–594
Boolean value properties, 557
borders, tables, 96
_borders folder, 339–340

, break tag, 73
braces, matching in scripts, 510
break tag,
, 73
breakpoints, 618–619
brightness, clip art, 282
browser compatibility

hyperlinks, 56
scripts, 537–542
support for scripting languages, 491
tables, 96
type, determining, 536–537
version bugs and errors, 541–542
version detection, 539–541

Browsers report, 247
buffer pages, 172
buffer size, specifying, 399
bug types, 613–617
bulleted (unordered) list tag, , 59
bulleted (unordered) lists, 58–59
buttons, associating functions with,

515–519
Byte data type, 590

C
calculations, data type for, 588–595
calendar activities, 330
canvas

configuring, 269–270
creating, 268–269
scaling, 270

<caption>, table caption tag, 98
captions, tables, 98
carriage returns, 494
Cascading Style Sheets (CSS)

See CSS (Cascading Style Sheets);
templates; themes

Case Else clause, 603–604
Categories report, 244
categories style Navigation view, 224–225
categorizing pages, 47
cells

creating, 104–105
padding, 96
properties, 97–98
spacing, 96

character codes, 586–587
character set, XML documents, 433
Chart control, 315, 318–319, 384–386
charts

Chart control, 315, 318–319, 384–386
Excel, 318–319
interactive Web pages, 384–386

checkboxes, 72
Checkout Status report, 244–246
child nodes, 438–439
classes, VBA

coding, 626–630
components, 628
controls, 628
definition, 625
instantiation, 626–628
types, 628
With statement, 628–630

Classy Themes, 134
Clear Bookmarks option, 510

52_575317_bindex.qxd 9/24/04 9:10 PM Page 731

FrontPage 2003 All-in-One Desk Reference For Dummies732

clip art
3D bevel, 282
adding to Web pages, 271–272, 276–277
AutoShapes, 272
brightness, 282
canvas, configuring, 269–270
canvas, creating, 268–269
canvas, scaling, 270
colors, 282
contrast, 282
copyright issues, 285
cropping, 282
describing, 282–283
<div>, division tag, 272
Drawing Canvas toolbar, 267–272
Drawing toolbar, 267–272
flipping, 282
hotspots, 284–285
image maps, 284–285
, image tag, 267–268, 276–277
importing, 285
layers

creating, 273–274
CSS (Cascading Style Sheets), 276
organizing with, 272–276
positioning, 274–276
uses for, 272–273

linking from, 284–285
managing, 282
obtaining, 277–278, 285
organizing with Clip Art Organizer,

280–281
organizing with layers, 272–276
Pictures toolbar, 282
Positioning toolbar, 274–276
properties, viewing, 279
rotating, 282
searching for, 277–278, 285
sources for, 277–278, 285
transparency, 282
VML (Vector Markup Language),

267–268
Clip Art Organizer, 280–281
clipboard, adding data from, 198–200
code generator, 602

code snippets
defining, 511–513
listing, 511

Code view, 43, 60–61
Code View toolbar, 509–511
coding step, VBA, 569–570
coding support, new features, 16–17
collections

scripts, 514
VBA

accessing items, 638–639
creating data sets, 634–639
definition, 625
keys, 636–638

colorblind users, 52
colors

clip art, 282
tables, 96
themes, 148
Web pages, 52–53

columns
headings, 97–98
sizing, 96, 103
space images, 102

Comma Separated Values (CSVs),
375–376

comments
controls, 66–67
scripts, 510
XML documents, 437–438

compact policy statements, 524–526
comparison operators, 596
compile errors, 615–616
Complete Word option, 511
Component Errors report, 243
components

scripts, 494
VBA classes, 628

concatenation operators, 573, 596
conditional code. See decision making.
configuring

reports, 210–211
server extensions, 165–167

Connection Speed setting report, 235

52_575317_bindex.qxd 9/24/04 9:10 PM Page 732

Index 733

connections
Access database

advanced properties, 397–400
custom, 395–397
Database Results Wizard, 391–400
new, 391–400
selecting, 400–401
strategy, 390–391

interactive Web pages
ActiveX control, 382–384
defining, 377–379
existing, 379
modifying, 380–381
new, 377–379

SQL Server
custom connections, 420–423
data sources on the Web server,

416–419
DSN connection, 422–423
existing connections, 425–426
external connections, 423–425
network connections, 419–420
new connections, 415–423
Northwind database connection,

413–415
constants, VBA

data type, 583
declaring, 584–585
scope, 583
versus variables, 583–585

context-sensitive help, 36
contrast, clip art, 282
control characters, VBA, 573
controls

, break tag, 73
checkboxes, 72
comments, 66–67
date and time, 75
decorative elements, 73–76
efficiency, 65–67
events, 66
horizontal rules, 73–74
<hr>, horizontal rule tag, 74
identifying purpose of, 68

input, associating with labels, 80–82
input, in forms, 80–82
<input>, input tag, 68, 80–82
input, overview, 68–73
keyboard shortcuts, 69
labels, 68, 82
line breaks, 73
lines (graphic), 73–74
option buttons, 72–73. See also drop-

down lists.
properties, 66
pushbuttons, 71
radio buttons, 72–73
reset button, 71
scripts, 494
, underline tag, 69
special characters, 75–76
submit button, 71
tab order, 70
textboxes, 68–71
timestamps, 75
underlining text, 69
user input, 68–73
VBA classes, 628

cookies
benefits of, 521–527
compact policy statements, 524–526
creating, 528–529
expiration, 531–533
names, 528–529
P3P (Platform for Privacy Preferences),

523
permanent, 528–529
privacy information, storing, 524
privacy issues, 522–523
Privacy Report, 526–527
privacy statements, 523–527
reading, 529–531
temporary, 528–529
uses for, 522
values, 528–529

copying
data from Excel, 314
documents, 33–34

52_575317_bindex.qxd 9/24/04 9:10 PM Page 733

FrontPage 2003 All-in-One Desk Reference For Dummies734

copying and pasting
Access data, 321–322
Word documents, 308–310

copyright issues, 285
corner sizing, tables, 103
crackers

definition, 353
dynamic XML pages, 468
monitoring, 354–355
social engineering attacks, 468
XML dynamic Web pages, 468

creating
ASP files, 341–342
ASP pages, 341–345, 667–675
background images, 51
canvases, 268–269
cells, 104–105
clip art layers, 273–274
cookies, 528–529
CSS pages, 254–260
Dynamic Web Templates, 346–347
forms, 79–82
home pages, 163–165
hyperlinks, 200
IDE task list, 34–36
layouts, 205–206
PHP pages, 681–689
scripts. See scripts, creating.
shared borders, 337–338
task lists, 34–36
templates, 189–193
toolbars, 40
user-defined CSS styles, 255–258
VBA data sets, 634–639
VBA variables, 561–562
Web pages

See CSS (Cascading Style Sheets);
frames; IDE (Integrated Development
Environment); templates; themes;
Web pages, creating; Webs, creating

XML documents, 444–452
cropping clip art, 282
CScript utility, 508

CSS (Cascading Style Sheets). See also
templates; themes.

accessibility, 265
adding to FrontPage, 258–259
creating a simple page, 254–260
CSS file, 252
custom styles, 258
designing for efficiency, 264–265
embedded, 253, 261–262
external, 253, 260–261
HTML file, 252
linking to Web pages, 260–262
overview, 252–254
predefined styles, correcting, 259–260
predefined styles, selecting, 254–255
prerequisites for using, 253–254
reports, 241–242
sharing, 258–259
standard tags, 256–257
Style toolbar, 262–264
styling text, 263–264
top-down design, 264–265
user-defined styles, creating, 255–258

CSS file, 252
CSVs (Comma Separated Values), 375–376
Currency data type, 590, 594–595
custom link bars, Navigation view, 222,

228–229
custom styles, 258

D
Daily Page Hits report, 247
Daily Summary report, 247
data analysis

See Excel, database; PivotTable control;
what-if analysis

data handling, new features, 17
data length, security checking, 358–360
data patterns, security checking, 364–366
data sets, creating with VBA collections,

634–639
data source links, defining, 393–395

52_575317_bindex.qxd 9/24/04 9:10 PM Page 734

Index 735

data tips, 619–620
data types, security checking, 361–363
data types, VBA

Boolean, 593–594
Byte, 590
calculations, 588–595
character codes, 586–587
Currency, 590, 594–595
Date, 595–596
date and time information, 595–596
decimal, 590
decision making, 593–594
definition, 585–586
integer, 590
Integer, 590
Long, 590
numbers

converting to strings (text), 591–593
numeric types, 589–591

parsing, 588
real, 590
special characters, 586–587
strings, converting to numbers,

591–593
strings, definition, 586–589
text

character codes, 586–587
converting to numbers, 591–593
parsing, 587–589
special characters, 586–587

variant data, 596
data views

Access database, 402–404
Excel, 314–320
relational, 426–428

databases
See also Access; Excel; SQL Server
application plug-ins, 332
XML dynamic Web pages, 476

DataPortal, 332
date and time, controls, 75
date and time data type, 595–596
Date data type, 595–596
Debug toolbar, 618

debugger tool, VBA
Add Watch window, 622–623
breakpoints, 618–619
data tips, 619–620
Debug toolbar, 618
Immediate window, 620–621
stepping through code, 619
variable values, watching, 619–621
variables, displaying, 620–623
Watch window, 622–623

debugging. See also testing;
troubleshooting.

