
by Ed Tittel and Mary C. Burmeister

HTML 4
FOR

DUMmIES
‰

5TH EDITION

01_589172 ffirs.qxd 4/22/05 3:21 PM Page iii

C1.jpg

01_589172 ffirs.qxd 4/22/05 3:21 PM Page ii

HTML 4
FOR

DUMmIES
‰

5TH EDITION

01_589172 ffirs.qxd 4/22/05 3:21 PM Page i

01_589172 ffirs.qxd 4/22/05 3:21 PM Page ii

by Ed Tittel and Mary C. Burmeister

HTML 4
FOR

DUMmIES
‰

5TH EDITION

01_589172 ffirs.qxd 4/22/05 3:21 PM Page iii

HTML 4 For Dummies, 5th Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. [Insert third party trade-
marks from book title or included logos here.] All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005923232

ISBN-13: 978-0-7645-8917-1

ISBN-10: 0-7645-8917-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

5B/RR/QV/QV/IN

01_589172 ffirs.qxd 4/22/05 3:21 PM Page iv

www.wiley.com
www.wiley.com

About the Authors
Ed Tittel is a full-time independent writer, trainer, and consultant who works
out of his home in beautiful Austin, Texas. Ed has been writing for the trade
press since 1986 and has worked on more than 130 books. In addition to this
title, Ed has worked on more than 35 books for Wiley, including Networking
Windows NT Server For Dummies, XML For Dummies, and Networking with
NetWare For Dummies.

Ed is the technology editor at Certification magazine, writes the “Must Know
News” twice-monthly newsletter for Cramsession.com, and also writes for a
variety of Web sites and magazines. When he’s not busy doing all that work
stuff, Ed likes to travel, shoot pool, spend time with his family (especially
taking walks with young Gregory), and wrestle with his Labrador, Blackie.

You can contact Ed Tittel by e-mail at etittel@yahoo.com.

Mary Burmeister is an editor, project manager, and writer. She’s edited and
project managed over 75 computer-related books. Mary has contributed
material to several editions of HTML For Dummies and XML For Dummies in
addition to project managing and editing them. Mary spends most of her time
these days project managing, editing, and writing courses for Powered, Inc.

01_589172 ffirs.qxd 4/22/05 3:21 PM Page v

01_589172 ffirs.qxd 4/22/05 3:21 PM Page vi

Authors’ Acknowledgments
Because this is the ninth go-round for HTML For Dummies, we must start by
thanking our many readers for keeping this book alive. We’d also like to thank
them and the Wiley editors for providing the feedback that drives the contin-
uing improvement of this book. Please, don’t stop now — tell us what you
want to do, and what you like and don’t like about this book.

Let me go on by thanking my sterling co-author, Mary Burmeister, for her
efforts on this revision. I’d also like to thank Rich Wagner, Brock Kyle, and
Chelsea Valentine, and above all, Kim Lindros for their contributions, too. I
am eternally grateful for your ideas, your hard work, and your experience in
reaching an audience of budding Web experts. Thanks for breathing fresh life
into this project!

Next, I’d like to thank my colleagues and former coworkers at LANWrights
(now part of Thomson) as well as the Wiley team for their efforts on this
title. Here in Austin, my fervent thanks go to Mary Burmeister and Kim
Lindros for the services provided and time spent on this book. At Wiley, I
must thank Bob Woerner and Pat O’Brien for their outstanding efforts, and
Marnie Knue-Merkel for their marvelous ways with our words. Other folks we
need to thank include the folks in Composition Services for their artful page
layouts, and the Media Development team for their assistance with the HTML
4 For Dummies Web site on Dummies.com.

I’d like to thank my lovely wife, Dina Kutueva-Tittel, for putting up with crazy
schedules and cranky words for balky PCs during this project. I’d also like to
extend a big Texas welcome to our wonderful son, Gregory, who made his
debut at Seton Hospital on February 6, 2004. Thanks for all the funny faces
and sleepless nights! Finally, I’d like to thank my parents, Al and Ceil,
for all the great things they did for me. I remain grateful to my wonderdog,
Blackie, who’s always ready to pull me away from the keyboard — sometimes
literally — to explore the great outdoors.

Ed Tittel

I would like to thank Ed Tittel and Kim Lindros for roping me in on this pro-
ject. You’re more than colleagues; you’re valuable friends. I’d also like to
thank my mentor, co-worker, and best friend Dawn Rader for years of friend-
ship and guidance. Another round of thanks goes out to my wonderful family
and friends — you know who you are. And last, but certainly not least...thank
you to my heart and soul: Steven, I can’t find the words to explain the joy and
completeness you’ve brought to my life. I can’t wait to marry you!

Mary Burmeister

01_589172 ffirs.qxd 4/22/05 3:21 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial,
and Media Development

Project Editor: Pat O’Brien

(Previous Edition: Linda Morris)

Acquisitions Editor: Bob Woerner

Copy Editor: Andy Hollandbeck

Technical Editor: Marnie Knue-Merkel

Editorial Manager: Kevin Kirschner

Media Development Manager: Laura
VanWinkle

Media Development Supervisor: Richard
Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Shannon Schiller

Layout and Graphics: Carl Byers, Andrea Dahl,
Joyce Haughey, Barry Offringa,
Lynsey Osborn, Heather Ryan

Proofreaders: Leeann Harney, Jessica Kramer,
Carl William Pierce

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_589172 ffirs.qxd 4/22/05 3:21 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ..1

Part I: Getting To Know (X)HTML7
Chapter 1: The Least You Need to Know about HTML and the Web9
Chapter 2: Creating and Viewing a Web Page ..29
Chapter 3: Proper Planning Prevents Poor Page Performance41

Part II: Formatting Web Pages with (X)HTML57
Chapter 4: Creating (X)HTML Document Structure ..59
Chapter 5: Text and Lists ..69
Chapter 6: Linking to Online Resources ...95
Chapter 7: Finding and Using Images ..107

Part III: Taking Precise Control Over Web Pages123
Chapter 8: Introducing Cascading Style Sheets ...125
Chapter 9: Using Cascading Style Sheets ...141
Chapter 10: Getting Creative with Colors and Fonts ..161
Chapter 11: Using Tables for Stunning Pages ..179

Part IV: Integrating Scripts with HTML213
Chapter 12: Scripting Web Pages ...215
Chapter 13: The Nuts and Bolts of JavaScript ...225
Chapter 14: Working with Forms ...249
Chapter 15: Fun with Client-Side Scripts ..273

Part V: HTML Projects ..293
Chapter 16: The About Me Page ..295
Chapter 17: The eBay Auction Page ..301
Chapter 18: A Company Site ..309
Chapter 19: A Product Catalog ..319

Part VI: The Part of Tens ..331
Chapter 20: Ten Cool HTML Tools ..333
Chapter 21: Ten HTML Do’s and Don’ts ..343
Chapter 22: Ten Ways to Exterminate Web Bugs ...351

Part VII: Appendixes ..359

02_589172 ftoc.qxd 4/22/05 3:22 PM Page ix

Appendix A: Deprecated (X)HTML Elements and Attributes361
Appendix B: Shorthand and Aural CSS Properties ..365
Appendix C: Glossary ...369

Index ...379

02_589172 ftoc.qxd 4/22/05 3:22 PM Page x

Table of Contents
Introduction ..1

About This Book ...1
How to Use This Book ..2
Three Presumptuous Assumptions ..3
How This Book Is Organized ...3

Part I: Getting to Know (X)HTML ..3
Part II: Formatting Web Pages with (X)HTML4
Part III: Taking Precise Control Over Web Pages4
Part IV: Integrating Scripts with HTML ..5
Part V: HTML Projects ..5
Part VI: The Part of Tens ..5
Part VII: Appendixes ...5

Icons Used in This Book ..6
Where to Go from Here ..6

Part I: Getting To Know (X)HTML7

Chapter 1: The Least You Need to Know about HTML and the Web9
Web Pages in Their Natural Habitat ...9

Hypertext ...10
Markup ...11
Browsers ..13
Web servers ...14

Anatomy of a URL ...15
(X)HTML’s Component Parts ..16

HTML and XHTML: What’s the difference?16
Syntax and rules ...19
Elements ..19
Attributes ...21
Entities ...22

Parts Is Parts: What Web Pages Are Made Of ...25
Organizing HTML text ..26
Images in HTML documents ..27
Links and navigation tools ..28

Chapter 2: Creating and Viewing a Web Page .29
Before You Get Started ..29
Creating a Page from Scratch ..30

Step 1: Planning a simple design ..30
Step 2: Writing some HTML ...32

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xi

Step 3: Saving your page ..34
Step 4: Viewing your page ...36

Editing an Existing Web Page ..37
Posting Your Page Online ..39

Chapter 3: Proper Planning Prevents Poor Page Performance 41
Planning Your Site ..42

Mapping your site ...44
Building solid navigation ...46
Planning outside links ..49

Hosting Your Web Site ...51
Hosting your own Web site ..52
Using a hosting provider ...53
Getting your own domain ..53
Moving files to your Web server ...54

Part II: Formatting Web Pages with (X)HTML57

Chapter 4: Creating (X)HTML Document Structure 59
Establishing a Document Structure ...59
Labeling Your (X)HTML Document ..60

Adding an HTML DOCTYPE declaration ..60
Adding an XHTML DOCTYPE declaration ...61
The <html> element ..61
Adding the XHTML namespace ..61

Adding a Document Header ..62
Giving your page a title ..62
Defining metadata ...63
Automatically redirecting users to another page65

Creating the (X)HTML Document Body ...67
Marvelous Miscellany ..68

Chapter 5: Text and Lists .69
Formatting Text ..69

Paragraphs ..70
Headings ..72

Controlling Text Blocks ..74
Block quotes ..74
Preformatted text ...75
Line breaks ..76
Horizontal rules ..79

Organizing Information ..82
Numbered lists ..83
Bulleted lists ..86

HTML 4 For Dummies, 5th Edition xii

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xii

Definition lists ...89
Nesting lists ...90

Text Controls and Annotation ..92
Marvelous Miscellany ..93

Chapter 6: Linking to Online Resources .95
Basic Links ..95

Link options ...97
Common mistakes ..99

Customizing Links ..100
New windows ..100
Locations in Web pages ...101
Non-HTML resources ...104

Marvelous Miscellany ..106

Chapter 7: Finding and Using Images .107
The Role of Images in a Web Page ..107
Creating Web-Friendly Images ..108
Adding an Image to a Web Page ..110

Location of the image ...110
Using the element ...110
Adding alternative text ..112
Specifying image size ...114
Setting the image border ...116
Controlling image alignment ...117
Setting image spacing ..118

Images That Link ..119
Triggering links ...119
Building image maps ..120

Marvelous Miscellany ..122

Part III: Taking Precise Control Over Web Pages123

Chapter 8: Introducing Cascading Style Sheets 125
Advantages of Style Sheets ...126

What CSS can do for a Web page ..127
What you can do with CSS ...128

CSS Structure and Syntax ..130
Selectors and declarations ..132
Working with style classes ..134
Inheriting styles ..135

Using Different Kinds of Style Sheets ...137
Internal style sheets ...137
External style sheets ..138

Understanding the Cascade ..140

xiiiTable of Contents

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xiii

Chapter 9: Using Cascading Style Sheets .141
Managing Layout, Positioning, and Appearance142

Developing specific styles ...142
Externalizing style sheets ..150

Multimedia ..151
Visual media styles ...152
Paged media styles ...156

Marvelous Miscellany ..159

Chapter 10: Getting Creative with Colors and Fonts 161
Color Values ..162

Color names ..162
Color numbers ..162

Color Definitions ...164
Text ...164
Links ...165
Backgrounds ..166

Fonts ..167
Font family ...167
Sizing ..168
Positioning ...171
Text treatments ...174
The catchall font property ..177

Chapter 11: Using Tables for Stunning Pages .179
What Tables Can Do for You ...179
Table Basics ..182
Sketching Your Table ...183

Developing layout ideas ...183
Drafting the table ..184

Constructing Basic Tables ...185
Components ..185
Layout ..186
Adding borders ...189
Adjusting height and width ...193
Padding and spacing ..196
Shifting alignment ...199

Adding Spans ..202
Column spans ..202
Row spans ..204

Populating Table Cells ...205
Testing Your Table ..206
Table-Making Tips ..207

Following the standards ..207
Sanitizing markup ...208

HTML 4 For Dummies, 5th Edition xiv

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xiv

Nesting tables within tables ..208
Avoiding dense tables ..210
Adding color to table cells ..210

Marvelous Miscellany ..211

Part IV: Integrating Scripts with HTML213

Chapter 12: Scripting Web Pages .215
What JavaScript Can Do for Your Pages ..216

Arrange content dynamically ..217
Work with browser windows ...219
Solicit and verify user input ..221
But wait . . . there’s more! ..223

Chapter 13: The Nuts and Bolts of JavaScript 225
Including Scripts in Web Pages ...225
Using the Same Script on Multiple Pages ..227
Exploring the JavaScript Language ..229

Basic syntax rules ...230
Variables and data types ..231
Operating on expressions ..233
Working with statements ...236
Loops ..238
Functions ...240
Arrays ...242
Objects ...244

Events and Event Handling ...245
Document Object Model (DOM) ...246
Marvelous Miscellany ..247
References and Resources ..247

Chapter 14: Working with Forms .249
Uses for Forms ..249

Searches ...250
Data collection ..251

Creating Forms ...252
Structure ..253
Input tags ...254
Validation ...265

Processing Data ..266
Using CGI scripts and other programs ..267
Sending data by e-mail ...268

Designing User-Friendly Forms ...268
Marvelous Miscellany ..270

xvTable of Contents

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xv

Chapter 15: Fun with Client-Side Scripts .273
Adding Rollovers to Your Pages ...274

Image rollovers with JavaScript ..274
Text rollovers with CSS ..277

Displaying Dynamic Content on Your Page ...280
HTML and JavaScript ...281
JavaScript and DOM ...282

Displaying Pop-up Windows ...284
Working with Cookies ..287
Marvelous Miscellany ..290

Part V: HTML Projects ...293

Chapter 16: The About Me Page .295
Overview and Design Considerations ..295

Audience analysis ...295
Component elements ...296

Page Markup ...296
Your home page ..296
Looking good ...298

Chapter 17: The eBay Auction Page .301
Designing Your Auction Page ..302
Presentation Issues to Consider ...305
Using a Template for Presenting Your Auction Item306

Chapter 18: A Company Site .309
Issues to Consider When Designing Your Site ..309
Basic Elements of a Company’s Web Site ..310

The home page ...311
The products page ...313
The contact page ..315
The style sheet ..316

Chapter 19: A Product Catalog .319
Dissecting a Product Catalog ..319
Choosing a Shopping Cart ...322

PayPal ...323
Other e-commerce solutions ...323
Incorporating a PayPal shopping cart ...324

Page Markup ...327

HTML 4 For Dummies, 5th Edition xvi

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xvi

Part VI: The Part of Tens ..331

Chapter 20: Ten Cool HTML Tools .333
HTML Editors ...334

Helper editors ...334
WYSIWYG editors ...336

Graphics Tools ..337
Photoshop Elements: The amateur champ337
Professional contenders ..338

Link Checkers ...339
Web Link Validator: The champ ..339
Contenders ..340

HTML Validators ...340
W3C validator ..341
Built-in validators ...341

FTP Clients ..341
Swiss Army Knives ...342

Chapter 21: Ten HTML Do’s and Don’ts .343
Concentrate on Content ..343

Never lose sight of your content ..343
Structure your documents and your site ..344

Go Easy on the Graphics, Bells, Whistles, and Hungry Dinosaurs344
Make the most from the least ...345
Build attractive pages ..345

Create Well-Formulated HTML and Test ..346
Keep track of those tags ..346
Avoid browser dependencies ..347
Navigating your wild and woolly Web ..348

Keep It Interesting After It’s Built! ..348
Think evolution, not revolution ..348
Beating the two-dimensional text trap ...349
Overcome inertia through vigilance ..350

Chapter 22: Ten Ways to Exterminate Web Bugs 351
Avoid Dead Ends and Spelling Faux Pas ..351

Make a list and check it — twice ..352
Master text mechanics ...352

Keep Your Perishables Fresh! ...353
Lack of live links — a loathsome legacy ..353
When old links must linger ..354
Make your content mirror your world ...354

xviiTable of Contents

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xvii

Check Your Site, and Then Check It Again! ...355
Look for trouble in all the right places ..355
Cover all the bases with peer reviews ...356
Use the best tools of the testing trade ...356
Schedule site reviews ...357

Let User Feedback Feed Your Site ..357
Foster feedback ...358
If you give to them, they’ll give to you! ..358

Part VII: Appendixes ..359

Appendix A: Deprecated (X)HTML Elements and Attributes 361

Appendix B: Shorthand and Aural CSS Properties 365

Appendix C: Glossary .369

Index...379

HTML 4 For Dummies, 5th Edition xviii

02_589172 ftoc.qxd 4/22/05 3:22 PM Page xviii

Introduction

Welcome to the wild, wacky, and wonderful possibilities of the World
Wide Web, simply referred to as the Web. In this book, we introduce

you to the mysteries of the Hypertext Markup Language (HTML) and its suc-
cessor, XHTML. Because HTML and XHTML (we use (X)HTML in this book
to refer to both versions at the same time) are used to build Web pages,
learning them will bring you into the community of Web authors and content
developers.

If you’ve tried to build your own Web pages but found it too forbidding, now
you can relax. If you can dial a telephone or find your keys in the morning, you
too can become an (X)HTML author. No kidding!

This book keeps the technobabble to a minimum and sticks with plain English
whenever possible. Besides plain talk about hypertext, (X)HTML, and the
Web, we include lots of examples, plus tag-by-tag instructions to help you
build your very own Web pages with minimum muss and fuss. We also provide
more examples about what to do with your Web pages after they’re created so
you can share them with the world. We also explain the differences between
HTML 4 and XHTML, so you can decide whether you want to stick with the
best-known and longest-lived Web markup language (HTML) or the latest and
greatest Web markup language (XHTML).

We also have a companion Web site for this book that contains (X)HTML
examples from the chapters in usable form — plus pointers to interesting
widgets that you can use to embellish your own documents and astound
your friends. Visit www.dummies.com/extras and select “HTML 4 For
Dummies, 5th Edition” from the list.

About This Book
Think of this book as a friendly, approachable guide to taking up the tools of
HTML and building readable, attractive pages for the Web. HTML isn’t hard
to learn, but it packs a lot of details. You need to handle some of these details
while you build your Web pages. Topics you find in this book include

� Designing and building Web pages

� Uploading and publishing Web pages for the world to see

� Testing and debugging your Web pages

03_589172 intro.qxd 4/22/05 3:23 PM Page 1

You can build Web pages without years of arduous training, advanced aes-
thetic capabilities, or ritual ablutions in ice-cold streams. If you can tell some-
body how to drive across town to your house, you can build a useful Web
document. The purpose of this book isn’t to turn you into a rocket scientist
(or, for that matter, a rocket scientist into a Web site). The purpose is to show
you the design and technical elements you need for a good-looking, readable
Web page and to give you the confidence to do it!

How to Use This Book
This book tells you how to use (X)HTML to get your Web pages up and run-
ning on the World Wide Web. We tell you what’s involved in designing and
building effective Web documents that can bring your ideas and information
to the whole online world — if that’s what you want to do — and maybe have
some high-tech fun communicating them.

All (X)HTML code appears in monospaced type such as this:

<head><title>What’s in a Title?</title></head>...

When you type (X)HTML tags or other related information, be sure to copy
the information exactly as you see it between the angle brackets (< and >),
including the angle brackets themselves, because that’s part of the magic
that makes (X)HTML work. Other than that, you find out how to marshal and
manage the content that makes your pages special, and we tell you exactly
what you need to do to mix the elements of (X)HTML with your own work.

The margins of a book don’t give us the same room as the vast reaches of
cyberspace. Therefore, some long lines of (X)HTML markup, or designations
of Web sites (called URLs, for Uniform Resource Locators), may wrap to the
next line. Remember that your computer shows such wrapped lines as a
single line of (X)HTML, or as a single URL — so if you type that hunk of code,
keep it as one line. Don’t insert a hard return if you see one of these wrapped
lines. We clue you in that the (X)HTML markup is supposed to be all one line
by breaking the line at a slash or other appropriate character (to imply “but
wait, there’s more!”) and by slightly indenting the overage, as in the following
silly example:

http://www.infocadabra.transylvania.com/nexus/plexus/lexus/
praxis/okay/this/is/a/make-believe/URL/but/some/real/
ones/are/SERIOUSLY/long.html

HTML doesn’t care whether you type tag text in uppercase, lowercase, or
both (except for character entities, also known as character codes). XHTML,
however, wants tag text only in lowercase in order to be perfectly correct.
Thus, to make your own work look like ours as much as possible, enter all
(X)HTML tag text in lowercase only. (If you have a previous edition of the

2 HTML 4 For Dummies, 5th Edition

03_589172 intro.qxd 4/22/05 3:23 PM Page 2

book, this is a complete reversal of earlier instructions. The keepers of the
eternal and ever-magnanimous standard of HTML, the World Wide Web
Consortium (W3C), have restated the rules of this game, so we follow their
lead. We don’t make the rules, but we do know how to play the game!)

Three Presumptuous Assumptions
They say that making assumptions makes a fool out of the person who makes
them and the person who is subject to those assumptions (and just who are
they, anyway? We assume we know, but . . . never mind).

You don’t need to be a master logician or a wizard in the arcane arts of pro-
gramming, nor do you need a PhD in computer science. You don’t even need
a detailed sense of what’s going on in the innards of your computer to deal
with the material in this book.

Even so, practicality demands that we make a few assumptions about you,
gentle reader: you can turn your computer on and off; you know how to use
a mouse and a keyboard, and you want to build your own Web pages for fun,
profit, or your job. We also assume that you already have a working connec-
tion to the Internet and a Web browser.

If you can write a sentence and know the difference between a heading and a
paragraph, you can build and publish your own documents on the Web. The
rest consists of details, and we help you with those!

How This Book Is Organized
This book contains seven major parts, arranged like Russian Matrioshka
(nesting dolls). Parts contain at least three chapters, and each chapter
contains several modular sections. How you use the book is up to you:

� Jump around.

� Find topics or keywords in the Index or in the Table of Contents.

� Read the whole book from cover to cover.

Part I: Getting to Know (X)HTML
This part sets the stage and includes an overview of and introduction to the
Web and the software that people use to mine its treasures. This section also
explains how the Web works, including the (X)HTML to which this book is

3Introduction

03_589172 intro.qxd 4/22/05 3:23 PM Page 3

devoted, and the server-side software and services that deliver information
to end users (when we aren’t doing battle with the innards of our systems).

(X)HTML documents, also called Web pages, are the fundamental units of
information organization and delivery on the Web. Here, you also discover
what HTML is about and how hypertext can enrich ordinary text. Next, you
take a walk on the Web side and build your very first (X)HTML document.

Part II: Formatting Web
Pages with (X)HTML
HTML mixes ordinary text with special strings of characters, called markup,
used to instruct browsers how to display (X)HTML documents. In this part
of the book, you find out about markup in general and (X)HTML in particular.
We start with a fascinating discussion of (X)HTML document organization
and structure. (Well . . . we think it’s fascinating, and hope you do, too.) Next,
we explain how text can be organized into blocks and lists. Then we tackle
how the hyperlinks that put the H into (X)HTML work. After that, we discuss
how you can find and use graphical images in your Web pages and make
some fancy formatting maneuvers to spruce up those pages.

Throughout this part of the book, we include discussion of (X)HTML markup
elements (tags) and how they work. By the time you finish Part II, expect to
have a good overall idea of what HTML is and how you can use it.

Part III: Taking Precise
Control Over Web Pages
Part III starts with a discussion of Cascading Style Sheets (CSS) — another
form of markup language that lets (X)HTML deal purely with content while it
deals with how Web pages look when they’re displayed in a Web browser.
After exploring CSS syntax and structures and discovering how to use them,
you learn how to manipulate the color and typefaces of text, backgrounds,
and more on your Web pages. You also learn about more complex collections
of markup — specifically tables — as you explore and observe their capabili-
ties in detail. We give you lots of examples to help you design and build
commercial-grade (X)HTML documents. You can get started working with
related (X)HTML tag syntax and structures that you need to know so you
can build complex Web pages.

4 HTML 4 For Dummies, 5th Edition

03_589172 intro.qxd 4/22/05 3:23 PM Page 4

Part IV: Integrating
Scripts with HTML
(X)HTML isn’t good at snazzing up text and graphics when they’re on display
(which is where CSS excels). And (X)HTML really can’t do much by itself. Web
designers often build interactive, dynamic Web pages by using scripting tools
to add interactivity to an (X)HTML framework.

In this part of the book, you learn about scripting languages that enable Web
pages to interact with users and that also provide ways to respond to user
input or actions and to grab and massage data along the way. You learn about
general scripting languages, and we jump directly into the most popular of
such languages — JavaScript. You can discover the basic elements of this
scripting language and how to add interaction to Web pages. You can also
explore a typical use for scripting that you can extend and add to your own
Web site. We go on to explore how to create and extract data from Web-based
data input forms and how to create and use scripts that react to a user’s
actions while she visits your Web pages.

Throughout this part of the book, examples, advice, and details show you
how these scripting components can enhance and improve your Web site’s
capabilities — and your users’ experiences when visiting your pages.

Part V: HTML Projects
This part tackles typical complex Web pages. You can use these as models for
similar capabilities in your own Web pages. These projects include About Me
and About My Company pages, an eBay auction page, a product marketing
page, and even a product catalog page with its own shopping cart!

Part VI: The Part of Tens
We sum up and distill the very essence of the mystic secrets of (X)HTML.
Here, you can read further about cool Web tools, get a second chance to
review top do’s and don’ts for HTML markup, and review how to catch and
kill potential bugs and errors in your pages before anybody else sees them.

Part VII: Appendixes
This book ends with appendixes of technical terms and a Glossary.

5Introduction

03_589172 intro.qxd 4/22/05 3:23 PM Page 5

Icons Used in This Book
This icon signals technical details that are informative and interesting but
that aren’t critical to writing HTML.

This icon flags useful information that makes HTML markup or other impor-
tant stuff even less complicated than you feared it might be.

This icon points out information you shouldn’t pass by — don’t overlook
these gentle reminders (the life, sanity, or page you save could be your own).

Be cautious when you see this icon. It warns you of things you shouldn’t do;
consequences can be severe if you ignore the accompanying bit of wisdom.

Text marked with this icon contains information about something that can be
found on this book’s companion Web site. You can find all the code examples
in this book, for starters. Simply visit the Extras section of Dummies.com
(www.dummies.com/extras) and click the link for this book. We also use this
icon to point out great useful Web resources.

The information highlighted with this icon gives best practices — advice that
we wish we’d had when we first started out! These techniques can save you
time and money on migraine medication.

Where to Go from Here
This is where you pick a direction and hit the road! Where you start out
doesn’t matter. Don’t worry. You can handle it. Who cares whether anybody
else thinks you’re just goofing around? We know you’re getting ready to have
the time of your life. Enjoy!

6 HTML 4 For Dummies, 5th Edition

03_589172 intro.qxd 4/22/05 3:23 PM Page 6

Part I
Getting to Know

(X)HTML

04_589172 pt01.qxd 4/22/05 3:23 PM Page 7

In this part . . .

In this part of the book, we explore and explain basic
HTML document links and structures. We also explain

the key role that Web browsers play in delivering all this
stuff to people’s desktops. We even explain where the
(X) comes from — namely, a reworking of the original
description of HTML markup using XML syntax to create
XHTML — and go on to help you understand what makes
XHTML different (and possibly better, according to some)
than plain old HTML. We also take a look at Web page
anatomy and look at the various pieces and parts that
make up a Web page.

Next, we take you through the exercise of creating and
viewing a simple Web page so you can understand what’s
involved in doing this for yourself. We also explain what’s
involved in making changes to an existing Web page and
how to post your changes (or a new page) online.

This part concludes with a rousing exhortation to figure
out what you’re doing before making too much markup
happen. Just as a well-built house starts with a set of blue-
prints and architectural drawings, so should a Web page
(and site) start with a plan or a map, with some idea of
where your pages will reside in cyberspace and how
hordes of users can find their way to them.

04_589172 pt01.qxd 4/22/05 3:23 PM Page 8

Chapter 1

The Least You Need to Know
about HTML and the Web

In This Chapter
� Creating HTML in text files

� Serving and browsing Web pages

� Understanding links and URLs

� Understanding basic HTML syntax

Welcome to the wonderful world of the Web and HTML. With just a little
bit of knowledge, some practice, and something to say, you can either

build your own little piece of cyberspace or expand on work you’ve already
done.

This book is your down-and-dirty guide to putting together your first Web
page, sprucing up an existing Web page, or creating complex and exciting
pages that integrate intricate designs, multimedia, and scripting.

The best way to start working with HTML is to jump right in, so that’s what
this chapter does: It brings you up to speed on the basics of how HTML works
behind the scenes of Web pages, introducing you to HTML’s building blocks.
When you’re done with this chapter, you’ll know how HTML works so you can
start creating Web pages right away.

Web Pages in Their Natural Habitat
Web pages can contain many kinds of content, such as text, graphics, forms,
audio and video files, and interactive games.

05_589172 ch01.qxd 4/22/05 3:24 PM Page 9

Browse the Web for just a little while and you see a buffet of information and
content displayed in many ways. Every Web site is different, but most have
one thing in common: the Hypertext Markup Language (HTML).

Whatever information a Web page contains, every Web page is created in
HTML (or some reasonable facsimile). HTML is the mortar that holds a Web
page together; the graphics, content, and other information are the bricks.

HTML files that produce Web pages are just text documents. That’s why the
Web works as well as it does. Text is the universal language of computers.
Any text file that you create on a Windows computer, including an HTML file,
works equally well on any other operating system.

But Web pages aren’t merely text documents. They’re made with a special,
attention-deprived, sugar-loaded text called HTML. HTML is a collection of
instructions that you include along with pointers to your content in a text
file that specifies how your page should look and behave.

Stick with us to discover all the details you need to know about HTML!

Hypertext
Special instructions in HTML permit text to point (link) to something else.
Such pointers are called hyperlinks. Hyperlinks are the glue that holds the
World Wide Web together. In your Web browser, hyperlinks usually appear in
blue and are underlined. When you click one, it takes you somewhere else.

Hypertext or not, a Web page is a text file. You can create and edit a Web page
in any application that creates plain text (such as Notepad). When you’re get-
ting started with HTML, a text editor is the best tool to use. Just break out
Notepad and you’re ready to go. Some software tools have fancy options and
applications (covered in Chapter 20) to help you create Web pages, but they
generate the same text files that you create with plain-text editors.

The World Wide Web comes by its name honestly. It’s quite literally a web
of pages hosted on Web servers around the world, connected in millions of
ways. Those connections are made by hyperlinks that connect one page to
another. Without such links, the Web is just a bunch of standalone pages.

Much of the Web’s value comes from its ability to link to pages and other
resources (such as images, downloadable files, and media presentations)
on either the same Web site or at another site. For example, FirstGov (www.
firstgov.gov) is a gateway Web site — its sole function is to provide access
to other Web sites. If you aren’t sure which government agency handles first-
time loans for homebuyers, or if want to know how to arrange a tour of the
Capitol, visit this site (shown in Figure 1-1) to find out.

10 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 10

Markup
Web browsers were created specifically for the purpose of reading HTML
instructions (known as markup) and displaying the resulting Web page.

Markup lives in a text file (with your content) to give orders to a browser.

For example, look at the page shown in Figure 1-2. You can see how the page
is made up and how it is formatted by examining its underlying HTML.

Figure 1-2:
This Web

page
incorporates

multiple
parts and

numerous
bits of

markup.

Figure 1-1:
FirstGov

uses
hyperlinks

to help
visitors find
government
information.

11Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 11

This page includes an image, a heading that describes the page, a paragraph
of text about red wine, and a list of common grape varietals.

However, different components of the page use different formatting:

� The heading at the top of the page is larger than the text in the
paragraph.

� The items in the list have bullet points (big dots) before them.

The browser knows to display these components of the page in specific ways
thanks to the HTML markup, shown in Listing 1-1.

Listing 1-1: Sample HTML Markup

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Wine Varietals</title>

</head>

<body>
<h1><img src=”red_grapes.jpg” width=”75” height=”100”

alt=”Red Grapes” align=”middle” hspace=”5” />
Understanding Red Wine Varietals

</h1>
<p>Although wines tend to be generically categorized as

either “white” or “red,” in reality, there is a
collection of wine varietals each with its own
distinguishing characteristics. The red category
includes a robust collection of over 20 varietals,
including:

</p>

Barbera
Brunello
Cabernet Franc
Cabernet Sauvignon
Carignan
Carmenere
Charbono
Dolcetto
Gamay
Grenache
Malbrec
Merlot
Mourvedre
Nebbiolo
Petite Sirah
Pinot Noir

12 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 12

Sangiovese
Syrah
Tempranillo
Zinfandel

</body>

</html>

Any text enclosed between less-than and greater-than signs (< >) is an HTML
tag (often called the markup). For example, a p within brackets (<p>...</p>
tags) identifies the text about red varietals as a paragraph; the li (...
 tags) markup identifies each item in a list of varietals. That’s really all
there is to it. You embed the markup in a text file, along with text for readers
to view, to let the browser know how to display your Web page.

Tags and content between and within the tags are collectively called
elements.

Browsers
The user’s piece in the Web puzzle is a Web browser. Web browsers read
instructions written in HTML and use those instructions to display a Web
page’s content on your screen.

13Chapter 1: The Least You Need to Know about HTML and the Web

A bevy of browsers
The Web world is full of browsers of many shapes and sizes — or rather versions and feature sets.
Two of the more popular browsers are Microsoft Internet Explorer and Netscape Navigator. Other
browsers, such as Mozilla Firefox and Opera, are widely used. As an HTML developer, you must
think beyond your own browser experience and preferences. Every user has his or her own
browser preferences and settings.

Each browser renders HTML a bit differently. Every browser handles JavaScript, multimedia, style
sheets, and other HTML add-ins differently, too. Throw different operating systems into the mix,
and things get really fun.

Usually, the differences between browsers are minor. But sometimes, a combination of HTML, text,
and media brings a specific browser to its knees.

When you work with HTML, you need to test your pages on as many different browsers as you can.
Install at least three different browsers on your own system for testing. We recommend the latest
versions of Internet Explorer, Navigator, and Opera.

Yahoo! has a fairly complete list of browsers at

http://dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/Browsers

05_589172 ch01.qxd 4/22/05 3:24 PM Page 13

You should always write your HTML with the idea that people will view the
content using a Web browser. Just remember that there’s more than one kind
of browser out there, and each one comes in several versions.

Usually, Web browsers request and display Web pages available via the
Internet from a Web server. You can also display HTML pages you’ve saved
on your own computer before making them available on a Web server on the
Internet. When you’re developing your own HTML pages, you view these
pages (called local pages) in your browser. You can use local pages to get a
good idea of what people see after the page goes live on the Internet.

Each Web browser interprets HTML in its own way. The same HTML doesn’t
look exactly the same from one browser to the next. When you work with
basic HTML, variances aren’t significant, but as you integrate other elements
(such as scripting and multimedia), rendering the markup can get hairy.

Chapter 2 shows how to use a Web browser to view a local copy of your first
Web page.

Some people use text-only Web browsers, such as Lynx, because either

� They’re visually impaired and can’t use a graphical display.

� They like a lean, fast Web browser that displays only text.

Web servers
Your HTML pages aren’t much good if you can’t share them with the world.
Web servers make that possible. A Web server is a computer that

� Connects to the Internet

� Runs Web server software

� Responds to requests from Web browsers for Web pages

Almost any computer can be a Web server, including your home computer.
But Web servers generally are computers dedicated to the task. You don’t
need to be an Internet or computer guru to publish your Web pages, but you
must find a Web server to serve your pages:

� If you’re building pages for a company Web site, your IT department may
have a Web server. (Ask your IT guru for the information.)

� If you’re starting a new site, you need a host for your pages.

Finding an inexpensive host is easy. Chapter 3 shows how to determine
your hosting needs and find the perfect provider.

14 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 14

Anatomy of a URL
The Web is made up of millions of resources, each of them linkable. A
resource’s exact location is the key to linking to it. Without an exact address
(a Uniform Resource Locator, or URL), you can’t use the Address bar in a Web
browser to visit a Web page directly.

URLs are the standard addressing system for resources on the Web. Each
resource (Web page, site, or individual file) has a unique URL. URLs work a
lot like your postal address. Figure 1-3 identifies the components of a URL.

Each URL component helps define the location of a Web page or resource:

� Protocol: Specifies the protocol the browser follows to request the file.

The Web page protocol is http:// (the usual start to most URLs).

� Domain: Points to the general Web site (such as www.sun.com) where
the file resides. A domain may host a few files (like a personal Web site)
or millions of files (like a corporate site, such as www.sun.com).

� Path: Names the sequence of folders through which you must navigate
to get to a specific file.

For example, to get to a file in the evangcentral folder that resides in
the developers folder, you use the /developers/evangcentral/ path.

� Filename: Specifies which file in a directory path the browser accesses.

The URL shown in Figure 1-3 points to the Sun domain and offers a path that
leads to a specific file named bios.html:

http://www.sun.com/developers/evangcentral/bios.html

Domain Filename

PathProtocol

Figure 1-3:
The

components
of a URL

help it
define the

exact
location of a

file on the
Web.

15Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 15

Chapter 6 provides the complete details on how you use HTML and URLs to
add hyperlinks to your Web pages, and Chapter 3 shows how to obtain a URL
for your own Web site after you’re ready move it to a Web server.

(X)HTML’s Component Parts
The following section removes the mystery from the X. This section shows

� The differences between HTML and XHTML

� How HTML is written (its syntax)

� Rules that govern its use

� Names for important pieces and parts of HTML (and XHTML) markup

� How to make the best, most correct use of its capabilities

HTML and XHTML: What’s the difference?
HTML is Hypertext Markup Language, a notation developed in the late 1980s
and early 1990s for describing Web pages. HTML is now enshrined in numer-
ous standard descriptions (specifications) from the World Wide Web
Consortium (W3C). The last HTML specification was finalized in 1999.

16 Part I: Getting to Know (X)HTML

Introducing Internet protocols
Interactions between browsers and servers are made possible by a set of computer-communica-
tion instructions: Hypertext Transfer Protocol (HTTP). This protocol defines how browsers should
request Web pages and how Web servers should respond to those requests.

HTTP isn’t the only protocol at work on the Internet. The Simple Mail Transfer Protocol (SMTP) and
Post Office Protocol (POP) make e-mail exchange possible, and the File Transfer Protocol (FTP)
allows you to upload, download, move, copy, and delete files and folders across the Internet. The
good news is that Web browsers and servers do all of the HTTP work for you, so you only have to
put your pages on a server or type a Web address into a browser.

To see how HTTP works, check Webmonkey’s article, “HTTP Transactions and You”:

http://hotwired.lycos.com/webmonkey/geektalk/97/06/index4a.html

05_589172 ch01.qxd 4/22/05 3:24 PM Page 16

When you put an X in front of HTML to get XHTML, you get a new, improved
version of HTML based on the eXtensible Markup Language (XML). XML is
designed to work and behave well with computers, software, and the
Internet.

The original formulation of HTML has some irregularities that can cause
heartburn for software that reads HTML documents. XHTML, on the other
hand, uses an extremely regular and predictable syntax that’s easier for soft-
ware to handle. XHTML will replace HTML someday, but HTML keeps on tick-
ing. This book covers both varieties and shows you the steps to put the X in
front of your own HTML documents and turn them into XHTML.

17Chapter 1: The Least You Need to Know about HTML and the Web

HTML and XHTML specifications
The formal documents to describe HTML and XHTML are on the W3C’s Web site at www.w3.org.

Markup languages usually include version numbers to identify them. The current version of HTML
is 4.01. It dates back to December 1997; you can find the document at www.w3.org/TR/html4.

XHTML has gone through two major drafts, 1.0 and 1.1. The 1.1 version is more advanced than 1.0,
but most Web content developers and software tools follow the 1.0 specification. An XHTML 2.0
specification is in “Working Draft” status (its authors haven’t finalized its content and structure).
When a W3C specification is finished, it’s known as a W3C Recommendation.

You can find specifications for all three versions of XHTML:

� XHTML 2.0 Working Draft (7/4/2004)

www.w3.org/TR/2004/WD-xhtml2-20040722/
� XHTML 1.1 Module-based XHTML Recommendation (5/31/2001)

www.w3.org/TR/xhtml11/
� XHTML 1.0 Recommendation (1/26/2000)

www.w3.org/TR/xhtml1/

Reading W3C specifications takes some learning and improves with repeated exposure. Don’t let
the formal language and notation of these documents put you off: After you understand what’s up,
you appreciate the precision and detail! But you may decide never even to look at one of these
specifications — it’s entirely up to you!

The HTML 4.01 specification is the rulebook of HTML, as the XHTML 1.0 specification is for XHTML —
each one tells you exactly which elements you can use, which attributes go with those elements, and
how you use elements in combinations to create such page structures as lists, forms, tables, and
frames. This book uses the XHTML 1.0 specification as its basis.

05_589172 ch01.qxd 4/22/05 3:24 PM Page 17

� Most HTML and XHTML markup is identical.

� In a few cases, HTML and XHTML markup looks a little different.

� In a few cases, HTML and XHTML markup must be used differently.

This book shows how to create code that works in both HTML and XHTML.

18 Part I: Getting to Know (X)HTML

The types of (X)HTML
The HTML and XHTML specifications use
Document Type Definitions (DTDs) written in the
Standard Generalized Markup Language
(SGML) — the granddaddy of all markup — to
define the details.

In its earlier versions, HTML used elements for
formatting; over time, developers realized that

� Formatting needed its own language (now
called Cascading Style Sheets, or CSS).

� HTML elements should describe only a
page’s structure.

This resulted in three flavors of HTML, which
also apply to XHTML. These are the XHTML
DTDs:

� XHTML Transitional: Uses HTML’s elements
to describe font faces and page colors.
XHTML Transitional accounts for formatting
elements in older versions of HTML.
Formatting elements in XHTML Transitional
are deprecated (considered obsolete)
because the W3C would like developers to
move away from them and to a combination
of XHTML Strict and CSS. We use the
XHTML Transitional DTD for the markup in
this book.

� XHTML Strict: Doesn’t include any elements
that describe formatting. This version
is designed to let CSS drive the page
formatting.

The CSS-with-XHTML Strict approach is an
ambitious way to build Web pages, but in
practice it has its pros and cons. CSS pro-
vides more control over your page format-
ting, but creating style sheets that work well
in all browsers can be tricky. Chapter 9
covers style sheets and the issues around
using them in more detail.

� XHTML Frameset: Includes frames, which
is markup that allows you to display more
than one Web page or resource at a time in
the same browser window. Frames are still
used in some Web sites but are less popu-
lar today than they were in the late 1990s.
Our advice is to use them only if you must
display information from multiple HTML
documents at the same time in a single
browser window.

All Web browsers support all elements in HTML
Transitional (and in XHTML 1.0 Transitional if
proper tag formatting is used); you can choose
to use elements from it or stick with (X)HTML
Strict instead. If you use frames, you technically
work with (X)HTML Frameset, but all elements
still work the same way.

This book covers all (X)HTML tags in all versions
(lumping them into one category called
(X)HTML) because all real-world Web browsers
support all three flavors.

05_589172 ch01.qxd 4/22/05 3:24 PM Page 18

Syntax and rules
HTML is a straightforward language for describing Web page contents. XHTML
is even less demanding. Their components are easy to use — when you know
how to use a little bit of (X)HTML. Both HTML and XHTML markup have three
types of components:

� Elements: Identify different parts of an HTML page by using tags

� Attributes: Information about an instance of an element

� Entities: Non-ASCII text characters, such as copyright symbols (©) and
accented letters (É)

Every bit of HTML and/or XHTML markup that describes a Web page’s con-
tent includes some combination of elements, attributes, and entities.

This chapter covers the basic form and syntax for elements, attributes, and
entities. Parts II and III of the book detail how elements and attributes

� Describe kinds of text (such as paragraphs or tables)

� Create an effect on the page (such as changing a font style)

� Add images and links to a page

Elements
Elements are the building blocks of (X)HTML. You use them to describe every
piece of text on your page. Elements are made up of tags and the content
within those tags. There are two main types of elements:

� Elements with content made up of a tag pair and whatever content sits
between the opening and closing tag in the pair

� Elements that insert something into the page using a single tag

Tag pairs
Elements that describe content use a tag pair to mark the beginning and the
end of the element. Start and end tag pairs look like this:

<tag>...</tag>

19Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 19

Content — such as paragraphs, headings, tables, and lists — always uses a tag
pair:

� The start tag (<tag>) tells the browser, “The element begins here.”

� The end tag (</tag>) tells the browser, “The element ends here.”

The actual content is what occurs between the start tag and end tag. For
example, the Red Wine Varietals page in Listing 1-1 uses the paragraph ele-
ment (<p>) to surround the text of a paragraph:

<p>Although wines tend to be generically categorized as
either “white” or “red,” in reality, there is a
collection of wine varietals each with its own
distinguishing characteristics. The red category
includes a robust collection of over 20 varietals,
including:

</p>

Single tags
Elements that insert something into the page are called empty elements
(because they enclose no content) and use just a single tag, like this:

<tag />

Images and line breaks insert something into the HTML file, so they use
one tag.

One key difference between XHTML and HTML is that, in XHTML, all empty
elements must end with a slash before the closing greater-than symbol. This
is because XHTML is based on XML, and the XML rule is that you close empty
elements with a slash, like this:

<tag/>

However, to make this kind of markup readable inside older browsers, you
must insert a space before the closing slash, like this:

<tag />

This space allows older browsers to ignore the closing slash (since they don’t
know about XHTML). Newer browsers that understand XHTML ignore the
space and interpret the tag exactly as intended, which is <tag/> (as per the
XML rules).

HTML doesn’t require a slash with empty elements, but this markup is depre-
cated. An HTML empty element looks like this:

<tag>

20 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 20

Listing 1-1 uses the image element () to include an image on the
page:

<img src=”red_grapes.jpg” width=”75” height=”100” alt=”Red Grapes”
align=”middle” hspace=”5” />

The element references an image. When the browser displays the
page, it replaces the element with the file that it points to (it uses an
attribute to do the pointing, which is shown in the next section). Following
the XHTML rule introduced earlier, what appears in HTML as appears
in XHTML as (and this applies to all single tag elements).

You can’t make up HTML or XHTML elements. Elements that are legal in
(X)HTML are a very specific set — if you use elements that aren’t part of
the (X)HTML set, every browser ignores them. The elements you can use
are defined in the HTML 4.01 or XHTML 1.0 specifications.

Nesting
Many page structures combine nested elements. Think of your nested ele-
ments as suitcases that fit neatly inside one another.

For example, a bulleted list uses two kinds of elements:

� The element specifies that the list is unordered (bulleted).

� The elements mark each item in the list.

When you combine elements by using this method, be sure you close the
inside element completely before you close the outside element:

Barbera
Brunello

Attributes
Attributes allow variety in how an element describes content or works.
Attributes let you use elements differently depending on the circumstances.
For example, the element uses the src attribute to specify the loca-
tion of the image you want to include at a specific spot on your page:

<img src=”red_grapes.jpg” width=”75” height=”100” alt=”Red Grapes”
align=”middle” hspace=”5” />

21Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 21

In this bit of HTML, the element itself is a general flag to the browser
that you want to include an image; the src attribute provides the specifics on
the image you want to include — red_grapes.jpg in this instance. Other
attributes (such as width, height, align, and hspace) provide information
about how to display the image, and the alt attribute provides a text alterna-
tive to the image that a text-only browser can display.

Chapter 7 describes the element and its attributes in detail.

You include attributes within the start tag of the element you want them
with — after the element name but before the ending sign, like this:

<tag attribute=”value” attribute=”value”>

XML syntax rules decree that attribute values must always appear in quota-
tion marks, but you can include the attributes and their values in any order
within the start tag or within a single tag.

Every (X)HTML element has a collection of attributes that can be used with
it, and you can’t mix and match attributes and elements. Some attributes can
take any text as a value because the value could be anything, like the location
of an image or a page you want to link to. Others have a specific list of values
the attribute can take, such as your options for aligning text in a table cell.

The HTML 4.01 and XHTML 1.0 specifications define exactly which attributes
you can use with any given element and which values (if explicitly defined)
each attribute can take.

Each chapter in Parts II and III covers which attributes you can use with each
(X)HTML element. Also, see Appendix A for complete lists of deprecated
(X)HTML tags and attributes.

Entities
Text makes the Web possible, but it has limitations. Entities are special char-
acters that you can display on your Web page.

Non-ASCII characters
Basic American Standard Code for Information Interchange (ASCII) text
defines a fairly small number of characters. It doesn’t include some special
characters, such as trademark symbols, fractions, and accented characters.

For example, the list of white wine varietals in Figure 1-4 includes two
accented e characters (é) and two u characters with umlauts (ü).

22 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 22

ASCII text doesn’t include either the accented e or the umlauted u, so HTML
uses entities to represent them instead. The browser replaces the entity with
the character it references. Each entity begins with an ampersand (&) and
ends with a semicolon (;). The following markup shows the entities in bold:

<html>
<head>
<title>Wine Varietals</title>
</head>

<body bgcolor=”#FFFFFF”>
<h2>White Varietals</h2>

 Chardonnay
Chenin Blanc
Fumé Blanc
Gewürztraminer
Grüner Veltliner
Marsanne
Muscat
Pinot Blanc
Pinot Gris
Reisling
Sauvignon Blanc
Sémillon
Trebbiano
Viognie

</body>
</html>

Figure 1-4:
ASCII text

can’t
represent

all text
characters,

so HTML
entities do

instead.

23Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 23

The entity that represents the e with the acute accent is é, and the
entity that represents the umlauted u is ü.

(X)HTML character codes
The encodings for the ISO-Latin-1 character set are supplied by default, and
related entities (a pointer to a complete table appears in Table 1-1) can be
invoked and used without special contortions. But using the other encodings
mentioned in Table 1-1 requires inclusion of special markup to tell the browser
it must be ready to interpret Unicode character codes. (Unicode is an interna-
tional standard — ISO standard 10646, in fact — that embraces enough charac-
ter codes to handle most unique alphabets, plus plenty of other symbols and
nonalphabetic characters as well.) This special markup takes the form <meta
http-equiv=”Content-Type” content=”text/html; charset=UTF 8”>;
when the value for charset is changed to UTF-8, you can reference the
common Unicode code charts shown in Table 1-1.

Table 1-1 Online Pointers to (X)HTML Character Codes
Name URL

Unicode Code Charts www.unicode.org/charts/

ISO-Latin-1 www.htmlhelp.com/reference/charset/
character set

Greek characters www.unicode.org/charts/PDF/U0370.pdf

Currency symbols www.unicode.org/charts/PDF/U20A0.pdf

Miscellaneous symbols www.unicode.org/charts/PDF/U2600.pdf

Arrow characters www.unicode.org/charts/PDF/U27F0.pdf
www.unicode.org/charts/PDF/U2900.pdf

Mathematical Search math at www.unicode.org/charts/
characters (there are six different, relevant code charts)

General punctuation www.unicode.org/charts/PDF/U2000.pdf

Tag characters
HTML-savvy software assumes that some HTML characters, such as the
greater-than and less-than signs, are meant to be hidden and not displayed
on your finished Web page. The following entities display characters that
normally are part of the hidden HTML markup:

� less-than sign (<): <

� greater-than sign (>): >

� ampersand (&): &

24 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 24

The < and > signs are used in markup, but these symbols are instructions to
the browser and won’t show up on the page. If you need these symbols on the
Web page, include the entities for them in your markup, like this:

<p>The paragraph element identifies some text as a paragraph:</p>
<p><p>This is a paragraph.</p></p>

In the preceding markup, the first line uses tags to describe a paragraph, and
the second line shows how entities describe the < and > symbols.

Figure 1-5 shows these entities as characters in a browser window.

Parts Is Parts: What Web
Pages Are Made Of

Comments include text in (X)HTML files that isn’t displayed in the final
page. Each comment is identified with two special sequences of markup
characters:

� Begin each comment with the string <!--

� End each comment with the string -->

In the following code, comments explain how each markup element functions
and where it fits into the HTML markup hierarchy.

Elements are organized into a structure:

� Some elements can occur only inside other elements.

� Some elements are required for a well-structured (X)HTML document.

Figure 1-5:
Entities let
<, >, or &
symbols

appear in a
browser
window.

25Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 25

<html> <!-- This tag should always occur at or near the beginning of any
well-formed HTML document -->

<head> <!-- The head element supplies information to label the whole HTML
document -->

<title>Wine Varietals</title> <!-- The text in the title element appears
in the title bar of the browser window when the page is
viewed -->

</head> <!-- closes the head element -->

<body bgcolor=”#FFFFFF”> <!-- The content that appears on any Web page
appears or is invoked from inside the body element -->

<h2>White Varietals</h2> <!-- heading elements start with the letter h
followed by a number from 1 to 6 to indicate hierarchy. This
is a level 2 heading, h2. -->

 <!-- This is an unordered list element, ul, which produces a
bulleted list of list items, li -->

 Chardonnay <!-- A whole bunch of individual list items -->
Chenin Blanc
Fumé Blanc
Gewürztraminer
Grüner Veltliner
Marsanne
Muscat
Pinot Blanc
Pinot Gris
Reisling
Sauvignon Blanc
Sémillon
Trebbiano
Viognie

 <!-- End of the unordered/bulleted list -->
</body> <!-- End of the body section -->
</html> <!-- End of the HTML document -->

The preceding document is broken into a head and a body. Within each sec-
tion, certain kinds of elements appear. Many combinations are possible, and
that’s what you see throughout this book!

Organizing HTML text
Beyond the division into head and body sections, text can be organized in
plenty of ways in HTML documents.

Document heads
Inside the head section, you can define all kinds of labels and information
besides a title, primarily to describe the document that follows, such as the
character sets used, scripts to be invoked, and style information. The body
section is where real content lives and most (X)HTML elements appear.

26 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 26

Document headings
Headings (denoted using elements h1 through h6) are different from the
HTML document head. Individual headings structure the text that follows
them, whereas the head identifies or describes the whole document.

In the Wine Varietals example, the h2 element titles a list of grape varieties.

Paragraphs and more
When you want running text on a Web page, the paragraph element, p (which
includes the <p> and </p> tags), breaks text into paragraphs. You can also

� Force line breaks by using the break element
.

� Create horizontal rules (lines) by using the <hr /> element.

HTML also includes all kinds of ways to emphasize or identify text inside
paragraphs; Parts II and III of this book show them.

Lists
HTML permits easy definition of unordered or bulleted lists. Various mecha-
nisms to create other kinds of lists, including numbered lists, are also avail-
able. Lists can be nested within lists to create as many levels of hierarchy as
your list might need (perhaps when outlining a complex subject or modeling
a table of contents with several heading levels you want to represent).
Chapter 5 covers creating lists in more detail.

Tables
HTML includes markup for defining tables. Chapter 11 covers tables. Structure
is part of how markup works, so within the definition of a table, you can

� Distinguish between column heads and table data

� Manage how rows and columns are laid out

Images in HTML documents
Adding an image to any HTML document is easy. Careful and well-planned
use of images adds a lot to Web pages. Chapter 7 shows how to grab images
from files. Chapter 9 shows how to use complex markup to position and flow
text around graphics. You also discover how to select and use interesting and
compelling images to add interest and information to your Web pages.

27Chapter 1: The Least You Need to Know about HTML and the Web

05_589172 ch01.qxd 4/22/05 3:24 PM Page 27

Links and navigation tools
A Web page’s structure should help visitors find their way around collections
of Web pages, look for (and hopefully, find) items of interest, and get where
they most want to go quickly and easily. Links provide the mechanism to
bring people into your Web pages, so Chapter 6 shows how to

� Reference external items or resources

� Jump from one page to the next

� Jump around inside a page

� Add structure and organization to your pages

The importance of structure and organization goes up as the amount of
information that you want to present to your visitors goes up.

Navigation tools, (which establish standard mechanisms and tools for moving
around inside a Web site) provide ways to create and present your Web page
(and site) structure to visitors and mechanisms for users to grab and use
organized menus of choices

When you add everything up, your result should be a well-organized set of
information and images that’s easy to understand, use, and navigate.

28 Part I: Getting to Know (X)HTML

05_589172 ch01.qxd 4/22/05 3:24 PM Page 28

Chapter 2

Creating and Viewing a Web Page
In This Chapter
� Planning your Web page

� Writing some HTML

� Saving your page

� Viewing your page offline and online

Creating your very own Web page can seem a little daunting, but it’s defi-
nitely fun, and our experience tells us that the best way to get started is

to jump right in with both feet. You might splash around a bit at first, but you
can keep your head above water without too much thrashing.

This chapter walks you through four simple steps to creating a Web page. We
don’t stop and explain every nuance of the markup you use — we save that
for other chapters. Instead, we want to make you comfortable working with
markup and content to create and view a Web page.

Before You Get Started
Creating HTML documents differs from creating word-processor documents
in an application like Microsoft Word because you use two applications:

� You create the Web pages in your text or HTML editor.

� You view the results in your Web browser.

Even though many HTML editors, such as Dreamweaver and HTML-Kit, pro-
vide a browser preview, it’s still important to preview your Web pages inside
actual Web browsers, such as Internet Explorer and Firefox, so you can see
them as your end users will. It’s a bit unwieldy to edit in one application and
switch to another to look at your work, but you’ll be switching like a pro from
text editor to browser and back in (almost) no time.

06_589172 ch02.qxd 4/22/05 3:25 PM Page 29

To get started on your first Web page, you need two types of software:

� A text editor such as Notepad, TextPad, or SimpleText

Notepad is the native text editor in Windows. TextPad is a shareware
text editor available from www.textpad.com. (TextPad is used to create
most of the figures in this chapter.) SimpleText is the native text editor
in the Macintosh operating system.

� A Web browser

We discuss these basic tools in more detail in Chapter 20. We recommend
that you whip out your good ol’ text editor to make your first page. Here
are a couple of reasons why:

� An advanced HTML editor, such as FrontPage or Dreamweaver, often
hides your HTML from you. For your first page, you want to see your
HTML in all of its (limited) glory.

You can make a smooth transition to a more advanced editor after
you’re a little more familiar with HTML markup, syntax, and document
structure.

� Word processors (such as Microsoft Word) usually store a lot of extra file
information behind the scenes (for example, formatting instructions to
display or print files). You can’t see or change the extra information, but
it interferes with your HTML.

Creating a Page from Scratch
Using HTML to create a Web page from scratch involves four straightforward
steps:

1. Plan your page design.

2. Combine HTML and text in a text editor to make that design a reality.

3. Save your page.

4. View your page in a Web browser.

So break out your text editor and Web browser and roll up your sleeves.

Step 1: Planning a simple design
We’ve discovered that a few minutes spent planning your general approach
to a page at the outset of work makes the page-creation process much easier.

30 Part I: Getting to Know (X)HTML

06_589172 ch02.qxd 4/22/05 3:25 PM Page 30

You don’t have to create a complicated diagram or elaborate graphical dis-
play in this step. Just jot down some ideas for what you want on the page and
how you want it arranged.

You don’t even have to be at your desk to plan your simple design. Take a
notepad and pencil outside and design in the sun, or scribble on a napkin
while you’re having lunch. Remember, this is supposed to be fun.

The example in this chapter is our take on the traditional “Hello World” exer-
cise used in just about every existing programming language. That is, the first
thing you learn when tackling a new programming language is how to display
the phrase Hello World on-screen. In our example, we create a short letter
to the world instead, so the page is a bit more substantial and gives you more
text to work with. Figure 2-1 shows our basic design for this page.

Figure 2-1:
Taking a few

minutes to
sketch your

page design
makes
writing
HTML

easier.

31Chapter 2: Creating and Viewing a Web Page

06_589172 ch02.qxd 4/22/05 3:25 PM Page 31

The basic design for the page includes four basic components:

� A serviceable title: “Hello World”

� A few paragraphs explaining how the page’s author plans to help the
Earth meet its yearly quota of Znufengerbs

� A closing of “Sincerely”

� A signature

Jot down some notes about the color scheme you want to use on the page.
For effect, we decided that our example page should have a black back-
ground and white text, and the title should be “Greetings From Your Future
Znufengerb Minister.”

When you know what kind of information you want on the page, you can
move on to Step 2 — writing the markup.

Step 2: Writing some HTML
You have a couple of different options when you’re ready to create your
HTML. In the end, you’ll probably use some combination of these:

� If you already have some text that you just want to describe with HTML,
save that text as a plain-text file and add HTML markup around it.

� Start creating markup and add the content as you go.

Our example in this chapter starts with some text in Word document format.
We saved the content as a text file, opened the text file in our text editor, and
added markup around the text.

To save a Word file as a text document, choose File➪Save As. In the dialog
box that appears, choose Text Only (*.txt) from the Save As Type drop-down
list.

Figure 2-2 shows how our draft letter appears in Microsoft Word before we
convert it to text for our page.

Listing 2-1: The Complete HTML Page for the Zog Letter

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>Greetings From Your Future Znufengerb Minister</title>

</head>

32 Part I: Getting to Know (X)HTML

06_589172 ch02.qxd 4/22/05 3:25 PM Page 32

<body bgcolor=”black” text=”white”>

<h1>Hello World</h1>

<p>It has come to our attention that Earth has fallen well short of
producing its yearly quota of Znufengerbs. To help you improve your
production and establish a plentiful Znufengerb colony, I, Zog, the
Minister of Agriculture of Grustland, will be arriving on your planet
within the week along with my herd experts to take command of your
Znufengerb enterprise.

</p>

<p>Do not fear, I have the highest expectations for a smooth transition
from your current production of the creatures you call cows to our beloved
Znufengerbs. The future of the galaxy hinges on Earth’s ability to meet
its Znufengerb quota, and I will do all in my power to make you the most
productive source of Znufengerbs in the universe.

</p>

<p>I have studied your history extensively and feel that I am the best
candidate for the position of Znufengerb Minister. I look forward to
placing a Znufengerb in every home to bring you joy.

</p>

<p>Sincerely,

Zog, Minister of Agriculture

</p>

</body>
</html>

The complete HTML page looks like Listing 2-1.

The HTML markup includes a collection of markup elements and attributes
that describe the letter’s contents:

� The <html> element defines the document as an HTML document.

� The <head> element creates a header section for the document.

� The <title> element defines a document title that is displayed in the
browser’s title bar.

The <title> element is inside the <head> element.

� The <body> element holds the text that appears in the browser window.

The bgcolor and text attributes work with the <body> element. These
attributes set the background color to black and the text color to white.
(These attributes are deprecated, but really easy to use. Chapters 8 and
9 how to achieve the same effects by using CSS, which is the recom-
mended method.)

� The <h1> element marks the Hello World text as a first-level heading.

33Chapter 2: Creating and Viewing a Web Page

06_589172 ch02.qxd 4/22/05 3:25 PM Page 33

� The <p> elements identify each paragraph of the document.

� The
 element adds a manual line break after Sincerely.

Don’t worry about the ins and outs of how all these elements work. They are
covered in detail in Chapters 4 and 5.

After you create a complete HTML page (or the first chunk of it that you want
to review), you must save it before you can see your work in a browser.

Step 3: Saving your page
You use a text editor to create your HTML documents and a Web browser to
view them, but before you can let your browser loose on your HTML page,
you have to save that page. When you’re just building a page, you should
save a copy of it to your local hard drive and view it locally with your
browser.

Figure 2-2:
The letter
that is the

text for our
page in

word-
processing

form.

34 Part I: Getting to Know (X)HTML

06_589172 ch02.qxd 4/22/05 3:25 PM Page 34

Choosing a location and name for your file
When you save your file to your hard drive, keep the following in mind:

� You need to be able to find it again.

Create a folder on your hard drive especially for your Web pages. Call it
Web Pages or HTML (or any other name that makes sense to you), and
be sure you put it somewhere easy to find.

� The name should make sense to you so you can identify file contents
without actually opening the file.

� The name should work well in a Web browser.

Don’t use spaces in the name. Some operating systems — most notably
Unix and Linux (the most popular Web-hosting operating systems
around) — don’t tolerate spaces in filenames.

In our example, we saved our file in a folder called Web Pages and named it
(drum roll, please) zog_letter.html, as shown in Figure 2-3.

.htm or .html
You can actually choose from one of two suffixes for your pages: .html or
.htm. (Our example filename, zog_letter.html, uses the .html suffix.)

The shorter .htm is a relic from the 8.3 DOS days when filenames could only
have eight characters followed by a three-character suffix that described the
file’s type. Today, operating systems can support long filenames and suffixes
that are more than three letters long, so we suggest you stick with .html.

Figure 2-3:
Use a handy
location and

a logical
filename for

HTML
pages.

35Chapter 2: Creating and Viewing a Web Page

06_589172 ch02.qxd 4/22/05 3:25 PM Page 35

Web servers and Web browsers handle both .htm and .html equally well.

Stick with one filename option. .html and .htm files are treated the same by
browsers and servers, but they’re different suffixes, so they create different
filenames. (The name zog_letter.html is different from zog_letter.htm.)
This matters when you create hyperlinks (covered in Chapter 6).

Step 4: Viewing your page
After you save a copy of your page, you’re ready to view it in a Web browser.
Follow these steps to view your Web page in Internet Explorer. (Steps may be
different if you’re using a different browser.)

1. If you haven’t opened your browser, do that now.

2. Choose File➪Open and click the Browse button.

3. Navigate your file system until you find your HTML file, and then
select it so it appears in the File name area.

Figure 2-4 shows a highlighted HTML file, ready to be opened.

4. Click the Open button, and then click OK.

The page appears in your Web browser in all its glory, as shown in
Figure 2-5.

Figure 2-4:
Use Internet

Explorer to
navigate to

your Web
pages.

36 Part I: Getting to Know (X)HTML

06_589172 ch02.qxd 4/22/05 3:25 PM Page 36

You aren’t actually viewing this file on the Web yet; you’re just viewing a copy
of it saved on your local hard drive. You can’t give anyone the URL for this
file yet, but you can edit and view the changes you make.

Editing an Existing Web Page
Chances are you’ll want to change one thing (at least) about your page after
you view it in a Web browser for the first time. After all, you can’t really see
how the page is going to look when you’re creating the markup, and you
might decide that a first-level heading is too big or that you really want
purple text on a green background.

To make changes to the Web page you’ve created in a text editor and are
viewing in a browser, repeat these steps until you’re happy with the final
appearance of your page:

1. Leave the browser window with the HTML page display open and go
back to the text editor.

2. If the HTML page isn’t open in the text editor, open it.

You should have the same file open in both the browser and the text
editor, as shown in Figure 2-6.

Figure 2-5:
Viewing a

local file in
your Web
browser.

37Chapter 2: Creating and Viewing a Web Page

06_589172 ch02.qxd 4/22/05 3:25 PM Page 37

3. Make your changes to the HTML and its content in the text editor.

4. Save the changes.

This is an important step. If you don’t save your changes, you won’t see
them in the Web browser.

5. Move back to the Web browser and click the Refresh button.

If you keep the HTML file open in both the text editor and the browser while
you work, checking changes is a breeze. You can quickly save a change in the
editor, flip to the browser and refresh, flip back to the editor to make more
changes, flip back to the browser and refresh, and so on.

In our example letter, we decided after our initial draft of the HTML page that
we should add a date to the letter. Figure 2-7 shows the change we made to
the HTML to add the date and the resulting display in the Web browser.

This approach to editing an HTML page applies only to pages saved on your
local hard drive. If you want to edit a page that you have already stored on a
Web server, you have to save a copy of the page to your hard drive, edit it,
verify your changes, and then upload the file again to the server, as discussed
in the following section.

Figure 2-6:
Viewing an

HTML file in
your text

editor and
Web

browser at
the same

time.

38 Part I: Getting to Know (X)HTML

06_589172 ch02.qxd 4/22/05 3:25 PM Page 38

Posting Your Page Online
After you’re happy with your Web page, it’s time to put it online. Chapter 3
includes a detailed discussion of what you need to do to put your page
online, but to sum it up in a few quick steps:

1. Find a Web hosting provider to hold your Web pages.

Your Web host might be a company Web server or space that you pay an
Internet service provider (ISP) for. If you don’t have a host yet, double-
check with the ISP you use for Internet access — find out whether you
get some Web-server space along with your access. Regardless of where
you find space, get details from the provider on where to move your
site’s files and what your URL will be.

2. Use an FTP client or a Web browser to make a connection to your Web
server.

Use the username and password, as specified in the information from
your hosting provider, to open an FTP session on the Web server.

3. Copy the HTML file from your hard drive to the Web server.

4. Use your Web browser to view the file via the Internet.

Figure 2-7:
A change in
the HTML is
displayed in

a browser
after a quick

save and
refresh.

39Chapter 2: Creating and Viewing a Web Page

06_589172 ch02.qxd 4/22/05 3:25 PM Page 39

For example, to host our letter online at ftp.io.com/~natanya, we used
Internet Explorer to access the site and provided the appropriate name and
password, which you get from your ISP. A collection of folders and files
appeared.

We copied the file to the server with a simple drag-and-drop operation from
Windows Explorer to Internet Explorer.

The URL for this page is http://www.io.com/~natanya/zog_letter.html,
and the page is now served from the Web browser instead of from a local file
system, as shown in Figure 2-8.

Chapter 3 has details on how to serve your Web pages to the world.

Figure 2-8:
A file on a

Web server
is available

to anyone
with an
Internet

connection.

40 Part I: Getting to Know (X)HTML

06_589172 ch02.qxd 4/22/05 3:25 PM Page 40

Chapter 3

Proper Planning Prevents
Poor Page Performance

In This Chapter
� Planning your Web page

� Defining your Web site hierarchy

� Creating user-friendly navigation

� Hosting your site

� Uploading and editing your Web site

The overall design of your site is the user interface (UI). When you design a
good UI, you give users the tools to move through your site with minimum

fuss. This chapter outlines standard Web site design principles for your HTML.
These principles can ensure a usable and effective UI.

The UI is the mechanism that gives a user access to the information on your
Web site. Each UI is unique, but they’re all made from the same components
(text, graphics, and media files), and they’re all held together with HTML.

Visitors probably won’t return to your site if it

� Is hard to navigate

� Is cluttered with flashing text and rampant colors

� Doesn’t help people find what they’re looking for

You’ve created a solid UI if

� Your site’s navigation is intuitive.

� Images and media accent your design without overpowering it.

� You do all you can to help people find the information they want.

This chapter walks you through simple steps to design a Web site and your
basic Web page. (Other chapters explain every nuance of the markup.)

07_589172 ch03.qxd 4/22/05 3:26 PM Page 41

Planning Your Site
An important first step in creating an effective UI for your site doesn’t have
anything to do with markup, but has everything to do with planning. Before
your site grows too large (or before you even build your site if you haven’t
started yet), carefully identify your site’s exact purpose and goals. When you
know your site’s scope and goals, you can better create an interface that
embodies them.

Before designing your site, ask yourself these questions:

� Why are you creating this site?

� What do you want to convey to users?

� Who is your target audience? For example,

• What’s the average age of your users?

• How well does your audience work with the Internet?

� How many pages do you need in your site?

� What type of hierarchy will you use to organize your pages? For example,
you can create your site so users go through it linearly, or you can allow
them to jump around from topic to topic.

42 Part I: Getting to Know (X)HTML

Design matters
This chapter recommends good design princi-
ples, but it’s up to you to choose color schemes
and the overall look and feel. What looks great
to one person may be ugly to someone else.

If you’re building a site for your business, that
site can provide the first impression for potential
customers or clients. The site should reflect
your business style. If you run an architecture
firm, for example, strong lines and a clean look
may be the best way to present your company
image. If you run a flower shop, your site may be
a bit more organic and decorated (okay, flowery)
to remind visitors of what they can expect if they
walk into your store.

If you’re new to Web design or graphics and you
need a site that marks your business presence

on the Web, consider getting help from a Web-
design professional. Use images, layouts, and
navigational aids they create to build and
manage the site yourself. Once established, the
distinctive and consistent look and feel of your
site is easy to maintain.

Regardless of who designs your site, take the
time to get a critique of it from peers, friends,
family members, and anyone else who is willing
to be honest about how good (and even how
bad) it looks. A negative-but-constructive cri-
tique from someone who knows and respects
you beats a “Gee, that’s ugly” from someone
whose business you are trying to acquire.

07_589172 ch03.qxd 4/22/05 3:26 PM Page 42

If you can answer these questions, you can better understand your site’s
goals and needs. For example, an online store may have these goals:

� Let visitors browse an online catalog and put items in a shopping cart.

� Provide visitors a way to purchase the items in their cart online.

� Help users make smart purchasing decisions.

� Ease merchandise returns and exchanges.

� Solicit feedback from users about products they want to see in the cata-
log or ways to make the site better.

This short list of goals also indicates the areas your site may include and the
activities your site needs to support.

Instead of having just a single area (such as a product catalog), your site
might need some specialized areas, such as

� Online catalog and shopping cart

� Buying guides or other information that can help users make better pur-
chasing decisions

� A help-and-feedback section

� A set of tools to expedite returns and exchanges

When you establish the goals for your site, you can identify the elements best
suited for the site, such as

� A navigation system that identifies the major areas of the site, which
helps users

• Quickly identify what part they’re in

• Move from one part of the site to others without getting lost

� A set of standard design elements, such as buttons, page-title styles, and
color specifications, to keep the users oriented as they move from page
to page in the same site

� A standard display for items in the catalog, including product-related
information, such as product images and descriptions, prices, and avail-
ability information

� Well-designed forms that help users find products in the catalog, purchase
the items in their shopping carts, request a refund or help returning an
item, and submit comments to the site

� Long text pages that offer extensive information on purchasing options,
product returns, and other helpful information — but that are still easy
to read and to navigate

43Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 43

Your site’s goals should dictate your site’s

� UI elements

When you add to an existing site, identify UI elements that

• Meet the goals of the new section of the site

• Complement the overall site UI design

� Design

� Organization

Mapping your site
It’s easier to get where you’re going if you know how to get there. Mapping
your Web site can be a vital step in planning — and later running — the site.
This process involves two creative phases:

� Creating a visual guide on paper or electronically that you can use to
guide the development of your site

� Creating a visual guide on your Web site to help visitors find their
way around

Both have their place in good UI design, so each gets its own section.

Using a map for site development
When you use a site map during the development of a Web site — even a Web
site that includes only a few pages — you can identify

� Pages that you need to build

� How pages relate to each other

� Navigation elements that you need

As a bonus, a map provides you with a checklist of pages.

For example, Figure 3-1 shows part of the visual map of the Citrixxperience
Web site (www.citrixxperience.com/map.htm).

This map shows that the site has several main sections. Three of those
sections — home, practice exams, and study materials — are each further
divided into subsections. Each subsection page lists information and links
that are pertinent to that particular subsection.

44 Part I: Getting to Know (X)HTML

07_589172 ch03.qxd 4/22/05 3:26 PM Page 44

Building the site one piece at a time
If you plan to build your Web site a page or section at a time, you can create a
map of the final site and then decide which pages it makes the most sense to
build first. When you have a good working idea of how your site will expand,
you can plan for it during each stage. For example, suppose you create a site
map for you company’s Web site, and the site needs a Frequently Asked
Questions section. If that section isn’t quite finished when the site launches,
disaster need not ensue — provided someone planned ahead to accommodate
new sections and built that capability into the site. Just leave out links to that
section of the site when you launch it.

When the book examples section is ready, you

� Add the section to the site.

� Add a link to the main navigation elements.

If you know the resources are coming, you can create a navigation scheme
that easily accommodates the book examples section when it’s ready to add.
Without a site map and a complete plan for the site, however, integrating new
sections can suck up lots of time and effort.

Figure 3-1:
The site

map for the
Citrixxperi-
ence Web

site.

45Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 45

Don’t create under construction sections that don’t include much of anything
except the hint that something will appear someday. Users are disappointed
if your site merely hints at information it doesn’t really offer. Instead, consider
using a small section of your home page to highlight “coming soon” items so
visitors know new information will be available later on.

Using a map as a visual guide for your users
A site map can be a supplemental navigational tool that gives users a different
way to find what they’re looking for. A site map lays out all contents of your
site so visitors can see all their options at once.

People have many approaches to finding information. Give visitors as many
options as you can (realistically) for navigating your site:

� Some people like to be led.

� Some people like to rummage around.

� Some people like to see every possible option and choose one.

Site maps grow as your site grows. If your site is large and complex, your map
may take several screens to display. When you surf the Web, massive sites
such as Microsoft.com, HP.com, and Amazon.com don’t offer site maps
because maps of their sites would be huge and unwieldy. But smaller Web
sites (such as Symantec.com) use site maps effectively.

You must decide whether a site map is a good navigation tool for your site.
Here are some points to ponder as you make this decision:

� A site map may be unnecessary if you have only a few pages.

� A site map may be the best choice if

• Your site has several sections.

• You can’t think of other ways to access your content.

Building solid navigation
The navigation you use on your site can make or break it. If visitors can’t find
what they’re looking for on your site, they’ll probably leave and never come
back. The type of navigation you use on your site depends on

� How many pages are on your site

If you have only a few pages, your navigation might be a simple collec-
tion of links on the home page that helps users jump to each page.

46 Part I: Getting to Know (X)HTML

07_589172 ch03.qxd 4/22/05 3:26 PM Page 46

� How you organize your pages

If your site has many pages organized into different sections, your home
page might link only to those sections (not to each page).

For example, the Dummies.com site houses a large collection of pages orga-
nized as a variety of sections; it would be impractical to link to all the pages
in any navigation scheme. Also, the site includes articles on a wide variety of
topics, as well as book information. The site could be organized into books
and articles, but visitors are more likely to look for information on a specific
subject, so the site is organized by topic. The home page, shown in Figure 3-2,
prominently displays these different topic areas on the left.

When you click one of these topic areas, the remaining topic areas are avail-
able in a navigation bar across the top of the page (as shown in Figure 3-3).
You don’t have to return to the home page to jump from topic to topic.

Figure 3-3 shows that each topic has its own sub-navigation area (at left, echo-
ing the layout of the home page) that lists subtopics within the topic. The links
are different, but the general navigation scheme is consistent throughout the
site. That tells visitors what to expect as they move around the site.

Figure 3-2:
The

Dummies.
com site is
organized

by topic.

47Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 47

The topmost navigation area of each page includes a regular collection of links
that appears on every page of the site to help visitors quickly access important
areas from anywhere: a site search, help, account information, and a shopping
cart. Every page has the same set of links to information on the For Dummies
Web site, the form to register for eTips, how to contact the publisher, the site
copyright statement, and the site privacy policy. Like the shopping cart and
help links, these links must be on every page, but need not be displayed
prominently. Adding them to a consistent site footer keeps them accessible
to visitors without obscuring key content for any given topic or subtopic.

If you create a map to aid site development, it can also help you choose what
kind of navigational tools to create for your site. Consider each page on the
map in turn; list the links that each page must include. Normally, a pattern
emerges that can help you identify the main navigation tools your site needs
(such as links to all main topic areas and copyright information, as on the
For Dummies site), as well as sub-navigation tools (such as links to subtopics
on the topic pages).

After you know what tools you need, you can begin to design a visual scheme
for your UI. Do you want to use buttons across the top, buttons down the side,
or both? Do you need a footer that links to copyright or privacy information?

Figure 3-3:
The main

topic areas
on this site

are accessi-
ble from the
top naviga-

tion bar.

48 Part I: Getting to Know (X)HTML

07_589172 ch03.qxd 4/22/05 3:26 PM Page 48

If you have sections within sections within sections, how can you best help
people navigate through them? Answering questions like these is the route to
a solid navigation system that helps users find their way around your site —
letting them focus on what they came for, not on how to get there.

Whatever navigation scheme you devise, always give your visitors a way to
get back to your home page from wherever they are on the site. Your site’s
home page is the gateway to the rest of the site. If visitors get lost or want to
start again, make sure they can get back to Square One with no trouble.

After you design your site’s navigation scheme and put together a few pages,
ask someone who isn’t familiar with your site to try to use it. To help them
with their testing, give them a list of three or four tasks you’d like them to
complete — pages to visit or a form to fill out, for example. If your test visitor
gets lost or has lots of questions about how to navigate the site, you should
rework your scheme. Your reviewer might also have suggestions on ways to
make navigation features clearer and easier to use. You might know your site
and its content too well to spot gaps in navigation that a first-time user will
probably discover immediately.

Planning outside links
The Web wouldn’t be the Web without hyperlinks — after all, hyperlinks
connect your site to the rest of the Web and turn a collection of pages into
a cohesive site. But overusing or misusing links can detract from your site
and even lose you some business.

Choose your off-site links wisely
Internal linking is almost a walk in the park compared to external linking —
after all, when you link to pages on your own site, the pages those links point
to are under your control. You know what’s on them today and what will be on
them tomorrow, and even whether they will exist tomorrow. When you link to
resources on someone else’s site, however, all bets are off:

� You don’t maintain those pages.

� You can’t modify their content.

� You certainly won’t know when they will disappear.

Neither will your visitors — until they slam into a 404 File or
directory not found message (the usual sign of a broken link that
now goes nowhere). The text in 404 messages varies depending on the
server hosting the Web site.

49Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 49

Links to other sites are more useful when they’re stable and have less chance
of breaking. We recommend these guidelines:

� Link to a section of a site, not to a specific page on the site.

Pages come and go, but the general organization usually stays the same.

� Link to corporate Web sites.

Corporate sites have more staying power than sites maintained by an
individual.

� Don’t link directly to media files such as PDFs and images.

If you want to link to resources on another Web site, link to the Web
page that links to the resources instead of the actual media files. Sites
often update the resources and give them new names. The page that
links to the resource, however, is almost always certain to be updated
to reflect new names. Therefore, the page is a safer linking bet.

Linking to other sites implies your support or endorsement of those sites. When
visitors follow links from your site to other sites, they assume you approve of
that new site. That makes a couple of guidelines necessary:

� If you don’t want to be associated with content on another site, don’t
link to the site.

The only way to find out whether you approve of a seemingly relevant
site is to visit it and check it out before you link.

� Periodically review your links. Be sure that

• The sites’ owners are the same.

• The content is appropriate.

When domain names expire, new owners may take them over and post
new content that’s either

• Completely irrelevant

• Damaging to your image, such as with pornography

Craft useful link text
The text you associate with links is as important as the links you use on your
site. That text gives users a hint about where the link takes them so they can
decide whether to go along for the ride. For example, Visit Dummies.com
to read more about this book is more helpful than Read more about
this book.

50 Part I: Getting to Know (X)HTML

07_589172 ch03.qxd 4/22/05 3:26 PM Page 50

The first example tells visitors that they’re going to leave the current site to
visit Dummies.com and read more about a book there. The second just tells
them they’re going to read more about the book — and they may be surprised
to find themselves flung off one site and onto another.

Generally, when you create link text, let users know the following:

� Whether they’re leaving your site

� What kind of information the page they’re linking to contains

� How the linked site relates to the current content or page

The goal of your link text should be to inform users and build their trust. If
your link text doesn’t give them solid clues about what to expect from your
links, they just won’t trust your links — and won’t follow them.

Avoid the use of click here in any link you create. If your link text is well-
crafted, you don’t need the extra words to prompt the user to click a link.
The link text should speak for itself.

Hosting Your Web Site
The first (and most important) step in putting your pages online is finding
someplace on the Web to put them on display — a host. In general, you have
two choices for hosting your pages:

� Host them yourself.

� Pay someone else to host them.

The word host is used in the Web industry to mean a Web server set up to
hold Web pages (and related files) so they can be accessed by the rest of the
world. This chapter uses host as both

� Noun: The physical machine that holds the Web pages

� Verb: The act of serving up the Web pages

You need to decide whether to host your own pages or to pay someone else a
fee to host them for you. This chapter shows both approaches to hosting —
and gives you the skinny on each. You can decide which option is best for you.

51Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 51

You aren’t stuck with your hosting decision for life. If you find hosting your
own pages overwhelming, you can move your files to a service provider
(or vice versa). To decide which hosting option is best for you, consider
your needs for the next year, but plan to review your needs in a few months.

Hosting your own Web site
This section illustrates an average-sized site (up to about 100 pages) that
doesn’t include more than a couple of multimedia files and doesn’t have any
special security or electronic commerce (e-commerce) applications.

If you need to run a complex site, such as a large corporate site or an online
store, you need more expertise, equipment, and software than this section
outlines. The following resources can help:

� Books such as E-Commerce For Dummies and Webmastering For Dummies,
2nd Edition (both from Wiley Publishing) can get you started setting up
e-commerce and other complex sites.

� Consult a Web professional who has practical experience building and
maintaining complex Web sites.

You can set up your own Web server and host your Web pages yourself. To
do this, you need:

� A computer designated as your Web server: Web servers are often
dedicated to this task, leaving word-processing and other activities to
a different computer.

� Web-server software: Common Web-server software packages include
Apache and Microsoft’s Internet Information Server (IIS), called Internet
Information Services in Windows 2000 and later.

In the Web world, the term Web server refers to both

• A dedicated computer (the actual hardware)

• Web-server software

You can’t use one without the other.

� A dedicated Internet connection: Your Web server isn’t useful or reliable
if it’s connected to the Internet only when you fire up a dialup connection.

If hosting a Web site yourself sounds a little complicated and expensive,
you’re right. Not only do you have to pay for the equipment and dedicated
Internet connection, but you also must know how to set up and administer a
Web server and keep all the pieces working 24/7. Consider using a hosting
provider.

52 Part I: Getting to Know (X)HTML

07_589172 ch03.qxd 4/22/05 3:26 PM Page 52

Using a hosting provider
A hosting provider manages all the technical aspects of Web hosting, from
hardware to software to Internet connections. You just manage your HTML
pages. Back when the Web was young, hosting provider options were scarce,
and what was available was expensive. The times have changed, and needs
have grown, so reasonably priced hosting providers are abundant these days.

If you decide to let someone else host your pages, you have two choices for
how much you pay:

� Nothing: Some services actually host your pages for free. That’s it; you
pay zip, zero, nada to get your pages on the Web. What’s the catch? You
must pay in other ways, usually with advertising attached to your page.

� Something: Most Web-hosting services, however, charge you a fee, from
a few dollars a month to triple digits a month. The trick to making the
most of your hosting funds is to find just the right hosting service to
meet your Web site needs.

Read more about inexpensive Web hosting options in the Webmonkey article
“Web Hosting for Under Ten Bucks.”

http://webmonkey.wired.com/webmonkey/02/01/index4a.html?tw=design

Getting your own domain
A domain name is the high-level address for any given Web site. Examples of
domain names are microsoft.com, apple.com, w3c.org, and dummies.com.

You might want your own domain name (hence your own domain) that reflects
your business name (or even your personality). If you don’t get a domain name
of your own, your pages will be part of someone else’s domain name — usually
your hosting provider’s domain name. For example, a personal Web site hosted
without a domain name at io.com has a top-level URL of

http://www.io.com/~lanw

With a domain name of lanw.com, the same Web site would be hosted at

http://www.lanw.com

One’s easier to remember than the other. Is that a good enough reason to have
your own domain? Maybe . . . maybe not. The bottom line is that businesses
or other entities that want to maintain a constant Web presence should prob-
ably invest in a domain name; hobbyists or enthusiasts don’t need one.

53Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 53

Any good hosting provider can give you detailed instructions on how to regis-
ter a domain name in the provider’s system or attach your domain name to
your Web site on its computers. If you’re changing from one hosting provider
to another, your new provider should help you transfer your domain. Most
providers either give you this information up front or have online help that
will walk you through it. If it isn’t immediately clear how to set up your domain,
ask for help. If you don’t get it, change providers.

Moving files to your Web server
After you secure a Web site host or decide to put up your own Web server,
you need a way to move the HTML pages you create on your local computer
to the Web server. This isn’t a one-time activity either. As you maintain your
Web site, you need to move files you’ve built on your local computer to the
Web server to refresh your site.

How you move files to your Web server depends entirely on how your Web
server is set up. Normally, you have a couple of transfer options:

� The File Transfer Protocol (FTP)

� A Web interface, provided by your hosting provider, for moving and
managing files

54 Part I: Getting to Know (X)HTML

UI design resources
We recommend these Web sites and books on
site and interface design if you want to create
great UIs:

� For a crash course on Web design basics,
read “Design Basics” from Webmonkey at

http://hotwired.lycos.com/webmonkey/
html/97/05/index2a.html

Webmonkey’s “Site Redesign Tutorial” offers
an interesting perspective on what it takes
to rework a site’s design. Read it at

http://hotwired.lycos.com/webmonkey/
design/site_building/
tutorials/tutorial4.html

� Jakob Nielsen is committed to creating
accessible Web content. His Web site,
http://useit.com, is chock-full of

resources and articles on creating acces-
sible sites.

� Hey, negative examples are useful too. Web
Pages That Suck guides you to good design
by evaluating bad design. Be sure your site
doesn’t look like any of those featured at
www.webpagesthatsuck.com.

� Web Design For Dummies, by Lisa Lopuck
(Wiley), is another step in the direction of a
sophisticated Web site with a knockout look.

� Web Usability For Dummies, by Richard
Mander and Bud Smith (Wiley), can help you
fine-tune your site to make it amazingly easy
to use, which is a great help in keeping your
visitors coming back for more.

07_589172 ch03.qxd 4/22/05 3:26 PM Page 54

Via FTP
Of these two options, FTP is almost always a possibility. FTP is the standard
for transferring files on the Internet, and any hosting provider should give
you FTP access to your Web server. When you set up your Web site with
your hosting provider, the provider usually gives you written documentation
(either on paper or on the Web) that tells you exactly how to transfer files
to your Web server. Included in that information is an FTP URL that usually
takes the form ftp://ftp.domain.com.

You can use an FTP client such as WS_FTP (www.ipswitch.com/Products/
WS_FTP/) or CuteFTP (www.globalscape.com/products/cuteftp/index.
asp) to open a connection to this URL. Your provider will give you a user-
name and password to use to access your Web-server directory on the FTP
site. Then you can move files to your Web site using the client’s interface. It’s
really that easy. If you want to grab a copy of a file from your Web site and
modify it, you just

1. Use the FTP client’s interface to download a copy.

2. Make your modification.

3. Use the FTP client’s interface to upload the file.

Each FTP client’s interface is different, but they’re all pretty straightforward.
Chapter 20 includes more information on finding a good FTP client; so when
you find one, spend a few minutes reading its documentation.

You might not need a separate FTP client to move your files to your Web
server:

� Most newer Web browsers, such as current versions of Internet Explorer
and Netscape 6, have some FTP capabilities built in. You can easily upload
and download files. (You might not be able to make or delete directories.)

� Many Web utilities, such as Dreamweaver, have file-management
capabilities.

Via your hosting provider’s Web site
In the interest of usability and reducing technical support calls, many Web
hosting providers have built Web pages that help you upload and manage
your Web site files without using a separate FTP utility or even the FTP tools
inside HTML editors. Most of these tools let you manage your site in various
ways, such as

� Uploading and downloading files

� Creating and deleting directories

� Moving files around

� Deleting files

55Chapter 3: Proper Planning Prevents Poor Page Performance

07_589172 ch03.qxd 4/22/05 3:26 PM Page 55

If you already have a hosting provider, find out whether it has a set of Web-
based tools for managing your site.

Keep the following in mind while you decide on a provider:

� Read the provider’s documentation before you start to transfer your
files. Every provider’s interface is different.

� Most providers who have Web interfaces won’t stop you from managing
your site with FTP.

Use FTP if the provider’s interface is cumbersome or if you prefer FTP.

56 Part I: Getting to Know (X)HTML

07_589172 ch03.qxd 4/22/05 3:26 PM Page 56

Part II
Formatting Web

Pages with
(X)HTML

08_589172 pt02.qxd 4/22/05 3:27 PM Page 57

In this part . . .

In this part of the book, we describe the markup and
document structures that make Web pages workable

and attractive. To begin with, we examine gross HTML
document structure, including document headers and
bodies, and how to put the right pieces together. After
that, we talk about organizing text in blocks and lists.
Next, we explain how linking works in HTML and how it
provides the glue that ties the entire World Wide Web
together. To wrap things up here, we also explain how to
add graphics to your pages. Thus, we cover the basic
building blocks for well-constructed, properly propor-
tioned Web pages — and not by coincidence, either.

08_589172 pt02.qxd 4/22/05 3:27 PM Page 58

Chapter 4

Creating (X)HTML Document
Structure

In This Chapter
� Creating a basic (X)HTML document structure

� Defining the (X)HTML document header

� Creating a full-bodied (X)HTML document

The framework of a simple (X)HTML document consists of a head and
body. The head provides information to the browser about the document,

and the body contains the information that appears in the browser window.
The first step to creating an (X)HTML document is defining the framework for
that document.

This chapter covers the major elements that you use to set up a basic
(X)HTML document structure — including the head and body of the docu-
ment. We also show you how to tell the browser which version of HTML or
XHTML you’re using. Although the version information isn’t necessary for
users, browsers use it to make sure that they correctly display document
content for your users.

Establishing a Document Structure
Although no two (X)HTML pages are alike — each employs a unique combina-
tion of content and elements to define the page — every properly constructed
(X)HTML page needs the same basic document structure that includes

� A statement that identifies the document as an (X)HTML document

� A document header

� A document body

09_589172 ch04.qxd 4/22/05 3:28 PM Page 59

Every time you create an (X)HTML document, start with these three ele-
ments; you can then fill in the rest of your content and markup to create an
individual page.

Although a basic document structure is a requirement for every (X)HTML
document, creating it over and over again can be a little monotonous. Most
(X)HTML-editing tools automatically set up the basic document structure for
you when you open a new document.

Labeling Your (X)HTML Document
At the top of your (X)HTML document should be the Document Type
Declaration, or DOCTYPE declaration. This line of code specifies which version
of HTML or XHTML you’re using, which in turn lets the browsers know how
to interpret the document. We use the XHTML 1.0 specification in this chap-
ter because it’s the latest specification and what most browsers and editing
tools use.

Adding an HTML DOCTYPE declaration
If you choose to create an HTML 4.01 document instead of an XHTML docu-
ment, you can pick from three possible DOCTYPE declarations:

� HTML 4.01 Transitional: This is the most inclusive version of HTML
4.01, and it incorporates all HTML structural elements as well as all pre-
sentation elements.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

� HTML 4.01 Strict: This streamlined version of HTML excludes all
presentation-related elements in favor of style sheets as a mechanism
for driving display.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

� HTML 4.01 Frameset: This version begins with HTML 4.01 Transitional
and includes all the elements that make frames possible.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd”>

60 Part II: Formatting Web Pages with (X)HTML

09_589172 ch04.qxd 4/22/05 3:28 PM Page 60

Adding an XHTML DOCTYPE declaration
To create an XHTML document, use one of the following DOCTYPE declarations:

� XHTML 1.0 Transitional:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

� XHTML 1.0 Strict:

<!DOCTYPE html “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

� XHTML 1.0 Frameset:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

The XHTML DTD descriptions are similar to the HTML DTD descriptions and
are defined in Chapter 1.

The <html> element
After you specify which version of (X)HTML the document follows, add an
<html> element to hold all the other (X)HTML elements in your page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>

</html>

Adding the XHTML namespace
A namespace is a collection of names used by the elements and attributes of
an XML document. XHTML uses the XHTML collection of names and there-
fore needs a namespace, which looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

</html>

61Chapter 4: Creating (X)HTML Document Structure

09_589172 ch04.qxd 4/22/05 3:28 PM Page 61

Don’t get bogged down by the meaning of namespaces. If you work with other
XML vocabularies, you need to know about namespaces. For simple XHTML
documents, you just need to know to include the XHTML namespace. So, of
course, that’s exactly what the preceding code snippet shows you how to do!

Adding a Document Header
The head of an (X)HTML document is one of the two main components of a
document. (The body of the document is the other main component.) The
head, or header, provides basic information about the document, including its
title and metadata (which is information about information), such as keywords,
author information, and a description. If you’re going to use a style sheet with
your page, you include information about that style sheet in the header.

Chapter 8 includes a complete overview of creating Cascading Style Sheets
(CSS) and shows you how to include them in your (X)HTML documents.

The <head> element, which defines the page header, immediately follows the
<html> opening tag:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

</head>
</html>

Giving your page a title
Every (X)HTML page needs a descriptive title that tells the visitor what the
page is all about. This title appears in the title bar at the very top of the
browser window, as shown in Figure 4-1. The page title should be concise yet
informative. (For example, My home page isn’t nearly as informative as Ed’s IT
Consulting Service.)

You define the title for your page by using the <title> element inside the
<head> element:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

62 Part II: Formatting Web Pages with (X)HTML

09_589172 ch04.qxd 4/22/05 3:28 PM Page 62

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Ed’s IT Consulting Service</title>

</head>

</html>

Search engines use the contents of the <title> bar when they list Web pages
in response to a query. Your page title may be the first thing that a Web surfer
reads about your Web page, especially if she finds it through a search engine.
A search engine will most likely list your page title with many others on a
search results page, which means that you have one chance to grab the Web
surfer’s attention and convince her to choose your page. A well-crafted title
can accomplish that.

The title is also used for Bookmarks and in a browser’s History; therefore,
keep your titles short and sweet.

Defining metadata
The term metadata refers to data about data; in the context of the Web, it
means data that describes the data on your Web page. Metadata for your
page may include

� Keywords

� A description of your page

� Information about the page author

� The software application you used to create the page

Figure 4-1:
(X)HTML

page titles
appear

in a Web
browser’s

window
title bar.

63Chapter 4: Creating (X)HTML Document Structure

09_589172 ch04.qxd 4/22/05 3:28 PM Page 63

Elements and attributes
You define each piece of metadata for your (X)HTML page with

� The <meta /> element

� The name and content attributes

For example, the following elements create a list of keywords and a descrip-
tion for a consulting-service page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Ed’s IT Consulting Service</title>
<meta name=”keywords” content=”IT consulting, MCSE, networking guru” />
<meta name=”description” content=”An overview of Ed’s skills and services” />
</head>

</html>

Custom names
The (X)HTML specification doesn’t

� Predefine the kinds of metadata you can include in your page

� Specify how to name different pieces of metadata, such as keywords and
descriptions

So, for example, instead of using keywords and description as names for
keyword and description metadata, you can just as easily use kwrd and desc,
like the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Ed’s IT Consulting Service</title>
<meta name=”kwrd” content=”IT consulting, MCSE, networking guru” />
<meta name=”desc” content=”An overview of Ed’s skills and services” />

</head>
</html>

If you can use just any old values for the <meta> element’s name and content
attributes, how do systems know what to do with your metadata? The answer
is — they don’t. Each search engine works differently. Although keywords and
description are commonly used metadata names, many search engines may
not recognize or use other metadata elements that you include.

64 Part II: Formatting Web Pages with (X)HTML

09_589172 ch04.qxd 4/22/05 3:28 PM Page 64

Many developers use metadata to either

� Leave messages for others who may look at the source code of the
page

� Prepare for future browsers and search engines that use the metadata

Although keywords and page descriptions are optional, search engines com-
monly use them to collect information about your Web site. Be sure to
include detailed and concise information in your <meta /> tag if you want
your Web site discovered by search engine robots.

Automatically redirecting
users to another page
You can use metadata in your header to send messages to Web browsers about
how they should display or otherwise handle your Web page. Web builders
commonly use the <meta /> element this way to automatically redirect page
visitors from one page to another. For example, if you’ve ever come across a
page that says This page has moved. Please wait 10 seconds to be
automatically sent to the new location. (or something similar),
you’ve seen this trick at work.

To use the <meta /> element to send messages to the browser, here are the
general steps you need to follow:

1. Use the http-equiv attribute in place of the name attribute.

2. Choose from a predefined list of values that represents instructions
for the browser.

These values are based on instructions that you can also send to a
browser in the HTTP header, but changing an HTTP header for a docu-
ment is harder than embedding the instructions into the Web page
itself.

To instruct a browser to redirect users from one page to another, here’s what
you need to do in particular:

1. Use the <meta /> element with http-equiv=”refresh”.

2. Adjust the value of content to specify how many seconds before the
refresh happens and what URL you want to jump to.

For example, the line shown in bold in the following markup creates a refresh
that jumps to www.w3.org after 15 seconds:

65Chapter 4: Creating (X)HTML Document Structure

09_589172 ch04.qxd 4/22/05 3:28 PM Page 65

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>All About Markup</title>
<meta http-equiv=”refresh” content=”15; url= http://www.w3.org/” />

</head>

<body>
<p>This page is still in development. Until we are done, please visit

the W3C Website for the definitive
collection of markup-related resources.

</p>

<p>Please wait 10 seconds to be automatically redirected to the W3C.</p>
</body>

</html>

Older Web browsers may not know what to do with <meta /> elements that
use the http-equiv element to create a redirector page. Be sure to include
some text and a link on your page to enable a visitor to link manually to your
redirector page if your <meta /> element fails to do the job.

If a user’s browser doesn’t know what to do with your redirector information,
the user simply clicks the link in the page body to go to the new page, as
shown in Figure 4-2.

You can use the http-equiv attribute with the <meta /> element for a vari-
ety of other purposes, such as setting an expiration date for a page and speci-
fying the character set (the language) the page uses. To find out what your
http-equiv options are (and how to use them), check out the Dictionary of
HTML META tags at the following URL:

http://vancouver-webpages.com/META/metatags.detail.html

Figure 4-2:
When you

use a
<meta />
element

to create
a page

redirector,
include a link

in case the
redirector

fails.

66 Part II: Formatting Web Pages with (X)HTML

09_589172 ch04.qxd 4/22/05 3:28 PM Page 66

Creating the (X)HTML Document Body
After you set up your page header, create a title, and define some metadata,
you’re ready to create the (X)HTML markup and content that will show up in
a browser window. The <body> element holds the content of your document.

If you want to see something in your browser window, put it in the <body>
element, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Ed’s IT Consulting Service</title>
<meta name=”kwrd” content=”IT consulting, MCSE, networking guru” />
<meta name=”desc” content=”An overview of Ed’s skills and services” />

</head>

<body>
<p>Ed’s IT Consulting Service Homepage</p>
<p>Ed has over 20 years of IT consulting experience and is available

to help you with any IT need you might have. From network design
and configuration to technical documentation and training, you can
count on Ed to help you create and manage your IT infrastructure.</p>

<p>For more information please contact Ed by e-mail at ed@itguru.com or
by phone at 555.555.5555.</p>

</body>
</html>

Figure 4-3 shows how a browser displays this complete (X)HTML page:

� The content of the <title> element is in the window’s title bar.

� The <meta /> elements don’t affect the page appearance at all.

� Only the paragraph text contained in the <p> elements (in the <body>
element) actually appears in the browser window.

Figure 4-3:
Only content

in the
<body>

element
appears in

the browser
window.

67Chapter 4: Creating (X)HTML Document Structure

09_589172 ch04.qxd 4/22/05 3:28 PM Page 67

Marvelous Miscellany
Table 4-1 lists other (X)HTML attributes for document structure markup that
you might find in HTML files.

Table 4-1 Additional (X)HTML Document Structure Attributes
Name Function/Value Value Type(s) Related Element(s)

Equals

profile Links to property URI <head>
definitions

scheme Describes how to CDATA <meta />
decode data

68 Part II: Formatting Web Pages with (X)HTML

09_589172 ch04.qxd 4/22/05 3:28 PM Page 68

Chapter 5

Text and Lists
In This Chapter
� Working with basic blocks of text

� Manipulating text blocks

� Creating bulleted, numbered, and definition lists

HTML documents consist of text, images, multimedia files, links, and
other pieces of content that you bring together into one page by using

markup elements and attributes. You use blocks of text to create such docu-
ment elements as headings, paragraphs, and lists. The first step in creating a
solid HTML document is laying a firm foundation that establishes the docu-
ment’s structure.

Formatting Text
Here’s a super-ultra-technical definition of a block of text: some chunk of con-
tent that wraps from one line to another inside an HTML element.

Your HTML page is a giant collection of blocks of text:

� Every bit of content on your Web page must be part of some block
element.

� Every block element sits within the <body> element on your page.

HTML recognizes several kinds of text blocks that you can use in your docu-
ment, including (but not limited to)

� Paragraphs

� Headings

� Block quotes

� Lists

� Tables

� Forms

10_589172 ch05.qxd 4/22/05 3:29 PM Page 69

Paragraphs
Paragraphs are used more often in Web pages than any other kind of text block.

HTML browsers don’t recognize the hard returns that you enter when you
create your page inside an editor. You must use a <p> element to tell the
browser to separate the contained block of text as a paragraph.

Formatting
To create a paragraph, follow these steps:

1. Add <p> in the body of the document.

2. Type the content of the paragraph.

3. Add </p> to close that paragraph.

Here’s what it looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>All About Blocks</title>

</head>

<body>
<p>This is a paragraph. It’s a very simple structure that you will use

time and again in your Web pages.</p>
<p>This is another paragraph. What could be simpler to create?</p>

</body>
</html>

This HTML page includes two paragraphs, each marked with a separate <p>
element. Most Web browsers add a line break and full line of white space
after every paragraph on your page, as shown in Figure 5-1.

70 Part II: Formatting Web Pages with (X)HTML

Inline elements versus text blocks
The difference between inline elements and a
block of text is important. HTML elements in this
chapter describe blocks of text. An inline element
is a word or string of words inside a block ele-
ment (for example, text emphasis elements such
as or). Inline elements must be

nested within a block element; otherwise, your
HTML document isn’t syntactically correct.

Inline elements, such as linking and formatting
elements, are designed to link from or change the
appearance of a few words or lines of content
found inside those blocks.

10_589172 ch05.qxd 4/22/05 3:29 PM Page 70

Some people don’t use the closing </p> tag when they create paragraphs.
Although some browsers let you get away with this, leaving out the closing tag

� Doesn’t follow correct syntax

� Causes problems with style sheets

� Can cause a page to appear inconsistently from browser to browser

You can control the formatting (color, style, size, and alignment) of your
paragraph by using Cascading Style Sheets (CSS), which we cover in
Chapters 8 and 9.

Alignment
By default, the paragraph aligns to the left. You can use the align attribute
with a value of center, right, or justify to override that default and con-
trol the alignment for any paragraph.

<p align=”center”>This paragraph is centered.</p>
<p align=”right”>This paragraph is right-justified.</p>
<p align=”justify”>This paragraph is double-justified.</p>

Figure 5-2 shows how a Web browser aligns each paragraph according to the
value of the align attribute.

Figure 5-1:
Web

browsers
delineate

paragraphs
with line
breaks.

71Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 71

The align attribute has been deprecated (rendered obsolete) in favor of using
CSS (see Chapter 8).

Headings
Headings break a document into sections. This book uses headings and sub-
headings to divide every chapter into sections, and you can do the same with
your Web page. Headings can

� Create an organizational structure

� Break up the visual appearance of the page

� Give visual clues about how the pieces of content are grouped

HTML includes six elements to help you define six different heading levels in
your documents:

� <h1> is the most prominent heading (Heading 1)

� <h6> is the least prominent heading (Heading 6)

Follow heading order from highest to lowest as you use HTML heading levels.
That is, don’t use a second-level heading until you’ve used a first-level head-
ing, don’t use a third-level heading until you’ve used a second, and so on. If
you want to change how headings appear in a browser, Chapter 8 and
Chapter 9 show you how to use style sheets.

Figure 5-2:
Use the

align
attribute

with a
paragraph
to specify

the
horizontal
alignment.

72 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 72

Formatting
To create a heading, follow these steps:

1. Add <hn> in the body of your document.

2. Type the content for the heading.

3. Add </hn>.

Browser displays
Every browser has a different way of displaying heading levels, and we cover
that in the following two sections.

Graphical browsers
Most graphical browsers use a distinctive size and typeface for headings:

� First-level headings (<h1>) are the largest (usually two or three font
sizes larger than the default text size for paragraphs).

� Sixth-level headings (<h6>) are the smallest and may be two or three
font sizes smaller than the default paragraph text.

The following excerpt of HTML markup shows all six headings at work:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>All About Blocks</title>

</head>

<body>
<h1>First-level heading</h1>
<h2>Second-level heading</h2>
<h3>Third-level heading</h3>
<h4>Fourth-level heading</h4>
<h5>Fifth-level heading</h5>
<h6>Sixth-level heading</h6>

</body>
</html>

Figure 5-3 shows this HTML page as rendered in a browser.

You can use CSS to format such heading aspects as color, size, line height,
and alignment.

By default, most browsers use Times New Roman fonts for all headings. The
font size decreases as heading level increases. (Default sizes for first- through
sixth-level headings are, respectively, 24, 18, 14, 12, 10, and 8.) You can over-
ride any of this formatting by using CSS.

73Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 73

Text browsers
Text-only browsers use different heading conventions than graphical browsers
because text-only browsers display all content using a single size and font.

Controlling Text Blocks
Blocks of text are the foundation for your page. You can break those blocks to
better guide readers through your content.

Block quotes
A block quote is a long quotation or excerpt from a printed source that you
set apart on your page. You use the <blockquote> element to identify block
quotes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>Famous Quotations</title>

</head>

Figure 5-3:
Web

browsers
display

headings in
decreasing

size from
level one to

level six.

74 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 74

<body>
<h1>An Inspiring Quote</h1>
<p>When I need a little inspiration to remind me of why I spend my days

in the classroom, I just remember what Lee Iococca said:</p>
<blockquote>
In a completely rational society, the best of us would be teachers
and the rest of us would have to settle for something else.

</blockquote>
</body>

</html>

Most Web browsers display block-quote content with a slight left indent, as
shown in Figure 5-4.

Preformatted text
Ordinarily, HTML ignores white space inside documents. A browser won’t dis-
play a block element’s

� Hard returns

� Line breaks

� Large white spaces

The following markup includes several hard returns, line breaks, and a lot of
space characters. Figure 5-5 shows that the Web browser ignores all of this.

<p>This is a paragraph

with a lot of white space

thrown in for fun (and as a test of course).</p>

The preformatted text element (<pre>) instructs browsers to keep all white
space intact as it displays your content (like the following sample). Use the
<pre> element in place of the <p> element to make the browser apply all
your white space, as shown in Figure 5-6.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>White space</title>

</head>

<body>
<pre>This is a paragraph

75Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 75

with a lot of white space

thrown in for fun (and as a test of course).
</pre>

</body>
</html>

You may want the browser to display white spaces in an HTML page where
proper spacing is important, such as

� Code samples

� Text tables

You can nest <pre> elements inside <blockquote> elements to carefully con-
trol how the lines of quoted text appear on the page.

Line breaks
By default, browsers usually wrap text that appears in block elements, such
as paragraphs, headings, and block quotes. If a text line reaches the end of a
browser window, the next word automatically starts a new line. You can man-
ually control the end of a text line with a line break (denoted by the

element).

Figure 5-4:
Web

browsers
typically
indent a

block quote
to separate

it from
paragraphs.

76 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 76

Figure 5-6:
Use

preformatted
text to force
browsers to

recognize
white space.

Figure 5-5:
Web

browsers
routinely

ignore white
space.

77Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 77

Function
The
 element is the HTML equivalent of the manual line break that
you use in paragraphs and other blocks of text when you’re working in a
word-processing program. When a browser sees a
, it ends the line
there and starts the next line.

The difference between a line break and a paragraph is that a line break doesn’t
use any special formatting that you can apply at the end or beginning of a para-
graph, such as

� Extra vertical space

� First-line indenting

Formatting
The following markup formats the lines of text in a poem with line breaks.
The entire poem is described as a single paragraph, and the
 element
marks the end of each line:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title> Shakespeare in HTML</title>

</head>

<body>
<h1>Shakespeare’s Sonnets XVIII: Shall I compare thee to a summer’s day? </h1>
<p>
Shall I compare thee to a summer’s day?

Thou art more lovely and more temperate.

Rough winds do shake the darling buds of May,

And summer’s lease hath all too short a date.

Sometime too hot the eye of heaven shines,

And often is his gold complexion dimm’d;

And every fair from fair sometime declines,

By chance or nature’s changing course untrimm’d;

But thy eternal summer shall not fade

Nor lose possession of that fair thou ow’st;

Nor shall Death brag thou wander’st in his shade,

When in eternal lines to time thou grow’st:

So long as men can breathe or eyes can see,

So long lives this, and this gives life to thee.

</p>
</body>

</html>

Figure 5-7 shows how a browser handles each line break. In this example, the
poem isn’t left-indented because the <p> element replaces the <blockquote>
element.

78 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 78

Horizontal rules
The horizontal rule element (<hr />) helps you include solid straight lines
(rules) on your page.

The browser creates the rule based on the <hr /> element, so users don’t
wait for a graphic to download. A horizontal rule is a good option to

� Break your page into logical sections.

� Separate your headers and footers from the rest of the page.

Formatting
When you include an <hr /> element on your page, like the following HTML,
the browser replaces it with a line, as shown in Figure 5-8.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>Horizontal Rules</title>

</head>

Figure 5-7:
Using the

element to

specify
where lines

in block
elements

should
break.

79Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 79

<body>
<p>This is a paragraph followed by a horizontal rule.</p>

<hr />

</p>This is a paragraph preceded by a horizontal rule.</p>
</body>

</html>

A horizontal rule must always sit on a line by itself; you can’t add the <hr />
element in the middle of a paragraph (or other block element) and expect the
rule to just appear in the middle of the block.

Attributes
Four different attributes control the appearance of each horizontal rule:

� width: Specifies line width either in pixels or by percentage of display
area width (which we call “the page” in discussion that follows).

For example, a rule can be 50 pixels wide or take 75 percent of the page.

� size: Specifies the height of the line in pixels. The default is 1 pixel.

� align: Specifies the horizontal alignment of the rule as either left (the
default), center, or right.

If you don’t define a width for your rule, it takes the entire width of the
page. The alignment won’t make any difference.

� noshade: Specifies a solid line with no shading.

By default, most browsers display hard rules with a shade.

These formatting attributes are deprecated in favor of using CSS.

This bit of HTML creates a horizontal rule that takes up 45 percent of the
page, is 4 pixels high, aligned to the center, and has shading turned off:

<p>This is a paragraph followed by a horizontal rule.</p>

<hr width=”45%” size=”4” align=”center” noshade=”noshade” />

<p>This is a paragraph preceded by a horizontal rule.</p>

Figure 5-9 shows how the addition of these attributes can alter how a
browser displays the rule.

Figure 5-10 shows how you can use horizontal rules in the real world to high-
light important content. The LANWrights, Inc., Web site uses colored hard
rules to frame a key statement on the site’s home page. The rules make the
statement stand out from the rest of the page.

80 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 80

Figure 5-9:
Use the

<hr />
attributes to

better
control how

a browser
displays the

rule.

Figure 5-8:
Use the

<hr />
element

to add
horizontal

lines to your
page.

81Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 81

CSS gives you much more control over the placement of horizontal rules; you
can even fancy them up with color and shading options.

Organizing Information
Lists are powerful tools for arranging similar elements together, and they give
visitors to your site an easy way to hone in on groups of information. You can
put just about anything in a list, from a set of instructions to a collection of
navigational hyperlinks.

Lists use a combination of elements — at least two components:

� A markup element that says “Hey browser! The following items are a list.”

� Markup elements that say “Hey browser! This is an item in the list.”

HTML provides for three different kinds of lists:

� Numbered lists

� Bulleted lists

� Definition lists

Figure 5-10:
The

LANWrights,
Inc., Web
site uses

hard rules to
draw your

attention to
important

information
on the page.

82 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 82

Numbered lists
A numbered list consists of at least two items, each prefaced by a number.
Usually, a person numbers a list when the order of the items is important.

You use two kinds of elements for a numbered list:

� The ordered list element () specifies that this is a numbered list.

� List item elements () mark each item in the list.

Formatting
A numbered list with three items requires elements and content in the follow-
ing order:

1.

2.

3. Content for the first list item

4.

5.

6. Content for the second list item

7.

8.

9. Content for the third list item

10.

11.

The following markup defines a three-item numbered list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>Numbered Lists</title>

</head>

<body>
<h1>Things to do today</h1>

Feed cat

83Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 83

Wash car
Grocery shopping

</body>

</html>

Figure 5-11 shows how a browser renders this markup. You don’t actually
have to specify a number for each item in the list; the browser identifies the
list items from the markup and adds the numbers.

If you swap the first two items in the list, they’re still numbered in order
when the page appears, as shown in Figure 5-12.

Wash car
Feed cat
Grocery shopping

Numbering
Two different element attributes control the appearance of a numbered
list:

� start: Specifies the first number in the list.

• The default starting number is 1.

Figure 5-11:
Use the

and
tags to

create a
numbered

list.

84 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 84

• You can specify any number as the start number for the new list.

Specify a start number when you resume a list after an unnum-
bered paragraph or other block element.

� type: Specifies the numbering style from the list. You can choose from
five predefined numbering styles:

• 1: Decimal numbers.

• a: Lowercase letters.

• A: Uppercase letters.

• i: Lowercase Roman numerals.

• I: Uppercase Roman numerals.

The following markup uses ordered list elements and attributes to create a
list that uses uppercase Roman numerals and begins numbering at 5 (V in
Roman numerals):

<ol start=”5” type=”I”>
Wash car
Feed cat
Grocery shopping

Figure 5-13 shows how the attributes affect the list’s appearance in a browser.

Figure 5-12:
Web

browsers
set the

numbers for
your list

according to
the order

items
appear in

the list.

85Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 85

You have more control over your lists if you use CSS to define formatting.
That’s why the start and type attributes for list markup are deprecated; see
Appendix A for information about deprecated attributes.

Bulleted lists
A bulleted list consists of one or more items each prefaced by a bullet (often a
big dot; this book uses check marks as bullets).

You use this type of list if the order of the presentation of the items isn’t nec-
essary for understanding the information presented.

Formatting
A bulleted list requires the following:

� The unordered list element () specifies that you’re creating a bul-
leted list.

� A list item element () marks each item in the list.

� The closing tag for the unordered list element () indicates that the
list has come to its end.

Figure 5-13:
The start
and type

attributes
guide the

appearance
of a

numbered
list in a

browser.

86 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 86

An unordered list with three items requires elements and content in the fol-
lowing order:

1.

2.

3. Content for the first list item

4.

5.

6. Content for the second list item

7.

8.

9. Content for the third list item

10.

11.

The following markup formats a three-item list as a bulleted list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>Bulleted Lists</title>

</head>

<body>
<h1>Things to do today</h1>

Feed cat
Wash car
Grocery shopping

</body>

</html>

Figure 5-14 shows how a browser renders this with bullets.

Styles
You can use the type attribute (deprecated) with the element to specify
what kind of bullet you want the list to use.

� disc: Solid circle bullets (the default)

� square: Solid square bullets

� circle: Hollow circle bullets

87Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 87

The addition of the type attribute to the bulleted-list markup just given
changes the bullets from discs to squares, as shown in Figure 5-15. Here’s
what the relevant markup looks like:

<ul type=”square”>
Feed cat
Wash car
Grocery shopping

Figure 5-15:
Use the type

attribute to
change the
bullet style

for an
unordered

list.

Figure 5-14:
An

unordered
list uses

bullets
instead of

numbers to
mark items.

88 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 88

Use CSS if you want more control over the formatting of your lists.

Definition lists
Definition lists group terms and definitions into a single list and require three
different elements to complete the list:

� <dl>: Holds the list definitions.

� <dt>: Defines a term in the list.

� <dd>: Defines a definition for a term.

You can have as many terms (defined by <dt>) in a list as you need. Each
term can have one or more definitions (defined by <dd>).

To create a definition list with two items requires elements and content in the
following order:

1. <dl>

2. <dt>

3. First term name

4. </dt>

5. <dd>

6. Content for the definition of the first item

7. </dd>

8. <dt>

9. Second term name

10. </dt>

11. <dd>

12. Content for the definition of the second item

13. </dd>

14. </dl>

The following definition list includes three terms, one of which has two
definitions:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />

89Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 89

<title>Definition Lists</title>
</head>

<body>
<h1>Markup Language Definitions</h1>
<dl>
<dt>SGML</dt>
<dd>The Standard Generalized Markup Language</dd>

<dt>HTML</dt>
<dd>The Hypertext Markup Language</dd>
<dd>The markup language you use to create Web pages.</dd>

<dt>XML</dt>
<dd>The Extensible Markup Language</dd>

</dl>
</body>

</html>

If you think the items in a list are spaced too closely together, you can either

� Put two
 elements before each or </dd> element to add
more white space.

� Use CSS styles to carefully control all aspects of your list appearance, as
shown in Chapter 8.

Nesting lists
You can create subcategories by nesting lists within other lists. Some
common uses for nested lists include

� Site maps and other navigation tools

� Table of contents for online books and papers

� Outlines

You can combine any of the three kinds of lists to create nested lists, such as
a multilevel table of contents or an outline that mixes numbered headings
with bulleted list items as the lowest outline level.

The following example starts with a numbered list that defines a list of things
to do for the day, and uses three bulleted lists to further break down those
items into specific tasks:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

90 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 90

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>Nested Lists</title>

</head>
<body>
<h1>Things to do today</h1>

Feed cat

Rinse bowl
Open cat food
Mix dry and wet food in bowl
Deliver on a silver platter to fluffy

Wash car

Vacuum interior
Wash exterior
Wax exterior

Grocery shopping

Plan meals
Clean out fridge
Make list
Go to store

</body>
</html>

All nested lists follows the same markup pattern:

� Each list item in the top-level ordered list is followed by a complete
second-level list.

� The second-level lists sit inside the top-level list, not in the list items.

Figure 5-16 shows how a browser reflects this nesting in its display.

As you build nested lists, watch your opening and closing tags carefully. Close
first what you opened last is an especially important axiom here. If you don’t
open and close your tags properly, lists might not show consistent indents or
numbering, or text might be indented incorrectly because a list somewhere
was never properly closed.

91Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 91

Text Controls and Annotation
Some general (X)HTML elements define general text controls or allow you to
annotate documents. These are covered in Table 5-1.

Table 5-1 (X)HTML Text Controls and Annotation
Element Common Empty? Category Description

Name

bdo Bidirectional No Language Controls direction
algorithm definition of text display

{ltr|rtl} (left-to-
right, right-to-left)

del Deleted text No Text control Marks deleted text
in current draft

ins Inserted text No Text control Marks inserted
text in current draft

Figure 5-16:
Nested lists

combine
lists for a
multilevel
organiza-

tion of
information.

92 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 92

Element Common Empty? Category Description
Name

kbd Keyboard text No Text control Text to type at a
keyboard

samp Sample text No Text control Sample program
output

tt Teletype text No Text control Typewriter or tele-
type output

var Variable text No Text control Highlights input or
output variables

Marvelous Miscellany
Table 5-2 lists other text-related (X)HTML attributes that you might find in
HTML files.

Table 5-2 Additional (X)HTML Text Attributes
Name Function/ Value Related

Value Equals Type(s) Element(s)

cite Specifies location of URL <blockquote>
source materials <q>

cite Explains reason for Text <ins>
adds, deletes

datetime Time stamps ISO date <ins>
document content

dir Specifies text direc- {ltr|rtl} All elements except
tion for content <base>

<frame /><frameset>
<iframe><param />
<script>

id Supplies unique ID All elements except
identifier for <base /><head>
markup instances <html><meta />

<param />
<script><style>
<title>

(continued)

93Chapter 5: Text and Lists

10_589172 ch05.qxd 4/22/05 3:29 PM Page 93

Table 5-2 (continued)
Name Function/ Value Related

Value Equals Type(s) Element(s)

lang Names content Language All elements except
language used code <base />

<frame /><frameset>
<iframe><param />
<script>

title Associates advisory Text All elements except
info to content <base /><head>

<html><meta />
<param /><script>
<style><title>

94 Part II: Formatting Web Pages with (X)HTML

10_589172 ch05.qxd 4/22/05 3:29 PM Page 94

Chapter 6

Linking to Online Resources
In This Chapter
� Creating simple links

� Opening linked pages in new windows

� Setting up links to locations within a Web page

� Creating links to things other than Web pages

Hyperlinks, or simply links, connect (X)HTML pages and other resources
on the Web. When you include a link on your page, you allow visitors to

travel from your page to another Web site, another page on your site, or even
another location on the same page. Without external links, a page stands
alone, disconnected from the rest of the Web. With external links, that page
becomes part of an almost boundless collection of information.

Basic Links
To create a link, you need

� The Web address (called a Uniform Resource Locator, or URL) of the
Web site or file you want to link. This usually starts with http://.

� Some text in your Web page to label or describe the link.

Try to ensure that the text you use says something useful about the
resource being linked.

� An anchor element (<a>) with the href attribute to bring it all together.

The element to create links is called an anchor element because you use
it to anchor a URL to some text on your page. When users view your
page in a browser, they can click the text to activate the link and visit
the page whose URL you specified in the link. You insert the full URL in
the href attribute. This tells the link where it needs to go.

11_589172 ch06.qxd 4/22/05 3:30 PM Page 95

You can think of the structure of a basic link as a cheeseburger (or your pre-
ferred vegan substitute). The URL is the cheese, the patty is the link text, and
the anchor tags are the buns. Tasty, yes?

For example, if you have a Web page that describes HTML standards, you
may want to refer Web surfers to the World Wide Web Consortium (W3C) —
the organization that governs all things related to (X)HTML standards. A
basic link to the W3C’s Web site, www.w3.org, looks like this:

<p>The World Wide Web Consortium is the
standards body that oversees the ongoing development of the XHTML
specification.</p>

You specify the link URL (http://www.w3.org) in the anchor element’s href
attribute. The text (World Wide Web Consortium) between the anchor ele-
ment’s open and close tags (<a> and) labels or describes the link.

Figure 6-1 shows how a browser displays this bit of markup.

Figure 6-1:
A paragraph
with a link to

the W3C.

96 Part II: Formatting Web Pages with (X)HTML

Anchor elements aren’t block elements
Anchor elements are inline elements — they
apply to a few words or characters within a
block of text (the text that you want to use as a
link) instead of defining formatting for blocks of
text. The anchor element sits inside a paragraph
(<p>) element. When you create a link, you
should always create it within a block element,
such as a paragraph, list item, heading, or even
a table cell. Turn to Chapter 5 for more informa-
tion on block elements.

Although many Web browsers can display your
anchors just fine (even if you don’t nest them in

block elements), some browsers don’t handle
this breach of (X)HTML syntax very well, such as

� Text-only browsers for Palm devices and
mobile phones

� Text-to-speech readers for the visually
impaired

Text-based browsers rely on block elements to
properly divide the sections of your page.
Without a block element, these browsers might
display your links in the wrong places.

11_589172 ch06.qxd 4/22/05 3:30 PM Page 96

You can also anchor URLs to images so users can click an image to activate a
link. (For more about creating images that link, see Chapter 7.)

For a detailed discussion of the ins and outs of URLs, see Chapter 1.

Link options
You can link to a variety of online resources:

� Other (X)HTML pages (either on your Web site or on another Web site)

� Different locations on the same (X)HTML page

� Resources that aren’t even (X)HTML pages at all, such as e-mail
addresses, pictures, and text files

Link locations, captions, and destinations have a big impact on link value.
Chapter 3 covers best practices for using links in your site design.

The kind of link you create is determined by where you link.

Absolute links
An absolute link uses a complete URL to connect browsers to a Web page or
online resource.

Links that use a complete URL to point to a resource are called absolute
because they provide a complete, standalone path to another Web resource.
When you link to a page on someone else’s Web site, the Web browser needs
every bit of information in the URL to find the page. The browser starts with
the domain in the URL and works its way through the path to a specific file.

When you link to files on someone else’s site, you must always use absolute
URLs in the href attribute of the anchor element (for example, http://
www.website.com/directory/page.html).

Relative links
A relative link uses a kind of shorthand to specify the URL for the resource
where you’re pointing.

Use the following guidelines with relative links in your (X)HTML pages:

� You create relative links between resources in the same domain

� Because both resources are in the same domain, you can omit domain
information from the URL.

A relative URL uses the location of the resource you’re linking from
to identify the location of the resource you’re linking to (for example,
page.html).

97Chapter 6: Linking to Online Resources

11_589172 ch06.qxd 4/22/05 3:30 PM Page 97

A relative link is similar to telling someone that he or she needs to go to the
Eastside Mall. If the person already knows where the Eastside Mall is, he or
she doesn’t need additional directions. Web browsers behave the same way.

If you use relative links on your site, your links still work if you change either

� Servers

� Domain names

Simple links
You can take advantage of relative URLs when you create a link between
pages on the same Web site. If you want to make a link from http://www.
mysite.com/home.html to http://www.mysite.com/about.html, you
can use this simplified, relative URL in an anchor element on home.html:

<p>Learn more about our company.</p>

When a browser sees a link without a domain name, the browser assumes the
link is relative and uses the domain and path of the linking page to find the
linked page.

Site links
As your site grows more complex and you organize your files into a variety of
folders, you can still use relative links. But you must provide additional infor-
mation in the URL to help the browser find files that don’t reside in the same
directory as the file from which you’re linking.

Use ../ (two periods and a slash) before the filename to indicate that the
browser should move up one level in the directory structure.

The markup for this process looks like this:

Documentation home

The notation in this anchor element instructs the browser to:

1. Move up one folder from the folder the linking document is stored in.

2. Find a folder called docs.

3. Find a file called home.html.

When you create a relative link, the location of the file to which you link is
always relative to the file from which you link. As you create your relative
URL, trace the path a browser must take if it starts on the page you’re linking
from before it can get to the page to which you’re linking. That path defines
the URL for your relative link.

98 Part II: Formatting Web Pages with (X)HTML

11_589172 ch06.qxd 4/22/05 3:30 PM Page 98

Common mistakes
Every Web resource, such as sites, pages, and images, has a unique URL.
Even one incorrect letter in your URL can lead to a broken link. Broken links
lead to an error page (often the HTTP error 404 File or directory not
found).

URLs are so finicky that a simple typo breaks a link.

If a URL doesn’t work, try these tactics:

� Check the capitalization. Some Web servers (Linux and Unix most
notably) are case sensitive (meaning they distinguish between capital
and lowercase letters). These servers treat the filenames Bios.html
and bios.html as different files on the Web server. That also means that
browsers must use uppercase and lowercase letters when necessary. Be
sure the capitalization in the link matches the capitalization of the URL.

To avoid problems with files on your Web site, follow a standard naming
convention. Often, using only lowercase letters can simplify your life.

� Check the extension. Bios.htm and Bios.html are two different files. If
your link’s URL uses one extension but the actual filename uses another,
your link won’t work.

To avoid problems with extensions on your Web site, pick either .html
or .htm and stick to that extension.

� Check the filename. bio.html and bios.html are two different files.

� Cut and paste. Avoid retyping a URL if you can copy it. The best and
most foolproof way to create a URL that works is

1. Load a page in your browser.

2. Copy the URL from the browser’s address or link text box.

3. Paste the URL into your (X)HTML markup.

99Chapter 6: Linking to Online Resources

The importance of http:// in (X)HTML links
Browsers make surfing the Web as easy as pos-
sible. If you type www.sun.com, sun.com, or
often even just sun, in your browser’s address
window, the browser obligingly brings up
http://www.sun.com. Although this tech-
nique works when you type URLs into your

browser window, it won’t work when you’re
writing markup.

The URLs that you use in your HTML markup
must be fully formed. Browsers won’t interpret
URLs that don’t include the page protocol. If you
forget the http://, your link won’t work.

11_589172 ch06.qxd 4/22/05 3:30 PM Page 99

Customizing Links
You can customize links to

� Open linked documents in new windows

� Link to specific locations within a Web page

� Link to items other than (X)HTML pages, such as

• Portable Document Format (PDF) files

• Compressed files

• Word-processing documents

New windows
The Web works because you can link pages on your Web site to pages on
other people’s Web sites by using a simple anchor element. But when you
link to someone else’s site, you send users away from your own site.