frames, 119–120
scripts, 548–550
VBA

beta programs, 617
bug types, 613–617
compile errors, 615–616
Locals window, 621
logic errors, 615
overview, 571
run-time errors, 616–617
semantic errors, 617
syntax errors, 614–615

decimal data type, 590
decision making

Boolean data types, 593–594
data types, 593–594
scripts, 498–499
VBA programs, 598–602
<xsl:choose> element, 461–462
<xsl:if> element, 460–461

declaring VBA constants and variables,
584–585

decorative elements, controls, 73–76
Default.htm file, 45
definition tag, <dfn>, 55
deleting

files, 26–27
frames, 115
themes, 156
Webs, 162

design step, VBA, 568–569
design tools, new features, 14–15

52_575317_bindex.qxd 9/24/04 9:10 PM Page 735

FrontPage 2003 All-in-One Desk Reference For Dummies736

Design view
definition, 43
frames, 111–112
previewing Web pages, 60–61

detail element, 698
<dfn>, definition tag, 55
DHTML Effects toolbar, 517–519
dialog boxes, Macro, 578–579
dialog-box-level help, 36
direct conversion

Excel, 320
Word documents, 311–313

directives, ASP, 664–665
disabling

scripting, 502–505
Smart Tag plug-ins, 331

Display Gridlines... setting report, 236
displaying. See also viewing.

author’s name, 303
events in scripts, 511
Form toolbar, 79–80
information on Webs, 27–29. See also

IDE (Integrated Development
Environment).

links, 30–34
methods, 511
page content, 303
parameters, 511
properties, 511
Smart Tag plug-ins, 324–325
tags, 53–54
variables, 620–623
VBA variables, 620–623
videos, 297–299
Web pages, 126
Web site information, 27–29
Word documents on Web pages. See

Word documents.
displaying, Smart Tag plug-ins, 324–325
<div>, division tag, 95, 272
Do Loop...Until statement, 607
Do Loop...While statement, 606

Do Until...Loop statement, 606–607
Do While...Loop statement, 604–606
document statistics, collecting with VBA,

572–574
documents

See FrontPage documents
See Word documents
See XML documents

download speed
images and, 150
timing, 62

dragging and dropping, Access, 321
Drawing Canvas toolbar, 267–272
Drawing toolbar, 267–272
drawings. See clip art; images.
driving directions, 329–330
drop-down lists, 83–85. See also option

buttons.
DSN connection, 422–423
DWT files. See Dynamic Web Templates.
dynamic tables, 95
dynamic Web pages

ASP
<%...%>, script statement delimiters,

342–345
adding script elements, 342–345
advantages, 340–341
creating a page, 341–345
creating the file, 341–342
designing a page, 342
issues, 345–346
limitations, 345–346

automatic file updates, 334
Dynamic Web Templates

adding to pages, 350
creating, 346–347
Dynamic Web Template toolbar,

351–352
editable regions, 347–350
potential problems, 351
updating pages, 350

manual updates, 334
need for change, 334

52_575317_bindex.qxd 9/24/04 9:10 PM Page 736

Index 737

reports, 241–242
script generation, 334
shared borders

attaching to Web pages, 336–337
_borders folder, 339–340
creating, 337–338
modifying, 339–340
overview, 336

template updates, 334
updates, 334–335
XML

ASP, 481–482
built-in XML functionality, 471–474
client-side scripting, 477–481
crackers, 468
data sources, 467–475
databases, 476
local data sources, 471–475
Office 2003 applications, 476
process automation, 476–482
scripts, 474–475
security issues, 468
social engineering attacks, 468
updates, 475–476
VBA macros, 476
Web services, 468–470

Dynamic Web Template toolbar, 351–352
Dynamic Web Templates

adding to pages, 350
creating, 346–347
Dynamic Web Template toolbar,

351–352
editable regions, 347–350
potential problems, 351
updating pages, 350

E
eBay Web services

description, 694
XML, 469

editing, tasks, 36

editors
VBA

Code window, 559–561
debugging, 561–562
Immediate window, 561–562
overview, 554–557
Properties window, 557–559
typing text, 559–561

XML documents, 440–443
XML Notepad, 442
XML text editors, 442–443
XMLFox, 443
XMLSpy, 443
XMLwriter 2, 443

elements, XML documents, 434–435
e-mail

from forms, 87–88
with hyperlinks, 58
setup, 166–167
Smart Tag plug-ins, 328–329

embedded Cascading Style Sheets, 253,
261–262

embedded templates, 128–129
empty elements, 434
encoding attribute, 433
equal sign (=), comparison operator, 596
error checking, XML documents,

444–445
error messages, SQL Server, 426
escaped character set, scripts, 494
events

displaying in scripts, 511
and script functions, 515–517
scripts, 496–497
special effects from, 517–519

events, controls, 66
Excel

Chart control, 315, 318–319
charts, 318–319
copying data from, 314
data views, 314–320
database functionality, 372–375
direct conversion, 320

52_575317_bindex.qxd 9/24/04 9:10 PM Page 737

FrontPage 2003 All-in-One Desk Reference For Dummies738

Excel (continued)
hyperlink access, 320
interactive Web pages

Amazon.com data, 373–375
Chart control, 384–386
charts, 384–386
connections, ActiveX control, 382–384
connections, defining, 377–379
connections, existing, 379
connections, modifying, 380–381
connections, new, 377–379
CSVs (Comma Separated Values),

375–376
database functionality, 372–375
default search criteria, 381
fields (columns), 372
filtering data, 380
FrontPage data, 375–376
grouping data, 373
importing data, 373
limiting returned records, 381
linking to spreadsheets, 376–381
“no records returned” message, 381
PivotTable control, 386–388
records (rows), 372
sorting data, 380
Spreadsheet control, 384
spreadsheets, 384
tables, 376
viewing data, 381–388
what-if analysis, 372

PivotTable control, 315
saving data as XML, 316
Spreadsheet control, 315, 317
spreadsheets as tables, 314
spreadsheets on Web pages, 316–317
Web components, 314

expiration of cookies, 531–533
ExtendedAnsiSql parameter, 398
extensions, FrontPage, 717–728
external Cascading Style Sheets, 253,

260–261

F
fault messages, SOAP, 697–698
faultactor element, 698
faultcode element, 697
fields, tables, 93
fields (columns), 372
File Ages setting report, 235
file links, defining, 392–393
file lists, 192
files

arranging, 26–27
deleting, 26–27
locked, 245
publishing, 207
renaming, 26–27
sorting, 207
transferring, 25–27
unchanged, identifying, 29
updating, 25–27

Files report, 234, 239–241
filtering Excel data, 380
Find Matching Brace option, 510
Find Matching Tag option, 510
Flash-DB Web Services Directory, 715
flipping clip art, 282
flow control, VBA programs, 609–612
Folder List, hiding/showing, 22
folder views, 22–23
Folders view, 206–207
fonts. See also CSS (Cascading Style

Sheets); text.
themes, 153
Web pages, 54, 153

footers, tables, 105–106
For Each...Next statement, 608–609
for loop, 500–501
<form>, form tag, 86
Form toolbar, displaying, 79–80
formatting Web pages

See CSS (Cascading Style Sheets);
frames; layouts; tables; templates

52_575317_bindex.qxd 9/24/04 9:10 PM Page 738

Index 739

forms
accessibility, 90–91
adding scripts, 546–547
creating, 79–82
default settings, 86
drop-down lists, 83–85
e-mailing data, 87–88
feedback, 544–547
<form>, form tag, 86
Form toolbar, displaying, 79–80
GET versus POST, 89
input controls, adding and configuring,

80–82
PHP (PHP Hypertext Processor),

689–692
sending data from, 86–89
sending data to a server, 88–89
text areas, 85. See also textboxes.

For...Next statement, 607–608
<frame>, frame tag, 108
frames. See also tables.

accessibility, 118–119
adding, 114–115
adding pages, 111–112
alternative views, 113–114, 119–121
combining actions, 115–116
configuring pages, 112
creating Web pages, 108–114
defining a main page, 108–110
deleting, 115
<frame>, frame tag, 108
frame-free view, 113–114, 119–121
within frames, 130
<frameset>, frameset tag, 108
<iframe>, IFrame tag, 116
IFrames, 116–118
inline, 116–118
No Frames view, 113–114
<noframes>, no frames tag, 113–114
<object>, object tag, 120–121
organizing, 114–116
properties, customizing, 110–111
sizing, 112
splitting, 114–115

style sheets, 131–133
table formatting, 131
table of contents, 120
templates, 124–125, 129–130, 202–204
uses for, 107–108

<frameset>, frameset tag, 108
FrontPage

extensions, 717–728
meta keys, 655
new features

coding support, 16–17
data handling, 17
design tools, 14–15
graphics, 16
user support, 15
Web publication, 17–18

overview, 11–14
updates, 38
version, determining, 38–39
views, illustrations, 13
Visual Studio .NET, 717–728

FrontPage documents
copying, 33–34
as objects, 653–654
opening, 32
properties, setting, 33
viewing, 23–25

FrontPage library, 641–642
FrontPage Template World, 134
FrontPageEditor library, 641–642
FrontPageEditor objects, 644–647
function lookup, scripts, 511
Function Lookup option, 511
functions

scripts
associating with buttons, 515–519
DHTML Effects toolbar, 517–519
and events, 515–517
input/output, 519–520
locating, 511
versus methods, 495–496
special effects, 517–519