To keep users on your site, HTML can open the linked page in a new window.
The simple addition of the target attribute to an anchor element opens that
link in a new browser window instead of opening it in the current window:

<p>The World Wide Web Consortium
is the standards body that oversees the ongoing development of the XHTML
specification.</p>

When you give a target attribute a _blank value, this tells the browser to

1. Keep the linking page open in the current window.

2. Open the linked page in a new window.

The result of the target=”_blank” attribute is shown in Figure 6-2.

Pop-up windows irritate some users.

You can use JavaScript to control the size and appearance of pop-up win-
dows, as well as put buttons on them to help users close them quickly.
Chapter 12 covers pop-up windows in more detail.

100 Part II: Formatting Web Pages with (X)HTML

11_589172 ch06.qxd 4/22/05 3:30 PM Page 100

Locations in Web pages
Locations within Web pages can be marked for direct access by links on

� The same page

� The same Web site

� Other Web sites

Keep these considerations in mind when adding links to Web pages:

� Several short pages may present information more conveniently for
readers than a long page with internal links.

Links within large pages work nicely for quick access to directories,
tables of contents, and glossaries.

� Intradocument linking works best on your own Web site, where you can
create and control the markup.

When you link to spots on someone else’s Web site, you’re at that
person’s mercy. That person controls the linkable spots. Your links will
break if the site designer removes or renames any spot where you link.

Figure 6-2:
Use the

target
attribute to

open a new
window for

a linked file.

101Chapter 6: Linking to Online Resources

11_589172 ch06.qxd 4/22/05 3:30 PM Page 101

Naming link locations
To identify and create a location within a page for direct access from other
links, use an empty anchor element with the name attribute, like this:

The anchor element that marks the spot doesn’t affect the appearance of the
first-level heading. You can mark spots wherever you need them without wor-
rying about how your pages look (or change) as a result.

Linking to named locations
As we mention earlier, you can mark locations for direct access by links

� Within the same page

� Within the same Web site

� On other Web sites

Within the same page
Links can help users navigate a single Web page. Intradocument hyperlinks
are such familiar features as

� Back to Top links

� Tables of contents

An intradocument hyperlink uses a URL like this:

Back to top

The pound sign (#) indicates that you’re pointing to a spot on the same page,
not on another page.

Listing 6-1 shows how two anchor elements work together to link to a spot on
the same page. (Documents that use intradocument links are usually much
longer. This document is shorter so you can easily see how to use the top
anchor element.)

Listing 6-1: Intradocument Hyperlinks

<html>
<head>
<title>Intradocument hyperlinks at work</title>

</head>

<body>
<h1>Web-Based Training</h1>

<p>Given the importance of the Web to businesses and

102 Part II: Formatting Web Pages with (X)HTML

11_589172 ch06.qxd 4/22/05 3:30 PM Page 102

other organizations, individuals who seek to improve
job skills, or fulfill essential job functions, are
turning to HTML and XML for training. We believe
this provides an outstanding opportunity for
participation in an active and lucrative adult and
continuing education market.</p>

<p>Back to top</p>

</body>
</html>

Figure 6-3 shows how this HTML markup appears in a Web browser. If the
user clicks the Back to Top link, the browser jumps back to the top spot —
marked by .

Within the same Web site
You can combine intradocument and interdocument links to send visitors to
a spot on a different Web page within your site. For example, if you want to
point to a spot named descriptions on a page named home.html on your
site, the link looks like this:

<p>Review the document descriptions
to find the documentation for your particular product.</p>

On other Web sites
If you know that a page on another site has spots marked, you can use an
absolute URL to point to spots on that page, like this:

<p>Find out how to
<a href=”http://www.yourcompany.com/training/
online.htm#register”>register for upcoming training
courses led by our instructors.</p>

Figure 6-3:
Use anchor
elements to

mark and
link spots on

a page.

103Chapter 6: Linking to Online Resources

11_589172 ch06.qxd 4/22/05 3:30 PM Page 103

Be sure to check all links regularly to catch and fix the broken ones.

The Open Directory Project provides a laundry list of free and commercial
tools to make finding and fixing broken links easier:

http://dmoz.org/Computers/Software/Internet/Site_Management/Link_Management/

Non-HTML resources
Links can connect to virtually any kind of files, such as

� Word-processing documents

� Spreadsheets

� PDFs

� Compressed files

� Multimedia

Anchor elements usually aren’t good links for multimedia files.

A great use for non-HTML links is on software and PDF download pages.

File downloads
Non-Web files have unique URLs just like HTML pages. Any file on a Web
server (regardless of its type) can be linked with its URL.

For instance, if users need to download a PDF file named doc.pdf and a .zip
archive called software.zip from a Web page, you use this HTML:

<h1>Download the new version of our software</h1>
<p>Software</p>
<p>Documentation</p>

You can’t know how any user’s browser responds with a click on a link to a
non-Web file. The browser may

� Prompt the user to save the file

� Display the file without downloading (this is common for PDFs)

� Display an error message (if the browser can’t handle the file)

To help users download files successfully, you should provide them with

� As much information as possible about the file formats.

� Any special tools they need to work with the files.

104 Part II: Formatting Web Pages with (X)HTML

11_589172 ch06.qxd 4/22/05 3:30 PM Page 104

• To work with the contents of a Zip file, the users need a compres-
sion utility, such as WinZip or ZipIt, if their operating systems do
not natively support Zip files.

• To view a PDF file, users need the Adobe Acrobat Reader.

You can make download markup more user-friendly by adding supporting
text and links, like this:

<h1>Download the new version of our software</h1>
<p> Software

Note:
You need a zip utility such as

WinZip or
ZipIt

to open this file.</p>
<p>Documentation

Note:You need the free
<a href=”http://www.adobe.com/products/
acrobat/readstep2.html”>Acrobat Reader

to view this file.</p>

Figure 6-4 shows how a browser renders this HTML and the dialog box it dis-
plays when you click the software link.

E-mail addresses
A link to an e-mail address can automatically open a new e-mail addressed to
exactly the right person.

Figure 6-4:
This

browser
prompts you

to save or
view the

Zip file.

105Chapter 6: Linking to Online Resources

11_589172 ch06.qxd 4/22/05 3:30 PM Page 105

This is a great way to help users send you e-mail with comments and
requests.

An e-mail link uses the standard anchor element and href attribute. The
value of the href attribute is the receiving e-mail address prefaced with
mailto:

<p>Send us your
comments.</p>

The user’s browser configuration controls how the browser handles an e-mail
link. Most browsers automatically

1. Open a new message window in the default e-mail program.

2. Insert the address from the href attribute in the To field of the message.

Unfortunately, Web page mailto: links are a prime source of e-mail addresses
for spammers. Creating a form to receive feedback is often a better idea.

Marvelous Miscellany
Table 6-1 lists other link-related (X)HTML attributes that you might find in
HTML files (and their characteristics).

Table 6-1 Additional (X)HTML Link Attributes
Name Function/ Value Related

Value Equals Type(s) Element(s)

accesskey Shortcut key to Text <a><area />
follow link <button>

<input />
<label>
<legend>
<textarea>

charset Character set for Text <a><link />
linked items <script>

hreflang Language for linked Language code <a><link />
items

type Advisory info for Text <a><link />
link content

106 Part II: Formatting Web Pages with (X)HTML

11_589172 ch06.qxd 4/22/05 3:30 PM Page 106

Chapter 7

Finding and Using Images
In This Chapter
� Determining the right format for your images

� Adding images to Web pages

� Creating images and image maps that trigger links

Web page designers use images to deliver important information,
direct site navigation, and contribute to the overall look and feel of

a Web page. But you need to use images properly or you risk reducing their
effectiveness.

When used well, images are a key element of your page design. When used
poorly, they can make your page unreadable or inaccessible.

This chapter is a crash course in using images on your Web pages. You find
out which image formats are Web-friendly and how to use (X)HTML elements
to add images to your Web pages. You also discover how to attach links to
your images and how to create image maps for your Web page.

The Role of Images in a Web Page
Images in Web sites may be logos, clickable navigation aids, or display con-
tent; they may also make a page look prettier, or serve to unify or illustrate
a page’s theme. A perfect example of the many different ways images can
enhance and contribute to Web pages is the White House home page at
www.whitehouse.gov, shown in Figure 7-1.

12_589172 ch07.qxd 4/22/05 3:34 PM Page 107

Creating Web-Friendly Images
You can create and save graphics in many ways, but only a few formats are
actually appropriate for images that you intend to use on the Web. As you
create Web-friendly images, you must account for file formats and sizes.

Often, graphics file formats are specific to operating systems or software
applications. But you can’t predict a visitor’s computer and software (other
than a Web browser). So you need images that anyone can view with any
browser. This means you need to use cross-platform file formats that users
can view with any version of Microsoft Windows, the Mac OS, or Linux.

Only these three compressed formats are suitable for general use on the Web:

� Graphics Interchange Format (GIF): Images saved as GIFs often are
smaller than those saved in other file formats. GIF supports up to 256
colors only, so if you try to save an image created with millions of colors
as a GIF, you lose image quality. GIF is the best format for less-complex,
nonphotographic images, such as line art and clip art.

� Joint Photographic Experts Group (JPEG): The JPEG file format sup-
ports 24-bit color (millions of colors) and complex images, such as pho-
tographs. JPEG is cross-platform and application-independent. A good
image-editing tool can help you tweak the compression so you can strike
an optimum balance between image quality and image file size.

Figure 7-1:
The White

House Web
page uses

images in a
variety of

ways.

108 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 108

� Portable Network Graphics (PNG): PNG is the latest cross-platform and
application-independent image file format. It was developed to bring
together the best of GIF and JPEG. PNG has the same compression as GIF
but supports 24-bit color (and even 32-bit color) like JPEG.

Internet Explorer 4, Netscape 4, and other older browsers don’t support
PNG, so many designers avoid it.

Any good graphics-editing tool, such as those in Chapter 20, lets you save
images in any of these file formats. You can experiment with each one to see
how converting a graphic from one format to the other changes its appear-
ance and file size, and then choose the format that produces the best results.

Table 7-1 shows guidelines for choosing a file format for images by type.

Table 7-1 Choosing the Right File Format
File Format Best Used For Watch Out

GIF Line art and other images Don’t use this format if you
with few colors and less have a complex image or
detail. photo.

JPEG Photos and other images Don’t use with line art. Don’t
with millions of colors compromise too much quality
and lots of detail. when you compress the file.

PNG Photos and other images Don’t use with line art. Older
with millions of colors browsers don’t support PNG,
and lots of detail. so you may still lose Web

surfers even though PNG
offers the best balance
between quality and file size.

109Chapter 7: Finding and Using Images

Optimizing images
As you build graphics for your Web page, you
need to maintain a healthy balance between file
quality and size. Webmonkey has two good
tutorials on trimming image file sizes and opti-
mizing entire sites to download faster. For a col-
lection of tips and tricks that can help you build
pages that download quickly, review

� Optimizing Your Images

http://hotwired.lycos.com/webmonkey/
99/15/index0a.html

� Site Optimization Tutorial

http://hotwired.lycos.com/webmonkey/
design/site_building/
tutorials/tutorial2.html

12_589172 ch07.qxd 4/22/05 3:34 PM Page 109

For a complete overview of graphics formats, visit

� Builder.com’s “Examine Graphic Channels and Space”

http://builder.cnet.com/webbuilding/0-3883-8-4892140-1.html

� Webmonkey’s “Web Graphics Overview”

http://webmonkey.wired.com/webmonkey/01/28/index1a.html

Adding an Image to a Web Page
When an image is ready for the Web, you need to use the correct markup to
add the image to your page. But you need to know where to store your image.

Location of the image
You can store images for your Web site in several places. Image storage is
best if your images are relative (stored somewhere on the Web site with your
other (X)HTML files). You can store the images in the same root file as your
(X)HTML files, which can get confusing if you have a lot of files, or you can
create a graphics or images directory in the root file of your Web site.

Relative links connect resources from the same Web site. You use absolute
links between resources on two different Web sites. Turn to Chapter 6 for a
complete discussion of the differences between relative and absolute links.

Three compelling reasons to store images on your own site are

� Control: When the images are stored on your site, you have complete
control over them. You know that your images aren’t going to disappear
or change, and you can work to optimize them.

� Speed: If you link to images on someone else’s site, you never know
when that site may go down or be unbelievably slow. Linking to images
on someone else’s site also causes the other site owner to pay for the
bandwidth required to display it on your site.

� Copyright: If you link to images on another Web site to display them on
your site, you may violate copyright law. (In this case, obtain permission
from the copyright holder to store and display the images on your site.)

Using the element
The image () element is an empty element (sometimes called a single-
ton tag) that you place on the page where you want your image to go.

110 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 110

An empty element has only one tag, with neither a distinct opening nor clos-
ing tag.

The following markup places an image named 07fg02-cd.jpg, which is
saved in the same directory as the (X)HTML file, between two paragraphs:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>CDs at Work</title>

</head>
<body>
<h1>CD as a Storage Media</h1>
<p>CD-ROMs have become a standard storage option in today’s computing world

because they are an inexpensive and easy to use media.</p>

<p>To read from a CD, you only need a standard CD-ROM drive, but to create

CDs, you need either a CD-R or a CD-R/W drive.</p>
</body>

</html>

A Web browser replaces the element with the image file provided as
the value for the src attribute, as shown in Figure 7-2.

The src attribute is like the href attribute that you use with an anchor (<a>)
element. The src attribute specifies the location of the image you want to
display on your page. The preceding example points to an image file in the
same folder as the HTML file referencing it.

Figure 7-2:
Use the

element to
place

graphics in
a Web page.

111Chapter 7: Finding and Using Images

12_589172 ch07.qxd 4/22/05 3:34 PM Page 111

Adding alternative text
Alternative text describes the image so users who for some reason can’t see
the images can access the alternative text and know what the image is.
Adding alternative text is a good practice because it accounts for

� Visually impaired users who may not be able to see the images and rely
on the alternative text for a text-to-speech reader to read to them.

� Users who access the Web site from a phone browser with limited graph-
ics capabilities.

� Users with slow modem connections who don’t display images.

Some search engines and cataloging tools use alternative text to index
images.

Most of your users will see your images, but be prepared for those who won’t.
The (X)HTML specifications require that you provide alternative text to
describe each image on a Web page. Use the alt attribute with the
element to add this information to your markup, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<title>Inside the Orchestra</title>

</head>

<body>
<p>Among the different sections of the orchestra you will find:</p>
<p> Strings</p>
<p> Brass</p>
<p>

Woodwinds</p>
</body>
</html>

When browsers don’t display an image (or can’t, in text-only browsers such
as Lynx), they display the alternative text instead, as shown in Figure 7-3.

When browsers show an image, some browsers, including Internet Explorer,
Netscape, and Opera, show alternative text as a pop-up tip when you hold
your mouse over an image for a few seconds, as shown in Figure 7-4. Firefox,
however, does not.

112 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 112

This means you can use alternative text to either describe the image to those
who can’t see it or provide useful or amusing information about the image.

The W3C’s Web Accessibility Initiative (WAI) includes helpful tips for creating
useful and usable alternatives to visual content at www.w3.org/TR/WCAG10-
TECHS/#gl-provide-equivalents.

Figure 7-4:
A browser

may display
alternative

text as a
pop-up tip.

Figure 7-3:
When a
browser
doesn’t

show an
image, it

shows
alternative

text.

113Chapter 7: Finding and Using Images

12_589172 ch07.qxd 4/22/05 3:34 PM Page 113

Specifying image size
You can use the height and width attributes with the element to
let the browser know just how tall and wide an image is (in pixels):

<p><img src=”07fg03-trumpet.jpg” width=”50” height=”70” alt=”trumpet”
/>Brass</p>

Most browsers download the HTML and text associated with a page before
they download all the page graphics. Instead of making users wait for the
whole page to download, browsers typically display the text first and fill in
graphics as they become available. If you tell the browser how big a graphic
is, the browser can reserve a spot for it in the page display. This smoothes
the change as graphics are added to the Web page.

You can check the width and height of an image in pixels in any image-editing
program or the image viewers built into Windows and the Mac OS. (You
might also be able to simply view the properties of the image in either
Windows or the Mac OS to see its height and width.)

Another good use of the height and width attributes is to create colored
lines on a page by using just a small colored square. For example, this
markup adds a 10-x-10-pixel blue box to a Web page:

When the element height and width attributes equal the image
height and width, it appears as a blue box in a browser window (like
Figure 7-5).

However, a change to the values for height and width in the markup turns
this small blue box into a line 20 pixels high and 500 pixels long:

The browser expands the image to fit the height and width specifics in the
markup, as shown in Figure 7-6.

Figure 7-5:
A small box.

114 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 114

Using this technique, you can turn a single image like the blue box (only 1K in
size) into a variety of lines and even boxes:

� This can ensure that all the dividers and other border elements on your
page use the same color — they’re all based on the same graphic.

� If you decide you want to change all your blue lines to green, you just
change the image. Every line you’ve created changes colors.

When you specify a height and width for an image that are different from the
image’s actual height and width, you rely on the browser to scale the image dis-
play. This works great for single-color images like the blue box, but it doesn’t
work well for images with multiple colors or images that display actual pic-
tures. The browser doesn’t size images well, and you wind up with a distorted
picture. Figure 7-7 shows how badly a browser handles enlarging a trumpet
image when the markup doubles the image height and width:

<p>
Brass</p>

Figure 7-7:
Don’t use a
browser to

resize
complex
images.

Figure 7-6:
A small box
becomes a

long line.

115Chapter 7: Finding and Using Images

12_589172 ch07.qxd 4/22/05 3:34 PM Page 115

If you need several sizes of the same image, for example, a logo or navigation
button, use the largest size image to make smaller versions in an image-editing
tool so you can better control the final look and feel of the image.

Setting the image border
By default, every image has a border of 1, which doesn’t show up in most
browsers until you turn that image into a link (as shown in the “Images That
Link” section later). You can use the border attribute with the ele-
ment to better control what border the browser displays around your image.
This markup sets the border for the clarinet image to 10 pixels:

<img src=”07fg03-woodwinds.jpg” width=”50” height=”70” alt=”clarinet and saxo-
phone” border=”10” />

The browser uses this border on all four sides of the image, as in Figure 7-8.

In Figure 7-8, the border is black and applies to all four sides of the image. If
you want to control the color of the border or make the border appear differ-
ently on each side of the image, you have two options:

� Build the border into the image in an image-editing tool.

� Use Cascading Style Sheets (CSS), which we cover in Chapter 8.

If you use an image-editing tool to create your border, you can use the tool’s
features to create a patterned border or apply a unique effect. However, the
extra information in the image may make it bigger. Carefully balance your
image size and its appearance so it doesn’t take too long to download.

Figure 7-8:
Use the
border

attribute to
create a

border
around your

image.

116 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 116

If you use CSS to apply a border, your image won’t get any bigger, but your
border may not show up in older browsers that don’t support CSS well. The
choice you make depends on how crucial the border is to your image (if it’s
very important, embed it in the image) and what browser you think your
visitors use (newer browsers have better support for style sheets).

Controlling image alignment
The align attribute works with the element to control how your
image appears relative to the text around it. The possible values for this
attribute are

� top: Aligns the text around the image with the top of the image.

� middle: Aligns the text around the image with the middle of the image.

� bottom: Aligns the text around the image with the bottom of the image.

� left: The image sits on the left, and text floats to the right of the image.

� right: The image sits on the right, and text floats to the left of the image.

By default, most browsers align images to the left and float all text to the
right. The following markup shows how five different elements use
the align attribute to change how text floats around the mouse images:

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with top-aligned text”
height=”105” width=”65” align=”top” />

This text is aligned with the top of the image.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with middle-aligned text”
height=”105” width=”65” align=”middle” />

This text is aligned with the middle of the image.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with bottom-aligned text”
height=”105” width=”65” align=”bottom” />

This text is aligned with the bottom of the image.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with left-aligned text”
height=”105” width=”65” align=”left” />

This image floats to the left of the text.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with right-aligned text”
height=”105” width=”65” align=”right” />

This image floats to the right of the text, and overlaps with
the image to the left.

</p>

117Chapter 7: Finding and Using Images

12_589172 ch07.qxd 4/22/05 3:34 PM Page 117

Figure 7-9 shows how a browser interprets different alignment attributes.

The attributes may not give you all the control of image alignment
that you want. Chapter 11 shows tables and images used together. Chapter 8
shows CSS properties that control how images sit on the page.

Setting image spacing
Most browsers leave about a pixel of white space between images and the
text or other images next to them. You can give your images breathing room
with

� The vspace (vertical space) attribute for top and bottom

� The hspace (horizontal space) attribute for left and right

The following HTML gives the mouse graphic 20 pixels of white space on
either side and 25 pixels on the top and bottom:

<p>
This text doesn’t crowd the image on top.

<img src=”07fg09-mouse.jpg”

Figure 7-9:
You can

vary image
alignment to

control
image

placement
on the page.

118 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 118

height=”105” width=”65” hspace=”20” vspace=”25”
alt=”mouse on a white background” />

And this text is a little further away from the sides. </p>

Figure 7-10 shows how a browser adds space around the image.

The default value for hspace and vspace is 1. If you want images so close
together that their sides touch (like for a set of navigation buttons), set the
value for these attributes to 0 to eliminate that extra 1 pixel of space.

You can use CSS to position images on a page. You can position images with
accuracy and with control over placement, spacing, white space, and how
text flows around the graphic. Chapter 9 has the details to position items.

Images That Link
Web pages often use images for navigation. They’re prettier than plain-
text links, and you can add both form and function on your page with one
element.

Triggering links
To create an image that triggers a link, you substitute an element in
place of the text you would anchor your link to. This markup links text:

<p>Visit the W3C</p>

Figure 7-10:
hspace and

vspace
control the

white space
around an

image.

119Chapter 7: Finding and Using Images

12_589172 ch07.qxd 4/22/05 3:34 PM Page 119

This markup replaces the text Visit the W3C with an appropriate icon:

<p><img src=”w3.jpg”
alt=”Visit the W3C Web Site” height=”48” width=”315” border=”0” />

</p>

The preceding markup creates a linked image to http://www.w3.org. In
the preceding example, the alternative text now reads Visit the W3C Web
Site so users who can’t see the image know where the link goes. When a
user moves the mouse pointer over the image, the cursor changes from an
arrow into a pointing hand (or any icon the browser uses for a link), as in
Figure 7-11.

A quick click of the image launches the W3C Web site. It’s as simple as that.

As shown earlier in the chapter, you should set the border of any image you
use in a link to 0 to keep the browser from surrounding your image with an
ugly blue line. Without the line, however, users need other visual (or alterna-
tive text) clues so they know an image is a link. Be sure images that serve as
links scream to the user (tastefully of course) “I’m a link!”

Building image maps
When you use an element with an anchor element to create a linking
image, you can attach only one link to that image. To create a larger image
that connects links to different regions on the page, you need an image map.

To create an image map, you need two things:

� An image with several distinct areas that would be obvious to users.
(For example, an image of a park might show a playground area, a picnic
area, and a pond area.)

� Markup to map the different regions on the map to different URLs.

Figure 7-11:
Combine

image and
anchor

elements to
create a

linked
image.

120 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 120

Elements and attributes
You use the element to add the map image into your page, just as
you would any other image. In addition, you include the usemap attribute to
let the browser know that there’s image map information to go with the
image. The value of the usemap attribute is the name of your map.

You use two elements and a collection of attributes to define the image map:

� <map> holds the map information. The <map> element uses the name
attribute to identify the map. The value of name should match the value
of usemap in the element that goes with the map.

� <area /> links specific parts of the map to URLs. The <area /> ele-
ment takes these attributes to define the specifics for each section of
the map:

• shape: Specifies the shape of the region (a clickable hot spot that
makes the image map work). You can choose from rect (rectan-
gle), circle, and poly (a triangle or polygon).

• coords: Define the region’s coordinates. A rectangle’s coordinates
include the left, right, top, and bottom points. A circle’s coordinates
include the x and y coordinates for the center of the circle as well
as the circle’s radius. A polygon’s coordinates are a collection of x
and y coordinates for every vertex in the polygon.

• href: Specifies the URL to which the region links. This can be an
absolute or relative URL.

• alt: Provides alternative text for the image region.

Markup
This defines a three-region map called NavMap linked to the
navigation.gif:

<map name=”NavMap” />
<area shape=”rect” coords=”0,0,99,30” href=”home.html” alt=”Home” />
<area shape=”rect” coords=”102,0,202,30” href=”about.html” alt=”About” />
<area shape=”rect” coords=”202,0,301,30” href=”products.html”

alt=”Products” />
</map>

Figure 7-12 shows how a browser displays this markup.

When the mouse sits over a region in the map, the cursor turns into a point-
ing hand (just as it changes over any other hyperlink). So take advantage of
the alternative text to include useful information about the link.

121Chapter 7: Finding and Using Images

12_589172 ch07.qxd 4/22/05 3:34 PM Page 121

A common use for image maps is to turn maps of places (states, countries,
cities, and such) into linkable maps. Webmonkey’s image map tutorial at
http://webmonkey.wired.com/webmonkey/96/40/index2a.html pro-
vides more details on optimizing image maps and maximizing this (X)HTML
feature.

Creating image maps by hand can be a tricky. You use an image editor to
identify each point in the map and then create the proper markup for it. Most
(X)HTML tools include utilities to help you make image maps. If you take
advantage of one of these tools, you can create image maps quickly and with
fewer errors. Find out more about (X)HTML tools in Chapter 20.

Marvelous Miscellany
Table 7-2 lists other (X)HTML images and image maps attributes (along with
other input-related tags that use image maps) that you might find in HTML
files.

Table 7-2 Additional (X)HTML Image and Map Attributes
Name Function/ Value Related

Value Equals Type(s) Element(s)

name Provides a name for CDATA <map>
usemap attribute

nohref Inactive areas on “nohref” <area />
image maps

usemap Tells browser to run URI
client-side map <input />

<object>

Figure 7-12:
Image

maps turn
different

areas of an
image into

linking
regions.

122 Part II: Formatting Web Pages with (X)HTML

12_589172 ch07.qxd 4/22/05 3:34 PM Page 122

Part III
Taking Precise

Control Over
Web Pages

13_589172 pt03.qxd 4/22/05 3:35 PM Page 123

In this part . . .

In this part of the book, we introduce and describe
Cascading Style Sheets (CSS), a powerful markup lan-

guage that is often used to supplement (X)HTML and to
manage the way it looks in a Web browser. (X)HTML can
reference CSS by including either an external style sheet
or inline CSS markup within an (X)HTML document.

Here, you start out by learning the many and various capa-
bilities of CSS, about different kinds of style sheets, and
about the rules for handling multiple style sheets when
they’re applied to a single Web page (that’s where the
Cascading in CSS comes from). Of course, you also learn
how to build and use CSS for things like creating visual lay-
outs, positioning individual items, and handling fonts.
Because CSS also provides controls over color and modify-
ing how text appears on the page, you learn how to deal
with these capabilities as well.

Tables are an important way to organize and represent
data in (X)HTML. This part of the book shows basic table
setup, structure, and syntax, and also explains how you
can use CSS to manage table appearance.

13_589172 pt03.qxd 4/22/05 3:35 PM Page 124

Chapter 8

Introducing Cascading
Style Sheets

In This Chapter
� Understanding cascading style sheets

� Introducing CSS

� Creating style rules

� Linking style rules to Web pages

� Introducing CSS properties

� Understanding inheritance and the style cascade

The goal of Cascading Style Sheets (CSS) is to separate a Web page’s style
from its structure and to make it easier to maintain Web pages that

you’ve created. The structural elements of a page, such as headings (<h1>
through <h6>) and body text, don’t have affect the look of those elements. By
applying styles to those elements, you can specify the element’s layout on the
page and add design attributes (such as fonts, colors, and text indentation).

Style sheets give you precise control over how structural elements appear
on a Web page. What’s even better is that you can create one style sheet for
an entire Web site to ensure that the layout and look of your content is con-
sistent from page to page. And here’s the icing on this cake: Style sheets are
easy to build and even easier to integrate into your Web pages. In fact, you
can add style markup to individual (X)HTML elements (called inline style),
create sequences of style instructions in the head of an (X)HTML document
(called an internal style sheet), or refer to a separate standalone style sheet
via some kind of link or other reference (called an external style sheet) in your
(X)HTML document. There are lots of ways to add style to a Web page!

As HTML evolves and as more Web sites transition to XHTML, the goal of the
markup powers-that-be is to eventually deprecate (make obsolete) all format-
ting markup, such as the element, from HTML’s collection of elements.

14_589172 ch08.qxd 4/22/05 3:36 PM Page 125

When you want tight control over the display of your Web pages, style sheets
are the way to go:

� Generally, style sheets give you more flexibility than markup can.

� The HTML element collection won’t include any more display-oriented
tags in the future.

Most modern browsers handle CSS well. However, some older browsers, such
as the 4.0 Internet Explorer and Netscape Navigator browsers, have trouble
displaying CSS correctly. Earlier browsers can’t display CSS at all. If you know
that many of your site’s users still use one or more of these obsolete
browsers, test your pages in these browsers to make sure they’re readable.

Advantages of Style Sheets
HTML’s formatting capabilities are limited, to say the least. When you design
a page layout in HTML, you’re limited to tables, font controls, and a few inline

126 Part III: Taking Precise Control Over Web Pages

Using CSS versus deprecated HTML
Cascading Style Sheets (CSS) provide you with
more flexibility and allow you to control align-
ment, color, line height, kerning, and so forth in
ways that HTML never could. Using CSS also
allows you to separate formatting from content
and fosters cleaner markup, better maintain-
ability, and easier troubleshooting. No two ways
about it: CSS is better.

However, there is a slight catch. CSS support
appeared in Web browsers in the late 1990s. By
now, most users have upgraded to browsers that
support CSS fully. However, studies show that
about 10 percent of users have not upgraded and
may not upgrade soon. That means that you must
decide whether that 10 percent falls into your
target audience. If so, plan accordingly.

For example, if you are creating an intranet site
strictly for viewing by your co-workers, you can

safely use CSS by requiring that all users use
Internet Explorer (IE) 5.0 or a newer version.
However, if you’re creating a site that will be
accessible to the public at large, you can’t con-
trol which browser your visitors use. A visitor
who still uses IE 4.0, for example, can’t view con-
tent that is controlled by CSS — the text appears
to run together without any visible formatting.

Therefore, the best way to accommodate both
old and new browsers is by using a CSS style
sheet and deprecated HTML formatting tags.
(Check out Appendix A at the end of this book,
which covers all deprecated (X)HTML elements
and attributes.) The CSS style sheet overrides
HTML formatting tags in newer browsers, so
those deprecated tags work only when the
browser doesn’t recognize CSS. It’s not an ele-
gant solution, but it works!

14_589172 ch08.qxd 4/22/05 3:36 PM Page 126

styles, such as bold and italic. Style sheets provide lots of tools for formatting
Web pages with precise control. With style sheets you can

� Carefully control every aspect of the display of your page: Specify
page items such as the amount of space between lines, character spac-
ing, page margins, and image placement. You can also specify the posi-
tioning of elements on your pages.

� Apply changes globally: You can guarantee consistent design across an
entire Web site by applying the same style sheet to every Web page.

Quickly and easily modify the look and feel of your entire site by chang-
ing one document (the style sheet) instead of the markup on every page.
Need to change the look of a heading? Redefine the heading’s style
attributes in the style sheet and save the sheet. The heading’s look
changes throughout your site.

� Instruct browsers to control appearance: Provide Web browsers with
more information about how you want your pages to appear than you
can communicate using HTML.

� Create dynamic pages: Use JavaScript or another scripting language
along with style sheets to create text and other content that moves,
appears, or hides in response to user actions.

What CSS can do for a Web page
The gist of how style sheets work is this:

1. You define rules in a style sheet that specify how you want content
described by a set of markup to appear.

For example, you could specify that every first-level heading (<h1>) be
displayed in purple, Garamond, 24-point type with a yellow background
(not that you would, but you could).

2. You link style rules and markup.

3. The browser does the rest.

The current specification, CSS2.1, can

� Specify font type, size, color, and effects

� Set background colors and images

� Control many aspects of text layout, including alignment and spacing

� Set margins and borders

� Control list display

� Define table layout and display

127Chapter 8: Introducing Cascading Style Sheets

14_589172 ch08.qxd 4/22/05 3:36 PM Page 127

� Automatically generate content for such standard page elements as
counters and footers

� Control cursor display

� Define aural style sheets for text-to-speech browsers

What you can do with CSS
You have a healthy collection of properties to work with as you write your
style rules. You can control just about every aspect of a page’s display —
from borders to font sizes and everything in between:

� Background properties control the background colors associated with
blocks of text and with images. You can also use these properties to
attach background colors to your page or to individual elements.

� Border properties control borders associated with the page, lists,
tables, images, and block elements (such as paragraphs). You can spec-
ify border width, color, style, and distance from the element’s content.

� Classification properties control how elements such as images flow on
the page relative to other elements. You can use these properties to inte-
grate images and tables with the text on your page.

� List properties control how lists appear on your page, such as

• Managing list markers

• Using images in place of bullets

128 Part III: Taking Precise Control Over Web Pages

CSS3: Next-generation style sheets
The next generation of CSS — CSS3 — is a col-
lection of modules that address different aspects
of Web-page formatting, such as fonts, back-
ground colors, lists, and text colors. The first of
these modules became standards (officially
called Candidate Recommendations) in mid-2004.
But the majority of CSS3 modules aren’t expected
to become Candidate Recommendations until
late 2005 or 2006, and few browsers implement
CSS3 features. In short, you don’t need to worry
about CSS3 — yet.

The W3C has devoted an entire section of its
Web site to this topic at www.w3.org/
style/css. You can find general CSS infor-
mation there, as well as keep up with the status
of CSS3. The site links to good CSS references
and tutorials, and includes information on soft-
ware packages that can make your style sheet
endeavors easier.

14_589172 ch08.qxd 4/22/05 3:36 PM Page 128

� Margin properties control the margins of the page and margins around
block elements, tables, and images. These properties extend the ulti-
mate control over the white space on your page.

� Padding properties control the amount of white space around any block
element on the page. When used with margin and border properties, you
can create some complex layouts.

� Positioning properties control where elements sit on the page, giving
you the ability to place elements in specific places on the page.

� Size properties control how much space (in height and width) that your
elements (both text and images) take up on your page. They’re espe-
cially handy for limiting the size of text boxes and images.

� Table properties control the layout of tables. You can use them to con-
trol cell spacing and other table-layout specifics.

� Text properties control how text appears on the page. You can set such
properties as font size, font family, height, text color, letter and line spac-
ing, alignment, and white space. These properties give you more control
over your text with style sheets than the font HTML element can.

129Chapter 8: Introducing Cascading Style Sheets

Property measurement values
Many HTML properties use measurement
values. We tell you which measurement values
go with which properties throughout this book.
Standard property measurements dictate the
size of a property in two ways.

Absolute value measurements can dictate a spe-
cific length or height with one of these values:

� inches, such as .5in

� centimeters, such as 3cm

� millimeters, such as 4mm

� picas, such as 1pc

There are about six picas in an inch.

� points, such as 16pt

There are 12 points in a pica.

� pixels, such as 13px (these match up to
individual dots on your computer display).

Relative value measurements base length or
height on a parent element value in the document:

� p%: A percentage of the current font-
size value, such as 150%

For example, you can define a font size of
80% for all paragraphs. If your document
body is defined with a 15-point font, the font
size of the paragraphs is 12 points (80 per-
cent of 15).

� ex: A value that is relative to the x-height of
the current font. An x-height is the equiva-
lent of the height of the lowercase charac-
ter of a font, such as 1.5ex

� em: A value that is relative to the current
font size, such as 2em

Both 1em and 100% equal the current size.

Be careful when using these values because
some properties allow only some of the mea-
surement values, such as length values but not
relative values. Don’t let the jargon scare you.
Just define the size in a value you’re familiar with.

14_589172 ch08.qxd 4/22/05 3:36 PM Page 129

Entire books and Web sites are devoted to the fine details of using each and
every property in these categories. We suggest one of these references:

� Cascading Style Sheets For Dummies by Damon A. Dean, published by
Wiley Publishing.

� Westciv’s CSS2 reference on the Web:

www.westciv.com/style_master/academy/css_tutorial/index.html

Although CSS syntax is straightforward, combining CSS styles with markup to
fine-tune your page layout can be a little complicated. But to become a CSS
guru, you just need to

� Know the details of how the different properties work.

� Experiment with how browsers handle CSS.

Practice shows you the right way to convey your message on the Web
with CSS.

CSS Structure and Syntax
A style sheet is made of style rules. Each style rule has two parts:

� Selector: Specifies the markup element to which the style rules apply.

� Declaration: Specifies how the content described by the markup looks.

You use a set of punctuation marks and special characters to define a style
rule. The syntax for a style rule always follows this pattern:

selector {declaration}

A declaration breaks down further into two items:

� Properties are aspects of how the computer displays text and graphics
(for example, font size or background color).

� Values are the data that specify how you want text and images to look
on your page (for example, a 24-point font size or a yellow background).

You separate the property from the value in a declaration with a colon:

selector {property: value}

130 Part III: Taking Precise Control Over Web Pages

14_589172 ch08.qxd 4/22/05 3:36 PM Page 130

For example, these three style rules set the colors for first-, second-, and
third-level headings:

h1 {color: teal}
h2 {color: maroon}
h3 {color: black}

The CSS specification lists exactly which properties you can work with in
your style rules and the different values that they can take. Most are pretty
self-explanatory (color and border, for example). See “What you can do
with CSS,” earlier in this chapter, for a quick rundown of what properties the
CSS2 specification includes.

Style sheets override a browser’s internal display rules; your formatting spec-
ifications affect the final appearance of the page in the user’s browser. This
means you can better control how your content looks and create a more con-
sistent and appropriate experience for visitors

For example, the following style rules specify the font sizes (in pixels) for
first-, second-, and third-level headings:

h1 {font-size: 24px}
h2 {font-size: 18px}
h3 {font-size: 16px}

Figure 8-1 shows a simple HTML page with all three heading levels (plus some
body text) without the style sheet applied. The browser uses its default set-
tings to display the headings in different font sizes.

Figure 8-1:
An HTML

page
without

style speci-
fications.

131Chapter 8: Introducing Cascading Style Sheets

14_589172 ch08.qxd 4/22/05 3:36 PM Page 131

Figure 8-2 shows the same Web page with a style sheet applied. The headings
are significantly smaller than in the preceding figure. That’s because the style
sheet rules override the browser’s settings.

Users can change their preferences so their browsers ignore your style
sheets. (Most users will use your sheets) Test your Web page with style
sheets turned off to be sure it looks good (or acceptable) without your
style sheets.

Selectors and declarations
You probably want a style rule to affect the display of more than one prop-
erty for any given selector. You can create several style rules for a single
selector, each with one declaration, like this:

h1 {color: teal}
h1 {font-family: Arial}
h1 {font-size: 36px}

However, such a large collection of style rules becomes hard to manage. CSS
lets you combine several declarations in a single style rule that affects the
display characteristics of a single selector, like this:

h1 {color: teal;
font-family: Arial;
font-size: 36px}

Figure 8-2:
An HTML
page with

style speci-
fications
in effect.

132 Part III: Taking Precise Control Over Web Pages

14_589172 ch08.qxd 4/22/05 3:36 PM Page 132

All the declarations for the h1 selector are within the same set of brackets
({}) and are separated by a semicolon (;). You can put as many declarations
as you want in a style rule; just end each declaration with a semicolon.

The semicolon at the end of the last declaration is optional. Some people
include it to be consistent and end every declaration with a semicolon, but
it’s not necessary. We use it both ways throughout this book.

From a purely technical standpoint, white space is irrelevant in style sheets
(just as it is in HTML), but you should use a consistent spacing scheme so
that you can easily read and edit your style sheets. An exception to this
white-space rule is when you declare multiple font names in the font-family
declaration. See the “Font family” sidebar for more information.

You can make the same set of declarations apply to a collection of selectors,
too: You just separate the selectors with commas. The following style rule
applies the declarations for text color, font family, and font size to the h1, h2,
and h3 selectors:

h1, h2, h3 {color: teal;
font-family: Arial;
font-size: 36px}

The sample style rules in this section show that style sheet syntax relies
heavily on punctuation. When a style rule doesn’t work exactly as you antici-
pate, make sure your syntax doesn’t use a semicolon where you need a colon,
and doesn’t use a parenthesis where you need a bracket

The W3C’s validation service can help you find problems in your style sheets:

http://jigsaw.w3.org/css-validator/

133Chapter 8: Introducing Cascading Style Sheets

Font family
When assigning values to the font-family
property, you can provide a list of comma-
separated font names. These names must
match fonts available to the user’s Web
browser. If a font name, such as “Times New
Roman,” includes spaces, it must be enclosed
in quotation marks.

h1 {font-family: Verdana; “Times New
Roman”, serif;}

The browser seeks to use Verdana first, and if
it’s not available, it looks for Times New Roman
next, and then uses a generic serif font as its
last option. Chapter 10 covers fonts in CSS.

14_589172 ch08.qxd 4/22/05 3:36 PM Page 133

Working with style classes
Sometimes you need style rules that apply only to specific instances of an
HTML markup element. For example, if you want a style rule that applies only
to paragraphs that hold copyright information, you need a way to tell the
browser that the rule has a limited scope.

To target a style rule more closely, combine the class attribute with a
markup element. The following examples show HTML for two kinds of
paragraphs:

� A regular paragraph (without a class attribute)

<p>This is a regular paragraph.</p>

� A class attribute with the value of copyright

<p class=”copyright”>This is a paragraph of class copyright.</p>

To create a style rule that applies only to the copyright paragraph, follow the
paragraph selector in the style rule with

� A period (.)

� The value of the class attribute, such as copyright

The resulting rule looks like this:

p.copyright {font-family: Arial;
font-size: 12px;
color: white;
background: black}

This style rule specifies that all paragraphs of class copyright display
white text on a black background in 12-pixel Arial font. Figure 8-3 shows
how a browser applies this style rule only to paragraphs with the copyright
attribute.

Figure 8-3:
Classes can

target your
style rules

more
precisely.

134 Part III: Taking Precise Control Over Web Pages

14_589172 ch08.qxd 4/22/05 3:36 PM Page 134

You can also create style-rule classes that aren’t associated with any element,
like the following example:

.warning {font-family: Arial;
font-size: 14px;
background: black;
color: white}

You can use this style class with any element by adding class=”warning” to
that element. Figure 8-4 shows how a browser applies the warning style to the
paragraph and heading, but not the block quote, in this HTML:

<p class=”warning”>This is a paragraph without the warning class applied.</p>
<blockquote>This is a block quote without a defined class.</blockquote>
<p class=”warning”>This is a paragraph with the warning class applied.</p>

Inheriting styles
One of the basic concepts in HTML (and markup in general) is nesting tags:

� Your entire HTML document is nested within <html> and </html> tags.

� Everything a browser displays in a window is nested within <body> and
</body> tags. (That’s just the beginning, really.)

The CSS specification recognizes that you often nest one element inside
another and wants to be sure that styles associated with the parent element
find their way to the child element. This mechanism is called inheritance.

Figure 8-4:
You can use

classes to
create style

rules that
work with

any
element.

135Chapter 8: Introducing Cascading Style Sheets

14_589172 ch08.qxd 4/22/05 3:36 PM Page 135

When you assign a style to an element, the same style is applied to all the ele-
ments nested inside the element. For example, a style rule for the body ele-
ment that sets the page background, text color, font size, font family, and
margins looks like this:

body {background: black;
color: white;
font-size: 18px;

font-family: Garamond;
margin-left: 72px;
margin-right: 72px;
margin-top: 72px}

If you want to set style rules for the entire document, set them in the body
element. Changing the font for the entire page, for example, is much easier to
do that way; it beats changing every single element one at a time.

When you link the following HTML to the preceding style rule, which applies
only to the body element, the formatting is inherited to all elements (as
shown in Figure 8-5):

<body>
<p>This paragraph inherits the page styles.</p>
<h1>As does this heading</h1>

As do the items in this list
Item
Item

</body>

Figure 8-5:
Inheritance
means style
rules apply

to nested
elements.

136 Part III: Taking Precise Control Over Web Pages

14_589172 ch08.qxd 4/22/05 3:36 PM Page 136

Using Different Kinds of Style Sheets
When you finish creating your style rules, you’re ready to connect them to
your HTML page with one of these options:

� Insert style information into your document. You can either

• Use the <style> element to build a style sheet into a Web page.

This is an internal style sheet.

• Use the style attribute to add style information directly to a tag.

This is an inline style.

� Use an external style sheet. You can either

• Use the <link> tag to link your Web page to an external style
sheet.

• Use the CSS @import statement to import an external style sheet
into the Web page.

Internal style sheets
An internal style sheet lives within your HTML page. Just add style rules in a
<style> element in the document’s header. You can include as many (or as
few) style rules as you want in an internal style sheet. (See Listing 8-1.)

137Chapter 8: Introducing Cascading Style Sheets

Paying attention to inheritance
When you build complex style sheets that guide
the appearance of every aspect of a page, keep
inheritance in mind. For instance, if you set mar-
gins for the page in a body style rule, all margins
you set for every other element on the page are
based on margins set for the body. If you know
how your style rules work together, you can use
inheritance to minimize style rule repetition and
create a cohesive display for your page.

This chapter covers basic CSS syntax, but you
can fine-tune your style rules with advanced
techniques. A complete overview of CSS syntax
rules is available in the “CSS Structure and
Rules” tutorial by the Web Design Group at
www.htmlhelp.com/reference/css/st
ructure.html.

14_589172 ch08.qxd 4/22/05 3:36 PM Page 137

Listing 8-1: Adding an Internal Style Sheet to an HTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Internal Style Sheet Example</title>
<style type=”text/css”>
body {background: black;

color: white;
font-size: 16px;
font-family: Garamond;
margin-left: 72px;
margin-right: 72px;
margin-top: 72px}

h1, h2, h3 {color: teal;
font-family: Arial;
font-size: 36px}

p.copyright {font-family: Arial;
font-size: 12px;
font-color: white;
background: black}

warning {font-family: Arial;
font-size: 16px;
font-color: red}

</style>
</head>
<body>

<!-- Document content goes here -->

</body>
</html>

The benefit of an internal style sheet is convenience: Your style rules are
on the same page as your markup so you can tweak both quickly. But if you
want the same style rules to control the appearance of more than one HTML
page, move those styles from individual Web pages to an external style sheet.

External style sheets
An external style sheet holds all your style rules in a separate text document
you can reference from any HTML file on your site. You must maintain a sepa-
rate style sheet file, but an external style sheet offers benefits for overall site
maintenance. If your site’s pages use the same style sheet, you can change
any formatting characteristic on all pages with a change to the style sheet.

138 Part III: Taking Precise Control Over Web Pages

14_589172 ch08.qxd 4/22/05 3:36 PM Page 138

We recommend using external style sheets on your sites.

Linking
To reference an external style sheet, use the link element in the Web page
header, like this:

<html>
<head>
<title>External Style Sheet Example</title>
<link rel=”stylesheet” type=”text/css” href=”styles.css” />

<head>
<body>

<!-- Document content goes here -->

</body>
</html>

The href attribute in the <link> element can take either

� A relative link (a style sheet on your own site)

� An absolute link (a style sheet that doesn’t reside on your own site)

Usually, you shouldn’t use a style sheet that doesn’t reside on your Web
site — you want control of your site’s look and feel.

If you want to quickly add style to your Web page (or experiment to see
how browsers handle different styles), use an absolute URL to point to
one of the W3C’s Core style sheets. Read more about them at

www.w3.org/StyleSheets/Core/

Chapter 6 covers the difference between relative and absolute links.

Importing
The @import statement instructs the browser to load an external style sheet
and use its styles. You use it within the <style> element but before any of
the individual style rules, like so:

<style>
@import “http://www.somesite.edu/stylesheet.css”;

</style>

Style rules in an imported style sheet take precedence over any rules that
come before the @import statement. So if you have multiple external style
sheets referenced with more than one @import on your page, rules apply
from the later style sheets (the ones farther down on the page).

139Chapter 8: Introducing Cascading Style Sheets

14_589172 ch08.qxd 4/22/05 3:36 PM Page 139

Understanding the Cascade
Multiple style sheets can affect page elements and build upon one another.
It’s like inheriting styles within a Web page. This is the cascading part of CSS.

Here’s a real-world example: a Web site for university’s English department.
The English department is part of the School of Humanities, which is just one
school in the overall university. Each of these entities — the university, the
school, and the English department — has its own style sheet.

1. The university’s style sheet provides style rules for all of the pages in
the overall site.

2. The school’s style sheet links to the university’s style sheet (using an
@import statement), and adds more style rules specific to the look the
school wants for its own site.

3. The English department’s style sheet links to the school’s style sheet.

So the department’s pages both have their own style rules and inherit the
style rules from both the school and the university’s style sheet.

But what if multiple style sheets define rules for the same element? What if,
for example, all three style sheets specify a rule for the h1 element? In that
case, the nearest rule to the page or element you’re working on wins out:

� If an h1 rule exists on the department’s style sheet, it takes precedence
over the school and university h1 styles.

� If an individual page within the department applies a style rule to h1 in a
<style> tag, that rule applies.

140 Part III: Taking Precise Control Over Web Pages

Use inline styles carefully
You can attach individual style rules, called an
inline style, to individual elements in an HTML
document. An inline style rule attached to an
element looks like this:

<p style=”color: green”>Green text.</p>

Adding style rules to an element isn’t really the
best approach. We generally recommend that
you choose either internal or (preferably) exter-
nal style sheets for your rules instead of attach-
ing the rules to individual elements in your
document. Here are a few reasons:

� Your style rules get mixed up in the page
and are hard to find.

� You must place the entire rule in the value
of the style attribute, which makes com-
plex rules hard to write and edit.

� You lose all the benefits that come with
grouping selectors and reusing style rules
in external style sheets.

14_589172 ch08.qxd 4/22/05 3:36 PM Page 140

Chapter 9

Using Cascading Style Sheets
In This Chapter
� Understanding how CSS is used

� Positioning objects on a page

� Creating font rules

� Creating style sheets for print

� Understanding aural style sheets

Understanding the structure and syntax of CSS is easy. Learning about
the properties that CSS can apply to (X)HTML documents takes a little

more time and effort. However, where the learning curve really gets interest-
ing is when it comes to learning how to use CSS to take a plain or ordinary
Web page and “kick it up a notch.” This chapter deals with how to put CSS to
work, rather than focusing on its structure and inner workings.

Chapter 8 is a high-level overview of CSS and how it works. If you need a
refresher of CSS style rules and properties, read Chapter 8, and then return to
this chapter and put CSS in action.

Now it’s time to make a page and give it some style!

To use CSS efficiently, follow these general guidelines:

� When you test how a page looks, use internal styles so you can tweak to
your heart’s delight. (This chapter shows internal style sheets.)

� When your test page looks just right, move those styles to an external
sheet, and then apply them throughout your site.

15_589172 ch09.qxd 4/22/05 3:37 PM Page 141

Managing Layout, Positioning, and
Appearance

You can use CSS to lay out your pages so that images and blocks of text

� Appear exactly where you want them to

� Fit exactly within the amount of space that you want them to occupy

After you create the styles within a document, you can create an external
style sheet that applies the same styles to any page you want.

Developing specific styles
Listing 9-1 shows a Web page without any defined styles.

Listing 9-1: A Fairly Dull Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Pixel’s Page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />

</head>
<body>
<h1>I’m Pixel the Cat. Welcome to my page.</h1>
<div class=”navbar”>
Links of interest:

Google

Amazon

Yahoo

</div>
<img src=”/images/pixel1.jpg” alt=”The Cat” width=”320” height=”240”
id=”theCat” />

</body>
</html>

The cat looks great, but the page certainly doesn’t show off his possibilities.
The addition of some styles improves the page immensely. Here’s how!

Visual layouts
Instead of the links appearing above the image, as they are in Figure 9-1, we
want them on the left, a typical location for navigation tools. The following
markup floats the text for the search site links to the left of the image:

142 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 142

<style type=”text/css”>
.navbar {
background-color: #CCC;
border-bottom: #999;
border-left: #999;
border-width: 0 0 thin thin;
border-style: none none groove groove;
display: block;
float: left;
margin: 0 0 0 10px;
padding: 0 10px 0 10px;
width: 190px;

}
</style>

In the preceding rules, we

� Added a <style> tag

� Defined the navbar class inside the <style> tag

� Used the navbar class to instruct the content to float to the left of
images, which causes them to appear in the same part of the page on
the left, rather than above the graphic

This rule says that anything on the page with a class of navbar (as shown in
Figure 9-2) should display with

� A light-gray background

� A bottom and left thin grooved-line border in a darker gray

Figure 9-1:
This

styleless
page

doesn’t live
up to this

cat’s
possibilities.

143Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 143

� No top or right border

� A block that floats to the left (so the everything else on the page moves
right, as with the image of the cat in Figure 9-2)

� A left margin of 10 pixels

� Padding at top and bottom of 10 pixels each

� A navbar area 190 total pixels wide

Note that several of the properties in the declaration, called shorthand proper-
ties, take multiple values, such as margin and padding. (They are known as
shorthand properties because they collect values from multiple related CSS
properties [like margin-height, margin-width, and so forth]. See Appendix
B for a complete list.) Those values correspond to settings for the top, right,
bottom, and left edges of the navbar’s box. margin creates an empty zone
around the box, and padding defines the space between the edges or bor-
ders of the box and the content within the box. Here are the rules that
explain how to associate values with properties that deal with margins, bor-
ders, padding, and so forth:

� If all the sides have the same value, a single value works.

� If any side is different from the others, every side needs a separate value.

To remember what’s what, think of the edges of an element box in clockwise
order, starting with the top edge: top, right, bottom, and then left.

Figure 9-2:
The

navigation
bar now

looks more
like the

standard
left-hand

navigation.

144 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 144

Positioning
CSS provides several ways to specify exactly where on a page an element
should appear. These controls use various kinds of positioning based on the
relationships between an element’s box and its parent element’s box to help
page designers put page elements where they want them to go. The kinds of
properties involved are discussed in the following sections.

Location
You can control the horizontal and vertical location of an image. Instead of
just being drawn automatically to the right of the navigation bar, you can put
it down and to the left, as shown in Figure 9-3:

#theCat {position: absolute; top: 100px; left: 100px;}

You might be wondering why the navbar rule starts with a period, and the
theCat rule starts with a pound symbol (also known as a hash mark or
octothorpe). That’s because the period applies to a class attribute, but the
pound symbol applies to an id attribute. You could apply either a class or
an id; the difference between the two is that a class can be used more than
once, but an id must be unique for a page. You can’t have anything else on
the page with an id of theCat. The difference, quite simply, is that a class
lets you refer to some entire kind of element with a single reference, but an
id can address only a single instance of an element.

Figure 9-3:
The image is

much more
striking

in this
location.

145Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 145

Overlapping
Two objects can be assigned to the same position in a Web page. When that
happens, the browser must decide the display order and which objects to
show and which ones to hide.

The z-index, added to any rule, tells CSS how you want an object stacked
over and under other objects the page knows about:

� Lower numbers move down the stack.

� Higher numbers move up the stack.

� The default value for z-index is auto, which means it’s the same as for
its parent element.

Giving theCat a z-index value of -1 automatically puts it behind everything
else on the page (as shown in Figure 9-4) for which the z-index isn’t set.

Fonts
You can make a page more interesting by replacing old boring default fonts.
Start by specifying a generic body font as well as setting some other default
rules such as background color and text color.

Body text
Here’s an example that sets the style for text within the body tag:

body {font-family: verdana, geneva, arial, helvetica, sans-serif;
font-size: 12px; line-height: 16px; background-color: white;
color: black;}

Figure 9-4:
The cat’s

peeking out
from behind

the navi-
gation bar.

146 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 146

Because the body element holds all content for any Web page, this affects
everything on the page. The preceding rule instructs the browser to show all
text that appears within the body element as follows:

� The text is rendered using one of the fonts listed. We placed Verdana
at the head of the list because it is the preferred choice, and browsers
check for available fonts in the order listed in the markup. (Note that a
generic font, in this case sans-serif, almost always appears last in
such lists because the browser can almost always supply such a font
itself.)

You can list more than one font. The browser uses the first font in your
list that’s available in the browser. For example, the browser looks for
fonts from our list in this order:

1. Verdana

2. Geneva

3. Arial

4. Helvetica

5. The browser’s default sans-serif font

� 12-pixel font size

� 16-pixel line height

The lines are spaced as though the fonts are 16 pixels high, so there’s
more vertical space between lines.

Figure 9-5 shows that

� All the changes apply to the entire page, including the navigation bar.

� The font-family changed in the h1 heading, but neither the font-
size nor line-height was changed.

Because headers have specific defaults for font-size and line-
height, another rule is needed to modify them.

In Figure 9-5, the figure shows that the top of the header is slightly truncated.
This is a bug in Internet Explorer for Windows that doesn’t occur in other
browsers. Unfortunately, CSS rendering is unpredictable enough that you
must test style rules in various browsers to see how they look and then
tweak accordingly.

Headings
If we explicitly assign style properties to the h1 element, display results are
more predictable. Here’s a sample set of styles:

h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica, sans-serif;
font-size: 24px; line-height: 26px;}

147Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 147

Figure 9-6 shows a first-level heading using the font family and type size that
we want: 24-pixel Trebuchet MS, with a 26-pixel line height. If we didn’t have
the Trebuchet MS font on our system, the heading would appear in Verdana.

When a font name includes spaces (like trebuchet ms or times new
roman), the full name must be within quotation marks. See Chapter 8 for
more information.

Figure 9-6:
Declaring a

rule for h1
makes it

appear just
how we
want it.

Figure 9-5:
The fonts
are nicer,

but they
could still

use a little
more work.

148 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 148

Hyperlinks
We think that having the hyperlinks underlined makes the menu look a little
cluttered, so underlines are normally off. But we still want the hyperlinks to
look like hyperlinks, so we tell CSS

� Make links bold.

� Make underlines appear when the cursor is over a link.

� Show links in certain colors.

The following style rules define how a browser should display hyperlinks:

a {text-decoration: none; font-weight: bold}
a:link {color: blue}
a:visited {color: #93C}
a:hover {text-decoration: underline}

What’s going on here? Starting from the top, we’re setting two rules for the
<a> tag that apply to all links on the page:

� The text-decoration declaration sets its value to none.

This gets rid of the underlining for all the links.

� The font-weight declaration has a value of bold.

This makes all the links on the page appear in bold.

The remaining rules in the preceding code are pseudo class selectors. Their
most common usage is to modify how links appear in their different states.
For more information on pseudo classes, see Chapter 10. Figure 9-7 shows
how the page appears when the previous style rules are applied.

Figure 9-7:
The final

version of
our page.

149Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 149

Externalizing style sheets
When the final page is the way you want it, you’re ready to move the tested,
approved internal style sheet into an external style sheet.

� Every page of the site can use the whole style sheet with the addition of
only one line of code to each page.

� Changes can be made site-wide with one change in the external style
sheet.

To create an external style sheet from a well-testing internal style sheet,
follow these steps:

1. Copy all text that sits between the <style> and </style> tags.

2. Paste that text into its own document.

This text should include only CSS markup, without any HTML tags or
markup.

3. Add a .css suffix to the document’s name (for example, myStyles.css).

This shows at a glance that it’s a CSS file.

Here are two methods for linking an HTML file to an external style sheet:

� Use the <link> tag.

All CSS-capable browsers understand the link tag.

� Use the <style> tag with the @import keyword.

Only newer browsers understand the <style> and @import combination.

150 Part III: Taking Precise Control Over Web Pages

Style sheets for old and new browsers
To include rules that both old and new browsers
can handle, you can create two style sheets for
a site:

� A basic style sheet that contains only the
simplest of styles

� A complex style sheet that uses the capa-
bilities of the most powerful new browsers

The following code uses two style sheets:

� A <link> tag brings in simpleStyles.
css, a basic style sheet for old browsers.

� The <style> tag and @import keyword
combination brings in complexStyles.
css, a complex style sheet for new
browsers, which overrides the styles in
simpleStyles.css.

<link href=”simpleStyles.css”
rel=”stylesheet” />

<style type=”text/css”>
@import “complexStyles.css”;

</style>

Both old and new browsers get exactly those
rules that they can handle.

15_589172 ch09.qxd 4/22/05 3:37 PM Page 150

See Chapter 8 for more on these two methods.

Multimedia
You can specify how you want your Web pages to look or behave on different
media types depending on the medium.

Table 9-1 lists all the media types and their uses.

Table 9-1 Recognized Media Types
Media Type Description

all Suitable for all devices

aural For speech synthesizers

braille For Braille tactile feedback devices

embossed For paged Braille printers

handheld For handheld devices (such as those with a small screen,
monochrome monitor, and limited bandwidth)

print For paged, opaque material and for documents viewed on-
screen but in print preview mode

projection For projected presentations such as projectors or transparencies

screen For color computer screens

tty For media using a fixed-pitch character grid, such as teletypes,
terminals, or portable devices with limited display capabilities

tv For television-type devices (such as those with low resolution,
color capability, limited-scrollability screens, and some sound
available)

CSS can make changes to customize how the same pages

� Render on a computer screen

� Print on paper

A nifty color background might make your page a mess when it’s printed
on a black-and-white laser printer, but proper use of print media styles
can keep this from happening!

� Sound when read out loud

151Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 151

Visual media styles
Table 9-2 lists the CSS properties that you’re most likely to use in a typical
Web page. The Cheat Sheet at the front of this book includes brief descrip-
tions of the most commonly used CSS properties and (X)HTML tags and
attributes.

Table 9-2 Visual Media Styles
Property Values Default Value Description

background- Any color, by transparent Background color of
color name or hex the page

code

background- URL none URL of an image to
image display in a page

background

color Any color, by UA dependent Color of the fore-
name or hex ground text
code

font-family Any named font UA dependent Font to display
cursive
fantasy
monospace
sans-serif
serif

font-size number + unit medium Size of the font to be
xx-small displayed
x-small
small
medium
large
x-large
xx-large

font-weight normal normal Weight (how bold or
bold light) the font should
bolder appear
lighter

line-height normal normal Vertical spacing
number + unit between lines of text

152 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 152

Property Values Default Value Description

text-align left UA dependent + Which way the text
right writing direction on the page should
center be aligned
justify

text-decoration none none Special text effects
underline
overline
line-through
blink

list-style- URL none URL of an image to
image display as the bullets

for a list

list-style- inside outside Wrapping list text
position outside inside or outside of

bullets

list-style- disc disc Bullet type on lists
type circle

square
decimal
decimal-
leading-zero
lower-alpha
upper-alpha
none

display block inline Format of a defined
inline section of the page
none

top percentage auto For absolutely posi-
number + unit tioned objects, the
auto offset from the top

edge of the position-
ing context

right percentage auto For absolutely posi-
number + unit tioned objects, the
auto offset from the right

edge of the position-
ing context

(continued)

153Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 153

Table 9-2 (continued)
Property Values Default Value Description

bottom percentage auto For absolutely posi-
number + unit tioned objects, the
auto offset from the

bottom edge of the
positioning context

left percentage auto For absolutely posi-
number + unit tioned objects, the
auto offset from the left

edge of the position-
ing context

position static static Method by which an
absolute element box is laid
relative out, relative to posi-
fixed tioning context

visibility collapse inherit Indicates whether an
visible object will be dis-
hidden played on the page
inherit

z-index number auto Stacking order of an
auto object

border-style none not defined The displayed style
dotted of an object’s borders
dashed Can be broken out
solid into border-top-
double style, border-
groove right-style,
ridge border-bottom-
inset style, and
outset border-left-

style

border-width Thin not defined Width of the border
medium around an object
thick Can be broken out
number into border-top-

width, border-
right-width,
border-bottom-
width, and
border-left-
width

154 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 154

Property Values Default Value Description

border-color Any color, by not defined Color of an object’s
name or hex code border
transparent Can be broken out

into border-top-
color, border-
right-color,
border-bottom-
color, and
border-left-
color

border border-width + not defined Combined features of
border-style + a border around an
border-color object

Can be broken out
into border-top,
border-right,
border-bottom,
and border-left

float left none Specifies whether
right the object should be
none floated to one side of

the document

height percentage auto Displayed height of
number + unit an object
auto

width percentage auto Displayed width of an
number + unit object
auto

margin percentage not defined Displayed margins of
number + unit an object
auto Can be broken out

into margin-top,
margin-right,
margin-bottom,
and margin-left

(continued)

155Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 155

Table 9-2 (continued)
Property Values Default Value Description

padding percentage not defined Displayed blank
number + unit space around an
auto object

Can be broken out
into padding-top,
padding-right,
padding-bottom,
and padding-left

cursor auto auto Cursor appearance
crosshair in the browser
default window
pointer
move
text
help

Some browsers don’t support all CSS properties. If you’re using CSS features,
test your pages with the browsers that you expect your visitors will use.

If you want to take an extremely thorough guide to CSS everywhere you go,
you can put it on your iPod! Westciv’s free podGuide is a folder of small text
files. Download the zipped file and follow the instructions on how to install it,
and you have complete documentation with you at all times. You also win the
title of “World’s Biggest CSS Geek.” The podGuide is at

www.westciv.com/news/podguide.html

Paged media styles
CSS can customize how a page looks when it’s printed. We recommend these
guidelines:

� Replace sans-serif fonts with serif fonts.

Serif fonts are easier to read in print than sans-serif fonts.

� Insert advertisements that

• Make sense when they aren’t animated

• Are useful without clicking

156 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 156

In general, paged media styles help ensure that text looks as good when it’s
printed as it does in a Web browser. See Table 9-3 for an explanation of paged
media properties in CSS that you can use to help your users make the most
when printing Web pages.

Table 9-3 Paged Media Styles
Property Values Default Value Description

orphans number 2 The minimum number
of lines in a para-
graph that must be
left at the bottom of
a page

page-break- auto auto The page-breaking
after always behavior after an

avoid element
left
right

page-break- auto auto The page-breaking
before always behavior before an

avoid element
left
right

page-break- auto auto The page-breaking
inside avoid behavior inside an

element

widows number 2 The minimum number
of lines in a para-
graph that must be
left at the top of a
page

The example in Listing 9-2 uses these options for paged media styles:

� Make the output black text on a white background.

� Replace sans-serif fonts with serif fonts.

157Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 157

Listing 9-2: Adding a Print Style Sheet

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>This is my page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<style>

body {background-color: black; color: white; font-family: sans-serif;}

@media print {
body {background-color: white; color: black; font-family: serif}

}
</style>
</head>
<body>

This page will look very different when sent to the printer.
</body>
</html>

If you’re now wondering why none of the properties in Table 9-3 were set, but
other properties were, it’s because (in this example) their defaults worked
fine. And just because those page properties can be set doesn’t mean that
you can’t set other properties also — it isn’t an either/or.

158 Part III: Taking Precise Control Over Web Pages

Aural (speech sound) styles
Aural browsers and styles aren’t just for the
visually impaired. They’re also useful for Web
users who

� Have reading problems

� Need information while driving

The following example recommends voices to
be played using male and female characters to
make it clear which characters are speaking:

<style>
@media aural {

p.stanley {voice-family: male;}
p.stella {voice-family: female;}

}
</style>

Usually, you don’t have to worry much about
adding aural styles to your page. The default
readers should work just fine if

� Your page is mostly text.

� You don’t have a strong opinion about how
it sounds, so that any clearly male or female
voice will do.

That said, you can find a complete listing of all
aural style properties in Appendix B at the end
of this book.

15_589172 ch09.qxd 4/22/05 3:37 PM Page 158

Marvelous Miscellany
Table 9-4 lists other CSS properties that you might find in documents.

Table 9-4 Additional CSS Properties
Property Values Default Value Description

@page Paged {page selector| Defines page context
media page-pseudo- for given content box

class|page
context}

content Text {string|uri| Describes content to
counter|attr(x)| be inserted during
open-quote| generated content
close-quote| operation
no-open-quote|
no-close-quote|
inherit}

counter- General {name:integer| Used to increment
increment none|inherit} the value of a named

counter

counter- General {name: Used to reset the
reset integer| value of a named

none|inherit} counter to a specific
value

empty-cells Table {hide|show| Describes what to do
inherit} with cells that con-

tain no content

margin- Box {auto|length| Sets margin width for
bottom percentage| bottom of element

inherit}

margin- Box {auto|length| Sets margin width for
left percentage| left of element

inherit}

margin- Box {auto|length| Sets margin width for
right percentage| right of element

inherit}

margin-top Box {auto|length| Sets margin width for
percentage| top of element
inherit}

(continued)

159Chapter 9: Using Cascading Style Sheets

15_589172 ch09.qxd 4/22/05 3:37 PM Page 159

Table 9-4 (continued)
Property Values Default Value Description

marker- Box {auto|length| Sets offset between
offset inherit} marker edge and

nearest edge of prin-
cipal containing box

marks Paged {crop|cross| Defines what kind of
media none|inherit} page edge, crop, or

trim marks to include
when rendering
pages for output

overflow General {auto|hidden| Determines handling
scroll|visible| of content that over-
inherit} flows element con-

tent area

page Paged {page selector| Invokes a page
media inherit} selector defined by

using @page

padding- Box {length| Sets width of
bottom percentage| padding on element’s

inherit} bottom

padding-left Box {length| Sets width of
percentage| padding on element’s
inherit} left

padding- Box {length| Sets width of
right percentage| padding on element’s

inherit} right

padding-top Box {length| Sets width of
percentage| padding on element’s
inherit} top

quotes Text {none|string| Sets open and close
inherit} quotes (when 1 string

supplied, used for
both; when 2, 1st
opens, 2nd closes)

size Paged {auto|length| Specifies orientation
media landscape|length| and size of a page box

portrait|inherit}

table-layout Table {auto|fixed| Determines method
inherit} used to lay out table

contents

160 Part III: Taking Precise Control Over Web Pages

15_589172 ch09.qxd 4/22/05 3:37 PM Page 160

Chapter 10

Getting Creative with
Colors and Fonts

In This Chapter
� Using CSS to define text formatting

� Working with page colors and backgrounds

� Changing font display

� Adding text treatments

Before style sheets came along, HTML markup controlled backgrounds,
colors, fonts, and text sizes on Web pages. However, style sheets and the

ability to separate style information from content let designers use Cascading
Style Sheets (CSS) to control font, color, and other style information.

The use of CSS to control such elements

� Provides better control when updating or editing formatting information

� Prevents HTML documents from becoming cluttered with tags

� Provides more options for formatting your text, such as defining line
height, font weight, and text alignment, and converting text to uppercase
(capital letters) or lowercase

(X)HTML still includes a few formatting elements, such as <tt>, <i>, <big>,
, and <small>; however, the remaining formatting elements, such as
, are deprecated. That means they’re no longer recommended for
use (although they still work, and most browsers recognize them).

16_589172 ch10.qxd 4/22/05 3:59 PM Page 161

Color Values
(X)HTML defines color values in two ways:

� By name (you choose from a limited list)

� By number (harder to remember, but you have many more options)

Color names
The HTML specification includes 16 color names that you can use to define
colors in your pages.

The Cheat Sheet bound into the front of this book has information about the
16 named colors, including names, corresponding hex codes (the six-digit
hexadecimal numbers that also define the colors), and color swatches. You
can safely use color names in your CSS markup and be confident that
browsers will recognize them and use the correct colors in your Web pages.

Visit www.htmlhelp.com/reference/html40/values.html#color to see
how your browser displays these colors. If you can, view this page on two or
three different computers to see how the browser, operating system, graph-
ics card, and monitor can subtly change the display.

This CSS style declaration says all text within <p> tags should be blue:

p {color: blue;}

If you’re looking for burnt umber, chartreuse, or salmon, you’re out of luck.
A box of 64 crayons this list is not. You can, however, also find hex codes for
Web-safe colors, along with color swatches, on the Cheat Sheet. These colors,
though unnamed, are Web-safe because they reproduce pretty reliably on
most color computer display devices and printers.

Color numbers
Color numbers allow you to use any color (even salmon) on your Web page.

Hexadecimal color codes
Hexadecimal notation uses six characters — a combination of numbers and
letters — to define any color. If you know a color’s hexadecimal code (often
called a hex code for short), you have all you need to use that color in your
HTML page.

162 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 162

When you use hexadecimal code to define a color, you should always precede
it with a pound sign (#).

This CSS style declaration makes all text contained by <p> tags blue:

p {color: #0000FF;}

Unlike the familiar base 10 (decimal) system that uses 10 numerals to repre-
sent all possible numbers, the hexadecimal (base 16) system uses 16 “numer-
als.” If you want to know more about the hexadecimal system or want to
convert numbers from decimal to hexadecimal, visit

http://mathforum.org/library/drmath/view/55830.html

RGB values
You can use two RGB values to define color. These value types aren’t as
common as hexadecimal values, but they’re just as effective:

� rgb(r,g,b): The r, g, and b are integers between 0 and 255 that repre-
sent the red, green, and blue of the color.

163Chapter 10: Getting Creative with Colors and Fonts

Finding any color’s hex code
You can’t just wave your magic wand and come
up with the hex code for any color. But that
doesn’t mean that you can’t find out through
less magical means. Color converters follow
a precise formula that changes a color’s stan-
dard RGB notation into hexadecimal notation.
Because you have better things to do with your
time than compute hex codes, you have several
options for finding out the code for your color of
choice, including Web-safe colors on this book’s
Cheat Sheet. None of these make you use a
calculator:

� On the Web: Some good sources for hexa-
decimal color charts are

www.hypersolutions.org/pages/
rgbhex.html

www.colorschemer.com/online.html
http://webmonkey.wired.com/webmonkey/

reference/color_codes

You simply find a color you like and type the
hex code listed next to it into your HTML.

� Using a converter: If you already know
the RGB values for a particular color, you
can plug them into an online converter
at www.univox.com/home/support/
rgb2hex.html to get the hexadecimal
equivalent. For example, the RGB values for
a nice sky blue are 159, 220, and 223. Plug
those into the converter, and you get the
equivalent hex code #9FDCDF.

� Using image-editing software: Many image-
editing applications, such as Adobe
Photoshop or Jasc Paint Shop Pro, display
the hexadecimal notation for any color.
Even Microsoft Word’s color picker shows
you hex codes for colors in an image. If you
have an image you like that you want to use
as a color source for your Web page, open
the image in your favorite editor and find out
what the colors’ hex codes are.

16_589172 ch10.qxd 4/22/05 3:59 PM Page 163

� rgb(r%,g%,b%): The r%, g%, and b% represent the percentage of red,
green, and blue of the color.

Every color can be defined as a mixture of red, green, and blue (RGB). You
can use either an RGB value or the equivalent hex code to describe a color’s
RGB value to a Web browser.

Color Definitions
You can define individual colors for any text on the Web page, as well as
define a background color for the entire Web page or some portion thereof.

CSS uses the following properties to define color:

� color defines the font color and is also used to define colors for links in
their various states (active, visited).

� background or background-color defines the background color for
the entire page or defines the background for a particular element (for
example, a background color for all first-level headings, similar to the
idea of highlighting something in a Word document).

Text
To change the color of text on your Web page

1. Determine the selector. For example, will the color apply to all first-
level headings, to all paragraphs, or to a specific paragraph?

2. Use the color property.

3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is:

selector {color: value;}

Here is a collection of style declarations that use the color property:

body {color: olive; font-family: Verdana, sans-serif;
background-color: #FFFFFF; font-size: 85%;}

hr {text-align: center;}
.navbar {font-size: 75%; text-align: center;}
h1 {color: #808000;}
p.chapternav {text-align: center;}
.footer {font-size: 80%;}

164 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 164

In the preceding CSS rules, the color for all text on the page is defined by
using the body selector. The color is applied to all text in the body of the
document unless otherwise defined. For example, the first-level heading is
defined as forest green by using hexadecimal notation.

Links
Pseudo classes allow you to define style rules based on information outside
the document tree.

The most common CSS use of pseudo classes is to define a style rule for a
given element in the document tree — a technical term that just means that
the browser builds a hierarchical representation of all elements in a docu-
ment, much like a family tree, where every element has a parent and may
contain a child. For example, :link is a pseudo class that defines style rules
for any link that hasn’t yet been visited.

There are five common pseudo classes that you can use with hyperlinks:

� :link defines formatting for links that haven’t been visited.

� :visited defines formatting for links that have been visited.

� :focus defines formatting for links that are selected by the keyboard
(for example, by using the Tab key) and are about to be activated by
using the Enter key.

� :hover defines formatting for links when the mouse cursor hovers over
them.

� :active defines formatting for links when they are selected (clicked by
the mouse).

The pseudo class name is preceded by a colon (:).

Pseudo classes can be used with

� Elements (such as the <a> element that defines hyperlinks)

� Classes

� IDs

For example, to define the style rules for visited and unvisited links, use the
following syntax:

� This sets the color of any hyperlink pointing to an unvisited URL to red
by using its hexadecimal value:

a:link {color: #FF0000;}

165Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 165

� This sets any hyperlink that points to a visited URL to appear in the
named color green:

a:visited {color: green;}

� This designates unvisited links with a class of internal to appear in
(named color) yellow:

a.internal:link {color: yellow;}

Links can occupy multiple states at one time. For example, a link can be vis-
ited and hovered over at the same time. Always define link style rules in the
following order: :link, :visited, :visible, :focus, :hover, :active.

CSS applies last rule seen to display your page. In this case, if you put the
pseudo class selectors in the wrong order, your results may not be what you
want. For example, if visited follows hover, and the two have overlapping
rules, hover effects apply only to links that haven’t yet been visited.

The following CSS rules render the document with olive as the color for links
that haven’t been visited and yellow as the color of visited links:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive;}
a:visited {color: yellow;}

Netscape 4 ignores hover. But it doesn’t hurt anything in Netscape 4 to use
hover (it’s just ignored) unless it’s a visitor’s only clue that the text is a link.

Some browsers don’t support pseudo classes with elements such as input or
select (these are forms elements). Current browsers support their use with
the a element. Test your results if you want to use pseudo classes with an ele-
ment other than <a>.

The CSS specification defines :link and :visited as mutually exclusive,
and it is up to the browser application to determine when to change the state
(visited versus unvisited) for any given link. For example, a browser might
determine that a link is unvisited if you clear your history data.

Backgrounds
To change the background color for your Web page, or a section of that page,
follow these steps:

1. Determine the selector. For example, will the color apply to the entire
background, or will it apply only to a specific section?

2. Use the background-color or background property.

3. Identify the color name or hexadecimal value.

166 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 166

The basic syntax for the style declaration is:

selector {background-color: value;}

In the following collection of style declarations, the first style declaration
uses the background-color property and sets it to light green by using
hexadecimal notation:

body {color: #808000; font-family: Verdana, sans-serif;
background-color: #EAF3DA; font-size: 85%;}

You can apply a background color to a block of text — for example, a para-
graph — much like you define the background color for the entire page.

You use background as a shorthand property for all individual background
properties or background-color to set just the color.

selector {background: value value value}

See Chapter 8 or “The Shorthand Property” section of Webmonkey’s
“Mulder’s Stylesheets Tutorial” for more information.

http://webmonkey.wired.com/webmonkey/98/15/index3a_page6.html?tw=authoring

Fonts
You can define individual font properties for different HTML elements with

� Individual CSS properties, such as font-family, line-height, and
font-size

� A group of font properties in the catchall shorthand font property

Font family
To define the font face by using the font family:

1. Identify the selector for the style declaration.

For example, making p the selector defines a font family for all <p> tags.

2. Add the property name font-family.

Not all font families are supported by every browser. CSS allows you to
specify multiple font families in case a browser doesn’t support the font
family you prefer. You can list multiple font family names, separated by
commas. The browser uses the first name in the list that is available on
the computer on which it’s running.

167Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 167

3. Define a value for the property (the name of the font family).

Use single or double quotation marks around any font family names that
include spaces.

To format all first-level headings to use the Verdana font, use a style declara-
tion like this:

h1 {font-family: Verdana, Helvetica, sans-serif;}

In the preceding declaration, two more font families are identified in case a
browser doesn’t support the Verdana font family.

We recommend including these font families in your style declarations:

� At least one of these common font families:

• Arial: Sample SAMPLE

• Helvetica: Sample SAMPLE

• Times New Roman: Sample SAMPLE

• Verdana: Sample SAMPLE

� At least one of these generic font families:

• serif: Sample SAMPLE

• sans-serif: Sample SAMPLE

• cursive: Sample SAMPLE

• fantasy: Sample SAMPLE

• monospace: Sample SAMPLE

Different elements may be formatted using different font families. These rules
define a different font family for hyperlinks (see Figure 10-1):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
hr {text-align: center;}
a {font-family: Courier, “Courier New”, monospace;}

Sizing
The following properties allow you to control the dimensions of your text.

Font size
The style declaration to specify the size of text is

selector {font-size: value;}

168 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 168

The value of the declaration can be

� One of the standard font property measurement values (listed in
Chapter 8)

� One of these user-defined keywords:

xx-small, x-small, small, medium, large, x-large, or xx-large

The value of each keyword is determined by the browser, not the style
rule.

The following rules define

� A relative font value for all text

� An absolute value for the font size for all first-level headings

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: #808000; font-family: Arial, Helvetica, sans-serif;

font-weight: 800; font-size: 24pt;}

The result appears in Figure 10-2.

Line height
The line height of a paragraph is the amount of space between each line
within the paragraph.

Line height is like line spacing in a word processor.

Figure 10-1:
The font

family for
hyperlinks

differs from
the font

family for
the rest of

the text.

169Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 169

To alter the amount of space between lines of a paragraph, use the line-
height property:

selector {line-height: value;}

The value of the line-height property can be either

� One of the standard font property measurement values (listed in
Chapter 8)

� A number that multiplies the element’s font size, such as 1.5

We assign a quotation class to the first paragraph throughout this chapter
so you can see the changes. This allows us to apply these styles to the first
paragraph by using

<p class=”quotation”>

in the HTML document.

The following rules style the first paragraph in italics, indent that paragraph,
and increase the line height to increase readability (see Figure 10-3):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 10pt; line-height: 150%;}

Figure 10-2:
First-level
headings

are 24
points tall;

the font size
of other text

is relative.

170 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 170

Character spacing
You can increase or reduce the amount of spacing between letters or words
by using these properties:

� word-spacing: The style declaration for word-spacing is

selector {word-spacing: value;}

Designers call the space between words tracking.

� letter-spacing: The style declaration for letter-spacing is

selector {letter-spacing: value;}

Designers call the space between letters kerning.

The value of either spacing property must be a length defined by a standard
font property measurement value (listed in Chapter 8).

The following code increases the letter spacing (kerning) of the second para-
graph (see Figure 10-4):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 10pt; letter-spacing: 6px;}

Positioning
Alignment properties allow you to control the shape of text blocks.

Figure 10-3:
Any element

within the
quotation

class has
the same

formatting.

171Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 171

Alignment
Alignment determines whether the left and right sides of a text block are

� Flush: Starting or ending together

� Ragged: Starting or ending at different points

Syntax
Alignment is defined with the text-align property. The style declaration to
align text is:

selector {text-align: value;}

The value of the text-align property must be one of the following keywords:

� left aligns the text to the left. The right side of the text block is ragged.

� right aligns the text to the right. The left side of the text block is
ragged.

� center centers the text in the middle of the window. Both sides of the
text block are ragged.

� justify aligns the text for both the left and right side. The spacing
within the text in each line is adjusted so both sides of the text block
are flush.

Justifying text affects letter or word spacing in the paragraph. Test the
results before displaying your Web pages to the world.

Figure 10-4:
Kerning can
be larger or

smaller than
the font’s

normal
spacing.

172 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 172

Markup
The following example defines the alignment for the first-level heading and
the first paragraph (see Figure 10-5):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: #808000; font-family: Arial, Helvetica, sans-serif;

font-weight: 800; font-size: 24pt; text-align: center}
.quotation {font-style: italic; text-indent: 10pt; text-align: left;}

Indent
You can define the amount of space that should precede the first line of a
paragraph by using the text-indent property.

This doesn’t indent the whole paragraph. That requires CSS box properties,
such as margin-left and margin-right (see Chapter 9).

Syntax
The style declaration used to indent text is

selector {text-indent: value;}

The value must be one of the standard length property measurement values
(listed in Chapter 8).

Markup
As seen in this chapter, the quotation class has a text-indent of 10 points.

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 10pt;}

Figure 10-5:
The first-

level
heading is
centered;

the first
paragraph is

aligned to
the left.

173Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 173

Text treatments
CSS allows you to decorate your text by using boldface, italics, underline,
overline, or line-through, and even allows your text to blink (when supported
by browsers).

Bold
Using a boldface font is one of the more common text embellishments a
designer uses. To apply boldface in HTML, use the tag. However, CSS
provides you with more control over the font weight of the bolded text.

Syntax
This style declaration uses the font-weight property:

selector {font-weight: value;}

The value of the font-weight property may be one of the following:

� bold: Renders the text in an average bold weight

� bolder: Relative value that renders a font weight bolder than the cur-
rent weight (possibly assigned by a parent element)

� lighter: Relative value that renders a font weight lighter than the cur-
rent weight (possibly assigned by a parent element)

� normal: Removes any bold formatting

� One of these integer values: 100 (lightest), 200, 300, 400 (normal), 500,
600, 700 (standard bold), 800, 900 (darkest)

Markup
The following example bolds hyperlinks (see Figure 10-6):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a {font-weight: bold;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: olive; text-decoration: none;}

Italic
Italics are commonly used to set off quotations or to emphasize text. To
apply italics in HTML, use the <i> tag. However, CSS provides you with more
control over the font style of text through the font-style property.

Syntax
This style declaration uses the font-style property:

selector {font-style: value;}

174 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 174

The value of the font-style property may be one of the following:

� italic: Renders the text in italics (a special font that usually slants)

� oblique: Renders the text as oblique (a slanted version of the normal
font).

� normal: Removes any italic or oblique formatting.

Markup
The following example assigns an italic font style to the first-level heading:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: #808000; font-family: Arial, Helvetica, sans-serif;

font-style: italic; font-weight: 800; font-size: 24pt; text-align: center;}

Capitalization
You use the text-transform property to set capitalization in your document.

Syntax
This style declaration uses the text-transform property:

selector {text-transform: value;}

The value of the text-transform property may be one of the following:

� capitalize: Capitalizes the first character in every word

� uppercase: Renders all letters of the text of the specified element in
uppercase.

Figure 10-6:
All

hyperlinks
are bolded.

175Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 175

� lowercase: Renders all letters of the text of the specified element in
lowercase.

� none: Keeps the value of the inherited element.

Markup
The following example renders the first-level heading in uppercase (shown in
Figure 10-7):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: #808000; font-family: Arial, Helvetica, sans-serif;

font-weight: 800; font-size: 24pt;
text-align: center; text-transform: uppercase;}

The text-decoration property
The text-decoration property allows for a bit more crazy text formatting.
It isn’t used often.

Syntax
This style declaration uses the text-decoration property:

selector {text-decoration: value;}

The value of the text-decoration property may be one of the following:

� underline: Underlines text.

� overline: Renders the text with a line over it.

Figure 10-7:
The

first-level
heading

is rendered
in all

uppercase.

176 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 176

� line-through: Renders the text with a line through it.

� blink: Blinks the text on the screen.

Are you sure you want blinking text?

• blink isn’t supported by all browsers.

• blink can be dreadfully annoying and distracting.

� none: Removes any text decoration.

Markup
The following example changes the link when the mouse hovers over it. In
this case, it turns off any underlining for a link:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: olive; text-decoration: underline;}
a:hover {color: olive; text-decoration: none;}

The catchall font property
Many font properties can be summarized in one style declaration by using
the shorthand font property. When it’s used, only one style rule is needed to
define a combination of font properties:

selector {font: value value value;}

The value of the font property is a list of any values that correspond to the
various font properties:

� The following values must be defined in the following order, though they
need not be consecutive:

• font-size (required)

• line-height (optional)

• font-family (required)

� The font-family value list must end with a semicolon.

� Use commas to separate multiple font family names.

� The following values are optional and may occur in any order within the
declaration. Individual values are separated by spaces:

• font-style

• font-variant

• font-weight

177Chapter 10: Getting Creative with Colors and Fonts

16_589172 ch10.qxd 4/22/05 3:59 PM Page 177

For example, you can use the following style declaration to create a specific
style for a first-level heading:

h1 {font: italic bold 150% Arial, Helvetica, sans-serif;}

The preceding markup uses properties in the follow order: font-style,
font-weight, font-size, and font-family (the list uses commas to sepa-
rate specific font families) ending with the required semicolon. For a com-
plete listing of CSS shorthand properties, consult Appendix B at the end of
this book.

178 Part III: Taking Precise Control Over Web Pages

16_589172 ch10.qxd 4/22/05 3:59 PM Page 178

Chapter 11

Using Tables for Stunning Pages
In This Chapter
� Understanding table benefits

� Mapping a table design

� Building simple tables

� Stretching items across multiple cells

� Adding images, hyperlinks, or text to table cells

� Table tips and techniques

Historically, tables contain and lay out tabular data. However, in
(X)HTML they serve an entirely different purpose — to control Web

page layout. Most Web pages contain at least one table — some even nest
tables within tables. (X)HTML tables can present everything from text to
images on your pages efficiently and attractively.

Also, CSS provides plenty of positioning capability to give designers more
flexibility and precision when working with tables: a “killer combination!”

This chapter provides step-by-step instructions for building and using
(X)HTML tables and then using CSS to control their presentation. Use our
best tried-and-true tips and techniques to speed up and simplify your efforts.

What Tables Can Do for You
Traditionally, tables display data in formats that are easy to read and under-
stand. (X)HTML changed all that. Many Web sites use tables. Sites such as
Amazon.com, eBay, Yahoo!, and Google all use tables to display their content,

17_589172 ch11.qxd 4/22/05 3:39 PM Page 179

even if you can’t see them in an obvious way. In fact, such invisible tables
dominate the Web. The ideas that drive them are:

� Use tables to arrange items on your Web page.

� Turn borders off so users can’t see these tables.

By nature, Web pages start out linearly. Tables allow you to step out of a
linear mode and put text and images in more interesting places on a page.

You can use tables in a couple of ways:

� Traditional (ho-hum) method: You can define table or individual cell
widths by using absolute numbers. This type of table doesn’t resize
when users resize their browser windows.

Some designers prefer to use tables for the traditional purpose — to pre-
sent data — a straightforward, balanced approach that’s easily tackled.

� Presentation-focused (wow) method: You can define table and cell
width by using percentages. This table resizes when users resize their
browser windows.

Most designers perform creative, complex tricks with their tables.

Although this chapter covers all aspects of HTML tables, it focuses on layout
tips and techniques.

When you use tables for layout, they can result in a couple of outcomes:

� Tables can produce complex layout structures, as shown in Figure 11-1.
(Some other examples of complex tables are viewable at www.amazon.
com and www.yahoo.com.)

After you open these Web pages in your Web browser, look at each
page’s HTML source code (try View➪Source from your menu bar).
Observe how complex the markup is, and mark ye well when the markup
looks haphazardly arranged (alas, if only they’d asked us . . .).

� Some Web page design models keep the interface simple with the less-is-
more approach — and therefore easy to use. Figure 11-2 shows the
simple approach.

www.google.com uses a simple table to arrange navigation.

180 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 180

Table

TableTable

Figure 11-1:
This Web

page uses
three

different
tables for

layout.

181Chapter 11: Using Tables for Stunning Pages

Use (X)HTML and CSS in tables
(X)HTML tables can require some finesse to
make them do just what you need. But about 10
percent of Internet surfers use browsers that
don’t support CSS. This means tables usually
should be a basic foundation for page design.
We recommend using

� (X)HTML tables to lay the basic foundation
for your page

� CSS to provide additional table formatting

If you know your target users use updated
browsers, you can use CSS for all your position-
ing needs. For example, if you’re designing an
intranet Web site for a group of computer pro-
grammers, you can require that its viewers use a
newer browser only and eliminate table ele-
ments completely, if you like.

17_589172 ch11.qxd 4/22/05 3:39 PM Page 181

Table Basics
The complexity of HTML tables is built from three basic elements

� Borders: Every basic table must always have exactly four borders that
make up a rectangle.

� Cells: These are the individual squares (spaces) within the borders of a
table.

� Cell span: Within that four-walled structure, you can delete or add
cell walls (as shown with the cells on the right side of the table in Fig-
ure 11-3). When you delete cell walls, you make a cell span multiple
rows or columns — and that’s exactly what makes a table a flexible
tool for layout.

Cell spanning and cell width work differently:

� When you span cells, you change cell space by combining, or merging,
cells. This step removes cell walls.

� When you increase the width of a cell, you only change the space within
that cell.

Figure 11-2:
This Web

page uses
one simple
table with

three cells
for its

layout.

182 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 182

Sketching Your Table
Tables can become complex. You need to carefully plan them. Mapping to the
nearest pixel can grow tedious and can take several attempts, but it’s an
essential step in designing a well laid out page.

Developing layout ideas
Start with a general idea and slowly plan your layout until it becomes more
solid and specific. Follow these basic steps:

1. Grab (believe it or not) a sheet of paper and a pencil so that you can
sketch out your ideas.

Start with a general idea of where you want everything to go on your
page.

2. Evaluate what to include in your Web page and decide on the overall
layout.

Figure 11-3:
You can use

an HTML
table to lay

out Web
pages.

183Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 183

This way, you can begin to determine

• How many columns and rows you need

• The width of the table and cells

• Whether to make any cells span rows or columns

You need to make the following design choices:

• Whether the table will be centered, left aligned, or right aligned.

• Whether you want to include hyperlinks and where you might want
to include them.

For example, many Web sites, such as the one in Figure 11-1,
include a logo image that provides a hyperlink to the site’s home
page, so no matter what page you’re on, you can always get back
to the front door.

3. Figure out the pixel dimensions of images you want to use. Make sure
that the table fills a browser window nicely without forcing the user to
scroll left and right to see everything.

Decide between using text or images for navigation, as follows:

• If you want more font control over your navigation, consider using
images for your navigational items.

The font is embedded in the image; therefore, the user’s browser
settings can’t override the font you choose.

• If you don’t need additional font controls, use textual navigation.

• Decide where the main logo should go and what size it should be.

In Figure 11-2, the logo is the main focal point. Its dimensions are
276 pixels wide by 110 pixels tall.

Concentrate on managing the width of the table. Let the contents of your
table determine the cell height. Height is less important because users
are familiar with scrolling up and down Web pages. However, they may
get frustrated by scrolling left and right to read content.

Drafting the table
When you know how big and how numerous your design elements are, you
can sketch a rough table on paper.

If you opt for a simple approach, each main element (logo, hyperlink image,
and navigation) has its own cell. In Figure 11-4, that means only three cells.

184 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 184

If you have only a few cells, you’ll probably have to span the cells so the con-
tents fill the width of your page.

� A complex design may need several rows.

� A simple, clean design (such as the one in Figure 11-4) may require only
two rows.

Figure 11-4 shows the final sketch for your table:

• The first row spans both columns.

• The second row contains two separate columns.

The author of our sample Web site uses images in place of text for the naviga-
tional elements; however, for usability reasons, try using text in place of
images when possible. Even so, if you want complete control of the font(s) in
which your text appears, you may have to use images — and create an image
of the text written in your chosen font.

Constructing Basic Tables
When you have a sketch that gives a pretty solid indication of the page and
table layout, you can open your HTML editor and create the skeleton of your
table.

Components
The building blocks for your table’s framework are the three basic compo-
nents of any table:

� Table: <table>

� Table row: <tr>

contents

contents contents

Figure 11-4:
Start by

sketching
the table

dimensions,
even before

opening a
text editor.

185Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 185

<tr> is always enclosed within <table>.

� Table (data) cell: <td>

<td> is always enclosed within <tr>.

With these three elements, you can build a simple table.

The <table>, <tr>, and <td> opening and closing tags are required. If you
forget to include any, your table won’t display correctly in most browsers.

Layout
Tables come in many forms and at varying levels of complexity. A simple two-
dimensional data table that’s part of a Web page is easier to design and imple-
ment than a more complex table layout that contains an entire Web page. As
you read through the following sections, you will see and appreciate this dis-
tinction clearly.

Creating a simple table
The <table> tag and its markup typically appear between the <body> tags in
your document. However, you can also use them within most block elements
and within the <td> and <th> tags to nest tables. (See the “Nesting tables
within tables” section later in this chapter.) Use the following markup to
create a simple table with two rows and two columns (four data cells) —
replacing cell 1, cell 2, and so on with your text:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table>
<tr>
<td> cell 1 </td>
<td> cell 2 </td>

</tr>
<tr>
<td> cell 3 </td>
<td> cell 4 </td>

</tr>
</table>
</body>
</html>

The preceding example creates a table with two rows based on the sketch in
Figure 11-4. The first table row encloses cells 1 and 2; the second table row
encloses cells 3 and 4.

186 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 186

Table rows always run horizontally, and the contents of each cell — in this
case, cell 1, cell 2, and so on — are contained within their own <td> ele-
ment. Don’t forget that you must close your table tags, or your table will not
display correctly.

Creating a table-based Web page
To create the shell of your table-based Web page (for example, one based on
the sketch from the preceding section, Figure 11-4), follow these steps:

1. Start with the <table> element:

<table>
...

</table>

The <table> element can have a number of optional attributes (for
example, border=”1” or bgcolor=”black”) — for now, however, keep
it simple.

2. Decide how many rows you want the table to have:

The following markup creates a table with two rows:

<table>
<tr>...</tr>
<tr>...</tr>

</table>

3. Create cells in each row with the table data cell (<td>) element.

Each <td> element creates a cell, so the number of <td> elements in a
row is the number of columns.

The sketch in Figure 11-4 shows a two-column table with three cells: the
first row contains one cell, and the second row contains two cells. The
markup for this arrangement looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table>
<tr>
<td> contents </td>

</tr>
<tr>
<td> contents </td>
<td> contents </td>

</tr>
</table>
</body>
</html>

187Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 187

188 Part III: Taking Precise Control Over Web Pages

Other table elements
Although tables were invented to contain and
display data, they’re now most commonly used
to control Web page layout. This chapter focuses
on the elements that designers use to control
layout. If you want to create a traditional table,
you can use these table elements:

� <th>: The table header element displays text
in boldface with a default center alignment.

You can use the <th> element within any
row of a table, but you most often find and
use it in the first row at the top — or head —
of a table. Except for their position and ego-
tism, they act just like table data (<td>) tags
and should be treated as such.

� <caption>: This is the table caption ele-
ment. It is designed to exist anywhere
inside the <table> . . . </table>
tags but not inside table rows or cells
(because then they wouldn’t be captioning
anything). This element can only occur
once per table.

Similar to table cells, captions accommo-
date any HTML elements that can appear in
the body of a document (in other words,
inline elements), but only those. By default,
captions are horizontally centered with the
table, and their lines wrap to fit within the
table’s width. The <caption> element
accepts the align attribute.

� <tbody>: You can group table rows into a
table body section with the table body
(<tbody>) element.

A recent addition to the HTML 4 specifica-
tion, these elements allow table bodies to
scroll independently of the table head
(<thead>) and table foot (<tfoot>). The
table body should contain rows of table

data. The <tbody> element must contain
at least one table row (<tr>).

� <thead>: You can group table rows into a
table head section by using the table head
(<thead>) element. The table head con-
tains information about the table’s columns.

The <thead> element must contain at
least one table row.

� <tfoot>: Much like the <thead> ele-
ment, you can group table rows into a table
footer section by using the table footer
(<tfoot>) element. The table footer con-
tains information about the table’s columns
and must contain at least one table row.

Include your footer information before the
first instance of the <tbody> element so
that the browser renders that information
before taking a stab at all the content data
cells.

� <colgroup>: This element creates an
explicit column group. You specify the
number of columns by using the span
attribute or by using the <col> element,
which we define shortly.

You use the span attribute to specify a uni-
form width for a group of columns.

� <col>: The <col> element is an empty
element. You use the <col> element to fur-
ther define column structure. The <col>
element shouldn’t be used to group
columns — that’s the <colgroup> ele-
ment’s job. You use the <col> element
after you define a column group and set a
uniform width to specify a uniform width for
a subset of columns.

17_589172 ch11.qxd 4/22/05 3:39 PM Page 188

Here’s where tables can get a bit tricky. A simple table with an even number
of rows and columns (say two rows and two columns) is a piece of cake —
but you’ll discover as you get more handy at designing your own pages that
your needs aren’t likely to produce such symmetrical tables very often. If
your cell will span more than one row or column (such as the first cell in the
preceding example), you have to add an attribute that tells the browser
which cell does the spanning.

The number in the attribute corresponds to the number of columns or rows
you want the cell to span, which means if you’re creating a table like the one
in our example, you have to add the colspan=”2” attribute to the first <td>
element. (The first cell in the table spans across two columns.)

See the section, “Adding Spans,” later in this chapter for more information.
But for now, assume that you’re creating a table like ours. The markup looks
like this:

<table>
<tr>
<td colspan=”2”> contents </td>

</tr>
<tr>
<td> contents </td>
<td> contents </td>

</tr>
</table>

Congratulations, you’re done with your first table. Well, sort of. To effectively
use tables for layout, you need to know how to control several display issues,
such as borders, table widths, and the handling of white space within your
table. (For example, without borders, you can’t really tell the table is there —
it won’t show up in your browser. This isn’t a bad thing or a good thing, but
something that you can change if you want your borders to show up in
browsers.) Keep reading for more information on completing your table and
integrating it into your page.

Adding borders
A table border defines the outer edge of the table.

When the table is used to arrange elements on a page, you don’t want a visi-
ble border. There are two ways you can turn a table border on or off:

� Set the border attribute within the <table> element. The value of the
border attribute must be an integer that defines the border thickness in
pixels.

189Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 189

To turn the border off, set the border attribute equal to 0: <table
border=”0”>

� Define a border using the CSS border properties.

You may define the border style, width, or color by using CSS. (See the
later section, “Using CSS border properties.”)

Using the (X)HTML border attribute
For an (X)HTML table, border refers to both

� Outside borders

� Individual cell borders

You use the border attribute to turn all these table borders on or off.

To turn the table (and cell) border on, add the border attribute to the
<table> start tag, as shown in the following bold markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table border=”1”>
<tr>
<td colspan=”2”> contents </td>

</tr>
<tr>
<td> contents </td>
<td> contents </td>

</tr>
</table>
</body>
</html>

The value of the border attribute defines the thickness of the border in pixels.
For example, border=”5” produces a 5-pixel border. If you leave this attribute
off, most browsers don’t display a border. However, if you don’t want your
border visible, we suggest that you add border=”0” to turn off the border for
sure.

Where clear delineation between cell contents is desirable, such as with price
charts, real data tables, and other collections of text or numerical data, bor-
ders help visitors break what they’re seeing into separate bits of information.
But when a table is used to organize a Web page that all hangs together
nicely, turning borders off can help to reinforce this cohesiveness.

190 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 190

By default, most browsers use an invisible 2-pixel border on tables. When you
design your table, you should do one of the following:

� Allow for those invisible 2-pixel borders in your design.

� Configure your own borders.

� Eliminate the border by setting the border attribute to equal 0
(border=”0”).

Turn on the table border when you’re first creating and tweaking your table.
Sometimes it’s difficult to see just what is going on without a border. After
you’ve finished tweaking your table, you can turn off the border.

If you use tables to lay out content, table borders should probably be turned
off when you display your Web page to the world because borders can be dis-
tracting and make text that’s supposed to flow together hard to read.

Using CSS border properties
Unlike the (X)HTML border attribute, CSS allows you to define border styles
for any or all of the border sides. For example, you can define a dotted gray
border for the left side of the table and leave the rest of the table border
invisible.

Style
As you might expect, the border-style property allows you to define the
style (such as dotted or solid) of the border.

The style declaration used to add a border style is:

selector {border-style: value;}

The value for the border-style property must be one of the predefined
keywords:

� dotted

� dashed

� solid

� double

� groove

� ridge

� inset

� outset

191Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 191

To create a solid border, use the following style declaration:

table {border-style: solid;}

Width
Similar to using the (X)HTML border attribute, you can define the border
width in pixels. However, CSS provides you with additional width value data
types to choose from. The style declaration used to add a border width is:

selector {border-width: value;}

The value for the border-width property can be

� A predefined keyword: thin, medium, or thick

� An absolute or relative length

See the Chapter 8 sidebar, “Property measurement values,” for more
information. The values described in that sidebar are relevant to HTML
as well as to CSS.

To set the width of a border to 1pixel, use the following style declaration:

table {border-width: 1px;}

Color
The style declaration used to define a border color is:

selector {border-color: value;}

The value for the border-color property must defined using a predefined
color name or a hexadecimal value:

� Color name: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, purple, red, silver, teal, white, or yellow

� Hexadecimal value: See Chapter 10.

To set the color of a border to black, use the following style declaration:

table {border-color: black;}

Using the catchall border property
Similar to defining font properties, you can use the shorthand border prop-
erty to define multiple style rules at once:

table {border: 1px solid gray;}

192 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 192

There are five catchall border properties that you can use for a table or
a box:

� border: Defines formatting for all four sides.

� border-left: Defines formatting for the left side.

� border-right: Defines formatting for the right side.

� border-top: Defines formatting for the top.

� border-bottom: Defines formatting for the bottom.

The border properties aren’t only for use with tables, they’re part of the CSS
box model. They can provide borders for almost any (X)HTML element, as
long as it isn’t an inline element.

Adjusting height and width
Most browsers determine the width of the table cells by judging the content
of the cells (images and/or text).

The browser provides as much space as possible to contain the content.
However, there are limits for both images and text:

� Side-by-side images must fit in the width of the browser window.

For example, if you have an image that is 200 pixels wide, the cell
expands to accommodate the image. However, if you have several cells
in a row, each with images over 400 pixels wide, the cells only expand as
far as the browser window allows.

� Text may expand and distort the layout.

If a cell contains a lot of text, the cell expands as far as it can until the
first line break or the end of the text. That might make for a very unat-
tractive table.

Most tables are used to help control layout, so controlling the width of cells
and the table is very important. You have two ways to control width:

� Use the (X)HTML width attribute within the <table> or <td> element.

� Assign a width value to a <table> or <td> element using the CSS width
property.

The (X)HTML width attribute
If you don’t set table and cell width, the user’s browser determines the width
of every cell according to the width of its contents — no more, no less.

193Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 193

For example, suppose you want to put a logo in the first cell and navigational
items in the cell to its left. If you don’t assign the width to the first cell (con-
taining the logo), the navigational items are placed right beside the logo, with
no or almost no space between the two. To avoid that cramped look, you can
use the width attribute to strategically define an exact number of pixels
between the logo and navigational items.

If you’re using tables for layout purposes, we recommend that you set the
width for the table and cells.

Syntax
Defining width is easy when you use the width attribute. For example, you
can set the width of your table at 630 pixels like this:

<table border=”1” width=”630”>
...
</table>

The value of the width attribute can be defined in either

� Pixels (a positive integer, such as 630)

This is an absolute value.

� Percentage of the display area width (a positive integer followed by a
percent sign, such as 95%)

This is a relative value that allows your table to be resized depending on
the size of the browser window.

These values can also set the width of individual cells.

Markup
To add widths to the table built earlier in this chapter (and to set width for
its individual cells), add the following markup shown in bold text:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table border=”1” width=”630”>
<tr>
<td colspan=”2” width=”630”> contents </td>

</tr>
<tr>

194 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 194

<td width=”400”> contents </td>
<td width=”230”> contents </td>

</tr>
</table>
</body>
</html>

Figures 11-5 and 11-6 show the difference between a site that doesn’t define
table and cell widths and one that uses the width attribute.

If you set the pixel width smaller than the content’s pixel size, the browser
ignores the width attribute and defaults to display all the cell contents. So
check all dimensions.

The CSS width property
The style declaration used to define width is:

selector {width: value;}

The value for the width property must be either

� auto

This keyword allows the browser to determine the necessary width.

� An absolute or relative length:

See the Chapter 8 sidebar “Property measurement values” for more
information.

Figure 11-6:
This image

defines
width

properties.

Figure 11-5:
This image

doesn’t
define width

properties.

195Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 195

To set the width of the table displayed in Figure 11-6, use the following style
declarations:

table {width: 630px;}
td.cellone {width: 630px;}
td.celltwo {width: 630px;}
td.cellthree {width: 630px;}

Padding and spacing
Determining the white space between cells is essential for proper layout.
Keeping in mind the sketch from Figure 11-4, you have to determine — to the
pixel — how space will be used in your table.

(X)HTML attributes
Two attributes can help you define white space by putting some space
between cells: cellpadding and cellspacing. These attributes use two dif-
ferent techniques to put some space between cells:

� cellspacing adds space between cells (the border width is adjusted).

� cellpadding adds space inside a cell (within the cell walls).

The value for either attribute is defined in pixels. For example, cell-
padding=”5” adds 5 pixels’ worth of padding to each cell.

To define either attribute, add it to the <table> start tag, as follows:

<table cellpadding=”5” cellspacing=”5”>

When using tables for layout, without visible borders, it doesn’t matter much
which attribute you use. However, if you add color to your tables — or use
the border for any reason — you can see a considerable difference. That’s
because cellpadding increases the space within the border, and cell
spacing increases the width of the border itself, as shown clearly in Fig-
ures 11-7 and 11-8.

The default value for cellpadding is 1; the default for cellspacing is 2.
If you don’t define cellpadding and cellspacing, your users’ browsers
assume the defaults. Accounting for those pixels in your sketch is a good
idea.

196 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 196

Figure 11-8:
The

cellspacing
attribute

increases
the width of
the border.

Figure 11-7:
The

cellpadding
attribute

increases
the space

within each
cell.

197Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 197

Working with cellpadding and cellspacing to get your table layout just right
can be a bit of a headache. Sometimes you need to create empty cells to help
control layout. Although this trick is a bit of a workaround, many designers
use it. You just

1. Create a cell.

2. Fill the cell with either

•

• A spacer image (a transparent .gif that is 1 x 1 pixel) with which
you can manipulate the width

CSS
You can use CSS to control cell padding and spacing between cells.

Within cells
To control the padding within cells, you use the padding property, like so:

selector {padding: value;}

The value for the padding property must be defined by an absolute or rela-
tive length, or percentage.

To set the padding of a table cell, use the following style declaration:

td {padding: 10px;}

The padding property can be used with most (X)HTML elements. For example,
if you created a footer and assigned it a class name, you can define padding for
the element using the following style rule:

.footer { padding: 5px;}

Between cells
You can control the spacing between your cells using the border-spacing
property:

selector {border-spacing: value;}

The value for the border-spacing property must be defined by an absolute
or relative length, or percentage:

To set the padding of a table cell, use the following style declaration:

td {padding: 10px;}

198 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 198

The border-spacing property can be used only in conjunction with the
<td> element.

Shifting alignment
If you use tables to define your layout, you need to control their placement in
the browser window. You can do this by using (X)HTML or CSS.

You use attributes that are part of the HTML standard to align your tables
(horizontally) and your table contents (horizontally and vertically).

Aligning tables is similar to aligning images.

Horizontal alignment
You can horizontally align cell contents using the align attribute in various
table elements.

� To align your table horizontally, use the align attribute with the
<table> element.

The align attribute, when used with the <table> element, has the fol-
lowing possible values: left, right, or center of the document.

� You can use the align attribute with the <td> (cell) or <tr> (row) ele-
ments to align text within the cell or row.

The values that can be used with the align attribute in the <td> or
<tr> elements are

� align=”right”: Aligns the table or cell contents against the right side.

� align=”left”: Aligns the table or cell contents against the left side.
(This is the default setting.)

• align=”center”: Centers the table or cell contents.

• align=”justify”: Justifies cell contents in the middle (not widely
supported).

• align=”char”: Aligns cell contents around a specific character
(not widely supported).

The following example aligns a table in the center of the page (see
Figure 11-9):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>

199Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 199

</head>
<body>
<table border=”1” width=”630” align=”center”>
<tr>
<td width=”630” colspan=”2”> contents </td>

</tr>
<tr>
<td width=”400”> contents </td>
<td width=”230”> contents </td>

</tr>
</table>
</body>
</html>

Vertical alignment
You can vertically align cell contents by using the valign attribute. It can
only be used with the <tr> (cell) and <td> (row) elements.

The possible values are

� valign=”top”: Vertically aligns cell contents to the top of the cell.

� valign=”bottom”: Vertically aligns cell contents to the bottom of the
cell.

Figure 11-9:
A simple

table
centered.

200 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 200

� valign=”middle”: Vertically centers the cell contents. (This is the
default.)

� valign=”baseline”: Defines a baseline for all other cells in the same
row, so alignment is the same for all cells.

You can also use the align and valign attributes with the following table
elements: <col>, <colgroup>, <tbody>, <tfoot>, <th>, and <thead>.

If you set the alignment for a row (<tr>) and then set the alignment for a cell
within that row (<td>), the setting you add to the cell overrides the setting
for the row.

You are now used to learning that most X(HTML) formatting attributes are
deprecated in favor of using CSS, and although the align attribute is depre-
cated for most (X)HTML elements, it is still allowed when used with the table
elements.

You can’t use the valign attribute with the <table> tag.

Using CSS to define alignment
To control table alignment by using CSS, you have access to two properties:
text-align and vertical-align. They function just as the preceding
align and valign attributes.

To use the text-align property, you can assign it one of the following values:

� right: Aligns the table or cell contents against the right side.

� left: Aligns the table or cell contents against the left side. (This is the
default.)

� center: Centers the table or cell contents.

� justify: Justifies cell contents in the middle.

To use the vertical-align property, you can assign it one of the following
values:

� top: Vertically aligns cell contents to the top of the cell.

� bottom: Vertically aligns cell contents to the bottom of the cell.

� middle: Vertically centers the cell contents. (This is the default.)

� baseline: Defines a baseline for all other cells in the same row, so align-
ment is the same for all cells.

You can control the alignment of an entire row by assigning alignment proper-
ties to the <tr> element.

201Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 201

You can’t center a table by using the text-align property — it’s only for
text alignment. Currently, you have a few options for centering the entire
table. None of them is ideal, but they all work:

� Use the deprecated <center> tags around the table.

� Use the deprecated align attribute within the table: <table
align=”center”>.

� Enclose the table in a <div> element and use the text-align property
to center its contents: div.mytable {text-align: center;}.

Adding Spans
Spanning is one of the main reasons tables are a flexible alternative for
arranging elements in your Web page.

Spanning enables you to stretch items across multiple cells; you essentially
tear down a cell wall. Whether you need to span rows or columns, you can use
the concept of spanning to wrangle your table into almost any arrangement.

Column and row spanning takes careful planning. That planning should occur
during the sketching phase (as we describe earlier in this chapter, in the sec-
tion “Sketching Your Table”).

To span cells, you add one of these attributes to the <td> (cell) element:

� colspan extends a cell horizontally (across multiple columns).

� rowspan extends a cell vertically (across multiple rows).

Spanning cells can be done only by using (X)HTML attributes; CSS doesn’t
provide equivalent functionality.

Column spans
To span columns, you use the colspan attribute in the <td> element and set
the value equal to the number of cells you want to span.

Figure 11-10 illustrates a cell that spans two columns.

202 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 202

In this example, the first cell spans the two cells in the next row. You use the
colspan attribute set to 2, as shown in the following markup, because the
cell spans two columns:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table border=”1” width=”630”>
<tr>
<td width=”630” colspan=”2”> contents </td>

</tr>
<tr>
<td width=”400”> contents </td>
<td width=”230”> contents </td>

</tr>
</table>
</body>
</html>

Figure 11-10:
The cell

spans two
columns.

203Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 203

After you add a colspan attribute

� Verify that you have the appropriate number of <td> cells in the first
row. For example, if you define a cell to span two columns, you should
have one less <td> in that row. If you use colspan=”3”, there should
be two fewer <td> cells in that row.

� Make sure that the other rows have the appropriate number of <td>
cells. For example, if you define a cell to span two columns, the other
rows in that table should have two <td> cells to fill out the two columns.

Row spans
You use the rowspan attribute with the <td> tag. Figure 11-11 illustrates a cell
that spans two rows.

To span rows, you use the rowspan attribute in the <td> element and set the
value equal to the number of cells you want to span.

Sketch your table first so you know which cells should span which columns
and rows. The example design we use throughout most of this chapter uses
the colspan attribute with the first cell. However, the design could have
been just as simple if we used a rowspan with the last cell that contains the
navigational items. Either way, the table is efficiently laid out.

Figure 11-11:
The last cell

containing
navigational
items spans

two rows.

204 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 204

The modified table comes from the following markup (note the bold
rowspan):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table border=”1” width=”630”>
<tr>
<td width=”400”> contents </td>
<td width=”230” rowspan=”2”> contents </td>

</tr>
<tr>
<td width=”630”> contents </td>

</tr>
</table>
</body>
</html>

Populating Table Cells
After you sketch your table and define table properties (such as width, cell
padding and spacing, and cell spanning), you’re ready to populate the table
cells with images, hyperlinks, text, and almost any other (X)HTML element.
This is a simple process: You add images, hyperlinks, and text to the <td>
element, similar to how you add them to the <body> element.

The following markup shows a populated table, with data added in bold:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Tables</title>
</head>
<body>
<table border=”1” width=”630” align=”center” cellpadding=”5” cellspacing=”5”>
<tr>
<td colspan=”2” valign=”bottom” align=”left”>

<img src=”images/ropeAdopeRecords.gif” width=”249” height=”94”
alt=”rope-a-dope records” border=”0” />

205Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 205

</td>
</tr>
<tr>
<td valign=”top” align=”right” width=”400”>
<img src=”images/gunlogo.gif” width=”400” height=”302” alt=”rope-a-dope
home” border=”0” />

</td>
<td valign=”top” align=”left” width=”230”>

</td>
</tr>
</table>
</body>
</html>

Testing Your Table
Testing is the final step before your table goes live. You must test your tables
in all the popular browsers — including Internet Explorer, Netscape, and
Opera. If you don’t, your users might have to squint at your pages, or they
might see your tables as one big mess.

206 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 206

As you’re creating your table, have your browser window open at the same
time. Each time you change the width of a cell or add an item to a cell, save
the document and view it in the browser window. That way, when you test
your table, you probably won’t have too much tweaking to do.

A challenge for many designers is to create table designs that work in every
browser. Thanks to many crusaders of standards, the newest versions of the
most popular browsers, Netscape, Internet Explorer, and Opera, all support
the HTML standard. If your audience isn’t technically savvy, consider older
browsers when designing your tables.

Always test your site in any browser that your users might have. For exam-
ple, if your table is aligned with align=”center” but in an old version of
Internet Explorer the table remains flush with the left side, you might have to
add a <center> tag pair to your table. However, you won’t have too many
problems with tables if you stick to the standard.

Table-Making Tips
We’ve spent years of building, maintaining, and troubleshooting tables, and in
that time we’ve discovered some neat tricks. The following tips are a head
start to creating effective tables.

Following the standards
The first — and (we think) most important — tip is to keep with the estab-
lished standards. The folks involved with the Web Standards Project have
campaigned for full standard support in browsers and HTML authoring appli-
cations since 1998. Their hard work should make your life easier.

Just a couple of years ago, if you built an HTML table, you would be forced to
create different versions of your Web page (each version containing browser-
specific elements and attributes) to define some basic table properties. As
you might imagine, creating and maintaining different versions of the same
Web page can drive development costs sky-high. To get around those costs,
many developers would carefully craft their tables with specific markup that
worked in Internet Explorer and Netscape — but what about Opera? Well, hap-
pily those are problems of the past. The newest versions of Internet Explorer,
Netscape, and Opera all support HTML, as well as CSS and XHTML. To find out
more about the fight for Web standards, visit www.webstandards.org.

207Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 207

Sanitizing markup
Efficiently written markup is easier to troubleshoot and maintain. Many
designers use white space to separate elements. For example, the following
markup doesn’t use much white space and is hard to read:

<table border=”1” width=”630”>
<tr><td width=”630” colspan=”2”> contents </td></tr>
<tr><td width=”400”> contents </td>
<td width=”230”> contents </td></tr></table>

Check out this clean version:

<table border=”1” width=”630”>
<tr>
<td width=”630” colspan=”2”> contents </td>

</tr>
<tr>
<td width=”400”> contents </td>
<td width=”230”> contents </td>

</tr>
</table>

The white space we include in our markup is between elements; not within
elements. If, for example, you add white space between the <td> and </td>
tags, it affects how the cell’s content is displayed, which isn’t generally some-
thing you want to do.

Nesting tables within tables
Many designers are forced to nest tables within tables to achieve a desired
effect. This is both legal and common.

A few nested tables won’t affect your users too badly. But nesting many
tables within tables can lengthen download time.

To nest a table, simply add the <table> element within a <td> element as
follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Nesting Tables</title>
</head>
<body>
<table border=”1”>
<tr>

208 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 208

<td> contents </td>
<td> contents </td>

</tr>
<tr>
<td>

<table border=”1”>
<tr>
<td> contents </td>
<td> contents </td>
</tr>
<tr>
<td> contents </td>
<td> contents </td>
</tr>
</table>

</td>
<td> contents </td>

</tr>
</table>
</body>
</html>

This markup produces the tables shown in Figure 11-12.

Figure 11-12:
Nested
tables.

209Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 209

When using nested tables

� Check cell widths — the width of the third cell should match the width
of the nested table.

� Create and test the table you intend to nest — separately, before you add
it to your primary table.

Avoiding dense tables
We recommend creativity, but be careful and don’t pack a screen full of dense
and impenetrable information — especially numbers. A long, unbroken list of
numbers quickly drives away all but the truly masochistic — pretty much
negating the purpose of the table to begin with. Put those numbers into an
attractive table (better yet, several tables interspersed with a few well-chosen
images). Watch your page’s attractiveness and readability soar; hear visitors
sigh with relief.

Individual table cells can be surprisingly roomy. You can position graphics in
them precisely. If you’re moved to put graphics in a table, be sure to

� Select images that are similar in size and looks.

� Measure those images to determine their heights and widths in pixels.
(Shareware programs such as Paint Shop Pro and GraphicConverter do
this automatically.)

� Use HTML markup to position these images within their table cells.

A short-and-sweet table keeps the graphics in check and guarantees that the
text always sits nicely to its right.

Two more handy graphics-placement tips produce a consistent, coherent
image layout:

� Size your rows and columns of cells that contain images to accommo-
date the largest graphic.

� Center all graphics in each cell (both vertically and horizontally).

Adding color to table cells
You can use either CSS or (X)HTML to change the background color of a cell
or table. Before CSS was around, designers used the bgcolor attribute to

210 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 210

change the background of table cells in much the same way it affects the
background of an entire HTML document. Simply add the bgcolor attribute
to any table cell to change its background color:

<td bgcolor=”teal”>...</td>

However, now you have a bit more flexibility to use the background property
to add some color:

td {background: red;}

We cover the background property in Chapter 10.

The bgcolor attribute may be used with any of the table elements. However,
the bgcolor of a cell overrides any bgcolor defined for a row or table. Note
that bgcolor is also deprecated, and that most Web experts use CSS markup
instead.

Marvelous Miscellany
Table 11-1 lists other table-related (X)HTML attributes that you might find in
HTML files.

Table 11-1 Additional Table-related (X)HTML Attributes
Name Function/ Value Related

Value Equals Types Element(s)

abbr Abbreviates table Text <td><th>
header

axis Sets a comma- CDATA <td><th>
separated list of
related table headers

char Defines alignment ISO 10646 char <col /><colgroup>
character for table <tbody><td><tfoot>
elements <th><thead><tr>

charoff Defines offset when Length (p/%) <col /><colgroup>
alignment char is <tbody><td><tfoot>
used <th><thead><tr>

(continued)

211Chapter 11: Using Tables for Stunning Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 211

Table 11-1 (continued)
Name Function/ Value Related

Value Equals Types Element(s)

frame Identifies visible {“above”|”below”| <table>
components in a ”border”|”box”|
table structure ”hsides”|”lhs”|”rhs”|

”void”|”vsides”}

rules Governs the display of {“all”| <table>
rule bars in a table ”cols”|

”groups”|
”none”|
”rows”}

scope Describes scope for {“col”| <td><th>
table header cells ”colgroup”|

”row”|
”rowgroup”}

summary Describes a table’s Text <table>
purpose

span Sets the number of Number <col />
table columns to which
col attributes apply

212 Part III: Taking Precise Control Over Web Pages

17_589172 ch11.qxd 4/22/05 3:39 PM Page 212

Part IV
Integrating Scripts

with HTML

18_589172 pt04.qxd 4/22/05 3:39 PM Page 213

In this part . . .

In this part of the book, we introduce and describe the
types of scripting languages that work on Web pages,

and we dig into JavaScript — by far the most popular of
all Web scripting languages in use today. Scripting lan-
guages help turn static, unchanging Web pages into active,
dynamic documents that can solicit and respond to user
input. You start by learning basic JavaScript elements,
data types, and values, and progress to topics that include
rearranging Web page contents on the fly, performing cal-
culations and displaying their results, requesting and
checking user input, and a whole bunch more.

Next, you dig more deeply into JavaScript so that you can
understand — and use — this scripting language in your
Web pages. You also learn how to incorporate JavaScript
into Web pages and how it handles and changes Web page
contents on the fly. You also learn about checking your
work and using cookies (those interesting but elusive data
packages that adhere to Web users).

The final three chapters in this part show you ways to put
JavaScript to work in your Web pages. You explore how to
define and use a navigation bar, which presents users with
dynamic menus of options and information to make it
easier for them to move around your Web site. You learn
how to use JavaScript to create and use various data-
entry forms in your Web pages to solicit, check, and
respond to user input. You also learn the basic concepts
and techniques for creating dynamic HTML (sometimes
called DHTML) and using client-side JavaScripts and pre-
fabricated code to perform basic tasks, such as displaying
date and time information, counting site visitors, or tabu-
lating current statistics.

18_589172 pt04.qxd 4/22/05 3:39 PM Page 214

Chapter 12

Scripting Web Pages
In This Chapter
� Understanding what JavaScript is

� Exploring what JavaScript can do for your Web pages

� Dissecting three sample scripts

When used in conjunction with your HTML markup, scripts — small
programs that you add to your Web page — help your Web pages

respond to user actions. Scripts create the interactive and dynamic effects
you see on the Web, such as images that automatically change when visitors
move mouse pointers over them, additional browser windows that pop up
when a page loads, and animated navigation bars.

Because scripts are mini-programs, they’re often written in a programming
language called JavaScript. If you are unfamiliar with the term, JavaScript
may sound like a Hollywood screenplay doused with coffee. However, it is
actually a scripting language built right into all the popular Web browsers.

Fortunately, because of the Nobel prize–worthy invention of “copy and
paste,” you don’t need to be a technoguru to add scripting to your Web sites.
The Web has many sites that feature canned JavaScript scripts that you can
freely copy and then paste right into your Web page. (Chapter 13 lists several
of the best JavaScript sites.)

In this chapter, you explore how scripting works inside your Web page by dis-
secting three sample scripts written in JavaScript. Chapter 13 continues this
discussion by diving deeper into the JavaScript language itself.

Many good Web-page editors (such as Macromedia Dreamweaver and Adobe
GoLive) have built-in tools to help you create scripts — even if you don’t
know anything about programming.

19_589172 ch12.qxd 4/22/05 3:41 PM Page 215

What JavaScript Can Do for Your Pages
Adding scripts to your Web site is much like those makeover reality televi-
sion shows that transform a house or a person’s appearance into something
completely new and wonderful. So too with JavaScript. You can transform a
plain and dull Web page into an interactive and dynamic Web extravaganza
that will give your visitors joy and enjoyment for years to come. Okay, maybe
we’re exaggerating just a little bit, but you get the point.

For example, if you visit Dummies.com (www.dummies.com) and click the
red button next to the search box without entering a term to search on, the
browser displays a nice warning box that reminds you to enter a search
term before you actually search, as shown in Figure 12-1.

Figure 12-1:
A script

pops up a
dialog box
telling you
what you

did wrong.

216 Part IV: Integrating Scripts with HTML

JavaScript is not Java
In the late 1990s, the originators of the JavaScript
scripting language wanted to ride the coattails of
the massive popularity of the Java programming
language, so they gave it a catchy name —
JavaScript. However, when they made this deci-
sion, they also introduced a lot of confusion given
the similarity of the two names. To clarify, the full-
featured Java programming language isn’t a
scripting language on the Web. Java is a descen-
dent of the C and C++ programming languages.
Programmers can create Java applications that

can run on Windows, Macintosh, Linux, and other
computer platforms:

� On the client side, Java is used to create
applets (small programs that download over
the Net and run inside Web browsers).
Because Java is designed to be cross-
platform, these applets should run identi-
cally on any Java-enabled browser.

� On the server side, Java is used to create
many Web-based applications.

19_589172 ch12.qxd 4/22/05 3:41 PM Page 216

A short script verifies whether you’ve entered a search term before the
engine runs the query:

� If you enter a search term, you don’t see the warning.

� If you don’t enter a search term, the script built into the page prompts
the warning dialog box to appear.

This bit of scripting makes the page dynamic, which means that it adds pro-
grammatic functionality to your Web pages and allows them to respond to
what users do on the page — for example, filling out a form or moving the
mouse pointer over an image. When you add scripts to your page, the page
interacts with users and changes its display or its behavior in response to
what users do.

The page URL doesn’t change and another browser window doesn’t open
when you try to search on nothing. The page responds to what you do with-
out sending a request back to the Web server for new page. This is why the
page is considered dynamic.

If you tried this trick without using a script (that is, without the dynamic func-
tionality), the browser would send the empty search string back to the Web
server. Then the server would return a separate warning page reminding the
user to enter a search term. All the work would be done on the Web server
instead of in the Web browser. This would be slower (because the request
must first go to the server, and then the server must transmit the warning
page back to your browser), and would feel much less fluid to the user. It’s
much better to just click a button on the page and instantly have an alert
pop up to help the user.

In the following sections, we showcase three common ways in which
JavaScript can be used in your Web pages.

Don’t worry about the details of the JavaScript code in the following exam-
ples. Just focus on how JavaScript scripts can be pasted into your Web page
and work alongside your HTML markup.

Arrange content dynamically
JavaScript can be used with CSS (covered in Chapters 8 and 9) to change the
look of the content on a page in response to a user action. Here is an example:
Two authors share a Weblog, Backup Brain (www.backupbrain.com). One of
the authors prefers small, sans-serif type, and the other one finds it easier to
read larger, serif type. So the Weblog has buttons that change the look of the

217Chapter 12: Scripting Web Pages

19_589172 ch12.qxd 4/22/05 3:41 PM Page 217

site to match each person’s preference. Of course, the site’s visitors can use
the buttons to switch the look of the type, too, and the site remembers the visi-
tor’s choice for future visits by setting a cookie, which is a small preference file
written to the user’s computer. Figure 12-2 shows the two looks for the page.

JavaScript and CSS can create this effect by switching between two style
sheets:

� The sans-serif style sheet, sansStyle.css

� The serif style sheet, serifStyle.css

Listing 12-1 shows the source code of an example page that contains this
switching mechanism.

� When a user clicks the Sm Sans button on the page, the styleSwitcher.
js script referenced in the <head> element runs and switches the active
style sheet to sansStyle.css. (Chapter 13 covers .js files.)

� When the user clicks the Lg Serif button, the same script switches to the
serifStyle.css style sheet.

Listing 12-1: Style Switching

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Style Changer</title>
<link href=”simpleStyle.css” rel=”stylesheet” rev=”stylesheet” />
<link href=”sansStyle.css” rel=”stylesheet” rev=”stylesheet”

title=”default” />
<link href=”serifStyle.css” rel=”alternate stylesheet”

rev=”alternate stylesheet” title=”serif” />
<style type=”text/css” media=”all”>@import “complexStyle.css”;</style>
<script src=”styleSwitcher.js” language=”javascript1.5”

Figure 12-2:
Clicking the

“Change
your font”

buttons
changes

how the text
displays.