VBA, 574–576
XSLT, 460

52_575317_bindex.qxd 9/24/04 9:10 PM Page 739

FrontPage 2003 All-in-One Desk Reference For Dummies740

G
GET method

ASP (Active Server Pages), 668–671
forms, 89

GIFs, animated, 289–291
global variables, VBA, 577–578
Go To Function option, 511
Go To statement, 609–612
Google Web services

connecting to, 708–711
data display, 713–715
data transformation, 711–712
description, 694
XML, 469

graphic format reports, 247–248
graphics. See clip art; images.
Grid, 200–202
grouping Excel data, 373

H
hackers, 353. See also crackers.
Hatfield, Bill, 341
<head>, heading tag, 45
headers

scripts, 490–491
SOAP, 695
tables, 105–106

heading tag, <head>, 45
headings, Web pages, 54
height, tables, 102
“hello” message, 682–683
help. See also books and publications;

online resources.
for Code window, 561
context-sensitive, 36
dialog-box-level, 36
FrontPage version, determining, 38–39
general topics, 36–37
Intellisense, 60–61
Object Browser, 565
Property window, 558–559
repairing an installation, 38

ScreenTips, 42
for VBA properties, 558–559

hit counters, 302–303
home pages

creating, 163–165
links, 218–219
renaming, 164

horizontal rule tag, <hr>, 74
horizontal rules, 73–74
hotspots, 284–285
<hr>, horizontal rule tag, 74
<html >, HTML tag, 45
HTML file, 252
HTML tags. See tags.
HTTP transport, 696–697
hyperlink access

Excel, 320
Word documents, 310–311

hyperlink view, 31–32
hyperlinks

See also hotspots; image maps; links;
anchors, 56–57; audio, 292–293

bookmarks, 56–57
browser compatibility, 56
creating, 200
defining, 172–174
definition, 55
describing, 58
opening, 32
within a page, 56–57
between pages, 57–58
sending e-mail with, 58
setting the base location, 56
verification report, 237–238
verifying, 32, 167–169
video, 299
Web pages, 55–58

Hyperlinks report, 243

I
IBM Web services, 699
icons, enlarging, 42

52_575317_bindex.qxd 9/24/04 9:10 PM Page 740

Index 741

IDE (Integrated Development
Environment)

arranging files, 26–27
deleting files, 26–27
displaying links, 30–34
document properties, setting, 33
documents, copying, 33–34
documents, opening, 32
documents, viewing, 23–25
file type compatibility, 24
Folder List, hiding/showing, 22
folder views, 22–23
hyperlink verification, 32
hyperlink view, 31–32
hyperlinks, opening, 32
navigating your site, 29–30
Older Files report, 29
overview, 7
Remote Web Site view, 25–27
renaming files, 26–27
reports, 27–29
Reports view, 27–29
Review Status report, 28–29
Site Summary report, 27–28
task list, creating, 34–36
task management, 34–36
Task view, 34–36
tasks, editing, 36
tasks, sorting, 34
transferring files, 25–27
unchanged files, identifying, 29
updating files, 25–27
Web site information, displaying, 27–29

if statements, 499
<iframe>, IFrame tag, 116
IFrames, 116–118
If...Then statement, 598–599
If...Then...Else statement, 599–601
If...Then...ElseIf statement,

601–602
image maps, 284–285
image tag, , 267–268, 276–277,

296–297

images
compression, 150
JPEG (Joint Photographic Experts

Group), 150
lossless compression, 150
new features, 16
Smart Tag plug-ins, 323
tables, 96
themes, 148–151

, image tag, 267–268, 276–277,
296–297

Immediate window, 620–621
implementation step, VBA, 569–570
importing clip art, 285
importing Excel data, 373
importing Web sites, 161–169
included-content components, 303
INF (information) files, 136, 191
information tracking, 332
inline frames, 116–118
inline scripts, 513–515
input. See also controls; forms.

associating with labels, 80–82
checking

data length, 358–360
data patterns, 364–366
data types, 361–363
input constraints, 363–365
integers, 363
numbers, 362–363
telephone numbers, 364–366
text, 361–362

constraints, 363–365
in forms, 80–82

<input>, input tag, 68, 80–82
Insert Comment option, 510
Insert End Tag option, 510
Insert Start Tag option, 510
installing PHP, 680
instantiating VBA classes and objects,

626–628
Integer data type, 590
integers, security checking, 363

52_575317_bindex.qxd 9/24/04 9:10 PM Page 741

FrontPage 2003 All-in-One Desk Reference For Dummies742

Integrated Development Environment
(IDE). See IDE (Integrated
Development Environment).

interactive Web pages
Access

ANSI SQL support, 398
ASP versus ASP.NET, 390–391
buffer size, specifying, 399
connection strategy, 390–391
connections, advanced properties,

397–400
connections, custom, 395–397
connections, Database Results

Wizard, 391–400
connections, new, 391–400
connections, selecting, 400–401
data source links, defining, 393–395
data views, 402–404
ExtendedAnsiSql parameter, 398
file links, defining, 392–393
MaxBufferSize parameter, 399
MaxScanRows parameter, 399
PageTimeout parameter, 399
PivotTable views, 407–409
read-only database access, 399
ReadOnly parameter, 399
relational data views, 406–409
row scans, limiting, 399
safe transaction environment, 399
SafeTransactions parameter, 399
search forms, 405–406
thread number, specifying, 399
Threads parameter, 399
timeout, specifying, 399

Excel
Amazon.com data, 373–375
Chart control, 384–386
charts, 384–386
connections, ActiveX control, 382–384
connections, defining, 377–379
connections, existing, 379
connections, modifying, 380–381
connections, new, 377–379
CSVs (Comma Separated Values),

375–376

database functionality, 372–375
default search criteria, 381
fields (columns), 372
filtering data, 380
FrontPage data, 375–376
grouping data, 373
importing data, 373
limiting returned records, 381
linking to spreadsheets, 376–381
“no records returned” message, 381
PivotTable control, 386–388
records (rows), 372
sorting data, 380
Spreadsheet control, 384
spreadsheets, 384
tables, 376
viewing data, 381–388
what-if analysis, 372

internal threats, 356
international transactions, 331

J
Java testing, 541
JavaScript, 491

K
keyboard shortcuts, 42, 69
keys, VBA collections, 636–638
keywords

scripts, 513
for search engines, 49

L
labels

controls, 68
forms, 82
VBA programs, 611

landscape views, 171
language, Web pages, 49–50
language attribute, 492

52_575317_bindex.qxd 9/24/04 9:10 PM Page 742

Index 743

layers, clip art
creating, 273–274
CSS (Cascading Style Sheets), 276
organizing with, 272–276
positioning, 274–276
uses for, 272–273

Layout Tables and Cells feature, 100
layouts, creating, 205–206

See also CSS (Cascading Style Sheets);
frames; tables; templates; themes

leaf pages, 228
legal profession, plug-ins, 332
LexisNexis, 332
, list item tag, 59
libraries

FrontPage, 641–642
VBA, 563–564

line breaks, controls, 73
linefeeds, 494
lines (graphic), 73–74
link bar style, Navigation view, 221–222
links. See also hyperlinks.

automatic page, 219–222
Back, 216–218
Cascading Style Sheets to Web pages,

260–262
from clip art, 284–285
displaying, 30–34
home page, 218–219
hotspots, 284–285
image maps, 284–285
images to Web pages, 267–268
Next, 216–218
to spreadsheets, 376–381
top-ten list, 225–226

List Code Snippets option, 511
list item tag, , 59
List Members option, 511
lists

bulleted (unordered), 58–59
drop-down, 83–85
numbered (ordered), 58–59

local connections, 182–183
local Webs, 178–180
Locals window, 621

locked files, 245
logic errors

scripts, 549–550
VBA, 615

logical operators, 596
logical value properties, 557
Long data type, 590
looping

scripts, 500–502
VBA programs, 604–609
<xsl:for-each> element, 462–463
XSLT, 462–463

M
Macro dialog box, 578–579
Macromedia Flash, 304–305
macros

See ASP (Active Server Pages); PHP
(PHP Hypertext Processor); VBA
(Visual Basic for Applications); XSLT
(XSL Transformations)

maps, 304, 329–330
margins

tables, 102, 103
Web pages, 52

marquee component, 300
MaxBufferSize parameter, 399
MaxScanRows parameter, 399
<meta>, meta tag, 46
meta keys, 655
meta tags, 49–50
methods

displaying, 511
scripts, 495–496

Microsoft Download Center, 312
Microsoft Knowledge Base, 571
Microsoft MapPoint, 715
Microsoft MapPoint Web services, 715
Microsoft Office Viewers, 312
Microsoft Script Editor option, 510
Microsoft Smart Tag plug-ins, 331
Microsoft_FrontPage library, 641–642
Microsoft’s Office Marketplace, 133

52_575317_bindex.qxd 9/24/04 9:10 PM Page 743

FrontPage 2003 All-in-One Desk Reference For Dummies744

minus sign (-), arithmetic subtraction
operator, 596

money data type. See Currency data
type.

monitoring
crackers, 354–355
system security, 357

Monthly Page Hits report, 247
Monthly Summary report, 247
movies. See video.
MSN components, 303–304
MSNBC components, 303–304
multimedia

animated GIFs, 289–291
audio

background sounds, 292
hyperlinks, 292–293
interactive buttons, 293–294
making optional, 292–293
scripts, 293–294
user control, 292–293

author’s name, displaying, 303
included-content components, 303
Macromedia Flash, 304–305
maps, 304
MSN components, 303–304
MSNBC components, 303–304
news headlines, 303–304
Page component, 303
page content, displaying, 303
potential problems, 288–289
Schedule component, 303
scheduling picture displays, 303
stock quotes, 304
Substitution component, 303
understanding the issues, 288–289
video

ActiveX controls, 297–299
controlling size, 294–295
hyperlinks, 299
, image tag, 296–297
interactive buttons, 299
<object>, object tag, 297–299
<param>, parameter tag, 298–299
as a picture, 296–299

weather forecasts, 304
Web components

hit counters, 302–303
marquee component, 300
scrolling text, 300
standard page components, 300–303
tracking visitors, 302–303
Web search component, 301–302

music. See audio.