218 Part IV: Integrating Scripts with HTML

19_589172 ch12.qxd 4/22/05 3:41 PM Page 218

type=”text/javascript”></script>
</head>
<body>
<div class=”navBar”>

Change your font:
<form action=”none”>

<input type=”button” class=”typeBtn” value=”Sm Sans”
onclick=”setActiveStylesheet(‘default’)” />

<input type=”button” class=”typeBtn2” value=”Lg Serif”
onclick=”setActiveStylesheet(‘serif’)” />

</form>
</div>

<div class=”content” id=”headContent”>
<p>Replace this paragraph with your own content.</p>
</div>
</body>
</html>

You can see the example page for yourself at

www.javascriptworld.com/scripts/chap16/ex6/index.html

This example relies on several different files (HTML, CSS, and JavaScript).
You can see the full listing for all of the files at

www.javascriptworld.com/scripts/script16.06.html

Work with browser windows
JavaScript can tell your browser to open and close windows.

You’ve probably seen the annoying version of this trick: advertising pop-up
windows that appear when you try to leave a site.

But this technology can be used for good as well as evil. For example, you
can preview a set of big image files with small thumbnail versions. Clicking a
thumbnail image can perform such actions as

� Opening a window with a larger version of the image.

� Opening a page with a text link that opens a window with an illustration
of that text, as shown in Figure 12-3.

The code required to do this sort of pop-up window is fairly straightforward,
as Listing 12-2 shows.

219Chapter 12: Scripting Web Pages

19_589172 ch12.qxd 4/22/05 3:41 PM Page 219

Listing 12-2: Pop-up Windows

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Opening a Window</title>
<script language=”Javascript” type=”text/javascript”>

function newWindow() {
catWindow = window.open(“images/pixel2.jpg”, “catWin”,
“width=330,height=250”)

}
</script>

</head>
<body bgcolor=”#FFFFFF”>

<h1>The Master of the House</h1>
<h2>Click on His name to behold He Who Must Be Adored

Pixel</h2>

</body>
</html>

Pop-up windows can backfire on you if you use them too much. Many Web
sites use pop-up windows to deliver ads, so users are becoming desensitized
(or hostile) to them and simply ignore them (or install software that prevents
them). Before you add a pop-up window to your site, be sure it’s absolutely
necessary.

Chapter 13 has more details on creating pop-up windows with JavaScript.

Figure 12-3:
When you

click the
link, a pop-
up window

appears
with a

picture in it.

220 Part IV: Integrating Scripts with HTML

19_589172 ch12.qxd 4/22/05 3:41 PM Page 220

Solicit and verify user input
A common use for JavaScript is to verify that users have filled out all the
required fields in a form before the browser actually submits the form to
the form-processing program on the Web server. Listing 12-3 places a form-
checking function, checkSubmit, in the <script> element of the HTML page
and references it in the onsubmit attribute of the <form> element.

Listing 12-3: Form Validation

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Linking scripts to HTML pages</title>
<script type=”text/javascript” language=”javascript”>
function checkSubmit (thisForm) {
if (thisForm.FirstName.value == ‘’) {

alert(‘Please enter your First Name.’);
return false;

}

if (thisForm.LastName.value == ‘’) {
alert(‘Please enter your Last Name.’);
return false;

}

return true;
}

</script>
</head>

<body>
<form method=”POST” action=”/cgi-bin/form_processor.cgi”

onsubmit=”return checkSubmit(this);”>
<p>
First Name: <input type=”text” name=”FirstName” />

Last Name: <input type=”text” name=”LastName” />

<input type=”submit” />

</p>
</form>

</body>
</html>

This script performs one of two operations if either form field isn’t filled in
when the user clicks the Submit button:

� It instructs the browser to display a warning to let the user know he or
she forgot to fill in a field.

� It returns a value of false to the browser, which prevents the browser
from actually submitting the form to the form-processing application.

221Chapter 12: Scripting Web Pages

19_589172 ch12.qxd 4/22/05 3:41 PM Page 221

If the fields are filled in correctly, the browser doesn’t display alerts and
returns a value of true, which tells the browser that the form is ready to pass
on to the Web server. Figure 12-4 shows how the browser displays the alert if
the first name field is empty.

Although this example only verifies whether users filled out the form fields,
you can create more advanced scripts that check for specific data formats
(such as @ signs in e-mail addresses and only numbers in phone number
fields).

Figure 12-4:
A good
use of

JavaScript
is to validate

form data.

222 Part IV: Integrating Scripts with HTML

Server-side scripting
JavaScript is a scripting language that runs
inside the browser, but there are other scripting
languages that run on the server side, such as
Perl, ASP (Active Server Pages), PHP, Python,
.NET, ColdFusion, and others. The programs
written in these languages reside on the server
and are called by the Web page, usually in
response to a form filled out by the user. People
who write these Web pages may include small
snippets of code that pass bits of information
from the HTML page to the program on the

server. When called, the program runs and then
returns a result of some sort to the user.

Amazon.com is a familiar e-commerce Web
application that runs mostly on the server side
using server scripts. Therefore, the Web pages
that are displayed by the browser when you visit
Amazon are the results of processing by server-
side scripts that takes place before the page
ever gets to your browser.

19_589172 ch12.qxd 4/22/05 3:41 PM Page 222

When you create forms that include required fields, we recommend that you
always include JavaScript field validation to catch missing data before the
script can even find its way back to the server. Visitors get frustrated when
they take the time to fill out a form only to be told to click the Back button in
their browsers to provide missing information. When you use JavaScript, the
script catches any missing information before the form page disappears so
users can quickly make changes and try to submit again.

But wait . . . there’s more!
You can do much more with JavaScript. The following list highlights several
common uses of the scripting language:

� Detect whether a user has a browser plug-in installed that handles multi-
media content

� Build slide shows of images

� Automatically redirect the user to a different Web page

� Add conditional logic to your page, so that if the user performs a certain
action, other actions are triggered

� Create, position, and scroll new browser windows

� Create navigation bars and change the menus on those bars dynamically

� Automatically put the current date and time on your page

� Combine JavaScript and CSS to animate page elements

One of the more innovative uses of JavaScript is in Gmail, the free Web-based
e-mail service from Google, which you can find at www.gmail.com. Gmail
uses JavaScript to load an entire e-mail user interface into the user’s browser,
which makes Gmail much more responsive to user actions than most other
Web-based mail programs. Gmail uses JavaScript to keep the number of times
the page needs to fetch additional information from the Gmail servers to an
absolute minimum. By doing much of the processing in the user’s browser,
the Gmail Web application feels much more like an e-mail program that you
run on your computer. Figure 12-5 shows the JavaScript-powered Gmail inter-
face. It’s a great example of the power of JavaScript.

223Chapter 12: Scripting Web Pages

19_589172 ch12.qxd 4/22/05 3:41 PM Page 223

Figure 12-5:
The Gmail

interface is
powered by
JavaScript.

224 Part IV: Integrating Scripts with HTML

19_589172 ch12.qxd 4/22/05 3:41 PM Page 224

Chapter 13

The Nuts and Bolts of JavaScript
In This Chapter
� Putting scripts in your pages

� Using external script pages

� Delving into the JavaScript language

� Where to learn more

A lot of good “canned JavaScript” is available for free on the Web; you
know what we mean — scripts written by someone else that you simply

copy and paste into your HTML page. But, as good as canned scripts can be,
copy-and-paste goes only so far. Sooner or later, you are going to encounter
unique needs that can’t be fulfilled with a free script.

Canned JavaScript is much like canned SPAM: Great for convenience, but you
probably don’t want to live on an exclusive diet of it. Instead, knowing how to
script — or at least how to tweak a prewritten script — is as important as
knowing how to fix some good ol’ fashioned home cooking.

In this chapter, you “open the can” of the JavaScript language and have a look
at what’s inside. (Don’t worry; you won’t encounter any pink meaty substances
along the way.) You discover how to plug scripts into your pages, how to
bundle your scripts into external JavaScript files to save time and effort, and
how the nuts and bolts of the JavaScript language work. Finally, at the end of
this chapter, we point you to good sources of additional information about
JavaScript. These will come in handy as your scripting needs grow more
advanced.

Including Scripts in Web Pages
Because a JavaScript script is a totally separate animal from HTML markup,
you have to contain this JavaScript beast inside an HTML container tag,

20_589172 ch13.qxd 4/22/05 3:41 PM Page 225

<script> and </script>. You can put a script in one of two places on an
HTML page:

� Within the <head> and </head> tags (this is called a header script)

� Within the <body> and </body> tags (this is called a body script)

Header scripts contain code that you either want to be processed before the
page loads or else want to have available to be called by other scripts in your
Web page. Body scripts are executed when the <body> tag is processed.
Typically, body scripts are used to generate HTML content for the page.

Listing 13-1 shows an example of a header script. This simple script pops up
a welcoming message box when the user loads the page.

Listing 13-1: Header Script

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>My JavaScript page</title>
<script language=”Javascript” type=”text/javascript”>
alert(“Welcome to my JavaScript page!”)

</script>
</head>
<body bgcolor=”#FFFFFF”>

<h2>This script pops up a message box for the user.</h2>
</body>
</html>

The preceding <script> tag has two attributes:

� language=”Javascript” tells the browser which scripting language
the document uses.

� type=”text/javascript” tells the browser that the script is plain text
in JavaScript.

The script itself, alert(“Welcome to my JavaScript page!”), is straight-
forward. The alert() method displays a message box that pops up on top of
the browser window and shows a customized message to the Web page visi-
tor. You specify the message you want displayed by enclosing the text within
quotation marks and putting the text string inside the alert() method’s
parentheses, as shown in Listing 13-1. (Note: Curly quotes and single quotes
won’t work.) Make sure you close the script with the </script> tag, and
your script is ready to go.

226 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 226

Using the Same Script on Multiple Pages
If you have a single Web page that uses a JavaScript script, it’s handy to be
able to contain all of the scripting code inside a single <script> tag.
However, suppose you have a boatload of pages, each of which needs to call
the same script. You can always copy and paste the script into each page, but
there are two downsides to that approach. First, you have to add the script to
each page and make sure it is set up correctly and working. Second, anytime
you make any tweaks to the script, you are forced to update each and every
HTML page that uses it. If you have two pages, that’s no big deal. But if you
have more than three, it can lead to a maintenance migraine.

However, this headache can be avoided — even without ibuprofen! Instead,
you can use an external JavaScript file, also called a .js file (pronounced
“dot jay ess”). A .js file is an ordinary text file that stores your JavaScript
scripts. You can store one or more of your JavaScript scripts in a single .js
file and access them from multiple HTML pages.

To use the same script on multiple pages, you should

1. Put the script in an external JavaScript file.

If you have the script already inside your HTML page, remove all the
JavaScript code inside the <script> tag and paste it into a separate file.

2. Reference the file in any HTML page when you need the script.

Define a <script> tag in the head section of your Web page, but don’t
add any code inside it. Instead, use the src (for source) attribute in the
<script> tag to call the external .js file.

Listing 13-2 shows the reference to the external file.

Listing 13-2: External Script Reference

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>My JavaScript page</title>
<script src=”external.js” language=”JavaScript” type=”text/javascript”>
</script>
</head>
(the rest of your HTML page goes here)

You don’t need to include anything between the opening and closing script
tags. In Listing 13-2, the name of the source file, external.js, is placed

227Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 227

between double quotes. You can reference this file, external.js, with either
a relative or absolute link, so you can refer to external JavaScript files in
other directories on your server, or even on other servers (if you have access
to those servers).

Adding the src attribute to the <script> tag tells the browser to look for
that external file in the specified path. The resulting Web pages look and act
like the scripts are in the header or body of the page’s script tags, though the
script is in the external .js file.

With this technique, you need to change a JavaScript only once on your site
in the external file, not in each individual page on the site. All of the pages
that reference the external file automatically receive the updated code. It’s a
big timesaver when updating your site.

If you use a script on only one page, it’s often easier simply to put the script
on the page in a body or header script.

If you have multiple external .js files, you can use any or all of them on any
HTML page. Just include multiple <script> references on the page. It’s per-
fectly okay for a page to include multiple scripts and to both refer to external
.js files and include its own scripts inside <script> tags.

When you have multiple <script> tags defined in your Web page, the browser
processes them in the order in which they are declared. If, for some reason,
you have an external .js file that conflicts with a script inside a <script> tag,
the last one defined wins.

There is nothing magical about the inside of the .js file itself — it is pure
JavaScript code. No HTML tags are allowed. Listing 13-3 shows an example of
a script in an external .js file. This script implements button rollovers for a
Web page. When the user moves the mouse pointer over a button image, the
image changes to highlight the choice.

Listing 13-3: An External JavaScript File

homeOff = new Image
productsOff = new Image
contactOff = new Image
pressOff = new Image

homeOver = new Image
productsOver = new Image
contactOver = new Image
pressOver = new Image

homeOff.src = “images/home_off.jpg”
productsOff.src = “images/products_off.jpg”

228 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 228

contactOff.src = “images/contact_off.jpg”
pressOff.src = “images/press_off.jpg”

homeOver.src = “images/home_over.jpg”
productsOver.src = “images/products_over.jpg”
contactOver.src = “images/contact_over.jpg”
pressOver.src = “images/press_over.jpg”

function imgOver(thisImg) {
document[thisImg].src = “images/” + thisImg + “_over.jpg”

}

function imgOut(thisImg) {
document[thisImg].src = “images/” + thisImg + “_off.jpg”

}

Note that the contents of the .js file shown in Listing 13-3 could be copied
directly into a <script> tag and function identically.

Exploring the JavaScript Language
If you travel to a country whose people don’t speak your native tongue, you
usually buy a pocket language guide to help you make your way through the
country. You don’t necessarily need to know all the particulars and idiosyn-
crasies of the language, but you do need to know the essentials — phrases
like “Where’s the bathroom?” or “Where can I get an espresso?” — in order
to survive.

In the same way, if you want to work with JavaScript, you don’t need to become
a hotshot scripting guru. You do, however, need to know enough about the
scripting language to do the programming equivalent of ordering a meal or
asking where the bathroom is.

Like any other programming language, JavaScript is made up of several com-
ponents, including

� Basic syntax rules

� Commands, values, and variables

� Operators and expressions

� Statements

� Loops

� Functions

229Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 229

� Arrays

� Object orientation

Each of these is explored in the following sections.

Basic syntax rules
Every language has its own set of rules to make it possible to communicate.
English, for example, uses periods to end sentences, quotation marks to
denote quotes, and exclamation points to indicate something exciting is hap-
pening! JavaScript is no exception.

Below are some of the basic syntax rules that you should understand as you
begin to discover what the scripting language is all about.

Statements
Just as an English or French document is composed of sentences, JavaScript
scripts are composed of one or more statements. For example, the script in
Listing 13-1 has a single statement, whereas the script in Listing 13-3 has over
20. Statements can end simply by putting the next statement on the following
line. You can also optionally end a statement with a semicolon.

Capitalization
JavaScript is a case-sensitive language. The text you type in a script must not
only be spelled correctly but must also be in the correct case. For example,
the alert() method we use earlier in this chapter is in the correct syntax for
that method. If we use Alert() or ALERT(), the script won’t work.

White space
JavaScript ignores spaces and tabs (usually called white space) between
statements, but it’s a good idea to use space to make your code more read-
able. For example, the following two code examples function in the same way,
but the first is much easier to read than the second.

� The following code separates and organizes statements with spaces and
line breaks, so it is easy to read and understand:

if (document.images) {
arrowRed = new Image
arrowBlue = new Image

arrowRed.src = “images/redArrow.gif”
arrowBlue.src = “images/blueArrow.gif”

}

230 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 230

� The following code separates statements with semicolons and doesn’t
use spaces and line breaks for organization, so it’s harder to read:

if (document.images) {arrowRed = new Image; arrowBlue = new Image;
arrowRed.src =”images/redArrow.gif”; arrowBlue.src = “images/
blueArrow.gif”}

Comments
Comments are text within your script that’s ignored by the browser when the
script runs. Comments are invaluable help to

� Other people who are trying to figure out your code.

� You. Months after you write the script, comments can make the code
much easier for you to change.

Single-line comments
You can add comments to your JavaScript by adding two slashes to a com-
ment that fits all on one line, like this:

//The code that runs below displays a snazzy pop-up window

Multiple-line comments
If your comment is lengthy and you need to span more than one line, you can
either start each line with two slashes or else enclose your comments with
/* and */ marks.

/* The code that runs below displays a really nifty, snazzy,
jazzy, wicked-cool pop-up window.
Last modified: June 10, 2005 */

Variables and data types
In JavaScript, you can execute various commands that are built into the lan-
guage itself, such as alert(), shown in Listing 13-1. However, you often use
commands to act on pieces of information, known as values. For example,
alert() displays a string value that is contained within its parentheses. A
value can be either a literal value (such as a number or a string of alphanu-
meric characters) or a variable. Each value is categorized by its type.

Variables
A variable is a placeholder for a value. For example, the variable favPerson
contains the string value Gilligan. In JavaScript, you can write this as
favPerson = “Gilligan”.

231Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 231

The equals sign is read as “is set to.” In other words, the variable favPerson
now contains the value “Gilligan.” (The equals sign is an assignment operator,
which is explained later in this chapter.) When assigning a value to a variable,
keep in mind the following rules:

� The variable name is always on the left side of the equals sign.

� The variable value is always on the right side.

Here are examples of variables and the value that each contains:

x = 5
first_Time = false
formZipcode = “92683”

In the preceding example, x contains the numeric value of 5. However, the
formZipcode variable contains a text string, not a number, because the
string value is enclosed in double quotes.

If you need to perform mathematical operations on a variable, assign a
number value to it, not a quoted string.

The actual act of creating a variable and assigning it a value is called declar-
ing the variable. So, to declare the variable pi to be equal to 3.14, you write
this:

pi = 3.14

When you declare a variable, remember that

� JavaScript is case-sensitive.

myname, MyName, and myName are treated as three separate variables
because they each have different capitalization.

� Variable names can use only letters, numbers, and underscores.

They can’t contain spaces or other punctuation.

� Variable names can’t start with a number.

� Variable names can’t be the same as a reserved word.

Reserved words are special keywords, such as if or with, that are used
by JavaScript for its core functionality. Make sure you avoid naming a
variable the same as one of these words. A complete list of reserved
words is available at www.javascripter.net/faq/reserved.htm.

Data types
When you work with a literal value or variable, JavaScript categorizes it as a
particular data type. Table 13-1 shows the common types of values.

232 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 232

Table 13-1 Data Types
Type Description Example

Number Any numeric value 42

String Text characters inside quote marks “My name is
Inigo Montoya”

Object A JavaScript object, which can be window
defined by the language or else
created on your own

Function Value returned by a function myFunction()

Boolean A true or false value true

Null Empty; has no value null

Operating on expressions
As the preceding sections discuss, a literal value (such as 5 and “Lightbulb”)
or a variable can represent a value of a particular type. However, in JavaScript,
a complete statement, called an expression, can also return a value. For exam-
ple, consider the following two expressions:

2+1+2 // Evaluates to a value of 5
“A” + “three” + “hour” + “tour” // Evaluates to “Athreehourtour”

As you can see from these two examples, JavaScript often uses symbols as
you evaluate, manipulate, and work with expressions. These symbols are
called operators. In the examples shown above, the + symbol is used to either
add numeric values or to concatenate two or more strings together into a
single one.

JavaScript has several different types of operators, including assignment,
arithmetic, counting, and comparison types.

Assignment operators
Assignment operators put values into variables. For example, x = 8 assigns
the value of 8 to the variable x. Table 13-2 shows the assignment operators,
although as you can see, they really combine assignment and arithmetic
functionality.

233Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 233

Table 13-2 Assignment Operators
Operator Assignment Description

= x = y Sets x to the value of y

+= x += y Same as x=x + y

-= x -= y Same as x = x - y

*= x *= y Same as x = x * y

/= x /= y Same as x = x / y

Arithmetic operators
When you feel like crunching numbers, use arithmetic operators. You’ll
quickly recognize these symbols from your high-school math class.
Expressions with the most common operators are listed in Table 13-3.

Table 13-3 Arithmetic Operators
Operator Example Description

+ x + y (numeric) Adds x and y together

- x - y Subtracts y from x

* x * y Multiplies x and y together

/ x / y Divides x by y

- -x Reverses the sign of x

Counting operators
JavaScript provides operators that are especially designed for counting
either up or down while a process runs. The same operator can

� Retrieve a variable

� Count up or count down

Table 13-4 shows the counting operators.

Table 13-4 Counting Operators
Operator Description

++x Increases x by 1 (same as x=x+1) before an assignment

234 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 234

Operator Description

x++ Increases x by 1 after an assignment

--x Decreases x by 1 (same as x = x - 1) before an assignment

x-- Decreases x by 1 after an assignment

Changing before an assignment
When you place the ++ or -- operators before the variable, the value of the
variable changes before you use the variable. For example, if x is 8, y= ++x
changes the variables in this order:

1. Set x to 9.

2. Set y to 9.

Changing after an assignment
When you place the ++ or -- operators after the variable, the value of the
variable changes after you use the variable. For example, if x is 8, y=x++
changes the variables in this order:

1. Set y to 8.

2. Set x to 9.

Comparison operators
Comparison operators tell you whether expressions on both sides of the oper-
ator are the same or different. The result of a comparison operation is either
true or false. Table 13-5 shows the comparison operators.

Table 13-5 Comparison Operators
Operator Example Description

== x == y Returns true if x and y are equal

!= x != y Returns true if x and y are not equal

> x > y Returns true if x is greater than y

>= x >= y Returns true if x is greater than or
equal to y

< x < y Returns true if x is less than y

<= x <= y Returns true if x is less than or equal to y

(continued)

235Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 235

Table 13-5 (continued)
Operator Example Description

x || y Returns true if either x or y is true

&& x && y Returns true if both x and y are true

! !x Returns true if x is false

Working with statements
As discussed in the “Basic syntax rules” section, JavaScript statements are
the basic units of a script. Two common types are expression statements and
conditional statements.

Expression statement
An expression statement returns a value. For example, consider the following
statement:

fullName = firstName + “ “ + lastName

The result of this expression is that the variable fullName is assigned the
concatenated value of

� The value of the variable firstName

� A space

� The value of the variable lastName

The plus signs indicate that the result is concatenated together to form a
string.

Conditional statement
A conditional statement can check your data and decide what to do. It has
three steps:

1. Test a value.

The result of the test is always either true or false.

2. Select an action according to the result of the test.

3. Perform the selected action.

236 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 236

The most common conditional statements are the if and if/else state-
ments. Consider the following if statement:

if (x = “Boxen”) {
y = 1
alert(“You are a smarty! The correct answer is Boxen. Well done!”)

}

The if statement tests the expression inside the parentheses and determines
whether or not x = “Boxen”. If the test evaluates to true, then the state-
ments inside the curly braces are executed. If the test evaluates to false,
then these lines are bypassed.

The if/else statement can also be used to specify code to be processed
when the if test evaluates to false:

if (x = “Boxen”) {
y = 1
alert(“You are a smarty! The correct answer is Boxen. Well done!”)

}
else {

y = 0
alert(“You are totally wrong! The correct answer is Boxen. Bad!”)

}

A second example helps illustrate the steps involved in an if/else condi-
tional statement:

if (confirm(“Are you sure you want to do that?”)) {
alert(“You said yes”)
}
else {
alert(“You said no”)
}

Here’s how the statement works:

1. The if portion of the statement displays a dialog box that asks the user
to confirm a choice (using the confirm() method).

2. The confirm() method returns either true or false, depending on the
user’s response.

• If the user clicks the OK button in the dialog box, the confirm()
method returns true.

• If the user clicks the Cancel button, the confirm() method returns
false.

237Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 237

3. The code then performs an action based on the value that the con-
firm() method returns.

• If the method returns true, an alert appears with the message,
“You said yes,” as shown in Figure 13-1.

• If the method returns false, an alert appears with the message,
“You said no.”

Loops
When you need to repeat an action in a JavaScript script, you use a loop. For
example, a script that uses a loop can

� Make sure every character in a zip code field is a number.

� Check every item in a list for a specific value

for loop
The for loop repeats steps a specific number of times.

If you don’t know how many times you need to repeat some steps, use a
while loop instead of a for loop.

The for loop in Listing 13-4 calculates a multiplication table. Figure 13-2
shows the result in the browser.

Listing 13-4: A for Loop

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>A For Loop</title>
</head>
<body>
<script type=”text/javascript” language=”javascript”>

document.write(“<h3>Multiplication table for 7</h3>”)

for (loopCount = 0; loopCount <= 10; loopCount++)
{

Figure 13-1:
Confirming a
user action.

238 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 238

document.write(“7 X “,loopCount,” = “, 7 * loopCount,”
”);
}
</script>
</body>
</html>

A for loop has three steps:

1. The initialization step sets the beginning value of the loop variable.

In Listing 13-4, loopCount = 0 is the initialization step.

2. The limiting step tells the loop when to stop looping.

In Listing 13-4, loopCount <= 10 is the limiting step. The loop repeats
as long as the value of loopCount is less than or equal to 10.

3. The increment step tells the loop to increase the variable loopCount by
a specific amount after the for block (the set of statements contained
inside the curly braces) is executed.

In Listing 13-4, loopCount++ is the increment step. It increases the value
of loopCount by 1 each time through the loop.

while loop
A while loop repeats steps until you get a certain kind of result (such as find-
ing a name in a list).

If you know exactly how many times you need to repeat steps, use a for loop
instead of a while loop.

Figure 13-2:
This script’s

for loop
calculates

and displays
the multi-
plication

result.

239Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 239

Listing 13-5 shows the construction of the while loop.

Listing 13-5: A while Loop

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>A While Loop</title>
</head>
<body>
<script type=”text/javascript” language=”javascript”>
con = confirm(“Do you want to continue?”)
while(con == false)
{
document.write(“Continuing to wait
”);

con = confirm(“Do you want to continue?”)
}
</script>
</body>
</html>

A while loop works as follows:

1. The while statement evaluates the expression inside its parentheses.

In Listing 13-5, con == false is evaluated. The value of con is depen-
dent on whether the user clicks the yes or no button in a confirmation
message box.

2. As long as the expression evaluates to true, the code contained inside
the curly braces (the while block) is repeated.

In Listing 13-5, notice that the confirm statement is triggered again
at the end of the while block to determine whether the loop should
continue.

Functions
A function is a grouped set of JavaScript statements that

� Is identified by a name

� Is sectioned off from the rest of the script

� Performs a specific task

� Must be called by other parts of the script to execute

240 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 240

Functions are useful when you want organize your code into separate units
or when you use a bit of code more than once in a script. For example, a user
may enter information into a form. You can use a function to save that infor-
mation, perform a calculation on it, and allow other parts of the script to call
the function to retrieve the result of the calculation.

A function consists of

� The function declaration, which contains the keyword function, a unique
function name, and parentheses. Optionally, you can pass values into
the function by adding arguments inside the parentheses.

� The function block, which is a set of one or more statements surrounded
by curly braces.

The basic structure of a function looks like this:

function name_of_function(argument) {
// One or more statements

}

Here is an example of a function:

function alertMessage() {
alert(“Please enter a value in this field.”)
}

When your page loads into the browser and your script is processed by the
browser, the function code doesn’t run automatically. Instead, it has to be
explicitly called in your script. Therefore, to trigger the alertMessage()
function, you need to call it by name:

alertMessage()

Listing 13-6 shows a script with a function that is used to display a variety of
alerts, depending on which button the user presses.

Listing 13-6: Calling a Function

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Function calling</title>
<script language=”javascript” type=”text/javascript”>
function saySomething(message) {
alert(message)
}
</script>
</head>

(continued)

241Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 241

Listing 13-6 (continued)

<body>
<h2>Famous Quotes</h2>
<hr />
<form action=”#”>
<input type=”button” value=”George Orwell” onclick=
“saySomething(‘To write or even speak English is not a science but
an art.’)” />

<input type=”button” value=”Arthur Conan Doyle” onclick=
“saySomething(‘We cannot command our love, but we can our actions.’)” />

<input type=”button” value=”H.G. Wells” onclick=
“saySomething(‘If we do not end war, war will end us.’)” />

</form>
</body>
</html>

The result of this script is shown in Figure 13-3.

In the script, when the user clicks one of the buttons on the page, the say
Something function is called and is passed the information in quotes, which
the function stores in the variable message. The function then displays the
alert, with the value of message, which is the quotation it was passed.

Arrays
An array is a collection of values. Arrays are useful because you can use them
to manipulate and sort groups of things.

Figure 13-3:
An alert

pops up as
a result of

clicking the
H.G. Wells

button.

242 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 242

The location of information in an array is based on a numbered position
called the index. The numbering of the index always starts at 0 and goes up.
JavaScript has a special object — the Array object — just to handle arrays.

Creating arrays
To create an instance of an array, you must use the new operator along with
the Array object, like this:

x = new Array()

You can fill in the array when you create the Array object, separating the
array elements with commas, like so:

theDays = new Array(“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,
“Saturday”, “Sunday”)

Accessing arrays
Once the array has been created, you can write to it and read from it by using
the [] operator. By placing a position number in this operator, you can
access the data stored at that index number.

For example, the value of theDays[2] in the preceding example is
Wednesday (array positions always begin with 0, so Monday is 0).

Reading elements
To read an element from an array, create a variable and assign it a value from
the array, like this:

thisDay = theDays[6]

The value of thisDay is now Sunday.

Writing elements
To write a value to the array, follow these steps:

1. Identify the index of the value you want to change.

2. Assign a new value to the array element, like this:

theDays[0] = “Mon”

Looping
All arrays have a length property, which is very useful for discovering how
many elements the array contains, and is often used to loop through the
array elements, like this example:

243Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 243

planets = new Array (“Mercury”, “Venus”, “Earth”, “Mars”)
for (i = 0; i < planets.length; i++)
alert (planets[i]);

This causes the browser to display a series of four alert boxes, each contain-
ing one of the names of the planets array. The value of planets.length is
3 (since numbering starts at 0), and the script steps through each element of
the array until the value of the counting variable i is greater than 3, at which
time the script ends.

Objects
Most JavaScript scripts are designed to “give life” to objects that exist inside
your browser. A rollover brings an image link to life. A validated e-mail address
field is smart about what kind of e-mail address it will accept. A document dis-
plays new text on the fly based on a response from the Web page visitor.

Within JavaScript, you work with a variety of objects, such as the browser
window, a button, a form field, an image, or even the document itself.
Because JavaScript’s primary calling is to work with objects, the scripting
language is called an object-based language.

Think, for a moment, of an object that exists in the real world, such as a car
or an MP3 player. Each of these objects has characteristics that describe the
object, such as its color, weight, and height. Many objects also have a behav-
ior that can be triggered. A car can be started; an MP3 player can be played.

These real-world analogies can be applied to JavaScript. Objects you work
with have descriptive qualities (called properties) and behaviors (called meth-
ods). For example, a document object represents the HTML page in your
browser. It has properties, such as linkColor, title, and location, as well
as methods, such as open(), clear(), and write(). (Methods always have
parentheses following their names.)

JavaScript uses periods (or dots) to access an object’s properties or methods:

object.property
object.method()

For example, to get the title of the document and assign it to a variable, you
write this:

mytitle = document.title

To call the clear method of the document, you write this:

document.clear()

244 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 244

Events and Event Handling
Events are actions that either the browser executes or the user performs
while visiting your page. Loading a Web page, moving the mouse over an
image, closing a window, and submitting a form are all examples of events.

JavaScript deals with events by using commands called event handlers. Any
action by the user on the page triggers an event handler in your script. Table
13-6 is a list of JavaScript’s event handlers.

Table 13-6 Event Handlers
Event Handler Description

onabort User cancels a page load.

onblur An element loses focus because the user focuses on a
different element.

onchange User changes the contents of a form element or selects a
different check box, radio button, or menu item.

onclick User clicks an element with the mouse.

ondblclick User double-clicks an element with the mouse.

onerror Browser encounters an error in the scripts or other
instructions on the page.

onfocus An element becomes the focus of the user’s attention, like
a form field when you start typing in it.

onkeydown User presses and holds a key on the keyboard.

onkeypress User presses and immediately releases a key on the
keyboard.

onkeyup User releases a depressed key.

onload Browser loads an HTML page.

onmousedown User moves the mouse pointer over an element, presses
the mouse button down, and holds it down.

onmousemove User moves the mouse pointer anywhere on the page.

onmouseout User moves the mouse pointer off an element.

onmouseover User moves the mouse pointer over an element.

(continued)

245Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 245

Table 13-6 (continued)
Event Handler Description

onmouseup User releases a held mouse button.

onreset User clicks a form’s Reset button.

onresize User resizes the browser window.

onselect User selects a check box, radio button, or menu item from
a form.

onsubmit User clicks a form’s Submit button.

onunload Browser stops displaying one Web page because it’s
about to load another.

Not all objects support every event handler. For example, the onload handler
is supported by only the window and image objects. The onsubmit event
handler is supported by only the form object.

A common way to deal with event handlers is to use them as an attribute of
an HTML element. This is called an inline event handler. Here is an example
of the onsubmit inline event handler being used as an attribute of a <form>
tag:

<form onsubmit=”submitIt(this)” action=”submitForm.cgi”>

This example calls the submitIt function when the user clicks the form’s
Submit button. You can also embed JavaScript commands in the HTML, like
this:

<input type=”button” value=”Click Me!”
name=”button1” onclick=”alert(“That tickles!”);” />

A third way to use event handlers is to express them in JavaScript code, like
this:

document.button1.onclick = function () { alert(“That tickles!”)}

Chapter 15 offers examples of event handlers.

Document Object Model (DOM)
JavaScript gives you the tools to manipulate the objects in a Web page. The
Document Object Model (DOM) is the specification for how all those objects

246 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 246

are represented. The DOM is a Web standard, defined by the World Wide Web
Consortium (W3C; more information than you can imagine about the DOM
specification is available at www.w3.org/DOM).

The DOM allows JavaScript to programmatically access and manipulate the
contents of a document. The DOM defines

� Each object on a Web page

� Attributes associated with those objects

� Methods that you can use to manipulate those objects

By using the DOM, JavaScript can dynamically update the content, structure,
and style of Web pages. This means that you can use JavaScript to produce
effects in your Web pages, such as

� Rewriting your document on the fly

� Changing styles and style sheets

� Page layout

Marvelous Miscellany
Table 13-7 lists other script- and forms-related (X)HTML markup attributes
that you might find in HTML files.

Table 13-7 Other Script- and Forms-related (X)HTML Attributes
Name Function/Value Equals Value Related

Types Element(s)

declare Declares document object “declare” <script>
without invoking it

defer Allows user agent to “defer” <script>
defer script execution

References and Resources
This part of the book presents the basics of the JavaScript language and how
to add and adapt scripts that you find on the Web to your own HTML pages.
But the JavaScript language is more powerful than that.

247Chapter 13: The Nuts and Bolts of JavaScript

20_589172 ch13.qxd 4/22/05 3:41 PM Page 247

If you want to start writing your own code, you need more information. The
best place to get your questions answered is online. Many resources on the
Web can help you use JavaScript. Visit www.dummies.com/extras, click
“HTML 4 For Dummies, 5th Edition” in the list, and go to the Chapter 13 link
for a detailed list of Web sites and books that can help you create and use
JavaScript.

248 Part IV: Integrating Scripts with HTML

20_589172 ch13.qxd 4/22/05 3:41 PM Page 248

Chapter 14

Working with Forms
In This Chapter
� Using forms in your Web pages

� Creating forms

� Working with form data

� Designing easy-to-use forms

Most of the HTML you write helps you display content and information
for your users. Sometimes, however, you want a Web page to gather

information from users instead of giving static information to them. HTML
form markup tags give you a healthy collection of elements and attributes for
creating forms to collect information from visitors to your site.

This chapter covers the many different uses for forms. It also shows you how
to use form markup tags to create just the right form for soliciting informa-
tion from your users, reviews your options for working with the data you
receive, and gives you some tips for creating easy-to-use forms that really
help your users provide the information you’re looking for.

Uses for Forms
The Web contains millions of forms, but every form is driven by the same set
of markup tags. Web forms can be short or long, simple or complex, and they
have myriad uses. But they all fall into one of two broad categories:

� Search forms that let users search a site or the entire Web

� Data collection forms that provide information for such uses as online
shopping, technical support, site preferences, and personalization

21_589172 ch14.qxd 4/22/05 3:43 PM Page 249

Before you create any form markup, you need to determine what kind of data
your visitors will search for on your site and/or what kind of data you need to
collect from visitors. Your data drives the form elements you use — and how
you put them together on a page.

Searches
Search forms help you give visitors information.

The following search forms are from the friendly folks at the Internal Revenue
Service (IRS). The difference between these search forms is the data the IRS
site needs from you for its search:

� The IRS home page (shown in Figure 14-1) is a simple search form that
uses two different single-field forms to help visitors search for general
information and tax forms. This type of form can produce dozens of rele-
vant responses. Visitors can both

• Choose the best option.

• Look at more than one option.

� A more complicated search form, such as the Get Refund Status page (as
shown in Figure 14-2), produces only one specific response. It searches
IRS records for the status of your refund. This page demands detailed
information because the IRS doesn’t want you to see anyone else’s
refund; therefore, it both

• Finds the data visitors need.

• Hides data that visitors shouldn’t see.

Figure 14-1:
The IRS

home page
uses two

short search
forms.

250 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 250

Searches come in all shapes and sizes, so the search forms that drive those
searches come in all shapes and sizes, too. A short keyword search might do
the trick, or you might need a more sophisticated search method.

Data collection
Data collection forms receive information you want to process or save. When
you create a form that collects information, the information you need drives
the structure and complexity of the form:

� If you need just a little information, the form may be short and (rela-
tively) sweet.

The Library of Congress (LC) uses a form to collect information from
teachers to subscribe to a free electronic newsletter, as shown in Fig-
ure 14-3. The LC doesn’t need much information to set up the subscrip-
tion, so the form is short and simple.

� If you need a lot of information, your form may be several pages long.

RateGenius uses long and detailed forms to gather the information it
needs to help customers get the best possible loan rate. The page in
Figure 14-4 is just the first of several that a visitor must fill out to provide
all the necessary information.

Figure 14-2:
The refund

status
search form

is a little
more

complex.

251Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 251

Creating Forms
HTML form markup tags and attributes can

� Define the overall form structure.

Every form has the same basic structure.

� Tell the Web browser how to handle the form data.

Figure 14-4:
An online

car loan site
uses many

detailed
forms to

collect
necessary

data.

Figure 14-3:
A free

subscription
form

collects
basic

information.

252 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 252

� Create input objects (such as text fields and drop-down lists).

Which input elements you use depends on the data you’re collecting.

Structure
All of the input elements associated with a single form are

� Contained within a <form> tag

� Processed by the same form handler

A form handler is a program on the Web server (or a simple mailto URL)
that manages the data a user sends to you through the form. A Web
browser can only gather information through forms; it doesn’t know what
to do with the information once it has it. You must provide some other
mechanism to actually do something useful with the data you collect.
This chapter covers form handlers in detail later.

Attributes
You always use these two key attributes with the <form> tag:

� action: The URL of the form handler.

� method: How you want the form data to be sent to the form handler.

Your form handler dictates which of these values to use for method:

• get sends the form data to the form handler on the URL.

• post sends the form data in the Hypertext Transfer Protocol
(HTTP) header.

Webmonkey offers a good overview of the difference between get and
post in its “Good Forms” article:

http://hotwired.lycos.com/webmonkey/99/30/index4a_page3.html

Markup
The markup in Listing 14-1 creates a form that uses the post method to send
user-entered information to a form handler (guestbook.cgi) to be
processed on the Web server.

Listing 14-1: A Simple Form Processed by a Form Handler

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Forms</title>

(continued)

253Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 253

<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
</head>
<body>

<form action=”cgi-bin/guestbook.cgi” method=”post”>

<!-- form input elements go here -->

</form>
</body>
</html>

The value of the action attribute is a URL, so you can use absolute or rela-
tive URLs to point to a form handler on your server.

Input tags
The tags you use to solicit input from your site visitors make up the bulk of
any form. HTML supports a variety of different input options — from text
fields to radio buttons and from files to images.

Every input control associates some value with a name:

� When you create the control, you give it a name.

� The control sends back a value based on what the user does in the form.

For example, if you create a text field that collects a user’s first name, you
might name the field firstname. When the user types his or her first name in
the field and submits the form, the value associated with firstname is what-
ever name the user typed in the field.

The whole point of a form is to gather values associated with input controls,
so the way you set the name and value for each control is important. The fol-
lowing sections explain how you should work with names and values for each
of the input controls.

Input fields
You can use a variety of input fields in your forms.

For input elements that require a user to select an option (such as a check
box or radio button), rather than typing something into a field, you define
both the name and the value. When the user selects a box or a button and
clicks the Submit button, the form returns the name and value assigned to
the element.

254 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 254

Text
Text fields are single-line fields that users can type information into.

� You use the <input /> element to define a text field and the type
attribute with a value of text.

<input type=”text” />

� You use the name attribute to give the input field a name.

<input type=”text” name “firstname” />

� The user supplies the value when he or she types in the field.

This markup creates two text input fields — one for a first name and one for a
last name:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” /></p>
<p>Last Name: <input type=”text” name=”lastname” /></p>

</form>

In addition to the <input /> elements, the preceding markup includes para-
graph (<p>) elements and some text to label each of the fields. By them-
selves, most form elements won’t give the user many clues about the type of
information you want. You also must use HTML block and inline elements to
format the appearance of your form. Figure 14-5 shows how a browser dis-
plays this HTML.

Figure 14-5:
Text entry
fields in a

form.

255Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 255

You can control the size of a text field with these attributes:

� size: The length (in characters) of the text field

� maxlength: The number of characters the user can type into the field

The following markup creates a form that sets both fields to a size of 30 and
a maxlength of 25. Each field will be about 30 characters long; even so, a
user can type only 25 characters into each field, as shown in Figure 14-6.

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” size=”30”

maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30”

maxlength=”25” /></p>
</form>

Passwords
A password field is a text field that doesn’t display what the user types.
Someone looking over the user’s shoulder sees each keystroke represented
on the screen by a placeholder character, such as an asterisk or bullet.

You create a password field by using the <input /> element with a type
attribute set to password, as follows:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” size=”30”

maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30” maxlength=”25” /></p>
<p>Password: <input type=”password” name=”psswd” size=”30” maxlength=”25” /></p>
</form>

Figure 14-6:
You can

specify the
length and
maximum
number of

characters
for a text

field.

256 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 256

Password fields are programmed like text fields.

Figure 14-7 shows how a browser replaces what you type with bullets. Some
browsers may replace the text with asterisks or some other character. It
depends on the browser’s default.

Check boxes and radio buttons
If only a few possible values are available to the user, you can give him or her
a collection of options to choose from:

� Check boxes: Choose more than one option.

� Radio buttons: Choose only one option.

If many choices are available, use a drop-down list instead of radio buttons or
check boxes.

To create radio buttons and check boxes, you

� Use the <input /> element with the type attribute set to radio or
checkbox.

• If the attribute value is radio, a round radio button appears.

• If it’s checkbox, a check box appears.

Radio buttons differ from check boxes in that users can select a single
radio button from a set of options but can select any number of check
boxes (including none).

Figure 14-7:
Password

fields mask
the text a

user enters.

257Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 257

� Create each option with these attributes:

• The name attribute to give the option a name.

• The value attribute to specify what value is returned if the user
selects the option.

You can use the checked attribute (with a value of checked) to specify
that an option should be already selected when the browser displays the
form. This is a good way to specify a default selection in a list.

This markup shows how to format check box and radio button options:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>What are some of your favorite foods?</p>
<p><input type=”checkbox” name=”food” value=”pizza” checked=”checked” />

Pizza

<input type=”checkbox” name=”food” value=”icecream” />Ice Cream

<input type=”checkbox” name=”food” value=”eggsham” />Green Eggs and Ham

</p>

<p>What is your gender?</p>
<p><input type=”radio” name=”gender” value=”male” />Male

<input type=”radio” name=”gender” value=”female” checked=”checked” />
Female</p>

</form>

In the preceding code, each set of options uses the same name for each input
control but gives a different value to each option. You give each item in a set
of options the same name to let the browser know they are part of a set.
Figure 14-8 shows how a browser displays this markup.

Figure 14-8:
Check

boxes and
radio

buttons.

258 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 258

Hidden fields
A hidden field gives you a way to collect name and value information that the
user can’t see along with the rest of the form data. Hidden fields are useful if
you want to keep track of information associated with the form (such as its
version or name).

If your Internet service provider (ISP) provides a generic application for a
guest book or feedback form, you might have to put your name and e-mail
address in the form’s hidden fields so the data goes specifically to you.

To create a hidden field, you

� Use the <input /> element with its type attribute set to hidden.

� Supply the name and value pair you want to send to the form handler.

Here’s an example of markup for a hidden field:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<input type=”hidden” name=”e-mail” value=”me@mysite.com” />
<p>First Name: <input type=”text” name=”firstname” size=”30”

maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30” maxlength=”25” /></p>
<p>Password: <input type=”password” name=”psswd” size=”30” maxlength=”25” /></p>
</form>

As a general rule, using your e-mail address in a hidden field is just asking for
your address to be picked up by spammers. If your ISP says that this is how
you should do your feedback form, ask them if they have any suggestions for
how you can minimize the damage. Surfers to your page can’t see your e-mail
address, but spammers’ spiders can read the underlying tags.

File uploads
A form can receive documents and other files, such as images, from users.
When the user submits the form, the browser grabs a copy of the file and
sends it with the other form data. To create this file upload field,

� Use the <input /> element with the type attribute set to file.

The file itself is the form field value.

� Use the name attribute to give the control a name.

Here’s an example of markup for a file upload field:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>Please submit your resume in Microsoft Word or plain text format:

<input type=”file” name=”resume” />
</p>
</form>

259Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 259

Browsers render a file upload field with a browse button that allows users to
surf their local hard drive and select a file to send to you, as in Figure 14-9.

When you accept users’ files through a form, you can receive files that are
either huge or are infected by viruses. Consult with whoever is programming
your form handler to discuss options for protecting the system where files
are saved. Several barriers can help minimize your risks, including

� Virus-scanning software

� Restrictions on file size

� Restrictions on file type

Drop-down lists
Drop-down lists are a great way to give users lots of options in a little screen
space. You use two different tags to create a drop-down list:

� <select> holds the list.

Use a name attribute with the <select> element to name the entire list.

� A collection of <option> elements identifies the list options.

The value attribute assigns a unique value for each <option> element.

Figure 14-9:
A file upload

field.

260 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 260

Here’s an example of markup for a drop-down list:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>What is your favorite food?</p>
<select name=”food”>
<option value=”pizza”>Pizza</option>
<option value=”icecream”>Ice Cream</option>
<option value=”eggsham”>Green Eggs and Ham</option>

</select>
</form>

The browser turns this markup into a drop-down list with three items, as
shown in Figure 14-10.

You can enable users to select more than one item from a drop-down list by
changing the default settings of your list:

� If you want your user to be able to choose more than one option (by
holding down the Alt [Windows] or Ô [Mac] key while clicking options
in the list), add the multiple attribute to the <select> tag. The value
of multiple is multiple.

Because of XHTML rules, standalone attributes cannot stand alone;
therefore, the value is the same as the name of the attribute.

� By default, the browser displays only one option until the user clicks the
drop-down menu’s arrow to display the rest of the list. Use the size
attribute with the <select> tag to specify how many options to show.

If you specify fewer than the total number of options, the browser
includes a scroll bar with the drop-down list.

Figure 14-10:
A drop-

down list.

261Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 261

You can specify that one of the options in the drop-down list be already
selected when the browser loads the page, just as you can specify a check
box or radio button to be checked. Simply add the selected attribute to
have a value of selected for the <option> tag you want as the default.

The following markup

� Allows the user to choose more than one option from the list

� Displays two options

� Selects the third option in the list by default

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>What are some of your favorite foods?</p>
<select name=”food” size=”2” multiple=”multiple”>
<option value=”pizza”>Pizza</option>
<option value=”icecream”>Ice Cream</option>
<option value=”eggsham” selected=”selected”>Green Eggs and Ham</option>
</select>
</form>

Figure 14-11 shows how adding these attributes modifies the appearance of
the list in a browser.

Multi-line text boxes
If a single-line text field isn’t enough room for responses, create a text box
instead of a text field:

Figure 14-11:
A drop-

down list
with modi-

fications.

262 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 262

� The <textarea> element defines the box and its parameters.

� The rows attribute specifies the height of the box in rows based on the
font in the text box.

� The cols attribute specifies the width of the box in columns based on
the font in the text box.

The text the user types into the box provides the value, so you need only give
the box a name with the name attribute:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<textarea rows=”10” cols=”30” name=”comments”>
Please include any comments here.

</textarea>
</form>

Any text you include between the <textarea> and </textarea> tags
appears in the text box in the browser, as shown in Figure 14-12. The user
then enters information in the text box and overrides your text.

Submit and reset
Submit and reset buttons help the user tell the browser what to do with the
form. You can create buttons to either submit or reset your form using the
<input /> element with the type and value attributes:

Figure 14-12:
A text box.

263Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 263

� Submit

Visitors need to tell a browser that they are done with a form and want
to send the contents. You create a button to submit the form to you by
using this markup:

<input type=”submit” value=”Submit” />

You don’t use the name attribute for the submit and reset buttons. You
use the value attribute instead to specify how the browser labels the
buttons for display.

� Reset

Visitors need to clear the form if they want to start all over again or
decide not to fill it out. You create a button to reset, or clear, the form by
using the following markup:

<input type=”reset” value=”Clear” />

You can set the value to anything you want to appear on the button. In our
example, we set ours to Clear. You can use something that’s more appropriate
to you if you’d like.

Here’s an example of markup to create Submit and Reset buttons named Send
and Clear, respectively:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” size=”30”

maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30” maxlength=”25” /></p>
<p>Password: <input type=”password” name=”psswd” size=”30” maxlength=”25” /></p>

<p>What are some of your favorite foods?</p>
<p><input type=”checkbox” name=”food” value=”pizza” checked=”checked” />

Pizza

<input type=”checkbox” name=”food” value=”icecream” />Ice Cream

<input type=”checkbox” name=”food” value=”eggsham” />Green Eggs and Ham

</p>

<p>What is your gender?</p>
<p><input type=”radio” name=”gender” value=”male” />Male

<input type=”radio” name=”gender” value=”female” checked=”checked” />
Female</p>

<p>
<input type=”submit” value=”Send” />
<input type=”reset” value=”Clear” />

</p>
</form>

Figure 14-13 shows how a browser renders these buttons in a form.

264 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 264

Customizing
If you don’t like the Submit and Reset buttons that a browser creates, you can
substitute your own graphical buttons by using

� The <input /> element with a type of image.

� An src attribute that specifies the image’s location.

� A value that defines the result of the field:

• For an image that submits the form, set value to submit.

• For an image that clears the form, set value to reset.

Use the alt attribute to provide alternative text for browsers that don’t show
images (or for users who can’t see them).

The following markup creates customized submit and reset buttons:

<p><input type=”image” value=”submit” src=”submit_button.gif” alt=”Submit” />
<input type=”image” value=”reset” src=”reset_button.gif” alt=”Clear” />

</p>

Validation
No matter how brilliant your site’s visitors, there’s always a chance that
they’ll enter data you aren’t expecting. JavaScript to the rescue!

Figure 14-13:
Submit and

reset
buttons

labeled as
Send and

Clear.

265Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 265

Form validation is the term for checking the data the user enters before it’s
put into your database. Check the data with both JavaScript and Common
Gateway Interface (CGI) scripts on your server.

JavaScript
You can validate entries in JavaScript before data goes to the server. This
means that visitors don’t wait for your server to check the data — they’re
told quickly (before they click Submit, if you want) if there’s a problem.

You can learn more about JavaScript and your forms so you can use them on
your Web site at

� www.w3schools.com/js/default.asp

� www.quirksmode.org/js/forms.html

� http://webmonkey.wired.com/webmonkey/programming/
javascript

CGI
You need to validate your form data on the server side because users can
surf with JavaScript turned off. (They’ll have a slower validation process.)
Find out more about CGI in the next section and at

� www.4guysfromrolla.com/webtech/LearnMore/Validation.asp

� www.cgi101.com/book

Processing Data
Getting form data is really only half of the form battle. You create form ele-
ments to get data from users, but then you need to do something with that
data. Of course, your form and your data are unique every time, so no single,
generic form handler can manage the data for every form. Before you can find
(or write) a program that handles your form data, you must know what you
want to do with it. For example,

� If you just want to receive comments from a Web form by e-mail, you
might need only a simple mailto: URL.

� If a form gathers information from users to display in a guest book, you

• Add the data to a text file or a small database that holds the
entries.

• Create a Web page that displays the guest-book entries.

266 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 266

� If you need a shopping cart, you need programs and a database that can
handle inventory, customer-order information, shipping data, and cost
calculations.

Your Web hosting provider — whether it’s an internal IT group or an ISP to
which you pay a monthly fee — has the final say in what kind of applications
you can use on your Web site to handle form data. If you want to use forms on
your site, be sure that your hosting provider supports the applications you
need to run on the server to process form input data (which will normally use
post or get methods that we discuss earlier in this chapter). Chapter 3
includes more information on finding the right ISP to host your pages.

Using CGI scripts and other programs
Typically, form data is processed in some way or another by a Common
Gateway Interface (CGI) script written in some programming language, such
as Perl, Java, AppleScript, or one of many other languages that run on Web
servers. These scripts make the data from your form useful by

� Putting it into a database

� Creating customized HTML based on it

� Writing it to a flat file

If you aren’t familiar with CGI scripts and how they work, the “CGI Scripts for
Fun and Profit” article on Webmonkey provides an excellent overview:

http://hotwired.lycos.com/webmonkey/99/26/index4a.html

You don’t have to be a programmer to make the most of forms. Many ISPs
support (and provide) scripts for processing common forms such as guest
books, comment forms, and even shopping carts. Your ISP may give you

� All the information you need to get the program up and running

� HTML to include in your pages

You can tweak the markup that manages how the form appears in the canned
HTML you get from an ISP, but don’t change the form itself — especially the
form tag names and values. The Web server program uses these to make the
entire process work.

Several online script repositories provide free scripts that you can download
and use along with your forms. Many of these also come with some generic

267Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 267

HTML you can dress up and tweak to fit your Web site. You simply drop the
program that processes the form into the folder on your site that holds pro-
grams (usually called cgi-bin), add the HTML to your page, and you’re good
to go. Some choice places on the Web to find scripts you can download and
put to work immediately are

� Matt’s Script archive: www.scriptarchive.com/nms.html

� The CGI Resource Index: http://cgi.resourceindex.com

� ScriptSearch: www.scriptsearch.com

If you want to use programs that aren’t provided by your ISP on your Web
site, you need complete access to your site’s cgi-bin folder. Every ISP’s setup
is different, so read your documentation to find

� Whether your ISP allows you to use CGI scripts in your Web pages

� Languages the ISP supports (Perl is a safe bet, but it’s safer to be sure.)

Sending data by e-mail
You can opt to receive your form data from e-mail instead of using a script or
other utility to process a form’s data. You get just a collection of name and
value pairs in a text file sent to your e-mail address, but that isn’t necessarily
a bad thing. You can include a short contact form on your Web site that asks
people to send you feedback (a feature that always looks professional); then
you can simply include, in the action URL, the e-mail address you want the
data sent to:

<form action=”mailto:me@mysite.com” action=”post”>

Many spam companies get e-mail addresses by trolling Web sites looking for
mailto URLs. Consider setting up a special e-mail account just to receive
comments so the e-mail address you use every day won’t have yet another
way to get pulled onto spam mailing lists.

Designing User-Friendly Forms
Designing useful forms is a different undertaking from designing easy-to-use
forms. Your form may gather the data that you need, but if it’s hard for visi-
tors to use, they may abandon it before they’re done.

268 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 268

As you use the markup elements from this chapter, along with the other ele-
ments that drive page layout, keep the following guidelines in mind:

� Provide textual cues for all your forms. Be clear about

• Information you want

• Format you need

For example, tell users such inputting details as whether

• Dates must be entered as mm/dd/yy (or as mm/dd/yyyy).

• The number of characters a field can take is limited.

Characters can be limited with the maxlength attribute.

� Use field width and character limits to provide visual clues. For exam-
ple, if users should enter a phone number as xxx-xxx-xxxx, consider cre-
ating three text fields — one for each part of the phone number.

� Group similar fields together. A logical grouping of fields makes filling
out a form easier. It’s confusing if you ask for the visitor’s first name,
then birthday, then last name.

� Break long forms into easy-to-manage sections. Forms in short chunks
are less intimidating and more likely to be completed.

Major online retailers (such as Amazon.com) use this method to get the
detail they need for orders without making the process too painful.

� Mark required fields clearly. If some parts of your form can’t be left
blank when users submit the form, mark those fields clearly.

You can identify required fields by

• Making them bold

• Using a different color

• Placing an asterisk beside them

� Tell users what kind of information they need for the form. If users
need any information in their hands before they fill out your form, a form
gateway page can detail everything users should have before they start
filling out the form.

The RateGenius Apply For a Loan page, shown in Figure 14-14, lays out
clearly for visitors about to fill out a long form exactly what information
to prepare before starting.

The series of forms RateGenius uses to gather information for car loans and
loan refinancing are excellent examples of long forms that collect a variety of
different kinds of data by using all the available form markup elements. Visit
www.rategenius.com to review its form techniques.

269Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 269

Marvelous Miscellany
Table 14-1 lists other forms-related (X)HTML markup attributes that you
might find in HTML files.

Table 14-1 Other Forms-related (X)HTML Attributes
Name Function/Value Equals Value Types Related

Element(s)

Accept Lists acceptable MIME CS Media <form>
types for file upload types <input />

accept- Lists character encodings SS Encodings <form>
charset

Checked Preselects option for “checked” <input />
select lists

Disabled Disables form elements “disabled” <button>
<input>
<optgroup>
<option>
<select>
<textarea>

Figure 14-14:
A form

gateway
page helps

users
prepare to

fill out a
long form.

270 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 270

Name Function/Value Equals Value Types Related
Element(s)

enctype Specifies encoding method Media type <form>
for form input data

for Points to ID reference Idref <label>
from other attributes

label Identifies a group of Text <optgroup>
options in a form

label Specifies an option name Text <option>
in a form

method HTTP method to use when {“get”| <form>
submitting a form ”put”}

multiple Permits multiple option “multiple” <select>
selection in a form

name Names a specific form CDATA <button>
control <textarea>

name Names a specific form CDATA <select>
input field

name Names a form for script CDATA <form>
access

readonly Blocks editing of text “readonly” <input />
fields within a form <textarea

size Specifies number of lines Number <select>
of text to display for a
drop-down menu

tabindex Defines tabbing order for Number <a><area />
form fields <button>

<input />
<object>
<select>
<textarea>

type Defines button {“button”| <button>
function in a form ”reset”|

”submit”}

(continued)

271Chapter 14: Working with Forms

21_589172 ch14.qxd 4/22/05 3:43 PM Page 271

Table 14-1 (continued)
Name Function/Value Equals Value Types Related

Element(s)

type Specifies type of input {“button”| <input />
required for form input field ”checkbox”|

”file”|
”hidden”|
”image”|
”password”|
”radio”|
”reset”|
”submit”|
”text”}

value Supplies a value to send to CDATA <button>
the server when clicked

value Associates values with CDATA <input />
radio buttons and check
boxes

272 Part IV: Integrating Scripts with HTML

21_589172 ch14.qxd 4/22/05 3:43 PM Page 272

Chapter 15

Fun with Client-Side Scripts
In This Chapter
� What is DHTML?

� Image and text rollovers

� Adding dynamic content

� Showing pop-up windows

� Using Web cookies

If you are the outdoor type, you can get an adrenaline rush by climbing
a mountain, mountain biking, or perhaps inventing a new sport, such as

parafishing or sewer snorkeling. But if you are reading this book, chances
are you are sitting in front of your computer trying to create a Web site. If so,
then we have an idea for the ultimate Web adrenaline rush: Dynamic HTML!

Dynamic HTML, also known as DHTML, is techie talk for a useful and powerful
set of technologies. It’s the combination of HTML, Cascading Style Sheets
(CSS), the Document Object Model (the DOM), and JavaScript. If you’re using
those four technologies together, you’re writing DHTML.

DHTML is like a printed document in which the DOM acts as the nouns, Java-
Script as the verbs, CSS as the adjectives, and HTML as the paper itself. The
individual parts are useful, but it’s in combination that they become truly
powerful. If you can put them all together, you can speak DHTML.

In this chapter, we explore how to use DHTML and its component technolo-
gies to bring active content to your Web pages. Specifically, we explore how
to create rollovers, add dynamic content to your page, display pop-up win-
dows, and tap into the power of cookies.

22_589172 ch15.qxd 4/22/05 3:44 PM Page 273

Adding Rollovers to Your Pages
If you are new to HTML, a rollover probably sounds like a pet trick. But, in
actuality, a rollover is perhaps the most common use of DHTML on the Web.
A rollover brings your Web page to life when a mouse hovers over an image
or text.

Image rollovers with JavaScript
If all JavaScript scripts went to school, the image rollover would certainly be
the BMOC, the Big Man on Campus. It’s definitely the most popular use for
JavaScript. Without image rollovers, your image buttons look dull and drab;
visitors to your site might even assume that your buttons aren’t actually live
links if those buttons don’t change in some fashion when a cursor moves
over them. But, with image rollovers, your pages let loose a dash of adrena-
line with each mouse hover.

Consider the two-states of the image rollover shown in Figures 15-1 and 15-2:

� Figure 15-1 shows a button in its inactive (off) state.

� Figure 15-2 shows the same button when the cursor is moved over it.
That’s the active (on) state.

Figure 15-1:
A very
simple
button.

274 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 274

Listing 15-1 shows the code for a JavaScript image rollover.

Listing 15-1: JavaScript Image Rollover

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>JavaScript Image Rollover</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<script type=”text/javascript” language=”javascript”>

function chgImg(imgField,imgState) {
document[imgField].src = “images/” + imgField + imgState + “.gif”

}
</script>

</head>
<body>

<a href=”index.html” onmouseover=”chgImg(‘homeButton’,’On’)”
onmouseout=”chgImg(‘homeButton’,’Off’)”>
<img src=”images/homeButtonOff.gif” width=”65” height=”15”
border=”0” alt=”Go Home” name=”homeButton” />

</body>
</html>

The images subdirectory holds two separate image files with identical
dimensions:

� homeButtonOff.gif appears when the button is in the off state (when
the page loads).

� homeButtonOn.gif appears when the button is in the on state (when
the cursor is over the button).

Figure 15-2:
A very
simple

button with
the cursor

over it.

275Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 275

If you want to add JavaScript rollovers to your existing Web page, follow
these steps:

1. Decide on an attribute name for the rollover button.

You want to give each button a unique name. For example, if you have a
button for an About page, you might call it aboutMeButton. Call a button
linked to your Home page homeButton.

2. Create your button images in your favorite image-editing application.

You need two identically sized images for each button.

3. Name the On and Off button image files with the attribute.

For example, the aboutMeButton button needs two image files:

aboutMeButtonOn.gif
aboutMeButtonOff.gif

4. Put the button image files into an images subdirectory under the
directory of the page that will contain the rollovers.

5. Add the JavaScript code in Listing 15-1 to your page.

That’s everything between (and including) the <script> and </script>
tags. It goes inside the <head> tags at the top.

6. Add the off versions of each image to your page.

7. Add the name attribute to each tag on your page.

8. Surround each tag with an <a href> tag.

9. Add these event handlers to each <a href> tag:

Add the following attributes to use homeButton:

onmouseover=”chgImg(‘homeButton’,’On’)”
onmouseout=”chgImg(‘homeButton’,’Off’)”

Next, add these attributes to use aboutMeButton:

onmouseover=”chgImg(‘aboutMeButton’,’On’)”
onmouseout=”chgImg(‘aboutMeButton’,’Off’)”

With this image rollover script, note the following behavior:

� For dialup visitors to your Web site, this rollover script takes a moment
to download the active image file the first time the visitor hovers the
mouse over the image.

However, you can preload the active states of your images; that is, tell
JavaScript to load all the on versions of your buttons when the page ini-
tially loads. This technique enables your page to instantaneously swap
between images when rolled over. Listing 15-2 shows the added code to
preload the images.

276 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 276

Recent versions of Microsoft Internet Explorer (5.x and 6.x) contain a
bug that can make preloading ineffective. Under certain circumstances,
the browser will ignore images already downloaded into your local
cache and instead request the image all over again each time a visitor
moves the mouse over the rollover image. If you encounter this prob-
lem, consider a text rollover instead, which is discussed in the “Text
rollovers with CSS” section later in this chapter.

� This script depends on the buttons having particular names; if you want
more flexibility, the code has to be written to handle it.

� This script causes trouble with certain ancient browsers, particularly
Netscape versions 1 and 2 and Internet Explorer versions 1, 2, and 3.

Listing 15-2: Enhanced JavaScript Image Rollover with Preloader

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>JavaScript Image Rollover</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<script type=”text/javascript” language=”javascript”>

//Preloads images
if (document.images) {
homeButtonOn = new Image
homeButtonOff = new Image
homeButtonOn.src = “images/homeButtonOn.gif”
homeButtonOff.src = “images/homeButtonOff.gif”

}

function chgImg(imgField,imgState) {
document[imgField].src = “images/” + imgField + imgState + “.gif”

}
</script>

</head>
<body>

<a href=”index.html” onmouseover=”chgImg(‘homeButton’,’On’)”
onmouseout=”chgImg(‘homeButton’,’Off’)”>
<img src=”images/homeButtonOff.gif” width=”65” height=”15”

border=”0” alt=”Go Home” name=”homeButton” />
</body>
</html>

Text rollovers with CSS
For years, the only option available for creating a rollover effect was to create
button images and then “activate” them using JavaScript (as discussed in the

277Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 277

“Image rollovers with JavaScript” section previously). However, as CSS has
finally gained acceptance with the newer versions of browsers, you have an
alternative way to create rollovers without using any images at all.

Text rollovers have advantages and disadvantages when compared to
JavaScript image rollovers:

� Good news: Text is faster and more meaningful to search engines, and
it’s always easier to just add text to a page than it is to create two
images and then add them to a page, as with an image rollover. Plus, you
don’t need to worry about preloading your images.

� Bad news: Although you can control the text font, style, and border, you
can’t do all the nifty visual tricks that you can with images, such as anti-
aliasing. In addition, this method works only in reasonably current
browsers. (However, if your target viewing audience uses a browser that
was released in this century, you should be fine.)