N
\n, linefeed, 494
Name plug-in, 328–329
names, cookies, 528–529
namespaces, 325, 449
navigating your site, 29–30
navigation bars, 215–227
navigation types, 220–221
Navigation view

automatic page links, 219–222
Back links, 216–218
benefits of, 214
categories style, 224–225
custom link bars, 222, 228–229
home page links, 218–219
interaction with Page view, 197–198
leaf pages, 228
link bar style, 221–222
links, top-ten list, 225–226
navigation bars, 215–227
navigation types, 220–221
Next links, 216–218
node pages, 228
organizing, 228–230
overview, 213
Page Banner feature, 214
site settings, changing, 230–231
table of contents component, 222–225
top-level pages, adding, 227–230
Visual InterDev component, 226–227
Web site style, 223–224

navigational views, 170–172
.NET Framework, 390
new line character, scripts, 494

52_575317_bindex.qxd 9/24/04 9:10 PM Page 744

Index 745

news headlines, 303–304
Next Bookmark option, 510
Next links, 216–218
No Frames view, 113–114
“no records returned” message, 381
no script tag, <noscript>, 502–505
node pages, 228
nodes, XML documents, 438–439
<noframes>, no frames tag, 113–114
Normal Page template, 124–125
Northwind database connection, 413–415
<noscript>, no script tag, 502–505
Not operator, 596
Number of Months Shown setting

report, 236
numbered (ordered) list tag, , 59
numbered (ordered) lists, 58–59
numbers, data types
Byte, 590
calculations, 588–593
converting to strings, 591–593
converting to text, 591–593
Currency, 590
decimal, 590
integer, 590
Integer, 590
Long, 590
numeric types, 589–591
real, 590
strings, converting to numbers, 591–593
text, converting to numbers, 591–593

numbers, security checking, 362–363
numeric value properties, 557

O
<object>, object tag

charts, 319–321
displaying videos, 297–299
frames, 120–121

Object Browser, VBA
browsing objects, 563–564
cutting and pasting, 565
features, 564–565
help, 565

names, 564–565
overview, 563

objects
accessing from scripts, 487
FrontPage
Application object, 642–643
automated site creation, 654–657
documents, 653–654
FrontPageEditor objects, 644–647
libraries, 641–642
Page objects, 644–647
templates, designing, 657–659
Themes collection, 647–649
Webs collection, 649–651
WebWindows collection, 651–653

Office
See Access; Excel; Word documents

scripts, 494
VBA

browsing objects, 563–564
cutting and pasting, 565
definition, 625
instantiating, 626–628
names, 564–565
reusing, 628–630

ODBC Data Source Administrator, 395
Office Chart control. See Chart control.
Office library, 564
Office objects

See Access; Excel; Word documents
Office PivotTable control. See PivotTable

control.
Office Spreadsheet control. See

Spreadsheet control.
Office updates, 38
, ordered (numbered) list tag, 59
Older Files report, 29, 240
online resources. See also books and

publications; help.
ActiveDocs, 332
Amazon.com, 469
browser compatibility issues, 537
Classy Themes, 134
clip art, 285
DataPortal, 332

52_575317_bindex.qxd 9/24/04 9:10 PM Page 745

FrontPage 2003 All-in-One Desk Reference For Dummies746

online resources (continued)
eBay, 469
Flash-DB Web Services Directory, 715
FrontPage meta keys, 655
FrontPage Template World, 134
FrontPage updates, 38
Google, 469
IBM Web services, 699
Java testing, 541
LexisNexis, 332
Microsoft Download Center, 312
Microsoft Knowledge Base, 571
Microsoft MapPoint, 715
Microsoft Office Viewers, 312
Microsoft Smart Tag plug-ins, 331
Microsoft’s Office Marketplace, 133
.NET Framework, 390
ODBC Data Source Administrator, 395
Office updates, 38
P3P (Platform for Privacy Preferences),

523, 524
PHP (PHP Hypertext Processor),

679, 680
privacy issues, 523
ProWrite, 332
scripting languages, browser support

for, 491
SharePoints Products and

Technologies, 655
Smart Tag plug-ins, 331–332
source code for this book, 7
special characters, 436
templates, 133–134
Web Matrix, 390
Web Service Finder, 715
Web services, 469, 698–699
Webmonkey, 537
WordLingo, 332
WSDL, 698, 699
XML Notepad, 442
XML standard, 431–432
XML text editors, 442–443
XMLFox, 443
XMLSpy, 443

XMLwriter 2, 443
XSLT (XSL Transformations), 454
ZVON, 698

opening, documents, 32
Operating Systems report, 247
operators, VBA, 596
optimizing upload content, 186–187
option buttons, 72–73
Or operator, 596
ordered (numbered) list tag, , 59

P
<p>, paragraph tag, 52
P3P (Platform for Privacy Preferences),

523–524
Page Banner feature, and Navigation

view, 214
Page component, 303
Page objects, 644–647
page objects, scripting, 493–498
Page view

adding data from the clipboard, 198–200
creating hyperlinks, 200
creating layouts, 205–206
frames template, 202–204
Grid, 200–202
interaction with Navigation view,

197–198
overview, 196–197
Ruler, 200–202

PageTimeout parameter, 399
paragraph tag, <p>, 52
paragraphs, tagging, 52–54
<param>, parameter tag, 298–299
Parameter Info option, 511
parameter tag, <param>, 298–299
parameters, displaying, 511
parent nodes, 438–439
passwords, Word documents, 310
Paste Options plug-in, 323
pasting text, Smart Tag plug-ins, 323
performance tuning, 166

52_575317_bindex.qxd 9/24/04 9:10 PM Page 746

Index 747

permanent cookies, 528–529
PHP (PHP Hypertext Processor)

creating a page, 681–689
documentation, 679
downloading, 679
forms, 689–692
getting status information, 683–684
“hello” message, 682–683
IIS setup, 680–681
installing, 680
overview, 677–678
potential problems, 689–690
programming techniques, 684–689
setting up, 678–681

Picture Actions plug-in, 323
pictures. See clip art; images.
Pictures toolbar, 282
PivotTable control

Access, 407–409
Access data views, 407–409
analyzing data, 386–388
Excel, 386–388
prerequisites, 315
SQL Server, 427–428

PivotTable views, 407–409
planning, VBA programs, 568
plug-ins. See Smart Tag plug-ins.
plus sign (+)

arithmetic addition operator, 596
concatenation operator, 573, 596

portrait views, 171
Positioning toolbar, 274–276
POST method

ASP (Active Server Pages), 669–670,
671–672

forms, 89
predefined CSS styles

correcting, 259–260
selecting, 254–255

Preview view
definition, 44
frames, 111–112
previewing Web pages, 62

Previous Bookmark option, 510

printing
labels, plug-in, 332
reports, 236–237

privacy
compact policy statements, 524–526
cookie information, storing, 524
cookie issues, 522–523
online resources, 523
P3P (Platform for Privacy Preferences),

523, 524
Privacy Report, 526–527
privacy statements, 523–527
Private keyword, 577
problems

See debugging; testing;
troubleshooting;

Problems report, 234
process automation, XML dynamic Web

pages, 476–482
processing instructions, XML

documents, 433–434
programming

See ASP (Active Server Pages); PHP
(PHP Hypertext Processor);
scripting; VBA (Visual Basic for
Applications); XSLT (XSL
Transformations)

project.map file, 192–193
projects, VBA, 563–564
properties

associated controls, 557
Boolean value, 557
clip art, 279
controls, 66
displaying, 511
documents, 33
frames, 110–111
logical value, 557
numeric value, 557
scripts, 493–495
setting for tables, 94–96
site, 169–170
text, 557
types, VBA, 557–558
Web pages, 46–50

52_575317_bindex.qxd 9/24/04 9:10 PM Page 747

FrontPage 2003 All-in-One Desk Reference For Dummies748

Properties dialog box
context sensitivity, 54
document properties, 33
page properties, general, 46–48
page properties, page-specific, 48–50