Figure 15-3 shows a plain-Jane Web page with two rollover text links: Home
and About Me. Moving the cursor over one of the images, as shown in Figure
15-4, causes the rolled-over version of the text to display. Listing 15-3 displays
the HTML and CSS required for this rollover effect.

The page can still display whether you’ve visited the linked page or not.
Figure 15-5 shows how the page appears after you’ve been to this site’s home
page. And although that image is grayed out, it’s still a link, so rolling over it
still gives the same effect as in Figure 15-4.

Figure 15-3:
A page with

text
rollovers
handled

with CSS.

278 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 278

Listing 15-3: A Text Rollover with CSS

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>CSS Text Rollover</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<style type=”text/css”>

h4 {font: 18px geneva, sans-serif; margin: 0; color: #000;
background: #FFF;}

(continued)

Figure 15-5:
After you’ve

been to a
page, the

link text
color shows

that the
page was

visited.

Figure 15-4:
Moving the
cursor over
the link text

changes the
text and

background
colors.

279Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 279

Listing 15-3 (continued)

a {text-decoration: none;}

div#navbar {width: 100px;}
div#navbar a {display:block; margin: 0; padding: 0.3em;}
div#navbar a:hover {background: #FFF; color: #000;}
div#navbar a:link {color: #000; background-color: transparent;}
div#navbar a:link:hover {color: #FFF; background: #000;}
div#navbar a:visited {color: #CCC; background-color: transparent;}
div#navbar a:visited:hover {color: #CCC; background: #000;}

</style>
</head>
<body>
<div id=”navbar”>

<h4>Home</h4>
<h4>About Me</h4>

</div>
</body>
</html>

In this example, we’ve made the text change from black on white to white on
black when the cursor hovers over the link so that it’s easy for you to see
what’s going on in the black-and-white figures. You likely want your site to
use a more colorful approach.

Adding this type of navigation to your site couldn’t be simpler:

1. Within the <head> tags, add the preceding code (from Listing 15-3)
inside and including the <style> and </style> tags.

2. Add links inside individual <h4> tags.

3. Make sure that the entire menu is inside a <div> tag with an id
attribute of navbar.

If you add the CSS to your site via a link to a site-wide external style sheet
(see Chapters 8 and 9 for more information on style sheets), you can add,
change, or delete menu bar links on your site at any time without having to
touch a single line of CSS or JavaScript. You simply add or modify your <a
href> tags. Slick, huh?

Displaying Dynamic Content
on Your Page

Web pages can take advantage of JavaScript to change by themselves without
requiring any user input or updating from the Web server. To demonstrate
how JavaScript can do this, we create a simple clock that can automatically

280 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 280

update itself every second. We first show you how to do this using JavaScript
and HTML and then how to do this an even better way using JavaScript and
the DOM.

HTML and JavaScript
You can create a JavaScript-enabled clock by using JavaScript and an ordi-
nary HTML <input> tag. Listing 15-4 displays the code that you need to make
this happen, and Figure 15-6 displays the results on-screen.

Listing 15-4: A Simple HTML and JavaScript Clock

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HTML Clock</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<script type=”text/javascript” language=”javascript”>

window.onload = theClock

function theClock() {
now = new Date;

theTime = ((now.getHours() > 0 && now.getHours()
< 13)) ? now.getHours() : (now.getHours() == 0)
? 12 : now.getHours()-12;

theTime += (now.getMinutes() > 9) ? “:” + now.getMinutes() : “:0”

(continued)

Figure 15-6:
This page

displays the
current

time,
updated

every
second,

inside a text
field.

281Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 281

Listing 15-4 (continued)

+ now.getMinutes();
theTime += (now.getSeconds() > 9) ? “:” + now.getSeconds() : “:0”

+ now.getSeconds();
theTime += (now.getHours() < 12) ? “ am” : “ pm”;

document.myForm.myClock.value = theTime;
setTimeout(“theClock()”,1000);

}
</script>

</head>
<body>
<form action=”#” name=”myForm”>
The current time is
<input type=”text” name=”myClock” readonly=”readonly” size=”11” />
</form>
</body>
</html>

In Listing 15-4, the clock is updated inside a form text field so that JavaScript
can write out to the page without having to reload the entire page every
second. Wherever the text field is on your page, that’s where the time
appears. The clock shows the time set on the user’s computer, not the time
on the Web server that’s serving the pages.

To add this clock to your page, just

1. Copy everything from the beginning <script> tag to the ending
</script> tag in Listing 15-4.

The complete code listings for this book are available at www.dummies.
com/extras.

2. Paste the code into the <head> section of your page.

3. Add the <form> and <input> tags (including the name attribute on
each) on your page where you want your clock to appear.

The very first thing that JavaScript does when the Web page loads is set the
window’s onload event handler to trigger the theClock function. This is
no big deal — unless you want to run another script when the page loads.
However, this script is written in such a way that it never comes back to
run anything else, since the clock is constantly updating itself.

JavaScript and DOM
When you add both JavaScript and some DOM manipulation to your page,
you can update the text of the page itself, as shown in Listing 15-5. Figure 15-7
shows a clock that updates every second, but it looks visually just like the
rest of the text on the line.

282 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 282

Listing 15-5: A Slightly More Complex JavaScript and DOM Clock

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>DOM-based Clock</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<script type=”text/javascript” language=”javascript1.5”>
window.onload = theClock

function theClock() {
now = new Date;

theTime = ((now.getHours() > 0 && now.getHours() < 13)) ?
now.getHours() : (now.getHours() == 0) ? 12 : now.getHours()-12;

theTime += (now.getMinutes() > 9) ? “:” + now.getMinutes() : “:0”
+ now.getMinutes();

theTime += (now.getSeconds() > 9) ? “:” + now.getSeconds() : “:0”
+ now.getSeconds();

theTime += (now.getHours() < 12) ? “ am” : “ pm”;

clockSpan = document.getElementById(“myClock”);
clockSpan.replaceChild(document.createTextNode(theTime),

clockSpan.firstChild);

setTimeout(“theClock()”,1000);

(continued)

Figure 15-7:
This page

displays the
current

time,
updated

every
second, as
simple text.

283Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 283

Listing 15-5 (continued)

}
</script>

</head>
<body>
The current time is ?
</body>
</html>

The script in Listing 15-5 is virtually identical to Listing 15-4, except for a
couple of different lines of JavaScript. Using the DOM, the script can grab
that text and replace it with new text every second.

� The good news: You can style that text with CSS and have it appear just
like everything else on the page. The visual look is far superior to
putting the dynamic text inside an <input> tag.

� The bad news: Older browsers don’t support the tag, so if your
visitors use legacy versions of Netscape or Microsoft browsers, consider
using the HTML and JavaScript version instead.

Other examples in this book show the initial <script> tag with the language
attribute set to javascript. This particular script specifies javascript1.5,
which tells the browser to ignore everything that’s going on if you aren’t
using a modern browser. If you come into this page with an older browser,
you won’t get an error, but you won’t get the dynamic effects, either.

To add the DOM-enabled scripted clock to your page, follow these steps:

1. Add everything between the beginning and ending <script> tags to
the <head> section of your page.

2. Add a tag with an id attribute of myClock anywhere on your
page.

The clock appears!

Are you getting errors when you try to add the DOM-powered clock to your
page? Some browsers have a problem with either nothing or a space in the
 tag. Solution: As with the example shown in Listing 15-5, put some-
thing (anything) inside the tag for when it’s initially loaded. In this
case, there’s a question mark, but it won’t ever be visible to the Web page
visitor.

Displaying Pop-up Windows
Pop-up windows are both one of the most useful and one of the most abused
tools on the Web. Having a way to provide some extra information to site

284 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 284

visitors without making them leave a page is very useful. Unfortunately, so
many unethical people have given pop-ups (particular advertising pop-ups)
a bad name that many Web surfers install pop-up blockers. Consequently, if
you add pop-up windows to your site, make sure that they aren’t the only
way that your visitors have of getting information.

Figure 15-8 shows a simple pop-up window containing the clock from Listing
15-5. This little window is a nice, floating, constantly updated clock that can
stay up even after you’ve left the calling page. Listing 15-6 shows how to
create this pop-up window, which is a new browser window that doesn’t
have an address bar, menu bar, scroll bars, status bar, or toolbars, as shown
in Figure 15-8.

Listing 15-6: Opening a New Browser Window

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Window opener</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<script type=”text/javascript” language=”javascript”>

function OpenWindow (newPage) {
window.open(newPage,”newWin”,”width=200,height=50,resizable=yes”);

}

(continued)

Figure 15-8:
Clicking the

link opens
a new

browser
window.

285Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 285

Listing 15-6 (continued)
</script>

</head>
<body>
<a href=”domClock.html”

onclick=”OpenWindow(this.href);return false”>Open a new clock
</body>
</html>

The “Open a new clock” link, when clicked, calls a tiny JavaScript function
that opens a new window that’s 200 pixels wide, 50 pixels high, and resizable.

Follow these steps to add this new window to your own site:

1. Add everything from the beginning to the ending <script> tags to
the <head> of your page.

2. In the body, figure out where you want the link to be.

3. Add the onclick event handler attribute to the <a href> tag around
the text or image.

You can have multiple links on the same page that each open a new window,
and they can all have identical onclick handlers and call the same
JavaScript function.

The script is coded so that all the different bars are turned off. You can
change the code so that the sizes are different or various fields either are or
aren’t displayed by varying the contents of the last field in the window.open
function. Table 15-1 shows the valid entries for this parameter; just put them
all, separated by commas (but not spaces), into a single string, and you get
exactly the results you want.

The default for every parameter is no, so there’s no difference between set-
ting an entry to no and just leaving it off entirely.

Table 15-1 JavaScript’s Window Parameters
Name Values (Default Description and Value

in Italics)

location yes, no Should the new window display the loca-
tion bar (also known as the address bar)?

menubar yes, no Should the new window display the menu
bars? (Applies only to Windows and Unix.)

286 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 286

Name Values (Default Description and Value
in Italics)

resizable yes, no Should the user be allowed to resize the
new window?

scrollbars yes, no Should the user be allowed to scroll the
new window?

status yes, no Should the new window display the
status bar?

toolbar yes, no Should the new window display the
toolbar?

height Numeric The height of the new window in pixels

width Numeric The width of the new window in pixels

Working with Cookies
Every time we start talking about cookies, we are tempted to rush off to the
fridge for a glass of milk and get ready for dipping. But then we remind our-
selves that Web cookies, as useful as they can be, actually taste pretty bland.
In fact, they taste far more like chicken than that famous Toll House recipe.
Although they might not be tasty, you can still find cookies to be helpful as
you create your Web site.

A cookie lets you store information on visitors’ computers that you can recall
at a later time. Cookies can be one of the most powerful ways to maintain
“state” within your Web pages.

The code in Listing 15-7 reads and writes two cookies when a visitor loads
the page:

� pageHit contains a count of the number of times the visitor has loaded
the page.

� pageVisit contains the last date and time the visitor visited.

Figure 15-9 shows how the page appears on the initial visit, and Figure 15-10
shows how the page looks on subsequent visits.

287Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 287

Listing 15-7: Cookie-Handling Script

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Cookie Demo</title>

Figure 15-10:
The cookies

know not
only that

you’ve been
here before

but when.

Figure 15-9:
The cookie

knows
you’ve

never been
to this page

before.

288 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 288

<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<script type=”text/javascript” language=”javascript”>
now = new Date
expireDate = new Date
expireDate.setMonth(expireDate.getMonth()+6)

hitCt = parseInt(cookieVal(“pageHit”))
hitCt++
lastVisit = cookieVal(“pageVisit”)
if (lastVisit == 0) {

lastVisit = “”
}

document.cookie = “pageHit=”+hitCt+”;expires=” + expireDate.toGMTString()
document.cookie = “pageVisit=”+now+”;expires=” + expireDate.toGMTString()

function cookieVal(cookieName) {
thisCookie = document.cookie.split(“; “)
for (i=0; i<thisCookie.length; i++) {

if (cookieName == thisCookie[i].split(“=”)[0]) {
return thisCookie[i].split(“=”)[1]

}
}
return 0

}
</script>

</head>
<body>
<h2>

<script type=”text/javascript” language=”javascript”>
document.write(“You have visited this page “ + hitCt + “ times.”)
if (lastVisit != “”) {

document.write(“
Your last visit was “ + lastVisit)
}
</script>

</h2>
</body>
</html>

Unlike preceding examples, Listing 15-7 has a <script> section in both the
head and the body:

� Cookies are read and written in the header script when the page loads.

� The body script dynamically writes out the contents of the page itself.

289Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 289

Follow these steps to add the cookie-handling script to your page:

1. Copy both <script> sections and put them into the appropriate parts
of your page.

2. Change the <body> section to contain the text that you want the page
to display.

The lines inside the document.write() statements write the text out to
the document on the fly.

A cookie has an expiration date, after which it’s no longer available. This
example creates cookies that expire in six months. If you want your cookie to
last more or less time, adjust the line in the JavaScript code near the top that
sets the value of expireDate.

Marvelous Miscellany
You can use the (X)HTML <object> element to embed content inside a Web
page. It provides a general mechanism to embed content of all kinds, from
another text file to numerous types of active content, such as programs writ-
ten in languages other than JavaScript (that works with the <script> ele-
ment, as you already know) and multimedia (such as Flash animations).
This is advanced stuff for Web-page builders, so we list only object-related
(X)HTML attributes in Table 15-2 and then conclude with pointers to details
on using this element.

If you want to use programming languages, such as Perl, Python, Java, and so
forth, or various types of multimedia in your Web pages, you should cozy up
to the <object> element.

Table 15-2 Object-related (X)HTML Attributes
Name Function/ Value Related

Value Equals Types Element(s)

archive Identifies location URI <object>
(URI) for archive file

classid Identifies object URI <object>
implementation URI

290 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 290

Name Function/ Value Related
Value Equals Types Element(s)

codebase Identifies base URI URI <object>
for classid,
data, and archive

codetype Identifies content Media type <object>
type for code

data Identifies object URI <object>
data by location

standby Specifies message Text <object>
that displays while
object is loading

type Identifies content Media type <object>
type for object data

The following resources address the (X)HTML <object> tag nicely:

� W3Schools offers (X)HTML tag information online; <object> coverage
includes links to a complete tag list at www.w3schools.com/tags/
tag_object.asp.

� Juicy Studio offers a detailed discussion of the <object> element at
www.juicystudio.com/tutorial/html/object.asp.

� In the HTML 4 Recommendation, the W3C includes “Objects, Images,
and Applets” at www.w3.org/TR/REC-html40/struct/objects.html.

291Chapter 15: Fun with Client-Side Scripts

22_589172 ch15.qxd 4/22/05 3:44 PM Page 291

292 Part IV: Integrating Scripts with HTML

22_589172 ch15.qxd 4/22/05 3:44 PM Page 292

Part V
HTML Projects

23_589172 pt05.qxd 4/22/05 3:46 PM Page 293

In this part . . .

In this part of the book, you can explore, understand,
and see some typical Web page projects, including all

the markup and underlying scripts, graphics, and other
materials that go into their makeup. They’re ready-to-use
examples that you can edit or customize for your own
needs and circumstances, so these projects are designed
to function as templates of a sort that you can adapt and
use as your own Web pages.

Here, you find typical implementations of a personal Web
page (“About me”) and a company profile page (“About
my company”). You also find an eBay auction page, a
product marketing page, and a product catalog page that
incorporates an honest-to-gosh shopping cart application.
This is where everything in Parts II, III, and IV is put to
work in useful, attractive Web pages that you can tailor
for your own needs.

23_589172 pt05.qxd 4/22/05 3:46 PM Page 294

Chapter 16

The About Me Page
In This Chapter
� Deciding what your page needs to contain

� Analyzing your audience

� Building the page

� Using templates

It’s time to build your very own page, one that tells the world who you are
and what you’re like.

You only get one chance to make a good first impression, and your site is
how people all over the world can get to know who you are. So put your best
foot forward and make your home page reflect exactly the image you want to
project.

Overview and Design Considerations
Every Web site should start with a plan of its goals and intended audience,
and a simple home page is no exception. Think about

� Who will visit the site

� What you want them to get out of it

� How often you want to update the site

� Content to include

Audience analysis
Your site will be your public face to the world, so analyze who you think will
be visiting and what you want them to get out of a visit. For instance, a site
that amuses and entertains your friends might be exactly what you don’t
want a prospective employer to see!

24_589172 ch16.qxd 4/22/05 3:46 PM Page 295

Even if you don’t give people the URL of your site, they’re still likely to
find it through search engines. Googling (searching the Web, particularly
via Google.com) prospective employees and dates is more common than
not. Do you really want your parents and siblings, or your co-workers, to
read all the details about what you did last weekend?

Component elements
At its simplest, a home page consists of nothing but a single HTML text file.
If you’re a great designer, that’s sufficient. Chances are, though, that you’ll
want to add an image or two to give the site some visual interest. The two
examples of home pages in this chapter each use three files: the home page
and two small graphics.

Page Markup
After you have a template for a Web page (see the “Using HTML 4 For Dummies
page templates” sidebar), just fill in the blanks. Include your content in new
headings (<h2> tags in the following examples) and new paragraphs (with their
corresponding <p> tags).

Your home page
Listing 16-1 is the HTML code for a typical home page. Figure 16-1 shows how
it looks when displayed in a browser.

Listing 16-1: A Home Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>My Home Page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />

</head>
<body>

<h1><img src=”crosskick.gif” alt=”crosskick.gif” width=”125”
height=”125” align=”middle” hspace=”20” />Welcome to my home page!</h1>

<h2>About me:</h2>
<p>My name is Sean. I’m a high school student, and I’m interested in

296 Part V: HTML Projects

24_589172 ch16.qxd 4/22/05 3:46 PM Page 296

math, science, and sports.</p>
<h2>Sites I like:</h2>
<p>My parents have a weblog:

Backup Brain</p>
<p>My cat has a Web site: Pixel.mu</p>
<h2>Send me email:

img src=”email.gif” alt=”email.gif” width=”60” height=”60”
align=”middle” border=”0” /></h2>

</body>
</html>

This page is about as simple as it gets: There’s no style information, no
JavaScript, only two images, and not a lot of text. But it’s enough to give
you an idea of what kind of person put up the site and what he’s like.

This page contains two small graphics:

� crosskick.gif is a simple image that adds a splash of color while hint-
ing about the page owner’s favorite sport.

� email.gif is a button that visitors can click. When a visitor clicks it,
her e-mail client will pop up in a window with a preaddressed e-mail.

It isn’t hard to go from a super-simple site to a site that’s considerably more
attractive without getting horribly complex. Listing 16-2 and Figure 16-2 show
a site with a lot more style and only a little more complexity.

Figure 16-1:
A simple

home page.

297Chapter 16: The About Me Page

24_589172 ch16.qxd 4/22/05 3:46 PM Page 297

Listing 16-2: Another Home Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>My Home Page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<style type=”text/css”>

body {color: #000; background-color: #9C6;}
h1 {font: 48px “monotype corsiva”, fantasy;}
h2 {margin-top: 20px; font: 20px “trebuchet ms”, verdana,

arial, helvetica, geneva, sans-serif;}
p {margin-left: 20px; font: 14px/16px verdana, geneva, arial,

helvetica, sans-serif}
</style>

</head>
<body>

<h1><img src=”dancer.gif” alt=”dancer.gif” width=”125” height=”122”
align=”middle” hspace=”20” />Welcome to my home page!</h1>

<h2>About me:</h2>
<p>My name is Susan. I’m a high school student, and I’m interested in math,

science, and sports.</p>
<h2>Sites I like:</h2>
<p>There’s a good site about Web design at

Wise-Women.org</p>
<p>My cat has a Web site: Pixel.mu</p>
<h2>Send me email:

<img src=”email2.gif” alt=”email2.gif” width=”60”
height=”60” align=”middle” border=”0” /></h2>

</body>
</html>

Text and tags within the <body> element are about the same as inside the
first example, but the result is different because of the style rules in the
<head>.

The style rules set a background color for the page and specify the fonts to
be used. Although the two pages have almost identical content, the latter
page gives a much stronger impression of the person’s individuality.

Looking good
Adding cool fonts and bright colors to your page is a good way to add visual
interest — but it makes your site look tacky if it’s overdone.

298 Part V: HTML Projects

24_589172 ch16.qxd 4/22/05 3:46 PM Page 298

Follow these tips for a colorful, professional-looking page:

� Pick a graphic and use its colors elsewhere on the page.

The colors in the image of the woman in Figure 16-2 are used elsewhere
on the page:

• The background color of the image is the background color for the
entire page (so the image’s background blends into the page).

• The color of her blouse is used as the color of the e-mail icon.

� Check your page on other computers to make sure your colors really
look the way you want them to look.

Colors often appear differently on different monitors, and not everyone’s
monitor is set up correctly.

� Be selective when choosing fonts and font colors.

• A font on your computer might not be on other computers.

Give alternate fonts as a backup in your style rules.

• Don’t use too many different fonts on one page or it’ll end up look-
ing like a ransom note.

• Use font colors that contrast with your background so people can
read what you’ve written.

Listing 16-3 is a bare-bones template with comments that tell you where to
add your own content. Start with this, and where you end up is limited only
by your imagination and creativity.

Figure 16-2:
Our less

simple and
more stylish
home page.

299Chapter 16: The About Me Page

24_589172 ch16.qxd 4/22/05 3:46 PM Page 299

Listing 16-3: A Home Page Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>My Home Page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<style type=”text/css”>

body {color: #000; background-color: #FFF;}

/* Add additional style rules here */

</style>
</head>
<body>

<h1>Welcome to my home page!</h1>

<h2>About me:</h2>
<!-- Add something here about you and your interests -->

<h2>Sites I like:</h2>
<!-- Add links here to sites that you like to visit -->

<h2>Send me email!</h2>
</body>
</html>

300 Part V: HTML Projects

Using HTML 4 For Dummies page templates
Part V of this book (Chapters 16–19) contains
page templates designed specifically so that
you can easily copy and modify them to suit
your tastes. You can either

� Type them in yourself

� Download them from www.dummies.
com/extras

If you’re looking for more templates, you can
find great ones for copying, pasting, and adding
your content in most WYSIWYG HTML editors.
Chapter 20 covers these.

24_589172 ch16.qxd 4/22/05 3:46 PM Page 300

Chapter 17

The eBay Auction Page
In This Chapter
� Designing an online auction page

� Better ways to sell your auction items

� Template markup

Whether you are trying to buy or sell a car, a rare CD, or a bologna
sandwich that bears an uncanny likeness to Calvin Coolidge, eBay

has become the 21st century’s answer to the street marketplace. In fact, with
more than 50 million active participants, eBay is sometimes referred to as
“the world’s garage sale.” However, if these staggering numbers are leaving
you starry-eyed over your expected profits, be careful: With millions of items
for sale, it’s easy for your “Coolidge-looking bologna sandwich” to get lost in
the crowd.

Given this reality, the more attractively your auction item is presented and
the better the description is written, the greater the chances your item will
sell and at a higher price.

In this chapter, we show you how to effectively use HTML to make your eBay
auction look wicked cool. You’ll discover how to

� Highlight parts of your description.

� Add pictures.

Although eBay is the most popular online auction site, you can use HTML in
your item descriptions on most other online auction sites as well, such as
Half.com, Yahoo! Auctions, and ubid.

25_589172 ch17.qxd 4/22/05 3:47 PM Page 301

Designing Your Auction Page
Online auction sites let you include a few specific elements in your auction
item page, such as

� Title (and sometimes a subtitle)

� Description

This chapter focuses on the item description because that’s where your
HTML markup can enhance the look of the description and add pictures.

� Pictures

Figure 17-1 shows an example of an auction description from eBay that uses
HTML to add style and an embedded picture.

Auction sites typically allow you to use a series of online forms to list items
for sale. If you want to use HTML in your item description, you include the
HTML markup in the text field the auction site gives you for the description,
as shown in Figure 17-2.

Figure 17-1:
This auction
description
uses HTML
to style the

text and add
a centered

picture.

302 Part V: HTML Projects

25_589172 ch17.qxd 4/22/05 3:47 PM Page 302

eBay allows you to use HTML for style only in the item description; you can’t
use it in the title or subtitle lines.

Because the auction site itself creates much of an online auction page, you
don’t have to create the entire page of HTML markup. You just need to create
markup for the item description part of the page. That means that you

� Don’t need to include the <html>, <title>, or <body> tags

� Can’t include any scripts in the description

When you create your auction item page, be aware that all browsers are not
created equally.

� If you use Microsoft Internet Explorer 6 as your browser, eBay gives you
an HTML editor that allows you to style text directly and then turns it
into HTML markup, as shown in Figure 17-3.

� Other browsers, including Mozilla Firefox and Safari on the Macintosh,
display a simple text form in which to enter or paste your HTML
markup.

Figure 17-2:
Entering

HTML in the
online

description
form field at

eBay.

303Chapter 17: The eBay Auction Page

25_589172 ch17.qxd 4/22/05 3:47 PM Page 303

When designing your item’s title and description, don’t immediately rush to
add fancy HTML formatting. Instead, your first task is to create a description
that effectively presents your product. Before you worry about the HTML
markup, write a compelling title and description. Consider the following tips
when you write your text:

� Write a great, descriptive title. A good title includes words that clearly
and specifically identify what you are selling. eBay’s search engine uses
these titles to help people find your item, and you won’t sell what
buyers can’t find.

� Look at completed listings to see successful descriptions. Use those
ideas to stimulate your own.

However, don’t plagiarize other people’s descriptions (or rip off their
pictures).

� Spell words in the title and description correctly. Misspelled words
will not be found by visitors searching for your item.

In fact, we’ve bought equipment worth thousands of dollars for a frac-
tion of its worth that got no other bids because the sellers misspelled
the items’ names in the auction title.

� Be sure that you’re listing the item in the proper auction category. If
you list it in the wrong category, your item will get lost, buried,
obscured, masked . . . well, you get the idea.

� Resist the temptation to use large fonts and lots of styles. Buyers want
to see your item description and photographs as quickly as possible.
Keep your text and images direct, visually uncluttered, and to the point.

Figure 17-3:
Using

eBay’s
HTML editor
to style your

text in
Internet

Explorer 6.

304 Part V: HTML Projects

25_589172 ch17.qxd 4/22/05 3:47 PM Page 304

� Use good photographs. Items with pictures sell much better:

• The photo of your item (more than one is usually better) should be
sharp, with the item’s important features clearly visible.

• Make sure that your image files are a reasonable size; buyers hate
large photos that take a long time to load or that require scrolling.

Use a photo-editing program to reduce the pictures that your digital
camera or scanner produces to a smaller size and lower-resolution jpeg
file. You want a size that loads quickly and can be viewed without
scrolling, as discussed in Chapter 7.

� Avoid animation and music like the plague. Serious bidders click off of
your item in a flash if you have either of these annoyances in your item
description.

Presentation Issues to Consider
When you create your listings, remember that a variety of users will view
your page using different browsers and operating systems. With that in mind,
the following are some helpful tips for creating your listing:

� Design your page so it works with as many browsers as possible. Any
Web browser may view your listing. (For example, you can’t assume that
your buyers have a browser capable of properly rendering CSS.)

� Use an appropriate font size. The font size that you use should be large
enough to be legible at a variety of screen resolutions. Standard font
sizes such as a 10- to 12-point font are good examples. Some buyers
won’t bother to read your item description if it is in a tiny font size. At
the same time, don’t make the font size too large. Large fonts can make
your auction item page look amateurish.

� Don’t use huge type that requires users to scroll the page a lot. For
example, four headings that are all in a 48-point font would be way too
much.

� Use backgrounds that don’t distract your users from the text and
images on the Web site.

Avoid colored or patterned backgrounds because

• People who are colorblind might have problems reading them.

• Colored backgrounds can make your page hard to read when
printed on a monochrome printer. (Many users print auctions for
inventory records.)

• They can make your page look amateurish.

305Chapter 17: The eBay Auction Page

25_589172 ch17.qxd 4/22/05 3:47 PM Page 305

Using a Template for Presenting
Your Auction Item

In this section, we provide a handy HTML template that enables you to dis-
play pictures of your item alongside its description:

� A left column contains two pictures of the auction item.

The example assumes that you’re hosting the image files on a Web
server that you control. You should prepare the image files and upload
them to your server before you begin using the template.

� A right column contains text describing the item.

Listing 17-1 shows the HTML markup for the auction item description. You
can type it in any text editor, replacing the parts set off by the HTML com-
ment tags with the appropriate information as indicated in the comment
tag text.

Listing 17-1: Auction Item HTML Template

<!-- Begin Description Table -->
<!-- Picture column -->

<table align=”center” cellpadding=”8” border=”7”
cellspacing=”0” bgcolor=”#FFFFFF”>

<tr>
<td valign=”top” align=”Left” width=”1%”>

<!-- First picture goes below; replace URL with the location of your picture -->

<img border=”0” align=”top” hspace=”5”
src=”http://www.example.com/images/image1.jpg”
alt=”Alternative image text” />

<!-- Next picture goes below; replace URL with the location of your picture -->

<img border=”0” align=”top” hspace=”5”
src=”http://www.example.com/images/image1.jpg”
alt=”Alternative image text” /></td>

<!-- Text column -->

<td valign=”top” align=”Left”>

<!-- This table-within-a-table for the headline makes your description

306 Part V: HTML Projects

25_589172 ch17.qxd 4/22/05 3:47 PM Page 306

look better -->

<table border=”0” >
<tr><td align=”Left” >

Your Exciting Item Title Goes Here!
</td></tr>

</table>

<p>

<!-- Begin Description -->

Replace this text with the description of your auction item.

<!-- End Description -->

</p>

<p>

<!-- Enter your payment terms and details here. -->

</p>

<p>

<!-- Enter your shipping terms and details here. -->

</p>

</td>
</tr>
</table>

<!-- End Description Table -->

In Figure 17-4, you can see the results of the preceding auction item descrip-
tion template. We sold many copies of this item successfully on eBay.

Many auction sites, including eBay, host pictures for your item — often for
free. For example, eBay hosts one picture for free, but you pay for extra
pictures. You might also consider looking into sites such as Andale (www.
andale.com) that offer image-hosting services for online auction sellers.

307Chapter 17: The eBay Auction Page

25_589172 ch17.qxd 4/22/05 3:47 PM Page 307

Figure 17-4:
The

template as
it appeared

on eBay.

308 Part V: HTML Projects

25_589172 ch17.qxd 4/22/05 3:47 PM Page 308

Chapter 18

A Company Site
In This Chapter
� Deciding what your site needs to contain

� Including the basic parts of a Web site

� Separating content from presentation

� Building the site

Companies large and small differ on their office dress policy — from being
required to wear three-piece suits in the office to being allowed to work

in a SpongeBob T-shirt and torn cutoffs. However, all companies, despite the
differences in formality, want to present themselves effectively to the outside
world. As such, they want their Web sites to reek of confidence, capability,
and professionalism. No one feels good about handing over their hard-earned
money to a company whose Web site looks cheesy and tacky (unless the
company sells cheese and tacks).

In this chapter, you explore the basics of creating a company Web site and
look at the typical elements you want to utilize as you design your own com-
pany’s site.

Issues to Consider When
Designing Your Site

When you start to plan your company’s Web site, the most important task
is to consider the kind of people who are going to visit your Web site —
potential or existing customers, clients, or partners. After you determine a
list of the types of visitors, brainstorm about what they will want from your
Web site.

26_589172 ch18.qxd 4/22/05 3:48 PM Page 309

Working with the concept of personas, in which you envision a few of the site’s
visitors and what they each want to get from the site, can be valuable. As you
lay out the site, think about how each of these imaginary people interacts with
your design. Will they find what they’re looking for?

If you are designing a site for a company that has many departments, you will
discover that they have different goals. For instance, marketing wants the
front page of the site to be a gigantic Flash animation showing all the com-
pany’s products, whereas management wants every page on the site to look
exactly like a corporate brochure and to be identical in every browser known
to man.

Your job, as a Web designer and developer, is not only to design the site
but also to educate people around you as to what is actually possible and
feasible — while staying within a certain budget.

Basic Elements of a Company’s Web Site
As you consider creating a company’s Web site, keep in mind the following
basic elements that you typically want to include in your site. Our site con-
sists of six files:

� The initial Web page, index.html, is the site’s home page. It contains
the basic marketing message about the company and its products.

A site’s home page can have any of a variety of file names, such as
index.html, default.html, and home.html. You want to check with
your Webmaster or your Web-hosting provider to determine the exact
filename you should use. However, in general, the filename index.html
will almost always work.

� The products page, products.html, contains summary information
about each of the company’s products.

� The contact us page, contact.html, contains a form that the visitor
can fill out in order to give his or her opinion to the company.

� The press page, press.html, contains

• Links to the press releases generated by the company

• Information that marketing thinks members of the press might
want

This page isn’t discussed in the rest of the chapter, but you can easily
modify the basic HTML template discussed for the other site pages to
create this unique page.

310 Part V: HTML Projects

26_589172 ch18.qxd 4/22/05 3:48 PM Page 310

� An image, building.gif, is displayed on the site’s home page to give
visitors the initial impression of the company and its site. This could be
any image, from a company logo to pictures of employees in action.

� A style sheet, stylesheet.css, contains the formatting instructions for
each page of the site.

Every page links to this style sheet by using the <link> tag. A change in
this file changes the appearance of every page on the site.

The home page
Listing 18-1 shows the home-page markup for MegaCorp, our fictitious com-
pany. Figure 18-1 shows how it looks when displayed in a browser.

Listing 18-1: Our Company’s Home Page (index.html)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>MegaCorp Home Page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<link rel=”stylesheet” href=”stylesheet.css” />

</head>
<body>
<div id=”navbar”>

<h4>Home ←</h4>
<h4>Products</h4>
<h4>Press</h4>
<h4>Contact Us</h4>

</div>
<div id=”main”>
<h1>
<img src=”building.gif” height=”145” width=”145” alt=”Our building”
hspace=”10” align=”middle” />Welcome to MegaCorp Online</h1>

<!-- Insert text for your company here -->
</div>
<div id=”footer”>

All contents of this site © 1999-2005 MegaCorp International,
All Rights Reserved

</div>
</body>
</html>

As you look at the markup in Listing 18-1, you can see that it doesn’t contain
any information about colors, fonts, or how the page itself should be dis-
played. All that information is in the style sheet, which allows the most flexi-
ble approach to updating the site in the future.

311Chapter 18: A Company Site

26_589172 ch18.qxd 4/22/05 3:48 PM Page 311

The navigation used in the home page and for the other site pages is based
on the text rollover example discussed in Chapter 15. These rollovers are
simple, are fast-loading, and can be spidered (automatically searched for key-
words) by search engines such as Google. They also degrade (they work even
if they don’t do the fancy stuff) nicely in older browsers.

If you want to use this template for your home page, just

� Change the contents of the <title> and <h1> tags.

� Add the company’s description where the template shows the HTML
comment “Insert text for your company here.”

A few slightly tricky things are going on in the navigation section (the part
inside the <div> with the id of navbar):

� Each option is placed inside an <h4> tag, but only the last three are also
within an <a> tag. That’s because we don’t want visitors to try to rollover
and then click a Home link because they’re already at the home page.
Similarly, on each of the other pages, the link corresponding to the cur-
rent page is disabled.

� The word Home on this page is followed by a leftward-pointing arrow
(←). That’s another way of showing visitors which page they’re
currently on.

� The arrow and the word Home are separated by a nonbreaking space
 . This special space keeps these two pieces in the same line, even
if a browser is set oddly.

Figure 18-1:
Our

company’s
home page.

312 Part V: HTML Projects

26_589172 ch18.qxd 4/22/05 3:48 PM Page 312

� The navigation menu shown in Listing 18-1 and the text rollover menu
shown in Chapter 15 are slightly different — this one’s modified to dis-
play each link the same whether the visitor has been to that page or not.
You can compare the two styles and use the one you prefer.

Why use this type of navigation? Because it’s simple to add, remove, or
modify elements:

� Delete a line of markup, and the other menu items move up to fill the gap.

� Add a line with matching markup, and it automatically appears just as it
should.

The products page
Listing 18-2 and Figure 18-2 show the company’s products page and demon-
strate how the overall look is the same, yet slightly different, for an interior
site page.

Listing 18-2: Our Company’s Products Page (products.html)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>MegaCorp’s Products</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<link rel=”stylesheet” href=”stylesheet.css” />

</head>
<body>
<div id=”navbar”>

<h4>Home</h4>
<h4>Products ←</h4>
<h4>Press</h4>
<h4>Contact Us</h4>

</div>
<div id=”main”>
<h1 align=”center”>MegaCorp’s Products</h1>
<p>Say something here about your products</p>

Product 1 goes here
Product 2 goes here

</div>
<div id=”footer”>

All contents of this site © 1999-2005 MegaCorp International,
All Rights Reserved

</div>
</body>
</html>

313Chapter 18: A Company Site

26_589172 ch18.qxd 4/22/05 3:48 PM Page 313

To use the template shown in Listing 18-2, perform the following steps:

1. Customize the title, heading, and navigation bar for your page.

2. Add descriptive text within the <p> that describes your products.

3. Describe each product specifically within the individual tags.

You can add links to subpages from within the individual product descrip-
tions. If you do this, use this page as a template for the individual product
pages, but make sure the Products link is enabled in the navigation bar. That
way, site visitors can retrace their steps back to where they came from with-
out clicking the Back button.

Figure 18-2:
Our

company’s
products

page.

314 Part V: HTML Projects

It’s all greeked to me
If you would like to mock up a page for which
you don’t yet have actual content, we recom-
mend using greeked text. Greeked text is place-
holder text that typically starts with the Latin
phrase “Lorem Ipsum.”

If you want to add greeked text to your page,
check out www.lipsum.com, which will let
you choose such options as the number of
words, paragraphs, and bytes of greeked text
you need. Then you can copy and paste the
placeholder text into your page.

26_589172 ch18.qxd 4/22/05 3:48 PM Page 314

The contact page
This simple page allows visitors to the site to send their feedback directly to
the company. All it asks for is a name, an e-mail address, and the message to
be sent, as shown in Listing 18-3 and Figure 18-3.

Listing 18-3: Contact Our Company (contact.html)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Contact MegaCorp</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<link rel=”stylesheet” href=”stylesheet.css” />

</head>
<body>
<div id=”navbar”>

<h4>Home</h4>
<h4>Products</h4>
<h4>Press</h4>
<h4>Contact Us ←</h4>

</div>
<div id=”main”>
<h1 align=”center”>Contact MegaCorp</h1>
<h2>MegaCorp values your opinions!</h2>
<form action=”mailto:contact@example.com” method=”post” enctype=”text/plain”>

<p>Name: <input type=”text” size=”20” /></p>
<p>Email: <input type=”text” size=”20” /></p>
<p>Your message:

<textarea name=”Message” rows=”10” cols=”30”></textarea></p>
<input type=”submit” value=”Submit” />
<input type=”reset” value=”Reset” />

</form>
</div>
<div id=”footer”>

All contents of this site © 1999-2005 MegaCorp International,
All Rights Reserved

</div>
</body>
</html>

You could make the contact page considerably smarter by adding a little
JavaScript that verifies whether valid information is entered into each of the
fields. You want to make sure that

� A name was entered.

� Some text was entered in the message <textarea> field.

315Chapter 18: A Company Site

26_589172 ch18.qxd 4/22/05 3:48 PM Page 315

� Something resembling an e-mail address was given in the e-mail address
field. (But there’s no way to verify that the e-mail address belongs to the
person filling out the form.)

Embedding an e-mail address into the HTML markup like this is generally
a bad idea. It works, but spammers usually find the e-mail address in the
HTML file and abuse it. In the long run, it’s smarter to use a Common Gateway
Interface (CGI) that handles the address on the server side. See Chapter 14 for
more information on forms handling or contact your Webmaster or Web host
for assistance.

The style sheet
Listing 18-4 is a very basic version of a style sheet. All the HTML pages in this
Web site reference this style sheet. The great advantage of using a style sheet
to define your formatting instructions is that you can update this one file to
give the whole site an entirely new look.

Listing 18-4: The Site-wide Style Sheet (stylesheet.css)

body {color: #000; background-color: #FFF}
body, p {font: 11px/14px verdana, geneva, arial, helvetica, sans-serif}

h1 {font: 24px “trebuchet ms”, verdana, arial, helvetica, geneva, sans-serif}
h2 {font: 20px “trebuchet ms”, verdana, arial, helvetica, geneva, sans-serif}

Figure 18-3:
Contacting

our
company.

316 Part V: HTML Projects

26_589172 ch18.qxd 4/22/05 3:48 PM Page 316

h4 {font: 18px geneva, sans-serif; margin: 0; color: #000;
background-color: #FFF}
a {text-decoration: none}

div#navbar {width: 120px; float: left}
div#navbar a {display:block; margin: 0}
div#navbar a:link, a:visited {color: #000}
div#navbar a:hover {color: #FFF; background-color: #000}

div#main {width: 80%; float:right}

div#footer {border-color: gray; border-width: 2px 0px 0px 0px;
border-style: solid; color: gray; padding: 6px 0px 10px 0px;
display: block; float: none; clear: both;
margin: 20px 0px 0px 0px}

li {margin-bottom: 10px}

As shown in Figure 18-1 earlier in the chapter, the site’s style sheet changes
the menu items from white-on-black to black-on-white when the cursor
moves over them. That works well for this book because it’s in black and
white. For a live Web site, change this to something a little less stark by
changing the colors in the line that starts with div#navbar a:hover. You
can also modify the style sheet to change such attributes as

� The whole page background

� The navigation background color

� Fonts

317Chapter 18: A Company Site

26_589172 ch18.qxd 4/22/05 3:48 PM Page 317

318 Part V: HTML Projects

26_589172 ch18.qxd 4/22/05 3:48 PM Page 318

Chapter 19

A Product Catalog
In This Chapter
� Designing a product catalog

� Choosing a shopping cart

� Adding the PayPal shopping cart to your pages

� Example HTML templates

In days gone by, a product catalog was a big production and investment.
Not only was the cost of producing a printed color catalog high, but send-

ing it out to every George, Jerry, and Kramer out there in the world meant
only the big companies could afford it. Unless your name was J. Peterman,
J.C. Penney, or Eddie Bauer, you had no way to reach a broad audience with
your catalog.

The Internet, of course, changed all this. Now, whether you are part of a big or
a small company, you can economically produce and maintain a professional-
looking catalog on your Web site. And, without a significant investment, you
can even sell directly to your customers from an online store.

This chapter covers the basics of creating a product catalog and selling your
goods on the Web.

Dissecting a Product Catalog
A product catalog usually includes these components:

� A navigation interface to help the user move easily through the catalog.

The navigation interface is normally a menu system. Navigation inter-
faces are discussed briefly in Chapter 3.

27_589172 ch19.qxd 4/22/05 3:49 PM Page 319

� At least one category page, with several items listed in each category.

Choosing a category from the menu system brings the user to a category
page, which identifies individual items with

• Thumbnail images

• A brief description

The image and title of an item are linked to that item’s detail page. The
user clicks the link for detailed information about an item.

The site may allow the user to purchase items from the category page.
(Some sites require purchases from the item’s detail page.)

� A detail page for each item in the catalog, which usually displays

• At least one large image of the item.

• A detailed description of the item.

• A button that adds the item to the site’s shopping cart, if the site
allows purchases. (This chapter covers shopping carts later.)

320 Part V: HTML Projects

Design basics
Whether you sell directly to online buyers or just
show your retail store’s inventory, keep these
design principles in mind:

� Keep your catalog clean. Your online store
should encourage users to browse. Users
should see many items quickly and easily
get more detail on items that interest them.

� Make your site design colorful, interesting,
and fun. (But keep the size of the graphics
as small as possible — less than 30k per
photo — so pages download quickly.)

� Make it easy to get around. Your site navi-
gation should be easy, logical, and obvious.
If site visitors find interesting items quickly,
they buy. Otherwise, they lose interest and
find what they want elsewhere.

� Provide detail. Visitors can’t see or touch
the item, so printed detail is a must. There
aren’t any space limitations on the Web
(unlike a printed catalog), so you can include
all the detail users might want on an item.
(Information about shipping charges, returns,
and contact should be easy to find, too.)

� Make buying easy if you’re selling. Stream-
line the buying process as much as possi-
ble. An online purchase shouldn’t take more
than three screens. You’ll make more sales
and gain repeat customers.

An amazing number of online stores use
shopping cart software that seems posi-
tively user-hostile. Buyers must fill out page
after page of selection and confirmation
screens before completing the sale.

27_589172 ch19.qxd 4/22/05 3:49 PM Page 320

This chapter’s example of a product catalog uses the following resources:

� Two templates for the product catalog:

• A category page with small images of items within that category

• A detail page for one example item

� The navigational menu system

Figure 19-1 shows an example category page for a fictional outdoor equip-
ment store, Adventure Tools. Site visitors can click either the thumbnail pic-
ture of the item or the item’s name to go to the item’s detail page.

After a visitor clicks an item in the category page, the item detail page appears,
as shown in Figure 19-2. This page contains the all-important Add to Cart
button, which allows the visitor to purchase the item.

Figure 19-1:
A category
page from
the online

catalog.

321Chapter 19: A Product Catalog

27_589172 ch19.qxd 4/22/05 3:49 PM Page 321

Choosing a Shopping Cart
If you want people to purchase from your site, you need a shopping cart. The
cart allows buyers to purchase items and pay for them (usually with a credit
card or a bank account transaction).

The shopping cart software (which runs on a Web server) leads the buyer
through the steps of buying a product online:

1. The buyer selects an item and adds it to the shopping cart.

2. If the buyer wants to shop for other items, he or she can continue shop-
ping and place other items in the shopping cart.

Figure 19-2:
An item

detail page.

322 Part V: HTML Projects

27_589172 ch19.qxd 4/22/05 3:49 PM Page 322

3. When ready to purchase, the buyer chooses to move to the checkout
process.

At checkout, the shopping cart software

• Totals the purchases

• Adds shipping costs (if necessary)

• Leads the buyer through the payment process of entering such
details as a credit card number and shipping address

In concept, a shopping cart for an online store is fairly simple. But in execu-
tion, it can get complex. This chapter surveys only the basics of e-commerce.
If you are going to dive into it fully, we recommend these books:

� Starting an Online Business For Dummies (Wiley)

� MySQL/PHP Database Applications (Wiley)

PayPal
In this chapter, we focus on using the shopping cart from a well-known
e-commerce site, PayPal. Owned by eBay, PayPal’s shopping cart is free for
you to use on your Web site. Your customers can purchase multiple items
with a single payment, and you can accept credit card and bank account pay-
ments. (PayPal charges you a transaction fee when you receive a payment.)

PayPal offers a button generator that takes information about the name and
price of an item you have for sale and creates HTML markup for an Add to
Cart button that you then insert directly into your product catalog page.

This button generator and the PayPal shopping cart require a PayPal Premier
or Merchant account. (PayPal Personal accounts can’t accept debit or credit
card payments; they just send and receive transfers from bank accounts.)

Other e-commerce solutions
PayPal is one of the easiest shopping carts to implement on your site, but
many others are available.

The following technologies require a more serious business and financial
commitment to setting up your online presence.

323Chapter 19: A Product Catalog

27_589172 ch19.qxd 4/22/05 3:49 PM Page 323

Hosting e-commerce services
Hosted e-commerce services let you build an online storefront on your site
but let the service provider deal with the technical aspects of your store and
transaction processing.

A good example of the online storefront service is Yahoo! Merchant Solutions
(http://smallbusiness.yahoo.com/merchant). You can create a storefront
hosted on a Yahoo! server with such features as your own domain name, a
product catalog, site-building tools (that let you avoid using raw HTML if you
want), a secure shopping cart, e-mail order confirmations, integration with UPS
for shipping, and order statistics tools. An online store on Yahoo! is fairly easy
to set up and operate, especially if you’re more merchant than Web developer.
Prices start at about $40 a month.

Do-it-yourself software
If you are really a technical guru and aren’t faint of heart, you can install full-
featured shopping cart software on your own Web server and configure it
manually.

If you choose this option, you need the technical know-how, a Web server,
and constant Internet connection for hosting your e-commerce Web site.

One do-it-yourself shopping cart software package is Zen Cart (www.zen-
cart.com). It’s a free, open-source shopping cart written in PHP. Stores cre-
ated with Zen Cart are almost infinitely customizable and have many useful
features, such as allowing customer reviews of your products and the ability
to customize tax and shipping rates for everywhere you sell your items.

If you use Zen Cart, you should expect to spend at least a few days setting up
your store before you’re ready for business. You need to know how to upload
and install the Zen Cart software on your server, how to rename files and set
Unix permissions on your server, and how to create a MySQL database. Then
you need to create or modify the page templates for your store and set up
many other server-side parameters.

In general, we recommend you stick with PayPal or a hosted e-commerce
solution to avoid the complexity of trying to do it all yourself.

Incorporating a PayPal shopping cart
Creating the HTML markup for the shopping cart is easy; use the PayPal site’s
button generator, and then copy and paste the markup into your Web page.

324 Part V: HTML Projects

27_589172 ch19.qxd 4/22/05 3:49 PM Page 324

To use the PayPal shopping cart, you must be a PayPal Premier or Merchant
account holder. After you have an account established, you can create your
own Add to Cart button and View Cart button by performing the instructions
shown in the following sections.

Add to Cart button
Follow these steps to insert an Add to Cart button on your page:

1. In your Web browser, go to the PayPal site: https://www.paypal.com.

This site is secure, so all transactions are encrypted between the site
and your browser.

2. Log in to your Premier or Merchant account.

Your account overview appears, as shown in Figure 19-3. We blur out the
name and e-mail for security reasons.

3. Click the Merchant Tools tab.

4. On the Merchant Tools page, click the PayPal Shopping Cart link.

5. On the PayPal Shopping Cart page, fill out the information about the
item you want to sell, as shown in Figure 19-4.

You must enter the item name, the price, and the currency you accept.
An item number (used in reports that PayPal provides for you after the
sale) and the default country for the buyer’s payment form are optional.

Figure 19-4:
Enter your

item’s
information.

Figure 19-3:
Logging in

to your
PayPal

account.

325Chapter 19: A Product Catalog

27_589172 ch19.qxd 4/22/05 3:49 PM Page 325

6. In the Select an Add to Cart Button section, click to select the button
style shown, as in Figure 19-5.

If you don’t like the style shown, click the Choose a Different Button link
to pick a different button style.

You can create a button image and use it with the PayPal shopping cart:

a. Create the button graphic in an image-editing program.

b. Upload the graphic to a Web server.

c. Select the Yes, I Would Like to Use My Own Image radio button on
the PayPal Shopping Cart page.

d. Fill in the URL for the graphic on your Web server.

7. Click the Create Button Now button at the bottom of the page.

8. On the Add a Button to Your Website page, select all the text in the
Add to Cart Button Code field (as shown in Figure 19-6), and then
choose Edit➪Copy in your browser.

9. Switch to your HTML page editor and paste the cart code where you
want the button to appear, as in Figure 19-7.

Figure 19-6:
Copying the
Add to Cart

button code.

Figure 19-5:
Select the

Add to Cart
button style
you prefer.

326 Part V: HTML Projects

27_589172 ch19.qxd 4/22/05 3:49 PM Page 326

10. Save and preview the HTML page you just modified in your Web
browser to see the button on the page, as shown in Figure 19-8.

View Cart button
If you add a View Cart button on your page, as shown in Figure 19-8, follow
these steps:

1. Go to the PayPal Add a Button to Your Website page.

This HTML markup was generated at the same time as the Add a Button
HTML markup.

2. Select all the text in the View Cart Button Code field.

3. Copy and paste the code into your HTML page.

Page Markup
Listing 19-1 includes the markup for the category page.

Figure 19-8:
The

completed
Add to Cart

button on
the page.

Figure 19-7:
Pasting the

code into
your HTML

page.

327Chapter 19: A Product Catalog

27_589172 ch19.qxd 4/22/05 3:49 PM Page 327

Listing 19-1: Category Page Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Your Title Here</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<!-- External stylesheet for the menu system -->
<link rel=”stylesheet” href=”menu.css” />
<!-- Stylesheet for this page -->

<style type=”text/css”>
body {color: #000; background-color: #FFF;}
body, p {font-family: tahoma, verdana, arial; font-size: 12px;}
hr {color: #369; height: 1px}
h1 {font: 24px “trebuchet ms”, verdana, arial, helvetica, geneva,

sans-serif;}
h2 {margin-bottom: 0px; margin-top: 0px; font-size: 18px; color:

#DBEAF5;}
.darkline {background: #4682B4;}
.cright {font-family: Tahoma, Verdana, sans-serif; font-size: 12px;

color: #FFF; background: #4682B4; text-align: right;}
body,p {font: 11px/14px verdana, geneva, arial, helvetica,

sans-serif;}
.style1 {font-size: 14px;}

</style>
</head>
<body bgcolor=”#ffffff”>
<!-- External script references for the menu system -->
<script language=”JavaScript” src=”menu.js” type=”text/javascript”></script>
<script language=”JavaScript” src=”menu_items.js”

type=”text/javascript”></script>
<script language=”JavaScript” src=”menu_tpl.js” type=”text/javascript”></script>
<script language=”JavaScript” type=”text/javascript”>
<!--//

new menu (MENU_ITEMS, MENU_POS, MENU_STYLES);
//-->
</script>
<div style=”height: 50px;”> </div>
<!-- Enter your logo image and category headline below. -->
<h1 align=”left”><img src=”yourlogo.gif” alt=”Alternative text” hspace=”10”

align=”middle” />Your Headline </h1>
<p align=”left” class=”style1”>
<!-- Replace this comment with a description of the category. -->
</p>
<p align=”left” class=”yourstyle”> </p>
<table width=”642” height=”352” border=”0” align=”left”>

<tr>
<!-- First item picture -->

<td width=”300” height=”204”><img src=”item1small.jpg”

328 Part V: HTML Projects

27_589172 ch19.qxd 4/22/05 3:49 PM Page 328

alt=”Alternative text” align=”bottom” /></td>
<td width=”28”> </td>

<!-- Second item picture -->
<td width=”300”><img src=”item2small.jpg” alt=”Alternative text”

align=”bottom” /></td>
</tr>
<tr>
<td height=”35”><h1 align=”center”>Item 1 Name</h1>
<h1 align=”center”>Item 1 price</h1>
<p align=”left”>Item 1 short description.</p></td>
<td> </td>
<td height=”35”>
<h1 align=”center”>
Item 2 Name</h1>
<h1 align=”center”>Item 2 price</h1>
<p align=”left”>Item 2 short description.</p></td>
</tr>

</table>
<p> </p>
</body>
</html>

Listing 19-2 includes the markup for the detail page template.

Listing 19-2: Detail Page Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Your Page Title Here</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<!-- External stylesheet for the menu system -->
<link rel=”stylesheet” href=”menu.css” />
<!-- Stylesheet for this page -->

<style type=”text/css”>
body {color: #000; background-color: #FFF;}
body, p {font-family: tahoma, verdana, arial; font-size: 12px;}
hr {color: #369; height: 1px;}
h1 {font: 24px “trebuchet ms”, verdana, arial, helvetica, geneva,

sans-serif;}
h2 { margin-bottom: 0px; margin-top: 0px; font-size: 18px; color:

#DBEAF5;}
.darkline { background: #4682B4;}
.cright {font-family: Tahoma, Verdana, sans-serif; font-size: 12px;

color: #FFF; background: #4682B4; text-align: right;}
body,p {font: 11px/14px verdana, geneva, arial, helvetica, sans-serif;}
.style1 {font-size: 14px;}

</style>

(continued)

329Chapter 19: A Product Catalog

27_589172 ch19.qxd 4/22/05 3:49 PM Page 329

Listing 19-2 (continued)

</head>
<body bgcolor=”#ffffff”>

<!-- External script references for the menu system -->
<script language=”JavaScript” src=”menu.js” type=”text/javascript”></script>
<script language=”JavaScript” src=”menu_items.js”
type=”text/javascript”></script>

<script language=”JavaScript” src=”menu_tpl.js”
type=”text/javascript”></script>

<script language=”JavaScript” type=”text/javascript”>
<!--//
new menu (MENU_ITEMS, MENU_POS, MENU_STYLES);
//-->

</script>
<div style=”height: 50px;”> </div>
<h1 align=”left”>

<!-- Add your logo and headline below. -->
<img src=”yourlogo.gif” alt=”Alternative text” hspace=”10”

align=”middle” />Your Headline Here</h1>
<!-- Begin detail table -->
<table width=”604” height=”352” border=”0” align=”left”>

<tr>
<!-- Add your item’s detail picture here. -->
<td width=”598” height=”204”><div align=”center”><img src=”item-pic.jpg”

alt=”Alternative text” align=”top” /></div></td>
</tr>
<tr>
<td height=”35”><p align=”left”>

<!-- Replace this comment with your item description. -->
</p>
<h1 align=”center”>Replace with your item’s price.</h1>
<h1 align=”center”>

<!-- Begin PayPal Add to Cart button code -->
<!-- Replace this comment with the pasted Add to Cart button code. -->
<!-- End PayPal Add to Cart button code -->
<!-- Begin PayPal View Cart button code -->
<!-- Replace this comment with the pasted View Cart button code. -->
<!-- End PayPal View Cart button code -->

</h1></td>
</tr>
</table>
<p> </p>
</body>
</html>

330 Part V: HTML Projects

27_589172 ch19.qxd 4/22/05 3:49 PM Page 330

Part VI
The Part of Tens

28_589172 pt06.qxd 4/22/05 3:49 PM Page 331

In this part . . .

Here we point you at some undeniably cool HTML
tools, cover top do’s and don’ts for HTML markup,

and help you catch potential bugs and errors in your Web
pages. With our tongues planted firmly in our cheeks (that
makes it kind of hard to talk, you know), we try to recap
some of the most important advice and information in this
book. Enjoy!

28_589172 pt06.qxd 4/22/05 3:49 PM Page 332

Chapter 20

Ten Cool HTML Tools
In This Chapter
� Identifying your HTML toolbox needs

� Discovering your favorite HTML editor

� Adding a graphics application to your toolbox

� Authoring systems for the Web

� Understanding essential utilities for Web publishing

HTML documents are made of plain old text. You can make one with a
basic text editor like Notepad. Once upon a time, that was all Web

authors used.

As the Web has evolved, so have the tools used to create Web pages.
Nowadays, Web authoring is so complex that a simple text editor is a big
headache unless

� You don’t care about graphics and HTML validation.

� You’re on a quick in-and-out mission to make small changes to an exist-
ing HTML document.

As you get more experience with HTML, you’ll build your HTML toolbox. This
chapter helps you stock that toolbox. Some of these tools may already be on
your system, quietly waiting to help you create amazing Web pages.

When you go shopping for items for your HTML toolbox, look for good buys.
Students and educators often qualify for big discounts on major-brand soft-
ware, but careful shopping can save on just about any software purchase. Try
comparison-shopping at sites like CNET Shopper (www.shopper.com) or PC
Magazine (http://pcmag.shopping.com).

29_589172 ch20.qxd 4/22/05 3:50 PM Page 333

HTML Editors
This book explains how to create and maintain (X)HTML pages with nothing
more complicated than a pocketknife and a ball of string. But HTML editors
can turn the chore of creating complicated (X)HTML pages into an easy task.

HTML editors come in two flavors. The flavor you need depends on the com-
plexity of the Web page you are creating or editing.

� Helper editors have fewer capabilities.

� WYSIWYG (what you see is what you get) editors do everything but
your laundry.

Helper editors
An HTML helper works like it sounds. It helps you create HTML, but it doesn’t
do all the markup work for you.

In a helper, HTML is displayed “raw” — tags and all. You can reach right into
the code and tweak it (if you have HTML 4 For Dummies).

But good helpers save time and lighten your load. Functions like these make
HTML development easier and more fun:

� Tags are a different color than content.

� The spell checker knows tags aren’t misspelled words.

Use a helper editor when you’re building complex tables or multilevel lists.
The more complex your markup, the more help a helper editor can provide!

HomeSite+: The champ
HomeSite+ is an HTML editor suitable for both beginners and professionals. It
requires HTML knowledge to use, but it assists you at every step.

If you have Macromedia Dreamweaver MX, you have HomeSite+ (www.
macromedia.com/software).

We like the HomeSite+ interface. You can

� Browse images directly in the editor.

� Customize the toolbars and menus for your personal needs.

334 Part VI: The Part of Tens

29_589172 ch20.qxd 4/22/05 3:50 PM Page 334

� Create a browser view instantly by clicking a tab.

� Move and use context menus with a right-click of your mouse.

Text is easy to enhance and modify with

� Color-coded HTML

� Integrated spell checker

� Search-and-replace tools to update whole projects, folders, and files

� Internal HTML validation

� Extensive online help with accessing documentation on HTML and other
popular scripting languages

HomeSite+ helps you perform

� Project management

� Link verification

� File uploads to a remote Web server

If you don’t have HomeSite+, try one of the following challengers as your
helper editor instead.

Contenders
There are many more good HTML helper editors than there are good WYSI-
WYG editors. Here’s our slate of alternatives.

BBEdit
BBEdit rules the Macintosh world. It comes in two versions:

� The free product formerly known as BBEdit Lite is still free, but has been
superseded by a newer, free text editor called TextWrangler.

� BBEdit ($200 retail)

If you don’t need the powerful and specialized set of HTML editing, pre-
view, and cleanup tools of BBEdit, use TextWrangler and save! (A detailed
features comparison that also includes BBEdit Lite is available online at
www.barebones.com/products/bbedit/threeway.shtml.)

If you use a Macintosh, check BBEdit out at www.barebones.com.

335Chapter 20: Ten Cool HTML Tools

29_589172 ch20.qxd 4/22/05 3:50 PM Page 335

HTML-Kit
HTML-Kit is a compact Windows tool with

� Menu-driven support for both HTML and Cascading Style Sheets (CSS)
markup

� A nice preview window for a browser’s-eye view of your markup

If you want to download HTML-Kit, go to www.chami.com/html-kit.

WYSIWYG editors
A WYSIWYG editor creates HTML for you as you create and lay out Web page
content on your computer display (often by dragging and dropping visual ele-
ments, or working through GUI menus and options), shielding your delicate
eyes from naked markup along the way. These tools look much like word
processors or page-layout programs; they do a lot of the work for you.

WYSIWYG editors make your work easier and save hours of endless coding —
you have a life, right? — but you should only use WYSIWYG editors in the ini-
tial design stage. For example, you can use a WYSIWYG editor to create a com-
plex table in under a minute and then use a helper to refine and tweak your
HTML markup directly.

Dreamweaver: the champ
Dreamweaver is the best WYSIWYG Web development tool for Macintosh
and PC systems. Many (if not most) Web developers use Dreamweaver.
Dreamweaver is an all-in-one product that supports

� Web site creation

� Maintenance

� Content management

The current version is Dreamweaver MX 2004. It also belongs to a suite of
products, Studio MX 2004, that work together to provide a full spectrum of
Internet solutions. Studio MX also includes Fireworks MX 2004, Flash MX
2004, ColdFusion MX, and Freehand MX.

Dreamweaver has an easy-to-follow-and-learn dialog box so you can style
Web pages with CSS without even knowing what a style rule is! Many of the
benefits of Dreamweaver stem from its sleek user interface and its respect for
clean HTML. You can learn more about Dreamweaver by visiting the
Macromedia Web site at www.macromedia.com.

336 Part VI: The Part of Tens

29_589172 ch20.qxd 4/22/05 3:50 PM Page 336

If you’re too low on funds for a top-of-the-line WYSIWYG HTML editor like
Dreamweaver MX (suggested retail price is about $500, but discounts of up
to $200 are available), there are other possibilities. You can ponder the sug-
gestions in the next section or go a-searching on the Web (the search string
“WYSIWYG HTML editor” should do nicely) to find lots more still!

Contenders
WYSIWYG editors generate allegiances that can seem as pointless as the
enmity between owners of Ford and Chevy trucks. Both of the following edi-
tors have fans, and they can both produce great Web pages.

� FrontPage 2003 is Microsoft’s latest version of its award-winning Web
site builder. It’s in all MS Office 2003 versions.

www.microsoft.com/frontpage/

� GoLive CS is Adobe’s latest version of its Web publishing toolset. It’s
included in Adobe Creative Suite Premium.

www.adobe.com/products/golive

Graphics Tools
Graphics applications are beasts. They can do marvelous things, but learning
how to use them can be overwhelming at first.

If you aren’t artistically inclined, consider paying someone else to do your
graphics work. Graphics applications can be pricey and complicated. But
you should have some kind of high-function (if not high-end) graphics pro-
gram to tweak images should you need to. Our highest rating goes to Adobe
Photoshop, but considering its cost and an average newbie HTML hacker’s
budget, we discuss a lower-cost alternative first in the following section.

Photoshop Elements: The amateur champ
At around $150, Adobe Photoshop Elements is an affordable PC- and Mac-
based starter version of the full-blown Photoshop (the gold standard for
graphics). You can do almost anything with Photoshop Elements that you
might need for beginning and intermediate-level graphics editing. The current
version of the program is Photoshop Elements 3.0.

This product is for you if you want to add images to your site but you don’t
want to make graphic arts your full-time living (or your full-time obsession).

337Chapter 20: Ten Cool HTML Tools

29_589172 ch20.qxd 4/22/05 3:50 PM Page 337

To learn more about Photoshop Elements, visit www.adobe.com, select
Products➪Digital Imaging, and then select whichever version of Photoshop
Elements (PC or Mac) you want to read more about from the Digital Imaging
Products drop-down menu.

If you’re really on a tight budget, check out the $100, PC-only Paint Shop Pro
at www.jasc.com instead. It does nearly everything that Photoshop Elements
does and costs about one-third less.

Professional contenders
If you work with lots of photographs or other high-resolution, high-quality
images or artwork, you may need one of these tools for Web graphics.

Adobe Photoshop
If it weren’t so darned expensive, we’d grant top honors to Photoshop. Alas,
$650 is too rich for many novices’ budgets. Wondering whether to upgrade
from Photoshop Elements? Adobe mentions these capabilities among its “Top
reasons to upgrade”:

� Improved file browser: Shows and tells you more about more kinds of
graphics files and gives you more-powerful search tools.

� Shadow/Highlight correction: Powerful built-in tools add or manipulate
shadows and highlights in images.

� More-powerful color controls: Color palettes and color-matching tools
with detailed controls that Elements lacks.

� Text on a path: Full-blown Photoshop lets you define any kind of path
graphically and then instructs text to follow that path. This provides
fancy layout that Elements can’t match.

If you need to apply sophisticated special effects, edits, or tweaks to high-
resolution photorealistic images, full-blown Photoshop is your best choice.
For most basic Web sites, however, Photoshop Elements is more than up to
the task — which is why it’s the most popular graphics editing tool.

Like its little brother Photoshop Elements, full-blown Photoshop works with
both Macintosh and PC operating systems. The current version is Adobe
Photoshop CS. It’s included in all of Adobe’s product suites.

338 Part VI: The Part of Tens

29_589172 ch20.qxd 4/22/05 3:50 PM Page 338

Photoshop CS add-ons and plug-ins provide specialized functions — such
as complex textures or special graphics effects. This extensibility is nice
because graphics professionals who need such capabilities can buy them
(most cost $100 and up, with $300 a pretty typical price) and add them with-
out any muss or fuss. But those who don’t need them don’t have to buy
them and thus don’t need to pay extra for the base-level software.

Macromedia Fireworks
Fireworks is a graphics program designed specifically for Web use, so it offers
lots of nice features and functions for that purpose. The current version is
Macromedia Fireworks MX 2004.

Fireworks is tightly integrated with other Macromedia products and therefore
is of potentially great interest if you’re using (or considering) Dreamweaver.
Simply put, this combination of Macromedia products makes it very easy to
add graphical spice to Web pages.

For more information about Fireworks and related Macromedia products,
check out www.macromedia.com/software/fireworks.

Link Checkers
A broken link on your site can be embarrassing. To spare your users the
dreaded 404 Object Not Found error message, use a link checker to make
sure your links are

� Correctly formatted before you publish

� Live on the Web after you publish

Other Web sites may change or disappear after you publish your site.
Regularly check your site’s links to make sure they still work.

The worst broken link points to a page on your own site.

Many HTML editors and Web servers include built-in local link checkers, and
they may even scour the Web to check external links.

Web Link Validator: The champ
Web Link Validator 3.5 is a professional-strength tool at an affordable price
($27). We recommend it because it handles many kinds of links and reports
clearly and concisely on their condition.

339Chapter 20: Ten Cool HTML Tools

29_589172 ch20.qxd 4/22/05 3:50 PM Page 339

You can find Web Link Validator all over the Web. A good place to grab it is at
www.download.com (search the program name to find it immediately).

Contenders
Both of the following programs are pretty good link checkers, They need a
little elbow grease to learn and to use, but the price is right: free.

W3C Link Checker
This is a utility created by volunteers for the World Wide Web Consortium.
You can either

� Download it from http://validator.w3.org/docs/checklink.html.

You have a couple of download options:

• Grab a compiled version for your computer and operating system
and run it as-is.

• Grab the source code and tweak it for your needs and situation.

� Use the online version at http://validator.w3.org/checklink.

MOMspider
Roy Fielding’s MOMspider is a sentimental favorite. It was one of the first link
checkers for Web folks. It runs on any machine that can compile Perl (every
machine we know of), and it has lots of options to do the heavy lifting.

The ingredients are at http://ftp.ics.uci.edu/pub/websoft/MOMspider.

HTML Validators
Validation compares a document to a set of document rules — a Document
Type Definition (DTD). Simply put, validation checks the actual markup and
content against the DTD and flags any deviations it finds.

Typically, a document author follows this process:

1. Create an HTML document in an HTML editor.

Let’s say this step results in a file called mypage.htm.

2. Submit mypage.htm to an HTML or XHTML validation site for inspec-
tion and validation.

If any problems or syntax errors are detected, the validator reports such
errors in an annotated version of the original HTML document.

340 Part VI: The Part of Tens

29_589172 ch20.qxd 4/22/05 3:50 PM Page 340

3. If the validator reports errors, the author corrects those errors and
resubmits the document for validation.

Sometimes, breaking HTML rules is the only way for your page to look
right in older Web browsers. But document rules exist for a reason:
Nonstandard or incorrect HTML markup often produces odd or unpre-
dictable results.

Browsers usually forgive markup errors. Most browsers identify HTML pages
without an <html> element. But someday, markup languages will be so com-
plex and precise that browsers won’t be able to guess whether you’re pub-
lishing in HTML or another extensible markup language. Get the markup right
from the beginning and save yourself a bunch of trouble later.

HTML validation is built into many HTML editors.

W3C validator
The W3C has a free, Web-based validation system available at http://
validator.w3.org.

The W3C validation tool lets you choose

� Which HTML or XHTML DTD version to check against your document

� Output formats:

• A terse output lists only the line numbers in your document, the
boo-boos, and a brief description of each.

• A verbose output lists great detail about each error and links to the
relevant information in the HTML specification.

Built-in validators
Many tools in this chapter offer HTML validation. These include HTML-Kit,
HomeSite+, and BBEdit. Use ’em if you got ’em; get ’em if you don’t!

FTP Clients
After you create your Web site on your computer, you have to share it with
the world. So you need a tool to transfer your Web pages to your Web server.

341Chapter 20: Ten Cool HTML Tools

29_589172 ch20.qxd 4/22/05 3:50 PM Page 341

After you select a server host and you know how to access a Web server
(your service provider should supply you with this information), upload your
pages to that server by using FTP. That means you need an FTP program.

All FTP programs are similar and easy to operate. We recommend these:

� WS_FTP Professional for Windows is located at www.ipswitch.com.

� Fetch for the Mac is located at http://fetchsoftworks.com.

Swiss Army Knives
Collections of tools can help you manage and control your Web site. They’re
the Web version of a chunky red knife with a tool for every purpose. We call
these Swiss army knives.

� HTML Toolbox, from NetMechanic, is the sharpest tool in the shed. This
puppy has most of the features we recommend in this chapter, including
link and spell checking and validation.

This convenient little package costs you about $60 per year. If that’s not
too much to ask, check it out at

www.netmechanic.com/maintain.htm

� HTML-Kit supports plug-ins to add functions such as link checks and
spelling checks. Most of these plug-ins are free or inexpensive.

www.chami.com

� Easy HTML Construction Kit offers a collection of useful conversion,
reformatting, and template management tools. It’s at

www.hermetic.ch/html.htm

342 Part VI: The Part of Tens

Web servers do the heavy lifting
A Web server houses collections of stuff like
pages and graphics for a Web site. You may have
your own server. If you don’t know if you have
one, you don’t. But don’t run out and buy one!

A Web server runs special software that’s ded-
icated to presenting and maintaining Web files

(among several other Web-related tasks). If you
don’t have one of these supercomputers, your
ISP (such as EarthLink or MSN) can host your
pages for a fee. Many service providers include
support for Web sites (normally up to 100MB in
size) as part of their basic account offerings.

29_589172 ch20.qxd 4/22/05 3:50 PM Page 342

Chapter 21

Ten HTML Do’s and Don’ts
In This Chapter
� Concentrating on content

� Going easy on the graphics, bells, whistles, and hungry dinosaurs

� Creating well-formulated HTML and then testing, testing, testing

� Keeping it interesting after the building is ovah!

By itself, HTML is neither too complex nor overwhelmingly difficult. As
some high-tech wags (including a few rocket scientists) have put it,

HTML ain’t rocket science! Nevertheless, important do’s and don’ts can make
or break the Web pages you build with HTML. Consider these humble admon-
ishments as guidelines to make the most of HTML without losing touch with
your users or watching your page blow up on its launch pad.

If some points we make throughout this book seem to crop up here, too (espe-
cially regarding proper and improper use of HTML), it’s no accident. Heed ye
well the prescriptions and avoid ye the maledictions. But hey, they’re your
pages. You can do what you want. Your users will decide the ultimate outcome.
(We never say, “We told you so.” Nope. Not us!)

Concentrate on Content
Any Web site lives or dies by its content. That a site is meaningful, that it
delivers information directly, easily, and efficiently, and the reasonable expec-
tation of finding something new and interesting on each new visit are all
pluses. But all of those things (and more) rest on solid, useful content to give
visitors a reason to come (and later, to return) to your site.

Never lose sight of your content
So we return to the crucial question of payload: page content. Why? Well, as
Darrell Royal (legendary football coach of the University of Texas Longhorns
in the ’60s and ’70s) is rumored to have said to his players, “Dance with who

30_589172 ch21.qxd 4/22/05 3:50 PM Page 343

brung ya.” In normal English (as opposed to Texan), this means that you
should stick with the people who’ve supported you all along and give your
loyalty to those who’ve given it to you.

We’re not sure what this means for football, but for Web pages it means keep-
ing faith with your users and keeping content paramount. If you don’t have
strong, solid, informative content, users quickly get that empty feeling that
hits when Web pages are content-free. Then they’ll be off to richer hunting
grounds on the Web, looking for content somewhere else.

To satisfy user hunger, put your most important content on your site’s major
pages. Save the frills and supplementary materials for secondary pages. The
short statement of this principle for HTML is, “Tags are important, but what’s
between the tags — the content — is what really counts.” Chapters 2 and 3
cover making your content the best it can possibly be.

Structure your documents and your site
For users, a clear road map of your content is as important for a single home
page as it is for an online encyclopedia. When longer or more complex docu-
ments grow into a full-fledged Web site, a road map becomes more important
still. This map ideally takes the form of (you guessed it) a flow chart of page
organization and links. If you like pictures with a purpose, the chart could
appear in graphic form in an explicitly labeled site map.

We’re strong advocates of top-down page design: Don’t start writing content
or placing tags until you understand what you want to say and how you want
to organize your material. Then start building your HTML document or col-
lection of documents with paper and pencil (or whatever modeling tool you
like best). Sketch out relationships within the content and among your pages.
Know where you’re building before you roll out the heavy equipment.

Good content flows from good organization. It helps you stay on track during
page design, testing, delivery, and maintenance. Organization helps users find
their way through your site. Need we say more? Well, yes: Don’t forget that
organization changes with time. Revisit and critique your organization and
structure on a regular basis, and don’t be afraid to change either one to keep
up with changes in content or focus.

Go Easy on the Graphics, Bells, Whistles,
and Hungry Dinosaurs

Markup, scripting, and style sheets make many things possible. But not
all possibilities deserve implementation, nor can Web sites live by snazzy

344 Part VI: The Part of Tens

30_589172 ch21.qxd 4/22/05 3:50 PM Page 344

graphics, special effects, and blinking marquees alone. Let your design and
your content drive the markup, the graphics, and interaction, and your site
will do its job without dazzling visitors so they lose sight of same.

Make the most from the least
More is not always better, especially when it comes to Web pages. Try to
design and build your pages using minimal ornaments and simple layouts.
Don’t overload pages with graphics or add as many levels of headings as you
can fit. Instead, do everything you can to make sure your content is easy to
read and follow. To keep distractions and departures to a minimum, also
make sure any hyperlinks you include add real value to your site.

Gratuitous links to useless information are nobody’s friend; if you’re tempted
to link to a Webcam that shows a dripping faucet, resist, resist, resist!

Structure and images exist to highlight content. The more bells, whistles, and
dinosaur growls dominate a page, the more distracted from your content visi-
tors become. Use structure and graphics sparingly, wisely, and carefully.
Anything more can be an obstacle to content delivery. Go easy on the anima-
tions, links, and layout tags, or risk having your message (even your page)
devoured by a hungry T. Rex.

Build attractive pages
When users visit Web pages with a consistent framework that focuses on con-
tent, they’re likely to feel welcome. The important thing is to supplement con-
tent with graphics and links — don’t trample users with an onslaught of
pictures and links. Making Web pages pretty and easy to navigate only adds
to a site’s basic appeal and makes your cybercampers even happier.

If you need inspiration, cruise the Web and look for layouts and graphics that
work for you. If you take the time to analyze what you like, you can work from
other people’s design principles without having to steal details from their lay-
outs or looks (which isn’t a good idea anyway).

As you design Web documents, start with a basic, standard page layout. Pick
a small, interesting set of graphical symbols or icons and adopt a consistent
navigation style. Use graphics sparingly (yes, you’ve heard this before); make
them as small as possible — limit size, number of colors, shading, and so on,
while retaining eye appeal. When you build simple, consistent navigation
tools, label them clearly and use them everywhere. Your pages can be appeal-
ing and informative if you invest the time and effort.

345Chapter 21: Ten HTML Do’s and Don’ts

30_589172 ch21.qxd 4/22/05 3:50 PM Page 345

Create Well-Formulated HTML and Test
If you start with solid markup and good content and then work through what
you’ve wrought to make sure everything works like it’s supposed to (and
communicates what it ought to), you’re on your way to a great Web site. But
once the construction is over, the testing begins. And only when the testing
returns positive results should you open your virtual doors to the public.

Keep track of those tags
Although you’re building documents, it’s easy to forget to use closing tags,
even when they’re required (for example, the that closes the opening
anchor tag <a>). When you’re testing Web pages, some browsers can com-
pensate for your errors, leaving you with a false sense of security.

The Web is no place to depend on the kindness of strangers. Scrutinize your
tags to head off possible problems from browsers that might not be quite so
understanding (or lax, as the case may be).

As for the claims that some vendors of HTML authoring tools make (“You
don’t even have to know any HTML!”), all we can say is, “Uh-huh, suuurre.”
HTML itself is a big part of what makes Web pages work; if you understand it,
you can troubleshoot with minimal fuss. Also, only you can ensure that your
pages’ inner workings are correct and complete for your documents, whether
you build them yourself or a program builds them for you.

We could go on ad infinitum about this, but we’ll exercise some mercy and
confine our remarks to the most pertinent items:

� Keep track of tags yourself while you write or edit HTML by hand. If
you open a tag — be it an anchor, a text area, or whatever — create the
closing tag for it right then and there, even if you have content to add.
Most HTML editors do this for you.

� Use a syntax checker to validate your work during the testing process.
Syntax checkers are automatic tools that find missing tags or errors —
and other ways to drive you crazy! Use these whether you build pages
by hand or with software. The W3C’s (free) HTML Validator lives at
http://validator.w3.org.

� Obtain and use as many browsers as you can when testing pages. This
not only alerts you to missing tags, but it can also reveal potential
design flaws or browser dependencies (covered in the “Avoid browser
dependencies” section later in this chapter). This exercise also empha-
sizes the importance of alternate text information. That’s why we also
check our pages with Lynx (a character-only browser).

346 Part VI: The Part of Tens

30_589172 ch21.qxd 4/22/05 3:50 PM Page 346

� Always follow HTML document syntax and layout rules. Just because
most browsers don’t require elements such as <html>, <head>, and
<body> doesn’t mean you can omit them. It means that browsers don’t
give a hoot whether you use them or not. But browsers per se are not
your audience. Your users (and future browsers) may indeed care.

Although HTML isn’t exactly a programming language, it still makes sense to
treat it like one. Following formats and syntax helps you avoid trouble, and
careful testing and rechecking of your work ensures a high degree of quality,
compliance with standards, and a relatively trouble-free Web site.

Avoid browser dependencies
When you’re building Web pages, the temptation to view the Web in terms of
your favorite browser is hard to avoid. That’s why you should always remem-
ber that users view the Web in general (and your pages in particular) from
many perspectives — through many different browsers.

During the design and writing phases, you’ll probably hop between HTML
and a browser’s-eye view of your work. At this point in the process, you
should switch from one browser to another and test your pages among sev-
eral browsers (including at least one character-mode browser). This helps
balance how you visualize your pages and helps keep you focused on
content.

You can use public Telnet servers with Lynx (a character-mode browser)
installed for free and that don’t require software installation. Visit www.brain
stormsandraves.com/articles/browsers/lynx for a good discussion of
using Lynx when testing Web pages.

During testing and maintenance, you must browse your pages from many dif-
ferent points of view. Work from multiple platforms; try both graphical and
character-mode browsers on each page. Testing takes time but repays your
investment with pages that are easy for everyone to read and follow. It also
helps viewers who come at your materials from platforms other than your
own and helps your pages achieve true independence from any single view-
point. Why limit your options?

If several pages on your site use the same basic HTML, create one template
for those pages. Test the template with as many browsers as you can. When
you’re sure the template is browser-independent, use it to create other pages.
This helps ensure that every page looks good, regardless of which browser a
visitor might use, and puts you on your way to real HTML enlightenment.

347Chapter 21: Ten HTML Do’s and Don’ts

30_589172 ch21.qxd 4/22/05 3:50 PM Page 347

Navigating your wild and woolly Web
Users who view the splendor of your site don’t want to be told you can’t get
there from here. Aids to navigation are vital amenities on a quality Web site. A
navigation bar is a consistent graphical place to put buttons that help users
get from A to B. By judicious use of links and careful observation of what con-
stitutes a complete screen (or screenful) of text, you can help your users min-
imize (or even avoid) scrolling. Text anchors make it easy to move to the
previous and or next screens, as well as to the top, index, and bottom in any
document. Just that easy, just that simple — or so it appears to the user.

We believe in the low scroll rule: Users should have to scroll no more than one
screenful in either direction from a point of focus or entry to find a navigation
aid that lets them jump (not scroll) to the next point of interest.

We don’t believe that navigation bars are mandatory or that names for con-
trols should always be the same. But we do believe that the more control you
give users over their reading, the better they like it. The longer a document
gets, the more important such controls become; they work best if they occur
about every 30 lines in longer documents (or in a separate, always-visible
frame if you use HTML frames).

Keep It Interesting After It’s Built!
The tendency to sit on one’s fundament, if not rest on one’s laurels, after
launching a Web site is nearly irresistible. It’s okay to sit down, but it isn’t
okay to leave things alone for too long or to let them go stale for lack of atten-
tion and refreshment. If you stay interested in what’s on your site after it’s
ready for prime time, your content probably won’t go past its freshness date.
Do what you can (and what you must) to stay on top of things, and you’ll stay
engaged — as should your site visitors!

Think evolution, not revolution
Over time, Web pages change and grow. Keep a fresh eye on your work and
keep recruiting fresh eyes from the ranks of those who haven’t seen your
work before to avoid what we call “organic acceptance.”

This concept is best explained by the analogy of your face in the mirror: You
see it every day; you know it intimately, so you aren’t as sensitive as some-
one else to how your face changes over time. Then you see yourself on video,

348 Part VI: The Part of Tens

30_589172 ch21.qxd 4/22/05 3:50 PM Page 348

or in a photograph, or through the eyes of an old friend. At that point,
changes obvious to the world reveal themselves to you as you exclaim,
“I’ve gone completely gray!” or “My spare tire could mount on a semi!”

Changes to Web pages are usually evolutionary, not revolutionary. They
proceed in small steps; big leaps are rare. Nevertheless, you must stay sensi-
tive to the underlying infrastructure and readability of your content as pages
evolve. Maybe the lack of on-screen links to each section of your Product
Catalog didn’t matter when you had only three products — but now that you
offer 25, they’re a must. You’ve heard that form follows function; in Web terms,
the structure of your site needs to follow changes in its content. If you regu-
larly evaluate your site’s effectiveness at communicating, you know when it’s
time to make changes, large or small.

This is why user feedback is crucial. If you don’t get feedback through forms
or other means, aggressively solicit some from your users. If you’re not sure
how you’re doing, consider: If you don’t ask for feedback, how can you tell?

Beating the two-dimensional text trap
Because of centuries of printed material and the linear nature of books, our
mindsets can use an adjustment. The nonlinear potentials of hypermedia give
the Web a new definition for the term document. But it’s tempting to pack
pages full of hypercapabilities until they resemble a Pony Express dynamite
shipment and gallop in many directions at once. Be safe: Judge hypermedia
by whether it

� Adds interest

� Expands on your content

� Makes a serious — and relevant — impact on the user

Within these constraints, such material can vastly improve any user’s experi-
ence of your site.

Stepping intelligently outside old-fashioned linear thinking can improve your
users’ experience of your site and make your information more accessible to
your audience. That’s why we encourage careful use of document indexes,
cross-references, links to related documents, and other tools to help users
navigate within your site. Keep thinking about the impact of links as you look
at other people’s Web materials; it’s the quickest way to shake free of the
linear-text trap. (The printing press was high-tech for its day, but that was 500
years ago!) If you’re looking for a model for your site’s behavior, don’t think
about your new trifold four-color brochure, however eye-popping it is; think
about how your customer-service people interact with new customers on the
telephone. (“What can I do to help you today?”)

349Chapter 21: Ten HTML Do’s and Don’ts

30_589172 ch21.qxd 4/22/05 3:50 PM Page 349

Overcome inertia through vigilance
When you deal with your Web materials post-publication, it’s only human to
goof off after finishing a big job. Maintenance isn’t as heroic or inspiring as
creation, yet it represents most of the activity to keep any document alive
and well. Sites that aren’t maintained often become ghost sites; users stop
visiting sites when developers stop working on them. Never fear — a little
work and attention to detail keeps your pages fresh. If you start with some-
thing valuable and keep adding value, a site’s value appreciates over time —
just like any other artistic masterpiece. Start with something valuable and
leave it alone, and it soon becomes stale and loses value.

Consider your site from the viewpoint of a master aircraft mechanic: Correct
maintenance is a real, vital, and on-going accomplishment, without which you
risk a crash. A Web site, as a vehicle for important information, deserves reg-
ular attention; maintaining a Web site requires discipline and respect. See www.
disobey.com/ghostsites/index.shtml for a humorous look at ghost sites.

Keeping up with change translates into creating (and adhering to) a regular
maintenance schedule. Make it somebody’s job to spend time on a site regu-
larly; check to make sure the job’s getting done. If people are tagged to
handle regular site updates, changes, and improvements, they flog other par-
ticipants to give them tasks when scheduled site maintenance rolls around.
Pretty soon, everybody’s involved in keeping information fresh — just as
they should be. This keeps your visitors coming back for more!

350 Part VI: The Part of Tens

30_589172 ch21.qxd 4/22/05 3:50 PM Page 350

Chapter 22

Ten Ways to Exterminate
Web Bugs

In This Chapter
� Avoiding markup and spelling faux pas

� Keeping links hot and fresh

� Gathering beta testers to check, double-check, and triple-check your site

� Applying user feedback to your site

After you put the finishing touches on a set of pages (but before you go
public on the Web for the world to see), it’s time to put them through

their paces. Testing is the best way to control a site’s quality.

Thorough testing must include content review, analysis of HTML syntax and
semantics, link checks, and various sanity checks to make doubly sure that
what you built is what you really wanted. Read this chapter for some gems of
testing wisdom (learned from a lifetime of Web adventures) as we seek to rid
your Web pages of bugs, errors, gaucheries, and lurking infelicities.

Avoid Dead Ends and Spelling Faux Pas
A sense of urgency that things must work well and look good on a Web site
will never fail to motivate you to keep your site humming along. That said, if
you work from a visual diagram of how your site is (or should be) organized,
you’ll be well-equipped to check structure, organization, and navigation.
Likewise, if you put your pages through their paces regularly (or at least each
time they change) with a spell checker, you’ll be able to avoid unwanted tpyos.

31_589172 ch22.qxd 4/22/05 3:51 PM Page 351

Make a list and check it — twice
Your design should include a road map (often called a site map) that tells you
what’s where in every individual HTML document in your site and the rela-
tionships among its pages. If you’re really smart, you kept this map up-to-
date as you moved from design to implementation. (In our experience, things
always change when you go down this path.) If you’re merely as smart as the
rest of us, don’t berate yourself — update that map now. Be sure to include
all intra- and interdocument links.

A site map provides the foundation for a test plan. Yep, that’s right — effective
testing isn’t random. Use your map to

� Investigate and check every page and every link systematically.

� Make sure everything works as you think it should — and that what you
built has some relationship (however surprising) to your design.

� Define the list of things to check as you go through the testing process.

� Check everything (at least) twice. (Red suit and reindeer harness
optional.)

Master text mechanics
By the time any collection of Web pages comes together, you’re looking at
thousands of words, if not more. Yet many Web pages get published without
a spell check, which is why we suggest — no, demand — that you include a
spell check as a step when testing and checking your materials. (Okay, we
don’t have a gun to your head, but you know it’s for your own good.) Many
HTML tools, such as FrontPage, HomeSite, and Dreamweaver, include built-in
spell checkers, and that’s the first spell-check method you should use. These
HTML tools also know how to ignore the HTML markup and just check your
text.

Even if you use HTML tools only occasionally and hack out the majority of
your HTML by hand, perform a spell check before posting your documents to
the Web. (For a handy illustration of why this step matters, try keeping a log
of spelling and grammar errors you find during your Web travels. Be sure to
include a note on how those gaffes reflect on the people who created the
pages involved. Get the message?)

352 Part VI: The Part of Tens

31_589172 ch22.qxd 4/22/05 3:51 PM Page 352

You can use your favorite word processor to spell check your pages. Before
you check them, add HTML markup to your custom dictionary, and pretty
soon the spell checker runs more smoothly — getting stuck only on URLs
and other strange strings that occur from time to time in HTML files.

If you’d prefer a different approach, try any of the many HTML-based spell-
checking services now available on the Web. We like the one at the Doctor
HTML site, which you can find at www2.imagiware.com/RxHTML.

If Doctor HTML’s spell checker doesn’t float your boat, visit a search engine,
such as www.yahoo.com or www.google.com, and use web page spell check
as a search string. Doing so can help you produce a list of spell-checking
tools made specifically for Web pages.

One way or another, persist until you root out all typos and misspellings.
Your users may not thank you for your impeccable use of language — but if
they don’t trip over errors while exploring your work, they’ll think more
highly of your pages (and their creator) even if they don’t know why. Call it
stealth diplomacy!

Keep Your Perishables Fresh!
New content and active connections to current, relevant resources are the
hallmarks of a well-tended Web site. You can’t achieve these goals without
regular (and sometimes, constant) effort, so you plan for ongoing activity.
The rewards can be great, starting with a genuine sense of user excitement at
what new marvels and treasures may reveal themselves on their next visit to
your site. This kind of anticipation is nearly impossible to imitate (without
doing what you’ll have to do to keep things fresh in the first place).

Lack of live links — a loathsome legacy
We performed an unscientific, random-sample test to double-check our own
suspicions; users told us that positive impressions of a particular site are
proportional to the number of working links they find there. The moral of this
survey: Always check your links. This step is as true after you publish your
pages as it is before they’re made public. Nothing irritates users more than a
link that produces the dreaded 404 File not found error instead of the
good stuff they seek! Remember, too, that link checks are as indispensable to
page maintenance as they are to testing.

353Chapter 22: Ten Ways to Exterminate Web Bugs

31_589172 ch22.qxd 4/22/05 3:51 PM Page 353

If you’re long on 21st-century street smarts, hire a robot to do the job for you:
They work really long hours (with no coffee breaks), don’t charge much, and
check every last link in your site (and beyond, if you let them). The best thing
about robots is that you can schedule them to do their jobs at regular inter-
vals: They always show up on time, always do a good job, and never com-
plain (though we haven’t yet found one that brings homemade cookies or
remembers birthdays). All you have to do is search online for phrases like
link checker. You’ll find lots to choose from!

We’re fond of a robot named MOMspider, created by Roy Fielding of the W3C.
Visit the MOMspider site at http://ftp.ics.uci.edu/pub/websoft/
MOMspider. This spider takes some work to use, but you can set it to check
only local links, and it does a bang-up job of catching stale links before users
do. (Some HTML software, such as HomeSite, includes a built-in link checker
to check your links both before and after you post your pages.)

If a URL points to one page that immediately points to another (a pointer),
you’re not entitled to just leave the link alone. Sure, it technically works, but
for how long? And how annoying! So if your link checking shows a pointer
that points to a pointer (yikes), do yourself (and your users) a favor by
updating the URL to point directly to the real location. You save users time,
reduce Internet traffic, and earn good cyberkarma.

When old links must linger
If you must leave a URL active even after it has become passé to give your
users time to bookmark your new location, instruct browsers to jump
straight from the old page to the new one by including the following HTML
command in the old document’s <head> section:

<meta http-equiv=”refresh” content=”0”; url=”newurlhere” />

This nifty line of code tells a browser that it should refresh the page. The
delay before switching to the new page is specified by the value of the content
attribute, and the destination URL is determined by the value of the url
attribute. If you must build such a page, be sure to include a plain-vanilla link
in its <body> section, too, so users with older browsers can follow the link
manually, instead of automatically. You might also want to add text that tells
visitors to update their bookmarks with the new URL. Getting there may not
be half the fun, but it’s the whole objective.

Make your content mirror your world
When it comes to content, the best way to keep things fresh is to keep up
with the world in which your site resides. As things change, disappear, or pop

354 Part VI: The Part of Tens

31_589172 ch22.qxd 4/22/05 3:51 PM Page 354

up in that external world, similar events should occur on your Web site. Since
something new is always happening, and old ways or beliefs fading away —
even in studies of ancient cultures or beliefs — if you report on what’s new
and muse on what’s fading from view, you’ll provide constant reasons for
your visitors to keep coming back for more. What’s more, if you can accu-
rately and honestly reflect (and reflect upon) what’s happening in your world
of interest, you’ll grab loyalty and respect as well as continued patronage.

Check Your Site, and Then
Check It Again!

There’s an ongoing need for quality control in any kind of public content, but
that need is particularly acute on the Web, where the whole world can stop
by (and where success often follows the numbers of those who drop in, and
return). You must check your work while you’re building the site and con-
tinue to check your work over time. This allows you to revisit your material
with new and shifting perspectives and evaluate what’s new and what’s
changed in the world around you. That’s why testing and checking are never
really over; they just come and go — preferably, on a regular schedule!

Look for trouble in all the right places
You and a limited group of users should thoroughly test your site before you
share it with the rest of the world — and more than once. This process is
called beta testing, and it’s a bona fide, five-star must for a well-built Web site,
especially if it’s for business use. When the time comes to beta-test your site,
bring in as rowdy and refractory a crowd as you can find. If you have picky
customers (or colleagues who are pushy, opinionated, or argumentative), be
comforted knowing that you have found a higher calling for them: Such
people make ideal beta-testers — if you can get them to cooperate.

Don’t wait till the very last minute to test your Web site. Sometimes the
glitches found during the beta-test phase can take weeks to fix. Take heed:
Test early and test often, and you’ll thank us in the long run!

Beta-testers use your pages in ways you never imagined possible. They inter-
pret your content to mean things you never intended in a million years. They
drive you crazy and crawl all over your cherished beliefs and principles. And
they do all this before your users do! Trust us, it’s a blessing — even if it’s in
disguise.

355Chapter 22: Ten Ways to Exterminate Web Bugs

31_589172 ch22.qxd 4/22/05 3:51 PM Page 355

These colleagues also find gotchas, big and small, that you never knew
existed. They catch typos that word processors couldn’t. They tell you things
you left out and things that you should have omitted. They give you a fresh
perspective on your Web pages, and they help you see them from extreme
points of view.

The results of all this suffering, believe it or not, are positive. Your pages
emerge clearer, more direct, and more correct than they would have if you
tried to test them yourself. (If you don’t believe us, of course, you could try
skipping this step. And when real users start banging on your site, forgive us
if we don’t watch.)

Cover all the bases with peer reviews
If you’re a user with a simple home page or a collection of facts and figures
about your private obsession, this tip may not apply to you. Feel free to read
it anyway — it just might come in handy down the road.

If your pages express views and content that represent an organization,
chances are, oh, about 100 percent, that you should subject your pages to
peer-and-management review before publishing them to the world. In fact, we
recommend that you build reviews into each step along the way as you build
your site — starting by getting knowledgeable feedback on such basic aspects
as the overall design, writing copy for each page, and the final assembly of
your pages into a functioning site. These reviews help you avoid potential
stumbling blocks, such as unintentional off-color humor or unintended politi-
cal statements. If you have any doubts about copyright matters, references,
logo usage, or other important details, get the legal department involved. (If
you don’t have one, you may want to consider a little consulting help for this
purpose.)

Building a sign-off process into reviews so you can prove that responsible
parties reviewed and approved your materials is a good idea. We hope you
don’t have to be that formal about publishing your Web pages, but it’s far, far
better to be safe than sorry. (This process is best called covering the bases, or
perhaps it’s really covering something else? You decide.)

Use the best tools of the testing trade
When you grind through your completed Web pages, checking your links and
your HTML, remember that automated help is available. If you visit the W3C
HTML Validator at http://validator.w3.org, you’ll be well on your way to

356 Part VI: The Part of Tens

31_589172 ch22.qxd 4/22/05 3:51 PM Page 356

finding computerized assistance to make your HTML pure as air, clean as the
driven snow, and standards-compliant as, ah, really well-written HTML. (Do we
know how to mix a metaphor, or what?)

Likewise, investigating the link checkers discussed earlier in the chapter is a
good idea; use them regularly to check links on your pages. These faithful
servants tell you if something isn’t current, so you know where to start look-
ing for links that need fixing.

Schedule site reviews
Every time you change or update your Web site, you should test its function-
ality, run a spell check, perform a beta test, and otherwise jump through
important hoops to put your best foot forward online. But sometimes you’ll
make just a small change — a new phone number or address, a single prod-
uct listing, a change of name or title to reflect a promotion — and you won’t
go through the whole formal testing process for “just one little thing.”

That’s perfectly understandable, but one thing inevitably leads to another,
and so on. Plus, if you solicit feedback, chances are good that you’ll get some-
thing back that points out a problem you’d never noticed or considered
before. It’s essential to schedule periodic Web site reviews, even if you’ve
made no big changes or updates since the last review. Information grows
stale, things change, and tiny errors have a way of creeping in as one small
change succeeds another.

Just as you take your car in for an oil change or swap out your air-conditioning
filter, you should plan to check your Web site regularly. Most big organiza-
tions we talk to do this every three months or so; others do it more often.
Even when you think you have no bugs to catch, errors to fix, or outdated
information to refresh, you’ll often be surprised by what a review turns up.
Make this part of your routine, and your surprises will be less painful — and
require less work to remedy!

Let User Feedback Feed Your Site
Who better to tell you what works and what doesn’t than those who use (and
hopefully, even depend on) your site? Who better to say what’s not needed
and what’s missing? But if you want user feedback to feed your site’s growth
and evolution, you not only have to ask for it, you have to find ways to
encourage it to flow freely and honestly in your direction, then act on it to
keep the wellsprings working intact.

357Chapter 22: Ten Ways to Exterminate Web Bugs

31_589172 ch22.qxd 4/22/05 3:51 PM Page 357

Foster feedback
Even after you publish your site, testing never ends. (Are you having flash-
backs to high school or college yet? We sure are.) You may not think of user
feedback as a form (or consequence) of testing, but it represents the best
reality check your Web pages are ever likely to get, which is why doing every-
thing you can — including offering prizes or other tangibles — to get users to
fill out HTML forms on your Web site is a good idea.

This reality check is also why reading all feedback you get is a must. Go out
and solicit as much feedback as you can handle. (Don’t worry; you’ll soon
have more.) But the best idea of all is to carefully consider the feedback that
you read and then implement the ideas that actually bid fair to improve your
Web offerings. Oh, and it’s a really good idea to respond to feedback with per-
sonal e-mail, to make sure your users know you’re reading what they’re
saying. If you don’t have time to do that, make some!

Even the most finicky and picky of users can be an incredible asset: Who better
to pick over your newest pages and to point out those small, subtle errors or
flaws that they revel in finding? Your pages will have contributed mightily to
the advance of society by actually finding a legitimate use for the universal
delight in nitpicking. And your users can develop a real stake in boosting your
site’s success, too. Working with your users can mean that some become more
involved, helping guide the content of your Web pages (if not the rest of your
professional or obsessional life). Who could ask for more? Put it this way: You
may yet find out, and it could be remarkably helpful.

If you give to them, they’ll give to you!
Sometimes, simply asking for feedback or providing surveys for users to fill
out doesn’t produce the results you want — either in quality or in volume.
Remember the old days when you’d occasionally get a dollar bill in the mail
to encourage you to fill out a form? It’s hard to deliver cold, hard cash via the
Internet, but a little creativity on your part should make it easy for you to
offer your users something of value in exchange for their time and input. It
could be an extra month on a subscription, discounts on products or services,
or some kind of freebie by mail. (Maybe now you can finally unload those
stuffed Gila monsters you bought for that trade show last year. . . .)

But there’s another way you can give back to your users that might not even
cost you too much. An offer to send participants the results of your survey,
or to otherwise share what you learn, may be all the incentive participants
need to take the time to tell you what they think, or to answer your ques-
tions. Just remember that you’re asking your users to give of their time and
energy, so it’s only polite to offer something in return.

358 Part VI: The Part of Tens

31_589172 ch22.qxd 4/22/05 3:51 PM Page 358

Part VII
Appendixes

32_589172 pt07.qxd 4/22/05 3:51 PM Page 359

In this part . . .

This part of the book supplements the main text with
pointers to useful resources and summary informa-

tion. It includes addresses to Web pages that provide com-
plete lists of HTML and XHTML elements, with syntax
information and brief descriptions and explanations, and
does the same for Cascading Style Sheet (CSS) markup as
well. It also holds a glossary of technical terms found else-
where in the book.

We hope you get to know these supporting members of
our cast, and use them often and well!

32_589172 pt07.qxd 4/22/05 3:51 PM Page 360

Appendix A

Deprecated (X)HTML Elements
and Attributes

In markup terminology, elements or attributes may be deprecated. This
means they’re still recognized but doomed to obsolescence. If you see

(X)HTML markup you don’t recognize or can’t find elsewhere in this book,
chances are good that it’s deprecated. (XHTML doesn’t recognize deprecated
items if you use the Strict DTD, but XHTML Transitional and Frameset DTDs
do recognize them.)

Table A-1 lists deprecated (X)HTML elements; Table A-2 lists deprecated
(X)HTML attributes (in alphabetical order, for easy reference).

Table A-1 Deprecated (X)HTML Elements
Element Common Name Empty? Category Description

applet Applet No Inclusion Includes Java
applet in
(X)HTML
document

basefont Base font Yes Presentation Sets default
font for text to
which no style
sheet or font
element
applies

center Center text No Presentation Centers
enclosed text
in current dis-
play area

dir Directory list No List Lists style for
lists of short
strings (like file
names)

(continued)

33_589172 appa.qxd 4/22/05 3:52 PM Page 361

Table A-1 (continued)
Element Common Name Empty? Category Description

font Font info Yes Presentation Sets size, font,
and color
for element
content

isindex Single-line input Yes Form-related Prompts user
for single line
of input

menu Menu list No List Creates com-
pact list format

param Object Yes Inclusion Passes “com-
parameters mand line”

input to Java
applet

s Strikethrough No Presentation Uses strike-
through font
for element
content

strike Strikethrough No Presentation Uses
strikethrough
font for ele-
ment content

u Underline No Presentation Uses underline
font for ele-
ment content

Table A-2 Deprecated (X)HTML Attributes
Name Where Deprecated Description

align <caption><table> Sets alignment at top,
<hr><div><h1..6><p> bottom, left, right

alink <body> Sets color for active docu-
ment links

background <body> Sets background picture for
document body (URL is target)

362 Part VII: Appendixes

33_589172 appa.qxd 4/22/05 3:52 PM Page 362

Name Where Deprecated Description

bgcolor <body><table> Sets background color for
<tr><td><th> document body

border <object> Sets width of border around
image

clear
 Sets side of line break on
which floating objects may
not be positioned

color <basefont> Sets color for basefont
(default) or font element
content

compact Special compact formatting
for list elements

hspace <object> Sets horizontal margin around
an image or object

link <body> Sets default color for docu-
ment links

noshade <hr> Instructs browser to draw
horizontal rules without 3-D
shading

nowrap <td><th> Instructs browser not to per-
form word wrap

size <basefont><hr> Sets size for <basefont> or
 from 1 to 7, <hr> in
pixels

start Sets starting number for
ordered list

text <body> Sets text (foreground) color
for document body

type Sets list style (1|a|A|i|I
for ordered lists, disc|
circle|square for
unordered lists)

value Sets the value for a list item,
specified by number

(continued)

363Appendix A: Deprecated (X)HTML Elements and Attributes

33_589172 appa.qxd 4/22/05 3:52 PM Page 363

Table A-2 (continued)
Name Where Deprecated Description

vlink <body> Sets color for document links
already visited

vspace <object> Sets vertical margin for an
image

width <hr><pre><td><th> Sets width (percentage or
pixels) for object sizing or
spacing

364 Part VII: Appendixes

33_589172 appa.qxd 4/22/05 3:52 PM Page 364

Appendix B

Shorthand and Aural CSS
Properties

This appendix provides complete coverage of two special categories of
CSS properties that we describe in Chapters 8 and 9:

� Shorthand properties are catchall CSS properties that permit a single
selector statement in a style sheet to cover all properties that relate to
each other, such as backgrounds, padding, borders, audio cueing, and so
forth. See Table B-1.

� Aural properties relate to how styles help control how text is rendered
in speech form (usually for visually-impaired Web surfers). See Table B-2.

Table B-1 CSS Shorthand Properties
Name Values Description

background {background-attachment Sets all background settings
background-color|
background-image|
background-position|
background-repeat|
inherit}

border {color|border-style| Sets all border properties
border-width|inherit} around an element

border- {border-bottom-width| Sets all border bottom proper-
bottom border-style|color| ties for an element

inherit}

border-left {border-left-width| Sets all border left properties
border-style|color| for an element
inherit}

(continued)

34_589172 appb.qxd 4/22/05 3:52 PM Page 365

Table B-1 (continued)
Name Values Description

border- {border-right-width| Sets all border right proper-
right border-style|color| ties for an element

inherit}

border- {dashed|dotted|double| Sets all border styles for an
style groove|hidden|inset| element

none|outset|ridge|
solid|inherit}

border-top {border-top-width| Sets all border top properties
border-style|color| for an element
inherit}

border- {length|medium|thick| Sets all border width proper-
width thin|inherit} ties around an element

cue {cue-before|cue-after| Sets all controls for auditory
inherit} cues on text-to-speech

rendering

font {Caption|Font-family| Governs all types of text dis
Font-size|Font-style| play controls
Font-variant|Font-
weight|Icon|Line-
height|Menu|Message-
box|Small-caption|
Status-bar|Inherit}

list-style {list-style-image| Governs display of all list style
list-style-position| properties for an element
list-style-type|
inherit)

outline {outline-color| Governs all outline properties
outline-style|outline- for an element
width|inherit}

padding {padding-width|inherit} Sets padding width around all
four sides of an element

pause {pause-before|pause- Controls duration of silent
after|inherit} pauses before and after ele-

ment rendering

366 Part VII: Appendixes

34_589172 appb.qxd 4/22/05 3:52 PM Page 366

Table B-2 CSS Aural Properties
Name Values Description

azimuth {left-side|far-left| Describes horizontal position
left|center-left| of a sound source
center|center-right|
right|far-right|right-
side|behind|leftwards|
rightwards|inherit}

cue-after {none|URI|inherit} Defines auditory cue to play
after rendering an element

cue-before {none|URI|inherit} Defines auditory cue to play
before rendering an element

elevation {above|angle|below| Describes vertical position of
higher|lower|inherit} a sound source in the listen-

ing environment

pause- {time|percentage| Controls duration of silent
after inherit} pause after element rendering

(percentage based on
speech-rate)

pause- {time|percentage| Controls duration of silent
before inherit} pause before element

rendering

pitch {frequency|high|low| Sets average pitch of speak-
medium|x-high|x-low| ing voice used to render text
inherit}

pitch-range {number|inherit} Sets amount of pitch variation
in speaking voice used to
render text

play-during {auto|mix|none|repeat| Controls background sound to
URI|inherit} be played while rendering text

to speech

richness {number|inherit} Defines degree to which
speaking voice will carry
(higher numbers carry further)

speak {none|normal|spell- Defines method whereby con-
out|inherit} tent should be rendered

aurally, if at all

(continued)

367Appendix B: Shorthand and Aural CSS Properties

34_589172 appb.qxd 4/22/05 3:52 PM Page 367

Table B-2 (continued)
Name Values Description

speak- {always|once|inherit} Specifies audible repetition of
header table headers, if any

speak- {continuous|digits| Specifies whether numbers
numeral inherit} are read as a whole or in con-

secutive digits

speak- {code|none|inherit} Sets method by which punc-
punctuation tuation should be spoken, lit-

erally or in the length of the
pause used

speech-rate {fast|faster|medium| Specifies rate at which
number|slow|slower| speaking voice renders text;
x-fast|x-slow|inherit} number sets average words

spoken per minute

stress {number|inherit} Sets amount of inflection used
to render stress markers in
text

voice- {specific voice| Defines specific voices; can
family generic voice| define a generic voice for ren-

inherit} dering text to speech

volume {loud|medium|number| Sets volume of sound
percentage|silent|soft| playback
x-loud|x-soft|inherit}

368 Part VII: Appendixes

34_589172 appb.qxd 4/22/05 3:52 PM Page 368

Appendix C

Glossary

absolute: When used to modify pathnames or URLs, a full and complete file
specification (as opposed to a relative one). An absolute specification
includes a host identifier, a complete volume, and path specification.

anchor: In HTML, an anchor is tagged text or a graphic element that acts as
a link to another location inside or outside a given document, or an anchor
may be a location in a document that acts as the destination for an incoming
link. The latter definition is most commonly how we use it in this book.

array: A collection of data values in a programming language variable;
JavaScript is among the many such languages that support array typed data
values.

attribute: A named characteristic associated with a specific HTML element.
Some attributes are required, others are optional. Some attributes also take
values; if so, the syntax is attribute=”value”).

bandwidth: Technically, the range of electrical frequencies a device can
handle; more often, bandwidth is used as a measure of a communication
technology’s carrying capacity.

beta-testing: When you and a limited group of users test your site before you
share it with the rest of the world.

block element: Any of a number of text block markup elements in (X)HTML,
like those used to designate paragraphs, headings, block quotes, lists, tables,
and forms. Block elements help to organize (or define) text structure in
chunks. See also inline element.

body: That part of an (X)HTML document that contains the actual document
content, especially all text that appears when the document is displayed.
Occurs between the <body> and </body> tags; that is, as content within the
body element. Also called document body.

35_589172 appc.qxd 4/22/05 3:52 PM Page 369

bookmark: A reference from a saved list of URLs kept by the Netscape Web
browser. Bookmarks allow quick loading of a Web site without retyping the
URL. Bookmarks work the same as Microsoft Internet Explorer Favorites.

browser: A Web access program that can request HTML documents from
Web servers and render such documents on a user’s display device. See also
client.

bugs: Major or minor errors, mistakes, and gotchas in software.

client: The end-user side of the client/server arrangement; typically, “client”
refers to a consumer (rather than a provider) of network services; a Web
browser is therefore a client program that talks to Web servers.

Common Gateway Interface (CGI): The specification that governs how Web
browsers communicate with and request services from Web servers; also the
format and syntax for passing information from browsers to servers with either
HTML forms or document-based queries. The current version of CGI is 1.1.

content: For HTML, content is its raison d’être; although form is important,
content is why users access Web documents and why they come back for
more.

cookie: A collection of data created and stored on a per-user basis to track
behavior, preferences, and other persistent kinds of information, across page
views or site visits.

CSS (Cascading Style Sheets): A method of coding that allows users to define
how certain HTML, XHTML, or XML structural elements, such as paragraphs
and headings, should be displayed using style rules instead of additional
markup. The versions of CSS are CSS1 and CSS2, with CSS2 being the most
recent version.

default: In general computer-speak, a selection made automatically in a pro-
gram if the user specifies no explicit selection. For HTML, the default is the
value assigned to an attribute if none is supplied.

deprecated: The term we use to earmark an HTML element or attribute that
is to be left for dead by future versions of HTML.

DHTML (dynamic HTML): The combination of HTML, CSS, the the DOM, and
JavaScript, used to create interactive Web pages.

DOCTYPE declaration: Tells the processor where to locate the DTD and con-
tains declarations for the particular document. Also called a document type
declaration, abbreviated as DTD.

document: The basic unit of HTML information, a document refers to the
entire contents of any single HTML file. Because this definition doesn’t

370 Part VII: Appendixes

35_589172 appc.qxd 4/22/05 3:52 PM Page 370

always correspond to normal notions of a document, we refer to what can
formally be called HTML documents more or less interchangeably with Web
pages, which is how browsers render such documents for display.

DOM (Document Object Model): A Web standard, defined by the W3C, that
allows JavaScript to programmatically access and manipulate the contents of
a document. The DOM defines each object on a Web page and the attributes
associated with those objects, and defines the methods that you can use to
manipulate those objects.

domain name: A unique name that’s registered as part of the Internet’s vast
distributed Domain Name System (DNS), defined somewhere on a nameserver,
and can therefore be translated into a corresponding numeric IP address,
located, and accessed on demand (essential for any working Web site).

dot syntax: Javascript’s notation for separating objects, properties, and
methods using periods, as in automobile.headlight.left and document.
image.name.

DTD (Document Type Definition): A formal SGML specification for a docu-
ment, a DTD lays out the structural elements and markup definitions to be
used to create instances of documents.

element: A section of a document defined by a start- and end-tag or an
empty tag.

empty tag: An HTML element that doesn’t require the use of a closing tag.
In fact, the use of a closing tag in empty tags is forbidden.

entity: A character string that represents another string of characters.

error message: Information delivered by a program to a user, usually to
inform him or her that the process hasn’t worked properly, if at all.

event: A user activity, such as moving a mouse pointer over an image or
clicking a link, that a user performs while visiting a Web page.

expression: A specific type of programming construct, such as a JavaScript
“phrase” that can be interpreted to return some kind of value (such as
numeric, true/false, and so forth).

external style sheet: A style sheet that resides outside of the Web document
in a separate, external file.

footer: The concluding part of an HTML document, the footer should contain
contact, version, date, and attribution information to help identify a docu-
ment and its authors. Most people use the <address> element to identify this
information.

371Appendix C: Glossary

35_589172 appc.qxd 4/22/05 3:52 PM Page 371

form handler: A program on the Web server or even possibly a simple
mailto URL that manages the data a user sends to you through the form.

forms: In HTML, forms provide a mechanism to let users interact with
servers on the Web. Forms are built on special markup that lets browsers
solicit data from users and then deliver that data to specially designated
input-handling programs on a Web server.

function: A set of JavaScript statements that performs a task; especially
useful when a code fragment or segment is used more than once in a script.

gateway: A Web site that acts as a portal to an entire virtual community,
thereby serving as an entry point and a resource map. (This is different from
an application gateway, which translates between mutually incompatible sets
of communications protocols or data representations.)

graphics: In HTML documents, graphics are files that belong to one of a
restricted family of types (usually .GIF or .JPG) that are referenced through
URLs for inline display on Web pages.

GUI (Graphical User Interface): Pronounced “gooey,” GUIs make graphical
Web browsers possible; they create a visually oriented interface that makes it
easy for users to interact with computerized information of all kinds.

head: This provides basic information about a document, including its title
and metadata, such as keywords, author information, a description, and so
forth. If an external stylesheet is referenced in the document body, it’s also
linked in the document head. In (X)HTML documents this part occurs
between an opening <head> and a closing </head> tag; that is, as content for
the head element. Also called document head, document header, or header,

heading: For HTML, a heading is a markup element used to add document
structure. Sometimes the term refers to the initial portion of an HTML docu-
ment between the <head> . . . </head> tags, where titles and context
definitions are commonly supplied.

helper applications: Today, browsers can display multiple graphics files (and
sometimes other kinds of data); sometimes, browsers must pass particular
files — for instance, motion picture or sound files — over to other applica-
tions that know how to render the data they contain. Such programs are
called helper applications because they help the browser deliver Web infor-
mation to users.

hexadecimal: A numbering system composed of six letters and ten numbers
that is used to condense binary numbers. In HTML, hexadecimal numbering
is used with elements and their attributes to identify colors for backgrounds
and other elements in a Web page; in this context, such numbers are often
called “hex codes.”

372 Part VII: Appendixes

35_589172 appc.qxd 4/22/05 3:52 PM Page 372

HTML (Hypertext Markup Language): The SGML-derived markup language
used to create Web pages. Not quite a programming language, HTML provides
a rich lexicon and syntax for designing and creating useful hypertext docu-
ments for the Web.

HTTP (Hypertext Transfer Protocol): The Internet protocol used to manage
communication between Web clients (browsers) and servers.

hyperlink: A shorthand term for hypertext link. (See also hypertext link.)

hypermedia: Any of a variety of computer media — including text, graphics,
video, sound, and so on — available through hypertext links on the Web.

hypertext: A method of organizing text, graphics, and other kinds of data for
computer use that lets individual data elements point to one another; a non-
linear method of organizing information, especially text.

image map: A synonym for clickable image, which refers to an overlaid col-
lection of pixel coordinates for a graphic that can be used to locate a user’s
selection of a region on a graphic, in turn used to select a related hypertext
link for further Web navigation.

image rollover: A change in image (usually button) behavior that occurs
when the user’s cursor is positioned over that image (or button).

inheritance: The style characteristic whereby all elements that nest inside
any particular element acquire style information from the element within
which they nest. For example, changing the body element changes all other
text elements that appear within it, thereby changing the whole Web page.

inline content: A word or string of words inside of a block element.

inline element: Any element that controls presentation on an element-by-ele-
ment basis. An inline element doesn’t denote structure. It’s a text element
(such as the element).

internal style sheet: A style sheet that resides inside of the Web document in
which you’re working.

IP (Internet Protocol): IP is the specific networking protocol of the same
name used to tie computers together over the Internet.

ISP (Internet Service Provider): An organization that provides individuals or
other organizations with access to the Internet, usually for a fee. ISPs usually
offer a variety of communications options for their customers, ranging from
analog telephone lines, to a variety of higher-bandwidth leased lines, to ISDN
and other digital communications services.

373Appendix C: Glossary

35_589172 appc.qxd 4/22/05 3:52 PM Page 373

Java: An object-oriented, platform-independent, secure, and compact pro-
gramming language designed for Web application deployment. Most system
vendors support Java, which was created by Sun Microsystems.

layout: The overall arrangement of the elements in a document.

link: For HTML, a link is a pointer in one part of a document that can trans-
port users to another part of the same document, or to another document
entirely. This capability puts the “hyper” into hypertext. In other words, a link
is a one-to-one relationship/association between two concepts or ideas.

markup: A way of Embedding special characters (metacharacters) within a
text file that instructs a computer program how to handle the file’s contents.

markup language: A formal set of special characters and related capabilities
used to define a specific method for handling the display of files that include
markup; HTML is a markup language, which is a subset of SGML, used to
design and create Web pages.

media types: CSS instructions that govern how pages should be rendered on
a computer display, how they should print, and how they should sound read
out loud. For that reason, such styles are divided into visual media (for on-
screen display), paged media (for print display), and aural (for rendering text
to speech) types or categories.

metadata: Specially defined elements that describe a document’s structure,
content, or rendering, within the document itself or through external refer-
ences. (Metadata literally means data about data.)

method: In the context of programming and scripting languages, methods
describe the things that objects can do (or conversely, the kinds of opera-
tions to which objects may be subjected). In JavaScript, method names may
be easily recognized because they’re followed by parentheses (for example,
click(), open(), and selected() are all well-recognized method identifiers).

multimedia: A method of combining text, sound, graphics, and full-motion or
animated video within a single compound computer document.

nameservers: Computers on the Internet that translate domain names into
the actual Internet location for the resources to which such names refer
(such as computers, servers, or other devices and interfaces).

navigation: In the context of the Web, navigation refers to the use of hyper-
links to move within or between HTML documents and other Web-accessible
resources.

374 Part VII: Appendixes

35_589172 appc.qxd 4/22/05 3:52 PM Page 374

navigation bar: A way of arranging a series of hypertext links on a single line
of a Web page to provide a set of navigation controls for an HTML document
or a set of HTML documents.

nesting: In computer terms, one structure that occurs within another is said
to be nested; in HTML, nesting happens most commonly with list structures
that may be freely nested within one another, regardless of type.

object: In the context of programming and scripting languages, objects refer
to named entities that have associated properties (characteristics) and meth-
ods (actions that may be performed upon specific objects).

operator: Symbols in JavaScript used to work with variables. These include
common arithmetic operations (+, -, /, and so forth) and various kinds of logi-
cal (!= or “not equals”, || “either x or y is true”, and so forth) and comparison
(> or “greater than”, < or “less than”, and so forth) operators.

pages: The generic term for the HTML documents that Web users view on
their browsers.

Perl: A powerful, compact programming language that draws from languages
such as C, Pascal, sed, awk, and BASIC; Perl is the language of choice for CGI
programs, partly because of its portability and the many platforms it cur-
rently supports, and partly because of its ability to exploit operating system
services quickly and easily.

plug-in: Hardware or software added to a system that adds a specific feature
such as plug-ins that allow Netscape Navigator to play video.

properties: In CSS, they are the different aspects of the display of text and
graphics, such as font size or background color. In working with scripting lan-
guages (and object-oriented programming languages in general), properties
describe characteristics associated with named and defined objects.

pseudo classes: Any of four link states that can be modified using CSS: link
(normal state, no activity), visited (user has already been to this link), hover
(cursor is positioned on the link), and active (user is clicking the link). CSS
permits link colors or characteristics to reflect pseudo classes.

relative: When applied to URLs, a relative address provides an abbreviated
document address that may be combined with the <base> element to create
a complete address or is the complete address for a local file found in the
same directory.

resource: Any HTML document, capability, or other item or service available
through the Web. URLs point to resources.

375Appendix C: Glossary

35_589172 appc.qxd 4/22/05 3:52 PM Page 375

robot: A special Web-traveling program that wanders widely, following and
recording URLs and related titles for future reference in search engines.

screen: The glowing part on the front of your computer monitor where you
see the Web do its thing (and anything else your computer may like to show
you).

script: A set of programming instructions that activate when an event that
you define occurs.

scripting language: A special kind of programming language that a computer
reads and executes at the same time (which means that the computer figures
out what to do with the language when it appears in a document or at the
time that it’s used. JavaScript is a common scripting language associated
with Web use).

search engine: A special Web program that searches the contents of a data-
base of available Web pages and other resources to provide information that
relates to specific topics or keywords, which a user supplies. Also called a
crawler.

selector: In CSS, identifies the element to which the style rule applies.

server: A computer on a network whose job is to listen for particular service
requests and to respond to those that it knows how to satisfy.

SGML (Standard Generalized Markup Language): An ISO standard docu-
ment definition, specification, and creation mechanism that makes platform
and display differences across multiple computers irrelevant to the delivery
and rendering of documents.

site map: A visual guide to a Web site’s structure and components that you
may build, maintain, and use only for yourself, or that you may implement in
(X)HTML as a user aid and navigational tool.

specification: A formal document that describes the capabilities, functions,
and interfaces for a specific piece of software, a markup language, or a com-
munications protocol.

statement: A complete command, or other syntactically correct line of code,
in JavaScript or some other programming language. JavaScript has such
statement types as expression, conditional, and loop statements.

style sheet: A file that holds the layout settings for a certain category of a
document. Style sheets, like templates, contain settings for headers and foot-
ers, tabs, margins, fonts, columns, and more.

376 Part VII: Appendixes

35_589172 appc.qxd 4/22/05 3:52 PM Page 376

syntax: Literally, the formal rules for how to speak. But In this book, we use
syntax to describe the rules that govern how HTML markup looks and
behaves within HTML documents. The real syntax definition for HTML comes
from the SGML Document Type Definition (DTD).

syntax checker: A program that checks a particular HTML document’s
markup against the rules that govern its use; a recommended part of the test-
ing regimen for all HTML documents.

tag: The formal name for a piece of HTML markup that signals a command of
sorts, usually enclosed in angle brackets (< >).

template: Literally, a model to imitate, we use the term template in this book
to describe the skeleton of a Web page, including the HTML for its heading
and footer, and a consistent layout and set of navigation elements.

text document: A data file that includes only text characters from well-
defined and usually restrictive character data sets (such as 7- or 8-bit ASCII,
or ISO-Latin-1).

thumbnail: A miniature rendering of a graphical image, used as a link to the
full-size version.

title: The text supplied to a Web page’s title bar when displayed, used as data
in many Web search engines.

transparency: A technique for editing images for use on a Web page that per-
mits the image to blend in with the surrounding page background. Whichever
color or colors are designated as transparent allow the page to show through.

URL (Uniform Resource Locator): The primary naming scheme used to iden-
tify Web resources, URLs define the protocols to use, the domain name of the
Web server where a resource resides, the port address to use for communica-
tion, and a directory path to access named Web files or resources.

user interface: The overall design of your site. Sometimes Abbreviated as UI.

valid: Code that follows all the syntax rules defined in a document type defin-
ition, allowing the document to pass through a validator program with no
errors.

validation: The process of comparing a document to a set of document rules,
in this context a DTD.

variable: A named value in a programming language such as JavaScript that
programs manipulate using operators, and/or within expressions.

377Appendix C: Glossary

35_589172 appc.qxd 4/22/05 3:52 PM Page 377

W3C (abbreviation for World Wide Web Consortium): The international
standards body that’s charged with custody over the specifications for
important Web markup languages, including CSS, HTML, XML, and XHTML,
among many others.

Web: Also called the World Wide Web, WWW, or W3. The complete collection
of all Web servers available on the Internet, which comes as close to contain-
ing the “sum of human knowledge” as anything we’ve ever seen.

Web pages: Synonym for HTML documents, we use Web pages in this book to
refer to sets of related, interlinked HTML documents, usually produced by a
single author or organization.

Web server: A computer, usually on the Internet, that plays host to httpd
and related Web-service software.

Web site: An addressed location, usually on the Internet, that provides access
to the set of Web pages that correspond to the URL for a given site; thus a
Web site consists of a Web server and a named collection of Web documents,
both accessible through a single URL.

well-formed document: An HTML document that adheres to the rules that
make it easy for a computer to interpret.

white space: The “breathing room” on a page, white space refers to parts
of a display or document unoccupied by text or other visual elements. A
certain amount of white space is essential to make documents attractive
and readable.

WYSIWYG (What You See Is What You Get): Text editors or other layout
tools (such as HTML authoring tools) that try to show their users on-screen
how final, finished documents will look.

XHTML (Extensible Hypertext Markup Language): The reformulation of
HTML 4.0 as an application of XML 1.0.

XML (Extensible Markup Language): A system for defining, validating, and
sharing document formats.