ProWrite, 332
Public keyword, 576
publications. See books and

publications.
Publish Status report, 244
publishing to the Web. See Web

publication.
pushbuttons, 71

Q
quick launch, VBA programs, 579–581
Quick Tag Selector, 53–54

R
\r, carriage return, 494
radio buttons, 72–73
reading cookies, 529–531
read-only Access

databases, 399
Word documents, 310

ReadOnly parameter, 399
real data type, 590
Recently Added Files report, 240
Recently Changed Files report, 240
records (rows), 372
redirecting users, 542–544
Referring Domains report, 247
Referring URLs report, 247
Reformat XML button, 445
relational data views, Access, 406–409
remote connections, 183–185
Remote Web Site view, 25–27
renaming

files, 26–27
home pages, 164

repairing an installation, 38
report views, Access, 320–322

reports
accessing, 234–235
All Files, 240
Assigned To, 244
Browsers, 247
Categories, 244
Checkout Status, 244–246
Component Errors, 243
configuring, 210–211
Connection Speed setting, 235
CSS (Cascading Style Sheets), 241–242
Daily Page Hits, 247
Daily Summary, 247
Display Gridlines... setting, 236
dynamic Web pages, 241–242
File Ages setting, 235
Files, 234, 239–241
fixing problems, 242–243
graphic format, 247–248
Hyperlinks, 243
from IDE, 27–29
modifying content, 235–236
Monthly Page Hits, 247
Monthly Summary, 247
Number of Months Shown setting, 236
Older Files, 29, 240
Operating Systems, 247
printing, 236–237
Problems, 234
Publish Status, 244
Recently Added Files, 240
Recently Changed Files, 240
Referring Domains, 247
Referring URLs, 247
Reports view, 27–29
Review Status, 28–29, 244
settings, 235–236, 241
shared borders, 241–242
Shared Content, 234, 241–242
Site Summary, 27–28, 234, 238–239
Slow Pages, 243
themes, 241–242
types of, 233–234
Unlinked Files, 242
Usage, 234, 246–248
Usage Summary, 246–247

52_575317_bindex.qxd 9/24/04 9:10 PM Page 748

Index 749

verifying hyperlinks, 237–238
Visiting User, 247
Weekly Page Hits, 247
Weekly Summary, 247
Workflow, 234, 244–246

Reports view, 27–29, 208–211
request header, SOAP, 696
requesting data, SOAP, 698–700
reset button, 71
response header, SOAP, 696–697
return values, VBA, 575
Review Status report, 28–29, 244
rotating clip art, 282
row scans, limiting, 399
Ruler, 200–202
run-time errors, 616–617

S
safe transaction environment, 399
SafeTransactions parameter, 399
Save As dialog box, 111–112
saving

Excel data as XML, 316
themes, 154

Schedule component, 303
schemas, Web services, 694
scope

VBA, 576–578
VBA constants, 583
VBA variables, 583

ScreenTips, 42
<script>, script tag

within <body> tags, 488–489
within <head> tags, 490–491

script editor, 510
scripting

accessing special objects, 487
adding user aids, 487
automating tasks, 487
CScript utility, 508
disabling, 502–505
making requests, 487
transforming data, 487
working with page objects, 493–498
WScript utility, 508

scripting languages
See also ASP (Active Server Pages);

PHP (PHP Hypertext Processor);
VBA (Visual Basic for Applications);
XSLT (XSL Transformations)

browser support for, 491
default, 166
JavaScript, 491
language attribute, 492
specifying, 492
VBScript (Visual Basic Script), 491

scripts
adding to forms, 546–547
in the body, 488–489
browser compatibility issues, 537–542
browser type, determining, 536–537
browser version bugs and errors,

541–542
browser version detection, 539–541
carriage returns, 494
components, 494
controls, 494
creating

arrays, 514
bookmarks, 510–511
code snippets, defining, 511–513
code snippets, listing, 511
Code View toolbar, 509–511
collections, 514
comments, 510
events, displaying, 511
function lookup, 511
inline scripts, 513–515
inserting tags, 510
keywords, 513
locating functions, 511
matching braces, 510
matching tags, 510
methods, displaying, 511
parameters, displaying, 511
properties, displaying, 511
script editor, 510
selecting tags, 510
word completion, 511

debugging, 548–550
decision making, 498–499

52_575317_bindex.qxd 9/24/04 9:10 PM Page 749

FrontPage 2003 All-in-One Desk Reference For Dummies750

scripts (continued)
escaped character set, 494
events, 496–497
form feedback, 544–547
functions

associating with buttons, 515–519
DHTML Effects toolbar, 517–519
and events, 515–517
input/output, 519–520
locating, 511
versus methods, 495–496
special effects, 517–519

in the header, 490–491
if statements, 499
linefeeds, 494
logic errors, 549–550
for loop, 500–501
loops, 500–502
methods, 495–496
\n, linefeed, 494
new line character, 494
objects, 494
overview, 507–508
placing, 488–491
properties, 493–495
\r, carriage return, 494
redirecting users, 542–544
server-side includes, 536
syntax errors, 548–549
uses for, 486–487
variables, 497–498
while loop, 501–502

scrolling text, 300
search forms, Access, 405–406
secure communication, 139
security

crackers
definition, 353
dynamic XML pages, 468
monitoring, 354–355
social engineering attacks, 468

hackers, definition, 353
importance of monitoring, 357
input checking

data length, 358–360
data patterns, 364–366

data types, 361–363
input constraints, 363–365
integers, 363
numbers, 362–363
telephone numbers, 364–366
text, 361–362

internal threats, 356
passwords, Word documents, 310
plans, 357–358
settings, inheriting, 166–167
social engineering attacks, 313, 468
SQL Server issues, 412–413, 426
tracking problems, 364–366
VBA macros, 555
virus checking, 355–356
Word documents, 313
XML dynamic Web pages, 468

Select Block option, 510
Select Case statement, 602–603
semantic errors, 617
server variables, 675–676
server-side includes, 536
server-side scripting, 664
session data, 672–675
session identifiers, 674
shared borders

attaching to Web pages, 336–337
_borders folder, 339–340
creating, 337–338
modifying, 339–340
overview, 336

shared borders reports, 241–242
Shared Content report, 234, 241–242
SharePoints Products and

Technologies, 655
sharing

Cascading Style Sheets, 258–259
code between applications. See Web

services.
themes, 154–155

showing. See displaying.
Site Settings dialog box, 169–170
Site Summary report, 27–28, 234, 238–239
slash (/), arithmetic division

operator, 596
Slow Pages report, 243

52_575317_bindex.qxd 9/24/04 9:10 PM Page 750

Index 751

Smart Tag plug-ins
adding styles to content, 327–328
Address and Places, 329–330
addressing envelopes, 328–329
calendar activities, 330
describing, 326–327
disabling, 331
displaying, 324–325
driving directions, 329–330
e-mail, 328–329
for graphics, 323
identifying the processing object, 327
information tracking, 332
international transactions, 331
for the legal profession, 332
managing database applications, 332
maps, 329–330
Name, 328–329
namespaces, 325
obtaining, 331–332
overview, 323–324
Paste Options, 323
for pasting text, 323
Picture Actions, 323
printing labels, 332
required Office features, 324
resource identifiers, 325
stock information, 328
Stocks and Funds, 328
supported by FrontPage, 323
tagging, 325–328
Telephone, 331
Time and Date, 330
translating text, 332
WestCiteLink, 332

SOAP
body, 695
detail element, 698
fault messages, 697–698
faultactor element, 698
faultcode element, 697
headers, 695
HTTP transport, 696–697
overview, 694–695
request header, 696
requesting data, 698–700

response header, 696–697
WSDL (Web Services Description

Language), 698–700
XML envelope, 696

social engineering attacks, 313, 468
sorting

Excel data, 380
files, 207
tasks, 34

sound. See audio.
source code for this book, online

source, 7
, underline tag, 69
special characters

controls, 75–76
online resources, 436
VBA, 586–587
XML documents, 435–436

special effects
response to events, 517–519
Web pages, 51–52

special terms, tagging, 54–55
Split view, 44, 60–61
splitting frames, 114–115
Spreadsheet control, 315, 317, 384
spreadsheets. See also Excel.

interactive Web pages, 384
linking, 376–381
Spreadsheet control, 315, 317, 384
static Web pages, 316–317
as tables, 314

SQL Server
advantages of, 411–413
connecting to

custom connections, 420–423
data sources on the Web server,

416–419
DSN connection, 422–423
existing connections, 425–426
external connections, 423–425
network connections, 419–420
new connections, 415–423
Northwind database connection,

413–415
error messages, 426
PivotTable control, 427–428

52_575317_bindex.qxd 9/24/04 9:10 PM Page 751

FrontPage 2003 All-in-One Desk Reference For Dummies752

SQL Server (continued)
relational data views, 426–428
security issues, 412–413, 426
for small business, 412

standard page components, 300–303
status types, adding, 48
Stdole library, 564
stepping through code, 619
stock information, Smart Tag plug-ins, 328
stock quotes, 304
Stocks and Funds plug-in, 328
string data type

converting to numbers, 591–593
definition, 586–589

structured storage, with VBA arrays,
630–632

structures, VBA programs, 597–598
style sheets. See also CSS (Cascading

Style Sheets).
frames, 131–133
templates, 125

Style toolbar, 262–264
styles. See CSS (Cascading Style Sheets).
submit button, 71
subs (subroutines), VBA, 569, 572–574
subsites, 181–182
Substitution component, 303
synchronizing a local copy, 185–186
syntax errors

scripts, 548–549
VBA, 614–615

T
tab order, controls, 70
<table>, table tag, 95
table caption tag, <caption>, 98
table data tag, <td>, 97
table formatting, frames, 131
table header tag, <th>, 97
table of contents, frames, 120
table of contents component, Navigation

view, 222–225
table row tag, <tr>, 97
table tag, <table>, 95

tables. See also frames.
accessibility, 98–99
background, 96
borders, 96
browser compatibility, 96
<caption>, table caption tag, 98
captions, 98
cell padding, 96
cell properties, 97–98
cell spacing, 96
cells, creating, 104–105
color, 96
column headings, 97–98
column sizing, 96, 103
column space images, 102
corner sizing, 103
<div>, tag, 95
dynamic sizing, 95
from Excel spreadsheets, 314
fields, 93
footers, 105–106
headers, 105–106
height, 102
images, 96
interactive Web pages, 376
layout, modifying, 100–103
Layout Tables and Cells feature, 100
margins, 102, 103
overview, 93–94
for page layout, 99–106
page sizing, 103
properties, setting, 94–96
<table>, table tag, 95
<td>, table data tag, 97
<th>, table header tag, 97
<tr>, table row tag, 97
width, 102

tagging, Smart Tag plug-ins, 325–328
tags
<a>, anchor, 55
<abbr>, abbreviation, 55
<acronym>, acronym, 55
<body>, body, 46, 488–489