378 Part VII: Appendixes

35_589172 appc.qxd 4/22/05 3:52 PM Page 378

• Symbols &
Numerics •
& (ampersand)

entities begun with, 23
entity for displaying, 25

< > (angle brackets)
entities for displaying, 24, 25
including when copying code, 2
markup enclosed by, 13

* (asterisk) for multiple-line comments
(JavaScript), 231

{ } (brackets) with CSS declarations, 133
: (colon) separating properties from values

(CSS), 130
- (dashes) in comment tags (<!— and —>), 25
. (dot). See . (period)
! (exclamation mark) in beginning

comment tag (<!—), 25
404 File or directory not found

message, 49, 99
> (greater than sign). See < > (angle

brackets)
(hash mark). See # (pound sign)
< (less than sign). See < > (angle brackets)
(octothorpe). See # (pound sign)
() (parentheses) with JavaScript

methods, 226
. (period)

for accessing JavaScript properties or
methods, 244

applying style rule only to class
(CSS), 134

in site links (../), 98
starting CSS style rules, 145

(pound sign)
in intradocument linking, 102
preceding hexadecimal color codes, 163
starting CSS style rules, 145

“ (quotation marks)
attribute values enclosed by, 22
for strings with JavaScript methods, 226

; (semicolon)
with CSS declarations, 133
entities ended by, 23

/ (slash)
empty elements ended by, 20
for JavaScript comments, 231
in site links (../), 98

[] (square brackets) as array operator, 243

• A •
<a> element. See anchor element (<a>)
abbr attribute, 211
About Me page

adding fonts and colors, 298–300
audience analysis, 295–296
components, 296
home page, 296–298
markup, 296–300

absolute, defined, 369
absolute links, 97. See also links
absolute property measurement

values, 129
accept attribute, 270
accept-charset attribute of <form>

element, 270
accessing arrays (JavaScript), 243
accesskey attribute, 106
Acrobat Reader (Adobe), 105
action attribute of <form> element,

253, 254
:active pseudo class (CSS), 165, 166
Add to Cart button (PayPal shopping cart),

325–327
Adobe

Acrobat Reader, 105
GoLive HTML editor, 337

Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 379

Adobe (continued)
Photoshop, 338–339
Photoshop Elements, 337–338

alert() method (JavaScript), 226, 231
align attribute

deprecation of, 362
<hr /> element, 80
 element, 117–118
<p> element, 71–72
<table> element, 199–200

aligning
horizontal rule elements, 80
images and text, 117–118
justifying text, 71–72
tables, 199–202
text blocks with CSS, 171–173

alink attribute (deprecated), 362
all media type (CSS), 151
alt attribute
<area /> element, 121
 element, 112

alternative text for images, 112–113
Amazon.com

server-side scripting in, 222
tables for layout in, 180

ampersand (&)
entities begun with, 23
entity for displaying, 25

anchor, defined, 369
anchor element (<a>). See also links

defined, 95
for e-mail, 105–106
for file downloads, 104–105
href attribute, 95
for image rollovers, 276
 element with, 119–120
as inline element, 96
moving up a directory level, 98
name attribute, 102
for pop-up windows, 285
target attribute, 100–101

Andale image-hosting service, 307
angle brackets (< >)

entities for displaying, 24, 25
including when copying code, 2
markup enclosed by, 13

animation, avoiding on eBay auction
page, 305

applet element (deprecated), 361
applets, 216
archive attribute of <object>

element, 290
<area /> element, 121
arithmetic operators (JavaScript), 234
Array object (JavaScript), 243
arrays (JavaScript)

accessing, 243
creating, 243
defined, 242, 369
index, 243
length property, 243–244
looping through, 243–244
reading elements, 243
writing elements, 243

assignment operators (JavaScript),
233–234

asterisk (*) for multiple-line comments
(JavaScript), 231

attributes. See also deprecated elements
and attributes; specific attributes and
elements

defined, 19, 369
deprecated (table), 362–364
for document structure, 68
forms-related, 270–272
for image maps, 121, 122
image-related, 122
link-related, 106
metadata, 64
object-related, 290–291
overview, 21–22
quotation marks for values in, 22
script- and forms-related, 247
table-related, 211–212
text-related, 93–94

auction sites, 301. See also eBay
auction page

audience analysis for About Me page,
295–296

aural media type (CSS), 151
aural properties (CSS), 367–368
aural (speech sound) styles (CSS), 158

380 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 380

axis attribute, 211
azimuth property (CSS), 367

• B •
Back to Top links, 102–103
background attribute (deprecated), 362
background color
background property (CSS), 164, 166–167
background-color property (CSS),

152, 166–167
bgcolor attribute (deprecated), 33, 211
for eBay auction page, 305
setting in CSS, 166–167
for table cells, 210–211

background property (CSS)
background-color property versus, 167
overview, 164, 365
for table cells, 211
using, 166–167

background-color property (CSS)
background property versus, 167
overview, 152, 164
using, 166–167

background-image property (CSS), 152
Backup Brain Weblog, 217–219
bandwidth, 369
basefont element (deprecated), 361
BBEdit helper editor, 335
bdo element, 93
beta-testing Web pages, 355–356, 369
bgcolor attribute, 33, 211, 363
blinking text, CSS styles for, 176–177
block elements. See also text blocks

creating links within, 96
defined, 369

block quotes, 74–75, 76
<blockquote> element, 74–75
blocks of text. See also text; specific kinds

aligning with CSS, 171–173
block quotes, 74–75, 76
defined, 69
headings, 27, 33, 72–74
horizontal rules, 27, 79–82
HTML page as collection of, 69

indenting with CSS, 173
inline elements versus, 70
kinds of, 69
line breaks, 27, 76, 78–79
paragraphs, 70–72
preformatted text, 75–76, 77

body, defined, 369
<body> element

for cookies, 290
creating, 67
CSS styles for text, 146–147
for “Hello World” example, 33

body scripts, 226
boldface, CSS styles for, 174
bookmarks, 63, 370
boolean data type (JavaScript), 233
border attribute

deprecation of, 363
 element, 116
<table> element, 189–191

border property (CSS), 155, 192–193, 365
border-bottom property (CSS), 365
border-color property (CSS), 155, 192
border-left property (CSS), 365
border-right property (CSS), 366
borders

CSS styles for, 117
image-editing tools for, 116
setting with border attribute, 116
for tables, 182, 189–193

border-spacing property (CSS), 198–199
border-style property (CSS),

154, 191–192, 366
border-top property (CSS), 366
border-width property (CSS),

154, 192, 366
bottom property (CSS), 154
brackets ({ }) with CSS declarations, 133
braille media type (CSS), 151
break element (
)

defined, 27
for “Hello World” example, 34
overview, 76, 78
<p> element versus, 78
using, 78–79

381Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 381

broken links
error messages, 49, 99
link checkers for, 339–340, 354
testing for, 353–354

browsers
avoiding dependencies, 347
block quote display by, 75, 76
color display test page for, 162
CSS and, 126
defined, 370
display rules overridden by CSS, 131–132
eBay auction page and, 303, 305
FTP capabilities, 55
heading display by, 73–74
image formats and, 109
image rollovers and, 277
listed online, 13
opening linked pages in new window,

100–101
previewing pages on, 13, 29
pseudo classes and, 166
refreshing view for changed pages, 38
scaling by, 114–115
scripts for opening and closing windows,

100, 219–220
table display and, 193
testing pages on variety of, 13, 346
testing tables in, 206–207
text-only, 14, 74
viewing “Hello World” example, 36–37
wrapping by, 76
(X)HTML page display by, 67

bugs, 370
Builder.com (“Examine Graphic Channels

and Space”), 110
building.gif image, 311
bulleted lists. See also lists

CSS for, 89
defined, 86
formatting, 86–87
nested elements in, 21
overview, 27
specifying kinds of bullets, 87–88
uses for, 86

business sites
company site project, 309–317
designing for first impressions, 42
eBay auction page project, 301–308
product catalog project, 319–330

• C •
calling (JavaScript)

functions, 241–242
methods, 244

canned JavaScript, 215, 225
capitalization. See case
<caption> element, 188
Cascading Style Sheets. See CSS
Cascading Style Sheets For Dummies

(Dean, Damon A.), 130
case

broken links and, 99
CSS styles for capitalization, 175–176
HTML versus XHTML and, 2
JavaScript and, 230

category page for product catalog
described, 320
illustrated, 321
template, 327–329

cell spanning
attributes for, 202
cell width versus, 182
column spans, 202–204
defined, 182
row spans, 204–205
table design and, 185
for table-based Web page, 189

cellpadding attribute, 196–198
cells (table), 182
cellspacing attribute, 196–198
center element (deprecated), 361
centering. See aligning
CGI (Common Gateway Interface) scripts,

266, 267–268, 370
“CGI Scripts for Fun and Profit”

(Webmonkey), 267
char attribute, 211

382 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 382

character spacing settings, 171
charoff attribute, 211
charset attribute, 106
check boxes for forms, 257–258
checked attribute of <input /> element,

258, 270
checkSubmit function, 221
cite attribute, 93–94
class attribute (CSS)
id attribute versus, 145
overview, 134–135

classes (CSS)
navbar class, 143–144
overview, 134–135
quotation class, 170, 171, 173

classid attribute of <object>
element, 290

clear attribute (deprecated), 363
Clear buttons for forms, 263–265
“click here” links, avoiding, 51
clients, 370
client-side scripts. See DHTML

(Dynamic HTML)
clock, pop-up window for, 285–286
clock, self-updating

adding to Web pages, 282, 284
described, 280–281
using HTML and JavaScript, 281–282
using JavaScript and DOM, 282–284

CNET Shopper site, 333
code listings in this book, 2
codebase attribute of <object>

element, 291
codetype attribute of <object>

element, 291
<col> element, 188
<colgroup> element, 188
colon (:) separating properties from

values (CSS), 130
color attribute (deprecated), 363
color property (CSS)

color names with, 162
overview, 152, 164
for text, 164–165

colors
About Me page example, 298–300
background color, 33, 152, 166–167, 211
background property (CSS), 164, 166–167
background-color property (CSS),

152, 166–167
bgcolor attribute (deprecated), 33, 211
border-color property (CSS), 155
color property (CSS), 152
for company site, 316–317
CSS properties for, 164
for eBay auction page, 305
hexadecimal codes for, 162–163
for links, 165–166
names, 162
numbers for, 162–164
for product catalog, 320
RGB values for, 163–164
for tables, 210–211
test page for browser display, 162
for text, 164–165

cols attribute of <textarea> element, 263
colspan attribute of <td> element,

202–204
comments (JavaScript), 231
Common Gateway Interface (CGI) scripts,

266, 267–268, 370
compact attribute (deprecated), 363
companion Web site for this book, 1
company site

basic elements, 310–311
contact page, 310, 315–316
design issues, 309–310
home page, 310, 311–313
image, 311
navigation tools, 312–313
press page, 310
products page, 310, 313–314
style sheet, 311, 316–317

comparison operators (JavaScript),
235–236

comparison-shopping sites, 333
concatenation (JavaScript), 236
concentrating on content, 343–344

383Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 383

conditional statements (JavaScript)
if statements, 237
if/else statements, 237–238
steps for, 236

confirm() method (JavaScript), 237–238
contact page for company site,

310, 315–316
content

concentrating on, 343–344
defined, 370
inline, 373
keeping fresh, 354–355
keeping your site interesting, 348–350

content attribute of <meta /> element, 64
content property (CSS), 159
cookies

adding to Web pages, 290
defined, 287, 370
illustrated, 287–288
script for, 288–289

coords attribute of <area /> element, 121
copyright laws, links and, 110
counter-increment property (CSS), 159
counter-reset property (CSS), 159
counting operators (JavaScript), 234–235
creating a Web page. See also specific

projects
About Me page project, 295–300
company site project, 309–317
eBay auction page project, 301–308
editing an existing page, 37–39
planning your page design, 30–32
posting your page online, 39–40
product catalog project, 319–330
saving your page, 34–36
software needed for, 29–30
steps for, 30
“under construction” sections,

avoiding, 46
using templates in this book, 300
viewing your page, 36–37
writing basic HTML, 32–34

crosskick.gif file, 297
CSS (Cascading Style Sheets). See also

specific properties
additional properties (table), 159–160
advantages of, 126–127, 161
for aligning tables, 201–202

applying style rule only to class, 134
aural properties, 367–368
aural (speech sound) styles, 158
background color, 166–167
browser display rules overridden by,

131–132
Candidate Recommendations, 128
capabilities of, 127–130
cascading explained, 140
for cell padding and spacing, 198–199
color properties, 164
company site style sheet, 311, 316–317
CSS3, 128
declarations, 130–131, 132–133
defined, 370
deprecated HTML and, 126
developing specific styles, 142–149
in DHTML, 273
external style sheets, 125, 137, 138–139
externalizing style sheets, 150
font styles, 146–149, 167–178
further information, 130, 137
goal of, 125
guidelines for using, 141
horizontal rule element (<hr />)

versus, 82
inheritance of styles for nested elements,

135–137
inline styles, 125, 137, 140
internal style sheets, 125, 137–138
JavaScript with, 217–219
last rule seen and, 166
link colors, 165–166
media types, 151
older browsers and, 126
overlapping elements, rules for, 146
overview, 125–126
paged media styles, 156–158
Pixel the Cat page example, 142–149
positioning elements, 145–146
precedence for multiple rules, 140, 166
print style sheet, 158
property measurement values, 129
pros and cons, 18
pseudo class selectors, 149, 165–166
punctuation important in, 133
selectors, 130, 131, 132–133
shorthand properties, 144, 365–366

384 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 384

steps for using, 127
style classes, 134–135
style rules, 130–133
for table borders, 191–193
in tables with (X)HTML, 181
text colors, 164–165
text rollovers with, 279–280
visual layouts using, 142–144
visual media styles, 152–156
white space and, 133
W3C validation service, 133
with XHTML Strict, 18

“CSS Structure and Rules” (Web Design
Group), 137

cue property (CSS), 366
cue-after property (CSS), 367
cue-before property (CSS), 367
curly braces ({ }) with CSS declarations, 133
cursor property (CSS), 156
CuteFTP client software, 55

• D •
dashes in comment tags (<!— and —>), 25
data attribute of <object> element, 291
data collection forms, 249, 251–252
data types (JavaScript), 232–233
datetime attribute, 94
<dd> element, 89–90
Dean, Damon A. (Cascading Style Sheets

For Dummies), 130
declarations (CSS)

applying to collection of selectors, 133
defined, 130
for multiple style rules per selector,

132–133
properties, 130
text color and, 164–165
values, 130

declare attribute of <script>
element, 247

declaring (JavaScript)
functions, 241
variables, 232

default, defined, 370
defer attribute of <script> element, 247
definition lists, 89–90. See also lists
del element, 93

dense tables, avoiding, 210
deprecated elements and attributes
align attribute, 72, 201, 202
bgcolor attribute, 33, 211
<body> attributes, 33
<center> tag for tables, 202
CSS and, 126
defined, 18, 161, 370
empty elements without slash, 20
formatting elements, 161
goal of deprecation, 125
<hr /> attributes, 80
numbered list attributes, 86
table of deprecated attributes, 362–364
table of deprecated elements, 361–362
text attribute, 33
type attribute for bulleted lists, 87
in XHTML Transitional, 18

descriptions in metadata, 64
“Design Basics” (Webmonkey), 54
designing a Web site

avoiding bells and whistles, 344–345
benefits of good planning, 30–31, 41
company site, 309–310
eBay auction page, 302–305
encouraging return visitors, 41
first impressions and, 42
forms, 268–270
goals and needs in, 42–44
“Hello World” example, 31–32
identifying suitable elements, 43
links, 49–51
mapping your site, 44–46
navigation, 46–49
product catalog, 320
professional help for, 42
with tables for layout, 183–185
UI design resources, 54

detail pages for product catalog
described, 320
illustrated, 321–322
template, 329–330

DHTML (Dynamic HTML)
cookies, 287–290
defined, 273, 371
dynamic content, 280–284
pop-up windows, 284–287
rollovers, 274–280

385Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 385

Dictionary of HTML META tags, 66
dir attribute, 94
dir element (deprecated), 361
directories or folders

for images, 110
moving up a directory level in relative

links, 98
for Web pages, 35

disabled attribute, 270
display property (CSS), 153
<dl> element, 89–90
DOCTYPE declarations

defined, 370
for HTML, 60
for XHTML, 61

document, defined, 370
Document Object Model. See DOM
document structure

basic elements, 59–60
body, 67
DOCTYPE declarations, 60–61
<head> element, 62
header, 62–66
<html> element, 61
identifying your document, 60–62
importance of, 344
other attributes, 68
XHTML namespace, 61–62

Document Type Definitions (DTDs)
defined, 371
for HTML, 60
HTML validation using, 340–341
for XHTML, 18, 61

DOM (Document Object Model)
defined, 371
in DHTML, 273
dynamic content using JavaScript and,

282–284
overview, 246–247

domain name
defined, 53, 371
getting your own, 53–54
nameservers, 374
in URLs, 15

do’s and don’ts
avoid bells and whistles, 344–345
concentrate on content, 343–344
create well-formulated HTML and test,

346–348
keep your site interesting, 348–350

dot (.)
for accessing JavaScript properties or

methods, 244
applying style rule only to class (CSS), 134
in site links (../), 98
starting CSS style rules, 145

dot syntax, 371
double justifying paragraphs, 71
download time. See performance
downloading files, links for, 104–105
Dreamweaver HTML editor (Macromedia)

browser preview in, 30
file-management capabilities, 55
HTML code hidden by, 30
overview, 336–337

drop-down lists for forms, 260–262
<dt> element, 89–90
DTDs (Document Type Definitions)

defined, 371
for HTML, 60
HTML validation using, 340–341
for XHTML, 18, 61

Dummies.com site
JavaScript example, 216–217
JavaScript resources, 248
navigation example, 47–48
page templates, 300

dynamic content
adding to Web pages, 282, 284
described, 280
using HTML and JavaScript, 281–282
using JavaScript and DOM, 282–284

Dynamic HTML (DHTML)
cookies, 287–290
defined, 273, 371
dynamic content, 280–284
pop-up windows, 284–287
rollovers, 274–280

386 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 386

• E •
Easy HTML Construction Kit tools, 342
eBay auction page

designing, 302–305
image-hosting services, 307
overview, 301
presentation issues, 305
using a template, 306–308

e-commerce. See company site; eBay
auction page; product catalog

E-Commerce For Dummies (Wiley
Publishing), 52

editing Web pages, 37–39
elements. See also deprecated elements

and attributes; tags; specific elements
defined, 13, 19, 371
deprecated (table), 361–362
empty, 20, 110–111
for image maps, 121
inline, defined, 70
inline, text blocks versus, 70
limited to those specified, 21
nesting, 21
singleton tags, 20–21, 110
table components, 185–186, 188
tag pairs, 19–20
text controls, 93
types of, 19
(X)HTML structure and, 25–26

elevation property (CSS), 367
e-mail addresses

for company site contact page, 316
linking to, 105–106, 266, 268

email.gif file, 297
embedding content with <object>

element, 290–291
embossed media type (CSS), 151
empty elements

defined, 20, 371
HTML versus XHTML and, 20
 element as, 110–111

empty-cells property (CSS), 159

enctype attribute of <form> element, 271
entities

defined, 19
non-ASCII characters, 22–24
tag characters, 24–25
(X)HTML character codes, 24

entity, defined, 371
error messages

for broken links, 49, 99
defined, 371

events (JavaScript)
defined, 245, 371
event handlers, 245–246
for image rollovers, 276
for pop-up windows, 285

evolving your Web site, 348–349
“Examine Graphic Channels and Space”

(Builder.com), 110
exclamation mark in beginning comment

tag (<!—), 25
expansion, planning for, 45–46
expiration date, setting with <meta />

element, 66
expressions (JavaScript)

defined, 233, 371
operators, 233–236
statements, 236

Extensible Hypertext Markup Language
(XHTML). See also HTML (Hypertext
Markup Language)

case and, 2
character codes, 24
color values, 162–164
components, 19
conventions for code listings, 2
with CSS in tables, 181
defined, 378
DOCTYPE declarations, 61
DTDs, 18
HTML versus, 2, 16–18, 20
namespace, 61–62
specifications, 17
text controls and annotation (table), 93

387Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 387

Extensible Hypertext Markup Language
(continued)

text-related attributes, 93–94
usage in this book, 1
wrapped lines in this book, 2
XML as basis of, 17

Extensible Markup Language (XML)
defined, 378
empty elements and, 20
XHTML based on, 17

external script files (JavaScript)
example, 228–229
referenced by <script> element,

227–228
external style sheets (CSS)

benefits of, 138
creating from internal style sheets, 150
defined, 125, 137, 371
importing, 139
linking to, 139, 150

• F •
feedback

on site design, getting, 42
from users, soliciting, 43, 357–358

Fetch FTP client software, 342
Fielding, Roy (MOMspider creator),

340, 354
fields for form input. See also form

input tags
check boxes, 257–258
drop-down lists, 260–262
file upload fields, 259–260
hidden fields, 259
overview, 254
password fields, 256–257
radio buttons, 257–258
text fields, 255–256
value associated with name by, 254

file downloads, links for, 104–105
File Transfer Protocol (FTP)

clients, 55, 341–342
described, 16
posting your Web pages via, 39, 55

file upload fields for forms, 259–260

filename extensions
broken links and, 99
.htm versus .html, 35–36

filenames
broken links and, 99
spaces in, avoiding, 35
in URLs, 15

Fireworks (Macromedia), 339
FirstGov site, 10–11
float property (CSS), 155
:focus pseudo class (CSS), 165, 166
folders or directories

for images, 110
moving up a directory level in relative

links, 98
for Web pages, 35

font element (deprecated), 362
font property (CSS), 177–178, 366
font styles (CSS)

aligning text blocks, 171–173
for body text, 146–147
boldface, 174
capitalization, 175–176
common font families, 168
for company site, 316–317
font face settings, 167–168
font size settings, 168–169
generic font families, 168
for headings, 147–148
italics, 174–175
letter spacing (kerning), 171
line height settings, 169–171
for link display, 149
switching dynamically with JavaScript,

217–219
text-decoration property (CSS),

149, 153, 176–177
word spacing (tracking), 171

font-family property (CSS),
133, 147, 152, 167–168

fonts. See also font styles (CSS)
for About Me page, 299
for eBay auction page, 305

font-size property (CSS), 152, 168–169
font-style property (CSS), 174–175
font-weight property (CSS), 149, 152, 174

388 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 388

footer, 371
for attribute, 271
For Dummies site

JavaScript example, 216–217
JavaScript resources, 248
navigation example, 47–48
page templates, 300

for loops (JavaScript), 238–239
<form> element
action attribute, 253
for dynamic clock, 282
form input elements associated with, 253
method attribute, 253
onsubmit attribute, 221

form handlers
defined, 253, 372
for simple form, 253–254

form input tags
check boxes, 257–258
drop-down lists, 260–262
file upload fields, 259–260
hidden fields, 259
input fields, 254–262
multi-line text boxes, 262–263
password fields, 256–257
radio buttons, 257–258
Reset buttons, 263–265
Submit buttons, 263–265
text fields, 255–256
value associated with name by, 254

formatting text. See also CSS (Cascading
Style Sheets); font styles (CSS); lists

block quotes, 74–75, 76
headings, 27, 33, 72–74
horizontal rules, 27, 79–82
justifying, 71–72
line breaks, 27, 76, 78–79
paragraphs, 70–72
using preformatted text, 75–76, 77

forms. See also form input tags
attributes, 247, 270–272
CGI scripts for, 266, 267–268
creating, 252–266
data collection forms, 249, 251–252
defined, 372
designing user-friendly forms, 268–270

examples online, 250–252, 269–270
form handlers, 253
input tags, 254–265
processing data, 266–268
search forms, 249, 250–251
sending data by e-mail, 266, 268
structure, 253–254
uses for, 249–252
validation, 221–223, 265–266

404 File or directory not found
message, 49, 99

frame attribute, 212
frames, 18
FrontPage HTML editor (Microsoft)

HTML code hidden by, 30
overview, 337

FTP (File Transfer Protocol)
clients, 55, 341–342
described, 16
posting your Web pages via, 39, 55

function data type (JavaScript), 233
functions (JavaScript)

basic structure, 241
calling, 241–242
declaring, 241
defined, 240, 372
function block, 241
uses for, 241

future expansion, planning for, 45–46

• G •
gateway Web sites, 10, 372
ghost sites, 350
GIF (Graphics Interchange Format) images,

108, 109
Gmail, 223–224
goals

of CSS, 125
site design and, 42–44

GoLive HTML editor (Adobe), 337
Google

Gmail, 223–224
tables for layout in, 180, 182

graphical browsers. See browsers
Graphical User Interface (GUI), 372

389Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 389

graphics. See images
graphics files, 372
Graphics Interchange Format (GIF) images,

108, 109
greater than sign (>). See angle brackets

(< >)
greeked text, 314
GUI (Graphical User Interface), 372

• H •
handheld media type (CSS), 151
hard returns, ignored by HTML, 70, 75
hash mark (#)

in intradocument linking, 102
preceding hexadecimal color codes, 163
starting CSS style rules, 145

head, defined, 372
<head> element

adding to document, 62
dynamic content in, 282, 284
for “Hello World” example, 33
overview of head section, 26
for pop-up windows, 285
profile attribute, 68
for text rollovers, 280
<title> element within, 62–63

header
<head> element, 62
metadata in, 63–65
overview, 62
<title> element, 62–63

header scripts, 226
headings

aligning, 172–173
browser display of, 73–74
creating, 73
CSS styles for, 147–148
defined, 372
first-level (h1), 33
for “Hello World” example, 33
<h1> through <h6> elements for, 27, 72
overview, 27
for tables (<thead> element), 188
text rollovers for, 279–280
uses for, 72

height attribute of element,
114–115

height property (CSS), 155
height window parameter

(JavaScript), 287
“Hello World” Web page

editing, 37–38
planning, 30–32
posting online, 39–40
saving, 34–36
URL for example, 40
viewing, 36–37
writing HTML for, 32–34

helper applications, 372
helper editors, 334–336
hexadecimal color codes, 162–163
hexadecimal, defined, 372
hidden fields for forms, 259
History list in browser, document title

and, 63
home page

About Me page, 296–298
company site, 310, 311–313

HomeSite+ HTML editor (Macromedia),
334–335

<h1> through <h6> elements. See headings
horizontal alignment of tables,

199–200, 201–202
horizontal rule element (<hr />)

attributes, 80–81
CSS versus, 82
defined, 27, 79
LANWrights, Inc site example, 80, 82
uses for, 79
using, 79–80

host, defined, 51
hosting your Web site

changing your decision, 52
choices for, 51
defined, 51
doing it yourself, 52
finding, 39
form processing applications and, 267
further information, 52
getting a domain, 53–54
moving files to your Web server, 54–56

390 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 390

professional help for, 52
using a hosting provider, 52

:hover pseudo class (CSS), 165, 166
<hr />. See horizontal rule element
href attribute of anchor element. See

also links
for file downloads, 104–105
for intradocument links, 102–104
for mailto: links, 106
overview, 95
URL specified in, 95, 96

href attribute of <area /> element, 121
hreflang attribute, 106
hspace attribute

deprecation of, 363
 element, 118–119

.htm suffix, 35–36, 99
HTML editors

benefits of, 334
browser preview in, 14
helper editors, 334–336
HTML code hidden by, 30
WYSIWYG editors, 336–337

<html> element
in document structure, 61
for “Hello World” example, 33

HTML 4 For Dummies (Tittel, Ed and
Negrino, Tom and Smith, Dori)

assumptions about the reader, 3
companion Web site, 1
organization, 3–5
overview, 1–2
page templates, 300
using, 2–3, 6

HTML Frameset DOCTYPE declaration, 60
HTML (Hypertext Markup Language). See

also XHTML (Extensible Hypertext
Markup Language)

for auction site item descriptions, 301
case and, 2
character codes, 24
color values, 162–164
components, 19
conventions for code listings, 2

with CSS in tables, 181
defined, 10, 373
in DHTML, 273
Dictionary of META tags, 66
DOCTYPE declarations, 60
dynamic content using JavaScript and,

281–282
hypertext, 10–11
markup, 11–13
organizing text, 26–27
specifications, 16–17
text controls and annotation (table), 93
text-related attributes, 93–94
usage in this book, 1
wrapped lines in this book, 2
XHTML versus, 2, 16–18, 20

HTML Strict DOCTYPE declaration, 60
.html suffix, 35–36, 99
HTML toolbox. See also image-editing

tools; software
FTP clients, 55, 341–342
helper editors, 334–336
HTML validators, 340–341, 346, 356–357
link checkers, 339–340, 354
overview, 333
Swiss army knives, 342
WYSIWYG editors, 336–337

HTML Toolbox (NetMechanic), 342
HTML Transitional DOCTYPE

declaration, 60
HTML validators, 340–341, 346, 356–357
HTML-Kit editor, 30, 336, 342
HTTP (Hypertext Transfer Protocol),

16, 373
http:// in URLs for links, 99
“HTTP Transactions and You”

(Webmonkey), 16
http-equiv attribute of <meta />

element, 65–66, 354
hyperlinks. See links
hypermedia, 373
hypertext, 10–11
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol (HTTP),

16, 373

391Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 391

• I •
id attribute
class attribute versus (CSS), 145
for text, 94

if statements (JavaScript), 237
if/else statements (JavaScript), 237–238
IIS (Internet Information Server) by

Microsoft, 52
image maps

adding to Web pages, 121
defined, 373
described, 120
elements and attributes for, 121, 122
image-editing tools for, 122
markup for, 121–122
requirements for creating, 120
uses for, 122

image rollovers
active (on) state, 274, 275
adding to Web pages, 276
browsers and, 277
defined, 373
image files for, 275
inactive (off) state, 274
JavaScript code for, 275
preloading, 276–277
text rollovers versus, 278

image-editing tools
for borders, 116
hexadecimal color codes and, 163
for image maps, 122
Macromedia Fireworks, 339
Photoshop, 338–339
Photoshop Elements, 337–338
for sizing images, 116

images. See also element
adding to Web pages, 110–119
aligning text and, 117–118
alternative text for, 112–113
for attractive Web pages, 345
border settings, 116–117
for company site, 311
creating Web-friendly images, 108–110
for eBay auction page, 302, 304–305,

306, 307–308

effective versus ineffective use of, 107
formats for, 108–109
going easy on, 344–345
graphics format information online, 110
image-hosting services, 307
links using, 119–122
locations for storing, 110
for navigation, text versus, 184
optimizing, 109
for product catalog, 320
rollovers with JavaScript, 274–277
size specification for, 114–116
table design and, 184
in tables, 205–206, 210
uses for, 107–108
white space settings, 118–119

 element
align attribute, 117–118
alt attribute, 112
with anchor element (<a>), 119–120
border attribute, 116
height attribute, 114–115
hspace attribute, 118–119
for image rollovers, 276
overview, 21
src attribute, 21–22, 111
usemap attribute, 121
using, 110–111
vspace attribute, 118–119
width attribute, 114–115

@import statement (CSS), 139, 150
importing external style sheets (CSS), 139
indenting text with CSS, 173
index of arrays (JavaScript), 243
index.html page for company site,

310, 311–313
inheritance of CSS styles

complex style sheets and, 137
defined, 373
overview, 135–136

inline content, 373
inline elements

anchor elements as, 96
defined, 70, 373
text blocks versus, 70

392 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 392

inline styles (CSS)
caveats for, 140
defined, 125, 137
using, 140

<input /> element
for check boxes, 257–258
checked attribute, 258
for custom buttons, 265
for dynamic clock, 282
for file upload fields, 259
for hidden fields, 259
for JavaScript clock, 281–282, 284
maxlength attribute, 255
name attribute, 258, 259
for password fields, 256
for radio buttons, 257–258
for Reset buttons, 263–265
size attribute, 255
src attribute, 265
for Submit buttons, 263–265
for text fields, 255–256
type attribute, 255, 256, 257, 259,

263–264, 265
value attribute, 258, 263–264, 265

input tags. See form input tags
ins element, 93
Internal Revenue Service (IRS) search

forms, 250–251
internal style sheets (CSS)

creating external style sheets from, 150
defined, 125, 137, 373
using, 137–138

Internet connection for hosting your
site, 52

Internet Protocol (IP), 374
Internet resources

Backup Brain Weblog, 217
BBEdit helper editor, 335
CGI information, 266, 267
CGI scripts, 268
character code information, 24
color display test page for browsers, 162
companion site for this book, 1
comparison-shopping sites, 333
CSS information, 130, 137
CSS3 information, 128

Dictionary of HTML META tags, 66
DOM information, 247
Dreamweaver HTML editor, 336
Dummies.com site, 47–48, 216–217,

248, 300
FirstGov site, 10–11
forms examples, 250–252
FrontPage HTML editor, 337
FTP clients, 55, 342
ghost site information, 350
Gmail, 223–224
GoLive HTML editor, 337
graphics format information, 110
greeked text, 314
“Hello World” Web page, 40
hexadecimal color charts, 163
hexadecimal system information, 163
HomeSite+ HTML editor, 334
HTML and XHTML specifications, 17
HTML-Kit editor, 336
“HTTP Transactions and You” article, 16
image-hosting services, 307
JavaScript examples, 219
JavaScript information, 248, 266
link checkers, 340, 354
Macromedia Fireworks, 339
<object> element information, 291
optimization tutorials, 109
page templates in this book, 300
PayPal site, 325
site map examples, 44–45, 46
spell-checking tools, 353
Swiss army knives, 342
table layout examples, 180, 181, 182
TextPad text editor, 30
UI design information, 54
Web Accessibility Initiative (WAI), 113
“Web Hosting for Under Ten Bucks”

article, 53
White House home page, 107–108
W3C HTML validator, 341, 356
W3C site, 17
Yahoo! browser list, 13
Yahoo! Merchant Solutions, 324
Zen Cart software, 324

Internet Service Provider (ISP), 373

393Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 393

intradocument linking
considerations for, 101
to named locations in the same page,

102–103
to named locations in the same site, 103
to named locations on other sites,

103–104
naming link locations, 102
pound sign for, 102

IP (Internet Protocol), 374
IRS (Internal Revenue Service) search

forms, 250–251
isindex element (deprecated), 362
ISP (Internet Service Provider), 373
italics, CSS styles for, 174–175

• J •
Java

defined, 374
JavaScript versus, 216

JavaScript. See also methods (JavaScript)
for arranging content dynamically,

217–219
arrays, 242–244
basic syntax rules, 230–231
canned scripts, 215, 225
case-sensitivity, 230
comments, 231
common uses for, 223–224
components, 229–230
concatenation, 236
for controlling pop-up windows,

100, 219–220, 285–286
for cookies, 288–290
CSS with, 217–219
data types, 232–233
in DHTML, 273
Document Object Model (DOM), 246–247
Dummies.com example, 216–217
dynamic content using DOM and, 282–284
dynamic content using HTML and,

281–282
for dynamic pages, 216–217
events and event handling, 245–246
expressions, 233
external script file, 228–229

external script reference, 227–228
for form validation, 221–223, 265–266
functions, 240–242
further information, 248, 266
Gmail use of, 223–224
header script example, 226
header versus body scripts, 226
image rollovers with, 274–277
including scripts in Web pages, 225–226
Java versus, 216
loops, 238–240
objects, 244
operators, 233–236
preloading for image rollovers, 276–277
script- and forms-related attributes, 247
<script> element as container for,

225–226
scripts defined, 215
statements, 230, 236–238
for user input validation,

221–223, 265–266
using same script on multiple pages,

227–229
variables, 231–232
white space in, 230–231
window parameters, 286–287

JPEG (Joint Photographic Experts Group)
images, 108, 109

.js files
example, 228–229
referenced by <script> element,

227–228
Juicy Studio site, 291
justifying paragraphs, 71

• K •
kbd element, 93
kerning (word spacing), 171
keywords in metadata, 63, 64

• L •
label attribute, 271
lang attribute, 94
LANWrights, Inc site, 80, 82

394 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 394

layout. See also designing a Web site
defined, 374
following rules for, 347
for forms, 268–269
tables for, 179–180, 182, 183–185
visual layouts using CSS, 142–144

left property (CSS), 154
length property (JavaScript arrays),

243–244
less than sign (<). See angle brackets (< >)
letter-spacing property (CSS), 171
 element

defined, 21, 83, 86
in numbered lists, 83–84

Library of Congress (LOC) form, 252
line breaks. See also break element

(
)
ignored by HTML, 75
wrapping by browsers and, 76

line height settings, 169–171
line-height property (CSS), 152, 170–171
lines. See horizontal rule element (<hr />)
link attribute (deprecated), 363
<link> element (CSS)

for external style sheets, 137, 150
using, 139

:link pseudo class (CSS), 165, 166
links

absolute links, 97
attributes related to, 106
Back to Top, 102–103
basic link structure, 95–96
broken, 49
“click here,” avoiding, 51
colors, 165–166
copyright laws and, 110
CSS styles for displaying, 149
defined, 95, 374
to external style sheets (CSS), 139, 150
for file downloads, 104–105
http:// in URLs, 99
hyperlinks defined, 10
image maps for, 120–122
images as, 119–120
kinds of targets for, 97
link checkers, 339–340, 354
to locations within Web pages, 101–104

to non-HTML resources, 104–106
off-site, choosing, 49–50
opening documents in new windows,

100–101
overview, 28
populating table cells, 205–206
pros and cons, 49
pseudo class selectors with (CSS),

149, 165–166
for redirector page, 65–66, 354
relative links, 97–98
requirements for creating, 95
simple links, 98
site links, 98
text for, 50–51, 95
URL for, 95

lists. See also specific kinds
bulleted lists, 21, 27, 86–88
components, 82
CSS styles for, 86, 89, 90
definition lists, 89–90
kinds of, 82
nesting, 27, 91–92
numbered lists, 83–86
overview, 27
spacing items in, 90

list-style property (CSS), 366
list-style-image property (CSS), 153
list-style-position property

(CSS), 153
list-style-type property (CSS), 153
LOC (Library of Congress) form, 252
local pages

defined, 14
refreshing browser after changing, 38
viewing, 14, 36–37, 38

location window parameter
(JavaScript), 286

loops (JavaScript)
for loops, 238–239
looping through arrays, 243–244
uses for, 238
while loops, 238, 239–240

Lopuck, Lisa (Web Design For Dummies), 54
lowercase. See case
Lynx text-only browser, 14

395Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 395

• M •
Macromedia

Dreamweaver HTML editor,
30, 55, 336–337

Fireworks, 339
HomeSite+ HTML editor, 334–335

mailto: links
anchor element for, 105–106
for forms, 266, 268

Mander, Richard (Web Usability For
Dummies), 54

<map> element, 121
mapping your site

deciding whether to use a site map, 46
example maps, 44–45, 46
navigation tool choices and, 48
planning for expansion, 45–46
for site development, 44–45
site map defined, 376
using site maps for testing, 351, 352
as visual guide for users, 46

margin property (CSS), 144, 155
margin-bottom property (CSS), 159
margin-left property (CSS), 159
margin-right property (CSS), 159
margin-top property (CSS), 159
marker-offset property (CSS), 160
marks property (CSS), 160
markup. See also elements; tags

angle brackets enclosing, 13
defined, 11, 374
for image maps, 121–122
sample HTML markup, 12–13
sanitizing for tables, 208
for simple form, 253–254
white space in, 208

markup language, 374
maxlength attribute of <input />

element, 255
measurement values, 129
media styles (CSS)

aural (speech sound) styles, 158
paged media styles, 156–158
visual media styles, 152–156

media types (CSS), 151, 374
menu element (deprecated), 362
menubar window parameter

(JavaScript), 286
<meta /> element

automatically redirecting users,
65–66, 354

Dictionary of HTML META tags, 66
http-equiv attribute, 65–66
name and content attributes, 64
page appearance not affected by, 67
scheme attribute, 68
setting page expiration date, 66
uses by developers, 65

metadata
defined, 63, 374
elements and attributes, 64
kinds included for Web pages, 63
uses by developers, 65

method attribute of <form> element,
253, 271

methods (JavaScript)
alert(), 226, 231
calling, 244
confirm(), 237–238
defined, 244, 374

Microsoft
FrontPage HTML editor, 30, 337
IIS, 52
Word, saving files as text documents, 32

MOMspider link checker, 340, 354
moving files. See posting your Web pages
multi-line text boxes for forms, 262–263
multimedia

defined, 374
embedding content with <object>

element, 290–291
multiple attribute of <select>

element, 271
music, avoiding on eBay auction page, 305
MySQL/PHP Database Applications (Wiley

Publishing), 323

396 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 396

• N •
name attribute

anchor element (<a>), 102
for form controls, 271
<form> element, 271
<input /> element, 258, 259
<map> element, 121, 122
<meta /> element, 64
<select> element, 260, 271

names
color names, 162
domain name, 53–54
for folders, 35
for link locations, 102
linking to named locations, 102–104
metadata, 64
suffixes for Web page files, 35–36
title of Web page, 62–63
variables (JavaScript), 232
for Web page files, 35

nameservers, 374
namespaces, 61–62
navbar class, 143–144
navigation bar, defined, 375
navigation, defined, 375
navigation tools

for company site, 312–313
defined, 28
Dummies.com example, 47–48
factors affecting type of, 46–47
goals and design of, 43
image rollovers, 274–277
images versus text, 184
navigation bar, 47, 48
for product catalog, 319, 320, 321
return visitors and, 41
site maps for, 46, 48
sub-navigation areas, 47–48
text rollovers, 277–280
tips, 348

Negrino, Tom (HTML 4 For Dummies), 1–6
nesting

close first what you opened last rule, 92
defined, 21, 375

inheritance of CSS styles and, 135–137
lists, 27, 91–92
<pre> element inside <blockquote>

elements, 76
tables, 208–210

NetMechanic’s HTML Toolbox, 342
Nielson, Jakob (Web site designer), 54
nohref attribute of <area /> element, 122
noshade attribute

deprecation of, 363
<hr /> element, 80

Notepad text editor
editing Web pages with, 10
as native Windows editor, 30

nowrap attribute (deprecated), 363
null data type (JavaScript), 233
number data type (JavaScript), 233
numbered lists

CSS for, 86
defined, 83
elements used for, 83
formatting, 83–84
numbering styles, 85–86
starting number, 84–85

numbers for colors
hexadecimal color codes, 162–163
RGB values, 163–164

• O •
object data type (JavaScript), 233
<object> element, 290–291
“Objects, Images, and Applets” (W3C), 291
objects (JavaScript)

accessing properties or methods, 244
defined, 375
overview, 244

oblique text, CSS styles for, 174–175
octothorpe (#)

in intradocument linking, 102
preceding hexadecimal color codes, 163
starting CSS style rules, 145

 element
attributes, 84–86
defined, 83

397Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 397

onsubmit attribute of <form> element, 221
opening. See also pop-up windows

e-mail message window with links,
105–106

linked pages in new window, 100–101
operators (JavaScript)

for accessing arrays, 243
arithmetic operators, 234
assignment operators, 233–234
comparison operators, 235–236
counting operators, 234–235
defined, 233, 375

<option> element
for drop-down lists, 260–261, 262
selected attribute, 262
value attribute, 260

orphans property (CSS), 157
outline property (CSS), 366
overflow property (CSS), 160
overlining, CSS styles for, 176–177

• P •
<p> element
align attribute, 71–72

 element versus, 78
closing tag usage, 71
creating a paragraph, 70–71
defined, 27
for “Hello World” example, 34
for text fields in forms, 255

padding property (CSS)
overview, 156, 366
as shorthand property, 144
for tables, 198

padding table cells
cellpadding attribute for, 196–198
CSS styles for, 198
defined, 196

padding-bottom property (CSS), 160
padding-left property (CSS), 160
padding-right property (CSS), 160
padding-top property (CSS), 160
page property (CSS), 160
@page property (CSS), 159
page templates. See templates
page-break-after property (CSS), 157
page-break-before property (CSS), 157

page-break-inside property (CSS), 157
paged media styles (CSS), 156–158
pages, defined, 375
paragraphs. See <p> element
param element (deprecated), 362
parentheses [()] with JavaScript

methods, 226
password fields for forms, 256–257
paths in URLs, 15
pause property (CSS), 366
pause-after property (CSS), 367
pause-before property (CSS), 367
PayPal shopping cart

accounts for, 323, 325
Add to Cart button, 325–327
adding to Web pages, 324–325
overview, 323
PayPal site, 325
View Cart button, 327

PC Magazine Web site, 333
PDF files, links for, 104–105
peer reviews, 356
performance

JavaScript and, 217
location for storing images and, 110
nested tables and, 208

period (.)
for accessing JavaScript properties or

methods, 244
applying style rule only to class

(CSS), 134
in site links (../), 98
starting CSS style rules, 145

Perl, 375
personas, 310
photographs. See images
Photoshop (Adobe), 338–339
Photoshop Elements (Adobe), 337–338
pitch property (CSS), 367
pitch-range property (CSS), 367
Pixel the Cat Web page

font styles, 146–149
positioning elements, 145–146
visual layouts, 142–144
without styles, 142, 143

planning
encouraging return visitors, 41
for future expansion, 45–46
goals and site design, 42–44

398 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 398

“Hello World” example, 31–32
links, 49–51
mapping your site, 44–46
navigation, 46–49
page design, 30–31, 41

play-during property (CSS), 367
plug in, 375
PNG (Portable Network Graphics)

images, 109
POP (Post Office Protocol), 16
populating table cells, 205–206
pop-up windows

adding to Web pages, 286
JavaScript for controlling,

100, 219–220, 285–286
JavaScript parameters, 286–287
opening linked pages in, 100–101
simple example, 285–286
uses and abuses of, 219, 284–285

Portable Network Graphics (PNG)
images, 109

position property (CSS), 145, 154
positioning elements with CSS, 145–146
Post Office Protocol (POP), 16
posting your Web pages

choices for, 54
steps for, 39–40
using FTP, 55
using hosting provider’s Web site, 55–56

pound sign (#)
in intradocument linking, 102
preceding hexadecimal color codes, 163
starting CSS style rules, 145

<pre> element
nesting inside <blockquote>

elements, 76
white space displayed with, 75–76, 77

preformatted text, 75–76, 77
preloading for image rollovers, 276–277
press page for company site, 310
print media type (CSS), 151
processing form data

determining your needs, 266–267
sending data by e-mail, 268
using CGI scripts and other programs,

267–268
product catalog

category page, 320, 321, 327–329
components, 319–320

design basics, 320
detail pages, 320, 321–322, 329–330
e-commerce books, 323
navigation interface, 319, 320, 321
printed versus online, 319
resources used for, 321
shopping cart, 320, 322–327

products page for company site,
310, 313–314

profile attribute of <head> element, 68
programming languages

for CGI, 267
embedding content with <object>

element, 290–291
programs. See software; specific programs
projection media type (CSS), 151
properties. See also specific properties

of declarations (CSS), 130
defined, 375
of objects (JavaScript), 244

property measurement values, 129
protocols in URLs, 15
pseudo class selectors (CSS), 149, 165–166
pseudo classes (CSS)
:active, 165, 166
defined, 375
:focus, 165, 166
:hover, 165, 166
:link, 165, 166
:visible, 166
:visited, 165, 166

• Q •
quotation class (CSS), 170, 171, 173
quotation marks (“)

attribute values enclosed by, 22
for strings with JavaScript methods, 226

quotes property (CSS), 160

• R •
radio buttons for forms, 257–258
RateGenius data collection forms,

251–252, 269–270
reading array elements (JavaScript), 243
readonly attribute, 271

399Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 399

redirector page
http-equiv attribute of <meta />

element for, 65–66, 354
manual link for, 66

registering a domain name, 53–54
relative, defined, 375
relative links. See also links

defined, 97
guidelines for, 97–98
moving up a directory level, 98
simple links, 98
site links, 98

relative property measurement values, 129
Reset buttons for forms, 263–265
resizable window parameter

(JavaScript), 287
resizing images, 114–116
resource, 376
rgb property (CSS), 163–164
RGB values for colors, 163–164
richness property (CSS), 367
right justifying paragraphs, 71
right property (CSS), 153
robot, 376
rollovers

defined, 274
image, with JavaScript, 274–277
text, with CSS, 279–280

rows attribute of <textarea> element, 263
rowspan attribute of <td> element,

202, 204–205
rules attribute, 212

• S •
s element (deprecated), 362
samp element, 93
sansStyle.css style sheet, 218
saving

changes to Web pages, 38
Web pages, 34–36
Word files as text documents, 32

scheme attribute of <meta /> element, 68
scope attribute, 212
screen, 376
screen media type (CSS), 151
<script> element

checkSubmit function in, 221
for cookies, 290
declare attribute, 247
defer attribute, 247
for dynamic clock, 282, 284
with external script reference, 227–228
header script example, 226
for image rollovers, 276
for pop-up windows, 285
as script container, 225–226
src attribute, 227, 228

scripting language, 376
scripts. See also DHTML (Dynamic HTML);

JavaScript
for arranging content dynamically,

217–219
canned JavaScript, 215, 225
common uses for, 223–224
for controlling pop-up windows,

100, 219–220, 285–286
for cookies, 288–290
defined, 215, 376
eBay auction page and, 303
external script reference, 227–228
for form validation, 221–223, 265–266
header script example, 226
header versus body, 226
including in Web pages, 225–226
<script> element as container for,

225–226
server-side scripting, 222
using on multiple pages, 227–229

scrollbars window parameter
(JavaScript), 287

search engines
defined, 376
<title> element contents and, 63

search forms, 249, 250–251
<select> element, 260–261
selected attribute of <option>

element, 262
selectors (CSS)

applying declaration to collection of, 133
defined, 130, 376
multiple style rules per selector, 132–133
pseudo class selectors, 149, 165–166
text color and, 164–165

400 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 400

semicolon (;)
with CSS declarations, 133
entities ended by, 23

Send buttons for forms, 263–265
serifStyle.css style sheet, 218
server, defined, 376
server-side scripting, 222
SGML (Standard Generalized Markup

Language), 18, 376
shape attribute of <area /> element, 121
shopping cart

do-it-yourself software, 324
hosting e-commerce services, 324
PayPal, 323, 324–327
steps for using, 322–323
streamlining buying process, 320

shorthand properties (CSS), 144, 365–366
simple links, 98. See also links
Simple Mail Transfer Protocol (SMTP), 16
SimpleText text editor, 30
singleton tags, 20–21, 110
site links, 98. See also links
site maps. See mapping your site
“Site Redesign Tutorial” (Webmonkey), 54
site reviews, scheduling, 357
size attribute

deprecation of, 363
<hr /> element, 80
<input /> element, 255
<select> element, 271

size property (CSS), 160
sizing images, 114–116
sketching tables, 183–185
slash (/)

empty elements ended by, 20
for JavaScript comments, 231
in site links (../), 98

Smith, Bud (Web Usability For Dummies), 54
Smith, Dori (HTML 4 For Dummies), 1–6
SMTP (Simple Mail Transfer Protocol), 16
software. See also HTML toolbox; image-

editing tools; specific programs
FTP clients, 55, 341–342
needed for Web page creation, 29–30
PDF file reader, 105
for processing form data, 267
shopping cart packages, 324

syntax checkers, 346
for Web servers, 52
for Zip files, 105

spaces. See also white space
in filenames, avoiding, 35
letter spacing, 171
word spacing, 171

spacing between table cells
cellspacing attribute for, 196–198
CSS styles for, 198–199
defined, 196

span attribute, 212
 element, 284
spanning table cells. See cell spanning
speak property (CSS), 367
speak-header property (CSS), 368
speak-numeral property (CSS), 368
speak-punctuation property (CSS), 368
specification, 376. See also standards
speech sound (aural) styles (CSS), 158
speech-rate property (CSS), 368
speed. See performance
spell checking Web pages, 352–353
square brackets ([]) as array operator, 243
src attribute
 element, 21–22, 111
<input /> element, 265
<script> element, 227, 228

Standard Generalized Markup Language
(SGML), 18, 376

standards
CSS Candidate Recommendations, 128
HTML and XHTML specifications, 16–17
for tables, following, 207
Unicode, 24

standby attribute of <object>
element, 291

start attribute of element,
84–85, 86, 363

Starting an Online Business For Dummies
(Wiley Publishing), 323

statements (JavaScript)
conditional statements, 236–238
defined, 230, 376
expression statements, 236

status window parameter
(JavaScript), 287

401Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 401

stress property (CSS), 368
strike element (deprecated), 362
strikethrough, CSS styles for, 176–177
string data type (JavaScript), 233
structure of documents

basic elements, 59–60
body, 67
DOCTYPE declarations, 60–61
<head> element, 62
header, 62–66
<html> element, 61
identifying your document, 60–62
importance of, 344
other attributes, 68
XHTML namespace, 61–62

style attribute (CSS)
for inline styles, 139
using carefully, 140

<style> element (CSS)
defining navbar class in, 143–144
@import keyword, 139, 150
for internal style sheets, 137
for text rollovers, 280
using, 137–138

style sheet, 377. See also CSS (Cascading
Style Sheets)

stylesheet.css file, 311, 316–317
styleSwitcher.js script, 218–219
Submit buttons for forms, 263–265
suffixes for filenames

broken links and, 99
.htm versus .html, 35–36

summary attribute, 212
Swiss army knives, 342
Symantec, site map used by, 46
syntax, 377
syntax checkers, 340–341, 346, 377

• T •
tabindex attribute, 271
<table> element
align attribute, 199–200
border attribute, 189–191
required for tables, 186
for simple table, 186
for table-based Web page, 187, 189
width attribute, 193–195

table-layout property (CSS), 160
tables

aligning, 199–202
attributes, 211–212
basics, 182–183
borders, 182, 189–193
browser display of, 193
cell span versus cell width, 182
cell spanning, 182, 185, 202–205
colors for, 210–211
creating a simple table, 186–187
creating a table-based Web page, 187, 189
CSS styles for borders, 191–193
CSS styles for width, 195–196
dense, avoiding, 210
elements, 185–186, 188
height and width adjustment, 193–196
horizontal alignment, 199–200, 201–202
for layout, 179–180, 182, 183–185
nesting, 208–210
padding and spacing, 196–199
populating cells, 205–206
presentation-focused sizing for, 180
sanitizing markup for, 208
sketching, 183–185
standards, following, 207
steps for developing layout ideas,

183–184
testing, 206–207
tips, 207–211
traditional uses, 179, 180
turning borders on and off, 189–190
vertical alignment, 200–201
(X)HTML with CSS in, 181

tags. See also elements; form input tags;
specific tags and elements

for comments, 25
defined, 377
displaying tag characters literally, 24–25
form input tags, 254–265
HTML versus XHTML and case of, 2
keeping track of, 346–347
nested elements and, 21
singleton tags, 20–21, 110
start and end tag pairs, 19–20

target attribute of anchor element,
100–101

<tbody> element, 188

402 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 402

<td> element
bgcolor attribute, 211
cellpadding attribute, 196–198
cellspacing attribute, 196–198
colspan attribute, 202–204
enclosed within <tr> element, 186
populating table cells, 205–206
required for tables, 186
rowspan attribute, 202, 204–205
for simple table, 186
<table> element nested in, 208–210
for table-based Web page, 187, 189
valign attribute, 200–201
width attribute, 193–195

templates
company site contact page, 315–316
company site home page, 311–313
company site products page, 313–314
defined, 377
eBay auction page, 306–308
product catalog category page, 327–329
product catalog detail page, 329–330
using templates in this book, 300

testing and checking Web pages
beta testing, 355–356
for broken links, 353–354
getting user feedback, 43, 357–358
HTML validators for, 340–341,

346, 356–357
keeping content fresh, 354–355
link checkers for, 339–340, 354
on many browsers, 13, 346
peer reviews, 356
scheduling site reviews, 357
site map for, 351, 352
spell checking, 352–353
tables, 206–207

text. See also font styles (CSS); formatting
text; text blocks

aligning images and, 117–118
alternative, for images, 112–113
color property for (CSS), 164–165
for eBay auction page, 302, 304, 306–308
for forms, 269
greeked, 314
for links, 50–51, 95
moving outside linear thinking, 348–349
for navigation, images versus, 184
organizing, 26–27

populating table cells, 205–206
for product catalog, 320
rollovers with CSS, 279–280
saving Word files as text documents, 32
text-only browsers, 14

text attribute
deprecation of, 363
described, 33

text blocks. See also text; specific kinds
aligning with CSS, 171–173
block quotes, 74–75, 76
defined, 69
headings, 27, 33, 72–74
horizontal rules, 27, 79–82
HTML page as collection of, 69
indenting with CSS, 173
inline elements versus, 70
kinds of, 69
line breaks, 27, 76, 78–79
paragraphs, 70–72
preformatted text, 75–76, 77

text boxes for forms, 262–263
text document, 377
text editors

choices for, 30
editing Web pages with, 10
limitations of, 333
reasons for using, 30

text fields for forms, 255–256
text rollovers

adding to Web pages, 280
CSS and HTML code for, 279–280
illustrated, 278–279
image rollovers versus, 278

text-align property (CSS)
overview, 153
for tables, 201–202
for text blocks, 172–173

<textarea> element, 263
text-decoration property (CSS),

149, 153, 176–177
text-indent property (CSS), 173
text-only browsers

alternative text for images, 112–113
anchor elements and, 96
heading display by, 74
reasons for using, 14

text-transform property (CSS), 175–176

403Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 403

<tfoot> element, 188
<th> element, 188
<thead> element, 188
thumbnail, 377
title attribute, 94
<title> element

adding to document, 62–63
for “Hello World” example, 33

title of Web page
defined, 377
eBay auction page, 302, 304
overview, 62–63

Tittel, Ed (HTML 4 For Dummies), 1–6
toolbar window parameter

(JavaScript), 287
top property (CSS), 153
<tr> element

enclosed within <table> element, 186
required for tables, 186
for simple table, 186
for table-based Web page, 187, 189
<td> element enclosed within, 186
valign attribute, 200–201

tracking (letter spacing), 171
transferring files. See FTP (File Transfer

Protocol); posting your Web pages
transparency, 377
tt element, 93
tty media type (CSS), 151
tv media type (CSS), 151
type attribute. See also type attribute of

<input /> element
deprecation of, 363
for forms, 271–272
for links, 106
<object> element, 291
 element, 85–86
 element, 87–88

type attribute of <input /> element
checkbox value, 257
file value, 259
hidden value, 259
image value, 265
overview, 272
password value, 256
radio value, 257
reset value, 263–264

submit value, 263–264
text value, 255

• U •
u element (deprecated), 362
UI (user interface). See also designing a

Web site; navigation tools
defined, 377
design resources, 54
goals and design of, 42–44
good versus poor, 41
site map as visual guide, 46
visual scheme design, 48–49

 element
in bulleted lists, 87
closing tag, 86
defined, 21, 86
type attribute, 87–88

“under construction” sections, avoiding, 46
underlining, CSS styles for, 176–177
Unicode character codes

online information for, 24
using, 24

Uniform Resource Locators. See URLs
unordered lists. See bulleted lists
uppercase. See case
URLs (Uniform Resource Locators). See

also Internet resources
as action attribute value (<form>

element), 253, 254
common mistakes, 99
defined, 2, 15, 377
for FTP, 55
http:// in links, 99
for links, 95, 96
overview, 15

usemap attribute
 element, 121
table summarizing, 122

user feedback, getting, 43, 357–358
user input. See also forms

confirming actions with JavaScript,
237–238

validating with JavaScript,
221–223, 265–266

user interface. See UI

404 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 404

• V •
valid, defined, 377
validating

HTML, 340–341, 346
links, 339–340
user input, 221–223, 265–266

validation, defined, 378
valign attribute of <td> and <tr>

elements, 200–201
value attribute
<button> element, 272
deprecation of, 363
<input /> element, 258, 263–264,

265, 272
<option> element, 260

values of declarations (CSS), 130
var element, 93
variables (JavaScript)

data types, 232–233
declaring, 232
defined, 231, 378
using, 231–232

vertical alignment of tables, 200–201
vertical-align property (CSS), 201
View Cart button (PayPal shopping

cart), 327
viewing

“Hello World” example, 36–37
local pages, 14, 36–37, 38
previewing pages on browsers, 13, 29

visibility property (CSS), 154
:visible pseudo class (CSS), 166
:visited pseudo class (CSS), 165, 166
visual media styles (CSS), 152–156
vlink attribute (deprecated), 364
voice-family property (CSS), 368
volume property (CSS), 368
vspace attribute

deprecation of, 364
 element, 118–119

• W •
WAI (Web Accessibility Initiative), 113
Web addresses. See Internet resources;

URLs (Uniform Resource Locators)

Web browsers. See browsers
Web, defined, 378
Web Design For Dummies (Lopuck, Lisa), 54
Web Design Group (“CSS Structure and

Rules”), 137
“Web Graphics Overview”

(Webmonkey), 110
“Web Hosting for Under Ten Bucks”

(Webmonkey), 53
Web Link Validator software, 339–340
Web pages. See also creating a Web page;

Internet resources
creating a table-based Web page,

187, 189
defined, 378
embedding content with <object>

element, 290–291
intradocument linking, 102–104
kinds of content on, 9–10
linking to locations within, 101–104
local pages, 14
saving, 34–36
testing on many browsers, 13
as text files, 10
using same script on multiple pages,

227–229
Web Pages That Suck site, 54
Web servers

dedicated, 52
defined, 14, 378
overview, 342
posting your Web pages, 39–40, 54–56
software for, 52

Web site, defined, 378
Web site, hosting

changing your decision, 52
choices for, 51
defined, 51
doing it yourself, 52
finding, 39
form processing applications and, 267
further information, 52
getting a domain, 53–54
moving files to your Web server, 54–56
professional help for, 52
using a hosting provider, 52

Web Usability For Dummies (Mander,
Richard and Smith, Bud), 54

405Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 405

Webmastering For Dummies (Wiley
Publishing), 52

Webmonkey
“CGI Scripts for Fun and Profit,” 267
“Design Basics,” 54
“HTTP Transactions and You,” 16
optimization tutorials, 109
“Site Redesign Tutorial,” 54
“Web Graphics Overview,” 110
“Web Hosting for Under Ten Bucks,” 53

well-formed document, 378
Westciv’s CSS2 reference online, 130
what you see is what you get

(WYSIWYG), 378
while loops (JavaScript)

defined, 239
example, 240
for loops versus, 238, 239

White House home page, 107–108
white space. See also spaces

cell padding and spacing in tables,
196–199

character spacing settings, 171
CSS style sheets and, 133
ignored by HTML, 75
in JavaScript, 230–231
line height settings, 169–171
preformatted text element for displaying,

75–76, 77
setting for images, 118–119
in table markup, 207

widows property (CSS), 157
width attribute

deprecation of, 364
<hr /> element, 80
 element, 114–115
<table> or <td> element, 193–195

width property (CSS)
overview, 155
for tables, 195–196

width window parameter (JavaScript), 287
Wiley Publishing

E-Commerce For Dummies, 52
MySQL/PHP Database Applications, 323
Starting an Online Business For

Dummies, 323
Webmastering For Dummies, 52

windows. See pop-up windows
WinZip software, 105
Word (Microsoft), saving files as text

documents, 32
word processors

HTML editing and, 30
saving Word files as text documents, 32

word-spacing property (CSS), 171
writing array elements (JavaScript), 243
WS_FTP client software, 55, 342
W3C (World Wide Web Consortium)

basic link to Web site, 96
case rules revised by, 3
CSS validation service, 133
CSS3 information, 128
defined, 378
DOM information, 247
HTML and XHTML specifications, 16–17
HTML validator, 341, 356–357
link checker utility, 340
“Objects, Images, and Applets,” 291
Recommendations, 17
Web Accessibility Initiative (WAI), 113

W3Schools site, 291
WYSIWYG editors, 336–337
WYSIWYG (what you see is what you

get), 378

• X •
XHTML (Extensible Hypertext Markup

Language). See also HTML (Hypertext
Markup Language)

case and, 2
character codes, 24
color values, 162–164
components, 19
conventions for code listings, 2
with CSS in tables, 181
defined, 378
DOCTYPE declarations, 61
DTDs, 18
HTML versus, 2, 16–18, 20
namespace, 61–62
specifications, 17
text controls and annotation (table), 93

406 HTML 4 For Dummies, 5th Edition

36_589172 bindex.qxd 4/22/05 3:53 PM Page 406

text-related attributes, 93–94
usage in this book, 1
wrapped lines in this book, 2
XML as basis of, 17

XHTML Frameset
DOCTYPE declaration, 61
DTD, 18

XHTML Strict
DOCTYPE declaration, 61
DTD, 18

XHTML Transitional
DOCTYPE declaration, 61
DTD, 18

(X)HTML usage in this book, 1
XML (Extensible Markup Language)

defined, 378
empty elements and, 20
XHTML based on, 17

• Y •
Yahoo!

browser list, 13
Merchant Solutions, 324
tables for layout in, 180

• Z •
Zen Cart software, 324
z-index property (CSS), 146, 154
Zip files, links for, 104–105
ZipIt software, 105

407Index

36_589172 bindex.qxd 4/22/05 3:53 PM Page 407

Notes

36_589172 bindex.qxd 4/22/05 3:53 PM Page 408

Notes

36_589172 bindex.qxd 4/22/05 3:53 PM Page 409

Notes

36_589172 bindex.qxd 4/22/05 3:53 PM Page 410

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

37_589172 bob.qxd 4/22/05 4:04 PM Page 411

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

37_589172 bob.qxd 4/22/05 4:04 PM Page 412

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT For Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

37_589172 bob.qxd 4/22/05 4:04 PM Page 413

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

37_589172 bob.qxd 4/22/05 4:04 PM Page 414

	HTML 4 For Dummies, 5th Edition
	About the Authors
	Authors’ Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	How to Use This Book
	Three Presumptuous Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting to Know (X) HTML
	Chapter 1: The Least You Need to Know about HTML and the Web
	Web Pages in Their Natural Habitat
	Anatomy of a URL
	(X) HTML’s Component Parts
	Parts Is Parts: What Web Pages Are Made Of

	Chapter 2: Creating and Viewing a Web Page
	Before You Get Started
	Creating a Page from Scratch
	Editing an Existing Web Page
	Posting Your Page Online

	Chapter 3: Proper Planning Prevents Poor Page Performance
	Planning Your Site
	Hosting Your Web Site

	Part II: Formatting Web Pages with (X) HTML
	Chapter 4: Creating (X) HTML Document Structure
	Establishing a Document Structure
	Labeling Your (X) HTML Document
	Adding a Document Header
	Creating the (X) HTML Document Body
	Marvelous Miscellany

	Chapter 5: Text and Lists
	Formatting Text
	Controlling Text Blocks
	Organizing Information
	Text Controls and Annotation
	Marvelous Miscellany

	Chapter 6: Linking to Online Resources
	Basic Links
	Customizing Links
	Marvelous Miscellany

	Chapter 7: Finding and Using Images
	The Role of Images in a Web Page
	Creating Web-Friendly Images
	Adding an Image to a Web Page
	Images That Link
	Marvelous Miscellany

	Part III: Taking Precise Control Over Web Pages
	Chapter 8: Introducing Cascading Style Sheets
	Advantages of Style Sheets
	CSS Structure and Syntax
	Using Different Kinds of Style Sheets
	Understanding the Cascade

	Chapter 9: Using Cascading Style Sheets
	Managing Layout, Positioning, and Appearance
	Multimedia
	Marvelous Miscellany

	Chapter 10: Getting Creative with Colors and Fonts
	Color Values
	Color Definitions
	Fonts

	Chapter 11: Using Tables for Stunning Pages
	What Tables Can Do for You
	Table Basics
	Sketching Your Table
	Constructing Basic Tables
	Adding Spans
	Populating Table Cells
	Testing Your Table
	Table-Making Tips
	Marvelous Miscellany

	Part IV: Integrating Scripts with HTML
	Chapter 12: Scripting Web Pages
	What JavaScript Can Do for Your Pages

	Chapter 13: The Nuts and Bolts of JavaScript
	Including Scripts in Web Pages
	Using the Same Script on Multiple Pages
	Exploring the JavaScript Language
	Events and Event Handling
	Document Object Model (DOM)
	Marvelous Miscellany
	References and Resources

	Chapter 14: Working with Forms
	Uses for Forms
	Creating Forms
	Processing Data
	Designing User-Friendly Forms
	Marvelous Miscellany

	Chapter 15: Fun with Client-Side Scripts
	Adding Rollovers to Your Pages
	Displaying Dynamic Content on Your Page
	Displaying Pop-up Windows
	Working with Cookies
	Marvelous Miscellany

	Part V: HTML Projects
	Chapter 16: The About Me Page
	Overview and Design Considerations
	Page Markup

	Chapter 17: The eBay Auction Page
	Designing Your Auction Page
	Presentation Issues to Consider
	Using a Template for Presenting Your Auction Item

	Chapter 18: A Company Site
	Issues to Consider When Designing Your Site
	Basic Elements of a Company’s Web Site

	Chapter 19: A Product Catalog
	Dissecting a Product Catalog
	Choosing a Shopping Cart
	Page Markup

	Part VI: The Part of Tens
	Chapter 20: Ten Cool HTML Tools
	HTML Editors
	Graphics Tools
	Link Checkers
	HTML Validators
	FTP Clients
	Swiss Army Knives

	Chapter 21: Ten HTML Do’s and Don’ts
	Concentrate on Content
	Go Easy on the Graphics, Bells, Whistles, and Hungry Dinosaurs
	Create Well-Formulated HTML and Test
	Keep It Interesting After It’s Built!

	Chapter 22: Ten Ways to Exterminate Web Bugs
	Avoid Dead Ends and Spelling Faux Pas
	Keep Your Perishables Fresh!
	Check Your Site, and Then Check It Again!
	Let User Feedback Feed Your Site

	Part VII: Appendixes
	Appendix A: Deprecated (X) HTML Elements and Attributes
	Appendix B: Shorthand and Aural CSS Properties
	Appendix C: Glossary

	Index