, break, 73
<caption>, table caption, 98

52_575317_bindex.qxd 9/24/04 9:10 PM Page 752

Index 753

<dfn>, definition, 55
displaying, 53–54
<div>, division, 95, 272
<form>, form, 86
<frame>, frame, 108
<frameset>, frameset, 108
<head> heading, 45
<hr>, horizontal rule, 74
<html>, HTML, 45
<iframe>, IFrame, 116
, image, 267–268, 276–277, 296–297
<input>, input, 68, 80–82
inserting in scripts, 510
, list item, 59
matching in scripts, 510
meta, 49–50
<meta>, meta, 46
<noframes>, no frames, 113–114
<noscript>, no script, 502–505
<object>, object, 120–121, 297–299
, ordered (numbered) list, 59
overview, 45–46
<p>, paragraph tag, 52
<param>, parameter, 298–299
Quick Tag Selector, 53–54
<script>, script

within <body> tags, 488–489
within <head> tags, 490–491

selecting, 53–54
selecting in scripts, 510
, underline, 69
<table>, table, 95
<td>, table data, 97
<th>, table header, 97
<title>, title, 46
<tr>, table row, 97
<u>, underline, 82
, unordered (bulleted) list, 59

Task view, 34–36
tasks

editing, 36
list, creating, 34–36
managing, 34–36
sorting, 34

Tasks view, 211–212

<td>, table data tag, 97
telephone numbers, 364–366
Telephone plug-in, 331
templates. See also CSS (Cascading Style

Sheets); themes.
creating your own, 191–193
designing, 657–659
frames, 129–130, 202–204
online resources, 133–134
Web pages

adding pages to frames, 127
adding to FrontPage, 135–136
defining pages, 125–126
displaying, 126
embedded, 128–129
from existing pages, 134–137
file lists, 192
for frames, 124–125
frames pages, 129–130
generic pages, 125–129
INF (information) files, 136, 191
Normal Page, 124–125
obtaining, 133–134
online sources, 133
pages as Web tasks, 126–127
project.map file, 192–193
style sheets, 125
testing, 137
uses for, 123–124
using locally, 134–135

Webs, 137–139, 189–193
Webs, creating from scratch, 189–193
wizard, 189–190

temporary cookies, 528–529
test step, VBA, 570–571
testing. See also debugging;

troubleshooting.
templates, 137
VBA code, 570–571

text. See also fonts.
properties, 557
scrolling, 300
security checking, 361–362
styling, 263–264
themes, 152–154

52_575317_bindex.qxd 9/24/04 9:10 PM Page 753

FrontPage 2003 All-in-One Desk Reference For Dummies754

text (continued)
underlining, 69, 82
user input. See text areas; textboxes.
on Web pages, 52–55

text areas, 85
text data type

character codes, 586–587
converting to numbers, 591–593
special chars, 586–587

text editors. See editors.
textboxes, 68–71. See also text areas.
<th>, table header tag, 97
themes. See also CSS (Cascading Style

Sheets); templates.
colors, 148
customizing, 146–154
deleting, 156
fonts, 153
graphics, 148–151
overview, 141–143
reports, 241–242
saving, 154
for selected files, 145–146
sharing, 154–155
standard, 143–146
text, 152–154
for Web pages, 143–145
for whole sites, 146

Themes collection, 647–649
thread number, specifying, 399
Threads parameter, 399
Time and Date plug-in, 330
timeout, specifying, 399
timestamps, 75
<title>, title tag, 46
titles, Web pages, 46
Toggle Bookmark option, 510–511
toolbars

customizing
bigger icons, 42
changing toolbars, 40–41
creating new toolbars, 40
modifying options, 41–42
overview, 39
ScreenTips, 42

Drawing, 267–272
Drawing Canvas, 267–272
Dynamic Web Template, 351–352
Form, 79–80
keyboard shortcuts, 42
Pictures, 282
Positioning, 274–276
Style, 262–264
XML View toolbar, 443–445

top-down design, Cascading Style Sheets,
264–265

<tr>, table row tag, 97
tracking visitors, 302–303
transferring, files, 25–27
transforming data, scripting, 487
translating text, 332
transparency, clip art, 282
troubleshooting

See also debugging; security; testing
ASP, 345–346
Dynamic Web Templates, 351
error messages, SQL Server, 426
frames, 119–120
multimedia, 288–289
PHP form problems, 689–690
reports, 242–243

U
<u>, underline tag, 82
, unordered (bulleted) list tag, 59
underline tag, , 69
underline tag, <u>, 82
underlining text, 69
underscore (_), continuation

character, 573
Unlinked Files report, 242
unordered (bulleted) list tag, , 59
updating, files, 25–27
Usage report, 234, 246–248
Usage Summary report, 246–247
user aids, scripting, 487
user input; controls; forms; text areas;

textboxes

52_575317_bindex.qxd 9/24/04 9:10 PM Page 754

Index 755

user interface elements. See controls.
user support, new features, 15
user-defined CSS styles, creating, 255–258

V
values

cookies, 528–529
XSLT, 458

variables
debugging, 619–623
displaying, 620–623
scripts, 497–498
values, watching, 619–621
VBA

versus constants, 583–585
creating, 561–562
data type, 583
declaring, 583–585
scope, 583

variant data, 596
VBA (Visual Basic for Applications)

+ (plus sign), concatenation
character, 573

_ (underscore), continuation
character, 573

Application library, 564
arguments, 575
arithmetic operators, 596
arrays

definition, 625
structured storage, 630–632
types, 632–633

associated controls properties, 557
Boolean value properties, 557
Case Else clause, 603–604
classes

coding, 626–630
components, 628
controls, 628
definition, 625
instantiation, 626–628
types, 628
With statement, 628–630

code generator, 602
coding step, 569–570
collections

accessing items, 638–639
creating data sets, 634–639
definition, 625
keys, 636–638

comparison operators, 596
concatenation operators, 596
constants

data type, 583
declaring, 584–585
scope, 583
versus variables, 583–585

control characters, 573
data types

Boolean, 593–594
Byte, 590
calculations, 588–595
character codes, 586–587
Currency, 590, 594–595
date and time information, 595–596
decimal, 590
decision making, 593–594
definition, 585–586
integer, 590
Integer, 590
Long, 590
numbers, converting to strings (text),

591–593
numbers, numeric types, 589–591
parsing, 588
real, 590
special characters, 586–587
strings, converting to numbers,

591–593
strings, definition, 586–589
text, character codes, 586–587
text, converting to numbers, 591–593
text, parsing, 587–589
text, special characters, 586–587
variant data, 596

debug step, 571

52_575317_bindex.qxd 9/24/04 9:10 PM Page 755

FrontPage 2003 All-in-One Desk Reference For Dummies756

VBA (continued)
debugger tool

Add Watch window, 622–623
breakpoints, 618–619
data tips, 619–620
Debug toolbar, 618
Immediate window, 620–621
stepping through code, 619
variable values, watching, 619–621
variables, displaying, 623
Watch window, 622–623

debugging
beta programs, 617
bug types, 613–617
compile errors, 615–616
Locals window, 621
logic errors, 615
run-time errors, 616–617
semantic errors, 617
syntax errors, 614–615

decision making, 598–602
design step, 568–569
Do Loop...Until statement, 607
Do Loop...While statement, 606
Do Until...Loop statement, 606–607
Do While...Loop statement, 604–606
document statistics , collecting, 572–574
For Each...Next statement, 608–609
editor

Code window, 559–561
debugging, 561–562
Immediate window, 561–562
overview, 554–557
Properties window, 557–559
typing text, 559–561

flow control, 609–612
For...Next statement, 607–608
functions, 574–576
global variables, 577–578
Go To statement, 609–612
help

for Code window, 561
for properties, 558–559

If...Then statement, 598–599

If...Then...Else statement, 599–601
If...Then...ElseIf statement,

601–602
implementation step, 569–570
interaction with other applications,

556–557
labels, 611
libraries, 563–564
logical operators, 596
logical value properties, 557
looping, 604–609
making choices, 602–604
numeric value properties, 557
Object Browser

browsing objects, 563–564
cutting and pasting, 565
features, 564–565
help, 565
names, 564–565
overview, 563

objects
definition, 625
instantiating, 626–628
reusing, 628–630

Office library, 564
one-line program, 562
operators, 596
overview, 553
planning, 568
Private keyword, 577
programs, running from

Macro dialog box, 578–579
other VBA code, 581
quick launch, 579–581

projects, 563–564
property types, 557–558
Public keyword, 576
return values, 575
scope, 576–578
Select Case statement, 602–603
Stdole library, 564
step-by-step process, 568–571
structured storage, 630–632
structures, 597–598

52_575317_bindex.qxd 9/24/04 9:10 PM Page 756

Index 757

subs (subroutines), 569, 572–574
test step, 570–571
text properties, 557
variables

versus constants, 584–585
creating, 561–562
data type, 583
declaring, 583–585
scope, 583

VBA library, 564
VBA For Dummies, 626
VBA library, 564
VBA macros, 476
VBScript (Visual Basic Script), 491
Vector Markup Language (VML), 267–268
Verify Well-Formed XML button, 445
version, XML documents, 433
version attribute, 433
version control, 166
video

ActiveX controls, 297–299
controlling size, 294–295
hyperlinks, 299
, image tag, 296–297
interactive buttons, 299
<object>, object tag, 297–299
<param>, parameter tag, 298–299
as a picture, 296–299

viewing. See also displaying.
data, interactive Web pages, 381–388
documents, 23–25
Office documents, 312

views
defining, 170–176
Design

definition, 43
frames, 111–112
previewing Web pages, 60–61

Folders, 206–207
Navigation

automatic page links, 219–222
Back links, 216–218
benefits of, 214
categories style, 224–225

custom link bars, 222, 228–229
home page links, 218–219
interaction with Page view, 197–198
leaf pages, 228
link bar style, 221–222
links, top-ten list, 225–226
navigation bars, 215–227
navigation types, 220–221
Next links, 216–218
node pages, 228
organizing, 228–230
overview, 213
Page Banner feature, 214
site settings, changing, 230–231
table of contents component, 222–225
top-level pages, adding, 227–230
Visual InterDev component, 226–227
Web site style, 223–224

No Frames, 113–114
orientation, 171
overview, 195–196
Page

adding data from the clipboard,
198–200

creating hyperlinks, 200
creating layouts, 205–206
frames template, 202–204
Grid, 200–202
interaction with Navigation view,

197–198
overview, 196–197
Ruler, 200–202

Preview
definition, 44
frames, 111–112
previewing Web pages, 62

publishing files, 207
Remote Web Site, 25–27
Reports, 27–29, 208–211
sorting files, 207
Split, 44, 60–61
Tasks, 34–36, 211–212

virus checking, 355–356
Visiting User report, 247

52_575317_bindex.qxd 9/24/04 9:10 PM Page 757

FrontPage 2003 All-in-One Desk Reference For Dummies758

Visual Basic for Applications (VBA). See
VBA (Visual Basic for Applications).

Visual InterDev component, 226–227
Visual Studio .NET, 717–728
VML (Vector Markup Language), 267–268
VSD files, 447–452

W
Watch window, 622–623
weather forecasts, 304
Web components

Chart control, 315, 318–319, 384–386
Excel, 314–315
hit counters, 302–303
marquee component, 300
PivotTable control

Access data views, 407–409
analyzing data, 386–388
prerequisites, 315
SQL Server, 427–428

scrolling text, 300
Spreadsheet control, 315, 317, 384
standard page components, 300–303
tracking visitors, 302–303
Web search component, 301–302

Web Matrix, 390
Web pages

author’s name, displaying, 303
banners, 76–77
concepts, 18–19
creating from existing sites

buffer pages, 172
cleanup phase, 159–161
configuring server extensions,

165–167
creating Webs, 161–162
default scripting language, 166
defining site properties, 169–170
defining views, 170–176
deleting a Web, 162
e-mail setup, 166–167
home page, 163–165

hyperlinks, defining, 172–174
hyperlinks, verifying, 167–169
importing the site, 161–169
inheriting security settings, 166–167
initial setup, 163
initial update tasks, 174–176
landscape views, 171
navigational views, 170–172
performance tuning, 166
portrait views, 171
renaming the home page, 164
version control, 166
view orientation, 171

creating from scratch
<a>, anchor tag, 55
<abbr>, abbreviation tag, 55
<acronym>, acronym tag, 55
acronyms, tagging, 54–55
Assigned To field, naming, 48
background images, 51
<body>, body tag, 46
categorizing pages, 47
Code view, 43, 60–61
color, 52–53
colorblind users, 52
Default.htm file, 45
design principles, 44
Design view, 43, 60–61
<dfn>, definition tag, 55
first page, naming, 45
<head>, heading tag, 45
headings, 54
<html>, HTML tag, 45
hyperlinks, 55–58
keywords for search engines, 49
language, specifying, 49–50
, list item tag, 59
lists, 58–59
margins, 52
<meta>, meta tag, 46
meta tags, 49–50
, ordered (numbered) list tag, 59
<p>, paragraph tag, 52
page description, 47

52_575317_bindex.qxd 9/24/04 9:10 PM Page 758

Index 759

page properties, defining, 44–52
paragraphs, tagging, 52–54
Preview view, 44, 62
previewing your work, 60–62
properties, general, 46–48
properties, page-specific, 48–50
sharing with workgroups, 47
special effects, 51–52
special terms, tagging, 54–55
Split view, 44, 60–61
status types, adding, 48
tags, displaying, 53–54
tags, overview, 45–46
<title>, title tag, 46
titles, 46
, unordered (bulleted) list tag, 59

download speed, 62
dynamic. See dynamic Web pages.
focus, 18
formatting

See CSS (Cascading Style Sheets);
frames; layouts; tables; templates

including spreadsheets, 316–317
index pages, 656
interactive. See interactive Web pages.
layout

See CSS (Cascading Style Sheets);
frames; tables; templates

organization, 18–19
properties, 46–48
simplicity, 19
top-level pages, adding, 227–230
user input. See controls; forms.
viewing Office documents, 312

See also Access; Excel; Word
documents

Web publication
definition, 185
guidelines, 188–189
new features, 17–18
Publish Status report, 244
publishing files, 207
synchronizing local Webs, 185–187

Web search component, 301–302
Web Service Finder, 715
Web services

Amazon
connecting to, 700–703
data transformation, 706–708
description, 694
online resources, 699, 700
Web page interaction, 704–706
XML, 469

eBay
description, 694
XML, 469

Flash-DB Web Services Directory, 715
Google

connecting to, 708–711
data display, 713–715
data transformation, 711–712
description, 694
XML, 469

Microsoft MapPoint, 715
overview, 694
requests, 694
responses, 694
schemas, 694
SOAP

body, 695
detail element, 698
fault messages, 697–698
faultactor element, 698
faultcode element, 697
headers, 695
HTTP transport, 696–697
overview, 694–695
request header, 696
requesting data, 698–700
response header, 696–697
WSDL (Web Services Description

Language), 698–700
XML envelope, 696

Web Service Finder, 715
XML, 468–470

52_575317_bindex.qxd 9/24/04 9:10 PM Page 759

FrontPage 2003 All-in-One Desk Reference For Dummies760

Web Services Description Language
(WSDL), SOAP, 698–700

Web site style Navigation view, 223–224
Web sites. See Webs.
Webmonkey, 537
Webs

automated site creation, 654–657
creating

local connections, 182–183
local Webs, 178–180
optimizing upload content, 186–187
overview, 177–182
publishing guidelines, 188–189
remote connections, 183–185
subsites, 181–182
synchronizing a local copy, 185–186
templates, 189–193
Webs on a server, 180–181

displaying Word documents. See Word
documents.

information, displaying, 27–29. See also
IDE (Integrated Development
Environment).

Webs collection, 649–651
WebWindows collection, 651–653
Weekly Page Hits report, 247
Weekly Summary report, 247
well formedness, 433
WestCiteLink, 332
what-if analysis, 372. See also Excel,

database; PivotTable.
while loop, scripts, 501–502
width, tables, 102
With statement, 628–630
word completion in scripts, 511
Word documents

copying and pasting, 308–310
direct conversion, 311–313
hyperlink access, 310–311
modifying, 310–311
passwords, 310
read-only access, 310
security, 313

WordLingo, 332
Workflow report, 234, 244–246
workgroups, 47
worksheets. See Excel; spreadsheets.
WScript utility, 508
WSDL (Web Services Description

Language), SOAP, 698–700

X
XML documents
<!--...-->, XML comment

delimiter, 438
<...>, XML elements, 434–435
<?...?>, XML processing instructions,

433–434
attributes, 436–437
character set, 433
child nodes, 438–439
comments, 437–438
creating, 444–452
data, 435–436
editors, 440–443
elements, 434–435
empty elements, 434
encoding attribute, 433
error checking, 444–445
modifying encoding, 446–447
namespaces, 449
nodes, 438–439
from Office 2003, 447–452
organizing, 444–445
overview, 431–432
parent nodes, 438–439
processing instructions, 433–434
Reformat XML button, 445
special characters, 435–436
transforming. See XSLT (XSL

Transformations).
using effectively, 432
values, 435–436
Verify Well-Formed XML button, 445
version, 433

52_575317_bindex.qxd 9/24/04 9:10 PM Page 760

Index 761

version attribute, 433
viewing as plain text, 440–443
VSD files, 447–452
well formedness, 433
XML Notepad, 442
XML View toolbar, 443–445
XMLFox, 443
XMLSpy, 443
XMLwriter 2, 443

XML dynamic Web pages
ASP, 481–482
built-in XML functionality, 471–474
client-side scripting, 477–481
crackers, 468
data sources, 467–475
databases, 476
local data sources, 471–475
Office 2003 applications, 476
process automation, 476–482
scripts, 474–475
security issues, 468
social engineering attacks, 468
updates, 475–476
VBA macros, 476
Web services, 468–470

XML envelope, SOAP, 696
XML Notepad, 442
XML standard, 431–432
XML text editors, 442–443
XML View toolbar, 443–445
XML views, 463–466

XMLFox, 443
XMLSpy, 443
XMLwriter 2, 443
Xor operator, 596
XSL Transformations (XSLT). See XSLT

(XSL Transformations).
<xsl:choose> element, 461–462
<xsl:for-each> element, 462–463
<xsl:if> element, 460–461
XSLT (XSL Transformations)

adding text, 459
Amazon data transformation, 706–708
basic XSLT file, 454–456
decision making, 460–462
functions, 460
Google data transformation, 711–712
looping, 462–463
obtaining attributes, 458
obtaining values, 458
selecting data, 456–458
transforming XML, 454
XML views, 463–466
<xsl:choose> element, 461–462
<xsl:for-each> element, 462–463
<xsl:if> element, 460–461

XSLT file, 454–456

Z
ZVON, 453, 698

52_575317_bindex.qxd 9/24/04 9:10 PM Page 761

Notes

52_575317_bindex.qxd 9/24/04 9:10 PM Page 762

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

53_575317_badvert.qxd 9/24/04 9:07 PM Page 763

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

53_575317_badvert.qxd 9/24/04 9:07 PM Page 764

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT for Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

53_575317_badvert.qxd 9/24/04 9:07 PM Page 765

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

53_575317_badvert.qxd 9/24/04 9:07 PM Page 766

	FrontPage 2003 All-in-One Desk Reference For Dummies
	About the Author
	Dedication
	Acknowledgments
	Introduction
	Conventions Used in This Book
	What You Should Read
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Book I: Essential Concepts
	Contents at a Glance
	Chapter 1: Introducing FrontPage 2003
	Understanding FrontPage
	Important Changes for FrontPage 2003
	Essential Web-Page Concepts

	Chapter 2: Getting Started
	Using the IDE
	Getting Help
	Customizing Toolbars

	Chapter 3: Creating Your First Web Page
	Understanding Good Web Page Design
	Defining Page Properties
	Working with Text
	Working with Hyperlinks
	Working with Lists
	Viewing the Results

	Book II: Basic Pages
	Contents at a Glance
	Chapter 1: Designing Pages with Controls
	Using Controls Efficiently
	Using Labels
	Working with Inputs
	Creating Decorative Elements
	Adding Banners

	Chapter 2: Working with Forms
	Creating a Simple Form
	Working with Alternative Inputs
	Sending Data
	Making Forms Accessible

	Chapter 3: Working with Tables
	Defining a Table
	Adding a Caption
	Making Tables Accessible
	Using Layout Tables and Cells

	Chapter 4: Working with Frames
	Reasons to Use Frames
	Creating a Web Page with Frames
	Organizing Frames
	Using an Inline Frame
	Making Frames Accessible

	Chapter 5: Designing with Templates
	Reasons to Use a Template
	Designing with the Page Templates
	Obtaining Additional Templates
	Using an Existing Page as a Template
	Using Web Site Templates

	Chapter 6: Working with FrontPage Themes
	Defining a Unique Look with Themes
	Using the Standard Themes
	Creating Your Own Theme

	Book III: Webs
	Contents at a Glance
	Chapter 1: Working with an Existing Web Site
	Cleaning Up Before You Import the Site
	Importing the Site
	Defining Site Properties
	Creating Required Views

	Chapter 2: Creating a New Web
	Understanding Webs
	Using Local or Remote Connections
	Selecting a Web Template

	Chapter 3: Using FrontPage Views
	Understanding Views
	Using the Page View
	Using the Folders View
	Using the Reports View
	Using the Tasks View

	Chapter 4: Creating Navigational Views
	Understanding the Benefits of the Navigation View
	Creating a New Navigation Bar
	Adding New (Top-Level) Pages
	Organizing the Navigation View
	Changing the Site Settings

	Chapter 5: Using FrontPage Reports Efficiently
	Understanding the Reports
	Using the Site Summary
	Working with Files
	Working with Shared Content
	Fixing Problems
	Designing Workflow
	Developing Usage Statistics

	Book IV: Advanced Design
	Contents at a Glance
	Chapter 1: Using Cascading Style Sheets
	Understanding Cascading Style Sheets
	Creating a Simple CSS Page
	Linking CSS to a Web Page
	Using the Style Toolbar
	Designing Efficient Styles
	Using CSS for Accessibility Needs

	Chapter 2: Working with Clip Art
	Using the Drawing and Drawing Canvas Toolbars
	Defining Layers for Organization
	Adding Images to a Web Page
	Using Clip Art
	Describing an Image
	Creating an Image Map
	Using Images from Other Sources

	Chapter 3: Adding Multimedia and Components
	Understanding Multimedia Use Issues
	Animated GIFs, the Easiest Multimedia
	Adding Audio
	Adding Video
	Working with Web Components
	Working with Macromedia Flash

	Chapter 4: Inserting Office Objects
	Working with Word Objects
	Developing Data Views with Excel
	Creating Report Views with Access

	Chapter 5: Using Smart Tag Plug-ins
	Understanding the Smart Tag Plug-ins
	Seeing Smart Tags on Your Web Page
	Disabling Smart Tags on Your Site
	Getting More Smart Tags

	Chapter 6: Creating Dynamic Web Sites
	Changing Content and Knowing Why
	Using Shared Borders
	Using Active Server Pages in FrontPage
	Developing Simple Dynamic Pages
	Using the Dynamic Web Template Toolbar

	Chapter 7: Developing with Security in Mind
	Considering the Security Issues
	Creating a Security Plan
	Checking Inputs
	Tracking Security Problems

	Book V: Databases
	Contents at a Glance
	Chapter 1: Creating Interactive Web Pages with Excel
	Defining Excel as a Database
	Creating Links to an Excel Worksheet
	Viewing Excel Data

	Chapter 2: Creating Interactive Web Pages with Access
	Developing Links to Access
	Designing Simple Data Views
	Creating a Search Form
	Designing Relational Data Views

	Chapter 3: Developing Applications with SQL Server
	Understanding the SQL Server Advantage
	Developing Links to SQL Server
	Creating Relational Data Views

	Book VI: XML and XSLT
	Contents at a Glance
	Chapter 1: Working with XML
	Using XML Effectively
	Using XML in FrontPage
	Simple Techniques for Displaying XML
	Using the XML View Toolbar
	Creating XML Data from Existing Sources

	Chapter 2: Developing an Interpretation with XSLT
	Understanding How XSLT Affects XML
	Creating a Basic XSLT File
	Selecting Data
	Making Decisions
	Performing a Task More Than Once
	Creating a View of XML with XSLT

	Chapter 3: Creating Dynamic XML Pages
	Developing an XML Data Source
	Performing XML Updates
	Automating the Process

	Book VII: Scripting
	Contents at a Glance
	Chapter 1: Extending a Page with Scripting
	Understanding How Scripting Can Help
	Using the <script> Tag
	Understanding Scripting Languages
	Working with Page Objects
	Creating Variables
	Making Decisions
	Performing Repetitive Tasks with Loops
	Using the <noscript> Tag

	Chapter 2: Creating Your First Scripted Page
	Understanding How Scripts Work
	Using the Code View Toolbar
	Creating a Simple Script
	Associating a Function with a Button
	Providing Inputs to a Function
	Providing Outputs from a Function

	Chapter 3: Working with Cookies
	Using Cookies to Help Users
	Creating a Cookie
	Reading a Cookie
	Enforcing Cookie Expiration

	Chapter 4: Performing Common Scripted Tasks
	Determining the User’s Browser Type
	Redirecting Users Based on Need
	Providing Form Feedback
	Debugging Your Script

	Book VIII: VBA Programming
	Contents at a Glance
	Chapter 1: Getting to Know VBA
	Starting the Visual Basic Editor
	Using the Properties Window
	Using the Code Window
	Using the Immediate Window
	Using Object Browser

	Chapter 2: Your First VBA Program
	Deciding What to Do
	Steps to Create a VBA Program
	Writing Your First Sub
	Writing Your First Function
	Getting the Scoop on Scope
	Three Ways to Run Your Program

	Chapter 3: Storing and Modifying Information
	Understanding Variables and Constants
	Defining the Data Types
	Working with Operators

	Chapter 4: Creating Structured Programs
	Exercising Control with Structures
	Making a Decision with the If... Then Statement
	Making a Choice Using the Select Case Statement
	Performing a Task More than Once Using Loops
	Redirecting the Flow Using GoTo

	Chapter 5: Trapping Errors and Squashing Bugs
	Knowing the Enemy
	Time for a Bug Hunt
	Using the Locals Window
	Using the Watch Window

	Chapter 6: Working with Classes, Arrays, and Collections
	Coding Considerations for Classes
	Using Arrays for Structured Storage
	Using Collections to Create Data Sets

	Chapter 7: Working with FrontPage Objects
	Understanding FrontPage Objects
	Working with FrontPage Documents

	Book IX: Advanced Programming
	Contents at a Glance
	Chapter 1: Using Active Server Pages
	Understanding How ASP Works
	Creating a Simple ASP Page
	Using Server Variables

	Chapter 2: Using PHP
	Understanding PHP
	Getting Set Up with PHP
	Creating a Simple PHP Page
	Working with Forms

	Chapter 3: Working with Web Services
	Understanding Web Services
	Working with SOAP
	Creating a Connection to Amazon. com
	Creating a Connection to Google
	Locating Other Web Services

	Chapter 4: Enhancing FrontPage with Visual Studio . NET
	Creating FrontPage Extensions
	Creating a FrontPage Extension
	Configuring and Using the Extension

	Index

